- R
7] Qg oRBORCaG 2
z PRaRBEAL G
)
\\ :
|
\s !

WRITTEN BY

Linux
BIBLE

THE COMPREHENSIVE TUTORIAL RESOURCE

EXPLORE THE LATEST MASTER INSIDE TRICKS DISCOVER WHAT YOU
TOOLS AND FEATURES AND BEST PRACTICES NEED, WHEN YOU NEED IT

WILEY

Linux

Bible

Tenth Edition

Linux

BIBLE

Tenth Edition

Christopher Negus

WILEY

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-57888-8
ISBN: 978-1-119-57891-8 (ebk)
ISBN: 978-1-119-57889-5 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of

the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or website may provide or recommendations it may make. Further, readers should be aware that
Internet websites listed in this work may have changed or disappeared between when this work was written and
when it is read.

For general information on our other products and services please contact our Customer Care Department within
the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019956690

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. Linux is
a registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

As always, I dedicate this book to my wife, Sheree.

About the Author

Chris Negus is a principal technical writer for Red Hat, Inc. In more than a decade with Red
Hat, Chris has taught hundreds of IT professionals to become Red Hat Certified Engineers
(RHCEs), and he has written scores of documents on everything from Linux to virtualization
to cloud computing and containerization.

Before joining Red Hat, Chris wrote or co-wrote dozens of books on Linux and UNIX, includ-
ing the Red Hat Linux Bible (all editions), Docker Containers, Cent0S Bible, Fedora Bible, Linux
Troubleshooting Bible, Linux Toys, Linux Toys II, and, nine editions of this Linux Bible. Chris
also co-authored several books for the Linux Toolbox series for power users: Fedora Linux
Toolbox, SUSE Linux Toolbox, Ubuntu Linux Toolbox, Mac 0S X Toolbox, and BSD UNIX Toolbox.

Before becoming an independent author, Chris worked for eight years with the organization
at AT&T that developed the UNIX operating system before moving to Utah to help contribute
to Novell's UnixWare project in the early 1990s. When not writing about Linux, Chris enjoys
playing soccer, hanging out with his wife, Sheree, and spending what time he can with his
sons, Seth and Caleb.

vii

About the Technical Editors

Jason W. Eckert is an experienced technical trainer, consultant, and best-selling author in
the Information Technology (IT) industry. With 45 industry certifications, over 30 years of
IT experience, 4 published apps, and 24 published textbooks covering topics such as UNIX,
Linux, security, Windows Server, Microsoft Exchange Server, PowerShell, BlackBerry Enter-
prise Server, and video game development, Mr. Eckert brings his expertise to every class that
he teaches at triOS College in his role as the Dean of Technology. For more information about
Mr. Eckert, visit jasoneckert.net.

Derrick Ornelas is a senior software maintenance engineer at Red Hat, Inc. In his current
role as a product lead for Red Hat container technologies, including OpenShift Container Plat-
form and Red Hat Enterprise Linux CoreOS, Derrick works to ensure both the supportability
and quality of Red Hat's products. Previously, he worked as a senior technical support lead
for Red Hat virtualization technologies, such as libvirt, KVM, and the Red Hat Virtualiza-
tion product.

During his 12 years at Red Hat, Derrick earned the Red Hat Certified Engineer and Red Hat
Certified Virtualization Administrator certifications, and he has applied his broad Linux
knowledge to architect, deploy, and maintain various hardware labs and applications.

Derrick’s nearly two decades of Linux experience began while earning his BS in Computer
Science from Appalachian State University. As a devoted Linux supporter, he enjoys teaching
and assisting new Linux users both on and off the clock. When he's not working on his
monitor tan, Derrick enjoys mountain biking, motorcycling, and backpacking with his

wife, Carolyn.

http://jasoneckert.net

Acknowledgments

would grow to about seven times its size, be bought by IBM for $34 billion, and (so

far) still maintain the spirit of openness and excitement that it had when I first
signed on. Every day when I come to work, I interact with many of the greatest Linux and
cloud developers, testers, instructors, and support professionals in the world.

W hen I was hired at Red Hat about a dozen years ago, I didn't know that Red Hat

While I can't thank everyone individually, I would like to salute the culture of cooperation
and excellence at Red Hat that serves to improve my own Linux skills every day. I don't speak
well of Red Hat because I work there; I work at Red Hat because it lives up to the ideals of
open source software in ways that match my own beliefs.

That said, there are a few Red Hatters that I want to acknowledge in particular. At Red Hat,
I'm able to take on so many cool and challenging projects because of the freedom that I
receive from the people to whom I report. They include Michelle Bearer, Dawn Eisner, and Sam
Knuth. Sam, in particular, has had my back and encouraged my work for more than a decade.

In my daily work, I want to give a shout out to Red Hatters Scott McCarty, Ben Breard,

Laurie Friedman, Dave Darrah, Micah Abbott, Steve Milner, and Ian McLeod (container tools,
RHCOS, and OpenShift teams), and Tom McKay, Joey Schorr, Bill Dettelback, Richa Marwaha,
and Dirk Herrmann (Quay team). Finally, a special thank you to Vikram Goyal, who luckily
lives in Australia, so he is always available to bail me out when I blow up git in the middle of
the night.

When it comes to support for writing this book, I have had the luxury of two excellent tech-
nical editors: Jason Eckert and Derrick Ornelas. I didn't know Jason before he took on this
role, but his broad experience with different Linux systems has helped call me out when I get
too Red Hat centric. Derrick, who I see almost every day, was asked to do this work because
of his attention to detail and deep understanding of how Linux works and what people need
to know to use it. Anyone reading this book will have a better experience because of the
work that Jason and Derrick have done reviewing it.

As for the people at Wiley, thanks for letting me continue to develop and improve this book
over the years. Thanks to Gary Schwartz, who applies constant, gentle pressure to keep me
working on this book at times when I had no spare cycles to work on it. When Gary’s pressure
wasn't enough, Devon Lewis would step in to paint a clearer picture about the importance of
deadlines. Thanks also to Margot Maley Hutchison from Waterside Productions for contracting
the book for me with Wiley and always looking out for my best interests.

Finally, thanks to my wife, Sheree, for sharing her life with me and doing such a great job
raising Seth and Caleb.

—Christopher Negus

Xi

Contents at a Glance

ACKNOWIEAGIMENES 1.eitrueiiiiiiieiiitiee e eettee e eettieeeettueeeettreeseetaaeeseeessnsssesesssssesesnssessssnsseeees xi
B0 (oo N 3 o) (AR PPPORRRPPPPRt XXXV
Partl: GettingStartedo i 1
Chapter 1: Starting with LINUX....coooiiiiiiiiiimmiiiiiiiiiiiciiiii e 3
Chapter 2: Creating the Perfect Linux DeSKtOD....cciverrrrruuieererereeiireiiieeeeeeeeererennieeaeeeeees 27
Part Il: Becoming a Linux PowerUser.................ccciiuinn.. 59
Chapter 3: Using the Shell. ... ittt eeee e e ereaeesetraneeseeenneseenensennns 61
Chapter 4: Moving Around the FileSYStemccueiiiiiiiiiiiiiiiiiiiiriiie e eeneceneeeeneeaneaes 93
Chapter 5: Working with TeXt FIles ciuuiiueriiiiiiiiiriiiiriiier et eeieceeeeceeeeeneseeneennesennens 113
Chapter 6: Managing RUNNING PrOCESSES..iiuuiirueriiiirieiretneetueeeeeeeeneeeeneeeensseeneesenesennnns 131
Chapter 7: Writing Simple Shell SCIipts .ccuuueiieieuiiiiiiiieiieiieieete e 147
Part lll: Becoming a Linux System Administrator. 165
Chapter 8: Learning System Administrationccceueeieueiiiiiriiiireiiie e eeeeeeeneeeenens 167
Chapter 9: INStalling LiNUX civuuiieueiiuuiriieeiiierieieeetieeeeueeeneeeneeenneeenneeeensssenssesnsesenssnnnns 195
Chapter 10: Getting and Managing SOftWAre.....c.ceieeerieuuiieererreeriiiiieee e e e eeeerreeneeeeeeee 221
Chapter 11: Managing USEI ACCOUNTS....ccuuuuerieruuuerierruereerruiereeresneeeeesnnesseessseseesssnsssssssnns 249
Chapter 12: Managing Disks and FileSYStEIMS cuuuuuriirruueriirruiereeiiieeieeenieereernneeeeeenaneeeeennes 273
Part IV: Becoming a Linux Server Administrator 305
Chapter 13: Understanding Server AdminiStrationceeeeueeeueeeeeeiuereeereenereeneeeeneneenens 307
Chapter 14: Administering NetWorkingcoeeeeuueeriieueiiiiimieiiiiiiiereeiiee e eeeenee 339
Chapter 15: Starting and StOPPING SEIVICESceererrrerrreumuueeeeeeeeererennneeeeeeeeererennnesseeees 369
Chapter 16: Configuring a PIrint SEIVET ..ccuuueiiiiiieriiiiiieeietiieeeeeeiee e eeeeee e eeraaeseeeesaeeeeennns 403
Chapter 17: Configuring @ Web SeIVer....ccuuveiiiiiiieiiiiiieei et eerae e e eeea e e eeeeaes 427
Chapter 18: Configuring an FTP SEIVET ..ccuuueiiiiiuueeiiiiuerieriuieeeeeetieeeeeeeneeeeeransseessnnsseeeenes 455
Chapter 19: Configuring a Windows File Sharing (Samba) Server........ccceeeeeeiiiiiiimniicennnnes 475
Chapter 20: Configuring an NFS File SEIVETI....ciuueeiiiiuierririuerreireieereeeeieereernneneeeenneeeeennes 499
Chapter 21: TroubleShoOting LiNUX c...cieeereuerieiiuneeriiruenreeiuiereeeenieeeeeeeneseernnsseeennnsseeeenes 523
Part V: Learning Linux Security Techniques 563
Chapter 22: Understanding Basic LiINUX SECUIItY..cccvvuuerrirruierriiiiierieeeeeereeriieeeeeenneeeeennes 565
Chapter 23: Understanding Advanced Linux SECUIitY ...cccveueerreirenerreirnneereernnenreeeeneneeennns 599
Chapter 24: Enhancing Linux Security with SELINUX ...cceevvueerrriinnerrerrnnenreernnenneeenneeeeennns 635
Chapter 25: Securing Linux on @ NetWorKoovveeueeriiiieiriiinenreiiieeeeereeereernieeeeernneeeeennes 663

Contents at a Glance

Xiv

Part VI: Engaging with Cloud Computing. 691
Chapter 26: Shifting to Clouds and CONtainerS......cccveerieirrerierrierieeriereeeeieeeeerneeeeeennnnns 693
Chapter 27: Using Linux for Cloud COmMPULING c.u.eviirrruerieiirieieiiierieetiereeeeneeeeeennneeeennnnns 709
Chapter 28: Deploying Linux t0o the Cloud c...veeeeeiiiriiieiiie e eeier e eee e eeneeeneeenaees 729
Chapter 29: Automating Apps and Infrastructure with Ansibleccveeiiviniiiiiiiiennennnnen. 749
Chapter 30: Deploying Applications as Containers with Kubernetes........cccoeeevevvvnenrennnnen. 765
Part VII: Appendixes.ot i e iinneeennnnns 785
ADPPENAIX A MEIa ciiuuiirueiiiriiiieiiieiiiieeetertreettneeetneretneeeensserssseessseesnssessssesnssssnssssnssses 787
ApDPEndix B: EXEICISE ATISWEIS ..eieeiiirruuuuieeeeeeeertrernunieaeeeeerterennnnssaeeeeeseressnnnsssssseessenennns 797
Lo [G PP PPRPRRPPPPPRRPURt 863

Contents

AcKnowledgments.ot i e Xi
Introduction it e XXXV
Part I: Getting Started 1
Chapter 1: Startingwith Linux. e e ae s 3
Understanding What LINUX ISeeeeeuuieeriiieereiiieereeiiieeeetiieeeeteneseernneeseetnnneseeeennenns 4
Understanding How Linux Differs from Other Operating Systems.....cccceeveevvueereeennnnns 6
EXploring LiNUX HIStOIV .eveuueerertuerrerinereeiiienretiienreetnereerenneeereeneserennessesennessesennes 7
Free-flowing UNIX culture at Bell Labs..c.uueeiieiuieiiiiiieiiiiieeieetieeeeeeieeeeeenias 7
Commercial UNIX ..ceuuuiiiiieiiiiiiiiereeieieeeeteieeeeteneeeeetenieeserenneeserennessenennessenennes 9

Berkeley Software Distribution arrives.....ccceeeeeeeeeueereeiunieeeeennieeeeenneneenns 9

UNIX Laboratory and commercialization.....cceeeeeuereenereeneneenrerneeeneeennnns 10

GNU transitions UNIX t0 fre@domeeeereeeiiieimiieeieeeeeeeereiieee e eeeeeeeeaineen 11

BSD 10SES SOIME SEEAIM ...eeeeeerirrnnuueeeeeeeeetenenneeeeeeeeeeeterennaeeeeeeeeeeeeennnnnsenseseanee 12

Linus builds the miSSing PlBCE ...cievuueeriiiiuierieiiiiee et erree e eerae e ceeeeeeeeaaees 13

0SI open source definition ...iceuueeeieeeuierieieiier et eerre e eeee e e e eeaees 14
Understanding How Linux Distributions Emerged....ccceeeeevuuerriiiueeereeinnceneeenneeeennnen. 16
Choosing a Red Hat distribution....cccceerieiuuierieiiiieniiieiiereerieeeeeenieeeeeeneeeeennees 16

Using Red Hat Enterprise LiNUX ...coceeeuerrernnerierineereeenenreeeneeeeeenneeeennns 17

USING FEAOTA tevvuerriiiiieriiiiiieeeeiiieeeeteiereereaeeeeteaneeeetennesseeenneseerensssennns 18

Choosing Ubuntu or another Debian distribution.....cccceeveereueereeieiierreeinennnnnne. 19

Finding Professional Opportunities with Linux Today.......ccevueereremerreeenenrerenneneenees 19
Understanding how companies make money with LinuX......cccceeeereeeneerrernnnnnns 20

Becoming Red Hat certified......cceeveumerriiimiriiiiiiniiiiicereceee et 21

RHCSA £0PICS uuttuueitrieiireeetuereeueretueeetueeeueersnseessseeesssesnssesnssesssssnnssenes 22

RHCE £0PICS e ttuunttuuereuuerinneeetuereeueretneeeensernseessseesnssesnssesnssesnsssnnesssnsssenns 23

SUITIMATY +ueruueeruneernnneeuneeeunsreenseesnseesnssessessenssesnssssssssssssesnssssssssssssssssssssnsessnsssnnssses 25
Chapter 2: Creating the Perfect Linux Desktop i, 27
Understanding Linux Desktop TEChNOlOGY «.uvievrrnriiiirieeieiiieeieeiieeeeerieeeeeeeeeeeeeaaens 28
Starting with the Fedora GNOME Desktop Live imMage ..cuuueeeeruuueeieeenuerieeenneneeeenneneennns 30
Using the GNOME 3 DeSKLOP ceevuuueiirruueriettierrettiiereerenieeeeeennseeennneseeeesnnsesessnsssessennns 31
After the cOMPULEr DOOLS UP vuuviiiiuiiniiiiiiieiiiiiee et eeeee e eeeee e e eeeae e 31

Navigating with the MOUSE...cccvuuieiiiiiiierieiirer e 32

Navigating with the keyboard......ccccevuerriiiiieriiiiiiiiiiiieereeree e, 36

Setting up the GNOME 3 deSKtOP ceeeeueerrerruerieiiienreiiienretrieeeeeenneeeeeeeneeeeeennens 38

XV

Contents

Extending the GNOME 3 deSKtOD ...ccuuuueerirruerreriienreiiieereereieereernneeeeeenneeeeeenes 39
Using GNOME shell @XtenSions. .ccuuueerereueererenereerieeeretenieereeenneeeeernneeenes 39

Using the GNOME Tweak TOOL ...ceuuurreirnnerrerineneerineerereeiereeenneeeennneneenes 40

Starting with desktop applications.....coieeeueerreiiuerriiiiiiriiiieereeieee et eeeene 41
Managing files and folders with Nautilusceeeevvunerieinnierieeiiienieennieneenns 42

Installing and managing additional software....ccccceeeeevuueeieeinieeieennnnnnnns 43

Playing music with RhythmboxXccevuriiiiiiiiiiiiiiiie e 45

Stopping the GNOME 3 deSKEOD .euuuuueereerreeriieiniieeeeeeeeeterenneeeeeeeeeerenennnaesaaaees 46
Using the GNOME 2 DeSKEOP ceievruurieiuuuieietiuieeieetuiereeetuneeeeeteneseerenesseessnnsseessnnessesenns 46
Using the Metacity window mManagerceveeeeuerieieiienieeeieieeriieeeeerneeeeeenneees 48
Changing GNOME'S @PPEATAIICE .uuuiereuueererrruereerruneeeeersnererrensseersnnseeeesnssssennnns 49
Using the GNOME PAnels ..cceeeeueieeruueerieiinieneeeeieeeeeenereereneeeeresnssseeennsssenennns 50
Using the Applications and System Menus.....coeeveeuerreereueereeenneereeennneeenes 51

Adding an apPPletcceeueee it e e e e e e e e eeaas 51

Adding another Panel .occeeeeeeieineerieiieeneeiiee e eeeeee s eereae e e ereaeeeeeenes 52

Adding an application launcher.....ccoceereiiiiieriiiienreriee e e 52

AddIng @ ArAWeT coeeveeeeeeeiiiereeiiereeriee e et e reeeneeeereneeseeranneeerenneeserenns 53

Changing panel Properties..cccceeeeeeeeeeeeenierrerenereerinrereeteeeereeennesserennenes 54

Adding 3D effects With AIGLX ..cceuueriiiunoiiiiiieereeiieeeetieeeeeeene s eernneseennneeeeees 54
SUITITIATY +vutetrnerennreeneeerueeeunserunseesnsessussessssesssessnssesnessesssssssssssssssssssssssssssssssnsssnnsses 57
XTI ES cuuteeieuueeeeitueer ettt t ettt e e ttaeeeeetuaeseetaaeseetaneseteennsseerensessernnnsssesnnnesserenns 57
Part Il: Becoming a Linux Power User 59
Chapter 3: Usingthe Shell. i i it it i e ans 61
About Shells and Terminal WindOWSeeeeeuueereeruuerreeruneerereenereerenereereneeseernnneseeeenes 62
Using the shell Prompt .. oo ieiiieeieeiieeeere et ee e s eeeneeseeeneenes 63
Using a Terminal WindOWceeueereeruuereeiuniereeieieereeenereereneeeereeneeseeennessenennenns 63
USING VIrtual COMSOLES .uivuuniirueiiuneiiieieteeeenererneeetneeeeneeetneeeeneseenessennsessnsessnnees 65
ChooSIing YOUT SHEll cuuuivuniiiiiriiieiiie ettt e et e eeae e et e eeneseenessenneennssennnnns 65
RUNNING COMIMANAS cetuueieiiineiiiiiieieetiie et et e e eetae e e e teaaeeserraneseeenaeseeennnsaenes 66
Understanding command SYNEAXeeeeerereuuueeereeereeememniereeeeeeeeeenemnneneeeeeerenees 67
Locating COMIMANAS...ciievuuereeiuiiereetiieeiettiereeteueeeerereeeeeraneseeraaeseeesnnnseeenenns 70
Recalling Commands Using Command HiStOIY ..ccuueereeruuiriiiirnieieeriniereeeniieeeeenneeeeeenns 72
Command-line €diting ..ccuueeeeereuieereieuierreeeuerreteuereeeeneereereneeseersnseeeeenseesenenns 73
Command-line COmMPLETION. ..civiuuueeieieierreerieerettieeeeeeeeereereaeeeeraneeeeerenaesenenns 75
Command-line r8CAlL....ccvuuueriiiruerreeeueereetuerreteueeeeeeenereereneeseernnsseeerennsnsennnns 76
Connecting and Expanding CommMandsccuuueererrmuerreernnerrerunneereeeeneereernnenseereneeeees 78
Piping between COMMANAS..ccuuuereeruuerrerinerrereierreeenereereneerereeneseernnesseennnnnns 78
Sequential COMMANAS....cuueiiueeeieiieeiitee et eree et e eeteerteeesteeeneeserenessnesesnnnas 79
Background COMMANAS cu..vrereueereeriuereeiiieeretenierreeenereerenneesereenesserrnnssenennenns 79
Expanding cOmMIMANGAS......eereeeuereeruuerreiineereeeieereteueeeerenneerereeneeseernnesseneannnns 80
Expanding arithmetic eXPreSSionscceeieeueerereuerretiuereetiieereteeeereeenaeeeeennnenes 80
EXpanding variables ... iiie ittt eeae e e ee e eaae e 80

XVi

Contents

USING Shell Variables....cuuuueieerueerieiiieeretiieeretiieeeetteeereeeaneseeeanenseernnnseenensseenennns 81
Creating and USING AlIASES ..ceeeeuuerrerrunereereunierereuerreeenereerenneerernnnseserennesserennes 81
Exiting the shell .ot eeeaees 83

Creating Your Shell ENVIronment.....ccoeerreiuuiereeenerrerinereerieeeeeteneereeenneseerennseenens 84
Configuring your Shelliiiiiuer it eeree e e e e e e reae e e e eaaaans 84
Setting YOUY PrOTIPE ccvuurieueiiiieeiiie it tiie ettt eteteeeteeeeneeraeeerseseennssennssennneennnns 85
Adding environment Variablesicueiieueeeeieriiiiriiiireeiie et eeee e eeeneenneeees 87

Getting Information about CommMands........ceeerrruuuureeerereeeeririiieee e eeeeeeeeeneeeeeeeeee 88

SUITLIMATY +uuvrunerrunerrnnerenneeeenereenerernreensenssennsseensssrssssessssssssssssssssnsssnssssnnsssnnsssnnsssen 90

|) (=T PP PPN 90

Chapter 4: Moving Around the Filesystem i, 93

Using Basic Filesystem COMMAandS...u..eeieiuuuerierruueeeereunerrernuneeeeennneneeessneeeessnsseessennns 96

Using Metacharacters and Operators......ccuueeieeeuuerieieunerieetuieeeeetnieeeeeeaneeeeeeneeeenennns 98
Using file-matching metacharacters....ccveeeeieeeueiieieiierieiiieeeereieeeeeeneeeeneaee s 98
Using file-redirection metacharacterscceeeeeeueriiiiiieiiiiiiiin e eeeeaeeee 99
Using brace expansion CharaCterS.....ciceeeieeeuueerereuierreeeuiereereneereeenneneeeennens 101

Listing Files and Dir€CtOries coiieuuueererruuerrerrunerreeruieereetueeeeeennaeeeeeensseernnsseennnsseenes 101

Understanding File Permissions and OWnership......ccceeeereeenerrerenereernnneneeennneneeeenns 105
Changing permissions with chmod (numbers)........ccovvuummiiiiiiiiiiiiiiiiniinnnnees 106
Changing permissions with chmod (letters)......c.cceeeirirvmmiiiiiiiiiiiiiiiiniennnnnes 107
Setting default file permission with umaskcceevveemierriiiiirriiiieniiiiiennenene. 108
Changing file OWNEIShip ...eveeveniiiiiieieie e 109

Moving, Copying, and Removing FileS......ccuueerriruueiieiiminreiiiiereeieeereerineeeeernneeenes 109

SUITLIIIATY +uuerrurerneerunrenneeeenereeueresseseesssessssesesessssssssssessssssnssssssssssssssnssssnesssnssssnnns 1

-0 (=TS PR UPPOR O PPPPPRRPPPPRN 111

Chapter 5: Working with Text Files. oot e e e 113

Editing Files with vim and Vi....c.cceereiiiiiiniiiniin et eeeeeeeneeenneeeeneeeennns 113

STATTING WItH Vi.ieeiiiiiiiiiiiie et ecee s eee s eeaeereaseeanssennseeens 115
AdQINg tEXL. . eeeieeeiiiiiiieeee ettt ettt e e e e e e e e et e e e e eeerenens 115
Moving around in the teXt ...ceiiiiieerieiiiiie et eeeea e 116
Deleting, copying, and changing teXt.......ccceveerievrueiieruuerieennieneeennnnns 117
Pasting (PUtting) teXt.eeeummeeee it 118
Repeating COmMMANnAS .u..eiiieeuerieruuiereeiriieeeeeenereeeeneeeeranneeeerennsesaeennenes 118
EXIEITIG Viitrueriiiiiee et ecriee s eetee e eeeee e eeeeae s eeraneseennnnssanennnnns 118

Skipping around in the file .ieuuueeriiiiieriiiiieereeer e 119

SeaIChING fOr tEXE vuueririierriiiiir it eeree et e e erreee e e eeeee s eeraneeeennaeeeneenes 119

Using ex mode

Learning more about vi and ViM.....cceevereuierreeruirreiiueereteeieereerneereernneeeeennes 120

FINAING FILES tevruueriiiiieeieiiiee ettt eeteee e et e s ettt s eeetnneseeraaneserennessesennnnsenes 120
Using locate to find files by Name.....ccvuueriiiiiieiriiieerete e eeeeaee 121
Searching for files with find........couuieeiiiiiiiiiiii e 122

FInding files DY Name.....iiiiuueeieeiiiiee et ceeiee e eeeeee e eereeeeeeraeeseeananes 123
FINding files DY S1Z€.iuuueiiiiuieeiiiiieeieeiiieeceriee e eeree e eeraae e eereaeeeenananes 124

Xvii

Contents

FInding files DY USeT cevuuurieiiieeiiiiieeeetiiee et eceiee e eeree e e eeee e eeeenees 124

Finding files by permissiomn.....ciieeeueereeriunerrereeneereriieereernneeeeeeenereeennens 125

Finding files by date and timecc.ceeeerieneireiieinieiiieereciee e eeeenees 125

Using ‘not” and ‘or’ when finding files.......ccuuerriiiiiiiriiiiiiiiiiienrciiens 126

Finding files and executing commands.......cccceeeerereuueeieeinnceeerenneneeennnnns 127

Searching in files With grep .icuuueeiiiiiiieiiiiiiie e eeeae e e eeees 128
SUITITIATY tuurerrnerennreeunnerueeeeuneeeenseesnseeenssssnnserssssesssssssssssssssssssessssssnsssssssssnssssnsssenns 129
| () (TSP PPPPRPPPPRRPPIN 129
Chapter 6: Managing Running Processescvuiiiiiennnennnnennnnnn 131
Understanding PrOCESSES ciuuuiiuuriiueitiiritiieeiueeeteeteneeeeneeeenerenneeeenssensssenessnnseennnns 131
LiSTiTg PIOCESSES turerruriruneiiuneeeunererneeetneeeeuererneeeeneseenessrsssseenssessssesnsessnsssnnsssnnsnsnnes 132
Listing processes With PS...cceeiveeuuuieeerrreeeiiiriiiieeeeeeeeeeererneeeeeeeeererennnnaeennns 132
Listing and changing processes With tOP....ccieeeuueerieiiiieriereiienieeree e eeees 134
Listing processes with System Monitor....ccceeviivuueriiiiuiirierenienieeiiieeeereeeeeeenns 136
Managing Background and Foreground PrOCESSES.....ccuuuerrerrrnrreieruenrerenneneeeenneeenens 137
Starting background ProCESSESiiieuueriertuerertiieeeetrieereeeeeereernneeeerennsaeenes 138
Using foreground and background commands.......ccceeeereeeueereernniereeeeneeeennnns. 139
Killing and ReniCing PrOCESSES. .. iiituuueererrneereernereertuereerenneererennesserennesserenseseenens 140
Killing processes with kill and Killall.......ceeeeeeueerrieinerreeiienreeiiienreeeneneeennes. 140
Using kill to signal processes bY PID.....cccccuueereirunnereeiennenreeenneneennnnnees 140

Using killall to signal processes by Name ...c..ceveereueereerenerreeenereenenenens 141

Setting processor priority with nice and reniceccceeevreveneerivincenrerinennenes 142
Limiting Processes With COTOUPS ...vveeruueiiiiiiiieeiiiee e ceee e eren e 143
SUITIITIATY +ruvetrnerrnnrerunrerueeeeuneeesnseesnseesnsessnssessssesssessssssssssessssessssssnsssssssssnssssnsesenes 144
EXEICISES civuuuuiiiiiiiiiiiiiin ettt et e e b s eeeees 145
Chapter 7: Writing Simple Shell Scripts.t i i et 147
Understanding Shell SCIipts..cuui e iiiriiiieiiiireeiie ettt ete e et e eeneeeneeenneeennnns 147
Executing and debugging shell SCIiptsceveuueriuneriineriiiiriiiireiieeeeiee e eeeneees 148
Understanding shell Variablescooeeeeeeereuiiieenrreeeiiiiieeee e eeeeeeeeeeee e eeeeee 149
Special shell positional parametersccveeeeeeeuueerereuierreeinereeeeneeeeennnnns 150

Reading in parameters ...ciiceeueereeeuuerieriuereeeiieereeeneeeeeraneeeeenneeeennnnns 151

Parameter expansion in bash......ccoeeviiiiiieiiiiiiiiiiic e, 151

Performing arithmetic in shell SCripts....ccuueeriiiuiiiriiiiiieniireien e, 152
Using programming constructs in shell SCIiptsccvveereerrneereeruniereeeeniereeennnn. 153

The "if. . .then” statementsccouuumuiiiiiiiiiiiiiiiicin e 153

The case COMMANG...ccuuuumuieiiiiiiiiiiiiee ettt e ettt e eeeeee 156

The "for. . .d0” 100D tuurerueiiiiiiiiie et eete e et e eee e e eaeeeaeeeaaeeaannaaes 157

The "while. . .do” and "until. . .do” 10OPS «.eveveretririiiiiiiiieetiee e eeneeen, 158

Trying some useful text manipulation programs....cc..cceeeeeeereerenneereeennereennnn. 159

The general regular €XPIESSION PAISET....rrereuuerrereunererenneererenneseenennnaes 159

Remove sections of lines of teXt (CUL) ..oeeeeererrrrennniieeerrreeerereniieeneereenns 159

Translate or delete characters (1)cceeerreeeererenniieenerereereeenieeneeeeeene 160

The stream editor (SEA) .uuueeeerereeerrreuuiiieereeeeetrereireeeeeeeeereeenaeeeeeeeaens 160

Xviii

Contents

Using simple Shell SCIipts..iuuueiiiiiuierririierreiiiieeretiieererrereereneeeeenneeseeenaenes 161
TelePhONE LiSt...iiiueiiieiiiei ittt erre e et e eai s eaaeeeaaeeasneeananaas 161

BaCKUD SCIIPE vuuiiiiiiiieiiiee et eee e e e e e e e e e e aaeees 162

SUIMITIATY tuueererinnreerenneeeerenneeeeeenneseerenseseerennssseresnssserensessersasssserssssssesssnsssesnsnsssenes 163
S5 on T PP PPPTPPR R 163
Part lll: Becoming a Linux System Administrator 165
Chapter 8: Learning System Administration.o int. 167
Understanding System Administration...ccceeieeeeeeerieieuieeieeeniereeeieereerneeeeeeeneeeeeenns 167
Using Graphical Administration TOOLS.....cuueereeruueereeruuieeeeeuniereeeeieereernnereeennneeeeennns 169
Using Cockpit browser-based administrationcceeeereeenereerenerieiinenneeennenns 169
Using system-Config-* t0OLS c.ueeiirruerrrrieirreiiienretiienreetiereereneeeernnaeeseeenaenes 171
Using other browser-based admin tOOLS.....cccuuueeririnerreernereeriienreieieereeenaenes 173
Using the 100t USEr ACCOUNL civuuuuriitiuieeritiiereetiiereetiieeeeteneeeertneeseeraneseerennesseeenns 174
Becoming root from the shell (su command).......cceeeeuerrieencereerincereeinnenennnnes 175
Allowing administrative access via the GUIL......cccceuerriiiuerreriniinreiinenreeennenns 176
Gaining administrative access With SUAO ...ccueveevnriiiiiiiieiiieiiiereiee e 176
Exploring Administrative Commands, Configuration Files, and Log Files................. 178
Administrative cOmmandscooeeriimmmmiiiiiiiiiiiiiii e 178
Administrative configuration files.......uuueeererreeiiieiiiiieeeereeeetreee e 179
Administrative log files and systemd journal.........cccvvueeieiennenreeennnnenns 183

Using journalctl to view the systemd journal....c..ccceevuueeieienenreennnennens 184

Managing log messages with rsyslogd.......cceuueeriivinieiiiiiiienieiniienieeenens 184

Using Other Administrative ACCOUNLS...ccuuuriiiruueerieiiiereetieeeeeeeee s eeraieeeeeenneeeeennes 185
Checking and Configuring HardWare.....cceeieeeuueereeeuneereereniereerinereernneeeeeenneeseeennnns 186
Checking your hardWare cu...cieceeeeereeiiiiieietiiiee et eereeeseeeeneeseeenieneeeenneneenes 187
Managing removable hardWarecceueeveeeuieeriiiiiereiiiie e eereeeeeerneeeeeenes 189
Working with loadable modulescvverueerriiiiieiriiiieereeie e eeeeaee 191
Listing loaded MOAULES ..ceeveuererrrueereeiiieereeiierrerenereernneeeerenneesanennenns 191

L0oading MOAULES...ceeteuueerreieiereeiiereeteieeeeteaeeeeteneseeraneeseerennssaeennenns 192

RemOVING MOQULES..ccvuuuerriiinereeiiiereetiiee ettt e e ereaereereneeeerennesaeennenns 192

SUITLIMATY +uetuueeerneeruneerneeeeeneeesnssesneeeesssesneseesessssssssssssessssssssssssssesssssssssesnssssnsssnnnns 193
S5 (on T PP PPPPPPR R 193
Chapter 9: Installing Linux. ottt i i i et e et et n e 195
ChoOSING @ COMPULEY cetuuiiiitiierieiiteeieetteeteetuteeeeettieeeeetneeeeraneeseersnnsssenenanssesnnnnnns 196
Installing Fedora from Live Media...cceiiieuuerieiiunieieeiiiieneeeeiieeeeeiieeseernneeeennnnneeeennes 198
Installing Red Hat Enterprise Linux from Installation Media....cccceveevvueereeennnnneennnes 201
Understanding Cloud-Based InstallationS......cceuueereeruuieeeeeunierreeeneereernuereeennneeeeeenns 204
Installing Linux in the ENterprise..ceiiiieeiiiiieerieiiieeeeeieeeeeeeee s eereieeeeeenneeeeeennes 205
Exploring Common Installation TOPICScevruuerrerruueerereunerrerrueereereneereeraneeseennnneenes 207
Upgrading or installing from sScratcheeveeeieiiiiiiiniiiiirecce s 207

DUAL BOOTING ceuutiiiuueerieiiiiereitieeeetteeeeeeraieeeeeraneeeeeaneeseerennseeranesseenansnssenenns 208

Xix

Contents

Installing Linux to rUn VIrtUally ceeeeeereeeeneeeeeenneeerieeeereeiieeeeereneeeeenneneeennnes 209
Using installation boot OPtioNS ..cceuuereeiuiiereiiiiereiiiee et eeeee e eeenees 210

Boot options for disabling featuresceereveeueereiiiceriiineererieeereeennen. 210

Boot options for video problems.......ceeeueeeiuriiiiiiiiieiiiieeeie e eens 210

Boot options for special installation tyPes...cccceeeeeevueeiereneeeeereeneeeeennnnn. 210

Boot options for kickstarts and remote repositories.....cccceeeeervvuenreennnen. 211
Miscellaneous boot OPtionS....ccceeiruerieuereeneririereiiereeuererneeereeeeeneeenneees 212

Using specialized STOTage..cuuuuuuueeeerreeiiteriiieeeeeeeeetteeeeieeeeeeeeeeeeeeanneeaeeeeeeene 213
Partitioning hard ATiVEScceueeeieiiuiieiiiiiie et et eerere e e ereae e e eneaaeeeeeees 214
Understanding different partition types ...cceeeeeeevueerieieniiniieenieneenenenens 215

Tips for creating PartitionS.....cccveeeeeeeeuierieeeiiereetier et eeeene e eerenee e 215

Using the GRUB b0Ot 1020EY cuvuuniiiiuuieieiiiieeeettieeeetetieeseeenieeeeernneeeeenneeeeenennns 217
SUIIIMATYY +eutetneeiureeueeiueeeuerennereeneeenerenaeseraseetaesernnssrnssseenssennssesnssennssennssennssennns 219
B OTCISES ettt ettt ettt e e e e e et ebe e s e e e e e 219
Chapter 10: Getting and Managing Software.o, 221
Managing Software on the DeSKEOP cuuuueeieieueeiieiuieriiiiiiereeriieereeeieereeeneeeeeenneneeeens 221
Going Beyond the Software WindoWceveeeuueerrieeneeriiieniereeriieeeeeeeneeeeeeneneennnnnees 223
Understanding Linux RPM and DEB Software Packaging........cceeeevueerevennenrerennennnnens 224
Understanding DEB pPackaging.....ccuueereeruueeereuneererenneereeruneereereneeeeenneseeennnes 225
Understanding RPM packagingceuueereeeuueeereeneereieeneereerunereermneeeeenneseennnnes 226
What isin an RPM? ..ceueiiiiiiiiieiiee e reeee s eereneeeeteneeseeenaseenennenas 226

Where do RPMs cOME fIOM? ...ceveeiiriiniieeereereerrniniiieeeeeeeeenenennnnnssseseeens 227

INStAlling RPMS ciuuiiieiiiieiiieeiie it ettt eeeieeetneetneeeneeeenessesnsseenssennssees 228

Managing RPM Packages With YUM.......ccueiiiuiiiinriiineriieeeiereiieeetneeeeneeeeneeeennneennnns 229
Transitioning from yum to dnf........ceeiiimiiiiiierrriiiiiceee e 229
Understanding how yum WOTKSeeeeeeeremmeieeerreeiiiiieireeeeeeeeeeeeeeneeeeeeeeee 229
Using YUM with third-party software repositoriescccevveeereervuereeenneneennnnn. 233
Managing software with the yum commandccevueeriiiiieerieiiicerieienieneennnnn. 233
Searching for PACKAGES...ceiituuueriiiiieeeetiiee et ereee e eeraee e e eeeaeeeeaeaans 234

Installing and 1emoving packages....ccceeeveeeeueereerenerieieuieneeeeneneenenenens 236

Updating PacKages..cuuueereeeuuereeiueeeeeeenereeeenereereneeeetenneeseeenneseenennenees 238

Updating groups 0f Packages c.eeeueueereeeuerrerenerieiiieneetineereeeneneennnnenens 239
Maintaining your RPM package database and cache.....cc.cceeevvuuerrerennnnnns 240
Downloading RPMs from a YUM repoSitory...ccceereeruuereerunneereeeneereeennnn 241

Installing, Querying, and Verifying Software with the rpm Command.................... 241
Installing and removing packages with rpm.....ccoeveeueiiriiiiiiiiiiiiiiriiiceneeeenee, 241
Querying rpm information ...cceveuuuueeeeerreeeerrriuiiieneeeeeeeerernaneeeeeeeeeeeeeeennnnnnnns 242
Verifying RPM PacKages...ccuuueiieiuuueeieriuieeieiiueeeettieeeernnneesesssneseessnnesessnnnneans 244
Managing Software in the ENTerpriseicvveeeieiiierieieiierieieiieeeeeeieeeeeeneeeeeenneeennns 245
SUITNITATY tuurerrnerennrerunnernneeeuneeeeneresnseeensssnssserssssessssssssssssssssnssessssssnsssssssssnssssnsssnnns 246
553 o =TSP P PR PPPPPR PPN 247

XX

Contents

Chapter 11: Managing User Accountst iii ittt it it e e i 249
Creating USeY ACCOUNES ..viiiiuuerieiirieriettueeteetuieeeeetuieeeerensseereneeseesssnsssersnssseensnnnnes 249
Adding users with useradd......cccuuueeriiiiiiiiiiiiier e e e eeea e 252
Setting user defaultS...cuueiiiieieriiiiiier i e e e e e e aaas 255
Modifying users with USermodc..ceereeruueeriiiuiirriitiie e eeraee e eeraeeeeeenes 257
Deleting users with userdel......ceieieeueeriiiiieiiiiien e eeeee e e eeenes 258
Understanding GroUP ACCOUNTS ...civvuuuerrieuuereirrniereerrnieeeeeeneerereneeseerensseennsssseeeenns 259
USING GIOUD ACCOUNLS trvuurrirruurrerrunererrunnerrerrenesserennesserenseseeressssersnnsssenennenes 259
Creating grOUP ACCOUNLES ..uvverreuuerrerenereeruiereerunerrerenereereneseerannsseenensssseeenns 260
Managing Users in the Enterprise....cccceeeeeiiuerreiiuenretiieneettueeeeteeieereeenneseennneneenes 261
Setting permissions with Access Control Listsccceeeuerrirenereereneneeinnnnrenenes 262
Setting ACLs with setfacl..c..ceveeieeeriiiiiiiiiiiiieireiiee e 262

Setting default ACLS cuuuueiiiiiieeieeiiiieeeeiiieeeeeteeeeerrieeeeeraaeeeerraeeeeeannaanes 264

ENAbDUINgG ACLS .ueieuniiiieiiiiereiieeeeueetueetteeeeeeeeneeesnseenesesnessesessensssnnnees 265

Adding directories for users to collaborate......ccceeeerririneniiiineniecinnnnnns 267

Creating group collaboration directories (set GID bit)ccevvvvuuuunenranees 267

Creating restricted deletion directories (sticky bit) .c..euueeeeerreeveeennnnnnee. 268
Centralizing USeT ACCOUNES...ciiiuuueriitirerieteueeeetetieeeettuereerruneeeeennnssesssnssesssnssesees 269
SUITLIMATY +uuerunrrenerennerennereeuereenrernesernerersasersssseensseessssssssesnssannssanssssnnssensassnnsssnnnns 270
1l dor 1TSS PUUPUPPPRRRR PPNt 270
Chapter 12: Managing Disks and Filesystems it 273
Understanding Disk StOTage..ccuueiieeuueriieeiieriiiiiiereetiireeeeeieeeeeeeneereereneseennnnssseeenns 273
Partitioning Hard DisKS......ceiieuuerriiiuieriiiiiienretiieereteieeeereeeeeeeenneeseeennsseennnnneenes 275
Understanding partition tables ..cu.cveeeueeerreiiiieniiiienreeer e eeeeaee 275
Viewing disk partitions ..ceeeceveeeeeierrieenierieiiieerieiiiereeriieeeeeeeereereneseernneneenes 276
Creating a single-partition disK......cceeeerreeemierrirenierreiinieneeiieenreeenenreeeneneenes 277
Creating a multiple-partition diskceereeeuerriiiniiriiiiiiniriiee s 281
Using Logical Volume Manager Partitions......cccceeereeiuuniereienierreeineereereneneeieneeeeeeenns 285
Checking an existing LVM......couuciiiiiiiiieieiiienreeiieneetineeeeeeeieseeenneeeeeenneneenes 286
Creating LVM 10gical VOLUINES cuuueeeuereeunrirnneiuieeenieeeenereeneeeenererneseennseennsssnnnnes 289
Growing LVM 10gical VOIUINES cu.ueevuereeunreruneeenneeeenereenereeneeeenereeneseennneenssennnees 290
MOUNTING FIleSYSTOINS tivueiirneriiieriiiertieritiereiieeeeueereeetneeeeeneeenneeeensseenssennassensssennns 291
SUPPOTtEd fileSYStOMS. ciuuuiiiitiieeiiitiee e eetree e eetee e eeraee e eerraee s eeraaeeeeeanaeeanenes 291
ENabling SWapP QTEaS ceieeeuureerruuiereiruieerettuiereeetuneeeeteneeeersnssesssnsseessnsesssenns 293
DiSabliNg SWAP AIA..ieetuuereerrruerereeuesrereuueneeeruneeeereneeeersssseerssseeensnsesssenes 294
Using the fstab file to define mountable file systemsccceeeeveeueeieviieereennnnnns 295
Using the mount command to mount file SYSteMS .uuuerieeruerreriierieiiiienreeennns 297
Mounting a disk image in 100Pback......cceuueeriiiuiiiriiiiieniiiiee e 298
Using the umount comMmMAandcceuuererruuerriieiieeieeiierreeeiereereeeeeereneereeennenns 299
Using the mkfs Command to Create a FileSYStemceuuueerieenerririncereeriiieneeeinieeneeenns 300
Managing Storage With COCKPit....cciiiuueriiiiiiiieiiiee et ee v 301
SUITLIMIATY +utetuntinneinietiireti ettt etue et s etaeetanestanstnnestaneseenesasnssernesesnssesnssransesnnss 303
L S on T PP PPPPPPORRPTR 303

XXi

Contents

Part IV: Becoming a Linux Server Administrator 305
Chapter 13: Understanding Server Administration. 307
Starting with Server Administrationceieeeueeerrieenieriiiieeieerieer e eeea s 308
Step 1: InStall the SEIVET cuuuiiiiiiiiie i re e ee e e eaa e ees 308

Step 2: Configure the SEIVET ..cuuueiiiiiuierriiiereetiee et eeeenee e eeeneeeereaneeeeees 310
Using configuration fileseeeeiueerriiinieriiiieeneeiier et 310

Checking the default configuration.....c..ccceeevverieiiiieeieiiiieneerniieeeeennne. 310

Step 3: Start the SEIVEI...cuui it e cere e eeee e eaaeeees 311

Step 4: SECUTE the SEIVET ciuuiiiriiiiieiiiir et et et et e et e eraeeeneeeaeeeeenseennsaaes 312
PassWOrd ProteCtioN.cu..iiueeiirueriiieriiiereiiieeeiieerieereeeeeneeeenerernnernneennnns 312

FITEWALLS 1 eeeeteniieeee ettt e e e tertnee e e e e e e et eeenae e e e e e eeeeeennnaae s 313

TP T LA D POYS e eetuereenererunerrnnereenareenereenarennerernssennsssennssennssssssseenssannssaes 313

SELIMUX 1itttuieiieiiiieeeetiiieetettiereeteuieeeetenneeeerennesseeesnsssessnnssessessnnsseennnnns 313

Security settings in configuration filesS.......cccvveeriirieeriiiiinreennnenreennne. 314

Step 5: MOnitor the SEIVET....iiiuuiiiiiiiier ittt ceree e eeeae e e ereae e eeeees 314
CONFIGUIE 10GGITIG 1uurrerrnnrrerineeretiieeeetieereereteereeraeeeeeenneeeeennenseennnnns 314

Run system activity rePOTtS....ceiieeuuereereuerrerrieerereneneeernneeeereenereenennns 314

Watch activity live with COCKPit....cceeeuerririnieriiiiieneeiiiee e 314

Keep system software up t0 date.....cceuueerrieinieriiriiiiniiiiieereceee e 315

Check the filesystem for signs of crackers....cccceereeeuueereiinnceereeenereennnee. 315

Checking and Setting SEIVEYS ..ccuuuciiieiueereiieiieeritiiereeriereetiaeeeereneeserenneseerannenaes 316
Managing Remote Access with the Secure Shell SEIviceccceerevvuueeieiiieirerenncnnnnens 316
Starting the openssh-SeIVer SEIVICE...ciiiieiiierieieritieeetieretieeerie et eeeaeeenneees 317
USIng SSH ClIeNt t00L1S .uvevuniiiniiiiieriiieriiiieetieeeetieeeneeeeneeeenereeneeeenseenessensssenes 318
Using ssh for remote L10gin.....iiiiuueeieiunierieiiiereeriieee et eeeeieeeeneaeeees 318

Using ssh for remote eXecution . .ccuveeuuueeerreeeiiiieicieeeeeeeeeeereieeeeeeeeee 320

Copying files between systems with scp and 1SYNC ...ceveevvneeeeevnnreennnnn. 321

Interactive copying with sftp..cceeerieieiieiiiiiieic e 324

Using key-based (passwordless) authenticationccceeeueeeeerieeiiiiieeiiiiennnneeeee 324
Configuring SyStem LOgGQing ..oieeuuueeiieruuierieiiiieeeeeeiereeriieereeteaeeeereneeeenenneseenennnees 326
Enabling system logging with rsyslog..cc..eeeeeeeueeriiiineeiieiiierieiiieeeeeeeeeeeeenen. 326
Understanding the rsyslog.conf file......coeveeeneeriiiiiieniiiiiinrieiieneeeeienes 327
Understanding the messages 10g file ceu.uevviveneriiiiieniiieiienrieiieneeeeenes 329

Setting up and using a loghost with rsyslogd......cccceeereivuneereeenernennne. 330

Watching logs with logwatch....ccuueeeriiiiiiiiiiieiriiiceneeee e 331
Checking System Resources With Sarcceeeeueerrieenieriiiiiereeiiiiereeiieeeeeeneeeereaenees 332
Checking SYSteIM SPACE ..evveeuiieiiiieereiiieeeettiee ettt e eereaeeeereaeseerannesseeennessannnnnnnes 334
Displaying system space With df......ccceeiueiiiiiiiiiiiiiiiin e, 334
Checking disk usage With dul.....ceueeieeriiiiiiiiiriiirer e eeee e 334
Finding disk consumption with findcc.ccoeeiiiiiiiiiiiiiiiiiiiecee e, 335
Managing Servers in the Enterprise.....cciceeeeeieeimeiieiiuiiieieieiieeiieereceieeeeeeeneeeees 336
SUINIMATY teuerrnerrnnrernnerrnneeeenereeneresneeeensenssserssssesssssssssessssesnsssnsssssnssssnsssnnsssnsssnnns 336
L (oa T TSSO PPUUPRPRORR T PPRRTNE 337

XXii

Contents

Chapter 14: Administering Networking ittt 339

Configuring Networking for DeSKEOPS civuueeieeruuerieetiiieiiiiieeeeetieeeeernieeeeeeneeeenaneenes 340

Checking your network interfacesceeeieeuuierieieiieiiiiiien e 342

Checking your network from NetworkManagercccceeeeevvuereeevnncerennnnnnns 342

Checking your network from Cockpit.....ceereeeuerierinieriiiiiienieeeiienreeennns 343

Checking your network from the command lineccevvueerevvnncereeennnnns 345

Configuring network interfacesceerrieeuierrieiiienieirrer e 349

Setting IP addresses Manually ..ccu.eeeeeeeuueereeeneerrerenereernnnenrerenneeeeeennenns 349

Setting IP address aliases.cuuueereereunereerruneererrnnereerennereerunneneerennenserennenes 350

SETLING TOULES tevvuneeriiinerreiie ettt et e e eeeeeeereaeseeraansserennesanennenns 351

Configuring a network proxy connection......cccceeueerrereunerrereeneererennerreeenneeenes 352

Configuring Networking from the Command Linecceeuerririneeriiiinierreienienneeennnnns 353

Configure networking with nmtui.....ccceeieiiiieiiiiiiiiiiiiiie e 354

Editing a NetworkManager TUI cONNeCtion....ccuuererueeeureenreeneeeeneeeeneeennneeens 354

Understanding networking configuration files.....ccceevievvuerieiiiienieiiiieniennnnnns 355

Network interface files.....cccceeiieiiiiiiiiiiiiiiiiiiiccce 356

Other networking files ...ceeveeuuueeeerirreiiiiiireee et 358

Setting alias network interfaces...cccoveeieieueriiiiiiniiiiiee e e 360

Setting up Ethernet channel bondingceoeeevueriiiiiiiiiiiiiiir e, 361

Setting CUSLOM TOULES tivuuriiiriieeieiiiereeteieeeeetieeeeetaeeeeeeeaeeeeeraeeeeeennneneesennes 363

Configuring Networking in the Enterprise...ccceeiieiueeriieeneeieieiiiereeriieeeeeeenieeeeeenenns 364

Configuring LiNUX @S @ TOULET cevuuuiitiuuereitiiieereeenereerenereereeeeeerennseerenneneenes 364

Configuring Linux as @ DHCP SEIVET ceuuueererruuerreeennereerennereereenenrerennesserenneneenes 365

Configuring Linux as @ DNS SEIVET ..cvuuueiriruuerrieenereerrnereerreeenreeenneseerenneneenes 365

Configuring LiNUX aS @ PrOXY SEIVEI.euuuereereuueererennereerenneseerrsnseerennosserensessenes 366

SUITIMATY «eetuiiiuiieinieeie ittt ettt ettt et e etaeetansetansstanestenestnnssesnssennesennsernsssennss 366

B RO CISES cuvuuiiiiiiii ettt et e e e e e baba e e e e e 367

Chapter 15: Starting and Stopping Services it i, 369

Understanding the Initialization Daemon (init or systemd).......cceevvveruuueererereenennns 370

Understanding the classic init daemons

Understanding systemd initializationccceeueeeeieeinierieiinieieenniieeeeniieeeeennes
Learning systemd DasiCs ..cuuueereeiuueiieiriienieiiiiereeriiee e eernieeeereneeeeeenaees

Learning systemd’s backward compatibility to SysVinitccceeeereeunnenns 382

Checking the Status 0f SEIVICES .iuuuiiiiiiuieeiiiiiiirittiie et eereee e eerrae e eeraneeeeeanaees 384

Checking services for SysVinit SYStEMS ..ccvuuuerrieeuerieriiierieiiiieneeeeneneeeeneneenes 385

Stopping and Starting SeIVICES ...cciiieuueerieiruieereieieerettieeeertaeeeeeeeeeeeernnesserennneenes 387

Stopping and starting SysVinit SeIVICESceveeruueerrerueerreereereerieereernneeeeeenes 387

Stopping a service with systemd....cccevuueerieenieriiiiienriiier e eeeenanns 389

Starting a service with systemd.....cceeveuerrieenieriiiinienriiiee e reeeanns 389

Restarting a service with systemdceeveeenerririneirriiiiienieiieereeeneenns 389

Reloading a service with systemdc..ceereeemerririnierririnienreiiieereeennenns 390

Enabling Persistent ServiCeS...ccieiiiiiurerriiiieireiiieeretieeeeteeeeeteeeereernneseernneeenes 391

Configuring persistent services for SYSVINitceeveevvuierieiniierierenienieenieeneenns 391

XXiii

Contents

Enabling a service with systemd.....cceeevuueereiiieiriiiiienniiiieeeeeeeeeeeeeenen, 392
Disabling a service with systemdcouueeriieieiriiiiieniiiiiiirereeee e, 393
Configuring a Default Runlevel or Target Unit.......ccceereeuueerriiiiierriiinienreeenienreenneenes 394
Configuring the SysVinit default runlevel........ccceeeerrieeiiriiiiieennnreeeeerenennnnnnnn. 394
Adding New or CustOmized SEIVICES v..iivueieirereruereriereiiireetieerueetueeenneenneeeenseeenneaes 396
Adding new services t0 SYSVINit....cceeiieeriiiirieuiriininiiiireeee e eeeieeeeneeeeneeeenes 396
Step 1: Create a new or customized service script file ...ccceeveevvuerennnnen. 396
Step 2: Add the service script to /etc/rc.d/init.deeeeeeeeeeeeeeineeeerennnnnnnn.. 398
Step 3: Set appropriate permission on the scriptceeveevvueeiiiivicerennnnen. 398
Step 4: Add the service to runlevel directories....ccceeeereevvuereeeevuereennnnn. 398
Adding new services to SYStEMA . .cuuueeiieruuirrireriirreirieereeteeeeeereeeeeeenneeeenenens 399
Step 1: Create a new or customized service configuration unit file........ 399
Step 2: Move the service configuration unit fileceeveevveeereeiencnrennnnn. 399
Step 3: Add the service to the Wants directorycceeeereeveneereeeennreennnen. 400
SUITIITIATY +eutetnitttnreeieeiue et e et e et e et eetaeteraeetaeseeansransseanssennssennssennssesnnsernnsennns
EROICISES cetetniieeie ettt ettt e e e et e b e e e e e
Chapter 16: Configuringa Print Server ittt
Common UNIX Printing SYSteImM..u..cciiiiuueeriiiunierriiiiereetieereeteieeeeteneeseeeneeseerennenees
SettINg U PrinterS.cceuueeeeiieieeieiiieereeiuieeeeeteiee ettt s eereaeeeeraneseernnnessenenseseernnnenaes
Adding a printer automatically
Using web-based CUPS administrationceeeeeeuerrieeneereeinnenreeienieeeeeenenneenne. 406
Allow remote printing administration ...c...cceeeeevreeirieiereieeeenereeneneenn. 406
Add a printer not automatically detected.....c.ccceuureiiniiiiniriiiniincrennennnne. 407
Using the Print Settings WindOoWcciieueeeiiirieiiniiiiriiiir et eeeeeeeneeeeneeeeneneenns 409
Configuring local printers with the Print Settings window................... 409
Configuring remote Printers ...cciiivueeieiiuerieiiieeieetiee e eereeeeeeeeaeeeenenans 412
Adding a remote CUPS Printer.....cccciuueeieiiunierieiinieieeiniereeeenieeeeeeeneeeenes 413
Adding a remote UNIX (LDP/LPR) printer....c.ccceceeereeeeeeemenmnceeneeeeeennnnns 413
Adding a Windows (SMB) printer.....cccceeeeiiiimimiiieiineeiiiieiieceeeeeeeeeeenens 414
Working with CUPS PIinting .ce.ceeceeeeeeriereuiereeiinierreeeiiereeeenereereueseeesnnssserenssseenennes 415
Configuring the CUPS server (cupsd.Conf) ..cceeeuueeeiiieiiiiiimmiiiiiiiieieciineieen. 415
Starting the CUPS SEIVEL ..cvivvueriiiiiiereeiiiieeeeeeiereeetnereerenieeeerenneeseeenneseenennes 417
Configuring CUPS printer options manually.....ccceeereeeeurrerennenreernnerereeneeneenns 417
Using Printing COMMANASceveuurrerrunererinenieriuieereetueeeeeeenereennneesesrannsseseensseeees 418
Printing With 1D ceeeeeeeiiiii et eer e e e ee e s e e eeaees 419
Listing status with 1pstat -t....ceeeeeeeereiiiierr e 419
Removing print jobs With Iprm....cceueeieiiiiiiriiiiiiiiriee e 419
Configuring PriNt SEIVETS civuuueiiiiiieeieiiieeeeetiieeeeettieeeeertieeeeertteeeeranneesesssnsessnnnneees 420
Configuring a shared CUPS Printer.....ccccciuueeiiiiunieiiiiiueneeeeieneeeeneeeenenneeeennns 420
Configuring a shared Samba Printer.......ccceeeriiiuiieriiiiiienieeeiee e eereeeeeeeees 422
Understanding smb.conf for printing.......ccceeeevemmcceeenrerieieeiniceeeneeeeees 422
Setting UP SMB ClIEIES .uuuriiiruierieiiieeeeitieeeeeetee e eeeaee e eeraaeeeeeraeeeennnans 423
SUINIMATYY +uurernerrrnnreruerrunereenereenereeneeeenrennnserssssensserenssrsssseenssensssssnssannssennsssnnsssnnns 424
L (od T T SO OTPPURRPRPRORR O PPPRRRE 424

XXiv

Contents

Chapter 17: ConfiguringaWeb Server. i i e e i 427
Understanding the Apache Web SeIVeT ..ccuucviiiiiiiiiiiiiiiiiiiiice e eeeee e eeeeaes 427
Getting and Installing Your Web SeIvVer......cccceeiiiiuieiiiiiiieieeiiiereernieeeeeeneeeeenneenes 428

Understanding the httpd packagecceuuevieiiiieiiiiiiieniirier e 428
INStAlliNg APACHE ... iiiiiee ittt ettt e eeeae e e eeeae s eereaeeseennaesanennanns 431
StATtING APACHE ceriiiiiie ittt e e e te e e e e eea e e e taa e s e e bae e s e e eaaeeanes 432
SECUTING APACHE titiieiiiiieeieitiee ettt eetaeeeeeraeeeeeeeneseeraneseannnessennenns 433
Apache file permissions and ownershipceeveeveeeriieienriieiieereeenennens 433

Apache and fireWallS.....ceiiueeiiieiiiie e e e ree e eae e e v e eees 433

Apache and SELINUX ..cvvueiiiiiiiieiiiieieiieeetieeetieeetieeesteesteeesnnesesnnsesnnesnns 434
Understanding the Apache configuration fileS.....ccceeereiimirririeieiieiiiienreeennns 435
USING Qir@CTIVES. cieiruuereerueeeeiieeretiieereetieeeertaaeeeeereneseeraneseeennesenes 435
Understanding default Settings......ccueeeieeeueeieiiienieiriienieerieneeerieeeenns 438

Adding a virtual host t0 Apache....ci i 440
Allowing users to publish their own web content.....cc..ccueeeiineriieriiereenenennnns 442
Securing your web traffic with SSL/TLS ceuuueiiiiiiiiiiiice ettt ceeee e eeeeaes 443
Understanding how SSL is configured.......ccceeveuueeeeerreeieeeennnceeenneeenenens 445

Generating an SSL key and self-signed certificatecccevvveereevnnnnennne. 447

Generating a certificate signing requestccceveeeieivieeiieeieeneeeneeeeeennn. 448
Troubleshooting Your Web SeIVEeTceiiieuueeiiiiiiieiieiiireeetiiieeeeeeiee s eereneeeeeenaeeseennns 449
Checking for configuration @ITOTS ...ccuuueeieeeuerieeenereerriieeeeerieereeenieneerenneneenes 449
Accessing forbidden and server internal €ITOTS ...cevuuerreeeunereerenneerereneereeennenns 451
SUITLIMIATY +uetuurenneeennetteeeeeueetuetetueetaesetaeetaeeaeansennssennsseenssasnssernssnnssensassrassssnnns 453
BT CISES ettt ettt e ettt e e e e e et e be s e e e 453

Chapter 18: Configuring an FTP Serverttt it i e e 455
Understanding FTPccciuueiiiiiieeeeiiiee ettt s eeteieeeeeeieeseeeneeseeraneeseennnnssseeenes 455
Installing the vSftpd FTP SEIVEI ..cciuuuiriiiiiiiiiiieeneeiiee et e eceee s eereae e eeeeneeeeeeenes 457
Starting the vSftPd SEIVICE ..ciiiuuueiiiiiiiei ittt et e e rrree e eeaae e e eeaaaeeeaes 458
SeCUTING YOUT FTP SOIVET..cituiiiuiiiiiiriiieiiiieeitieeetteeetneetneeeenseennseesneseenssennessensnsennns 461

Opening up your firewall for FTPccuueiiiiiiieriiiiiieneeiiiieeeeerieeeeeenieeeeeeneneenes 461
Configuring SELinux for your FTP SEIVET ...cccevuuuuuerrerreeerrerenieeeeeeeeeeeenennneens 463
Relating Linux file permissions to vSftpd.....ceeeeereeeiiiiiiniieiinieeiiiiiiicceeeeeeeee 465
Configuring YOUY FTP SEIVET ...ciiivuuiiiiiiiieeiieiiieeeeettieeeeetieeeeetnneseeessnnnseessnnsssensnnnns 465
SEtTINg UP USET ACCESS tevuuurrirrrunereiruueereeruieeeeetuneeeeteneeeerssnssesrssseeensnsesssenes 465
ATIOWING UPLOAAING teevvruriirrnieeierinereetuueereteeeeeerenereerenneseeresssseeresssssesennenes 467
Setting up vsftpd for the Internet....ccoceeueeeriiiiiiriiiiiie e e 468
Using FTP Clients to Connect t0 YOUTI SeIVeI...ccuceeriiiuuierrerenierrerineereernnereeennneeeeeenes 469
Accessing an FTP server from FirefoXcevveeuueeriiinieniiiiiiinieiiiien e neeennns 470
Accessing an FTP server with the ftp commandccceevuerriiiiiiiiiiiiienreennenns 470
Using the gFTP ClIENT cuuuuiiiiiieeieiiiene ettt seere s e e reae e s eeenaeesenennenns 472
SUITLIMIATY +utetnniiuneienetiier et ettt et ettt etaeetanstanstnnestnneseenestnnssernesesnssesnseransesnnss 473
L S on T PP PPPPPPRRPTPR 473

XXV

Contents

Chapter 19: Configuring a Windows File Sharing (Samba) Server. 475
Understanding SamMDba ...ccuueeiieiuueiiiiiiiee et seere e eree e eeenee s eeaae e e eerreeeeeeaneeeeees 475
Installing SAMDA ievvuuiiiiiieiieie e et e e e e e e e e e e e e eeeees 476
Starting and Stopping SAMDBaA ..ccuuuiiiiiiiiiiiie e 478

Starting the Samba (SMb) SEIVICE ...ueiiiiiiiiiiiieceee e, 478
Starting the NetBIOS (nmbd) Name SEYVEI ..cceuuuueeiereieiiiieriiieeeeeeeeereeeneeneeee. 480
Stopping the Samba (smb) and NetBIOS (nmb) services...cccceeeeeeerreerevenennnnnnen. 481
SECUTING SAIMDA Luuuiiiiiiiiiiiiiee ettt eereee s eeraa e s eeeaneeeeeeenaeseanannnnnns 482
Configuring firewalls for SAmMba.....ccuuerriiiuiiriiiiieriirieee e 482
Configuring SELinux for SAmMbaccuuerrireniriiiiniriiiieneetieereeeeeeereneeeeeees 484
Setting SELinux Booleans for Sambacevevvuueiriiiienriiininreiieeeneeennes. 484

Setting SELinux file contexts for Samba.....ccceeereiiueiriiiniireniencernennnes. 485
Configuring Samba host/user permissions......ccceeeereeruueereeruneeeeeenereerneneeeennns 486
CoNfigUIING SAIMDA..ciuuuiiiiiiieriiiiiiee et e eetee e erttee e eeraieeeeettaeeeeranneeeessnnnseesnnnnaees 486
Configuring the [global] SECLION ...ivvvuueiiiiiiieieiiieee et et e e eeeae e e eeees 486
Configuring the [homes] SECtION.....ceerrrreeiiiiiiiieeree et eeeeeeeeee 487
Configuring the [printers] SECtION ...ccceveeeriieemuieeereeieeiiieieee e 489
Creating a Samba shared folder.......ccceeuuerieiiiieriiiiiieriecree e eeeeaen. 489

Adding the shared folder to SAamba ..ccuuueviieiniiiiiiiiirieteee e 490

Checking the Samba Share.....cccvevvueriiiiiiiiiiicee e, 490

Accessing SAmbBa SHaTS cuvuuiiieuueriiiiieeiitiieereeiiereereuereeteaeeeeeenneeseeenneseeeennseerens 493
Accessing Samba shares in LINUX.....ceieeeueereeenerriieienreeenenreeenneeeeeenneeeeeennens 493
Accessing Samba shares from a Linux file manager....cccceeeveeeuereeeennnnnns 493

Mounting a Samba share from a Linux command linecceeuuueeeirneneens 495

Accessing Samba shares in Windowseeeeeeeeeereieinerreeruenreerneeeeeeeniereeenness 496
Using Samba in the Enterprise ...ttt e e eeeaeeeeeees 497
SUITIIMATY teuetnniitunieiineeiurtei ettt et e et ettt etaeeetansetanstaneseansssnsesesnssernssesnnsesnnsssans 497
EXEICISES civvruuiiiiiiiiiiiiii ettt e e e e e e eees 498

Chapter 20: Configuring an NFS File Server. it 499
Installing amn NES SeIVET....cciiiiiireuuuieeeeeeeeettieuenieeeeeeeeeeerenenneeaeeeeeeseensennnsnssaseeeees 502
Starting the NES SEIVICE...iuueiiiitiieeieitiieeeettiieeettiee s eertieeeeeraieeeeraneeeeenenesseesennnsees 502
Sharing NES FileSySteImMS. cuuuueiiiuuieeietruiereertuniereeenieeeetnieeeeereneseeessnnsseesennssesnennnsees 503

Configuring the /etc/exXports file....cuceeriiieueiiiiiiiiiiiiiiien e 504
Hostnames in /etC/eXPOrtS.cuueiiiiuueriiiieenieeiieeieeeieeeeeenneeeeeeeneeeeennnns 505

Access Options i /etC/@XPOItS...eiiiruueeieeruneeeeireieereeenenrerenneeeerennneeeees 506

User mapping options in /etc/eXPOrtS .cceereeeuerrirrunerreieneereeeneneenennennes 506

Exporting the shared filesystems...ccuueriiieuieriiiiiieriiiiien e 507
Securing YOUT NES SEIVET civuuiriiiiieeiiiiiieretiiieeeteenereeruneseereneseernnnessenenseseennnnnees 508
Opening up your firewall for NES ...cceuuerriiiiiiriiiiiiieieiiienreeeieeeeeeieeeereeieeeeeees 508
Allowing NES access in TCP WIAPPEIS civuurrereuueererrnnerrerennerrernnneererenneseerennenees 510
Configuring SELinux for your NFS SEIVEIceveruuuerriiruneererennenrerenneneerenneenennes 511
USINg NES FileSYStOmMS ..veeuuuiretiuerretiuieerettiieereetaeeeeteuneeereeneseernnesserrannssesennnsseeees 512
Viewing NES SHares cu..iieueiiiuieiiiie ittt eeei s et e ctnseeaaeesaneeennneannnns 512

XXVi

Contents

Manually mounting an NES filesystem...ccuucereeiuierriienierrieieereeiieeneeeineeeeeenes 512
Mounting an NFS filesystem at boot timecccueerrrienierriiineiiiiiieeneeiicee e 513
Mounting noauto filesyStems....cuuuuerreieueeririnerreriiereerieeeereneereeenaenes 514

USINg MOUNE OPLIOTIS...veriunieeiieiereteuieerettueeeettaieeeteeneereernneeseeenneeeenes 515

Using autofs to mount NES filesystems on demand.......cccceeeeevvuneeieinnneniennnnnnns 517
Automounting to the /net directorycccveeeieeiueriiiiiieniiiiiee e, 517
Automounting home directories...cceciuuereeueriruereeiiririineiiereeeieeeeeeenneeens 518
Unmounting NES fileSYSTemMS ceevuuuuueerrrriiiiiiiiiieeeeeeeeeteieiieeeeeeeeeterennaeeseeeeeenenens 520
SUITLIMATY +uuerunerrnnerennereeneeeenreenerernseenssernaserssssensssesssssssssesnsssssssssssssnssssnnassnnsssnnnns 521
1 dor 1O PPRSURPTPPRRR PPNt 521
Chapter 21: Troubleshooting Linuxttt ienenn, 523
B00t-Up TroUbleShOOtINgG cevuueeiiiiuieeiiiiierietiiieeeeteiee e ettie e eeteneeeeeaaaeeeeeaaaseeennnnnaenes 523
Understanding Startup Methods.....ceeeeueeerieiiiieniiiiienieree e eeeeaes 524
Starting with System V init scripts ...ccceeeiieeuieriiiiiiiiiiiiiee e ceeenns 524

Starting with SyStemd ...ccceeueeriiiiiiiiiiiien e e 525

Starting from the firmware (BIOS 0r UEFI)cceiiiiiiiiiiiiieiineeeeeieeeiee e 526
Troubleshooting BIOS SEtUD ..ccevuuerreeruuerrirrieerettieeeeereeereernneeseernneeenes 526
Troubleshooting boot 0TAerccuuvriiiiieriiiiiiereiieeeeeree e 527
Troubleshooting the GRUB boot 102der..ccuuuerieruuierriienerririnereeriieneeenneeeeeenes 528

The GRUB Legacy boot 10ader...c..ueviieuuirieennenreiiiiineeiiiieereeenneeneernneeenes 528

GRUB 2 BOOt L0QAEY ceuuueiiriniieeiiiereeiieeeeeteiieereeeniereerennseerennesserennesserennessenes 530
Starting the Kermnel ..ottt e eree s ee e e e e eene 532
Troubleshooting the initialization systemcceeeerreeeneiriiiincerecinnnnnenee 533
Troubleshooting System V initializationccceeeeuereeuiriineeeiieeennerennnnenn. 533
Troubleshooting r1c.SYSINit...iiueiiueiiiieriiieriiiee e eeee e e eeaeeeens 533
Troubleshooting runlevel ProCeSSeS.....cciieruuieriiuuirriiieereeiieereerieeeee 534
Troubleshooting systemd initializationccceeueeeeerreeiieeieniicenennnenneenne 538
Troubleshooting Software Packages......ccuuueeiiiiuuierieiiiieeietiiiereeriee e eereieeeeeeeeeeeeenns 542
Fixing RPM databases and cache......cccieeuuueeiieiiiiiniiiiie et eeeee e eeeenes 545
Troubleshooting NetWorKing.....eeeeeeuueriieiiieiiiiiien et eeree e e eeae e e eeenes 547
Troubleshooting outgoing cONNECtionS......cceuuueeiieruerreeiiiereerieeeeeeieeeeeenanns 547

View network interfaces......ccuvuummiieiiiiiiiiiiiiccineecrc e 547

Check physical CONMECIONS ..uuviiiruueererrieererrierrerriereereaeereernneereeennenes 548

Check TOULES weeueiiieeeeiiice et 548

Check hostname reSolUtion.....eiiieeuerreriieereeiienretiee e et eeeneeeeernaenes 549
Troubleshooting incoming cONNECtIONSeriireuerirruieereiiieerereieereeeieereeraaenes 550
Check if the client can reach your system at all .eceeeeeveveeneeriieinceniennnnnns 551

Check if the service is available to the client.....cccceeevriieeiriiinienrinnnnnnns 551

Check the firewall on the SEIVEI....cccvuuuurererrreriiiiiiiieereeeeeererrrieeeeeeees 552

Check the service on the SeIVer.....cccccceevvviviiiiiiiiiiiiiiiniiiiiiiiie 553
TroubleShoOting MemMOTY cuuuuciueeiiieeiieiiieeiieeeeneeeteeeeeneeeeueeenseeenseennssesnseeenssennnnes 553
UNCOVEIiNg MEMOTY ISSULS cevuuurterruunierreunereernneereetnneeeeenneeeeeenneeseemnnesseernnnnns 554
Checking for memory problems .ouuuueeieieuueeieeeiiereeeeiieeeeeeneeeeeenieeeeenanenns 556

Dealing with memory Problems..c..ueieeeuuerieiiieriiiiieeecerieeeeeeaee e eeeaanes 558

XXVii

Contents

Troubleshooting in ReSCUE MOAe ...cevvuurreiieneriiiiieereiiiereetieerreeeieereernneeeeernneneenees 559
SUITIIMATY teutetnniiiuieiineeti et ettt et e et ettt etaeeetansetnnestanestansssnnesesnssesnssesnnsesnssennns 561
EROICISES civtuuniiiiiiiiiiiiiic ettt e e e eees 561
Part V: Learning Linux Security Techniques 563
Chapter 22: Understanding Basic Linux Security, 565
Implementing Physical SECUIItY..cciivuueriiiiiieriiiiienietteeeeeeieeceeeiee e eeeneeeeeeaaeeeeenes 565
Implementing diSaster TECOVEIY tivvuueererruuierererueeeeeriesreernneneeernneeeeenneeeennnnns 566
SECUTING USET ACCOUNES 1evuuurirruuierrerruereerenereereneeeereenseeresnesserennseenesseseenes 566

One USEI PEI USEY ACCOUML .ievuurrrnnrerunreruiereenerennerenneeeenereenerernneeranasennnns 567

Limiting access to the root user acCoUNtcceueereevuueereiienceereeennreennnn. 567

Setting expiration dates on temporary acCountseeeeeeeueeeeeeenereennnnn. 567

Removing unused USEr aCCOUNLS civuuerrriiunerrerreierrerrnieererrnaeeeeeenereennnnns 568

SECUTING PASSWOIAS tuuureerrunreerrneereernieererrniereerunneseernenssserrsnesserrassserssnsssenees 570
Choosing go0d PaSSWOTIAS veeeuuerrerruureerennerrerrenererrnneeerreneeeeeeenneseeennnns 570

Setting and changing passwWordS......cceeeeueererrenereeinneererinnieereeeneereennnnes 571

Enforcing best password practiCes.....cceeieeeuueerieiiuieeieiniienieeniieneennnenens 572
Understanding the password files and password hashes.....ccccceeeevvunnnens 574

Securing the filleSYSteIM cuuuuriiiiuiieiiiiiieeeeetiie e eeriee e eerie e e erereeeeeeae e e ereaaeeeenes 576
Managing dangerous filesystem permissions.....cccceeeeeeeeuuereeeennereenennnnens 576

Securing the password filescceevreeiiiiimeiiieienrreeeiieiee e 577

Locking down the fileSyStem ...cuuuuerieiuueriiiiiierieiiiiee e eeeie e eeeaee s 578

Managing software and SEIVICESceeiieruueereerruieerereneereetuneeeeereneeeeeeneseenennns 579
Updating Software packagescceeeeieeererierenereeieneneeeeneneeeeneneenenneees 579

Keeping up with security advisories......cceeeuuereereunerieienienreennieneenennennes 580

Advanced implementation.....ceeeeeeeereiiiieeieeieereeere e eeeae e eerae e e reae e 580
Monitoring YOUT SYStEIMS cuuuiiiiiuuereiiieieereetueereeruiereetenneseerenneseennnsserrnnssssensnseeees 580
Monitoring 10g fileS ceveeeuuereiieiereiiiieretiiieeeerieeeeeeaereeraneeeereneeeeeeenneseennnnes 581
MOnitoring USer ACCOUNLS..eivruuurrerrruererruiieerrteneereeenereeraneeeeerenneeseeenseseenennes 584
Detecting counterfeit new accounts and privileges....ccccceereeeueerrerennnnnns 584

Detecting bad account passWords.....cceuceereeeueereereunereeienerreeeneneenennenees 586

Monitoring the fileSystem ..ccuuueiiiiiiieieiiiieeeieeer e 587
Verifying Software packages...cceeeieeeuueeieerueeeeeniieeieeniereeeeneeeeeenneeeeenns 588

Scanning the filesyStem ...icuuueiiiiiiieiieiiiee e e e eaaees 589

Detecting viruses and r00tKitS.....cueriuuerienerirniriiiirieiirieiie e eeeeeeenees 590

Auditing and RevIeWing LINUXK.....cceeereeerrrrummiiereerreetireenieeeeeeeeererennnnneeseseeeeseeennns 595
Conducting cOMPlIanCe TEVIEWS . .uiiiuuuerierereereereneeeerruieeeerereeseerenneseeresneseeenns 595
Conducting SECUTILY TEVIEWS tivuuuriieiuuierieieiiereetiueeeetreeeeerenieseerenneseeresnseeenes 596
SUINIMAYY +uurernnrrrnnrernreruereenerennereeneeeeuererneserssserssssrssssrsssseenssensssssnssannsssnnsssnnssennns 596
5 () (on 1= OO PR PURPPPPRORRR R PPPPRPR: 597
Chapter 23: Understanding Advanced Linux Security.ot 599
Implementing Linux Security with Cryptography....cccceeeeeieeeiriiiiiciriiiiienniiiieneenes 599
Understanding hashingeoeeeeereiiiiiiiiiiieniiiieeeereee et eceeee e eeeaees 600

XXViii

Contents

Understanding encryption/decryption....cceeeeerieenerreeiniereerinenreiiieereeennenns 602
Understanding cryptographic ciphers.....ccoeeeveiiierriiiiieiiiiiiienreeeneenees 602
Understanding cryptographic cipher Keys....cooevvueeeriiiienriiinieerecinnennenes 603
Understanding digital Signatures.....ccceeveeeuueereriuerreieeneereeeneereeenneeens 608

Implementing LinuX Cryptography w..cceeeeeeueriiiiiiiiireeiieieieeeieeeeieserneeeeneennens 610
Ensuring file iNtegrity .oeeeeeeueeiieiieerieiiiee e crre e ceree e e eeeas 610
Encrypting a Linux filesystem at installationcceeeeereeeeeenenniceenneenns 611
Encrypting a Linux dir@Ctory....ccceeereeuuueeererereerirenieeeeeereeeeeenenneeeaaeees 613
Encrypting a LINUX file covevvvueiiiiiiieiiciiiee e eeea e 616
Encrypting Linux with miscellaneous toolsccceeeereeruueereeenneeeeennnnnns 616
Using Encryption from the Desktop....ceeieeeueriieiicriiiiiienieeiiienreeeieeeees 617

Implementing Linux Security wWith PAM.....cciciiuiiiiiiiiriiiiiee e reeeeiee e eeeneeeeeennes 618

Understanding the PAM authentication process...cc.ceceeeeueereerenereeiunenreeennnns 619
Understanding PAM CONEEXES .iuvuueriiiruerririiierreriieneetrieeeeerneereeenneneenes 619
Understanding PAM control flags ...cceeeeereeennerrereneereeinenerreeenenreeenneneenes 620
Understanding PAM modUlesS....cuueereeeunerreernerrertieneeteneereeeneereeenneneenes 621

Administering PAM on your Linux SYSteM..ccuuueereeeuerreeeuereerunereeinneereeennnns 622
Managing PAM-aware application configuration filescceevvuueerevennenns 622
Managing PAM system event configuration fileS......c.ccvvuerreieuneereennnenns 623
Implementing time restrictions with PAM.......ccoucerriiiiiiiriiincnrecinnennees 626
Enforcing good passwords with PAM.......ccceuuueeiiiiiieeieeinieeneenniieeeennnennes 628
Encouraging sudo use With PAM......cccuuiiiiiiiiiiniiireeieieieeeeneeeeneeenens 632

Obtaining more information on PAMccuuuieiiiiiiieiiiiiiieseeriieeeereieeeeeeneeeenes 633

SUINIMATY +uevuerernnrrenneernnereenseeensrenneeeenerenserersoserssssrsssssnssssssssssssssssssssssssnsessnnsssnnnns 633
1 Y dor 1T PSSP PR PPTPORPPPRRt 633
Chapter 24: Enhancing Linux Security with SELinux. 635
Understanding SELINuUX Benefits ..ccuuueriieuuieiiiiiiieiieiiieeeeteieeeeeeee s eereneeeeeneeeeeeenes 635
Understanding How SELINUX WOTKS c..uuviieiuiiiiiiiieriiiiieeectiieneeeiee s eernieeeennnneeeeeenes 637

Understanding Type Enforcementccvuueerreiiiiiiiiiiieniiiiieneereieeeeeeieeeeeenaenes 637

Understanding Multi-Level SECUTIItY...ccuuerriiueuerrirenienreriiereerieeeeereneereeenaenes 638

Implementing SELinux security models......ccceeeererenerrerinereerinenreienenreeennenns 639
Understanding SELinux operational modesccceeeeeeeeneereeeenenreeennnnnenes 639
Understanding SELinux security contexts.......ccceeeerreeeneereernnnreernnnnnens 640
Understanding SELinux PoliCy tYPeS cuueereerunereeiunierreieneereeiiereeenneeeees 643
Understanding SELinux policy rule packages ...cccccceveeieveeieneeennnrennnnnnns 644

CONFIGUIING SELITIUX tvuuierurueeierrniereerunnereetsuneeeesssneseesssneseesssnseesssnssesssnssssssnnsesaes 645

Setting the SELINUX MOGE...ccuuiiiireiieiiieriiierieieretieeeeieeeeneetneeeenseeenssennseeens 645

Setting the SELINUX POLICY TYPE . uurreeeieririniiieeeeeeeeeterenieeeeeeeeeerenenanaenaaaees 647

Managing SELIinux Security CONtEXES .civvueriruerirnerirneneiiireeiiereiereeeeennerenneeeens 648
Managing the user security conteXt...ccceeeieeeueerieiiuierieruuienieeeiieeeeennnns 649
Managing the file secUrity CONteXt....ccuuverrierueriiriniereiieiiereeeenieeeeeenans 650
Managing the process security conteXt.....cccvveerrerruerrirenerieennieereennnnns 651

Managing SELinux policy rule Packageseeeeeruueerreeenerrerenereereneeneernnneeeeeenns 651

Managing SELINUX via BOOLEATLS .eeeeeuuererrrunereeriniereeriniereereiereernneeeeennnneseeenes 653

Monitoring and Troubleshooting SELINUX ..e..cererruueererrunerrerruniereeeeieereernneeseeennaeenes 654

Contents

Understanding SELINUX 10GGINg...ccuueereerunreereuneerereeneereerunneeereneeeeeeneseennnnns 654
Reviewing SELinux messages in the audit 10gcccveererinnierrreennrennnne. 655

Reviewing SELinux messages in the messages 10g.....ccceevuuererreenereennne. 655
Troubleshooting SELINUX l0GQing ce..eeeeeruueeeeeuueerrreeneereeinnereereneeeeeeneeeeennees 656
Troubleshooting common SELinux problems ..ccceeivueeiiinriiieieiereiieeeineeeenenennn. 657
Using a nonstandard directory for a ServiCe......cccoveereerruerieeenereennnnnens 657

Using a nonstandard port for @ SEIVICEcuuueeriirruereetruiereeeniieneennnenes 658

Moving files and losing security context labels......ccceereeeerrvinnncienrenenes 658

Booleans set inCOTTECtLY ..oievuuuriiiiriereeiiieeiertiee e eeeiee e eerae e e eeenaeeeeeeaaens 658

Putting It All TOGETher . iiiuueee ittt erae e e eeeae e e eeaae e e enaaneees 659
Obtaining More Information on SELINUXccuueeriiruuieiiirnniereeriiiereeruneeeeeeneseeneneneens 659
SUINIMAYY +uuternirernrerueerueertenereenerenneeeenerenneserssssenssensnssrssssesnssennssesnssannssennssennssennns 660
B R LIS ttuuuereruuuereertuereetruueereenuueeeeeraneseeeennsseeressssseersssssensessssesnsssssesnsnssseennnnnsae 660
Chapter 25: Securing Linuxona Network, 663
Auditing NetWOTK SEIVICES .eviirrueriiiiuieiiiiieeieetiereertnereeeenieeeeeennenseernneseeeenneseeeees 663
Evaluating access to network services with nmapccceeeveveveeriernerrernnnennennns 665
Using nmap to audit your network services advertisements..........ccceueereeennee. 668
Working With FIreWalls..ccuuueriiiuueriiiiierieiiiiee e e e ereeeeseeeaeeseeenaeseerenneseenens 672
Understanding firewallS.....couuueereieueereiiieeeetiieer et reereeeeeernaeeeeeeneeeeennees 673
Implementing fireWallsoeveeueereiiiieereeiieeeeriiiee e eeriee e eereeeeeeeneeeeeenees 674
Starting with firewalld......ceeuerriiinierriiiiinree e, 675

Changing firewall rules with COCKPit...ccueererieneiriiiiieiieiieereeeeeereeeenee, 677
Understanding the iptables Utility....ccoeeeeeiiiniiiiirieiriiie e, 678

Using the iptables Utility cocueeeeeeriiiieriieeiiieriiereier e eeeeeeene e 680

SUITNITIATY tuurerrnerrnnreeneerueeeennereeneeeenseeenssssnsserssssenssssssssessssessssessssssnssssssssnnssssnsssnnns 688
BRI CISBS tuuuriruuereurerurerueeeeueeeenereeneeeenseennerernsssensseensssrssssesnssessssssnssssnsssnnsssnnsnsnnns 688
Part VI: Engaging with Cloud Computing 691
Chapter 26: Shifting to Clouds and Containers, 693
Understanding Linux ContainerS....ccuceereeeuueerereueerreriuereetenneerereneereeenneseerennesseeees 694
NAINESPACES +urevnrennrrnrernrenrenererensreneeensenssensrensenssenssensssssenssesssssssnssssssesssnsaee 695
CONtAINET TEGISTIIES e titueirterirtieitrieeetieerteeeteeetnererueeetuaeeneeeennssesnseesnssesnneees 695

Base images and LaYeIS ..ccuuiiuueiiueeeueiieeeeieeeeneerneeetueeenneeeneseesnseesnssenneees 696
Starting with Linux CONtainerS....cceeeiuueriuuereinireinireeiieetueeeeeeeeneeeeneecensseenesseneeenns 697
Pulling and running CONtainersS.......ceieeiuueeeieeneirrieenereetneeeeteeeeeeeneeeeennees 697
PUlling @ CONtAINET ..eeveeiiieieiieeeeeeeeettreieeee e e e eeeeeenaeeeeeeeeeeerennanaeenens 697

Running a shell from a container.......cccveeeieieuerieiiiienieeiiee e eeeennen. 698

Running an FTP server from a container.....ccceeeereevuueereeinnceeeeenneeneennnnn. 699

Starting and stopPPINg CONTAINETS civvuuurriirruererreiiereeeeeereeeereeeeeeneeeereaneeeeenes 701
Building a container imMage ...cuuueeereeeuerieeeniereeieiereereeeeeeeenieeeeeenneseerennseeenes 702

Build a simple cONtainer image ...cuuueeeeeruuerrereeneereeenneneerennseeeeeeneeeeeennnns 702

Build an FTP container from GitHubccuuevreivineiriiiiiiniiiiiicrecceeee e, 703

XXX

Contents

Tagging and pushing an image to @ 1egiStIV..ccuveerrrrereerrirencereeriiiereeriieeeeeenns 705
Using containers in the enterprise.....cceeeereieuerririnierreriiereeriieeeeeeieereeenaenes 706
SUITLIMATY 4uetnniinneiiiiiir et ettt ete et s et etaeeetanstanestaneseenesannssernesesnssesnsseransssnnns 706
L 5 on T PP PPPTPPPRRPR 707
Chapter 27: Using Linux for Cloud Computing i, 709
Overview of Linux and Cloud CompPUting.....cceeeereeruueerreeenereeruneereernnereeeeneereeennenns 710
Cloud hypervisors (aka compute N0des)....ccueereeruerrerrunerrerrenenrereeenreeennneenes 710
Cloud CONEIOUEYS cevvirrrnnniiiiiieiiiiiiiiiiiie ettt e ettt eeeeaeaansaaaes 1
CLOUA STOTAGE trvuureerrrnnrrernnereerunereetunneeretenneererennesaerensesserennessersnnesserensessenes 711
Cloud authentication.....cccoiiiieiiiimmmiiiiiiiiiiiiiiii s 712
Cloud deployment and configurationccceeeeeeeeueerieinuieneeiniienieeenieneeeeneneenns 712
Cloud PlatfOrImS. ciieerueeieiiieeeeetiee s eeriee e eereiee e e eetie e eereneeeeeesaaeeeesannnseassnnnnaenes 712
Trying Basic Cloud TEChNOLOGY...uuuuueererreeriieriieeeeeereeeteeenieeeeeeeeererennaneeaeeeeeeeenens 713
Setting Up @ SMall Clotd cevvuuieiirieiiiiiiee ittt eeeeiee e eeeieeeeeeaeeeeeeeieeseenaaeseeensnnnaeees 714
Configuring RYPeIVISOTS ..uviiiirueiiiiiieerieiiiie e eeriie e eeteee e eeerie e eeraaeeeeeaaaeeeenenns 715

Step 1: Get LinUxX SOfEtWATE vuvuviiiiierieiiiieeieeiieeeeeeiee et eeeaee e eeeaaes 715

Step 2: Check YOUT COMPULETIS ..evvvuurieiriieereeiniereetriereetenneereeenieeeeennnanns 715

Step 3: Install LinuX ON Ry PervisSOrS..ccuucereeeuuereereuneereeennenreeennenseennnenns 716

Step 4: Start services on the hypervisors....ccceeeveeeueerreieeneereerneereennnnnns 717

Step 5: Edit /etc/hosts, 0r set Up DNS.....iriiimeriiiiieneriiiee e neeenaenns 718
CONfIGUIING StOTAGE .cevieiuuereiiinereitieereetieereetiaeeeeteneeeereneeseeraneseenennsssanenns 718

Step 1: Install Linux SOftWare.....ccivueeiiiiiiie it ceve e 718

Step 2: Configure NES Shareccuveueireiiieiiiiiiiireiiieneetieee e eeennenes 719

Step 3: Start the NFS SEIVICE icvuiiiuiiiiiieiieitiiieetee et eeieeceieeeneeenenees 719

Step 4: Mount the NFS share on the hypervisors......ccoeeevueieneeinneennnnes 720

Creating virtual Machines....c.ceiiuiiiieiiiieier e e e eeeeeeae e eeneeens 720

Step 1: Get images to make virtual machines.....ccccceeuerevuieiineeeeneennnnes 721

Step 2: Check the network bridge.....cccvueeeeneiiiniriiiriiiriieeeiee e 721

Step 3: Start Virtual Machine Manager (virt-manager)cccceeveuueeeeeneee 722

Step 4: Check connection detailS.......ccuuuerreeeueerieriuiereeinnenieeeneneeennnenns 722

Step 5: Create a new virtual machinecceveeeieiiueriiriienieeiieeeeeennnns 722

Managing virtual Machines......ceiieeuueeriiiiiienietiiee e eeree e eereeee e eeeaeeeeeenns 724
Migrating virtual machines......ceiieeuueeriiiiiierietiiee et e eeeaee e eeeaes 725

Step 1: Identify other hypervisors ..occeeuueereeeueerieeeuenriieeeereeeieeeeeenneens 726

Step 2: Migrate running VM to Other hypervisorcceeveueereernneereeennnnns 726

SUITLITIATY +utetnnteenretneritnieetueretutetueetaeeetnneetaeseansennesennsseenesasnssernsesnssesnnssrassssnnes 727
B OTCISES teruuniiee ittt ettt e e e e et e be e e e 727
Chapter 28: Deploying LinuxtotheCloud i, 729
Getting Linux to RUN in @ Cloud....cuueieunriiuneiiiieriiieeciierciee et e eeneeeneeeeneeennneennneeens 729
Creating Linux Images for CloUAS .eevveuuuuueeerrereiiiiiiieeeeeeeeeeereeieeeeeeeeenenennaaenaaeens 731
Configuring and running a cloud-init cloud instancecccccceeeeeeerreeeeeenennnne. 731
Investigating the cloud inStanCeccvuueiieiiiieriiiiier et eeeeae 733
Cloning the cloud iNSTANCE....ccvuueiiiiiiier ettt eeeree e eeeae e e eeeaaeeeenes 734
Expanding your cloud-init configurationcceeeeeeevueereerunerieennienreennnenns 735

Contents

Adding ssh keys with cloud-init......cceuueerriemniirriiiiieriiiiienreeieneeeenenees 736
Adding software with cloud-init......cceceerriiiniirriiiieniiiiieereeieeeeeeenees 737
Using cloud-init in enterprise COMPULING ..ceevvvueerrrrenererrineereeriieeeeeenereeennees 738
Using OpenStack to Deploy Cloud ImMages.....ceeeeeueereeriunerrerenneereeenneereeenneeeerenneeeenens 739
Starting from the OpenStack Dashboard.........ccceeeveeivieriiieiienieeiiceneerniee e, 739
Configuring your OpenStack virtual networkcccceeereevuneeeirivnenreennnnn. 739
Configuring keys for 1Mot aCCESS ..vivvrruerierruuerieiirieneeerieeeererieeeeennnnns 741
Launching a virtual machine in OpenStack......ccceeeevuueereerreeeerennnnnnnnnn. 742
Accessing the virtual machine via sSh.....cceueeriiiiiieiiiiiiienieeiieneceeienes 743
Using Amazon EC2 to Deploy Cloud IMages ...cceevueeriereunerieeenienieeeieneeeenieeeeeenneeeenns 744
SUINIMAYY +eurernerrrnireeueeruereenerennereeneeeenereraererssssenssenssssesssseenssensssesnssennsssnnsssnnssennns 746
B R LIS teuuuereruuuereertuneeeetruieetetueieeseernneneeeenneseeeensssseeesssssenrsnsnseessnssssesenssseennnnnsees 746
Chapter 29: Automating Apps and Infrastructure with Ansible. 749
Understanding AnSible. ... i iiue et eereee e eeae e s e eeae e e e eeaeeeeenes 750
Exploring Ansible COMPOIMEINLS..uuuueiitruuerrerruieerereuieereereieeeeeraneeeersnseeeeennsseesennesees 751
IV EIIE OIS teuueteitniereettiee ettt e eeraee s eetaeeeereaaeeeeeeneseennneneaensnssseeennsnseennnnns 751
PlaybOOKS . eeeiieieiiiee ettt e e e e et e e e e e e e e e e s e e raan s eeenes 752
PLaYS teuueriiiinereittiee ettt ettt e e etr e e e tra e e e tra e s e e raa s eeran e e aranseenannns 752
TSRS eeeeteueeeetee e e eteeereette e e etuteeeeeeaaeeeeraneseerannesserennessanenneneenennnnees 752
MOAULES teteueeereienereettiereerueeeettaeeeeteneeseeraneeseerannesserennenserennessenennnnees 752
Roles, imports, and includes...ccceieuueieiieieeieiiiiieeier e ceee e eae e 753
Stepping Through an Ansible Deployment.......covveeuerririnierreiiiereeiineereeeneeeeenanees 753
IO O UISTEES . teuuitrueeiteiete it e eie ettt e etueeetteeeeteetaeeeeeneeeenssanneeenssesnnssennnsenes 754
Setting up SSH keys t0 ach Nnode....ccueivuueiiiniiiiniiiiiiniiiineiiie e e eeeaeees 754
INStAlling ANSTDLE cevueiiineeiiiir et ceiee e eetieeeeae e et eeenesenneseennssennssennssesnnsennnns 756
Creating an INVENEOTY...ccuueiiiieueiieiiieerettie et et e eeenie s eetnaeeereeneseeees 756
Authenticating to the RostS....cciuueiiiiiiieiii e 757
Creating @ Playbook....iiiuuuei it ce e e s e e e e e e e e e e eeea e aeaees 757
RUN the playbook ...t e e s e e eeaaes 758
Running Ad-Hoc Ansible COMIMANAS .uu.ueieieuuerierinierrieiiereeteieereeeneererenneeeeeenneeeeees 760
Trying ad-hoc COMIMANAS .oeevvrueeriiriiiereeiiiieeeeeteeeeereieereereneeeereneeeeeeenaeseenennes 761
Automating Tasks with Ansible Tower Automation Frameworkcccceeevevvnneneennnee. 762
SUITIIMATY teuetuniitneeeueetieettieeetaetetaee et setaeeetaeestansennesenssseenssennssesnssernnsasnnsernnennns 763
X OICISES tuureeruuueeeeteuieerettueeeettueeeetteneereeeaneserrnneseereanesserenssssernsnsnserssssnserenssnserees 763
Chapter 30: Deploying Applications as Containers with Kubernetes. 765
Understanding Kubernetescuuueeeeeiieiriiiiieeieiiieeretiee et rereieeseerneeeeeeaneeenens 766
KUbernetes MasterS . .ocuuuueiriieieereeiiiereetiiee ettt e ettt s eetaneeeeereneeeeeeenaeseennnnes 766
Kubernetes WOTKeIScuuuiiiiieieeiiiiiee ettt eetne e et e e eeene s e eeenees 767
Kubernetes appliCations. ... iueeieuereeueriiiireeiieeeiieeeieeeteeeeneeenneeeenesesnessennneenes 767
Kubernetes interfaces.....cooeeeeeiiiiieieeeeeeeeeereeeeeeeeeeeeeeeeeeeee e 768
TrVINg KUDeIMEteS covuueiiiiiiiiieiieeieeiiiee ettt ettt s e et s e et e e eeaneeeeees
Getting Kubernetes
Starting the Kubernetes Basics Tutorial.......ccceveereeiuueereeinneneeeennereennnnn. 769

Starting Minikubecouueeeiiiiiieiiciieeecee e e e e eaaes 770

XXXii

Contents

Running the Kubernetes Basics tutorial.......cceuueerrirenierriieniereerinieneeienenneeene. 771

Get information about your clusterccceeeereeeeiieiiieerierieer e 771

Deploy a Kubernetes applicationeceeeeeereeenerrieineieeiinenreiineeneeennenns 772

Get information on the deployment’s POdS......cceeererrrueuueeeereeeeerenennnnnns 773

Expose applications with SeIviCesccceeeeueiiuneiiiereeneieeieeeeneeeeneeeenenes 776

Label @ SEIVICE ..vvviiiiiiiiiiiiiiiiiiieiiiiiiin et 777

Delete @ SEIVICE covvvviiiiiiiiiiiiiieieeeeiiiiiii et re et e e e eeraaaaaesseeeee 778

Scale up an apPliCAtION wueuuueeerereeeiiieiiieeeeeeeettereieeeeeeeeeerenenaaeeeaaeeas 779

Check the 10ad DalanCerccuuuueiiiieuieriiiiieeeeeriee e eeeae e e e eeaaeeeeeanes 780

Scale down an apPliCation cuuuueieeeeueereerruiereereuiereerenereeruneeeerenneeeesennenes 781
Enterprise-Quality Kubernetes with OpenShift........ccooviiiiiiiiiiiiiiiiiiiiieeeeeeee 782
SUITIMATY +uerunrrunerennerennereenerennrerueeeraerernaserssserenssrnsssesnsseensssnnssesnsennssannasennssennnns 783

BRI OISO tuuueriirtuuereerueeeeetuueereeeuereerenneseetanneseeressssserenssseerenssseenssssssessnnsnsesnsnsnsanes 783

Part VII: Appendixes 785
Appendix A: Mediao o e et 787
Appendix B: EXErcise ANSWerS. . ..o v ittt ittt ettt et e 797
INEX .ot e 863

XXXiii

Introduction

ou can't learn Linux without using it.

I've come to that conclusion after more than two decades of teaching people how to use

Linux. You can't just read a book; you can't just listen to a lecture. You need someone to
guide you, and you need to jump in and do it yourself.

In 1999, I wrote my first Linux book, the Red Hat Linux Bible. The book’s huge success gave
me the opportunity to become a full-time, independent Linux author. For about a decade, I
wrote dozens of Linux books and explored the best ways to explain Linux from the quiet of
my small home office.

In 2008, I hit the road. I was hired by Red Hat, Inc., as a full-time instructor, teaching Linux
to professional system administrators seeking Red Hat Certified Engineer (RHCE) certifica-
tion. In my three years as a Linux instructor, I honed my teaching skills in front of a live
audience whose Linux experience ranged from none to experienced professionals. Over time, I
was able to broaden my own knowledge of Linux by acquiring about 10 certifications, includ-
ing the Red Hat Certified Architect (RHCA) certification.

In the previous edition of the Linux Bible, I turned my teaching experience into text to take
a reader from someone who has never used Linux to someone with the foundational skills to
become a Linux professional. The skills that you could acquire from that edition remain in
effect in this edition as well. They include the following:

Beginner to certified professional: As long as you have used a computer, mouse, and
keyboard, you can start with this book. I tell you how to get Linux, begin using it,
step through critical topics, and ultimately excel at administering and securing it.

System administrator focused: When you are finished with this book, you will know
how to use Linux and how to modify and maintain it. Almost all of the topics
needed to become a Red Hat Certified Engineer are introduced in this book. That
said, many software developers have also used this book to understand how to work
on a Linux system as a development platform or target for their applications.

Emphasis on command-line tools: Although point-and-click windows for managing
Linux have improved greatly in recent years, many advanced features can only be
utilized by entering commands and editing configuration files manually. I teach
you how to become proficient with the Linux command-line shell, and I occasionally
compare shell features with graphical tools for accomplishing the same tasks.

Aimed at fewer Linux distributions: In past editions, I described about 18 differ-
ent Linux distributions. With only a few notable exceptions, most popular Linux
distributions are either Red Hat based (Red Hat Enterprise Linux, Fedora, Cent0S,

XXXV

Introduction

and so on) or Debian based (Ubuntu, Linux Mint, KNOPPIX, and so forth). Although
this book most thoroughly covers Red Hat distributions, I increased the coverage
of Ubuntu throughout the book, because that’s where many of the biggest Linux
fans begin.

Many, many demos and exercises: Instead of just telling you what Linux does, I

actually show you what it does. Then, to make sure that you got it, you have the
opportunity to try Linux exercises yourself. Every procedure and exercise has been
tested to work in Fedora or Red Hat Enterprise Linux. Most work in Ubuntu as well.

For this 10th edition, major enhancements include a focus on simplified Linux administra-
tion, automating tasks, and managing containerized applications (individually or at scale):

XXXVi

Cockpit administration web UI: Since Linux was created, people have tried to develop

simple graphical or browser-based interfaces for managing Linux systems. I believe
that Cockpit is the best web UI ever created for managing most basic Linux fea-
tures. Throughout this book, I have replaced most older system-config* tool descrip-
tions with those focusing on Cockpit. With Cockpit, you can now add users, manage
storage, monitor activities, and do many other administrative tasks through a single
interface.

Lead into cloud technologies: After introducing cloud technologies in the previous

edition, I've expanded on that coverage here. This coverage includes setting up your
own Linux host for running virtual machines and running Linux in a cloud envi-
ronment, such as Amazon Web Services. Linux is at the heart of most technological
advances in cloud computing today. That means you need a solid understanding of
Linux to work effectively in tomorrow’s data centers. I help you learn Linux basics
in the front of this book. Then in the last few chapters, I demonstrate how you can
try out Linux systems as hypervisors, cloud controllers, and virtual machines as
well as manage virtual networks and networked storage.

Ansible: Automating tasks for managing systems is becoming more and more essen-

tial in modern data centers. Using Ansible, you can create playbooks that define
the state of a Linux system. This includes things like setting which packages are
installed, which services are running, and how features are configured. A play-
book can configure one system or a thousand systems, be combined to form a set

of system services, and be run again to return a system to a defined state. In this
edition, I introduce you to Ansible, help you create your first Ansible playbook, and
show you how to run ad-hoc Ansible commands.

Containers: Packaging and running applications in containers is becoming the

preferred method for deploying, managing, and updating small, scalable soft-
ware services and features. I describe how to pull containers to your system, run
them, stop them, and even build your own container images using podman and
docker commands.

Kubernetes and OpenShift: While containers are nice on their own, to be able to

deploy, manage, and upgrade containers in a large enterprise, you need an orches-
tration platform. The Kubernetes project provides that platform. For a commercial,
supported Kubernetes platform, you can use a product such as OpenShift.

Introduction

How This Book Is Organized

The book is organized to enable you to start off at the very beginning with Linux and grow
to become a professional Linux system administrator and power user.

Part I, “Getting Started,” includes two chapters designed to help you understand what
Linux is and get you started with a Linux desktop:

®m Chapter 1, “Starting with Linux,” covers topics such as what the Linux operating
system is, where it comes from, and how to get started using it.

m Chapter 2, “Creating the Perfect Linux Desktop,” provides information on how you
can create a desktop system and use some of the most popular desktop features.

Part II, “Becoming a Linux Power User,” provides in-depth details on how to use the Linux
shell, work with filesystems, manipulate text files, manage processes, and use shell scripts:

m Chapter 3, “Using the Shell,” includes information on how to access a shell, run
commands, recall commands (using history), and do tab completion. The chapter
also describes how to use variables, aliases, and man pages (traditional Linux
command reference pages).

m Chapter 4, “Moving Around the Filesystem,” includes commands for listing, cre-
ating, copying, and moving files and directories. More advanced topics in this
chapter include filesystem security, such as file ownership, permissions, and access
control lists.

m Chapter 5, “Working with Text Files,” includes everything from basic text editors to
tools for finding files and searching for text within files.

m Chapter 6, “Managing Running Processes,” describes how to see what processes
are running on your system and change them. Ways of changing processes include
killing, pausing, and sending other types of signals.

m Chapter 7, “Writing Simple Shell Scripts,” includes shell commands and functions
that you can gather together into a file to run as a command itself.

In Part III, “Becoming a Linux System Administrator,” you learn how to administer
Linux systems:

®m Chapter 8, “Learning System Administration,” provides information on basic
graphical tools, commands, and configuration files for administering Linux
systems. It introduces the Cockpit web UI for simplified, centralized Linux
administration.

® Chapter 9, “Installing Linux,” covers common installation tasks, such as disk par-
titioning and initial software package selection, as well as more advanced installa-
tion tools, such as installing from kickstart files.

® Chapter 10, “Getting and Managing Software,” provides an understanding of how
software packages work and how to get and manage software packages.

® Chapter 11, “Managing User Accounts,” discusses tools for adding and deleting
users and groups as well as how to centralize user account management.

XXXVii

Introduction

XXXViii

Chapter 12, “Managing Disks and Filesystems,” provides information on adding par-
titions, creating filesystems, and mounting filesystems, as well as working with
logical volume management.

In Part IV, “Becoming a Linux Server Administrator,” you learn to create powerful network
servers and the tools needed to manage them:

Chapter 13, “Understanding Server Administration,” covers remote logging, moni-
toring tools, and the Linux boot process.

Chapter 14, “Administering Networking” discusses how to configure networking.
Chapter 15, “Starting and Stopping Services,” provides information on starting and
stopping services.

Chapter 16, “Configuring a Print Server,” describes how to configure printers to use
locally on your Linux system or over the network from other computers.

Chapter 17, “Configuring a Web Server,” describes how to configure an Apache

web server.

Chapter 18, “Configuring an FTP Server,” covers procedures for setting up a vsftpd
FTP server that can be used to enable others to download files from your Linux
system over the network.

Chapter 19, “Configuring a Windows File Sharing (Samba) Server,” covers Windows
file server configuration with Samba.

Chapter 20, “Configuring an NFS File Server,” describes how to use Network File
System features to share folders of files among systems over a network.

Chapter 21, “Troubleshooting Linux,” covers popular tools for troubleshooting your
Linux system.

In Part V, “Learning Linux Security Techniques,” you learn how to secure your Linux sys-
tems and services:

Chapter 22, “Understanding Basic Linux Security,” covers basic security concepts
and techniques.

Chapter 23, “Understanding Advanced Linux Security,” provides information on
using Pluggable Authentication Modules (PAM) and cryptology tools to tighten
system security and authentication.

Chapter 24, “Enhancing Linux Security with SELinux,” shows you how to enable
Security Enhanced Linux (SELinux) to secure system services.

Chapter 25, “Securing Linux on a Network,” covers network security features, such
as firewalld and iptables firewalls, to secure system services.

In Part VI,” Engaging with Cloud Computing” the book pivots from a single-system focus
toward containerization, cloud computing, and automation:

Chapter 26, “Shifting to Clouds and Containers,” describes how to pull, push, start,
stop, tag, and build container images.

Introduction

m Chapter 27, “Using Linux for Cloud Computing,” introduces concepts of cloud com-
puting in Linux by describing how to set up hypervisors, build virtual machines,
and share resources across networks.

m Chapter 28, “Deploying Linux to the Cloud,” describes how to deploy Linux images
to different cloud environments, including OpenStack, Amazon EC2, or a local Linux
system that is configured for virtualization.

m Chapter 29, “Automating Apps and Infrastructure with Ansible,” tells you how to
create Ansible playbooks and run ad-hoc Ansible commands to automate the config-
uration of Linux systems and other devices.

m Chapter 30, “Deploying Applications as Containers with Kubernetes,” describes the
Kubernetes project and how it is used to orchestrate container images, with the
potential to massively scale up for large data centers.

Part VII contains two appendixes to help you get the most from your exploration of Linux.
Appendix A, “Media,” provides guidance on downloading Linux distributions. Appendix

B, “Exercise Answers,” provides sample solutions to the exercises included in Chapters 2
through 30.

Conventions Used in This Book

Throughout the book, special typography indicates code and commands. Commands and
code are shown in a monospaced font:

This is how code looks.

In the event that an example includes both input and output, the monospaced font is still
used, but input is presented in bold type to distinguish the two. Here’s an example:

$ ftp ftp.handsonhistory.com
Name (home:jake): jake
Password: #****x*

As for styles in the text:

m New terms and important words appear in italic when introduced.

m Keyboard strokes appear like this: Ctrl+A. This convention indicates to hold the Ctrl
key as you also press the "a" key.

®m Filenames, URLs, and code within the text appear as follows: persistence
.properties.

The following items call your attention to points that are particularly important.

Norte

A Note box provides extra information to which you need to pay special attention.

XXXiX

Introduction

Tip

A Tip box shows a special way of performing a particular task.

Caution
A Caution box alerts you to take special care when executing a procedure or damage to your computer hardware or

software could result.

Jumping into Linux

If you are new to Linux, you might have vague ideas about what it is and where it came
from. You may have heard something about it being free (as in cost) or free (as in freedom
to use it as you please). Before you start putting your hands on Linux (which we will do
soon enough), Chapter 1 seeks to answer some of your questions about the origins and fea-
tures of Linux.

Take your time and work through this book to get up to speed on Linux and how you can
make it work to meet your needs. This is your invitation to jump in and take the first step
toward becoming a Linux expert!

Visit the Linux Bible website

To find links to various Linux distributions, tips on gaining Linux certification, and corrections to the
book as they become available, go to www.wiley.com/go/linuxbibleloe.

xI

How to Contact Wiley or the Author

You can contact Christopher Negus at striker57@gmail.com.

If you believe you have found an error in this book, and it is not listed on the book’s page
at www.wiley.com, you can report the issue to our customer technical support team at

support.wiley.com.

mailto:striker57@gmail.com
http://www.wiley.com
http://support.wiley.com
http://www.wiley.com/go/linuxbible10e

Part |

Getting Started

IN THIS PART

Chapter 1
Starting with Linux

Chapter 2
Creating the Perfect Linux Desktop

CHAPTER

Starting with Linux

IN THIS CHAPTER

Learning what Linux is

Learning where Linux came from

Choosing Linux distributions

Exploring professional opportunities with Linux

Becoming certified in Linux

cannot keep up with the pace of improvements and quality that Linux can achieve with its cul-

ture of sharing and innovation. Even Microsoft, whose former CEQ Steve Ballmer once referred
to Linux as “a cancer,” now says that Linux's use on its Microsoft’s Azure cloud computing service
has surpassed the use of Windows.

The operating systems war is over, and Linux has won. Proprietary operating systems simply

Linux is one of the most important technological advancements of the twenty-first century. Beyond
its impact on the growth of the Internet and its place as an enabling technology for a range of com-
puter-driven devices, Linux development has become a model for how collaborative projects can sur-
pass what single individuals and companies can do alone.

Google runs thousands upon thousands of Linux servers to power its search technology. Its Android
phones are based on Linux. Likewise, when you download and run Google’s Chrome 0S, you get a
browser that is backed by a Linux operating system.

Facebook builds and deploys its site using what is referred to as a LAMP stack (Linux, Apache web
server, MySQL database, and PHP web scripting language)—all open source projects. In fact, Facebook
itself uses an open source development model, making source code for the applications and tools that
drive Facebook available to the public. This model has helped Facebook shake out bugs quickly, get
contributions from around the world, and fuel its exponential growth.

Financial organizations that have trillions of dollars riding on the speed and security of their
operating systems also rely heavily on Linux. These include the New York Stock Exchange, Chicago
Mercantile Exchange, and the Tokyo Stock Exchange.

As cloud continues to be one of the hottest buzzwords today, a part of the cloud groundswell that
isn't hype is that Linux and other open source technologies continue to be the foundation on which

Part I: Getting Started

today’s greatest cloud innovations are being built. Every software component that you need
to build a private or public cloud (such as hypervisors, cloud controllers, network storage,
virtual networking, and authentication) is freely available for you to start using from the
open source world.

The widespread adoption of Linux around the world has created huge demand for Linux
expertise. This chapter starts you down a path to becoming a Linux expert by helping you
understand what Linux is, where it came from, and what your opportunities are for becoming
proficient in it.

The rest of this book provides you with hands-on activities to help you gain that expertise.
Finally, I show you how to apply that expertise to cloud technologies, including automation
tools, such as Ansible, and containerization orchestration technologies, such as Kubernetes
and OpenShift.

Understanding What Linux Is

Linux is a computer operating system. An operating system consists of the software that
manages your computer and lets you run applications on it. The features that make up
Linux and similar computer operating systems include the following:

Detecting and preparing hardware: When the Linux system boots up (when you turn
on your computer), it looks at the components on your computer (CPU, hard drive,
network cards, and so on) and loads the software (drivers and modules) needed to
access those particular hardware devices.

Managing processes: The operating system must keep track of multiple processes
running at the same time and decide which have access to the CPU and when.
The system also must offer ways of starting, stopping, and changing the status of
processes.

Managing memory: RAM and swap space (extended memory) must be allocated to
applications as they need memory. The operating system decides how requests for
memory are handled.

Providing user interfaces: An operating system must provide ways of accessing the
system. The first Linux systems were accessed from a command-line interpreter
called a shell. Today, graphical desktop interfaces are commonly available as well.

Controlling filesystems: Filesystem structures are built into the operating system (or
loaded as modules). The operating system controls ownership and access to the files
and directories (folders) that the filesystems contain.

Providing user access and authentication: Creating user accounts and allowing
boundaries to be set between users is a basic feature of Linux. Separate user and
group accounts enable users to control their own files and processes.

Offering administrative utilities: In Linux, hundreds (perhaps thousands) of com-
mands and graphical windows are available to do such things as add users, manage

Chapter 1: Starting with Linux

disks, monitor the network, install software, and generally secure and manage your
computer. Web UI tools, such as Cockpit, have lowered the bar for doing complex
administrative tasks.

Starting up services: To use printers, handle log messages, and provide a variety
of system and network services, processes called daemon processes run in the
background, waiting for requests to come in. Many types of services run in Linux.
Linux provides different ways of starting and stopping these services. In other
words, while Linux includes web browsers to view web pages, it can also be the com-
puter that serves up web pages to others. Popular server features include web, mail,
database, printer, file, DNS, and DHCP servers.

Programming tools: A wide variety of programming utilities for creating applications
and libraries for implementing specialty interfaces are available with Linux.

As someone managing Linux systems, you need to learn how to work with those features
just described. While many features can be managed using graphical interfaces, an under-
standing of the shell command line is critical for someone administering Linux systems.

Modern Linux systems now go way beyond what the first UNIX systems (on which Linux
was based) could do. Advanced features in Linux, often used in large enterprises, include
the following:

Clustering: Linux can be configured to work in clusters so that multiple systems can
appear as one system to the outside world. Services can be configured to pass back
and forth between cluster nodes while appearing to those using the services that
they are running without interruption.

Virtualization: To manage computing resources more efficiently, Linux can run as a
virtualization host. On that host, you could run other Linux systems, Microsoft
Windows, BSD, or other operating systems as virtual guests. To the outside world,
each of those virtual guests appears as a separate computer. KVM and Xen are two
technologies in Linux for creating virtual hosts.

Cloud computing: To manage large-scale virtualization environments, you can use
full-blown cloud computing platforms based on Linux. Projects such as OpenStack
and Red Hat Virtualization (and its upstream oVirt project) can simultaneously man-
age many virtualization hosts, virtual networks, user and system authentication,
virtual guests, and networked storage. Projects such as Kubernetes can manage con-
tainerized applications across massive data centers.

Real-time computing: Linux can be configured for real-time computing, where high-
priority processes can expect fast, predictable attention.

Specialized storage: Instead of just storing data on the computer’s hard disk, you
can store it on many specialized local and networked storage interfaces that are
available in Linux. Shared storage devices available in Linux include iSCSI, Fibre
Channel, and Infiniband. Entire open source storage platforms include projects such
as Ceph (https://ceph.io) and GlusterFS (https://www.gluster.org).

https://ceph.io
https://www.gluster.org

Part I: Getting Started

Some of these advanced topics are not covered in this book. However, the features
covered here for using the shell, working with disks, starting and stopping services,
and configuring a variety of servers should serve as a foundation for working with those
advanced features.

Understanding How Linux Differs from Other
Operating Systems

If you are new to Linux, chances are good that you have used a Microsoft Windows or
MacOS operating system. Although MacOS had its roots in a free software operating system,
referred to as the Berkeley Software Distribution (more on that later), operating systems
from both Microsoft and Apple are considered proprietary operating systems. What that
means is the following:

B You cannot see the code used to create the operating system, and therefore, you
cannot change the operating system at its most basic levels if it doesn't suit your
needs, and you can't use the operating system to build your own operating system
from source code.

B You cannot check the code to find bugs, explore security vulnerabilities, or simply
learn what that code is doing.

B You may not be able to plug your own software easily into the operating system if
the creators of that system don't want to expose the programming interfaces you
need to the outside world.

You might look at those statements about proprietary software and say, “What do I care?
I'm not a software developer. I don't want to see or change how my operating system
is built.”

That may be true. However, the fact that others can take free and open source software
and use it as they please has driven the explosive growth of the Internet (think Google),
mobile phones (think Android), special computing devices (think TiVo), and hundreds of
technology companies. Free software has driven down computing costs and allowed for an
explosion of innovation.

Maybe you don’t want to use Linux—as Google, Facebook, and other companies have done—
to build the foundation for a multi-billion-dollar company. Nonetheless, those companies
and others who now rely on Linux to drive their computer infrastructures need more and
more people with the skills to run those systems.

You may wonder how a computer system that is so powerful and flexible has come to be free
as well. To understand how that could be, you need to see where Linux came from. Thus the
next sections of this chapter describe the strange and winding path of the free software
movement that led to Linux.

Chapter 1: Starting with Linux

Exploring Linux History

Some histories of Linux begin with the following message entitled “What would you like to
see most in minix?” posted by Linus Torvalds to the comp.os.minix newsgroup on August
25,1991, at

https://groups.google.com/forum/#!msg/comp.os.minix/d1NtH7RRrGA/SwRavCzVE7gJ

Linus Benedict Torvalds

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and professional
like gnu) for 386(486) AT clones. This has been brewing since april, and is starting
to get ready. I'd like any feedback on things people like/dislike in minix, as my 0S
resembles it somewhat (same physical layout of the file-system (due to practical
reasons, among other things). . .Any suggestions are welcome, but I won't promise
I'll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes — it's free of any minix code, and it has a multi-threaded fs. It is NOT
protable[sic] (uses 386 task switching etc), and it probably never will support
anything other than AT-harddisks, as that’s all I have :-(.

Minix was a UNIX-like operating system that ran on PCs in the early 1990s. Like Minix,
Linux was also a clone of the UNIX operating system. With few exceptions, such as Micro-
soft Windows, most modern computer systems (including Mac0OS and Linux itself) were
derived from UNIX operating systems, created originally by AT&T.

To truly appreciate how a free operating system could have been modeled after a proprie-
tary system from AT&T Bell Laboratories, it helps to understand the culture in which
UNIX was created and the chain of events that made the essence of UNIX possible to
reproduce freely.

Norte

To learn more about how Linux was created, pick up the book Just for Fun: The Story of an Accidental Revolutionary
by Linus Torvalds (Harper Collins Publishing, 2001).

Free-flowing UNIX culture at Bell Labs

From the very beginning, the UNIX operating system was created and nurtured in a
communal environment. Its creation was not driven by market needs but by a desire to
overcome impediments to producing programs. AT&T, which owned the UNIX trademark
originally, eventually made UNIX into a commercial product. By that time, however, many
of the concepts (and even much of the early code) that made UNIX special had fallen into
the public domain.

https://groups.google.com/forum/#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ
mailto:torvalds@kruuna.helsinki.fi

Part I: Getting Started

If you are not old enough to remember when AT&T split up in 1984, you may not remember
a time when AT&T was the phone company. Up until the early 1980s, AT&T didn't have to
think much about competition because if you wanted a phone in the United States, you had
to go to AT&T. It had the luxury of funding pure research projects. The mecca for such pro-
jects was the Bell Laboratories site in Murray Hill, New Jersey.

After a project called Multics failed around 1969, Bell Labs employees Ken Thompson and
Dennis Ritchie set off on their own to create an operating system that would offer an
improved environment for developing software. Up to that time, most programs were writ-
ten on paper punch cards that had to be fed in batches to mainframe computers. In a 1980
lecture on “The Evolution of the UNIX Time-sharing System,” Dennis Ritchie summed up
the spirit that started UNIX:

What we wanted to preserve was not just a good environment in which to do
programming, but a system around which a fellowship could form. We knew from
experience that the essence of communal computing as supplied by remote-access,
time-shared machines is not just to type programs into a terminal instead of a
keypunch, but to encourage close communication.

The simplicity and power of the UNIX design began breaking down barriers that, until
this point, had impeded software developers. The foundation of UNIX was set with several
key elements:

The UNIX filesystem: Because it included a structure that allowed levels of subdirec-
tories (which, for today’s desktop users, look like folders inside of folders), UNIX
could be used to organize the files and directories in intuitive ways. Furthermore,
complex methods of accessing disks, tapes, and other devices were greatly simplified
by representing those devices as individual device files that you could also access as
items in a directory.

Input/output redirection: Early UNIX systems also included input redirection and
pipes. From a command line, UNIX users could direct the output of a command to
a file using a right-arrow key (>). Later, the concept of pipes (|) was added where
the output of one command could be directed to the input of another command.
For example, the following command line concatenates (cat) filel and file2, sorts
(sort) the lines in those files alphabetically, paginates the sorted text for printing
(pr), and directs the output to the computer’s default printer (1pr):

$ cat filel file2 | sort | pr | lpr

This method of directing input and output enabled developers to create their own
specialized utilities that could be joined with existing utilities. This modularity
made it possible for lots of code to be developed by lots of different people. A user
could just put together the pieces they needed.

Portability: Simplifying the experience of using UNIX also led to it becoming extraor-
dinarily portable to run on different computer hardware. By having device drivers
(represented by files in the filesystem tree), UNIX could present an interface to
applications in such a way that the programs didn’t have to know about the details

Chapter 1: Starting with Linux

of the underlying hardware. To port UNIX later to another system, developers had
only to change the drivers. The application programs didn’t have to change for dif-
ferent hardware!

To make portability a reality, however, a high-level programming language was needed to
implement the software needed. To that end, Brian Kernighan and Dennis Ritchie created
the C programming language. In 1973, UNIX was rewritten in C. Today, C is still the primary
language used to create the UNIX (and Linux) operating system kernels.

As Ritchie went on to say in a 1979 lecture (https://www.bell-labs.com/usr/dmr/
www/hist.html):

Today, the only important UNIX program still written in assembler is the
assembler itself; virtually all the utility programs are in C, and so are most of the
application’s programs, although there are sites with many in Fortran, Pascal, and
Algol 68 as well. It seems certain that much of the success of UNIX follows from
the readability, modifiability, and portability of its software that in turn follows
from its expression in high-level languages.

If you are a Linux enthusiast and are interested in what features from the early days of
Linux have survived, an interesting read is Dennis Ritchie’s reprint of the first UNIX pro-
grammer’s manual (dated November 3, 1971). You can find it at Dennis Ritchie’s website:
https://www.bell-labs.com/usr/dmr/www/lstEdman.html. The form of this docu-
mentation is UNIX man pages, which is still the primary format for documenting UNIX and
Linux operating system commands and programming tools today.

What's clear as you read through the early documentation and accounts of the UNIX system
is that the development was a free-flowing process, lacked ego, and was dedicated to mak-
ing UNIX excellent. This process led to a sharing of code (both inside and outside of Bell
Labs), which allowed rapid development of a high-quality UNIX operating system. It also
led to an operating system that AT&T would find difficult to reel back in later.

Commercial UNIX

Before the AT&T divestiture in 1984, when it was split up into AT&T and seven “Baby Bell”
companies, AT&T was forbidden to sell computer systems. Companies that would later
become Verizon, Qwest, Nokia, and Alcatel-Lucent were all part of AT&T. As a result of
AT&T’s monopoly of the telephone system, the US government was concerned that an unre-
stricted AT&T might dominate the fledgling computer industry.

Because AT&T was restricted from selling computers directly to customers before its dives-
titure, UNIX source code was licensed to universities for a nominal fee. This allowed UNIX
installations to grow in size and mindshare among top universities. However, there was
still no UNIX operating system for sale from AT&T that you didn’t have to compile yourself.

Berkeley Software Distribution arrives

In 1975, UNIX V6 became the first version of UNIX available for widespread use outside of
Bell Laboratories. From this early UNIX source code, the first major variant of UNIX was

https://www.bell-labs.com/usr/dmr/www/1stEdman.html

Part I: Getting Started

created at University of California, Berkeley. It was named the Berkeley Software Distribu-
tion (BSD).

For most of the next decade, the BSD and Bell Labs versions of UNIX headed off in separate
directions. BSD continued forward in the free-flowing, share-the-code manner that was the
hallmark of the early Bell Labs UNIX, whereas AT&T started steering UNIX toward commer-
cialization. With the formation of a separate UNIX Laboratory, which moved out of Murray
Hill and down the road to Summit, New Jersey, AT&T began its attempts to commercialize
UNIX. By 1984, divestiture was behind AT&T and it was really ready to start selling UNIX.

UNIX Laboratory and commercialization

The UNIX Laboratory was considered a jewel that couldn’t quite find a home or a way to
make a profit. As it moved between Bell Laboratories and other areas of AT&T, its name
changed several times. It is probably best remembered by the name it had as it began its
spin-off from AT&T: UNIX System Laboratories (USL).

The UNIX source code that came out of USL, the legacy of which was sold in part to Santa
Cruz Operation (SCO), was used for a time as the basis for ever-dwindling lawsuits by SCO
against major Linux vendors (such as IBM and Red Hat, Inc.). Because of that, I think the
efforts from USL that have contributed to the success of Linux are lost on most people.

During the 1980s, of course, many computer companies were afraid that a newly divested
AT&T would pose more of a threat to controlling the computer industry than would an
upstart company in Redmond, Washington. To calm the fears of IBM, Intel, Digital Equip-
ment Corporation, and other computer companies, the UNIX Lab made the following com-
mitments to ensure a level playing field:

Source code only: Instead of producing its own boxed set of UNIX, AT&T continued to
sell source code only and to make it available equally to all licensees. Each company
would then port UNIX to its own equipment. It wasn't until about 1992, when the
lab was spun off as a joint venture with Novell (called Univel), and then eventually
sold to Novell, that a commercial boxed set of UNIX (called UnixWare) was produced
directly from that source code.

Published interfaces: To create an environment of fairness and community to its OEMs
(original equipment manufacturers), AT&T began standardizing what different ports
of UNIX had to be able to do to still be called UNIX. To that end, Portable Operating
System Interface (POSIX) standards and the AT&T UNIX System V Interface Defini-
tion (SVID) were specifications UNIX vendors could use to create compliant UNIX
systems. Those same documents also served as road maps for the creation of Linux.

Norte
In an early email newsgroup post, Linus Torvalds made a request for a copy, preferably online, of the POSIX standard.

I think that no one from AT&T expected someone actually to be able to write their own clone of UNIX from those inter-
faces without using any of its UNIX source code.

10

Chapter 1: Starting with Linux

Technical approach: Again, until the very end of USL, most decisions on the direction
of UNIX were made based on technical considerations. Management was promoted
up through the technical ranks, and to my knowledge there was never any talk of
writing software to break other companies’ software or otherwise restrict the suc-
cess of USL's partners.

When USL eventually started taking on marketing experts and creating a desktop UNIX
product for end users, Microsoft Windows already had a firm grasp on the desktop market.
Also, because the direction of UNIX had always been toward source-code licensing destined
for large computing systems, USL had pricing difficulties for its products. For example, on
software that it was including with UNIX, USL found itself having to pay out per-computer
licensing fees that were based on $100,000 mainframes instead of $2,000 PCs. Add to that
the fact that no application programs were available with UnixWare and you can see why
the endeavor failed.

Successful marketing of UNIX systems at the time, however, was happening with other
computer companies. SCO had found a niche market, primarily selling PC versions of UNIX
running dumb terminals in small offices. Sun Microsystems was selling lots of UNIX work-
stations (originally based on BSD but merged with UNIX in SVR4) for programmers and
high-end technology applications (such as stock trading).

Other commercial UNIX systems were also emerging by the 1980s. This new ownership
assertion of UNIX was beginning to take its toll on the spirit of open contributions. Law-
suits were being initiated to protect UNIX source code and trademarks. In 1984, this new,
restrictive UNIX gave rise to an organization that eventually led the path to Linux: the
Free Software Foundation.

GNU transitions UNIX to freedom

In 1984, Richard M. Stallman started the GNU project (https://gnu.org), recursively
named by the phrase GNU is Not UNIX. As a project of the Free Software Foundation (FSF),
GNU was intended to become a recoding of the entire UNIX operating system that could be
freely distributed.

The GNU Project page (https://gnu.org/gnu/thegnuproject.html) tells the story

of how the project came about in Stallman’s own words. It also lays out the problems that
proprietary software companies were imposing on those software developers who wanted to
share, create, and innovate.

Although rewriting millions of lines of code might seem daunting for one or two people,
spreading the effort across dozens or even hundreds of programmers made the project pos-
sible. Remember that UNIX was designed to be built in separate pieces that could be piped
together. Because they were reproducing commands and utilities with well-known, pub-
lished interfaces, that effort could easily be split among many developers.

It turned out that not only could the same results be gained by all new code, but in some
cases that code was better than the original UNIX versions. Because everyone could see

11

http://www.gnu.org/
http://www.gnu.org/gnu/thegnuproject.html

Part I: Getting Started

12

the code being produced for the project, poorly written code could be corrected quickly or
replaced over time.

If you are familiar with UNIX, try searching the hundreds of GNU software packages, which
contain thousands of commands, for your favorite UNIX command from the Free Software
Directory (https://directory.fsf.org/wiki/GNU). Chances are good that you will find
it there, along with many, many other available software projects.

Over time, the term free software has been mostly replaced by the term open source soft-
ware. The term free software is preferred by the Free Software Foundation, while open source
software is promoted by the Open Source Initiative (https://opensource.org).

To accommodate both camps, some people use the term Free and Open Source Software (FOSS)
instead. An underlying principle of FOSS, however, is that although you are free to use

the software as you like, you have some responsibility to make the improvements that you
make to the code available to others. This way, everyone in the community can benefit
from your work, as you have benefited from the work of others.

To define clearly how open source software should be handled, the GNU software project
created the GNU Public License, or GPL. Although many other software licenses cover
slightly different approaches to protecting free software, the GPL is the most well known—
and it’s the one that covers the Linux kernel itself. The GNU Public License includes the
following basic features:

Author rights: The original author retains the rights to their software.

Free distribution: People can use the GNU software in their own software, changing
and redistributing it as they please. They do, however, have to include the source
code with their distribution (or make it easily available).

Copyright maintained: Even if you were to repackage and resell the software, the
original GNU agreement must be maintained with the software, which means that
all future recipients of the software have the opportunity to change the source
code, just as you did.

There is no warranty on GNU software. If something goes wrong, the original developer of
the software has no obligation to fix the problem. However, many organizations, large and
small, offer paid support (often in subscription form) for the software when it is included
in their Linux or other open source software distribution. (See the section “0SI open source
definition” later in this chapter for a more detailed definition of open source software.)

Despite its success in producing thousands of UNIX utilities, the GNU project itself failed to
produce one critical piece of code: the kernel. Its attempts to build an open source kernel
with the GNU Hurd project (https://gnu.org/software/hurd/) were unsuccessful at
first, so it failed to become the premier open source kernel.

BSD loses some steam

The one software project that had a chance of beating out Linux to be the premier
open source kernel was the venerable BSD project. By the late 1980s, BSD developers at

http://directory.fsf.org/wiki/GNU
http://www.opensource.org/
http://www.gnu.org/software/hurd

Chapter 1: Starting with Linux

University of California (UC), Berkeley realized that they had already rewritten most of the
UNIX source code they had received a decade earlier.

In 1989, UC Berkeley distributed its own UNIX-like code as Net/1 and later (in 1991) as
Net/2. Just as UC Berkeley was preparing a complete, UNIX-like operating system that was
free from all AT&T code, AT&T hit them with a lawsuit in 1992. The suit claimed that the
software was written using trade secrets taken from AT&T’s UNIX system.

It's important to note here that BSD developers had completely rewritten the copyright-pro-
tected code from AT&T. Copyright was the primary means AT&T used to protect its rights to
the UNIX code. Some believe that if AT&T had patented the concepts covered in that code,
there might not be a Linux (or any UNIX clone) operating system today.

The lawsuit was dropped when Novell bought UNIX System Laboratories from AT&T in 1994.
Nevertheless, during that critical period there was enough fear and doubt about the legal-
ity of the BSD code that the momentum that BSD had gained to that point in the fledgling
open source community was lost. Many people started looking for another open source
alternative. The time was ripe for a college student from Finland who was working on his
own kernel.

Note
Today, BSD versions are available from three major projects: FreeBSD, NetBSD, and OpenBSD. People generally
characterize FreeBSD as the easiest to use, NetBSD as available on the most computer hardware platforms, and

OpenBSD as fanatically secure. Many security-minded individuals still prefer BSD to Linux. Also, because of its
licensing, BSD code can be used by proprietary software vendors, such as Microsoft and Apple, who don’t want to
share their operating system code with others. MacOS is built on a BSD derivative.

Linus builds the missing piece

Linus Torvalds started work on Linux in 1991, while he was a student at the University of
Helsinki, Finland. He wanted to create a UNIX-like kernel so that he could use the same
kind of operating system on his home PC that he used at school. At the time, Linus was
using Minix, but he wanted to go beyond what the Minix standards permitted.

As noted earlier, Linus announced the first public version of the Linux kernel to the
comp.os.minix newsgroup on August 25, 1991, although Torvalds guesses that the first
version didn't actually come out until mid-September of that year.

Although Torvalds stated that Linux was written for the 386 processor and probably wasn't
portable, others persisted in encouraging (and contributing to) a more portable approach in
the early versions of Linux. By October 5, 1991, Linux 0.02 was released with much of the
original assembly code rewritten in the C programming language, which made it possible to
start porting it to other machines.

The Linux kernel was the last—and the most important—piece of code that was needed
to complete a whole UNIX-like operating system under the GPL. So when people started

13

Part I: Getting Started

putting together distributions, the name Linux and not GNU is what stuck. Some
distributions, such as Debian, however, refer to themselves as GNU/Linux distributions.
(Not including GNU in the title or subtitle of a Linux operating system is also a matter of
much public grumbling by some members of the GNU project. See https://gnu.org.)

Today, Linux can be described as an open source UNIX-like operating system that reflects
a combination of SVID, POSIX, and BSD compliance. Linux continues to aim toward com-
pliance with POSIX as well as with standards set by the owner of the UNIX trademark, The
Open Group (https://opengroup.org).

The nonprofit Open Source Development Labs, renamed the Linux Foundation after merging
with the Free Standards Group (https://linuxfoundation.org), which employs Linus
Torvalds, manages the direction today of Linux development efforts. Its sponsors list is like
a Who's Who of commercial Linux system and application vendors, including IBM, Red Hat,
SUSE, Oracle, HP, Dell, Computer Associates, Intel, Cisco Systems, and hundreds of others.
The Linux Foundation’s primary charter is to protect and accelerate the growth of Linux by
providing legal protection and software development standards for Linux developers.

Although much of the thrust of corporate Linux efforts is on enterprise computing, huge
improvements are continuing in the desktop arena as well. The KDE and GNOME desktop
environments continuously improve the Linux experience for casual users. Newer light-
weight desktop environments such as Chrome 0S, Xfce, and LXDE now offer efficient alter-
natives that today bring Linux to thousands of netbook owners.

Linus Torvalds continues to maintain and improve the Linux kernel.

Note
For a more detailed history of Linux, see the book Open Sources: Voices from the Open Source Revolution (0’Reilly,
1999). The entire first edition is available online at

https://oreilly.com/openbook/opensources/book/

0SI open source definition

Linux provides a platform that lets software developers change the operating system as
they like and get a wide range of help creating the applications they need. One of the
watchdogs of the open source movement is the Open Source Initiative, or 0SI (https://
opensource.org).

Although the primary goal of open source software is to make source code available, other
goals of open source software are also defined by 0SI in its open source definition. Most of
the following rules for acceptable open source licenses serve to protect the freedom and
integrity of the open source code:

Free distribution: An open source license can't require a fee from anyone who resells
the software.

14

http://www.gnu.org/
http://www.linuxfoundation.org/
https://oreilly.com/openbook/opensources/book/
http://www.opensource.org/
http://www.opensource.org/

Chapter 1: Starting with Linux

Source code: The source code must be included with the software, and there can be no
restrictions on redistribution.

Derived works: The license must allow modification and redistribution of the code
under the same terms.

Integrity of the author’s source code: The license may require that those who use
the source code remove the original project’s name or version if they change the
source code.

No discrimination against persons or groups: The license must allow all people to be
equally eligible to use the source code.

No discrimination against fields of endeavor: The license can't restrict a project
from using the source code because it is commercial, or because it is associated with
a field of endeavor that the software provider doesn't like.

Distribution of license: No additional license should be needed to use and redistribute
the software.

License must not be specific to a product: The license can't restrict the source code
to a particular software distribution.

License must not restrict other software: The license can't prevent someone
from including the open source software on the same medium as non-open
source software.

License must be technology neutral: The license can't restrict methods in which the
source code can be redistributed.

Open source licenses used by software development projects must meet these criteria to be
accepted as open source software by OSI. About 70 different licenses are accepted by 0SI to
be used to label software as “0SI Certified Open Source Software.” In addition to the GPL,
other popular 0SI-approved licenses include the following:

LGPL: The GNU Lesser General Public License (LGPL) is often used for distributing
libraries that other application programs depend upon.

BSD: The Berkeley Software Distribution License allows redistribution of source code,
with the requirement that the source code keep the BSD copyright notice and not
use the names of contributors to endorse or promote derived software without writ-
ten permission. A major difference from GPL, however, is that BSD does not require
people modifying the code to pass those changes on to the community. As a result,
proprietary software vendors such as Apple and Microsoft have used BSD code in
their own operating systems.

MIT: The MIT license is like the BSD license, except that it doesn't include the endorse-
ment and promotion requirement.

Mozilla: The Mozilla license covers the use and redistribution of source code associ-
ated with the Firefox web browser and other software related to the Mozilla project

15

Part I: Getting Started

16

(https://www.mozilla.org/en-US/). It is a much longer license than the others
just mentioned because it contains more definitions of how contributors and those
reusing the source code should behave. This includes submitting a file of changes
when submitting modifications and that those making their own additions to the
code for redistribution should be aware of patent issues or other restrictions associ-
ated with their code.

The end result of open source code is software that has more flexibility to grow and fewer
boundaries in how it can be used. Many believe that the fact that numerous people look
over the source code for a project results in higher-quality software for everyone. As open
source advocate Eric S. Raymond says in an often-quoted line, “Given enough eyeballs, all
bugs are shallow.”

Understanding How Linux Distributions Emerged

Having bundles of source code floating around the Internet that could be compiled and
packaged into a Linux system worked well for geeks. More casual Linux users, however,
needed a simpler way to put together a Linux system. To respond to that need, some of the
best geeks began building their own Linux distributions.

A Linux distribution consists of the components needed to create a working Linux system
and the procedures needed to get those components installed and running. Technically,
Linux is really just what is referred to as the kernel. Before the kernel can be useful, you
must have other software, such as basic commands (GNU utilities), services that you
want to offer (such as remote login or web servers), and possibly a desktop interface and
graphical applications. Then you must be able to gather all that together and install it on
your computer’s hard disk.

Slackware (http://www.slackware.com) is one of the oldest Linux distributions still
supported today. It made Linux friendly for less technical users by distributing software
already compiled and grouped into packages. (Those packages of software components were
in a format called tarballs.) Then you would use basic Linux commands to do things like
format your disk, enable swap, and create user accounts.

Before long, many other Linux distributions were created. Some Linux distributions were
created to meet special needs, such as KNOPPIX (a live CD Linux), Gentoo (a cool customiz-
able Linux), and Mandrake (later called Mandriva, which was one of several desktop Linux
distributions). But two major distributions rose to become the foundation for many other
distributions: Red Hat Linux and Debian.

Choosing a Red Hat distribution

When Red Hat Linux appeared in the late 1990s, it quickly became the most popular Linux
distribution for several reasons:

RPM package management: Tarballs are fine for dropping software on your computer,
but they don't work as well when you want to update, remove, or even find out

https://www.mozilla.org/en-US/
http://www.slackware.com/

Chapter 1: Starting with Linux

about that software. Red Hat created the RPM packaging format so that a software
package could contain not only the files to be shared but also information about the
package version, who created it, which files were documentation or configuration
files, and when it was created. By installing software packaged in RPM format, you
could store that information about each software package in a local RPM database.
It became easy to find what was installed, update it, or remove it.

Simple installation: The Anaconda installer made it much simpler to install Linux.
As a user, you could step through some simple questions, in most cases accepting
defaults, to install Red Hat Linux.

Graphical administration: Red Hat added simple graphical tools to configure printers,
add users, set time and date, and do other basic administrative tasks. As a result,
desktop users could use a Linux system without even having to run commands.

For years, Red Hat Linux was the preferred Linux distribution for both Linux professionals
and enthusiasts. Red Hat, Inc., gave away the source code, as well as the compiled, ready-
to-run versions of Red Hat Linux (referred to as the binaries). But as the needs of its Linux
community users and big-ticket customers began to move further apart, Red Hat abandoned
Red Hat Linux and began developing two operating systems instead: Red Hat Enterprise
Linux and Fedora.

Using Red Hat Enterprise Linux

In March 2012, Red Hat, Inc., became the first open source software company to bring in
more than $1 billion in yearly revenue. It achieved that goal by building a set of products
around Red Hat Enterprise Linux (RHEL) that would suit the needs of the most demand-
ing enterprise computing environments. After expanding its product line to include many
components of hybrid cloud computing, Red Hat was purchased by IBM in July 2019 for
$34 billion.

While other Linux distributions focused on desktop systems or small business comput-
ing, RHEL worked on those features needed to handle mission-critical applications for big
business and government. It built systems that could speed transactions for the world’s
largest financial exchanges and be deployed as clusters and virtual hosts.

Instead of just selling RHEL, Red Hat offers an ecosystem of benefits upon which Linux cus-
tomers could draw. To use RHEL, customers buy subscriptions that they can use to deploy
any version of RHEL that they desire. If they decommission a RHEL system, they can use
the subscription to deploy another system.

Different levels of support are available for RHEL, depending on customer needs. Customers
can be assured that, along with support, they can get hardware and third-party software
that is certified to work with RHEL. They can get Red Hat consultants and engineers to help
them put together the computing environments they need. They can also get training and
certification exams for their employees (see the discussion of RHCE certification later in
this chapter).

17

Part I: Getting Started

18

Red Hat has also added other products as natural extensions to Red Hat Enterprise Linux.
JBoss is a middleware product for deploying Java-based applications to the Internet or com-
pany intranets. Red Hat Virtualization comprises the virtualization hosts, managers, and
guest computers that allow you to install, run, manage, migrate, and decommission huge
virtual computing environments.

In recent years, Red Hat has extended its portfolio into cloud computing. Red Hat
OpenStack Platform and Red Hat Virtualization offer complete platforms for running and
managing virtual machines. However, the technology with the biggest impact in recent
years is Red Hat OpenShift, which provides a hybrid cloud suite of software that has Kuber-
netes, the most popular container orchestration platform project, as its foundation. With
the Red Hat acquisition, IBM has set a goal to containerize most of its applications to run
on OpenShift.

There are those who have tried to clone RHEL, using the freely available RHEL source code,
rebuilding and rebranding it. Oracle Linux is built from source code for RHEL but currently
offers an incompatible kernel. Cent0S is a community-sponsored Linux distribution that is
built from RHEL source code. Recently, Red Hat took over support of the CentOS project.

I've chosen to use Red Hat Enterprise Linux for many of the examples in this book because,
if you want a career working on Linux systems, there is a huge demand for those who

can administer RHEL systems. If you are starting out with Linux, however, Fedora can
provide an excellent entry point to the same skills that you need to use and administer
RHEL systems.

Using Fedora

While RHEL is the commercial, stable, supported Linux distribution, Fedora is the free, cut-
ting-edge Linux distribution that is sponsored by Red Hat, Inc. Fedora is the Linux system
that Red Hat uses to engage the Linux development community and encourage those who
want a free Linux for personal use and rapid development.

Fedora includes tens of thousands of software packages, many of which keep up with the
latest available open source technology. As a user, you can try the latest Linux desktop,
server, and administrative interfaces in Fedora for free. As a software developer, you can
create and test your applications using the latest Linux kernel and development tools.

Because the focus of Fedora is on the latest technology, it focuses less on stability. So,
expect that you might need to do some extra work to get everything working and that not
all the software will be fully baked.

I recommend that you use Fedora or RHEL for most of the examples in this book for the fol-
lowing reasons:

B Fedora is used as a proving ground for Red Hat Enterprise Linux. Red Hat tests
many new applications in Fedora before committing them to RHEL. By using
Fedora, you will learn the skills you need to work with features as they are being
developed for Red Hat Enterprise Linux.

Chapter 1: Starting with Linux

m For learning, Fedora is more convenient than RHEL, yet still includes many of the
more advanced, enterprise-ready tools that are in RHEL.

B Fedora is free, not only as in “freedom,” but also as in “you don't have to
pay for it.”

Fedora is extremely popular with those who develop open source software. However, in
the past few years, another Linux distribution has captured the attention of many people
starting out with Linux: Ubuntu.

Choosing Ubuntu or another Debian distribution

Like Red Hat Linux, the Debian GNU/Linux distribution was an early Linux distribution
that excelled at packaging and managing software. Debian uses the deb packaging format
and tools to manage all of the software packages on its systems. Debian also has a reputa-
tion for stability.

Many Linux distributions can trace their roots back to Debian. According to DistroWatch
(https://distrowatch.com), more than 130 active Linux distributions can be traced
back to Debian. Popular Debian-based distributions include Linux Mint, elementary 0S,
Zorin 0S, LXLE, Kali Linux, and many others. However, the Debian derivative that has
achieved the most success is Ubuntu (https://ubuntu.com).

By relying on stable Debian software development and packaging, the Ubuntu Linux dis-
tribution (sponsored by Canonical Ltd.) was able to come along and add those features
that Debian lacked. In pursuit of bringing new users to Linux, the Ubuntu project added a
simple graphical installer and easy-to-use graphical tools. It also focused on full-featured
desktop systems while still offering popular server packages.

Ubuntu was also an innovator in creating new ways to run Linux. Using live CDs or live USB
drives offered by Ubuntu, you could have Ubuntu up and running in just a few minutes.
Often included on live CDs were open source applications, such as web browsers and word
processors, that actually ran in Windows. This made the transition to Linux from Windows
easier for some people.

If you are using Ubuntu, don't fear. Most of subject matter covered in this book will work as
well in Ubuntu as it does in Fedora or RHEL.

Finding Professional Opportunities with Linux Today

If you want to develop an idea for a computer-related research project or technology com-
pany, where do you begin? You begin with an idea. After that, you look for the tools that
you need to explore and eventually create your vision. Then you look for others to help you
during that creation process.

Today, the hard costs of starting a company like Google or Facebook include just a com-
puter, a connection to the Internet, and enough caffeinated beverage of your choice to

19

http://distrowatch.com/
http://www.ubuntu.com/

Part I: Getting Started

20

keep you up all night writing code. If you have your own world-changing idea, Linux and
thousands of software packages are available to help you build your dreams. The open
source world also comes with communities of developers, administrators, and users who are
available to help you.

If you want to get involved with an existing open source project, projects are always
looking for people to write code, test software, or write documentation. In those projects,
you will find people who use the software, work on that software, and are usually willing to
share their expertise to help you as well.

Whether you seek to develop the next great open source software project, or you simply
want to gain the skills needed to compete for the thousands of well-paying Linux admin-
istrator or development jobs, it will help you to know how to install, secure, and maintain
Linux systems.

In March 2020, more than 60,000 jobs requiring Linux skills were listed at Indeed.com.
Nearly half of those offered pay of $100,000 per year or more. Site such as Fossjobs.net pro-
vide a venue for posting and finding jobs associated with Linux and other free and open
source software skills.

The message to take from these job sites is that Linux continues to grow and create
demands for Linux expertise. Companies that have begun using Linux have continued to
move forward with it. Those using Linux continue to expand its use and find that cost
savings, security, and the flexibility it offers continue to make Linux a good investment.

Understanding how companies make money with Linux

Open source enthusiasts believe that better software can result from an open source soft-
ware development model than from proprietary development models. So, in theory, any
company creating software for its own use can save money by adding its software contribu-
tions to those of others to gain a much better end product for themselves.

Companies that want to make money by selling software need to be more creative than
they were in the old days. Although you can sell the software you create, which includes
GPL software, you must pass the source code of that software forward. Of course, others
can then recompile that product, basically using and even reselling your product without
charge. Here are a few ways that companies are dealing with that issue:

Software subscriptions: Red Hat, Inc., sells its Red Hat Enterprise Linux products on
a subscription basis. For a certain amount of money per year, you get binary code
to run Linux (so you don't have to compile it yourself), guaranteed support, tools
for tracking the hardware and software on your computer, access to the company’s
knowledge base, and other assets.

Although Red Hat's Fedora project includes much of the same software and is also
available in binary form, there are no guarantees associated with the software or

Chapter 1: Starting with Linux

future updates of that software. A small office or personal user might take a risk
on using Fedora (which is itself an excellent operating system), but a big company
that’s running mission-critical applications will probably put down a few dollars for
RHEL.

Training and certification: With Linux system use growing in government and big
business, professionals are needed to support those systems. Red Hat offers training
courses and certification exams to help system administrators become proficient
using Red Hat Enterprise Linux systems. In particular, the Red Hat Certified Engi-
neer (RHCE) and Red Hat Certified System Administrator (RHCSA) certifications
have become popular (https://www.redhat.com/en/services/training-
and-certification/why-get-certified). More on RHCE/RHCSA certifications
later in this chapter.

Other certification programs are offered by Linux Professional Institute (https://www
.1pi.org) and CompTIA (wwww..comptia.org/). LPI and CompTIA are profes-
sional computer industry associations.

Bounties: Software bounties are a fascinating way for open source software companies
to make money. Suppose that you are using XYZ software package and you need
a new feature right away. By paying a software bounty to the project itself, or to
other software developers, you can have your required improvements moved to the
head of the queue. The software you pay for will remain covered by its open source
license, but you will have the features you need—probably at a fraction of the cost
of building the project from scratch.

Donations: Many open source projects accept donations from individuals or open
source companies that use code from their projects. Amazingly, many open source
projects support one or two developers and run exclusively on donations.

Boxed sets, mugs, and T-shirts: Some open source projects have online stores where
you can buy boxed sets (some people still like physical DVDs and hard copies of doc-
umentation) and a variety of mugs, T-shirts, mouse pads, and other items. If you
really love a project, for goodness sake, buy a T-shirt!

This is in no way an exhaustive list, because more creative ways are being invented every
day to support those who create open source software. Remember that many people have
become contributors to and maintainers of open source software because they needed or
wanted the software themselves. The contributions they make for free are worth the return
they get from others who do the same.

Becoming Red Hat certified

Although this book is not focused on becoming certified in Linux, it touches on the activ-
ities that you need to be able to master to pass popular Linux certification exams. In

21

https://www.redhat.com/en/services/training-and-certification/why-get-certified
https://www.redhat.com/en/services/training-and-certification/why-get-certified
https://www.lpi.org
https://www.lpi.org
https://wwww..comptia.org

Part I: Getting Started

22

particular, most of what is covered in the Red Hat Certified Engineer (RHCE) and Red Hat
Certified System Administrator (RHCSA) exams for Red Hat Enterprise Linux 8 is described
in this book.

If you are looking for a job as a Linux IT professional, RHCSA or RHCE certification is often
listed as a requirement, or at least a preference, for employment. The RHCSA exam (EX200)
provides basic certification, covering such topics as configuring disks and filesystems, add-
ing users, setting up a simple web and FTP server, and adding swap space. The RHCE exam
(EX300) tests for more advanced server configuration as well an advanced knowledge of
security features, such as SELinux and firewalls.

Those of us who have taught RHCE/RHCSA courses and given exams (as I did for three
years) are not allowed to tell you exactly what is on the exam. However, Red Hat gives
an overview of how the exams work as well as a list of topics that you can expect to see
covered in the exam. You can find those exam objectives on the following sites:

RHCSA

https://redhat.com/en/services/training/ex200-red-hat-certified-
system-administrator-rhcsa-exam

RHCE

https://redhat.com/en/services/training/ex294-red-hat-certified-
engineer-rhce-exam-red-hat-enterprise-linux-8

As the exam objectives state, the RHCSA and RHCE exams are performance based, which
means that you are given tasks to do and you must perform those tasks on an actual Red
Hat Enterprise Linux system, as you would on the job. You are graded on how well you
obtained the results of those tasks.

If you plan to take the exams, check back to the exam objectives pages often because they
change from time to time. Also keep in mind that the RHCSA is a standalone certification;
however, you must pass the RHCSA and the RHCE exams to get an RHCE certification. Often,
the two exams are given on the same day.

You can sign up for RHCSA and RHCE training and exams at https://redhat.com/en/
services/training-and-certification. Training and exams are given at major cit-
ies all over the United States and around the world. The skills that you need to complete
these exams are described in the following sections.

RHCSA topics

As noted earlier, RHCSA exam topics cover basic system administration skills. These are
the current topics listed for Red Hat Enterprise Linux 8 at the RHCSA exam objectives site
(again, check the exam objectives site in case they change) and where in this book you can
learn about them:

Understand essential tools: You are expected to have a working knowledge of the
command shell (bash), including how to use proper command syntax and do input/

https://redhat.com/en/services/training/ex200-red-hat-certified-system-administrator-rhcsa-exam
https://redhat.com/en/services/training/ex200-red-hat-certified-system-administrator-rhcsa-exam
https://redhat.com/en/services/training/ex294-red-hat-certified-engineer-rhce-exam-red-hat-enterprise-linux-8
https://redhat.com/en/services/training/ex294-red-hat-certified-engineer-rhce-exam-red-hat-enterprise-linux-8
https://redhat.com/en/services/training-and-certification
https://redhat.com/en/services/training-and-certification

Chapter 1: Starting with Linux

output redirection (< > >>). You need to know how to log in to remote and local
systems. Expect to have to create, edit, move, copy, link, delete, and change permis-
sion and ownership on files. Likewise, you should know how to look up information
on man pages and /usr/share/doc. Most of these topics are covered in Chapter 3
and Chapter 4 in this book. Chapter 5 describes how to edit and find files.

Operate running systems: In this category, you must understand the Linux boot pro-
cess, and how to shut down, reboot, and change to different targets (previously
called runlevels). You need to identify processes and kill processes as requested. You
must be able to find and interpret log files. Chapter 15 describes how to change tar-
gets and manage system services. See Chapter 6 for information on managing and
changing processes. Logging is described in Chapter 13.

Configure local storage: Setting up disk partitions includes creating physical volumes
and configuring them to be used for Logical Volume Management (LVM) or encryp-
tion (LUKS). You should also be able to set up those partitions as filesystems or
swap space that can be mounted or enabled at boot time. Disk partitioning and LVM
are covered in Chapter 12. LUKS and other encryption topics are described in Chap-
ter 23, “Understanding Advanced Linux Security.”

Create and configure filesystems: Create and automatically mount different kinds of
filesystems, including reqgular Linux filesystems (ext2, ext3, or ext4) and network
filesystems (NFES). Create collaborative directories using the set group ID bit feature.
You must also be able to use LVM to extend the size of a logical volume. Filesystem
topics are covered in Chapter 12. See Chapter 20 for NFS coverage.

Deploy, configure, and maintain systems: This covers a range of topics, including
configuring networking and creating cron tasks. For software packages, you must
be able to install packages from Red Hat Content Delivery Network (CDN), a remote
repository, or the local filesystem. The cron facility is described in Chapter 13.

Manage users and groups: You must know how to add, delete, and change user and
group accounts. Another topic that you should know is password aging, using the
chage command. See Chapter 11 for information on configuring users and groups.

Manage security: You must have a basic understanding of how to set up a firewall
(firewalld, system-config-firewall, or iptables) and how to use SELinux.
You must be able to set up SSH to do key-based authentication. Learn about SELinux
in Chapter 24. Firewalls are covered in Chapter 25. Chapter 13 includes a description
of key-based authentication.

Most of these topics are covered in this book. Refer to Red Hat documentation (https://
access.redhat.com/documentation) under the Red Hat Enterprise Linux heading for
descriptions of features not found in this book. In particular, the system administration
guides contain descriptions of many of the RHCSA-related topics.

RHCE topics

RHCE exam topics cover more advanced server configuration, along with a variety of secu-
rity features for securing those servers in Red Hat Enterprise Linux 8. Again, check the

23

https://access.redhat.com/documentation
https://access.redhat.com/documentation

Part I: Getting Started

24

RHCE exam objectives site for the most up-to-date information on topics that you should
study for the exam.

System configuration and management

The system configuration and management requirement for the RHCE exam covers a range
of topics, including the following:

Firewalls: Block or allow traffic to selected ports on your system that offer services
such as web, FTP, and NFS, as well as block or allow access to services based on the
originator’s IP address. Firewalls are covered in Chapter 25, “Securing Linux on
a Network.”

Kerberos authentication: Use Kerberos to authenticate users on a RHEL system.

System reports: Use features such as sar to report on system use of memory, disk
access, network traffic, and processor utilization. Chapter 13 describes how to use
the sar command.

Shell scripting: Create a simple shell script to take input and produce output in var-
ious ways. Shell scripting is described in Chapter 7.

SELinux: With Security Enhanced Linux in Enforcing mode, make sure that all server
configurations described in the next section are properly secured with SELinux.
SELinux is described in Chapter 24.

Ansible: Understand core Ansible components (inventories, modules, playbooks, and
so on). Be able to install and configure an Ansible control node. Work with Ansible
roles and use advanced Ansible features. See Chapter 29 for information on using
Ansible playbooks to install and manage Linux systems.

Installing and configuring network services

For each of the network services in the list that follows, make sure you can go through
the steps to install packages required by the service, set up SELinux to allow access to the
service, set the service to start at boot time, secure the service by host or by user (using
iptables or features provided by the service itself), and configure it for basic operation.
These are the services:

Web server: Configure an Apache (HTTP/HTTPS) server. You must be able to set up
a virtual host, deploy a CGI script, use private directories, and allow a particu-
lar Linux group to manage the content. Chapter 17 describes how to configure a
web server.

DNS server: Set up a DNS server (bind package) to act as a caching-only name server
that can forward DNS queries to another DNS server. No need to configure master or
slave zones. DNS is described from the client side in Chapter 14. For information on
configuring a DNS server with Bind, see the RHEL Networking Guide at

https://access.redhat.com/documentation/en-us/red_hat_enter-
prise_linux/7/html-single/networking_guide/index

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/networking_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/networking_guide/index

Chapter 1: Starting with Linux

NFS server: Configure an NFS server to share specific directories to specific client sys-
tems so they can be used for group collaboration. Chapter 20 covers NFS.

Windows file sharing server: Set up Linux (Samba) to provide SMB shares to specific
hosts and users. Configure the shares for group collaboration. See Chapter 19 to
learn about configuring Samba.

Mail server: Configure postfix or sendmail to accept incoming mail from outside of
the local host. Relay mail to a smart host. Mail server configuration is not covered
in this book (and should not be done lightly). See the RHEL System Administrator’s
Guide for information on configuring mail servers at:

https://access.redhat.com/documentation/en-us/red_hat_enter-
prise_linux/7/html-single/system_administrators_guide/index#ch-
Mail_Servers

Secure Shell server: Set up the SSH service (sshd) to allow remote login to your local
system as well as key-based authentication. Otherwise, configure the sshd.conf
file as needed. Chapter 13 describes how to configure the sshd service.

Network Time server: Configure a Network Time Protocol server (ntpd) to synchronize
time with other NTP peers.

Database server: Configure the MariaDB database and manage it in various ways. Learn
how to configure the MariaDB from the MariaDB.org site (https://mariadb
.com/kb/en/library/documentation/).

Although there are other tasks in the RHCE exam, as just noted, keep in mind that most
of the tasks have you configure servers and then secure those servers using any technique
that you need. Those can include firewall rules (iptables), SELinux, or any features built
into configuration files for the particular service.

Summary

Linux is an operating system that is built by a community of software developers around
the world, which is led by its creator, Linus Torvalds. It is derived originally from the UNIX
operating system but has grown beyond UNIX in popularity and power over the years.

The history of the Linux operating system can be tracked from early UNIX systems that
were distributed free to colleges and improved upon by initiatives such as the Berkeley
Software Distribution (BSD). The Free Software Foundation helped make many of the com-
ponents needed to create a fully free UNIX-like operating system. The Linux kernel itself
was the last major component needed to complete the job.

Most Linux software projects are protected by one of a set of licenses that fall under the
Open Source Initiative umbrella. The most prominent of these is the GNU Public License
(GPL). Standards such as the Linux Standard Base and world-class Linux organizations and

25

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#ch-Mail_Servers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#ch-Mail_Servers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#ch-Mail_Servers
http://mariadb.org
https://mariadb.com/kb/en/library/documentation/
https://mariadb.com/kb/en/library/documentation/

Part I: Getting Started

26

companies (such as Canonical Ltd. and Red Hat, Inc.) make it possible for Linux to con-
tinue to be a stable, productive operating system into the future.

Learning the basics of how to use and administer a Linux system will serve you well in any
aspect of working with Linux. The remaining chapters provide a series of exercises with
which you can test your understanding. That’s why, for the rest of the book, you will learn
best with a Linux system in front of you so that you can work through the examples in
each chapter and complete the exercises successfully.

The next chapter explains how to get started with Linux by describing how to get and use
a Linux desktop system.

CHAPTER

Creating the Perfect
Linux Desktop

IN THIS CHAPTER

Understanding the X Window System and desktop environments
Running Linux from a Live DVD image

Navigating the GNOME 3 desktop

Adding extensions to GNOME 3

Using Nautilus to manage files in GNOME 3

Working with the GNOME 2 desktop

Enabling 3D effects in GNOME 2

everything in Linux, you have choices. There are fully featured GNOME or KDE desktop envi-
ronments or lightweight desktops such as LXDE or Xfce. There are even simpler standalone
window managers.

U sing Linux as your everyday desktop system is becoming easier to do all the time. As with

After you have chosen a desktop, you will find that almost every major type of desktop application you
have on a Windows or Mac system has equivalent applications in Linux. For applications that are not avail-
able in Linux, you can often run a Windows application in Linux using Windows compatibility software.

The goal of this chapter is to familiarize you with the concepts related to Linux desktop systems and
to give you tips for working with a Linux desktop. In this chapter you do the following:

m Step through the desktop features and technologies that are available in Linux

m Tour the major features of the GNOME desktop environment

B Learn tips and tricks for getting the most out of your GNOME desktop experience

To use the descriptions in this chapter, I recommend that you have a Fedora system running in front
of you. You can get Fedora in lots of ways, including the following:

Running Fedora from a live medium Refer to Appendix A for information on downloading
and burning Fedora Live image to a DVD or USB drive so that you can boot it live to use with
this chapter.

Installing Fedora permanently Install Fedora to your hard disk and boot it from there (as
described in Chapter 9, “Installing Linux”).

27

Part I: Getting Started

Norte

Because the current release of Fedora uses the GNOME 3 interface, most of the procedures
described in this chapter work with other Linux distributions that have GNOME 3 available.
If you are using an older Red Hat Enterprise Linux system (RHEL 6 uses GNOME 2, but RHEL 7
and RHEL 8 use GNOME 3), I added descriptions of GNOME 2 that you can try as well.

Ubuntu switched from its own Unity desktop as its default to GNOME 3 with release 17.10. Unity is still available for
newer releases, but only from the unsupported, community-maintained Universe repository.

28

Understanding Linux Desktop Technology

Modern computer desktop systems offer graphical windows, icons, and menus that are
operated from a mouse and keyboard. If you are under 40 years old, you might think that
there’s nothing special about that. However, the first Linux systems did not have graphical
interfaces available. Also, many Linux servers today that are tuned for special tasks (for
example, functioning as a web server or file server) don’t have desktop software installed.

Nearly every major Linux distribution that offers desktop interfaces is based on the X
Window System originally from the X.0rg Foundation (http://www.x.org). The X Window
System provides a framework on which different types of desktop environments or simple
window managers can be built. A replacement for X.0rg called Wayland (http://wayland
.freedesktop.org) is being developed. Although Wayland is the default X server for
Fedora now, you can still choose X.0rg instead.

The X Window System (sometimes simply called X) was created before Linux existed, and
it even predates Microsoft Windows. It was built to be a lightweight, networked desktop
framework.

X works in sort of a backward client/server model. The X server runs on the local system,
providing an interface to your screen, mouse, and keyboard. X clients (such as word proces-
sors, music players, and image viewers) can be launched from the local system or from any
system on your network to which the X server gives permission to do so.

X was created in a time when graphical terminals (thin clients) simply managed the key-
board, mouse, and display. Applications, disk storage, and processing power were all on
larger centralized computers. So, applications ran on larger machines but were displayed
and managed over the network on the thin client. Later, thin clients were replaced

by desktop personal computers. Most client applications on PCs ran locally using local
processing power, disk space, memory, and other hardware features, while applications that
did not start from the local system were not allowed.

X itself provides a plain gray background and a simple “X” mouse cursor. There are no
menus, panels, or icons on a plain X screen. If you were to launch an X client (such as a ter-
minal window or word processor), it would appear on the X display with no border around it
to move, minimize, or close the window. Those features are added by a window manager.

http://www.x.org
http://wayland.freedesktop.org
http://wayland.freedesktop.org

Chapter 2: Creating the Perfect Linux Desktop

A window manager adds the capability to manage the windows on your desktop and often
provides menus for launching applications and otherwise working with the desktop. A
full-blown desktop environment includes a window manager, but it also adds menus,
panels, and usually an application programming interface that is used to create applica-
tions that play well together.

So how does an understanding of how desktop interfaces work in Linux help you when it
comes to using Linux? Here are some of the ways:

B Because Linux desktop environments are not required to run a Linux system, a
Linux system may have been installed without a desktop. It might offer only a
plain-text, command-line interface. You can choose to add a desktop later. After it
is installed, you can choose whether to start up the desktop when your computer
boots or start it as needed.

m For a very lightweight Linux system, such as one meant to run on less powerful
computers, you can choose an efficient, though less feature-rich, window man-

ager (such as twm or fluxbox) or a lightweight desktop environment (such as
LXDE or Xfce).

® For more robust computers, you can choose more powerful desktop environments
(such as GNOME and KDE) that can do things such as watch for events to happen
(such as inserting a USB flash drive) and respond to those events (such as opening
a window to view the contents of the drive).

B You can have multiple desktop environments installed and you can choose which
one to launch when you log in. In this way, different users on the same computer
can use different desktop environments.

Many different desktop environments are available to choose from in Linux. Here are
some examples:

GNOME GNOME is the default desktop environment for Fedora, Red Hat Enterprise
Linux, and many others. Think of it as a professional desktop environment focusing
on stability more than fancy effects.

K Desktop Environment KDE is probably the second most popular desktop envi-
ronment for Linux. It has more bells and whistles than GNOME and offers more
integrated applications. KDE is also available with Fedora, Ubuntu, and many other
Linux systems. For RHEL 8, KDE was dropped from the distribution.

Xfce The Xfce desktop was one of the first lightweight desktop environments. It is
good to use on older or less powerful computers. It is available with Fedora, Ubuntu,
and other Linux distributions.

LXDE The Lightweight X11 Desktop Environment (LXDE) was designed to be a fast-
performing, energy-saving desktop environment. Often, LXDE is used on less-expen-
sive devices (such as nethook computers) and on live media (such as a live CD or live
USB stick). It is the default desktop for the KNOPPIX live CD distribution. Although
LXDE is not included with RHEL, you can try it with Fedora or Ubuntu.

29

Part I: Getting Started

30

GNOME was originally designed to resemble the MacOS desktop, while KDE was meant to
emulate the Windows desktop environment. Because it is the most popular desktop envi-
ronment, and the one most often used in business Linux systems, most desktop procedures
and exercises in this book use the GNOME desktop. Using GNOME, however, still gives you
the choice of several different Linux distributions.

Starting with the Fedora GNOME Desktop Live image

A live Linux ISO image is the quickest way to get a Linux system up and running so that
you can begin trying it out. Depending on its size, the image can be burned to a CD, DVD,
or USB drive and booted on your computer. With a Linux live image, you can have Linux
take over the operation of your computer temporarily without harming the contents of your
hard drive.

If you have Windows installed, Linux just ignores it and takes control of your computer
itself. When you are finished with the Linux live image, you can reboot the computer, pop
out the CD or DVD, and go back to running whatever operating system was installed on the
hard disk.

To try out a GNOME desktop along with the descriptions in this section, I suggest that you
get a Fedora Live DVD (as described in Appendix A). Because a live DVD does all its work
from the DVD and in memory, it runs slower than an installed Linux system. Also, although
you can change files, add software, and otherwise configure your system, by default, the
work you do disappears when you reboot unless you explicitly save that data to your hard
drive or external storage.

The fact that changes you make to the live environment go away on reboot is very good for
trying out Linux but not that great if you want an ongoing desktop or server system. For
that reason, I recommend that if you have a spare computer, you install Linux permanently
on that computer’s hard disk to use with the rest of this book (as described in Chapter 9).

After you have a live CD or DVD in hand, do the following to get started:

1. Get a computer. If you have a standard PC (32-bit or 64-bit) with a CD/DVD drive,
at least 1GB of memory (RAM), and at least a 1GHz processor, you are ready to start.
(Just make sure that the image you download matches your computer’s architec-
ture—a 64-bit medium does not run on a 32-bit computer. Fedora 31 and RHEL 7
dropped 32-bit support, so you would need older versions of those distributions to
run on those older machines.)

2. Start the live CD/DVD. Insert the live CD/DVD or USB drive into your computer and
reboot your computer. Depending on the boot order set on your computer, the live
image might start up directly from the BIOS (the code that controls the computer
before the operating system starts).

Chapter 2: Creating the Perfect Linux Desktop

Note
If, instead of the live medium booting, your installed operating system starts up instead, you need to perform an
additional step to start the live CD/DVD. Reboot again, and when you see the BIOS screen, look for some words that

say something like “Boot Order.” The onscreen instructions may say to press the F12 or F1 key. Press that key imme-
diately from the BIOS screen. Next, you should see a screen that shows available selections. Highlight an entry for
CD/DVD or USB drive, and press Enter to boot the live image. If you don’t see the drive there, you may need to go into
BIOS setup and enable the CD/DVD or USB drive there.

3. Start Fedora. If the selected drive is able to boot, you see a boot screen. For
Fedora, with Start Fedora highlighted, press Enter to start the live medium.

4. Begin using the desktop. For Fedora, the live medium lets you choose between
installing Fedora or booting it directly from the medium to a GNOME 3 desktop.

You can now proceed to the next section, “Using the GNOME 3 Desktop” (which includes
information on using GNOME 3 in Fedora, Red Hat Enterprise Linux, and other operating
systems). Following that, I'll cover the GNOME 2 desktop.

Using the GNOME 3 Desktop

The GNOME 3 desktop offers a radical departure from its GNOME 2.x counterparts. GNOME 2.x
is serviceable, but GNOME 3 is elegant. With GNOME 3, a Linux desktop now appears more
like the graphical interfaces on mobile devices, with less focus on multiple mouse buttons
and key combinations and more focus on mouse movement and one-click operations.

Instead of feeling structured and rigid, the GNOME 3 desktop seems to expand as you need
it to. As a new application is run, its icon is added to the Dash. As you use the next work-
space, a new one opens, ready for you to place more applications.

After the computer boots up

If you booted up a live image, when you reach the desktop, you are assigned as the Live
System User for your username. For an installed system, you see the login screen, with user
accounts on the system ready for you to select and enter a password. Log in with the user-
name and password that you have defined for your system.

Figure 2.1 is an example of the GNOME 3 desktop screen that appears in Fedora. Press the
Windows key (or move the mouse cursor to the upper-left corner of the desktop) to toggle
between a blank desktop and the Overview screen.

31

Part I: Getting Started

32

FIGURE 2.1

Starting with the GNOME 3 desktop in Fedora.

(©

There is very little on the GNOME 3 desktop when you start out. The top bar has the word
“Activities” on the left, a clock in the middle, and some icons on the right for such things
as adjusting audio volume, checking your network connection, and viewing the name of
the current user. The Overview screen is where you can select to open applications, active
windows, or different workspaces.

Navigating with the mouse
To get started, try navigating the GNOME 3 desktop with your mouse:

1. Toggle activities and windows. Move your mouse cursor to the upper-left corner
of the screen near the Activities button. Each time you move there, your screen
changes between showing you the windows that you are actively using and a set of
available Activities. (This has the same effect as pressing the Windows key.)

2. Open windows from applications bar. Click to open some applications from the
Dash on the left (Firefox, File Manager, Rhythmbox, or others). Move the mouse to
the upper-left corner again, and toggle between showing all active windows min-
imized (Overview screen) and showing them overlapping (full-sized). Figure 2.2
shows an example of the miniature windows view.

3. Open applications from Applications list. From the Overview screen, select the
Application button from the bottom of the left column (the button has nine dots in
a box). The view changes to a set of icons representing the applications installed on
your system, as shown in Figure 2.3.

Chapter 2: Creating the Perfect Linux Desktop

FIGURE 2.2

Show all windows on the desktop minimized.

o B

B _m ("

FIGURE 2.3

Show the list of available applications.

33

Part I: Getting Started

4. View additional applications. From the Applications screen, you can change the
view of your applications in several ways, as well as launch them in different ways:

a. Page through. To see icons representing applications that are not onscreen, use
the mouse to click dots on the right to page through applications. If you have a
wheel mouse, you can use that instead to scroll the icons.

b. Frequent. Select the Frequent button on the bottom of the screen to see often-
run applications or the All button to see all applications again.

c¢. Launching an application. To start the application you want, left-click its icon
to open the application in the current workspace. Right-click to open a menu
that lets you choose to open a New Window, add or remove the application from
Favorites (so the application’s icon appears on the Dash), or Show Details about
the application. Figure 2.4 shows an example of the menu.

FIGURE 2.4

Click the middle mouse button to display an application’s selection menu.

New Window

m 9 Add to Favorites

Calendar Cheese
Show Details

N B

Dictionary ExFalso Fedora Releas...

5. Open additional applications. Start up additional applications. Notice that as you
open a new application, an icon representing that application appears in the Dash
bar on the left. Here are other ways to start applications:

a. Application icon. Click any application icon to open that application.

b. Drop Dash icons on workspace. From the Windows view, you can drag any
application icon from the Dash by pressing and holding the left mouse button
on it and dragging that icon to any of the miniature workspaces on the right.

6. Use multiple workspaces. Move the mouse to the upper-left corner again to show a
minimized view of all windows. Notice all of the applications on the right jammed
into a small representation of one workspace while an additional workspace is
empty. Drag and drop a few of the windows to an empty desktop space. Figure 2.5
shows what the small workspaces look like. Notice that an additional empty

34

Chapter 2: Creating the Perfect Linux Desktop

workspace is created each time the last empty one is used. You can drag and drop
the miniature windows to any workspace and then select the workspace to view it.

FIGURE 2.5

As new desktops are used, additional ones appear on the right.

DFwy
b
L
a
Qras

Puaytivts
QT
e
ke

7. Use the window menu. Move the mouse to the upper-left corner of the screen to
return to the active workspace (large window view). Right-click the title bar on a
window to view the window menu. Try these actions from that menu:

a. Minimize. Remove window temporarily from view.
b. Maximize. Expand window to maximum size.

c. Move. Change window to moving mode. Moving your mouse moves the window.
Click to fix the window to a spot.

d. Resize. Change the window to resize mode. Moving your mouse resizes the
window. Click to keep the size.

e. Workspace selections. Several selections let you use workspaces in different
ways. Select Always on Top to make the current window always on top of other
windows in the workspace. Select Always on Visible Workspace to always show
the window on the workspace that is visible, or select Move to Workspace Up or
Move to Workspace Down to move the window to the workspace above or below,
respectively.

If you don't feel comfortable navigating GNOME 3 with your mouse, or if you don't have a
mouse, the next section helps you navigate the desktop from the keyboard.

35

Part I: Getting Started

Navigating with the keyboard

If you prefer to keep your hands on the keyboard, you can work with the GNOME 3 desktop
directly from the keyboard in a number of ways, including the following:

Windows key. Press the Windows key on the keyboard. On most PC keyboards, this is
the key with the Microsoft Windows logo on it next to the Alt key. This toggles the
mini-window (Overview) and active-window (current workspace) views. Many people
use this key often.

Select different views. From the Windows or Applications view, hold Ctrl+Alt+Tab to
see a menu of the different views (see Figure 2.6). Still holding the Ctrl+Alt keys,
press Tab again to highlight one of the following icons from the menu and release to
select it:

FIGURE 2.6

Press Ctrl+Alt+Tab to display additional desktop areas to select.

@t Home ~
© Recent
* Starred
1@ Home

O Documents

{4 Downloads as| Windows Applications

dd Music

[Pictures
Documents Downloads password.file
Hll Videos

Top Bar. Highlights the top bar. After it is selected, you can tab between items on
that bar (Activities, Calendar, and the Top Bar menu).

Dash. Highlights the first application in the application bar on the left. Use arrow
keys to move up and down that menu, and press Enter to open the highlighted
application.

Windows. Selects the Windows view.

36

Chapter 2: Creating the Perfect Linux Desktop

Applications. Selects the Applications view.

Search. Highlights the search box. Type a few letters to show only icons for appli-
cations that contain the letters you type. When you have typed enough letters
to uniquely identify the application you want, press Enter to launch the
application.

Select an active window. Return to any of your workspaces (press the Windows key if
you are not already on an active workspace). Press Alt+Tab to see a list of all active
windows (see Figure 2.7). Continue to hold the Alt key as you press the Tab key (or
right or left arrow keys) to highlight the application that you want from the list of
active desktop application windows. If an application has multiple windows open,
press Alt+ (back-tick, located above the Tab key) to choose among those sub-win-
dows. Release the Alt key to select it.

FIGURE 2.7

Press Alt+Tab to select which running application to go to.

SE® R K

Cheese Files Xfce Terminal Firefox LibreOffice Maps

b

Launch a command or application. From any active workspace, you can launch a
Linux command or a graphical application. Here are some examples:

Applications. From the Overview screen, press Ctrl+Alt+Tab and continue to press
Tab until the Applications icon is highlighted; then release Ctrl+Alt. The Appli-
cations view appears, with the first icon highlighted. Use the Tab key or arrow
keys (up, down, right, and left) to highlight the application icon you want, and
press Enter.

Command box. If you know the name (or part of a name) of a command that you
want to run, press Alt+F2 to display a command box. Type the name of the
command that you want to run into the box (try gnome-calculator to open a cal-
culator application, for example).

37

Part I: Getting Started

Search box. From the Overview screen, press Ctrl+Alt+Tab and continue to press Tab
until the magnifying glass (Search) icon is highlighted; then release Ctrl+Alt. In
the search box now highlighted, type a few letters in an application’s name or
description (type scr to see what you get). Keep typing until the application you
want is highlighted (in this case, Screenshot), and press Enter to launch it.

Dash. From the Overview screen, press Ctrl+Alt+Tab and continue to press Tab until
the star (Dash) icon is highlighted; then release Ctrl+Alt. From the Dash, move
the up and down arrows to highlight an application that you want to launch and
press Enter.

Escape. When you are stuck in an action that you don't want to complete, try pressing
the Esc key. For example, after pressing Alt+F2 (to enter a command), opening an
icon from the top bar, or going to an overview page, pressing Esc returns you to the
active window on the active desktop.

I hope you now feel comfortable navigating the GNOME 3 desktop. Next, you can try
running some useful and fun desktop applications from GNOME 3.

Setting up the GNOME 3 desktop

Much of what you need GNOME 3 to do for you is set up automatically. However, you need to
make a few tweaks to get the desktop the way you want. Most of these setup activities are
available from the System Settings window (see Figure 2.8). Open the Settings icon from
the Applications list.

FIGURE 2.8
Change desktop settings from the System Settings window.

Q Settings = Notifications
3} Bluetooth

Notification Popups
@ Background pup (>

R (>
Q. Search
Applications

M Region & Language .

- Archive Manager On
€ Universal Access

° Clocks On
4 Online Accounts
W Privacy a Color on
€ Applications G Date &Time On
<< Sharing Desktop Sharing On
) Seund

(= DiskUsage Analyzer On
Ce Power

H Fies on
& Network
%o Devices > ["I‘ Power On

38

Chapter 2: Creating the Perfect Linux Desktop

Here are some suggestions for configuring a GNOME 3 desktop:

Configure networking. A wired network connection is often configured automatically
when you boot up your Fedora system. For wireless, you probably have to select
your wireless network and add a password when prompted. An icon in the top bar
lets you do any wired or wireless network configuration that you need to do. Refer
to Chapter 14, “Administering Networking,” for further information on configuring
networking.

Bluetooth. If your computer has Bluetooth hardware, you can enable that device to
communicate with other Bluetooth devices (such as a Bluetooth headset or printer).

Devices. From the Devices screen, you can configure your keyboard, mouse and touch-
pad, printers, removable media, and other settings.

Sound. Click the Sound settings button to adjust sound input and output devices on
your system.

Extending the GNOME 3 desktop

If the GNOME 3 shell doesn't do everything you'd like, don't despair. You can add extensions
to provide additional functionality to GNOME 3. Also, a tool called GNOME Tweaks lets you
change advanced settings in GNOME 3.

Using GNOME shell extensions

GNOME shell extensions are available to change the way your GNOME desktop looks and
behaves. Visit the GNOME Shell Extensions site (http://extensions.gnome.org) from
your Firefox browser on your GNOME 3 desktop. That site tells you what extensions you
have installed and which ones are available for you to install. (You must select to allow the
site to see those extensions.)

Because the extensions page knows what extensions you have and the version of GNOME 3
that you are running, it can present only those extensions that are compatible with your
system. Many of the extensions help you add back in features from GNOME 2, including the
following:

Applications Menu. Adds an Applications menu to the top panel, just as it was
in GNOME 2.

Places Status Indicator. Adds a systems status menu, similar to the Places menu in
GNOME 2, to let you navigate quickly to useful folders on your system.

Window list. Adds a list of active windows to the top panel, similar to the Window list
that appeared on the bottom panel in GNOME 2.

To install an extension, simply select the ON button next to the name. Or, you can click the
extension name from the list to see the extension’s page and click the button on that page
from OFF to ON. Click Install when you are asked if you want to download and install the
extension. The extension is then added to your desktop.

39

http://extensions.gnome.org

Part I: Getting Started

40

Figure 2.9 shows an example of the Applications menu Window List (showing several active
applications icons), and Places Status Indicator (with folders displayed from a drop-down
menu) extensions installed.

FIGURE 2.9

Extensions add features to the GNOME 3 desktop.

Applications ~ Places ¥ ® Firefox = Dec15 15:29

€ GNOME Shell Extq

<« ¢ o Hlome tensions.gnome.org
Documents

o ttensions Add yours Installed extensions.
whnloads

Pictures

Videos
Computer
Browse Network

Load shell themes from user directory.

@ Extensions by patres

Enable/disable easily gnome shell extensions from a menu in the top panel. Also allows to
welcome!

More than 100 GNOME shell extensions are available now, and more are being added all the
time. Other popular extensions include Notifications Alert (which alerts you of unread mes-
sages), Presentation Mode (which prevents the screensaver from coming on when you are
giving a presentation), and Music Integration (which integrates popular music players into
GNOME 3, so that you are alerted about songs being played).

Because the Extensions site can keep track of your extensions, you can click the Installed
extensions button at the top of the page and see every extension that is installed. You can
turn the extensions off and on from there and even delete them permanently.

Using the GNOME Tweak Tool

If you don't like the way some of the built-in features of GNOME 3 behave, you can change
many of them with the GNOME Tweak Tool. This tool is not installed by default with the
Fedora GNOME Live CD, but you can add it by installing the gnome-tweaks package. (See
Chapter 10, “Getting and Managing Software,” for information on how to install software
packages in Fedora.) After installation, the GNOME Tweak Tool is available by launching the
Advanced Settings icon from your Applications screen. Start with the Desktop category to
consider what you might want to change in GNOME 3. Figure 2.10 shows the Tweak Tool dis-
playing Appearance settings.

Chapter 2: Creating the Perfect Linux Desktop

FIGURE 2.10

Change desktop settings using the GNOME Tweak Tool (Appearance settings).

Q Tweaks Appearance x

Appearance

Global Dark Theme OFF

DESktOp Applications need to be restarted for change to take effect

Theme
E Window Adwaita (default) =
Fonts GTK+ Adwaita (default) ¥
Keyboard and Mouse Icons Adwaita A
Power Cursor Adwaita (default) ¥
Shell theme 'Y v

Startup Applications

Top Bar

Typing
Windows

Workspaces

If fonts are too small for you, select the Fonts category and click the plus sign next to the
Scaling Factor box to increase the font size, or change fonts individually for documents,
window titles, or monospace fonts.

Under Top Bar settings, you can change how clock information is displayed in the top bar
or set whether to show the week number in the calendar. To change the look of the desk-
top, select the Appearance category and change the Icons theme and GTK+ theme as you
like from drop-down boxes.

Starting with desktop applications

The Fedora GNOME 3 desktop live DVD comes with some cool applications that you can start
using immediately. To use GNOME 3 as your everyday desktop, you should install it perma-
nently to your computer’s hard disk and add the applications you need (a word processor,
image editor, drawing application, and so on). If you are just getting started, the following
sections list some cool applications to try out.

41

Part I: Getting Started

42

Managing files and folders with Nautilus

To move, copy, delete, rename, and otherwise organize files and folders in GNOME 3, you
can use the Nautilus file manager. Nautilus comes with the GNOME desktop and works like
other file managers that you may use in Windows or Mac.

To open Nautilus, click the Files icon from the GNOME Dash or Applications list. Your user
account starts with a set of folders designed to hold the most common types of content:
Music, Pictures, Videos, and the like. These are all stored in what is referred to as your
Home directory. Figure 2.11 shows Nautilus open to a Home directory.

FIGURE 2.11

Manage files and folders from the Nautilus window.

< r Home ~

© Recent
% Starred
4r Home
Documents Downloads
[Documents
- Downloads
dd Music

A Pictures Pictures Public Templates Videos

v Videos

i Trash

+ Other Locations

When you want to save files that you downloaded from the Internet or created with a word
processor, you can organize them into these folders. You can create new folders as needed,
drag and drop files and folders to copy and move them, and delete them.

Because Nautilus is not much different from most file managers that you have used on
other computer systems, this chapter does not go into detail about how to use drag-and-
drop and traverse folders to find your content. However, I do want to make a few observa-
tions that may not be obvious about how to use Nautilus:

Home folder You have complete control over the files and folders that you create in
your Home folder. Most other parts of the filesystem are not accessible to you as a
regular user.

Filesystem organization Although it appears under the name Home, your Home
folder is actually located in the filesystem under the /home folder in a folder named

Chapter 2: Creating the Perfect Linux Desktop

after your username: for example, /home/liveuser or /home/chris. In the next
few chapters, you learn how the filesystem is organized (especially in relation to the
Linux command shell).

Working with files and folders Right-click a file or folder icon to see how you can
act on it. For example, you can copy, cut, move to trash (delete), or open any file or
folder icon.

Creating folders To create a new folder, right-click in a folder window and select New
Folder. Type the new folder name over the highlighted Untitled Folder, and press
Enter to name the folder.

Accessing remote content Nautilus can display content from remote servers as well
as the local filesystem. In Nautilus, select Other Locations from the file menu. From
the Connect to Server box that appears, you can connect to a remote server via SSH
(secure shell), FTP with login, Public FTP, Windows share, WebDav (HTTP), or Secure
WebDav (HTTPS). Add appropriate user and password information as needed, and
the content of the remote server appears in the Nautilus window. Figure 2.12 shows
an example of a Nautilus window prompting you for a password to log into a remote
server over SSH protocol (ssh://192.168.122.81).

FIGURE 2.12

Access remote folders using the Nautilus Connect to Server feature.

Cancel Connect

Enter password for 192.168.122.81

Username [|

Password

() Forget password immediately
© Remember password until you logout
. Remember forever

Installing and managing additional software

The Fedora Live Desktop comes with a web browser (Firefox), a file manager (Nautilus), and
a few other common applications. However, there are many other useful applications that,
because of their size, just wouldn't fit on a live CD. If you install the live Fedora Worksta-
tion to your hard disk (as described in Chapter 9), you almost certainly will want to add
some more software.

43

Part I: Getting Started

Note
You can try installing software if you are running the live medium. However, keep in mind that because writeable

space on a live medium uses virtual memory (RAM), that space is limited and can easily run out. Also, when you
reboot your system, anything that you install disappears.

When Fedora is installed, it is automatically configured to connect your system to the huge
Fedora software repository that is available on the Internet. As long as you have an Inter-
net connection, you can run the Add/Remove software tool to download and install any of
thousands of Fedora packages.

Although the entire facility for managing software in Fedora (the yum and rpm features) is
described in detail in Chapter 10, you can start installing some software packages without

knowing much about how the feature works. Begin by going to the applications screen and
opening the Software window. Figure 2.13 shows an example of the Software window.

With the Software window open, you can select the applications that you want to install by
searching (type the name into the Find box) or choosing a category. Each category offers
packages sorted by subcategories and featured packages in that category.

Select the spyglass icon in the upper-left corner, and then type a word associated with the
software package that you want to install. You can read a description of each package that
comes up in your search. When you are ready, click Install to install the package and any
dependent packages needed to make it work.

FIGURE 2.13

Download and install software from the huge Fedora repository.

a Al rstalled updates [

Featured Applications
o &

1]
®

GNU Image Manipulation Program

Crasteimages 36 et photograpss

Categories
i Audiof Video ™ Communication & News [Productivity
M Games B Graghics & Photography % Add-ors
Editer’'s Picks
&
2 O B €| 6 &
- 5
Hates Stellarim Thunderbird Simgle Scan FDF Mod rkscape Shutter Traruanission Seribus

T] Ty e e - Pl o - T L

[

ol BB R w | B @ <&

AbiWord GnuCash The Gourmeric . LibreCffice im... Geary Lyx LibreOffice Wr.. HormeBank Graenps.
11 o EhkkE wkE kR ek hEEEh Rk

44

Chapter 2: Creating the Perfect Linux Desktop

By searching for and installing some common desktop applications, you should be able to
start using your desktop effectively. Refer to Chapter 10 for details on how to add software
repositories and use dnf, yum, and rpm commands to manage software in Fedora and Red
Hat Enterprise Linux.

Playing music with Rhythmbox

Rhythmbox is the music player that comes on the Fedora GNOME Live Desktop. You can
launch Rhythmbox from the GNOME 3 Dash and immediately play music CDs, podcasts, or
Internet radio shows. You can import audio files in WAV and 0gg Vorbis formats or add plug-
ins for MP3 or other audio formats.

Figure 2.14 shows an example of the Rhythmbox window with music playing from an
imported audio library.

FIGURE 2.14

Play music, podcasts, and Internet radio from Rhythmbox.

> |
Queen — Bohemian Rhapsody x
Bohemian Rhapsod -
44] » Q3 psody -3:50/5:56 ~——) *
by Queen from Greatest Hits: ... -
Library Edit Extract Eject Reload Duplig
[Play Queue
Album: Greatest Hits: We Will Rock You
dd Music
3\ Podcasts Artist: Queen
3 Radio Artist sort order: | Queen
6 Last.fm
Genre: Year: | 2004 Disc: | 1
B Libre.fm
Devices W) Track ¥ Title Artist Genre
© Greatest Hits: ... (VI Bohemian Rhapsody Queen Unknown I
1 2 Another One Bites the Dust Queen Unknown
Playlists
¥ 3 Killer Queen Queen Unknown
Q My Top Rated < 4 Fat Bottomed Girls Queen Unknown
QRecently Added C-1 Bicycle Race Queen Unknown
Q Parantly Plavad 7 6 You're My Best Friend Queen Unknown
+ | - | & "
Ca Don't Stop Me Now Queen Unknown
20 songs, 1 hour and 9 minutes

45

Part I: Getting Started

Here are a few ways that you can get started with Rhythmbox:

Radio Double-click the Radio selection under Library and choose a radio station from
the list that appears to the right.

Podcasts Search for podcasts on the Internet and find the URL for one that inter-
ests you. Right-click the Podcasts entry and select New Podcast Feed. Paste or type
in the URL to the podcast and click Add. A list of podcasts from the site that you
selected appears to the right. Double-click the one to which you want to listen.

Audio CDs Insert an audio CD, and press Play when it appears in the Rhythmbox
window. Rhythmbox also lets you rip and burn audio CDs.

Audio files Rhythmbox can play WAV and Ogg Vorbis files. By adding plug-ins, you
can play many other audio formats, including MP3. Because there are patent issues
related to the MP3 format, the ability to play MP3s is not included with Fedora. In
Chapter 10, I describe how to get software that you need that is not in the reposi-
tory of your Linux distribution.

Plug-ins are available for Rhythmbox to get cover art, show information about artists
and songs, add support for music services (such as Last.fm and Magnatune), and fetch
song lyrics.

Stopping the GNOME 3 desktop

When you are finished with your GNOME 3 session, select the down arrow button in the
upper-right corner of the top bar. From there, you can choose the On/0ff button, which
allows you to log out or switch to a different user account without logging out.

Using the GNOME 2 Desktop

The GNOME 2 desktop is the default desktop interface used up through Red Hat Enterprise
Linux 6. It is well-known, stable, and perhaps a bit boring.

GNOME 2 desktops provide the more standard menus, panels, icons, and workspaces. If you
are using a Red Hat Enterprise Linux system up to RHEL 6, or an older Fedora or Ubuntu
distribution, you are probably looking at a GNOME 2 desktop. I will now provide a tour of
GNOME 2, along with some opportunities for sprucing it up a bit. GNOME 2 releases include
3D effects (see “Adding 3D effects with AIGLX" later in this chapter).

To use your GNOME desktop, you should become familiar with the following components:

Metacity (window manager) The default window manager for GNOME 2 is Metacity.
Metacity configuration options let you control such things as themes, window bor-
ders, and controls used on your desktop.

Compiz (window manager) You can enable this window manager in GNOME to pro-
vide 3D desktop effects.

Nautilus (file manager/graphical shell) When you open a folder (by double-
clicking the Home icon on your desktop, for example), the Nautilus window opens

46

Chapter 2: Creating the Perfect Linux Desktop

and displays the contents of the selected folder. Nautilus can also display other
types of content, such as shared folders from Windows computers on the network
(using SMB).

GNOME panels (application/task launcher) These panels, which line the top and
bottom of your screen, are designed to make it convenient for you to launch the
applications you use, manage running applications, and work with multiple virtual
desktops. By default, the top panel contains menu buttons (Applications, Places,
and System), desktop application launchers (Evolution email and Firefox web
browser), a workspace switcher (for managing four virtual desktops), and a clock.
Icons appear in the panel when you need software updates or SELinux detects a
problem. The bottom panel has a Show Desktop button, window lists, a trash can,
and workspace switcher.

Desktop area The windows and icons you use are arranged on the desktop area,
which supports drag-and-drop between applications, a desktop menu (right-click
to see it), and icons for launching applications. A Computer icon consolidates CD
drives, floppy drives, the filesystem, and shared network resources in one place.

GNOME also includes a set of Preferences windows that enable you to configure different
aspects of your desktop. You can change backgrounds, colors, fonts, keyboard shortcuts,
and other features related to the look and behavior of the desktop. Figure 2.15 shows how
the GNOME 2 desktop environment appears the first time you log in, with a few windows
added to the screen.

FIGURE 2.15
The GNOME 2 desktop environment

[Apglications aces system @) o 2 O @ &% B G & carismegus
Eile Edt View |mage Go Help
[F] LinuxBiblethEdition CHOS.doc - Libreoffice Writer —ox R
Eile Edt yiew paen Fgrmat Tabde Tock iindow Help
= A S «aC0-a aO-PER-E81Q H,
o [rara - - - A A4 A z ar| b h

3 B 1 B F] B] .] . 5 B &

Listing and Changing Processes with top

; " []
The top command provides a screen-oriented mean c. .o v coen geminal e

running on your system. With top, processes are displayedter - 24:10€ up Biol, 2 ueurs 1
asks: ctal. 2 runsisg. 271 s
time they are currently consuming, by default. However, yees 2.0hus, 1.3%ay. 0.0ni, 36
R N ! Wemi 3716196k total, 1407016k used|
columns as well. Once you identify a misbehaving proces;svap: 4194256k total, % used|
kill or renice that process.

2%4m 10m 8440 8
1104m 114m 65m 8
333m 24m 10m 5
2Tim llm 9112 5
32Tm 13m $708 8
15220 1392 972 R
110m 1496 1000 &

o .0 N
[2.8 08 gnoma-screansho
0 1.7 n
[1.0
[0.7
[0.7
[0.7
© 0.3
2939 cmegus 20 0 32476 1872 836 5 0.3
I 0.3
[0.3
0 0.3
[0.0
[0.0
[0.0
0 0.0
o 0.0

If you want to be able to Kill or renice processes, y¢ s

root user. If you just want to display processes, you can dc s
" . 3108 anagus 20

Here is an example: 7436 cnegus 20 0:00.26 top

0:08.88 spiceusbarvd

0:00.31 Sus-dasmon b

103 smapplet

0:00.30 potification-da

0:00.18 gnome-terminal

0:02.04 init

b top 3121 coegus 20 233m 7332 %092 5
278 cnegus a0 2%1m 1llm 8968 8

ftop - 11:26:39 up 4 days, 13:22, 2 users, load average: 1.88, 1.12, “7: cnaqus ;:
root

291m 1Im 9768 8
19404 1560 1252 5

0000000000000 OWOD
e sEE RN S SN
o
8

= 2 rest 20 o o o0s 0:00.02 kthreadd
o 3 & 3 root RT o o os 0:00.00 migration/0
L 4 root 20 o o os 0:00.00 ksofrirgd/0
s o o= B:00.00 migracion/0

Page 5./ 20 Dt Erglish L84} INSAT | £TE) 5 rast BT

= PR ' I i

47

Part I: Getting Started

The desktop shown in Figure 2.15 is for Red Hat Enterprise Linux. The following sections
provide details on using the GNOME 2 desktop.

Using the Metacity window manager

The Metacity window manager seems to have been chosen as the default window manager
for GNOME because of its simplicity. The creator of Metacity refers to it as a “boring window
manager for the adult in you” and then goes on to compare other window managers to col-
orful, sugary cereal, whereas Metacity is characterized as Cheerios.

Norte
To use 3D effects, your best solution is to use the Compiz window manager, described later in this chapter. You can’t

do much with Metacity (except get your work done efficiently). You assign new themes to Metacity and change colors
and window decorations through the GNOME preferences (described later).

Basic Metacity functions that might interest you are keyboard shortcuts and the workspace
switcher. Table 2.1 shows keyboard shortcuts to get around the Metacity window manager.

TABLE 2.1 Keyboard Shortcuts

Actions Keystrokes

Cycle backward, without pop-up icons Alt+Shift+Esc
Cycle backward among panels Alt+Ctrl+Shift+Tab
Close menu Esc

You can use other keyboard shortcuts with the window manager as well. Select System >
Preferences = Keyboard Shortcuts to see a list of shortcuts, such as the following:

Run Dialog To run a command to launch an application from the desktop by
command name, press Alt+F2. From the dialog box that appears, type the command
and press Enter. For example, type gedit to run a simple graphical text editor.

Lock Screen If you want to step away from your screen and lock it, press Ctrl+Alt+L.
You need to type your user password to open the screen again.

Show Main Menu To open an application from the Applications, Places, or System
menu, press Alt+F1. Then use the up and down arrow keys to select from the current
menu or use the right and left arrow keys to select from other menus.

Print Screen Press the Print Screen key to take a picture of the entire desktop. Press
Alt+Print Screen to take a picture of the current window.

48

Chapter 2: Creating the Perfect Linux Desktop

Another Metacity feature of interest is the workspace switcher. Four virtual workspaces

appear in the workspace switcher on the GNOME 2 panel. You can do the following with the
Workspace Switcher:

Choose current workspace Four virtual workspaces appear in the workspace
switcher. Click any of the four virtual workspaces to make it your current
workspace.

Move windows to other workspaces Click any window, each represented by a tiny
rectangle in a workspace, to drag and drop it to another workspace. Likewise, you

can drag an application from the Window list to move that application to another
workspace.

Add more workspaces Right-click the Workspace Switcher and select Preferences.
You can add workspaces (up to 32).

Name workspaces Right-click the Workspace Switcher and select Preferences. Click in
the Workspaces pane to change names of workspaces to any names you choose.

You can view and change information about Metacity controls and settings using the
gconf-editor window (type gconf-editor from a Terminal window). As the window
says, it is not the recommended way to change preferences, so when possible, you should
change the desktop through GNOME 2 preferences. However, gconf-editor is a good way
to see descriptions of each Metacity feature.

From the gconf-editor window, select apps = metacity, and choose from general, global_
keybindings, keybindings_commands, window_keybindings, and workspace_names. Click
each key to see its value, along with short and long descriptions of the key.

Changing GNOME's appearance

You can change the general look of your GNOME desktop by selecting System > Preferences
> Appearance. From the Appearance Preferences window, select from three tabs:

Theme Entire themes are available for the GNOME 2 desktop that change the colors,
icons, fonts, and other aspects of the desktop. Several different themes come with
the GNOME desktop, which you can simply select from this tab to use. Or click “Get
more themes online” to choose from a variety of available themes.

Background To change your desktop background, select from a list of backgrounds
on this tab to have the one you choose immediately take effect. To add a different
background, put the background you want on your system (perhaps download one
by selecting “Get more backgrounds online” and downloading it to your Pictures
folder). Then click Add and select the image from your Pictures folder.

Fonts Different fonts can be selected to use by default with your applications, docu-
ments, desktop, window title bar, and for fixed width.

49

Part I: Getting Started

50

Using the GNOME panels

The GNOME panels are placed on the top and bottom of the GNOME desktop. From those
panels, you can start applications (from buttons or menus), see what programs are active,
and monitor how your system is running. You can also change the top and bottom panels in
many ways—by adding applications or monitors or by changing the placement or behavior
of the panel, for example.

Right-click any open space on either panel to see the Panel menu. Figure 2.16 shows the
Panel menu on the top.

FIGURE 2.16
The GNOME Panel menu

LA 4 il [, sunOct24,10:40PM Chris Negus

200 0 ranst...
Properties
Delete This Panel

New Panel

Help
About Panels

From GNOME’s Panel menu, you can choose from a variety of functions, including these:

Use the menus:

B The Applications menu displays most of the applications and system tools that you
will use from the desktop.

m The Places menu lets you select places to go, such as the Desktop folder, Home
folder, removable media, or network locations.

B The System menu lets you change preferences and system settings as well as get
other information about GNOME.

Add to Panel. Add an applet, menu, launcher, drawer, or button.
Properties. Change the panel’s position, size, and background properties.
Delete This Panel. Delete the current panel.

New Panel. Add panels to your desktop in different styles and locations.

You can also work with items on a panel. For example, you can do the following:

Move items. To move an item on a panel, right-click it, select Move, and drag and drop
it to a new position.

Chapter 2: Creating the Perfect Linux Desktop

Resize items. You can resize some elements, such as the Window list, by clicking an
edge and dragging it to the new size.

Use the Window list. Tasks running on the desktop appear in the Window list area.
Click a task to minimize or maximize it.

The following sections describe some things that you can do with the GNOME panel.

Using the Applications and System menus

Click Applications on the panel and you see categories of applications and system tools that
you can select. Click the application that you want to launch. To add an item from a menu
so that it can launch from the panel, drag and drop the item that you want to the panel.

You can add items to your GNOME 2 menus. To do that, right-click any of the menu names
and select Edit Menus. The window that appears lets you add or delete menus associated
with the Applications and System menus. You can also add items to launch from those
menus by selecting New Item and typing the name, command, and comment for the item.

Adding an applet

You can run several small applications, called applets, directly on the GNOME panel. These
applications can show information that you may want to see on an ongoing basis or may
just provide some amusement. To see what applets are available and to add applets that you
want to your panel, follow these steps:

1. Right-click an open space in the panel so that the Panel menu appears.
2. Click Add to Panel. An Add to Panel window appears.

3. Select from among several dozen applets, including a clock, dictionary lookup,
stock ticker, and weather report. The applet you select appears on the panel,
ready for you to use.

Figure 2.17 shows (from left to right) eyes, system monitor, weather report, terminal, and
Wanda the fish.

FIGURE 2.17

Placing applets on the panel makes accessing them easy.

00 W o m [

After an applet is installed, right-click it on the panel to see what options are available.
For example, select Preferences for the stock ticker and you can add or delete stocks whose
prices you want to monitor. If you don't like the applet’s location, right-click it, click Move,
slide the mouse until the applet is where you want it (even to another panel), and click to
set its location.

51

Part I: Getting Started

52

If you no longer want an applet to appear on the panel, right-click it, and click Remove
From Panel. The icon representing the applet disappears. If you find that you have run out
of room on your panel, you can add a new panel to another part of the screen, as described
in the next section.

Adding another panel

If you run out of space on the top or bottom panels, you can add more panels to your desk-
top. You can have several panels on your GNOME 2 desktop. You can add panels that run
along the entire bottom, top, or side of the screen. To add a panel, follow these steps:

1. Right-click an open space in the panel so that the Panel menu appears.
2. Click New Panel. A new panel appears on the side of the screen.

3. Right-click an open space in the new panel and select Properties.

4

. From the Panel Properties, select where you want the panel from the Orienta-
tion box (Top, Bottom, Left, or Right).

After you've added a panel, you can add applets or application launchers to it as you did
with the default panel. To remove a panel, right-click it and select Delete This Panel.

Adding an application launcher
Icons on your panel represent a web browser and several office productivity applications.
You can add your own icons to launch applications from the panel as well. To add a new
application launcher to the panel, follow these steps:

1. Right-click in an open space on the panel.

2. Click Add to Panel => Application Launcher from the menu. All application cate-
gories from your Applications and System menus appear.

3. Select the arrow next to the category of application you want, and then select
Add. An icon representing the application appears on the panel.
To launch the application that you just added, simply click the icon on the panel.

If the application that you want to launch is not on one of your menus, you can build a
launcher yourself as follows:

1. Right-click in an open space on the panel.

2. Click Add to Panel => Custom Application Launcher => Add. The Create Launcher
window appears.

3. Provide the following information for the application you want to add:

a. Type. Select Application (to launch a reqgular GUI application) or Application
in Terminal. Use Application in Terminal if the application is a character-based
or ncurses application. (Applications written using the ncurses library run in a
Terminal window but offer screen-oriented mouse and keyboard controls.)

Chapter 2: Creating the Perfect Linux Desktop

b. Name. Choose a name to identify the application. (This appears in the tooltip
when your mouse is over the icon.)

c. Command. This identifies the command line that is run when the application is
launched. Use the full pathname, plus any required options.

d. Comment. Enter a comment describing the application. It also appears when
you later move your mouse over the launcher.

4. Click the Icon box (it might say No Icon), select one of the icons shown, and
click OK. Alternatively, you can browse your filesystem to choose an icon.

5. Click OK.

The application should now appear in the panel. Click it to start the application.

Note
Icons available to represent your application are contained in the /usr/share/pixmaps directory. These icons

are either in PNG or XPM format. If there isn’t an icon in the directory that you want to use, create your own (in one of
those two formats) and assign it to the application.

Adding a drawer

A drawer is an icon that you can click to display other icons representing menus, applets,
and launchers; it behaves just like a panel. Essentially, any item that you can add to a
panel you can add to a drawer. By adding a drawer to your GNOME panel, you can include
several applets and launchers that together take up the space of only one icon. Click the
drawer to show the applets and launchers as if they were being pulled out of a drawer icon
on the panel.

To add a drawer to your panel, right-click the panel and select Add to Panel => Drawer. A
drawer appears on the panel. Right-click it and add applets or launchers to it as you would
to a panel. Click the icon again to retract the drawer.

Figure 2.18 shows a portion of the panel with an open drawer that includes an icon for
launching a weather report, sticky notes, and stock monitor.

FIGURE 2.18

Add launchers or applets to a drawer on your GNOME 2 panel.

53

Part I: Getting Started

Changing panel properties

You can change the orientation, size, hiding policy, and background properties of your
desktop panels. To open the Panel Properties window that applies to a specific panel, right-
click an open space on the panel and choose Properties. The Panel Properties window that
appears includes the following values:

Orientation Move the panel to a different location on the screen by clicking a
new position.

Size Select the size of your panel by choosing its height in pixels (48 pixels
by default).

Expand Select this check box to have the panel expand to fill the entire side or clear
the check box to make the panel only as wide as the applets it contains.

AutoHide Select whether a panel is automatically hidden (appearing only when the
mouse pointer is in the area).

Show Hide buttons Choose whether the Hide/Unhide buttons (with pixmap arrows
on them) appear on the edges of the panel.

Arrows on Hide buttons If you select Show Hide Buttons, you can choose to have
arrows on those buttons.

Background From the Background tab, you can assign a color to the background of
the panel, assign a pixmap image, or just leave the default (which is based on the
current system theme). Click the Background Image check box if you want to select
an Image for the background, and then select an image, such as a tile from /usr/
share/backgrounds/tiles or another directory.

Tie

| usually turn on the AutoHide feature and turn off the Hide buttons. Using AutoHide gives you more desktop space

with which you can work. When you move your mouse to the edge where the panel is located, the panel pops up—so
you don’t need Hide buttons.

Adding 3D effects with AIGLX

Several initiatives have made strides in recent years to bring 3D desktop effects to Linux.
Ubuntu, openSUSE, and Fedora used AIGLX (https://fedoraproject.org/wiki/
RenderingProject/aiglx).

The goal of the Accelerated Indirect GLX project (AIGLX) is to add 3D effects to everyday
desktop systems. It does this by implementing OpenGL (http://opengl.org) accelerated
effects using the Mesa (http://www.mesa3d.org) open source OpenGL implementation.

Currently, AIGLX supports a limited set of video cards and implements only a few 3D
effects, but it does offer some insight into the eye candy that is in the works.

If your video card was properly detected and configured, you may be able simply to turn
on the Desktop Effects feature to see the effects that have been implemented so far. To

54

http://http/fedoraproject.org/wiki/RenderingProject/aiglx
http://http/fedoraproject.org/wiki/RenderingProject/aiglx
http://opengl.org
http://www.mesa3d.org

Chapter 2: Creating the Perfect Linux Desktop

turn on Desktop Effects, select System => Preferences => Desktop Effects. When the Desktop
Effects window appears, select Compiz. (If the selection is not available, install the com-
piz package.)

Enabling Compiz does the following:

Starts Compiz Stops the current window manager and starts the Compiz
window manager.

Enables the Windows Wobble When Moved effect With this effect on, when you
grab the title bar of the window to move it, the window wobbles as it moves. Menus
and other items that open on the desktop also wobble.

Enables the Workspaces on a Cube effect Drag a window from the desktop to the
right or the left, and the desktop rotates like a cube, with each of your desktop
workspaces appearing as a side of that cube. Drop the window on the workspace
where you want it to go. You can also click the Workspace Switcher applet in the
bottom panel to rotate the cube to display different workspaces.

Other nice desktop effects result from using the Alt+Tab keys to tab among different
running windows. As you press Alt+Tab, a thumbnail of each window scrolls across the
screen as the window it represents is highlighted.

Figure 2.19 shows an example of a Compiz desktop with AIGLX enabled. The figure illus-
trates a web browser window being moved from one workspace to another as those work-
spaces rotate on a cube.

FIGURE 2.19

Rotate workspaces on a cube with AIGLX desktop effects enabled.

55

Part I: Getting Started

The following are some interesting effects that you can get with your 3D AIGLX desktop:

Spin cube Hold Ctrl+Alt keys and press the right and left arrow keys. The desktop
cube spins to each successive workspace (forward or back).

Slowly rotate cube Hold the Ctrl+Alt keys, press and hold the left mouse button,
and move the mouse around on the screen. The cube moves slowly with the mouse
among the workspaces.

Scale and separate windows If your desktop is cluttered, hold Ctrl+Alt and press
the up arrow key. Windows shrink down and separate on the desktop. Still holding
Ctrl+Alt, use your arrow keys to highlight the window you want and release the keys
to have that window come to the surface.

Tab through windows Hold the Alt key and press the Tab key. You will see reduced
versions of all your windows in a strip in the middle of your screen, with the
current window highlighted in the middle. Still holding the Alt key, press Tab or
Shift+Tab to move forward or backward through the windows. Release the keys when
the one you want is highlighted.

Scale and separate workspaces Hold Ctrl+Alt and press the down arrow key to see
reduced images of the workspace shown on a strip. Still holding Ctrl+Alt, use the
right and left arrow keys to move among the different workspaces. Release the keys
when the workspace you want is highlighted.

Send current window to next workspace Hold Ctrl+Alt+Shift keys together and
press the left and right arrow keys. The next workspace to the left or right, respec-
tively, appears on the current desktop.

Slide windows around Press and hold the left mouse button on the window title bar,
and then press the left, right, up, or down arrow key to slide the current window
around on the screen.

If you get tired of wobbling windows and spinning cubes, you can easily turn off the AIGLX
3D effects and return to using Metacity as the window manager. Select System => Prefer-
ences = Desktop Effects again, and toggle off the Enable Desktop Effects button to turn off
the feature.

If you have a supported video card but find that you cannot turn on the Desktop Effects,
check that your X server started properly. In particular, make sure that your /etc/X11/
xorg.conf file is properly configured. Make sure that dri and glx are loaded in the
Module section. Also, add an extensions section anywhere in the file (typically at the end
of the file) that appears as follows:

Section "extensions"
Option "Composite"
EndSection

56

Chapter 2: Creating the Perfect Linux Desktop

Another option is to add the following line to the /etc/X11/xorg.conf file in the
Device section:

Option "XAANoOffscreenPixmaps"

The XAANoOffscreenPixmaps option improves performance. Check your /var/log/
Xorg.log file to make sure that DRI and AIGLX features were started correctly. The mes-
sages in that file can help you debug other problems as well.

Summary

The GNOME desktop environment has become the default desktop environment for many
Linux systems, including Fedora and RHEL. The GNOME 3 desktop (now used in Fedora and
RHEL 7 and RHEL 8) is a modern, elegant desktop, designed to match the types of inter-
faces available on many of today’s mobile devices. The GNOME 2 desktop (used through
RHEL 6) provides a more traditional desktop experience.

Besides GNOME desktops, you can try out other popular and useful desktop environments.
The K Desktop Environment (KDE) offers many more bells and whistles than GNOME, and it
is used by default in several Linux distributions. Netbooks and live CD distributions some-
times use the LXDE or Xfce desktops.

Now that you have a grasp of how to get and use a Linux desktop, it’s time to start digging
into the more professional administrative interfaces. Chapter 3, “Using the Shell,” intro-
duces you to the Linux command-line shell interface.

Exercises

Use these exercises to test your skill in using a GNOME desktop. You can use either a GNOME
2.x (Red Hat Enterprise Linux up until RHEL 6.x) or GNOME 3.x (Fedora 16 or later or Ubuntu
up to 11.10, or later using the Ubuntu GNOME project) desktop. If you are stuck, solutions
to the tasks for both the GNOME 2 and GNOME 3 desktops are shown in Appendix B.

1. Obtain a Linux system with either a GNOME 2 or GNOME 3 desktop available. Start
the system and log in to a GNOME desktop.

2. Launch the Firefox web browser and go to the GNOME home page (http://
gnome.org).

3. Pick a background you like from the GNOME art site (http://gnome-look.org),
download it to your Pictures folder, and select it as your current background.

4. Start a Nautilus File Manager window and move it to the second workspace on
your desktop.

5. Find the image that you downloaded to use as your desktop background and open it
in any image viewer.

57

http://gnome.org
http://gnome.org
http://gnome-look.org

Part I: Getting Started

58

10.

Move back and forth between the workspace with Firefox on it and the one with
the Nautilus file manager.

Open a list of applications installed on your system and select an image viewer to
open from that list. Use as few clicks or keystrokes as possible.

Change the view of the windows on your current workspace to smaller views you
can step through. Select any window you'd like to make it your current window.

From your desktop, using only the keyboard, launch a music player.

Take a picture of your desktop, using only keystrokes.

Part I

Becoming a Linux
Power User

IN THIS PART

Chapter 3
Using the Shell

Chapter 4
Moving Around the Filesystem

Chapter 5
Working with Text Files

Chapter 6
Managing Running Processes

Chapter 7
Writing Simple Shell Scripts

CHAPTER

Using the Shell

IN THIS CHAPTER

Understanding the Linux shell

Using the shell from consoles or Terminals
Using commands

Using command history and tab completion
Connecting and expanding commands
Understanding variables and aliases
Making shell settings permanent

Using man pages and other documentation

most computers. On UNIX systems, from which Linux was derived, the program used to inter-

B efore icons and windows took over computer screens, you typed commands to interact with
pret and manage commands was referred to as the shell.

No matter which Linux distribution you are using, you can always count on the fact that the shell

is available to you. It provides a way to create executable script files, run programs, work with file-
systems, compile computer code, and manage the computer. Although the shell is less intuitive than
common graphical user interfaces (GUIs), most Linux experts consider the shell to be much more pow-
erful than GUIs. Shells have been around a long time, and many advanced features that aren't avail-
able from the desktop can be accessed by running shell commands.

The Linux shell illustrated in this chapter is called the bash shell, which stands for Bourne Again
Shell. The name is derived from the fact that bash is compatible with the one of the earliest
UNIX shells: the Bourne shell (named after its creator, Stephen Bourne, and represented by the
sh command).

Although bash is included with most distributions and considered a standard, other shells are avail-
able, including the C shell (csh), which is popular among BSD UNIX users, and the Korn shell (ksh),
which is popular among UNIX System V users. Ubuntu uses the dash shell by default at boot time,
which is designed to perform faster than the bash shell. Linux also has a tcsh shell (an improved C
shell) and an ash shell (another Bourne shell look-alike).

The odds are strong that the Linux distribution you are using has more than one shell available
for your use. This chapter, however, focuses primarily on the bash shell. That is because the Linux

61

Part 1l: Becoming a Linux Power User

62

distributions featured in this book, Fedora, Ubuntu, and Red Hat Enterprise Linux, all use
the bash shell by default when you open a Terminal window.

The following are a few major reasons to learn how to use the shell:

m You will learn to get around any Linux or other UNIX-like system. For example, I can
log in to my Red Hat Enterprise Linux web server, my home multimedia server, my
home router, or my wife’s Mac and explore and use any of those computer systems
from a shell. I can even log in and run commands on my Android phone. They all
run Linux or similar systems on the inside.

B Special shell features enable you to gather data input and direct data output between
commands and Linux filesystems. To save on typing, you can find, edit, and repeat
commands from your shell history. Many power users hardly touch a graphical
interface, doing most of their work from a shell.

B You can gather commands into a file using programming constructs such as conditional
tests, loops, and case statements to perform complex operations quickly, which would
be difficult to retype over and over. Programs consisting of commands that are stored
and run from a file are referred to as shell scripts. Many Linux system administra-
tors use shell scripts to automate tasks such as backing up data, monitoring log
files, or checking system health.

The shell is a command language interpreter. If you have used Microsoft operating systems,
you'll see that using a shell in Linux is similar to, but generally much more powerful than,
the PowerShell interpreter used to run commands. You can happily use Linux from a graphical
desktop interface, but as you grow into Linux you will surely need to use the shell at some
point to track down a problem or administer some features.

How to use the shell isn't obvious at first, but with the right help you can quickly learn many
of the most important shell features. This chapter is your guide to working with the Linux
system commands, processes, and filesystem from the shell. It describes the shell environ-
ment and helps you tailor it to your needs.

About Shells and Terminal Windows

There are several ways to get to a shell interface in Linux. Three of the most common are
the shell prompt, Terminal window, and virtual console, which you learn more about in the
following sections.

To start, boot up your Linux system. On your screen, you should see either a graphical login
screen or a plain-text login prompt similar to the following:

Red Hat Enterprise Linux Server release 8.0 (Ootpa)
Kernel 4.18.0-42.e18.x86_64 on an X86
mylinuxhost login:

In either case, you should log in with a regular user account. If you have a plain-text login
prompt, continue to the next section, “Using the shell prompt.” If you log in through a
graphical screen, go to the section “Using a Terminal window” to see how to access a shell

Chapter 3: Using the Shell

from the desktop. In either case, you can access more shells as described in the section
“Using virtual consoles,” which appears shortly in this chapter.

Using the shell prompt

If your Linux system has no graphical user interface (or one that isn't working at the
moment), you will most likely see a shell prompt after you log in. Typing commands from
the shell will probably be your primary means of using the Linux system.

The default prompt for a reqular user is simply a dollar sign:

$

The default prompt for the root user is a pound sign (also called a number sign or a
hash tag):

#

In most Linux systems, the $ and # prompts are preceded by your username, system name,
and current directory name. For example, a login prompt for the user named jake on a
computer named pine with /usr/share/ as the current working directory would appear
as follows:

[jake@pine sharel$

You can change the prompt to display any characters you like and even read in pieces of
information about your system. For example, you can use the current working directory,
the date, the local computer name, or any string of characters as your prompt. To configure
your prompt, see the section “Setting your prompt” later in this chapter.

Although a tremendous number of features are available with the shell, it’s easy to begin by
just entering a few commands. Try some of the commands shown in the remaining sections
to become familiar with your current shell environment.

In the examples that follow, the dollar ($) and pound (#) symbols indicate a prompt. A

$ indicates that the command can be run by any user, but a # typically means that you
should run the command as the root user; that is, many administrative tools require root
permission to be able to run them. The prompt is followed by the command that you type
(and then press Enter). The lines that follow show the output resulting from the command.

Note
Although we use # to indicate that a command be run as the root user, you do not need to log in as the root user

to run a command as root. In fact, the most common way to run a command as a root user is to use the sudo
command. See Chapter 8, “Learning System Administration,” for further information about the sudo command.

Using a Terminal window

With the desktop GUI running, you can open a Terminal emulator program (sometimes
referred to as a Terminal window) to start a shell. Most Linux distributions make it easy for

63

Part 1l: Becoming a Linux Power User

you to get to a shell from the GUI. Here are two common ways to launch a Terminal window
from a Linux desktop:

Right-click the desktop.

In the context menu that appears, if you see Open in Termi-
nal, Shells, New Terminal, Terminal Window, Xterm, or some similar item, select it to
start a Terminal window. (Some distributions have disabled this feature.)

Click the panel menu. Many Linux desktops include a panel at the top or bottom of

the screen from which you can launch applications. For example, in some systems
that use the GNOME 2 desktop, you can select Applications => System Tools &> Termi-
nal to open a Terminal window. In GNOME 3, click the Activities menu, type Ter-
minal, and press Enter.

In all cases, you should be able to type a command as you would from a shell with no GUI.
Different Terminal emulators are available with Linux. In Fedora, Red Hat Enterprise Linux
(RHEL), and other Linux distributions that use the GNOME desktop, the default Terminal
emulator window is the GNOME Terminal (started by the gnome-terminal command).

GNOME Terminal supports many features beyond the basic shell. For example, you can

cut and paste text to or from a GNOME Terminal window, change fonts, set a title, choose
colors or images to use as background, and set how much text to save when text scrolls off
the screen.

To try some GNOME Terminal features, start up a Fedora or RHEL system and log in to the
desktop. Then follow this procedure:

1.

Select Applications = Utilities &> Terminal (or click on the Activities menu and
type Terminal). A Terminal window should open on your desktop.

. Select Edit = Profile Preferences or Preferences.

. On the General tab or current profile (depending on your version of GNOME), check

the “Custom font” box.

. Select the Font field, try a different font and size, and then click Select. The new

font appears in the Terminal window.

5. Unselect the “Custom font” box. This takes you back to the original font.

. On the Colors tab, clear the “Use colors from system theme” check box. From here,

you can try some different font and background colors.

. Re-select the “Use colors from system theme” box to go back to the default colors.

. Go to your Profile window. There are other features with which you may want to

experiment, such as setting how much scrolled data is kept.

. Close the Profile window when you are finished. You are now ready to use your Ter-

minal window.

If you are using Linux from a graphical desktop, you will probably most often access the
shell from a Terminal window.

64

Chapter 3: Using the Shell

Using virtual consoles

Most Linux systems that include a desktop interface start multiple virtual consoles running
on the computer. Virtual consoles are a way to have multiple shell sessions open at once in
addition to the graphical interface you are using.

You can switch between virtual consoles by holding the Ctrl and Alt keys and pressing a
function key between F1 and F6. For example, in Fedora, press Ctrl+Alt+F1 (or F2, F3, F4,
and so on up to F6 on most Linux systems) to display one of seven virtual consoles. The GUI
is typically located on one of the first two virtual consoles, and the other six virtual con-
soles are typically text-based virtual consoles.

You can return to the GUI (if one is running) by pressing Ctrl+Alt+F1. On some systems, the
GUI may run on a different virtual console, such as virtual console 2 (Ctrl+Alt+F2). Newer
systems, such as Fedora 29, now start the gdm (the login screen) persistently on tty1 to
allow multiple simultaneous GUI sessions: the gdm is on tty1, the first desktop is started on
tty2, the second desktop is started on tty3, and so on.

Try it right now. Hold down the Ctrl+Alt keys and press F3. You should see a plain-text
login prompt. Log in using your username and password. Try a few commands. When you
are finished, type exit to exit the shell and then press Ctrl+Alt+F1 or Ctrl+Alt+F2 to return
to your graphical desktop interface. You can go back and forth between these consoles as
much as you like.

Choosing Your Shell

In most Linux systems, your default shell is the bash shell. To find out what is your default
login shell, enter the following commands:

S who am i

chris pts/0 2019-10-21 22:45 (:0.0)

$ grep chris /etc/passwd

chris:x:13597:13597:Chris Negus:/home/chris:/bin/bash

Notice that the command-line examples shown here and throughout the book show the
command followed by output from that command. When the command completes, you are
presented with the command prompt again.

The who am i command shows your username, and the grep command (replacing chris
with your username) shows the definition of your user account in the /etc/passwd file.
The last field in that entry shows that the bash shell (/bin/bash) is your default shell
(the one that starts up when you log in or open a Terminal window).

It's possible, although not likely, that you might have a different default shell set. To try a
different shell, simply type the name of that shell (examples include ksh, tcsh, csh, sh,
dash, and others, assuming that they are installed). You can try a few commands in that
shell and type exit when you are finished to return to the bash shell.

65

Part 1l: Becoming a Linux Power User

Tie

You might choose to use different shells for the following reasons:

B You are used to using UNIX System V systems (often ksh by default) or Sun Micro-
systems and other Berkeley UNIX-based distributions (frequently csh by default),
and you are more comfortable using default shells from those environments.

B You want to run shell scripts that were created for a particular shell environment,
and you need to run the shell for which they were made so that you can test or use
those scripts from your current shell.

B You simply prefer features in one shell over those in another. For example, a
member of my Linux Users Group prefers ksh over bash because he doesn’t like the
way aliases are used with bash.

Although most Linux users have a preference for one shell or another, when you know how
to use one shell, you can quickly learn any of the others by occasionally referring to the
shell’s man page (for example, type man bash). The man pages (described later in the
section “Getting Information about Commands”) provide documentation for commands,
file formats, and other components in Linux. Most people use bash just because they don't
have a particular reason for using a different shell. The rest of this chapter describes the
bash shell.

Bash includes features originally developed for sh and ksh shells in early UNIX systems, as
well as some csh features. Expect bash to be the default login shell in most Linux systems
that you are using, with the exception of some specialized Linux systems (such as some
that run on embedded devices) that may require a smaller shell that needs less memory and
requires fewer features. Most of the examples in this chapter are based on the bash shell.

The bash shell is worth knowing not only because it is the default in most installations, but because it is the one you
will use with most Linux certification exams.

66

Running Commands

The simplest way to run a command is just to type the name of the command from a shell.
From your desktop, open a Terminal window. Then enter the following command:

$ date
Thu Jun 29 08:14:53 EDT 2019

Entering the date command, with no options or arguments, causes the current day, month,
date, time, time zone, and year to be displayed as just shown.

Here are a few other commands you can try:

$ pwd
/home/chris
$ hostname

Chapter 3: Using the Shell

mydesktop

S 1ls

Desktop Downloads Pictures Templates
Documents Music Public Videos

The pwd command shows your current working directory. Entering hostname shows your
computer’s hostname. The 1s command lists the files and directories in your current direc-
tory. Although many commands can be run by just entering command names, it’s more
common to type other characters after the command to modify its behavior. The characters
and words that you can type after a command are called options and arguments.

Understanding command syntax

Most commands have one or more options that you can add to change the command'’s
behavior. Options typically consist of a single letter preceded by a hyphen. However, you
can group single-letter options together or precede each with a hyphen to use more than
one option at a time. For example, the following two uses of options for the 1s command
are the same:

$ 1ls -1 -a -t
$ 1ls -lat

In both cases, the 1s command is run with the -1 (long listing), -a (show hidden dot
files), and -t options (list by time).

Some commands include options that are represented by a whole word. To tell a
command to use a whole word as an option, you typically precede it with a double
hyphen (--). For example, to use the help option on many commands, you enter --help
on the command line. Without the double hyphen, the letters h, e, 1, and p would be
interpreted as separate options. There are some commands that don't follow the double
hyphen convention, using a single hyphen before a word, but most commands use double
hyphens for word options.

Norte

You can use the --help option with most commands to see the options and arguments that they support. For
example, try typing hostname --help.

Many commands also accept arguments after certain options are entered or at the end

of the entire command line. An argument is an extra piece of information, such as a file-
name, directory, username, device, or other item, that tells the command what to act on.
For example, cat /etc/passwd displays the contents of the /etc/passwd file on your
screen. In this case, /etc/passwd is the argument. Usually, you can have as many argu-
ments as you want on the command line, limited only by the total number of characters
allowed on a command line. Sometimes, an argument is associated with an option. In that
case, the argument must immediately follow the option. With single-letter options, the

67

Part 1l: Becoming a Linux Power User

68

argument typically follows after a space. For full-word options, the argument often follows
an equal sign (=). Here are some examples:

$ 1ls --hide=Desktop
Documents Music Public Videos
Downloads Pictures Templates

In the previous example, the --hide option tells the 1s command not to display the file or
directory named Desktop when listing the contents of the directory. Notice that the equal
sign immediately follows the option (no space) and then the argument (again, no space).

Here's an example of a single-letter option that is followed by an argument:
$ tar -cvf backup.tar /home/chris

In the tar example just shown, the options say to create (c) a file (£) named backup.tar
that includes all of the contents of the /home/chris directory and its subdirectories and

show verbose (v) messages as the backup is created. Because backup.tar is an argument

to the £ option, backup.tar must immediately follow the option.

Here are a few commands that you can try out. See how they behave differently with dif-
ferent options:

$ 1s
Desktop Documents Downloads Music Pictures Public Templates
Videos
S 1ls -a

Desktop .gnome2_private .lesshst Public
.. Documents .gnote .local Templates
.bash history Downloads .gnupg .mozilla Videos
.bash logout .emacs .gstreamer-0.10 Music .xsession-
errors
.bash profile .esd_auth .gtk-bookmarks Pictures .zshrc
.bashrc .fsync.log .gvfs Pictures
S uname
Linux

$ uname -a

Linux mydesktop 5.3.7-301.fc31.x86 64 #1 SMP Mon Oct 21 19:18:58 UTC
2019 x86_64 x86_ 64 x86_ 64 GNU/Linux

S date

Wed 04 Mar 2020 09:06:25 PM EST

$ date +'%d4/%m/%y’

04/03/20

S date +'%A, %B %d, %Y

Wednesday, March 04, 2020

The 1s command, by itself, shows all reqular files and directories in the current directory.
By adding the -a, you can also see the hidden files in the directory (those beginning with
a dot). The uname command shows the type of system you are running (Linux). When you
add -a, you also can see the hostname, kernel release, and kernel version.

Chapter 3: Using the Shell

The date command has some special types of options. By itself, date simply prints the
current day, date, and time as shown above. But the date command supports a special +
format option, which lets you display the date in different formats. Enter date --help to
see different format indicators you can use.

Try the id and who commands to get a feel for your current Linux environment, as
described in the following paragraphs.

When you log in to a Linux system, Linux views you as having a particular identity, which
includes your username, group name, user ID, and group ID. Linux also keeps track of your
login session: It knows when you logged in, how long you have been idle, and where you
logged in from.

To find out information about your identity, use the id command as follows:

S id

uid=1000(chris) gid=1000(chris) groups=1005(sales), 7(lp)
In this example, the username is chris, which is represented by the numeric user ID (uid)
1000. The primary group for chris also is called chris, which has a group ID (gid) of 1000.
It is normal for Fedora and Red Hat Enterprise Linux users to have the same primary group
name as their username. The user chris also belongs to other groups called sales (gid
1005) and 1p (gid 7). These names and numbers represent the permissions that chris has
to access computer resources.

Norte

Linux distributions that have Security Enhanced Linux (SELinux) enabled, such as Fedora and RHEL, show additional
information at the end of the id output. That output might look something like the following:

context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023

SELinux provides a means of tightly locking down the security of a Linux system. See Chapter 24, “Enhancing Linux
Security with SELinux,” if you want to learn about SELinux.

You can see information about your current login session by using the who command. In
the following example, the -u option says to add information about idle time and the pro-
cess ID and -H asks that a header be printed:

$ who -uH
NAME LINE TIME IDLE PID COMMENT
chris ttyl Jan 13 20:57 . 2019

The output from this who command shows that the user chris is logged in on ttyl
(which is the first virtual console on the monitor connected to the computer) and his login
session began at 20:57 on January 13. The IDLE time shows how long the shell has been
open without any command being typed (the dot indicates that it is currently active).

PID shows the process ID of the user’s login shell. COMMENT would show the name of

the remote computer from which the user had logged in, if that user had logged in from

69

Part 1l: Becoming a Linux Power User

Tie

If you want to add your own commands or shell scripts, place them in the bin directory in your home directory (such
as /home/chris/bin for the user named chris). This directory is automatically added to your path in some

another computer on the network, or the name of the local X display if that user were using
a Terminal window (such as :0.0).

Locating commands

Now that you have typed a few commands, you may wonder where those commands are
located and how the shell finds the commands you type. To find commands you type, the
shell looks in what is referred to as your path. For commands that are not in your path, you
can type the complete identity of the location of the command.

If you know the directory that contains the command that you want to run, one way to run
it is to type the full, or absolute, path to that command. For example, you run the date
command from the /bin directory by entering the following:

$ /bin/date

Of course, this can be inconvenient, especially if the command resides in a directory with a
long pathname. The better way is to have commands stored in well-known directories and
then add those directories to your shell's PATH environment variable. The path consists of
a list of directories that are checked sequentially for the commands you enter. To see your
current path, enter the following:

S echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/local/sbin:/usr/sbin:/sbin:J
/home/chris/bin

The results show a common default path for a reqular Linux user. Directories in the path
list are separated by colons. Most user commands that come with Linux are stored in the /
bin, /usr/bin, or /usr/local/bin directory. The /sbin and /usr/sbin directories
contain administrative commands (some Linux systems don't put those directories in reg-
ular users’ paths). The last directory shown is the bin directory in the user’s home direc-
tory (/home/chris/bin).

Linux systems, although you may need to create that directory or add it to your PATH on other Linux systems. So,
as long as you add the command to your bin with execute permission, you can begin using it by simply typing the
command name at your shell prompt. To make commands available to all users, add them to /usr/local/bin.

70

Unlike some other operating systems, Linux does not, by default, check the current direc-
tory for an executable before searching the path. It immediately begins searching the path,
and executables in the current directory are run only if they are in the PATH variable or
you give their absolute (such as /home/chris/scriptx.sh) or relative (for example,
./scriptx.sh) location.

Chapter 3: Using the Shell

The path directory order is important. Directories are checked from left to right. So, in this
example, if there is a command called foo located in both the /usr/bin and /bin direc-
tories, the one in /usr/bin is executed. To have the other foo command run, you either
type the full path to the command or change your PATH variable. (Changing your PATH
and adding directories to it are described later in this chapter.)

Not all of the commands you run are located in directories in your PATH variable. Some
commands are built into the shell. Other commands can be overridden by creating aliases
that define any commands and options that you want the command to run. There are also
ways of defining a function that consists of a stored series of commands. Here is the order
in which the shell checks for the commands you type:

1. Aliases. These are names set by the alias command that represent a particular
command and a set of options. Type alias to see what aliases are set. Often,
aliases enable you to define a short name for a long, complicated command.

(I describe how to create your own aliases later in this chapter.)

2. Shell reserved word. These are words reserved by the shell for special use. Many
of these are words that you would use in programming-type functions, such as
do, while, case, and else. (I cover some of these reserved words in Chapter 7,
“Writing Simple Shell Scripts.”)

3. Function. This is a set of commands that is executed together within the
current shell.

4. Built-in command. This is a command built into the shell. As a result, there is no
representation of the command in the filesystem. Some of the most common com-
mands that you will use are shell built-in commands, such as cd (to change direc-
tories), echo (to output text to the screen), exit (to exit from a shell), £g (to
bring a command running in the background to the foreground), history (to see a
list of commands that were previously run), pwd (to list the present working direc-
tory), set (to set shell options), and type (to show the location of a command).

5. Filesystem command. This command is stored in and executed from the computer’s
filesystem. (These are the commands that are indicated by the value of the PATH
variable.)

To determine the location of a particular command, you can use the type command. (If
you are using a shell other than bash, use the which command instead.) For example, to
find out where the bash shell command is located, enter the following:

S type bash
bash is /bin/bash

Try these few words with the type command to see other locations of commands: which,
case, and return. If a command resides in several locations, you can add the -a option
to have all of the known locations of the command printed. For example, the command
type -a 1ls should show an aliased and filesystem location for the 1s command.

71

Part 1l: Becoming a Linux Power User

Tie

Sometimes, you run a command and receive an error message that the command was not found or that permission to
run the command was denied. If the command was not found, check that you spelled the command correctly and that

it is located in your PATH variable. If permission to run the command was denied, the command may be in the PATH
variable but may not be executable. Also remember that case is important, so typing CAT or Cat will not find the cat
command.

If a command is not in your PATH variable, you can use the locate command to try to
find it. Using locate, you can search any part of the system that is accessible to you.
(Some files are only accessible to the root user.) For example, if you wanted to find the loca-
tion of the chage command, you could enter the following:

$ locate chage

/usr/bin/chage

/usr/sbin/lchage
/usr/share/man/fr/manl/chage.1l.gz
/usr/share/man/it/manl/chage.l.g9z
/usr/share/man/ja/manl/chage.l.gz
/usr/share/man/manl/chage.l.9z
/usr/share/man/manl/lchage.l.gz
/usr/share/man/pl/manl/chage.1l.gz
/usr/share/man/ru/manl/chage.l.gz
/usr/share/man/sv/manl/chage.l.g9z
/usr/share/man/tr/manl/chage.l.9z

Notice that locate not only found the chage command, it also found the 1chage
command and a variety of man pages associated with chage for different languages. The
locate command looks all over your filesystem, not just in directories that contain com-
mands. (If locate does not find files recently added to your system, run updatedb as
root to update the locate database.)

In the coming chapters, you learn to use additional commands. For now, I want you to
become more familiar with how the shell itself works. So next I discuss features for recall-
ing commands, completing commands, using variables, and creating aliases.

Recalling Commands Using Command History

Being able to repeat a command you ran earlier in a shell session can be convenient. Recall-
ing a long and complex command line that you mistyped can save you some trouble. Fortu-
nately, some shell features enable you to recall previous command lines, edit those lines, or
complete a partially typed command line.

The shell history is a list of the commands that you have entered before. Using the his-
tory command in a bash shell, you can view your previous commands. Then using various

72

Chapter 3: Using the Shell

shell features, you can recall individual command lines from that list and change them
however you please.

The rest of this section describes how to do command-line editing, how to complete parts
of command lines, and how to recall and work with the history list.

Command-line editing

If you type something wrong on a command line, the bash shell ensures that you don't
have to delete the entire line and start over. Likewise, you can recall a previous command
line and change the elements to make a new command.

By default, the bash shell uses command-line editing that is based on the emacs text edi-
tor. (Type man emacs to read about it, if you care to do so.) If you are familiar with
emacs, you probably already know most of the keystrokes described here.

Tip

If you prefer the vi command for editing shell command lines, you can easily make that happen. Add the following
line to the .bashrc file in your home directory:

set -o vi

The next time you open a shell, you can use vi commands to edit your command lines.

To do the editing, you can use a combination of control keys, meta keys, and arrow keys.
For example, Ctrl+F means to hold down the Ctrl key, and type f. Alt+F means to hold down
the Alt key, and type f. (Instead of the Alt key, your keyboard may use a Meta key or the
Esc key. On a Windows keyboard, you can use the Windows key.)

To try out a bit of command-line editing, enter the following:

$ 1s /usr/bin | sort -f | less
This command lists the contents of the /usr/bin directory, sorts the contents in alpha-
betical order (regardless of case), and pipes the output to less. The less command dis-
plays the first page of output, after which you can go through the rest of the output a line
(press Enter) or a page (press spacebar) at a time. Simply press g when you are finished.

Now, suppose that you want to change /usr/bin to /bin. You can use the following steps
to change the command:

1. Press the up arrow (1) key. This displays the most recent command from your
shell history.

2. Press Ctrl+A. This moves the cursor to the beginning of the command line.

3. Press Ctrl+F or the right arrow (—) key. Repeat this command a few times to
position the cursor under the first slash (/).

4. Press Ctrl+D. Type this command four times to delete /usr from the line.

73

Part 1l: Becoming a Linux Power User

5. Press Enter. This executes the command line.

As you edit a command line, at any point you can type regular characters to add those
characters to the command line. The characters appear at the location of your text cursor.
You can use right — and left « arrows to move the cursor from one end to the other on the
command line. You can also press the up 1 and down | arrow keys to step through previous
commands in the history list to select a command line for editing. (See the section “Com-
mand-line recall” for details on how to recall commands from the history list.) You can use
many keystrokes to edit your command lines. Table 3.1 lists the keystrokes that you can
use to move around the command line.

TABLE 3.1 Keystrokes for Navigating Command Lines

Keystroke Full Name Meaning

Ctrl+F Character forward Go forward one character.

Ctrl+B Character backward Go backward one character.

Alt+F Word forward Go forward one word.

Alt+B Word backward Go backward one word.

Ctrl+A Beginning of line Go to the beginning of the current line.

Ctrl+E End of line Go to the end of the line.

Ctrl+L Clear screen Clear screen and leave line at the top of the screen.

The keystrokes in Table 3.2 can be used to edit command lines.

TABLE 3.2 Keystrokes for Editing Command Lines

Keystroke Full Name Meaning

Ctrl+D Delete current Delete the current character.

Backspace Delete previous Delete the previous character.

Ctrl+T Transpose character Switch positions of current and previous characters.

Alt+T Transpose words Switch positions of current and previous words.

Alt+U Uppercase word Change the current word to uppercase.

Alt+L Lowercase word Change the current word to lowercase.

Alt+C Capitalize word Change the current word to an initial capital.

Ctrl+V Insert special Add a special character. For example, to add a Tab char-
character acter, press Ctrl+V+Tab.

74

Chapter 3: Using the Shell

Use the keystrokes in Table 3.3 to cut and paste text on a command line.

TABLE 3.3 Keystrokes for Cutting and Pasting Text from within
Command Lines

Keystroke Full Name Meaning

Ctrl+K Cut end of line Cut text to the end of the line.

Ctrl+U Cut beginning of line Cut text to the beginning of the line.

Ctrl+W Cut previous word Cut the word located behind the cursor.
Alt+D Cut next word Cut the word following the cursor.

Ctrl+Y Paste recent text Paste most recently cut text.

Alt+Y Paste earlier text Rotate back to previously cut text and paste it.
Ctrl+C Delete whole line Delete the entire line.

Command-line completion

To save you a few keystrokes, the bash shell offers several different ways of completing
partially typed values. To attempt to complete a value, type the first few characters and
press Tab. Here are some of the values you can type partially from a bash shell:

Command, alias, or function If the text you type begins with reqular characters,
the shell tries to complete the text with a command, alias, or function name.

Variable If the text you type begins with a dollar sign ($), the shell completes the
text with a variable from the current shell.

Username If the text you type begins with a tilde (~), the shell completes the text
with a username. As a result, ~username indicates the home directory of the
named user.

Hostname If the text you type begins with the at symbol (@), the shell completes the
text with a hostname taken from the /etc/hosts file.

Tip

To add hostnames from an additional file, you can set the HOSTFILE variable to the name of that file. The file must
be in the same format as /etc/hosts.

Here are a few examples of command completion. (When you see <Tab>, it means to press
the Tab key on your keyboard.) Enter the following:

S echo $0S<Tab>
$ cd ~ro<Tab>
$ userm<Tab>

75

Part 1l: Becoming a Linux Power User

76

The first example causes $0S to expand to the SOSTYPE variable. In the next example,
~ro expands to the root user’s home directory (~root/). Next, userm expands to the
usermod command.

Pressing Tab twice offers some wonderful possibilities. Sometimes, several possible comple-
tions for the string of characters you have entered are available. In those cases, you can
check the possible ways that text can be expanded by pressing Tab twice at the point where
you want to do completion.

The following shows the result you would get if you checked for possible comple-
tions on SP:

S echo $P<Tab><Tab>
S$PATH $PPID $PS1 $PS2 $PS4 $PWD
$ echo $P

In this case, there are six possible variables that begin with $P. After possibilities are dis-
played, the original command line returns, ready for you to complete it as you choose. For
example, if you typed another P and hit Tab again, the command line would be completed
with $PPID (the only unique possibility).

Command-line recall

After you type a command, the entire command line is saved in your shell’s history list.
The list is stored in the current shell until you exit the shell. After that, it is written to a
history file, from which any command can be recalled to be run again in your next session.
After a command is recalled, you can modify the command line, as described earlier.

To view your history list, use the history command. Enter the command without options
or followed by a number to list that many of the most recent commands. For example:

$ history 8

382 date

383 1ls /usr/bin | sort -a | more

384 man sort

385 cd /usr/local/bin

386 man more

387 useradd -m /home/chris -u 101 chris
388 passwd chris

389 history 8

A number precedes each command line in the list. You can recall one of those commands
using an exclamation point (!). Keep in mind that when an exclamation point is used, the
command runs blind without presenting an opportunity to confirm the command you're
referencing. There are several ways to run a command immediately from this list, including
the following:

In Run command number. Replace the n with the number of the command line and
that line is run. For example, here’s how to repeat the date command shown as
command number 382 in the preceding history listing:

$ 1382

Chapter 3: Using the Shell

date
Fri Jun 29 15:47:57 EDT 2019

11—11 Run previous command. Runs the previous command line. Here’s how you would
immediately run that same date command:
$ 1
date
Fri Jun 29 15:53:27 EDT 2019

12string—? Run command containing string. This runs the most recent command that
contains a particular string of characters. For example, you can run the date
command again by just searching for part of that command line as follows:

$!?dat?

date
Fri Jun 29 16:04:18 EDT 2019

Instead of just running a history command line immediately, you can recall a particular
line and edit it. You can use the following keys or key combinations to do that, as shown in
Table 3.4.

Another way to work with your history list is to use the fc command. Type fc followed

by a history line number, and that command line is opened in a text editor (vi by default,
type :wq to save and exit or :q! to just exit if you are stuck in vi). Make the changes that
you want. When you exit the editor, the command runs. You can also give a range of line

TABLE 3.4 Keystrokes for Using Command History

Key(s) Function Name Description
Arrow Step Press the up and down arrow keys to step through
keys (1t and |) each command line in your history list to arrive at

the one you want. (Ctrl+P and Ctrl+N do the same
functions, respectively.)

Ctrl+R Reverse After you press these keys, you enter a search string
incremental search to do a reverse search. As you type the string,
a matching command line appears that you can
run or edit.
Ctrl+S Forward This is the same as the preceding function but for
incremental search forward search. (It may not work in all instances.)
Alt+P Reverse search After you press these keys, you enter a string to do

a reverse search. Type a string and press Enter to
see the most recent command line that includes
that string.

Alt+N Forward search This is the same as the preceding function but for
forward search. (It may not work in all instances.)

77

Part 1l: Becoming a Linux Power User

Norte

Some people disable the history feature for the root user by setting the HISTFILE shell variable to /dev/null
or simply leaving HISTSIZE blank. This prevents information about the root user’s activities from potentially being

numbers (for example, fc 100 105). All of the commands open in your text editor and
then run one after the other when you exit the editor.

After you close your shell, the history list is stored in the .bash history file in your
home directory. Up to 1,000 history commands are stored for you by default.

exploited. If you are an administrative user with root privileges, you may want to consider emptying your file upon
exiting as well for the same reasons. Also, because shell history is stored permanently when the shell exits prop-
erly, you can prevent storing a shell’s history by killing a shell. For example, to kill a shell with process ID 1234, type
kill -9 1234 from any shell.

78

Connecting and Expanding Commands

A truly powerful feature of the shell is the capability to redirect the input and output

of commands to and from other commands and files. To allow commands to be strung
together, the shell uses metacharacters. A metacharacter is a typed character that has spe-
cial meaning to the shell for connecting commands or requesting expansion.

Metacharacters include the pipe character (|), ampersand (&), semicolon (;), right parenthe-
sis ()), left parenthesis ((), less than sign (<), and greater than sign (>). The next sections
describe how to use metacharacters on the command line to change how commands behave.

Piping between commands

The pipe (|) metacharacter connects the output from one command to the input of another
command. This lets you have one command work on some data and then have the next
command deal with the results. Here is an example of a command line that includes pipes:

$ cat /etc/passwd | sort | less

This command lists the contents of the /etc/passwd file and pipes the output to the
sort command. The sort command takes the usernames that begin each line of the /
etc/passwd file, sorts them alphabetically, and pipes the output to the less command
(to page through the output).

Pipes are an excellent illustration of how UNIX, the predecessor of Linux, was created as an
operating system made up of building blocks. A standard practice in UNIX was to connect
utilities in different ways to get different jobs done. For example, before the days of graphical
word processors, users created plain-text files that included macros to indicate formatting. To
see how the document really appeared, they would use a command such as the following:

$ gunzip < /usr/share/man/manl/grep.l.gz | nroff -c¢ -man | less

Chapter 3: Using the Shell

In this example, the contents of the grep man page (grep.1.gz) are directed to the gun-
zip command to be unzipped. The output from gunzip is piped to the nroff command to
format the man page using the manual macro (-man). To display the output, it is piped to
the less command. Because the file being displayed is in plain text, you could have sub-
stituted any number of options to work with the text before displaying it. You could sort
the contents, change or delete some of the content, or bring in text from other documents.
The key is that, instead of all of those features being in one program, you get results from
piping and redirecting input and output between multiple commands.

Sequential commands

Sometimes, you may want a sequence of commands to run, with one command completing
before the next command begins. You can do this by typing several commands on the same
command line and separating them with semicolons (;):

$ date ; troff -me verylargedocument | lpr ; date

In this example, I was formatting a huge document and wanted to know how long it would
take. The first command (date) showed the date and time before the formatting started.
The troff command formatted the document and then piped the output to the printer.
When the formatting was finished, the date and time were printed again (so I knew how
long the troff command took to complete).

Another useful command to add to the end of a long command line is mail. You could add
the following to the end of a command line:

; mail -s "Finished the long command" chris@example.com

Then, for example, a mail message is sent to the user you choose after the command
completes.

Background commands

Some commands can take a while to complete. Sometimes, you may not want to tie up your
shell waiting for a command to finish. In those cases, you can have the commands run in
the background by using the ampersand (&).

Text formatting commands (such as nroff and troff, described earlier) are examples of
commands that can be run in the background to format a large document. You also might
want to create your own shell scripts that run in the background to check continuously for
certain events to occur, such as the hard disk filling up or particular users logging in.

The following is an example of a command being run in the background:
$ troff -me verylargedocument | lpr &

Don't close the shell until the process is completed or that kills the process. Other ways
to manage background and foreground processes are described in Chapter 6, “Managing
Running Processes.”

79

Part 1l: Becoming a Linux Power User

80

Expanding commands

With command substitution, you can have the output of a command interpreted by the
shell instead of by the command itself. In this way, you can have the standard output of a
command become an argument for another command. The two forms of command substitu-
tion are $(command) and “command (backticks, not single quotes).

The command in this case can include options, metacharacters, and arguments. The follow-
ing is an example of using command substitution:

$ vi $(find /home | grep xyzzy)

In this example, the command substitution is done before the vi command is run. First,
the find command starts at the /home directory and prints out all of the files and direc-
tories below that point in the filesystem. The output is piped to the grep command, which
filters out all files except for those that include the string xyzzy in the filename. Finally,
the vi command opens all filenames for editing (one at a time) that include xyzzy. (If you
run this and are not familiar with vi, you can type :q! to exit the file.)

This particular example is useful if you want to edit a file for which you know the name but
not the location. As long as the string is uncommon, you can find and open every instance
of a filename existing beneath a point you choose in the filesystem. (In other words, don’t
use grep from the root filesystem or you'll match and try to edit several thousand files.)

Expanding arithmetic expressions

Sometimes, you want to pass arithmetic results to a command. There are two forms that
you can use to expand an arithmetic expression and pass it to the shell: $ [expression]
or $(expression). The following is an example:

S echo "I am $[2020 - 1957] years old."
I am 63 years old.

The shell interprets the arithmetic expression first (2020 - 1957) and then passes that
information to the echo command. The echo command displays the text with the results
of the arithmetic (63) inserted.

Here’s an example of the other form:

S echo "There are $(ls | wc -w) files in this directory."
There are 14 files in this directory.

This lists the contents of the current directory (1s) and runs the word count command to
count the number of files found (wc -w). The resulting number (14, in this case) is echoed
back with the rest of the sentence shown.

Expanding variables

Variables that store information within the shell can be expanded using the dollar sign (3)
metacharacter. When you expand an environment variable on a command line, the value of
the variable is printed instead of the variable name itself, as follows:

$ 1ls -1 $BASH
-YwXr-xr-x. 1 root root 1219248 Oct 12 17:59 /usr/bin/bash

Chapter 3: Using the Shell

Using $BASH as an argument to 1s -1 causes a long listing of the bash command to
be printed.

Using Shell Variables

The shell itself stores information that may be useful to the user’s shell session in what are
called variables. Examples of variables include $SHELL (which identifies the shell you are
using), $PS1 (which defines your shell prompt), and $SMAIL (which identifies the location
of your user’s mailbox).

You can see all variables set for your current shell by typing the set command. A subset of
your local variables is referred to as environment variables. Environment variables are var-
iables that are exported to any new shells opened from the current shell. Type env to see
environment variables.

You can type echo $VALUE, where VALUE is replaced by the name of a particular environ-
ment variable you want to list. And because there are always multiple ways to do anything

in Linux, you can also type declare to get a list of the current environment variables and
their values along with a list of shell functions.

Besides those that you set yourself, system files set variables that store things such as
locations of configuration files, mailboxes, and path directories. They can also store values
for your shell prompts, the size of your history list, and type of operating system. You can
refer to the value of any of those variables by preceding it with a dollar sign ($) and plac-
ing it anywhere on a command line. For example:

$ echo $USER
chris

This command prints the value of the USER variable, which holds your username (chris).
Substitute any other value for USER to print its value instead.

When you start a shell (by logging in via a virtual console or opening a Terminal
window), many environment variables are already set. Table 3.5 shows some variables
that are either set when you use a bash shell or that can be set by you to use with dif-
ferent features.

Creating and using aliases

Using the alias command, you can effectively create a shortcut to any command and
options that you want to run later. You can add and list aliases with the alias command.
Consider the following examples of using alias from a bash shell:

$ alias p='pwd ; ls -CF'
$ alias rm='rm -i'

In the first example, the letter p is assigned to run the command pwd and then to run
1ls -CF to print the current working directory and list its contents in column form.

81

Part 1l: Becoming a Linux Power User

82

TABLE 3.5 Common Shell Environment Variables

Variable

Description

BASH

BASH VERSION

EUID

FCEDIT

HISTFILE

HISTFILESIZE

HISTCMD
HOME

HOSTTYPE

MAIL

OLDPWD

OSTYPE

PATH

PPID

This contains the full pathname of the bash command. This is usually
/bin/bash.

This is a number representing the current version of the
bash command.

This is the effective user ID number of the current user. It is assigned
when the shell starts, based on the user’s entry in the /etc/passwd file.

If set, this variable indicates the text editor used by the £c command
to edit history commands. If this variable isnt set, the vi
command is used.

This is the location of your history file. It is typically located at SHOME/.
bash history.

This is the number of history entries that can be stored. After this
number is reached, the oldest commands are discarded. The default
value is 1000.

This returns the number of the current command in the history list.

This is your home directory. It is your current working directory each
time you log in or type the cd command with any options.

This is a value that describes the computer architecture on which
the Linux system is running. For Intel-compatible PCs, the value is
1386, 1486, 1586, 1686, or something like 1386-1inux. For AMD 64-bit
machines, the value is x86_64.

This is the location of your mailbox file. The file is typically your user-
name in the /var/spool/mail directory.

This is the directory that was the working directory before you changed
to the current working directory.

This name identifies the current operating system. For Fedora Linux,
the OSTYPE value is either 1inux or linux-gnu, depending on the
type of shell you are using. (Bash can run on other operating sys-
tems as well.)

This is the colon-separated list of directories used to find commands
that you type. The default value for regular users varies for different
distributions but typically includes the following: /bin:/usr/bin:/
usr/local/bin:/usr/bin/X11:/usr/X11R6/bin:~/bin. You need to
type the full path or a relative path to a command that you want to run
which is not in your PATH. For the root user, the value also includes /
sbin, /usr/sbin, and /usr/local/sbin.

This is the process ID of the command that started the current shell (for
example, the Terminal window containing the shell).

Chapter 3: Using the Shell

Variable Description

PROMPT _COMMAND This can be set to a command name that is run each time before your
shell prompt is displayed. Setting PROMPT COMMAND=date lists the
current date/time before the prompt appears.

PS1 This sets the value of your shell prompt. There are many items that you
can read into your prompt (date, time, username, hostname, and so on).
Sometimes a command requires additional prompts, which you can set
with the variables PS2, PS3, and so on.

PWD This is the directory that is assigned as your current directory. This value
changes each time you change directories using the cd command.

RANDOM Accessing this variable causes a random number to be generated. The
number is between 0 and 99999.

SECONDS This is the number of seconds since the time the shell was started.

SHLVL This is the number of shell levels associated with the current shell

session. When you log in to the shell, the SHLVL is 1. Each time you
start a new bash command (by, for example, using su to become a new
user, or by simply typing bash), this number is incremented.

TMOUT This can be set to a number representing the number of seconds the
shell can be idle without receiving input. After the number of seconds
is reached, the shell exits. This security feature makes it less likely for
unattended shells to be accessed by unauthorized people. (This must
be set in the login shell for it actually to cause the shell to log out the
user.)

The second example runs the rm command with the -i option each time you type

rm. (This is an alias that is often set automatically for the root user. Instead of just
removing files, you are prompted for each individual file removal. This prevents you from
automatically removing all of the files in a directory by mistakenly typing something
such as rm *.)

While you are in the shell, you can check which aliases are set by typing the alias
command. If you want to remove an alias, use unalias. (Remember that if the alias
is set in a configuration file, it will be set again when you open another shell.)

Exiting the shell

To exit the shell when you are finished, type exit or press Ctrl+D. If you go to the shell
from a Terminal window and you are using the original shell from that window, exiting
causes the Terminal window to close. If you are at a virtual console, the shell exits and
returns you to a login prompt.

83

Part 1l: Becoming a Linux Power User

84

If you have multiple shells open from the same shell session, exiting a shell simply returns
you to the shell that launched the current shell. For example, the su command opens a
shell as a new user. Exiting from that shell simply returns you to the original shell.

Creating Your Shell Environment

You can tune your shell to help you work more efficiently. You can set aliases to create
shortcuts to your favorite command lines and environment variables to store bits of infor-
mation. By adding those settings to shell configuration files, you can have the settings
available every time you open a shell.

Configuring your shell

Several configuration files support how your shell behaves. Some of the files are executed
for every user and every shell, whereas others are specific to the user who creates the con-
figuration file. Table 3.6 shows the files that are of interest to anyone using the bash shell
in Linux. (Notice the use of ~ in the filenames to indicate that the file is located in each
user’s home directory.)

To change the /etc/profile or /etc/bashrc files, you must be the root user. It is better
to create an /etc/profile.d/custom.sh file to add system-wide settings instead of

TABLE 3.6 Bash Configuration Files

File Description

/etc/profile This sets up user environment information for every user. It is executed
when you first log in. This file provides values for your path in addition
to setting environment variables for such things as the location of your
mailbox and the size of your history files. Finally, /etc/profile gathers
shell settings from configuration files in the /etc/profile.d directory.

/etc/bashrc This executes for every user who runs the bash shell each time a bash
shell is opened. It sets the default prompt and may add one or more
aliases. Values in this file can be overridden by information in each user's

~/.bashrec file.
~/. This is used by each user to enter information that is specific to his or
bash_profile her use of the shell. It is executed only once—when the user logs in.

By default, it sets a few environment variables and executes the user’s
.bashrc file. This is a good place to add environment variables because,
once set, they are inherited by future shells.

~/.bashrc This contains the information that is specific to your bash shells. It is read
when you log in and also each time you open a new bash shell. This is the
best location to add aliases so that your shell picks them up.

~/. This executes each time you log out (exit the last bash shell).
bash logout

Chapter 3: Using the Shell

editing those files directly, however. Users can change the information in the SHOME/
.bash profile, $SHOME/.bashrc, and $SHOME/.bash logout files in their own home
directories.

Until you learn to use the vi editor, described in Chapter 5, “Working with Text Files,” you
can use a simple editor called nano to edit plain-text files. For example, enter the follow-
ing to edit and add stuff to your $HOME/.bashrc file:

$ nano $HOME/.bashrc

With the file open in nano, move the cursor down to the bottom of the file (using the
down arrow key). Type the line you want (for example, you could type alias d='date
+%D"). To save the file, press Ctrl+0 (the letter 0); to quit, press Ctrl+X. The next time you
log in or open a new shell, you can use the new alias (in this case, just type d). To have
the new information you just added to the file available from the current shell, type the
following:

$ source S$HOME/.bashrc
$ d
06/29/19

The following sections provide ideas about items to add to your shell configuration files. In
most cases, you add these values to the .bashrc file in your home directory. However, if
you administer a system, you may want to set some of these values as defaults for all your
Linux system'’s users.

Setting your prompt

Your prompt consists of a set of characters that appear each time the shell is ready to
accept a command. The PS1 environment variable sets what the prompt contains and is
what you will interact with most of the time. If your shell requires additional input, it uses
the values of PS2, PS3, and PSs4.

When your Linux system is installed, often a prompt is set to contain more than just a
dollar sign or pound sign. For example, in Fedora or Red Hat Enterprise Linux, your prompt
is set to include the following information: your username, your hostname, and the base
name of your current working directory. That information is surrounded by brackets and
followed by a dollar sign (for reqular users) or a pound sign (for the root user). The follow-
ing is an example of that prompt:

[chris@emyhost binl$

If you change directories, the bin name would change to the name of the new directory.
Likewise, if you were to log in as a different user or to a different host, that information
would change.

You can use several special characters (indicated by adding a backslash to a variety of
letters) to include different information in your prompt. Special characters can be used to
output your Terminal number, the date, and the time as well as other pieces of information.
Table 3.7 provides some examples (you can find more on the bash man page).

85

Part 1l: Becoming a Linux Power User

TABLE 3.7 Characters to Add Information to Bash Prompt

Special Character ~ Description

\! This shows the current command history number. This includes all previous
commands stored for your username.

\# This shows the command number of the current command. This includes only
the commands for the active shell.

\$ This shows the user prompt ($) or root prompt (#), depending on which type
of user you are.

\W This shows only the current working directory base name. For example,
if the current working directory was /var/spool/mail, this value simply
appears asmail.

\ [This precedes a sequence of nonprinting characters. This can be used to
add a Terminal control sequence into the prompt for such things as changing
colors, adding blink effects, or making characters bold. (Your Terminal deter-
mines the exact sequences available.)

\] This follows a sequence of nonprinting characters.

\\ This shows a backslash.

\d This displays the day name, month, and day number of the current date, for
example, Sat Jan 23.

\h This shows the hostname of the computer running the shell.

\n This causes a newline to occur.

\nnn This shows the character that relates to the octal number replacing nnn.

\s This displays the current shell name. For the bash shell, the value
would be bash.

\t This prints the current time in hours, minutes, and seconds, for exam-
ple, 10:14:39.

\u This prints your current username.

\w This displays the full path to the current working directory.

Tie

If you are setting your prompt temporarily by typing at the shell, you should put the value of PS1 in quotes. For exam-

ple, you could type export PS1=""[\t \wl\$ ' to see a prompt that looks like this:
[20:26:32 /var/spoolls.

To make a change to your prompt permanent, add the value of PS1 to your .bashrc
file in your home directory (assuming that you are using the bash shell). There may
already be a PS1 value in that file, which you can modify. Refer to the Bash Prompt HOWTO

86

Chapter 3: Using the Shell

(http://www.t1ldp.org/HOWTO/Bash-Prompt-HOWTO) for information on changing colors, com-
mands, and other features of your bash shell prompt.

Adding environment variables

You might want to consider adding a few environment variables to your .bashrc file.
These can help make working with the shell more efficient and effective:

TMOUT This sets how long the shell can be inactive before bash automatically exits.
The value is the number of seconds for which the shell has not received input. This
can be a nice security feature, in case you leave your desk while you are still logged
in to Linux. To prevent being logged off while you are working, you may want to set
the value to something like TMOUT=1800 (to allow 30 minutes of idle time). You can
use any Terminal session to close the current shell after a set number of seconds, for
example, TMOUT=30.

PATH As described earlier, the PATH variable sets the directories that are searched for
the commands that you use. If you often use directories of commands that are not in
your path, you can permanently add them. To do this, add a PATH variable to your
.bashrc file. For example, to add a directory called /getstuff/bin, add the
following:

PATH=SPATH: /getstuff/bin ; export PATH

This example first reads all of the current path directories into the new PATH
($PATH), adds the /getstuff/bin directory, and then exports the new PATH.

CauTionN

Some people add the current directory to their PATH by adding a directory identified simply as a dot (.), as follows:
PATH=. :SPATH ; export PATH

This enables you to run commands in your current directory before evaluating any other command in the path (which

people may be used to if they have used DOS). However, the security risk with this procedure is that you could be in a
directory that contains a command that you don’t intend to run from that directory. For example, a malicious person
could put an 1s command in a directory that, instead of listing the content of your directory, does something devi-
ous. Because of this, the practice of adding the dot to your path is highly discouraged.

WHATEVER You can create your own environment variables to provide shortcuts in
your work. Choose any name that is not being used and assign a useful value to it.
For example, if you do lots of work with files in the /work/time/files/info/
memos directory, you could set the following variable:

M=/work/time/files/info/memos ; export M

You could make that your current directory by typing cd $M. You could run a pro-
gram from that directory called hotdog by typing $M/hotdog. You could edit a
file from there called bun by typing vi $M/bun.

87

http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO

Part 1l: Becoming a Linux Power User

88

Getting Information about Commands

When you first start using the shell, it can be intimidating. All that you see is a prompt.
How do you know which commands are available, which options they use, or how to use
advanced features? Fortunately, lots of help is available. Here are some places that you can
look to supplement what you learn in this chapter:

B Check the PATH. Type echo $PATH. You see a list of the directories containing
commands that are immediately accessible to you. Listing the contents of those
directories displays most standard Linux commands. For example:

$ 1ls /bin

arch dd fusermount loadkeys mv

awk df gawk login nano

basename dmesg gettext 1s netstat

bash dnsdomainname grep 1sblk nice

cat domainname gtar lscgroup nisdomainname
chgrp echo gunzip lssubsys ping

chmod ed gzip mail pingé

chown egrep hostname mailx ps

cp env ipcalc mkdir pwd

cpio ex kbd mode mknod readlink

csh false keyctl mktemp red

cut fgrep kill more redhat 1lsb init
dash find link mount rm

date findmnt 1In mountpoint rmdir

B Use the help command. Some commands are built into the shell, so they do not
appear in a directory. The help command lists those commands and shows options
available with each of them. (Enter help | less to page through the list.) For help
with a particular built-in command, enter help command, replacing command with
the name that interests you. The help command works with the bash shell only.

B Use --help with the command. Many commands include a --help option that
you can use to get information about how the command is used. For example, if you
enter date --help | less, the output shows not only options, but also time
formats that you can use with the date command. Other commands simply use a
-h option, like fdisk -h.

Chapter 3: Using the Shell

B Use the info command. The info command is another tool for displaying infor-
mation about commands from the shell. The info command can move among a
hierarchy of nodes to find information about commands and other items. Not all
commands have information available in the info database, but sometimes more
information can be found there than on a man page.

B Use the man command. To learn more about a particular command, enter man
command. (Replace command with the command name you want.) A description of
the command and its options appears on the screen.

Man pages are the most common means of getting information about commands as well as
other basic components of a Linux system. Each man page falls into one of the categories
listed in Table 3.8. As a regular user, you will be most interested in man pages in section 1.
As a system administrator, you will also be interested in sections 5 and 8, and occasionally
section 4. Programmers will be interested in section 2 and 3 man pages.

TABLE 3.8 Manual Page Sections

Section Number ~ Section Name Description

1 User Commands Commands that can be run from the shell by a
regular user (typically no administrative privilege
is needed)

2 System Calls Programming functions used within an application

to make calls to the kernel

3 C Library Functions Programming functions that provide interfaces to
specific programming libraries (such as those for
certain graphical interfaces or other libraries that
operate in user space)

4 Devices and Filesystem nodes that represent hardware devices
Special Files (such as Terminals or CD drives) or software devices
(such as random number generators)
5 File Formats and Types of files (such as a graphics or word processing
Conventions file) or specific configuration files (such as the
passwd or group file)
6 Games Games available on the system
Miscellaneous Overviews of topics such as protocols, filesystems,
character set standards, and so on
8 System Administration ~ Commands that require root or other administrative
Tools and Daemons privileges to use

89

Part 1l: Becoming a Linux Power User

[\ [1)

Options to the man command enable you to search the man page database or display man
pages on the screen. Here are some examples of man commands and options:

$ man -k passwd

passwd (1) - update user's authentication tokens
passwd (5) - password file

$ man passwd

$ man 5 passwd

Using the -k option, you can search the name and summary sections of all man pages
installed on the system. There are about a dozen man pages that include “passwd” in the
name or description of a command.

If man -k displays no output, it may be that the man page database has not been initialized. Type mandb as root
to initialize the man page database.

90

Let’s say that the two man pages in which I am interested are the passwd command (in
section 1 of the man pages) and the passwd file (in section 5) man pages. Because just
typing man passwd displays the section 1 page, I need to request explicitly the section 5
man page if I want to see that instead (man 5 passwd).

While you are displaying a man page, you can view different parts of the file using Page
Down and Page Up keys (to move a page at a time). Use the Enter key or up and down
arrows to move a line at a time. Press a forward slash (/) and type a term to search the
document for that term. Press n to repeat the search forward or N to repeat the search
backward. To quit the man page, type q.

Summary

To become an expert Linux user, you must be able to use the shell to type commands. This
chapter focuses on the bash shell, which is the one that is most commonly used with Linux
systems. You learned how commands are structured and how many special features, such as
variables, command completion, and aliases, are used.

The next chapter describes how to move around the Linux filesystem from the shell command line.

Exercises

Use these exercises to test your knowledge of using the shell. These tasks assume that you
are running a Fedora or Red Hat Enterprise Linux system (although some tasks work on
other Linux systems as well). If you are stuck, solutions to the tasks are shown in Appendix
B (although in Linux, there are often multiple ways to complete a task).

Chapter 3: Using the Shell

From your desktop, switch to the third virtual console and log in to your user
account. Run a few commands. Then exit the shell and return to the desktop.

Open a Terminal window and change the font color to red and the background
to yellow.

3. Find the location of the mount command and the tracepath man page.

10.

Type the following three commands, and then recall and change those commands
as described:

$ cat /etc/passwd

$ ls $HOME

$ date

a. Use the command-line recall feature to recall the cat command and change /
etc/passwd to /etc/group.

b. Recall the 1s command, determine how to list files by time (using the man
page), and add that option to the 1s $HOME command line.

c. Add format indicators to the date command to display the date output as
month/day/year.

Run the following command, typing as few characters as possible (using tab
completion):

basename /usr/share/doc/

Use the cat command to list the contents of the /etc/services file and pipe
those contents to the less command so that you can page through it (press g to
quit when you are finished).

Run the date command in such a way that the output from that command pro-
duces the current day, month, date, and year. Have that read into another
command line, resulting in text that appears like the following (your date, of
course, will be different): Today is Thursday, December 19, 2019.

Using variables, find out what your hostname, username, shell, and home direc-
tories are currently set to.

Create an alias called mypass that displays the contents of the /etc/passwd file
on your screen in such a way that it is available every time you log in or open a
new shell from your user account.

Display the man page for the mount system call.

91

CHAPTER

Moving Around the Filesystem

IN THIS CHAPTER

Learning about the Linux filesystem

Listing file and directory attributes

Making files and directories

Listing and changing permission and ownership

Making copies and moving files

In fact, one of the defining properties of the UNIX systems on which Linux is based is that
nearly everything you need to identify on your system (data, commands, symbolic links,
devices, and directories) is represented by items in the filesystems. Knowing where things are and

understanding how to get around the filesystem from the shell are critical skills in Linux.

The Linux filesystem is the structure in which all of the information on your computer is stored.

In Linux, files are organized within a hierarchy of directories. Each directory can contain files as
well as other directories. You can refer to any file or directory using either a full path (for example, /
home/joe/myfile.txt) or a relative path (for example, if /home/joe were your current directory,
you could simply refer to the file as myfile.txt).

If you were to map out the files and directories in Linux, it would look like an upside-down tree. At
the top is the root directory (not to be confused with the root user), which is represented by a single
slash (/). Below that is a set of common directories in the Linux system, such as bin, dev, home,
lib, and tmp, to name a few. Each of those directories, as well as directories added to the root direc-
tory, can contain subdirectories.

Figure 4.1 illustrates how the Linux filesystem is organized as a hierarchy. To demonstrate how
directories are connected, the figure shows a /home directory that contains a subdirectory for
the user joe. Within the joe directory are Desktop, Documents, and other subdirectories. To
refer to a file called memol.doc in the memos directory, you can type the full path of /home/
joe/Documents/memos/memol.doc. If your current directory is /home/joe/, refer to the file
as Documents/memos/memol.doc.

93

Part 1l: Becoming a Linux Power User

94

FIGURE 4.1

The Linux filesystem is organized as a hierarchy of directories.

boot home media mnt proc shin tmp var

joe

Desktop Documents Downloads Music Pictures

— |

memos

memo1.doc

plans projects

Some of these Linux directories may interest you:

/bin
/boot

/dev

/etc

/home

/media

/1lib

/mnt

/misc

/opt

Contains common Linux user commands, such as 1s, sort, date, and chmod.

Has the bootable Linux kernel, initial RAM disk, and boot loader configuration
files (GRUB).

Contains files representing access points to devices on your systems. These
include terminal devices (tty*), hard disks (hd* or sd*), RAM (ram*), and CD-ROM
(cd*). Users can access these devices directly through these device files; however,
applications often hide the actual device names to end users.

Contains administrative configuration files. Most of these files are plain-text files
that, given the user has proper permission, can be edited with any text editor.

Contains directories assigned to each regular user with a login account. (The root
user is an exception, using /root as his or her home directory.)

Provides a standard location for automounting devices (removable media in par-
ticular). If the medium has a volume name, that name is typically used as the mount
point. For example, a USB drive with a volume name of myusb would be mounted
on /media/myusb.

Contains shared libraries needed by applications in /bin and /sbin to boot

the system.

A common mount point for many devices before it was supplanted by the stan-
dard /media directory. Some bootable Linux systems still use this directory to
mount hard disk partitions and remote filesystems. Many people still use this
directory to temporarily mount local or remote filesystems, which are not mounted
permanently.

A directory sometimes used to automount filesystems upon request.

Directory structure available to store add-on application software.

Chapter 4: Moving Around the Filesystem

/proc Contains information about system resources.

/root Represents the root user's home directory. The home directory for root does not
reside beneath /home for security reasons.

/sbin Contains administrative commands and daemon processes.

/sys Contains parameters for such things as tuning block storage and
managing cgroups.

/tmp Contains temporary files used by applications.

/usr Contains user documentation, games, graphical files (X11), libraries (1ib), and a

variety of other commands and files that are not needed during the boot process.
The /usr directory is meant for files that don't change after installation (in theory,
/usr could be mounted read-only).

/var Contains directories of data used by various applications. In particular, this is
where you would place files that you share as an FTP server (/var/ftp) or a web
server (/var/www). It also contains all system log files (/var/log) and spool files in
/var/spool (such as mail, cups, and news). The /var directory contains directories
and files that are meant to change often. On server computers, it is common to create
the /var directory as a separate filesystem, using a filesystem type that can be
easily expanded.

The filesystems in the DOS or Microsoft Windows operating systems differ from Linux’s file
structure, as the sidebar “Linux Filesystems versus Windows-Based Filesystems” explains.

Linux Filesystems versus Windows-Based
Filesystems

Although similar in many ways, the Linux filesystem has some striking differences when compared to
filesystems used in MS-DOS and Windows operating systems. Here are a few of these differences:

B |[n MS-DOS and Windows filesystems, drive letters represent different storage devices. In
Linux, all storage devices are connected to the filesystem hierarchy. So, the fact that all of
/usr may be on a separate hard disk or that /mnt/remotel is a filesystem from another
computer is invisible to the user.

B Slashes, rather than backslashes, are used to separate directory names in Linux. So
C:\home\joe in a Microsoft system is /home/joe in a Linux system.

B Filenames almost always have suffixes in DOS (such as .txt for text files or .docx for word-
processing files). Although at times you can use that convention in Linux, three-character
suffixes have no required meaning in Linux. They can be useful for identifying a file type.
Many Linux applications and desktop environments use file suffixes to determine the con-
tents of a file. In Linux, however, DOS command extensions such as .com, .exe, and .bat
don't necessarily signify an executable. (Permission flags make Linux files executable.)

B Every file and directory in a Linux system has permissions and ownership associated with it.
Security varies among Microsoft systems. Because DOS and Microsoft Windows began as
single-user systems, file ownership was not built into those systems when they were designed.
Later releases added features such as file and folder attributes to address this problem.

95

Part 1l: Becoming a Linux Power User

96

Using Basic Filesystem Commands

I want to introduce you to a few simple commands for getting around the filesystem to
start out. If you want to follow along, log in and open a shell. When you log in to a Linux
system and open a shell, you are placed in your home directory. As a Linux user, most of
the files you save and work with will probably be in that directory or in subdirectories that
you create. Table 4.1 shows commands to create and use files and directories.

TABLE 41 Commands to Create and Use Files

Command Result

cd Changes to another directory

pwd Prints the name of the current (or present) working directory
mkdir Creates a directory

chmod Changes the permission on a file or directory

1s Lists the contents of a directory

One of the most basic commands that you use from the shell is cd. The ¢d command can
be used with no options (to take you to your home directory) or with full or relative paths.
Consider the following commands:

$ e¢d /usr/share/
$ pwd
/usr/share

$ cd doc

$ pwd
/usr/share/doc

S cd

$ pwd
/home/chris

The /usr/share option represents the absolute path to a directory on the system. Because
it begins with a slash (/), this path tells the shell to start at the root of the filesystem and
take you to the share directory that exists in the usr directory. The doc option to the
cd command looks for a directory called doc that is relative to the current directory. So
that command made /usr/share/doc your current directory.

After that, by typing cd alone, you are returned to your home directory. If you ever
wonder where you are in the filesystem, the pwd command can help you. Here are a few
other interesting cd command options:

$ ecd ~
$ pwd
/home/chris

Chapter 4: Moving Around the Filesystem

$ e¢d ~/Music

$ pwd
/home/chris/Music
$ed ../../../usr
$ pwd
/usr

The tilde (~) represents your home directory. So cd ~ takes you there. You can use the
tilde to refer to directories relative to your home directory as well, such as /home/chris/
Music with ~/Music. Typing a name as an option takes you to a directory below the
current directory, but you can use two dots (..) to go to a directory above the current
directory. The example shown takes you up three directory levels (to /), and then takes
you into the /usr directory.

The following steps lead you through the process of creating directories within your home
directory and moving among your directories, with a mention of setting appropriate file
permissions:

1. Go to your home directory. To do this, simply type ed in a shell and press Enter.
(For other ways of referring to your home directory, see the sidebar “Identifying
Directories.”)

2. To make sure that you're in your home directory, type pwd. When I do this, I get
the following response (yours will reflect your home directory):

$ pwd
/home/joe

3. Create a new directory called test in your home directory, as follows:
$ mkdir test

4. Check the permissions of the directory:

$ 1ls -1d test
drwxr-xr-x 2 joe sales 1024 Jan 24 12:17 test

This listing shows that test is a directory (d). The d is followed by the permis-
sions (rwxr-xr-x), which are explained later in the section “Understanding File
Permissions and Ownership.” The rest of the information indicates the owner (joe),
the group (sales), and the date that the files in the directory were most recently
modified (Jan 24 at 12:17 p.m.).

Note
When you add a new user in Fedora and Red Hat Enterprise Linux, the user is assigned to a group of the same name

by default. For example, in the preceding text, the user joe would be assigned to the group joe. This approach to
assigning groups is referred to as the user private group scheme.

For now, enter the following:
S chmod 700 test

97

Part 1l: Becoming a Linux Power User

98

This step changes the permissions of the directory to give you complete access and
everyone else no access at all. (The new permissions should read rwx------)

5. Make the test directory your current directory as follows:

S cd test

$ pwd
/home/joe/test

If you followed along, at this point a subdirectory of your home directory called test is
your current working directory. You can create files and directories in the test directory
along with the descriptions in the rest of this chapter.

Using Metacharacters and Operators

Whether you are listing, moving, copying, removing, or otherwise acting on files in your
Linux system, certain special characters, referred to as metacharacters and operators, help
you to work with files more efficiently. Metacharacters can help you match one or more files
without completely typing each filename. Operators enable you to direct information from
one command or file to another command or file.

Using file-matching metacharacters

To save you some keystrokes and enable you to refer easily to a group of files, the bash shell
lets you use metacharacters. Anytime you need to refer to a file or directory, such as to
list, open, or remove it, you can use metacharacters to match the files you want. Here are
some useful metacharacters for matching filenames:

* Matches any number of characters.
? Matches any one character.

[...]1 Matches any one of the characters between the brackets, which can include a hyphen-
separated range of letters or numbers.

Try out some of these file-matching metacharacters by first going to an empty direc-
tory (such as the test directory described in the previous section) and creating some
empty files:

$ touch apple banana grape grapefruit watermelon

The touch command creates empty files. The commands that follow show you how to use
shell metacharacters with the 1s command to match filenames. Try the following com-
mands to see whether you get the same responses:

$ 1s a*

apple

$ 1ls g*

grape grapefruit
$ 1ls g*t

Chapter 4: Moving Around the Filesystem

grapefruit

S 1ls *e*

apple grape grapefruit watermelon
$ 1ls *n*

banana watermelon

The first example matches any file that begins with a (apple). The next example matches
any files that begin with g (grape, grapefruit). Next, files beginning with g and
ending in t are matched (grapefruit). Next, any file that contains e in the name is
matched (apple, grape, grapefruit, watermelon). Finally, any file that contains n is
matched (banana, watermelon).

Here are a few examples of pattern matching with the question mark (?):

S 1ls ???%e
apple grape
S 1ls g???e*
grape grapefruit

The first example matches any five-character file that ends in e (apple, grape). The
second matches any file that begins with g and has e as its fifth character (grape,
grapefruit).

The following examples use braces to do pattern matching:

$ 1s [abw] *

apple banana watermelon
$ 1ls [agw] * [ne]

apple grape watermelon

In the first example, any file beginning with a, b, or w is matched. In the second, any

file that begins with a, g, or w and also ends with either n or e is matched. You can also
include ranges within brackets. For example:

$ 1s [a-gl*
apple banana grape grapefruit

Here, any filenames beginning with a letter from a through g are matched.

Using file-redirection metacharacters

Commands receive data from standard input and send it to standard output. Using pipes
(described earlier), you can direct standard output from one command to the standard
input of another. With files, you can use less than (<) and greater than (>) signs to direct
data to and from files. Here are the file-redirection characters:

< Directs the contents of a file to the command. In most cases, this is the default action
expected by the command and the use of the character is optional; using less bigfile
is the same as less < bigfile.

> Directs the standard output of a command to a file. If the file exists, the content of that
file is overwritten.

99

Part 1l: Becoming a Linux Power User

100

2> Directs standard error (error messages) to the file.
&> Directs both standard output and standard error to the file.

>> Directs the output of a command to a file, adding the output to the end of the
existing file.

The following are some examples of command lines where information is directed to and
from files:

$ mail root < ~/.bashrec
$ man chmod | col -b > /tmp/chmod
$ echo "I finished the project on $(date)" >> ~/projects

In the first example, the content of the .bashrc file in the home directory is sent in a
mail message to the computer’s root user. The second command line formats the chmod
man page (using the man command), removes extra back spaces (col -b), and sends the
output to the file /tmp/chmod (erasing the previous /tmp/chmod file, if it exists). The
final command results in the following text being added to the user’s project file:

I finished the project on Sat Jun 15 13:46:49 EDT 2019

Another type of redirection, referred to as here text (also called here document), enables you
to type text that can be used as standard input for a command. Here documents involve
entering two less-than characters (<<) after a command, followed by a word. All typing fol-
lowing that word is taken as user input until the word is repeated on a line by itself. Here
is an example:

$ mail root cnegus rjones bdecker << thetext

> I want to tell everyone that there will be a 10 a.m.
> meeting in conference room B. Everyone should attend.
>
>
>

-- James
thetext
$

This example sends a mail message to root, cnegus, rjones, and bdecker usernames. The
text entered between <<thetext and thetext becomes the content of the message.
A common use of here text is to use it with a text editor to create or add to a file from
within a script:

/bin/ed /etc/resolv.conf <<resendit
a
nameserver 100.100.100.100

w

a
resendit

With these lines added to a script run by the root user, the ed text editor adds the IP
address of a DNS server to the /etc/resolv.conf file.

Chapter 4: Moving Around the Filesystem

Using brace expansion characters

By using curly braces ({}), you can expand out a set of characters across filenames, direc-
tory names, or other arguments to which you give commands. For example, if you want to
create a set of files such as memo1 through memos5, you can do that as follows:

$ touch memo{1,2,3,4,5}
S 1ls
memol memo2 memo3 memo4d memob

The items that are expanded don't have to be numbers or even single digits. For example,
you could use ranges of numbers or digits. You could also use any string of characters, as
long as you separate them with commas. Here are some examples:

$ touch {John,Bill,Sally}-{Breakfast,Lunch,Dinner}

S 1ls

Bill-Breakfast Bill-Lunch John-Dinner Sally-Breakfast Sally-Lunch
Bill-Dinner John-Breakfast John-Lunch Sally-Dinner

$ rm -f {John,Bill,Sally}-{Breakfast,Lunch,Dinner}

$ touch {a..f}{1..5}

S 1ls

al a3 a5 b2 b4 cl c3 c5 d2 d4 el e3 e5 f2 f4

a2 a4 bl b3 b5 c2 c4 dl d3 d5 e2 e4 f1 £f3 £5

In the first example, the use of two sets of braces means John, Bill, and Sally each have
filenames associated with Breakfast, Lunch, and Dinner. If I had made a mistake, I could
easily recall the command and change touch to rm -f to delete all of the files. In the
next example, the use of two dots between letters a and £ and numbers 1 and 5 specifies
the ranges to be used. Note the files that were created from those few characters.

Listing Files and Directories

The 1s command is the most common command used to list information about files and
directories. Many options available with the 1s command allow you to gather different sets
of files and directories as well as to view different kinds of information about them.

By default, when you type the 1s command, the output shows you all non-hidden files and
directories contained in the current directory. When you type 1s, however, many Linux
systems (including Fedora and RHEL) assign an alias 1s to add options. To see if 1s is
aliased, enter the following:

S alias 1s
alias 1ls='ls --color=auto'

The --color=auto option causes different types of files and directories to be displayed in
different colors. So, return to the $SHOME/test directory created earlier in the chapter, add
a couple of different types of files, and then see what they look like with the 1s command.

$ cd $HOME/test
$ touch scriptx.sh apple

101

Part 1l: Becoming a Linux Power User

102

$ chmod 755 scriptx.sh

S mkdir Stuff

$ 1n -s apple pointer to apple

$ 1s

apple pointer to apple scriptx.sh Stuff

Although you can't see it in the preceding code example, the directory Stuff shows up in
blue, pointer to_apple (a symbolic link) appears as aqua, and scriptx.sh (which is
an executable file) appears in green. All other reqular files show up in black. Typing 1s -1
to see a long listing of those files can make these different types of files clearer still:

$ 1s -1

total 4

-rw-rw-r--. 1 joe joe 0 Dec 18 13:38 apple

lrwxrwxrwx. 1 joe joe 5 Dec 18 13:46 pointer_ to apple -> apple
-rwXr-xr-x. 1 joe joe 0 Dec 18 13:37 scriptx.sh

drwxrwxr-x. 2 joe joe 4096 Dec 18 13:38 Stuff

As you look at the long listing, notice that the first character of each line shows the
type of file. A hyphen (-) indicates a regular file, d indicates a directory, and 1 (lower-
case L) indicates a symbolic link. An executable file (a script or binary file that runs as a
command) has execute bits turned on (x). See more on execute bits in the upcoming sec-
tion “Understanding File Permissions and Ownership.”

You should become familiar with the contents of your home directory next. Use the -1 and
-a options to 1s.

$ 1ls -la /home/joe

total 158

drwxrwxrwx 2 joe sales 4096 May 12 13:55

drwxr-xr-x 3 root root 4096 May 10 01:49 ..

-rW------- 1 joe sales 2204 May 18 21:30 .bash history
-rw-r--r-- 1 joe sales 24 May 10 01:50 .bash logout
-rw-r--r-- 1 joe sales 230 May 10 01:50 .bash profile
-rw-r--r-- 1 joe sales 124 May 10 01:50 .bashrc
drw-r--r-- 1 joe sales 4096 May 10 01:50 .kde
-rw-rw-r-- 1 joe sales 149872 May 11 22:49 letter

col 1 col 2 col 3 col 4 col 5 col &6 col 7

Displaying a long list (-1 option) of the contents of your home directory shows you more
about file sizes and directories. The total line shows the total amount of disk space used
by the files in the list (158 kilobytes in this example). Adding the all files option (-a) dis-
plays files that begin with a dot (.). Directories such as the current directory (.) and the
parent directory (..)—the directory above the current directory—are noted as directories
by the letter d at the beginning of each entry. Each directory begins with a d and each file
begins with a dash (-).

Chapter 4: Moving Around the Filesystem

The file and directory names are shown in column 7. In this example, a dot (.) represents /
home/joe and two dots (..) represent /home—the parent directory of /joe. Most of the
files in this example are dot (.) files that are used to store GUI properties (.kde directory)
or shell properties (.bash files). The only non-dot file in this list is the one named letter.
Column 3 shows the directory or file owner. The /home directory is owned by root, and
everything else is owned by the user joe, who belongs to the sales group (groups are listed
in column 4).

In addition to the d or -, column 1 on each line contains the permissions set for that file
or directory. Other information in the listing includes the number of hard links to the item
(column 2), the size of each file in bytes (column 5), and the date and time each file was
most recently modified (column 6).

Here are a few other facts about file and directory listings:

B The number of characters shown for a directory (4096 bytes in these examples)
reflects the size of the file containing information about the directory. Although
this number can grow above 4096 bytes for a directory that contains lots of files,
this number doesn't reflect the size of files contained in that directory.

® The format of the time and date column can vary. Instead of displaying “May 12,”
the date might be displayed as “2019-05-12,” depending upon the distribution
and the language setting (LANG variable).

B On occasion, instead of seeing the execute bit (x) set on an executable file, you
may see an s in that spot instead. With an s appearing within either the owner
(-rwsr-xr-x) or group (-rwxr-sr-x) permissions, or both (-rwsr-sr-x), the
application can be run by any user, but ownership of the running process is
assigned to the application’s user/group instead of that of the user launching the
command. This is referred to as a set UID or set GID program, respectively. For
example, the mount command has permissions set as -rwsr-xr-x. This allows
any user to run mount to list mounted filesystems (although you still have to
be root to use mount to actually mount filesystems from the command line, in
most cases).

m If a t appears at the end of a directory, it indicates that the sticky bit is set for
that directory (for example, drwxrwxr-t). By setting the sticky bit on a direc-
tory, the directory’s owner can allow other users and groups to add files to the
directory but prevent users from deleting each other’s files in that directory.
With a set GID assigned to a directory, any files created in that directory are
assigned the same group as the directory’s group. (If you see a capital Sor T
instead of the execute bits on a directory, it means that the set GID or sticky bit
permission, respectively, was set, but for some reason the execute bit was not
also turned on.)

m If you see a plus sign at the end of the permission bits (for example, -rw-rw-
r--+), it means that extended attributes (+), such as Access Control Lists (ACLs),
are set on the file. A dot at the end (.) indicates that SELinux is set on the file.

103

Part 1l: Becoming a Linux Power User

Identifying Directories

When you need to identify your home directory on a shell command line, you can use the following:

$HOME This environment variable stores your home directory name.

~ The tilde (~) represents your home directory on the command line.

You can also use the tilde to identify someone else’s home directory. For example, ~joe would be
expanded to the joe home directory (probably /home/joe). So, if | wanted to go to the directory /
home/joe/test, | could enter cd ~joe/test to get there.

Other special ways of identifying directories in the shell include the following:

A single dot (.) refers to the current directory.
Two dots (..) refer to a directory directly above the current directory.
$PWD This environment variable refers to the current working directory.

$OLDPWD This environment variable refers to the previous working directory before you
changed to the current one. (Entering cd - returns you to the directory repre-
sented by $OLDPWD.)

As I mentioned earlier, there are many useful options for the 1s command. Return to
the $SHOME/test directory in which you've been working. Here are some examples of
1s options. Don't worry if the output doesn't exactly match what is in your directory at
this point.

Any file or directory beginning with a dot (.) is considered hidden and is not displayed by
default with 1s. These dot files are typically configuration files or directories that need to
be in your home directory but don't need to be seen in your daily work. The -a lets you see
those files.

The -t option displays files in the order in which they were most recently modified. With
the -F option, a backslash (/) appears at the end of directory names, an asterisk (*) is
added to executable files, and an at sign (@) is shown next to symbolic links.

To show hidden and non-hidden files:

$ 1ls -a
. apple docs grapefruit pointer to apple .stuff watermelon
. banana grape .hiddendir script.sh .tmpfile

To list all files by time most recently modified:

$ 1s -at
.tmpfile .hiddendir .. docs watermelon banana script.sh
.stuff pointer to apple grapefruit apple grape

104

Chapter 4: Moving Around the Filesystem

Norte

To list files and append file-type indicators:

$ 1s -F
apple banana docs/ grape grapefruit pointer to_apple@ script.sh*
watermelon

To avoid displaying certain files or directories when you use 1s, use the --hide= option.
In the next set of examples, any file beginning with g does not appear in the output. Using
a -d option on a directory shows information about that directory instead of showing

the files and directories the directory contains. The -R option lists all files in the current
directory as well as any files or directories that are associated with the original directory.
The -S option lists files by size.

To exclude any files beginning with the letter g in the list:

$ 1ls --hide=g*
apple banana docs pointer to apple script.sh watermelon

To list info about a directory instead of the files it contains:

$ ls -1d $HOME/test/
drwxrwxr-x. 4 joe joe 4096 Dec 18 22:00 /home/joe/test/

To create multiple directory layers (-p is needed):
$ mkdir -p $HOME/test/documents/memos/
To list all files and directories recursively from current directory down:

$ 1ls -R

To list files by size:
S 1ls -S

Understanding File Permissions and Ownership

After you've worked with Linux for a while, you are almost sure to get a Permission
denied message. Permissions associated with files and directories in Linux were designed
to keep users from accessing other users’ private files and to protect important system files.

The nine bits assigned to each file for permissions define the access that you and others
have to your file. Permission bits for a reqular file appear as -rwxrwxrwx. Those bits are
used to define who can read, write, or execute the file.

For a regular file, a dash appears in front of the nine-bit permissions indicator. Instead of a dash, you might see a d
(for a directory), 1 (for a symbolic link), b (for a block device), c (for a character device), s (for a socket), or p (for a
named pipe).

105

Part 1l: Becoming a Linux Power User

106

0f the nine-bit permissions, the first three bits apply to the owner’s permission, the next
three apply to the group assigned to the file, and the last three apply to all others. The r
stands for read, the w stands for write, and the x stands for execute permissions. If a dash
appears instead of the letter, it means that permission is turned off for that associated
read, write, or execute bit.

Because files and directories are different types of elements, read, write, and execute per-
missions on files and directories mean different things. Table 4.2 explains what you can do
with each of them.

TABLE 4.2 Setting Read, Write, and Execute Permissions

Permission File Directory
Read View what's See what files and subdirectories it contains.
in the file.
Write Change the file’s Add files or subdirectories to the directory. Remove files or
content, rename it, directories from the directory.
or delete it.
Execute Run the file as Change to the directory as the current directory, search
a program. through the directory, or execute a program from the

directory. Access file metadata (file size, time stamps, and
so on) of files in that directory.

As noted earlier, you can see the permission for any file or directory by typing the 1s -1d
command. The named file or directory appears as those shown in this example:

$ 1ls -1d ch3 test
-rw-rw-r-- 1 joe sales 4983 Jan 18 22:13 ch3
drwxr-xr-x 2 joe sales 1024 Jan 24 13:47 test

The first line shows that the ch3 file has read and write permission for the owner and the
group. All other users have read permission, which means that they can view the file but
cannot change its contents or remove it. The second line shows the test directory (indi-
cated by the letter d before the permission bits). The owner has read, write, and execute
permissions while the group and other users have only read and execute permissions. As a
result, the owner can add, change, or delete files in that directory, and everyone else can
only read the contents, change to that directory, and list the contents of the directory. (If
you had not used the -d options to 1s, you would have listed files in the test directory
instead of permissions of that directory.)

Changing permissions with chmod (numbers)

If you own a file, you can use the chmod command to change the permission on it as you
please. In one method of doing this, each permission (read, write, and execute) is assigned
a number—r=4, w=2, and x=1—and you use each set’s total number to establish the

Chapter 4: Moving Around the Filesystem

permission. For example, to make permissions wide open for yourself as owner, you would
set the first number to 7 (4+2+1), and then you would give the group and others read-only
permission by setting both the second and third numbers to 4 (4+0+0), so that the final
number is 744. Any combination of permissions can result from 0 (no permission) through 7
(full permission).

Here are some examples of how to change permission on a file (named £ile) and what the
resulting permission would be:

The following chmod command results in this permission: rwxrwxrwx
chmod 777 file

The following chmod command results in this permission: rwxr-xr-x
chmod 755 file

The following chmod command results in this permission: rw-r--r--
chmod 644 file

The following chmod command results in this permission: ---------
chmod 000 file

The chmod command also can be used recursively. For example, suppose that you wanted
to give an entire directory structure 755 permission (rwxr-xr-x), starting at the SHOME/
myapps directory. To do that, you could use the -R option, as follows:

$ chmod -R 755 $HOME/myapps

All files and directories below, and including, the myapps directory in your home directory
will have 755 permissions set. Because the numbers approach to setting permission changes
all permission bits at once, it’s more common to use letters to change permission bits recur-
sively over a large set of files.

Changing permissions with chmod (letters)

You can also turn file permissions on and off using plus (+) and minus (-) signs, respec-
tively, along with letters to indicate what changes and for whom. Using letters, for each
file you can change permission for the user (u), group (g), other (o), and all users (a).
What you would change includes the read (r), write (w), and execute (x) bits. For example,
start with a file that has all permissions open (rwxrwxrwx). Run the following chmod
commands using minus sign options. The resulting permissions are shown to the right of
each command.

The following chmod command results in this permission: r-xr-xr-x
S chmod a-w file

The following chmod command results in this permission: rwxrwxrw-
$ chmod o-x file

The following chmod command results in this permission: rwx------

107

Part 1l: Becoming a Linux Power User

108

$ chmod go-rwx file

Likewise, the following examples start with all permissions closed (---------). The plus
sign is used with chmod to turn permissions on.

The following chmod command results in this permission: rw-------
$ chmod u+rw files

The following chmod command results in this permission: --x--x--x
S chmod a+x files

The following chmod command results in this permission: r-xr-x---
$ chmod ug+rx files

Using letters to change permission recursively with chmod generally works better than
using numbers because you can change bits selectively instead of changing all permission
bits at once. For example, suppose that you want to remove write permission for “other”
without changing any other permission bits on a set of files and directories. You could do
the following:

$ chmod -R o-w $SHOME/myapps

This example recursively removes write permissions for “other” on any files and directories
below the myapps directory. If you had used numbers such as 644, execute permission
would be turned off for directories; using 755, execute permission would be turned on for
regular files. Using o-w, only one bit is turned off and all other bits are left alone.

Setting default file permission with umask

When you create a file as a reqular user, it’s given permission rw-rw-r-- by default. A
directory is given the permission rwxrwxr-x. For the root user, file and directory permis-
sion are rw-r--r-- and rwxr-xr-x, respectively. These default values are determined by
the value of umask. Enter umask to see what your umask value is. For example:

$ umask
0002

If you ignore the leading zero for the moment, the umask value masks what is considered
to be fully opened permissions for a file 666 or a directory 777. The umask value of 002
results in permission for a directory of 775 (rwxrwxr-x). That same umask results in a file
permission of 644 (rw-rw-r--). (Execute permissions are off by default for regular files.)

To change your umask value temporarily, run the umask command. Then try creating
some files and directories to see how the umask value affects how permissions are set.
For example:

S umask 777 ; touch file0l ; mkdir dir0l1l ; 1ls -1d file0Ol dir01l
d--------- . 2 joe joe 6 Dec 19 11:03 dir01l

—————————— . 1 joe joe 0 Dec 19 11:02 fileO1l

$ umask 000 ; touch file02 ; mkdir dir02 ; 1ls -1d file02 dir02

Chapter 4: Moving Around the Filesystem

drwXrwxXrwx . joe joe 6 Dec 19 11:00 dir02/

-TW-YW-¥rw-. joe joe 0 Dec 19 10:59 file02

$ umask 022 ; touch file03 ; mkdir dir03 ; 1ls -1d file03 dir03
drwxr-xr-x. 2 joe joe 6 Dec 19 11:07 diro03

-rw-r--r--. 1 joe joe 0 Dec 19 11:07 file03

2
1

If you want to change your umask value permanently, add a umask command to the
.bashrec file in your home directory (near the end of that file). The next time you open a
shell, your umask is set to whatever value you chose.

Changing file ownership

As a regular user, you cannot change ownership of files or directories to have them belong
to another user. You can change ownership as the root user. For example, suppose that you
created a file called memo.txt in the user joe's home directory while you were root user.

Here’s how you could change it to be owned by joe:

chown joe /home/joe/memo.txt
1s -1 /home/joe/memo.txt
-rw-r--r--. 1 joe root 0 Dec 19 11:23 /home/joe/memo.txt

Notice that the chown command changed the user to joe but left the group as root. To
change both user and group to joe, you could enter the following instead:

chown joe:joe /home/joe/memo.txt
1s -1 /home/joe/memo.txt
-rw-r--r--. 1 joe joe 0 Dec 19 11:23 /home/joe/memo.txt

The chown command can be use recursively as well. Using the recursive option (-R) is help-
ful if you need to change a whole directory structure to ownership by a particular user. For
example, if you inserted a USB drive, which is mounted on the /media/myusb directory,
and you wanted to give full ownership of the contents of that drive to the user joe, you
could enter the following:

chown -R joe:joe /media/myusb

Moving, Copying, and Removing Files

Commands for moving, copying, and deleting files are fairly straightforward. To change
the location of a file, use the mv command. To copy a file from one location to another, use
the cp command. To remove a file, use the rm command. These commands can be used to
act on individual files and directories or recursively to act on many files and directories at
once. Here are some examples:

S mv abc def
$ mv abc ~
$ mv /home/joe/mymemos/ /home/joe/Documents/

The first mv command moves the file abc to the file def in the same directory (essentially
renaming it), whereas the second mv command moves the file abc to your home directory

109

Part 1l: Becoming a Linux Power User

110

(~). The next mv command moves the mymemos directory (and all its contents) to the /
home/joe/Documents directory.

By default, the mv command overwrites any existing files if the file to which you are
moving exists. However, many Linux systems alias the mv command so that it uses the -1
option (which causes mv to prompt you before overwriting existing files). Here’s how to
check if that is true on your system:

$ alias mv
alias mv='mv -i'

Here are some examples of using the cp command to copy files from one location
to another:

$ cp abc def

$ cp abc ~

$ cp -r /usr/share/doc/bash-completion* /tmp/a/
$ cp -ra /usr/share/doc/bash-completion* /tmp/b/

The first copy command (cp) copies abe to the new name def in the same directory,
whereas the second copies abc to your home directory (~), keeping the name abc. The two
recursive (-r) copies copy the bash-completion directory and all of the files it contains,
first to new /tmp/a/ and /tmp/b/ directories. If you run 1s -1 on those two directories,
you see that for the cp command run with the archive (-a) option, the date/time stamps
and permissions are maintained by the copy. Without the -a, current date/time stamps are
used, and permissions are determined by your umask.

The cp command typically also is aliased with the -i option in order to prevent you from
inadvertently overwriting files.

As with the cp and mv commands, rm is also usually aliased to include the -i option. This
can prevent the damage that can come from an inadvertent recursive remove (-r) option.
Here are some examples of the rm command:

$ rm abc
S rm *

The first remove command deletes the abce file; the second removes all of the files in the
current directory (except that it doesn't remove directories and/or any files that start
with a dot). If you want to remove a directory, you need to use the recursive (-r) option
to rm or, for an empty directory, you can use the rmdir command. Consider the follow-
ing examples:

$ rmdir /home/joe/nothing/
$ rm -r /home/joe/bigdir/
$ rm -rf /home/joe/hugedir/

The rmdir command in the preceding code only removes the directory (nothing) if it is
empty. The rm -r example removes the directory bigdir and all of its contents (files and
multiple levels of subdirectories), but it prompts you before each is removed. When you
add the force option (-£), the hugedir directory and all of its contents are immediately
removed, without prompting.

Chapter 4: Moving Around the Filesystem

CauTiON

When you override the -1 option on the mv, cp, and rm commands, you risk removing some (or lots) of files by mis-
take. Using wildcards (such as *) and no -1 makes mistakes even more likely. That said, sometimes you don’t want
to be bothered to step through each file you delete. You have other options as follows:

B As noted with the -£ option, you can force rm to delete without prompting. An alternative is to run rm,
cp, or mv with a backslash in front of it (\rm bigdir). The backslash causes any command to run una-
liased.

B Another alternative with mv is to use the -b option. With -b, if a file of the same name exists at the desti-
nation, a backup copy of the old file is made before the new file is moved there.

Summary

Commands for moving around the filesystem, copying files, moving files, and removing files
are among the most basic commands that you need to work from the shell. This chapter
covers lots of commands for moving around and manipulating files as well as commands for
changing ownership and permission.

The next chapter describes commands for editing and searching for files. These commands
include the vim/vi text editors, the find command, and the grep command.

Exercises

Use these exercises to test your knowledge of efficient ways to get around the Linux file-
system and work with files and directories. When possible, try to use shortcuts to type

as little as possible to get the desired results. These tasks assume that you are running a
Fedora or Red Hat Enterprise Linux system (although some tasks work on other Linux sys-
tems as well). If you are stuck, solutions to the tasks are shown in Appendix B (although in
Linux, there are often multiple ways to complete a task).

1. Create a directory in your home directory called projects. In the projects
directory, create nine empty files that are named housel, house2, house3, and
so on up to house9. Assuming that there are lots of other files in that directory,
come up with a single argument to 1s that would list just those nine files.

2. Make the $HOME/projects/houses/doors/ directory path. Create the following
empty files within this directory path (try using absolute and relative paths from
your home directory):

SHOME /projects/houses/bungalow. txt

SHOME/projects/houses/doors/bifold. txt
SHOME /projects/outdoors/vegetation/landscape.txt

111

Part 1l: Becoming a Linux Power User

112

. Copy the files housel and house5 to the SHOME/projects/houses/ directory.

4. Recursively copy the /usr/share/doc/initscripts* directory to the SHOME/

© 0 N4 O

10.

projects/ directory. Maintain the current date/time stamps and permissions.

. Recursively list the contents of the $SHOME/projects/ directory. Pipe the output

to the less command so that you can page through the output.

. Remove the files house6, house7, and house8 without being prompted.

Move house3 and house4 to the $HOME/projects/houses/doors directory.

. Remove the $HOME/projects/houses/doors directory and its contents.

. Change the permissions on the $SHOME/projects/house? file so that it can be

read by and written to by the user who owns the file, only read by the group, and
have no permission for others.

Recursively change permissions of the $HOME/projects/ directory so that
nobody has write permission to any files or directory beneath that point in the
filesystem.

CHAPTER

Working with Text Files

IN THIS CHAPTER

Using vim and vi to edit text files
Searching for files

Searching in files

managed on the system in plain-text files. Thus, it was critical for users to know how to use
tools for searching for and within plain-text files and to be able to change and configure
those files.

W hen the UNIX system, on which Linux was based, was created, most information was

Today, configuration of Linux systems can still be done by editing plain-text files. Whether you are
modifying files in the /etc directory to configure a local service or editing Ansible inventory files to
configure sets of host computers, plain-text files are still in common use for those tasks.

Before you can become a full-fledged system administrator, you need to be able to use a plain-text
editor. The fact that most professional Linux servers don't even have a graphical interface avail-
able makes the need for editing of plain-text configuration files with a non-graphical text editor
necessary.

After you know how to edit text files, you still might find it tough to figure out where the files are
located that you need to edit. With commands such as £ind, you can search for files based on var-
ious attributes (filename, size, modification date, and ownership to name a few). With the grep
command, you can search inside of text files to find specific search terms.

Editing Files with vim and vi

It's almost impossible to use Linux for any period of time and not need a text editor because, as
noted earlier, most Linux configuration files are plain-text files that you will almost certainly need
to change manually at some point.

If you are using a GNOME desktop, you can run gedit (type gedit into the Search box and press
Enter, or select Applications = Accessories > gedit), which is fairly intuitive for editing text.

113

Part 1l: Becoming a Linux Power User

You can also run a simple text editor called nano from the shell. However, most Linux shell
users use either the vi or emacs command to edit text files.

The advantage of vi or emacs over a graphical editor is that you can use the command
from any shell, character terminal, or character-based connection over a network (using
telnet or ssh, for example)—no graphical interface is required. They each also contain
tons of features, so you can continue to grow with them.

The following sections provide a brief tutorial on the vi text editor, which you can use
to manually edit a text file from any shell. It also describes the improved versions of vi
called vim. (If vi doesn't suit you, see the sidebar “Exploring Other Text Editors” for fur-
ther options.)

The vi editor is difficult to learn at first, but after you know it, you never have to use a
mouse or a function key—you can edit and move around quickly and efficiently within files
just by using the keyboard.

Exploring Other Text Editors

Dozens of text editors are available for use with Linux. Some alternatives might be in your Linux distri-
bution. You can try them out if you find vi to be too taxing. Here are some of the options:

nano: This popular, streamlined text editor is used with many bootable Linux systems and other
limited-space Linux environments. For example, nano is available to edit text files during a
Gentoo Linux install process.

gedit: The GNOME text editor runs on the desktop.

jed: This screen-oriented editor was made for programmers. Using colors, jed can highlight
code that you create so that you can easily read the code and spot syntax errors. Use the Alt
key to select menus to manipulate your text.

joe: The joe editor is similar to many PC text editors. Use control and arrow keys to move
around. Press Ctrl+C to exit with no save or Ctrl+X to save and exit.

kate: This nice-looking editor comes in the kdebase package. It has lots of bells and whis-
tles, such as highlighting for different types of programming languages and controls for
managing word wrap.

kedit: This GUl-based text editor comes with the KDE desktop.

mcedit: In this editor, function keys help you get around, save, copy, move, and delete
text. Like jed and joe, mcedit is screen oriented. It comes in the mc package in RHEL
and Fedora.

nedit: This is an excellent programmer’s editor. You need to install the optional nedit
package to get this editor.

If you use ssh to log in to other Linux computers on your network, you can use any available text edi-
tor to edit files. If you use ssh -X to connect to the remote system, a GUI-based editor pops up on
your local screen. When no GUI is available, you need a text editor that runs in the shell, such as vi,
jed, or joe.

114

Chapter 5: Working with Text Files

Starting with vi

Most often, you start vi to open a particular file. For example, to open a file called /tmp/
test, enter the following command:

$ vi /tmp/test

If this is a new file, you should see something similar to the following:

"/tmp/test" [New File]

A blinking box at the top represents where your cursor is located. The bottom line keeps
you informed about what is going on with your editing (here, you just opened a new file).
In between, there are tildes (~) as filler because there is no text in the file yet. Now here’s
the intimidating part: There are no hints, menus, or icons to tell you what to do. To make
it worse, you can't just start typing. If you do, the computer is likely to beep at you. (And
some people complain that Linux isn't friendly.)

First, you need to know the two main operating modes: command and input. The vi editor
always starts in command mode. Before you can add or change text in the file, you have to
type a command (one or two letters, sometimes preceded by an optional number) to tell vi
what you want to do. Case is important, so use uppercase and lowercase exactly as shown in
the examples!

Note
On Red Hat Enterprise Linux, Fedora, and other Linux distributions, for regular users the vi command is aliased
to run vim. If you type alias wvi, you should see alias wvi='vim'. The first obvious difference between vi

and vim is that any known text file type, such as HTML, C code, or a common configuration file, appears in color.
The colors indicate the structure of the file. Other features of vim that are not in vi include features such as visual
highlighting and split-screen mode. By default, the root user doesn’t have vi aliased to vim. If vim is not on your
system, try installing the vim-enhanced package.

Adding text

To get into input mode, type an input command letter. To begin, type any of the following
letters. When you are finished inputting text, press the Esc key (sometimes twice) to return
to command mode. Remember the Esc key!

a: The add command. With this command, you can input text that starts to the right of
the cursor.

A: The add at end command. With this command, you can input text starting at the
end of the current line.

115

Part 1l: Becoming a Linux Power User

i: The insert command. With this command, you can input text that starts to the left
of the cursor.

I: The insert at beginning command. With this command, you can input text that starts
at the beginning of the current line.

o: The open below command. This command opens a line below the current line and
puts you in insert mode.

0: The open above command. This command opens a line above the current line and
puts you in insert mode.

Tie

When you are in insert mode, -- INSERT -- appears at the bottom of the screen.

Type a few words, and press Enter. Repeat that a few times until you have a few lines of
text. When you're finished typing, press Esc to return to command mode. Now that you
have a file with some text in it, try moving around in your text with the keys or letters
described in the next section.

Tie

Remember the Esc key! It always places you back into command mode. Remember that sometimes you must press

Esc twice. For example, if you type a colon (:) to go into ex mode, you must press Esc twice to return to command
mode.

Moving around in the text

To move around in the text, you can use the up, down, right, and left arrows. However, many of
the keys for moving around are right under your fingertips when they are in typing position:

Arrow keys: Move the cursor up, down, left, or right in the file one character at a time.
To move left and right, you can also use Backspace and the spacebar, respectively.
If you prefer to keep your fingers on the keyboard, move the cursor with h (left), 1
(right), j (down), or k (up).

w: Moves the cursor to the beginning of the next word (delimited by spaces, tabs, or
punctuation).

W: Moves the cursor to the beginning of the next word (delimited by spaces or tabs).

b: Moves the cursor to the beginning of the previous word (delimited by spaces, tabs,
or punctuation).

B: Moves the cursor to the beginning of the previous word (delimited by
spaces or tabs).

0 (zero): Moves the cursor to the beginning of the current line.
$: Moves the cursor to the end of the current line.

H: Moves the cursor to the upper-left corner of the screen (first line on the screen).

116

Chapter 5: Working with Text Files

M: Moves the cursor to the first character of the middle line on the screen.
L: Moves the cursor to the lower-left corner of the screen (last line on the screen).

Deleting, copying, and changing text

The only other editing that you need to know is how to delete, copy, or change text. The
%, d, v, and ¢ commands can be used to delete and change text. These can be used along
with movement keys (arrows, PgUp, PgDn, letters, and special keys) and numbers to indi-
cate exactly what you are deleting, copying, or changing. Consider the following examples:

x: Deletes the character under the cursor.

X: Deletes the character directly before the cursor.
d<?>: Deletes some text.

c<?>: Changes some text.

y<?>: Yanks (copies) some text.

The <?> after each letter in the preceding list identifies the place where you can use a
movement command to choose what you are deleting, changing, or yanking. For example:

dw: Deletes (d) a word (w) after the current cursor position.
db: Deletes (d) a word (b) before the current cursor position.
dd: Deletes (d) the entire current line (d).

c$: Changes (c) the characters (actually erases them) from the current character to the
end of the current line (3) and goes into input mode.

c0: Changes (c) (again, erases) characters from the previous character to the beginning
of the current line (0) and goes into input mode.

cl: Erases (c) the current letter (1) and goes into input mode.

cc: Erases (c) the line (c) and goes into input mode.

yy: Copies (y) the current line (y) into the buffer.

y): Copies (y) the current sentence ()), to the right of the cursor, into the buffer.
y}: Copies (y) the current paragraph (}), to the right of the cursor, into the buffer.

Any of the commands just shown can be further modified using numbers, as you can see in
the following examples:

3dd: Deletes (d) three (3) lines (d), beginning at the current line.
3dw: Deletes (d) the next three (3) words (w).

5c1: Changes (c) the next five (5) letters (1) (that is, removes the letters and enters
input mode).

127: Moves down (j) 12 lines (12).

S5cw: Erases (c) the next five (5) words (w) and goes into input mode.

4y): Copies (y) the next four (4) sentences ()).

117

Part 1l: Becoming a Linux Power User

Pasting (putting) text

After text has been copied to the buffer (by deleting, changing, or yanking it), you can
place that text back in your file using the letter p or p. With both commands, the text most
recently stored in the buffer is put into the file in different ways.

P: Puts the copied text to the left of the cursor if the text consists of letters or words;
puts the copied text above the current line if the copied text contains lines of text.

p: Puts the buffered text to the right of the cursor if the text consists of letters or
words; puts the buffered text below the current line if the buffered text contains
lines of text.

Repeating commands

After you delete, change, or paste text, you can repeat that action by typing a period (.).
For example, with the cursor on the beginning of the name Joe, you type cw and then
type Jim to change Joe to Jim. You search for the next occurrence of Joe in the file,
position the cursor at the beginning of that name, and press a period. The word changes to
Jim, and you can search for the next occurrence. You can go through a file this way, press-
ing n to go to the next occurrence and period (.) to change the word.

Exiting vi
To wrap things up, use the following commands to save or quit the file:
ZZ: Saves the current changes to the file and exits from vi.
:w: Saves the current file, but you can continue editing.
:wq: Works the same as ZZz.
:q: Quits the current file. This works only if you don't have any unsaved changes.

:q!: Quits the current file and doesn’t save the changes you just made to the file.

Tie

If you've really trashed the file by mistake, the :q! command is the best way to exit and abandon your changes. The

file reverts to the most recently changed version. So, if you just saved with :w, you are stuck with the changes up
to that point. However, despite having saved the file, you can type u to back out of changes (all the way back to the
beginning of the editing session if you like) and then save again.

You have learned a few vi editing commands. I describe more commands in the following
sections. First, however, consider the following tips to smooth out your first trials with vi:

Esc: Remember that Esc gets you back to command mode. (I've watched people press
every key on the keyboard trying to get out of a file.) Esc followed by zZ gets you
out of command mode, saves the file, and exits.

u: Press u to undo the previous change you made. Continue to press u to undo the
change before that and the one before that.

118

Chapter 5: Working with Text Files

Ctrl+R: If you decide that you didn’t want to undo the previous undo command, use
Ctrl+R for Redo. Essentially, this command undoes your undo.

Caps Lock: Beware of hitting Caps Lock by mistake. Everything that you type in vi
has a different meaning when the letters are capitalized. You don't get a warning
that you are typing capitals; things just start acting weird.

:lcommand: You can run a shell command while you are in vi using :! followed by a
shell command name. For example, type :!date to see the current date and time,
type :1pwd to see what your current directory is, or type :!jobs to see whether
you have any jobs running in the background. When the command completes, press
Enter and you are back to editing the file. You could even use this technique to
launch a shell (:!bash) from vi, run a few commands from that shell, and then
type exit to return to vi. (I recommend doing a save before escaping to the shell,
just in case you forget to go back to vi.)

Ctrl+g: If you forget what you are editing, pressing these keys displays the name of the
file that you are editing and the current line that you are on at the bottom of the
screen. It also displays the total number of lines in the file, the percentage of how
far you are through the file, and the column number the cursor is on. This just helps
you get your bearings after you've stopped for a cup of coffee at 3 a.m.

Skipping around in the file

Besides the few movement commands described earlier, there are other ways of moving
around a vi file. To try these out, open a large file that you can't damage too much. (Try
copying /var/log/messages to /tmp and opening it in vi.) Here are some movement
commands that you can use:

Ctrl+f: Pages ahead one page at a time.
Ctrl+b: Pages back one page at a time.
Ctrl+d: Pages ahead one-half page at a time.
Ctrl+u: Pages back one-half page at a time.
G: Goes to the last line of the file.

1G: Goes to the first line of the file.

35G: Goes to any line number (35, in this case).

Searching for text

To search for the next or previous occurrence of text in the file, use either the slash (/) or
the question mark (?) character. Follow the slash or question mark with a pattern (string of
text) to search forward or backward, respectively, for that pattern. Within the search, you
can also use metacharacters. Here are some examples:

/hello: Searches forward for the word hello.
?goodbye: Searches backward for the word goodbye.

119

Part 1l: Becoming a Linux Power User

120

/The.*foot: Searches forward for a line that has the word The in it and also, after
that at some point, the word foot.

?[pPlrint: Searches backward for either print or Print. Remember that case mat-
ters in Linux, so make use of brackets to search for words that could have different
capitalization.

After you have entered a search term, simply type n or N to search again in the same direc-
tion (n) or the opposite direction (N) for the term.

Using ex mode

The vi editor was originally based on the ex editor, which didn't let you work in full-
screen mode. However, it did enable you to run commands that let you find and change
text on one or more lines at a time. When you type a colon and the cursor goes to the bot-
tom of the screen, you are essentially in ex mode. The following are examples of some of
those ex commands for searching for and changing text. (I chose the words Local and
Remote to search for, but you can use any appropriate words.)

:g/Local: Searches for the word Local and prints every occurrence of that
line from the file. (If there is more than a screenful, the output is piped to the
more command.)

:s/Local/Remote: Substitutes Remote for the first occurrence of the word Local
on the current line.

:g/Local/s//Remote: Substitutes the first occurrence of the word Local on every
line of the file with the word Remote.

:g/Local/s//Remote/g: Substitutes every occurrence of the word Local with the
word Remote in the entire file.

:g/Local/s//Remote/gp: Substitutes every occurrence of the word Local with the
word Remote in the entire file and then prints each line so that you can see the
changes (piping it through less if output fills more than one page).

Learning more about vi and vim

To learn more about the vi editor, try typing vimtutor. The vimtutor command opens a
tutorial in the vim editor that steps you through common commands and features you can
use in vim. To use vimtutor, install the vim-enhanced package.

Finding Files

Even a basic Linux installation can have thousands of files installed on it. To help you find
files on your system, you can use commands such as locate (to find commands by name),
find (to find files based on lots of different attributes), and grep (to search within text
files to find lines in files that contain search text).

Chapter 5: Working with Text Files

Using locate to find files by name

On most Linux systems (Fedora and RHEL included), the updatedb command runs once per
day to gather the names of files throughout your Linux system into a database. By running
the locate command, you can search that database to find the location of files stored in it.

Here are a few things that you should know about searching for files using the
locate command:

B There are advantages and disadvantages to using locate to find filenames instead
of the find command. A locate command finds files faster because it searches a
database instead of having to search the whole filesystem live. A disadvantage is
that the locate command cannot find any files added to the system since the pre-
vious time the database was updated.

m Not every file in your filesystem is stored in the database. The contents of the
/etc/updatedb.conf file limit which filenames are collected by pruning out
select mount types, filesystem types, file types, and mount points. For example,
filenames are not gathered from remotely mounted filesystems (cifs, nfs, and so
on) or locally mounted CDs or DVDs (is09660). Paths containing temporary files
(/tmp) and spool files (/var/spool/cups) are also pruned. You can add items to
prune (or remove some items that you don't want pruned) the locate database to
your needs. In RHEL 8, the updatedb.conf file contains the following:

PRUNE_BIND MOUNTS = '"yes"

PRUNEFS = "9p afs anon inodefs auto autofs bdev binfmt misc cgroup
cifs coda configfs cpuset debugfs devpts ecryptfs exofs fuse fuse
.sshfs fusectl gfs gfs2 gpfs hugetlbfs inotifyfs iso09660 jffs2
lustre mqueue ncpfs nfs nfs4 nfsd pipefs proc ramfs rootfs rpc_
pipefs securityfs selinuxfs sfs sockfs sysfs tmpfs ubifs udf usbfs
ceph fuse.ceph"

PRUNENAMES = ".git .hg .svn .bzr .arch-ids {arch} cvs"

PRUNEPATHS = "/afs /media /mnt /net /sfs /tmp /udev /var/cache/
ccache /var/lib/yum/yumdb /var/lib/dnf/yumdb /var/spool/cups /var/
spool/squid /var/tmp /var/lib/ceph"

As a reqular user, you can't see any files from the locate database that you can't see in the
filesystem normally. For example, if you can't type 1s to view files in the /root directory,
you can't locate files stored in that directory.

® When you search for a string, the string can appear anywhere in a files path. For
example, if you search for passwd, you could turn up /etc/passwd, /usr/bin/
passwd, /home/chris/passwd/pwdfiles.txt, and many other files with
passwd in the path.

m If you add files to your system after updatedb runs, you can't locate those files
until updatedb runs again (probably that night). To get the database to con-
tain all files up to the current moment, you can simply run updatedb from the
shell as root.

121

Part 1l: Becoming a Linux Power User

Here are some examples of using the locate command to search for files:

$ locate .bashrc
/etc/skel/ .bashrc
/home/cnegus/ .bashrc
locate .bashrc
/etc/skel/ .bashrc
/home/bill/.bashrc
/home/joe/ .bashrc
/root/ .bashrc

When run as a reqular user, locate only finds .bashrc in /etc/skel and the user’s own
home directory. Run as root, the same command locates .bashrc files in everyone’s home
directory.

$ locate dir color
/usr/share/man/man5/dir colors.5.gz

$ locate -i dir color
/etc/DIR_COLORS
/etc/DIR_COLORS.256color
/etc/DIR_COLORS.lightbgcolor
/usr/share/man/man5/dir_colors.5.gz

Using locate -i, filenames are found regardless of case. So in the previous example, DIR
COLORS was found with -i whereas it wasn't found without the -i option.

$ locate services
/etc/services
/usr/share/services/bmp.kmgio
/usr/share/services/data.kmgio

Unlike the find command, which uses the -name option to find filenames, the locate
command locates the string you enter if it exists in any part of the file’s path. In this
example, searching for services using the locate command finds files and directories
containing the services text string.

Searching for files with find

The find command is the best one for searching your filesystem for files based on a variety
of attributes. After files are found, you can act on those files as well (using the -exec or
-okay option) by running any commands you want on them.

When you run find, it searches your filesystem live, which causes it to run slower than
locate, but it gives you an up-to-the-moment view of the files on your Linux system.
However, you can also tell £ind to start at a particular point in the filesystem so that the
search can go faster by limiting the area of the filesystem being searched.

122

Chapter 5: Working with Text Files

Nearly any file attribute that you can think of can be used as a search option. You can
search for filenames, ownership, permission, size, modification times, and other attributes.
You can even use combinations of attributes. Here are some basic examples of using the
find command:

$ find

$ find /etc

find /etc

$ find $HOME -1s

Run on a line by itself, the find command finds all files and directories below the current
directory. If you want to search from a particular point in the directory tree, just add the
name of the directory you want to search (such as /etc). As a reqular user, £ind does not
give you special permission to find files that have permissions that make them readable
only by the root user. So, £ind produces a bunch of error messages. Run as the root user,
find /etc finds all files under /etc.

A special option to the find command is -1s. A long listing (ownership, permission, size,
and so on) is printed with each file when you add -1s to the find command (similar to
output of the 1s -1 command). This option helps you in later examples when you want to
verify that you have found files that contain the ownership, size, modification times, or
other attributes that you are trying to find.

Note
If, as a regular user, you are searching an area of the filesystem where you don’t have full permission to access all
of the files it contains (such as the /etc directory), you might receive lots of error messages when you search with

find. To get rid of those messages, direct standard errors to /dev/null. To do that, add the following to the
end of the command line: 2> /dev/null. The 2> redirects standard error to the next option (in this case /dev/
null, where the output is discarded).

Finding files by name

To find files by name, you can use the -name and -iname options. The search is done by
base name of the file; the directory names are not searched by default. To make the search
more flexible, you can use file-matching characters, such as asterisks (*) and question
marks (?), as in the following examples:

find /etc -name passwd
/etc/pam.d/passwd
/etc/passwd

find /etc -iname '*passwd*'
/etc/pam.d/passwd
/etc/passwd-

/etc/passwd.OLD

/etc/passwd

/etc/MYPASSWD
/etc/security/opasswd

123

Part 1l: Becoming a Linux Power User

124

Using the -name option and no asterisks, the first example above lists any files in the /
etc directory that are named passwd exactly. By using -iname instead, you can match
any combination of upper- and lowercase. Using asterisks, you can match any filename that
includes the word passwd.

Finding files by size

If your disk is filling up and you want to find out where your biggest files are located,
you can search your system by file size. The -size option enables you to search for files
that are exactly, smaller than, or larger than a selected size, as you can see in the follow-
ing examples:

$ find /usr/share/ -size +10M

$ find /mostlybig -size -1M

$ find /bigdata -size +500M -size -5G -exec du -sh {} \;
4.1G /bigdata/images/rhel6.img

606M /bigdata/Fedora-16-1i686-Live-Desktop.iso

560M /bigdata/dance2.avi

The first example in the preceding code finds files larger than 10MB. The second finds files
less than 1MB. In the third example, I'm searching for files that are between 500MB and
5GB. This includes an example of the -exec option (which I describe later) to run the du
command on each file to see its size.

Finding files by user

You can search for a particular owner (-user) or group (-group) when you try to find
files. By using -not and -or, you can refine your search for files associated with specific
users and groups, as you can see in the following examples:

$ find /home -user chris -ls

131077 4 -rw-r--r-- 1 chris chris 379 Jun 29 2014 ./.bashrc

find /home \(-user chris -or -user joe \) -1ls

131077 4 -rw-r--r-- 1 chris chris 379 Jun 29 2014 ./.bashrc

181022 4 -rw-r--r-- 1 joe joe 379 Jun 15 2014 ./.bashrc
find /etc -group ntp -1ls

131438 4 drwxrwsr-x 3 root ntp 4096 Mar 9 22:16 /etc/ntp

find /var/spool -not -user root -1ls

262100 0 -rw-rw---- 1 rpc mail 0 Jan 27 2014 /var/spool/mail/rpc
278504 0 -rw-rw---- 1 joe mail 0 Apr 3 2014 /var/spool/mail/joe
261230 0 -rw-rw---- 1 bill mail 0 Dec 18 14:17 /var/spool/mail/bill
277373 2848 -rw-rw---- 1 chris mail 8284 Mar 15 2014 /var/spool/mail/chris

The first example outputs a long listing of all of the files under the /home directory that
are owned by the user chris. The next lists files owned by chris or joe. The find
command of /etc turns up all files that have ntp as their primary group assignment. The
last example shows all files under /var/spool that are not owned by root. You can see
files owned by other users in the sample output.

Chapter 5: Working with Text Files

Finding files by permission

Searching for files by permission is an excellent way to turn up security issues on your
system or uncover access issues. Just as you changed permissions on files using numbers or
letters (with the chmod command), you can likewise find files based on number or letter
permissions along with the -perm options. (Refer to Chapter 4, “Moving Around the File-
system,” to see how to use numbers and letters with chmod to reflect file permissions.)

If you use numbers for permission, as I do below, remember that the three numbers repre-
sent permissions for the user, group, and other. Each of those three numbers varies from

no permission (0) to full read/write/execute permission (7) by adding read (4), write (2),
and execute (1) bits together. With a hyphen (-) in front of the number, all three of the bits
indicated must match; with a forward slash (/) in front of it, any of the numbers can match
for the search to find a file. The full, exact numbers must match if neither a hyphen nor a
forward slash is used.

Consider the following examples:

$ find /usr/bin -perm 755 -ls
788884 28 -rwxr-xr-x 1 root root 28176 Mar 10 2014 /bin/echo

$ find /home/chris/ -perm -222 -type 4 -1ls
144503 4 drwxrwxrwx 8 chris chris 4096 Jun 23 2014 /home/chris/OPENDIR

By searching for -perm 755, any files or directories with exactly rwxr-xr-x permission
are matched. By using -perm -222, only files that have write permission for user, group,
and other are matched. Notice that, in this case, the -type dis added to match only
directories.

$ find /myreadonly -perm /222 -type £
685035 0 -rw-rw-r-- 1 chris chris 0 Dec 30 16:34 /myreadonly/abc

$ find . -perm -002 -type f -1ls
266230 0 -TW-rw-Iw- 1 chris chris 0 Dec 30 16:28 ./LINUX BIBLE/abc

Using -perm /222, you can find any file (-type £) that has write permission turned on
for the user, group, or other. You might do that to make sure that all files are read-only in
a particular part of the filesystem (in this case, beneath the /myreadonly directory). The
last example, -perm /002, is very useful for finding files that have open write permission
for “other,” regardless of how the other permission bits are set.

Finding files by date and time

Date and time stamps are stored for each file when it is created, when it is accessed, when
its content is modified, or when its metadata is changed. Metadata includes owner, group,
time stamp, file size, permissions, and other information stored in the file’s inode. You
might want to search for file data or metadata changes for any of the following reasons:

B You just changed the contents of a configuration file, and you can't remember
which one. So, you search /etc to see what has changed in the past 10 minutes:
$ find /etc/ -mmin -10

125

Part 1l: Becoming a Linux Power User

126

B You suspect that someone hacked your system three days ago. So, you search the
system to see if any commands have had their ownership or permissions changed in
the past three days:

$ find /bin /usr/bin /sbin /usr/sbin -ctime -3

B You want to find files in your FTP server (/var/ftp) and web server (/var/www)
that have not been accessed in more than 300 days so that you can see if any need
to be deleted:

$ find /var/ftp /var/www -atime +300

As you can glean from the examples, you can search for content or metadata changes over
a certain number of days or minutes. The time options (-atime, -ctime, and -mtime)
enable you to search based on the number of days since each file was accessed, changed,
or had its metadata changed. The min options (-amin, -cmin, and -mmin) do the same
in minutes.

Numbers that you give as arguments to the min and time options are preceded by a
hyphen (to indicate a time from the current time to that number of minutes or days ago) or
a plus (to indicate time from the number of minutes or days ago and older). With no hyphen
or plus, the exact number is matched.

Using ‘not’ and ‘or’ when finding files

With the -not and -or options, you can further refine your searches. There may be times
when you want to find files owned by a particular user but not assigned to a particular
group. You may want files larger than a certain size but smaller than another size. Or you
might want to find files owned by any of several users. The -not and -or options can help
you do that. Consider the following examples:

B There is a shared directory called /var/allusers. This command line enables you
to find files that are owned by either joe or chris.

$ find /var/allusers \(-user joe -o -user chris \) -1ls

679967 0 -rw-r--r-- 1 chris chris 0 Dec 31 12:57
/var/allusers/myjoe

679977 1812 -rw-r--r-- 1 joe joe 4379 Dec 31 13:09
/var/allusers/dict.dat

679972 0 -rw-r--r-- 1 joe sales 0 Dec 31 13:02
/var/allusers/one

B This command line searches for files owned by the user joe, but only those that
are not assigned to the group joe:
$ find /var/allusers/ -user joe -not -group joe -1ls
679972 0 -rw-r--r-- 1 joe sales 0 Dec 31 13:02 /var/allusers/one

Chapter 5: Working with Text Files

B You can also add multiple requirements on your searches. Here, a file must be
owned by the user joe and must also be more than 1MB in size:

$ find /var/allusers/ -user joe -and -size +1M -1s
679977 1812 -rw-r--r-- 1 joe root 1854379 Dec 31 13:09
/var/allusers/dict.dat

Finding files and executing commands

One of the most powerful features of the £ind command is the capability to execute com-
mands on any files that you find. With the -exec option, the command you use is exe-
cuted on every file found, without stopping to ask if that’s okay. The -ok option stops at
each matched file and asks whether you want to run the command on it.

The advantage of using -ok is that, if you are doing something destructive, you can make
sure that you okay each file individually before the command is run on it. The syntax for
using -exec and -ok is the same:

$ find [options] -exec command {} \;
$ find [options] -ok command {} \;

With -exec or -ok, you run £ind with any options you like in order to find the files you
are seeking. Then you enter the -exec or -ok option followed by the command you want
to run on each file. The set of curly braces indicates where on the command line to read
in each file that is found. Each file can be included in the command line multiple times

if you like. To end the line, you need to add a backslash and semicolon (\;). Here are
some examples:

B This command finds any file named passwd under the /etc directory and includes
that name in the output of an echo command:
$ find /etc -iname passwd -exec echo "I found {}" \;
I found /etc/pam.d/passwd
I found /etc/passwd

® The following command finds every file under the /usr/share directory that is
more than 5MB in size. Then it lists the size of each file with the du command.
The output of £ind is then sorted by size, from largest to smallest. With -exec
entered, all entries found are processed, without prompting:
$ find /usr/share -size +5M -exec du {} \; | sort -nr
116932 /usr/share/icons/HighContrast/icon-theme.cache
69048 /usr/share/icons/gnome/icon-theme.cache
20564 /usr/share/fonts/cjkuni-uming/uming.ttc

® The -ok option enables you to choose, one at a time, whether each file found is
acted upon by the command you enter. For example, you want to find all files that
belong to joe in the /var/allusers directory (and its subdirectories) and move
them to the /tmp/joe directory:

find /var/allusers/ -user joe -ok mv {} /tmp/joe/ \;
< mv ... /var/allusers/dict.dat > ? y
< mv ... /var/allusers/five > ? y

127

Part 1l: Becoming a Linux Power User

128

Notice in the preceding code that you are prompted for each file that is found before it is
moved to the /tmp/joe directory. You would simply type y and press Enter at each line to
move the file, or just press Enter to skip it.

For more information on the find command, enter man find.

Searching in files with grep

If you want to search for files that contain a certain search term, you can use the grep
command. With grep, you can search a single file or search a whole directory structure of
files recursively.

When you search, you can have every line containing the term printed on your screen (stan-
dard output) or just list the names of the files that contain the search term. By default, grep
searches text in a case-sensitive way, although you can do case-insensitive searches as well.

Instead of just searching files, you can also use grep to search standard output. So, if a
command turns out lots of text and you want to find only lines that contain certain text,
you can use grep to filter just want you want.

Here are some examples of grep command lines used to find text strings in one or
more files:

$ grep desktop /etc/services
desktop-dna 2763/tcp # Desktop DNA
desktop-dna 2763 /udp # Desktop DNA

$ grep -i desktop /etc/services

sco-dtmgr 617/tcp # SCO Desktop Administration Server
sco-dtmgr 617/udp # SCO Desktop Administration Server
airsync 2175/tcp # Microsoft Desktop AirSync Protocol

In the first example, a grep for the word desktop in the /etc/services file turned up
two lines. Searching again, using the -i to be case-insensitive (as in the second example),
there were 29 lines of text produced.

To search for lines that don't contain a selected text string, use the -v option. In the fol-
lowing example, all lines from the /etc/services file are displayed except those contain-
ing the text tcp (case-insensitive):

$ grep -vi tcp /etc/services

To do recursive searches, use the -r option and a directory as an argument. The following
example includes the -1 option, which just lists files that include the search text, without
showing the actual lines of text. That search turns up files that contain the text peerdns
(case-insensitive).

$ grep -rli peerdns /usr/share/doc/
/usr/share/doc/dnsmasg-2.66/setup.html
/usr/share/doc/initscripts-9.49.17/sysconfig.txt

Chapter 5: Working with Text Files

The next example recursively searches the /etc/sysconfig directory for the term root.
It lists every line in every file beneath the directory that contains that text. To make it
easier to have the term root stand out on each line, the --color option is added. By
default, the matched term appears in red.

$ grep -ri --color root /etc/sysconfig/

To search the output of a command for a term, you can pipe the output to the grep
command. In this example, I know that IP addresses are listed on output lines from the ip
command that include the string inet, so I use grep to display just those lines:

$ ip addr show | grep inet
inet 127.0.0.1/8 scope host lo
inet 192.168.1.231/24 brd 192.168.1.255 scope global wlan0

Summary

Being able to work with plain-text files is a critical skill for using Linux. Because so many
configuration files and document files are in plain-text format, you need to become profi-
cient with a text editor to use Linux effectively. Finding filenames and content in files are
also critical skills. In this chapter, you learned to use the locate and find commands for
finding files and grep for searching files.

The next chapter covers a variety of ways to work with processes. There, you learn how
to see what processes are running, run processes in the foreground and background, and
change processes (send signals).

Exercises

Use these exercises to test your knowledge of using the vi (or vim) text editor, commands
for finding files (locate and £ind), and commands for searching files (grep). These tasks
assume that you are running a Fedora or Red Hat Enterprise Linux system (although some
tasks work on other Linux systems as well). If you are stuck, solutions to the tasks are
shown in Appendix B (although in Linux, there are often multiple ways to complete a task).

1. Copy the /etc/services file to the /tmp directory. Open the /tmp/ser-
vices file in vim, and search for the term WorldwidewWeb. Change that to read
World Wide Web.

2. Find the following paragraph in your /tmp/services file (if it is not there,
choose a different paragraph) and move it to the end of that file.

Note that it is presently the policy of IANA to assign a single well-known
port number for both TCP and UDP; hence, most entries here have two entries
even if the protocol doesn't support UDP operations.

Updated from RFC 1700, "Assigned Numbers" (October 1994). Not all ports
are included, only the more common ones.

129

Part 1l: Becoming a Linux Power User

130

10.

. Using ex mode, search for every occurrence of the term tcp (case-sensitive) in

your /tmp/services file and change it to WHATEVER.

. As aregular user, search the /etc directory for every file named passwd. Redirect

error messages from your search to /dev/null.

. Create a directory in your home directory called TEST. Create files in that directory

named one, two, and three that have full read/write/execute permissions on for
everyone (user, group, and other). Construct a £ind command to find those files
and any other files that have write permission open to “others” from your home
directory and below.

. Find files under the /usr/share/doc directory that have not been modified in

more than 300 days.

Create a /tmp/FILES directory. Find all files under the /usr/share directory
that are more than 5MB and less than 10MB and copy them to the /tmp/FILES
directory.

Find every file in the /tmp/FILES directory, and make a backup copy of each file
in the same directory. Use each file's existing name, and just append .mybackup
to create each backup file.

Install the kernel-doc package in Fedora or Red Hat Enterprise Linux. Using
grep, search inside the files contained in the /usr/share/doc/kernel-doc*
directory for the term 1000 (case-insensitive) and list the names of the files that
contain that term.

Search for the e1000 term again in the same location, but this time list every line
that contains the term and highlight the term in color.

CHAPTER

Managing Running Processes

IN THIS CHAPTER

Displaying processes
Running processes in the foreground and background

Killing and renicing processes

means that many programs can be running at the same time. An instance of a running program
is referred to as a process. Linux provides tools for listing running processes, monitoring system
usage, and stopping (or killing) processes when necessary.

I n addition to being a multiuser operating system, Linux is a multitasking system. Multitasking

From a shell, you can launch processes and then pause, stop, or kill them. You can also put them
in the background and bring them to the foreground. This chapter describes tools such as ps, top,
kill, jobs, and other commands for listing and managing processes.

Understanding Processes

A process is a running instance of a command. For example, there may be one vi command on the
system. But if vi is currently being run by 15 different users, that command is represented by 15
different running processes.

A process is identified on the system by what is referred to as a process ID (PID). That PID is unique for
the current system. In other words, no other process can use that number as its process ID while that
first process is still running. However, after a process has ended, another process can reuse that number.

Along with a process ID number, other attributes are associated with a process. Each process, when
it is run, is associated with a particular user account and group account. That account information
helps determine what system resources the process can access. For example, a process run as the root
user has much more access to system files and resources than a process running as a reqular user.

The ability to manage processes on your system is critical for a Linux system administrator. Some-
times, runaway processes may be killing your system’s performance. Finding and dealing with
processes, based on attributes such as memory and CPU usage, are covered in this chapter.

131

Part 1l: Becoming a Linux Power User

Norte

Commands that display information about running processes get most of that information from raw data stored in

the /proc file system. Each process stores its information in a subdirectory of /proc, named after the process
ID of that process. You can view some of that raw data by displaying the contents of files in one of those directories
(using cat or less commands).

132

Listing Processes

From the command line, the ps command is the oldest and most common command for list-
ing processes currently running on your system. The Linux version of ps contains a variety
of options from old UNIX and BSD systems, some of which are conflicting and implemented
in nonstandard ways. See the ps man page for descriptions of those different options.

The top command provides a more screen-oriented approach to listing processes, and it can
also be used to change the status of processes. If you are using the GNOME desktop, you can
use the System Monitor tool (gnome-system-monitor) to provide a graphical means of
working with processes. These commands are described in the following sections.

Listing processes with ps

The most common utility for checking running processes is the ps command. Use it to see
which programs are running, the resources they are using, and who is running them. The
following is an example of the ps command:

$ ps u

USER PID %CPU SMEM VSZ RSS TTY STAT START TIME COMMAND
jake 2147 0.0 0.7 1836 1020 ttyl S+ 14:50 0:00 -bash
jake 2310 0.0 0.7 2592 912 ttyl R+ 18:22 0:00 ps u

In this example, the u option (equivalent to -u) asks that usernames be shown, as well
as other information such as the time the process started and memory and CPU usage for
processes associated with the current user. The processes shown are associated with the
current terminal (tty1l). The concept of a terminal comes from the old days when people
worked exclusively from character terminals, so a terminal typically represented a single
person at a single screen. Nowadays, you can have many “terminals” on one screen by
opening multiple virtual terminals or Terminal windows on the desktop.

In this shell session, not much is happening. The first process shows that the user named
jake opened a bash shell after logging in. The next process shows that jake has run the
ps u command. The terminal device tty1l is being used for the login session. The STAT
column represents the state of the process, with R indicating a currently running process
and S representing a sleeping process.

Chapter 6: Managing Running Processes

Norte

Several other values can appear under the STAT column. For example, a plus sign (+) indicates that the process is
associated with the foreground operations.

The USER column shows the name of the user who started the process. Each process is
represented by a unique ID number referred to as a process ID, or PID. You can use the PID
if you ever need to kill a runaway process or send another kind of signal to a process. The
%CPU and $MEM columns show the percentages of the processor and random access memory,
respectively, that the process is consuming.

VSZ (virtual set size) shows the size of the image process (in kilobytes), and RSS (resident
set size) shows the size of the program in memory. The VSZ and RSS sizes may be differ-
ent because VSZ is the amount of memory allocated for the process, whereas RSS is the
amount that is actually being used. RSS memory represents physical memory that cannot
be swapped.

START shows the time the process began running, and TIME shows the cumulative
system time used. (Many commands consume very little CPU time, as reflected by 0:00 for
processes that haven't even used a whole second of CPU time.)

Many processes running on a computer are not associated with a terminal. A normal Linux
system has many processes running in the background. Background system processes per-
form such tasks as logging system activity or listening for data coming in from the net-
work. They are often started when Linux boots up and run continuously until the system
shuts down. Likewise, logging into a Linux desktop causes many background processes to
kick off, such as processes for managing audio, desktop panels, authentication, and other
desktop features.

To page through all of the processes running on your Linux system for the current user, add
the pipe (|) and the less command to ps ux:

$ ps ux | less

To page through all processes running for all users on your system, use the ps aux
command as follows:

$ ps aux | less

A pipe (located above the backslash character on the keyboard) enables you to direct the
output of one command to be the input of the next command. In this example, the output
of the ps command (a list of processes) is directed to the less command, which enables
you to page through that information. Use the spacebar to page through and type g to end
the list. You can also use the arrow keys to move one line at a time through the output.

The ps command can be customized to display selected columns of information and to
sort information by one of those columns. Using the -o option, you can use keywords to
indicate the columns you want to list with ps. For example, the next example lists every

133

Part 1l: Becoming a Linux Power User

134

running process (-e) and then follows the -o option with every column of information I
want to display, including the process ID (pid), username (user), user ID (uid), group
name (group), group ID (gid), virtual memory allocated (vsz), resident memory used
(rss), and the full command line that was run (comm). By default, output is sorted by pro-
cess ID number.

$ ps -eo pid,user,uid,group,gid,vsz,rss,comm | less

PID USER UID GROUP GID VSz RSS COMMAND
1 root 0 root 0 187660 13296 systemd
2 root 0 root 0 0 0 kthreadd

If you want to sort by a specific column, you can use the sort= option. For example, to see
which processes are using the most memory, I sort by the vsz field. That sorts from lowest
memory use to highest. Because I want to see the highest ones first, I put a hyphen in front
of that option to sort (sort=-vsz).

$ ps -eo pid,user,group,gid,vsz,rss,comm --sort=-vsz | head

PID USER GROUP GID VSZ RSS COMMAND
2366 chris chris 1000 3720060 317060 gnome-shell
1580 gdm gdm 42 3524304 205796 gnome-shell
3030 chris chris 1000 2456968 248340 firefox
3233 chris chris 1000 2314388 316252 Web Content

Refer to the ps man page for information on other columns of information by which you
can display and sort.

Listing and changing processes with top

The top command provides a screen-oriented means of displaying processes running on
your system. With top, the default is to display processes based on how much CPU time
they are currently consuming. However, you can sort by other columns as well. After you
identify a misbehaving process, you can also use top to kill (completely end) or renice
(reprioritize) that process.

If you want to be able to kill or renice any processes, you need to run top as the root user.
If you just want to display processes and possibly kill or change your own processes, you
can do that as a reqular user. Figure 6.1 shows an example of the top window.

General information about your system appears at the top of the top output, followed by
information about each running process (or at least as many as will fit on your screen). At
the top, you can see how long the system has been up, how many users are currently logged
in to the system, and how much demand there has been on the system for the past 1, 5,
and 10 minutes.

Other general information includes how many processes (tasks) are currently running,
how much CPU is being used, and how much RAM and swap are available and being used.

Chapter 6: Managing Running Processes

FIGURE 6.1

Displaying running processes with top

- 14:59:56 up 1:02, 1 user, load average: 0.44, 0.41, 0.31
: 254 total, 1 running, 253 sleeping, 0 stopped, 0 zombie
3.7 us, 1.2 sy, 0.0 ni, 94.9 id, 0.6 wa, 0.2 hi, 0.2 si, 0.0 st
2336.0 total, 163.9 free, 1723.2 used, 448.9 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 412.1 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2366 chris 20 3754664 360232 82412 4. 15. :04.14 gnome-shell
3233 chris 20 2315412 323812 112896 13. :55.87 Web Content
15222 cockpit+ 20 607588 13200 10212 :06.82 cockpit-ws
16924 chris 20 680312 49244 35320 :22.68 gnome-system-mo
1797 root 20 49132 2456 2084 :00.83 spice-vdagentd
3030 chris 20 2456968 252124 101972 :48.93 firefox
root 20 887040 12060 7584 :04.45 cockpit-bridge
root 20 187660 13236 7884 :04.81 systemd
root 20 0 (¢] 0 :00.00 kthreadd
root - (0] [¢] (0] :00.00 rcu gp
root - (0] [¢] (0] :00.00 rcu par gp

HHOLLVLLLVLOLLWOWK

COODOOODON

COOOWWWN~NWW
=

o UURKROU R

coocoooOR WU

Following the general information are listings of each process, sorted by what percent of the
CPU is being used by each process. All of this information is redisplayed every 5 seconds,
by default.

The following list includes actions that you can do with top to display information in dif-
ferent ways and modify running processes:

m Press h to see help options, and then press any key to return to the top display.

m Press M to sort by memory usage instead of CPU, and then press P to return to sort-
ing by CPU.

B Press the number 1 to toggle showing CPU usage of all your CPUs if you have more
than one CPU on your system.

m Press R to reverse sort your output.
B Press u and enter a username to display processes only for a particular user.

A common practice is to use top to find processes that are consuming too much memory
or processing power and then act on those processes in some way. A process consuming too
much CPU can be reniced to give it less priority to the processors. A process consuming too
much memory can be killed. With top running, here’s how to renice or kill a process:

Renicing a process Note the process ID of the process you want to renice and press r.
When the PID to renice message appears, type the process ID of the process you
want to renice. When prompted to Renice PID to value, type in a number from
-20 to 19. (See “Setting processor priority with nice and renice” later in this chapter
for information on the meanings of different renice values.)

Killing a process Note the process ID of the process you want to kill and press k.
Type 15 to terminate cleanly or 9 to just kill the process outright. (See “Killing
processes with kill and killall” later in this chapter for more information on using
different signals you can send to processes.)

135

Part 1l: Becoming a Linux Power User

136

Listing processes with System Monitor

If you have GNOME desktop available on your Linux system, System Monitor (gnome-sys-
tem-monitor) is available to provide a more graphical way of displaying processes on your
system. You sort processes by clicking columns. You can right-click processes to stop, kill,
or renice them.

To start System Monitor from the GNOME desktop, press the Windows key and then type
System Monitor and press Enter. Then select the Processes tab. Figure 6.2 shows an example of
the System Monitor window, displaying processes for the current user in order by memory use.

FIGURE 6.2

Use the System Monitor window to view and change running processes.

Processes Resources File Systems Q = x
< gnome-shell chris 1 2366 276.8 MiB 11.4 MiB 952.0 KiB N/A N/A Normal
‘& Web Content chris 1 3233 198.6MiB 16.5 MiB N/A N/A N/A Normal
@ firefox chris 0 3030 141.2MiB 220.8 MiB 128.2 MiB N/A N/A Normal
L gnome-software chris 0 2644 518MiB 9.7 MiB 2.1 MiB N/A N/A Normal
‘v Web Content chris 0 16945 19.6 MiB 10.6 MiB N/A N/A N/A Normal
B gnome-system-monitor chris 0 16924 16.9 MiB 10.3 MiB N/A N/A N/A Normal
‘seapplet chris 0 2687 152MiB 612.0 KiB 12.0KiB N/A N/A Normal
“Jevolution-alarm-natify chris 0 2690 128 MiB 996.0 KiB N/A N/A N/A Normal
‘w gnome-terminal-server chris 0 3467 125MiB 15.3 MiB 20.0 KiB N/A N/A Normal
‘@ tracker-store chris 0 2677 114 MiB 5.4 MiB 312.0KiB N/A N/A Normal
& Xwayland chris 0 2392 10.3MiB 244.0KiB 24.0KiB N/A N/A Normal
“Jevolution-source-registry chris 0 2458 9.8 MiB 23.5 MiB N/A N/A N/A Normal
~Jevolution-calendar-factory-suby chris 0 2715 9.8 MiB 624.0 KiB N/A N/A N/A Normal
@ ibus-x11 chris 0 2434 9.6 MiB N/A N/A N/A N/A Normal

By default, only running processes associated with your user account are displayed. Those
processes are listed alphabetically at first. You can resort the processes by clicking any of
the field headings (forward and reverse). For example, click the %CPU heading to see which
processes are consuming the most processing power. Click the Memory heading to see which
processes consume the most memory.

You can change your processes in various ways by right-clicking a process name and select-
ing from the menu that appears (see Figure 6.3 for an example).

Here are some of the things you can do to a process from the menu you clicked:

Stop: Pauses the process so that no processing occurs until you select Continue Process.
(This is the same as pressing Ctrl+Z on a process from the shell.)

Continue: Continues running a paused process.

End: Sends a Terminate signal (15) to a process. In most cases, this terminates the pro-
cess cleanly.

Kill: Sends a Kill signal (9) to a process. This should kill a process immediately, regard-
less of whether it can be done cleanly.

Chapter 6: Managing Running Processes

FIGURE 6.3

Renice, kill, or pause a process from the System Monitor window.

Processes Resources File Systems Q = x
Process Name User %CPU ID Memory ~ Disk read tota Disk write tot Disk read Disk write Priority
¢ gnome-shell chris 0 2366 276.9MiB 115 MiB 964.0 KiB N/A N/A Normal
“¢'Web Content chris 2 3233 2145MiB 16.5 MiB N/A N/A N/A Normal

Yirefox 0.6 MiB 220.8 MiB 128.2MB N/A Normal

Properties Alt+Return

5 gnome-software 1.8 MiB 9.7 MiB 2.1MiB N/A N/A Normal
& Web Content Memory Maps 19.6 MiB 10.6 MiB N/A N/A N/A Normal
|8 gnome-system-monitor Open Files © l69MiB 103 MiB N/A N/A N/A Normal
‘& seapplet Change Priority ¥ (5.2 MiB 612.0KiB 12.0 KB N/A N/A Normal
| evolution-alarm-notify Stop Crl+5 2.8 MiB 996.0 KiB N/A N/A N/A Normal
‘¢ gnome-terminal-server Continue “ul+C 25 MiB 153 MiB 20.0KiB N/A N/A Normal
“¢rtracker-store End (£ lL4MiB 5.4 MiB 312.0KiB N/A N/A Normal
& Xwayland Kil Cilep [0BMIB 244.0KiB 24.0KIB N/A N/A Normal
|evolution-source-registry chris 0 2458 9.8 MiB 235 MiB N/A N/A N/A Normal

End Process R

Change Priority: Presents a list of priorities from Very Low to Very High. Select Custom
to see a slider bar from which you can renice a process. Normal priority is 0. To get
better processor priority, use a negative number from -1 to -20. To have a lower pro-
cessor priority, use a positive number (0 to 19). Only the root user can assign neg-
ative priorities, so when prompted you need to provide the root password to set a
negative nice value.

Memory Maps: Lets you view the system memory map to see which libraries and other
components are being held in memory for the process.

Open Files: Lets you view which files are currently being held open by the process.

Properties: Lets you see other settings associated with the process (such as security
context, memory usage, and CPU use percentages).

You can display running processes associated with users other than yourself. To do that,
highlight any process in the display (just click it). Then, from the menu button (the button
with three bars on it), select All Processes. You can modify processes you don't own only

if you are the root user or if you can provide the root password when prompted after you
try to change a process. Sometimes, you won't have the luxury of working with a graphical
interface. To change processes without a graphical interface, you can use a set of com-
mands and keystrokes to change, pause, or kill running processes. Some of those are
described next.

Managing Background and Foreground Processes

If you are using Linux over a network or from a dumb terminal (a monitor that allows only
text input with no GUI support), your shell may be all that you have. You may be used to a

137

Part 1l: Becoming a Linux Power User

graphical environment in which you have lots of programs active at the same time so that
you can switch among them as needed. This shell thing can seem pretty limited.

Although the bash shell doesn't include a GUI for running many programs at once, it does
let you move active programs between the background and foreground. In this way, you
can have lots of stuff running and selectively choose the one you want to deal with at
the moment.

You can place an active program in the background in several ways. One is to add an amper-
sand (&) to the end of a command line when you first run the command. You can also use
the at command to run commands in such a way that they are not connected to the shell.

To stop a running command and put it in the background, press Ctrl+Z. After the command
is stopped, you can either bring it back into the foreground to run (the £g command) or
start it running in the background (the bg command). Keep in mind that any command
running in the background might spew output during commands that you run subsequently
from that shell. For example, if output appears from a command running in the background
during a vi session, simply press Ctrl+L to redraw the screen to get rid of the output.

Tip

To avoid having the output appear, you should have any process running in the background send its output to a file or
to null (add 2> /dev/null to the end of the command line).

Starting background processes

If you have programs that you want to run while you continue to work in the shell, you can
place the programs in the background. To place a program in the background at the time
you run the program, type an ampersand (&) at the end of the command line, like this:

$ find /usr > /tmp/allusrfiles &
[3] 15971

This example command finds all files on your Linux system (starting from /usr), prints
those filenames, and puts those names in the file /tmp/allusrfiles. The ampersand (&)
runs that command line in the background. Notice that the job number, [3], and process ID
number, 15971, are displayed when the command is launched. To check which commands
you have running in the background, use the jobs command, as follows:

$ jobs

[1] Stopped (tty output) vi /tmp/myfile

[2] Running find /usr -print > /tmp/allusrfiles &
[3] Running nroff -man /usr/man2/* >/tmp/man2 &
[4] - Running nroff -man /usr/man3/* >/tmp/man3 &
[5]+ Stopped nroff -man /usr/man4/* >/tmp/mand

The first job shows a text-editing command (vi) that I placed in the background and
stopped by pressing Ctrl+Z while I was editing. Job 2 shows the find command I just ran.

138

Chapter 6: Managing Running Processes

Jobs 3 and 4 show nroff commands currently running in the background. Job 5 had been
running in the shell (foreground) until I decided too many processes were running and
pressed Ctrl+Z to stop job 5 until a few processes had completed.

The plus sign (+) next to number 5 shows that it was most recently placed in the
background. The minus sign (-) next to number 4 shows that it was placed in the
background just before the most recent background job. Because job 1 requires terminal
input, it cannot run in the background. As a result, it is Stopped until it is brought to the
foreground again.

Tip

To see the process ID for the background job, add a -1 (the lowercase letter L) option to the jobs command. If you
type ps, you can use the process ID to figure out which command is for a particular background job.

Using foreground and background commands

Continuing with the example, you can bring any of the commands on the jobs list to the
foreground. For example, to edit myfile again, enter the following:

$ fg %1

As a result, the vi command opens again. All text is as it was when you stopped
the vi job.

Caurtion
Before you put a text processor, word processor, or similar program in the background, make sure that you save your

file. It’s easy to forget that you have a program in the background, and you will lose your data if you log out or the
computer reboots.

To refer to a background job (to cancel or bring it to the foreground), use a percent sign (%)
followed by the job number. You can also use the following to refer to a background job:

% Refers to the most recent command put into the background (indicated by the
plus sign when you type the jobs command). This action brings the command to
the foreground.

%string Refersto a job where the command begins with a particular string of characters.
The string must be unambiguous. (In other words, typing $vi when there are two
vi commands in the background results in an error message.)

%?string Refers to a job where the command line contains a string at any point. The string
must be unambiguous or the match fails.

%-- Refers to the job stopped before the one most recently stopped.

139

Part 1l: Becoming a Linux Power User

140

If a command is stopped, you can start it running again in the background using the bg
command. For example, refer back to job 5 from the jobs list in a previous example:

[5]+ Stopped nroff -man /usr/man4/* >/tmp/man4
Enter the following:
$ bg %5
After that, the job runs in the background. Its jobs entry appears as follows:

[5] Running nroff -man /usr/man4/* >/tmp/mand &

Killing and Renicing Processes

Just as you can change the behavior of a process using graphical tools such as System Mon-
itor (described earlier in this chapter), you can also use command-line tools to kill a pro-
cess or change its CPU priority. The kill command can send a kill signal to any process to
end it, assuming you have permission to do so. It can also send different signals to a pro-
cess to otherwise change its behavior. The nice and renice commands can be used to set
or change the processor priority of a process.

Killing processes with kill and killall

Although usually used for ending a running process, the kill and killall commands
can actually be used to send any valid signal to a running process. Besides telling a process
to end, a signal might tell a process to reread configuration files, pause (stop), or continue
after being paused, just to name a few possibilities.

Signals are represented by both numbers and names. Signals that you might send most
commonly from a command include SIGKILL (9), SIGTERM (15), and SIGHUP (1). The
default signal is STGTERM, which tries to terminate a process cleanly. To kill a process
immediately, you can use SIGKILL. The SIGHUP signal can, depending on the program,
tell a process to reread its configuration files. SIGSTOP pauses a process, while SIGCONT
continues a stopped process.

Different processes respond to different signals. Processes cannot block SIGKILL and SIG-
STOP signals, however. Table 6.1 shows examples of some signals (enterman 7 signal to
read about other available signals).

Notice that there are multiple possible signal numbers for SIGCONT and SIGSTOP because
different numbers are used in different computer architectures. For most x86 and Power
architectures, use the middle value. The first value usually works for Alpha and SPARC,
while the last one is for MIPS architecture.

Using kill to signal processes by PID

Using commands such as ps and top, you can find processes to which you want to send a
signal. Then you can use the process ID of that process as an option to the kill command,
along with the signal you want to send.

Chapter 6: Managing Running Processes

TABLE 6.1 Signals Available in Linux

Signal Number Description

SIGHUP 1 Hang-up detected on controlling terminal or death of controlling
process.

SIGINT 2 Interrupt from keyboard.

SIGQUIT 3 Quit from keyboard.

SIGABRT 6 Abort signal from abort(3).

SIGKILL 9 Kill signal.

SIGTERM 15 Termination signal.

SIGCONT 19,18,25 Continue if stopped.
SIGSTOP 17,19,23 Stop process.

For example, you run the top command and see that the bigcommand process is con-
suming most of your processing power:

PID USER PR NI VIRT RES SHR S %CPU $MEM TIME+ COMMAND
10432 chris 20 0 47lm 121m 18m S 99.9 3.2 77:01.76 bigcommand

Here, the bigcommand process is consuming 99.9 percent of the CPU. You decide that you
want to kill it so that other processes have a shot at the CPU. If you use the process ID of
the running bigcommand process, here are some examples of the kill command that you
can use to kill that process:

$ kill 10432
$ kill -15 10432
$ kill -SIGKILL 10432

The default signal sent by kill is 15 (SIGTERM), so the first two examples have exactly the
same results. On occasion, a SIGTERM doesn't kill a process, so you may need a SIGKILL to
kill it. Instead of SIGKILL, you can use -9 to get the same result.

Another useful signal is SIGHUP. If, for example, something on your GNOME desktop were
corrupted, you could send the gnome-shell a SIGHUP signal to reread its configuration
files and restart the desktop. If the process ID for gnome-shell were 1833, here are two
ways you could send it a SIGHUP signal:

kill -1 1833
killall -HUP gnome-shell

Using killall to signal processes by name

With the killall command, you can signal processes by name instead of by process ID. The
advantage is that you don't have to look up the process ID of the process that you want to
kill. The potential downside is that you can kill more processes than you mean to if you are
not careful. (For example, typing killall bash may kill a bunch of shells that you don't
mean to kill.)

141

Part 1l: Becoming a Linux Power User

142

Like the kill command, killall uses SIGTERM (signal 15) if you don't explicitly enter
a signal number. Also as with kill, you can send any signal you like to the process you
name with killall. For example, if you see a process called testme running on your
system and you want to kill it, you can simply enter the following:

$ killall -9 testme

The killall command can be particularly useful if you want to kill a bunch of commands
of the same name.

Setting processor priority with nice and renice

When the Linux kernel tries to decide which running processes get access to the CPUs on
your system, one of the things it takes into account is the nice value set on the process.
Every process running on your system has a nice value between -20 and 19. By default, the
nice value is set to 0. Here are a few facts about nice values:

B The lower the nice value, the more access to the CPUs the process has. In other
words, the nicer a process is, the less CPU attention it gets. So, a -20 nice value
gets more attention than a process with a 19 nice value.

B A regular user can set nice values only from 0 to 19. No negative values are allowed.
So a regular user can't ask for a value that gives a process more attention than most
processes get by default.

B A regular user can set the nice value higher, not lower. So, for example, if a user
sets the nice value on a process to 10 and then later wants to set it back to 5, that
action will fail. Likewise, any attempt to set a negative value will fail.

B A reqular user can set the nice value only on the user’s own processes.
m The root user can set the nice value on any process to any valid value, up or down.

You can use the nice command to run a command with a particular nice value. When a
process is running, you can change the nice value using the renice command, along with
the process ID of the process, as in the example that follows:

nice -n +5 updatedb &

The updatedb command is used to generate the locate database manually by gathering
names of files throughout the filesystem. In this case, I just wanted updatedb to run in
the background (&) and not interrupt work being done by other processes on the system. I
ran the top command to make sure that the nice value was set properly:

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
20284 root 25 5 98.7m 932 644 D 2.7 0.0 0:00.96 updatedb

Notice that under the NI column, the nice value is set to 5. Because the command was run

as the root user, the root user can lower the nice value later by using the renice command.
(Remember that a regular user can't reduce the nice value or ever set it to a negative number.)
Here's how you would change the nice value for the updatedb command just run to -5:

renice -n -5 20284

Chapter 6: Managing Running Processes

If you ran the top command again, you might notice that the updatedb command is now
at or near the top of the list of processes consuming CPU time because you gave it priority
to get more CPU attention.

Limiting Processes with cgroups

You can use a feature like “nice” to give a single process more or less access to CPU time.
Setting the nice value for one process, however, doesn’t apply to child processes that a pro-
cess might start up or any other related processes that are part of a larger service. In other
words, “nice” doesn’t limit the total amount of resources a particular user or application
can consume from a Linux system.

As cloud computing takes hold, many Linux systems will be used more as hypervisors than
as general-purpose computers. Their memory, processing power, and access to storage will
become commodities to be shared by many users. In that model, more needs to be done to
control the amount of system resources to which a particular user, application, container,
or virtual machine running on a Linux system has access.

That's where cgroups come in.

Cgroups can be used to identify a process as a task, belonging to a particular control group.
Tasks can be set up in a hierarchy where, for example, there may be a task called daemons
that sets default limitations for all daemon server processes, then subtasks that may set
specific limits on a web server daemon (httpd) for FTP service daemon (vsftpd).

As a task launches a process, other processes that the initial process launches (called child
processes) inherit the limitations set for the parent process. Those limitations might say
that all the processes in a control group only have access to particular processors and cer-
tain sets of RAM. Or they may only allow access to up to 30 percent of the total processing
power of a machine.

The types of resources that can be limited by cgroups include the following:

Storage (blkio): Limits total input and output access to storage devices (such as hard
disks, USB drives, and so on).

Processor scheduling (cpu): Assigns the amount of access a cgroup has to be sched-
uled for processing power.

Process accounting (cpuacct): Reports on CPU usage. This information can be lever-
aged to charge clients for the amount of processing power they use.

CPU assignment (cpuset): On systems with multiple CPU cores, assigns a task to a
particular set of processors and associated memory.

Device access (devices): Allows tasks in a cgroup to open or create (mknod) selected
device types.

Suspend/resume (freezer): Suspends and resumes cgroup tasks.

143

Part 1l: Becoming a Linux Power User

144

Memory usage (memory): Limits memory usage by task. It also creates reports on
memory resources used.

Network bandwidth (net cls): Limits network access to selected cgroup tasks. This
is done by tagging network packets to identify the cgroup task that originated the
packet and having the Linux traffic controller monitor and restrict packets coming
from each cgroup.

Network traffic (net_prio): Sets priorities of network traffic coming from selected
cgroups and lets administrators change these priorities on the fly.

Name spaces (ns): Separates cgroups into namespaces, so processes in one cgroup can
only see the namespaces associated with the cgroup. Namespaces can include sepa-
rate process tables, mount tables, and network interfaces.

At its most basic level, creating and managing cgroups is generally not a job for new Linux
system administrators. It can involve editing configuration files to create your own cgroups
(/etc/cgconfig.conf) or set up limits for particular users or groups (/etc/cgrules
.conf). Or you can use the cgcreate command to create cgroups, which results in those
groups being added to the /sys/fs/cgroup hierarchy. Setting up cgroups can be tricky
and, if done improperly, can make your system unbootable.

The reason I bring up the concept of cgroups here is to help you understand some of the
underlying features in Linux that can be used to limit and monitor resource usage. In the
future, you will probably run into these features from controllers that manage your cloud
infrastructure. You will be able to set rules like “Allow the Marketing department’s virtual
machines to consume up to 40 percent of the available memory” or “Pin the database appli-
cation to a particular CPU and memory set.”

Knowing how Linux can limit and contain the resource usage by the set of processes
assigned to a task will ultimately help you manage your computing resources better. If you
are interested in learning more about cgroups, you can refer to the following:

m Red Hat Enterprise Linux Resource Management and Linux Containers Guide:

https://access.redhat.com/documentation/en-us/red hat enterprise linux/7/
html-single/resource management guide/index

m Kernel documentation on cgroups: Refer to files in the /usr/share/doc/
kernel-doc-*/Documentation/cgroups directory after installing the kernel-
doc package.

Summary

Even on a Linux system where there isn’t much activity, typically dozens or even hundreds
of processes are running in the background. Using the tools described in this chapter, you
can view and manage the processes running on your system.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/resource_management_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/resource_management_guide/index

Chapter 6: Managing Running Processes

Managing processes includes viewing processes in different ways, running them in the fore-
ground or background, and killing or renicing them. More advanced features for limiting
resource usage by selected processes are available using the cgroups feature.

In the next chapter, you learn how to combine commands and programming functions into
files that can be run as shell scripts.

Exercises

Use these exercises to test your knowledge of viewing running processes and then changing
them later by killing them or changing processor priority (nice value). These tasks assume
that you are running a Fedora or Red Hat Enterprise Linux system (although some tasks
work on other Linux systems as well). If you are stuck, solutions to the tasks are shown in
Appendix B (although in Linux, you can often use multiple ways to complete a task).

1. List all processes running on your system, showing a full set of columns. Pipe that
output to the less command so that you can page through the list of processes.

2. List all processes running on the system and sort those processes by the name of
the user running each process.

3. List all processes running on the system, and display the following columns of
information: process ID, username, group name, virtual memory size, resident mem-
ory size, and the command.

4. Run the top command to view processes running on your system. Go back and
forth between sorting by CPU usage and memory consumption.

5. Start the gedit process from your desktop. Make sure that you run it as the user
you are logged in as. Use the System Monitor window to kill that process.

6. Run the gedit process again. This time, using the kill command, send a signal
to the gedit process that causes it to pause (stop). Try typing some text into the
gedit window and make sure that no text appears yet.

7. Use the killall command to tell the gedit command that you paused in the
previous exercise to continue working. Make sure that the text you type in after
gedit was paused now appears on the window.

8. Install the xeyes command (in Fedora, it is in the xorg-x11-apps package). Run
the xeyes command about 20 times in the background so that 20 xeyes win-
dows appear on the screen. Move the mouse around and watch the eyes watch your
mouse pointer. When you have had enough fun, kill all xeyes processes in one
command using killall.

9. As aregular user, run the gedit command so that it starts with a nice value of 5.

10. Using the renice command, change the nice value of the gedit command you
just started to 7. Use any command you like to verify that the current nice value
for the gedit command is now set to 7.

145

CHAPTER

Writing Simple Shell Scripts

IN THIS CHAPTER

Working with shell scripts
Doing arithmetic in shell scripts
Running loops and cases in shell scripts

Creating simple shell scripts

system when it starts. Likewise, you could work more efficiently if you grouped together sets

You’d never get any work done if you typed every command that needs to be run on your Linux
of commands that you run all the time. Shell scripts can handle these tasks.

A shell script is a group of commands, functions, variables, or just about anything else you can use
from a shell. These items are typed into a plain-text file. That file can then be run as a command.
Linux systems have traditionally used system initialization shell scripts during system startup to run
commands needed to get services going. You can create your own shell scripts to automate the tasks
that you need to do regularly.

For decades, building shell scripts was the primary skill needed to join together sets of tasks in UNIX
and Linux systems. As demands for configuring Linux systems grew beyond single-system setups to
complex, automated cluster configurations, more structured methods have arisen. These methods
include Ansible playbooks and Kubernetes YAML files, described later in cloud-related chapters. That
said, writing shell scripts is still the best next step from running individual commands to building
repeatable tasks in Linux systems.

This chapter provides a rudimentary overview of the inner workings of shell scripts and how they can
be used. You learn how simple scripts can be harnessed to a scheduling facility (such as cron or at)
to simplify administrative tasks or just run on demand as they are needed.

Understanding Shell Scripts

Have you ever had a task that you needed to do over and over that took lots of typing on the
command line? Do you ever think to yourself, “Wow, I wish I could just type one command to do all
this”? Maybe a shell script is what you're after.

147

Part 1l: Becoming a Linux Power User

148

Shell scripts are the equivalent of batch files in Windows and can contain long lists of com-
mands, complex flow control, arithmetic evaluations, user-defined variables, user-defined
functions, and sophisticated condition testing. Shell scripts are capable of handling every-
thing from simple one-line commands to something as complex as starting up a Linux
system. Although dozens of different shells are available in Linux, the default shell for
most Linux systems is called bash, the Bourne Again SHell.

Executing and debugging shell scripts

One of the primary advantages of shell scripts is that they can be opened in any text editor
to see what they do. A big disadvantage is that large or complex shell scripts often execute
more slowly than compiled programs. You can execute a shell script in two basic ways:

B The filename is used as an argument to the shell (as in bash myscript). In this
method, the file does not need to be executable; it just contains a list of shell com-
mands. The shell specified on the command line is used to interpret the commands
in the script file. This is most common for quick, simple tasks.

B The shell script may also have the name of the interpreter placed in the first line
of the script preceded by #! (as in #!/bin/bash) and have the execute bit of the
file containing the script set (using chmod +x filename). You can then run your
script just as you would any other program in your path simply by typing the name
of the script on the command line.

When scripts are executed in either manner, options for the program may be specified on
the command line. Anything following the name of the script is referred to as a command-
line argument.

As with writing any software, there is no substitute for clear and thoughtful design and
lots of comments. The pound sign (#) prefaces comments and can take up an entire line or
exist on the same line after script code. It is best to implement more complex shell scripts
in stages, making sure that the logic is sound at each step before continuing. Here are a
few good, concise tips to make sure that things are working as expected during testing:

B In some cases, you can place an echo statement at the beginning of lines within
the body of a loop and surround the command with quotes. That way, rather than
executing the code, you can see what will be executed without making any perma-
nent changes.

m To achieve the same goal, you can place dummy echo statements throughout the
code. If these lines get printed, you know the correct logic branch is being taken.

B You can use set -x near the beginning of the script to display each command that
is executed or launch your scripts using

$ bash -x myscript

B Because useful scripts have a tendency to grow over time, keeping your code read-
able as you go along is extremely important. Do what you can to keep the logic of
your code clean and easy to follow.

Chapter 7: Writing Simple Shell Scripts

Understanding shell variables

Often within a shell script, you want to reuse certain items of information. During the
course of processing the shell script, the name or number representing this information
may change. To store information used by a shell script in such a way that it can be easily
reused, you can set variables. Variable names within shell scripts are case sensitive and can
be defined in the following manner:

NAME=value

The first part of a variable is the variable name, and the second part is the value set for
that name. Be sure that the NAME and value touch the equal sign, without any spaces.
Variables can be assigned from constants, such as text, numbers, and underscores. This
is useful for initializing values or saving lots of typing for long constants. The following
examples show variables set to a string of characters (CITY) and a numeric value (PI):

CITY="Springfield"
PI=3.14159265

Variables can contain the output of a command or command sequence. You can accomplish
this by preceding the command with a dollar sign and open parenthesis, following it with
a closing parenthesis. For example, MYDATE=5 (date)assigns the output from the date
command to the MYDATE variable. Enclosing the command in back-ticks (*) can have the
same effect. In this case, the date command is run when the variable is set and not each
time the variable is read.

Escaping Special Shell Characters

Keep in mind that characters such as the dollar sign (%), back-tick (*), asterisk (*), exclamation point (1),
and others have special meaning to the shell, which you will see as you proceed through this chapter.
On some occasions, you want the shell to use these characters’ special meaning and other times you
don't. For example, if you typed echo $HOME, the shell would think that you meant to display the name
of your home directory (stored in the $HOME variable) to the screen (such as /home/chris) because a
$ indicates a variable name follows that character.

If you wanted literally to show $HOME, you would need to escape the $. Typing echo ‘$HOME' or echo
\$HOME would literally show $HOME on the screen. So, if you want to have the shell interpret a single
character literally, precede it with a backslash (\). To have a whole set of characters interpreted literally,
surround those characters with single quotes ().

Using double quotes is a bit trickier. Surround a set of text with double quotes if you want all but a few
characters used literally. For example, with text surrounded with double quotes, dollar signs ($), back-
ticks (%), and exclamation points (!) are interpreted specially, but other characters (such as an asterisk)
are not. Type these three lines to see the different output (shown on the right):

echo '$SHOME * “date™! SHOME * “date’
echo "$SHOME * “date™” /home/chris * Tue Jan 21 16:56:52 EDT 2020
echo SHOME * “date® /home/chris filel file2 Tue Jan 21 16:56:52 EDT 2020

149

Part 1l: Becoming a Linux Power User

Using variables is a great way to get information that can change from computer to
computer or from day to day. The following example sets the output of the uname -n
command to the MACHINE variable. Then I use parentheses to set NUM FILES to the
number of files in the current directory by piping (|) the output of the 1s command to the
word count command (wc -1):

MACHINE="uname -n
NUM_FILES=$ (/bin/ls | wc -1)

Variables can also contain the value of other variables. This is useful when you have to pre-
serve a value that will change so that you can use it later in the script. Here, BALANCE is
set to the value of the CurBalance variable:

BALANCE="$CurBalance"

Note
When assigning variables, use only the variable name (for example, BALANCE). When you reference a variable,

meaning that you want the value of the variable, precede it with a dollar sign (as in SCurBalance). The result of
the latter is that you get the value of the variable, not the variable name itself.

Special shell positional parameters

There are special variables that the shell assigns for you. One set of commonly used vari-
ables is called positional parameters or command-line arguments, and it is referenced as $0,
$1, $2, $3. . .%$n. $0 is special, and it is assigned the name used to invoke your script; the
others are assigned the values of the parameters passed on the command line in the order
they appeared. For instance, let’s say that you had a shell script named myscript which
contained the following:

#!/bin/bash

Script to echo out command-line arguments

echo "The first argument is $1, the second is $2."
echo "The command itself is called $0."

echo "There are $# parameters on your command line"
echo "Here are all the arguments: sS@"

Assuming that the script is executable and located in a directory in your $PATH, the
following shows what would happen if you ran that command with foo and bar as
arguments:

$ chmod 755 /home/chris/bin/myscript

$ myscript foo bar

The first argument is foo, the second is bar.

The command itself is called /home/chris/bin/myscript.
There are 2 parameters on your command line

Here are all the arguments: foo bar

150

Chapter 7: Writing Simple Shell Scripts

As you can see, the positional parameter $0 is the full path or relative path to myscript,
$1 is foo, and $2 is bar.

Another variable, $#, tells you how many parameters your script was given. In the example,
$# would be 2. The $@ variable holds all of the arguments entered at the command line.
Another particularly useful special shell variable is $?, which receives the exit status of the
last command executed. Typically, a value of zero means that the command exited success-
fully, and anything other than zero indicates an error of some kind. For a complete list of
special shell variables, refer to the bash man page.

Reading in parameters

Using the read command, you can prompt the user for information and store that informa-
tion to use later in your script. Here's an example of a script that uses the read command:

#!/bin/bash
read -p "Type in an adjective, noun and verb (past tense): " adjl nounl verbl
echo "He sighed and $verbl to the elixir. Then he ate the $adjl $nounl."

In this script, after the script prompts for an adjective, noun, and verb, the user is
expected to enter words that are then assigned to the adj1, nounl, and verbl vari-
ables. Those three variables are then included in a silly sentence, which is displayed on the
screen. If the script were called sillyscript, here’s an example of how it might run:

$ chmod 755 /home/chris/bin/sillyscript

$ sillyscript

Type in an adjective, noun and verb (past tense): hairy football danced
He sighed and danced to the elixir. Then he ate the hairy football.

Parameter expansion in bash
As mentioned earlier, if you want the value of a variable, you precede it with a $ (for exam-
ple, $CITY). This is really just shorthand for the notation ${CITY}; curly braces are used
when the value of the parameter needs to be placed next to other text without a space.
Bash has special rules that allow you to expand the value of a variable in different ways.
Going into all of the rules is probably overkill for a quick introduction to shell scripts, but
the following list presents some common constructs you're likely to see in bash scripts that
you find on your Linux system.
${var:-value}: If variable is unset or empty, expand this to value.
${var#tpattern}: Chop the shortest match for pattern from the front of var's value.
${vart#pattern}: Chop the longest match for pattern from the front of var's value.
${varspattern}: Chop the shortest match for pattern from the end of var’s value.

${varsspattern}: Chop the longest match for pattern from the end of var's value.

151

Part 1l: Becoming a Linux Power User

Try typing the following commands from a shell to test how parameter expansion works:

$ THIS="Example"

$ THIS=${THIS:-"Not Set"}
$ THAT=${THAT:-"Not Set"}
$ echo $THIS

Example

$ echo $THAT

Not Set

In the examples here, the THIS variable is initially set to the word Example. In the next
two lines, the THIS and THAT variables are set to their current values or to Not Set,

if they are not currently set. Notice that because I just set THIS to the string Example,
when I echo the value of THIS it appears as Example. However, because THAT was not set,
it appears as Not Set.

[\'[1)

For the rest of this section, | show how variables and commands may appear in a shell script. To try out any of those
examples, however, you can simply type them into a shell, as shown in the previous example.

In the following example, MYFILENAME is set to /home/digby/myfile.txt. Next, the
FILE variable is set to myfile.txt and DIR is set to /home/digby. In the NAME vari-
able, the filename is cut down simply to myfile; then, in the EXTENSION variable, the file
extension is set to txt. (To try these out, you can type them at a shell prompt as in the
previous example and echo the value of each variable to see how it is set.) Type the code on
the left. The material on the right side describes the action.

MYFILENAME=/home/digby/myfile.txt: Sets the value of MYFILENAME
FILE=${MYFILENAME##*/}: FILE becomes myfile.txt
DIR=${MYFILENAME%/*}: DIR becomes /home/digby
NAME=${FILE%.*}: NAME becomes myfile

EXTENSION=${FILE##*.}: EXTENSION becomes txt

Performing arithmetic in shell scripts

Bash uses untyped variables, meaning it normally treats variables as strings of text, but you
can change them on the fly if you want it to.

Bash uses untyped variables, meaning that you are not required to specify whether a vari-
able is text or numbers. It normally treats variables as strings of text, so unless you tell it
otherwise with declare, your variables are just a bunch of letters to bash. However, when
you start trying to do arithmetic with them, bash converts them to integers if it can. This
makes it possible to do some fairly complex arithmetic in bash.

Integer arithmetic can be performed using the built-in 1et command or through the
external expr or bc commands. After setting the variable BIGNUM value to 1024, the

152

Chapter 7: Writing Simple Shell Scripts

three commands that follow would all store the value 64 in the RESULT variable. The bc
command is a calculator application that is available in most Linux distributions. The last
command gets a random number between 0 and 10 and echoes the results back to you.

BIGNUM=1024

let RESULT=$BIGNUM/16
RESULT="expr $BIGNUM / 16"
RESULT="echo "$BIGNUM / 16" | bc’
let foo=SRANDOM; echo $foo

Another way to grow a variable incrementally is to use $(()) notation with ++I added to
increment the value of I. Try typing the following:

$ I=0
$ echo "The value of I after increment is $((++I))"
The value of I after increment is 1

$ echo "The value of I before and after increment is $((I++)) and $I"
The value of I before and after increment is 1 and 2

Repeat either of those commands to continue to increment the value of $I.

Note
Although most elements of shell scripts are relatively freeform (where white space, such as spaces or tabs, is insig-
nificant), both 1et and expr are particular about spacing. The 1et command insists on no spaces between each

operand and the mathematical operator, whereas the syntax of the expr command requires white space between
each operand and its operator. In contrast to those, bc isn’t picky about spaces, but it can be trickier to use
because it does floating-point arithmetic.

To see a complete list of the kinds of arithmetic that you can perform using the let
command, type help let at the bash prompt.

Using programming constructs in shell scripts

One of the features that makes shell scripts so powerful is that their implementation of
looping and conditional execution constructs is similar to those found in more complex
scripting and programming languages. You can use several different types of loops, depend-
ing on your needs.

The ”if. . .then” statements

The most commonly used programming construct is conditional execution, or the if state-
ment. It is used to perform actions only under certain conditions. There are several varia-
tions of if statements for testing various types of conditions.

The first if...then example tests if VARIABLE is set to the number 1. If it is, then the
echo command is used to say that it is set to 1. The £i statement then indicates that the
if statement is complete, and processing can continue.

153

Part 1l: Becoming a Linux Power User

VARIABLE=1

if [SVARIABLE -eq 1] ; then
echo "The variable is 1"

fi

Instead of using -eq, you can use the equal sign (=), as shown in the following example.
The = works best for comparing string values, while -eq is often better for comparing num-
bers. Using the else statement, different words can be echoed if the criterion of the if
statement isn't met ($STRING = "Friday”). Keep in mind that it’s good practice to put
strings in double quotes.

STRING="Friday"

if [$STRING = "Friday"] ; then
echo "WhooHoo. Friday."

else

echo "Will Friday ever get here?"
fi

You can also reverse tests with an exclamation mark (!). In the following example, if
STRING is not Monday, then "At least it's not Monday” is echoed.

STRING="FRIDAY"

if ["SSTRING" != "Monday"] ; then
echo "At least it's not Monday"

fi

In the following example, elif (which stands for “else if”) is used to test for an additional
condition (for example, whether filename is a file or a directory).

filename="$HOME"

if [-f "$filename"] ; then
echo "$filename is a regular file"
elif [-d "Sfilename"] ; then
echo "$filename is a directory"
else
echo "I have no idea what S$filename is"

fi

As you can see from the preceding examples, the condition you are testing is placed
between square brackets []. When a test expression is evaluated, it returns either a value
of 0, meaning that it is true, or a 1, meaning that it is false. Notice that the echo lines are
indented. The indentation is optional and done only to make the script more readable.

Table 7.1 lists the conditions that are testable and is quite a handy reference. (If you're in a
hurry, you can type help test on the command line to get the same information.)

154

Chapter 7: Writing Simple Shell Scripts

TABLE 71 Operators for Test Expressions

Operator What Is Being Tested?

-a file Does the file exist? (same as -e)

-b file Is the file a block special device?

-c file Is the file character special (for example, a character device)? Used to
identify serial lines and terminal devices.

-d file Is the file a directory?

-e file Does the file exist? (same as -a)

-f file Does the file exist, and is it a regular file (for example, not a directory,
socket, pipe, link, or device file)?

-g file Does the file have the set group id (SGID) bit set?

-h file Is the file a symbolic link? (same as -L)

-k file Does the file have the sticky bit set?

-L file Is the file a symbolic link?

-n string Is the length of the string greater than 0 bytes?

-0 file Do you own the file?

-p file Is the file a named pipe?

-r file Is the file readable by you?

-s file Does the file exist, and is it larger than 0 bytes?

-S file Does the file exist, and is it a socket?

-t fd Is the file descriptor connected to a terminal?

-u file Does the file have the set user id (SUID) bit set?

-w file Is the file writable by you?

-x file Is the file executable by you?

-z string Is the length of the string O (zero) bytes?

exprl -a expr2 Are both the first expression and the second expression true?
exprl -o expr2 s either of the two expressions true?

filel -nt file2 Isthe first file newer than the second file (using the modification
time stamp)?

filel -ot file2 Isthe first file older than the second file (using the modification
time stamp)?

filel -ef file2 Avre the two files associated by a link (a hard link or a symbolic link)?

varl = var2 Is the first variable equal to the second variable?
varl -eq var2 Is the first variable equal to the second variable?
varl -ge var2 Is the first variable greater than or equal to the second variable?

Continues

155

Part 1l: Becoming a Linux Power User

156

TABLE 7.1 (continued)

Operator What Is Being Tested?

varl -gt var2 Is the first variable greater than the second variable?

varl -le var2 Is the first variable less than or equal to the second variable?
varl -1t var2 Is the first variable less than the second variable?

varl != var2 Is the first variable not equal to the second variable?

varl -ne var2 Is the first variable not equal to the second variable?

There is also a special shorthand method of performing tests that can be useful for simple
one-command actions. In the following example, the two pipes (||) indicate that if the
directory being tested for doesn’t exist (-d dirname), then make the directory (mkdir
$dirname):

[test 1 || action

Perform simple single command if test is false
dirname="/tmp/testdir"

[-4 "$dirname"] || mkdir "$dirname"

Instead of pipes, you can use two ampersands to test if something is true. In the follow-
ing example, a command is being tested to see if it includes at least three command-line
arguments:

[test] && {action}
Perform simple single action if test is true
[S# -ge 3] && echo "There are at least 3 command line arguments."

You can combine the && and || operators to make a quick, one-line if...then...else.
The following example tests that the directory represented by $dirname already exists. If
it does, a message says the directory already exists. If it doesn't, the statement creates the
directory:

dirname=mydirectory
[-e $dirname] && echo $dirname already exists || mkdir $dirname

The case command

Another frequently used construct is the case command. Similar to a switch statement in
programming languages, this can take the place of several nested if statements. The fol-
lowing is the general form of the case statement:

case "VAR" in
Resultl)
{ body };;
Result?2)
{ body };;

Chapter 7: Writing Simple Shell Scripts

*)
{ body } i
esac

Among other things, you can use the case command to help with your backups. The fol-
lowing case statement tests for the first three letters of the current day (case 'date
+%a' in). Then, depending on the day, a particular backup directory (BACKUP) and tape
drive (TAPE) are set.

Our VAR doesn't have to be a variable,
it can be the output of a command as well
Perform action based on day of week
case “date +%a” in
"MOH")
BACKUP=/home/myproject/data0
TAPE=/dev/rft0
Note the use of the double semi-colon to end each option
Note the use of the "|" to mean "or"
nTyue" | "Thu")
BACKUP=/home/myproject/datal
TAPE=/dev/rftl
uwedn],"Fri")
BACKUP=/home/myproject/data2
TAPE=/dev/rft2
Don't do backups on the weekend.
*)

BACKUP="none"
TAPE=/dev/null
esac
The asterisk (*) is used as a catchall, similar to the default keyword in the C program-
ming language. In this example, if none of the other entries are matched on the way down
the loop, the asterisk is matched and the value of BACKUP becomes none. Note the use of
esac, or case spelled backwards, to end the case statement.

The “for. . .do” loop

Loops are used to perform actions over and over again until a condition is met or until all
data has been processed. One of the most commonly used loops is the for...do loop. It
iterates through a list of values, executing the body of the loop for each element in the list.
The syntax and a few examples are presented here:

for VAR in LIST
do

{ body }
done

157

Part 1l: Becoming a Linux Power User

158

The for loop assigns the values in LIST to VAR one at a time. Then, for each value, the
body in braces between do and done is executed. VAR can be any variable name, and
LIST can be composed of pretty much any list of values or anything that generates a list.

for NUMBER in 0 1 2 3 4 56 7 8 9
do

echo The number is $NUMBER
done

for FILE in ~/bin/ls”
do

echo SFILE
done

You can also write it this way, which is somewhat cleaner:

for NAME in John Paul Ringo George ; do
echo SNAME is my favorite Beatle
done

Each element in the LIST is separated from the next by white space. This can cause trouble
if you're not careful because some commands, such as 1s -1, output multiple fields per
line, each separated by white space. The string done ends the for statement.

If you're a die-hard C programmer, bash allows you to use C syntax to control your loops:

LIMIT=10
Double parentheses, and no $ on LIMIT even though it's a variable!
for ((a=1; a <= LIMIT ; a++)) ; do
echo "$a"
done

The “while. . .do” and "until. . .do” loops

Two other possible looping constructs are the while...do loop and the until...do loop.
The structure of each is presented here:

while condition until condition
do do

{ body } { body }
done done

The while statement executes while the condition is true. The until statement executes
until the condition is true—in other words, while the condition is false.

Here is an example of a while loop that outputs the number 0123456789:

N=0

while [$N -1t 10] ; do
echo -n SN
let N=$N+1

done

Chapter 7: Writing Simple Shell Scripts

Another way to output the number 0123456789 is to use an until loop as follows:

N=0

until [SN -eq 10] ; do
echo -n SN
let N=S$N+1

done

Trying some useful text manipulation programs

Bash is great and has lots of built-in commands, but it usually needs some help to do any-
thing really useful. Some of the most common useful programs you'll see used are grep,
cut, tr, awk, and sed. As with all of the best UNIX tools, most of these programs are
designed to work with standard input and standard output, so you can easily use them with
pipes and shell scripts.

The general regular expression parser

The name general regular expression print (grep) sounds intimidating, but grep is just a
way to find patterns in files or text. Think of it as a useful search tool. Gaining expertise
with reqular expressions is quite a challenge, but after you master it, you can accomplish
many useful things with just the simplest forms.

For example, you can display a list of all reqular user accounts by using grep to search for
all lines that contain the text /home in the /etc/passwd file as follows:

$ grep /home /etc/passwd

Or you could find all environment variables that begin with HO using the follow-
ing command:

$ env | grep “HO

Norte

The * in the preceding code is the actual caret character, *, not what you’ll commonly see for a backspace, “H. Type
“, H, and O (the uppercase letter) to see what items start with the uppercase characters HO.

To find a list of options to use with the grep command, type man grep.

Remove sections of lines of text (cut)

The cut command can extract fields from a line of text or from files. It is very useful for
parsing system configuration files into easy-to-digest chunks. You can specify the field sep-
arator you want to use and the fields you want, or you can break up a line based on bytes.

The following example lists all home directories of users on your system. This grep
command line pipes a list of reqular users from the /etc/passwd file and displays the
sixth field (-£6) as delimited by a colon (-d':'). The hyphen at the end tells cut to read
from standard input (from the pipe).

159

Part 1l: Becoming a Linux Power User

160

$ grep /home /etc/passwd | cut -d':' -f6 -
/home/chris
/home/joe

Translate or delete characters (tr)

The tr command is a character-based translator that can be used to replace one character
or set of characters with another or to remove a character from a line of text.

The following example translates all uppercase letters to lowercase letters and displays the
words mixed upper and lower case as a result:

$ FOO="Mixed UPpEr aNd LoWeR cAsE"
$ echo $FO0 | tr [A-Z] [a-z]
mixed upper and lower case

In the next example, the tr command is used on a list of filenames to rename any files
in that list so that any tabs or spaces (as indicated by the [:blank:] option) contained
in a filename are translated into underscores. Try running the following code in a test
directory:

for file in * ; do

f="echo $file | tr [:blank:] []°

[||$filen — ll$fll] || mv -i -- ||$fileu ll$fl|
done

The stream editor (sed)

The sed command is a simple scriptable editor, so it can perform only simple edits, such as
removing lines that have text matching a certain pattern, replacing one pattern of charac-
ters with another, and so on. To get a better idea of how sed scripts work, there’s no sub-
stitute for the online documentation, but here are some examples of common uses.

You can use the sed command essentially to do what I did earlier with the grep example:
search the /etc/passwd file for the word home. Here the sed command searches the
entire /etc/passwd file, searches for the word home, and prints any line containing the
word home:

$ sed -n '/home/p' /etc/passwd
chris:x:1000:1000:Chris Negus:/home/chris:/bin/bash
joe:x:1001:1001:Joe Smith:/home/joe:/bin/bash

In this next example, sed searches the file somefile.txt and replaces every instance of
the string Mac with Linux. Notice that the letter g is needed at the end of the substitu-
tion command to cause every occurrence of Mac on each line to be changed to Linux.
(Otherwise, only the first instance of Mac on each line is changed.) The output is then sent
to the fixed file.txt file. The output from sed goes to stdout, so this command redi-
rects the output to a file for safekeeping.

$ sed 's/Mac/Linux/g' somefile.txt > fixed file.txt

Chapter 7: Writing Simple Shell Scripts

You can get the same result using a pipe:
$ cat somefile.txt | sed 's/Mac/Linux/g' > fixed file.txt

By searching for a pattern and replacing it with a null pattern, you delete the original
pattern. This example searches the contents of the somefile.txt file and replaces extra
blank spaces at the end of each line (s/ *$) with nothing (//). Results go to the fixed
file.txt file.

$ cat somefile.txt | sed 's/ *$//' > fixed file.txt

Using simple shell scripts

Sometimes, the simplest of scripts can be the most useful. If you type the same sequence
of commands repetitively, it makes sense to store those commands (once!) in a file. The fol-
lowing sections offer a couple of simple, but useful, shell scripts.

Telephone list

This idea has been handed down from generation to generation of old UNIX hacks. It's
really quite simple, but it employs several of the concepts just introduced.

#!/bin/bash

(@) /ph

A very simple telephone list

Type "ph new name number" to add to the list, or
just type "ph name" to get a phone number

PHONELIST=~/.phonelist.txt

If no command line parameters (S$#), there
is a problem, so ask what they're talking about.

if [$# -1t 1] ; then
echo "Whose phone number did you want? "
exit 1
fi

Did you want to add a new phone number?
if [$1 = "new"] ; then

shift

echo $* >> $SPHONELIST

echo $* added to database

exit 0
fi

Nope. But does the file have anything in it yet?
This might be our first time using it, after all.
if [! -s SPHONELIST] ; then

echo "No names in the phone list yet! "

exit 1

161

Part 1l: Becoming a Linux Power User

162

else
grep -1 -g "$*" $SPHONELIST # Quietly search the file
if [$? -ne 0] ; then # Did we find anything?
echo "Sorry, that name was not found in the phone list"
exit 1
else
grep -i "$*" $SPHONELIST
fi
fi
exit 0

So, if you created the telephone list file as ph in your current directory, you could type the
following from the shell to try out your ph script:

$ chmod 755 ph
$./ph new "Mary Jones" 608-555-1212
Mary Jones 608-555-1212 added to database

$./ph Mary
Mary Jones 608-555-1212

The chmod command makes the ph script executable. The ./ph command runs the ph
command from the current directory with the new option. This adds Mary Jones as the
name and 608-555-1212 as the phone number to the database ($HOME/.phonelist.txt).
The next ph command searches the database for the name Mary and displays the phone
entry for Mary. If the script works, add it to a directory in your path (such as SHOME/bin).

Backup script

Because nothing works forever and mistakes happen, backups are just a fact of life when
dealing with computer data. This simple script backs up all of the data in the home direc-
tories of all of the users on your Fedora or RHEL system.

#!/bin/bash

(@) /my backup

A very simple backup script
#

Change the TAPE device to match your system.
Check /var/log/messages to determine your tape device.

TAPE=/dev/rft0

Rewind the tape device $TAPE

mt STAPE rew

Get a list of home directories

HOMES="grep /home /etc/passwd | cut -f6 -4d':'
Back up the data in those directories

tar cvf $STAPE SHOMES

Rewind and eject the tape.

mt STAPE rewoffl

Chapter 7: Writing Simple Shell Scripts

Summary

Writing shell scripts gives you the opportunity to automate many of your most common
system administration tasks. This chapter covered common commands and functions that
you can use in scripting with the bash shell. It also provided some concrete examples of
scripts for doing backups and other procedures.

In the next chapter, you transition from learning about user features into examining
system administration topics. Chapter 8, “Learning System Administration,” covers how
to become the root user, as well as how to use administrative commands, monitor log files,
and work with configuration files.

Exercises

Use these exercises to test your knowledge of writing simple shell scripts. These tasks
assume you are running a Fedora or Red Hat Enterprise Linux system (although some tasks
work on other Linux systems as well). If you are stuck, solutions to the tasks are shown in
Appendix B (although in Linux, there are often multiple ways to complete a task).

1. Create a script in your $HOME/bin directory called myownscript. When the script
runs, it should output information that appears as follows:

Today is Sat Jan 4 15:45:04 EST 2020.
You are in /home/joe and your host is abc.example.com.

0f course, you need to read in your current date/time, current working directory,
and hostname. Also, include comments about what the script does and indicate
that the script should run with the /bin/bash shell.

2. Create a script that reads in three positional parameters from the command line,
assigns those parameters to variables named ONE, TWO, and THREE, respectively,
and outputs that information in the following format:

There are X parameters that include Y.
The first is A, the second is B, the third is C.

Replace X with the number of parameters and Y with all parameters entered. Then
replace A with the contents of variable ONE, B with variable TWO, and C with vari-
able THREE.

3. Create a script that prompts users for the name of the street and town where they
grew up. Assign town and street to variables called mytown and mystreet, and
output them with a sentence that reads as shown below (of course, Smystreet and
Smytown will appear with the actual town and street the user enters):

The street I grew up on was $mystreet and the town was
Smytown

163

Part 1l: Becoming a Linux Power User

4. Create a script called myos that asks the user, “What is your favorite operating
system?” Qutput an insulting sentence if the user types “Windows” or “Mac.”
Respond “Great choice!” if the user types “Linux.” For anything else, say “Is <what
is typed in> an operating system?”

5. Create a script that runs through the words moose, cow, goose, and sow through a
for loop. Have each of those words appended to the end of the line “I havea....”

164

Part Il

Becoming a Linux System
Administrator

IN THIS PART

Chapter 8
Learning System Administration

Chapter 9
Installing Linux

Chapter 10
Getting and Managing Software

Chapter 11
Managing User Accounts

Chapter 12
Managing Disks and Filesystems

CHAPTER

Learning System Administration

IN THIS CHAPTER

Doing graphical administration
Using the root login
Understanding administrative commands, config files, and log files

Working with devices and filesystems

Multiuser features enable many people to have accounts on a single Linux system with their

data kept secure from others. Multitasking enables many people to run many programs on the
computer at the same time, with each person able to run more than one program. Sophisticated
networking protocols and applications make it possible for a Linux system to extend its capabilities
to network users and computers around the world. The person assigned to manage all of a Linux
system’s resources is called the system administrator.

L inux, like other UNIX-based systems, was intended for use by more than one person at a time.

Even if you are the only person using a Linux system, system administration is still set up to be
separate from other computer use. To do most administrative tasks, you need to be logged in as the
root user (also called the superuser) or to get root permission temporarily (usually using the sudo
command). Regular users who don’t have root permission cannot change, or in some cases cannot
even see, some of the configuration information for a Linux system. In particular, security features
such as stored passwords are protected from general view.

Because Linux system administration is such a huge topic, this chapter focuses on the general prin-
ciples of Linux system administration. In particular, it examines some of the basic tools that you
need to administer a Linux system for a personal desktop or on a small server. Beyond the basics,

this chapter also teaches you how to work with filesystems and monitor the setup and performance of
your Linux system.

Understanding System Administration

Separating the role of system administrator from that of other users has several effects. For a
system that has many people using it, limiting who can manage it enables you to keep it more

167

Part 1ll: Becoming a Linux System Administrator

secure. A separate administrative role also prevents others from casually harming your
system when they are just using it to write a document or browse the Internet.

If you are the system administrator of a Linux system, you generally log in as a regular
user account and then ask for administrative privileges when you need them. This is often
done with one of the following:

su command: Often, su is used to open a shell as root user. After the shell is open,
the administrator can run multiple commands and then exit to return to a shell as a
regular user.

sudo command: With sudo, a regular user is given root privileges, but only when
that user runs the sudo command to run another command. After running that one
command with sudo, the user is immediately returned to a shell and acts as the
regular user again. Ubuntu and Fedora by default assign sudo privilege to the first
user account when those systems are installed. This is not done by default in RHEL,
although during RHEL installation, you can choose for your first user to have sudo
privilege if you'd like.

Cockpit browser-based administration: RHEL, Fedora, and other Linux distributions
have committed to Cockpit as their primary browser-based system administration
facility. With Cockpit enabled, you can monitor and change your system’s general
activities, storage, networking, accounts, services, and other features.

Graphical windows: Before Cockpit was widely available, RHEL, Fedora, and other
Linux distributions offered individual graphical administration tools that were
launched by commands beginning with system-config-+*. Although most of these
administration tools are not being offered in the latest release of RHEL and Fedora,
they are noted here because they are still available in older Linux releases.

Tasks that can be done only by the root user tend to be those that affect the system as a
whole or impact the security or health of the system. Following is a list of common features
that a system administrator is expected to manage:

Filesystems: When you first install Linux, the directory structure is set up to make
the system usable. However, if users later want to add extra storage or change the
filesystem layout outside of their home directory, they need administrative priv-
ileges to do that. Also, the root user has permission to access files owned by any
user. As a result, the root user can copy, move, or change any other user’s files—a
privilege needed to make backup copies of the filesystem for safekeeping.

Software installation: Because malicious software can harm your system or make it
insecure, you need root privilege to install software so that it is available to all
users on your system. Regular users can still install some software in their own
directories and can list information about installed system software.

User accounts: Only the root user can add and remove user accounts and
group accounts.

168

Chapter 8: Learning System Administration

Network interfaces: In the past, the root user had to configure network interfaces and
start and stop those interfaces. Now, many Linux desktops allow regular users to
start and stop network interfaces from their desktop using Network Manager. This is
particularly true for wireless network interfaces, which can come and go by location
as you move your Linux laptop or handheld device around.

Servers: Configuring web servers, file servers, domain name servers, mail servers, and
dozens of other servers requires root privilege, as does starting and stopping those
services. Content, such as web pages, can be added to servers by non-root users if
you configure your system to allow that. Services are often run as special admin-
istrative user accounts, such as apache (for the httpd service) and rpc (for the
rpcbind service). So, if someone cracks a service, they can't get root privilege to
other services or system resources.

Security features: Setting up security features, such as firewalls and user access lists,
is usually done with root privilege. It’s also up to the root user to monitor how the
services are being used and to make sure that server resources are not exhausted
or abused.

The easiest way to begin system administration is to use some graphical administration
tools.

Using Graphical Administration Tools

Most system administration for the first Linux systems was done from the command line.
As Linux became more popular, however, both graphical and command-line interfaces began
to be offered for most common Linux administrative tasks.

The following sections describe some of the point-and-click types of interfaces that are
available for doing system administration in Linux.

Using Cockpit browser-based administration

Cockpit is the best browser-based Linux system administration tool that I have ever seen. It
brings together a range of Linux administrative activities into one interface and taps into
a diverse set of Linux APIs using cockpit-bridge. As someone doing Linux administration,
however, you just need to know that you will get a consistent and stable way of adminis-
tering your systems with Cockpit.

Getting started with Cockpit is as simple as enabling the cockpit socket and pointing a
web browser at the Cockpit service. Because of Cockpit’s plug-in design, there are new tools
being created all the time that you can add to your system’s Cockpit interface.

If you are starting with the latest RHEL or Fedora systems, performing the following proce-
dure lets you enable and start using Cockpit on your system.

169

Part 1ll: Becoming a Linux System Administrator

Norte
No configuration is required to start this procedure. However, you can configure Cockpit to use your own OpenSSL

certificate instead of the self-signed one used by default. This lets you avoid having to accept the unverified self-
signed certificate when you open the Cockpit interface from your browser.

1. If Cockpit is not already installed, do the following:
dnf install cockpit

2. Log in as root user, and enable the Cockpit socket:

systemctl enable --now cockpit.socket
Created symlink /etc/systemd/system/sockets.target.wants/
cockpit.socket

— /usr/lib/systemd/system/cockpit.socket.

3. Open your web browser to port 9090 on the system where you just enabled Cockpit.
You can use the hostname or IP address. Port 9090 is configured for https by
default, although you can reconfigure that if you like to use http. Here are exam-
ples of addresses to type into your browser’s address bar:

https://hostl.example.com:9090/
https://192.168.122.114:9090/

4. Assuming you didn't replace the self-signed certificate for Cockpit, you are warned
that the connection is not safe. To accept it anyway, and depending on your
browser, you must select Advanced and agree to an exception to allow the browser
to use the Cockpit service.

5. Enter your username and password. Use the root user or a user with sudo privi-
leges if you want to change your system configuration. A regular user can see but
not change most settings. Figure 8.1 shows an example of this window.

6. Begin using Cockpit. The Cockpit dashboard contains a good set of features by
default (you can add more later) on RHEL and Fedora systems. Figure 8.2 shows an
example of the System area of the Cockpit dashboard:

Immediately after logging in to Cockpit, you begin seeing system activity related to CPU
usage, memory and swap, disk input/output, and network traffic. Selections in the left
navigation pane let you begin working with logs, storage, networking, user and group
accounts, services, and many other features on your system.

As you proceed through the rest of this book, you will see descriptions of how to use the
different features of Cockpit in the appropriate section. To dive deeper into any of the
topics that you encounter with Cockpit, I recommend checking out the Cockpit project web-
site: https://cockpit-project.org.

170

https://cockpit-project.org

Chapter 8: Learning System Administration

FIGURE 8.1

Logging in to Cockpit

@ @ hitps://192.168.122.119:9090

RedHat
Enterprise Linux

RED HAT ENTERPRISE LINUX

Password

FIGURE 8.2

View system activity and other topics from the Cockpit dashboard.

= ———————_ L
P E——— ———ae Aﬂal
cb i . L

Using system-config-* tools
On Fedora and RHEL systems prior to the release of Cockpit, a set of graphical tools was
available from the Administration submenu of the System menu (GNOME 2), from the

RED HAT ENTERPRISE LINUK

171

Part 1ll: Becoming a Linux System Administrator

172

Activities screen (GNOME 3), or from the command line. On these older Fedora and RHEL
systems, you could operate these tools from the command line by running a set of com-
mands that began with the system-config* string (such as system-config-network).

These system-config* tools require root permission. If you are logged in as a reqular
user, you must enter the root password before the graphical user interface (GUI) applica-
tion’s window opens or, in some cases, when you request to do some special activity.

The following list describes many of the graphical tools available in earlier Fedora or RHEL
systems. (Some were only in Fedora and many are not installed by default.) The command
that you would launch to get the feature is shown in parentheses (often, it is the same as
the package name). The following graphical tools were available in Fedora:

Domain Name System (system-config-bind): Create and configure zones if your
computer is acting as a DNS server.

HTTP (system-config-httpd): Configure your computer as an Apache web server.

NES (system-config-nfs): Set up directories from your system to be shared with
other computers on your network using the NFS service.

Root Password (system-config-rootpassword): Change the root password.

Samba NFS (system-config-samba): Configure Windows (SMB) file sharing. (To
configure other Samba features, you can use the SWAT window.)

The following graphical tools were available in both Fedora and RHEL systems prior
to RHEL 8:

Services (system-config-services): Display and change which services are
running on your Fedora system at different runlevels from the Service Configura-
tion window.

Authentication (system-config-authentication): Change how users are authenti-
cated on your system. Typically, shadow passwords and MD5 passwords are selected.
However, if your network supports LDAP, Kerberos, SMB, NIS, or Hesiod authentica-
tion, you can select to use any of those authentication types.

Date & Time (system-config-date): Set the date and time or choose to have an NTP
server keep system time in sync.

Firewall (system-config-firewall): Configure your firewall to allow or deny
services to computers from the network.

Language (system-config-language): Select the default language used for
the system.

Printing (system-config-printer): Configure local and network printers.

SELinux Management (system-config-selinux): Set SELinux enforcing modes and
default policy.

Users & Groups (system-config-users): Add, display, and change user and group
accounts for your Fedora system.

Chapter 8: Learning System Administration

Other administrative utilities were available from the Applications menu on the top panel.
Select the System Tools submenu (in GNOME 2) or go to the Activities screen (in GNOME 3)
to choose some of the following tools (if installed):

Configuration Editor (gconf-editor): Directly edit the GNOME configura-
tion database.

Disk Usage Analyzer (gnome-utils): Display detailed information about your hard
disks and removable storage devices.

Disk Utility (gnome-disks): Manage disk partitions and add filesystems (gnome-
disk-utility package).

Kickstart (system-config-kickstart): Create a kickstart configuration file that
can be used to install multiple Linux systems without user interaction.

Descriptions from previous editions of this book of most of these tools have been replaced
by procedures using Cockpit instead.

Using other browser-based admin tools

To simplify the management of many enterprise-quality open source projects, those pro-
jects have begun offering browser-based graphical management tools. In most cases, com-
mand-line tools are offered for managing these projects as well.

For example, if you are using Red Hat Enterprise Linux, there are browser-based interfaces
for managing the following projects:

Red Hat OpenShift: OpenShift, based on the Kubernetes project, offers a browser-based
interface for deploying and managing a cluster of control plane and worker nodes
as well as features for deploying and managing containers in what are referred to as
pods. See the Red Hat OpenShift site at www.openshift.com or the upstream 0KD
site at www.okd.io for details.

Red Hat Enterprise Linux OpenStack Platform (RHELOSP): The OpenStack platform-
as-a-service project lets you manage your own private, hybrid cloud through your
browser. This includes the OpenStack dashboard from the OpenStack Horizon project
(http://horizondocs.openstack.org/horizon/latest). That interface lets
you launch and manage virtual machines and all of the resources around them:
storage, networking, authentication, processing allocations, and so on. Refer to
Chapter 27, “Using Linux for Cloud Computing,” for a description of how to use the
OpenStack Dashboard.

Red Hat Virtualization (RHV): With RHEV, the RHV manager provides the browser-
based interface for managing virtual machines, including allocating storage and
user access to resources. Many other examples of browser-based graphical admin-
istration tools are available with open source projects. If you are new to Linux, it
can be easier to get started with these interfaces. However, keep in mind that often
you need to use command-line tools if you need to troubleshoot problems because
graphical tools are often limited in that area.

173

http://www.openshift.com
http://www.okd.io
http://horizondocs.openstack.org/horizon/latest

Part 1ll: Becoming a Linux System Administrator

Using the root User Account

Every Linux system starts out with at least one administrative user account (the root user)
and possibly one or more regular user accounts (given a name that you choose, or a name
assigned by your Linux distribution). In most cases, you log in as a regular user and become
the root user to do an administrative task.

The root user has complete control of the operation of your Linux system. That user can
open any file or run any program. The root user also installs software packages and adds
accounts for other people who use the system.

Tie

Think of the root user in Linux as similar to the Administrator user in Windows.

When you first install most Linux systems (although not all systems), you add a password
for the root user. You must remember and protect this password; you need it to log in as
root or to obtain root permission while you are logged in as some other user.

To become familiar with the root user account, you can simply log in as the root user. I
recommend trying this from a virtual console. To do so, press Ctrl+Alt+F3. When you see
the login prompt, type root (press Enter) and enter the password. A login session for root
opens. When you are finished, type exit, and then press Ctrl+Alt+F1 to return to the reg-
ular desktop login.

After you have logged in as root, the home directory for the root user is typically /root.
The home directory and other information associated with the root user account are located
in the /etc/passwd file. Here's what the root entry looks like in the /etc/passwd file:

root:x:0:0:root:/root:/bin/bash

This shows that for the user named root, the user ID is set to 0 (root user), the group ID

is set to 0 (root group), the home directory is /root, and the shell for that user is /bin/
bash. (Linux uses the /etc/shadow file to store encrypted password data, so the password
field here contains an x.) You can change the home directory or the shell used by editing
the values in this file. A better way to change these values, however, is to use the user-
mod command (see the section “Modifying Users with usermod” in Chapter 11 for further
information).

At this point, any command that you run from your shell is run with root privilege. So be
careful. You have much more power to change (and damage) the system than you did as a
regular user. Again, type exit when you are finished. If you are on a virtual console and
have a desktop interface running on another console, press Ctrl+Alt+F1 to return to the
graphical login screen if you are using a Linux desktop system.

174

Chapter 8: Learning System Administration

Norte
By default, the root account has no password set in Ubuntu. This means that even though the account exists, you

cannot log in using it or use su to become the root user. This adds an additional level of security to Ubuntu and
requires you to use sudo before each command that you want to execute as the root user.

Becoming root from the shell (su command)

Although you can become the superuser by logging in as root, sometimes that is not
convenient.

For example, you may be logged in to a regular user account and just want to make a quick
administrative change to your system without having to log out and log back in. You may
need to log in over the network to make a change to a Linux system but find that the
system doesn't allow root users in from over the network (a common practice for secure
Linux systems). One solution is to use the su command. From any Terminal window or
shell, you can simply type the following:

$ su
Password: **k***

#

When you are prompted, type the root user’s password. The prompt for the regular user ($)
changes to the superuser prompt (#). At this point, you have full permission to run any
command and use any file on the system. However, one thing that the su command doesn’t
do when used this way is read in the root user’s environment. As a result, you may type a
command that you know is available and get the message Command Not Found. To fix
this problem, use the su command with the dash (-) option instead like this:

$ su -
Password: **k&k*

#

You still need to type the password, but after that everything that normally happens at
login for the root user happens after the su command is completed. Your current directory
will be root’s home directory (probably /root), and things such as the root user’s PATH
variable are used. If you become the root user by just typing su, rather than su -, you
don't change directories or the environment of the current login session.

You can also use the su command to become a user other than root. This is useful for trou-
bleshooting a problem that is being experienced by a particular user but not by others on
the computer (such as an inability to print or send email). For example, to have the permis-
sions of a user named jsmith, you'd type the following:

$ su - jsmith

175

Part 1ll: Becoming a Linux System Administrator

176

Even if you were root user before you typed this command, afterward you would have only
the permissions to open files and run programs that are available to jsmith. As root user,
however, after you type the su command to become another user, you don't need a pass-
word to continue. If you type that command as a reqular user, you must type the new
user'’s password.

When you are finished using superuser permissions, return to the previous shell by exiting
the current shell. Do this by pressing Ctrl+D or by typing exit. If you are the adminis-
trator for a computer that is accessible to multiple users, don't leave a root shell open on
someone else’s screen unless you want to give that person freedom to do anything he or she
wants to the computer!

Allowing administrative access via the GUI

As mentioned earlier, when you run GUI tools as a regular user (from Fedora, Red Hat Enter-
prise Linux, or some other Linux systems), you are prompted for the root password before
you are able to access the tool. By entering the root password, you are given root privilege
for that task.

For Linux systems using the GNOME 2 desktop, after you enter the password, a yellow badge
icon appears in the top panel, indicating that root authorization is still available for other
GUI tools to run from that desktop session. For GNOME 3 desktops, you must enter the root
password each time you start any of the system-config tools.

Gaining administrative access with sudo

Particular users can also be given administrative permissions for particular tasks or any
task by typing sudo followed by the command they want to run, without being given the
root password. The sudoers facility is the most common way to provide such privilege.
Using sudoers for any users or groups on the system, you can do the following:

B Assign root privilege for any command they run with sudo.

m Assign root privilege for a select set of commands.

B Give users root privilege without telling them the root password because they only
have to provide their own user password to gain root privilege.

m Allow users, if you choose, to run sudo without entering a password at all.

® Track which users have run administrative commands on your system. (Using su,

all you know is that someone with the root password logged in, whereas the sudo
command logs which user runs an administrative command.)

With the sudoers facility, giving full or limited root privileges to any user simply entails

adding the user to /etc/sudoers and defining what privilege you want that user to have.
Then the user can run any command they are privileged to use by preceding that command
with the sudo command.

Here’s an example of how to use the sudo facility to cause the user named joe to have full
root privilege.

Chapter 8: Learning System Administration

Tip

If you look at the sudoers file in Ubuntu, you see that the initial user on the system already has privilege, by

default, for the sudo group members. To give any other user the same privilege, you could simply add the additional
user to the admin group when you run visudo.

1. As the root user, edit the /etc/sudoers file by running the visudo command:

/usr/sbin/visudo

By default, the file opens in vi, unless your EDITOR variable happens to be set to
some other editor acceptable to visudo (for example, export EDITOR=gedit).
The reason for using visudo is that the command locks the /etc/sudoers file
and does some basic sanity checking of the file to ensure that it has been edited
correctly.

Norte

If you are stuck here, try running the vimtutor command for a quick tutorial on using vi and vim.

2. Add the following line to allow joe to have full root privileges on the computer:
joe ALL= (ALL) ALL
This line causes joe to provide a password (his own password, not the root pass-

word) in order to use administrative commands. To allow joe to have that privilege
without using a password, type the following line instead:

joe ALL=(ALL) NOPASSWD: ALL

3. Save the changes to the /etc/sudoers file (in vi, type Esc and then :wq). The
following is an example of a session by the user joe after he has been assigned
sudo privileges:

[joel$ sudo touch /mnt/testfile.txt
We trust you have received the usual lecture
from the local System Administrator. It usually
boils down to these two things:
#1) Respect the privacy of others.
#2) Think before you type.
Password: Kk kkkkkkx
[joe]$ 1s -1 /mnt/testfile.txt
-rw-r--r--. 1 root root 0 Jan 7 08:42 /mnt/testfile.txt
[joel$ rm /mnt/testfile.txt
rm: cannot remove ‘/mnt/testfile.txt': Permission denied
[joe]l$ sudo rm /mnt/textfile.txt
[joels

177

Part 1ll: Becoming a Linux System Administrator

In this session, the user joe runs the sudo command to create a file (/mnt/textfile.
txt) in a directory for which he doesn’t have write permission. He is given a warning and
asked to provide his password (this is joe's password, not the root password).

Even after joe has entered the password, he must still use the sudo command to run sub-
sequent administrative commands as root (the rm fails, but the sudo rm succeeds). Notice
that he is not prompted for a password for the second sudo. That's because after entering
his password successfully, he can enter as many sudo commands as he wants for the next
five minutes, on RHEL and Fedora systems, without having to enter it again. For Ubuntu,
this is set to zero, for no time-out. (You can change the time-out value from five min-

utes to any length of time you want by setting the passwd_timeout value in the /etc/
sudoers file.)

The preceding example grants a simple all-or-nothing administrative privilege to joe.
However, the /etc/sudoers file gives you an incredible amount of flexibility in per-
mitting individual users and groups to use individual applications or groups of applica-
tions. Refer to the sudoers and sudo man pages for information about how to tune your
sudo facility.

Exploring Administrative Commands, Configuration
Files, and Log Files

You can expect to find many commands, configuration files, and log files in the same places
in the filesystem, regardless of which Linux distribution you are using. The following sec-
tions give you some pointers on where to look for these important elements.

Norte
If GUI administrative tools for Linux have become so good, why do you need to know about administrative files? For
one thing, while GUI tools differ among Linux versions, many underlying configuration files are the same. So if you

learn to work with them, you can work with almost any Linux system. Also, if a feature is broken, or if you need to do
something that’s not supported by the GUI, when you ask for help, Linux experts almost always tell you how to run
commands or change the configuration file directly.

Administrative commands

Only the root user is intended to use many administrative commands. When you log in

as root (or use su - from the shell to become root), your $PATH variable is set to include
some directories that contain commands for the root user. In the past, these have included
the following:

/sbin: Originally contained commands needed to boot your system, including com-
mands for checking filesystems (£sck) and turning on swap devices (swapon).

178

Chapter 8: Learning System Administration

/usr/sbin: Originally contained commands for such things as managing user
accounts (such as useradd) and checking processes that are holding files open
(such as 1sof). Commands that run as daemon processes are also contained in this
directory. Daemon processes are processes that run in the background, waiting for
service requests such as those to access a printer or a web page. (Look for commands
that end in 4, such as sshd, pppd, and cupsd.)

For the latest Ubuntu, RHEL and Fedora releases, all administrative commands from the
two directories are stored in the /usr/sbin directory (which is symbolically linked from /
sbin). Also, only /usr/sbin is added to the PATH of the root user, as well as the PATH of
all regular users.

Some administrative commands are contained in regular user directories (such as /bin

and /usr/bin). This is especially true of commands that have some options available to
everyone. An example is the /bin/mount command, which anyone can use to list mounted
filesystems but only root can use to mount filesystems. (Some desktops, however, are con-
figured to let regular users use mount to mount CDs, DVDs, or other removable media.)

Norte

See the section "Mounting Filesystems” in Chapter 12 for instructions on how to mount a filesystem.

To find commands intended primarily for the system administrator, check out the section 8
manual pages (usually in /usr/share/man/man8). They contain descriptions and options
for most Linux administrative commands. If you want to add commands to your system,
consider adding them to directories such as /usr/local/bin or /usr/local/sbin. Some
Linux distributions automatically add those directories to your PATH, usually before your
standard bin and sbin directories. In that way, commands installed to those directories
are not only accessible, but can also override commands of the same name in other direc-
tories. Some third-party applications that are not included with Linux distributions are
sometimes placed in the /usr/local/bin, /opt/bin, or /usr/local/sbin directory.

Administrative configuration files

Configuration files are another mainstay of Linux administration. Almost everything that
you set up for your particular computer—user accounts, network addresses, or GUI prefer-
ences—results in settings being stored in plain-text files. This has some advantages and
some disadvantages.

The advantage of plain-text files is that it’s easy to read and change them. Any text editor
will do. The downside, however, is that as you edit configuration files, traditionally no error
checking is done. You sometimes have to run the program that reads these files (such as a
network daemon or the X desktop) to find out whether you set up the files correctly.

While some configuration files use standard structures, such as XML for storing informa-
tion, many do not. So, you need to learn the specific structure rules for each configuration

179

Part 1ll: Becoming a Linux System Administrator

file. A comma or a quote in the wrong place can sometimes cause an entire interface to fail.
You can check in many ways that the structure of many configuration files is correct.

Some software packages offer a command to test the sanity of the configuration file tied
to a package before you start a service. For example, the testparm command is used with
Samba to check the sanity of your smb.conf file. Other times, the daemon process provid-
ing a service offers an option for checking your config file. For example, run httpd -t to
check your Apache web server configuration before starting your web server.

Note
Some text editors, such as the vim command (not vi), understand the structure of some types of configuration

files. If you open such a configuration file in vim, notice that different elements of the file are shown in different
colors. In particular, you can see comment lines in a different color than data.

Throughout this book, you'll find descriptions of the configuration files that you need to
set up the different features that make up Linux systems. The two major locations of con-
figuration files are your home directory (where your personal configuration files are kept)
and the /etc directory (which holds system-wide configuration files).

Following are descriptions of directories (and subdirectories) that contain useful configura-
tion files. The descriptions are followed by some individual configuration files in /etc that
are of particular interest. Viewing the contents of Linux configuration files can teach you a
lot about administering Linux systems.

$HOME: All users store in their home directories information that directs how their
login accounts behave. Many configuration files are stored directly in each user’s
home directory (such as /home/joe) and begin with a dot (.), so they don't appear
in a user’s directory when you use a standard 1s command (you need to type 1s -a
to see them). Likewise, dot files and directories won't show up in most file manager
windows by default. There are dot files that define the behavior of each user’s shell,
the desktop look-and-feel, and options used with your text editor. There are even
files such as those in each user’s $SHOME/.ssh directory that configure permissions
for logging into remote systems. (To see the name of your home directory, type
echo $HOME from a shell.)

/etc: This directory contains most of the basic Linux system configuration files.

/etc/cron*: Directories in this set contain files that define how the crond utility
runs applications on a daily (cron.daily), hourly (cron.hourly), monthly (cron.
monthly), or weekly (cron.weekly) schedule.

/etc/cups: Contains files used to configure the CUPS printing service.

/etc/default: Contains files that set default values for various utilities. For example,
the file for the useradd command defines the default group number, home direc-
tory, password expiration date, shell, and skeleton directory (/etc/skel) used
when creating a new user account.

180

Chapter 8: Learning System Administration

/etc/httpd: Contains a variety of files used to configure the behavior of your Apache
web server (specifically, the httpd daemon process). (On Ubuntu and other Linux
systems, /etc/apache or /etc/apache?2 is used instead.)

/etc/mail: Contains files used to configure your sendmail mail transport agent.
/etc/postfix: Contains configuration files for the postfix mail transport agent.

/etc/ppp: Contains several configuration files used to set up Point-to-Point Protocol
(PPP) so that you can have your computer dial out to the Internet. (PPP was more
commonly used when dial-up modems were popular.)

/etc/rc?.d: There is a separate rc?.d directory for each valid system state: rc0.d
(shutdown state), rcl.d (single-user state), rc2.d (multiuser state), rc3.d (mul-
tiuser plus networking state), rc4.d (user-defined state), rc5.4 (multiuser, net-
working, plus GUI login state), and rcé.d (reboot state). These directories are
maintained for compatibility with old UNIX SystemV init services.

/etc/security: Contains files that set a variety of default security conditions for
your computer, basically defining how authentication is done. These files are part of
the pam (pluggable authentication modules) package.

/etc/skel: Any files contained in this directory are automatically copied to a user’s
home directory when that user is added to the system. By default, most of these
files are dot (.) files, such as .kde (a directory for setting KDE desktop defaults) and
.bashrc (for setting default values used with the bash shell).

/etc/sysconfig: Contains important system configuration files that are created
and maintained by various services (including firewalld, samba, and most net-
working services). These files are critical for Linux distributions, such as Fedora
and RHEL, that use GUI administration tools but are not used on other Linux sys-
tems at all.

/etc/systemd: Contains files associated with the systemd facility, for managing
the boot process and system services. In particular, when you run systemctl com-
mands to enable and disable services, files that make that happen are stored in sub-
directories of the /etc/systemd system directory.

/etc/xinetd.d: Contains a set of files, each of which defines an on-demand network
service that the xinetd daemon listens for on a particular port. When the xinetd
daemon process receives a request for a service, it uses the information in these files
to determine which daemon processes to start to handle the request.

The following are some interesting configuration files in /etc:

aliases: Can contain distribution lists used by the Linux mail services. (This file is
located in /etc/mail in Ubuntu when you install the sendmail package.)

bashrc: Sets system-wide defaults for bash shell users. (This may be called bash.
bashrc on some Linux distributions.)

181

Part 1ll: Becoming a Linux System Administrator

182

crontab: Sets times for running automated tasks and variables associated with the
cron facility (such as the SHELL and PATH associated with cron).

csh.cshre (or eshre): Sets system-wide defaults for csh (C shell) users.

exports: Contains a list of local directories that are available to be shared by remote
computers using the Network File System (NES).

fstab: Identifies the devices for common storage media (hard disk, DVD, CD-ROM,
and so on) and locations where they are mounted in the Linux system. This is used
by the mount command to choose which filesystems to mount when the system
first boots.

group: Identifies group names and group IDs (GIDs) that are defined on the system.
Group permissions in Linux are defined by the second of three sets of rwx (read,
write, execute) bits associated with each file and directory.

gshadow: Contains shadow passwords for groups.

host.conf: Used by older applications to set the locations in which domain names
(for example, redhat.com) are searched for on TCP/IP networks (such as the Inter-
net). By default, the local hosts file is searched and then any name server entries in
resolv.conf.

hostname: Contains the hostname for the local system (beginning in RHEL 7 and
recent Fedora and Ubuntu systems).

hosts: Contains IP addresses and hostnames that you can reach from your computer.
(Usually this file is used just to store names of computers on your LAN or small pri-
vate network.)

inittab: On earlier Linux systems, contained information that defined which pro-
grams start and stop when Linux boots, shuts down, or goes into different states in
between. This configuration file was the first one read when Linux started the init
process. This file is no longer used on Linux systems that support systemd.

mtab: Contains a list of filesystems that are currently mounted.
mtools.conf: Contains settings used by DOS tools in Linux.

named.conf: Contains DNS settings if you are running your own DNS server (bind or
bind9 package).

nsswitch.conf: Contains name service switch settings, for identifying where criti-
cal system information (user accounts, hostname-to-address mappings, and so on)
comes from (local host or via network services).

ntp.conf: Includes information needed to run the Network Time Protocol (NTP).

passwd: Stores account information for all valid users on the local system. Also
includes other information, such as the home directory and default shell. (Rarely
includes the user passwords themselves, which are typically stored in the /etc/
shadow file.)

http://redhat.com

Chapter 8: Learning System Administration

printcap: Contains definitions for the printers configured for your computer. (If
the printcap file doesn't exist, look for printer information in the /etc/cups
directory.)

profile: Sets system-wide environment and startup programs for all users. This file is
read when the user logs in.

protocols: Sets protocol numbers and names for a variety of Internet services.
rpc: Defines remote procedure call names and numbers.
services: Defines TCP/IP and UDP service names and their port assignments.

shadow: Contains encrypted passwords for users who are defined in the passwd file.
(This is viewed as a more secure way to store passwords than the original encrypted
password in the passwd file. The passwd file needs to be publicly readable,
whereas the shadow file can be unreadable by all but the root user.)

shells: Lists the shell command-line interpreters (bash, sh, csh, and so on) that are
available on the system as well as their locations.

sudoers: Sets commands that can be run by users, who may not otherwise have per-
mission to run the command, using the sudo command. In particular, this file is
used to provide selected users with root permission.

rsyslog.conf: Defines what logging messages are gathered by the rsyslogd
daemon and in which files they are stored. (Typically, log messages are stored in
files contained in the /var/log directory.)

xinetd.conf: Contains simple configuration information used by the xinetd
daemon process. This file mostly points to the /etc/xinetd.d directory for infor-
mation about individual services.

Another directory, /etc/X11, includes subdirectories that each contain system-wide con-
figuration files used by X and different X window managers available for Linux. The xorg.
conf file (configures your computer and monitor to make it usable with X) and configura-
tion directories containing files used by xdm and xinit to start X are in here.

Directories relating to window managers contain files that include the default values that
a user will get if that user starts one of these window managers on your system. The twm
window manager may have system-wide configuration files in these directories.

Administrative log files and systemd journal

One of the things that Linux does well is keep track of itself. This is a good thing when you
consider how much is going on in a complex operating system.

Sometimes you are trying to get a new facility to work and it fails without giving you the
foggiest reason why. Other times, you want to monitor your system to see whether people
are trying to access your computer illegally. In any of those cases, you want to be able to

refer to messages coming from the kernel and services running on the system.

183

Part 1ll: Becoming a Linux System Administrator

184

For Linux systems that don't use the systemd facility, the main utility for logging error
and debugging messages is the rsyslogd daemon. (Some older Linux systems use sys-
logd and syslogd daemons.) Although you can still use rsyslogd with systemd
systems, systemd has its own method of gathering and displaying messages called the
systemd journal (journalctl command).

Using journalctl to view the systemd journal

The primary command for viewing messages from the systemd journal is the journalctl
command. The boot process, the kernel, and all systemd-managed services direct their
status and error messages to the systemd journal.

Using the journalctl command, you can display journal messages in many different
ways. Here are some examples:

journalctl

journalectl --list-boots | head

-2 93bdbel64... Sat 2020-01-04 21:07:28 EST—Sat 2020-01-04 21:19:37 EST
-1 7336¢cb823... Sun 2020-01-05 10:38:27 EST—Mon 2020-01-06 09:29:09 EST
0 eaebac25f... Sat 2020-01-18 14:11:41 EST-Sat 2020-01-18 16:03:37 EST

journalctl -b 488el52a3e2b4f6bb86be366c55264e7

journalctl -k

In these examples, the journalctl command with no options lets you page through all
messages in the systemd journal. To list the boot IDs for each time the system was booted,
use the -1ist-boots option. To view messages associated with a particular boot instance,
use the -b option with one of the boot instances. To see only kernel messages, use the -k
option. Here are some more examples:

journalctl _SYSTEMD UNIT=sshd.service
journalctl PRIORITY=0
journalctl -a -f

Use the SYSTEMD UNIT= options to show messages for specific services (here, the sshd
service) or for any other systemd unit file (such as other services or mounts). To see mes-
sages associated with a particular syslog log level, set PRIORITY= to a value from 0 to 7.
In this case, only emergency (0) messages are shown. To follow messages as they come in,
use the -f option; to show all fields, use the -a option.

Managing log messages with rsyslogd

The rsyslogd facility, and its predecessor syslogd, gather log messages and direct them
to log files or remote log hosts. Logging is done according to information in the /etc/
rsyslog.conf file. Messages are typically directed to log files that are usually in the /

Chapter 8: Learning System Administration

var/log directory, but they can also be directed to log hosts for additional security. Here
are a few common log files:

boot.log: Contains boot messages about services as they start up.
messages: Contains many general informational messages about the system.

secure: Contains security-related messages, such as login activity or any other act
that authenticates users.

Refer to Chapter 13, “Understanding Server Administration,” for information on config-
uring the rsyslogd facility.

Using Other Administrative Accounts

You don't hear much about logging in with other administrative user accounts (besides
root) on Linux systems. It was a fairly common practice in UNIX systems to have several
different administrative logins that allowed administrative tasks to be split among several
users. For example, people sitting near a printer could have 1p permissions to move print
jobs to another printer if they knew a printer wasn’t working.

In any case, administrative logins are available with Linux; however, logging in directly as
those users is disabled by default. The accounts are maintained primarily to provide owner-
ship for files and processes associated with particular services. When daemon processes are
run under separate administrative logins, having one of those processes cracked does not
give the cracker root permission and the ability to access other processes and files. Con-
sider the following examples:

1p: User owns such things as the /var/log/cups printing log file and various
printing cache and spool files. The home directory for 1p is /var/spool/1lpd.

apache: User can set up content files and directories on an Apache web server.
It is primarily used to run the web server processes (httpd) in RHEL and
Fedora systems, while the www-data user runs the Apache service (apache?2) on
Ubuntu systems.

avahi: User runs the avahi daemon process to provide zeroconf services on
your network.

chrony: User runs the chronyd daemon, which is used to maintain accurate com-
puter clocks.

postfix: User owns various mail server spool directories and files. The user runs the
daemon processes used to provide the postfix service (master).

bin: User owns many commands in /bin in traditional UNIX systems. This is not the
case in some Linux systems (such as Ubuntu, Fedora, and Gentoo) because root owns
most executable files. The home directory of bin is /bin.

185

Part 1ll: Becoming a Linux System Administrator

186

news: User could do administration of Internet news services, depending on how you
set permission for /var/spool/news and other news-related resources. The home
directory for news is /etc/news.

rpc: User runs the remote procedure calls daemon (rpcbind), which is used to receive
calls for services on the host system. The NES service uses the RPC service.

By default, the administrative logins in the preceding list are disabled. You would need to
change the default shell from its current setting (usually /sbin/nologin or /bin/false)
to a real shell (typically /bin/bash) to be able to log in as these users. As mentioned ear-
lier, however, they are really not intended for interactive logins.

Checking and Configuring Hardware

In a perfect world, after installing and booting Linux, all of your hardware is detected and
available for access. Although Linux systems have become quite good at detecting hard-
ware, sometimes you must take special steps to get your computer hardware working. Also,
the growing use of removable USB devices (CDs, DVDs, flash drives, digital cameras, and
removable hard drives) has made it important for Linux to do the following:

m Efficiently manage hardware that comes and goes

B Look at the same piece of hardware in different ways. (For example, it should
be able to see a printer as a fax machine, scanner, and storage device as well as
a printer.)

Linux kernel features added in the past few years have made it possible to change dras-
tically the way that hardware devices are detected and managed. The Udev subsystem
dynamically names and creates devices as hardware comes and goes.

If this sounds confusing, don't worry. It's designed to make your life as a Linux user much
easier. The result of features built on the kernel is that device handling in Linux has
become more automatic and more flexible:

More automatic For most common hardware, when a hardware device is connected or
disconnected, it is automatically detected and identified. Interfaces to access the
hardware are added so it is accessible to Linux. Then the fact that the hardware is
present (or removed) is passed to the user level, where applications listening for
hardware changes are ready to mount the hardware and/or launch an application
(such as an image viewer or music player).

More flexible If you don't like what happens automatically when a hardware item
is connected or disconnected, you can change it. For example, features built into
GNOME and KDE desktops let you choose what happens when a music CD or data DVD
is inserted, or when a digital camera is connected. If you prefer that a different pro-
gram be launched to handle it, you can easily make that change.

Chapter 8: Learning System Administration

The following sections cover several issues related to getting your hardware working prop-
erly in Linux. First, it describes how to check information about the hardware compo-
nents of your system. It then covers how to configure Linux to deal with removable media.
Finally, it describes how to use tools for manually loading and working with drivers for
hardware that is not detected and loaded properly.

Checking your hardware

When your system boots, the kernel detects your hardware and loads drivers that allow
Linux to work with that hardware. Because messages about hardware detection scroll
quickly off the screen when you boot, to view potential problem messages you have to
redisplay those messages after the system comes up.

There are a few ways to view kernel boot messages after Linux comes up. Any user can run
the dmesg command to see what hardware was detected and which drivers were loaded by
the kernel at boot time. As new messages are generated by the kernel, those messages are
also made available to the dmesg command.

A second way to see boot messages is the journalctl command to show the messages
associated with a particular boot instance (as shown earlier in this chapter).

Norte
After your system is running, many kernel messages are sent to the /var/log/messages file. So, for example, if

you want to see what happens when you plug in a USB drive, you can type tail -f /var/log/messages and
watch as devices and mount points are created. Likewise, you could use the journalctl -f command to follow
messages as they come into the systemd journal.

The following is an example of some output from the dmesg command that was trimmed
down to show some interesting information:

$ dmesg | less

[0.000000] Linux version 5.0.9-301.fc30.x86_ 64
(mockbuild@bkernelO4 .phx2.fedoraproject.org) (gcc version 9.0.1
20190312
(Red Hat 9.0.1-0.10) (GCC)) #1 SMP Tue Apr 23 23:57:35 UTC 2019
[0.000000] Command line:

BOOT_ IMAGE= (hd0,msdosl)/vmlinuz-5.0.9-301.fc30.x86 64
root=/dev/mapper/fedora localhost--live-root ro
resume=/dev/mapper/fedora_localhost--live-swap
rd.lvm.lv=fedora localhost-live/root

rd.lvm.lv=fedora localhost-live/swap rhgb quiet

S31B1102 USB DISK 1100 PQ: 0 ANSI: 0 CCS
[79.177466] sd 9:0:0:0: Attached scsi generic sg2 type 0

187

Part 1ll: Becoming a Linux System Administrator

188

[79.177854] sd 9:0:0:0: [sdb]
8343552 512-byte logical blocks: (4.27 GB/3.97 GiB)
[79.178593] sd 9:0:0:0: [sdb] Write Protect is off

From this output, you first see the Linux kernel version, followed by kernel command-line
options. The last few lines reflect a 4GB USB drive being plugged into the computer.

If something goes wrong detecting your hardware or loading drivers, you can refer to this
information to see the name and model number of hardware that’s not working. Then you
can search Linux forums or documentation to try to solve the problem. After your system
is up and running, some other commands let you look at detailed information about your
computer’s hardware. The 1spci command lists PCI buses on your computer and devices
connected to them. Here’s a snippet of output:

$ 1lspci

00:00.0 Host bridge: Intel Corporation
5000X Chipset Memory ControllerHub

00:02.0 PCI bridge: Intel Corporation 5000 Series Chipset
PCI Express x4 Port 2

00:1b.0 Audio device: Intel Corporation 631xXxESB/632xESB
High Definition Audio Controller (rev 09)

00:1d.0 USB controller: Intel Corporation 631xESB/632xESB/3100
Chipset UHCI USBController#l (rev 09)

07:00.0 VGA compatible controller: nVidia Corporation NV44

0c:02.0 Ethernet controller: Intel Corporation 82541PI
Gigabit Ethernet Controller (rev 05)

The host bridge connects the local bus to the other components on the PCI bridge. I cut
down the output to show information about the different devices on the system that
handle various features: sound (Audio device), flash drives and other USB devices (USB
controller), the video display (VGA compatible controller), and wired network cards (Ether-
net controller). If you are having trouble getting any of these devices to work, noting the
model names and numbers gives you something to Google.

To get more verbose output from 1spci, add one or more -v options. For example, using
lspci -vvv, I received information about my Ethernet controller, including latency, capa-
bilities of the controller, and the Linux driver (e1000) being used for the device.

If you are specifically interested in USB devices, try the 1susb command. By default,
1susb lists information about the computer’s USB hubs along with any USB devices con-
nected to the computer’s USB ports:

$ 1lsusb

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1déb:0001 Linux Foundation 1.1 root hub
Bus 003 Device 001: ID 1deb:0001 Linux Foundation 1.1 root hub
Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Bus 002 Device 002: ID 413c:2105 Dell Computer Corp.
Model L100 Keyboard

Chapter 8: Learning System Administration

Bus 002 Device 004: ID 413c:3012 Dell Computer Corp.
Optical Wheel Mouse

Bus 001 Device 005: ID 090c:1000 Silicon Motion, Inc. -
Taiwan 64MB QDI U2 DISK

From the preceding output, you can see the model of a keyboard, mouse, and USB flash
drive connected to the computer. As with 1spci, you can add one or more -v options to
see more details.

To see details about your processor, run the 1scpu command. That command gives basic
information about your computer’s processors.

$ lscpu

Architecture: x86_ 64

CPU op-mode (s) : 32-bit, 64-bit
CPU(s) : 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core (s) per socket: 4

From the sampling of output of 1scpu, you can see that this is a 64-bit system (x86-64), it
can operate in 32-bit or 64-bit modes, and there are four CPUs.

Managing removable hardware

Linux systems such as Red Hat Enterprise Linux, Fedora, and others, which support full
GNOME desktop environments, include simple graphical tools for configuring what happens
when you attach popular removable devices to the computer. So, with a GNOME desktop
running, you simply plug in a USB device or insert a CD or DVD, and a window may pop up
to deal with that device.

Although different desktop environments share many of the same underlying mechanisms
(in particular, Udev) to detect and name removable hardware, they offer different tools for
configuring how they are mounted or used. Udev (using the udevd daemon) creates and
removes devices (/dev directory) as hardware is added and removed from the computer.
Settings that are of interest to someone using a desktop Linux system, however, can be
configured with easy-to-use desktop tools.

The Nautilus file manager used with the GNOME desktop lets you define what happens when
you attach removable devices or insert removable media into the computer from the File
Management Preferences window. The descriptions in this section are based on GNOME 3.32
in Fedora 30.

From the GNOME 3.32 desktop, select Activities and type Removable Media. Then select the
Removable Media Setting entry.

The following settings are available from the Removable Media window. These settings
relate to how removable media are handled when they are inserted or plugged in. In most
cases, you are prompted about how to handle a medium that is inserted or connected.

189

Part 1ll: Becoming a Linux System Administrator

CD audio: When an audio CD is inserted, you can choose to be prompted for what to do
(default), do nothing, open the contents in a folder window, or select from various
audio CD players to be launched to play the content. Rhythmbox (music player),
Audio CD Extractor (CD burner), and Brasero (CD burner) are among the choices that
you have for handling an inserted audio CD.

DVD video: When a commercial video DVD is inserted, you are prompted for what to do
with that DVD. You can change that default to launch Totem (videos), Brasero (DVD
burner), or another media player you have installed (such as MPlayer).

Music player: When inserted media contains audio files, you are asked what to do. You
can select to have Rhythmbox or some other music player begin playing the files by
selecting that player from this box.

Photos: When inserted media (such as a memory card from a digital camera) contains
digital images, you are asked what to do with those images. You can select to do
nothing, or you can select to have the images opened in the Shotwell image viewer
(the default application for viewing images on the GNOME desktop) or another
installed photo manager.

Software: When inserted media contains installable software, the Software window
opens by default. To change that behavior (to ask what to do, do nothing, or open
the media contents in a folder), you can select the box for those choices.

Other Media: Select the Type box under the Other Media heading to select how less
commonly used media are handled. For example, you can select what actions are
taken to handle audio DVDs or blank Blu-ray discs, CDs, or DVDs. You can select what
applications to launch for Blu-ray video disc, ebook readers, and Picture CDs.

Note that the settings described here are in effect only for the user who is currently logged
in. If multiple users have login accounts, each can have their own way of handling remov-
able media.

Norte

The Totem movie player does not play movie DVDs unless you add extra software to decrypt the DVD. You should look
into legal issues and other movie player options if you want to play commercial DVD movies from Linux.

The options to connect reqgular USB flash drives or hard drives are not listed on this
window. If you connect one of those drives to your computer, however, devices are auto-
matically created when you plug them in (named /dev/sda, /dev/sdb, and so on). Any
filesystems found on those devices are automatically mounted on /run/media/username,
and you are prompted if you want to open a Nautilus window to view files on those devices.
This is done automatically, so you don't have to do any special configuration to make

this happen.

When you are finished with a USB drive, right-click the device’s name in the Nautilus file
manager window and select Safely Remove Drive. This action unmounts the drive and

190

Chapter 8: Learning System Administration

removes the mount point in the /run/media/username directory. After that, you can
safely unplug the USB drive from your computer.

Working with loadable modules

If you have added hardware to your computer that isn't properly detected, you might need
to load a module manually for that hardware. Linux comes with a set of commands for load-
ing, unloading, and getting information about hardware modules.

Kernel modules are installed in /1ib/modules/ subdirectories. The name of each sub-
directory is based on the release number of the kernel. For example, if the kernel were
5.3.8-200.fc30.x86 _ 64, the /1lib/modules/5.3.8-200.£c30.x86 _ 64 directory
would contain drivers for that kernel. Modules in those directories can then be loaded and
unloaded as they are needed.

Commands for listing, loading, unloading, and getting information about modules are avail-
able with Linux. The following sections describe how to use those commands.

Listing loaded modules

To see which modules are currently loaded into the running kernel on your computer, use
the 1smod command. Consider the following example:

lsmod

Module Size Used by

vfat 17411 1

fat 65059 1 vfat

uas 23208 0

usb_storage 65065 2 uas

fuse 91446 3

ipt MASQUERADE 12880 3

xt CHECKSUM 12549 1

nfsv3 39043 1
rpcsec_gss_krb5 31477 0

nfsv4 466956 0
dns_resolver 13096 1 nfsv4

nfs 233966 3 nfsv3,nfsv4
i2c¢_algo_bit 13257 1 nouveau
drm _kms_helper 58041 1 nouveau
ttm 80772 1 nouveau
drm 291361 7 ttm,drm_kms_helper, nouveau
ata generic 12923 0

pata acpi 13053 0

1000 137260 0

i2c_core 55486 5 drm,i2c_i801,drm kms_helper

191

Part 1ll: Becoming a Linux System Administrator

192

This output shows a variety of modules that have been loaded on a Linux system, including
one for a network interface card (€1000).

To find information about any of the loaded modules, use the modinfo command. For
example, you can enter the following:

/sbin/modinfo -d el000
Intel (R) PRO/1000 Network Driver

Not all modules have descriptions available and, if nothing is available, no data are
returned. In this case, however, the e1000 module is described as an Intel(R) PRO/1000
Network Driver module. You can also use the -a option to see the author of the module or
-n to see the object file representing the module. The author information often has the
email address of the driver’s creator, so you can contact the author if you have problems or
questions about it.

Loading modules

You can load any module (as root user) that has been compiled and installed (to a /
lib/modules subdirectory) into your running kernel using the modprobe command.
A common reason for loading a module is to use a feature temporarily (such as loading

a module to support a special filesystem on some removable media you want to access).
Another reason to load a module is to identify that module as one that will be used by a
particular piece of hardware that could not be autodetected.

Here is an example of the modprobe command being used to load the parport module,
which provides the core functions to share parallel ports with multiple devices:

modprobe parport

After parport is loaded, you can load the parport pc module to define the PC-style
ports available through the interface. The parport pc module lets you optionally define
the addresses and IRQ numbers associated with each device sharing the parallel port, as in
the following example:

modprobe parport pc io=0x3bc irg=auto

In this example, a device is identified as having an address of 0x3bc, and the IRQ for the
device is autodetected.

The modprobe command loads modules temporarily—they disappear at the next reboot.
To add the module to your system permanently, add the modprobe command line to one of
the startup scripts run at boot time.

Removing modules

Use the rmmod command to remove a module from a running kernel. For example, to
remove the module parport _ pc from the current kernel, type the following:

rmmod parport pc

Chapter 8: Learning System Administration

If it is not currently busy, the parport pc module is removed from the running kernel.
If it is busy, try killing any process that might be using the device. Then run rmmod
again. Sometimes, the module you are trying to remove depends on other modules that
may be loaded. For instance, the usbcore module cannot be unloaded because it is a
built-in module:

rmmod usbcore
rmmod: ERROR: Module usbcore is builtin.

Instead of using rmmod to remove modules, you could use the modprobe -r command.
With modprobe -r, instead of just removing the module you request, you can also remove
dependent modules that are not being used by other modules.

Summary

Many features of Linux, especially those that can potentially damage the system or impact
other users, require that you gain root privilege. This chapter describes different ways of
obtaining root privilege: direct login, su command, or sudo command. It also covers some
of the key responsibilities of a system administrator and components (configuration files,
browser-based tools, and so on) that are critical to a system administrator’s work.

The next chapter describes how to install a Linux system. Approaches to installing Linux
that are covered in that chapter include how to install from live media and from installa-
tion media.

Exercises

Use these exercises to test your knowledge of system administration and to explore infor-
mation about your system hardware. These tasks assume that you are running a Fedora

or Red Hat Enterprise Linux system (although some tasks work on other Linux systems as

well). If you are stuck, solutions to the tasks are shown in Appendix B (although in Linux,
there are often multiple ways to complete a task).

1. From a shell as root user (or using sudo), enable Cockpit (cockpit.socket) using
the systemctl command.

2. Open your web browser to the Cockpit interface (9090) on your system.

3. Find all files under the /var/spool directory that are owned by users other than
root and display a long listing of them.

4. Become the root user using the su - command. To prove that you have root privi-
lege, create an empty or plain-text file named /mnt/test.txt. Exit the shell when
you are finished. If you are using Ubuntu, you must set your root password first
(sudo passwd root).

193

Part 1ll: Becoming a Linux System Administrator

194

Log in as a regular user and become root using su -. Edit the /etc/sudo-
ers file to allow your reqgular user account to have full root privilege via the
sudo command.

As the user to whom you just gave sudoers privilege, use the sudo command to
create a file called /mnt/test2.txt. Verify that the file is there and owned by the
root user.

Run the journalectl -f command and plug a USB drive into a USB port on your
computer. If it doesn’t mount automatically, mount it on /mnt/test. In a second
terminal, unmount the device and remove it, continuing to watch the output from
journalctl -f.

8. Run a command to see what USB devices are connected to your computer.

9. Pretend that you added a TV card to your computer, but the module needed to use it

10.

(bttv) was not properly detected and loaded. Load the bttv module yourself, and
then look to see that it was loaded. Were other modules loaded with it?

Remove the bttv module along with any other modules that were loaded with it.
List your modules to make sure that this was done.

CHAPTER

Installing Linux

IN THIS CHAPTER

Choosing an installation method

Installing a single- or multi-boot system
Performing a Live media installation of Fedora
Installing Red Hat Enterprise Linux
Understanding cloud-based installations
Partitioning the disk for installation
Understanding the GRUB boot loader

up to spec (hard disk, RAM, CPU, and so on) and you don't mind totally erasing your hard drive.

With cloud computing and virtualization, installation can be even simpler. It allows you to
bypass traditional installation and spin a Linux system up or down within a few minutes by adding
metadata to prebuilt images.

I nstalling Linux has become a fairly easy thing to do—if you are starting with a computer that is

This chapter starts off with a simple installation on a physical computer from Live media and prog-
resses to more complex installation topics.

To ease you into the subject of installing Linux, I cover three different ways of installing Linux and
step you through each process:

Installing from Live media A Linux Live media ISO is a single, read-only image that contains
everything you need to start a Linux operating system. That image can be burned to a DVD
or USB drive and booted from that medium. With the Live media, you can totally ignore your
computer’s hard disk; in fact, you can run Live media on a system with no hard disk. After
you are running the Live Linux system, some Live media ISOs allow you to launch an appli-
cation that permanently installs the contents of the Live medium to your hard disk. The
first installation procedure in this chapter shows you how to install Linux permanently from
a Fedora Live media ISO.

195

Part 1ll: Becoming a Linux System Administrator

196

Installing from an installation DVD An installation DVD, available with Fedora,
RHEL, Ubuntu, and other Linux distributions, offers more flexible ways of
installing Linux. In particular, instead of just copying the whole Live media con-
tents to your computer, with an installation DVD you can choose exactly which
software package you want. The second installation procedure I show in this chap-
ter steps you through an installation process from a Red Hat Enterprise Linux 8
installation DVD.

Installing in the enterprise Sitting in front of a computer and clicking through
installation questions isn't inconvenient if you are installing a single system.
But what if you need to install dozens or hundreds of Linux systems? What if
you want to install those systems in particular ways that need to be repeated
over multiple installations? Later in this chapter, I describe efficient ways of
installing multiple Linux systems using network installation features and kick-
start files.

A fourth method of installation not covered in this chapter is to install Linux to a cloud
environment (such as Amazon Web Services) or virtual machine on a virtualization host, such
as Virtual Box or a VMware system. Chapter 27 and Chapter 28 describe ways of installing or
deploying a virtual machine on a Linux KVM host or in a cloud environment.

To try the procedures in this chapter along with me, you should have a computer in front
of you that you don't mind totally erasing. As an alternative, you can use a computer that
has another operating system installed (such as Windows), as long as there is enough
unused disk space available outside of that operating system. I describe the procedure,
and risk of data loss, if you decide to set up one of these “dual boot” (Linux and Windows)
arrangements.

Choosing a Computer

You can get a Linux distribution that runs on handheld devices or an old PC in your closet
with as little as 24MB of RAM and a 486 processor. To have a good desktop PC experience
with Linux, however, you should consider what you want to be able to do with Linux when
you are choosing your computer.

Be sure to consider the basic specifications that you need for a PC-type computer to run the
Fedora and Red Hat Enterprise Linux distributions. Because Fedora is used as the basis for
Red Hat Enterprise Linux releases, hardware requirements are similar for basic desktop and
server hardware for those two distributions.

Processor A 1GHz Pentium processor is the minimum for a GUI installation. For most
applications, a 32-bit processor is fine (x86). However, if you want to set up the
system to do virtualization, you need a 64-bit processor (x86_64).

Chapter 9: Installing Linux

Norte
If you have a less powerful computer than the minimum described here, consider using a lightweight Linux
distribution. Lightweight Ubuntu distributions include Peppermint OS (https://peppermintos.com/) and

Lubuntu (https://lubuntu.net/). For a lightweight Fedora-based distribution, try the LXDE desktop
(https://spins.fedoraproject.org/l1xde/). For a Linux distribution requiring the least resources, you
could try Tiny Core Linux (http://tinycorelinux.net/).

RAM Fedora recommends at least 1GB of RAM, but at least 2GB or 3GB would be much
better. On my RHEL desktop, I'm running a web browser, word processor, and mail
reader, and I'm consuming over 2GB of RAM.

DVD or USB drive You need to be able to boot up the installation process from a DVD
or USB drive. In recent releases, the Fedora live media ISO has become too big to fit
on a CD, so you need to burn it to a DVD or USB drive. If you can't boot from a DVD
or USB drive, there are ways to start the installation from a hard disk or by using a
PXE install. After the installation process is started, more software can sometimes be
retrieved from different locations (over the network or from hard disk, for example).

Note
PXE (pronounced pixie) stands for Preboot eXecution Environment (PXE). You can boot a client computer from a

Network Interface Card (NIC) that is PXE-enabled. If a PXE boot server is available on the network, it can provide
everything a client computer needs to boot. What it boots can be an installer. So, with a PXE boot, it is possible to do
a complete Linux installation without a CD, DVD, or any other physical medium.

Network card You need wired or wireless networking hardware to be able to add more
software or get software updates. Fedora offers free software repositories if you can con-
nect to the Internet. For RHEL, updates are available as part of the subscription price.

Disk space Fedora recommends at least 20GB of disk space for an average desktop
installation, although installations can range (depending on which packages you
choose to install) from 600MB (for a minimal server with no GUI install) to 7GB (to
install all packages from the installation DVD). Consider the amount of data that
you need to store. Although documents can consume very little space, videos can
consume massive amounts of space. (By comparison, you can install Tiny Core Linux
to disk with only about 16MB of disk space, which includes a GUI.)

Special hardware features Some Linux features require special hardware features. For
example, to use Fedora or RHEL as a virtualization host using KVM, the computer must
have a processor that supports virtualization. These include AMD-V or Intel-VT chips.

If you're not sure about your computer hardware, there are a few ways to check what you
have. If you are running Windows, the System Properties window can show you the pro-
cessor you have as well as the amount of RAM that’s installed. As an alternative, with the
Fedora Live CD booted, open a shell and type dmesg | less to see a listing of hardware
as it is detected on your system.

197

https://peppermintos.com/
https://lubuntu.net/
https://spins.fedoraproject.org/lxde/
http://tinycorelinux.net/

Part 1ll: Becoming a Linux System Administrator

198

With your hardware in place, you can choose to install Linux from a Live CD or from instal-
lation media, as described in the following sections.

Installing Fedora from Live Media

In Chapter 2, you learned how to get and boot up Linux Live media. This chapter steps you
through an installation process of a Fedora Live DVD so that it is permanently installed on
your hard disk.

Simplicity is the main advantage of installing from Live media. Essentially, you are just
copying the kernel, applications, and settings from the ISO image to the hard disk. There
are fewer decisions that you have to make to do this kind of installation, but you also don't
get to choose exactly which software packages to install. After the installation, you can
add and remove packages as you please.

The first decisions that you must make about your Live media installation include where
you want to install the system and whether you want to keep existing operating systems
around when your installation is done:

Single-boot computer The easiest way to install Linux is to not have to worry about
other operating systems or data on the computer and have Linux replace every-
thing. When you are done, the computer boots up directly to Fedora.

Multi-boot computer If you already have Windows installed on a computer and you
don't want to erase it, you can install Fedora along with Windows on that system.
Then, at boot time, you can choose which operating system to start up. To be able
to install Fedora on a system with another operating system installed, you must
have either extra disk space available (outside the Windows partition) or be able
to shrink the Windows system to gain enough free space to install Fedora. Because
multi-boot computers are tedious to set up and risk damaging your installed system,
I recommend installing Linux on a separate computer, even an old used one, or on a
virtual machine, as opposed to multi-booting.

Bare metal or virtual system The resulting Fedora installation can be installed to
boot up directly from the computer hardware or from within an existing operating
system on the computer. If you have a computer that is running as a virtual host,
you can install Fedora on that system as a virtual guest. Virtualization host software
includes KVM, Xen, and VirtualBox (for Linux and UNIX systems as well as Windows
and the Mac 0S), Hyper-V (for Microsoft systems), and VMware (for Linux, Windows,
and Mac 0S). You can use the Fedora Live ISO image from disk or burned to a DVD to
start an installation from your chosen hypervisor host. (Chapter 27, “Using Linux for
Cloud Computing,” describes how to set up a KVM virtualization host.)

The following procedure steps you through the process of installing the Fedora Live ISO
described in Chapter 2 to your local computer. Because the Fedora 30 installation is very
similar to the Red Hat Enterprise Linux 8 installation described later in this chapter, you
can refer to that procedure if you want to go beyond the simple selections shown here (par-
ticularly in the area of storage configuration).

Chapter 9: Installing Linux

Caution
Before beginning the procedure, be sure to make backup copies of any data on the computer that you still want to

keep. Although, you can choose not to erase selected disk partitions (as long as there is enough space available on
other partitions), there is always a risk that data can be lost when you are manipulating disk partitions. Also, unplug
any USB drives that you have plugged into your computer because they could be overwritten.

1. Get Fedora. Choose the Fedora Live media image that you want to use, download
it to your local system, and burn it to an appropriate medium. See Appendix A for
information on how to get the Fedora Live media and burn it to a DVD or USB drive.

2. Boot the Live image. Insert the DVD or USB drive. When the BIOS screen appears,
look for a message that tells you to press a particular function key (such as F12)
to interrupt the boot process and select the boot medium. Select the DVD or USB
drive, depending on which you have, and Fedora should come up and display the
boot screen. When you see the boot screen, select Start Fedora-Workstation-Live.

3. Start the installation. When the Welcome to Fedora screen appears, position your
mouse over the Install to Hard Drive area and select it. Figure 9.1 shows an example
of the Install to Hard Drive selection on the Fedora Live media.

FIGURE 9.1

Start the installation process from Live media.

Activities € Welcome to Fedora Jul21 11:10

Welcome to Fedora

Try Fedora Install to Hard Drive

You are current ning Fedora from live media.
You can install F ow, or Elfs /e" in the Activities
y later time.

199

Part 1ll: Becoming a Linux System Administrator

4. Select the language. When prompted, choose the language type that best suits you
(such as U.S. English) and select Next. You should see the Installation summary
screen, as shown in Figure 9.2.

FIGURE 9.2

Select configuration options from the Installation Summary screen.

Activities & Installto Hard Drive ~ Jul21 11:24

k INSTALLATION SUMMARY

LOCALIZATION SYSTEM

E Keyboard E1 Installation Destination
English (US} B Automatic partitioning selected
Time & Date

Americas/New York timezone

5. Select Time & Date. From the Time & Date screen, you can select your time zone
either by clicking the map or choosing the region and city from drop-down boxes.
To set the date and time, if you have an Internet connection, you can select the
Network Time button to turn it on, or you can select OFF and set the date and time
manually from boxes on the bottom of the screen. Select Done in the upper-right
corner when you are finished.

6. Select the installation destination. Available storage devices (such as your hard
drive) are displayed, with your hard drive selected as the installation destination.
If you want the installer to install Fedora automatically, reclaiming existing disk
space, make sure that your disk is selected (not a USB drive or other device con-
nected to your computer), then make the following selections:

a. Automatic . . . If there is enough available disk space on the selected disk drive,
you can continue with the installation by selecting Continue. Otherwise, you
need to reclaim disk space as follows:

I would like to make additional space available. . . If you want to erase the
hard drive completely, select this check box and click Continue. You can erase
some or all of the partitions that currently contain data.

b. Reclaim Disk Space. From this screen, you can select Delete All. Then select
Reclaim Space. Partitioning is set up automatically and you are returned to the
Installation Summary screen.

200

Chapter 9: Installing Linux

7. Select the keyboard. You can just use the default English (U.S.) keyboard or select
Keyboard to choose a different keyboard layout.

8. Begin installation. Select Begin Installation to begin installing to hard disk.
9. Finish the configuration. When the first part of the installation is complete, click Quit.

10. Reboot. Select the little on/off button from the menu on the top-right corner of the
screen. When prompted, click the Restart button. Eject or remove the Live media
when the system boot screen appears. The computer should boot to your newly
installed Fedora system. (You may actually need to power off the computer for it to
boot back up.)

11. Begin using Fedora. A first boot screen appears at this point, allowing you to create
a user account and password, among other things. You are automatically logged in
as that user account when configuration is done. That account has sudo privileges,
so you can immediately begin doing administrative tasks as needed.

12. Get software updates. To keep your system secure and up to date, one of the first
tasks that you should do after installing Fedora is to get the latest versions of the
software you just installed. If your computer has an Internet connection (plugging
into a wired Ethernet network or selecting an accessible wireless network from the
desktop takes care of that), you can simply open a Terminal as your new user and
type sudo dnf update to download and update all of your packages from the
Internet. If a new kernel is installed, you can reboot your computer to have that
new kernel take effect.

At this point, you can begin using the desktop, as described in Chapter 2. You can also use
the system to perform exercises from any of the chapters in this book.

Installing Red Hat Enterprise Linux from
Installation Media

In addition to offering a live DVD, most Linux distributions offer a single image or set of
images that can be used to install the distribution. For this type of installation media,
instead of copying the entire contents of the medium to disk, software is split up into
packages that you can select to meet your exact needs. A full installation DVD, for example,
can allow you to install anything from a minimal system to a fully featured desktop to a
full-blown server that offers multiple services.

In this chapter, I use a Red Hat Enterprise Linux 8 installation DVD as the installation
medium. Review the hardware information and descriptions of dual booting in the previous
section before beginning your RHEL installation.

Follow this procedure to install Red Hat Enterprise Linux from an installation DVD.

1. Get the installation media. The process of downloading RHEL install ISO images is
described on the Red Hat Enterprise Linux product page. If you are not yet a Red

201

Part 1ll: Becoming a Linux System Administrator

Hat customer, you can apply for an evaluation copy here: https://www.redhat.com/
en/technologies/linux-platforms/enterprise-linux.

This requires that you create a Red Hat account. If that is not possible, you can
download an installation DVD from a mirror site of the Cent0S project to get a sim-
ilar experience: https://wiki.centos.org/Download.

For this example, I used the 6.7G RHEL 8 DVD ISO rhel-8.0-x86 64-dvd.iso.
After you have the DVD ISO, you can burn it to a physical USB drive or dual-layer
DVD, as described in Appendix A.

2. Boot the installation media. Insert the USB drive or DVD into your computer
and reboot. (If you need to, interrupt the boot prompt to select to boot from the
selected USB or DVD.) The Welcome screen appears.

3. Select Install or Test Media. Select the Install or the “Test this media & install”
entry to do a new installation of RHEL. The media test verifies that the DVD has
not been corrupted during the copy or burning process. If you need to modify the
installation process, you can add boot options by pressing the Tab key with a boot
entry highlighted and typing in the options you want. See the section “Using
installation boot options” later in this chapter.

4. Select a language. Select your language and choose Continue. The Installation Sum-
mary screen appears. From that screen, you can select to change any of the avail-
able Localization, Software, and System features, as shown in Figure 9.3.

FIGURE 9.3

Choose from Localization, Software, and System topics on the Installation Summary screen.

INSTALLATION SUMMARY RED HAT ENTERPRISE LINUX 8.0.0 INSTALLATION

RedHat

Eus Help!

LOCALIZATION SOFTWARE SYSTEM

Installation Source @] Installation Destination

E Keyboard
English (US)

Language Support

English (United States)

Time & Date

Americas/New York timezone

Local media

Software Selection
Server with GUI

. Automatic partitioning selected

KDUMP
Kdumpis enabled

(_-) Network & Host Name

Net connected

n SECURITY POLICY
No profile selected

System Purpose
None selected.

https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
http://wiki.centos.org/Download

Chapter 9: Installing Linux

10.

11.

12.

13.

14.

Keyboard. Choose from different types of keyboards available with the languages
you selected earlier. Type some text to see how the keys are laid out.

Language Support. You have a chance to add support for additional languages
(beyond what you set by default earlier). Select Done when you are finished.

Time & Date. Choose a time zone for your machine from either the map or the list
shown (as described in the section “Installing Fedora from Live Media"). Either
set the time manually with up/down arrows or select Network Time to have your
system try to connect to networked time servers automatically to sync system
time. Select Done when you are finished.

Installation Source. The installation DVD is used, by default, to provide the RPM
packages that are used during installation. You have the option of selecting “On
the network” and choosing a Web URL (http, https, or £tp) identifying where
the Red Hat Enterprise Linux software repository is located. After choosing the DVD
or a network location, you can add additional yum repositories to have those repos-
itories used during installation as well. Select Done when you are finished.

Software Selection. The default “Server with GUI” selection provides a GNOME 3
desktop system on top of a basic server install. Other choices include "Server"
(which has no GUI), "Minimal Install" (which starts with a basic package set), and
"Workstation" (geared for end users). You can select to add other services or other
base environments to include. Select Done when you are ready to continue.

Installation Destination. The new RHEL system is installed, by default, on the local
hard drive using automatic partitioning. You also have the option of attaching net-
work storage or special storage, such as Firmware RAID. (See the section “Partition-
ing hard drives” later in this chapter for details on configuring storage.) Click Done
when you are finished. You may be asked to verify that it's okay to delete exist-
ing storage.

Kdump. Enabling kdump sets aside RAM to be used to capture the resulting kernel
dump in the event that your kernel crashes. Without kdump, there would be no
way to diagnose a crashed kernel. By default, enabling kdump sets aside 160MB
plus 2 bits for every 4KB of RAM for saving kernel crashes.

Network & Host Name. Any network interface cards that are discovered can be con-
figured at this point. If a DHCP service is available on the network, network address
information is assigned to the interface after you select ON. Select Configure if you
prefer to configure the network interface manually. Fill in the Hostname box if you
want to set the system’s hostname. Setting up your network and hostname during
installation can make it easier to begin using your system after installation. Click
Done to continue.

Security Policy. By choosing a security policy (none is chosen by default), you can
ensure that your system complies with a selected security standard. All fields are
optional and can be changed later.

System Purpose. This optional selection lets you choose the system’s role, service-
level agreement, and usage.

203

Part 1ll: Becoming a Linux System Administrator

204

15. Begin the installation. Click the Begin Installation button to start the install
process. A progress bar marks the progress of the installation. As the system is
installing, you can set the root password and create a new user account for your
new system.

16. Root Password. Set the password for the root user and verify it (type it again).
Click Done to accept it. If the password is too short or too weak, you stay on the
page (where you can set a new password). If you decide to keep the weak password
instead, click Done again to accept the weak password.

17. User Creation. It is good practice to log into a Linux system with a non-root user
account and request root privilege as needed. You can set up a user account, includ-
ing a username, full name, and password. You can select “Make this user adminis-
trator” to give that user sudo privileges (allowing the account to act as the root
user as needed). Select Done when you are finished. If the password you enter is
too short or otherwise weak, you must change it or click Done again if you still
want to use the weak password.

18. Complete the installation. When installation is finished, click Reboot. Pop out the
DVD when the system restarts and Red Hat Enterprise Linux starts up from the
hard disk.

19. Run firstboot. If you installed a desktop interface, the firstboot screen appears the
first time you boot the system. Here's what you do:

a. License Information. Read and click the check box to accept the license infor-
mation, then click Done.

b. Subscription Manager. When prompted, you can leave the default subscrip-
tion management system in place (subscription.rhn.redhat.com) or enter the
location of a Red Hat Satellite server to register your system. Click Next. Enter
your Red Hat account and password, then click Register to register and entitle
your system to updates. If the subscription found is acceptable, click Attach to
enable the subscription.

20. Select Finish Configuration when you are done.

You should now be able to log in to your Red Hat Enterprise Linux system. One of the first
things that you should do is to get software updates for the new system. Do this by logging
into the system and running sudo dnf upgrade from a Terminal window.

Understanding Cloud-Based Installations

When you install a Linux system on a physical computer, the installer can see the com-
puter’s hard drive, network interfaces, CPUs, and other hardware components. When you
install Linux in a cloud environment, those physical components are abstracted into a pool
of resources. So, to install a Linux distribution in an Amazon EC2, Google Compute Engine,
or OpenStack cloud platform, you need to go about things differently.

http://subscription.rhn.redhat.com

Chapter 9: Installing Linux

The common way of installing Linux in a cloud is to start with a file that is an image of

an installed Linux system. Typically, that image includes all of the files needed by a basic,
running Linux system. Metadata is added to that image from a configuration file or by
filling out a form from a cloud controller that creates and launches the operating system as
a virtual machine.

The kind of information added to the image might include a particular hostname, root
password, and new user account. You might also want to choose to have a specific amount
of disk space, a particular network configuration, and a certain number of CPU proces-
sors and RAM.

Methods for installing Linux in a local cloud-like KVM environment are discussed in Chap-
ter 28, “Deploying Linux to the Cloud.” That chapter covers how to run a Linux system

as a virtual machine image on a KVM environment, Amazon EC2 cloud, or OpenStack
environment.

Installing Linux in the Enterprise

If you were managing dozens, hundreds, even thousands of Linux systems in a large enter-
prise, it would be terribly inefficient to have to go to each computer to type and click through
each installation. Fortunately, with Red Hat Enterprise Linux and other distributions, you
can automate installation in such a way that all you need to do is to turn on a computer and
boot from the computer’s network interface card to get your desired Linux installation.

Although we have focused on installing Linux from a DVD or USB media, there are many
other ways to launch a Linux installation and many ways to complete an installation. The
following descriptions step through the installation process and describe ways of changing
that process along the way:

Launch the installation medium. You can launch an installation from any medium
that you can boot from a computer: CD, DVD, USB drive, hard disk, or network inter-
face card with PXE support. The computer goes through its boot order and looks at the
master boot record on the physical medium or looks for a PXE server on the network.

Start the anaconda kernel. The job of the boot loader is to point to the special
kernel (and possibly an initial RAM disk) that starts the Linux installer (called
anaconda). So, any of the media types just described simply needs to point to the
location of the kernel and initial RAM disk to start the installation. If the software
packages are not on the same medium, the installation process prompts you for
where to get those packages.

Add kickstart or other boot options. Boot options (described later in this chapter)
can be passed to the anaconda kernel to configure how it starts up. One option
supported by Fedora and RHEL allows you to pass the location of a kickstart file to
the installer. That kickstart can contain all of the information needed to complete
the installation: root password, partitioning, time zone, and so on to configure the
installed system further. After the installer starts, it either prompts for needed
information or uses the answers provided in the kickstart file.

205

Part 1ll: Becoming a Linux System Administrator

206

Find software packages. Software packages don’t have to be on the installation
medium. This allows you to launch an installation from a boot medium that con-
tains only a kernel and initial RAM disk. From the kickstart file or from an option
you enter manually to the installer, you can identify the location of the repository
holding the RPM software packages. That location can be a local CD (cdrom), web-
site (http), FTP site (£tp), NFS share (nfs), NFS ISO (nfsiso), or local disk (hd).

Modify installation with kickstart scripts. Scripts included in a kickstart can
run commands you choose before or after the installation to further configure the
Linux system. Those commands can add users, change permissions, create files and
directories, grab files over the network, or otherwise configure the installed system
exactly as you specify.

Although installing Linux in enterprise environments is beyond the scope of this book, I
want you to understand the technologies that are available when you want to automate the
Linux installation process. Here are some of those technologies available to use with Red
Hat Enterprise Linux, along with links to where you can find more information about them:

Install server If you set up an installation server, you don't have to carry the soft-
ware packages around to each machine where you install RHEL. Essentially, you
copy all of the software packages from the RHEL installation medium to a web
server (http), FTP server (£tp), or NES server (nfs) and then point to the location
of that server when you boot the installer. The RHEL 8 Installation Guide describes
how to set up a local or network installation source:

https://access.redhat.com/documentation/en-us/red hat enterprise linux/8/
html-single/performing a standard rhel installation/index#prepare-

installation-source preparing-for-your-installation

PXE server If you have a computer with a network interface card that supports PXE
booting (as most do), you can set your computer’s BIOS to boot from that NIC. If you
have set up a PXE server on that network, that server can present a menu to the
computer containing entries to launch an installation process. The RHEL Installa-
tion Guide provides information on how to set up PXE servers for installation:

https://access.redhat.com/documentation/en-us/red hat enterprise linux/8/
html-single/performing a standard rhel installation/index#booting-the-

installation-using-pxe booting-the-installer

Kickstart files To automate an installation completely, you create what is called a
kickstart file. By passing a kickstart file as a boot option to a Linux installer, you
can provide answers to all of the installation questions that you would normally
have to click through.

When you install RHEL, a kickstart file containing answers to all installation ques-
tions for the installation you just did is contained in the /root/anaconda-ks.cfg
file. You can present that file to your next installation to repeat the installation con-
figuration or use that file as a model for different installations.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#prepare-installation-source_preparing-for-your-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#prepare-installation-source_preparing-for-your-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#prepare-installation-source_preparing-for-your-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#booting-the-installation-using-pxe_booting-the-installer
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#booting-the-installation-using-pxe_booting-the-installer
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#booting-the-installation-using-pxe_booting-the-installer

Chapter 9: Installing Linux

See the Advanced RHEL Installation Guide for information on performing a kickstart
instauaiion:https://access.redhat.com/documentation/en—us/red_hat_enter—
prise linux/8/html-single/performing an advanced rhel installation/
index/#performing an automated installation using kickstart

... and creating your own kickstart files https://access.redhat.com/
documentation/en-us/red hat enterprise linux/8/html-single/

performing an advanced rhel installation/index/#creating-kickstart-files

installing-rhel-as-an-experienced-user

Exploring Common Installation Topics

Some of the installation topics touched upon earlier in this chapter require further expla-
nation for you to be able to implement them fully. Read through the following sections to
get a greater understanding of specific installation topics.

Upgrading or installing from scratch

If you have an earlier version of Linux already installed on your computer, Fedora, Ubuntu,
and other Linux distributions offer an upgrade option. Red Hat Enterprise Linux offers a
limited upgrade path from RHEL 7 to RHEL 8.

Upgrading lets you move a Linux system from one major release to the next. Between minor
releases, you can simply update packages as needed (for example, by typing yum update).
Here are a few general rules before performing an upgrade:

Remove extra packages. If you have software packages that you don't need, remove
them before you do an upgrade. Upgrade processes typically upgrade only those
packages that are on your system. Upgrades generally do more checking and com-
paring than clean installs do, so any package that you can remove saves time during
the upgrade process.

Check configuration files. A Linux upgrade procedure often leaves copies of
old configuration files. You should check that the new configuration files still
work for you.

Tip

Installing Linux from scratch goes faster than an upgrade. It also results in a cleaner Linux system. So, if you don’t

need the data on your system (or if you have a backup of your data), | recommend that you do a fresh installation.
Then you can restore your data to a freshly installed system.

Some Linux distributions, most notably Gentoo, have taken the approach of providing
ongoing updates. Instead of taking a new release every few months, you simply continu-
ously grab updated packages as they become available and install them on your system.

207

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_installation/index/#performing_an_automated_installation_using_kickstart
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_installation/index/#performing_an_automated_installation_using_kickstart
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_installation/index/#performing_an_automated_installation_using_kickstart
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_installation/index/#creating-kickstart-files_installing-rhel-as-an-experienced-user
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_installation/index/#creating-kickstart-files_installing-rhel-as-an-experienced-user
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_installation/index/#creating-kickstart-files_installing-rhel-as-an-experienced-user
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_installation/index/#creating-kickstart-files_installing-rhel-as-an-experienced-user

Part 1ll: Becoming a Linux System Administrator

Dual booting

It is possible to have multiple operating systems installed on the same computer. One way
to do this is by having multiple partitions on a hard disk and/or multiple hard disks and
then installing different operating systems on different partitions. As long as the boot
loader contains boot information for each of the installed operating systems, you can
choose which one to run at boot time.

Caurtion
Although tools for resizing Windows partitions and setting up multi-boot systems have improved in recent years, there
is still some risk of losing data on Windows/Linux dual-boot systems. Different operating systems often have differ-

ent views of partition tables and master boot records that can cause your machine to become unbootable (at least
temporarily) or lose data permanently. Always back up your data before you try to resize a Windows filesystem to
make space for Linux.

If the computer you are using already has a Windows system on it, quite possibly the entire
hard disk is devoted to Windows. Although you can run a bootable Linux, such as KNOPPIX
or Tiny Core Linux, without touching the hard disk, to do a more permanent installation,
you'll want to find disk space outside of the Windows installation. There are a few ways

to do this:

Add a hard disk. Instead of messing with your Windows partition, you can simply
add a hard disk and devote it to Linux.

Resize your Windows partition. If you have available space on a Windows partition,
you can shrink that partition so that free space is available on the disk to devote
to Linux. Commercial tools such as Acronis Disk Director (https://www.acronis.com/
en-us/personal/disk-manager) are available to resize your disk partitions and set
up a workable boot manager. Some Linux distributions (particularly bootable Linux
distributions used as rescue media) include a tool called GParted (which includes
software from the Linux-NTFS project for resizing Windows NTES partitions).

Norte

Type dnf install gparted (in Fedora) or apt-get install gparted (in Ubuntu) to install GParted
Run gparted as root to start it.

Before you try to resize your Windows partition, you might need to defragment it. To
defragment your disk on some Windows systems so that all your used space is put in order
on the disk, open My Computer, right-click your hard disk icon (typically C:), select Prop-
erties, click Tools, and select Defragment Now.

208

https://www.acronis.com/en-us/personal/disk-manager
https://www.acronis.com/en-us/personal/disk-manager

Chapter 9: Installing Linux

Defragmenting your disk can be a fairly long process. The result of defragmentation is that
all of the data on your disk are contiguous, creating lots of contiguous free space at the
end of the partition. Sometimes, you have to complete the following special tasks to make
this true:

m If the Windows swap file is not moved during defragmentation, you must remove it.
Then, after you defragment your disk again and resize it, you need to restore the
swap file. To remove the swap file, open the Control Panel, open the System icon,
click the Performance tab, and select Virtual Memory. To disable the swap file, click
Disable Virtual Memory.

m If your DOS partition has hidden files that are on the space you are trying to free
up, you need to find them. In some cases, you can’t delete them. In other cases,
such as swap files created by a program, you can safely delete those files. This is
a bit tricky because some files should not be deleted, such as DOS system files.
You can use the attrib -s -h command from the root directory to deal with
hidden files.

After your disk is defragmented, you can use commercial tools described earlier (Acronis
Disk Director) to repartition your hard disk to make space for Linux. Or, you can use the
open-source alternative GParted.

After you have cleared enough disk space to install Linux (see the disk space requirements
described earlier in this chapter), you can install Ubuntu, Fedora, RHEL, or another Linux
distribution. As you set up your boot loader during installation, you can identify Windows,
Linux, and any other bootable partitions so that you can select which one to boot when
you start your computer.

Installing Linux to run virtually

Using virtualization technology, such as KVM, VMware, VirtualBox, or Xen, you can con-
figure your computer to run multiple operating systems simultaneously. Typically, you have
a host operating system running (such as your Linux or Windows desktop), and then you
configure guest operating systems to run within that environment.

If you have a Windows system, you can use commercial VMware products to run Linux on
your Windows desktop. Get a trial of VMware Workstation (https://www.vmware.com/try-
vmware) to see if you like it. Then run your installed virtual guests with the free VMware
Player. With a full-blown version of VMware Workstation, you can run multiple distributions
at the same time.

Open-source virtualization products that are available with Linux systems include Virtu-
alBox (https://www.virtualbox.org), Xen (https://xenproject.org), and KVM (https://
www.linux-kvm.org). Some Linux distributions still use Xen. However, all Red Hat systems
currently use KVM as the basis for Red Hat's hypervisor features in RHEL, Red Hat Virtual-
ization, and other cloud projects. See Chapter 28 for information on installing Linux as a
virtual machine on a Linux KVM host.

209

http://www.vmware.com/try-vmware
http://www.vmware.com/try-vmware
https://www.virtualbox.org
https://xenproject.org
https://www.linux-kvm.org
https://www.linux-kvm.org

Part 1ll: Becoming a Linux System Administrator

210

Using installation boot options

When the anaconda kernel launches at boot time for RHEL or Fedora, boot options provided
on the kernel command line modify the behavior of the installation process. By interrupt-
ing the boot loader before the installation kernel boots, you can add your own boot options
to direct how the installation behaves.

When you see the installation boot screen, depending on the boot loader, press Tab or some
other key to be able to edit the anaconda kernel command line. The line identifying the
kernel might look something like the following:

vmlinuz initrd=initrd.img ...

The vmlinuz is the compressed kernel and initrd.img is the initial RAM disk (contain-
ing modules and other tools needed to start the installer). To add more options, just type
them at the end of that line and press Enter.

So, for example, if you have a kickstart file available from /root/ks.cfg on a CD, your
anaconda boot prompt to start the installation using the kickstart file could look like the
following:

vmlinuz initrd=initrd.img ks=cdrom:/root/ks.cfg

For Red Hat Enterprise Linux 8 and the latest Fedora releases, kernel boot options used dur-
ing installation are transitioning to a new naming method. With this new naming, a prefix
of inst. can be placed in front of any of the boot options shown in this section that are
specific to the installation process (for example, inst.xdriver or inst.repo=dvd). For
the time being, however, you can still use the options shown in the next few sections with
the inst. prefix.

Boot options for disabling features

Sometimes, a Linux installation fails because the computer has some non-functioning or
non-supported hardware. Often, you can get around those issues by passing options to the
installer that do such things as disable selected hardware when you need to select your
own driver. Table 9.1 provides some examples.

Boot options for video problems

If you are having trouble with your video display, you can specify video settings as noted
in Table 9.2.

Boot options for special installation types

By default, installation runs in graphical mode when you're sitting at the console
answering questions. If you have a text-only console, or if the GUI isn't working properly,
you can run an installation in plain-text mode: by typing text, you cause the installation
to run in text mode.

Chapter 9: Installing Linux

TABLE 9.1 Boot Options for Disabling Features

Installer Option Tells System

nofirewire Notto load support for firewire devices

nodma Not to load DMA support for hard disks

noide Not to load support for IDE devices

nompath Not to enable support for multipath devices

noparport Not to load support for parallel ports

nopcmcia Not to load support for PCMCIA controllers

noprobe Not to probe hardware; instead prompt user for drivers

noscsi Not to load support for SCSI devices

nousb Not to load support for USB devices

noipveé Not to enable IPV6 networking

nonet Not to probe for network devices

numa-off To disable the Non-Uniform Memory Access (NUMA) for AMD64 architecture
acpi=off To disable the Advanced Configuration and Power Interface (ACPI)

TABLE 9.2 Boot Options for Video Problems

Boot Option Tells System

xdriver=vesa Use standard vesa video driver

resolution=1024x768 Choose exact resolution to use

nofb Don't use the VGA 16 framebuffer driver
skipddc Don't probe DDC of the monitor (the probe can hang the installer)
graphical Force a graphical installation

If you want to start installation on one computer, but you want to answer the installa-
tion questions from another computer, you can enable a VNC (virtual network computing)
installation. After you start this type of installation, you can go to another system and
open a vnc viewer, giving the viewer the address of the installation machine (such as
192.168.0.99:1). Table 9.3 provides the necessary commands, along with what to tell the
system to do.

Boot options for kickstarts and remote repositories

You can boot the installation process from an installation medium that contains little more
than the kernel and initial RAM disk. If that is the case, you need to identify the reposi-
tory where the software packages exist. You can do that by providing a kickstart file or by
identifying the location of the repositories in some way. To force the installer to prompt for
the repository location (CD/DVD, hard drive, NFS, or URL), add askmethod to the installa-
tion boot options.

211

Part 1ll: Becoming a Linux System Administrator

TABLE 9.3 Boot Options for VNC Installations

Boot Option Tells System

vnc Run installation as a VNC server

vncconnect=hostname[:port] Connect to VNC client hostname and optional port

vncpassword=password Client uses password (at least 8 characters) to connect
to installer

Using repo= options, you can identify software repository locations. The following exam-
ples show the syntax to use for creating repo= entries:

repo=hd:/dev/sdal:/myrepo

Repository in /myrepo on disk 1 first partition
repo=http://abc.example.com/myrepo

Repository available from /myrepo on web server
repo=ftp://ftp.example.com/myrepo

Repository available from /myrepo on FTP server
repo=cdrom

Repository available from local CD or DVD
repo=nfs: :mynfs.example.com: /myrepo/

Repository available from /myrepo on NFS share
repo=nfsiso::nfs.example.com:/mydir/rhel7.iso
Installation ISO image available from NFS server

Instead of identifying the repository directly, you can specify it within a kickstart file. The
following are examples of some ways to identify the location of a kickstart file.

ks=cdrom: /stuff/ks.cfg

Get kickstart from CD/DVD.

ks=hd:sda2:/test/ks.cfg

Get kickstart from test directory on hard disk(sda2).
ks=http://www.example.com/ksfiles/ks.cfg

Get kickstart from a web server.
ks=ftp://ftp.example.com/allks/ks.cfg

Get kickstart from a FTP server.
ks=nfs:mynfs.example.com:/someks/ks.cfg

Get kickstart from an NFS server.

Miscellaneous boot options
Here are a few other options that you can pass to the installer that don't fit in a category.

rescue
Instead of installing, run the kernel to open Linux rescue mode.

mediacheck
Check the installation CD/DVD for checksum errors.

212

Chapter 9: Installing Linux

For further information on using the anaconda installer in rescue mode (to rescue a broken
Linux system), see Chapter 21, “Troubleshooting Linux.” For information on the latest boot
options use in RHEL 8, refer to the RHEL 8 Installation Guide:

https://access.redhat.com/documentation/en-us/red hat enterprise linux/8/
html-single/performing a standard rhel installation/index#custom-boot-

options booting-the-installer

Using specialized storage

In large enterprise computing environments, it is common to store the operating system
and data outside of the local computer. Instead, some special storage device beyond the
local hard disk is identified to the installer, and that storage device (or devices) can be
used during installation.

Once identified, the storage devices that you indicate during installation can be used the
same way that local disks are used. You can partition them and assign a structure (filesys-
tem, swap space, and so on) or leave them alone and simply mount them where you want
the data to be available.

The following types of specialized storage devices can be selected from the Specialized
Storage Devices screen when you install Red Hat Enterprise Linux, Fedora, or other Linux
distributions:

Firmware RAID A firmware RAID device is a type of device that has hooks in the
BIOS, allowing it to be used to boot the operating system, if you choose.

Multipath devices As the name implies, multipath devices provide multiple paths
between the computer and its storage devices. These paths are aggregated, so these
devices look like a single device to the system using them, while the underlying
technology provides improved performance, redundancy, or both. Connections can
be provided by iSCSI or Fibre Channel over Ethernet (FCoE) devices.

Other SAN devices Any device representing a Storage Area Network (SAN).

While configuring these specialized storage devices is beyond the scope of this book, know
that if you are working in an enterprise where iSCSI and FCoE devices are available, you can
configure your Linux system to use them at installation time. You need the following types
of information to do this:

iSCSI devices Have your storage administrator provide you with the target IP address
of the iSCSI device and the type of discovery authentication needed to use the
device. The iSCSI device may require credentials.

Fibre Channel over Ethernet Devices (FCoE) For FCoE, you need to know the net-
work interface that is connected to your FCoE switch. You can search that interface
for available FCoE devices.

213

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#custom-boot-options_booting-the-installer
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#custom-boot-options_booting-the-installer
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_installation/index#custom-boot-options_booting-the-installer

Part 1ll: Becoming a Linux System Administrator

Partitioning hard drives

The hard disk (or disks) on your computer provide the permanent storage area for your data
files, applications programs, and the operating system itself. Partitioning is the act of divid-
ing a disk into logical areas that can be worked with separately. In Windows, you typically
have one partition that consumes the whole hard disk. However, with Linux there are sev-
eral reasons you may want to have multiple partitions:

Multiple operating systems If you install Linux on a PC that already has a Windows
operating system, you may want to keep both operating systems on the computer.
For all practical purposes, each operating system must exist on a completely sepa-
rate partition. When your computer boots, you can choose which system to run.

Multiple partitions within an operating system To protect their entire operating system
from running out of disk space, people often assign separate partitions to different areas
of the Linux filesystem. For example, if /home and /var were assigned to separate par-
titions, then a gluttonous user who fills up the /home partition wouldn't prevent logging
daemons from continuing to write to log files in the /var/log directory.

Multiple partitions also make doing certain kinds of backups (such as an image
backup) easier. For example, an image backup of /home would be much faster (and
probably more useful) than an image backup of the root filesystem (/).

Different filesystem types Different kinds of filesystems have different structures.
Filesystems of different types must be on their own partitions. Also, you might
need different filesystems to have different mount options for special features (such
as read-only or user quotas). In most Linux systems, you need at least one filesys-
tem type for the root of the filesystem (/) and one for your swap area. Filesystems
on CD-ROM use the is09660 filesystem type.

Tie

When you create partitions for Linux, you usually assign the filesystem type as Linux native (using the ext2, ext3,

ext4, or xfs type on most Linux systems). If the applications that you are running require particularly long filenames,
large file sizes, or many inodes (each file consumes an inode), you may want to choose a different filesystem type.

Coming from Windows

If you have only used Windows operating systems before, you probably had your whole hard disk
assigned to C: and never thought about partitions. With many Linux systems, you have the opportunity
to view and change the default partitioning based on how you want to use the system.

During installation, systems such as Fedora and RHEL let you partition your hard disk
using graphical partitioning tools. The following sections describe how to partition your
disk during a Fedora installation. See the section “Tips for creating partitions” for some
ideas for creating disk partitions.

214

Chapter 9: Installing Linux

Understanding different partition types

Many Linux distributions give you the option of selecting different partition types when
you partition your hard disk during installation. Partition types include the following:

Linux partitions Use this option to create a partition for an ext2, ext3, or ext4 file-
system type that is added directly to a partition on your hard disk (or other storage
medium). The xfs filesystem type can also be used on a Linux partition. (In fact, xfs
is now the default filesystem type for RHEL 8 systems.)

LVM partitions Create an LVM partition if you plan to create or add to an LVM volume
group. LVMs give you more flexibility in growing, shrinking, and moving partitions
later than regular partitions do.

RAID partitions Create two or more RAID partitions to create a RAID array. These
partitions should be on separate disks to create an effective RAID array. RAID
arrays can help improve performance, reliability, or both as those features relate to
reading, writing, and storing your data.

Swap partitions Create a swap partition to extend the amount of virtual memory
available on your system.

The following sections describe how to add regular Linux partitions and LVM, RAID, and
swap partitions using the Fedora graphical installer. If you are still not sure when you
should use these different partition types, refer to Chapter 12, “Managing Disks and File-
systems,” for further information on configuring disk partitions.

Tips for creating partitions

Changing your disk partitions to handle multiple operating systems can be very tricky, in
part because each operating system has its own ideas about how partitioning information
should be handled as well as different tools for doing it. Here are some tips to help you
get it right:

m If you are creating a dual-boot system, particularly for a Windows system, try to
install the Windows operating system first after partitioning your disk. Otherwise,
the Windows installation may make the Linux partitions inaccessible.

® The fdisk man page recommends that you use partitioning tools that come with
an operating system to create partitions for that operating system. For example,
the Windows fdisk knows how to create partitions that Windows will like, and the
Linux fdisk will happily make your Linux partitions. After your hard disk is set
up for dual boot, however, you should probably not go back to Windows-only parti-
tioning tools. Use Linux fdisk or a product made for multi-boot systems (such as
Acronis Disk Director).

B A master boot record (MBR) partition table can contain four primary partitions, one
of which can be marked to contain 184 logical drives. On a GPT partition table, you
can have a maximum of 128 primary partitions on most operating systems, includ-
ing Linux. You typically won't need nearly that many partitions. If you need more
partitions, use LVM and create as many logical volumes as you like.

215

Part 1ll: Becoming a Linux System Administrator

216

If you are using Linux as a desktop system, you probably don't need lots of different par-
titions. However, some very good reasons exist for having multiple partitions for Linux
systems that are shared by lots of users or are public web servers or file servers. Having
multiple partitions within Fedora or RHEL, for example, offers the following advantages:

Protection from attacks Denial-of-service attacks sometimes take actions that try
to fill up your hard disk. If public areas, such as /var, are on separate partitions, a
successful attack can fill up a partition without shutting down the whole computer.
Because /var is the default location for web and FTP servers, and is expected to
hold lots of data, entire hard disks often are assigned to the /var filesystem alone.

Protection from corrupted filesystems If you have only one filesystem (/), its
corruption can cause the whole Linux system to be damaged. Corruption of a smaller
partition can be easier to fix and often allows the computer to stay in service while
the correction is made.

Table 9.4 lists some directories that you may want to consider making into separate filesys-
tem partitions.

TABLE 9.4 Assigning Partitions to Particular Directories

Directory

Explanation

/boot

/usr

/var

/home

/tmp

Sometimes, the BIOS in older PCs can access only the first 1024 cylinders of your
hard disk. To make sure that the information in your /boot directory is accessible to
the BIOS, create a separate disk partition (by default, RHEL 8 sets this partition to
1024 MiB) for /boot. Even with several kernels installed, there is rarely a reason for /
boot to be larger than 1024 MiB.

This directory structure contains most of the applications and utilities available

to Linux users. The original theory was that if /usr were on a separate partition,
you could mount that filesystem as read-only after the operating system had been
installed. This would prevent attackers from replacing or removing important
system applications with their own versions that may cause security problems. A
separate /usr partition is also useful if you have diskless workstations on your local
network. Using NFS, you can share /usr over the network with those workstations.

Your FTP (/var/ftp) and web server (/var/www) directories are, by default in many
Linux systems, stored under /var. Having a separate /var partition can prevent an
attack on those facilities from corrupting or filling up your entire hard disk.

Because your user account directories are located in this directory, having a sepa-
rate /home account can prevent a reckless user from filling up the entire hard disk. It
also conveniently separates user data from your operating system (for easy backups
or new installs). Often, /home is created as an LVM logical volume, so it can grow in
size as user demands increase. It may also be assigned user quotas to limit disk use.

Protecting /tmp from the rest of the hard disk by placing it on a separate partition
can ensure that applications that need to write to temporary files in /tmp can com-
plete their processing, even if the rest of the disk fills up.

Chapter 9: Installing Linux

Although people who use Linux systems rarely see a need for lots of partitions, those who
maintain and occasionally have to recover large systems are thankful when the system
they need to fix has several partitions. Multiple partitions can limit the effects of deliber-
ate damage (such as denial-of-service attacks), problems from errant users, and accidental
filesystem corruption.

Using the GRUB boot loader

A boot loader lets you choose when and how to boot the operating systems installed

on your computer’s hard disks. The GRand Unified Bootloader (GRUB) is the most popular
boot loader used for installed Linux systems. There are two major versions of GRUB avail-
able today:

GRUB Legacy (version 1). This version of GRUB was used with earlier versions of RHEL,
Fedora, and Ubuntu.

GRUB 2. The current versions of Red Hat Enterprise Linux, Ubuntu, and Fedora use
GRUB 2 as the default boot loader.

Note
SYSLINUX is another boot loader that you will encounter with Linux systems. The SYSLINUX boot loaders are not typ-

ically used for installed Linux systems. However, SYSLINUX is commonly used as the boot loader for bootable Linux
CDs and DVDs. SYSLINUX is particularly good for booting 1IS09660 CD images (isolinux) and USB sticks (syslinux)
and for working on older hardware or for PXE booting (pxelinux) a system over the network.

If you want to boot to a particular run level, you can add the run level you want to the
end of the kernel line. For example, to have RHEL boot to run level 3 (multiuser plus net-
working mode), add 3 to the end of the kernel line. You can also boot to single-user mode
(1), multiuser mode (2), or X GUI mode (5). Level 3 is a good choice if your GUI is tempo-
rarily broken. Level 1 is good if you have forgotten your root password.

By default, you will see a splash screen as Linux boots. If you want to see messages show-
ing activities happening as the system boots up, you can remove the option rhgb gquiet
from the kernel line. This lets you see messages as they scroll by. Pressing Esc during boot-
up gets the same result.

GRUB 2 represents a major rewrite of the GRUB Legacy project. It was adopted as the default
boot loader for the latest Red Hat Enterprise Linux, Fedora, and Ubuntu releases. The major
function of the GRUB 2 boot loader is still to find and start the operating system you want,

but now much more power and flexibility is built into the tools and configuration files that

get you there.

In GRUB 2, the configuration file is now named /boot/grub2/grub.cfg or /etc/grub2-
efi.cfg (for systems booted with EFI). Everything from the contents of grub.cfg to the
way grub.cfg is created is different from the GRUB Legacy grub.conf file.

217

Part 1ll: Becoming a Linux System Administrator

218

Here are some things you should know about the grub.cfg file:

m Instead of editing grub.cfg by hand or having kernel RPM packages add to it,
grub.cfg is generated automatically from the contents of the /etc/default/
grub file and the /etc/grub.d/ directory. You should modify or add to those
files to configure GRUB 2 yourself.

B The grub.cfg file can contain scripting syntax, including such things as
functions, loops, and variables.

B Device names needed to identify the location of kernels and initial RAM disks can
be more reliably identified using labels or universally unique identifiers (UUIDs).
This prevents the possibility of a disk device such as /dev/sda being changed

to /dev/sdb when you add a new disk (which would result in the kernel not
being found).

m For Fedora and RHEL systems, *conf files in the /boot/loader/entries direc-

tory are used to create entries that appear on the GRUB menu that appears at
boot time.

You could create your own entry for the GRUB boot menu by following the format of an
existing entry. The following file in the /boot/loader/entries directory creates a
menu entry for booting a RHEL 8 kernel and initrd:

title Red Hat Enterprise Linux (4.18.0-80.el8.x86 64) 8.0 (Ootpa)
version 4.18.0-80.el8.x86 64

linux /vmlinuz-4.18.0-80.el8.x86 64

initrd /initramfs-4.18.0-80.e18.x86_64.img Stuned initrd

options Skernelopts $tuned params

id rhel-20190313123447-4.18.0-80.e18.x86 64

grub_users S$grub_users

grub arg --unrestricted

grub_class kernel

The menu entry for this selection appears as Red Hat Enterprise Linux (4.18.
0-80.e18.x86 64) 8.0 (Ootpa) on the GRUB 2 boot menu.

The 1inux line identifies the location of the kernel (/vmlinuz-4.18.0-80.e18.x86 64),

followed by the location of the initrd (/initramfs-4.18.0-80.e18.x86 64.img).

There are many, many more features of GRUB 2 that you can learn about if you want to

dig deeper into your system’s boot loader. The best documentation for GRUB 2 is available
by typing info grub2 at the shell. The info entry for GRUB 2 provides lots of informa-
tion for booting different operating systems, writing your own configuration files, working

with GRUB image files, setting GRUB environment variables, and working with other
GRUB features.

Chapter 9: Installing Linux

Summary

Although every Linux distribution includes a different installation method, you need to
do many common activities, regardless of which Linux system you install. For every Linux
system, you need to deal with issues of disk partitioning, boot options, and configuring
boot loaders.

In this chapter, you stepped through installation procedures for a Fedora Workstation
(using a live media installation) and Red Hat Enterprise Linux (from installation media).
You learned how deploying Linux in cloud environments can differ from traditional instal-
lation methods by combining metadata with prebuilt base operating system image files to
run on large pools of compute resources.

The chapter also covered special installation topics, including using boot options and disk
partitioning. With your Linux system now installed, Chapter 10, “Getting and Managing
Software,” describes how to begin managing the software on your Linux system.

Exercises

Use these exercises to test your knowledge of installing Linux. I recommend that you do
these exercises on a computer that has no operating system or data on it that you would
fear losing (in other words, one you don't mind erasing). If you have a computer that allows
you to install virtual systems, that is a safe way to do these exercises as well. These exer-
cises were tested using Fedora 30 Workstation Live media and a RHEL 8 Installation DVD.

1. Start installing from Fedora Live media, using as many of the default options
as possible.

2. After you have completely installed Fedora, update all of the packages on
the system.

3. Start installing from an RHEL installation DVD but make it so that the installation
runs in text mode. Complete the installation in any way you choose.

4. Start installing from an RHEL installation DVD and set the disk partitioning as
follows: a 1024MB /boot, / (6G), /var (2G), and /home (2G). Leave the rest as
unused space.

CaurTioN
Completing Exercise 4 ultimately deletes all content on your hard disk. If you just want to use this exercise to prac-

tice partitioning, you can reboot your computer before clicking Accept Changes at the very end of this procedure
without harming your hard disk. If you go forward and partition your disk, assume that all data that you have not
explicitly changed has been deleted.

219

CHAPTER

10

Getting and Managing Software

IN THIS CHAPTER

Installing software from the desktop
Working with RPM packaging

Using YUM to manage packages
Using rpm to work with packages

Installing software in the enterprise

ware is packaged and managed to get the software you want. Those distributions have excellent
software installation tools that automatically point to huge software repositories. Just a few
clicks and you're using the software in little more time than it takes to download it.

I n Linux distributions such as Fedora and Ubuntu, you don't need to know much about how soft-

The fact that Linux software management is so easy these days is a credit to the Linux community,
which has worked diligently to create packaging formats, complex installation tools, and high-quality
software packages. Not only is it easy to get the software, but after it’s installed, it's easy to manage,
query, update, and remove it.

This chapter begins by describing how to install software in Fedora using the new Software graphical
installation tool. If you are just installing a few desktop applications on your own desktop system,
you may not need much more than that and occasional security updates.

To dig deeper into managing Linux software, next I describe what makes up Linux software pack-
ages (comparing deb and rpm formatted packaging), underlying software management components,
and commands (dnf, yum, and rpm) for managing software in Fedora and Red Hat Enterprise Linux.
That's followed by a description of how to manage software packages in enterprise computing.

Managing Software on the Desktop

The Fedora Software window offers an intuitive way of choosing and installing desktop applica-
tions that does not align with typical Linux installation practices. The Ubuntu Software window
offers the same interface for Ubuntu users. In either case, with the Software window, the smallest

221

Part 1ll: Becoming a Linux System Administrator

software component you install is an application. With Linux, you install packages (such as
rpms and debs).

Figure 10.1 shows an example of the Software window.

FIGURE 10.1

Install and manage software packages from the Software window.

Activities W Software ~ Jun9 19:08

Q, All Installed Updates

m
x

Featured Applications

¢ @

U Image Manipulation Program

ate images and edit photographs

Categories

dd Audio & Video W Communication & News [% Productivity
P Games % Graphics & Photography * Add-ons

~ Developer Tools Education & Science I© utilities

Editor’s Picks

B h 2 € O U

Stellarium calibre Blender Inkscape Thunderbird Musique
L2 2 3 o e o o e o e o o o o e o o ok ek ke

To get to the Software window in either Fedora or Ubuntu, select Activities, then type
Software, and press Enter. The first time you open this window, you can select Enable
to allow third-party software repositories that are not part of the official redistribut-
able Fedora repositories. Using the Software window is the best way to install desktop-
oriented applications, such as word processors, games, graphics editors, and educational
applications.

From the Software window, you can select the applications that you want to install from
the Editor’s Picks group (a handful of popular applications), choose from categories of appli-
cations (Audio & Video, Games, Graphics & Photography, and so on), or search by application

222

Chapter 10: Getting and Managing Software

name or description. Select the Install button to have the Software window download and
install all of the software packages needed to make the application work.

Other features of this window let you see all installed applications (Installed tab) or view
a list of applications that have updated packages available for you to install (Updates tab).
If you want to remove an installed application, simply click the Remove button next to the
package name.

If you are using Linux purely as a desktop system, where you want to write documents,
play music, and do other common desktop tasks, the Software window might be all you
need to get the basic software you want. By default, your system connects to the main
Fedora software repository and gives you access to hundreds of software applications. As
noted earlier, you also have the option of accessing third-party applications that are still
free for you to use but not redistribute.

Although the Software window lets you download and install hundreds of applications from
the Fedora software repository, that repository actually contains tens of thousands of soft-
ware packages. What packages can you not see from that repository, when might you want
those other packages, and how can you gain access to those packages (as well as packages
from other software repositories)?

Going Beyond the Software Window

If you are managing a single desktop system, you might be quite satisfied with the hun-
dreds of packages that you can find through the Software window. Open-source versions
of most common types of desktop applications are available to you through the Software
window after you have a connection from Fedora to the Internet.

However, the following are some examples of why you might want to go beyond what you
can do with the Software window:

More repositories Fedora and Red Hat Enterprise Linux distribute only open-source,
freely distributable software. You may want to install some commercial software
(such as Adobe Flash Player) or non-free software (available from repositories such
as rpmfusion.org).

Beyond desktop applications Tens of thousands of software packages in the Fedora
repository are not available through the Software window. Most of these packages
are not associated with graphical applications at all. For example, some packages
contain pure command-line tools, system services, programming tools, or documen-
tation that doesn't show up in the Software window.

Flexibility Although you may not know it, when you install an application through
the Software window, you may actually be installing multiple RPM packages. This
set of packages may just be a default package set that includes documentation,
extra fonts, additional software plug-ins, or multiple language packs that you

223

http://rpmfusion.org/

Part 1ll: Becoming a Linux System Administrator

may or may not want. With yum and rpm commands, you have more flexibility
on exactly which packages related to an application or other software feature is
installed on your system.

More complex queries Using commands such as yum and rpm, you can get detailed
information about packages, package groups, and repositories.

Software validation Using rpm and other tools, you can check whether a signed
package has been modified before you installed it or whether any of the components
of a package have been tampered with since the package was installed.

Managing software installation Although the Software window works well if you are
installing desktop software on a single system, it doesn't scale well for managing
software on multiple systems. Other tools are built on top of the rpm facility for
doing that.

Before I launch into some of the command-line tools for installing and managing software
in Linux, the next section describes how the underlying packaging and package man-
agement systems in Linux work. In particular, I focus on RPM packaging as it is used in
Fedora, Red Hat Enterprise Linux, and related distributions as well as Deb packages, which
are associated with Debian, Ubuntu, Linux Mint, and related distributions.

Understanding Linux RPM and DEB
Software Packaging

On the first Linux systems, if you wanted to add software, you would grab the source code
from a project that produced it, compile it into runnable binaries, and drop it onto your
computer. If you were lucky, someone would have already compiled it in a form that would
run on your computer.

The form of the package could be a tarball containing executable files (commands), doc-
umentation, configuration files, and libraries. (A tarball is a single file in which multiple
files are gathered together for convenient storage or distribution.) When you install soft-
ware from a tarball, the files from that tarball might be spread across your Linux system
in appropriate directories (/usr/share/man, /etc, /bin, and /1ib, to name just a few).
Although it is easy to create a tarball and just drop a set of software onto your Linux
system, this method of installing software makes it difficult to do these things:

Get dependent software You would need to know if the software you were installing
depended on other software being installed for your software to work. Then you
would have to track down that software and install that too (which might itself
have some dependencies).

List the software Even if you knew the name of the command, you might not know
where its documentation or configuration files were located when you looked
for it later.

224

Chapter 10: Getting and Managing Software

Remove the software Unless you kept the original tarball, or a list of files, you
wouldn't know where all of the files were when it came time to remove them. Even if
you knew, you would have to remove each one individually.

Update the software Tarballs are not designed to hold metadata about the contents
that they contain. After the contents of a tarball are installed, you may not have a
way to tell what version of the software you are using, making it difficult to track
down bugs and get new versions of your software.

To deal with these problems, packages progressed fro