
CHRISTINE BRESNAHAN
RICHARD BLUM

EXAM 010 v1.6

Includes interactive online learning environment and study tools:

2 custom practice exams
90 electronic flashcards

Searchable key term glossary

LPI™

Linux® Essentials

STUDY
GUIDE

Christine Bresnahan

Richard Blum

LPI
Linux Essentials

Study Guide
Third Edition

Copyright © 2020 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-65769-9
ISBN: 978-1-119-65770-5 (ebk.)
ISBN: 978-1-119-65771-2 (ebk.)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty
may be created or extended by sales or promotional materials. The advice and strategies contained herein
may not be suitable for every situation. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this
work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or
fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley prod-
ucts, visit www.wiley.com.

Library of Congress Control Number: 2019955498

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be
used without written permission. Linux is a registered trademark of Linus Torvalds. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or
vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

Dedicated to the loving memory of Kevin E. Ryan, our longtime technical

editor and friend. Kevin’s gentle correction and guidance helped make our

work better. His contributions will be missed.

“As iron sharpens iron, so one man sharpens another.” Proverbs 27:17

(NIV)

Acknowledgments
First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things
possible, and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at Sybex for their outstanding work on
this project. Thanks to Devon Lewis, the acquisitions editor, for offering us the opportu-
nity to work on this book. Also thanks to Stephanie Barton, the development editor, for
keeping things on track and making the book more presentable. Thanks, Steph, for all your
hard work and diligence. The technical editor, Jason Eckert, did a wonderful job of double-
checking all the work in the book in addition to making suggestions to improve the con-
tent. We would also like to thank Carole Jelen at Waterside Productions, Inc., for arranging
this opportunity for us and for helping us out in our writing careers.

Christine would particularly like to thank her husband, Timothy, for his encouragement,
patience, and willingness to listen, even when he has no idea what she is talking about.

Rich would particularly like to thank his wife, Barbara, for enduring his grouchy attitude
during this project and helping to keep up his spirits with baked goods.

About the Authors
Christine Bresnahan started working with computers more than 30 years ago in the
IT industry as a systems administrator. Christine is an adjunct professor at Ivy Tech
Community College, where she teaches Linux certification and Python programming
classes. She also writes books and produces instructional resources for the classroom.

Richard Blum has also worked in the IT industry for more than 30 years as both a system
and network administrator, and he has published numerous Linux and open source books.
Rich is an online instructor for Linux and web programming courses that are used by
colleges and universities across the United States. When he is not being a computer nerd,
Rich enjoys spending time with his wife, Barbara, and his two daughters, Katie and Jessica.

Contents at a Glance
Introduction xix

Assessment Test xxix

Chapter 1 Selecting an Operating System 1

Chapter 2 Understanding Software Licensing 27

Chapter 3 Investigating Linux’s Principles and Philosophy 43

Chapter 4 Using Common Linux Programs 57

Chapter 5 Getting to Know the Command Line 87

Chapter 6 Managing Hardware 119

Chapter 7 Managing Files 143

Chapter 8 Searching, Extracting, and Archiving Data 167

Chapter 9 Exploring Processes and Process Data 195

Chapter 10 Editing Files 215

Chapter 11 Creating Scripts 233

Chapter 12 Understanding Basic Security 251

Chapter 13 Creating Users and Groups 273

Chapter 14 Setting Ownership and Permissions 299

Chapter 15 Managing Network Connections 319

Appendix A Answers to Review Questions 341

Appendix B Setting Up a Linux Environment 363

Index 365

Contents
Introduction xix

Assessment Test xxix

Chapter 1 Selecting an Operating System 1

What Is an OS? 2
What Is a Kernel? 2
What Else Identifies an OS? 3

Investigating User Interfaces 4
Using a Text-Mode User Interface 5
Using a Graphical User Interface 7

Where Does Linux Fit in the OS World? 9
Comparing Linux to Unix 9
Comparing Linux to macOS 11
Comparing Linux to Windows 12

What Is a Distribution? 14
Creating a Complete Linux-Based OS 14
A Summary of Common Linux Distributions 15
Understanding Release Cycles 17

Embedded Linux Systems 18
Linux in the Cloud 19

What Is Cloud Computing? 19
What Are the Cloud Services? 21

Summary 23
Exam Essentials 23
Review Questions 25

Chapter 2 Understanding Software Licensing 27

Investigating Software Licenses 28
Exploring Copyright Protection and Software 28
Using Licenses to Modify Copyright Terms 30

Looking at the Free Software Foundation 31
Understanding the FSF Philosophy 31
Examining Free Software and the GPL 32

Looking at the Open Source Initiative 33
Understanding the Open Source Philosophy 33
Defining Open Source Software 35

Looking at the Creative Commons 36
Using Open Source Licenses 36

Understanding Open Source Licenses 36
Understanding Open Source Business Models 38

xii Contents

Summary 39
Exam Essentials 40
Review Questions 41

Chapter 3 Investigating Linux’s Principles and Philosophy 43

Linux Through the Ages 44
Understanding Linux’s Origins 44
Seeing Today’s Linux World 47

Using Open Source Software 47
Understanding Basic Open Source Principles 47
Linux as a Software Integrator 49

Understanding OS Roles 50
Looking At Embedded Computers 50
Exploring Desktop and Laptop Computers 51
Investigating Server Computers 52

Summary 53
Exam Essentials 53
Review Questions 55

Chapter 4 Using Common Linux Programs 57

Using a Linux Desktop Environment 58
Choosing a Desktop Environment 58
Launching Programs 61
Using a File Manager 63

Working with Productivity Software 66
Finding the Right Tool for the Job 66
Using a Web Browser 67
Using Email Clients 68
Using Office Tools 68
Using Multimedia Applications 69
Using Linux for Cloud Computing 70
Using Mobile Applications 71

Using Server Programs 72
Identifying Common Server Protocols and Programs 72
Focusing on Web Servers 76
Installing and Launching Servers 76
Securing Servers 77

Managing Programming Languages 78
Choosing a Compiled vs. an Interpreted Language 78
Identifying Common Programming Languages 79

Handling Software Packages 81
Understanding Software Packages 81
Identifying Common Package Tools 81

Contents xiii

Summary 82
Exam Essentials 83
Review Questions 84

Chapter 5 Getting to Know the Command Line 87

Starting a Command Line 88
Launching a Terminal 88
Logging into a Text-Mode Console 91

Running Programs 92
Understanding Text-Mode Program Syntax 93
Running Text-Mode Programs 94
Running GUI Programs 95
Running Programs in the Background 96

Using Shell Features 97
Using Command Completion 97
Using Command History 98

Getting Help Using Man Pages 99
Understanding the Purpose of Man Pages 100
Locating Man Pages by Section Number 100
Searching for a Man Page 102
Reading Man Pages 102
Using less 104

Getting Help Using Info Pages 106
Understanding the Purpose of Info Pages 106
Reading Info Pages 107

Finding Additional Documentation 109
Locating Program Documentation on Your Computer 109
Locating Program Documentation Online 112
Consulting Experts 112

Summary 114
Exam Essentials 114
Review Questions 116

Chapter 6 Managing Hardware 119

Learning About Your CPU 120
Understanding CPU Families 120
Identifying Your CPU 123

Identifying Motherboard Capabilities 123
Sizing Your Power Supply 125
Understanding Disk Issues 125

Disk Interfaces 126
Partitioning a Disk 127
Understanding Filesystem Issues 130
Using Removable and Optical Disks 133

xiv Contents

Managing Displays 134
Understanding the Role of X 134
Using Common Display Hardware 136

Handling USB Devices 137
Managing Drivers 138

Understanding Types of Drivers 138
Locating and Installing Drivers 139

Summary 140
Exam Essentials 140
Review Questions 141

Chapter 7 Managing Files 143

Understanding Where Things Go 144
User Files vs. System Files 144
The Filesystem Hierarchy Standard 146
Important Directories and Their Contents 147

Exploring Files and Directories 149
Obtaining File Listings 149
Changing Directories 151
Using Absolute and Relative File References 152

Manipulating Files 154
Creating Files 154
Copying Files 155
Moving and Renaming Files 157
Using Links 157
Deleting Files 159
Using Wildcards 160
Understanding Case Sensitivity 160

Manipulating Directories 161
Creating Directories 161
Deleting Directories 162
Managing Directories 163

Summary 164
Exam Essentials 164
Review Questions 165

Chapter 8 Searching, Extracting, and Archiving Data 167

Using Regular Expressions 168
Searching For and Extracting Data 170

Using grep 170
Using find 172
Using wc 174
Using cut 175

Contents xv

Using sort 176
Using cat 177

Redirecting Input and Output 178
Using Basic Redirection Operators 178
Using Pipes 181
Generating Command Lines 182

Archiving Data 183
Using tar 183
Using Compression 187
Using zip 188

Summary 191
Exam Essentials 191
Review Questions 193

Chapter 9 Exploring Processes and Process Data 195

Understanding Package Management 196
Linux Package Management Principles 196
Understanding Package Systems 197
Managing Red Hat Systems 199
Managing Debian Systems 200

Understanding the Process Hierarchy 202
Identifying Running Processes 203

Using ps to Identify Processes 203
Using top to Identify Processes 205
Measuring Memory Use 207

Using Log Files 208
Locating Log Files 209
Producing More Verbose Log File Entries 210
Examining the Kernel Ring Buffer 211

Summary 211
Exam Essentials 212
Review Questions 213

Chapter 10 Editing Files 215

Understanding the Role of Text Files 216
Choosing an Editor 218
Editing Files with nano 219

Using Text Editor Conventions 221
Exploring Basic nano Text-Editing Procedures 221
Saving Your Changes from nano 223

Editing Files with vi 224
Understanding vi Modes 224
Exploring Basic vi Text-Editing Procedures 226
Saving Your Changes from vi 229

xvi Contents

Summary 230
Exam Essentials 230
Review Questions 231

Chapter 11 Creating Scripts 233

Beginning a Shell Script 234
Using Commands 235
Using Arguments 237
Using Variables 238
Using Conditional Expressions 241
Using Loops 243
Using Functions 244
Setting the Script’s Exit Value 245
Summary 246
Exam Essentials 246
Review Questions 248

Chapter 12 Understanding Basic Security 251

Understanding Accounts 252
Understanding Account Features 253
Identifying Accounts 256
Understanding Groups 258

Using Account Tools 259
Discovering Your Own Identity 260
Learning Who’s Online 261

Working as root 263
Understanding User Types 263
Acquiring root Privileges 264
Using root Privileges Safely 266

Summary 268
Exam Essentials 268
Review Questions 270

Chapter 13 Creating Users and Groups 273

Creating New Accounts 274
Deciding on a Group Strategy 274
Selecting a Good Password 275
Creating Accounts Using GUI Tools 278
Creating Accounts from the Shell 280

Modifying Accounts 283
Deciding When to Modify Accounts 283
Checking for Logged-in Users 283
Modifying Accounts Using GUI Tools 284

Contents xvii

Modifying Accounts from the Shell 286
Deleting Accounts 289

Avoiding Account Deletion Pitfalls 289
Deleting Accounts Using GUI Tools 290
Deleting Accounts from the Shell 291

Managing Groups 291
Managing Groups Using GUI Tools 291
Managing Groups from the Shell 294

Summary 295
Exam Essentials 295
Review Questions 297

Chapter 14 Setting Ownership and Permissions 299

Setting Ownership 300
Understanding Ownership 300
Setting Ownership in a File Manager 301
Setting Ownership in a Shell 302

Setting Permissions 304
Understanding Permissions 304
Setting Permissions in a File Manager 308
Setting Permissions in a Shell 309
Setting the umask 310

Using Special Permission Bits and File Features 310
Using Sticky Bits 311
Using Special Execute Permissions 313
Hiding Files from View 314
Viewing Directories 315

Summary 315
Exam Essentials 315
Review Questions 317

Chapter 15 Managing Network Connections 319

Configuring Network Features 320
Graphical Tools 321
Command-Line Tools 323

Basic Network Troubleshooting 329
Sending Test Packets 330
Finding Host Information 331

Advanced Network Troubleshooting 333
The netstat Command 334
Examining Sockets 337

Summary 337
Exam Essentials 338
Review Questions 339

xviii Contents

Appendix A Answers to Review Questions 341

Chapter 1: Selecting an Operating System 342
Chapter 2: Understanding Software Licensing 343
Chapter 3: Investigating Linux’s Principles and Philosophy 344
Chapter 4: Using Common Linux Programs 346
Chapter 5: Getting to Know the Command Line 347
Chapter 6: Managing Hardware 348
Chapter 7: Managing Files 349
Chapter 8: Searching, Extracting, and Archiving Data 351
Chapter 9: Exploring Processes and Process Data 352
Chapter 10: Editing Files 353
Chapter 11: Creating Scripts 354
Chapter 12: Understanding Basic Security 356
Chapter 13: Creating Users and Groups 357
Chapter 14: Setting Ownership and Permissions 358
Chapter 15: Managing Network Connections 359

Appendix B Setting Up a Linux Environment 363

Index 365

Introduction
This book you hold in your hands provides a solid introduction to the Linux operating
system. As its title suggests, it will give you the essential knowledge to begin using and
managing this powerful operating system (OS), which is an important one in today’s
computing world.

The Linux Professional Institute, or LPI (lpi.org), offers a series of Linux certifications.
These certifications aim to provide proof of skill levels for employers; if you’ve passed a
particular certification, you should be competent to perform certain tasks on Linux com-
puters. The LPI exams include Linux Essentials, LPIC-1, LPIC-2, and the LPIC-3 series. As
the name implies, the Linux Essentials exam is the lowest level of the four exams, covering
the most basic tasks of using and administering a Linux computer.

The purpose of this book is to help you pass the Linux Essentials exam, updated in 2019
to version 1.6. The Linux Essentials exam is meant to certify that you:

 ■ Understand the open source industry

 ■ Have knowledge of the most popular open source applications

 ■ Understand the major components of Linux

 ■ Can work at the Linux command line

 ■ Have basic knowledge of security and administration-related concepts

 ■ Know where to go for help

Why Become Linux Certified?
With the growing popularity of Linux (and the increase in Linux-related jobs) comes hype.
With all the hype that surrounds Linux it’s become hard for employers to distinguish
between employees who are competent Linux users and those who just know the buzz-
words. This is where the Linux Essentials certification comes in.

With a Linux Essentials certification, you will establish yourself as a Linux user who is
familiar with the Linux platform and its applications and who can use any type of Linux
system. LPI has created the Linux Essentials exams as a way for employers to have confi-
dence in knowing their employees who pass the exam will have the skills necessary to get
the job done.

How to Become Certified
The certification is available to anyone who passes the LPI Linux Essentials required exam.
The current version of the exam is version 1.6 and is denoted as 010-160.

The exam is administered by Pearson VUE. The exam can be taken at any Pearson VUE
testing center. If you pass, you will get a certificate in the mail saying that you have passed.

xx Introduction

 To register for the exam with Pearson VUE register online at home.pearsonvue
.com . You’ll have to provide your name, mailing address, phone number,
employer, when and where you want to take the test (which testing center),
and your credit card number (arrangement for payment must be made at
the time of registration).

 Who Should Buy This Book
 You may have been assigned this book for a class that you’re taking, but if not, it can still
have value for self-study or as a supplement to other resources. If you’re new to Linux, this
book covers the material that you will need to learn the OS from the beginning. You can
pick up this book and learn from it even if you’ve never used Linux before. If you’re already
familiar with Linux, you’ll have a leg up on many of the topics described in these pages.

 This book is written with the assumption that you know at least a little about computers
generally, such as how to use a keyboard, how to insert a disc into an optical drive, and so
on. Chances are that you have used computers in a substantial way in the past—perhaps
even Linux, as an ordinary user—or maybe you have used Windows or macOS. We do not
assume that you have knowledge of how to use a Linux system.

 It will also help to have a Linux system available to follow along with. Each chapter con-
tains a simple exercise that will walk you through the basic concepts presented in the chap-
ter. This provides the crucial hands-on experience that you’ll need, both to pass the exam
and to do well in the Linux world.

 Although the LPI Linux Essentials exam is Linux distribution neutral, it’s
impossible to write exercises that work in all Linux distributions. That said,
the exercises in this book assume you have a learning environment similar
to the one described in Appendix B “Setting up a Linux Environment.”

 How This Book Is Organized
 This book consists of 15 chapters, two appendixes, plus this introduction and the assess-
ment test after the introduction. The chapters are organized as follows:

 ■ Chapter 1, “Selecting an Operating System,” provides a birds-eye view of the world of
operating systems. The chapter will help you understand exactly what Linux is and the
situations in which you might want to use it.

Introduction xxi

 ■ Chapter 2, “Understanding Software Licensing,” describes copyright law and the
licenses that both Linux and non-Linux OSs use to expand or restrict users’ rights to
use and copy software.

 ■ Chapter 3, “Investigating Linux’s Principles and Philosophy,” covers Linux’s history
and the ways in which Linux, and other OSs, are commonly used.

 ■ Chapter 4, “Using Common Linux Programs,” looks at the major categories of Linux
software, and it provides pointers to some of the most popular Linux programs.

 ■ Chapter 5, “Getting to Know the Command Line,” tackles using typed commands to
control Linux. Although many new users find this topic intimidating, command-line
control of Linux is important.

 ■ Chapter 6, “Managing Hardware,” provides advice on how to select and use hardware
in Linux. Specific topics range from the central processing unit (CPU) to device drivers.

 ■ Chapter 7, “Managing Files,” describes how to move, rename, delete, and edit files.
Directories are just a special type of file, so they are covered here as well.

 ■ Chapter 8, “Searching, Extracting, and Archiving Data,” summarizes the tools that
you can use to find data on your computer, as well as how you can manipulate data
archive files for data transport and backup purposes.

 ■ Chapter 9, “Exploring Processes and Process Data,” describes how to install programs
in Linux and how to adjust the priority of running programs or terminate selected
programs.

 ■ Chapter 10, “Editing Files,” introduces the topic of editing text files. This includes
the basic features of the nano and vi text-mode text editors, as well as some common
configuration file and formatted text file conventions.

 ■ Chapter 11, “Creating Scripts,” describes how to create simple scripts, which are pro-
grams that can run other programs. You can use scripts to help automate otherwise
tedious manual tasks, thus improving your productivity.

 ■ Chapter 12, “Understanding Basic Security,” introduces the concepts that are critical
to understanding Linux’s multiuser nature. It also covers super user privileges, which
Linux uses for most administrative tasks.

 ■ Chapter 13, “Creating Users and Groups,” covers the software and procedures you use to
create, modify, and delete accounts and groups, which define who may use the computer.

 ■ Chapter 14, “Setting Ownership and Permissions,” describes how to control which
users may access files and in what ways they may do so. In conjunction with users and
groups, ownership and permissions control your computer’s security.

 ■ Chapter 15, “Managing Network Connections,” covers the critical topic of telling
Linux how to use a network, including testing the connection and some basic network
security measures.

xxii Introduction

 Each chapter begins with a list of the exam objectives that are covered in that chapter.
The book doesn’t cover the objectives in order. Thus, you shouldn’t be alarmed at some of
the odd ordering of the objectives within the book. At the end of each chapter, you’ll fi nd a
couple of elements you can use to prepare for the exam:

Exam Essentials This section summarizes important information that was covered in the
chapter. You should be able to perform each of the tasks or convey the information requested.

 Review Questions Each chapter concludes with 10 review questions. You should answer
these questions and check your answers against the ones provided in Appendix A. If you
can’t answer at least 80 percent of these questions correctly, go back and review the chap-
ter, or at least those sections that seem to be giving you diffi culty.

 The review questions, assessment test, and other testing elements
included in this book are not derived from the actual exam questions, so
don’t memorize the answers to these questions and assume that doing so
will enable you to pass the exam. You should learn the underlying topic,
as described in the text of the book. This will let you answer the questions
provided with this book and pass the exam. Learning the underlying topic
is also the approach that will serve you best in the workplace—the ultimate
goal of a certification.

 To get the most out of this book, you should read each chapter from start to fi nish and
then check your memory and understanding with the chapter-end elements. Even if you’re
already familiar with a topic, you should skim the chapter; Linux is complex enough that
there are often multiple ways to accomplish a task, so you may learn something even if
you’re already competent in an area.

 Additional Study Tools
 Readers of this book can access a website that contains several additional study tools,
including the following:

 Readers can access these tools by visiting wiley.com/go/sybextestprep .

Sample Tests All the questions in this book are there, including the assessment test at the
end of this introduction and the questions from the review sections at the end of each chap-
ter. In addition, there are two bonus exams.

Electronic Flashcards The additional study tools include questions in fl ashcard format (a
question followed by a single correct answer). You can use these fl ashcards to review your
knowledge of the exam objectives.

Glossary of Terms as a PDF File In addition, there is a searchable glossary in PDF format,
which can be read on all platforms that support PDF.

Introduction xxiii

 Conventions Used in This Book
 This book uses certain typographic styles in order to help you quickly identify important
information and to avoid confusion over the meaning of words such as onscreen prompts.
In particular, look for the following styles:

 ■ Italicized text indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

 ■ A monospaced font indicates the contents of configuration files, messages displayed at
a text-mode Linux shell prompt, filenames, text-mode command names, and Internet
URLs.

 ■ Italicized monospaced text indicates a variable—information that differs from one
system or command run to another, such as the name of a client computer or a process
ID number.

 ■ Bold monospaced text is information that you’re to type into the computer, usu-
ally at a Linux shell prompt. This text can also be italicized to indicate that you should
substitute an appropriate value for your system. (When isolated on their own lines,
commands are preceded by non-bold monospaced $ or # command prompts, denoting
regular user or system administrator use, respectively.)

 In addition to these text conventions, which can apply to individual words or entire
paragraphs, a few conventions highlight segments of text:

 A note indicates information that’s useful or interesting but that’s some-
what peripheral to the main text. A note might be relevant to a small num-
ber of networks, for instance, or it may refer to an outdated feature.

 A tip provides information that can save you time or frustration and that
may not be entirely obvious. A tip might describe how to get around a limi-
tation or how to use a feature to perform an unusual task.

 Warnings describe potential pitfalls or dangers. If you fail to heed a warn-
ing, you may end up spending a lot of time recovering from a bug, or you
may even end up restoring your entire system from scratch.

 E X E R C I S E

 An exercise is a procedure you should try on your own computer to help you learn about
the material in the chapter. Don’t limit yourself to the procedures described in the exer-
cises, though! Try other commands and procedures to really learn about Linux.

xxiv Introduction

 A real-world scenario is a type of sidebar that describes a task or example that’s par-
ticularly grounded in the real world. This may be a situation I or somebody I know has
encountered, or it may be advice on how to work around problems that are common in
real, working Linux environments.

 The Exam Objectives
 Behind every computer industry exam you can be sure to fi nd exam objectives—the broad top-
ics in which exam developers want to ensure your competency. The offi cial exam objectives
are listed here. (They’re also printed at the start of the chapters in which they’re covered.)

 Exam objectives are subject to change at any time without prior notice and
at LPI’s sole discretion. Please visit LPI’s website (lpi.org) for the most
current listing of exam objectives.

 Exam 010-160 Objectives
 The following are the areas in which you must be profi cient in order to pass the Linux
Essentials 010-160 exam. This exam is broken into fi ve main topics, each of which has
three to eight objectives. Each objective has an associated weight, which refl ects its impor-
tance to the exam as a whole. Refer to the LPI website to view the weights associated with
each objective. The fi ve main topics are as follows:

Subject Area

1 The Linux Community and a Career in Open Source

2 Finding Your Way on a Linux System

3 The Power of the Command Line

4 The Linux Operating System

5 Security and File Permissions

Introduction xxv

Topic 1: The Linux Community and a Career in Open
Source

1.1 Linux Evolution and Popular Operating Systems
(Chapters 1 and 3)

 ■ Knowledge of Linux development and major distributions

 ■ Key knowledge areas:

 ■ Distributions:

 ■ Embedded Systems

 ■ Linux in the Cloud

1.2 Major Open Source Applications (Chapter 4)

 ■ Awareness of major applications as well as their uses and development

 ■ Key knowledge areas:

 ■ Desktop applications

 ■ Server applications

 ■ Development languages

 ■ Package management tools and repositories

1.3 Open Source Software and Licensing (Chapter 2)

 ■ Open communities and licensing Open Source Software for business

 ■ Key knowledge areas:

 ■ Open source philosophy

 ■ Open source licensing

 ■ Free Software Foundation (FSF), Open Source Initiative (OSI)

1.4 ICT Skills and Working in Linux (Chapters 4 and 5)

 ■ Basic Information and Communication Technology (ICT) skills and working in Linux

 ■ Key knowledge areas:

 ■ Desktop skills

 ■ Getting to the command line

 ■ Industry uses of Linux, cloud computing and virtualization

xxvi Introduction

Topic 2: Finding Your Way on a Linux System

2.1 Command Line Basics (Chapters 5, 7 and 11)

 ■ Basics of using the Linux command line

 ■ Key knowledge areas:

 ■ Basic shell

 ■ Command line syntax

 ■ Variables

 ■ Quoting

2.2 Using the Command Line to Get Help (Chapter 5)

 ■ Running help commands and navigation of the various help systems

 ■ Key knowledge areas:

 ■ Man pages

 ■ Info pages

2.3 Using Directories and Listing Files (Chapter 7)

 ■ Navigation of home and system directories and listing files in various locations

 ■ Key knowledge areas:

 ■ Files, directories

 ■ Hidden files and directories

 ■ Home directories

 ■ Absolute and relative paths

2.4 Creating, Moving, and Deleting Files (Chapter 7)

 ■ Create, move, and delete files and directories under the home directory.

 ■ Key knowledge areas:

 ■ Files and directories

 ■ Case sensitivity

 ■ Simple globbing

Topic 3: The Power of the Command Line

3.1 Archiving Files on the Command Line (Chapter 8)

 ■ Archiving files in the user home directory

 ■ Key knowledge areas:

 ■ Files, directories

 ■ Archives, compression

Introduction xxvii

3.2 Searching and Extracting Data from Files (Chapters 5 and 8)

 ■ Search and extract data from files in the home directory.

 ■ Key knowledge areas:

 ■ Command line pipes

 ■ I/O redirection

 ■ Basic Regular Expressions using ., [], *, and ?

3.3 Turning Commands into a Script (Chapters 10 and 11)

 ■ Turning repetitive commands into simple scripts

 ■ Key knowledge areas:

 ■ Basic shell scripting

 ■ Awareness of common text editors (vi and nano)

Topic 4: The Linux Operating System

4.1 Choosing an Operating System (Chapter 1)

 ■ Knowledge of major operating systems and Linux distributions

 ■ Key knowledge areas:

 ■ Differences between Windows, OS X, and Linux

 ■ Distribution life cycle management

4.2 Understanding Computer Hardware (Chapter 6)

 ■ Familiarity with the components that go into building desktop and server computers

 ■ Key knowledge areas:

 ■ Motherboards, processors, power supplies, optical drives, peripherals

 ■ Hard drives, solid state disks and partitions, /dev/sd*

 ■ Drivers

4.3 Where Data Is Stored (Chapters 7 and 9)

 ■ Where various types of information are stored on a Linux system

 ■ Key knowledge areas:

 ■ Programs and configuration

 ■ Processes

 ■ Memory addresses

 ■ System messaging

 ■ Logging

xxviii Introduction

4.4 Your Computer on the Network (Chapter 15)

 ■ Querying vital networking configuration and determining the basic requirements for a
computer on a Local Area Network (LAN)

 ■ Key knowledge areas:

 ■ Internet, network, routers

 ■ Querying DNS client configuration

 ■ Querying network configuration

Topic 5: Security and File Permissions

5.1 Basic Security and Identifying User Types (Chapter 12)

 ■ Various types of users on a Linux system

 ■ Key knowledge areas:

 ■ Root and standard users

 ■ System users

5.2 Creating Users and Groups (Chapter 13)

 ■ Creating users and groups on a Linux system

 ■ Key knowledge areas:

 ■ User and group commands

 ■ User IDs

5.3 Managing File Permissions and Ownership (Chapter 14)

 ■ Understanding and manipulating file permissions and ownership settings

 ■ Key knowledge areas:

 ■ File permissions and ownership

 ■ Directory permissions and ownership

5.4 Special Directories and Files (Chapter 7)

 ■ Special directories and files on a Linux system including special permissions

 ■ Key knowledge areas:

 ■ Using temporary files and directories

 ■ Symbolic links

Assessment Test
1. What elements does a Linux distribution bundle that make it unique? Choose all that apply.

A. Kernel

B. Applications

C. User and group accounts

D. GNU utilities

E. Package management utility

2. What graphical interfaces does Linux support? (Choose all that apply.)

A. macOS

B. GNOME

C. KDE Plasma

D. Metro

E. Cinnamon

3. True or false: The Free Software Foundation (FSF) advocates free software, which means
they believe you should not have to pay money for software.

4. Which of the following are open source software licenses? (Choose all that apply.)

A. MIT

B. GPL

C. BSD

D. Creative Commons

E. Apache

5. What are the three common categories for Linux systems?

A. Embedded

B. Graphical

C. Desktop

D. Industrial

E. Server

6. What are some of the recent changes seen in Linux? (Choose all that apply.)

A. Improvements in the kernel

B. Improvements in support tools

C. Creation of new support tools

D. Creation of new distributions

E. Payment is now required to install Linux.

xxx Assessment Test

7. Which of the following are software suites that allow you to set up a private cloud using
Linux? (Choose all that apply.)

A. Nextcloud

B. Zoho

C. ownCloud

D. Castero

E. Kdenlive

8. True or false: The dpkg and rpm package management utilities are both low-level tools.

9. True or false: When working in a terminal, the shell prompt often ends in either a dollar
sign or a greater-than symbol for ordinary users.

10. Which of the following commands allow you to search the man pages for the keyword
copy? (Choose all that apply.)

A. apropos copy

B. man -k copy

C. whereis copy

D. whatis copy

E. locate copy

11. Which is the current version of the original ext filesystem?

A. extfs

B. ext2fs

C. ext3fs

D. ext4fs

E. btrfs

12. What command(s) display(s) information about the CPU that your Linux system is running
on? (Choose all that apply.)

A. uname -a

B. lsusb

C. lspci

D. lscpu

E. man cpu

13. What type of files are typically stored in the /usr folder?

A. User data files

B. Configuration files

C. Critical system files

D. Noncritical system program and data files

E. Program library files

Assessment Test xxxi

14. Which wildcard character matches any character or set of characters?

A. *

B. ?

C. []

D. _

E. -

15. Which of the following are considered characters that can be used for regular expression
matching rules? (Choose all that apply.)

A. *

B. []

C. >

D. ?

E. .

16. Which tar option is used to compress the archive into a tarball using xz compression?

A. -X

B. -j

C. -z

D. -v

E. -J

17. What commands could you use to see if the MySQL database server is currently running on
your system? (Choose all that apply.)

A. ls

B. ps

C. top

D. free

E. yum

18. What command-line command displays the overall memory usage on your Linux system?

A. ps

B. top

C. free

D. ls

E. yum

xxxii Assessment Test

19. Which of the following are text editors you can use at the command line on a text-based tty
terminal? (Choose all that apply.)

A. vi

B. nano

C. gedit

D. Kate

E. emacs

20. The first line of a shell script is #!/bin/bash. What does that mean?

A. The script won’t run on most Linux systems.

B. The script requires the Bash shell to run.

C. The script requires the C shell to run.

D. The script will run on Unix systems.

E. The script can be run without specifying the full pathname to the script file.

21. What variable can you use to view the exit status of a script after it completes?

A. $?

B. $0

C. $1

D. $PATH

E. $exit

22. Which of the following typically holds user account passwords on a modern Linux
distribution?

A. /etc/passwd

B. /bin/bash

C. /etc/shadow

D. /etc/group

E. /sbin/nologin

23. A(n) account is one that most common users have as their account type.

A. home

B. system

C. administrative

D. standard

E. root

Assessment Test xxxiii

24. When you create a new account with the useradd utility, if you did not set a password with
an option the account will be locked. What command should you use with super user privi-
leges to unlock it?

A. usermod -u username

B. password username

C. passwd username

D. useradd -p password username

E. unlock username

25. True or false: When a user account is created, it is automatically assigned a primary group.

26. Which commands can you use to change the group a file is assigned to? (Choose all that
apply.)

A. chmod

B. chgrp

C. chage

D. chown

E. groupadd

27. What command would you use to make the file myfile.txt a hidden file?

A. chmod 755 myfile.txt

B. mv myfile.txt ~myfile.txt

C. cp myfile.txt ./myfile.txt

D. mv .myfile.txt myfile.txt

E. mv myfile.txt .myfile.txt

28. If your Linux server doesn’t have a graphical desktop installed, what two tools could you
use to configure network settings from the command line?

A. nmcli

B. iwconfig

C. ip

D. netstat

E. ping

29. What tool allows you to send ICMP messages to a remote host to test network connectivity?

A. netstat

B. ifconfig

C. ping

D. iwconfig

E. ss

Answers to Assessment Test
1. A, B, D, and E. A Linux distribution bundles the Linux kernel, GNU utilities, applications,

and a package management utility to make it unique, so options A, B, D, and E are all cor-
rect. User and group accounts are somewhat standard across Linux systems based on the
software packages installed, not on the distribution, so option C is incorrect.

2. B, C, and E. Linux supports the GNOME, KDE Plasma, and Cinnamon graphical inter-
faces, so options B, C, and E are correct. Linux does not support the proprietary macOS or
Metro environments, so options A and D are incorrect.

3. False. The FSF does advocate free software, but it defines it in terms of freedom to do
things you want to do with the software, not the price of the software.

4. A, B, C, E. The MIT, GPL, BSD, and Apache are all open source licenses or groups of
licenses. Therefore, options A, B, C, and E are correct answers. The Creative Commons is
an organization that offers a suite of licenses but not for software. Instead, it targets audio
recordings, video recordings, textual works, and so on, not just software programs.

5. A, C, and E. Linux systems are commonly used in embedded systems, as desktop worksta-
tions, and in server environments, so options A, C, and E are correct. Linux systems can
use a graphical desktop in either a desktop or server environment, but graphical is not a
category of Linux systems, so option B is incorrect. Linux can be used as either a desktop,
embedded system, or server in an industrial environment, but industrial is not a category,
making option D incorrect.

6. A, B, C, and D. In the Linux world, constant improvements are being made to the kernel
and support tools and new support tools and distributions are being released, so options
A, B, C, and D are all correct. Linux is still released under the open source license, which
doesn’t prohibit charging a fee for Linux, but most Linux distributions are still available
free of charge for installing in any environment, making option E incorrect.

7. A, C. Nextcloud and ownCloud are both software suites that allow you to set up a private
cloud using Linux, so options A and C are correct answers. Zoho is a cloud-based office
productivity suite but does not allow you to set up a private cloud, so option B is a wrong
answer. Castero is a text-based podcast client that is available on Linux, but it does not pro-
vide the ability to configure a private cloud, making option D incorrect. Kdenlive is another
useful Linux application (you can use it to perform video editing), but it is not involved
with the cloud. Thus, option E is also an incorrect choice.

8. True. The dpkg and rpm package management utilities are both low-level tools, and they
are limited in what functions they can perform for maintaining software packages. It’s typi-
cally better to use a higher-level utility, such as yum or apt-get, depending on your Linux
distribution.

9. True. Typically, when working in a terminal, for regular users (users who are not logged
into the root account) the default shell prompt ends in either in a dollar sign ($) or a
greater-than symbol (>).

Answers to Assessment Test xxxv

10. A, B, D. The apropos, man -k, and whatis commands can all be used to search the man
pages for the keyword copy. Therefore, options A, B, and D are correct answers. The
whereis program searches for files in a restricted set of locations instead of keywords
within the man pages, so option C is a wrong answer. The locate command also searches
for files, but it uses a database—it does not search for keywords within the man pages.
Therefore, option E is also an incorrect choice.

11. D. The ext filesystem is currently at version 4, which is called ext4fs, so option D is correct.
The original extfs filesystem is no longer supported, so option A is incorrect. The ext2fs
and ext3fs filesystems are still supported and can be used if needed, but they are not recom-
mended for new Linux installations, so options B and C are incorrect. The btrfs filesystem
is not part of the extfs family but instead a new type of filesystem, so option E is incorrect.

12. A, D. The uname command with the -a option displays information about the host system,
including the architecture the kernel was built for, which gives you a clue as to the CPU.
The lscpu command provides detailed information about the CPU. Thus, both options
A and D are correct. The lsusb command provides information about USB devices con-
nected to the system, not the CPU, so option B is incorrect. Likewise, the lspci command
provides information about PCI devices connected to the system, not the CPU, so option C
is incorrect. The man command provides information about system and application com-
mands, not about the CPU hardware, so option E is incorrect.

13. D. Linux installs noncritical applications, such as word processors and browsers, in the
/usr directory, so option D is correct. User data files are normally stored in each user’s
home directory, located in the /home directory structure, so option A is incorrect. Most
Linux applications store their configuration files in the /etc directory, so option B is incor-
rect. Linux installs critical applications in either the /bin directory for user utilities or the
/sbin directory for administrator programs, so option C is incorrect. In Linux, program
library files are stored within the /lib directory structure, so option E is incorrect.

14. A. The asterisk (*) wildcard character matches none, one, or a set of characters in file-
name globbing, so option A is correct. The question mark (?) matches only one character
in filename globbing, not a set of characters, so option B is incorrect. The square brackets
([]) match only one character within a set of characters, not the entire set of characters,
so option C is incorrect. The underscore (_) and dash (-) characters are not valid wildcard
characters used in filename globbing, so options D and E are both incorrect.

15. A, B, D, E. The *, [], ?, and . are all characters that activate regular expression matching
rules. Thus, options A, B, D, and E are correct choices. The > character is used for basic
redirection, and not for regular expressions, so option C is a wrong choice.

16. E. The tar option to compress the archive into a tarball using xz compression is -J, so
option E is the correct answer. The -X option has a name of a file passed to it as an argu-
ment. That file contains filenames to be excluded from the archive, so option A is a wrong
answer. The -j option is for using bzip2 compression, so option B is also an incorrect
answer. The -z option is for using gzip compression. Thus, option C is an incorrect choice.
The -v option instructs the tar command to produce verbose output (show what files are
being archived). Therefore, option D is also an incorrect choice.

xxxvi Answers to Assessment Test

17. B, C. Programs running on the Linux system are called processes. The ps command allows
you to display a snapshot of running processes, and the top command produces a real-time
display of running processes, so options B and C are correct. The ls command displays files
and directories, not running processes, so option A is incorrect. The free command dis-
plays memory usage, so option D is incorrect. The yum command is a package management
tool used for installing and removing software packages, so option E is incorrect.

18. C. The free program displays the current memory usage on the Linux system, including
memory in-use, free memory, and swap space, so option C is correct. The ps and top com-
mands display information about the processes running on the system, and they can display
information about process memory usage but not the overall memory usage on the Linux
system, so options A and B are incorrect. The ls command displays file and directory
information, so option D is incorrect. The yum program is a package management tool that
allows you to install and remove software packages, so option E is incorrect.

19. A, B, E. The vi, nano, and emacs editor are all text editors you can use at the command
line on a text-based terminal such as tty3. Therefore, options A, B, and E are the correct
answers. The gedit and Kate editors are GUI-only editors and cannot be used on a text-
based terminal. Therefore, options C and D are incorrect choices.

20. B. The shebang command specifies the shell that the Linux system should use to process
the script. The /bin/bash path indicates to use the Bash shell, so option B is correct. The
Bash shell is the default shell on most Linux systems, so this script should run on most
Linux systems, making option A incorrect. The C shell is specified using either /bin/csh or
/bin/tcsh, depending on which C shell your Linux system uses, so option C is incorrect.
Most Unix systems don’t support the Bash shell, so option D is incorrect. The shebang
specifies the path to the shell, not to the script file, so option E is incorrect.

21. A. The special $? variable contains the exit status of the last statement in the shell script,
or the result of the exit statement if the shell script ends with that, so option A is correct.
The $0 variable contains the name of the shell script, not the exit status, so option B is
incorrect. The $1 variable contains the first parameter specified on the command line when
the shell script is launched, not the exit status, so option C is incorrect. The $PATH environ-
ment variable specifies a list of directories the Linux system should search to find executable
files, not the exit status of a shell script, so option D is incorrect. The $exit variable is a
user variable that you can define either locally in a script or globally in a shell, but it has no
special meaning in shell scripts, so option E is incorrect.

22. C. On modern Linux distributions, the /etc/shadow file typically holds user account
passwords, so option C is the correct answer. Although many years ago the /etc/passwd
file held the user account passwords, it does not (and should not) due to file permissions, so
option A is incorrect. The /bin/bash is a shell program, not an account file, and is typi-
cally the default shell assigned to regular user accounts. Thus, option B is also incorrect.
The /etc/group file contains group information as well as which user accounts belong to
the various groups, so option D is a wrong choice. The /sbin/nologin is a program (not
an account file) that helps to prevent system accounts from logging into the system. There-
fore, option E is incorrect.

Answers to Assessment Test xxxvii

23. D. Most common users have an account type of standard, so option D is the correct
answer. There is no account type of home, so option A is incorrect. A system account is one
that is used by daemons, but not common users, so option B is a wrong choice. The admin-
istrative account is not for common users, nor is the root account, because they use super
user privileges to perform duties such as installing software or changing other accounts’
passwords, so options C and E are also incorrect.

24. C. The passwd username command in option C will allow you to set a password for the
passwd username account, effectively unlocking it. Therefore, option C is the correct
answer. The usermod -u command modifies an account’s UID but does not unlock it, so
option A is a wrong answer. The password command in option B is does not exist and is
therefore incorrect. If you had used the useradd -p password username command in
option D to create the account (not recommended for security reasons), then the account
would not be locked. However, you cannot reissue the useradd command for a preexisting
account, so option D is a wrong choice. There is no standard command called unlock, so
option E is also incorrect.

25. True. When a user account is created, it is automatically assigned a primary group that
typically has the same name as the account’s username.

26. B, D. You can use either the chgrp or chown command-line command to assign a new pri-
mary group to a file or directory, making options B and D correct. The chmod command
assigns permissions to a file, not the group, so option A is incorrect. The chage command
changes the password options for a user account, not the group of a file, so option C is
incorrect. The groupadd command adds a new group to the system and does not change the
group assigned to a file, so option E is incorrect.

27. E. Linux uses a leading period in filenames to indicate hidden files. To change the name
of a file, you use the mv command, thus making option E correct. The chmod and cp com-
mands don’t change the name of a file, so options A and C are incorrect. The mv command
lists the original filename first and the new filename second, so option D is incorrect. Since
Linux uses a period to indicate hidden files, option B is incorrect.

28. A, C. The nmcli and the ip commands both allow you to set and change network settings
from the command line, so options A and C are both correct. The iwconfig command only
sets wireless network information, so option B is incorrect. The netstat command displays
open ports—it doesn’t change any network settings—so option D is incorrect. The ping
command sends ICMP packets to remote hosts for testing—it also doesn’t set any network
settings—so option E is also incorrect.

29. C. The ping command sends ICMP packets to a specified remote host and waits for a
response, making option C the correct answer. The netstat command displays statistics
about the network interface, so option A is incorrect. The ifconfig command displays
or sets network information but doesn’t send ICMP packets, making option B incorrect.
The iwconfig command displays or sets wireless network information but doesn’t handle
ICMP packets, making option D incorrect. The ss command displays information about
open connections and ports on the system, so option E is also incorrect.

Selecting an
Operating System

ObjectiveS:

 ✓ 1.1 Linux Evolution and Popular Operating Systems

 ✓ 4.1 Choosing an Operating System

Chapter

1

The fact that you’re reading this book means you want to
learn about the Linux operating system (OS). To begin this
journey, you must first understand what Linux is and what

an OS is. This chapter describes what an OS is, how users interact with an OS, how
Linux compares to other popular OSs, and how even specific Linux implementations vary.
Understanding these issues will help you as you make the switch to Linux and learn about
the various Linux-based systems.

What Is an OS?
An OS provides all the fundamental features of a computer, at least from a software point
of view. An OS enables you to use the computer’s hardware devices, defines the user inter-
face standards, and provides basic tools that allow applications to run on the computer.
This section describes the different parts that make up an OS and how they work together
to create your computing experience.

What Is a Kernel?
An OS kernel is a software component responsible for managing various low-level features
of the computer, including:

 ■ Interfacing with hardware devices (network adapters, hard disks, and so on)

 ■ Allocating memory to individual programs

 ■ Allocating CPU time to individual programs

 ■ Enabling programs to interact with one another

When you use a program (say, a web browser), it relies on the kernel for many of its
basic functions. The web browser can communicate with the outside world only by using
network functions provided by the kernel. The kernel allocates memory and CPU time to
the web browser, without which it couldn’t run. The web browser may rely on plug-ins to
display multimedia content; such programs are launched and interact with the web browser
through kernel services. Any program you run on a computer relies on the kernel in a
similar way, although the details vary from one OS to another and from one program to
another.

The kernel is the software “glue” that holds the computer together. Without a kernel, a
modern computer can do very little.

What Is an OS? 3

 Kernels are not interchangeable; the Linux kernel is different from the macOS kernel
used in Apple workstations and laptops, and from the Windows kernel used in Microsoft-
compatible workstations and laptops. Each of these kernels uses a different internal design
and provides different software interfaces for programs to use. Thus, each OS is built from
the kernel up and uses its own set of programs that further defi ne each OS’s features.

 Some programs run on multiple kernels, but most need OS-specific
tweaks. Programmers create binaries —the program files for a particular
processor and kernel—for each OS. You need to run the binary file created
for the specific OS you’re running the program on.

 Linux uses a kernel called Linux —in fact, technically speaking, the word Linux refers
only to the kernel. Other features that you might associate with Linux are provided by non-
kernel programs, most of which are available on other platforms, as described shortly, in
“What Else Identifi es an OS?”

 A student named Linus Torvalds created the Linux kernel in 1991. Linux has evolved
considerably since that time. Today, it runs on a wide variety of CPUs and other hardware.
The easiest way to learn about Linux is to use it on a desktop or laptop PC, so that’s the
type of confi guration emphasized in this book. The Linux kernel, however, runs on every-
thing from tiny cell phones to powerful supercomputers.

 What Else Identifies an OS?
 The kernel is at the core of any OS, but it’s a component that most users don’t directly
manipulate. Instead, most users interact with a number of other software components,
many of which are closely associated with particular OSs. Such programs include the
following:

Command-Line Shells Years ago, users interacted with computers exclusively by typing
commands in a program (known as a shell) that accepted such commands. The commands
would rename fi les, launch programs, and so on. Although many computer users today
don’t use text-mode shells, they’re still important for intermediate and advanced Linux
users, so we describe them in more detail in Chapter 5, “Getting to Know the Command
Line,” and subsequent chapters rely heavily on your ability to use a text-mode shell. Many
different shells are available, and which shells are available and popular differ from one OS
to another. In Linux, a shell known as the Bourne Again Shell (Bash) is popular.

Graphical User Interfaces A graphical user interface (GUI) is an improvement on a text-
mode shell, at least from the perspective of a beginning user. GUIs rely on icons, menus,
and a mouse pointer rather than typed commands. Windows and macOS both have their
own OS-specifi c GUIs. Linux relies on a GUI known as the X Window System, or X for
short. X is a very basic GUI, so Linux also uses desktop environment program suites, such
as the GNU Object Model Environment (GNOME) or the K Desktop Environment (KDE),
to provide a more complete user experience. It’s the differences between a Linux desktop

Certification
Objective

Certification
Objective

4 Chapter 1 ■ Selecting an Operating System

environment and the GUIs in Windows or macOS that will probably strike you most when
you fi rst begin using Linux.

Utility Programs Modern OSs invariably ship with a wide variety of simple utility
programs—calculators, calendars, text editors, disk maintenance tools, and so on. These
programs differ from one OS to another. Even the names and methods of launching these
programs can differ between OSs. Fortunately, you can usually fi nd the programs you want
by perusing menus in the main desktop environment.

Libraries Unless you’re a programmer, you’re unlikely to have to work with libraries
directly; nonetheless, we include them in this list because they provide critical services to
programs. Libraries are collections of programming functions that can be used by a variety
of programs. For instance, in Linux most programs rely on a library called libc . Other
libraries provide features associated with the GUI or that help programs parse options
passed to them on the command line. Many libraries exist for Linux, which helps enrich
the Linux software landscape.

Productivity Programs Major productivity programs—web browsers, word processors,
graphics editors, and so on—are the usual reason for using a computer. Although such
programs are often technically separate from the OS, they are sometimes associated with
certain OSs. Even when a program is available on many OSs, it may have a different “feel”
on each OS because of the different GUIs and other OS-specifi c features.

 You can search for Linux equivalents to popular macOS or Windows
programs on popular open source software websites such as
www.linuxalt.com .

 In addition to software that runs on an OS, several other features can
distinguish between OSs, such as the details of user accounts, rules
for naming disk files, and technical details of how the computer starts
up. These features are all controlled by software that’s part of the OS,
sometimes by the kernel and sometimes by non-kernel software.

 Investigating User Interfaces
 Earlier, we noted the distinction between text-mode and graphical user interfaces.
Although most users favor GUIs because of their ease of use, Linux retains a strong text-
mode tradition. Chapter 5 describes Linux’s text-mode tools in more detail, and Chapter
4, “Using Common Linux Programs,” covers basic principles of Linux GUI operations.
It’s important that you have some grounding in the basic principles of both text-mode and
graphical user interfaces now, since user interface issues crop up from time to time in inter-
vening chapters.

http://www.linuxalt.com

Investigating User Interfaces 5

 Using a Text-Mode User Interface
 In the past, and even sometimes today, Linux computers booted in text mode. After the
system had completely booted, the screen would display a simple text-mode login prompt,
which might resemble this:

 Fedora 30 (Workstation Edition)
 Kernel 5.0.9-301.fc30.x86_64 on an x86_64 (tty1)

 essentials login:

 To try a text-mode login, you must first install Linux on a computer. Neither
the Linux Essentials exam nor this book covers Linux installation; consult
your distribution’s documentation to learn more.

 The details of such a login prompt vary from one system to another. This example
includes several pieces of information:

 ■ The OS name and version: Fedora Linux version 30

 ■ The computer’s name: essentials

 ■ The name of the hardware device being used for the login: tty1

 ■ The login prompt itself: login:

 If you see a GUI login prompt, you can obtain a text-mode prompt by
pressing Ctrl+Alt+F2 or Ctrl+Alt+F3. To return to the GUI login prompt,
press Ctrl+Alt+F1 or Ctrl+Alt+F7.

 To log into such a system, you must type your username at the login: prompt. The
system then prompts you for a password, which you must also type. If you entered a valid
username and password, the computer is likely to display a login message, followed by a
shell prompt:

 [rich@essentials:~]$

 In this book, we omit most of the prompt from example commands when they appear on
their own lines. We keep the dollar sign ($) prompt, though, for ordinary user commands.
Some commands must be entered as the root user account, which is the Linux administra-
tive user. We change the prompt to a hash mark (#) for such commands, since most Linux
distributions make a similar change to their prompts for the root user.

 Chapter 13, “Creating Users and Groups,” describes Linux accounts,
including the root user account, in more detail.

Certification
Objective

6 Chapter 1 ■ Selecting an Operating System

The details of the shell prompt vary from one installation to another, but you can type
text-mode commands at the shell prompt. For instance, you could type ls (short for list) to
see a list of files in the current directory. The most basic commands are shortened by remov-
ing vowels, and sometimes consonants, to minimize the amount of typing required to execute
a command. This has the unfortunate effect of making many commands rather obscure.

Some commands display no information, but most produce some type of output. For
instance, the ls command produces a list of files:

$ ls
chapter1.doc figure01.png

This example shows two files in the current directory: chapter01.doc and figure01.png.
You can use additional commands to manipulate these files, such as cp to copy them or rm
to remove (delete) them. Chapter 5 (“Getting to Know the Command Line”) and Chapter 7
(“Managing Files”) describe some common file manipulation commands.

Some text-mode programs take over the display in order to provide constant updates or
to enable you to interact with data in a flexible manner. Figure 1.1, for instance, shows the
nano text editor, which is described in more detail in Chapter 10, “Editing Files.” When
nano is working, you can use your keyboard’s arrow keys to move the cursor around, add
text by typing, and so on.

F i gu r e 1.1 Some text-mode programs take over the entire display.

Even if you use a graphical login, you can use a text-mode shell inside a window, known
as a terminal. With common Linux GUIs, you can launch a terminal program, which pro-
vides a shell prompt and the means to run text-mode programs.

Investigating User Interfaces 7

 Using a Graphical User Interface
 Most users are more comfortable with GUIs than with text-mode commands. Thus, many
modern Linux systems start up in GUI mode by default, presenting a login screen similar to
the one shown in Figure 1.2 . You can select your username from a list or type it, followed
by typing your password, to log in.

 Some Linux GUI login screens don’t prompt you for a password until after
you’ve entered a valid username.

 F i gu r e 1. 2 Graphical login screens on Linux are similar to those for Windows or
macOS.

 Unlike Windows and macOS, Linux provides a number of different desktop environ-
ments for you to choose from. Which one you use depends on the specifi c variety of
Linux you’re using, what software options you selected at installation time, and your own
personal preferences. Common choices include GNOME, KDE Plasma, Cinnamon, and
Xfce. Many other options are available as well. Many graphical desktops have assistive
technology features built in. In Figure 1.2 , the person icon at the top-right corner of the
Fedora login window allows you to select an assistive technology such as a screen reader or
onscreen keyboard to assist with the login entry.

 Linux desktop environments can look quite different from one another, but they all
provide similar functionality. Figure 1.3 shows the default Cinnamon desktop on a Mint
18.3 installation, with a couple of programs running. Chapter 4 describes common desktop

Certification
Objective

8 Chapter 1 ■ Selecting an Operating System

environments and their features in more detail, but for now, you should know that they all
provide features such as the following:

Program Launchers You can launch programs by selecting them from menus or lists. Typically,
one or more menus reside along the top, bottom, or side of the screen. In Figure 1.3 , you can
click the Mint leaf icon in the bottom-left corner of the screen to produce the menu that appears
in that fi gure.

 File Managers Linux provides GUI fi le managers similar to those in Windows or macOS.
A window for one of these is open in the center of Figure 1.3 .

 Window Controls You can move windows by clicking and dragging their title bars, resize
them by clicking and dragging their edges, and so on.

 Multiple Desktops Most Linux desktop environments enable you to keep multiple vir-
tual desktops active, each with its own set of programs. This feature helps keep the screen
uncluttered while you run several programs simultaneously. Typically, an icon in one of the
menus enables you to switch between virtual desktops.

 Logout Options You can log out of your Linux session, which enables you to shut down
the computer or let another user log in.

 F i gu r e 1. 3 Linux desktop environments provide the types of GUI controls that most
users expect.

 Logging out is very important in public computing environments. If you fail
to log out, a stranger might come along and use your account for malicious
purposes.

Where Does Linux Fit in the OS World? 9

 As you learn more about Linux, you’ll discover that its GUI environments are quite
fl exible. If you fi nd you don’t like the environment that’s the default for your distribu-
tion, you can change it. Although they all provide similar features, some people have
strong preferences about desktop environments. Linux gives you a choice in the mat-
ter that’s not available in Windows or macOS, so feel free to try multiple desktop
environments.

 You may need to install extra desktop environments to use them. This
topic is not covered in this book.

 Where Does Linux Fit in the OS World?
 This chapter’s title implies a comparison, and as this book is about Linux, the comparison
must be to non-Linux OSs. Thus, we compare Linux to three other OSs or OS families:
Unix, Apple macOS, and Microsoft Windows.

 As described later in “What Is a Distribution?” Linux can be considered a
family of OSs. Thus, you can compare one Linux version to another one.

 Comparing Linux to Unix
 If you were to attempt to draw a “family tree” of OSs, you would end up scratching your
head a lot. This is because OS designers often mimic one another’s features and sometimes
even incorporate one another’s code into their OSs’ workings. The result can be a tangled
mess of similarities between OSs, with causes ranging from coincidence to code “borrow-
ing.” Attempting to map these infl uences can be diffi cult. In the case of Linux and Unix,
though, a broad statement is possible: Linux is modeled after Unix.

Unix was created in 1969 at AT&T’s Bell Labs. Unix’s history is complex and involves
multiple forks (that is, splitting of the code into two or more independent projects) and even
entirely separate code rewrites. Modern Linux systems are, by and large, the product of
open source projects that clone Unix programs, or of original open source code projects for
Unix generally.

 Open source software is software that you can not only run, but modify
and redistribute yourself. Chapter 3, “Investigating Linux’s Principles and
Philosophy,” covers the philosophy and legal issues concerning open
source software.

Certification
Objective

10 Chapter 1 ■ Selecting an Operating System

These projects include:

The Linux Kernel Linus Torvalds created the Linux kernel as a hobby programming project in
1991, but it soon grew to be much more than that. The Linux kernel was designed to be compat-
ible with other Unix kernels in the sense that it used the same software interfaces in source code.
This made using open source programs for other Unix versions with the Linux kernel easy.

 The GNU Project The GNU’s Not Unix (GNU) project is an effort by the Free Software
Foundation (FSF) to develop open source replacements for all the core elements of a Unix
OS. In 1991, the FSF had already released the most important such tools, with the notable
exception of the kernel. (The GNU HURD kernel is now available but is not as popular as
the Linux kernel.) Alternatives to the GNU tools include proprietary commercial tools and
open source tools developed for the BSD Unix variants. The tools used on a Unix-like OS
can infl uence its overall “fl avor,” but all of these tool sets are similar enough to give any
Unix variety a similar feel compared to a non-Unix OS.

 GNU is an example of a recursive acronym—an acronym whose expansion
includes the acronym itself. This is an example of geek humor.

Xorg-X11 The X Window System is the GUI environment for most Unix OSs. Most
Linux distributions today use the Xorg-X11 variety of X. As with the basic text-mode tools
provided by the GNU project, choice of an X server can affect some features of a Unix-like
OS, such as the types of fonts it supports. Wayland is a newer X Windows System software
package used in Linux and is gaining in popularity.

Desktop Environments GNOME, KDE Plasma, Cinnamon, Xfce, and other popular open
source desktop environments have largely displaced commercial desktop environments even
on commercial versions of Unix. Thus, you won’t fi nd big differences between Linux and
Unix in this area.

 macOS, described shortly, is technically a commercial Unix but uses a
proprietary Apply GUI instead of an open source desktop environment
running on the X Window System.

Server Programs Historically, Unix and Linux have been popular as server OSs—
organizations use them to run web servers, database servers, email servers, and so on.
Linux runs the same popular server programs as do commercial Unix versions and the
open source BSDs.

User Productivity Programs In this realm, as in server programs, Linux runs the same
software as do other Unix-like OSs. In a few cases, Linux runs more programs or runs
them better. This is mostly because of Linux’s popularity and the vast array of hardware
drivers that Linux offers. If a program needs advanced video card support, for example, it’s
more likely to fi nd that support on Linux than on a less popular Unix-like OS.

Where Does Linux Fit in the OS World? 11

 On the whole, Linux can be thought of as a member of the family of Unix-like OSs.
Although Linux is technically not a Unix OS, it’s similar enough that the differences are
unimportant compared to the differences between this family as a whole and other OSs,
such as Windows. Because of its popularity, Linux offers better hardware support, at least
on commodity PC hardware. Some Unix varieties offer specifi c features that Linux lacks,
though. For instance, Oracle’s Solaris Unix uses built-in zones that handle virtual machines
better than the tools currently available in Linux.

 Although computers understand only ones and zeroes, human beings
prefer to write programs in a text form known as source code . Although
source code can seem arcane to the uninitiated, it’s crystal clear
compared to the form a program must take for a computer to run it: binary
code . A program known as a compiler translates source code to binary
code. (Alternatively, some programming languages rely on an interpreter ,
which converts source code to binary code “on the fly,” eliminating the
need to compile source code.)

 The term open source refers to the availability of source code, which is
generally withheld from the public in the case of commercial programs and
OSs. A programmer with access to a program’s source code can fix bugs,
add features, and otherwise alter how the program operates.

 Comparing Linux to macOS
 Apple macOS is a commercial Unix-based OS that borrows heavily from the BSDs and dis-
cards the usual Unix GUI (namely X) in favor of its own user interface. This makes macOS
both very similar to Linux and quite different from it.

 You can open a macOS Terminal window and type many of the same commands
described in this book to achieve similar ends. If a command described in this book isn’t
present, you may be able to install it in one way or another. macOS ships with some popu-
lar Unix server programs, so you can confi gure it to work much like Linux or another
Unix-like OS as a network server computer.

 macOS differs from Linux in its user interface, though. The macOS user interface is
known as Cocoa from a programming perspective, or Aqua from a user’s point of view.
It includes elements that are roughly equivalent to both X and a desktop environment in
Linux. Because Cocoa isn’t compatible with X from a programming perspective, applica-
tions developed for macOS can’t be run directly on Linux (or on other Unix-like OSs), and
porting them (that is, modifying the source code and recompiling them) for Linux is a non-
trivial undertaking. Thus, native macOS applications seldom make the transition to Linux.

 macOS includes an implementation of X that runs under Aqua. This makes the trans-
fer of GUI Linux and Unix programs to macOS relatively straightforward. The resulting
programs don’t entirely conform to the Aqua user interface, though. They may have but-
tons, menus, and other features that look out of place compared to the usual appearance of
macOS equivalents.

Certification
Objective

12 Chapter 1 ■ Selecting an Operating System

Apple makes macOS available only for its own computers. Its license terms forbid instal-
lation on non-Apple hardware, and even aside from licensing issues, installing macOS on
non-Apple hardware is a nontrivial undertaking. A variant of macOS, known as iOS, runs
on Apple’s iPad and iPhone devices, and is equally nonportable to other devices. Thus,
macOS is largely limited to Apple hardware. Linux, by contrast, runs on a wide variety of
hardware, including most PCs. You can even install Linux on Macintosh computers.

Comparing Linux to Windows
Most desktop and laptop computers today run Microsoft Windows. Thus, if you’re consid-
ering running Linux, the most likely comparison is to Windows. Broadly speaking, Linux
and Windows have similar capabilities; however, there are significant differences in details.
These include the following:

Licensing Linux is an open source OS whereas Windows is a proprietary commercial
OS. Chapter 2, “Understanding Software Licensing,” covers open source issues in greater
detail, but for now you should know that open source software gives you greater control
over your computer than does proprietary software—at least in theory. In practice, you
may need a great deal of expertise to take advantage of open source’s benefits. Proprietary
software may be preferable if you work for an organization that’s only comfortable with
the idea of software that’s sold in a more traditional way. (Some Linux variants, though,
are sold in a similar way, along with service contracts.)

Costs Many Linux varieties are available free of charge and so are appealing if you’re try-
ing to cut costs. However, the expertise needed to install and maintain a Linux installation
is likely to be greater, and therefore more expensive, than the expertise needed to install
and maintain a Windows installation. Different studies on the issue of total cost of owner-
ship of Linux versus Windows have gone both ways, but most tend to favor Linux.

Hardware Compatibility Most hardware components require OS support, usually in the
form of drivers. Most hardware manufacturers provide Windows drivers for their devices
or work with Microsoft to ensure that Windows includes appropriate drivers. Although
some manufacturers provide Linux drivers, too, for the most part the Linux community as
a whole must supply the necessary drivers. This means that Linux drivers may take a few
weeks or even months to appear after a device becomes available. At the same time, Linux
developers tend to maintain drivers for old hardware for much longer than manufacturers
continue to support their own old hardware. Thus, a modern Linux may run better than a
recent version of Windows on old hardware. Linux also tends to be less resource intensive,
so you can be productive on older hardware when using Linux.

Software Availability Some popular desktop applications, such as Microsoft Office, are
available on Windows but not on Linux. Although Linux alternatives such as LibreOffice
are available, they haven’t caught on in the public’s mind. In other realms, the situation
is reversed. Popular server programs, such as the Apache web server, were developed first
for Linux or Unix. Although many such servers are available for Windows, they run more

Certification
Objective

Where Does Linux Fit in the OS World? 13

effi ciently on Linux. If you have a specifi c program you must run, you may want to research
its availability and practicality on any platforms you’re considering.

User Interfaces Like macOS, Windows uses its own unique user interface. This fact
contributes to poor inter-OS portability. (Tools exist to help bridge the gap, though; X
Window System implementations for Windows are available, as are tools for running
Windows programs in Linux.) Some users prefer the Windows user interface to any Linux
desktop environment, but others prefer a Linux desktop environment.

 Microsoft introduced a new user interface, called Metro, in Windows 8.
The idea behind Metro is that it works the same on everything from
smartphones to desktop computers. However, the Metro user interface
quickly became unpopular because it made it difficult for experienced
desktop Windows users to maneuver around, so it was removed as the
default user interface starting with Windows 10 but is still available for
those who prefer it.

Configurability Linux is a much more confi gurable OS than is Windows. Although both
OSs provide means to run specifi c programs at startup, change user interface themes, and
so on, Linux’s open source nature means you can tweak any detail you want. Furthermore,
you can pick any Linux variant you like to get a head start on setting up the system as you
see fi t.

Security Advocates of each OS claim it’s more secure than the others. They can do this
because they focus on different security issues. Many of the threats to Windows come from
viruses, which by and large target Windows and its huge installed user base. Viruses are
essentially a nonissue for Linux; in Linux, security threats come mostly from break-ins
involving misconfi gured servers or untrustworthy local users.

 For over a decade, Windows has dominated the desktop arena. In both homes and
offi ces, users have become familiar with Windows and are used to popular Windows
applications, such as Microsoft Offi ce. Although Linux can be used in such environments,
it’s a less popular choice for a variety of reasons—its unfamiliarity, the fact that Windows
comes preinstalled on most PCs, and the lack of any compelling Linux-only applications
for most users.

 Unix generally, and Linux in particular, on the other hand, have come to dominate the
server market. Linux powers the web servers, database servers, email servers, and so on
that make up the Internet and that many businesses rely on to provide local network ser-
vices. Thus, most people use Linux daily even if they don’t realize it.

 In most cases, it’s possible to use either Linux or Windows on a computer and have it do
an acceptable job. Sometimes, though, specifi c needs dictate use of one OS or another. You
might need to run a particular exotic program, for instance, or your hardware might be too
old for a modern Windows or too new for Linux. In other cases, your own or your users’
familiarity with one OS or the other may favor its use.

14 Chapter 1 ■ Selecting an Operating System

What Is a Distribution?
Up until now, we’ve described Linux as if it were a single OS, but this isn’t really the case.
Many different Linux distributions are available, each consisting of a Linux kernel along
with a set of utilities and configuration files. The result is a complete OS, and two Linux
distributions can differ from each other as much as either differs from macOS or even
Windows. We therefore describe in more detail what a distribution is, what distributions
are popular, and the ways in which distribution maintainers keep their offerings up-to-date.

Creating a Complete Linux-Based OS
We’ve already described some of what makes up a Linux OS, but some details need reitera-
tion or elaboration:

A Linux Kernel A Linux kernel is at the core of any Linux OS, of course. We’ve written
this item as a Linux kernel because the Linux kernel is constantly evolving. Two distribu-
tions are likely to use slightly different kernels. Distribution maintainers also often patch
kernels—that is, they make small changes to fix bugs or add features.

Core Unix Tools Tools such as the GNU tool set, the X Window System, and the utilities
used to manage disks are critical to the normal functioning of a Linux system. Most Linux
distributions include more or less the same set of such tools, but as with the kernel, they
can vary in versions and patches.

Supplemental Software Additional software, such as major server programs, desk-
top environments, and productivity tools, ships with most Linux distributions. As with
core Unix software, most Linux distributions provide similar options for such software.
Distributions sometimes provide their own “branding,” though, particularly in desktop
environment graphics.

Startup Scripts Much of a Linux distribution’s “personality” comes from the way it man-
ages its startup process. Linux uses scripts and utilities to launch the dozens of programs
that link the computer to a network, present a login prompt, and so on. These scripts and
utilities vary between distributions, which means they have different features and may be
configured in different ways.

An Installer Software must be installed to be used, and most Linux distributions provide
unique installation software to help you manage this important task. Thus, two distribu-
tions may install in very different ways, giving you options for key features such as disk
layouts and initial user account creation.

Typically, Linux distributions are available for download from their websites. You can
usually download a CD-R or DVD image file that you can then burn to an optical disc.
When you boot the resulting disc, the installer runs and you can install the OS. You can
also use the same image to create a bootable USB flash drive if your computer lacks an opti-
cal drive. There are also cloud versions of many Linux distributions, which allow you to
download a complete Linux system to run in either a private virtual machine or a commer-
cial cloud such as Amazon Web Services (AWS) or Google Cloud Platform.

Certification
Objective

What Is a Distribution? 15

 If you’re curious about trying out Linux but don’t have a dedicated work-
station or laptop available, install a virtual machine software package such
as VMWare or VirtualBox, which allows you to run a Linux OS inside an
existing macOS or Windows workstation environment without having to
change the system.

 Some Linux installers come complete with all the software you’re likely to install. Others
come with only minimal software and expect you to have a working Internet connection so
that the installer can download additional software. If your computer isn’t connected to the
Internet, be sure to get the right type of installer.

 A Summary of Common Linux Distributions
 Depending on how you count, there are about a dozen major Linux distributions for desk-
top, laptop, and small server computers, and hundreds more that serve specialized pur-
poses. Table 1.1 summarizes the features of the most important distributions.

 tA b Le 1.1 Features of major Linux distributions

Distribution Availability
Package
format Release cycle

Administrator skill
requirements

Arch Free pacman Rolling Expert

CentOS Free RPM approximately 2-year Intermediate

Debian Free Debian 2-year Intermediate to
expert

Fedora Free RPM approximately
6-month

Intermediate

Gentoo Free ebuild Rolling Expert

Mint Free Debian 6-month Novice to
intermediate

openSUSE Free RPM 8-month Intermediate

Red Hat Enterprise Commercial RPM approximately 2-year Intermediate

Slackware Free tarballs Irregular Expert

SUSE Enterprise Commercial RPM 2–3 years Intermediate

Ubuntu Free Debian 6-month Novice to
intermediate

Certification
Objective

16 Chapter 1 ■ Selecting an Operating System

 These features require explanation:

Availability Most Linux distributions are entirely open source or free software; however,
some include proprietary components and are sold for money, typically with a support
contract. Red Hat Enterprise Linux (RHEL) and SUSE Enterprise Linux are the two most
prominent examples of this type of distribution. Both have completely free cousins. For
RHEL, CentOS is a near-clone that omits the proprietary components, and Fedora is an
open version that serves as a testbed for technologies that may eventually be included in
RHEL. For SUSE Enterprise, openSUSE is a free alternative.

 Package Format Most Linux distributions distribute software in packages , which are
collections of many fi les in one. Package software maintains a local database of installed
fi les, making upgrades and uninstallations easy. The RPM Package Manager (RPM) system
is the most popular one in the Linux world, but Debian packages are very common, too.
Other packaging systems work fi ne but are distribution-specifi c, such as the pacman pack-
age management system used in Arch Linux. Slackware is unusual in that it uses tarballs
for its packages. These are package fi les created by the standard tar utility, which is used
for backing up computers and for distributing source code, among other things. The
tarballs that Slackware uses for its packages contain Slackware-specifi c information to help
with package management. Gentoo is unusual because its package system is based on com-
piling most software from source code. This is time-consuming but enables experienced
administrators to tweak compilation options to optimize the packages for their own hard-
ware and software environments.

 Tarballs are similar to the zip files common on Windows. Chapter 8,
“Searching, Extracting, and Archiving Data,” describes how to create and
use tarballs.

Release Cycle We describe release cycles in more detail shortly, in “Understanding Release
Cycles.” As a general rule, distributions with short release cycles aim to provide the latest
software possible, whereas those with longer release cycles strive to provide the most stable
environments possible. Some try to have it both ways; for instance, Ubuntu releases long-
term support (LTS) versions in April of even-numbered years. Its other releases aim to pro-
vide the latest software.

 Administrator Skill Requirements The fi nal column in Table 1.1 provides our personal
estimation of the skill level required to administer a distribution. As you can see, we’ve
described most Linux distributions as requiring “intermediate” skill to administer. Some,
however, provide less in the way of user-friendly GUI administrative tools and so require
more skill. Ubuntu aims to be particularly easy to use and administer.

 Don’t be scared off by the “intermediate” classification of most distribu-
tions. This book’s purpose is to help you manage the essential features of
such distributions.

What Is a Distribution? 17

Most Linux distributions are available for at least two platforms—that is, CPU types:
x86 (also known as IA32, i386, and several variants) and x86-64 (also known as AMD64,
EM64T, and x64). Until about 2007, x86 computers were the most common variety, but
now x86-64 computers have become the standard. If you have an x86-64 computer, you
can run either an x86 or an x86-64 distribution on it, although the latter provides a small
speed improvement. More exotic platforms, such as ARM (for tablets), PowerPC, Alpha,
and SPARC, are available. Such platforms are mostly restricted to servers and to specialized
devices (described shortly).

Which Distribution to use?

With a plethora of different Linux distributions available, one of the most often asked
questions for novice Linux users is which one to try. Some Linux distributions, such as
Red Hat and Oracle, focus on commercial Linux installations, providing paid customer
support. These distributions can be expensive, and they are often hard for novice users
to install and use.

A second type of Linux distributions are those geared toward advanced Linux users. The
CentOS, Slackware, and Gentoo Linux distributions fall in this category. They expect
you to know how to install and configure most of the software and hardware yourself.
Advanced Linux users like to use these distributions because they can customize exactly
what to install on the system.

The third type of Linux distributions are those geared toward novice Linux users. The
popular Fedora, Ubuntu, and Mint Linux distributions fall in this category. The default
installation takes care of most of the software and hardware configuration issues you
need to worry about, and they all provide a wealth of user-friendly graphical tools for
doing administrator functions, such as adding user accounts, exploring disk space, and
working with network connections. These types of Linux distributions are the best way to
go if you’re a novice to the Linux world.

Understanding Release Cycles
Table 1.1 summarized the release cycles employed by a number of common Linux distri-
butions. The values cited in that table are the time between releases. For instance, new
versions of Ubuntu come out every six months, like clockwork. Most other distributions’
release schedules provide some “wiggle room”; if a release date slides a month, that may be
acceptable.

After its release, a distribution is typically supported until sometime after the next ver-
sion’s release—typically a few months to a year or more. During this support period, the

Certification
Objective

18 Chapter 1 ■ Selecting an Operating System

distribution’s maintainers provide software updates to fi x bugs and security problems.
After the support period has passed, you can continue to use a distribution, but you’re on
your own—if you need updated software, you’ll have to compile it from source code your-
self or hope that you can fi nd a compatible binary package from some other source. As a
practical matter, therefore, it’s generally a good idea to upgrade to the latest version before
the support period ends. This fact makes distributions with longer release cycles appealing
to businesses, since a longer time between installations minimizes disruptions and costs
associated with upgrades.

 Two of the distributions in Table 1.1 (Arch and Gentoo) have rolling release cycles.
Such distributions have no version numbers in the usual sense; instead, upgrades occur
in an ongoing manner. Using such a distribution makes it unnecessary to ever do a full
upgrade, with all the hassles that creates; however, you’ll occasionally have to do a dis-
ruptive upgrade of one particular subsystem, such as a major upgrade in your desktop
environment.

 Before the release of a new version, most distributions make pre-release versions avail-
able. Alpha software is extremely new and very likely to contain serious bugs, whereas
 beta software is more stable but nonetheless more likely to contain bugs than is the fi nal
release software. As a general rule, you should avoid using such software unless you want
to contribute to the development effort by reporting bugs or unless you’re desperate to
have a new feature.

 Embedded Linux Systems
 In addition to the mainstream PC distributions, several other Linux distributions are avail-
able that serve more specialized purposes. The term embedded systems describes running a
small stripped-down Linux system on a small microcomputer, such as a phone or monitor-
ing device. Common uses of embedded Linux systems are:

 Android Many cell phones today use a Linux-based OS known as Android . Its user
interface is similar to that of other smartphones, but underneath lies a Linux kernel and a
signifi cant amount of the same Linux infrastructure you’ll fi nd on a PC. Such phones don’t
use X or typical desktop applications, though; instead, they run specialized applications for
cell phones.

 Android is best known as a cell phone OS, but it can be used on other
devices. Some tablets and e-book readers, for instance, run Android.

 Network Appliances Many broadband routers, print servers, and other devices you plug
into a local network to perform specialized tasks run Linux. You can sometimes replace

Certification
Objective

Certification
Objective

Linux in the Cloud 19

the standard OS with a customized one if you want to add features to the device. Tomato
(www.polarcloud.com/tomato) and OpenWrt (openwrt.org) are two examples of such
customized Linux distributions. Don’t install such software on a whim, though; if done
improperly, or on the wrong device, they can render the device useless!

IoT Devices In recent years the term Internet of Things (IoT) has exploded both in the
news and in classrooms. IoT relates to creating a network of small devices that can sense
physical conditions and control systems. Small microprocessors running a specialized OS
monitor data from sensors, such as the temperature, humidity, light, or motion, and use
that data to control motors, locks, and switches. Embedded controllers such as the Arduino
and Beagle Bones devices, as well as more powerful larger controllers such as the Raspberry
Pi, are becoming all the craze in schools and manufacturing environments. The larger con-
trollers, such as the Raspberry Pi, often run a stripped-down version of Linux to provide
more versatility in the applications, such as sending out email alerts for specific sensor
conditions.

TiVo This popular digital video recorder (DVR) uses a Linux kernel and a significant
number of standard support programs, along with proprietary drivers and DVR software.
Although many people who use them don’t realize it, they are Linux-based computers
under the surface.

Most embedded Linux systems typically require little or no administrative work from
users, at least not in the way such tasks are described in this book. Instead, these devices
have fixed basic configurations and guided setup tools to help inexperienced users set criti-
cal basic options, such as network settings and your time zone.

Linux in the Cloud
Cloud technology has greatly changed the landscape of the computer world. Moving com-
puter resources and applications into a shared network environment changes how many
companies do business and provide services to customers. Linux plays an important role in
the cloud world, so it’s a good idea to define just what a cloud is and what type of resources
it provides. This section covers the basics of cloud computing.

What Is Cloud Computing?
The first mention of the term cloud came in documentation for the original ARPANET
network environment in 1977, the precursor to the modern-day Internet. In that documen-
tation, the cloud symbol was commonly used to represent the large network of intercon-
nected servers geographically dispersed. However, in this environment each server was
self-contained and self-sufficient—there was no distributed computing.

http://www.polarcloud.com/tomato

20 Chapter 1 ■ Selecting an Operating System

The term cloud computing is related to distributed computing. In distributed computing,
resources are shared among two or more servers to accomplish a single task, such as run
an application. This environment became the precursor to what we know today as cloud
computing, popularized by companies such as Amazon Web Services (AWS), Google Cloud
Platform, and Microsoft Azure.

Cloud computing provides the ability to deliver computing resources across the Internet.
Now customers can purchase both hardware and software resources as needed from cloud
computing vendors. This includes servers, storage space, databases, networks, operating
systems, and even individual applications. Figure 1.4 demonstrates the three methods for
providing cloud computing services.

F i gu r e 1. 4 Cloud computing methods

Private cloud

Hybrid cloud

Public cloud

As you can see in Figure 1.4, there are three primary methods for providing cloud com-
puting environments:

 ■ Public: In the public cloud computing environments, a third party provides all of the
computing resources outside of the organization. These resources are usually shared
between multiple organizations.

 ■ Private: In the private cloud computing environments, each individual organization
builds its own cloud computing resources to provide resources internally.

 ■ Hybrid: In hybrid cloud computing environments, computing resources are provided
internally within the organization but also connected to an external public cloud to
help supplement resources when needed.

Linux in the Cloud 21

What Are the Cloud Services?
Cloud computing environments can customize the level of resources provided to customers,
depending on each customer’s needs. This section describes the three most popular models
for providing resource levels that you’ll find from cloud computing vendors.

Infrastructure as a Service (IaaS)
In the infrastructure as a service (IaaS) model, the cloud computing vendor provides low-
level server resources to host applications for organizations. These low-level resources
include all of the physical components you’d need for a physical server, including CPU time,
memory space, storage space, and network resources, as shown in Figure 1.5.

F i gu r e 1.5 The IaaS cloud model

“The customer”

VM/
Application

“The cloud”

Operating System

The Internet

Server hardware

Infrastructure as a Service (IaaS) host

VM/
Application

VM/
Application

The server resources provided may be on a single server, or they may be distributed
among several servers. In a distributed environment. the servers may be co-located in a sin-
gle facility or they may be separated into multiple facilities located in separate cities. This
helps provide for increased availability.

As shown in Figure 1.5, in an IaaS model the customer supplies the operating system and
any applications that it needs to run. Most IaaS environments support a multitude of differ-
ent operating systems, including Linux and Windows servers. The customer is responsible

22 Chapter 1 ■ Selecting an Operating System

for any system administration work required for the operating system, as well as any appli-
cation administration. The cloud computing vendor maintains the physical infrastructure
environment.

Platform as a Service (PaaS)
In the platform as a service (PaaS) model, the cloud computing vendor provides both the
physical server environment as well as the operating system environment to the customer,
as shown in Figure 1.6.

F i gu r e 1.6 The PaaS cloud model

“The customer” VM/
Application

“The cloud”

The Internet

Operating System

Platform as a Service (PaaS) host

Server Hardware

VM/
Application

VM/
Application

With the PaaS model. the cloud computing vendor takes responsibility for both the phys-
ical components as well as the operating system administration. It provides system admin-
istration support to ensure the operating system is properly patched and updated to keep
up with current releases and security features. This allows the customer to focus mainly on
developing the applications running within the PaaS environment.

Software as a Service (SaaS)
In the software as a service (SaaS) model, the cloud computing vendor provides a complete
application environment, such as a mail server, database server, or web server. The vendor
provides the physical server environment, the operating system, and the application soft-
ware necessary to perform the function. This is shown in Figure 1.7.

Exam Essentials 23

F i gu r e 1.7 The SaaS cloud model

“Customer”

“The cloud”

Application

Operating System

Software as a Service (SaaS) host

Server Hardware

Summary
Linux is a powerful OS that you can use on everything from a cell phone to a supercom-
puter. At Linux’s core is its kernel, which manages the computer’s hardware. Built atop that
are various utilities (many from the GNU project) and user applications. Linux is a clone
of the Unix OS, with which it shares many programs. Apple macOS is another Unix OS,
although one with a unique user interface. Although Windows shares many features with
Unix, it’s an entirely different OS, so software compatibility between Linux and Windows
is limited. Linux comes in many varieties, known as distributions, each of which has its
own unique “flavor.” Because of this variety, you can pick a Linux version that best suits
your needs, based on its ease of use, release cycle, and other unique features. Linux is a
popular OS used for embedded systems, due to its customizable features and small size.
The same customizable features also makes it ideal for large cloud computing environments
that support applications distributed around the world.

Exam Essentials
Describe what makes a Linux distribution and why there are so many. A Linux distri-
bution is a bundle of components required to run a Linux system. This includes a Linux
kernel and usually utilities for managing the system, application software, and a package

24 Chapter 1 ■ Selecting an Operating System

management system for installing and removing software. Different Linux users have dif-
ferent needs, such as desktop office automation, multimedia production, mathematical
simulations, or server features, such as a web or database server. The different Linux dis-
tributions are each customized to support specific features and functions so that you don’t
have to do that yourself.

Explain how Linux is used in embedded systems. Embedded systems often use a stripped-
down Linux system that specializes in controlling specific hardware. Devices such as
Android phones, IoT monitors, and TiVo recorders each use a customized Linux system
that performs only the functions required for those devices.

Explain how Linux is used in cloud environments. The cloud environment requires a dis-
tributed computing environment that can be expanded as needed. Linux servers provide an
inexpensive platform that can be easily modified.

Describe the basic differences between Linux and the more popular macOS and Windows
environments. The basic difference between Linux and the macOS and Windows envi-
ronments is choice. For just about every feature of the OS, Linux doesn’t lock you in to
a specific environment, but instead provides multiple options for you to choose from.
This includes desktop features, application software, and even what you pay for software
support.

Explain Linux distribution life-cycle management. Each OS requires updating from time
to time to keep up with technology, improve features, fix software bugs, and guard against
security vulnerabilities. Life-cycle management relates to how often an OS is updated.
Some OSs are updated on a regular basis, whereas others are updated only as needed.
Different Linux distributions support different life cycles, depending on their user base.
Some Linux distributions produce long-term support (LTS) versions that are maintained for
three to five years, ideal for corporate environments that don’t want to change OS versions
for hundreds of thousands of employees.

Review Questions 25

Review Questions
You can find the answers in the Appendix A.

1. Which of the following is a function of the Linux kernel? (Choose all that apply.)

A. Allocating memory for use by programs

B. Allocating CPU time for use by programs

C. Creating menus in GUI programs

D. Controlling access to hard disks

E. Enabling programs to use the network

2. Which of the following is an example of an embedded OS?

A. Android

B. CentOS

C. Fedora

D. Mint

E. Red Hat

3. Which of the following is a notable difference between Linux and macOS?

A. Linux can run common GNU programs, whereas macOS cannot.

B. Linux’s GUI is based on the X Window System, whereas macOS is not.

C. Linux cannot run on Apple Macintosh hardware, whereas macOS can run only on
Apple hardware.

D. Linux relies heavily on BSD software, whereas macOS uses no BSD software.

E. Linux supports text-mode commands, whereas macOS is a GUI-only OS.

4. Where did the Linux kernel come from?

A. It was derived from Microsoft Windows.

B. It was derived from Apple macOS.

C. It was derived from AT&T Unix.

D. It was derived from BSD Unix.

E. It was created by Linus Torvalds.

5. True or false: If you log into a Linux system in graphical mode, you cannot use text-mode
commands in that session.

6. True or false: CentOS is a Linux distribution with a long release cycle.

26 Chapter 1 ■ Selecting an Operating System

7. A Linux text-mode login prompt reads .

A. login:

B. welcome:

C. Enter:

D. userid:

E. Enter your userid:

8. A common security problem with Windows that’s essentially nonexistent on Linux is
.

A. Commercial software

B. Network firewalls

C. Network routers

D. Viruses

E. Software management packages

9. Pre-release software that’s likely to contain bugs is known as and .

A. First and second

B. Primary and secondary

C. Alpha and beta

D. Development and production

E. Development and test

10. Linux distributions that have no version number but instead release upgrades in an ongoing
manner are said to have a(n) release.

A. rolling

B. staggered

C. informal

D. systematic

E. hap-hazard

Chapter

2
Understanding
Software Licensing

Objective:

 ✓ 1.3 Open Source Software and Licensing

Software is a type of intellectual property that is governed
by copyright laws and, in some countries, patent laws. As
a general rule, this makes it illegal to copy software unless

you’re the software’s author. Open source software, however, relies on licenses, which are
documents that alter the terms under which the software is released. As described in this
chapter, open source licenses grant additional rights to software users.

In general, open source software owes a great deal to three organizations: the Free
Software Foundation (FSF), the Open Source Initiative (OSI), and the Creative Commons
(CC). Each organization has a distinct philosophy and role to play in the open source
world. There are also numerous specific open source licenses, which are summarized at the
end of this chapter, along with ways that businesses can use them.

Investigating Software Licenses
Copyright law has existed for centuries, and as such, it wasn’t designed with software in
mind. Nonetheless, copyright law does apply to software. Licenses that authors apply to their
software interact with copyright law to create the specific rights that you have—and don’t
have—to use, modify, and redistribute software. Thus you need to understand the basic prin-
ciples, as well as the differences, between proprietary and open source license terms.

Exploring Copyright Protection and Software
A copyright is, as the name implies, a legally recognized right to create a copy of some-
thing. In most countries, if you write a book, take a photograph, or create a computer
program, you (and you alone) have the right to make copies of that book, photograph, or
computer program. However, you can give others the right to make such copies, or even
relinquish control of the copyright to somebody else.

Copyright laws vary from one country to another, but most countries signed the Berne
Convention, an international agreement that requires countries to recognize one another’s
copyrights. That is, if Carol writes a book (or opera, or computer program) in the United
States, that work will be copyrighted not only in the United States, but also in Iceland,
Kenya, the United Kingdom, and other countries that have ratified the treaty.

Because most copyright laws were written long before computers came into being, they
frequently don’t mesh well with the needs of computers. For instance, copyright laws forbid
the copying of a work, but a computer program is useless without such copies. Examples

Certification
Objective

Investigating Software Licenses 29

of copies that must necessarily be made to run a program or that are advisable for safety,
include the following:

 ■ A copy of the program from an installation medium to a disk drive

 ■ A copy of the program from the disk drive to the computer’s random access memory (RAM)

 ■ A copy of the RAM into swap space

 ■ A copy of the RAM into various smaller caches on the motherboard or CPU used to
improve performance

 ■ One or more disk drive backups to protect against disk failures

 Swap space is disk space that serves as a supplement to RAM. For exam-
ple, if RAM fills up, the operating system (OS) begins to use swap space as
if it were RAM.

 In the past, such copies were generally ignored on the principle of fair use —that is,
exceptions that allow portions of copyrighted material to be copied. Other examples of fair
use include quotes used in reviews or news reports and excerpts used in research or teach-
ing. Today, copyright law explicitly recognizes the need to copy software to use it, at least
in the United States.

 Patents, trademarks, and Software

 Copyright is one example of intellectual property, but there are many others. One of
these is patents . A copyright protects a single creative work, which can be considered
an expression of an idea, but a patent protects the idea itself. Patents typically apply to
inventions, such as the proverbial “better mousetrap.”

 In the United States, software patents are legal. Although you can’t patent an entire
program, you can patent the algorithms that the program uses. Such patents are both
common and controversial. Some open source programs don’t use certain fi le formats
because the algorithms required to use them are patented and the patent-holders have
threatened to sue unauthorized users. Critics of software patents contend that most such
patents are trivial or obvious—two things that a patented invention must not be. Compa-
nies sometimes use software patents as a way to block another company from selling a
product, or to demand payment from a company that sells a product.

 In many other countries, software algorithms cannot be patented. Efforts are underway
to change the relationships between software and patents—both to make software pat-
entable in countries where it is not and to restrict or eliminate software patents in coun-
tries where software can currently be patented.

Certification
Objective

30 Chapter 2 ■ Understanding Software Licensing

Trademarks are another type of intellectual property. These are names, logos, and
similar identifi ers of a specifi c company or product. Software and the companies
that produce it often use trademarks, as do hardware companies. An individual with
little involvement in the Linux community trademarked the name Linux in 1994 and
attempted to charge royalties on the name. After a lawsuit, the trademark was trans-
ferred to the Linux Mark Institute, or LMI (www.linuxfoundation.org/programs/legal/
trademark).

 As an end user, you probably won’t have to deal with software patents or trademarks.
Software patent and trademark issues play out at the corporation level. This contrasts
with copyright issues, which can affect individuals who violate copyright law. If you work
for a company that releases software, though, patent and trademark law could affect you.
This is especially true if your software potentially violates a software patent or trademark.
You should consult an attorney if you believe this might be the case.

 Using Licenses to Modify Copyright Terms
 Although software is subject to copyright law, most software is released with a license ,
which is a legal document that claims to modify the rights granted by copyright law.
In most cases, you don’t sign such a license, although in some cases you must click a
button to accept the license terms. In the past, licenses were sometimes printed on the
boxes in which software was distributed. Such licenses are often called end-user license
agreements (EULAs) , click-through licenses , shrink-wrap licenses , or click-wrap
licenses . Open source software generally comes with a license in a fi le, often named
COPYING.

 Courts have often upheld the enforceability of click-through and similar
licenses, although this result is not universal.

 Software licenses can modify copyright terms by making the terms either more or less
restrictive. For example, the General Public License (GPL), which is the license used by
the Linux kernel, grants you the right to redistribute the software, including both the
source code and binaries. This represents a loosening of the restrictions provided by
copyright law.

 As a general rule, licenses for proprietary software restrict your rights under copyright
law, whereas open source licenses grant you additional rights. There can be exceptions
to this rule, though; for instance, a site license is a license for a proprietary program that
grants an organization the right to make a certain number of copies of the program—say,
100 copies of a word processor for all of the company’s computers.

Certification
Objective

http://www.linuxfoundation.org/programs/legal/trademark
http://www.linuxfoundation.org/programs/legal/trademark

Looking at the Free Software Foundation 31

 Looking at the Free Software
Foundation
 The Free Software Foundation (FSF) is a critical force in the open source world. Founded in
1985 by Richard Stallman, the FSF is the driving force behind the GNU’s Not Unix (GNU)
project described in the previous chapter. The FSF has a certain philosophy, described next,
which manifests itself in the GPL, which is FSF’s favored software license.

 Understanding the FSF Philosophy
 The FSF advocates what it calls free software , which it defi nes as freedom to do things
you want to do with the software, not the price of the software. A common phrase used to
make this distinction clear is “free as in speech, not free as in beer.”

 Free software, as the FSF defines it, is different from freeware . Freeware
generally refers to software that’s free of charge but not necessarily free
as in speech.

 The FSF defi nes four specifi c software freedoms:

 ■ Freedom to use the software for any purpose

 ■ Freedom to examine the source code and modify it as you see fit

 ■ Freedom to redistribute the software

 ■ Freedom to redistribute your modified software

 These freedoms are similar to the principles espoused by the OSI, described shortly.
However, there are some important differences in interpretation, as you’ll soon see. The
FSF elaborates on the implications of each of its principles, and their interactions, at
 gnu.org/philosophy/free-sw.html .

 In an ideal world, by the FSF’s standards, all software would be free—distributed with
source code and all of the freedoms just outlined. Some Linux distributions meet this
ideal in isolation, whereas other distributions include proprietary software. Sometimes,
this software is freeware. At other times, it’s a bit of proprietary code that enables the
vendor to restrict redistribution and charge money to sell the software. Since free soft-
ware is not necessarily free of charge, selling it is not a problem from the FSF’s point of
view. However, given the other freedoms, free software’s price tends toward zero as it gets
passed around.

 The point of all this talk of freedom is to empower users—not just developers or com-
panies. If you can modify a program that does almost what you want it to do so that it

Certification
Objective

32 Chapter 2 ■ Understanding Software Licensing

does exactly what you want it to do, that fact is a big advantage compared to a proprietary
program. If you can then redistribute your modifi ed version of the program, you can help
others (assuming they want similar functionality). Thus the FSF philosophy, when applied,
can create a benefi t to the wider community.

 The FSF philosophy and the licenses it inspires are often referred to as copyleft . This
term came from a play on the word copyright, refl ecting the fact that copyright provisions
are used to ensure freedoms that are, in some respects, the exact opposite of what copyright
was created to do—that is, to guarantee the freedom of users to copy software, rather than
to restrict that right. Copyleft licenses require that any modifi ed programs derived can
be distributed only under the same license terms of the original program. Thus, copyleft
licensing is sometimes called reciprocal licensing .

 Examining Free Software and the GPL
 The legal expression of the FSF’s principles comes in the form of the GPL (sometimes
called the GNU GPL). Two current versions of the GPL are common: version 2 and ver-
sion 3. Both versions of the GPL apply the four freedoms of the FSF philosophy to the
licensed software. They also state explicitly that derivative works must be released under
the GPL, thus making it a copyleft license. This clause prevents a company from wholly
appropriating an open source program. For instance, many companies make Linux dis-
tributions, and some use Linux kernels that incorporate bug-fi x “patches.” These kernels,
like the mainstream Linux kernel, are all available under the GPL. No company could
legally release a distribution based on a patched Linux kernel and then refuse to make its
kernel patches available.

 A Linux distribution is a collection of many programs that may use differ-
ent individual licenses. No one license takes priority over the others.

 The GPL version 2 (or GPLv2 for short) was released in 1991, and it held sway for
many years. In 2007, GPLv3 appeared, with the intention of closing certain loopholes
in the GPLv2, particularly with respect to changes in laws and practices since 1991.
Specifi cally, the GPLv3 contains clauses to combat use of hardware restrictions that limit
the FSF’s four freedoms and to address issues related to software patents. Many new pro-
grams are now being released under the terms of the GPLv3, and many older programs
now use the GPLv3 rather than the GPLv2. Some programs have not changed, though.
Notable among these is the Linux kernel itself, which still uses the GPLv2. This is an
important choice because it means that the Linux kernel can still be used at the heart of
devices that are otherwise fairly closed, such as Android-based phones. Many such devices
use restrictive boot processes to prevent unauthorized kernels from booting—a process
that the GPLv3 would forbid.

Looking at the Open Source Initiative 33

enforceable Legal contract

Hancom Inc. freely obtained open source software that was covered under the GNU GPL
from Artifex Software Inc. and then modified the code. Hancom allegedly violated the
license by charging money for the revised software. Artifex Software sued Hancom, who
in turn filed a motion to dismiss the case, claiming that the GNU GPL was not a binding
contract. The Magistrate Jacqueline Scott Corley, Federal Court, denied the motion and
concluded that the GNU GPL was a binding contract, case No.16-cv-06982-JSC (N.D. Cal.
Sep. 12, 2017). The two companies ultimately reached a confidential settlement.

A variant of the GPL is the Lesser GPL (LGPL). Developers often use the LGPL with
libraries, which are collections of code that can be used by other programs. For instance,
in Linux, libraries implement the features that create dialog boxes and menus. Many GUI
programs use these features, and placing them in libraries not only helps programmers,
but also reduces the size of the programs that use them. The wording of the GPL, however,
would require that all programs that use a library with a GPL also be released under the
terms of the GPL. This strong requirement motivated the creation of the LGPL, which
enables programs that use a library with a GPL to be released under another license—even
a commercial license.

Another related license is the GNU Free Documentation License (FDL), for use in
documentation rather than by programs. The GPL, being written for software, doesn’t
apply perfectly to static documents, so the FSF created the GNU FDL to fill the gap. A
notable user of the FDL is Wikipedia (wikipedia.org). All of its content is available under
the terms of the GNU FDL.

Looking at the Open Source Initiative
Bruce Perens and Eric S. Raymond founded the Open Source Initiative (OSI) in 1998 as
an umbrella organization for open source software in general. Its philosophy, described in
more detail shortly, is similar to that of the FSF but differs in some important details. As a
general rule, more software qualifies as open source than qualifies as free (in the way the
FSF means), but precisely what qualifies depends on the open source definition and, in a
strict sense, on what the OSI has approved in terms of its licenses.

Understanding the Open Source Philosophy
In the 1980s and 1990s, the free software movement gathered momentum in certain circles,
including academia and among hobbyists. Businesses, however, were slow to adopt free

34 Chapter 2 ■ Understanding Software Licensing

software. Many who did adopt it did so reluctantly or even unwittingly—system admin-
istrators, pressed to perform their duties with minuscule budgets, would quietly install
Linux, Apache, Samba, and other free software as a way to avoid having to buy expensive
commercial alternatives.

The FSF’s advocacy efforts were (and are) based on a strong moral imperative—software
should be free in the FSF’s view, with “free” defined as described earlier. This approach
appeals to some people, but others—particularly businesses that want to make money sell-
ing software—find this type of advocacy strange at best and threatening at worst.

For these reasons, the OSI’s creators designed their organization as a way to advocate
for free software. By using a new term—open source—and by softening some of the FSF’s
moral imperatives, the OSI aims to promote open source software in the business world.
The difference in tone from the FSF’s moral imperative can be seen in a mission statement
on the OSI’s website (opensource.org): “Open source enables a development method for
software that harnesses the power of distributed peer review and transparency of process.
The promise of open source is higher quality, better reliability, greater flexibility, lower
cost, and an end to predatory vendor lock-in.”

The biggest philosophical difference between the FSF and the OSI is reflected in a GPL
requirement that derived works also be distributed under the GPL. The OSI has certified
many licenses as being open source, including the GPL; however, many of these licenses
lack similar restrictions. Software released under such licenses has, in the past, found its
way into closed-source products. The OSI does not object to such a path, provided the soft-
ware was licensed in a way that permits it. The FSF, on the other hand, explicitly forbade
such appropriation for proprietary uses in its GPL.

Permissive

Several licenses approved by the OSI are called permissive licenses. These include the
Apache license, BSD licenses, and the MIT license (covered later in this chapter). Like a
copyleft license, a permissive license allows users to copy, share, and modify the soft-
ware. However, a permissive license is not as restrictive as copyleft. Whereas copyleft
licenses require that any modified programs derived from a program with the license must
be distributed under the same license terms, permissive licenses have minimal require-
ments concerning software redistribution. Some licenses that fall under the permissive
license umbrella allow additional or different license terms and conditions for the licensed
software. Thus, permissive licensing is sometimes called nonreciprocal licensing.

Today, some tension exists between free software purists in the FSF’s sense and the more
pragmatic open source community. For the most part, however, the two share goals that
are similar enough that their differences are minor. In fact, two terms, free and open source
software (FOSS) and free/libre open source software (FLOSS), are sometimes used as
umbrella terms to refer explicitly to both types of software and development.

Certification
Objective

Certification
Objective

Looking at the Open Source Initiative 35

 Defining Open Source Software
 The open source defi nition appears at opensource.org/definition . It consists of 10 prin-
ciples, which are paraphrased here:

Free Redistribution The license must permit redistribution, including redistribution as
part of a larger work.

 Source Code Availability The author must make source code available and permit redis-
tribution of source code and (if applicable) binary code.

 Permission to Derive Works The license must permit others to modify the software and to
distribute such modifi cations under the same license as the original.

 The open source definition permits, but does not require, that the license
require redistribution under the original license.

Respect for Source Code Integrity The license may restrict redistribution of modifi ed
source code, but only if patch fi les may be distributed along with the original source code.
The license may require that derived works change the software’s name or version number.

 No Discrimination Against Persons or Groups The license must not discriminate against
any person or group of people.

 No Discrimination Against Fields of Endeavor The license must not forbid use of the
program in any fi eld, such as in business or by genetics researchers.

 Automatic License Distribution The license must apply to anybody who receives the
program, without needing a separate agreement.

 Lack of Product Specificity The license must not require that the program be used or
distributed as part of a larger program—that is, you may extract a single program from a
larger collection and redistribute it alone.

 Lack of Restrictions on Other Software The license must not impose restrictions on other
software that’s distributed along with the licensed software.

Technology Neutrality The license must not be restricted based on specifi c technologies
or interfaces.

 The OSI’s 10 principles were derived from those expressed by the Debian
GNU/Linux developers.

 The fi rst three of these principles are the most important, at least in terms of under-
standing the point of open source technology. The collection as a whole bears a strong
resemblance to the FSF’s four principles and the extended description of its implications

Certification
Objective

36 Chapter 2 ■ Understanding Software Licensing

on the FSF’s web page (gnu.org/philosophy/free-sw.html). As already described,
however, some differences exist, particularly with respect to licensing requirements for
derived works.

Looking at the Creative Commons
Whereas the FSF and the OSI are dedicated to promoting software freedoms, the objectives
of the Creative Commons (creativecommons.org) are broader. Its licenses are aimed at
audio recordings, video recordings, textual works, and so on, not just computer programs.
Nonetheless, the Creative Commons as an organization helps promote the types of free-
doms that also concern the FSF and the OSI.

The Creative Commons was founded by Lawrence Lessig. Its goal is to combat what its
creators and supporters view as a creative culture that is increasingly tied to permissions
granted (or not granted) by those who hold copyrights on earlier works.

Much of our current culture is derived from earlier cultural works—for instance, the
Star Wars movie collection is inspired, in part, by common myths and legends. Star Wars
itself is copyrighted, however, which limits the rights of current artists to distribute works
that are derivative of it, at least without permission. The Creative Commons promotes its
aims by providing licenses that help creators retain their works’ copyrights but at the same
time allow others to freely copy, distribute, and use the original artist’s work in a noncom-
mercial manner.

The Creative Commons license suite consists of six licenses that are designed for various
purposes. You can select a license by answering a few questions on the Creative Commons
website at creativecommons.org/choose/, such as whether you want to permit commercial
use of your work.

Using Open Source Licenses
As an individual user, you might not need to delve too deeply into open source license
details. The principles behind the OSI guidelines guarantee that you have the right to use
open source programs as you see fit and even to redistribute those programs. If you’re
building a business, though, and particularly a business that creates or distributes open
source software, you may need to better understand these licenses. Thus, this section
describes a few of them in more detail along with some ways companies use open source
licenses in their business models.

Understanding Open Source Licenses
Every open source license has its own unique characteristics. These are mostly of interest
to developers who might want to contribute to a software project, but on occasion they

Certification
Objective

Using Open Source Licenses 37

may be important to a system administrator. The major open source licenses include the
following:

GNU GPL and LGPL As noted earlier, the Linux kernel uses the GPLv2, and many other
Linux tools use the GPL (either version 2 or version 3). Many Linux libraries use the LGPL.

BSD The Berkeley Source Defi nition (BSD) licenses are used by the open source BSD OSs
and by various software components developed for them. Unlike the GPL, the BSD licenses
allow modifi cations to be distributed under other licenses. The latest versions of this license
are similar to the MIT license in brevity.

 Two BSD licenses are common: the three-clause and the two-clause ver-
sion. The two-clause BSD license is sometimes called the Simplified BSD
or FreeBSD License . The three-clause version is sometimes called the new
or revised BSD license , in reference to a still older version (the four-clause).

MIT The Massachusetts Institute of Technology (MIT) was the original moving force
behind the X Window System (X for short), and the MIT license continues to be used for
Xorg-X11—the implementation of X that is still included with several Linux distributions.
However, some Linux distributions have moved from X to Wayland, which also uses the
MIT license. The MIT license is unusually short—only around 160 words.

Apache Like the BSD and MIT licenses, the Apache license is an open source license
that permits redistribution under the same or another license. If a text fi le called NOTICE
comes with the original work, it must be included in any derived work. This enables the
original developer to provide contact or other information, even to users of heavily modifi ed
versions of the program.

 The original version of the Apache license (version 1.0) was created in 1995. The current
version is 2.0, and thus sometimes the Apache license is referred to as Apache 2 .

 As the name implies, the Apache license originated with the Apache web
browser; however, it’s used by many other projects as well.

 Many additional licenses meet the OSI’s requirements. You can fi nd a complete list on
the Open Source Initiative website at opensource.org/licenses/ .

 The details of the various open source licenses are probably not important to most sys-
tem administrators. You may use and redistribute any open source program as you wish. If
you modify a program, though, you should be aware of redistribution requirements, par-
ticularly if you want to merge two or more programs or distribute a program under a modi-
fi ed license. You should also be aware that some Linux distributions may include software
that doesn’t qualify as open source. Some of this is commercial software, and some of it
falls into a variant category.

Certification
Objective

Certification
Objective

38 Chapter 2 ■ Understanding Software Licensing

 Some combinations of open source licenses are incompatible with one
another, meaning that you can’t legally combine the code and release the
modified version.

 One fi nal concern when describing software licenses is the license for Linux as a whole.
When you download an image fi le or buy a Linux package, the software you obtain uses
many licenses—the GPL, the BSD license, the MIT license, and so on. Most of these
licenses are open source, but some aren’t. Many distributions ship with a few shareware or
not-quite-open-source packages, such as the shareware XV graphics program. Retail pack-
ages sometimes include outright commercial software. For this reason, if you’ve purchased
a Linux package disc, you should not copy it unless you’ve researched the issue and found
out that copying is okay. If the distribution vendor provides free-as-in-beer download links,
copying is probably allowed.

 Linux distributions include installation programs, confi guration programs, and the like.
These tools are usually all that a distribution packager can lay claim to in terms of copy-
right. Most distribution maintainers have made their installation and confi guration rou-
tines available under the GPL or some other open source license, but this isn’t always the
case. Such details can turn what might seem like an open source OS into something that’s
not quite fully open source. Debian maintains a policy of using only open source software
in its main package set, although it lets freely redistributable but non–open source pro-
grams into its “non-free” package set.

 Because a complete Linux distribution is composed of components using many licenses,
it’s not useful to speak of a single copyright or license applying to the entire OS. Instead,
you should think of a Linux distribution as a collection of products that comes with a uni-
fying installation utility. The vast majority of all the programs use one open source license
or another, though.

Understanding Open Source Business Models
 Some Linux distributions, such as Debian, are maintained by volunteers or by not-for-profi t
organizations. Others, such as Red Hat Enterprise Linux, are maintained by a company
that expects to make a profi t. How then can a company make a profi t if its core product
is available for free on the Internet? Several approaches exist to making money from open
source software, including the following:

Services and Support The product itself can be open source, and even given away for
free, while the company sells services and support, such as training and a technical sup-
port phone line. For instance, a game might be open source but require a subscription to an
online service to provide a full set of features.

Dual Licensing A company can create two versions of the product: one version is com-
pletely open source, and another adds features that are not available in the open source
version. The open source version is then akin to the free samples that supermarkets often
provide—it’s a way to draw in paying customers.

Certification
Objective

Summary 39

Multiple Products The open source product may be just one offering from the company,
with revenue being generated by other product lines. These other product lines could be
other software or some other product, such as manuals.

Open Source Drivers A special case of the preceding one is that of hardware vendors.
They might opt to release drivers, or perhaps even hardware-specifi c applications, as open
source as a way to promote their hardware.

 When a hardware vendor releases an open source driver, the code reveals
programming information about the vendor’s hardware. Thus, some ven-
dors are reluctant to release open source drivers.

Bounties Bounties are a crowdfunding method. Users can drive open source creation by
offering to pay for new software or new features in existing software. Sites such as FOSS
Factory (fossfactory.org) and Bountysource (bountysource.com) can help bring together
users, each of whom individually might not be able to offer enough money to motivate
development, to entice programmers to write the desired code. With bounties, the program-
mer who completes the project fi rst is allowed to collect the project’s accumulated funds.

Donations Many open source projects accept donations to help fund development.
Although this isn’t a commercial funding model in the usual sense, it does help fund the
operations of organizations such as the FSF.

 Beyond these commercial opportunities, of course, a great deal of open source software
is developed in academia, by governments, nonprofi t organizations, hobbyists, and so on.
Even companies can be motivated to give back changes they make for themselves, because
hoarding their changes will create more internal work for the company—if an internal
change is not given back to the original software author, the company will have to reapply
the change with each new release of the software.

 e X e R c i S e 2 .1

 ■ Look up the GPLv2, GPLv3, and BSD two-clause licenses. The site opensource.org/
licenses is a good place to fi nd them all. Read and compare them. Which would you
use if you were to write an open source program?

 ■ Read the OSI mission statement (on its About page at opensource.org/about) and
the “Our Core Work” section of the FSF’s About page (fsf.org/about/).

 Summary
 Many intellectual works benefi t from copyright protection, but it never fully fi t with
software. This void gave rise to licenses, which are legal documents that modify the protection
bestowed by copyrights. Where open source software licenses were concerned, various
organizations such as the Free Software Foundation (FSF), the Open Source Initiative (OSI),

40 Chapter 2 ■ Understanding Software Licensing

and the Creative Commons (CC) jumped in. They produced licenses as well as guidelines for
promoting this software style. For a Linux system, it’s wise to view and understand the array
of licenses involved for both the installed software applications and the kernel.

Exam Essentials
Summarize copyright protection and software licenses. A copyright is a legally recognized
right to create a copy of something. Software is a type of intellectual property that is gov-
erned by copyrights (and possibly patent laws). Even though these laws were not designed
with software in mind, they do apply. To remedy this ill fit, most software is released with
a license, which is a legal document that modifies the rights granted by copyright law.
Generally licenses for proprietary software provide more restrictions to your rights under
copyright law, whereas open source licenses grant you additional rights.

Detail the FSF and its freedoms. Founded in 1985 by Richard Stallman, the Free Software
Foundation (FSF) is the driving force behind the GNU’s Not Unix (GNU) project. It advo-
cates free software, which centers on the descriptive phrase “free as in speech, not free as in
beer.” The organization has four specific software freedom definitions: freedom to use the
software for any purpose, freedom to examine the source code and modify it as you see fit,
freedom to redistribute the software, and freedom to redistribute your modified software.
The FSF philosophy and its licenses are often referred to as copyleft.

Describe the OSI and its guidelines. The Open Source Initiative (OSI) was created as
a way to advocate for and promote free software in the business world. Several licenses
approved by the OSI are called permissive licenses, because they allow users to copy, share,
and modify the software but are not as restrictive as copyleft licenses. The OSI’s ten prin-
ciples are briefly stated as free redistribution, available source code, permission to derive
works, respect for source code integrity, no discrimination is tolerated against persons or
groups, no discrimination is acceptable against fields of endeavor, license distribution is
automatic, lack of production specificity, shortage of restrictions on other software, and
technology neutrality is encouraged.

Compare the various open source licenses. The GNU public license (GPL) version 2 was
released in 1991, and in 2007 the GPL version 3 was made public. The GPLv3 is different
than GPLv2 in that it contains clauses intended to combat use of hardware restrictions. The
Lesser GPL (LGPL) derived from the GPL is often used by developers for software libraries.
The BSD license, which allows code modifications to be distributed under other licenses,
is primarily used by the open source BSD OSs. The rather short MIT license is associated
with the X Window System, which also allows code modifications to be distributed under
other licenses. The Apache license, first created in 1995, is similar to the BSD and MIT
licenses in its handling of software modification licensing.

Review Questions 41

Review Questions
You can find the answers in the Appendix A.

1. In order for software to be certified as open source, which of the following is not required?

A. The license must not discriminate against people or groups of people.

B. The license must not require that the software be distributed as part of a specific product.

C. The license must require that changes be distributed under the same license.

D. The program must come with source code, or the author must make it readily available
on the Internet.

E. The license must automatically apply to anybody who acquires the software.

2. Which is true of Linux distributions as a whole?

A. They’re covered by the GPL or the BSD license, depending on the distribution.

B. Sometimes they may not be copied because of the non–open source software they may
contain.

C. They may be copied only after software using the MIT license is removed.

D. They all completely conform to the principles of the open source movement.

E. They all qualify as free software as the FSF uses the term.

3. Which of the following is a key part of the FSF’s philosophy?

A. Developers should use the latest version of the FSF’s GPL.

B. Users should have the right to modify free software and distribute it under a commer-
cial license.

C. Developers should write software only for free operating systems such as GNU/Linux.

D. Users should engage in civil disobedience by copying proprietary software.

E. Users must have the right to use software as they see fit.

4. True or false: Copyright law governs the distribution of software in most countries.

5. True or false: The FSF’s free software definition and the OSI’s 10 principles of open source
software both require that users have the ability to examine a program’s workings—that is,
its source code.

6. True or false: Because their hardware designs are proprietary, hardware vendors cannot
release open source drivers for their products.

7. A license created by the FSF and often used for libraries is the .

A. BSD

B. Apache

C. GPL

D. LGPL

E. MIT

42 Chapter 2 ■ Understanding Software Licensing

8. An organization devoted to promoting open source–like principles in fields such as video
and audio recordings is the .

A. Creative Commons

B. GNU

C. FSF

D. MIT

E. OSI

9. The FSF’s general principles are summarized by the term , which refers to using
copyright laws for purposes that are in some ways contrary to copyright’s original intent.

A. patent

B. copyright

C. copyleft

D. free

E. tradmark

10. Users can motivate programmers to work on open source projects by offering a(n)
 to whomever completes the project first.

A. donation

B. salary

C. present

D. kudos

E. bounty

Investigating Linux’s
Principles and
Philosophy

ObjectIves:

 ✓ 1.1 Linux Evolution and Popular Operating Systems

 ✓ 1.3 Open Source Software and Licensing

Chapter

3

You can frequently select a product or technology on purely
pragmatic grounds—what OS works well for a given task,
which software suite is the least expensive, and so on.

Sometimes, though, understanding the principles and philosophy that underlie a technology
can be useful, and knowing these might even guide your choice.

This is true of some Linux users; the open source model of Linux, which we introduced
in Chapter 1, “Selecting an Operating System,” has implications that can affect how Linux
works. Furthermore, some in the Linux world can become quite passionate about these
principles. Whether or not you agree with these individuals, understanding their point of
view can help you appreciate the Linux culture, which you’ll find in the workplace, online,
at conferences, and so on.

This chapter covers these issues, beginning with information on Linux’s origins and its
development over time up to the present. We then describe open source principles and how
they can affect the way an open source OS works in the real world. Finally, we describe
some of the roles in which Linux can work—as an embedded OS, as a desktop or laptop
OS, and as a server OS.

Linux Through the Ages
Although Linux’s birth date of 1991 is recent by most historical standards, in the computer
world 25 years is an eternity. Nonetheless, the software and culture in the early 1990s, and
even before then, has conveyed quite a legacy to today’s software world. After all, what we
use today is built atop the foundation that was created in the past. Thus, looking at how
Linux originated will help you understand Linux as it exists today.

Understanding Linux’s Origins
In 1991, as is also true today, computers were classified by their sizes and capabilities.
Computers could belong to any of a handful of categories, ranging from desktop personal
computers (PCs) to supercomputers. x86-based computers, which are the direct ancestors
of today’s PCs, dominated the PC marketplace of 1991; however, other types of PCs were
available, including Mac computers. Such computers generally used different CPUs and ran
their own custom OSs.

Linux Through the Ages 45

 Computers today can be classified in much the same way as in 1991,
although some details have changed. A notable addition are embedded
computers, as in smartphones.

 In 1991, most PCs ran Microsoft’s Disk Operating System (MS-DOS, PC-DOS, or
DOS). DOS was extremely limited by today’s standards; it was a single-tasking OS (it
could run only one program at a time) that didn’t even take full advantage of the memory
or CPUs available at the time. The versions of Microsoft Windows available in 1991 ran
on top of DOS. Although the initial versions of Windows helped to work around some
of DOS’s limitations, they didn’t fundamentally fi x any of them. These early versions of
Windows employed cooperative multitasking , for instance, in which programs could volun-
tarily give up CPU time to other processes. The DOS kernel could not wrest control from a
program that hogged CPU time.

 Above the PC level, Unix was a common OS in 1991. Compared to DOS and the version
of Windows of that time, Unix was a sophisticated OS. Unix supported multiple accounts
and provided true preemptive multitasking , in which the kernel could schedule CPU time
for programs, even if the programs didn’t voluntarily give up control. These features were
practical necessities for many servers and for multiuser computers such as minicomputers
and mainframes.

 Unix was not the only multiuser, multitasking OS in 1991. Others, such as
Virtual Memory System (VMS), were available. Unix is most relevant to
Linux’s history, though.

 As time progressed, the capabilities of each class of computer have grown. By most mea-
sures, today’s PCs have the power of the minicomputers or even the mainframes of 1991.
The OSs used on the PCs of 1991 didn’t scale well to more powerful hardware, and today’s
PCs are now powerful enough to run the more sophisticated OSs of 1991. For this reason,
DOS and its small computer contemporaries have been largely abandoned in favor of Unix
and other alternatives.

 Today’s versions of Windows are not derived from DOS. Instead, they use
a new kernel that shares many design features with VMS.

 In 1991, Linus Torvalds was a student at the University of Helsinki, studying computer
science. He was interested in learning about both Unix and the capabilities of the new x 86
computer he’d just purchased. Torvalds began the program that would become the Linux
kernel as a low-level terminal emulator—a program to connect to his university’s larger
computers. As his program grew, he began adding features that turned his terminal pro-
gram into something that could be better described as an OS kernel. Eventually, he began

46 Chapter 3 ■ Investigating Linux’s Principles and Philosophy

writing with the goal of creating a Unix-compatible kernel—that is, a kernel that could run
the wide range of Unix software that was available at the time.

 Unix’s history, in turn, stretched back two more decades, to its origin at AT&T in 1969.
Because AT&T was a telephone monopoly in the United States at that time, it was legally
forbidden from selling software. Therefore, when its employees created Unix, AT&T basi-
cally gave the OS away. Universities were particularly enthusiastic about adopting Unix,
and some began modifying it, since AT&T made the source code available. Thus, Unix had
a two-decade history of open software development to start. Most Unix programs were
distributed as source code, since Unix ran on a wide variety of hardware platforms—binary
programs made for one machine would seldom run on a different machine.

 Early on, Linux began to tap into this reservoir of available software. As noted in
Chapter 1, early Linux developers were particularly keen on the GNU’s Not Unix (GNU)
project’s software, so Linux quickly accumulated a collection of GNU utilities. Much of this
software had been written with workstations and more powerful computers in mind, but
because computer hardware kept improving, it ran fi ne on the x 86 PCs of the early 1990s.

 The 386BSD OS was a competing Unix-like OS in the early 1990s. Today, it
has forked into several related OSs: FreeBSD, NetBSD, OpenBSD, Dragon-
fly BSD, and PC-BSD.Linux quickly acquired a devoted following of devel-
opers who saw its potential to bring workstation-class software to the PC.
These people worked to improve the Linux kernel, to make the necessary
changes in existing Unix programs so that they would work on Linux, and
to write Linux-specific support programs. By the mid-1990s, several Linux
distributions existed, including some that survive today. (Slackware was
released in 1993 and Red Hat in 1995, for example.)

 the Microkernel Debate

 Linux is an example of a monolithic kernel , which is a kernel that does everything a kernel
is supposed to do in one big process. In 1991, a competing kernel design, known as a
 microkernel , was all the rage. Microkernels are much smaller than monolithic kernels;
they move as many tasks as they can into non-kernel processes and then manage the
communications between processes.

 Soon after Linux’s release, Linus Torvalds engaged in a public debate with Andrew
Tanenbaum, the creator of the Minix OS that Torvalds used as an early development
platform for Linux. Minix uses a microkernel design, and Tanenbaum considered Linux’s
monolithic design to be backward.

 As a practical matter for an end user, either design works. Linux and the BSD-derived kernels
use monolithic designs, whereas modern versions of Windows, the GNU HURD, and Minix
are examples of microkernels. Some people still get worked up over this distinction, though.

Using Open Source Software 47

Seeing Today’s Linux World
By the mid-1990s, the most important features of Linux as it exists today had been estab-
lished. Changes since then have included the following:

Improvements in the Kernel The Linux kernel has seen massive changes since 1991, when
it lacked many of the features we rely on today. Improvements include the addition of net-
working features, innumerable hardware drivers, support for power management features,
and support for many non-x86 CPUs.

Improvements in Support Tools Just as work has progressed on the Linux kernel,
improvements have also been made to the support programs on which it relies—the compil-
ers, shells, GUIs, and so on.

Creation of New Support Tools New support tools have emerged over the years. These
range from simple and small utilities to big desktop environments. In fact, some of these
tools, such as modern desktop environments, are far more obvious to the end user than is
the kernel itself.

Creation of New Distributions As noted earlier, Slackware dates to 1993 and Red Hat
(the predecessor to Red Hat Enterprise Linux, CentOS, and Fedora) originated in 1995.
Other distributions have emerged in the intervening years, and some have been quite
important. The Android OS used on smartphones and tablets, for instance, has become
very influential over the past decade.

Linux’s roots remain very much in the open source software of the 1980s and 1990s.
Although a typical desktop or embedded OS user is likely to perceive the OS through the
lens of the GUI, much of what happens under the surface happens because of the Linux
kernel and open source tools, many of which have existed for decades.

Using Open Source Software
The philosophies that underlie much software development for Linux are different from
those that drive most software development for Windows. These differing philosophies
affect how you obtain the software, what you can do with it, and how it changes over time.
This section describes these principles, as well as how Linux functions as a sort of “mag-
net,” integrating software from many sources into one place.

Understanding Basic Open Source Principles
Broadly speaking, software can be described as coming in several different forms, each
with different expectations about payment, redistribution, and users’ rights. The number of
categories varies depend on the depth of analysis and the prejudices of the person doing the
categorization. As a starting point, however, four categories will do:

Commercial Software Individuals or companies develop commercial software with the
intent to sell it for a profit. Developers generally keep the source code for commercial

48 Chapter 3 ■ Investigating Linux’s Principles and Philosophy

source software secret, which means that users can’t normally make changes to the
software except to alter confi guration settings that the software supports. In the past,
commercial software was sold in stores or by mail order, but today it’s often sold via
downloads from the Internet. Redistributing commercial software is generally illegal.
Microsoft Windows and Microsoft Offi ce are both common examples of commercial
software.

Shareware Software From a legal perspective, shareware software is similar to commer-
cial software in that it’s copyrighted and the author asks for payment. The difference is that
shareware is distributed on the Internet or in other ways and “sold” on an honor system—
if you use the software beyond a trial period, you’re expected to pay the author. Shareware
was common in 1991 and is still available today, but it’s much rarer.

Freeware Freeware, like shareware, is available for free. Unlike shareware authors,
though, the authors of freeware don’t ask for payment. Sometimes, freeware is a stripped-
down version of a more complete shareware or commercial program. At other times, the
authors make it available for free to promote another product. Examples include Windows
drivers for many hardware devices or the Adobe Reader program for reading Portable
Document Format (PDF) fi les. As with commercial and shareware programs, freeware gen-
erally comes without source code.

Freeware should not be confused with free software , which is closely
related to open source software. Chapter 2, “Understanding Software
Licensing,” describes free software in more detail.

Open Source Software Open source software is defi ned by a set of 10 principles, available
at opensource.org/docs/osd . The most important of these principles are: The user has
the right to redistribute the program, the source code must be made available, and the user
has the right to make and distribute changed versions of the program. These principles
mean that users can alter open source programs to suit their own needs, even in ways or for
purposes not supported by the original author.

 Variants within each of these categories exist, as well as hybrids that don’t quite fi t into
any category. For instance, the Open Source Initiative maintains a list of licenses that it
has approved as fulfi lling its criteria (opensource.org/ licenses); however, developers
sometimes release software using obscure licenses or using licenses that impose condi-
tions that run afoul of one of the more obscure Open Source Initiative rules. Such soft-
ware is technically not open source, but it might be closer to open source than to another
category.

 Chapter 2 covers specific open source licenses in greater detail.

Certification
Objective

Using Open Source Software 49

The basic idea behind open source software is that software developed in a transparent
manner is likely to be superior to software developed in a closed manner. This superiority
(and arguments against it) comes in several ways:

Better Code Exposing source code to the community at large means that it can be
reviewed, judged, and improved on by any interested party. Obscure bugs might be found
and squashed when otherwise they might linger and cause problems in a closed-source
product. However, the validity of this claim is not well supported by research, and smaller
projects might not gain much in the way of interest from other programmers, so they might
not benefit from outside code review.

More Flexibility By providing users with the source code, an open source project allows
users to customize the software for their own needs. If users submit changes back to those
individuals who maintain the software or release them as a new branch of the project, then
everybody can benefit from such changes. Of course, critics would argue that this flexibility
is only a benefit to those with the necessary skill and time to make such changes or to those
with the money to hire somebody to do it.

Lower Cost Although the open source definition does not forbid the sale of software, the
redistribution requirements mean that open source software ends up being available free of
charge. If you want support, though, you may need to purchase a support contract, which
can reduce or eliminate the cost benefits.

Lack of Vendor Lock-In The developers of some proprietary products, and particularly
very popular ones, can make it difficult for competing products by using proprietary file
formats or standards and by not supporting more open standards. Open source tools are
less subject to such problems, since they can be modified to support open standards, even if
they don’t initially do so. As a practical matter, though, even proprietary file formats and
protocols are usually reverse-engineered, so vendor lock-in usually ends up being a tempo-
rary problem rather than a permanent one.

Of course, within the Linux community the general consensus is that each of these fac-
tors is a real point in favor of Linux and of open source software in general; the downsides
noted are generally regarded as minor when compared to the advantages. In the end, you’ll
need to make up your own mind on these matters after using different types of software.

Linux as a Software Integrator
Soon after Unix was created, the OS fragmented into a set of loosely affiliated OSs. These
OSs were incompatible on the binary level but more or less compatible on the source code
level. This is still true today. You can take the same program and compile it for FreeBSD,
macOS, and Linux, and it will work the same on all three platforms—but the compiled
binaries made for one platform won’t work on the others.

There are exceptions to this rule. Some programs rely on features that are available on
just some Unix-like OSs. Others have quirks that make it impossible to compile them on
some OSs. If a program falls into disuse, it may become unusable on newer OSs because it

50 Chapter 3 ■ Investigating Linux’s Principles and Philosophy

relies on compiler or OS features that have changed. Such problems tend to be ironed out
over time, but they do crop up periodically.

 Because of Linux’s popularity, most open source Unix programs compile and work fi ne
on Linux. Commercial programs for Linux also exist, although most of these are obscure
or specialized. In any event, Linux has become an OS that most open source Unix pro-
grams must support. This effect is so strong that many projects now target Linux as the
primary platform.

 Understanding OS Roles
 Computers fi ll many roles in the world, and as computers have become ever more common
and less expensive, those roles have multiplied. Linux can serve as the OS for most of these
roles, each of which draws on its own subset of support utilities. Some of these roles also
require tweaking the kernel itself. We briefl y describe three of these roles: embedded com-
puters, desktop and laptop computers, and server computers.

 Looking At Embedded Computers
 As noted in Chapter 1, embedded computers are specialized devices that fulfi ll a specifi c
purpose. Examples include:

Mobile Phones Modern mobile phones use computers with OSs that range from simple to
complex. Linux powers some of these mobile phones, usually in the form of the Android OS.

 Apple, Microsoft, and other vendors provide their own OSs for mobile
phones.

E-book Readers These devices, like mobile phones, are specialized computers and so use
an OS to power them. For many current e-book readers, that OS is Linux—either a custom
Linux version or Android.

IoT Monitors The Internet of Things (IoT) consists of small embedded systems that moni-
tor physical conditions, such as temperature, humidity, light, or motion, and use that data
to control motors, switches, cameras, and other devices.

DVRs Digital video recorders (DVRs), which record TV shows for later viewing, are
computers with specialized software. Some of these, including the popular TiVo models,
run Linux.

 The MythTV package (mythtv.org) can turn an ordinary PC into a Linux-
based DVR, although you’ll need a TV tuner and other specific hardware to
make it work.

Certification
Objective

Understanding OS Roles 51

Automotive Computers Automobiles have included computers for years. These have
mostly been tucked out of the way to monitor and control the engine and other automotive
systems; however, modern cars increasingly come with computers that users more readily
identify as being computers. They manage global positioning system (GPS) navigation sys-
tems, manage collision avoidance, regulate emergency braking, control the audio system,
and even provide Internet access.

Appliances Televisions, refrigerators, and other appliances are increasingly using comput-
ers to download software updates, monitor energy use, and for other purposes.

 You might also think of tablet computers as falling into this category as well, although
they can more closely resemble desktop or laptop computers. The distinction is mainly one
of how much control the user has over the OS; embedded devices are used, not maintained,
by end users. The system administration tasks described in this book are done at the fac-
tory or by using much simpler and more specialized user interfaces.

 Exploring Desktop and Laptop Computers
 Linux began life on a desktop computer, and although Linux doesn’t come close to domi-
nating that market, desktop computers are a good way to begin learning about Linux.
Laptop computers are similar to desktop computers from a system administration perspec-
tive; both types of computers are often used by a small number of people for productivity
tasks, such as word processing, web browsing, and managing digital photos. For brevity,
we’ll use the term desktop to refer to both types of computers from here on.

 Desktop computers are similar to another class of computer, known as
workstations . Workstations tend to be more powerful and specialized, and
they often run Unix or Linux.

 Linux software for such tasks is widely available and is quite good, although some
people prefer commercial counterparts, such as Microsoft Offi ce or Adobe Photoshop, that
aren’t available for Linux. This preference for a few specifi c commercial products is part of
why Microsoft Windows continues to dominate the desktop market. Some people speculate
that the open source development model doesn’t lend itself to creating popular GUI applica-
tions because software developers tend to be too technically oriented to appreciate fully the
needs of general users. Without an explicit way to require developers to fulfi ll these needs,
which commercial applications create, open source software projects lag behind their com-
mercial counterparts in usability. At worst, open source projects lag behind their commer-
cial counterparts just a bit. Specifi c software that’s required on most Linux-based desktop
computers includes:

 ■ The X Window System GUI (X for short)

 ■ A popular desktop environment, such as GNOME, KDE, Xfce, or Unity

 ■ A web browser, such as Mozilla Firefox

Certification
Objective

52 Chapter 3 ■ Investigating Linux’s Principles and Philosophy

 ■ An email client, such as Mozilla Thunderbird or Evolution

 ■ A graphics editor, such as the GIMP

 ■ An office suite, such as OpenOffice or the similar LibreOffice

 Additional requirements vary depending on the user’s needs. For instance, one user
might need multimedia editing tools, whereas another might need scientifi c data analysis
software.

 Linux distributions such as Fedora and Ubuntu typically install these popular desktop
tools by default, or as a group by selecting a single install-time option. These distributions
are also designed for relatively easy maintenance so that users with only modest skill can
install the OS and keep it running over time.

 Investigating Server Computers
 Server computers can be almost identical to desktop computers in terms of their hardware,
although servers sometimes require bigger hard drives or better network connections,
depending on how they’re used. Many popular network server programs were written for
Unix or Linux fi rst, making these platforms the best choice for running them. Examples
include:

 ■ Web servers, such as Apache

 ■ Email servers, such as sendmail and Postfix

 ■ Databases, such as MySQL

 ■ File servers, such as the Network File System (NFS) or Samba

 ■ Print servers, such as the Common Unix Printing System (CUPS) or Samba

 ■ Domain Name System (DNS) servers, such as the Berkeley Internet Name Domain
(BIND)

 ■ Dynamic Host Configuration Protocol (DHCP) servers, such as the Internet Software
Consortium’s (ISC’s) dhcpd

 ■ Time servers, such as the Network Time Protocol (NTP)

 ■ Remote login servers, such as Secure Shell (SSH) or Virtual Network Computing
(VNC)

 Remote login servers enable users to run desktop-style programs on a
computer remotely. Therefore, they’re sometimes found even on desktop
systems.

 In a large organization, each of these services may have a distinct associated server
computer. It’s possible, though, for one computer to run many of these server programs
simultaneously.

Certification
Objective

Exam Essentials 53

Most of these servers do not require a GUI, so server computers can do without X, desk-
top environments, or the typical desktop programs that you’ll find on a desktop computer.
One of Linux’s advantages over Windows is that you can run the computer without these
elements, and you can even uninstall them completely. Doing so means that the GUI won’t
be needlessly consuming system resources such as RAM. Furthermore, if an item such as X
isn’t running, any security bugs it might harbor become unimportant. Some distributions,
such as Debian, Arch, and Gentoo, eschew GUI configuration utilities. This makes these
distributions unfriendly to new users, but the reliance on text-mode configuration tools is
not a problem to experienced administrators of server computers.

The people who maintain large server computers are generally technically quite profi-
cient and can often contribute directly to the open source server projects that they use. This
close association between users and programmers can help keep server projects on the cut-
ting edge of applications and utilities required in the real world.

Note that the distinction between desktop and server computers is not absolute; a
computer can run a mixture of both types of software. For instance, you might configure
desktop computers in an office environment to run file server software. This configuration
enables users to share their work more easily with others in the office. In a home or small
office setting, running other servers on desktop computers can obviate the need to buy spe-
cialized hardware to fulfill those roles.

Summary
Linux’s development history is tied to that of Unix and to open source development in
general. Open source software is provided with source code and the right to modify and
redistribute the source code. This guarantees your ability to use the software in ways that
the original author did not anticipate or support, provided you have the knowledge and
time to alter it or the resources to hire somebody else to do so. These open source principles
have led to a great deal of popular software, particularly in the server arena; however, open
source developers have been less able to capture the general public’s excitement with appli-
cations designed for desktop computers.

Exam Essentials
Describe the three common uses for Linux systems. Linux systems are commonly
found in embedded systems, desktop systems, and server systems. In embedded systems a
stripped-down version of Linux is used to save storage and memory space. The Linux sys-
tem is usually configured to perform a single function or a limited set of functions. In desk-
top Linux environments the Linux system usually utilizes a graphical desktop interface to
make launching programs and managing files easier. This, however, uses lots of computing
power to run the graphical systems. Linux servers reserve all of their processing power for

54 Chapter 3 ■ Investigating Linux’s Principles and Philosophy

network applications, such as web servers, database servers, and email servers. They almost
never incorporate a graphical desktop interface and require using command-line tools to
perform all functions.

Explain the four models of providing software to customers. The four models of software
distribution are commercial, shareware, freeware, and open source. With commercial soft-
ware, a company releases only the executable program files for a fee. Customers don’t have
the right to view the source code and only have the right to run the executable program.
The shareware model allows program authors to release their executable files to the pub-
lic and request payments but not demand payment. The freeware model allows program
authors to release their executable files to the public without charge but also without any
warranty or rights to decompile the program. In both the shareware and freeware models,
the original program source code is protected by the author. The open source software
model allows an author to release the executable program files and all the source code files
required to build the executable program files free of charge. Customers are free to modify
and recompile the source code as needed to suit their environment.

Describe the difference between a microkernel and a monolithic kernel. A microkernel
splits the kernel functions into separate small programs that interact behind the scenes to
create the OS environment. A monolithic kernel includes all of the kernel functions into a
single program that runs behind the scenes to create the OS environment. The monolithic
kernel allows you to customize what features the kernel supports, but when you leave out
a feature you can’t add it back in without recompiling the kernel. The microkernel model
usually allows you to add and remove kernel features from the running kernel as needed.

Review Questions 55

Review Questions
You can find the answers in the Appendix A.

1. What type of multitasking does Linux use?

A. Preemptive

B. Multiuser

C. Cooperative

D. Single-tasking

E. Single-user

2. Which of the following is a characteristic of all open source software?

A. The software cannot be sold for profit; it must be distributed free of charge.

B. It must be distributed with both the source code and binaries.

C. Users are permitted to redistribute altered versions of the original software.

D. The software was originally written at a college or university.

E. The software must be written in an interpreted language that requires no compilation.

3. Which of the following programs is most likely to be installed and regularly used on a
desktop computer that runs Linux?

A. Apache

B. Postfix

C. Android

D. Evolution

E. BIND

4. True or false: VMS was a common OS on x86 PCs at the time Linux was created.

5. True or false: Some DVRs run Linux.

6. True or false: A Linux computer being used as a server generally does not require X.

7. Linux uses a(n) kernel design, as contrasted with a microkernel design.

A. exo

B. monolithic

C. hybrid

D. distributed

E. unified

56 Chapter 3 ■ Investigating Linux’s Principles and Philosophy

8. A type of software that’s distributed for free but that requires payment on the honor system
if a person uses it is called .

A. open source

B. commercial

C. freeware

D. shareware

E. virus

9. A computer is likely to run a word processor and web browser.

A. server

B. desktop

C. distributed

D. client

E. laptop

10. The software package is an example of a web server written for the Linux
server environment.

A. MySQL

B. LibreOffice

C. Firefox

D. GIMP

E. Apache

Using Common Linux
Programs

ObjeCtives:

 ✓ 1.2 Major Open Source Applications

 ✓ 1.4 ICT Skills and Working in Linux

Chapter

4

This chapter begins a more hands-on look at Linux, as
opposed to the more abstract information presented in the pre-
vious chapters. It starts with a look at Linux desktop environ-

ments, including information on the most common desktop environments and their basic
uses. If you’re using a desktop environment, chances are good you’re doing so in order to
run productivity software; in this chapter, you’ll learn about some common productivity
packages for Linux. In addition, you’ll likely want to install additional productivity soft-
ware, so software package management is briefly covered at the chapter’s end.

Another major use of a Linux system is as a network server, so this chapter covers a few
common server programs that you may encounter. Although you might not need to write
programs, you may have to compile programs from source code, so you should also be
familiar with the common Linux programming tools described in this chapter.

Using a Linux Desktop Environment
Chances are that your first experience with a working Linux system will involve a
desktop environment. A desktop environment is a set of programs that control the
screen, and it also provides small utility programs to perform tasks such as managing
files. Linux provides several desktop environment options, so if you don’t like one,
you can choose another. In addition to presenting information on available desktop
environments, this section describes a few tools that you can use to launch programs and
manage files.

Choosing a Desktop Environment
Depending on your Linux distribution and installation options, chances are good that your
system has more than one desktop environment available. The most common desktop envi-
ronments are as follows:

KDE Plasma The K Desktop Environment (KDE) Plasma (kde.org) is a popular desktop
environment for Linux. It’s the default desktop environment for openSUSE. It includes
many powerful tools that integrate well, and it’s built using the Qt widget set.

Using a Linux Desktop Environment 59

 A widget set is a library that handles GUI features such as menus and
dialog boxes. Qt and GTK+ (part of the GNU project) are two popular
widget sets on Linux today.

GNOME GNOME (gnome.org) is also popular in the Linux desktop environment arena.
It is the default desktop environment for the Fedora and Ubuntu distributions. GNOME
is built atop the GIMP Toolkit (GTK+) widget set. Like KDE Plasma, GNOME includes
many powerful tools that work together. GNOME aims to provide an easy-to-use desktop
environment.

Cinnamon Originally based on GNOME, the Cinnamon desktop environment was ini-
tially available only for the Linux Mint distribution but is now supported by others. Its ease
of use, fl exibility, clean look, and overall friendly experience makes Cinnamon a great desk-
top environment for those who are new to Linux. but seasoned Linux users prefer it as well.

 LXDE The Lightweight X11 Desktop Environment, or LXDE (lxde.org), is, as its full
name suggests, intended to consume few resources and therefore works well on old or mod-
est computers. It is also built on the GTK+ widget set. LXDE is typically the default desk-
top environment on Linux distributions whose primary goal is to consume as few resources
as possible while still being fully functional.

Xfce This popular lightweight desktop environment can be found at xfce.org . It was
originally modeled on a commercial desktop environment known as CDE, but it is built
using the GTK+ widget set. Xfce provides more confi gurability than GNOME. It loads and
runs applications quickly but consumes fewer system resources than most other desktop
environments.

Build Your Own It’s possible to build a desktop environment of your own from components
that you like. Because this can be a rather complex task, it’s best to start with detailed guid-
ance. Open your favorite web search engine, and type how to create your own Linux
desktop environment to fi nd specifi c information on building your custom desktop. At a
minimum, you need a window manager. However, for the confi guration to be a true desktop
environment, you’ll need other components, such as a fi le manager and small productivity
tools. All of the components need to be accessible from some sort of menu system.

 Unfortunately, it’s impossible to give guidelines indicating when one desktop environ-
ment works better than another. However, the following recommendations can help. New
users who are accustomed to Windows or macOS will probably be happiest with KDE
Plasma. The KDE Plasma environment is similar to these traditional desktop operating
systems’ environments. GNOME aims for elegance and ease of use, so it’s a good choice for
those who want a nice-looking user interface. Xfce and LXDE are good choices on systems
that are light on RAM or have low-powered CPUs. People who like to customize every-
thing or who have less capable computers should investigate the build-your-own approach.

60 Chapter 4 ■ Using Common Linux Programs

Before you decide to stick with a particular desktop environment, you may want to try
out two or three of them. In most cases, you can install multiple environments by using
a package manager, as described later in this chapter and in more detail in Chapter 9,
“Exploring Processes and Process Data.”

After your additional desktop environment(s) is installed, you select it when you log
into the computer via a menu. The example in Figure 4.1 shows a Linux Mint system
login screen.

F i gU r e 4 .1 A typical Linux desktop login screen where you choose the user account

To choose the desktop environment on Linux Mint, you must click the mountain
peaks button that is next to the username. An example of the resulting menu is shown in
Figure 4.2.

F i gU r e 4 . 2 GUI login managers usually provide a selection of desktop environments
from which you can choose.

Menu choices on your Linux system will vary, depending on which desktop environ-
ments were installed by default and which ones were added manually. How to select a desk-
top environment varies from one distribution to another, so you may need to peruse your
login screen’s options to select the environment that you want.

Using a Linux Desktop Environment 61

Launching Programs
Most desktop environments provide several ways to launch programs. Details can vary
considerably from one environment to another. However, useful examples include the
following:

Desktop Menus Many desktop environments provide menus along a top, bottom, or side
edge of the screen. One or more items in these menus can give you access to a preselected
set of applications.

Desktop Icons In some desktop environments you can place icons in the main area of
the desktop. Clicking or double-clicking these icons then launches the applications. This
approach generally requires customization. Some default configurations place a few appli-
cations in the main desktop area.

Panels Some desktop environments provide panels where icons for common applications
appear; typically panels are on the sides of the screen. GNOME Shell (a version of the
GNOME desktop environment) uses such a configuration by default—although the panel
appears only when you click the Activities item in the upper-left corner of the screen.

Context Menus You can sometimes right-click in an unused part of the screen to obtain a
context menu with a variety of options, which may include the option to run programs.

Searching for Programs Some desktop environments provide a search feature that you
can use to find a program by name. This search feature may be on the main screen or
within a desktop menu. Typically, you type part of a program’s name, and programs
whose names match appear in a list. You can then select the program that you want to run
from that list.

Terminals You can launch a program called a terminal, which provides a text-mode user
interface inside a window. You can then run either text-mode or GUI programs by typing
their filenames in this window. This approach is covered in more detail in Chapter 5,
“Getting to Know the Command Line.”

To help clarify some of these methods, a couple of examples are in order. First, you’ll
launch the Firefox web browser in the Fedora 30 Workstation distribution using the
GNOME Shell desktop environment.

Follow these steps after you log into the system:

1. Click the Activities item in the upper-left corner of the screen. The result is a panel
(called Favorites) on the left side of the screen, as shown in Figure 4.3.

2. Move the mouse over the Firefox icon, which is the topmost icon in Figure 4.3.

3. Click the Firefox icon. After a brief delay, a Firefox window should open.

Certification
Objective

Certification
Objective

62 Chapter 4 ■ Using Common Linux Programs

F i gU r e 4 . 3 With panels you can launch popular programs in GNOME and some other
desktop environments.

Other ways to do this also exist, such as typing the program’s name in the search field
(visible at the upper middle of Figure 4.3). Because only a handful of programs appear in
the GNOME Shell panel, you must either add programs to it or launch programs that the
Fedora developers did not include by default in some other way.

For comparison, Cinnamon under Linux Mint 18.3 provides several obvious ways to
launch Firefox:

 ■ By clicking its icon near the left side of the screen’s bottom panel (see Figure 4.4).

 ■ By finding its icon in the Favorites panel. You view this panel by clicking on the Menu
icon on the far left-side of the screen’s bottom panel. The Favorites panel is located on
the far left-side of the menu window (see Figure 4.4).

 ■ By locating it via the search feature, which is also located within the Menu system (see
Figure 4.4).

 ■ By finding it in the Applications list within the Menu system. You open the Firefox
application by entering into the Menu system, selecting Internet, and clicking the
Firefox Web Browser icon.

Using a Linux Desktop Environment 63

 F i gU r e 4 . 4 Cinnamon’s desktop interface provides launch methods similar to those
available in Windows.

 With the various desktop environments the widest range of launch options are available
for a handful of popular applications, such as Firefox. For less popular programs you may
need to use the more complex methods, such as locating the program in the Applications
list. You can, however, reconfi gure the desktop environment to add programs that you use
frequently.

 Each distribution sets up its defaults in its own way. Your own GNOME or
Cinnamon configuration might not resemble the ones shown here.

 Using a File Manager
 If you’re used to Windows or macOS, you’ve almost certainly used a fi le manager to
manipulate your fi les. Linux, of course, provides a fi le manager for this purpose too—in
fact, you have a choice of several, although most of them operate in a similar way. As

Certification
Objective

64 Chapter 4 ■ Using Common Linux Programs

an example, consider GNOME Files (formerly called Nautilus), which is GNOME’s
default fi le manager. If you were running GNOME Shell on Fedora, the GNOME Files
(sometimes just called Files) icon resembles a fi ling cabinet in the Favorites panel, as
shown earlier in Figure 4.3 . Your desktop environment may also launch a fi le manager
when you insert a removable disk, such as a USB fl ash drive or DVD disc. Figure 4.5
shows GNOME Files running on a fresh installation.

 F i gU r e 4 .5 GNOME Files provides a view of your files similar to that in other OSs’ file
managers.

 Besides GNOME’s Files, other file managers include Nemo (Cinnamon’s
file manager), Thunar (Xfce’s file manager), and Dolphin (KDE Plasma’s file
manager).

 Because GNOME Files is similar to the fi le managers in other OSs, chances are that
you’ll be able to use its main features quite easily. A few items do deserve mention:

Home The Home location refers to your home directory —that is, the directory where
you store your own user fi les. Ordinarily, you’ll create all of your personal fi les in your
home directory. The default view of GNOME Files, when you launch it manually, is of
your home directory, as shown in Figure 4.5 . The right pane shows the Home directory’s
fi les and subdirectories.

 Starred You can add bookmarks (called Starred in GNOME Files) for locations not shown
in the main panel. Navigate to the folder above the desired location, and right-click on the
folder icon to open a drop-down menu (shown in Figure 4.6). Click the Star option on
the menu list. Newly added bookmarks appear in the GNOME Files’ Starred panel location.
You can star fi les as well.

Using a Linux Desktop Environment 65

 F i gU r e 4 .6 You can star folders to enable quick access to directories that interest you.

 If you double-click a location, GNOME Files will attempt to access it.

Document Properties You can right-click a fi le and select Properties from the resulting
drop-down menu. This produces a Properties dialog box, as shown in Figure 4.7 . The Open
With tab lets you associate a document type with an application.

 F i gU r e 4 .7 GNOME Files lets you associate document types with applications.

66 Chapter 4 ■ Using Common Linux Programs

Working with Productivity Software
The area of productivity software is extremely broad. Hundreds, if not thousands, of
productivity applications exist, and entire books have been written about many of them.
Therefore, in this chapter we give the names and brief descriptions of only a few productiv-
ity tools for common categories. The common tool categories include web browsers, email
clients, office tools, multimedia applications, cloud computing, and mobile applications.
Before describing these tools, it’s best to review a few tips on how to find a program to per-
form a particular task in Linux.

Finding the Right Tool for the Job
Linux provides productivity applications in many broad categories, but if you’re not already
familiar with the field, you might have a hard time tracking them down. This is particularly
true because application names don’t always clearly identify their purpose.

A few techniques can help you to find suitable applications:

Using Desktop Menus You can use the menus or other application display tools on
your desktop environment to locate productivity applications. Such tools often categorize
applications in helpful ways. For example, the KDE Kickoff Application Launcher (shown
previously in Figure 4.4) breaks applications down into categories (Accessories, Graphics,
Internet, and so on) and subcategories, Photography and Scanning in the Graphics cat-
egory, for instance. This can help you track down an application, but only if it’s already
installed.

Using Search Features You may be able to use a search feature, either in a desktop envi-
ronment or in a web browser, to locate a suitable application. Typing in a critical word or
phrase, such as office (in conjunction with Linux if you’re doing a web search) may help
you locate office applications (word processors, spreadsheets, and so on).

Using Tables of Equivalents If you normally use a particular Windows applica-
tion, you may be able to find a Linux substitute for it by consulting a table of
equivalent applications, such as the one at wiki.linuxquestions.org/wiki/
Linux_software_equivalent_to_Windows_software.

Using Others’ Expertise You can ask other people—coworkers, friends, or people in
online forums—for help in finding a suitable application. This technique is particularly
helpful if you’ve performed a basic search but have found nothing that meets your specific
criteria.

Some of these methods, such as using desktop menus, can find only software that’s
already installed. Other techniques, such as web searches, can find programs that you don’t
have installed. You can usually install software with the help of your distribution’s packag-
ing system.

Working with Productivity Software 67

Using a Web Browser
Linux supports a variety of web browsers, including the following:

Chrome Google’s Chrome browser (google.com/chrome) aims to be fast and easy to use.
Since its introduction in 2008, it’s gained rapidly in popularity. Although Chrome is techni-
cally a commercial project, it’s available free of charge. An open source variant, known as
Chromium, is also available.

Firefox This program can be found at mozilla.org. It is the most popular browser for
Linux, and it is also quite popular on Windows and macOS. It’s a complete browser, and
thus it can consume a lot of memory, so it may not be the best choice on an older or weaker
computer.

Web This program, originally called Epiphany, is found at wiki.gnome.org/Apps/Web. As
the web browser for the GNOME desktop, it’s designed to be simple and easy to use.

Konqueror This KDE program serves a dual function: it’s both a web browser and a file
manager. Konqueror does a good job with most web pages. It’s fairly lightweight, and so
it is well worth trying, particularly if you use KDE Plasma. You can read more about it at
kde.org/applications/internet/org.kde.konqueror.

Lynx Most web browsers are GUI programs that display text in multiple fonts, show
graphics inline, and so on. Lynx (lynx.browser.org) is unusual in that it’s a text-based
web browser. As such, it’s a useful choice if you run Linux in text mode or if you don’t
want to be bothered with graphics. Lynx is also useful as a test browser when you develop
your own web pages; if a page is readable in Lynx, chances are that visually impaired peo-
ple who browse the web with speech synthesizers will be able to use your page.

Opera An unusual commercial entrant in the Linux web browser sweepstakes, Opera
(opera.com) claims to be unusually fast. Although Opera is commercial, you can download
it at no charge.

Notably absent from this list is a Microsoft browser. Unfortunately, some websites won’t
work with anything but a Microsoft browser. Other sites are somewhat picky but can work
with at least one Linux browser. Thus you should probably install at least two Linux web
browsers.

Web browsers give users easy access to a world of information—literally! Unfortunately,
the web has a dark side, too. Problems include the following:

 ■ Websites can log user access data, which can be used in marketing or in other ways
that you might not like.

 ■ Much web-based content is dynamic, meaning that websites download small programs
that your web browser runs. This content might be harmless, but it’s increasingly being
used to deliver malware.

 ■ Malicious websites can trick users into giving up sensitive data, such as financial infor-
mation, by pretending to be a trusted site. This technique is known as phishing.

Certification
Objective

Certification
Objective

68 Chapter 4 ■ Using Common Linux Programs

 ■ Some websites are not secure. Data transferred can be read on intervening computers.
Most sites, especially Internet banking sites and online retailers, encrypt their sensitive
data, but you should be cautious when sending such data.

 ■ Because of security concerns, passwords used on most websites are subject to theft.
This can pose a dilemma because it can be hard to remember all of your website pass-
words. Many browsers can do this for you, but that stores your passwords on your
hard disk, which makes them vulnerable to theft or loss.

 Chapter 13, “Creating Users and Groups,” describes how to create
passwords that are both memorable and hard to guess.

 Some of these problems aren’t unique to the web, of course. For instance, most email
transfers are insecure, so you shouldn’t send sensitive data via email.

 Using Email Clients
 Email client programs enable you to read and write email messages. Such programs can
either access a mailbox on your own computer or, using email network protocols described
later, send and receive email with the help of network mail server computers. Common
Linux email clients include the following:

Evolution This program, located at wiki.gnome.org/Apps/Evolution , is a powerful GUI
email client. It also includes address book and scheduling features.

KMail The KDE project’s KMail can be found at userbase.kde.org/KMail . It is well
integrated into the KDE Plasma desktop environment, but you can use it in other desktop
environments if you elect to do so.

Mutt This is one of several text-based email readers. Despite its text-mode interface, Mutt
is quite capable. You can read more about it at mutt.org .

 Thunderbird This application, located at thunderbird.net , is an email client that’s
closely associated with the Firefox web browser.

 Email clients work in a similar way in any OS. Typically, you must confi gure them to
know how to send and receive messages—whether to use the local computer’s facilities or
remote servers. Thereafter, you can read incoming messages and send outgoing messages.

 Using Office Tools
 Linux has several offi ce packages available with some combination of word processors,
spreadsheets, presentation programs, graphics programs, databases, and sometimes other
programs. Examples include the following:

 Calligra This offi ce suite was born out of a split from an earlier popular KDE offi ce
suite, called KOffi ce. Although KOffi ce is no longer maintained, Calligra (calligra.org)
is thriving. Its offi ce suite includes Words (word processor), Stage (presentation), Sheets

Certification
Objective

Working with Productivity Software 69

(spreadsheet), Flow (fl owcharting), and Kexi (database). Besides offi ce applications, Calligra
offers Graphics and Project Management software products.

Apache OpenOffice This offi ce suite, located at openoffice.org , was called OpenOffi ce
.org until its corporate sponsor, Oracle, donated it in 2011 to the Apache group, who is
actively maintaining it. The offi cial name is currently Apache OpenOffi ce . It provides
six applications: Writer (word processor), Calc (spreadsheet), Impress (presentation), Base
(database), Draw (vector graphics), and Math (equation editor).

LibreOffice This offi ce suite was created as a fork of the older pre-Apache OpenOffi ce
.org. It’s becoming the most popular offi ce suite in Linux. It provides six applications:
Writer (word processor), Calc (spreadsheet), Impress (presentation), Base (database), Draw
(vector graphics), and Math (equation editor). You may have noticed that these applications
have the same names as the Apache OpenOffi ce applications. You can read more about it at
libreoffice.org .

 The fork of a program results when a single project splits into two projects,
typically because different groups of developers have diverging goals.

 Most of these programs support the OpenDocument Format (ODF), which is an open
set of fi le formats that’s slowly making inroads as a standard for word processing, spread-
sheet, and other offi ce fi les. Although ODF is intended to enable easy transfer of fi les across
applications, application-specifi c assumptions often hinder such transfers, especially on
complex documents.

 Many other programs exist in this space, although they are not part of an offi ce suite.
Some are unusual. For instance, LyX (lyx.org) can take the place of a word processor, but
it’s built in a unique way to create and edit LaTeX documents. LaTeX is a document format
that’s popular in computer science, mathematics, and other technical fi elds.

 Using Multimedia Applications
 Linux has an excellent reputation as a workhorse server platform, but its capacity as a mul-
timedia OS was lacking. This was largely due to the absence of multimedia applications. In
the last few decades, however, the list of multimedia applications has grown considerably.
Current offerings include the following:

Audacity This audio editor, found at sourceforge.net/projects/audacity , is similar to
commercial products like Sound Forge for other platforms. You can use it to cut sections
from an audio fi le, equalize volume, remove undesired noises, apply artifi cial audio effects,
and more.

Blender You can use this 3D creation suite to create complex 3D images, including both
stills and animations. You can learn more about Blender at blender.org .

Castero This text-based podcast client allows you to subscribe to your favorite podcasts
(and lots of them), easily search for new podcasts, view playlists, and more. You can
explore information about this program at github.com/xgi/castero .

Certification
Objective

Certification
Objective

70 Chapter 4 ■ Using Common Linux Programs

GIMP The GNU Image Manipulation Program (GIMP) (gimp.org) is a still-image manip-
ulation program similar in broad strokes to Adobe Photoshop. (The GTK+ toolkit, which is
the basis of GNOME and many other programs, was originally created for the GIMP.)

ImageMagick This is a suite of graphics programs with a twist: you typically use the
ImageMagick programs from the command line. You can use it to convert fi le formats, add
frames to images, resize images, and so on. You can learn more at imagemagick.org .

Open Broadcaster Software (OBS) Studio Live video streaming is possible with OBS
Studio. In addition, this application allows you to record video and capture audio on
your Linux desktop. It is a powerful program that offers lots of confi gurable features, so
it takes some time to learn, and works best with a multiscreen setup. You obtain it from
 obsproject.com .

 A few motion pictures that used effects rendered via Linux include
Titanic , the Shrek series, and Avatar . Many animated motion pictures were
completely rendered using Linux, including Netflix’s Next Gen , which was
created entirely using Blender.

 Kdenlive If you need to edit the videos you are producing with OBS, Kdenlive (kdenlive
.org) is the solution. It allows you to perform basic video editing all the way to professional
adaptations. And almost any recorded audio or video formats can be used with Kdenlive—
no need for conversion or recoding.

 Given this range of multimedia applications, you can use Linux for everything from
cropping photos of your two-year-old’s birthday party to rendering the effects for major
motion pictures. If you have very special needs, digging a bit may turn up something else—
this list is just the start!

 Using Linux for Cloud Computing
 Public cloud computing is the storage of computer software and/or data over the Internet,
rather than storing it locally on your computer. In this term, cloud represents the Internet and
 computing represents what you are doing over the Internet. In some cases, users access cloud-
computing resources via a web browser. Thus, in theory, Linux can function as a cloud-
computing client platform—just launch a web browser to access the cloud-computing
provider and away you go.

 In practice, complications can arise when you access public cloud-computing services.
For instance, a cloud-computing provider might require that you use a particular web
browser or have a specifi c browser plug-in installed. In some cases, it might be impossible
to meet these requirements in Linux; however, if the provider supports a wide range of
browsers as clients, you shouldn’t have problems using cloud-computing resources.

Certification
Objective

Certification
Objective

Working with Productivity Software 71

 A few notable public cloud-computing resources include the following:

 ■ On-demand streaming media, such as Netflix (netflix.com)

 ■ File storage services, such as Dropbox (dropbox.com)

 ■ Office productivity suites, such as Zoho Office (zoho.com)

 ■ Web-based email, such as Gmail (mail.google.com/)

 Private cloud computing is a slightly different technology in that the cloud is your com-
pany’s (or home’s) network and its local resources, instead of the Internet. Thus, a private
cloud is sometimes called an enterprise or internal cloud . Using this type of cloud provides
higher security but requires more local management and resources.

 Using Linux as the server, you can set up a private cloud for fi le hosting via one of the
following software suite resources:

 ■ ownCloud (owncloud.org)

 ■ Nextcloud (nextcloud.com)

 ■ FileCloud (getfilecloud.com)

 These software suites provide services similar to Dropbox, but instead of being
stored remotely in a public cloud environment, the fi les are typically stored locally
(called self-hosting). However, you can get fancy with these private-cloud software suites
by allowing integration of fi le hosting on operating systems that you install on other
cloud providers, such as Amazon Web Services (AWS), Google Cloud, and Microsoft
Azure. Operating systems that you install on a cloud provider are often referred to as
infrastructure as a service (IAAS).

 Cloud-computing resources are often hosted on servers owned by com-
panies called cloud providers . One example is the popular social media
app, Twitter, which runs on Google Cloud. Cloud providers utilize powerful
hardware servers to offer individual virtualized machines (simulated com-
puter systems that appear and act as physical machines) to their clients.
Typically, they use Linux as the operating system for the hardware server.
But what’s really interesting is that Linux is often the operating system
occupying the client’s virtualized computer as well.

 Using Mobile Applications
 Although Android is a Linux-based OS, for the most part it runs entirely different applica-
tions than do desktop or server implementations of Linux. This is understandable—chances
are that you wouldn’t want to try to write a long document, such as a book, with a cell
phone. Many of the features in a big offi ce program, such as LibreOffi ce’s Write, would go
to waste on a mobile computing device.

Certification
Objective

Certification
Objective

72 Chapter 4 ■ Using Common Linux Programs

 Instead, mobile computing typically focuses on small programs known as apps . In the
case of Android, you can download apps by using an app called Google Play. (A web-based
version is available at play.google.com/store .) Apps typically provide quick and special-
ized computation, often employing features of the phone. For instance, an app can calculate
the calories that you’ve burned while riding a bicycle or retrieve a weather forecast for your
area. Both of these examples use your phone’s GPS features to identify the phone’s (and
your) position.

 Although most Linux applications for desktop and server computers are open source and
available free of charge, some Android apps are not free. Be sure to check the cost before
you download an app.

 Android apps are increasingly a source of malware. You can minimize your
risk by downloading apps only from Google Play or other trustworthy app
stores.

 Using Server Programs
 Linux is a powerful OS for running server programs, so it should come as no surprise that
you can fi nd a wide variety of server programs for Linux. In this section, some common
server protocols and the programs that use them are described. In addition, the process of
installing and launching servers is covered as well as basic information on server security
issues.

 Identifying Common Server Protocols and Programs
 Networks, including the Internet, function by means of network protocols . Network proto-
cols are clearly defi ned descriptions of how two computers should exchange data to achieve
a particular end, such as transferring email or delivering a fi le to be printed. Most protocols
are described in one or more standards documents, known as request for comments (RFC)
documents, each of which has a number. Typically, one RFC document defi nes the proto-
col, and over time additional RFC documents defi ne extensions or protocol modifi cations
as they become necessary.

 Most network protocols involve transferring data over one or more ports , which are
numbered resources on a computer. You can think of a port as being something like a room
number in a building on a college campus—the main number (an Internet Protocol, or IP,
address) identifi es the computer as a whole, and the port number identifi es the protocol
being used. A server program attaches itself to a port number and receives all incoming
requests on that port.

 Table 4.1 summarizes some common port numbers, the protocols with which they’re
associated, and the Linux programs that are often used in conjunction with these protocols.
Many ports and protocols are associated with more than one program. This is because

Using Server Programs 73

Linux provides choices for many protocols; you can choose which of several server pro-
grams to use for a given protocol, just as you can choose which of several word processors
or web browsers to use.

 The /etc/services file links common port numbers to short names that
are often used in other configuration files.

 ta b Le 4 .1 Common port numbers and their purposes

Port number Protocol
Common server
program(s) Explanation

20–21 FTP oftpd, ProFTPD,
Pure-FTPd, vsftpd

The File Transfer Protocol (FTP) is an
old protocol for transferring files over a
network. It supports both anonymous
and password-mediated access. FTP is
unusual in that it uses two ports.

22 SSH OpenSSH The Secure Shell (SSH) is an encrypted
remote access tool. It also supports
file transfers and encrypting other
protocols.

23 Telnet telnetd Telnet is an old unencrypted remote
login protocol. It’s seldom used today,
although its client program, Telnet, can
be a useful network diagnostic tool.

25 SMTP Postfix, qmail, send-
mail

The Simple Mail Transfer Protocol
(SMTP) is the main protocol for moving
email on the Internet. The sender
initiates SMTP transfers.

53 DNS dnsmasq, named The Domain Name System (DNS)
enables computers to look up an IP
address by providing a hostname, or
vice versa. Without it, you’d need to
refer to all computers by IP address
rather than by name.

67 BOOTP,
DHCP

dnsmasq, dhcpd The Bootstrap Protocol (BOOTP) and
its younger cousin, the Dynamic Host
Configuration Protocol (DHCP), both
enable a computer on a local network
to help automatically configure other
computers to use a network.

Certification
Objective

74 Chapter 4 ■ Using Common Linux Programs

Port number Protocol
Common server
program(s) Explanation

80 HTTP Apache HTTPD,
NGINX

The Hypertext Transfer Protocol (HTTP)
is the basis of the World Wide Web
(WWW, or simply the web).

109–110 POP2 and
POP3

Courier, Cyrus IMAP,
Dovecot, UW IMAP

The Post Office Protocol (POP) has gone
through several revisions, each with
its own port. This protocol enables a
recipient to initiate an email transfer, so
it’s often used as the last leg in email
delivery, from a server to the recipient.

118 SQL MySQL, PostgreSQL,

MariaDB

The Structured Query Language (SQL)
is a network-enabled database inter-
face language. If you run a SQL server
on your network, client computers can
access and modify that database.

137–139 SMB/CIFS Samba Microsoft uses the Server Message
Block (SMB)/Common Internet File
System (CIFS) protocols for file and
printer sharing, and Samba implements
these protocols in Linux.

143, 200 IMAP Courier, Cyrus IMAP,
Dovecot, UW IMAP

The Internet Message Access Protocol
(IMAP) is another recipient-initiated
email transfer protocol, similar to POP.
IMAP makes it easier for recipients to
store and manage email on the server
computer permanently, though.

389 LDAP OpenLDAP The Lightweight Directory Access
Protocol (LDAP) is a network protocol
for accessing directories, which in this
context are a type of database. LDAP
is often used to store network login
information, among other things.

443 HTTPS Apache HTTPD,
NGINX

This protocol is a secure (encrypted)
variant of HTTP.

2049 NFS NFS The Network File System (NFS) is a
protocol, and a server of the same
name, for file sharing between Unix and
Unix-like OSs.

ta b Le 4 .1 Common port numbers and their purposes (continued)

Using Server Programs 75

 Table 4.1 is incomplete; it summarizes only some of the more important protocols and
the servers that deliver them. Numerous other protocols and servers exist, many of them for
very specialized tasks.

 Chapter 15, “Managing Network Connections,” describes network
configuration in greater detail.

 Some protocols are most often used on local networks. For instance, DHCP by its nature
is intended to help you manage your own local network by making it easier to confi gure
client computers—just tell the computers to use DHCP, and that’s it. SMB/CIFS is also usu-
ally employed only locally in order to enable users to access one another’s fi les and printers
more easily. Protocols like HTTPS, on the other hand, are generally used on the Internet as
a whole, although they can also be used on local networks.

 server Programs and server Computers

 The term server can apply to an entire computer or to a single program running on that
computer. When applied to a computer as a whole, the term identifi es the purpose of the
computer and the fact that it runs one or more server programs. Server computers typi-
cally provide services that are used by anywhere from a handful to millions of client
computers—that is, the computers that use a server’s services.

 In the networking world, a server (computer or program) listens for a connection from a
client (computer or program) and responds to data transfer requests. Server computers
are often—but not always—more powerful than their clients.

 When you read the word server (or client , for that matter), it may refer either to a com-
puter or to a program. The context usually makes it clear which meaning is intended,
although sometimes this isn’t the case—in fact, sometimes the speaker or writer may not
know! For instance, somebody might report “The Samba server isn’t working.” In such a
case, you need to fi gure out whether it’s the Samba server program or something else on
the server computer that’s causing problems.

 Sometimes, the client-server lines can get blurred. For instance, in offi ce settings, it’s
common for many computers to function as fi le servers by running fi le server software
such as Samba or NFS. Such a confi guration enables Sam to make her fi les available to
Cameron and for Cameron to make his fi les available to Sam. In this situation, both com-
puters function as both client and server and run both types of software. In any given
exchange, though, only one is the client and one is the server.

76 Chapter 4 ■ Using Common Linux Programs

 Focusing on Web Servers
 A web server delivers web pages to internal and/or external network users. If you have ever
used the World Wide Web, you have most likely used two popular web servers that are
offered on Linux:

 Apache HTTPD The Apache HTTPD server is part of the prevalent Linux, Apache,
MySQL, PHP (LAMP) stack for web applications. The original web server software pack-
age was released in 1995. Within less than a year, Apache became the most popular web
server on the Internet. It has continued to maintain this level of popularity due to its stabil-
ity and dependability. The Apache HTTPD server is available not only for Linux, but also
for Unix, BSD, Windows, and even macOS. You can learn more at httpd.apache.org .

NGINX Released in 2002, the NGINX (pronounced Engine X) web server is a relative
newcomer to the market. NGINX can retrieve resources on behalf of a client from one or
more servers, as well as operate as a mail server. Because of these features, and the fact that
it is fast and lightweight, NGINX has won over some major websites, such as Netfl ix. You
can learn more at nginx.org .

 The best feature of these two web servers is that you don’t have to choose one or the
other. Many server administrators choose a dual setup, using both Apache HTTPD and
NGINX. Sometimes a side-by-side architecture is deployed, with each server handling what
it does best—Apache managing dynamic content and NGINX managing static content
(the same display for every user). Others deploy an Apache-in-Back (or NGINX-in-Front)
architecture, allowing NGINX to shine with its resource-retrieval services, and the stable
Apache still providing dynamic content as needed.

 Installing and Launching Servers
 The topic of maintaining server programs is beyond the scope of this book, but you should
be aware of the basics of this task. You can install servers in the same way that you install
other software, as described later in this chapter and in more detail in Chapter 9.

 After the software is installed, you must launch a server. You do this differently than the
way you launch a desktop application. Instead of clicking an icon or menu entry in a GUI,
you typically launch a server by confi guring the computer to run it automatically whenever
it boots. Thereafter, the server program runs in the background, as a daemon —that is, as a
process that runs unattended.

 The word daemon derives from Greek mythology; daemons were
helpful supernatural beings, just as Unix and Linux daemons are helpful
programs.

 Most servers are started automatically when Linux boots. You can also open a terminal
program and type a text-mode command along with a keyword such as start or stop to
start or stop the server manually. The nature of server program startup has been changing

Certification
Objective

Certification
Objective

Using Server Programs 77

with recent distributions, and the topic is beyond the scope of this book. However, it is
helpful to know that various distributions use a particular initialization daemon both to
start and to manage the various server daemons. Be sure to consult your distribution’s doc-
umentation to determine which initialization daemon it uses from the following list:

 ■ System V init (SysV init)

 ■ systemd

 ■ Upstart

Some servers run via a super server, such as xinetd. These server programs run con-
stantly, keeping the servers they manage unloaded except when they’re needed. This
configuration can minimize the memory impact of running many seldom-used servers.
The super server can also function as a security feature, like a bouncer, and keep out the
troublemakers.

Securing Servers
Whenever you run a server, you also run the risk of its being compromised and abused.
Risks fall into several categories:

 ■ Servers can contain bugs that enable outsiders to abuse the software to run programs
locally.

 ■ You can misconfigure a server, granting an outsider greater access to your system than
you had intended.

 ■ Users with accounts and remote access via a server can abuse this trust. This risk is
particularly great if combined with a server bug or misconfiguration.

 ■ A server can be used as a stepping-stone to attack others, making it appear as if an
attack originated from your computer.

 ■ Even without breaking into a computer, an attacker can swamp a server with bogus
data, thus shutting it down. This technique is called a denial-of-service (DoS) attack.

Server security is an extremely complex topic, and details vary from one server to
another. For instance, if you run a server such as a remote login server, Samba, or a POP
or IMAP email server, you probably want to pay careful attention to password security,
since all of these servers rely on passwords. Passwords are unimportant to a DHCP or DNS
server, though. Of course, even if a DHCP or DNS server program doesn’t use passwords,
other server programs running on the same computer might.

Broadly speaking, securing a server requires paying attention to each of the risk factors
just outlined. Specific steps that you can take to secure your servers include the following:

 ■ You should keep your server programs up-to-date by using your package management
tools to upgrade servers whenever upgrades become available. You can also research
specific servers to pick ones that have good security reputations.

 ■ You should learn enough about server configuration to be sure that you can configure
your servers properly.

78 Chapter 4 ■ Using Common Linux Programs

 ■ You should remove unused accounts and audit necessary accounts to be sure that they
use strong passwords.

 ■ You can use firewall configurations to restrict outsiders’ access to server computers
that are intended for internal use only. You can also use firewalls to minimize the risk
of one of your computers being used to attack others.

Managing Programming Languages
Many users never need to deal with programming languages; however, basic knowledge of
what they are and how they differ from one another is important for Linux users for a vari-
ety of reasons. You might need to install languages for users on systems that you manage
or for yourself to compile software from source code. You might also want to learn about
programming, particularly if you want to automate computer management tasks using shell
scripts.

This section presents basic information on programming languages. It begins by describ-
ing the differences between compiled and interpreted languages, which are important to
understand so that you can properly handle program files or choose which you want to use.
Brief descriptions of some common programming languages are also provided so that you can
identify and use their source code files or choose which language you want to learn to use.

Choosing a Compiled vs. an Interpreted Language
At their core, computers understand binary codes—numbers that represent operations,
such as adding two numbers or choosing which of two actions to take. People, however,
are much better at handling words and symbols, such as + or if. Thus most programming
involves writing a program in a symbolic programming language and then translating that
symbolic code into the numeric form that computers understand. Dozens, if not hundreds,
of such programming languages exist, each with its own unique features.

Among high-level languages, two broad categories exist:

Compiled Languages Programmers convert (or compile) a program written in a high-level
language from its original source code form into the machine code form. The compilation
process can take some time—typically a few seconds to several hours, depending on the
size of the program and the speed of the computer. Compilation can also fail because of
errors in the program. When the compilation succeeds, the resulting machine code executes
quickly.

Interpreted Languages Programs written in interpreted languages are converted to
machine code at the time they’re run by a program known as an interpreter. The conver-
sion happens on a line-by-line basis. That is, the program is never completely converted to
machine code; the interpreter figures out what each line does and then does that one thing.
This means that interpreted programs run much more slowly than compiled programs. The
advantage is that interpreted programs are easier to develop, since you don’t need to deal

Managing Programming Languages 79

with the compilation process. Interpreted programs are also easy to modify; just open the
program file in a text editor and save it back. This feature makes interpreted languages
useful for helping with system startup tasks that system administrators might want to
change—administrators can make and test changes quickly.

Programming in assembly Language

In addition to compiled and interpreted languages, another option is assembly language.
This is a language with a simple one-to-one correspondence between machine code
numbers and the symbols that the programmer uses. Assembly language is very low-
level, which means that a skilled assembly language programmer can produce compact
and efficient programs. Assembly language is not very portable, though; it takes a lot of
effort to convert a program written for, say, the x86-64 CPU to run on an ARM processor.
Writing assembly language programs is also harder than writing programs in most high-
level languages. For these reasons, assembly language programs have become rarer as
computers have become more powerful; the speed and size advantages of assembly lan-
guage just aren’t very compelling for most purposes in the early 21st century.

In theory, most languages can be implemented either in compiled or interpreted form. In
practice, though, most languages are most commonly used in just one form or the other.

Some languages don’t fit neatly into either category. See the “Programming in Assembly
Language” sidebar for one important exception. Some others fall into an in-between cat-
egory, such as Java, which is compiled from source code into a platform-independent form
that must be interpreted.

Identifying Common Programming Languages
Linux supports a wide range of programming languages, including the following:

Assembly As noted earlier, this low-level language can produce efficient programs, but it
is difficult to write and is not portable. In fact, referring to assembly as if it were one lan-
guage is a bit misleading, since each CPU architecture has its own assembly language.

C C is arguably the most important compiled language for Linux, since most of the Linux
kernel, as well as a huge number of Linux applications, are written in C. C can produce
fairly efficient code, but it’s also easy to write buggy programs in C because it lacks some
error-checking features that are common in many other languages. C source code files
typically have filenames that end in .c or .h—the .c files are the main source code files,
whereas the .h files are header files, which contain short definitions of the functions in the
.c files, for reference by other files in a program. A large program can consist of dozens, if
not hundreds or thousands, of individual source code files. In Linux, C programs are gener-
ally compiled with the gcc program, which is part of the GNU Compiler Collection (GCC)
package.

Certification
Objective

80 Chapter 4 ■ Using Common Linux Programs

 Although the Linux kernel is mostly written in C, parts of it are written in
assembly language.

C++ C++ is an extension to C that adds object-oriented features, meaning that greater
emphasis is given to data structures and their interactions than to the procedures used to
control the fl ow of the program. Many complex Linux programs, such as KDE and Apache
OpenOffi ce/LibreOffi ce, are written largely in C++. C++ source code fi les can have fi le-
names that end in .cc , .cpp , .cxx , or . c++ , with header fi les ending in .h , .hh , .hpp , .hxx ,
or .h++ . In Linux, C++ is generally compiled with the g++ program, which is part of GCC.

 Java Java was created by Sun Microsystems (now owned by Oracle) as a cross-platform
language that’s somewhere between being compiled and interpreted. It’s become popular as
a language for small applications delivered via websites, although some other programs are
Java-based as well. Java source code usually has a name that ends in .java .

JavaScript Java and JavaScript are often confused with each other, but they are different
in many ways. One difference is that JavaScript is an interpreted scripting language. Also, it
is one of the most popular website programming languages—far more common than Java.
It works alongside Hypertext Markup Language (HTML) and Cascading Style Sheets (CSS)
to provide a majority of the Internet’s web pages. Typically dynamic page information,
such as animated graphics, scrolling jukeboxes, or interactive maps, is driven by JavaScript
programs. Nearly all modern web browsers support JavaScript programs through built-in
interpreters. A JavaScript source code fi le has a .js fi le extension.

 Perl An interpreted language, Perl is designed for easy manipulation of text, but it’s a
general-purpose language that can be used for many other tasks as well. Perl programs
typically have fi lenames that end in .pl , .pm , or .t .

 PHP The PHP: Hypertext Preprocessor, or PHP (a recursive acronym), language was
created for use on web servers in order to generate dynamic content—that is, content that
varies depending on the user, the time of day, or some other criterion. PHP is an interpreted
language, and it requires a PHP-aware web server, such as Apache. Given such a server and
appropriate confi guration, a website can support user logins, shopping carts, different con-
tent based on users’ locations, and so on. PHP fi les most often have names that end in .php ,
although several variants are common.

Python The Python interpreted language makes code readability a major goal. It supports
(but does not require) object orientation. It’s often used for scripting purposes, but it can be
used to write more complex programs, too. Python programs often use .py fi lename exten-
sions, although several variants of this are common too.

 The Python programming language’s name is a reference to the cult British
TV show Monty Python’s Flying Circus .

Certification
Objective

Certification
Objective

Certification
Objective

Certification
Objective

Certification
Objective

Handling Software Packages 81

Shell Scripting Most Linux text-mode shells—the programs that enable entirely keyboard-
based use of the computer—provide their own interpreted languages. Of these, the Bourne
Again Shell (Bash) is the most common, so Bash scripting is quite common. Many of the
fi les that control the Linux startup process are in fact Bash scripts. Such scripts frequently
have no unique fi lename extension, although some use a .sh extension.

 Chapter 11, “Creating Scripts,” covers the basics of creating or modifying
Bash scripts.

 Handling Software Packages
 Installing programs on a Linux distribution has become easier through the years.
However, how software is packaged, installed, and managed can vary greatly from distri-
bution to distribution. It is important to understand these differences in order to take full
advantage of the Linux programs discussed in this chapter. This section merely provides
brief descriptions. More details on installing and managing software packages are pro-
vided in Chapter 9.

 Understanding Software Packages
 On Linux, software programs are bundled into a prebuilt package that has simplifi ed their
installation and management. Packages are managed on Linux using a package manage-
ment system (PMS), which is discussed in detail in Chapter 9.

 These packages are stored on repositories , which are offi cial software storage servers
on the Internet. The repositories can be accessed over the Internet via your Linux system’s
local PMS utilities. The repositories have lots of software packages stored on them, ready
to be explored or installed. Each Linux distribution’s developers work hard to maintain and
protect their offi cial repositories’ software packages. Thus, in most cases, it’s best to obtain
programs from the default distribution repositories. Fortunately, your distribution’s PMS
typically does this by default.

 Identifying Common Package Tools
 Each distribution uses its own PMS and package tools, which are discussed in more detail
in Chapter 9. The following are a few of the primary tools used by the major PMSs:

 dpkg A low-level package tool used as the foundation of the Debian-based family of PMS
tools. It can be used directly to install, manage, and remove software packages. However, it
is limited in function. For example, the dpkg tool cannot download software packages from
the repositories.

Certification
Objective

Certification
Objective

82 Chapter 4 ■ Using Common Linux Programs

rpm The rpm tool is also a low-level package tool similar in function to the dpkg util-
ity. However, it is used as the foundation of the Red Hat Linux package management
system. Though you can use rpm to manage packages, it’s best to use a higher-level PMS
utility.

apt-get This is a text-mode tool for the Debian PMS. With apt-get, you can install
from repositories and remove software packages from your local Linux system. In addi-
tion, you can perform package upgrades for individual packages, all of the packages on
your system, or your entire distribution. However, you will need to use the apt-cache
text-mode tool for determining various pieces of information concerning software
packages.

yum This is a text-mode tool for the Red Hat PMS. It is used on distributions, such as
Red Hat Enterprise Linux (RHEL), Fedora, and CentOS. With yum, you can install from
repositories, remove software packages from your local Linux system, upgrade packages,
and so on. In addition, you can use yum for determining various pieces of information con-
cerning packages and their management, such as displaying a list of the PMS’s configured
repositories.

e x e r C i s e 4 .1

 ■ Try at least two Linux desktop environments. Use each desktop environment for your
normal computing tasks for a day or two so that you can decide which you prefer.

 ■ Try at least two Linux web browsers. Use each to visit your favorite websites. Do you
notice differences in speed or how the elements on the page are laid out? Which do
you prefer?

Summary
When you’re just starting out with Linux, chances are that you’ll begin by using a desk-
top environment—the first set of programs that you see when you log in. A desktop
environment enables you to run more programs, including common productivity tools
such as web browsers, email clients, office utilities, and multimedia applications. If you’re
configuring a computer as a server, of course, you’ll want to run server programs, but
you’ll do this by editing configuration files rather than by launching them from a desktop
environment. If you need to do programming, you should be aware of some common
Linux programming languages, which enable you to write everything from trivial scripts
to huge servers or productivity suites. If your distribution does not come with a needed
desktop productivity program or server application preinstalled, you will have to install it
via a package tool.

Certification
Objective

Certification
Objective

Certification
Objective

Exam Essentials 83

Exam Essentials
Summarize the major features of a Linux desktop. A Linux desktop environment is a
set of programs that control the screen, and it provides access to small utility programs to
perform various productivity tasks. It consists of desktop menus (called context menus),
which are often located around one or more of the environment window’s edges. Icons used
to launch programs can be located in the menus or on the main desktop window. They
may also be located within panels if provided by the environment. Search features are also
provided either within menus or by clicking icons on the desktop. Text-mode interfaces are
offered via a terminal program as well as file managers.

Explain Linux’s use in cloud computing. Linux can function as a cloud-computing client
platform by accessing cloud-based software via a web browser. It can also provide a private
cloud via software such as ownCloud and Nextcloud. Due to its strong server software
platform, Linux is often the hardware server operating system at cloud-computing provider
companies. And it is often the OS used by the client virtual machine as well.

Specify different productivity software products. On Linux, there are web browsers, such
as Firefox, Chrome, Web, Konqueror, and Opera, available in the GUI. There’s even a text-
based browser, Lynx, if you need one. For reading and sending email, you have a choice of
Thunderbird, Evolution, Kmail, and Mutt (which is a text-based email client). If you need
to create a presentation, write a document, or maintain a spreadsheet, on Linux you can
use an application from an office suite, such as Calligra, Apache OpenOffice (previously
called OpenOffice.org), and LibreOffice. For creating graphics, the choices include GIMP
or Blender, and there is a suite of programs that work at the command line, ImageMagik.

Describe Linux programming languages. Because Linux is a wonderful development
platform, it supports several programming languages. Assembly is a low-level language,
and its name actually refers to multiple languages, because each CPU’s architecture has its
own version of it. Languages that require a program compiler on Linux include C and C++.
JavaScript, Perl, PHP, Python, and the Bash shell are interpreted programming languages
available for development on Linux. Java is also available, but it is both compiled and
interpreted.

Provide an overview of the Linux PMS tools. The tools for package management systems
used on Debian-based systems include dpkg, apt-get, and apt-cache. Limited in function,
the dpkg utility is used to install, manage, remove, and check the status of locally available
packages. The apt-get and apt-cache tools provide the same features but can download
and check on software packages residing on repositories.

Red Hat–based Linux systems use the rpm and yum PMS tools. The rpm utility provides
functionality similar to dpkg, whereas yum offers services similar to a combination of what
the apt-get and apt-cache tools furnish.

84 Chapter 4 ■ Using Common Linux Programs

Review Questions
You can find the answers in the Appendix A.

1. Which of the following are Linux desktop environments? (Choose all that apply.)

A. GTK+

B. GNOME

C. KDE Plasma

D. Evolution

E. Xfce

2. If you want to enable one Linux computer to access files stored on another Linux
computer’s hard disk, which of the following network protocols is the best choice?

A. SMTP

B. NFS

C. PHP

D. DNS

E. DHCP

3. In which of the following languages was most of the Linux kernel written?

A. Bash shell script

B. Java

C. C

D. C++

E. Perl

4. True or false: OpenOffice.org forked from Calligra.

5. True or false: Malicious outsiders can disrupt servers even if the computer that runs them is
never broken into.

6. True or false: Python is generally implemented as an interpreted language.

7. Thunderbird is a(n) program. (Specify the general category of the software.)

A. web browser

B. file manager

C. email client

D. office tool

E. multimedia application

Review Questions 85

8. A Linux server that handles the SMB/CIFS protocol normally runs the software.

A. ProFTPD

B. telnetd

C. named

D. Dovecot

E. Samba

9. A program written in a(n)/the programming language is completely converted
to binary form before being run.

A. Python

B. compiled

C. Javascript

D. interpreted

E. Perl

10. You can install and manage various Linux software applications via a(n)
management system.

A. office

B. file

C. email

D. package

E. program

Chapter

5
Getting to Know the
Command Line

ObjeCtives:

 ✓ 1.4 ICT Skills and Working in Linux

 ✓ 2.1 Command Line Basics

 ✓ 2.2 Using the Command Line to Get Help

 ✓ 3.2 Searching and Extracting Data from Files

 You may think of the command line as a relic from the 1970s,
with not much relevance to computing today. Not so! Although
Linux has numerous GUI programs, they’re mostly just fl ashy

front ends to underlying text-mode tools. By learning those command-line tools, you can
unlock Linux’s true power, enabling you to get your work done more quickly. You’ll also be
able to manage should the Linux GUI system fail entirely, or should you need to log in and
administer the system remotely. Command-line tools can also be scripted, meaning that you
can write a simple program that performs a task more quickly or more easily than could be
achieved using the standard programs alone. For these reasons, most chapters in this book
describe both the GUI and command-line methods of getting things done.

 To begin command-line operations, you must know how to start one. With that task in
hand, you must know how to run programs and how to get help. You should also be famil-
iar with several labor-saving features of Linux command lines.

 Starting a Command Line
 A Linux command line, or shell as it’s more properly called, is a program. Just like any
other program, the shell must be launched. You can start a shell in a GUI window called
a terminal program , or you can log into the computer locally via a text-mode console. In
addition, a shell is started when you log into the computer remotely using a text-mode login
protocol. However, that particular method goes beyond the scope of this book.

 The default shell in most Linux distributions is the Bourne Again Shell (Bash), which is
based on an older shell called the Bourne Shell. Other shells are available. Most of these
are similar to Bash in broad strokes, although some details differ. Each account specifi es its
own default shell, so individual users can change their shells if they like. (This is done with
account management tools, such as usermod , which is described in Chapter 13, “Creating
Users and Groups.”)

 Other shells include tcsh , ksh , and zsh . Shell choice is a matter of personal
preference. If you’re just starting out, it’s best to stick with Bash simply
because it’s popular.

 Launching a Terminal
 Most Linux distributions allow you to install various GUI terminal programs. Typically, a
desktop environment comes with its own terminal, so your terminal program choices also

Certification
Objective

Starting a Command Line 89

depend on the desktop environments that you install. Many terminal programs include the
word terminal in their names, although some don’t, such as the KDE Plasma’s Konsole and
generic XTerm.

The details of how to launch a terminal program differ from one desktop environ-
ment to another. You can normally find an entry in your desktop environment’s menus,
as outlined in Chapter 4, “Using Common Linux Programs.” For example, if you’re
using Linux Mint’s Cinnamon desktop environment, you can find the available termi-
nals on the lower panel or the menu Favorites panel, or by following this menu-driven
procedure:

1. Click the Menu button, typically located at the lower-left corner of the screen.

2. Click Administration and use the scroll bar to view the various menu choices. You
should see at least one terminal program in a display similar to Figure 5.1.

F i Gu r e 5 .1 Reaching a terminal via a menu on Cinnamon

3. Click the Terminal icon, and the terminal program will launch.

Many desktop environments also provide a search method for terminal programs. For
example, if you are using the GNOME desktop environment, follow this basic procedure:

1. Click Activities at the upper-left corner of the screen.

2. In the resulting search box, type term, as shown in Figure 5.2.

90 Chapter 5 ■ Getting to Know the Command Line

 F i Gu r e 5 . 2 Reaching a terminal via a search on GNOME

 3. Click the Terminal icon whose program you want to use from the resulting list, and it
will launch.

 The procedure to search for terminal programs can vary greatly among desktops.

 Some distributions allow you to open a terminal application quickly by
pressing Ctrl+Alt+T.

 When launched, the GNOME Terminal program shows a prompt; in Figure 5.3 , it
is [christine@localhost ~]$. This example shows the default Fedora prompt, which
includes your username, your computer’s hostname, your current directory (a tilde, ~ , refers
to your home directory), and a dollar sign ($). Some of these features are likely to change
as you use the shell, as described in Chapter 7, “Managing Files.” If you’re using another
distribution, the prompt is likely to differ in details, although most default prompts end in a
dollar sign ($) or a greater-than symbol (>) for ordinary user shells.

 F i Gu r e 5 . 3 GNOME’s Terminal program is typical and is dominated by a textual
display area.

Starting a Command Line 91

 When you use the administrative account, root , the prompt normally ends
in a hash mark (#). Chapter 12, “Understanding Basic Security,” describes
the root account in more detail.

 Most terminal programs provide common features of GUI programs—you can resize
them, close them, select options from menus, and so on. Details depend on the program
that you’re using, though. You may want to peruse the options available on your terminal
program’s menus so that you can set the font to one you like, change the color scheme, and
so on.

 Most terminal programs support tabs , which are similar to the tabs in a web browser.
In most cases, such as in a GNOME terminal, you can open a tab by clicking on the + box
at the terminal’s upper right. Having multiple tabs open is handy because you can run mul-
tiple programs simultaneously, work easily in multiple directories, or run programs both as
yourself and as root . Alternatively, you can run multiple terminal programs to achieve the
same results.

 When you’re done with a terminal, you can close it like other programs by clicking on
the X in the upper-right corner. Alternatively, you can type exit and press Enter at its shell
prompt.

 Logging into a Text-Mode Console
 At fi rst glance, Linux looks like Windows or macOS in that it’s a GUI operating system.
Scratch the surface, though, and you’ll fi nd a purely text-mode interface waiting. Linux
supports virtual terminals (VTs) , which are virtual screens that can hold various types
of information—textual or graphical. Most Linux distributions run with six or seven
VTs. In CentOS and Red Hat, the fi rst VT typically runs the GUI window system. Fedora
Workstation provides a graphical login screen on VT 1—logging into this screen will start
a GUI on VT 2. Many other distributions provide a graphical login screen on VT 1 and
replace it with a GUI when the user logs in. Other distributions use VT 7 or VT 8 for their
login screen and GUI, leaving VT 1 as a text-mode display.

 You can switch between VTs by pressing Ctrl+Alt+F n , where F n is a function key. (When
switching between text-mode VTs, Alt+F n is suffi cient.)

 The notation Ctrl+Alt+F n refers to pressing the Ctrl key and holding it;
pressing the Alt key and holding it; and then pressing the desired function
key and releasing all three keys at once. The function keys (F1 through F12)
are located at the top of the keyboard. You pick the function key number
that matches the terminal number you want to reach. For example, you’d
use the Ctrl+Alt+F3 key combination to reach VT 3.

92 Chapter 5 ■ Getting to Know the Command Line

 To reach and log into a text-mode console, follow these steps:

 1. Press Ctrl+Alt+F3. You’ll see a text-mode prompt that looks something like the first
few lines in Figure 5.4 .

 F i Gu r e 5 . 4 Reaching and logging into a VT

 2. Type your username at this login prompt, and it will respond with a password prompt.
In Figure 5.4 , the username is christine .

 3. At the password prompt, type in your password.

 4. If your login attempt is successful, you’ll see a Bash prompt like the one shown in
Figure 5.4 .

 When typing in your password at the password prompt for a virtual
console terminal, nothing is displayed. Neither dots nor asterisks are
displayed as they are when using a GUI login manager.

 You can switch back and forth between your text-mode login and your GUI session by
using Ctrl+Alt+F n keystrokes. You can also initiate multiple text-mode logins and switch
between them in the same way. This feature can be handy if you’re trying to debug a prob-
lem that’s related to the GUI.

 When you’re done with your text-mode session, type exit to terminate it. You can also
type logout to end your session.

 Running Programs
 After you’ve opened a terminal or logged in using a text-mode tool, you should know how
to use the shell. The Bash shell includes a few built-in commands, but much of what you’ll
do in a shell involves running other programs. As described in the following sections, you
can run text-mode and GUI programs. Sometimes you may want to run a program in the
background and retain use of the shell for other purposes, which can be convenient in
many situations.

Running Programs 93

 Understanding Text-Mode Program Syntax
 You may think that some master programmer designed and created all the various commands,
but that is not true. While a few do share common programmers, many command programs
were written by different individuals, so you’ll fi nd the way to use them varies as well.

 Fortunately, many commands follow a basic syntax:

COMMAND-NAME [OPTION]... [ARGUMENT]...

 In the command’s syntax structure:

 ■ COMMAND-NAME is the name of the command used to run the program.

 ■ [OPTION] s are additional items added to modify the command’s behavior. There are
typically various OPTION s (also called switches) you can add. The brackets ([]) indicate
that OPTION s are optional, and the three periods (...) show that you can use more than
one OPTION .

 ■ [ARGUMENT] is an item you pass to the command to let the program know you want it
to operate on that item. An argument can also be a subcommand. You can see that it
too is optional due to the brackets, and you can pass multiple ARGUMENT s to the pro-
gram.

 If you want to use more than one command option, often you can squish
them together. For example, to use the options -a and -b , you type -ab .

 The who program displays which users are currently on the system:

 $ who
 rich tty7 2020-07-16 16:40 (:0)
 christine pts/1 2020-07-16 16:37 (192.168.0.102)

 In this book, commands you should type are in bold monospace font ,
and the program output is in standard monospace font .

 However, you can modify what this command displays by adding the -b option to it. In
this case, the program shows when the system was started:

 $ who -b
 system boot 2020-07-16 16:16

 An example of a command that accepts arguments is the cat command, whose name is
short for concatenate . The cat command can quickly display a short text fi le on the screen.
In this example, cat takes the fi lename MyFile.txt as an argument:

 $ cat MyFile.txt
 This is the contents of MyFile.txt.

94 Chapter 5 ■ Getting to Know the Command Line

 Commands, arguments, and filenames are case-sensitive in the shell.

 Be aware that the options (switches) are not standardized between the various programs.
For example, when you use the -b switch with the cat program, it does not display infor-
mation about system startup as the -b option does with the who command, but instead adds
line numbers to any non-blank text fi le line:

 $ cat -b MyFile.txt
 1 This is the contents of MyFile.txt.

 You can learn about command usage details through the Linux man pages. The program
to do this is called man , and you pass it the name of the command that you want to learn
about as an argument, as in man cat to learn about the cat command.

 The “Getting Help Using Man Pages” section later in this chapter describes
the man page system and other documentation in more detail.

 Unfortunately, several commands do not follow the basic standard command syntax.
But all is not lost. The manual pages for the Linux system gives syntax structure for many
programs. To fi nd syntax structure for a particular command, view its man page and look
in the Synopsis section.

 The man command illustrates a feature of some text-mode programs: they can take over
the entire terminal from which they’re launched. In the case of man , you can scroll up or
down in the documentation by using arrow keys, Page Up, Page Down, and so on. Text edi-
tors, such as vi , emacs , and nano , use similar features.

 Running Text-Mode Programs
 Linux stores programs in several locations, including /bin , /usr/bin , and /usr/local/bin .
(Programs that are used mainly by root appear in /sbin , /usr/sbin , and /usr/local/sbin
as well.) If an executable program appears in one of these directories (which make up the
path), you can run it simply by typing its name:

 $ free
 total used free shared buffers cached
 Mem: 3798016 3759004 39012 0 24800 1117444
 -/+ buffers/cache: 2616760 1181256
 Swap: 6291452 0 6291452

 This example command displays information on the computer’s use of memory. You
needn’t be concerned with the details of this command’s output, though; just note that
the free program displayed information in the same terminal in which it was launched.

Running Programs 95

Chapter 9, “Exploring Processes and Process Data,” covers the free program in more
detail.

 You can learn what directories are included in the path—sometimes called the defi ned
path —by typing the following command:

 $ echo $PATH

 The result will be a colon-delimited set of directory names, which the shell searches in
sequence whenever you type a command that it doesn’t handle directly. The PATH is an
environment variable. Environment variables are covered in more detail in Chapter 11,
“Creating Scripts.”

 You can run a program that is not in one of the PATH directories by typing the program’s
directory location along with its name, as follows:

 $ /home/christine/myprogram

 When you run an executable program that is not located in the PATH , it is
called invoking a command outside the defined path .

 If you would like to determine how an executable program would be handled, you can
use the type command as follows:

 $ type free
 free is /usr/bin/free

 The result will show you the program’s directory location (which may be a different
location than what is shown in the preceding example, depending on the Linux distribu-
tion). If the PATH environment variable contains the directory location, you need to enter
only the program’s name to run it.

 Running GUI Programs
 You can run GUI programs from a terminal as well as text-based programs (however,
this doesn’t work if you logged in using a text-mode VT). You must know the pro-
gram’s fi lename to run it. The fi lename is usually related to the name you use to launch
the program from a desktop’s menus, but it’s not always identical. For instance, the
Firefox web browser’s fi lename is firefox , so that’s what you’d need to type to launch
Firefox in this way.

 Some GUI programs produce text-mode output that can be useful in tracking down
the source of problems, so launching a program from a terminal window can be a good
fi rst step when debugging problems. You might also want to launch programs in this way
because it can be quicker than tracking down programs in a desktop environment’s menus,
or because a program doesn’t appear in the environment’s menus.

Certification
Objective

Certification
Objective

96 Chapter 5 ■ Getting to Know the Command Line

 Running Programs in the Background
 When you launch a GUI program from a terminal window, the GUI program opens its own
window or windows. The terminal window remains open but will normally become unre-
sponsive. If you want to type more commands in this window, you can do so by selecting it
and pressing Ctrl+Z. This suspends the running program—that is, it’s sent to sleep. In its
sleeping state, the GUI program won’t respond to input or do any work. However, you can
now use the terminal window to type in commands.

 After you have suspended a program, if you want both to run the GUI program and to
use the terminal from which you launched it, you can type bg (short for background) in the
terminal. Both programs will now be active.

 If you only want to wake the sleeping GUI program, type fg . This command returns the
sleeping GUI program to the foreground , enabling it, but once again this makes your ter-
minal unresponsive. Note that, in this context, the terms background and foreground refer
to the program’s relationship to the shell, not to the position of the program’s windows in a
“stack” of windows on the screen.

 Pressing Ctrl+Z also suspends most text-mode programs, enabling you to
use the shell before returning to the program by typing fg .

 If you know before you launch it that you want to run a program in the background, you
can do so by appending an ampersand (&) to the end of the command line, as in the following:

 $ firefox&

 As shown in Figure 5.5 , this command launches the Firefox web browser in the background,
enabling you to visit web pages and to continue to use the shell.

 F i Gu r e 5 .5 Launching Firefox in the background to allow use of both the web browser
and the shell

Using Shell Features 97

 This background feature is most useful for running GUI programs, but it’s sometimes
used with text-mode programs too. A complex number-crunching program, for instance,
might be designed to run for several minutes or hours and produce no output. You might
therefore want to run it in the background and retain control of your shell. Be aware, how-
ever, that if you launch a program in the background and it produces output to the termi-
nal, that output will continue to appear in your shell, possibly intruding on whatever else
you’re trying to do with the shell.

 Using Shell Features
 Bash includes several features that make using it much easier. Some have already been
described. Many others are beyond the scope of this book. Two, however, deserve atten-
tion: command completion and command history.

 Using Command Completion
Command completion is the hero of everybody who hates typing: it’s a way to enter a long
command or fi lename with a minimal number of keystrokes. To use command completion,
you type part of a command or fi lename and then press the Tab key. If only one command
on the path completes the command, Bash fi lls in the rest—and likewise when using com-
mand completion to refer to fi les.

 If command completion is not working for you, the terminal program may
have it configured to be turned off.

 To illustrate the use of command completion, you can try it out with a few commands:

 1. Launch a shell.

 2. Type wh , then press the Tab key. The computer will probably beep or sound a tone.
This indicates that your incomplete command could be completed by multiple com-
mands, so you must type more characters. (In some configurations, the computer skips
straight to the next step, as if you’d pressed Tab twice.)

 3. Press the Tab key again. The shell displays a list of possible completions, such as
whatis , whereis , and whoami .

 4. Type oa , making your command so far whoa , and press the Tab key again. The com-
puter will probably complete the command: whoami . (If it doesn’t, another program
that completes the command may exist on your computer, so you may need to type
another character or two.)

 5. Press the Enter key. The computer runs whoami , which displays the name of the account
you are currently using.

 Sometimes command completion can complete a command only partially. For instance,
typing gru and then pressing Tab is likely to add a single unique character, b . However,
several commands begin with grub , so you must then add more characters yourself. (These
commands deal with the Grand Unifi ed Bootloader, GRUB, which helps Linux to boot.)

98 Chapter 5 ■ Getting to Know the Command Line

 Some details of how command completion works vary from one distribu-
tion to another.

 Command completion also works with fi les. For instance, you can type cat /etc/ser
followed by the Tab key to have Bash complete the fi lename, and therefore the command,
as cat /etc/services . (This command shows you the contents of a Linux confi gura-
tion fi le.)

 Using Command History
 Bash remembers the recent commands that you’ve typed, and you can use this fact to save
yourself some effort if you need to type a command that’s similar to one you’ve typed
recently. In its most basic form, you can use the up arrow key to enter the previous com-
mand; pressing the up arrow repeatedly moves backward through earlier and earlier com-
mands. Table 5.1 summarizes some other commonly used keystrokes that you can use in
the command history—or even when editing new commands.

 ta b Le 5 .1 Bash editing and command history features

Keystroke Effect

Up arrow Retrieves the previous entry from the command history

Down arrow Retrieves an earlier entry bypassed when using the up arrow

Left arrow Moves the cursor left one character

Right arrow Moves the cursor right one character

Ctrl+A Moves the cursor to the start of the line

Ctrl+E Moves the cursor to the end of the line

Delete key Deletes the character under the cursor

Backspace key Deletes the character to the left of the cursor

Ctrl+T Swaps the character under the cursor with the one to the left of
the cursor

Ctrl+X and then Ctrl+E Launches a full-fledged editor on the current command line

Ctrl+R Searches for a command. Type a few characters, and the shell will
locate the latest command to include those characters. You can
search for the next-most-recent command to include those char-
acters by pressing Ctrl+R again.

Getting Help Using Man Pages 99

 Many of the Bash command-editing features are similar to those used by
the emacs text editor.

 As an example of command history in use, try this:

 1. Type echo $PATH and press the Enter key to see the directories that make up your
defined path.

 2. Press the up arrow key. Your echo $PATH command should reappear.

 3. Press the Backspace key five times to delete $PATH .

 4. Type Hello World to make the new command echo Hello World , and then press
Enter. You should now see the words Hello World displayed on your screen.

 5. Press Ctrl+R. The Bash prompt will change. It now looks like this:
 (reverse-i-search)`': .

 6. Type P (without pressing Enter). Your earlier echo $PATH command will appear.

 7. Press Enter. The echo $PATH command should execute again, and your Bash shell
prompt should return to normal.

 The Ctrl+R search feature searches on anything you enter on a command
line—a command name, a filename, or other command parameters.

 Another history feature is the history command. Type history to view all of the
commands in your history, or add a number (as in history 10) to view the most recent
specifi ed number of commands. Along with the commands, you’ll see a corresponding
number. You can use this number to execute a command from your history. Just type ! ,
follow it with the command number, and press Enter. The shell will display your chosen
command, followed by the command’s results.

 You should experiment with these features. Tab completion and command history are
both powerful tools that can help you avoid a great deal of repetitive typing. Command
history can also be a useful memory aid. For example, if you’ve forgotten the exact name
of a fi le or command that you used recently, you might be able to retrieve it by searching on
part of the name that you do remember.

 Getting Help Using Man Pages
 Sometimes you need help to remember what arguments or options a command can use, or
the proper syntax needed when entering a command. The manual pages (also called man
pages) can help. Manual pages describe not only programs, but also confi guration fi les and
other features of a Linux installation.

Certification
Objective

Certification
Objective

100 Chapter 5 ■ Getting to Know the Command Line

 Before you consult them, though, you should understand their purpose, and therefore
their capabilities and limitations. With that information in mind, you can begin searching
for help in the man page system, including searching for man pages by section or by search-
ing for keywords using the whatis or apropos utility. When you’re reading a man page,
knowing its structure can help you quickly locate the information that you need.

 Understanding the Purpose of Man Pages
 Linux man pages can be an extremely helpful resource, but unlike the help systems in some
OSs, Linux man pages are not supposed to be tutorial in nature. They’re intended as quick
references to help somebody who’s already at least somewhat familiar with a command,
confi guration fi le, or other OS feature. They’re most useful when you need to know the
options to use with a command, the name of an option in a confi guration fi le, or similar
details. If you need to learn a new program from scratch, other documentation is often a
better choice.

 Manual pages also vary greatly in quality; some are very good, but others are frustrat-
ingly terse, and occasionally even inaccurate. For the most part, the programmers who
wrote the program in question write them.

 The upcoming section “Finding Additional Documentation” describes how
to locate documentation that is more tutorial than the man pages.

 In this book, many Linux commands are described in a tutorial style. However, infor-
mation is often omitted on obscure options, subtle program effects, and so on. In principle,
man pages should cover such fi ner points. This makes man pages an excellent resource for
learning more about the commands described in this book, should you need to go further.

 Locating Man Pages by Section Number
 In the simplest case, you can read a man page by typing man followed by the name of a
command, confi guration fi le, system call, or other keyword. Each man page falls into one
of nine categories, as summarized in Table 5.2 .

 ta b Le 5 . 2 Manual sections

Section number Description

1 Executable programs and shell commands

2 System calls provided by the kernel

3 Library calls provided by program libraries

Getting Help Using Man Pages 101

Section number Description

4 Device files (usually stored in /dev)

5 File formats

6 Games

7 Miscellaneous (macro packages, conventions, and so on)

8 System administration commands (programs run mostly or exclusively
by root)

9 Kernel routines

 If you use keywords with man , be aware that they can lead to entries in multiple sections.
In such instances, the man utility returns the entry in the section based on a search order
typically specifi ed by the SECTION setting in the /etc/man_db.conf or the /etc/manpath
.config confi guration fi le (depending on your distribution).

 The precise man page search order defined by SECTION varies from one
distribution to another, but section 1 is usually searched first, followed by
section 8 and then the others.

 You can override this default search behavior by passing a section number before the
keyword. For instance, typing man passwd returns information from manual section 1 on
the passwd command, but typing man 5 passwd returns information from manual sec-
tion 5 on the /etc/passwd fi le format. Some man pages have entries in sections with variant
numbers that include the suffi x p, as in section 1p. These refer to the Portable Operating
System Interface (POSIX) standard man pages, as opposed to the Linux man pages, which
are, for the most part, written by the people who wrote the open source Linux programs
that the man pages describe.

 If you’re just starting out with Linux, chances are that you’ll be most interested in
section 1, executable programs and commands, which is also usually the fi rst section in
the man page search order—although section 6, games, can also be interesting if you
have the time to spare! As you move on to more advanced and administrative tasks,
you’ll fi nd sections 4, 5, and 8 important for device fi les, fi le formats, and programs run
by root . Sections 2, 3, and 9, covering calls and kernel routines, are of most interest to
programmers.

 Get help on using and reading the man pages by typing man man at the
command line.

102 Chapter 5 ■ Getting to Know the Command Line

 Searching for a Man Page
 One problem with man pages is that locating help on a topic can be hard unless you
know the name of the command, system call, or fi le that you want to use. Fortunately,
methods of searching the manual database exist and can help lead you to an appropriate
man page:

Summary Search The whatis command searches summary information contained in man
pages for the keyword you specify. The command returns a one-line summary for every
matching man page. (This summary is the Name section, described shortly, in “Reading
Man Pages.”) You can then use this information to locate and read the man page that you
need. This command is most useful for locating all man pages on a topic. For instance,
typing whatis passwd returns lines confi rming the existence of the man page entries for
 passwd in various sections.

Thorough Search The apropos command performs a more thorough search, of both
the Name and Description sections of man pages. The result looks much like the results
of a whatis search, except that it’s likely to contain many more results. In fact, doing an
apropos search on a very common keyword, such as the , is likely to return so many hits
as to make the search useless. A search on a less common word is likely to be more useful.
For instance, typing apropos passwd may return 16 entries on a system, including those
for gpasswd , smbpasswd , and passwd —all various password utilities or tools involving
password fi les.

 The -k option to man is equivalent to apropros . Thus you can type either
apropos keyword or man -k keyword .

 If you receive a “nothing appropriate” response from either the whatis or the apropos
command, typically you need to change the keyword that you are using. However, it may
indicate that the man database has not been updated. This is typically true on a fresh Linux
installation or after a new program is installed. You can update the man database manually
by using super user privileges and typing the command makewhatis (on older Linux dis-
tributions) or mandb . (Using super user privileges is described in Chapter 12.)

 Details of what man pages are available vary from one distribution
to another. This will affect the results of both whatis and apropos
searches.

 Reading Man Pages
 The convention for man pages is a concise style that employs several sections, each of which
has a particular purpose. This organization can help you locate the information that you

Getting Help Using Man Pages 103

need—you might need information that you know is in a particular section, in which case
you can quickly scan down to that section. Common sections include the following:

Name A man page begins with a statement of the command, call, or file that’s described,
along with a few words of explanation. For instance, the man page for man (section 1) has a
Name section that reads man — an interface to the on-line reference manuals.

Synopsis The synopsis provides a brief description of how a command is used. Optional
parameters appear in square brackets, such as [-D]. An ellipsis (...) denotes an optional
set of repeated elements, such as multiple filenames if a command takes one or more
filenames as options. Some commands provide multiple synopsis lines, indicating that
certain options are contingent on others.

Description The description is an English-language summary of what the command, file,
or other element does. The description can vary from a short summary to many pages in
length.

Options This section expands on the options outlined in the Synopsis section. Typically,
each option appears in a list, with a one-paragraph explanation indented just below it.

Files This section lists files that are associated with the man page’s subject. These might
be configuration files for a server or other program, related configuration files, files the
page’s subject modifies, and so on.

See Also This section provides pointers to related information in the man system, typi-
cally with a section number appended. For instance, the man page for man refers to the man
pages for apropos, whatis, and several other related tools.

Bugs Many man pages provide a Bugs section in which the author describes any known
bugs or limitations, or states that no known bugs exist.

History Some man pages provide a summary of the program’s history, citing project start
dates and major milestones between then and the current version. This history isn’t nearly
as comprehensive as the changes file that comes with most programs’ source code.

Author Most man pages end with an Author section, which tells you how to contact the
author of the program.

Specific manual pages may contain fewer, more, or different sections than these. For
instance, the Synopsis section is typically omitted from man pages on configuration files.
Manual pages with particularly verbose descriptions often split the Description section into
several parts, each with its own title.

Figure 5.6 shows a typical man page in a terminal window. As you can see, section
names appear in bold uppercase letters, making it easy to locate relevant sections as you
page through the document.

104 Chapter 5 ■ Getting to Know the Command Line

 F i Gu r e 5 .6 The formatting of man pages helps you locate information quickly.

 By default, man uses the less program to enable you to move back and
forth in the document, and when you’re done, exit the man pages. The
upcoming section, “Using less ,” describes this program in detail.

 Using less
 Linux’s man system uses a program called less to display information. This program is
a pager , which displays a text fi le one screen (that is, one page) at a time. You can move
forward or backward through the fi le, move to a specifi c line, and search for information.
Table 5.3 summarizes the most common ways of moving about a document using less .

 An earlier pager was known as more , but less adds more features. This
peculiar name is an example of geek humor.

 ta b Le 5 . 3 less file-navigation commands

Keystroke Action

H Displays help on using less

Page Down, spacebar, Ctrl+V,
F, or Ctrl+F

Moves down one screen in the document

Page Up, Esc+V, B, or Ctrl+B Moves up one screen in the document

Certification
Objective

Getting Help Using Man Pages 105

Keystroke Action

Down arrow, Enter, Ctrl+N, E,
Ctrl+E, j, or Ctrl+J

Moves down one line in the document

Up arrow, Y, Ctrl+Y, Ctrl+P, K,
or Ctrl+K

Moves up one line in the document

x g, x <, or x Esc+< Goes to line x in the document—for instance, typing 100g
displays the document’s 100th line. If x is omitted, the
default is 1.

x G, x >, or x Esc+> Goes to line x in the document. If x is omitted, the default
is the last line of the document.

 x p or x % Goes to the point x percent through the document—for
instance, typing 50p goes to the document’s halfway point

/ pattern Searches forward for pattern in the document, starting at
the current location. For instance, typing /BUGS searches
for the string BUGS .

? pattern Performs a backward search, locating instances of pattern
before the current location

N or / Repeats the previous search

Q, :Q, or ZZ Quits from the less pager

 The notation Esc+V refers to pressing the Esc key followed by the V key.

 Table 5.3 presents a small fraction of the commands available in less . To learn more
about less , you can read its man page:

 1. Log into the computer in text mode or open a terminal window.

 2. Type man less . This action opens the man page for the less pager.

 3. Read the first screen of text. When you finish reading the last word at the bottom of
the screen, press the spacebar key. This moves the display to the next page so that you
can continue reading. (You could use the PageDown key or others noted in Table 5.3
instead of the spacebar if you prefer. Similar substitutions are possible in the subse-
quent steps.)

106 Chapter 5 ■ Getting to Know the Command Line

 4. Press the up arrow key. This moves the display up a single line, which is useful if you
need to reread just a few words from the end of the last page.

 5. Press the down arrow key. As you might expect, this moves the display down by one
line.

 6. Press the Esc key followed by the V key. This moves the display back one page.

 7. Press Shift+G to move to the end of the man page.

 8. Press the G key (without using the Shift key) to move back to the start of the man page.

 9. Type /OPTIONS to locate the Options section. Chances are that your first hits will be
to references to this section, rather than to the Options section itself.

 10. Repeatedly press the N key until you find the Options section.

 11. Press the Q key to quit from less , and therefore from reading the man page.

 Some implementations search in a case-sensitive manner, but others
are case-insensitive. In step 9, try searching on / options in lowercase) to
determine which is the situation with your implementation.

 Of course, when you read man pages, you aren’t likely to use these exact options; you’ll
use whatever features you need to use to fi nd the content that interests you. The key is to
familiarize yourself with a few important features so that you can make effective use of
less to read man pages and other documents.

 Although less is important for reading man pages, you can also use it to read other
text-mode documents, such as README fi les that come with many programs or other plain-
text documents. To use less in this way, type its name followed by the fi lename of the fi le
that you want to read, as in less README to read a README document. You can use all
of the actions summarized in Table 5.3 (or by less ’s man page) on documents read in this
way, just as you can on man pages.

 Getting Help Using Info Pages
 The man page system is typical on Unix-like OSs, including Linux, but it’s also quite old
and is therefore limited. A newer documentation system, known as info pages , is also avail-
able. The next few pages describe how info pages fi ll gaps in the man page system and how
to use info pages.

 Understanding the Purpose of Info Pages
 The basic design of man pages dates back decades, so it predates some important
developments in managing information. Most notably, man pages are not hyperlinked .

Certification
Objective

Getting Help Using Info Pages 107

Although a See Also section is common in man pages, you can’t select one of these items
to read the relevant man page directly; you must quit the man system and type a new
man command to read the new page. This lack of hyperlinking also makes navigating
through a large man page awkward. You can use text searches to locate information
that you desire, but these often fi nd the wrong text—or if you mistype a string, your
search might fail completely.

 The goal of info pages is to overcome these problems by supporting hyperlinking. Each
info page is known as a node , and the info page system as a whole is an interrelated set of
nodes, similar to the World Wide Web (WWW) of the Internet. An individual program’s
documentation may be split up across multiple nodes, which can make each node easier to
locate and search—but if you need to search for information and you’re not sure in which
node it resides, you may need to search multiple nodes.

 Nodes are organized on levels , which are similar to the levels of organization in a book.
This book, for instance, has chapters and two levels of headings within each chapter.
Similarly, the info page for a program is likely to have one main node, similar to a chapter,
along with multiple nodes at a lower level, similar to chapter headings. Some programs’
info pages include further levels to help organize information.

 In terms of writing style, info pages are similar to man pages—they are terse but
comprehensive descriptions of their topics—intended for people who are already at least
broadly familiar with the programs in question. If you’re just starting out with a program,
other types of documentation (described later, in “Finding Additional Documentation”)
may be a better choice.

 The /usr/doc and /usr/share/doc directories, if available on your distri-
bution, often contain a great deal of useful information. If you cannot find
the information you are seeking in the man or info pages, look in these
directories.

 Broadly speaking, programs sponsored by the Free Software Foundation (FSF) use
info pages in preference to man pages. Many FSF programs now ship with minimal man
pages that point the user to the programs’ info pages. Non-FSF programmers have been
slower to embrace info pages; many such programs don’t ship with info pages at all,
and instead rely on traditional man pages. The info browser can read and display man
pages, so using info exclusively can be an effective strategy for reading Linux’s standard
documentation.

 Reading Info Pages
 The usual tool for reading info pages is called info . To use it, you type info followed by
the topic, as in info info to learn about the info system itself. When you’re in the info
system, you can use a number of keystrokes, summarized in Table 5.4 , to move around a
document.

Certification
Objective

108 Chapter 5 ■ Getting to Know the Command Line

ta b Le 5 . 4 info file-navigation commands

Keystroke Action

? Displays help information

N Moves to the next node in a linked series of nodes on a single hier-
archical level. This action may be required if the author intended
several nodes to be read in a particular sequence.

P Moves back in a series of nodes on a single hierarchical level. This
can be handy if you’ve moved forward in such a series but find
that you need to review earlier material.

U Moves up one level in the node hierarchy

Arrow keys Moves the cursor around the screen, enabling you to select node
links or scroll the screen

Page Up, Page Down These keys scroll up and down within a single node, respectively.
(The standard info browser also implements many of the more
arcane commands used by less and outlined in Table 5.3.)

Enter Moves to a new node after you’ve selected it. Links are indicated
by asterisks (*) to the left of their names.

L Displays the last info page that you read. This action can move you
up, down, or sideways in the info tree hierarchy.

T Displays the top page for a topic. Typically, this is the page that
you used to enter the system.

Q Exits the info page system

As an example of info pages in use, try the following:

1. Log into the computer in text mode or open a terminal window.

2. Type info info. You should see the top node for the info documentation appear.

3. Read the main page, using the arrow keys or the PageDown key to view the entire
page.

4. Using the arrow keys, select the link to the Expert Info node near the bottom of the
main page.

5. Press the Enter key to view the Expert Info node.

6. Press the U key to browse up one level—back to the main node.

7. Browse to the Advanced node.

Finding Additional Documentation 109

 8. Press the N key to go on to the next node on the current level, which is the Expert
Info node.

 9. Press the Q key to exit from the info reader.

 Finding Additional Documentation
 Although man pages and info pages are both useful resources, other documentation is
available too, and it is sometimes preferable. Generally speaking, help on Linux can come
in three forms: additional documentation on your computer, additional documentation
online, and help from experts.

 Documentation categories can blur together. For instance, documentation
might be available online but not on your computer until you install an
appropriate package.

 Locating Program Documentation on Your Computer
 Most Linux programs ship with their own documentation, even aside from man or info pages.
In fact, some programs have so much documentation that it’s installed as a separate package,
typically with the word documentation or doc in the package name, such as samba-doc .

 The most basic and traditional form of program documentation is a fi le called README ,
readme.txt , or something similar. Precisely what information this fi le contains varies
greatly from one program to another. For some, the fi le is so terse that it’s nearly useless.
For others, it is extremely helpful. These fi les are almost always plain-text fi les, so you can
read them with less or with your favorite text editor.

README files often contain information on building the software package
that doesn’t apply to program files provided with a distribution. Distribu-
tion maintainers seldom change such information in their README files,
though.

 If you downloaded the program as a source code fi le from the software package main-
tainer’s site, the README fi le typically appears in the build directory extracted from the
compressed source code fi le. If you installed the program from a package fi le, though, the
README fi le could be in any of several locations, depending on your distribution. The most
likely places are as follows:

 ■ /usr/doc/packagename

 ■ /usr/share/doc/packagename

 ■ /usr/share/doc/packages/packagename

Certification
Objective

110 Chapter 5 ■ Getting to Know the Command Line

In the previous list, packagename is the software package’s name. The package name
sometimes includes a version number, but more often it does not.

In addition to (or instead of) the README file, many programs provide other documenta-
tion files. These may include a file that documents the history of the program in fine detail,
descriptions of compilation and installation procedures, information on configuration file
formats, and so on. Check the source code’s build directory or the directory in which you
found the README file for other files.

Some larger programs ship with extensive documentation in PostScript, Portable
Document Format (PDF), Hypertext Markup Language (HTML), or other formats.
Depending on the format and package, you might find a single file or a large collection of
files. As with the README files, these files are well worth consulting, particularly if you want
to learn how to use a package to its fullest.

Some programs rely on configuration files, typically located in the /etc/ directory, to
control their behavior. Although the syntax in configuration files is often difficult to under-
stand, many distributions provide default configuration files that include extensive com-
ments. Details vary from one program to another, but comment lines often begin with hash
marks (#). You may be able to learn enough about a program to adjust its configuration
merely by reading the comments in its configuration file.

If you can’t find a README or similar file, you can employ various tools to help find docu-
mentation files. Many of these searching tools, such as grep and find, are covered in more
detail in Chapter 8, “Searching, Extracting, and Archiving Data,” but here is a brief list:

 ■ You can use your distribution’s package management system (covered in detail in
Chapter 9) to locate documentation. For instance, on an RPM-based system, you might
type rpm -ql apackage | grep doc to locate documentation for apackage. Using
grep to search for the string doc in the file list is a good trick because documentation
directories almost always contain the string doc.

 ■ The Linux find command can search your entire directory tree, or a subset of it, for
files that match a specified criterion. To search for a file that includes a certain string in
its name, for instance, you might type find /usr/share/doc -name "*string*",
where string is the keyword that you want to find in a filename. This command
searches the /usr/share/doc directory tree, but you can search another directory tree
instead. If you search a directory with lots of files and subdirectories, this command
can take a long time to complete.

 ■ The whereis program searches for files in a restricted set of locations, such as standard
binary file directories, library directories, and man page directories. This tool does not
search user directories. The whereis utility is a quick way to find program executables
and related files like documentation or configuration files. To use it, type whereis
followed by the name of the command or file, as in whereis less to find the less
binary and related documentation.

 ■ The Linux locate command searches a database of filenames that Linux maintains. It
can therefore do its job much quicker than find can, but you can’t control the part of the
computer that the system searches. Type locate followed by the string that you want to
find, as in locate xterm to find any files related to the XTerm terminal program.

Certification
Objective

Finding Additional Documentation 111

 The locate database is typically updated every 24 hours. If you are work-
ing on a freshly installed distribution, or you are searching for newly
installed package files, the updatedb command will need to be run using
super user privileges in order to update the locate database manually
before you use the locate command.

 After you’ve located documentation fi les, you must know how to read them. The details,
of course, depend on the documentation’s fi le format. You can use less to read many fi les.
Most distributions confi gure less in such a way that it can interpret common fi le formats,
such as HTML, and to automatically decompress fi les that are stored in compressed format
to save disk space.

 If you want to see a formatted text file, such as an HTML file, in a raw form,
use the -L option to less , as in less -L file.html .

 Table 5.5 summarizes common documentation fi le formats and the programs that you
can use to read them. Which formats are used varies from one program to another.

 ta b Le 5 .5 Common documentation file formats

Filename extension Description Programs for reading

.1 through .9 Unix man pages man , info , less

.gz , .xz , or .bz2 File compressed with gzip ,
xz , or bzip2

Use gunzip , unxz , or bunzip2 to
uncompress, or use less , which may
be able to uncompress the file and
read its underlying format.

.txt Plain text less or any text editor

.html or .htm HTML Any web browser

.odt OpenDocument text OpenOffice.org, LibreOffice, or many
other word processors

.pdf Portable Document Format
(PDF)

Evince, Okular, Adobe Reader, xpdf

.tif , .png , .jpg Graphics file formats The GIMP, Eye of GNOME (eog)

112 Chapter 5 ■ Getting to Know the Command Line

 Manually uncompressing a file with gunzip , unxz , or bunzip2 may require
writing the uncompressed version to disk, so you may need to copy the file
to your home directory. See Chapter 8 for more details.

 Locating Program Documentation Online
 In addition to the documentation that you fi nd on your computer, you can locate docu-
mentation on the Internet. Most packages have associated Internet websites, which may
be referred to in man pages, info pages, README fi les, or other documentation. Check these
pages to look up documentation.

 A few general Linux documentation resources are available on the Internet. The docu-
mentation offered by these sites, however, is often out-of-date. Typically, distributions have
their own online sites providing up-to-date documentation. Helpful online documentation
resources include the following:

 ■ The Linux Documentation Project, or LDP (tldp.org)

 ■ Red Hat Product Documentation (access.redhat.com/documentation)

 ■ Official Ubuntu Documentation (help.ubuntu.com)

 ■ openSUSE Documentation (doc.opensuse.org)

 ■ Fedora Documentation (docs.fedoraproject.org)

 ■ Linux Mint Documentation (linuxmint.com/documentation.php)

 Be aware that items on the LDP site can be rather out-of-date. Be sure to
check an item’s revision date before using it!

 Many Linux distributions use community volunteers to write and/or improve their docu-
mentation. These volunteers’ practical experience adds to the accuracy and depth of the
distribution’s documentation, which makes these sites valuable resources.

 Consulting Experts
 Whatever issue has you looking for documentation, chances are you’re not the fi rst person
to do so. In some cases, you can save a lot of time by asking another person for help. Some
specifi c resources include the following:

Program Authors Many open source authors are happy to answer questions or provide
limited support, particularly if a bug causes your problem. Bigger projects (including most
Linux distributions) have many authors, and these projects often provide web forums or
mailing lists to help users and developers communicate.

Finding Additional Documentation 113

Web Forums and Mailing Lists These resources differ in format but serve similar pur-
poses: they enable users to communicate with one another and share their expertise. Many
distributions have dedicated web forums; try a web search on your distribution name and
forum to fi nd yours. Mailing lists are more common for individual programs. Search the
program’s main website for information on mailing lists.

 IRC Internet Relay Chat (IRC) is a tool for real-time text-mode communication among small
groups of people. To use IRC, you need an IRC client program, such as Irssi (irssi.org),
HexChat (hexchat.github.io/), or Smuxi (smuxi.im/). You can then join an IRC channel in
which IRC users exchange messages in real time.

 Paid Consultants Paying somebody a consulting fee can often be worthwhile to fi x a
thorny problem, particularly if you’re facing a “time is money” situation in which a delay
in solving the problem will literally cost more money. A web search will turn up numerous
Linux consulting fi rms.

 Web Searches Web search engines index many Internet resources, including man pages,
program documentation sites, web forums, and even IRC channel discussions. A web
search can provide you with an answer from an expert without your needing to contact the
expert directly.

 Some Linux distributions, such as Red Hat Enterprise Linux and SUSE
Enterprise Linux, come with support. If you’re using such a distribution,
you may have already paid for consulting.

 Careful use of these resources can help you with many Linux problems, whether those
problems are simply a lack of knowledge on your part, a misconfi guration, a program
bug, or some terrible disaster such as a software update that rendered your computer
unbootable.

 The problem today is that there’s often too much information available; sifting through
the irrelevant (or just plain bad) information to fi nd the helpful advice can be diffi cult. To
overcome this challenge, being specifi c can be helpful. You can narrow a web search by
adding relevant keywords to the problem that are uncommon. Words found in error mes-
sages can be helpful in this respect. If you post a problem to a web forum or send a bug
report to a program author, be as specifi c as possible. Include information on the distribu-
tion you’re using, the version of the software, and specifi c details about what it’s doing. If
the program displays error messages, quote them exactly. Such details will help experts zero
in on the cause of the problem.

 e x e r C i s e 5 .1

 ■ Launch a GUI program, such as firefox , with and without a trailing ampersand (&).
When you launch it without an ampersand, use Ctrl+Z to put it into the background
and see how the program reacts to mouse clicks. Use fg to return it to the foreground,
and then repeat the process but use bg to run the program in the background. See
what happens in your terminal when you exit from the GUI program.

114 Chapter 5 ■ Getting to Know the Command Line

 ■ In a shell, type a single letter, such as m, and press the Tab key. What happens? What
happens if you type a less common letter, such as z, and then press Tab?

 ■ Experiment with the command history. Use it to search on strings that are part of
both command names and filenames that you’ve used. Use the arrow keys and
editing features described in Table 5.1 to edit commands that you’ve used previously.

 ■ Read the man pages for the following items: man, less, whereis, find, and locate.
View their Synopsis section to understand their command syntax. What have you
learned about these commands that goes beyond the descriptions in this book?

 ■ Search /usr/share/doc for documentation on important programs that you use
frequently, such as the GIMP, Firefox, or GNOME.

 ■ Check your distribution’s website, or perform a web search, to find a web forum that
supports your distribution. Read some of the discussion threads to get a feel for
some of the topics that come up.

Summary
Command lines are powerful tools in Linux; they’re the basis on which many of the friend-
lier GUI tools are built. They can be accessed without the help of a GUI, and they can be
scripted. To use the text-mode tools described in other chapters of this book, you should be
familiar with the basics of a Linux shell. These include knowing how to start a shell, how
to run programs in a shell, and how to use a shell’s time-saving features.

Whether you need to learn more about a program to use it effectively, or solve a prob-
lem with a misbehaving program, getting help is often necessary. Linux provides several
documentation resources for such situations. The first of these is the man page system,
which documents most text-mode commands, configuration files, and system calls. The
info page system is similar to the man page system, but info pages employ a more advanced
hyperthreaded file format. If you need more tutorial information than the man or info
pages provide, you can often obtain help in the form of extended official user manuals, web
pages, and other documents, both on your computer and on the Internet. Finally, interact-
ing with experts can help resolve a problem, so you can use numerous in-person and online
resources to get the help you need.

Exam Essentials
Describe how to reach the command line. Most Linux distributions have default GUI
terminal programs that allow you to reach the command line. Some distributions let you
open a terminal application with the GUI by pressing Ctrl+Alt+T, whereas others have icons

e x e r C i s e 5 .1 (c ont inue d)

Exam Essentials 115

on their desktop or terminal application names within their menu system. To reach a vir-
tual terminal, which is not within the desktop environment, press Ctrl+Alt+Fn (where Fn
is a function key typically between F2 and F6), and log in to reach the command line. The
command-line prompt is provided by the shell and often ends in a dollar sign ($) for regular
users or a hash mark (#) for the root user.

Explain how to run programs at the command line. If an executable program resides
in a PATH directory, you can run it by typing its name, along with any needed options or
required arguments. And if the program is not located in a PATH directory, you must run
it by entering its directory location as well as its name and any needed options or required
arguments.

Outline using basic shell features. Command completion speeds your way through the
typing of commands or filenames. To use command completion, you type part of a com-
mand or filename, and then press the Tab key. As long as there is only one file or command
whose name begins with what you typed, the Bash shell fills in the rest. The Bash history
feature reduces your time at the command line. You can recall the most recent command
with the up arrow key, view all the commands saved with the history utility, and reissue
any command stored there.

Detail getting help using the man pages. The manual (man) pages are rather terse docu-
mentation aimed for those who already know the item described. They summarize com-
mands, configuration files, and other implemented features on a Linux system. By default,
the less pager is used to display information within the man pages. You can perform
thorough searches for keywords stored within the man pages using the apropos utility or
its equivalent—man -k. Conducting a summary search is accomplished with the whatis
command.

Summarize getting help using the info pages. The info pages are as brief as the man pages
but use a series of nodes (pages) that are hyperlinked and organized on levels. You can get
help on how to use the info pages and its browser by typing info info at the command
line. Interestingly, the info browser will also allow you to read man pages.

116 Chapter 5 ■ Getting to Know the Command Line

Review Questions
You can find the answers in Appendix A.

1. What keystroke moves the cursor to the start of the line when typing a command in Bash?

A. Ctrl+A

B. Left arrow

C. Ctrl+T

D. Up arrow

E. Ctrl+E

2. How can you run a program in the background when launching it from a shell? (Choose all
that apply.)

A. Launch the program by typing start command, where command is the command that
you want to run.

B. Launch the program by typing bg command, where command is the command that you
want to run.

C. Append an ampersand (&) to the end of the command line.

D. Launch the program normally, press Ctrl+Z in the shell, and then type bg in the shell.

E. Launch the program normally, press Ctrl+Z in the shell, and then type fg in the shell.

3. Which of the following commands is an improved version of more?

A. grep

B. html

C. cat

D. less

E. man

4. True or false: Pressing Alt+F3 in the GUI brings up a text-mode display that you can use to
log into Linux.

5. True or false: You can force man to display a man page in a specific section of the manual
by preceding the search name with the section number, as in man 5 passwd.

6. True or false: Info pages are a web-based documentation format.

7. True or false: Linux documentation in the /usr/share/doc directory tree is almost always
in OpenDocument text format.

8. Type logout or to end a text-mode terminal session.

A. end

B. bye

Review Questions 117

C. whoami

D. exit

E. man

9. Each document in an info page is known as a .

A. pager

B. site

C. node

D. link

E. level

10. The command searches a database of filenames, enabling you to identify files
quickly whose names match a term that you specify.

A. find

B. whereis

C. grep

D. rpm

E. locate

Chapter

6
Managing Hardware

Objectives:

 ✓ 4.2 Understanding Computer Hardware

 Although Linux is software, it relies on hardware to operate.
The capabilities and limitations of your hardware will infl u-
ence the capabilities and limitations of Linux running on that

hardware. Therefore, you should know these features for any computer you use extensively
or that you plan to buy.

 In this chapter, you’ll learn about and perform basic management tasks with your hard-
ware. We begin with low-level issues, such as the nature of your central processing unit
(CPU) and motherboard. Often overlooked, the power supply can cause problems if it’s
undersized or misbehaves, so we cover that as well. Next, the chapter explores the various
types of hard disks commonly found in both workstations and servers and discusses the
special care needed in their setup. After that, the chapter focuses on monitors and display
drivers, a common sticking point in Linux. Today, most external devices attach via the
Universal Serial Bus (USB), so this chapter explores those types of devices. Finally, this
chapter covers the common issue of drivers, which are software components that control
hardware devices.

 Learning About Your CPU
Your CPU (sometimes called the processor) is the “brain” of your computer—it does most
of the computer’s actual computing. We’ve mentioned CPUs in earlier chapters in reference
to distribution availability—to run on a given CPU, most software must be recompiled for
that CPU. Thus, it’s important that you know enough about the different CPU families to
know their strengths and weaknesses and to identify what type of CPU your computer uses.

 Many devices have more specialized computing circuitry. Most notably,
video cards include graphics processing units (GPUs) to do specialized
graphics computations.

 Understanding CPU Families
 CPU manufacturers tend to create product lines by making regular improvements to their
products. Improvements range from minor (such as running the CPU at a faster clock rate ,
which is like running an engine at a faster speed) to moderate redesigns to improve speed
(which is like shifting gears to get better speed) to radical redesigns (which are like using
a bigger or more effi cient engine, but one based on the original design). All these types of

Certification
Objective

Learning About Your CPU 121

changes remain within a single CPU family, so they can run the same code as their prede-
cessors. Still more radical differences exist across CPU families; two CPUs from different
families can typically not run each other’s binary programs, although there are exceptions
to this rule, including one very important one that I describe shortly.

On desktop computers, two CPU families are common:

x86 This CPU type originated with Intel’s 8086 CPU, but the first model capable of run-
ning Linux was the 80386 (also known as the 386). Development continued with the 80486
(also known as the 486), the Pentium, and related Intel CPUs, such as the Celeron. AMD,
Cyrix, VIA, and others have all released CPUs that are compatible with Intel’s designs.

x86-64 Other names for this architecture include AMD64, x64, and EM64T. AMD cre-
ated the x86-64 architecture as a 64-bit extension to the x86 architecture. Unusually, x86-
64 CPUs can run the earlier 32-bit x86 code, but when run in 64-bit mode, such CPUs have
access to additional features that improve speed. Intel has created its own x86-64 CPUs.
Both Intel and AMD have used the same product line names for their x86-64 CPUs as for
their x86 CPUs. This fact can make it hard to tell whether you’ve got a 32-bit x86 CPU or a
64-bit x86-64 CPU, at least based on the CPU’s marketing name.

For most desktop and laptop computers, you’ll commonly run into one of the Intel Core
line of processors:

 ■ i3: The cheapest CPU, offers low-end speed and processing performance.

 ■ i5: The mid-range CPU, offers medium speed and processing performance as well as a
medium-level price.

 ■ i7: The high-end CPU, offers advanced speeds and processing performance but at a
higher price.

cPU bit Depth

CPUs process data in binary (base 2), meaning that numbers are represented using only
two digits—0 and 1. CPUs have limits to the sizes of the numbers they can process, though,
and those limits are described in terms of the number of binary digits, or bits, the CPU can
handle. A 32-bit CPU, for instance, can process numbers that contain up to 32 binary digits.
Expressed as positive integers, this means that numbers can range in size from 0 to 232 – 1
(4,294,967,295 in the base 10 that people generally use). When dealing with larger numbers,
the CPU must combine two or more numbers, which requires extra code.

CPUs with larger bit depths have an advantage when dealing with lots of memory, since
memory addresses must fit into the CPU’s basic unit size. In particular, a 32-bit CPU has
a 4-gibibit (GiB) limit on memory—although some architectures, including x86, provide
tricks to work around this limit. Greater bit depth does not improve speed except when
dealing with very large numbers; however, the 64-bit x86-64 CPU architecture is faster
than its 32-bit x86 predecessor for unrelated reasons.

122 Chapter 6 ■ Managing Hardware

 In addition to x86 and x86-64 CPUs, several other model lines are available. Most of
these CPUs are used in embedded applications or in very high-end servers. Here are a few
that you might encounter:

ARM The Advanced RISC Machine (ARM) processor was introduced in 1985 but
has just recently taken off as the main processor in small devices, such as tablets and
embedded computer systems. The RISC acronym in the name stands for Reduced
Instruction Set Computing, which means it supports fewer instructions, which means less
transistors are needed in the system, which in turn means less power consumption by
the CPU chip. This feature is what makes ARM processors ideal for small devices that
run Linux.

 PowerPC This CPU, created as a cooperative effort of Apple, IBM, and Motorola, was
Apple’s CPU of choice between 1994 and 2006, and so is found in Mac computers of that
vintage. Today, it’s used in some game consoles, embedded devices, and servers. Both 32-
and 64-bit versions of this architecture are available. PPC is a common abbreviation for
this architecture.

 Itanium Intel created the Itanium, or IA-64, architecture as a 64-bit replacement for the
x86 line; however, it gained little market penetration except in the server fi eld.

 Linux can run on ARM, PowerPC, and Itanium, as well as on other CPU families,
such as the Microprocessor without Interlocked Pipelined Stages (MIPS) and the Scalable
Processor Architecture (SPARC); however, your choice of distribution is likely to be limited.
Because software has to be recompiled and tested on new architectures, it takes effort to
prepare a distribution for each architecture, and many distribution maintainers are unwill-
ing or unable to expend this effort for more than x86 and x86-64.

 The Debian Linux distribution is available on many architectures, so if you
need to support Linux on a wide range of CPUs, using Debian can make
sense.

 Many CPUs today are multicore models. These CPUs package the circuitry for two or
more CPUs into one unit. When plugged into a motherboard, such a CPU looks like multi-
ple CPUs to the OS. The advantage is that Linux can run as many CPU-intensive programs
as you have cores and they won’t slow each other down signifi cantly by competing for CPU
resources.

 Some high-end motherboards also support multiple CPUs, so you can
use, say, two 4-core CPUs to get the performance of a single 8-core CPU
system.

Identifying Motherboard Capabilities 123

 Identifying Your CPU
 If you’ve got a working Linux system, you can learn a great deal about your CPU by using
three text-mode commands at the shell command prompt:

uname -a Typing uname -a displays basic information on the kernel and the CPU. For
instance, one of my systems returns x86_64 AMD Phenom (tm) II X3 700e Processor ,
among other things, indicating the manufacturer and model number of the CPU.

lscpu The lscpu command returns additional information on about 20 lines of output.
Much of this information is highly technical, such as the sizes of caches the CPU supports.
Some of it’s less technical, such as the architecture and the number of CPUs or cores it
supports.

cat /proc/cpuinfo The cat /proc/cpuinfo command returns still more information
compared to lscpu . Chances are you won’t need this information yourself, but a developer
or technician might want some of this information to help debug a problem.

 One thing to keep in mind is that modern x86-64 CPUs can run software compiled for
the older x86 architecture. So, you might be running a 32-bit Linux distribution on a 64-bit
CPU. The output of these commands can be confusing in such cases. For instance, here’s
part of what lscpu shows on one such system:

 Architecture: i686
 CPU op-mode(s): 64-bit

 The Architecture line suggests an x86 CPU (i686 being a specifi c variant of that archi-
tecture), but the CPU op-mode(s) line indicates that the CPU supports 64-bit operation. If
you have trouble interpreting this output, you may be able to fi nd something by looking up
the CPU’s model on the manufacturer’s website. However, manufacturers tend to bury such
information in hard-to-read specifi cation sheets, so be prepared to read carefully.

 Identifying Motherboard Capabilities
 If the CPU is the computer’s brain, the motherboard is the rest of the computer’s central
nervous system. The motherboard is a large circuit board inside the computer. It’s domi-
nated by a chipset , which is one or more chips that provide key functionality for the
computer—they help the CPU interface with the hard disk interfaces, the USB interfaces,
the network devices, and so on. Some chipsets include video circuitry for video cards,
although this functionality is sometimes separate, and sometimes it’s built into the CPU.

 Motherboards are sometimes referred to as mainboards .

Certification
Objective

124 Chapter 6 ■ Managing Hardware

In addition to the chipset, motherboards include plug-in interfaces for key components:

 ■ One or more slots for the computer’s CPU(s)

 ■ Slots for random access memory (RAM)

 ■ Slots for plug-in Peripheral Component Interconnect (PCI) or other cards

 ■ Connectors for internal hard disks, such as the Serial Advanced Technology Attach-
ment (SATA) interface

 ■ Back-panel connectors that provide external interfaces for USB devices, keyboards,
monitors, and so on

 ■ Connectors for additional external devices, such as front-panel USB plugs; such devices
are attached via short internal cables

Some motherboards—typically used in larger desktop and server computers—have many
connectors for many purposes. Such motherboards are highly expandable, but they’re phys-
ically large enough that they require bulky cases. Other motherboards are much smaller
and can be used in compact computers, but such computers aren’t as expandable. Laptop
computers also have motherboards, which are necessarily of the small variety, with little
opportunity for internal expansion.

Most of the connectors on a motherboard are managed by its primary chipset. Some
high-end boards provide connectors for features beyond those of its primary chipset. Such
features require a secondary chipset, such as an extra Ethernet chipset for a second net-
work port or an extra SATA chipset for more or faster hard disk interfaces.

Whether the feature is provided by the main or by a secondary chipset, you can learn
about most of the motherboard’s features with the lspci command, which shows informa-
tion on PCI devices. The output looks something like this shortened example:

$ lspci
00:00.0 Host bridge: Advanced Micro Devices [AMD] RS780 Host Bridge
00:11.0 SATA controller: ATI Technologies Inc SB700/SB800 SATAm
 Controller [IDE mode]
00:12.0 USB Controller: ATI Technologies Inc SB700/SB800 USB OHCI0m
 Controller
00:14.1 IDE interface: ATI Technologies Inc SB700/SB800 IDE Controller
00:14.2 Audio device: ATI Technologies Inc SBx00 Azalia (Intel HDA)
01:05.0 VGA compatible controller: ATI Technologies Inc Radeon HD 3200m
 Graphics
01:05.1 Audio device: ATI Technologies Inc RS780 Azalia controller
02:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd.m
 RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 02)
03:06.0 Ethernet controller: Intel Corporation 82559 InBusiness 10/100m
 (rev 08)

Understanding Disk Issues 125

You may not understand everything in this output, but you should be able to glean some
information from it. For instance, the computer has a number of ATI devices—a SATA con-
troller, a USB controller, a graphics adapter, and so on. Two Ethernet devices are present—
one made by Realtek and the other by Intel. Although it’s not obvious from this output, the
Realtek network adapter is built into the motherboard, whereas the Intel device resides on a
plug-in card.

Sizing Your Power Supply
A computer’s power supply takes the alternating current (AC) power from a wall outlet
and converts it to the direct current (DC) that your motherboard and everything you plug
into it uses. Laptop computers and some small desktop units use power adapter “bricks”
that you can put on the floor. Larger desktop computers have internal power supply units.
These internal units are larger, both physically and in terms of the amount of power they
can deliver.

Every power supply has limits on the amount of DC power it can deliver. This is impor-
tant because every device you plug into the computer consumes a certain amount of power.
If your computer manufacturer cuts corners, the power supply may be barely adequate
for the computer as delivered. If you add a hard disk or a power-hungry plug-in card, you
could exceed the amount of power that the power supply can deliver. The result can be
unreliable operation—the computer can crash or behave erratically, perhaps corrupting
data or files. Such problems can be hard to distinguish from other problems, such as bad
RAM or a failing hard disk.

If you need to replace your power supply, pay attention to its output in watts. You
should be able to find the output of your current power supply on a sticker—but you’ll need
to open your computer first, at least for most desktop systems. Be sure to get a power sup-
ply that’s rated for at least as many watts as the one you’re replacing. Also, be sure it will
fit—sizes are standardized, but a few variants are available. In the case of a laptop or a
small desktop computer with an external power supply, you must ensure that a replacement
provides the right type of connector to the computer. Buying a replacement from the com-
puter’s manufacturer is usually the best course of action in this case.

Understanding Disk Issues
Disks are a critical part of most Linux installations, so it’s important to know how they
operate and how Linux interacts with them. This section describes three basic disk issues:
disk hardware interfaces, disk partitioning, and filesystems. In addition, it describes some
of the issues surrounding removable disks, including optical (CD-ROM, DVD-ROM, and
Blu-ray) discs.

Certification
Objective

126 Chapter 6 ■ Managing Hardware

 You can install Linux in a diskless configuration, in which a Linux computer
boots using files stored on a network server.

 Disk Interfaces
Today, three disk interfaces are common:

PATA This interface was very common in the past, but it’s fading in popularity. It features
wide 40- or 80-pin cables that transfer several bits of data simultaneously—hence the word
parallel in the name Parallel ATA (PATA). A PATA cable can have up to three connectors—
one for the motherboard or disk controller card and two more for up to two hard disks.
Alternative names for PATA (or specifi c variants of it) include Integrated Device Electronics
(IDE) or Enhanced IDE (EIDE). The ATA Packet Interface (ATAPI) standard defi nes a
software interface that helps ATA manage devices other than hard disks. Although in some
cases the differences between the technologies described by these variant terms are impor-
tant, today they’re often used synonymously.

 SATA In 2003, a serial version of the ATA protocol was created, hence Serial ATA
(SATA). SATA is more or less software compatible with PATA, but it uses thinner cables
that can handle just one hard disk per cable. In 2012, SATA became the dominant disk
technology on new computers. An external variant, eSATA, provides high-speed connec-
tions to external hard disks.

 NVMe The Non-volatile Memory Express (NVMe) interface was designed specifi cally to
support the solid-state drive (SSD) storage standard. SSD devices don’t use physical plat-
ters and magnetic heads to read or write data; instead, data is stored electronically just like
in memory, but using fl ash memory chips that retain the data after power is removed from
the system. Because data is read and written electronically instead of magnetically, access
speeds are signifi cantly faster, and SSD drives are not susceptible to the same failures as
PATA and SATA hard drives. SSD drives started out small and pricey but recently have got-
ten larger and cheaper, making them a realistic alternative to physical hard drives in many
environments.

 In addition to these technologies, others exist. The Small Computer System Interface
(SCSI) is a parallel interface that was once common on servers and high-end interfaces but
is less common today. The Serial Attached SCSI (SAS) is a serial variant that’s quite similar
to SATA. Both of these technologies are important because ATAPI is modeled after SCSI.
The Universal Serial Bus (USB) interface is often used for connecting external disks.

 Most modern Linux distributions treat SATA, SAS, and USB disks as if they
were SCSI disks from a software perspective and create a device file in the
/dev directory that begins with sd x , where x is the drive letter, starting at
 a . However, for systems that utilize the new NVMe interface, Linux creates
those device files as nvme x .

Certification
Objective

Understanding Disk Issues 127

 Partitioning a Disk
 You can think of a hard disk as a set of sectors , each of which holds a small amount of
data—normally 512 bytes, although some disks have larger sectors. The disk hardware itself
does little to help organize data on the disk, aside from providing a means to read and write
specifi c sectors. On-disk data management is left up to the OS. Disk partitions and fi lesys-
tems are two levels of organization imposed on disks to help manage the data they store.

 Partitions are a lot like the drawers in a fi ling cabinet. Think of a single disk as the main
fi ling cabinet, which is then split up into multiple partitions, much like drawers. This analogy
is good as far as it goes, but it has its limits. Unlike fi ling cabinet drawers, disk partitions can
be created in whatever size and quantity are convenient, within the limits of the disk’s size. A
typical disk has between one and a dozen partitions, although you can create more.

 Disk partitions exist to help subdivide the disk into pieces with broadly different pur-
poses, such as partitions for different OSs or for different types of data within an OS. For
instance, it’s common to create separate partitions for swap space (which is used much like
RAM in case you run out of RAM), for user data fi les, and for the OS itself.

 Hard disks and their partitions are frequently represented in diagrams similar to Figure 6.1 .
This diagram displays partitions as subdivisions of the disk, with partition sizes in the diagram
more or less proportional to their true sizes on the disk. Thus, in Figure 6.1 you can see that
 /root is larger compared to the memory swap space allocated. As in the fi gure, partitions are
uninterrupted sections of a disk—that is, one partition cannot be inside another partition.

 F i gU r e 6 .1 Disk partitions are often visualized as boxes within a hard disk.

/dev/sda

/dev/sda1 /dev/sda2

swap
/dev/sda5

Primary Extended

root (/)

 Some partitioning tools represent their partitions in a vertical stack rather
than a horizontal chain. The principle is the same either way.

 The most common partitioning scheme for x86 and x86-64 computers has gone by vari-
ous names over the years, including master boot record (MBR) , MS-DOS , and BIOS parti-
tioning . It supports three types of partitions:

Primary This is the simplest type of partition. A disk can have zero to four primary parti-
tions, one of which may be an extended partition.

Extended This is a special type of primary partition that serves as a placeholder for logi-
cal partitions. A disk may have at most one extended partition.

Logical These partitions are contained within an extended partition. In theory, a disk can
have billions of logical partitions, thus overcoming the limit of four primary partitions, but
in practice you’re unlikely to see more than about a dozen of them.

Certification
Objective

128 Chapter 6 ■ Managing Hardware

MBR’s use of three partition types is awkward and limiting, but inertia has kept it in
place for three decades. MBR partitions have a hard limit, though: they can’t support disks
larger than 2 TiB (tebibytes), assuming 512-byte sectors, which are nearly universal today.

The Globally Unique Identifier (GUID) Partition Table (GPT) is the successor to MBR.
GPT supports disks of up to 8 ZiB (zebibytes), which is about 4 billion times as large
as MBR’s limit. GPT also supports up to 128 partitions by default, with no distinction
between primary, extended, and logical partitions. In these respects, GPT is a superior
partitioning system to MBR; however, its support varies between OSs. Linux supports
both systems quite well. Windows can boot only from MBR when the computer uses the
Basic Input/Output System (BIOS), and it can boot only from GPT when the computer is
based on the Unified Extensible Firmware Interface (UEFI). Thus, if you dual-boot with
Windows, you may need to select your partitioning system with care.

Multibyte Units

It’s common to use prefixes from the International System of Units (SI units)—kilo (k),
mega (M), giga (G), tera (T), and so on—in conjunction with byte (B) to refer to large
quantities of storage space, as in kB, MB, and so on. Technically, these units are defined
as base-10 values—kilo means 1,000, mega means 1,000,000, and so on. In computers,
though, base-2 values, such as 210 (1024) and 220 (1,048,576), are often more natural, so
the SI units have often (but not always) been used to mean these base-2 values. This
practice has led to confusion, since it’s not always clear whether base-10 or base-2 units
are being used.

To resolve this conflict, the Institute of Electrical and Electronics Engineers (IEEE) defined
a new set of prefixes as IEEE-1541. Under this system, new units and prefixes describe
base-2 values. The first few of these are as follows:

 ■ A kibibyte (KiB) is 210 (1024) bytes.

 ■ A mebibyte (MiB) is 220 (1,048,576) bytes.

 ■ A gibibyte (GiB) is 230 (1,073,741,824) bytes.

 ■ A tebibyte (TiB) is 240 (1,099,511,627,776) bytes.

In this book, we use IEEE-1541 units when describing features that are best expressed in
this system, such as partition table size limits. Most Linux disk utilities use SI and IEEE-
1541 units correctly, but which is used depends on the whim of the programs’ authors.
Be alert to this difference, particularly when dealing with large numbers—note that a
tebibyte is almost 10 percent larger than a terabyte.

Several other partitioning systems exist, but you’re unlikely to encounter most of them.
One possible exception is the Apple Partition Map (APM), which Apple used on its Mac
computers prior to its switch to Intel CPUs.

Understanding Disk Issues 129

 When it comes to partitioning a disk, Linux supports three families of tools:

fdisk Family The fdisk , cfdisk , and sfdisk tools are simple text-based partitioning
utilities for MBR disks and some more exotic partition table types. These tools work well
and provide the means to recover from some disk errors, but their text-based nature can be
intimidating to those who are unfamiliar with disk partitioning.

libparted -Based Tools Tools based on the libparted library can handle MBR, GPT,
and several other partition table types. Some of these tools, such as GNU Parted, are
text-based, but others, such as GParted, are GUI, and so are likely to be easier for new
users to use. Figure 6.2 shows GParted in action. Note how its display mirrors the structure
shown in Figure 6.1 . Many Linux installers include libparted -based partitioning tools that
run during system installation.

 F i gU r e 6 . 2 GParted, like other GUI disk partitioning tools, provides a graphical
representation of your partitions.

GPT fdisk Family The gdisk , cgdisk , and sgdisk tools are modeled after the fdisk
family but work with GPT disks. They provide more options for handling GPT than do
 libparted -based tools but at the cost of friendliness for new users.

 While historically the fdisk utility focused on MBR disks and the gdisk
utility focused on GPT disks, recently developers for both utilities have
been experimenting with supporting both types of disks. Your Linux
distribution may include a version of just one utility that supports both
MBR and GPT disks.

130 Chapter 6 ■ Managing Hardware

 If you’re working with a preinstalled Linux system, you may not need to partition
your disk; however, if you ever replace or install a new hard disk, you’ll have to partition
it before you can use it. You may also need to partition removable disks, although they
generally come from the factory pre-partitioned with one big partition.

 To partition a disk, you must know the disk’s device fi lename. In Linux, these fi lenames
are normally /dev/sda , /dev/sdb , and so on, with each disk taking on a new letter.
Partitions are numbered starting with 1, so you might refer to /dev/sda2 , /dev/sdb6 , and
so on. When using MBR, partitions 1 through 4 are reserved for primary or extended
partitions, whereas logical partitions take numbers 5 and up.

 Understanding Filesystem Issues
 Most disk partitions contain fi lesystems, which are data structures that help the computer
organize your directories and fi les. In Windows, each fi lesystem receives its own device let-
ter. In the old days when fl oppy disks were commonly used, drive letters A: and B: were
reserved for fl oppy disk drives, and that standard continues to stick around today. The
C: drive letter is used for the fi rst hard disk partition (normally the boot partition), D: for
external USB disks, and so on. In Linux, by contrast, all fi lesystems are part of a single
directory tree. The main fi lesystem is referred to as the root (/) fi lesystem. If a disk has mul-
tiple fi lesystem partitions, each is mounted at a mount point in the root (/) fi lesystem—that
is, the contents of the additional fi lesystems are made available at specifi c directories, such
as at /home (which holds users’ data fi les) or /boot (which holds boot fi les). Several Linux
fi lesystems exist, each with its own unique features:

 The word filesystem is sometimes applied to the directory structure as a
whole, even if it contains multiple low-level filesystems. Which meaning is
intended is usually clear from the context.

Ext2fs The Second Extended Filesystem (ext2fs) was popular in the 1990s but is rarely
used today because it lacks a journal , which is a fi lesystem feature that speeds fi lesystem
checks after power outages or system crashes. A journal consumes disk space, though, so
ext2fs is still useful on small disks. You might want to use it for a separate /boot partition,
for instance, since such partitions are rather small. Its Linux fi lesystem type code is ext2 .

 The original Extended Filesystem (extfs) was used in the early 1990s but
was quickly eclipsed by ext2fs. Extfs is no longer supported.

 Ext3fs The Third Extended Filesystem (ext3fs) is essentially ext2fs with a journal. Until
around 2010, it was a very popular fi lesystem, but ext4fs has taken its place. It supports
fi les of up to 2 TiB and fi lesystems of up to 16 TiB (ext2fs imposes the same limits). Its
Linux type code is ext3 .

Understanding Disk Issues 131

Ext4fs The Fourth Extended Filesystem (ext4fs) is a further development of the ext fi lesys-
tem line. It adds speed improvements and the ability to handle larger fi les and disks—fi les
may be up to 16 TiB in size, and fi lesystems may be up to 1 EiB (2 60 bytes). Linux utilities
refer to it as ext4 .

 ReiserFS This fi lesystem, referred to as reiserfs by Linux tools, is similar to ext3fs in
features, with an 8 TiB fi le-size limit and 16 TiB fi lesystem-size limit. Its best feature is its
capacity to make effi cient use of disk space with small fi les—those with sizes measured in
the low kibibyte range. ReiserFS development has slowed, but it remains usable.

 JFS IBM developed its Journaled File System (JFS) for its AIX OS, and its code eventually
worked its way into Linux. JFS supports maximum fi le and fi lesystem sizes of 4 PiB and 32
PiB, respectively (1 PiB is 1024 TiB). JFS is not as popular as many other Linux fi lesystems.
Linux tools use jfs as its type code.

 XFS Silicon Graphics developed the Extents File System (XFS; Linux type code xfs) for
its IRIX OS and later donated its code to Linux. XFS supports fi les of up to 8 EiB and fi le-
systems of up to 16 EiB, making it the choice for very big disk arrays. XFS works well with
large multimedia and backup fi les.

Btrfs This new fi lesystem (pronounced “butter-eff-ess” or “better-eff-ess”) is intended as
the next-generation Linux fi lesystem. It supports fi les of up to 16 EiB and fi lesystems of the
same size. It also provides a host of advanced features, such as the ability to combine mul-
tiple physical disks into a single fi lesystem. As of this writing, Btrfs is still experimental, but
it may provide the best overall feature mix once it’s fi nished. Its Linux type code is btrfs .

 If you’re planning a new Linux installation, you should consider ext4fs, Btrfs, or XFS
as your fi lesystems. Currently, ext4fs provides the best overall features and performance,
and Btrfs and XFS are worth considering for volumes that will hold particularly small and
large fi les, respectively. Ext4fs is a good choice for volumes that hold large fi les, though, so
you could use ext4fs for everything and not go far wrong, particularly on a general-purpose
computer.

 It’s possible to use several filesystems in a single Linux installation to take
advantage of the benefits of each filesystem for different sets of files.

 In addition to Linux’s native fi lesystems, the OS supports several other fi lesystems, some
of which are important in certain situations:

FAT The File Allocation Table (FAT) fi lesystem was the standard with DOS and Windows
through Windows Me. Just about all OSs support it. Its compatibility also makes it a good
choice for exchanging data between two OSs that dual-boot on a single computer. Unlike
most fi lesystems, FAT has two Linux type codes: msdos and vfat . Using msdos causes
Linux to use the fi lesystem as DOS did, with short fi lenames with at most 8 characters plus
a 3-character extension (8.3 fi lenames); when you use vfat , Linux supports long fi lenames
on FAT.

132 Chapter 6 ■ Managing Hardware

 FAT’s simplicity and widespread support make it a popular filesystem on
USB flash drives, cell phones, e-book readers, digital camera media, and
so on.

NTFS Microsoft developed the New Technology File System (NTFS) for Windows NT,
and it is the default fi lesystem for recent versions of Windows. In the earlier days Linux
provided only a limited read NTFS driver, but now a full read/write driver is available
in the NTFS-3g software (tuxera.com). You’re most likely to encounter it on a Windows
boot partition in a dual-boot confi guration or on larger removable or external hard disks.
Under Linux, the old kernel driver is known as ntfs , whereas the NTFS-3g driver is called
ntfs-3g .

 Linux’s ntfs driver is based in the kernel, which makes it fast. The ntfs-3g
driver, unlike most filesystem drivers, is not kernel-based, so it’s not as fast
and requires additional processing power.

HFS Apple used its Hierarchical File System (HFS) in Mac OS through version 9.x and
still supports it in macOS. You might encounter HFS on some removable media and par-
ticularly on older disks created under pre-X versions of Mac OS. Linux provides full read/
write HFS support using its hfs driver.

HFS+ Apple’s HFS+, also known as Mac OS Extended , is the current fi lesystem for
macOS; you’re likely to encounter it on dual-boot Mac computers and on some removable
media created for use with Mac computers. Linux provides read/write HFS+ support with
its hfsplus driver; however, write support is disabled by default on versions of the fi lesys-
tem that include a journal.

 Mac users often use FAT on removable media for compatibility reasons.

 ISO-9660 The ISO-9660 fi lesystem is used on optical media, and particularly on
CD-ROMs and CD-Rs. It comes in several levels with differing capabilities. Two exten-
sions, Joliet and Rock Ridge , provide support for long fi lenames using Windows and Unix
standards, respectively. Linux supports all these variants. You should use the iso9660 type
code to mount an ISO-9660 disc.

 UDF The Universal Disk Format (UDF) is a fi lesystem that’s intended to replace ISO-
9660. It’s most commonly found on DVD and Blu-ray media, although it’s sometimes used
on CD-Rs as well. Its Linux type code is, naturally, udf .

 Most non-Linux fi lesystems lack support for the Unix-style ownership and permissions
that Linux uses. Thus, you may need to use special mount options to set ownership and

Understanding Disk Issues 133

permissions as you want them. Exceptions to this rule include HFS+ and ISO-9660 when
Rock Ridge extensions are in use. Rock Ridge discs are generally created with ownership
and permissions that enable normal use of the disc, but if you’re faced with an HFS+ disk,
you may fi nd that the user ID (UID) values don’t match those of your Linux users. Thus,
you may need to copy data as root , create an account with a matching UID value, or
change the ownership of fi les on the HFS+ disk. (This last option is likely to be undesirable
if you plan to use the disk again under macOS.)

 To access a fi lesystem, you must mount it with the mount command. For instance, to
mount the fi lesystem on /dev/sda5 at /shared , type the following command:

 # mount /dev/sda5 /shared

 Alternatively, you can create an entry for the fi lesystem in the /etc/fstab fi le,
which stores information such as the device fi le, fi lesystem type, and mount point. When
you’re done using a fi lesystem, you can unmount it with the umount command, as in
umount /shared .

 The umount command’s name has just one n .

 Using Removable and Optical Disks
 If you insert a removable disk into a computer that’s running most modern Linux
distributions, the computer will probably detect that fact, mount the disk in a
subdirectory of /media , and launch a fi le manager on the disk. This behavior makes the
system work in a way that’s familiar to users of Windows or macOS.

 When you’re done using the disk, you must unmount it before you can safely remove it.
Most fi le managers enable you to do this by right-clicking the entry for the disk in the left-
hand pane and selecting an option called Unmount, Eject, or Safely Remove, as shown in
Figure 6.3 . If you fail to do this, the fi lesystem may suffer damage.

 Some devices, such as optical disc drives, can lock their eject mechanisms
to prevent forced removal of the media.

 Most removable disks are either unpartitioned or have a single partition. They frequently
use FAT, which is a good choice for cross-platform compatibility. If you need to, you can
partition USB fl ash drives and most other removable media.

 Optical discs are unusual in that they require their own special fi lesystems (ISO-9660 or
UDF). Although you can mount and unmount these discs just like other disks, you can only
read them, not write to them. If you want to create an optical disc on blank media, you must
use special software, such as the text-mode mkisofs , cdrecord , or growisofs , or the GUI
K3B or X-CD-Roast. These tools create an ISO-9660 fi lesystem from the fi les you specify
and then burn it to the blank disc. Thereafter, you can mount the disc in the usual way.

Certification
Objective

134 Chapter 6 ■ Managing Hardware

F i gU r e 6 . 3 Linux file managers enable you to unmount removable media.

Managing Displays
Linux provides two display modes: text-mode and GUI. A text-mode display is fairly
straightforward and requires little or no management. GUI displays are more complex.
In Linux, the X Window System (or X for short) manages the GUI display. This section
describes what X is and how it interacts with common display hardware.

Understanding the Role of X
Most people don’t give much thought to the software behind their computers’ displays; it
all just works. Of course, behind the scenes the task of managing the display is fairly com-
plex. Some of the tasks the software must do, on any platform, include:

 ■ Initialize the video card, including set its resolution.

 ■ Allocate sections of the display to hold windows that belong to applications.

Certification
Objective

Managing Displays 135

 ■ Manage windows that overlap so that only the “topmost” window’s contents are
displayed.

 ■ Manage a pointer that the user controls via a mouse or similar device.

 ■ Direct user input from a keyboard to whatever application is active.

 ■ Display text and simple shapes within windows at the request of user programs.

 ■ Provide user interface elements to move and resize windows.

 ■ Manage the interiors of windows, such as displaying menus and scroll bars.

 In Linux, the fi rst six tasks are handled by X, but the seventh task is handled by a pro-
gram called a window manager and the eighth one is handled by GUI libraries known as
widget sets . The font display element of the sixth task can be handled by X, but in recent
years many programs have begun using a library called Xft for this task. Thus, the overall
job of handling the display is broken up across several programs, although X handles most
of the low-level tasks.

 Desktop environments include window managers, but window managers
without desktop environments are also available.

 Modern Linux distributions use one of two popular X software packages:

 ■ X.org

 ■ Wayland

 Both software packages provide a version of X that can automatically detect your
hardware—including the video card, monitor, keyboard, and mouse—and confi gure itself
automatically. The result is that the software normally works properly without any explicit
confi guration. Sometimes, though, this autoconfi guration fails. When this happens, you
must manually edit the X confi guration fi les. For the X.org package, look in the /etc/X11/
xorg.conf fi le; for Wayland, the confi guration settings are stored for each individual user
account in the ~/.config/weston.ini fi le. If the X.org confi guration fi le is missing, you
can generate a sample fi le by typing the following command (with X not running) as root :

 # Xorg -configure

 Chapter 10, “Editing Files,” describes the nano and Vi text-mode text
editors.

 The result is normally a fi le called /root/xorg.conf.new . You can copy this fi le to /etc/
X11/xorg.conf and begin editing it to suit your needs. This task is complex and beyond
the scope of this book, but knowing the name of the fi le can help you get started—you can
examine the fi le and locate additional documentation by searching on that name.

136 Chapter 6 ■ Managing Hardware

 Using Common Display Hardware
Much of the challenge in dealing with video devices is in managing drivers for the video
chipsets involved. Most modern computers use one of a handful of video drivers:

 ■ nv , nouveau , and nvidia work with NVIDIA video hardware.

 ■ ati and fglrx work with AMD/ATI video hardware.

 ■ intel works with Intel video hardware.

 ■ The fbdev and vesa drivers are generic drivers that work with a wide variety of hard-
ware, but they produce suboptimal performance.

 ■ Many older video cards use more obscure drivers.

 The nvidia and fglrx drivers are proprietary drivers provided by their manufacturers.
Check the manufacturers’ websites for details or look for packages that install these driv-
ers. These proprietary drivers provide features that aren’t available in their open source
counterparts, although the nouveau driver implements some of these features. In this con-
text, video driver “features” translate into improved performance, particularly with respect
to 3D graphics and real-time displays (as in playing back video fi les).

 In the past, most video cards connected to monitors using a 15-pin Video Graphics
Array (VGA) cable. Today, 19-pin High-Defi nition Multimedia Interface (HDMI) cables
are quite common. HDMI has the advantage of being a digital interface, which can produce
a cleaner display on modern light-emitting diode (LED) monitors.

 Monitor resolutions are typically measured in terms of horizontal and vertical number
of pixels. In the past, resolutions as low as 640×480 have been common, but today it’s rare
to use a monitor that has an optimum resolution of lower than 1280×1024 or 1366×768,
and resolutions of 1920×1080 or higher are commonplace. Consult your monitor’s manual
to determine its optimum resolution. Typically, physically larger monitors have higher reso-
lutions; however, this isn’t always true.

 These days, to accommodate viewing movies, most monitors use an
aspect ratio of 16:9, referring to the ratio of the length to the height of the
display. Older monitors used a 4:3 aspect ratio, which was the old TV stan-
dard before high-definition.

 In the best of all possible worlds, Linux will autodetect your monitor’s optimum reso-
lution and set itself to that value whenever you boot the computer. Unfortunately, this
sometimes doesn’t work. Keyboard/video/mouse (KVM) switch boxes and extension cables
can sometimes interfere with this autodetection, and older monitors might not support the
necessary computer–monitor communication. You may need to crack open your monitor’s
manual to learn what its optimum resolution is. Look for this information in the features or
specifi cations section; it will probably be called optimum resolution, maximum resolution,
or something similar. It may also include a refresh rate value, as in 1280×1024 @ 60 Hz.

 In most cases, you can set the resolution using a GUI tool such as the Displays item in
the GNOME System Settings panel, shown in Figure 6.4 . In Figure 6.4 , the Resolution
drop-down enables you to set the resolution to any desired value. If you can’t fi nd the

Certification
Objective

Handling USB Devices 137

optimum resolution in the drop-down, you may need to perform more advanced adjust-
ments involving the /etc/X11/xorg.conf file—a topic that’s beyond the scope of this book.
On rare occasions, you may need to upgrade your video card; some cards aren’t able to
handle the optimum resolutions used by some monitors.

F i gU r e 6 . 4 Most desktop environments provide GUI tools to help you set your
display’s resolution.

Handling USB Devices
Most modern computers use USB as the primary interface for external peripherals.
Keyboards, mice, cameras, flash storage, hard disks, network adapters, scanners, printers,
and more can all connect via USB. For the most part, USB devices work in a plug-and-play
manner—you plug them in and they work. Some specific caveats include the following:

Human Interface Devices The X software usually manages any keyboards, mice, tablets,
and similar devices when you plug them in. If you have problems, you may need to adjust
your X configuration, but this is an advanced topic that’s beyond the scope of this book.

Disk Storage We include USB flash drives, external hard disks, and other storage devices
in this category. As described earlier, in “Using Removable and Optical Disks,” it’s critical
that you unmount the disk before you unplug its USB cable. Failure to do so can result in
data corruption.

Certification
Objective

138 Chapter 6 ■ Managing Hardware

Cell Phones, Cameras, e-Book Readers, and Music Players You can often use these
devices like disk devices to transfer photos, music, or other fi les. You may need to activate
an option on the device to make it look like a disk device to the computer, though. When
you’re done, unmount the device and deactivate its interface mode.

 Scanners Linux uses the Scanner Access Now Easy (SANE; sane-project.org) software
to handle most scanners. A few require obscure or proprietary software, though.

Printers Most distributions automatically confi gure suitable printer queues when you
plug in a USB printer. Most Linux distributions include the Common Unix Printer System
(CUPS) to detect and confi gure printers. If you need to tweak the confi guration, try enter-
ing http://localhost:631 in a web browser on the computer in question to access the
main CUPS interface. Doing so opens a web-based printer confi guration utility. Some dis-
tributions provide distribution-specifi c printer confi guration tools as well.

 Managing Drivers
 Most hardware devices require the presence of special software components to be useful. A
piece of software that “talks” to hardware is known as a driver , so you should know how
drivers work in Linux. This section fi rst describes several broad classes of drivers that you
may need to use in your Linux environment, and then explores how to locate and install
drivers for your hardware.

 Understanding Types of Drivers
 Linux requires drivers because different hardware—even two devices that serve very simi-
lar purposes, such as two network adapters—can function in very different ways. That is,
the methods required to initialize and use two network adapters may be entirely different.
To provide generalized interfaces so that programs like the Firefox web browser can use
any network adapter, the Linux kernel uses drivers as a bridge between the hardware-
agnostic kernel interfaces and the hardware itself.

 In fact, several layers exist between the network hardware and a program
like Firefox; the driver is just one of these layers.

 Broadly speaking, drivers can exist in one of two locations:

 ■ The kernel

 ■ An external library or application

 Most drivers are kernel-based, and in fact a large chunk of the Linux kernel consists
of drivers. Kernel drivers handle most of the devices that are internal to the computer’s
box, such as the hard disks, network interfaces, and USB interfaces. The kernel hosts most

Certification
Objective

http://localhost:631

Managing Drivers 139

drivers because drivers typically require privileged access to hardware, and that’s the pur-
pose of the kernel.

Some drivers reside in a library or application external to the kernel. Examples include:

 ■ SANE, which handles scanners

 ■ Ghostscript, which converts printed output into a form that particular printers can
understand

 ■ X, which manages the display

X is unusual in that it’s a non-kernel element that communicates more or less directly
with the video hardware. SANE and Ghostscript, by contrast, both communicate with
external hardware devices via interfaces (such as a USB port) that are handled by the ker-
nel. That is, you need at least two drivers to handle such devices. To print to a USB printer,
for instance, you use the kernel’s USB driver and a Ghostscript printer driver. Ideally, most
users will be unaware of this complexity, but you may need to be familiar with it in case
problems arise.

Locating and Installing Drivers
Most drivers come with the Linux kernel itself or with the library or application that han-
dles the type of hardware. For instance, most X installations include a set of video drivers
so that you can use most video cards. For this reason, it’s seldom necessary to track down
and install additional drivers for common hardware. There are exceptions, such as the
following:

New Hardware If your hardware is very new (meaning the model is new, not just that you
purchased it recently), it might need drivers that haven’t yet made their way into whatever
distribution you’re using.

Unusual Hardware If you’re using exotic hardware, such as a specialized scientific data-
acquisition board, you may need to track down drivers for it.

Proprietary Drivers Some manufacturers provide proprietary drivers for their hardware.
For instance, the nvidia and fglrx video drivers (referred to earlier, in “Using Common
Display Hardware”) can improve the performance of video displays based on NVIDIA or
ATI/AMD chipsets, respectively. Some hardware requires proprietary drivers. This is par-
ticularly common for some exotic hardware.

Bug Fixes Drivers, like other software, can be buggy. If you run into such a problem, you
may want to track down a more recent driver to obtain a bug fix.

One way to obtain a new kernel-based driver is to upgrade the kernel. Note that a kernel
upgrade can provide both bug fixes to existing drivers and entirely new drivers. Similarly,
upgrading software such as SANE, Ghostscript, or X can upgrade or add new drivers for
the devices that such packages handle.

If you’re using exotic hardware or need some other hard-to-find driver, your task can be
more difficult. You can check with the manufacturer or perform a web search to try to find
drivers.

140 Chapter 6 ■ Managing Hardware

If you obtain a driver that’s not part of the kernel (or software package to handle the
device), you should read the instructions that come with the driver. Installation procedures
vary quite a bit from one driver to another, so it’s impossible to provide a simple step-by-
step installation procedure that works in all cases. Some drivers come with installation util-
ities, but others require you to follow a procedure that involves typing assorted commands.
If you’re very unlucky, the driver will come in the form of a kernel patch. This is a way to
add or change files in the main kernel source code package. You must then recompile the
kernel—a task that’s well beyond the scope of this book.

Summary
Software and hardware interact in numerous ways to determine a computer’s capabilities.
Your CPU is one determinant of your computer’s speed, and it also specifies what version
of Linux you can run. CPUs are mounted on motherboards, which contain other critical
circuitry for managing hard disks, displays, and other devices. Your hard disk must be
partitioned and prepared with one or more filesystems before it’s useful. Video hardware—
both the monitor and the video circuitry inside the computer—determine how your desktop
environment looks and how fast the computer can move windows and display videos. USB
manages most external devices, such as keyboards, mice, and external disks. Software
known as drivers manages all these hardware devices.

Exam Essentials
Describe the major hardware components Linux must interact with on a desktop or server
computer. The main component of any computer system is the motherboard. The mother-
board contains the CPU processor, memory, a power supply, and interfaces that connect with
external devices. Desktop and server computers use the PCI connector to interface with hard
drives, video cards, and network cards. The USB interface is used to connect with external
devices such as the keyboard, mouse, and any external storage drives and optical drives.

Explain how Linux interacts with the various types of hardware devices. Linux uses software
drivers to communicate with each specific hardware device. Linux drivers can be included as
part of the kernel, or added later as a kernel module. Linux drivers exist for various printers,
monitors, network cards, and other types of storage devices such as external USB drives.

Explain how Linux stores data on disks. Linux splits up storage devices into partitions for
organizing the data stored on them. Linux provides several tools for partitioning storage
devices, such as the fdisk and gdisk utilities. After creating the partitions, you must for-
mat each partition using a specific filesystem type. Different filesystem types have different
features, such as dependability, speed of access, or file sizes, so you can choose the filesys-
tem type that works best for your application for each partition. After creating a filesystem
in the partition, you can mount it in the Linux virtual directory structure so that the Linux
system can access it to read and write data.

Review Questions 141

Review Questions
You can find the answers in Appendix A.

1. Which of the following commands provides the most information about your mother-
board’s features?

A. lscpu

B. Xorg -configure

C. fdisk -l /dev/sda

D. lspci

E. http://localhost:631

2. Why might you want to partition a hard disk? (Choose all that apply.)

A. To install more than one OS on the disk

B. To use ext4fs rather than ReiserFS

C. To turn a PATA disk into an SATA disk

D. To separate filesystem data from swap space

E. To separate the disk’s cache from its main data

3. Which of the following devices is not commonly attached via USB?

A. Video monitors

B. Keyboards

C. External hard disks

D. Printers

E. Scanners

4. True or false: An EM64T CPU is capable of running a Linux distribution identified as being
for the AMD64 CPU.

5. True or false: UDF is a good filesystem to use for a Linux installation on a hard disk.

6. True or false: The Linux kernel includes drivers for various disk controllers, network adapt-
ers, and USB interfaces, among other things.

7. The x86 CPU uses a -bit architecture.

A. 8

B. 32

C. 64

D. 128

E. 256

http://localhost:631

142 Chapter 6 ■ Managing Hardware

8. A computer power supply converts electricity from alternating current to . (two
words)

A. direct current

B. three-phase current

C. magnetic current

D. static current

E. solar electricity

9. The standard is a modern digital video interface that’s commonly used on com-
puter monitors.

A. VGA

B. LED

C. SVGA

D. HDMI

E. SDI

10. Two currently popular X software packages in Linux are and (Select
two).

A. xFree86

B. X.org

C. Wayland

D. GNOME

E. KDE Plasma

Chapter

7
Managing Files

Objectives:

 ✓ 2.3 Using Directories and Listing Files

 ✓ 2.4 Creating, Moving, and Deleting Files

 ✓ 5.4 Special Directories and Files

 Much of what you do with a computer involves manipulat-
ing fi les. Files hold the correspondence, spreadsheets, digital
photos, and other documents that you create. Files also hold

the confi guration settings for Linux—information on how to treat the network interfaces,
how to access hard disks, and what to do as the computer starts up. Indeed, even access to
most hardware devices and kernel settings is ultimately done through fi les. Knowing where
to fi nd the fi les and how to manage them is critically important for administering a Linux
computer.

 This chapter begins with a description of the basic layout of where Linux stores fi les.
It then shows you how to navigate your way around the Linux fi lesystem to get to your
fi les. Finally, it goes through the basic text-mode commands for manipulating fi les and
directories.

 Understanding Where Things Go
 As discussed in Chapter 6, “Managing Hardware”. Linux uses a unifi ed directory tree—
that is, every partition, removable disk, network fi le share, and other disk or disk-like
storage device is accessible as a directory in a single directory tree (or fi lesystem). This
fi lesystem is structured—some directories have a specifi c purpose, whether the directories
exist as regular subdirectories on one partition or are separate devices that are mounted off
the root (/) device. Understanding the purpose of the main directories will help you locate
fi les and avoid making disastrous mistakes. Before delving into those specifi cs, however,
you should understand the distinction between user fi les and system fi les.

 The term filesystem can refer to low-level data structures or to the
organization of files and directories on the computer. In this chapter, the
latter meaning is the most common.

 User Files vs. System Files
 To understand the distinction between user fi les and system fi les, recall that Linux is a
multiuser OS. In principle, a single computer can host thousands of users. Consider such
a computer for a moment—perhaps it’s a mainframe at a university, a large business, or a

Understanding Where Things Go 145

cloud-computing server. The vast majority of this computer’s users will be unfamiliar with
the details of Linux system administration—they want only to use their word processors,
email clients, and other applications. These users don’t need to deal with system configura-
tion files, for example. Indeed, giving them access to such files—especially write access—
could be disastrous. On a computer with 1,000 users, each of whom can change the system
configuration, somebody will make a change that will bring down the computer, whether
through ignorance or malice.

Of course, the issues involved in protecting the computer from its users are just a spe-
cial case of more general user account issues—on that 1,000-user computer, you probably
don’t want its users to be able to read and write each others’ files except in limited ways.
Thus, as described in Chapter 13, “Creating Users and Groups” and Chapter 14, “Setting
Ownership and Permissions,” you can set permissions on files to prevent unauthorized
access.

System files are files that control how the computer operates. They include the following:

 ■ System startup scripts that launch servers and other important daemons

 ■ Program files—both binary files and scripts

 ■ Program support files, such as fonts and icons

 ■ Configuration files that define how the system works (network configuration settings,
disk layout information, and so on)

 ■ Configuration files for most server services and other daemons

 ■ Data storage for system programs, such as the database that describes what programs
are installed

 ■ System log files, which record normal system activity

Obviously, nontechnical users should not be able to alter system files, except perhaps
indirectly. (Log files record activities such as login attempts, for instance.) Users must be
able to read some types of system files, such as the fonts and icons they use, but some sys-
tem files should be protected even from read access. (Users should not be able to read the
/etc/shadow file, because it holds encrypted passwords, for instance.)

To achieve the goal of restricting ordinary users’ access to system files, such files are nor-
mally owned by root or by another system account that has a more limited purpose. For
instance, many server programs rely on their own specific system accounts. System files can
then be protected from unwanted access by setting permissions in some appropriate way,
depending on their specific needs. Ordinary users are then unable to write to most system
files, protecting these files from harm. Because root can read and write any file, you must
acquire root privileges to perform most system maintenance tasks.

Immediately after installing Linux, most of the files that it contains are system files, and
most of the directories and subdirectories on a fresh Linux installation are system directo-
ries. As described shortly, a few directories, such as /home and /tmp, are set aside for user
files, although even these are structured or configured in such a way as to prevent problems
with multiuser access.

Certification
Objective

146 Chapter 7 ■ Managing Files

 Users’ home directories traditionally reside in /home , whereas /tmp is
accessible to all users and holds temporary files.

 The distinction between system fi les and user fi les exists even on single-user Linux com-
puters, such as your personal laptop computer. This may seem strange or even frustrating;
after all, if you’re the only user, and if you have root access, why bother with the distinc-
tion between system fi les and user fi les? The answer is that it provides a layer of protection
against accidental or malicious damage. If a typo, a bug, or malware would, say, delete all
the fi les on the computer, the damage is contained if this action is performed as a normal
user rather than as root —a normal user can’t delete all the fi les on the computer. Thus the
distinction between these two account types (and, by extension, these two classes of fi les) is
useful even on a single-user computer.

 The Filesystem Hierarchy Standard
 Although every Linux distribution has its own unique way of doing certain things, their
developers all recognize the need for some standardization in the layout of their directories.
For instance, programs should be able to locate key system confi guration fi les consistently
in the same places on all distributions. If this weren’t the case, programs that rely on such
features would become more complex and might not work on all distributions. To address
this need, the Filesystem Hierarchy Standard (FHS) was created. Aside from Linux, some
Unix-like OSs also follow the FHS to one degree or another.

 FHS evolved from an earlier Linux-only standard, the Filesystem Standard
(FSSTND) .

 One important distinction made by the FHS is between shareable fi les and unshareable
fi les . Shareable fi les , such as user data fi les and program binary fi les, may be reasonably
shared between computers. (Of course, you don’t need to share such fi les, but you may
do so.) If fi les are shared, they’re normally shared through a Network File System (NFS)
server. Unshareable fi les contain system-specifi c information, such as confi guration fi les. For
instance, you’re not likely to want to share a server’s confi guration fi le between computers.

 A second important distinction made by the FHS is that between static fi les and variable
fi les . The former don’t normally change except through direct intervention by the system
administrator. Most program executables are good examples of static fi les. Users, auto-
mated scripts, servers, or the like may change variable fi les . For instance, users’ home direc-
tories and mail queues are composed of variable fi les.

 The FHS tries to isolate each directory into one cell of this 2 × 2 (shareable/unshareable
× static/variable) matrix. Table 7.1 illustrates these relationships. Some directories contain
subdirectories in multiple cells, but in these cases, the FHS tries to specify the status of
particular subdirectories. For instance, /var is variable, and it contains some shareable and
some unshareable subdirectories, as shown in Table 7.1 .

Understanding Where Things Go 147

ta b le 7.1 The FHS directory classification system

Shareable Unshareable

Static /usr, /opt /etc,/root

Variable /home, /var/mail /var/run, /var/lock

The FHS comes in numbered versions. Version 3.0, the latest version as we write,
was released in May 2015 (see FHS’s web page at linuxfoundation.org/collaborate/
workgroups/lsb/fhs).

Important Directories and Their Contents
The FHS defines the names and purposes of many directories and subdirectories on a Linux
system. Table 7.2 summarizes the most important of these directories. Most of these direc-
tories are system directories, the main exceptions being /home, /tmp, /mnt, and /media.

ta b le 7. 2 Important Linux directories according to the FHS

Directory Purpose

/ The root directory. All files appear in this directory or subdirectories of it.

/etc Holds system configuration files

/boot Holds important boot files, such as the Linux kernel, the initial RAM disk,
and often boot loader configuration files

/bin Holds program files that are critical for normal operation and that ordi-
nary users may run

/sbin Holds program files that are critical for normal operation and that ordi-
nary users seldom run

/lib Holds libraries—code used by many other programs—that are critical for
basic system operation

/usr Holds programs and data used in normal system operation but that are
not critical for a bare-bones boot of the system. This directory is split
into subdirectories that mirror parts of the root organization—/usr/bin,
/usr/sbin, /usr/lib, and so on.

/home Holds users’ home directories. Separating this directory into its own low-
level filesystem effectively isolates most user data from the OS, which
can be useful if you want to reinstall the OS without losing user data.

Certification
Objective

148 Chapter 7 ■ Managing Files

Directory Purpose

 /root The root user’s home directory

 /var Holds miscellaneous transient files, such as log files and print spool files.
One subdirectory of /var , /var/tmp , deserves special mention. Like /tmp
(described next), /var/tmp holds temporary files. These files should not
be deleted when the computer reboots.

 /tmp Holds temporary files, often including temporary files created by user
programs. Such files may theoretically be deleted when the computer
reboots, although in practice many distributions don’t do this.

 /mnt The traditional mount point for removable media; sometimes split into
subdirectories for each mounted filesystem

 /media The new mount point for removable media; typically split into subdirecto-
ries for each mounted filesystem

 /dev
 /run

 Holds device files, which provide low-level access to hardware

 Information about the running system

 As an ordinary user, you will create most of your fi les in your home directory, which is
normally a subdirectory of /home . You might also access removable media mounted at /
media (or sometimes /run/media), and perhaps network resources that might be mounted
elsewhere. You can use /tmp and certain subdirectories of /var , too, although most users
don’t need to be aware of these locations explicitly—programs are normally hard-coded
to use them for temporary fi les or for specifi c types of fi les, such as incoming email fi les.
As a system administrator, you might manipulate fi les located in any of these directories;
however, for a system administrator, /etc is particularly important, since that’s where most
system confi guration fi les reside. As you explore your computer with GUI or text-mode
utilities, you should keep this directory structure in mind.

 Ordinary users can’t write to most system directories, such as /usr . Thus,
you can’t damage your installation by checking out these directories—that
is, if you’re running as an ordinary user!

 Of these directories, several individual directories or collections of them bear special
attention:

The Configuration Directory The /etc directory holds most system confi guration fi les.
Previous chapters have referred to several such fi les, such as /etc/fstab (which defi nes
where partitions are mounted) and /etc/passwd (which is the primary account defi nition

ta b le 7. 2 Important Linux directories according to the FHS (continued)

Exploring Files and Directories 149

fi le). Many more exist. Indeed, you’ll fi nd subdirectories in /etc to house multiple con-
fi guration fi les for complex subsystems and servers, such as /etc/X11 (for the X Window
System) and /etc/samba (for the Samba fi le server).

Executable Directories Program fi les reside mainly in /sbin , /bin , /usr/sbin , and
/usr/bin . (Additional directories can house program fi les on some systems. Most notably,
/usr/local/sbin and /usr/local/bin hold locally compiled programs.)

Library Directories Libraries are collections of programming functions that can be use-
ful to many programs. They’re stored in separate fi les to save disk space and RAM when
programs run, and they enable easy updates to library fi les without reinstalling all of the
programs that rely on them. In Linux, most libraries reside in /lib and /usr/lib , although
some can reside elsewhere (such as /usr/local/lib) on some systems.

 If you’ve administered Windows computers, you should be aware of an important dif-
ference between Windows and Linux: in Windows, it’s common for a program binary, its
confi guration fi les, and all of its support fi les to reside in a single directory tree that belongs
to the program, such as C:\Program Files\SomeProgram . In Linux, by contrast, most of
a program’s key fi les are likely to reside in standard locations that are shared with other
programs and to be scattered about. For instance, the program’s executable might be in
/usr/bin , related libraries in /usr/lib , confi guration fi les in /etc or in users’ home direc-
tories, and so on. This works well in Linux because Linux’s packaging systems, described
in Chapter 9, “Exploring Processes and Process Data,” keep track of where a package’s
many fi les go, enabling you to delete or upgrade a package easily. Linux has the advantage
of simplifying the path, which is the list of directories in which program fi les reside. (Paths
also exist for libraries and man pages.) If you’re used to looking for fi les in program-specifi c
locations, though, adjusting to the Linux system can be awkward. The key is to use your
package system to identify where a package’s fi les reside; for instance, typing rpm -ql
 someprogram shows where every fi le in the someprogram package resides on an RPM-
based system.

 The package system does not manage user configuration files, so they can
linger after you delete a program. This causes no harm aside from the disk
space consumed.

 Exploring Files and Directories
 When you’re comfortable with the layout of the Linux fi les, you may be ready to do some
exploring. In the next few pages, we describe how to learn what fi les are on your hard disk,
how to change between directories, how to refer to fi les that aren’t in the current directory,
and how to use the most common commands for manipulating fi les.

 Obtaining File Listings
 To manipulate fi les, it’s helpful to know what they are. The ls command, whose name is
short for list, provides you with this information . The ls command displays the names of

Certification
Objective

Certification
Objective

150 Chapter 7 ■ Managing Files

files in a directory. If you pass it no options, it shows the files in the current directory; how-
ever, you can pass it options as well as file or directory specifications. This command sup-
ports a huge number of options; consult its man page for details. Table 7.3 summarizes the
most important ls options.

ta b le 7. 3 Common ls options

Option (long form) Option (short form) Description

--all -a Displays dot files. Normally, ls omits files
whose names begin with a dot (.). These
dot files (also known as hidden files) are
often configuration files that aren’t usually
of interest.

--color N/A Produces a color-coded listing that
differentiates directories and other special
file types by displaying them in different
colors. Some Linux distributions configure
their shells to use this option by default.

--directory -d Changes the behavior of ls to list only the
directory name. Normally, if you type a
directory name as an option, ls displays
the contents of that directory. The same
thing happens if a directory name matches
a wildcard.

N/A -l Produces a long listing that includes
information such as the file’s permission
string, owner, group, size, and creation
date. The ls command normally displays
filenames only.

--file-type -F Appends an indicator code to the end of
each name so that you know what type of
file it is

--recursive -R Causes ls to display directory contents
recursively. That is, if the target directory
contains a subdirectory, ls displays both
the files in the target directory and the
files in its subdirectory. The result can
be a huge listing if a directory has many
subdirectories.

Certification
Objective

Exploring Files and Directories 151

 You may optionally give ls one or more fi le or directory names, in which case ls displays
information about those fi les or directories, as in this example:

 $ ls -F /usr /bin/ls
 /bin/ls

 /usr:
 X11R6/ games/ include/ man/ src/
 bin/ i386-glibc20-linux/ lib/ merge@ tmp@
 doc/ i486-linux-libc5/ libexec/ sbin/
 etc/ i586-mandrake-linux/ local/ share/

 This output shows both the /bin/ls program fi le and the contents of the /usr direc-
tory. The latter consists mainly of subdirectories, indicated by a trailing slash (/) when -F
is used. By default, ls creates a listing that’s sorted by fi lename, as shown in this example.
Note, though, that uppercase letters (as in X11R6) always appear before lowercase letters (as
in bin).

 A trailing at-sign (@) denotes a symbolic link , which is a file that points to
another file.

 One of the most common ls options is -l , which creates a long directory listing like
this:

 $ ls -l t*
 -rwxr-xr-x 1 rich rich 111 Aug 13 13:48 test
 -rw-r--r-- 1 rich rich 176322 Jul 16 09:34 thttpd-2.20b-1.i686.rpm
 -rw-r--r-- 1 rich rich 1838045 Jul 24 18:52 tomsrtbt-1.7.269.tar.gz
 -rw-r--r-- 1 rich rich 3265021 Aug 22 23:46 tripwire.rpm

 This output includes permission strings (such as -rwxr-xr-x), ownership (an owner of
rich and a group of rich for all of these fi les), fi le sizes, and fi le creation dates in addition
to the fi lenames. This example also illustrates the use of the * wildcard, which matches any
string; thus, t* matches any fi lename that begins with t .

 Chapter 14 covers file ownership and permission topics in detail.

 Changing Directories
 The cd command changes the current directory in which you’re working. Although your
current directory doesn’t matter for many commands, it does matter when you begin
to refer to fi les. As described in the next section, “Using Absolute and Relative File
References,” some types of fi le references depend on your current directory.

Certification
Objective

152 Chapter 7 ■ Managing Files

 When you change your current directory, your shell’s prompt may change (depending on
your distribution’s settings), to something like this:

 [rich@essentials ~]$ cd /usr/bin
 [rich@essentials bin]$

 In this book, we shorten most shell prompts to a single character, such as
$, when we display commands on their own lines.

 The default confi gurations for many distributions display only the fi nal part of the cur-
rent directory— bin rather than /usr/bin in the preceding example. If you need to know
the complete path of your current location, you can use pwd :

 $ pwd
 /usr/bin

 Linux uses a slash (/) character as a directory separator. If you’re familiar with
Windows, you may know that Windows uses a backslash (\) for this purpose. Don’t con-
fuse the two! In Linux, a backslash serves as a “quote” or “escape” character to enter oth-
erwise hard-to-specify characters, such as spaces, as part of a fi lename. Also, take note that
a slash isn’t a legal character in a Linux fi lename for this reason.

 Using Absolute and Relative File References
 As described in Chapter 6, “Managing Hardware,” Linux uses a unifi ed directory tree,
which means that all fi les can be located relative to a single root directory, which is often
referred to using the slash (/) character. If your disk contains multiple partitions, one of
these devices becomes the root fi lesystem , and others are mounted at some location within
the overall directory tree. The same thing happens when you mount a USB fl ash drive,
DVD, or other removable disk device. The result might resemble Figure 7.1 , which shows
a subset of the directories found on a typical Linux installation, along with a couple of
removable media types. Most commonly, removable media appear as subdirectories of the
 /media directory, but some Linux distributions prefer to use /run/media . Most subdirec-
tories can be split off as separate partitions or even placed on separate disks. In Figure 7.1 ,
the /home directory is on its own partition, but it’s accessed in exactly the same way as it
would be if it were part of the root (/) partition.

 Don’t confuse the root (/) directory with the /root directory, which is the
root user’s home directory.

Exploring Files and Directories 153

 F i GU R e 7.1 In Linux, all files are referred to relative to a single root (/) directory.

home

christine tim dvd flash

usr etc

/

bin media

 When pointing to fi les and directories in commands, you can refer to them in three ways:

Absolute References Absolute fi le references are relative to the root (/) directory, as in
/home/fred/afile.txt to refer to the afile.txt fi le in Fred’s home directory. Such refer-
ences always begin with a slash (/) character.

 Home Directory References The tilde (~) character refers to the user’s home directory. If a
fi lename begins with that character, it’s as if the path to the user’s home directory were sub-
stituted. Thus, for Fred, ~/afile.txt is equivalent to /home/fred/afile.txt .

 Relative References Relative fi le references are relative to the current directory. Thus, if Fred
is working in his home directory, afile.txt refers to /home/fred/afile.txt . Relative refer-
ences can include subdirectories, as in somedir/anotherfile.txt . In Linux, every directory
includes a special hidden reference (..) , which refers to its parent directory. Thus, if Sally is
working in /home/sally , she can refer to Fred’s afile.txt fi le as ../fred/afile.txt .

 File permissions can block your access to another user’s files, an issue
described in Chapter 14.

 To better understand these concepts, try these operations:

 1. Launch a new shell, or use an existing one.

 2. Type cd ~ to change into your home directory.

 3. Type cat /etc/fstab to view this configuration file using an absolute file reference.
Its contents should appear in your terminal.

 4. Type pwd to view your current directory. It will probably be /home / yourusername ,
where yourusername is—you guessed it!—your username.

 5. Type cat ../../etc/fstab to view this configuration file using a relative file refer-
ence. The first .. in this command refers to /home , and the second refers to the root
(/) directory. (If your home directory is in an unusual location, you may need to adjust
the number of ../ elements in this command, which is why we had you use pwd to find
your current directory in the previous step.)

 6. Type cat ~/../../etc/fstab to view this configuration file using a home directory
reference.

154 Chapter 7 ■ Managing Files

 Of course, steps 5 and 6 use rather awkward fi le references; in real life, you’d probably
use an absolute fi le reference to access /etc/fstab from your home directory. If you were
in a subdirectory of /etc , though, typing ../fstab would be slightly easier than typing
 /etc/fstab ; and typing ~/afile.txt would be easier than typing the complete path to
your home directory.

 Manipulating Files
 If you’ve used Windows or macOS, chances are that you’ve used a GUI fi le manager to
manipulate fi les. Such tools are available in Linux, as noted in Chapter 4, “Using Common
Linux Programs,” and you can certainly use a fi le manager for many common tasks. Text-
mode shells in Linux, such as Bash, provide simple but powerful tools for manipulating
fi les, too. These tools can simplify some tasks, such as working with all the fi les whose
names include the string invoice . Thus you should be familiar with these text-mode
commands.

 To begin this task, we describe some ways that you can create fi les. With fi les created,
you can copy them from one location to another. You may sometimes want to move or
rename fi les, so we explain how to do so. Linux enables you to create links , which are ways
to refer to the same fi le by multiple names. If you never want to use a fi le again, you can
delete it. Wildcards provide the means to refer to many fi les using a compact notation, so
we describe them. Finally, we cover the case-sensitive nature of Linux’s fi le manipulation
commands.

 Creating Files
 Normally, you create fi les using the programs that manipulate them. For instance, you
might use a graphics program to create a new graphics fi le. This process varies from one
program to another, but GUI programs typically use a menu option called Save or Save As
to save a fi le. Text-mode programs provide similar functionality, but the details of how it’s
done vary greatly from one program to another.

 Chapter 10, “Editing Files,” describes how to create text files with the
text-mode nano and Vi editors.

One program deserves special mention as a way to create fi les: touch . You can type
this program’s name followed by the name of a fi le that you want to create, such as
touch newfile.txt to create an empty fi le called newfile.txt . Ordinarily, you don’t
need to do this to create a fi le of a particular type, since you’ll use a specialized program
to do the job. Sometimes, though, it’s helpful to create an empty fi le just to have the fi le
itself—for instance, to create a few “scratch” fi les to test some other command.

Certification
Objective

Manipulating Files 155

 If you pass touch the name of a fi le that already exists, touch updates that fi le’s access
and modifi cation time stamps to the current date and time. This can be handy if you’re
using a command that works on fi les based on their access times, and you want the pro-
gram to treat an old fi le as if it were new. You might also want to do this if you plan to dis-
tribute a collection of fi les and you want them all to have identical time stamps.

 A programmer’s tool known as make compiles source code if it’s new, so
programmers sometimes use touch to force make to recompile a source
code file.

 You can use a number of options with touch to modify its behavior. The most important
of these are as follows:

 Don’t Create a File The -c or --no-create option tells touch not to create a new fi le if
one doesn’t already exist. Use this option if you want to update time stamps but you do not
want to create an empty fi le accidentally, should you mistype a fi lename.

Set the Time to a Specific Value You can use -d string or --date= string to set the date of
a fi le to that represented by the specifi ed string , which can take any number of forms. For
instance, touch -d "July 4 2019" afile.txt causes the date stamps on afile.txt to
be set to July 4, 2019. You can achieve the same effect with -t [[CC] YY] MMDDhhmm [. ss] ,
where [[CC] YY] MMDDhhmm [. ss] is a date and time in a specifi c numeric format, such as
201907041223 for 12:23 p.m. on July 4, 2019.

 Consult the man page for touch to learn about its more obscure options.

 Copying Files
 If you’re working in a text-mode shell, the cp command copies a fi le. (Its name is short for
copy .) To use it, you can pass cp a source fi lename and a destination fi lename, a destination
directory name, or both. Table 7.4 outlines these three ways to use the command. Although
the example fi lenames in Table 7.4 suggest that the original fi le be in your current working
directory, this need not be the case; orig.txt could include a directory specifi cation, such
as /etc/fstab or ../afile.txt .

 ta b le 7. 4 Examples of the use of cp

Example command Effect

 cp orig.txt new.txt Copies orig.txt to new.txt in the current directory

 cp orig.txt /otherdir Copies orig.txt to the /otherdir directory. The copy will be
called orig.txt .

 cp orig.txt
/otherdir/new.txt

Copies orig.txt to the /otherdir directory. The copy will be
called new.txt .

Certification
Objective

156 Chapter 7 ■ Managing Files

 The critical point to understand is how the destination fi lename is specifi ed. This can be
less than obvious in some cases, since fi le and directory specifi cations can look alike. For
instance, consider the following command:

 $ cp outline.pdf ~/publication

 This command can produce any of three results:

 ■ If ~/publication is a directory, the result is a file called ~/publication/outline.pdf .

 If you follow a directory name with a slash (/), as in ~/publication/ , cp
returns an error message if ~/publication doesn’t exist or is a regular file.

 ■ If ~/publication is a file, the result is that this file will be replaced by the contents of
 outline.pdf .

 ■ If ~/publication doesn’t yet exist, the result is a new file, called ~/publication ,
which is identical to the original outline.pdf .

 Keeping these results straight can be confusing if you’re new to command-line fi le copy-
ing. We encourage you to experiment by creating a test directory using mkdir (described
later, in “Creating Directories”), creating subdirectories in this directory, and copying fi les
into this test directory tree using all of these methods of referring to fi les. (This is the type
of situation where touch can be handy for creating test fi les.)

 The cp command provides many options for modifying its behavior. Some of the more
useful options enable you to modify the command’s operation in helpful ways:

 Force Overwrite The -f or --force option forces the system to overwrite any existing
fi les without prompting.

 Use Interactive Mode The -i or --interactive option causes cp to ask you before over-
writing any existing fi les.

 Preserve Ownership and Permissions Normally, the user who issues the cp command
owns a copied fi le and uses that account’s default permissions. The -p or --preserve
option preserves ownership and permissions, if possible.

 Chapter 13, “Creating Users and Groups,” describes Linux accounts. Chap-
ter 14, “Setting Ownership and Permissions,” describes file permissions.

 Perform a Recursive Copy If you use the -R or --recursive option and specify a direc-
tory as the source, the entire directory, including its subdirectories, is copied. Although -r
also performs a recursive copy, its behavior with fi les other than ordinary fi les and directo-
ries is unspecifi ed. Most cp implementations use -r as a synonym for -R , but this behavior
isn’t guaranteed.

Manipulating Files 157

Perform an Archive Copy The -a or --archive option is similar to -R , but it also pre-
serves ownership and copies links as is. The -R option copies the fi les to which symbolic
links point rather than the symbolic links themselves. (Links are described in more detail
later in this chapter, in “Using Links.”)

Perform an Update Copy The -u or --update option tells cp to copy the fi le only if the
original is newer than the target or if the target doesn’t exist.

 This list of cp options is incomplete but covers the most useful options.
Consult cp ’s man page for information about additional cp options.

 Moving and Renaming Files
 In a text-mode shell you use the same command, mv , both to move and rename fi les and
directories. Its use is similar to that of cp ; for instance, if you wanted to move outline.pdf
to ~/publication , you would type:

 $ mv outline.pdf ~/publication

 If you specify a fi lename with the destination, the fi le will be renamed as it’s moved. If
you specify a fi lename and the destination directory is the same as the source directory, the
fi le will be renamed but not moved. In other words, mv ’s effects are much like cp ’s, except
that the new fi le replaces, rather than supplements, the original.

 Behind the scenes, mv does the following:

 ■ When the source and target are on the same filesystem, mv rewrites directory entries
without actually moving the file’s data.

 Linux uses mv for renaming files because the two operations are identical
when the source and destination directories are the same.

 ■ When you move a file from one filesystem to another, mv copies the file and then
deletes the original file.

 The mv command takes many of the same options as cp does. From the earlier list,
 --preserve , --recursive , and --archive don’t apply to mv , but the others do.

 Using Links
 Sometimes it’s handy to refer to a single fi le by multiple names. Rather than create several
copies of the fi le, you can create multiple links to one fi le. Linux supports two types of
links, both of which are created with the ln command:

 Hard Link A hard link is a duplicate directory entry. Both entries point to the same fi le.
Because they work by tying together low-level fi lesystem data structures, hard links can
exist only on a single fi lesystem. In a hard link scenario, neither fi lename holds any sort

Certification
Objective

Certification
Objective

158 Chapter 7 ■ Managing Files

of priority over the other; both tie directly to the fi le’s data structures and data. Type ln
origname linkname , where origname is the original name and linkname is the new link’s
name, to create a hard link.

Symbolic Link A symbolic link (aka soft link) is a fi le that refers to another fi le by name.
That is, the symbolic link is a fi le that holds another fi le’s name, and when you tell a pro-
gram to read to or write from a symbolic link fi le, Linux redirects the access to the original
fi le. Because symbolic links work by fi lename references, they can cross fi lesystem boundaries.
Type ln -s origname linkname to create a symbolic link.

 Symbolic links are similar to shortcuts on the Windows desktop.

 You can identify links in long directory listings (using the -l option to ls) in a couple of
ways. The following example illustrates this:

 $ ln report.odt hardlink.odt
 $ ln -s report.odt softlink.odt
 $ ls -l
 total 192
 -rw-r--r-- 2 rich users 94720 Sep 10 11:53 hardlink.odt
 -rw-r--r-- 2 rich users 94720 Sep 10 11:53 report.odt
 lrwxrwxrwx 1 rich users 10 Sep 10 11:54 softlink.odt -> report.odt

 This example began with a single fi le, report.odt . The fi rst two commands created two
links, a hard link (hardlink.odt) and a symbolic link (softlink.odt). Typing ls -l shows
all three fi les. The original fi le and the hard link can be identifi ed as links by the presence
of the value 2 in the second column of the ls -l output; this column identifi es the number
of fi lename entries that point to the fi le, so a value higher than 1 indicates that a hard link
exists. The symbolic link is denoted by an l (a lowercase L , not a digit 1) in the fi rst char-
acter of the softlink.odt fi le’s permissions string (lrwxrwxrwx). Furthermore, the symbolic
link’s fi lename specifi cation includes an explicit pointer to the linked-to fi le.

 Both types of links are useful for referring to fi les by multiple names or in multiple
directories. For instance, if you write a letter that you send to multiple recipients, you might
want to store copies in directories devoted to each recipient. In such a situation, either
type of link will probably work fi ne, but each type has implications. Most importantly, if
you use symbolic links, deleting the original fi le makes the fi le completely inaccessible; the
symbolic links remain but point to a nonexistent fi le. If you use hard links, by contrast, you
must delete all copies of the fi le to delete the fi le itself. This is because hard links are dupli-
cate directory entries that point to the same fi le, whereas symbolic links are separate fi les
that refer to the original fi le by name.

 If you modify a fi le by accessing its soft link, or by any hard-linked name, you should
be sure that the program you use will modify the original fi le. Some programs create a
backup of the original fi le that you can use to recover the original in case you fi nd that your

Manipulating Files 159

changes were in error. Most editors do this in such a way that the backup is a new fi le, and
they write changes to the original fi le, thus affecting it as well as the link. Some programs,
though, rename the original fi le and then write a new fi le with the changes. If a program
does this and you’ve accessed the fi le via a link, the linked-to fi le will be unaffected by your
changes. If in doubt, test your program to be sure that it does what you expect.

 If you want to create a link to a directory, be aware that you can normally do this only
via symbolic links. Hard links between directories are potentially dangerous in terms of low-
level fi lesystem data structures, so the ln utility permits only the superuser to create such
links. Even then, most fi lesystems disallow hard links between directories, so in practice even
 root usually can’t create them. Any user can create symbolic links to a directory, though.

 Linux installations make use of links (mostly symbolic links) in various places. For
instance, system startup scripts are often referred to via symbolic links located in directo-
ries dedicated to specifi c startup conditions, known as runlevels . Runlevel management is
beyond the scope of this book.

 Deleting Files
 The rm command deletes fi les in a text-mode shell. As you might expect, you pass the
names of one or more fi les to this command:

 The rm command’s name is short for remove .

 $ rm outline.pdf outline.txt

 This example deletes two fi les, outline.pdf and outline.txt . If you want to delete an
entire directory tree, you can pass rm the -r , -R , or --recursive option along with a direc-
tory name:

 $ rm -r oldstuff/

 The -i option causes rm to prompt before deleting each fi le. This is a useful safety mea-
sure. You can use the -f (--force) option to override this setting, if -i is confi gured as the
default. Several other options to rm exist; consult its man page to learn about them.

 Distributions sometimes set the -i option by default for root , but not for
ordinary users.

 It’s important to realize that rm does not implement any functionality like a fi le man-
ager’s “trash can.” After you delete a fi le with rm , it’s gone, and you can’t recover it except
by using low-level fi lesystem tools—a topic that’s well beyond the scope of this book. Thus,
you should be careful when using rm —and even more careful when using it with its -r
option or as root !

160 Chapter 7 ■ Managing Files

 Using Wildcards
A wildcard is a symbol or set of symbols that stands in for other characters. You can use
wildcards to refer to fi les. (Using wildcards is also sometimes called globbing .) Three
classes of wildcards are common in Linux:

? A question mark (?) stands in for a single character. For instance, b??k matches book ,
balk , buck , or any other four-character fi lename that begins with b and ends with k .

* An asterisk (*) matches any character or set of characters, including no character. For
instance, b*k matches book , balk , and buck just as does b??k . b*k also matches bk , bbk , and
 backtrack .

 Bracketed Values Characters enclosed in square brackets ([]) normally match any charac-
ter within the set. For instance, b[ao][lo]k matches balk and book but not buck . You can
also specify a range of values; for instance, b[a-z]ck matches back , buck , and other four-
letter fi lenames of this form whose second character is a lowercase letter. This differs from
 b?ck —because Linux treats fi lenames in a case-sensitive way and because ? matches any
character (not just any letter), b[a-z]ck doesn’t match bAck or b3ck , although b?ck matches
both of these fi lenames.

 Wildcards are implemented in the shell and passed to the command that you call. For
instance, if you type ls b??k and that wildcard matches the three fi les balk , book , and
 buck , the result is precisely as if you’d typed ls balk book buck .

 The way Bash expands wildcards can lead to unexpected, and sometimes
undesirable, consequences. For instance, suppose that you want to copy
two files, specified via a wildcard, to another directory, but you forget to
give the destination directory. The cp command will interpret the com-
mand as a request to copy the first of the files over the second.

 Understanding Case Sensitivity
 Linux’s native fi lesystems are case-sensitive, which means that fi lenames that differ only
in case are distinct fi les. For instance, a single directory can hold fi les called afile.txt ,
 Afile.txt , and AFILE.TXT , and each is a distinct fi le. This case sensitivity also means
that, if you type a fi lename, you must enter it with the correct case—if a fi le is called
 afile.txt but you type its name as Afile.txt , the program you’re using will tell you
that the fi le doesn’t exist. This is different from what happens in Windows or (usually) in
macOS, in which fi lenames that differ only in case are treated identically. In these OSs,
you can’t have two fi les that differ only in case in the same directory, and you can specify a
fi lename using any case variant that you like. Windows also creates a short fi lename (eight
characters with an optional three-character extension) for every fi le with a longer name in
order to help out older software that works only with such fi lenames. Linux doesn’t create
such alternate fi lenames.

Certification
Objective

Certification
Objective

Manipulating Directories 161

 Apple’s Hierarchical File System Plus (HFS+) supports both case-sensitive
and case-insensitive variants. Apple uses the case-insensitive mode by
default.

 Case sensitivity is primarily a function of the fi lesystem, not of the operating system.
Thus if you access a non-Linux fi lesystem (on a removable disk, a non-Linux partition on
a dual-boot computer, or using a network fi lesystem), you may fi nd that case-insensitive
rules will apply. This is particularly likely when accessing File Allocation Table (FAT) and
New Technology File System (NTFS) volumes, which are common on Windows comput-
ers, external hard disks, and USB fl ash drives. A further twist on this rule is that many
Linux programs, such as Bash, assume case sensitivity even on case-insensitive fi lesystems.
Features such as command completion, described in Chapter 5, “Getting to Know the
Command Line” may work only if you use the case in which fi lenames are recorded, even
on case-insensitive fi lesystems.

 Ordinarily, case sensitivity creates few real problems, particularly if you use GUI pro-
grams that enable you to point-and-click to select fi les. You should be aware of these issues,
however, when copying fi les or directories to FAT, NTFS, HFS+, or other case-insensitive
fi lesystems. If a directory that you want to copy contains fi les with names that differ only
in case, you’ll end up with a disk that contains just one of the offending fi les.

 Manipulating Directories
 You are probably familiar with the concept of directories, although you may think of them
as “folders,” since most GUI fi le managers represent directories using fi le folder icons.
Naturally, Linux provides text-mode commands to manipulate directories. These include
directory-specifi c commands to create and delete directories, as well as use of some of the
fi le manipulation commands described earlier to manage directories.

 Creating Directories
 You can use the mkdir command to create a directory. Ordinarily, you’ll use this command
by typing the name of one or more directories following the command:

 $ mkdir newdir
 $ mkdir dirone newdir/dirtwo

 The fi rst example creates just one new directory, newdir , which will then reside in the
current directory. The second example creates two new directories: dirone and newdir/
dirtwo . In this example, mkdir creates dirtwo inside the newdir directory, which was cre-
ated with the preceding command.

Certification
Objective

162 Chapter 7 ■ Managing Files

 Chapter 5 includes information on how to specify locations other than the
current directory, as well as how to change your current directory with the
cd command.

 In most cases, you’ll use mkdir without options, other than the name of a directory, but
you can modify its behavior in a few ways:

Set Mode The -m mode or --mode= mode option causes the new directory to have the speci-
fi ed permission mode, expressed as an octal number. (Chapter 14 describes these topics in
more detail.)

Create Parent Directories Normally, if you specify the creation of a directory within a
directory that doesn’t exist, mkdir responds with a No such file or directory error and
doesn’t create the directory. If you include the -p or --parents option, though, mkdir cre-
ates the necessary parent directory. For instance, typing mkdir first/second returns
an error message if first doesn’t exist, but typing mkdir -p first/second succeeds,
creating both first and its subdirectory, second .

 Deleting Directories
 The rmdir command is the opposite of mkdir ; it destroys a directory. To use it, you nor-
mally type the command followed by the names of one or more directories that you want
to delete:

 $ rmdir dirone
 $ rmdir newdir/dirtwo newdir

 These examples delete the three directories created by the mkdir commands shown
earlier.

 Like mkdir , rmdir supports few options, the most important of which handle these
tasks:

Ignore Failures on Non-Empty Directories Normally, if a directory contains fi les or
other directories, rmdir doesn’t delete it and returns an error message. With the
 --ignore-fail-on-non-empty option, rmdir still doesn’t delete the directory, but it
doesn’t return an error message.

Delete Tree The -p or --parents option causes rmdir to delete an entire directory tree.
For instance, typing rmdir -p newdir/dirtwo causes rmdir to delete newdir/dirtwo ,
then newdir . You could use this command rather than the second one shown earlier to
delete both of these directories.

 You should understand that rmdir can delete only empty directories; if a directory
contains any fi les at all, it won’t work. (You can use the -p option, however, to delete a
set of nested directories, as long as none of them holds any nondirectory fi les.) Of course,
in real life you’re likely to want to delete directory trees that hold fi les. In such cases, you

Certification
Objective

Manipulating Directories 163

can use the rm command, described earlier in “Deleting Files,” along with its -r (or -R or
--recursive) option:

$ rm -r newdir

This command deletes newdir and any files or subdirectories that it might contain. This
fact makes rm and its -r option potentially dangerous, so you should be particularly cau-
tious when using it.

linux security Features

When you log in as an ordinary user, you can accidentally delete your own files if you err
in your use of rm or various other commands. You cannot, however, do serious damage
to the Linux installation itself. This is because Unix was designed as a multiuser OS with
multiuser security features in mind, and because Linux is a clone of Unix, Linux has inher-
ited these security features. Among these features are the concepts of file ownership and
file permissions. You can delete only your own files—or more precisely, you can delete
files only if you have write access to the directories in which they reside. You have such
access to your own home directory but not to the directories in which Linux system files
reside. Therefore, you can’t damage these Linux system files.

Chapter 13 covers these concepts in more detail. Chapter 13 also describes how you can
acquire the power to administer the computer. With this power comes the ability to dam-
age the system, though, so you should be careful to do so only when necessary.

Managing Directories
Directories are just special files—they’re files that hold other files. This means you can use
most of the file manipulation tools described elsewhere in this chapter to manipulate direc-
tories. There are some caveats, though:

 ■ You can use touch to update a directory’s time stamps, but you can’t use touch to cre-
ate a directory; mkdir handles that task.

 ■ You can use cp to copy a directory; however, you must use the -r, -R, --recursive, -a,
or --archive option to copy the directory and all its contents.

 ■ You can use mv to move or rename a directory.

 ■ You can use ln with its -s option to create a symbolic link to a directory. No common
Linux filesystem supports hard links to directories, though.

As an example, suppose that you have a directory in your home directory called
Music/Satchmo, which contains Louis Armstrong music files. You want to reorganize this
directory so that the files appear under the performer’s last name, but you want to retain

164 Chapter 7 ■ Managing Files

access to the files under the name Satchmo, since your music players refer to them this way.
You could type the following commands to achieve this goal:

$ cd ~/Music
$ mv Satchmo Armstrong
$ ln -s Armstrong Satchmo

Alternatively, you could omit the first command and specify the complete path to each of
the directories or links in the mv and ln commands. As written, the first two of these com-
mands rename the ~/Music/Satchmo directory to ~/Music/Armstrong. The final command
creates a symbolic link, ~/Music/Satchmo, that points to ~/Music/Armstrong.

Summary
Much of what you do with a computer qualifies as file management, so you must under-
stand the basic tools for managing files in Linux. These include commands to create, delete,
copy, move, and rename files, as well as to create links to files. Directories in Linux are just
files that contain other files, so most of the same commands that you can use on files also
work on directories. Special commands to create and delete directories exist, too.

Exam Essentials
Describe where you would find most application files on the Linux system. Applications
that are critical and that most normal users would run are normally stored in the /bin
directory. Applications that are critical but mostly used by the administrator are stored in
the /sbin directory. Noncritical applications are normally stored in the /usr directory.

Explain the basic commands to create, copy, move, or delete a file. You can create an
empty file using the touch command. In Linux you copy files using the cp command, or
move a file to a new filename by using the mv command. To delete a file, you use the rm
command.

Describe the /tmp directory and what Linux uses it for. The /tmp directory is intended
for temporary files that do not need to be saved. Theoretically the Linux system can clear
out any files in the /tmp directory when it reboots, although many Linux distributions don’t
do that. However, never expect a file that you store in the /tmp directory to be there after
the next system reboot.

Review Questions 165

Review Questions
You can find the answers in Appendix A.

1. Which of the following commands would you type to rename newfile.txt to afile.txt?

A. mv newfile.txt afile.txt

B. cp newfile.txt afile.txt

C. ln newfile.txt afile.txt

D. rn newfile.txt afile.txt

E. touch newfile.txt afile.txt

2. You want to copy a directory, MyFiles, to a USB flash drive that uses the FAT filesystem.
The contents of MyFiles are as follows:

$ ls MyFiles/
contract.odt
outline.pdf
Outline.PDF

 The USB flash drive is mounted at /media/usb, and so you type cp -a MyFiles/
/media/usb. What problem will occur when you attempt to copy these files?

A. The command will fail because it tries to create links.

B. The MyFiles directory will be copied, but none of its files will be copied.

C. One file will be missing on the USB flash drive.

D. One file’s name will be changed during the copy.

E. Everything will be fine; the command will work correctly.

3. You type mkdir one/two/three and receive an error message that reads, in part,
No such file or directory. What can you do to overcome this problem? (Choose all
that apply.)

A. Add the --parents parameter to the mkdir command.

B. Issue three separate mkdir commands: mkdir one, then mkdir one/two, and then
mkdir one/two/three.

C. Type touch /bin/mkdir to be sure the mkdir program file exists.

D. Type rmdir one to clear away the interfering base of the desired new directory tree.

E. Type rm -r one to clear away the entire interfering directory tree.

4. True or false: You can create a symbolic link from one low-level filesystem to another.

5. True or false: You can easily damage your Linux installation by mistyping an rm command
when you log into your regular account.

6. True or false: You can set a directory’s time stamps with the touch command.

166 Chapter 7 ■ Managing Files

7. You want to copy a file (origfile.txt) to the backups directory, but if a file called
origfile.txt exists in the backups directory, you want to go ahead with the copy only
if the file in the source location is newer than the one in backups. The command to do this
is cp origfile.txt backups/.

A. -f

B. -r

C. -s

D. -u

E. -v

8. You’ve typed rmdir junk to delete the junk directory, but this command has
failed because junk contains word processing files. A command that will work is

.

A. rmdir -r junk

B. rmdir -P junk

C. rmdir -v junk

D. rm -r junk

E. rm -f junk

9. The wildcard character matches any one symbol in a filename.

A. ?

B. _ (underscore)

C. *

D. . (period)

E. - (dash)

10. What directory primarily contains system configuration files?

A. /bin

B. /etc

C. /usr

D. /var

E. /sbin

Chapter

8
Searching,
Extracting, and
Archiving Data

ObjEctivES:

 ✓ 3.1 Archiving Files on the Command Line

 ✓ 3.2 Searching and Extracting Data from Files

 An important part of any OS’s job, including Linux, is the
storage, management, and analysis of data. Data is valuable
because of the knowledge that can be gleaned from it, so you

need to be able to search and extract it properly, as well as protect it. This chapter covers
some of the tools that you can use to search, extract, and archive data.

 The chapter begins with a look at regular expressions , which are a way to describe pat-
terns that you might want to look for in data fi les. You can use regular expressions with
many commands, two of which (find and grep) are described in more detail. This chapter
also covers tools that you can use to redirect programs’ input and output, which is a useful
trick in many situations. Finally, tools for creating archive fi les are described, which can be
useful in transferring many fi les over a network or in creating backups.

 Using Regular Expressions
 Many Linux programs employ regular expressions , which are tools for expressing patterns
in text. Regular expressions are similar in principle to the wildcards that can be used to
specify multiple fi lenames, as described in Chapter 7, “Managing Files.” At their simplest,
regular expressions can be plain text without adornment, although certain characters are
used to denote patterns.

 Documentation sometimes uses the abbreviation regexp to refer to a
regular expression.

 Two forms of regular expression are common: basic and extended. The form that you
must use depends on the program. Some accept just one expression form, whereas oth-
ers can use either type (depending on the options passed to the program). The differences
between basic and extended regular expression forms can be complex and subtle, but the
fundamental principles of both are similar.

 The simplest type of regular expression is an alphabetic or alphanumeric string, such as
 HWaddr or Linux3 . These regular expressions match any string of the same size or longer
that contains the regular expression. For instance, the HWaddr regular expression matches
 HWaddr , This is the HWaddr , and The HWaddr is unknown . The real strength of regular
expressions comes in the use of nonalphanumeric characters, which activate advanced
matching rules.

Certification
Objective

Using Regular Expressions 169

 The most powerful basic regular expression features include the following:

Bracket Expressions Characters enclosed in square brackets ([]) constitute bracket
expressions, which match any one character within the brackets. For instance, the regular
expression b[aeiou]g matches the words bag , beg , big , bog , and bug . The brackets repre-
sent a single character in the word. Thus, the regular expression p[ai]n matches pan and
pin but not pain . Including a caret (̂) after the opening square bracket matches against any
character except the ones specifi ed. For instance, b[^aeiou]g matches bbg or bAg but not
bag or beg .

Range Expressions A range expression is a variant on a bracket expression. Instead of list-
ing every character that matches, range expressions list the start and end points separated
by a dash (-), as in a[2-4]z . This regular expression matches a2z , a3z , and a4z .

Any Single Character The dot (.) represents any single character except a newline. For
instance, a.z matches a2z , abz , aQz , or any other three-character string that begins with a
and ends with z .

 A newline is a hidden special character used in text files. When a text file is
displayed, a newline character on the end of each line is often what is caus-
ing each line to display below the previous line.

Start and End of Line A text line (sometimes called a record) consists of all the charac-
ters before the line is terminated with a newline. When not used inside brackets, the caret
(̂) represents the start of a line. The dollar sign ($) denotes the end of a line. For instance,
^bag matches bag only if it is fi rst in a line of characters, whereas bag$ matches bag only if
it is last in a line of characters.

Repetition A full or partial regular expression may be followed by a special symbol to
denote repetition of the matched item. Specifi cally, an asterisk (*) denotes zero or more
matches. The asterisk is often combined with the dot (as in .*) to specify a match with any
substring. For instance, A.*Lincoln matches any string that contains A and Lincoln , in that
order— Abe Lincoln and Abraham Lincoln are just two possible matches.

Escaping If you want to match one of the special characters, such as a dot, you must
 escape it—that is, precede it with a backslash (\). For instance, to match a computer host-
name (say, www.sybex.com), you must escape the dots, as in www\.sybex\.com .

 Extended regular expressions add more features that you can use to match in additional
ways:

 Additional Repetition Operators Other repetition operators work like an asterisk, but
they match only certain numbers of matches. Specifi cally, a plus sign (+) matches one or
more occurrences, and a question mark (?) specifi es zero or one match.

 Multiple Possible Strings The vertical bar (|) separates two possible matches; for instance,
car|truck matches either car or truck .

http://www.sybex.com

170 Chapter 8 ■ Searching, Extracting, and Archiving Data

Parentheses Ordinary parentheses (()) surround subexpressions. Parentheses are often
used to specify how to apply operators; for example, you can put parentheses around a
group of words that are concatenated with the vertical bar to ensure that the words are
treated as a group, any one of which may match, without involving surrounding parts of
the regular expression.

 If you use an extended regular expression with the grep command, you
must include its -E option.

 Whether you use basic or extended regular expressions depends on which form the pro-
gram supports. For programs such as grep that support both, you can use either; which
you choose is mostly a matter of personal preference. Note that a regular expression that
includes characters associated with extended regular expressions will be interpreted dif-
ferently depending on which type you’re using. Thus, it’s important to know which type of
regular expression a program supports or how to select which type to use if the program
supports both types.

 Regular expression rules can be confusing, particularly when you’re fi rst introduced to
them. Some examples of their use, in the context of the programs that use them, will help.
The next section provides such examples, with reference to the grep program.

 Searching For and Extracting Data
 The grep command uses regular expressions and is helpful in locating data. The grep util-
ity locates fi les by scanning their contents. The grep program also returns some of the data
included in fi les, which can be useful if you want to extract just a little data from a fi le or
from a program’s output.

 As its name suggests, find locates fi les. It uses surface features, such as the fi lename and
the fi le’s date stamps. Another command, wc , provides basic word statistics on text fi les. To
extract individual data items from a fi le’s lines, the cut command is useful. Two additional
commands, sort and cat , allow the display of resulting data to be manipulated, which can
be helpful in your search.

 Unlike grep , find does not use regular expressions, by default. However, it
does support pattern matching by using a similar mechanism.

 Using grep
The grep command searches for fi les that contain a specifi ed string and returns the name
of the fi le and (if it’s a text fi le) the line containing that string. You can also use grep to
search a specifi ed fi le for a specifi ed string. To use grep , you type the command’s name, an

Certification
Objective

Searching For and Extracting Data 171

optional set of switches (options), a regular expression, and an optional fi lename specifi ca-
tion. The grep command supports a large number of options, the most common of which
appear in Table 8.1 .

 tA b lE 8 .1 Common grep options

Option (long form) Option (short form) Description

--count -c Displays the number of lines that match,
rather than the lines that contain matches to
the regular expression

--file= file -f file Takes pattern input from the specified file
rather than from the command line. The
 fgrep command is a shortcut for this option.

--ignore-case -i Performs a case-insensitive search, rather
than the default case-sensitive search

--recursive -R or -r Searches in the specified directory and
all subdirectories rather than simply the
specified directory. The rgrep command is a
shortcut for this option.

--extended-regexp -E Pass this option to use an extended regular
expression. Alternatively, you can call egrep
rather than grep ; this variant command uses
extended regular expressions by default.

 If you don’t specify a filename, grep uses standard input. This can be use-
ful with pipelines, as described shortly in “Redirecting Input and Output.”

 A simple example of grep uses a regular expression with no special components:

 $ grep -r bash /etc/

 This example fi nds all fi les in /etc that contain the string bash (the Bash shell). Because
the example includes the -r option, it searches recursively, so grep searches fi les in subdi-
rectories of /etc as well as those in /etc itself. For each matching text fi le, the line that
contains the string is printed.

 Ordinary users can’t read some files in /etc . If you type this command as
a non-super user, you’ll see error messages relating to grep ’s inability to
open some files.

172 Chapter 8 ■ Searching, Extracting, and Archiving Data

 Suppose that you want to locate all fi les in /etc that contain the string bash or dash .
You can enter the following command, which uses a bracket regular expression to specify
both variant devices:

 $ grep -r [bd]ash /etc/

 A more complex example searches just the /etc/passwd fi le for lines that contain the
word games or mail and, later on the same line, the word nologin . This task requires
extended regular expression notation; the command looks like this:

 $ grep -E "(games|mail).*nologin" /etc/passwd

 If you type this command on your computer, it may find no matches
because of your distribution’s configuration. Try other words within the
parentheses instead of games and mail , such as nobody or lp .

 The preceding command illustrates another feature that you may need to use: shell
quoting . Because the shell uses certain characters, such as the vertical bar (|) and the
asterisk (*), for its own purposes, you must enclose certain regular expressions in quotes.
Otherwise, the shell will incorrectly treat the regular expression as shell commands. Shell
quoting is useful for other programs that may use characters with special meaning to the
shell, such as the echo command (covered in Chapter 11, “Creating Scripts”).

 You can use grep in conjunction with commands that produce a lot of output in order
to sift through that output for the material that’s important to you. (Several examples
throughout this book use this technique.) To accomplish this, you need to use input and
output redirection. This topic is covered (along with additional grep examples) in the
upcoming section, “Redirecting Input and Output.”

 Using find
 The find utility implements a brute-force approach to fi nding fi les. This program fi nds
fi les by searching through the specifi ed directory tree, checking fi lenames, fi le creation
dates, and so on to locate the fi les that match the specifi ed criteria. Because of this opera-
tion method, find tends to be slow. It’s fl exible, however, and likely to succeed, assuming
the fi le you seek exists. To use find , type its name, optionally followed by a directory tree
pathname (sometimes called a starting point directory) and a series of options, some of
which use specifi cations that are similar to regular expressions.

 In practice, you must use a directory tree pathname or a search criterion
with find , and often both.

 You can specify one or more paths in which find should operate; the program will
restrict its operations to these paths. The man page for find includes information about its
search criteria, but Table 8.2 summarizes common criteria.

Certification
Objective

Searching For and Extracting Data 173

 tA b lE 8 . 2 Common find search criteria

Option Description

-name pattern Search for files using their names. Doing so finds files that match
the specified pattern . This pattern is a shell wildcard pattern, as
described in Chapter 7, and not a regular expression.

-perm mode To find files that have certain permissions, use the -perm mode
expression. The mode may be expressed either symbolically or in
octal form. If you precede mode with a + , find locates files where
any specified permission bits are set. If you precede mode with
a - , find locates files where all specified permission bits are set.
(Chapter 14, “Setting Ownership and Permissions,” covers file
permissions.)

-size n Search for files based on size. Normally, n is specified in 512-byte
blocks, but you can modify this by trailing the value with a letter
code, such as c for characters (bytes) or k for kilobytes.

-group name Search for files that belong to the specified group.

-gid GID Search for files whose group ID (GID) is set to GID .

 -user name Search for files that are owned by the specified user.

 -uid UID Search for files by user ID (UID) number.

 -maxdepth levels Limit the search of a directory and, perhaps, some limited number
of subdirectories.

 Many variant and additional options exist; find is a powerful command. As an example
of its use, consider the task of fi nding all Python script fi les, which normally have names
that end in .py , in all users’ home directories. If these home directories reside in the /home
directory tree, you might issue the following command:

 # find /home -name "*.py"

 The result will be a listing of all fi les that have names ending in .py and reside within
the /home directory tree. Notice that shell quoting is used, "*.py" , because the asterisks (*)
have special meaning to the shell.

 If you lack permission to list a directory’s contents, find will return that
directory name and the error message Permission denied .

174 Chapter 8 ■ Searching, Extracting, and Archiving Data

 Using wc
A fi le’s size in bytes, as revealed by ls or searched for using find , can be a useful metric.
This size value isn’t always the most useful one for text fi les, though. You might need to
know how many words or lines are in a text fi le—say, because you want to know how
many pages a text document will consume when printed at 52 lines per page. The wc utility
provides this information. For instance, to discover the information for a newly created fi le
named newfile.txt in your present working directory:

 $ wc newfile.txt
 37 59 1990 newfile.txt

 This output reveals that the fi le newfile.txt contains 37 lines, 59 words, and 1,990
bytes. By default, wc displays a count of lines, words, and bytes for each fi le you pass to it.

 You can pass options to limit or expand wc ’s output, as summarized in Table 8.3 . Of the
options in Table 8.3 , -l , -w , and -c are the defaults, so typing wc file.txt is equivalent
to typing wc -lwc file.txt . The program’s man page describes a few more options, but
you’re most likely to use the ones in Table 8.3 .

 tA b lE 8 . 3 Common wc options

Option (long form) Option (short form) Description

 --bytes -c Displays the file’s byte count

 --chars -m Displays the file’s character count

 --lines -l Displays the file’s newline count

 --words -w Displays the file’s word count

 --max-line-length -L Displays the length of the longest line in the file

 Some text files use multibyte encodings, meaning that one character can
consume more than one byte. Thus, the -c and -m options may not pro-
duce identical results, although they often do.

 Be aware that wc works correctly on plain-text fi les, but it may produce incorrect or even
nonsensical results on formatted text fi les, such as HTML fi les or word processor fi les.
You’re better off using a word processor or other specialized editor to fi nd the number of
words and other statistics for such fi les.

Certification
Objective

Searching For and Extracting Data 175

 Using cut
 When extracting data, grep is helpful in pulling out entire fi le lines (records). Sometimes,
though, you need only parts of a fi le record. The cut command can help in this case. It
extracts text from fi elds in a fi le record. It’s frequently used to extract variable information
from a fi le whose contents are highly patterned.

 Table 8.4 shows the options that you’re most likely to need with the cut command.
Consult its man page for additional options and a complete description of the cut
command.

 tA b lE 8 . 4 Common cut options

Option (long form) Option (short form) Description

--characters -c Selects only designated character
position(s)

--delimiter -d Uses the designated delimiter as the field
delimiter instead of the default delimiter (Tab)

--fields -f Selects only designated fields

--only-delimited -s Lines without a delimiter are not printed
(default is to print them when the -f option
is used).

 To use cut , you pass to it one or more options that specify what information you want,
followed by one or more fi lenames. For instance, users’ home directories appear in the sixth
colon-delimited fi eld of the /etc/passwd fi le. Therefore, to extract only the directory names
issue this command:

 $ cut -f 6 -d ":" /etc/passwd

 You can capture the cut command’s results into a fi le by using output redirection.
Redirection is covered later in this chapter, in the “Redirecting Input and Output” section.

 When using the cut command, the extracted information is displayed
to the screen. Be aware, however, that the specified file(s) remains
unchanged.

Certification
Objective

176 Chapter 8 ■ Searching, Extracting, and Archiving Data

 Using sort
 When dealing with a large amount of data, being able to sort it is often useful. The sort
command does just that. However, you need to be aware of its features in order to achieve
the desired results.

 For a simple data list with only words, you can use sort without any options to sort it
alphabetically, as shown here:

 $ cat pets.txt
 fish
 cat
 dog
 bird
 $ sort pets.txt
 bird
 cat
 dog
 fish

 As with the cut command, when using sort , no changes are made to the
file’s data. Only the output is sorted.

 You may need to use options when sorting numeric data to achieve the desired results.
The example in Figure 8.1 shows what happens when the sort command is used to sort
a numeric data list. The numbers are not properly sorted in numerical order until the -n
option is used.

 F i gu r E 8 .1 Sorting a numeric data list

Certification
Objective

Searching For and Extracting Data 177

 Figure 8.1 shows the importance of using the appropriate sort command option
to achieve the results you desire. A few of the more popular sort options are listed in
Table 8.5 .

 tA b lE 8 .5 Common sort options

Option (long form) Option (short form) Description

--dictionary-order -d Considers only blanks and alphanumeric
characters; doesn’t consider special
characters

--ignore-case -f Ignores case (default is to consider case
and order capitalized letters first)

--numeric-sort -n Sorts by string numeric value

--output= file -o Writes results to file specified

--reverse -r Sorts in descending order (default is to sort
ascending)

 Many other useful sort options are available besides those listed in Table 8.5 . To
explore the other options, review the man pages for sort .

 Using cat
 Chapter 5, “Getting to Know the Command Line,” introduced the cat command. Though
cat is often used for displaying short text fi les on the screen, it can also concatenate fi les
together. The example in Figure 8.2 shows both of these uses in action.

 Notice in Figure 8.2 that when the cat command is issued with a single fi lename as
an argument, it displays the fi le’s contents on the screen, as you would expect. However,
when two fi les are used as an argument, the fi les’ contents are chained together. The fi les
themselves are not modifi ed; only the output is concatenated. This can be quite handy. The
“Redirecting Input and Output” section in this chapter details how to preserve this output
for future use.

 To display only the first 10 lines of a file, use the head command instead
of cat . To view only the last 10 lines of a file, the tail command can be
helpful. Find out how to display fewer or additional file lines with these
commands by viewing their man pages.

Certification
Objective

178 Chapter 8 ■ Searching, Extracting, and Archiving Data

F i gu r E 8 . 2 Using cat to display and concatenate files

Redirecting Input and Output
If you want to save a program’s output for future reference, you can redirect it to a file. You
can also redirect the input to a program from a file. Although input redirection may sound
strange, some programs rely on this feature to enable them to process data, such as raw
text files fed through a program that searches the text for patterns. In addition to redirect-
ing output to files or input from files, you can pass one program’s output to another one as
its input. A related technique involves the xargs command, which enables you to generate
command-line options from files or other programs’ output.

Using Basic Redirection Operators
Redirection is achieved with the help of redirection operators, which are short strings that
appear after the command and its arguments. Table 8.6 shows the most common redirec-
tion operators. Be aware that output comes in two types:

Standard Output This is for normal program messages.

Standard Error This contains error messages.

Having two types of output enables them to be separated so that error messages don’t
confuse programs that might be expecting certain types of input from another program.

Certification
Objective

Redirecting Input and Output 179

tA b lE 8 .6 Common redirection operators

Redirection operator Effect

> Creates a new file containing standard output. If the specified
file exists, it’s overwritten.

>> Appends standard output to the existing file. If the specified
file doesn’t exist, it’s created.

2> Creates a new file containing error messages (standard error).
If the specified file exists, it’s overwritten.

2>> Appends standard error to the existing file. If the specified file
doesn’t exist, it’s created.

&> Creates a new file containing both standard output and
standard error. If the specified file exists, it’s overwritten.

< Sends the contents of the specified file to be used as
standard input.

<< Accepts text on the following lines as standard input.

<> Causes the specified file to be used for both standard input and
standard output.

As an example of redirecting output, consider a grep command to search for informa-
tion on a particular user in all the configuration files in the /etc/ directory tree. Without
redirection, such a command might look like this:

grep -r christine /etc/

Assuming that super user privileges are used, this command will return a series of out-
put lines like the following:

[...]
/etc/group:adm:x:4:syslog,christine
/etc/group:cdrom:x:24:christine
/etc/group:sudo:x:27:christine
/etc/group:dip:x:30:christine
/etc/group:plugdev:x:46:christine
[...]

180 Chapter 8 ■ Searching, Extracting, and Archiving Data

 Such output can be quite lengthy, and you might want to peruse it later. To do so, you
could redirect the output to a fi le, like this:

 # grep -r christine /etc/ > christine-in-etc.txt

 Be careful when using the > redirection operator. If the file already exists,
this operator will overwrite the file’s current contents.

 Using the > redirection operator takes the output from the grep command and puts it
into a fi le called christine-in-etc.txt . If you then want to see the output, use less :

 # less christine-in-etc.txt
 [...]
 /etc/group:adm:x:4:syslog,christine
 /etc/group:cdrom:x:24:christine
 /etc/group:sudo:x:27:christine
 /etc/group:dip:x:30:christine
 /etc/group:plugdev:x:46:christine
 [...]

 In this example, you haven’t gained much compared to simply typing
grep -r christine /etc/ , but you might in other cases. For instance, suppose a
command is producing several error messages. You might then redirect standard error to a
fi le and search for strings that might be relevant, even as you attempt to run the command,
or a modifi ed version of it, once more.

 This next example illustrates how error messages (standard error) and normal program
messages (standard output) are separate. If you type grep -r christine /etc/ as a
normal user (substituting your own username for christine), you’re likely to see output
such as that shown earlier, specifying the fi les in which your username appears; however,
you’re also likely to see error messages, since you lack permission to read some of the fi les
in /etc :

 grep: /etc/cups/subscriptions.conf.0: Permission denied
 grep: /etc/security/opasswd: Permission denied

 The information on the fi les in which christine appears is shown via standard output,
but the errors are shown via standard error.

 The only difference between redirecting standard output by using the >
redirection operator and redirecting standard error by using the 2> opera-
tor is the number 2 . This is because the number 2 represents standard
error at the command line.

Redirecting Input and Output 181

 If you’re not interested in the errors, you can redirect them to /dev/null —a device fi le
that serves as a trash can for data that you want to discard:

 $ grep -r christine /etc/ 2> /dev/null

 Likewise, if you redirect standard output to a fi le but do not redirect standard error,
you’ll see the error messages on your screen. However, the fi le you create (such as
christine-in-etc.txt from the earlier command) will not contain the error messages.
You may want to try all of the different types of output redirection by using
grep -r christine /etc/ (substituting your own username for christine) to get a feel
for how they work.

 Using Pipes
Another type of redirected output is a command-line pipe or pipeline . In a pipe, the standard
output from one program is redirected as the standard input to a second program. You cre-
ate a pipe by using a vertical bar (|) between the two commands; this key is usually above
the Enter key on the keyboard and accessed with Shift. Pipelines can be useful when applied
in various ways. For instance, you might pipe the lengthy output of a program through the
 less pager, which enables you to page up and down through the output. In this example,
the cut command pulls the users’ home directories from the /etc/passwd fi le and then pipes
it as input into the less command (originally described in Chapter 5) for an easier viewing of
the results:

 $ cut -f 6 -d ":" /etc/passwd | less

 The /etc/passwd file and user accounts are covered in detail in Chapter 12,
“Understanding Basic Security.”

 Often grep is used in pipelines to search for keywords in the output. In this example, the
 cut command pulls the users’ default shells from the /etc/passwd fi le and then pipes it as
input to the grep command to search for the bash keyword:

 $ cut -f 7 -d ":" /etc/passwd | grep bash

 You are not limited to one pipe in your command line. For example, you can make the
previous example more useful by putting in a second pipe. To determine the number of
users who have the bash shell in their /etc/passwd record, use another pipe and tack the wc
command onto the pipeline’s end:

 $ cut -f 7 -d ":" /etc/passwd | grep bash | wc -l
 237

 The previous example included three commands in the pipeline. There are 237 user
accounts that have the bash shell in their /etc/passwd record on this system.

Certification
Objective

182 Chapter 8 ■ Searching, Extracting, and Archiving Data

creating custom tools

When you use filter commands such as grep, cut, and wc with pipes and redirection, you
can create powerful tailor-made utilities. With these utilities, you can conduct security
audits, create usage reports, analyze text-based log files, and so on. You’re limited only
by your command-line knowledge and imagination.

In Chapter 11, “Creating Scripts,” you’ll learn how to create programs to automate
many of the necessary and routine system administration tasks. When you understand
how to use these utilities at the shell prompt, you can quickly engage them within shell
scripts later.

Generating Command Lines
Pipelines can be useful for tricky tasks. For instance, suppose you want to remove every file
in a directory tree with a name that ends in a tilde (~). (This filename convention denotes
backup files created by certain text editors.) With a large directory tree, this task can be
daunting. The usual file-deletion command (rm, described in detail in Chapter 7) doesn’t
provide an option to search for and delete every file in a directory tree that matches such
a specific criterion. The find command could do the search part of the job (described in
depth earlier), but not the deletion.

The solution is to combine the output of find to create a series of command lines using
rm. This can be accomplished in three primary ways:

xargs The xargs command’s purpose in a pipeline is to build a command from its stan-
dard input. The basic syntax for this command is as follows:

xargs [OPTIONS] [COMMAND [INITIAL-ARGUMENTS]]

The COMMAND is the command that you want to execute, and INITIAL-ARGUMENTS is a list of
arguments that you want to pass to the command. The [OPTIONS] are xargs options; they
aren’t passed to COMMAND. When you run xargs, it runs COMMAND once for every word passed
to it on standard input, adding that word to the argument list for COMMAND. If you want to
pass multiple options to the command, you can protect them by enclosing the group in
quotation marks.

For instance, consider the task of deleting all those backup files, denoted by tilde charac-
ters. You can do this by piping the output of find to xargs, which then calls rm:

$ find ./ -name "*~" | xargs rm

The first part of this pipeline (find ./ -name "*~") finds all the files in the current
directory (./) or its subdirectories with a name that ends in a tilde (*~). This list is then
piped to xargs, which adds each found file to its own rm command. The tricky task of find-
ing and deleting all of those backup files is accomplished.

Archiving Data 183

Backticks A tool that’s similar to xargs in many ways is the backtick (̀), which is a char-
acter to the left of the number 1 key on most keyboards. The backtick is not the same as
the single quote character ('), which is located to the right of the semicolon (;) on most
keyboards.

 Text placed within two backticks is treated as a separate command whose results are sub-
stituted on the command line. For instance, to delete those backup fi les, you type the fol-
lowing command:

 $ rm `find ./ -name "*~"`

 Using backticks in this way is called command substitution , because you are providing a
substitution for one of the command’s arguments. In the previous example, the results of
the find command took the place of the fi le’s name as the rm command argument.

$() Format Because it is so easy to confuse a backtick (̀) with a single quotation mark
('), using backticks for command substitution is generally falling out of favor. If it is avail-
able on your distribution, it’s better to use another form of command substitution, the $()
format:

 $ rm $(find ./ -name "*~")

 The results are the same using this form of command substitution, and they are generally
easier to read due to the parentheses containing the fi rst command to execute and not the
small backticks (which look like quotation marks).

 Archiving Data
 A fi le-archiving tool collects a group of fi les into a single “package” fi le that you can easily
move around on a single system; back up to a USB fl ash drive, or other removable media; or
transfer across a network. Linux supports several archiving commands, the most prominent
being tar and zip . In addition to understanding these commands, you should be familiar
with the consequences of using compression with them.

 Another archive program, cpio , is sometimes used in Linux. It’s similar in
principle to tar but different in operational details.

 Using tar
 The tar program’s name stands for tape archiver . Regardless of its name, you can use tar
to back up (also called archive) data to your hard disk or other media, not just to tapes.
The tar program is a popular tool used to archive various data fi les into a single fi le, called
an archive fi le (the original fi les remain on your disk). Because the resulting archive fi le can
be quite large, it is often compressed on the fl y via the tar program into a tarball . In fact,

Certification
Objective

184 Chapter 8 ■ Searching, Extracting, and Archiving Data

tarballs are often used for transferring multiple fi les between computers in one step, such as
when distributing source code.

 You can create a tar archive file with the tar utility and then compress it
later into a tarball using a compression utility. Compression utilities are
covered later in this chapter.

 The tar program is a complex package with many options, but most of what you’ll
do with the utility can be covered with a few common options. Table 8.7 lists the pri-
mary tar options, and Table 8.8 lists the qualifi ers that further modify what the options
do. Whenever you run tar , you use exactly one option, and you usually use at least one
qualifi er.

 tA b lE 8 .7 tar commands

Option
(long form)

Option
(short form) Description

 --create -c Creates an archive

 --concatenate -A Appends tar files to an archive

 --append -r Appends non- tar files to an archive

 --update -u Appends files that are newer than those in an archive

 --diff or --compare -d Compares an archive to files on disk

 --list -t Lists an archive’s contents

 --extract or --get -x Extracts files from an archive

 Unlike most single-letter program options in Linux, you can use the
short-form tar options and qualifiers without a leading dash (-). This is
called old style . For example, if you used a command containing the -cvf
options, you can often change it to the old style of cvf .

 tA b lE 8 . 8 tar qualifiers

Qualifier (long form) Qualifier (short form) Description

 --directory dir -C Changes to directory dir before
performing operations

Certification
Objective

Certification
Objective

Archiving Data 185

Qualifier (long form) Qualifier (short form) Description

--file [host:]file -f Uses the file called file on the computer
called host as the archive file

--listed-incremental
file

-g Performs an incremental backup or
restore, using file as a list of previously
archived files

--one-file-system (none) Backs up or restores only one filesystem
(partition)

--multi-volume -M Creates or extracts a multitape archive

--tape-length N -L Changes tapes after N kilobytes

--same-permissions -p Preserves all protection information

--absolute-names -P Retains the leading / on filenames

--verbose -v Lists all files read or extracted; when
used with --list, displays file sizes,
ownership, and time stamps

--verify -W Verifies the archive after writing it

--exclude file (none) Excludes file from the archive

--exclude-from file -X Excludes files listed in file from the
archive

--gzip or --ungzip -z Processes an archive through gzip

--bzip2 -j (some older ver-
sions used -I or -y)

Processes an archive through bzip2

--xz -J Processes an archive through xz

An example of archiving and compressing files to create a tarball is shown in Figure 8.3.
The files, which are located in the /home/christine/Project42/ directory, are archived to
a USB flash drive. The flash drive is mounted at /media/christine/USB20FD, as shown in
Figure 8.3. The -czvf options are used with the tar command to create (c), compress using
gzip (z), display the files being archived (v), and create an archive file (f).

186 Chapter 8 ■ Searching, Extracting, and Archiving Data

 F i gu r E 8 . 3 Creating an archive tarball

 Notice in Figure 8.3 that the leading / is automatically removed from the archived fi le-
names (called member names in the fi gure). This allows you to extract the fi les easily to a
new location. For example, if you transfer the fl ash drive from Figure 8.3 to another sys-
tem, mount it, copy the P42.tgz tarball fi le to a directory, and want to extract the archive,
you can do so with another command:

 $ tar -xzvf P42.tgz

 This command creates a subdirectory in the current working directory called
home/christine/Project42 and populates it with the fi les from the tarball. Notice that
only one tar command option change is needed from the tar options used in Figure 8.3 :
the c (create) was switched to an x for extracting the fi les.

 The tar utility preserves Linux’s ownership and permission information,
even when the archive is stored on a filesystem that doesn’t support such
metadata.

 If you don’t know what’s in an archive, it’s a good practice to examine it with the --list
command before extracting its contents. Although common practice creates tarballs that
store fi les within a single subdirectory, sometimes tarballs drop many fi les in the current
working directory, which can make them diffi cult to track down if you run the command
in a directory that already has many fi les.

Archiving Data 187

 Using Compression
In Linux, the gzip , bzip2 , and xz programs all compress individual fi les. For instance, you
might compress a large graphics fi le like this:

 $ xz biggraphics.tiff

 The result is a fi le with a name like the original but with a new fi lename extension to
identify it as a compressed format. In this specifi c case, the result would be biggraphics
.tiff.xz .

 Most graphics programs won’t read fi les compressed in this way. Thus, to use a fi le that’s
been compressed, you must uncompress it with a matching program. To uncompress the
biggraphics.tiff.xz fi le compressed in the previous example, use this command:

 $ unxz biggraphics.tiff.xz

 Table 8.9 summarizes the compression programs, their matching uncompression pro-
grams, and the fi lename extensions that they create.

 tA b lE 8 . 9 Compression and uncompression programs and filename extensions

Compression program Uncompression program Filename extension

gzip gunzip .gz

bzip2 bunzip2 .bz2

xz unxz .xz

 As a general rule, gzip provides the least compression and xz the most
compression. This is why the Linux kernel is now compressed with xz .

 The tar program provides explicit support for all three of these compression standards,
and tarballs often have their own unique fi lename extensions that indicate the compression
used:

 Sometimes two extensions are used on a tarball file, resulting in a
filename such as my-work.tar.bz2 .

 ■ .tgz for tarballs compressed with gzip

 ■ .tbz or .tbz2 or .tb2 for tarballs compressed with bzip2

 ■ .txz for tarballs compressed with xz

Certification
Objective

188 Chapter 8 ■ Searching, Extracting, and Archiving Data

 When you use compression to create a tarball (using the z , j , or J option to tar), the
compression program works on the entire tarball with all of its fi les rather than individu-
ally compressing each fi le within the tarball. This can improve the compression ratio com-
pared to compressing individual fi les and then bundling them together. However, it makes
it harder to extract data from a fi le if it becomes damaged.

 Typically, plain-text files compress extremely well, binary program files
compress moderately well, and precompressed data (such as most video
file formats) compress poorly or may even expand in size when com-
pressed again.

 The gzip , bzip2 , and xz compression programs all apply lossless compression, meaning
that the data recovered by uncompressing the fi le is identical to what went into it. Some
graphics, audio, and audiovisual fi le formats apply lossy compression, in which some data
is discarded. Lossy compression tools should never be used on program fi les, system con-
fi guration fi les, or most user data fi les; any loss in such fi les could be disastrous. That’s why
tar supports only lossless compression tools.

 Using zip
 Outside of the Unix and Linux world, the zip fi le format is a common one that fi lls a role
similar to a compressed tarball. Linux provides the zip command to create zip fi les and the
 unzip utility to extract fi les from a zip archive. Zip fi les typically have fi lename extensions
of .zip .

 In most cases, you can create a zip archive by passing the utility the name of a target zip
fi le followed by a fi lename list:

 $ zip newzip.zip afile.txt figure.tif

 This command creates the newzip.zip fi le, which holds the afile.txt and figure.tif
fi les. (The original fi les remain on your disk.) In some cases, you’ll need to use options to
zip to achieve the desired results. Table 8.10 summarizes the most important zip options;
however, the program supports many more. Consult its man page for details.

 tA b lE 8 .10 Common zip options

Option (long form) Option (short form) Description

N/A -0 through -9 Sets the amount of compression; -0 applies
no compression, -1 applies minimal (but
fast) compression, and so on through
 -9 , which applies maximum (but slow)
compression.

Certification
Objective

Archiving Data 189

Option (long form) Option (short form) Description

--delete -d Deletes the specified files from the archive
file

--encrypt -e Encrypts the archive with a password (zip
prompts you for this password.)

--freshen -f Updates files in an archive if they’ve
changed since the original archive’s creation

--fix or --fixfix -F or -FF Performs repairs on a damaged archive
file. The --fix/-F option performs minimal
repairs, whereas --fixfix/-FF is more
thorough.

--filesync -FS Updates files in an archive if they’ve
changed since the original archive’s creation,
and deletes files from the archive if they’ve
been deleted on the filesystem

--grow -g Appends files to an existing archive file

--help -h or -? Displays basic help information

--move -m Moves files into the zip archive—that is, the
original files are deleted

--recurse-paths -r Includes files and subdirectories inside the
directories that you specify

--split-size size -s size Creates a potentially multifile archive, with
each file no larger than size bytes (A k, m, g,
or t can be appended to the size to specify
larger units.)

--exclude files -x files Excludes the specified files

--symlinks -y Includes symbolic links (Ordinarily, zip
includes the linked-to files.)

Of the options in Table 8.10, the -r option is probably the most important, at least if
you want to compress an entire directory tree. If you fail to use this option, your archive
will contain no subdirectories. Given the speed of modern CPUs, using -9 on a regular
basis also makes sense to achieve maximum compression.

190 Chapter 8 ■ Searching, Extracting, and Archiving Data

 To uncompress and extract fi les in a zip archive fi le, you can use the unzip program:

 $ unzip anarchive.zip

 This example uncompresses the fi les in the anarchive.zip fi le into the current directory.
Like zip , unzip supports a large number of options, the most important of which appear in
Table 8.11 .

 tA b lE 8 .11 Common unzip options

Option Description

-f Freshens files from the archive—that is, extracts only those files that
exist on the main filesystem and that are newer in the archive than on
the main filesystem

-l Lists files in the archive but does not extract them

-p Extracts files to a pipeline

-t Tests the integrity of files in the archive

-u Updates files; similar to -f but also extracts files that don’t exist on the
filesystem

-v Lists files in the archive in a more verbose format than -l does

 -L Converts filenames to lowercase if they originated on an uppercase-only
OS, such as DOS

 -n Never overwrites existing files

 -o Overwrites existing files without prompting

 Zip files typically contain “loose” files in the main directory, so you should
generally extract zip archives in an empty subdirectory that you create for
this purpose.

 As a general rule, using unzip without any options except for the input fi lename works
well. However, you might want to use one or more of its options on occasion. The -l
option is particularly useful for examining the archive’s contents without extracting it.

Exam Essentials 191

E x E r c i S E 8 .1

 ■ Use find and grep to locate files in your own directory and on the Linux computer
at large. For instance, try locating references to your own username in configuration
files in /etc.

 ■ Use gzip, bzip2, and xz to compress a couple of instances of various types of
files, such as text files and digital photos. What file types compress well? Which
compression tool works best for each file type?

Summary
Managing your files often requires locating them, and tools such as grep and find help
you with this task. The grep utility in particular makes use of regular expressions, which
provide a way to describe patterns that you might want to find in files or in the output of
another program. The wc, cut, and sort utilities assist in extracting information and reor-
ganizing it for desired analysis. The cat command also allows you to reorganize data by
combining multiple files into one, and it lets you view simple text files. If you need to view
only a portion of a file, the head and tail programs are better to use. You can redirect
such output into grep (or other programs or files) by using redirection operators, and many
Linux command-line tools and techniques rely on such redirection. The tar and zip pro-
grams both enable you to create archive files that hold many other files. In fact, the tarballs
that tar creates are a common means of distributing source code and even binary programs
between Linux computers. The tar command uses xz, gzip, and bzip2 compression for
creating tarballs. However, these utilities are available to use for general lossless file com-
pression as well.

Exam Essentials
Describe using basic regular expressions. Regular expressions are used with programs,
such as grep, to match text data with patterns. Bracket regular expressions are characters
enclosed in square brackets ([]). The brackets represent a single character and that charac-
ter may match any one character within the brackets. A variation of bracket expressions is
the range expression, where you designate a range of potential character matches by using
the first and last possible character with a dash between them, such as [a-z]. When you
need to match a single character but that character can be anything, use a question mark
(?) instead of a bracket expression. If the pattern you are searching for is at the beginning
of a text line, put a caret (̂) symbol before the pattern. If it is at the end of the line, tack
a dollar sign ($) onto the pattern’s end. To specify a pattern that can match with any sub-
string, use the dot asterisk (.*).

192 Chapter 8 ■ Searching, Extracting, and Archiving Data

Summarize the commands used to search for and extract data. Use the grep command
to search for a specified string or regular expression pattern within a file or a directory of
files. To locate files in a specified directory tree by their name, size, owner, creation date,
or other data, use the find utility. If you want to display a file, the cat command can help,
and it will also display multiple files one after the other (concatenated) to your screen. To
see only the first 10 lines of a file, use head, and for the last 10 lines, use the tail com-
mand. If you want to display a text file sorted, use the sort utility. To extract out only por-
tions of text file records, use the cut command. If you’d like some statistical information
about a text file, such as the number of lines, words, and bytes contained within it, then the
wc tool is the one to use.

Explain how to redirect standard input and output. Standard output is where normal
program messages are sent, whereas error messages are sent to standard error (and it is
represented by the number 2). To send a command’s standard output to a file and over-
write the file’s current contents, use the > operator. Use >> to append the output to the file’s
existing data instead. For standard error, use the 2> operator to send a command’s standard
error to a file and overwrite the file’s current contents and the 2>> operator to append
the error messages instead. To send a program’s output as input to another program, use
the pipe, which is a vertical bar (|), between the commands.

Detail archiving data with tar and zip. The tar utility archives various files into a
single file, called an archive file, which is sometimes compressed at the same time resulting
in a tarball. Multiple options exist for use with tar, including long options, short options,
and even the single-letter old-style options. The utility preserves Linux’s ownership and
permission information, and it uses special options to unpack (and, if needed, to reverse
the compression) archive files. Also available to create tarball-like archives is the zip utility.
Unlike with the tar program, you do not need to add special options to automatically com-
press the resulting archive file. However, you will need to use the unzip program to reverse
the compression and unpack it.

Outline the compression utilities on Linux. The gzip, bzip2, and xz utilities can be used
with tar or by themselves to compress files, The oldest is gzip, and the one that provides
the most compression is xz. To reverse their compression, use their corresponding “un”
tools—gunzip, bunzip2, and unxz.

Review Questions 193

Review Questions
You can find the answers in Appendix A.

1. Which of the following commands will print lines from the file world.txt that contain
matches to changes and changed?

A. grep change[ds] world.txt

B. tar change[d-s] world.txt

C. find "change'd|s'" world.txt

D. cat world.txt changes changed

E. find change[^ds] world.txt

2. Which of the following redirection operators appends a program’s standard output to an
existing file without overwriting that file’s original contents?

A. |

B. 2>

C. &>

D. >

E. >>

3. You’ve received a tar archive called data79.tar from a colleague, but you want to check
the names of the files it contains before extracting them. Which of the following commands
would you use to do this?

A. tar uvf data79.tar

B. tar cvf data79.tar

C. tar xvf data79.tar

D. tar tvf data79.tar

E. tar Avf data79.tar

4. True or false: The regular expression Linu[^x].*lds matches the string Linus Torvalds.

5. True or false: The find command enables you to locate files based on their sizes.

6. True or false: To compress files archived with zip, you must use an external compression
program such as gzip or bzip2 in a pipeline with zip.

7. The character that represents the start of a line in a regular expression is .

A. ^

B. $

C. |

D. (

E. ̏

194 Chapter 8 ■ Searching, Extracting, and Archiving Data

8. The command can extract specified data fields from a file’s records.

A. grep

B. cut

C. sort

D. find

E. cat

9. Complete the following command to redirect both standard output and standard error
from the bigprog program to the file out.txt.

 $ bigprog out.txt

A. |

B. 2>

C. &>

D. >

E. >>

10. The gzip, bzip2, and xz programs all perform compression, in which the
compressed data will exactly match the original data, when uncompressed.

A. zip

B. tar

C. high

D. lossy

E. lossless

Chapter

9
Exploring Processes
and Process Data

ObjEctivEs:

 ✓ 1.2 Major Open Source Applications

 ✓ 4.3 Where Data Is Stored

 Computers are dynamic and multipurpose machines; they
do a variety of jobs using many tools. This chapter describes
the ways you can manage these tools. One aspect of software

management is installing, uninstalling, and upgrading software packages. Another aspect
of this task is in managing programs after they’re running. Finally, this chapter covers log
fi les, which record details of what running programs do—particularly programs that run
automatically and in the background.

 Understanding Package Management
 Package management is an area of Linux that varies a lot from one distribution to another.
Nonetheless, certain principles are common across most Linux distributions. This section
describes these principles, followed by some of the basics of the two major Linux pack-
age management systems. It then describes how to manage packages using both the RPM
Package Manager (RPM; a recursive acronym) and Debian package systems.

 Linux Package Management Principles
 If you’ve installed software in Windows, you’re likely familiar with the procedure of double-
clicking on an installer program, which places all the fi les associated with a program where
they should go. A Windows software installer is similar to a Linux package fi le, but there
are a few differences. Linux packages have the following characteristics:

 ■ Each package is a single file that can be stored on a disk or transmitted over the
Internet.

 ■ Linux package files, unlike Windows installers, are not programs; packages rely on
other programs to do the work of installing the software.

 ■ Packages contain dependency information—that is, they can tell the packaging
software what other packages or individual files must be installed in order for the
package to work correctly.

 Many program packages depend on library packages; libraries provide
code that can be used by many programs.

Certification
Objective

Understanding Package Management 197

 ■ Packages contain version information so that the packaging software can tell which of
two packages is more recent.

 ■ Packages contain architecture information to identify the CPU type (x86, x86-64,
ARM, and so on) for which they’re intended. A separate code identifies packages that
are architecture-independent, such as fonts and desktop themes.

 ■ Binary packages (that is, those that contain executable programs that are CPU-specific)
are typically built from source packages (which contain source code that a programmer
can understand). It’s possible to build a new binary package, given the source package,
which can be useful in some unusual circumstances.

 You can compile and install software from source code manually,
without using a packaging tool. This advanced topic is beyond the scope
of this book.

 The package software maintains a database of information about installed packages (the
package database). This information includes the names and version numbers of all the
installed packages, as well as the locations of all the fi les installed from each package. This
information enables the package software to quickly uninstall software, establish whether a
new package’s dependencies have been met, and determine whether a package you’re trying
to install has already been installed and, if so, whether the installed version is older than
the one you’re trying to install.

 Packages can, and frequently do, contain files that will be installed to
many directories on the computer. This fact makes tracking package
 contents critical.

 Understanding Package Systems
 As noted earlier, two package systems, RPM and Debian, are common, although others
exist as well. These systems differ in various technical details, as well as in the commands
used to manage packages and in the format of the package fi les they use. You cannot install
a Debian package on an RPM-based system, or vice versa. Indeed, installing a package
intended for one distribution on another is a bit risky even when they use the same package
type. This is because a non-native package may have dependencies that confl ict with the
needs of native packages.

 Table 1.1 in Chapter 1, “Selecting an Operating System,” summarizes
some features of several popular Linux distributions, including the package
system each uses.

Certification
Objective

198 Chapter 9 ■ Exploring Processes and Process Data

 Originally, package systems worked locally—that is, to install a package on your com-
puter you would fi rst have to download a package fi le from the Internet or in some other
way. Only then could you use a local command to install the package. This approach,
however, can be tedious when a package has many dependencies—you might attempt an
installation, fi nd unmet dependencies, download several more packages, fi nd that one or
more of them has unmet dependencies, and so on. By the time you’ve tracked down all
these depended-upon packages, you might need to install a dozen or more packages. Thus,
modern distributions provide network-enabled tools to help automate the process. These
tools rely on network software repositories , from which the tools can download packages
automatically. The network-enabled tools vary from one distribution to another, particu-
larly among RPM-based distributions.

 In practice, then, the process of managing software in Linux involves using text-mode
or GUI tools to interface with a software repository. A typical software installation task
works something like this:

 1. You issue a command to install a program.

 2. The software locates dependencies of the specified program and notifies you of any
additional software that must be installed.

 3. You issue a final approval for software installation (or decide against it, in which case
the process stops).

 4. The software downloads all the necessary packages.

 You can configure most distributions to use local media instead of or in
addition to Internet repositories.

 5. The software installs all the packages.

 Upgrading software works in a similar way, although upgrades are less likely to require
downloading depended-upon packages. Removing software can be done entirely locally, of
course. Many distributions automatically check with their repositories from time to time
and notify you when updates are available. Thus, you can keep your system up-to-date by
clicking a few buttons when you’re prompted to do so. As an example, Figure 9.1 shows the
Software Update utility in Linux Mint 18.3, which shows a list of available updates.

 Immediately after installing a distribution, you may find that a large
number of updates are available.

 Package management necessarily involves root access, which is described in more detail
in Chapter 13, “Creating Users and Groups.” If you follow the automatic prompts to
update your software, you can keep the system up-to-date by entering the root password,
or on some distributions your regular password, when the update software prompts for it.

Certification
Objective

Understanding Package Management 199

F i gu r E 9 .1 Most Linux distributions tell you when updates are available for your
software.

Managing Red Hat Systems
RPM-based distributions include Red Hat, Fedora, CentOS, SUSE Enterprise, openSUSE,
and Mandriva. The basic tool for installing software on these distributions is the text-mode
rpm command. This program works on local files, though; to use a network repository, you
must use another tool, which varies by distribution:

 ■ Red Hat, Fedora, and CentOS use the text-mode yum or dnf, or various GUI front ends
to them, such as PackageKit and Yumex.

 ■ SUSE Enterprise and openSUSE use zypper or a GUI front end such as YaST 2.

Because of the variability between these distributions, particularly for network-
enabled updates, providing a complete description of all these tools is impractical here.
Fortunately, the GUI tools are easy to use and accessible. Even the text-mode tools are

200 Chapter 9 ■ Exploring Processes and Process Data

fairly straightforward, although you may need to consult their man pages to learn the
details. Typically, they use logical subcommands, such as install to install a package, as in:

 # dnf install yumex

 You might use this command to install the GUI Yumex tool on a Red Hat, Fedora, or
CentOS system. Similarly, you can remove a specifi c package by using the remove subcom-
mand or upgrade all of a computer’s packages by using upgrade :

 If you want to both upgrade software and remove packages, it’s generally
best to remove software first. This can obviate some downloads, reducing
the upgrade time.

 # dnf remove zsh
 # dnf upgrade

 This example removes the zsh package, then upgrades the remaining packages on the
system. Both commands will produce a number of lines of output, and you may be asked to
verify their actions. Consult the man page for yum (or whatever package management soft-
ware your distribution uses) to learn more about this tool.

 If you need to deal with RPM package fi les directly, you should be aware that they have
fi lename extensions of .rpm . These fi les also usually include codes for architecture type
(such as i386 or x86_64), and often codes for the distribution for which they’re intended
(such as fc30 for Fedora 30). For instance, samba-4.10.2-0.fc30.x86_64.rpm is a package
fi le for the samba package, version 4.10.2, release 0, for Fedora 30, on the x86-64 platform.
To install it using the rpm command, you’d type.

 # rpm –Uvh samba-4.10.2-0.fc30.x86_64.rpm

 That takes a bit more work than using the yum command, as you need to know the com-
plete fi lename of the installation package.

 Managing Debian Systems
 The Debian GNU/Linux distribution created its own package system, and distributions
based on Debian, such as Ubuntu and Mint, use the same system. Atop the basic Debian
package system lies the Advanced Package Tool (APT), which provides access to network
repositories.

 Third-party implementations of APT for many RPM-based distributions
also exist. See apt4rpm.sourceforge.net for details. At least one RPM-
based distribution, PCLinuxOS, uses APT natively.

Understanding Package Management 201

The dpkg command is the lowest-level interface to the Debian package system; it’s
roughly equivalent to the rpm utility on RPM-based systems. Just as with the rpm utility, to
use the dpkg command you need to know the exact name of the package to install:

dpkg –i samba_4.9.5+dfsg-5+deb10u1_amd64.deb

Several tools provide text-mode and graphical interfaces atop dpkg, the most impor-
tant of these being the text-mode apt-get or the newer apt tool and the GUI Synaptic. As
their names imply, apt-get and Synaptic provide access to network repositories via APT.
Figure 9.2 shows Synaptic in use.

F i gu r E 9 . 2 Synaptic enables you to search for, select, install, and uninstall software
on Debian-based systems.

Debian package files have names that end in .deb. Like RPM packages, these names
typically include codes for the software version and architecture (such as i386 or amd64).
For instance, samba_3.6.1-3_amd64.deb is a Debian package file for the samba package,
version 3.6.1, revision 3, for AMD64 (x86-64) CPUs. You can install such files using dpkg
or apt-get, or you can use apt-get to download a package and its dependencies from the
Internet, using its install command, as in:

apt install samba

202 Chapter 9 ■ Exploring Processes and Process Data

 As with RPM packages, you can remove packages or upgrade your computer’s
software, too:

 # apt remove zsh
 # apt upgrade

 APT is a powerful tool, as is the underlying dpkg . You should consult these programs’
man pages to learn more about how to use these programs.

 Understanding the Process Hierarchy
 The Linux kernel is the core of a Linux installation. The kernel manages memory, provides
software with a way to access the hard disk, doles out CPU time, and performs other criti-
cal low-level tasks. The kernel is loaded early in the boot process, and it’s the kernel that’s
responsible for managing every other piece of software on a running Linux computer.

 One way the kernel imposes order on the potentially chaotic set of running software
is to create a sort of hierarchy. When it boots, the kernel runs just one program—usually
either /lib/systemd or /sbin/init . These processes are then responsible for starting all
the other basic programs that Linux must run, such as the programs that manage logins
and always-up servers. Such programs, if launched directly by systemd or init , are called
its children . The children processes can in turn launch their own children. This happens
when you log into Linux. The process that launched a given process is called its parent .

 You can change which program runs as the first process by adding the
 init= option to your boot loader’s kernel option line, as in init=/bin/bash
to run bash .

 The result of this system is a treelike hierarchy of processes, as illustrated in Figure 9.3 .
(“Trees” in computer science are often depicted upside down.) Figure 9.3 shows a small
subset of the many processes that run on a typical Linux installation: just a few processes
associated with a text-mode login, including the login tool that manages logins, a couple
of bash shells, and a few user programs. A working Linux system will likely have dozens or
hundreds of running processes. The one on which I’m typing these words has 213 processes
going at once!

 Occasionally, a process will terminate but leave behind children. When this
happens, init “adopts” those child processes.

 Every process has a process ID (PID) number associated with it. These numbers begin
with 1 , so init ’s PID is normally 1 . Each process also has a parent process ID (PPID)

Certification
Objective

Identifying Running Processes 203

number, which points to its parent. Many of the tools for managing processes rely on these
numbers, and particularly on the PID number.

 F i gu r E 9 . 3 Linux processes are arranged in a hierarchical tree.

initinit

loginlogin loginlogin

lsls psps vivi cpcp

bashbash bashbash

 Internally, the kernel maintains process information in the process table .
Tools such as ps and top (described shortly) enable you to view and
manipulate this table.

 Identifying Running Processes
 Before you can manage processes, you must be able to identify them. The ps and top utili-
ties can help you identify processes. In either case, you can search for processes in various
ways, such as by name or by resource use. You may also want to identify how much mem-
ory your processes are consuming, which you can do with the free command.

 Using ps to Identify Processes
The simplest tool for identifying processes is ps , which produces a process listing. Listing
9.1 shows an example of ps in action. In this example, the -u option restricts output to
processes owned by the specifi ed user (rich), whereas ––forest creates a display that shows
parent/child relationships.

 listing 9.1: Output of ps -u rich --forest

 $ ps -u rich ––forest
 PID TTY TIME CMD
 2451 pts/3 00:00:00 bash
 2551 pts/3 00:00:00 ps

Certification
Objective

204 Chapter 9 ■ Exploring Processes and Process Data

 2496 ? 00:00:00 kvt
 2498 pts/1 00:00:00 bash
 2505 pts/1 00:00:00 _ nedit
 2506 ? 00:00:00 _ csh
 2544 ? 00:00:00 _ xeyes
 19221 ? 00:00:01 dfm

 Listing 9.2 shows a second example of ps . In this example, the u option adds informa-
tional columns, whereas U rich restricts output to processes owned by rich . The ps com-
mand supports a huge number of options (consult its man page for details).

 The version of ps used in most Linux distributions combines features
from several earlier ps implementations. The result is a huge selection of
sometimes redundant options.

 listing 9.2: Output of ps u U rich

 $ ps u U rich
 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
 rich 19221 0.0 1.5 4484 1984 ? S Sep07 0:01 dfm
 rich 2451 0.0 0.8 1856 1048 pts/3 S 16:13 0:00 -bash
 rich 2496 0.2 3.2 6232 4124 ? S 16:17 0:00 /opt/kd
 rich 2498 0.0 0.8 1860 1044 pts/1 S 16:17 0:00 bash
 rich 2505 0.1 2.6 4784 3332 pts/1 S 16:17 0:00 nedit
 rich 2506 0.0 0.7 2124 1012 ? S 16:17 0:00 /bin/cs
 rich 2544 0.0 1.0 2576 1360 ? S 16:17 0:00 xeyes
 rich 2556 0.0 0.7 2588 916 pts/3 R 16:18 0:00 ps u U

 Given the large number of ps options, different users can have favorite ways to use
the program. One popular combination of options is ax , which produces the information
most system administrators want, including PID values and command names (including
command-line options) for all the processes on the computer. Adding u (as in ps aux)
adds usernames, CPU loads, and a few other tidbits. The sheer scope of the information
produced, however, can be overwhelming. One way to narrow this scope is to pipe the
results through grep , which eliminates lines that don’t include the search criterion you
specify. For instance, if you want to know the PID number for the gedit process, you can
do so like this:

 $ ps ax | grep gedit
 27946 pts/8 Sl 0:00 gedit
 27950 pts/8 S+ 0:00 grep --colour=auto gedit

l i st i N g 9 .1: Output of ps -u rich --forest (continued)

Identifying Running Processes 205

 Because ps ax produces commands with their options, using grep to
search for a string in the output returns the searched-for command, as well
as the grep command itself.

 This command reveals that gedit has a PID value of 27946. This is usually the most
important information when you use ps , since you’ll use the PID value to change a process’s
priority or terminate it.

 Using top to Identify Processes
 Although ps can return process priority and CPU use information, the program’s output is
usually sorted by PID number and provides information at only a single moment in time.
If you want to quickly locate CPU- or memory-hogging processes, or if you want to study
how resource use varies over time, another tool is more appropriate: top . This program
is essentially an interactive version of ps . Figure 9.4 shows top running in a GNOME
Terminal window.

 F i gu r E 9 . 4 The top command shows system summary information and information
about the most CPU-intensive processes on a computer.

Certification
Objective

206 Chapter 9 ■ Exploring Processes and Process Data

By default, top sorts its entries by CPU use, and it updates its display every few seconds.
You’ll need to be familiar with the purposes and normal habits of programs running on
your system to determine if a CPU-hungry application is misbehaving. In the example
shown in Figure 9.4, an APT update process is taking up almost all of the CPU time. To
determine that, note the %CPU column entry, then scan to the far-right COMMAND col-
umn to note the process that’s using the CPU time. Although this is a useful tool, be care-
ful not to jump to conclusions too quickly. In this example, yes, the APT update process is
taking up lots of CPU time at that moment, but that’s a short burst of activity and drops
when the update completes. The legitimate needs of different programs vary so much that
it’s impossible to give a simple rule for judging when a process is consuming too much CPU
time.

You can do more with top than watch it update its display. When it’s running, you can
enter any of several single-letter commands, some of which prompt you for additional
information, as summarized in Table 9.1. Additional commands are described in top’s man
page.

ta b lE 9 .1 Common top commands

Command Description

h or ? Display help information.

k Kill a process. The top program will ask for a PID number, and if it’s
able to kill the process, it will do so.

q Quit from top.

r Change a process’s priority.

s Changes the display’s update rate, which you then enter in seconds.

P Set the display to sort by CPU usage, which is the default.

M Change the display to sort by memory usage.

One piece of information provided by top is the load average, which is a measure of the
demand for CPU time by applications. In Figure 9.4, you can see three load-average esti-
mates on the top line; these correspond to the current load average and two previous mea-
sures. Load averages can be interpreted as follows:

 ■ A system on which no programs are demanding CPU time has a load average of 0.

 ■ A system with one program running a CPU-intensive task has a load average of 1.

 ■ Higher load averages on a single-CPU system reflect programs competing for available
CPU time.

Identifying Running Processes 207

 ■ On a computer with multiple CPUs or CPU cores, load averages can reach the number
of CPUs or cores before competition for CPU time begins. For instance, a load average
of 4.0 on a system with a four-core CPU reflects processes demanding exactly as much
CPU time as the computer has available.

 Most computers sold today are multicore models, but if you’re running
Linux on an older system, single-core models dominated the marketplace
prior to about 2006. Use the lscpu command to see how many CPUs your
system contains.

 The load average can be useful in detecting runaway processes. For instance, if a system
normally has a load average of 0.5 but it suddenly gets stuck at a load average of 2.5, a few
CPU-hogging processes may have hung —that is, become unresponsive. Hung processes
sometimes needlessly consume a lot of CPU time. You can use top to locate these processes
and, if necessary, stop them.

 The w command, described in Chapter 13, can tell you how much CPU time
entire terminal sessions are consuming.

 Measuring Memory Use
 Processes consume a number of system resources, the most important of these being CPU
time and memory. As already noted, top sorts your processes by CPU time by default, so
you can identify processes that are consuming the most CPU time. You can press the M key
within top to have it sort by memory use, thus identifying the processes that are consuming
the most memory. As with CPU time, you can’t say that a process is consuming too much
memory simply because it’s at the top of the list, though; some programs legitimately con-
sume a great deal of memory. Nonetheless, sometimes a program consumes too much mem-
ory, either because of ineffi cient coding or because of a memory leak —a type of program
bug in which the program requests memory from the kernel and then fails to return it when
it’s done with the memory. A program with a memory leak consumes increasing amounts
of memory, sometimes to the point where it interferes with other programs. As a short-term
solution, you can usually terminate the program and launch it again, which resets the pro-
gram’s memory consumption, something like draining a sink that’s fi lled with water from a
leaky faucet. The problem will recur, but if the memory leak is small enough, you’ll at least
be able to get useful work done in the meantime.

 The kernel grants programs access to sets of memory addresses, which
the programs can then use. When a program is done, it should release its
memory back to the kernel.

Certification
Objective

208 Chapter 9 ■ Exploring Processes and Process Data

If you want to study the computer’s overall memory use, the free command is useful.
This program generates a report on the computer’s total memory status:

$ free
 total used free shared buffers cached
Mem: 7914888 7734456 180432 0 190656 3244720
-/+ buffers/cache: 4299080 3615808
Swap: 6291452 1030736 5260716

The Mem: line reveals total random access memory (RAM) statistics, including the total
memory in the computer (minus whatever is used by the motherboard and kernel), the
amount of memory used, and the amount of free memory. This example shows that most of
the computer’s memory is in use. Such a state is normal, since Linux puts otherwise unused
memory to use as buffers and caches, which help speed up disk access. Thus, the Mem: line
isn’t the most useful; instead, you should examine the -/+ buffers/cache: line, which
shows the total memory used by the computer’s programs. In this example, 4,299,080 KiB
of 7,914,888 KiB are in use, leaving 3,615,808 KiB free. In other words, a bit over half the
computer’s memory is in use by programs, so there should be no memory-related perfor-
mance problems.

The Swap: line reveals how much swap space Linux is using. Swap space is disk space
that’s set aside as an adjunct to memory. Linux uses swap space when it runs out of RAM,
or when it determines that RAM is better used for buffers or caches than to hold currently
inactive programs. In this example, 1,030,736 KiB of swap space is in use, with 6,291,452
KiB total, for 5,260,716 free. Swap space use is generally quite low, and if it rises very
much, you can suffer performance problems. In the long run, increasing the computer’s
RAM is generally the best solution to such problems. If you’re suffering from performance
problems because of excessive swap use and you need immediate relief, terminating some
memory-hogging programs can help. Memory leaks, described earlier, can lead to such
problems, and terminating the leaking program can restore system performance to normal.

The free command supports a number of options, most of which modify its display
format. The most useful of these is -m, which causes the display to use units of mebibytes
(MiB) rather than the default of kibibytes (KiB).

Using Log Files
Many programs that run in the background (that is, daemons) write information about
their normal operations to log files, which are files that record such notes. Consulting log
files can therefore be an important part of diagnosing problems with daemons. The first
step in doing this is to locate your log files. In some cases, you may need to tell the program
to produce more verbose output to help track down the problem, so this section provides
some pointers on how to do that. This section also describes the kernel ring buffer, which
isn’t technically a log file but can fill a similar role for kernel information.

Using Log Files 209

 Locating Log Files
 Linux stores most log fi les in the /var/log directory tree. Some log fi les reside in that direc-
tory, but some servers create entire subdirectories in which to store their own log fi les.
Table 9.2 summarizes some common log fi les on many Linux systems. In addition, many
server programs not described in this book add their own log fi les or subdirectories of
/var/log . If you experience problems with such a server, checking its log fi les can be a
good place to start troubleshooting.

 Log file details vary between distributions, so some of the files in
Table 9.2 may not be present on your system, or the files you find may
have different names.

 ta b lE 9 . 2 Important log files

Log file Contents

boot.log Services that are started late in the boot process via SysV
startup scripts

cron Processes run at regular intervals via the cron daemon.
Although this book doesn’t cover cron , a problem with it can
cause glitches that recur at regular intervals, so you should be
aware of it.

 cups/ Directory holding log files related to the Linux printing system

 gdm/ Directory holding log files related to the GNOME Display
Manager (GDM), which handles GUI logins on many systems

 messages or syslog A general-purpose log file that contains messages from many
daemons that lack their own dedicated log files

secure Security-related messages, including notices of when users
employ su , sudo , and similar tools to acquire root privileges

Xorg.0.log Information on the most recent startup of the X Window
System (X)

 Log fi les are frequently rotated , meaning that the oldest log fi le is deleted, the lat-
est log fi le is renamed with a date or number, and a new log fi le is created. For instance,
if it’s rotated on December 1, 2019, /var/log/messages will become /var/log/
messages-20191201 , /var/log/messages-1.gz , or something similar, and a new
/var/log/messages will be created. This practice keeps log fi les from growing out of
control.

Certification
Objective

210 Chapter 9 ■ Exploring Processes and Process Data

 Log file rotation occurs late at night, so it won’t happen if you shut off
your computer. Leave it running overnight periodically to ensure log files
are rotated.

 Most log fi les are plain-text fi les, so you can check them using any tool that can examine
text fi les, such as less or a text editor. One particularly handy command is tail , which
displays the last 10 lines of a fi le (or as many lines as you specify with the -n option). For
instance, typing tail /var/log/messages shows you the last 10 lines of that fi le.

 Note that not all programs log messages. Typically, only daemons do so; ordinary user
programs display error messages in other ways—in GUI dialog boxes or in a text-mode
terminal. If you think a program should be logging data but you can’t fi nd it, consult its
documentation. Alternatively, you can use grep to try to fi nd the log fi le to which the pro-
gram is sending its messages. For instance, typing grep sshd /var/log/* fi nds the fi les
in which the string sshd (the SSH daemon’s name) appears.

 creating log Files

 Some programs create their own log fi les; however, most rely on a utility known generi-
cally as the system log daemon to do this job. This program’s process name is generally
journald , syslog , or syslogd . Like other daemons, it’s started during the boot process
by the system startup scripts. Several system log daemon packages are available. Some
of them provide a separate tool, klog or klogd , to handle logging messages from the ker-
nel separately from ordinary programs.

 You can modify the behavior of the log daemon, including adjusting the fi les to which it
logs particular types of messages, by adjusting its confi guration fi le. The name of this fi le
depends on the specifi c daemon in use, but it’s typically /etc/rsyslog.conf or some-
thing similar. The details of log fi le confi guration are beyond the scope of this book, but
you should be aware that such details can be altered. This fact accounts for much of the
distribution-to-distribution variability in log fi le features.

 After it’s running, a log daemon accepts messages from other processes using a tech-
nique known as system messaging . It then sorts through the messages and directs them
to a suitable log fi le depending on the message’s source and a priority code.

 Producing More Verbose Log File Entries
 Sometimes log fi les don’t provide enough information to pin down the source of a problem.
Fortunately, many programs that produce log fi le output can be confi gured to produce
more such output. Unfortunately, doing so can sometimes make it harder to sift through all
the entries for the relevant information.

Certification
Objective

Summary 211

 The procedure for increasing the verbosity of log fi le output varies from one program to
another. Typically, you must set an option in the program’s confi guration fi le. You should
consult the program’s documentation to learn how to do this.

 Examining the Kernel Ring Buffer
 The kernel ring buffer is something like a log fi le for the kernel; however, unlike other
log fi les, it’s stored in memory rather than in a disk fi le. Like regular log fi les, its contents
continue to change as the computer runs. To examine the kernel ring buffer, you can
type dmesg . Doing so creates copious output, though, so you’ll typically pipe the output
through less :

 Because the kernel ring buffer has a limited size, its earliest entries can be
lost if the computer runs for a long time or if something produces many
entries.

 $ dmesg | less

 Alternatively, if you know that the information you want will be associated with a par-
ticular string, you can use grep to search for it. For instance, to fi nd kernel ring buffer mes-
sages about the fi rst hard disk, /dev/sda , you might type the following:

 $ dmesg | grep sda

 Kernel ring buffer messages can be particularly arcane; however, they can also be invalu-
able in diagnosing hardware and driver problems, since it’s the kernel’s job to interface with
hardware. You might try searching the kernel ring buffer if a hardware device is behav-
ing strangely. Even if you don’t understand a message you fi nd, you could try feeding that
message into a web search engine or passing it on to a more knowledgeable colleague for
advice.

 Some distributions place a copy of the kernel ring buffer when the system fi rst boots in
/var/log/dmesg or a similar fi le. You can consult this fi le if the computer has been running
for long enough for its earliest entries to be lost. If you want to create such a fi le on a distri-
bution that doesn’t do so by default, you can edit the /etc/rc.d/rc.local fi le and add the
following line to its end:

 dmesg > /var/log/dmesg

 Summary
 An operating Linux computer can be thought of as consisting of running programs—that
is, processes. Managing processes begins with managing the programs installed on the
computer, which is a task you can perform with package management tools such as rpm

Certification
Objective

212 Chapter 9 ■ Exploring Processes and Process Data

or dpkg. You can learn what processes are running by using tools such as ps and top. Log
files can help you learn about the actions of daemons, which may not be able to communi-
cate error messages through the type of text-mode or GUI output that other programs can
generate.

Exam Essentials
Explain how package management makes installing software easy. Package management
bundles all the files required for an application into a single installation process. When you
install an application using a package management system, it places the files in the correct
location automatically and tracks the version of each file required for the application. If a
newer version of the application is available, the package management software can inform
you and make updating the application files a simple one-step process.

Describe how you can view the programs running on your Linux system. Programs run-
ning on the Linux system are called processes. You can view currently running processes
using either the ps or top commands. The ps command provides a snapshot view of what
processes are running when you run the command. It has lots of options that allow you to
customize what information it displays. The top command produces a real-time chart of
running processes, allowing you to sort the chart data based on different criteria, such as
CPU usage, memory usage, or program name.

Describe how you can see error messages generated by the kernel. Linux stores messages
generated by the kernel in the kernel ring buffer, a circular buffer area reserved in memory.
As new messages enter the buffer area, old messages are deleted to make room. You use the
dmesg command to view the messages currently stored in the kernel ring buffer, but any old
messages are lost and can’t be retrieved.

Review Questions 213

Review Questions
You can find the answers in Appendix A.

1. Which of the following tools is best suited to installing a software package and all its
dependencies on a Debian computer?

A. yum

B. zypper

C. dmesg

D. rpm

E. apt-get

2. What are the two most popular utilities used as the first process that the Linux kernel runs,
aside from itself? (Choose two.)

A. init

B. bash

C. systemd

D. login

E. grub

3. Where do most log files reside on a Linux computer?

A. /var/log

B. /etc/logging

C. /usr/log

D. /home/logging

E. /log/usr

4. True or false: When using suitable commands, you can normally install a program and be
sure that all the software on which it depends will also be installed, provided you have an
Internet connection.

5. True or false: By default, the first process listed in top is currently consuming the most CPU
time.

6. True or false: The dmesg command may produce different output after a computer has been
running for weeks than when it first started.

7. Most Linux distributions maintain information on what packages are installed in the .

A. kernel

B. package database

C. graphical desktop

D. /usr/lib directory

E. Software updater

214 Chapter 9 ■ Exploring Processes and Process Data

8. You’re using Bash, and you type emacs to launch the emacs editor. In this case, emacs is
Bash’s process.

A. child

B. parent

C. server

D. client

E. parallel

9. General system messages are likely to be found in /var/log/messages or
/var/log/ , depending on your distribution.

A. secure

B. dmesg

C. syslog

D. mail

E. wtmp

10. The command you use to read messages generated during the boot process and stored in the
kernel ring buffer is the command.

A. ls

B. pwd

C. chmod

D. cat

E. dmesg

Chapter

10
Editing Files

ObjEctivEs:

 ✓ 3.3 Turning Commands into a Script

 Computer documents come in many forms, but one of the
most basic and fl exible is a text fi le. Typically, confi guration
fi les and shell scripts are text fi les. Because you will often be

modifying confi guration fi les and creating shell scripts, you must be able to edit text fi les.
This chapter covers this task with an emphasis on the simple text-mode nano and vi edi-
tors. A few roles played by text fi les are described fi rst; then how to select a text editor is
explained. To edit text fi les, of course, you must be able to start the editor, either on an
existing document or to create a new one. The nano editor is fairly simple, so its operation
is described fi rst, followed by vi , which is a more unusual editor, by modern standards.

 Understanding the Role of Text Files
 A text editor lets you edit documents that are stored in plain-text format. The American
Standard Code for Information Interchange (ASCII) used to be the common form, but now
fi les typically use Unicode formats to support additional characters.

 Text files encode the ends of lines by using one or two special ASCII char-
acters. End-of-line encoding differs between Unix (or Linux) and Windows,
but most programs can handle either method.

 These formats store text documents that, by themselves, include no special formatting or
embedded features. Text fi les cannot include graphics, use multiple fonts, emphasize words
by italicizing them, or use other features that you probably associate with word processors
(although markup tools provide a partial exception to this rule).

 Ascii and unicode

 ASCII dates to the 1960s. It’s a 7-bit code, meaning that it supports a maximum of 2 7 ,
or 128, characters. (In practice, ASCII uses 8 bits, so an extra 128 characters are avail-
able. These bits encode various control characters or are used in ASCII extensions.)
ASCII was created to encode the letters used in English, digits, and symbols. This origi-
nal intent, combined with ASCII’s limited character count, makes it rather unhelpful for

Understanding the Role of Text Files 217

many non-English languages. ASCII just doesn’t have enough characters to handle all the
requirements of non-English languages.

 Over the years, extensions to, and variants of, ASCII have been used to support additional
characters and alphabets that ASCII doesn’t support. One way to do this is to use a code
page to specify an alphabet. Each code page specifi es a variant of ASCII that’s suitable for
a particular alphabet. For instance, code page 866 encodes Cyrillic (the alphabet used by
Russian and most other Slavic languages). The problem with code pages is that you can
generally use only one at a time.

 Unicode is a more modern approach. It provides a much larger character set, allowing
the encoding of any alphabet in common use on Earth, including the huge logographic
writing systems used in languages such as Chinese and Japanese. The problem is
that Unicode requires many more bits, and several ways to encode it effi ciently exist.
Fortunately, these Unicode Transformation Format (UTF) schemes are limited in number
compared to code pages. Some, such as UTF-8, map the fi rst characters in the same way
as ASCII, so an ASCII fi le is also a valid UTF-8 fi le. Many text editors today handle UTF-8
(or other Unicode formats) automatically, so you can use a text editor to write text fi les in
any language that you like. You may still need to set localization options to tell Linux what
sort of keyboard you use and what code page to use by default for programs that still rely
on code pages.

 If your text fi le is encoded in ASCII, it’s encoded in Unicode too. ASCII encoding is consid-
ered a subset of Unicode.

 Text fi les consist of lines that can vary in length from 0 characters to the fi le’s entire size
and that can hold any number of data types. You might want to create or edit some of these
as an ordinary user; others are important for administering a Linux system. The main fi le
types include the following:

 ■ Human language files

 ■ Programming language files

 ■ Formatted text files

 ■ Program and system configuration files

 ■ Program log files

 Formatted text files encode special formatting using unique character
sequences. Although you can edit such files with a text editor, specialized
editors also exist for many of these file types.

 Some fi les contain elements of multiple categories. Email, for instance, can be stored
in text fi les. An email fi le consists largely of human language, but email messages include

218 Chapter 10 ■ Editing Files

headers, which describe the origin and destination computers, along with information on
how the message traveled from one site to the other, which is similar to formatted text or
log fi le data.

 Choosing an Editor
 All Linux distributions ship with many text editors. Broadly speaking, text editors fall into
one of two categories: text-mode and GUI. Beginners are generally more comfortable with
GUI editors, which can be more convenient to use even for experts. But when a GUI is not
available, you may have to use a text-mode editor. You should therefore familiarize yourself
with at least one text-mode editor.

 Some popular text-mode editors include the following:

vi The vi editor is a Unix staple. It’s small and usually installed by default, so you can
be fairly certain that it’s present on any Linux computer. It is, however, strange by modern
standards—it uses multiple editing modes , and you must switch between them to accom-
plish various tasks. Many longtime Unix and Linux administrators like vi for its fl exibility,
power, and small size.

 Most Linux distributions use a version of vi called “ vi improved,” or vim ;
you can typically still launch it by typing vi .

emacs The emacs editor is another Unix staple. It’s a big editor with lots of features, so
it’s less likely to be installed by default, particularly on small, lightweight distributions. Its
operating model is more like those of the text editors familiar to novices, but its commands
can seem rather odd.

 Bash’s text-editing commands are modeled on those of emacs , so learning
emacs can improve your ability to work in the Bash shell.

nano Several small editors are modeled after emacs , but they omit many of its advanced
features in an effort to simplify the editor. One of these editors is nano , which is small,
lightweight, and easy to use.

 The nano editor is probably the best place to start, because of its ease of use. If nano is
not already installed, it’s typically available in most distribution’s software repositories. (If
you don’t fi nd nano installed on your distribution, see Chapter 9, “Exploring Processes and
Process Data,” for help installing the nano package.) Figure 10.1 shows nano in operation
within a text-mode login session, editing a fi le called pets.txt .

Certification
Objective

Editing Files with nano 219

F i gu r E 10 .1 The nano editor enables you to edit a text file in text mode.

As with text-mode editors, several GUI editors are available, including the following:

emacs The emacs editor is both a text-mode editor and a GUI editor. The GUI features of
emacs, however, are sometimes a bit odd; for instance, the scroll bar to move through the
file appears on the left side of the window rather than on the more common right side.

gedit The GNOME desktop environment has an associated text editor known as gedit.
It’s a fairly typical text editor, and it’s often installed by default.

KWrite and Kate Just as gedit is associated with GNOME, KWrite and Kate are editors
that are associated with the K Desktop Environment (KDE). KWrite is slightly more sophis-
ticated than gedit, and Kate adds some more features, but neither is nearly as powerful as
emacs.

Geany The Geany editor is not tied to any particular desktop environment, and it’s small,
lightweight, and rather powerful. It also runs under other OSs besides Linux, such as
Windows, which is handy if you want to use one editor for multiple platforms.

For a new Linux user, any of these is a good starting GUI editor; all offer the basic fea-
tures that you need for light text-file editing. Your choice may depend on which is installed
by default on your system. In the long term, you should probably try a variety of editors to
find the one that you like best.

Editing Files with nano
If you’re familiar with text-mode text editors, you should have few problems learning nano.
If you’ve used only GUI editors to edit text, you’ll have to learn a few keyboard conven-
tions. You must move about the document by using the keyboard rather than the mouse,
for instance. You can insert, replace, and delete text much as you do in a GUI text editor or
word processor.

Certification
Objective

Certification
Objective

220 Chapter 10 ■ Editing Files

 If nano is not installed on your system, you can use the information from
Chapter 9 to install the nano package.

 You can launch the nano text editor from the command line. You can do this as a normal
user, using your default privileges to edit text fi les you own. To edit system fi les, you’ll need
to use super user privileges. Chapter 12, “Understanding Basic Security,” describes how to
obtain super user privileges needed to edit system text fi les. This example launches nano :

 $ nano

 When it opens, you’ll see a display similar to the one shown in Figure 10.1 , but the bulk
of the window or text-mode console will be empty, since you didn’t specify a fi lename.
Instead, as shown in Figure 10.2 , the center of the top line will read New Buffer . You can
begin typing in the desired text. When you save the fi le, as described later in “Saving Your
Changes from nano ,” nano will ask for a fi lename.

 F i gu r E 10 . 2 The nano editor launched with no filename provided.

 Alternatively, you can provide a fi lename when you launch the text editor as follows:

 $ nano great_american_novel.txt

 This example opens the great_american_novel.txt fi le and displays it. If the fi le doesn’t
exist, nano displays New File near the bottom of the display, where Read 4 lines appears
in Figure 10.1 . If you see Warning: no write permission in the third line from the bot-
tom, you’ve loaded a fi le that you have no permission to change. You’ll need to run nano
using super user privileges or modify fi le permissions, as described in Chapter 14, “Setting
Ownership and Permissions,” if you want to save the fi le’s modifi ed contents.

 If you mistype the filename of a preexisting file, nano will show an empty
file. Thus, if you see an empty file instead of the file that you were expect-
ing to see, you may have mistyped the filename.

 Using Text Editor Conventions
 Every text editor has its own conventions for displaying information on the screen, manipu-
lating text, and so on. Most text-mode text editors are similar up to a point—for instance,
one or more lines at the top or bottom of the display typically show summary information
or brief command prompts. Figure 10.1 and Figure 10.2 show this information for nano ,
which includes the following:

Title Bar The fi rst line of the display is the title bar. This line includes nano ’s version num-
ber, the name of the fi le being edited, and the modifi cation status.

Status Bar The third line from the bottom of the display is reserved for status information
and interactions with the user. This line will prompt you for information such as a fi lename
to write when you save your document or terms that you want to fi nd in the document
when you perform a search operation.

Shortcut List The bottom two lines of the editor show a summary of some of the most
common operations, along with the keystrokes that trigger them.

 In nano documentation, a caret (̂) preceding a letter refers to a control
character. In this book, such key combinations are indicated with Ctrl+
rather than a caret.

 In addition to control characters, nano uses metacharacters to activate some functions.
These key combinations use either the Esc, Alt, or Meta key (depending on your keyboard’s
confi guration) followed by another key. In nano ’s documentation, meta sequences are
denoted by M- k , where k is a key. For instance, M-? is the key sequence to move to the last
line of the document. Note that these are distinct keystrokes, unlike Ctrl key sequences;
that is, you would press Esc (or Alt or Meta), release it, and then press the question mark
(?) key, including its Shift modifi er, to move to the last line of the document.

 Typically, modern keyboards do not have a Meta key (consult your key-
board manufacturer’s documentation). As a substitute, first try using the
Esc key in place of the Meta key for meta key sequences in nano . If that
does not work, try the Alt key as the Meta key.

 Exploring Basic nano Text-Editing Procedures
 To learn nano , consider the tasks of creating and editing pets.txt , as shown in Figure 10.1 .
You can easily follow along on your system using this example. First populate the fi le with

Editing Files with nano 221

222 Chapter 10 ■ Editing Files

the pet types, as shown in Listing 10.1. After you save the file’s data to disk, add a new pet
type using the text editor.

Listing 10.1: Sample pets.txt file

dog
cat
bird
fish

For this example, the first step to using nano is to launch it and have it create a blank
empty file called pets.txt as follows:

1. Open a terminal program, and in your home directory, type nano pets.txt and
press the Enter key. You should see the words File: pets.txt displayed at the center
of the title bar as well as the words New File listed in the status bar’s center. This indi-
cates that you have created an empty new file called pets.txt.

2. Type dog and press Enter to add the first pet type to the file. Continue with the pet
types from Listing 10.1 until you have added all four pet types.

At this point, your result should resemble Figure 10.1 (shown earlier), which illustrates
nano editing the pets.txt file. You can add a new entry to pets.txt in a couple of ways.
The first way is to create a new empty line and type an entry manually. You can do this as
follows:

1. Press the arrow keys as needed to move the cursor over the f in fish.

2. Press the Enter key. This action opens a new line between the bird line and the fish
line.

3. Press the up arrow key once to reposition the cursor on the empty new line.

4. Type reptile, and do not press the Enter key.

A second way of creating a new entry demonstrates how to copy, cut, and paste text in
the editor:

1. Move the cursor to the beginning of the reptile line that you’ve just created by using
the arrow keys; you should see the cursor resting on the r in reptile.

2. Press M-6. (The second keystroke is the digit 6, not the letter g, and the Meta key may
be the Esc or the Alt key, depending on your keyboard’s configuration.) It may not look
like anything happened, but this keystroke copies the line on which the cursor resides
into a buffer. Your cursor should now be resting on the f on the fish line.

3. Press Ctrl+U. This keystroke pastes the contents of the buffer into the file in the current
location. You should see that the reptile pet type is shown on two lines.

4. Use the arrow keys to move the cursor to the beginning of the second reptile line that
you’ve just created; you should see the cursor resting on the r in reptile.

5. Press Ctrl+K to cut the entire second reptile line. The cursor should be at the start of
the fish line.

 6. Press Ctrl+N to go to the next line in the file. Your cursor should be below the fish line.

 7. Type rodent to add another pet type.

 To save the new pets.txt file that you created with nano , read the upcom-
ing section, “Saving Your Changes from nano .”

 You can make additional changes in a similar way. Although nano lacks a GUI version,
most of its principles are the same as the ones in GUI text editors and word processors; you
just need to know the keystroke to activate the feature that you want.

 Pressing Ctrl+G displays the nano help documentation, which summarizes the program’s
features. This can be handy as you get to know the editor. Some additional features that
you might want to use include the following:

Move to the Start or End of the File You can use the arrow keys, PageUp, PageDown,
Home, and End to move the cursor around in ways that are common to other edi-
tors. To move to the start of the fi le, press M-\, and to move to the end of the fi le, press
M-/. (Remember that M stands for the Meta key covered in the “Using Text Editor
Conventions” section of this chapter.)

 Copy or Move Multiple Lines If you need to copy or move multiple consecutive lines, you
can repeat the M-6 or Ctrl+K operation; nano retains all of the lines that you copy or cut so
that when you press Ctrl+U, all of them will be pasted back.

 Insert a File Pressing Ctrl+R or F5 enables you to insert another fi le into the current one at
the cursor’s current position.

 Search for a String Pressing Ctrl+W or F6 activates a search feature. When activated, nano
prompts you for a search term. Type it, followed by the Enter key, and nano fi nds the next
instance of that search term in the fi le. When you press Ctrl+W or F6 again, the default
search term is the last one used, so you can search repeatedly for the same term by pressing
Ctrl+W or F6 followed by Enter for each search operation. Alternatively, M-W repeats the
last search.

 Replace a String You can replace one string with another by pressing Ctrl+\ or M-R. The
program prompts you to enter a search term and the term to take its place. The search then
commences, and nano asks you to verify each replacement. If you want to replace all of the
occurrences without prompting, you can press the A key at the fi rst prompt.

 Saving Your Changes from nano
 After you’ve made changes to a text fi le, of course, you probably want to save them. One
way to do this is with the Ctrl+O option. (That’s the letter O, not the number 0.) When you
press this key, nano asks the following:

 Write Selection to File:

Editing Files with nano 223

224 Chapter 10 ■ Editing Files

Ordinarily, the prompt will include the file’s original name, so you can press the Enter
key to save the file using that name. If you want to use a different name, you can delete the
old one and type a new name. If you launched nano without specifying a filename, you can
type one at this prompt.

Another way to save the file is to press Ctrl+X. This command exits from nano, but if
you’ve modified the file, it produces the following prompt:

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ?

Type y at this prompt to save the file. The program then shows you the filename prompt
that you’d have seen if you’d pressed Ctrl+O, so you can change the filename if you like.
After nano saves the file, it terminates.

If you were following along on your system, creating and editing the pets.txt file from
earlier in this chapter, here are the steps to follow to save your changes and exit the nano
text editor:

1. In the nano text editor with the pets.txt file displayed, press Ctrl+O to start the pro-
cess of saving the file.

 The status bar should show the words File Name to Write: pets.txt.

2. Press Enter to save the file. You should see something similar to Wrote 6 lines on the
status bar.

3. Press Ctrl+X to exit the nano text editor and return to the command-line prompt.

To gain more experience, try editing the pets.txt file again with nano, making various
changes and trying out the different editing commands. Be sure to peruse the help feature
as well, using Ctrl+G to access it and Ctrl+X to exit from the help documentation.

Editing Files with vi
vi was the first full-screen text editor written for Unix. It was designed to be small enough
to fit on the old-fashioned, tiny, floppy-based emergency boot systems. Later, a new version
with several improvements was created and called “vi improved,” or vim. Even though most
Linux distributions ship with vim, it is still often referred to as the vi editor. vim is upward
compatible with the vi editor, and the command to launch vim is typically vi—though
some distributions have a vim command instead. The information presented in this chapter
applies to both vi and vim.

Although the vi editor is useful for editing configuration files, it shines in editing pro-
gram files, such as shell scripts. Thus, you will benefit from learning the vi editor, though it
is considered by many to be the most complicated text editor to use.

Understanding vi Modes
To use vi, you should first understand the modes in which it operates. Then you can begin
to learn about the text-editing procedures that vi implements. At any given moment, vi is
running in one of three modes:

Certification
Objective

Editing Files with vi 225

Command Mode The command mode accepts commands, which are usually entered as
single letters. For instance, i and a both enter insert mode, though in somewhat different
ways as described shortly, and o opens a line below the current one.

Ex Mode To manipulate files (including saving your current file and running outside
programs), you use ex mode. You enter ex mode from command mode by typing a colon
(:), typically directly followed by the name of the ex mode command that you want to use.
After you run the ex mode command, vi returns automatically to command mode.

Insert Mode You enter text in insert mode. Most keystrokes result in text appearing on
the screen. One important exception is the Esc key, which exits insert mode and returns to
command mode.

Unfortunately, terminology surrounding vi modes is inconsistent at best. For instance,
command mode is sometimes referred to as normal mode, and insert mode is sometimes
called edit mode or entry mode. Ex mode often isn’t described as a mode at all but is
referred to as colon commands.

checking your vi/vim Editor Package

Your Linux system may not have the full vi/vim editor package installed by default. For
example, your distribution may come only with the vim.tiny or vim.minimal pack-
age installed. With these packages, you can still access a form of the vi editor, though
you may not have full access to the editor’s various features, including some of those
described in this chapter. If you wish to learn and properly use the vi editor, you should
have the full vim package installed.

To check your system, enter type vi at the command line. You should receive the pro-
gram name (vi or vim), including its directory location, similar to what is shown here:

$ type vi
vi is hashed (/usr/bin/vi)

When you have the program name and its location, type readlink -f /location/program
to determine whether the program is linked to another program. (Linked files are covered in
Chapter 7, “Managing Files.”) You may receive something similar to the following:

$ readlink -f /usr/bin/vi
/usr/bin/vim.tiny

Next, you still need to check the software package that provided the program. (In some
cases, the program name does not indicate which software package provided it.) Use the
appropriate software package tool to determine this required information. The example
here is on a Linux Mint distribution, so the dpkg -S command is used along with super
user privileges (obtaining super user privileges is covered in more detail in Chapter 12).

$ sudo dkpg -S /usr/bin/vim.tiny

[sudo] password for christine:
vim-tiny: /usr/bin/vim.tiny

226 Chapter 10 ■ Editing Files

 You can see that in this case the vim-tiny package is installed. If you fi nd that the vim ,
vim-enhanced , vim-runtime , or vim-basic package is installed, you should have no
problems using the vi editor commands in this chapter. However, if you do not fi nd any
of these packages, you’ll want to install the vim package in order to follow along with
the rest of this chapter. For the preceding example on the Linux Mint distribution, you
would enter sudo apt-get install vim to install the full vim package. On the Fedora
Workstation distribution, type sudo yum install vim . (Installing packages is covered
in Chapter 9.)

 You can now begin to learn about the text-editing procedures that vi implements. You’ll
also examine how to save fi les and exit vi .

 Exploring Basic vi Text-Editing Procedures
 As a method for learning vi , consider the task of creating and editing the pets.txt
fi le—the same task described earlier in “Exploring Basic nano Text-Editing Procedures.”
Listing 10.1 (in that earlier section) shows the pets.txt fi le to create for the next example.

 If you created the pets.txt file earlier and want to follow along in this sec-
tion, delete the file first by typing rm pets.txt and pressing Enter.

 For this example, the fi rst step to using vi is to launch it and have it create a blank fi le
called pets.txt as follows:

 1. Open a terminal program and, in your home directory, type vi pets.txt and press
Enter. You should see the words "pets.txt" [New File] displayed on the message
line at the bottom of the window. This indicates that you have created a new empty file
called pets.txt .

 2. You are in command mode. Press the I key to enter insert mode. This mode should be
indicated on the message line by the word --INSERT-- at the bottom of the window.

 3. Type dog and press Enter to add the first pet type to the file. Continue with the pet
types from Listing 10.1 until you have added all four pet types.

 4. Press Esc to exit insert mode. Notice that the message --INSERT-- is no longer displayed
in the message line. The vi editor is now in command mode.

 5. Type : to enter ex mode, and finish the command by typing wq and pressing Enter.
This writes (w) the vi buffer contents to the pets.txt file, quits (q) the vi editor, and
returns you to the command line.

 6. Reopen the pets.txt file in the vi editor by typing vi pets.txt and pressing Enter.

 Your result should resemble Figure 10.3 , which shows vi displaying the pets.txt fi le in
command mode. As shown in Figure 10.3 , some systems display a line of tildes (~) down

the left side of the screen to indicate the end of the fi le. The fi le in Figure 10.3 was newly
loaded, and therefore the bottom line shows the status of the last command—an implicit
fi le-load command that loaded 4 lines and 18 characters from the pets.txt fi le.

 F i gu r E 10 . 3 The last line of a vi display is a status line that shows messages from
the program.

 It may be tempting to try word processor shortcut keys in a text editor,
such as Ctrl+S to save the file. This is not a wise practice, as this keystroke
combination may cause your terminal to freeze. If you have done this, you
can unfreeze your terminal by pressing Ctrl+Q.

 As with nano , you can add a new entry to pets.txt by using vi , either by typing a new
line in its entirety or by duplicating an existing line and modifying it. To type a new line,
follow these steps:

 1. Move the cursor to the beginning of the bird line by using the arrow keys.

 2. Press the O key (letter O, not number 0). This opens a new line immediately below the
current line, moves the cursor to that line, and enters insert mode.

 3. Type in a new entry: reptile .

 4. Press the Esc key to return from insert mode to command mode.

 To practice making changes by modifying an existing entry, follow these steps:

 1. Move the cursor to the beginning of the reptile line that you just created by using the
arrow keys if necessary. You should see the cursor resting on the r of reptile .

 2. You will now copy (yank) one line of text. The term yank is used much as copy is used
in most text editors—you copy the text to a buffer from which you can later paste it
back into the file. To yank text, you use the yy command preceded by the number of

Editing Files with vi 227

228 Chapter 10 ■ Editing Files

lines you want to yank. Therefore, type 1yy (do not press the Enter key, though). It
doesn’t look like anything happened, but this keystroke copies the line on which the
cursor resides into a buffer.

 3. Move the cursor to the bird line, which is the line before the one where you want the
new line to appear.

 4. Type p (again, without pressing the Enter key). vi pastes the contents of the buffer
(reptile) starting on the line after the cursor. The file should now have two identical
 reptile lines. The cursor should be resting at the start of the first one.

 5. Move the cursor to the r in the word reptile on the line that you’ve just pasted, if it’s
not there already. You’re about to delete this line.

 6. The dd command works much like yy , but it deletes the lines as well as copying them to
a buffer. Type dd to delete the reptile line. The file should now have only one
 reptile line.

 7. Save the file and quit by typing ZZ . This command is equivalent to :wq .

 If you need to change a text file’s end-of-line encoding from the Windows
method to the Unix/Linux method, open the file in the vi editor and type
the command :set ff=unix .

 Many additional commands are available that you may want to use in some situations.
Here are some highlights:

 Change Case Suppose that you need to change the case of a word in a fi le. Instead of
entering insert mode and retyping the word, you can use the tilde (~) key in command mode
to change the case. Position the cursor on the fi rst character that you want to change, and
press ~ repeatedly until the task is done.

 Undo To undo any change, type u in command mode.

 Open Text In command mode, typing o (a lowercase letter O) opens text—that is, it
inserts a new line immediately below the current one and enters insert mode on that line.

 Search To search forward for text in a fi le, type / in command mode, followed immedi-
ately by the text that you want to locate. Typing ? searches backward rather than forward.

 Change Text The c command changes text from within command mode. You invoke it
much like the d or y command, as in cw to change the next word or cc to change an entire
line.

Go to a Line The G key brings you to a line number that you specify. The H key homes
the cursor—that is, it moves the cursor to the top line of the screen. The L key brings the
cursor to the bottom line of the screen.

Replace Globally To replace all occurrences of one string with another, type
 :%s/ original / replacement/g , where original is the original string and replacement

is its replacement. Change % to a starting line number, comma, and ending line number to
perform this change on a small range of lines.

 The /g at the command’s end is not needed if original is listed only one
time in each file’s line.

vi offers a great deal more depth than is presented here; the editor is quite capable, and
some Linux users are very attached to it. Entire books have been written about vi . Consult
one of these, or a vi web page such as www.vim.org , for more information.

 Saving Your Changes from vi
 To save changes to a fi le without exiting the editor, type :w in command mode. This enters
ex mode and runs the w ex-mode command, which writes the fi le using whatever fi lename
you specifi ed when you launched vi . Related commands enable other functions:

 Edit a New File The :e command edits a new fi le. For instance, :e /etc/inittab loads
 /etc/inittab for editing. vi won’t load a new fi le unless the existing one has been saved
since its last change or unless you follow :e with an exclamation mark (!). Keep in mind if
you use the explanation point, you’ll lose any modifi cations made to the original fi le.

 Include an Existing File The :r command includes the contents of an old fi le in an existing
one, appending it to the existing fi le.

 Execute an External Command The ex mode command :! executes the external com-
mand that you specify. For instance, typing :!ls runs ls , enabling you to see what fi les are
present in the current directory.

 Quit Use the :q command to quit the program. As with :e , this command won’t work
unless changes have been saved or you append an exclamation mark to the command (as in
 :q!). Keep in mind if you use the exclamation point, you’ll lose any modifi cations made to
the original fi le.

 You can combine ex commands such as these to perform multiple actions in sequence.
For instance, as shown previously, typing :wq writes changes and then quits from vi .

 E X E r c i s E 10 .1

 ■ Launch nano to create a new fi le, and type in a complete paragraph from this chapter.
Proofread the text and correct any typos that you fi nd. (If you do not fi nd any, con-
gratulations! Now create a few “errors” and correct them.)

 ■ Launch vi to create a new fi le. Type in this chapter’s review questions and include
the answers. Try out the various editing features, such as changing case and search-
ing for text.

Editing Files with vi 229

http://www.vim.org

230 Chapter 10 ■ Editing Files

Summary
Plain-text files, which encode text using ASCII or Unicode, are important on most com-
puter platforms, but they’re particularly important on Linux. This is because many of
Linux’s configuration files use plain-text formats, so understanding how to use an editor
such as nano or vi to edit these files enables you to edit a wide variety of configuration files.
In addition, to be able to create shell scripts on Linux, you must be able to handle at least
one text editor. Basic text-editing skills are required, but the more you know about moving
around, searching, and modifying a text file, the quicker you can complete needed tasks.

Exam Essentials
Describe editing files with nano. Launch the nano text editor along with the name of the
current file you wish to edit or the new file you want to create. You can reach the line you
want to change by using arrow or control keys, some of which are displayed in the shortcut
list. For editing, basic keyboard keys or control and/or meta keys are also available. For
example, Ctrl+K allows you to cut a line of text, whereas Ctrl+U pastes any cut text.

Explain how to save modified text files with nano. You can save any changes made to
the text file within the nano editor by pressing the Ctrl+O key combination. The editor will
prompt for the filename, and if it is the name displayed, you can simply press Enter. You
can also initiate this process by pressing Ctrl+X.

Describe editing files with vi. Start the vi text editor along with the name of the current
file you want to edit or the new file you want to create. The initial editor mode is command
mode. It is easiest for those new to vi to start editing by entering insert mode by pressing
I on the keyboard. After you have completed your edits, leave insert mode by pressing the
Esc key.

Detail the various methods to save changes with vi. To save your edits when using the vi
editor, you can use ex mode, but you first must be out of insert mode (press the Esc key to
leave insert mode if needed). Type :w to write out the editor’s buffer to the file on the disk.
You can save the changes and quit the vi editor at the same time by typing :wq. If you need
to quit without saving changes, type :q!. You can also use command mode to save your
modifications by typing ZZ.

Summarize needed super user privileges for editing. To successfully edit system files,
which include some configuration files, you must obtain super user privileges prior to edit-
ing them. This also includes other files that only allow users with such privileges to write
to the file. When using nano, you will see near the bottom of the editor screen the message
Warning: no write permission if you have loaded a file that you have no permission to
change.

Review Questions 231

Review Questions
You can find the answers in Appendix A.

1. For which type of file is nano least likely to be useful for examining or editing?

A. A text file encoded in Unicode

B. A shell script file

C. A text file encoded in ASCII

D. A LibreOffice word processing document

E. A Linux configuration file

2. Which keystrokes invoke the nano search function? (Choose all that apply.)

A. F3

B. F6

C. Esc-S

D. Ctrl+F

E. Ctrl+W

3. How would you remove two lines of text from a file when using vi?

A. In command mode, position the cursor on the first line and type 2dd.

B. In command mode, position the cursor on the last line and type 2yy.

C. In insert mode, position the cursor at the start of the first line, hold down the Shift key
while pressing the down arrow key twice, and press the Delete key on the keyboard.

D. In insert mode, position the cursor at the start of the first line and press Ctrl+K twice.

E. Select the text with the mouse, and then select File ➢ Delete from the menu.

4. True or false: Unicode is useful for encoding most European languages but not languages
in Asia.

5. True or false: GUI text editors for ASCII are superior to text-mode ASCII text editors
because the GUI editors support underlining, italics, and multiple fonts.

6. True or false: If you have never used a text editor before, the nano text editor is usually the
best one to learn first.

7. ASCII supports unique characters (not including control characters).

A. 64

B. 128

C. 512

D. 1024

E. 2048

232 Chapter 10 ■ Editing Files

8. Three keystrokes that can initiate a search-and-replace operation in nano are , ,
and .

A. Esc+R

B. F6

C. F14

D. Ctrl+F

E. Ctrl+\

9. While in vi’s command mode, you can type to undo a change.

A. ~

B. :wq

C. ZZ

D. u

E. /

10. To save a file and exit the vi text editor in command mode, type .

A. ~

B. ?

C. ZZ

D. cw

E. /

Chapter

11
Creating Scripts

ObjeCtive:

 ✓ 3.3 Turning Commands into a Script

 A script is a program written in an interpreted language, typi-
cally associated with a shell or other program whose primary
purpose is something other than as an interpreted language.

In Linux, many scripts are shell scripts , which are associated with Bash or another shell. (If
you’re familiar with batch fi les in DOS or Windows, scripts serve a similar purpose.) You
can write shell scripts to help automate tedious repetitive tasks or to perform new and com-
plex tasks. Many of Linux’s startup functions are performed by scripts, so mastering script-
ing will help you manage the startup process.

 This chapter covers Bash shell scripts, beginning with the task of creating a new script
fi le. It then describes several important scripting features that help you to perform progres-
sively more complex scripting tasks.

 Like any programming task, shell scripting can be quite complex. Conse-
quently, this chapter barely scratches the surface of what you can accom-
plish through shell scripting. Consult a book on the topic, such as our Linux
Command Line and Shell Scripting Bible, Third Edition (Wiley, 2015), for
more information.

 Beginning a Shell Script
 Shell scripts are plain-text fi les, so you create them in text editors such as vi , nano , or pico ,
as described in Chapter 10, “Editing Files.” You shouldn’t use standard word processing
programs, such as LibreOffi ce Writer, to create shell scripts as by default they embed binary
code into the fi nal document to indicate fonts, font sizes, and special characters. These
binary codes confuse the Linux shell.

 A shell script begins with a line that identifi es the shell that’s used to run it, such as the
following:

 #!/bin/bash

 The fi rst two characters are a special code that tells the Linux kernel that this is a script
and to use the rest of the line as a pathname to the program that interprets the script. (This
line is sometimes called the shebang , hashbang , hashpling , or pound bang line.) Shell script-
ing languages use a hash mark (#) as a comment character, so the script utility ignores this
line, although the kernel doesn’t. On most systems, /bin/sh is a symbolic link that points
to /bin/bash , but it can point to some other shell. Specifying the script as using /bin/sh

Certification
Objective

Certification
Objective

Using Commands 235

guarantees that any Linux system will have a shell program to run the script, but if the
script uses any features specifi c to a particular shell, you should specify that shell instead—
for instance, use /bin/bash or /bin/tcsh instead of /bin/sh .

 This chapter describes Bash shell scripts. Simple Bash scripts can run in
other shells, but more complex scripts are more likely to be shell-specific.

 When you’re done writing the shell script, you should modify it so that it’s executable.
You do this with the chmod command, which is described in more detail in Chapter 14,
“Setting Ownership and Permissions.” For now, know that you use the a+x option to add
execute permissions for all users. For instance, to make a fi le called my-script executable,
you issue the following command:

 $ chmod a+x my-script

 You’ll then be able to execute the script by typing its name, possibly preceded by ./ to
tell Linux to run the script in the current directory rather than searching the current path.
If you fail to make the script executable, you can still run the script by running the shell
program followed by the script name (as in bash my-script), but it’s generally better to
make the script executable. If the script is one you run regularly, you may want to move
it to a location on your path, such as /usr/local/bin . When you do that, you won’t have
to type the complete path or move to the script’s directory to execute it; you can just type
my-script .

 Using Commands
 One of the most basic features of shell scripts is the ability to run commands. You can use
both commands that are built into the shell and external commands—that is, you can run
other programs as commands. Most of the commands you type in a shell prompt are exter-
nal commands; they’re programs located in /bin , /usr/bin , and other directories on your
path. You can run such programs, as well as internal commands, by including their names
in the script. You can also specify parameters to such programs in a script. For instance,
suppose you want a script that launches two xterm windows and the KMail mail reader
program. Listing 11.1 presents a shell script that accomplishes this goal.

 Listing 11.1: A simple script that launches three programs

 #!/bin/bash
 /usr/bin/xterm &
 /usr/bin/xterm &
 /usr/bin/kmail &

236 Chapter 11 ■ Creating Scripts

 Aside from the fi rst line that identifi es it as a script, the script looks just like the com-
mands you might type to accomplish the task manually, except for one fact: the script lists
the complete paths to each program. This is usually not strictly necessary, but listing the
complete path ensures that the script will fi nd the programs even if the PATH environment
variable changes. On the other hand, if the program fi les move (say, because you upgrade
the package from which they’re installed and the packager decides to move them), scripts
that use complete paths will break. If a script produces a No such file or directory
error for a command, typing which command , where command is the offending command,
should help you locate it.

 The Linux File Hierarchy Standard (FHS) defines specific directories for
different types of files, such as /usr/bin for local application executable
files. Many Linux distributions are incorporating the FHS structure in their
directory hierarchy.

 Each program-launch line in Listing 11.1 ends in an ampersand (&). This character tells
the shell to go on to the next line without waiting for the fi rst to fi nish. If you omit the
ampersands in Listing 11.1, the effect will be that the fi rst xterm will open but the second
won’t open until the fi rst is closed. Likewise, KMail won’t start until the second xterm
terminates.

 Although launching several programs from one script can save time in startup scripts
and some other situations, scripts are also frequently used to run a series of programs that
manipulate data in some way. Such scripts typically do not include the ampersands at the
ends of the commands because one command must run after another or may even rely on
output from the fi rst. A comprehensive list of such commands is impossible because you can
run any program you can install in Linux as a command in a script—even another script. A
few commands that are commonly used in scripts include the following:

 Normal File Manipulation Commands The fi le manipulation commands, such as ls , mv ,
 cp , and rm , are often used in scripts. You can use these commands to help automate repeti-
tive fi le maintenance tasks.

 grep The grep command locates fi les that contain the string you specify, or it displays
the lines that contain those strings in a single fi le. grep is described in detail in Chapter 8,
“Searching, Extracting, and Archiving Data.”

 find The find command searches for patterns based on fi lenames, ownership, and simi-
lar characteristics. Chapter 8 covers this command.

 cut The cut command extracts text from fi elds in a fi le. It’s frequently used to extract
variable information from a fi le whose contents are highly patterned. To use it, you pass
it one or more options that specify what information you want, followed by one or more
fi lenames. For instance, users’ home directories appear in the sixth colon-delimited fi eld
of the /etc/passwd fi le. You can therefore type cut -f 6 -d ":" /etc/passwd to
extract this information. The same command in a script will extract this information,
which you’ll probably save to a variable or pass to a subsequent command.

Using Arguments 237

sed The sed program provides many of the capabilities of a conventional text editor
(such as search-and-replace operations) but via commands that can be typed at a command
prompt or entered in a script.

 echo The echo command is the tool to use when a script must provide a message to the
user. You can pass various options to echo or just a string to be shown to the user. For
instance, echo "Press the Enter key" causes a script to display the specifi ed string. You
can also use echo to display the value of variables (described later, in “Using Variables”).

mail The mail command can be used to send email from within a script. Pass it the
 -s subject parameter to specify a subject line, and give it an email address as the last
argument. If it’s used at the command line, you then type a message and terminate it with
a Ctrl+D keystroke. If it’s used from a script, you may omit the subject entirely or pass it an
external fi le as the message using input redirection. You may want to use this command to
send mail to the superuser about the actions of a startup script or a script that runs on an
automated basis.

 Chapter 8 describes input redirection.

 Many of these commands are extremely complex, and completely describing them
is beyond the scope of this chapter. You can consult these commands’ man pages for
more information. A few of them are described elsewhere in this book, as noted in their
descriptions.

 Even if you have a full grasp of how to use some key external commands, simply execut-
ing commands as you would when typing them at a command prompt is of limited utility.
Many administrative tasks require you to modify what you type at a command, or even
what commands you enter, depending on information from other commands. For this rea-
son, scripting languages include additional features to help you make your scripts useful.

 Using Arguments
Variables can help you expand the utility of scripts. A variable is a placeholder in a script
for a value that will be determined when the script runs. Variables’ values can be passed as
parameters to a script, generated internally to a script, or extracted from a script’s environ-
ment. (An environment is a set of variables that any program can access. The environment
includes things like the current directory and the search path for running programs.)

 Variables that are passed to the script are frequently called parameters or arguments .
They’re represented in the script by a dollar sign ($) followed by a number from 0 up— $0
stands for the name of the script, $1 is the fi rst parameter to the script, $2 is the second
parameter, and so on. To understand how this might be useful, consider the task of add-
ing a user. As described in Chapter 13, “Creating Users and Groups,” creating an account
for a new user typically involves running at least two commands— useradd and passwd .

Certification
Objective

Certification
Objective

238 Chapter 11 ■ Creating Scripts

You may also need to run additional site-specific commands, such as commands that create
unusual user-owned directories aside from the user’s home directory.

As an example of how a script with an argument variable can help in such situations,
consider Listing 11.2. When you run the script, you must provide the user account as a
parameter on the command line. The script retrieves that value using the $1 variable and
creates an account based on the value with the useradd command. It then changes the
account’s password using the passwd command (the script prompts you to enter the pass-
word when you run the script). It creates a directory in the /shared directory tree corre-
sponding to the account, and it sets a symbolic link to that directory from the new user’s
home directory. It also adjusts ownership and permissions in a way that may be useful,
depending on your system’s ownership and permissions policies.

Listing 11.2: A script that reduces account-creation tedium

#!/bin/bash
useradd -m $1
passwd $1
mkdir -p /shared/$1
chown $1.users /shared/$1
chmod 775 /shared/$1
ln -s /shared/$1 /home/$1/shared
chown $1.users /home/$1/shared

If you use Listing 11.2, you need to type only three things: the script name with the
desired username and the password (twice). For instance, if the script is called mkuser, you
can use it like this:

mkuser rblum
Changing password for user rblum
New password:
Retype new password:
passwd: all authentication tokens updated successfully

Most of the script’s programs operate silently unless they encounter problems, so the
interaction (including typing the passwords, which don’t echo to the screen) is a result of
just the passwd command. In effect, Listing 11.2’s script replaces seven lines of commands
with one. Every one of those lines uses the username, so by running this script, you also
reduce the chance of a typo causing problems.

Using Variables
Another type of variable that can be set from the output of a command is also identified
by leading dollar signs, but typically is given a name that at least begins with a letter, such
as $Addr or $Name. (When values are assigned to variables, the dollar sign is omitted, as

Certification
Objective

Using Variables 239

illustrated shortly.) You can then use these variables with normal commands as if they were
command parameters, but the value of the variable is passed to the command.

 Consider Listing 11.3, which checks to see if the computer’s router is up with the help
of the ping utility. This script uses two variables. The fi rst is $ip , which is extracted from
the output of route using the grep , tr , and cut commands. When you assign a value to
a variable from the output of a command, that command should be enclosed in backtick
characters (̀), which appear on the same key as the tilde (~) on most keyboards. These are
 not ordinary single quotes, which appear on the same key as the regular quote character (")
on most keyboards. The second variable, $ping , simply points to the ping program. It can
just as easily be omitted, with subsequent uses of $ping replaced by the full path to the pro-
gram or simply by ping (relying on the $PATH environment variable to fi nd the program).
Variables like this are sometimes used to make it easier to modify the script in the future.
For instance, if you move the ping program, you need to modify only one line of the script.
Variables can also be used with conditionals to ensure that the script works on more
systems—for instance, if ping were called something else on some systems.

 Listing 11.3: Script demonstrating assignment and use of variables

 #!/bin/bash
 ip=`route -n | grep UG | tr -s " " | cut -f 2 -d " "`
 ping="/bin/ping"
 echo "Checking to see if $ip is up..."
 $ping -c 5 $ip

 In addition to several commands, the ip= line uses backticks (̀) to
assign the output of that command chain to ip . Chapter 8 describes this
technique.

 In practice, you use Listing 11.3 by typing the script’s name. The result should be the
message Checking to see if 192.168.1.1 is up (with 192.168.1.1 replaced by the comput-
er’s default gateway system) and the output from the ping command, which should attempt
to send fi ve packets to the router. If the router is up and is confi gured to respond to pings,
you’ll see fi ve return packets and summary information, similar to the following:

 $ routercheck
 Checking to see if 192.168.1.1 is up...
 PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
 64 bytes from 192.168.1.1: icmp_seq=1 ttl=63 time=23.0 ms
 64 bytes from 192.168.1.1: icmp_seq=2 ttl=63 time=0.176 ms
 64 bytes from 192.168.1.1: icmp_seq=3 ttl=63 time=0.214 ms
 64 bytes from 192.168.1.1: icmp_seq=4 ttl=63 time=0.204 ms
 64 bytes from 192.168.1.1: icmp_seq=5 ttl=63 time=0.191 ms

 --- 192.168.1.1 ping statistics ---
 5 packets transmitted, 5 received, 0% packet loss, time 4001ms
 rtt min/avg/max/mdev = 0.176/4.758/23.005/9.123 ms

240 Chapter 11 ■ Creating Scripts

If the router is down, you’ll see error messages to the effect that the host was
unreachable.

Listing 11.3 is of limited practical use and contains bugs. For instance, the script identi-
fies the computer’s gateway merely by the presence of the string UG in the router’s output
line from route. If a computer has two routers defined, this won’t work correctly, and the
result is likely to be a script that misbehaves. The purpose of Listing 11.3 is to illustrate
how variables can be assigned and used, not to be a flawless working script.

Scripts like Listing 11.3, which obtain information from running one or more com-
mands, are useful in configuring features that rely on system-specific information or
information that varies with time. You can use a similar approach to obtain the current
hostname (using the hostname command), the current time (using date), the total time the
computer’s been running (using uptime), free disk space (using df), and so on. When com-
bined with conditional expressions (described shortly), variables become even more power-
ful because then your script can perform one action when one condition is met and another
in some other case. For instance, a script that installs software can check free disk space
and abort the installation if insufficient disk space is available.

In addition to assigning variables with the assignment operator (=), you can read vari-
ables from standard input using read, as in read response to read input for subsequent
access as $response. This method of variable assignment is useful for scripts that must
interact with users. For instance, instead of reading the username from the command line,
Listing 11.2 may be modified to prompt the user for the username. Listing 11.4 shows the
result. To use this script, you type its name without typing a username on the command
line. The script will then prompt for a username, and after you enter one, the script will
attempt to create an account with that name.

Listing 11.4: Modified version of Listing 11.2 that employs user interaction

#!/bin/bash
echo -n "Enter a username: "
read name
useradd -m $name
passwd $name
mkdir -p /shared/$name
chown $name.users /shared/$name
chmod 775 /shared/$name
ln -s /shared/$name /home/$name/shared
chown $name.users /home/$name/shared

One special type of variable is an environment variable, which is assigned and accessed
just like a shell script variable. The difference is that the script or command that sets an
environment variable uses Bash’s export command to make the value of the variable acces-
sible to programs launched from the shell or shell script that made the assignment. In other
words, you can set an environment variable in one script and use it in another script that
the first script launches. Environment variables are most often set in shell startup scripts,

Certification
Objective

Using Conditional Expressions 241

but the scripts you use can access them. For instance, if your script calls X programs, it
might check for the presence of a valid $DISPLAY environment variable and abort if it fi nds
that this variable isn’t set. By convention, environment variable names are all uppercase,
whereas non-environment shell script variables are all lowercase or mixed case.

 One special variable deserves mention: $? . This variable holds the exit status (or return
value) of the most recently executed command. The exit status is an integer value that you
can check to determine whether or not the command completed correctly. Most programs
return a value of 0 when they terminate normally and return another value to specify
errors. You can display this value with echo or use it in a conditional expression (described
next) to have your script perform special error handling.

 Consult a program’s man page to learn the meanings of its return values.

 Using Conditional Expressions
 Scripting languages support several types of conditional expressions . These enable a script
to perform one of several actions contingent on some condition—typically the value of a
variable. One common command that uses conditional expressions is if , which allows the
system to take one of two actions depending on whether some condition is true. The condi-
tional expression for the if keyword appears in brackets after the if keyword and can take
many forms. Conditional expressions use options and operators to defi ne just what condi-
tion to check. For instance, the condition:

 [-f file]

 uses the -f option and is true if file exists and is a regular fi le; whereas the condition:

 [-s file]

 uses the -s option and is true if file exists and has a size greater than 0. You can also
use some string operators in conditions. For example:

 [string1 == string2]

 uses the == operator and is true if the two strings have the same values.
 To better understand the use of conditionals, consider the following code fragment:

 if [-s /tmp/tempstuff]
 then
 echo "/tmp/tempstuff found; aborting!"
 exit
 fi

Certification
Objective

Certification
Objective

242 Chapter 11 ■ Creating Scripts

This fragment causes the script to exit if the file /tmp/tempstuff is present. The then
keyword marks the beginning of a series of lines that execute only if the conditional is true,
and fi (if backward) marks the end of the if block. Such code may be useful if the script
creates and then later deletes this file, because its presence indicates that a previous run of
the script didn’t succeed or is still underway.

An alternative form for a conditional expression uses the test keyword rather than
square brackets around the conditional:

if test -s /tmp/tempstuff

You can also test a command’s return value by using the command as the condition:

if [command]
 then
 additional-commands
fi

In this example, the additional-commands will be run only if command completes suc-
cessfully. If command returns an error code, additional-commands won’t be run.

Conditional expressions may be expanded by use of the else clause:

if [conditional-expression]
 then
 commands
 else
 other-commands
fi

Code of this form causes either commands or other-commands to execute, depending on the
evaluation of conditional-expression. This is useful if something should happen in a part of
the program, but precisely what should happen depends on some condition. For instance, you
may want to launch one of two different file archiving programs depending on a user’s input.

What do you do if more than two outcomes are possible—for instance, if a user may
provide any one of four possible inputs? You can nest several if/then/else clauses, but this
gets awkward quickly. A cleaner approach is to use case:

case word in
 pattern1) command(s) ;;
 pattern2) command(s) ;;
 ...
esac

For a case statement, a word is likely to be a variable, and each pattern is a possible
value of that variable. The patterns can be expanded much like filenames, using the same
wildcards and expansion rules (* to stand for any string, for instance). You can match an
arbitrary number of patterns in this way. Each set of commands must end with a double
semicolon (;;), and the case statement as a whole ends in the string esac (case backward).

Certification
Objective

Certification
Objective

Certification
Objective

Using Loops 243

 Filename expansion using asterisks (*), question marks (?), and so on is
sometimes called globbing .

 Upon execution, bash executes the commands associated with the fi rst pattern to match
the word . Execution then jumps to the line following the esac statement; any intervening
commands don’t execute. If no patterns match the word, no code within the case statement
executes. If you want to have a default condition, use * as the fi nal pattern ; this pattern
matches any word , so its commands will execute if no other pattern matches.

 Using Loops
 Conditional expressions are sometimes used in loops . Loops are structures that tell the
script to perform the same task repeatedly until some condition is met (or until some condi-
tion is no longer met). For instance, Listing 11.5 shows a loop that plays all the WAV audio
fi les in a directory.

 The aplay command is a basic audio file player. On some systems, you
may need to use play or some other command instead of aplay .

 Listing 11.5: A script that executes a command on every matching file in a directory

 #!/bin/bash
 for d in `ls *.wav` ; do
 aplay $d
 done

 The for loop as used here executes once for every item in the list generated by ls *.wav .
Each of those items (fi lenames) is assigned in turn to the $d variable and so is passed to the
 aplay command.

 The seq command can be useful in creating for loops (and in other ways, too). This
command generates a list of numbers starting from its fi rst argument and continuing to its
last one. For instance, typing seq 1 10 generates 10 lines, each with a number between 1
and 10. You can use the seq command in a for loop to iterate through a series of numbers:

 for x in `seq 1 10` ; do
 echo $x
 done

 The loop executes 10 times, with the value of x incrementing with each iteration. If you
pass just one parameter to seq , it interprets that number as an ending point, with the start-
ing point being 1 . If you pass three values to seq , it interprets them as a starting value, an
increment amount, and an ending value.

244 Chapter 11 ■ Creating Scripts

Another type of loop is the while loop, which executes for as long as its condition is
true. The basic form of this loop type is:

while [condition]
do
 commands
done

The until loop is similar in form, but it continues execution for as long as its condition
is false—that is, until the condition becomes true.

Using Functions
A function is a part of a script that performs a specific subtask and that can be called by
name from other parts of the script. Functions are defined by placing parentheses after the
function name and enclosing the lines that make up the function within curly braces:

myfn() {
 commands
}

The keyword function may optionally precede the function name. In either event, the
function is called by name as if it were an ordinary internal or external command.

Functions are very useful in helping to create modular scripts. For instance, if your script
needs to perform half a dozen distinct computations, you can place each computation in a
function and then call them all in sequence. Listing 11.6 demonstrates the use of functions
in a simple program that copies a file but aborts with an error message if the target file
already exists. This script accepts a target and a destination filename and must pass those
filenames to the functions.

Listing 11.6: A script demonstrating the use of functions

#/bin/bash

doit() {
 cp $1 $2
}

function check() {
 if [-s $2]
 then
 echo "Target file exists! Exiting!"
 exit
 fi

Certification
Objective

Setting the Script’s Exit Value 245

}

check $1 $2
doit $1 $2

If you enter Listing 11.6 and name it safercp, you can use it like this, assuming the file
original.txt exists and dest.txt doesn’t:

$./safercp original.txt dest.txt
$./safercp original.txt dest.txt
Target file exists! Exiting!

The first run of the script succeeded because dest.txt didn’t exist. On the second run,
though, the destination file did exist, so the script terminated with the error message.

Note that the functions aren’t run directly and in the order in which they appear in the
script. They’re run only when called in the main body of the script—which in Listing 11.6
consists of just two lines, each corresponding to one function call, at the very end of the script.

Administrator Shell Scripts

The job of a Linux administrator can be somewhat tedious at times. There are lots of dif-
ferent log files the administrator must check daily to ensure things are running properly
and that no security breaches have occurred on the system. That task can take quite a
long time to accomplish. However, many Linux administrators use shell scripts to help
take some of the tediousness out of examining pages of log files.

Instead of manually looking through logs, administrators write scripts that use Linux text
processing tools, such as grep and cut, to search the log files for errors and warnings,
copy those errors and warnings to a separate text file, and then email the resulting file to
themselves. They then schedule the scripts to run each evening so that they have a sum-
mary of any system issues first thing in the morning when they arrive at work. Then they
can focus their energy on resolving system issues rather than just looking for them!

Setting the Script’s Exit Value
Ordinarily, a script’s exit status is the same as the last command the script called—that is,
the script returns $?. You can control the exit value, however, or exit from the script at any
point, by using the exit command. Used without any options, exit causes immediate ter-
mination of the script, with the usual exit value of $?. This can be useful in error handling
or in aborting an ongoing operation for any reason—if the script detects an error or if the
user selects an option to terminate, you can call exit to quit.

Certification
Objective

246 Chapter 11 ■ Creating Scripts

If you pass a numeric value between 0 and 255 to exit, the script terminates and returns
the specified value as the script’s own exit value. You can use this feature to signal errors
to other scripts that might call your own script. You may have to include extra code to
keep track of the causes of abnormal termination, though. For instance, you can set aside
a variable (say, $termcause) to hold the cause of the script’s termination. Set it to 0 at the
start of the script and then, if the script detects a problem that will cause termination, reset
$termcause to some non-0 value. (You can use any numeric codes you like; there’s no set
meaning for such codes.) On exit, be sure to pass $termcause to exit:

exit $termcause

Summary
Serious Linux users and administrators must have at least a basic understanding of shell
scripts. Many configuration and startup files are in fact shell scripts, and being able to read
them, and perhaps modify them, will help you administer your system. Being able to create
new shell scripts is also important, because doing so will help you simplify tedious tasks
and create site-specific tools by gluing together multiple programs to accomplish your goals.
Linux shell scripts allow you to combine standard shell commands with a few specialized
programming commands, such as conditional expressions, loops, and functions, to imple-
ment logic features often found in larger-scale programs.

Exam Essentials
Describe the format of a basic shell script file. Shell script files must be plain-text files;
they cannot be generated using a word processing application. The first line in the shell
script should be the shebang combination (#!/bin/sh). This indicates the shell that should
be used to run the script. The remainder of the shell script is a list of commands or shell
statements arranged in the order in which they are to be run by the shell. Though not
required, it’s common to use the exit statement at the end of a shell script to control
the exit status generated by the shell, especially if the shell exists with any type of error
condition.

Explain how using variables helps when writing a shell script. Shell scripts use variables
to store data or other information for use later in the shell script. You assign data to a
variable using the equal sign (=). The data can be any type of text or numerical data, or if
you redirect the output of a command to store in a variable by placing backtick characters
around the command. To reference the value of a variable inside the shell script, precede
the variable with a dollar sign ($). You can reference variables in shell commands as well as
in shell statements.

Exam Essentials 247

Explain how to pass data to a shell script. Shell scripts can use parameters, or arguments,
to pass data from the command line to the shell script. Just include the data parameters
on the command-line command when starting the shell script. Inside the shell script you
can retrieve any command-line parameters by using positional variables. The $0 posi-
tional variable is special; it references the shell command used to launch the shell script.
Positional variable $1 references the first parameter entered on the command line, variable
$2 the second parameter, and so on.

Describe the different types of programming features you can use in shell scripts. Shell
scripts can use conditional statements to evaluate data and make programming decisions
based on the outcome of the evaluation. The if and case statements are two conditional
statements that you can use for that. The if statement can be paired with the else state-
ment to create a true/false scenario for executing one set of statements if a condition is
true, and another set of statements if a condition is false. The case statement allows you to
specify a range of possible values that a condition can evaluate to and execute separate sets
of statements for each possible value. Besides conditional statements, shell scripts can use
loops to iterate through a set of statements multiple times, based on either a series of values
or a condition. Finally, shell scripts also support defining functions, which are a set of state-
ments bundled together to be called from anywhere in the shell script as needed.

248 Chapter 11 ■ Creating Scripts

Review Questions
You can find the answers in Appendix A.

1. After using a text editor to create a shell script, what step should you take before trying to
use the script by typing its name?

A. Set one or more executable bits using chmod.

B. Copy the script to the /usr/bin/scripts directory.

C. Compile the script by typing bash scriptname, where scriptname is the
script’s name.

D. Run a virus checker on the script to be sure it contains no viruses.

E. Run a spell checker on the script to ensure it contains no bugs.

2. Describe the effect of the following short script, cp1, if it’s called as cp1 big.c big.cc:

#!/bin/bash
cp $2 $1

A. It has the same effect as the cp command—copying the contents of big.c to big.cc.

B. It compiles the C program big.c and calls the result big.cc.

C. It copies the contents of big.cc to big.c, eliminating the old big.c.

D. It converts the C program big.c into a C++ program called big.cc.

E. The script’s first line is invalid, so it won’t work.

3. What is the purpose of conditional expressions in shell scripts?

A. They prevent scripts from executing if license conditions aren’t met.

B. They display information about the script’s computer environment.

C. They enable the script to take different actions in response to variable data.

D. They enable scripts to learn in a manner reminiscent of Pavlovian conditioning.

E. They cause scripts to run only at specified times of day.

4. True or false: A user types myscript laser.txt to run a script called myscript. Within
myscript, the $0 variable holds the value laser.txt.

5. True or false: Valid looping statements in Bash include for, while, and until.

6. True or false: The following script launches three simultaneous instances of the terminal
program.

#!/bin/bash
terminal
terminal
terminal

Review Questions 249

7. You’ve written a simple shell script that does nothing but launch programs. To ensure that
the script works with most user shells, the first line should be .

A. #!/bin/sh

B. /bin/sh

C. # /bin/sh

D. bash

E. #!bash

8. The Bash scripting command is used to display prompts for a user in a shell script.

A. case

B. while

C. if

D. echo

E. exit

9. The Bash scripting command is used to control the program flow based on a variable
that can take many values (such as all the letters of the alphabet).

A. case

B. while

C. if

D. echo

E. exit

10. The Bash scripting command controls the return value generated by a script, inde-
pendent of the other commands used in the script.

A. case

B. while

C. if

D. echo

E. exit

Chapter

12
Understanding Basic
Security

OBjectiveS:

 ✓ 5.1 Basic Security and Identifying User Types

 Linux is a multiuser OS, meaning that it provides features to
help multiple individuals use the computer. Collectively, these
features constitute accounts . Previous chapters of this book

have referred to accounts in passing but haven’t covered them in detail.
 This chapter changes that; it describes important account principles and a few com-

mands that you can use to begin investigating accounts. Related to accounts are groups ,
which are collections of accounts that can be given special permissions on the computer,
so this chapter also describes groups. One account, known as root , has special privileges
on the computer. Some administrators use this account to perform system administration
tasks, but that is now considered a bad practice. So you should understand this account and
what to use in its place before tackling the administrative tasks described in the last few
chapters of this book. These important topics are at the foundation of system security.

 Understanding Accounts
 Accounts enable multiple users to share a single computer without causing one another
too much trouble. They also enable system administrators to track who is using system
resources and, sometimes, who is doing things they shouldn’t be doing. Account features
help users use a computer and administrators administer it. Understanding these features is
the basis for enabling you to manage accounts.

 Even a single-user workstation uses multiple accounts. Such a computer
may have just one user account , but several system accounts to help keep
the computer running.

 Some account features help you identify accounts and the fi les and resources associated
with them. Knowing how to use these features will help you track down account-related
problems and manage the computer’s users.

 There are various account types—common user accounts, system
accounts, and the root account. Common accounts are built for users who
do not need special privileges to complete their daily tasks, such as creat-
ing a word processing document. System accounts are set up for special
services or programs, such as one that serves up web pages. The root
account was historically (and sometimes still today) used for performing
system administration tasks. These topics are covered in more detail in the
“Understanding User Types” section later in this chapter.

Understanding Accounts 253

 Understanding Account Features
 Most account features are defi ned in the /etc/passwd fi le, which consists of colon-delimited
lines, with each line (or record) defi ning a single account. An entry might resemble the
following:

 rich:x:1001:1001:Richard Blum:/home/rich:/bin/bash

 The information contained in the fi elds of this record includes the following:

Username An account’s username is its most relevant feature. Most Linux account
usernames consist of lowercase letters, and occasionally numbers, as in rich or thx1138 .
Underscores (_) and dashes (-) are also valid characters in some Linux distributions’
usernames.

Password User accounts are typically protected by a password, which is required to log
into the computer. Direct login to most system accounts is disabled, so they lack passwords.
(The root account is an important exception on some distributions; it may have a pass-
word.) The password fi eld in the /etc/passwd fi le usually contains an x , which is a code
meaning that the password is stored in /etc/shadow , as described shortly.

UID In reality, the username is just a label that the computer displays to us numerically
challenged humans. The computer employs a user identifi cation (UID) number to track
accounts. UID numbers begin with 0 (which refers to the root account). In most distribu-
tions, user accounts have UID numbers at 1,000 and above, with lower numbers reserved
for system accounts.

 Some distributions number user accounts starting at 500 rather than 1,000.

GID Accounts are tied to one or more groups, which are similar to accounts in many
ways; however, a group is a collection of accounts. One of the primary purposes of groups
is to enable users to give certain other users access to their fi les, while preventing users not
in a designated group from accessing them. Each account is tied directly to a primary group
via a group ID (GID) number (100 in the preceding example). By including an account in
a group’s defi nition, accounts can be tied to several groups as described in Chapter 13,
“Creating Users and Groups.”

 File ownership and permissions are described in Chapter 14, “Setting
Ownership and Permissions.”

Comment Field The comment fi eld normally holds the user’s full name (Richard Blum in
this example), although this fi eld can hold other information instead of or in addition to the
user’s name.

Home Directory User accounts, and some system accounts, have home directories
(/home/rich in this example). A home directory is an account’s “home base.” Normally,

Certification
Objective

254 Chapter 12 ■ Understanding Basic Security

ownership of an account’s home directory belongs to the account. Certain tools and proce-
dures make it easy for users to access their home directories; for instance, the tilde (~) refers
to a user’s home directory when used at the start of a fi lename.

Default Shell A default shell is associated with every account. In Linux, this shell is nor-
mally Bash (/bin/bash), but individual users can change this if they like. Most non- root
system accounts set the default shell to /usr/sbin/nologin (or /sbin/nologin) as an added
security measure—this program displays a message stating that the account is not available.
Using /bin/false works in a similar way, although without the explanatory message.

 You might guess by its name that /etc/passwd holds password information. This
isn’t normally the case today, although it was many years ago. For historical reasons,
 /etc/passwd must be readable by all users, so storing passwords there, even as a salted
and hashed password, is risky.

 Passwords are stored using a salted hash , a one-way mathematical pro-
cess with additional random input (salt), that produces what looks like non-
sense to humans. When a user types a password, it’s salted and hashed,
and if the salted hashes match, access is granted.

 Passwords today are stored in another fi le, /etc/shadow , that ordinary users can’t
read. This fi le associates a salted and hashed password, as well as other information, with
an account. This information can disable an account after a period of time or if the user
doesn’t change the password within a given period of time. A typical /etc/shadow entry
looks like this:

 rich:6E/moFkeT5UnTQ3KqZUoA4Fl2tPUoIc[...]:18114:5:30:14:-1:-1:

 The meaning of each colon-delimited fi eld on this line is as follows:

Username Each line begins with the username. Note that the UID is not used in
/etc/shadow ; the username links entries in this fi le to those in /etc/passwd .

Password The password is stored as a salted hash, so it bears no obvious resemblance
to the actual password. An asterisk (*) or exclamation mark (!) denotes an account with
no password (that is, the account doesn’t accept logins—it’s locked). This is common for
accounts used by the system itself.

Last Password Change The next fi eld (18114 in this example) is the date of the last pass-
word change. This date is stored as the number of days since January 1, 1970.

 Unix Epoch time, which is also called POSIX time, is the number of sec-
onds since January 1, 1970, although the /etc/shadow file expresses it in
days. It has a long history with Unix and Linux systems. You don’t have
to drag out your calculator to determine what a field’s date is using
the Epoch. Instead, the chage utility does that for you by displaying the
 /etc/shadow file record for a designated user account in a human-friendly
format. POSIX time may cause problems in the year 2038 on any small
systems still using 32-bit processors, because the computer will run out of
storage to track time properly in this way.

Certification
Objective

Understanding Accounts 255

Days Until a Change Is Allowed The next fi eld (5 in this example) is the number of days
before a password change is allowed. This is used to prevent users from changing their
passwords (as required) and then changing them right back to the original password.

Days Before a Change Is Required This fi eld (30 in this example) is the number of days
before another password change is required (since the last password change).

Days of Warning Before Password Expiration If your system is confi gured to expire pass-
words, you may set it to warn the user when an expiration date is approaching. A value of
 7 is typical. However, 14 days, as shown in the preceding example, may be appropriate if
your company’s employees take two-week vacations.

 Days Between Expiration and Deactivation Linux allows a gap between when the
account expires and when it is completely deactivated. An expired account either can’t be
used or requires that the user change the password immediately after logging in. In either
case, its password remains intact. A deactivated account’s password is erased, and the
account can’t be used until the system administrator reactivates it. A -1 in this fi eld, as
shown in the preceding example, indicates that this feature is disabled.

Expiration Date This fi eld shows the date on which the account will expire. As with the
last password change date, the date is expressed as the number of days since January 1,
1970. A -1 in this fi eld, as shown in the preceding example, indicates that this feature is
disabled.

 Special Flag This fi eld is reserved for future use and normally isn’t used or contains a
meaningless value. This fi eld is empty in the preceding example.

 For fi elds relating to day counts, typically a value of -1 or 99999 or no value (blank)
indicates that the relevant feature has been disabled. The /etc/shadow values are generally
best left to modifi cation through commands such as usermod (described in Chapter 13) and
chage . Understanding the format of the fi le enables you to review its contents and note any
discrepancies, which could indicate that your system has been compromised.

 The terms encrypted and hashed are often confused when used with
computer objects. You can decrypt an encrypted object, but you cannot
“dehash” a hashed object. Passwords on Linux are salted and hashed,
though often you’ll see the term encrypted mistakenly used instead in
Linux documentation.

 The /etc/shadow fi le is usually stored with restrictive permissions, with ownership by
 root . This fact is critical to the shadow password system’s utility because it keeps non-
super users from reading the fi le and obtaining the password list, even in a salted and
hashed form. By contrast, /etc/passwd must be readable by ordinary users and usually has
less restrictive permissions.

 It’s important to realize that an account isn’t a single entity like a program binary fi le.
Account information is scattered across several confi guration fi les, such as /etc/passwd ,
/etc/shadow , /etc/group , and possibly in other confi guration fi les that refer to accounts.
User fi les reside in the user’s home directory and perhaps elsewhere. Thus, managing

256 Chapter 12 ■ Understanding Basic Security

accounts can require doing more than just maintaining a fi le or two. For this reason, vari-
ous utilities exist to help create, manage, and delete accounts, as described in the rest of
this chapter and in Chapter 13.

 Examples of user files stored outside the user’s home directory may
include email in /var/spool/mail and temporary files in /tmp .

 Identifying Accounts
 One way to identify user accounts is to use a GUI tool for account management. Such tools
vary from one distribution to another. One example is the Users and Groups account tool
on a Linux Mint system. You can reach this tool by clicking Menu in the main window and
then typing user in the search box, as shown in Figure 12.1 .

 F i gU r e 12 .1 Locating the Users and Groups account tool on Linux Mint

 Accessing this option produces a window similar to the one shown in Figure 12.2 but
only if you have super user privileges and provide the appropriate password. This tool
shows only user accounts, not system accounts. It enables changing a few features, such as
a user’s password, by clicking them, but its usefulness as an account management tool is
limited.

Understanding Accounts 257

 Passwords are typically displayed as dots or asterisks in a GUI environ-
ment as a security feature.

 F i gU r e 12 . 2 The Users and Groups account tool provides minimal account information.

 You can identify all of a computer’s accounts by viewing the /etc/passwd fi le’s con-
tents with cat or less . Doing so will reveal all accounts, including both system and user
accounts.

 Alternatively, if you’re searching for information on a specifi c account, you can use grep
to fi nd it in /etc/passwd , as in grep rich /etc/passwd to fi nd information on any
account that’s tied to a user with the username rich . (This specifi c example assumes that
the string rich appears in the passwd fi le, of course.)

 You can pull out individual records by using the getent command too.
Just add the username to the command’s end—for instance,
getent passwd rich .

 An alternative that’s similar to perusing /etc/passwd is to type getent passwd . The
getent command retrieves entries from certain administrative databases, including the
/etc/passwd fi le. In most cases, typing getent passwd produces results that are identical

258 Chapter 12 ■ Understanding Basic Security

to typing cat /etc/passwd; however, sometimes the two aren’t identical. The
/etc/passwd file defines only local user accounts. It’s possible to configure Linux to use
a network account database to define some or all of its accounts. If you use such a configu-
ration, typing getent passwd returns both local accounts and accounts defined on the
network server.

Network Account Databases

Many networks employ network account databases. Such systems may include the
Lightweight Directory Access Protocol (LDAP), Kerberos realms, and Active Directory
(AD) domains. All of these systems move account database management onto a single
centralized computer (often with one or more backup systems) or distributed across a
designated system set. The advantage is that users and administrators need not deal with
maintaining accounts independently on multiple computers. A single-account database
can handle accounts on dozens (or even hundreds or thousands) of different comput-
ers, greatly simplifying day-to-day administrative tasks and also simplifying users’
lives. Using such a system, though, means that most user accounts won’t appear in
/etc/passwd and /etc/shadow, and groups may not appear in /etc/group (described
shortly, in “Understanding Groups”). These files will still hold information on local
 system accounts and groups, though.

Linux can participate in these systems. In fact, some distributions provide options to
enable such support at OS installation time. Typically, you must know the name or IP
address of the server that hosts the network account database, and you must know
what protocol that system uses. You may also need a password or some other protocol-
specific information, and the server may need to be configured to accept accesses from
the Linux system that you’re configuring.

Activating use of such network account databases after installing Linux is a complex
topic that is not covered in this book. Such systems often alter the behavior of tools such
as passwd and usermod (described in Chapter 13) in subtle or not-so-subtle ways. If you
need to use such a system, you’ll have to consult documentation specific to the service
that you intend to use.

Understanding Groups
As noted earlier, groups are collections of accounts that are defined in the /etc/group file.
Like /etc/passwd, the /etc/group file contains colon-delimited lines (records), each defin-
ing a single group. An example looks like this:

users:x:100:games,christine

Certification
Objective

Using Account Tools 259

 The fi elds in /etc/group are as follows:

Group Name The fi rst fi eld, users in the preceding example, is the name of the group.
You use it with most commands that access or manipulate group data.

 Password Groups, like users, can have passwords. A value of x means that the password is
defi ned elsewhere (but may be disabled), and an empty password fi eld means that the group
has no password.

 The use and management of group passwords is a topic that’s beyond the
scope of this book. However, group passwords are typically frowned on by
security professionals.

 GID Linux uses GID values, like UID values, internally. Translation to and from group
names is done by the system for the benefi t of users and administrators.

 User List You can specify users who belong to the group in a comma-delimited list at the
end of the /etc/group record.

 It’s important to recognize that users can be identifi ed as members of a group in either of
two ways:

 By Specifying the Group’s GID in Users’ Individual /etc/passwd Entries Because
 /etc/passwd has room for only one GID value, only one group can be defi ned in this way.
This is the user’s primary (or default) group.

 By Specifying Usernames in the User List in the /etc/group File A single user can
appear multiple times in /etc/group , and a single group can have multiple users associated
with it in this way. If a user is associated with a group in this way but not via the user’s
 /etc/passwd entry, this group association is secondary.

 When you create new fi les, those fi les will be associated with your current group. When
you log in, your current group is set to your primary group. If you want to create fi les that
are associated with another group to which you belong, you can use the newgrp command,
as follows:

 $ newgrp project1

 This command makes project1 your current group, so that the fi les you create will be
associated with that group. Group ownership of fi les is important in fi le security, which is
described in more detail in Chapter 14.

 Using Account Tools
 A few commands can help you learn about the users and groups on your computer. Most
notably, the whoami and id utilities can tell you about your own identity, and the who and w
utilities can give you information about who is currently using the computer.

260 Chapter 12 ■ Understanding Basic Security

 Discovering Your Own Identity
 If you maintain multiple accounts for yourself and you don’t recall which one you used to
log in, you might become confused about your current status. In such a case, the whoami
command can come in handy. It displays your current user ID:

 $ whoami
 christine

This example reveals that the current account is christine . If you need more informa-
tion, you can use the id utility:

 $ id
 uid=1002(christine) gid=100(users) groups=100(users)[...]

 This example shows information on both users and groups:

 ■ Your User ID and Username: uid=1002(christine) in this example

 ■ Your Current Group: gid=100(users) in this example

 ■ All Your Group Memberships: the entries following groups= in this example

 The id command displays both the numeric UID and GID values and potentially the
associated names. The current group is the one that’s active, either by default or because
you used the newgrp command.

 On some distributions, the id command provides more information than
shown in our examples.

 You can limit id ’s output by specifying various options, as summarized in Table 12.1 . In
addition, you can specify a username, as in id rich , to obtain information on that user
rather than on yourself.

 tA B Le 12 .1 Options for id

Long option Short option Effect

--group -g Displays only the effective group ID

--groups -G Displays all the groups to which you belong

--user -u Displays only the user data

--name -n Used in conjunction with -g , -G , or -u ; displays
only the name, not the UID or GID

--real -r Used in conjunction with -g , -G , or -u ; displays
only the UID or GID, not the name

Certification
Objective

Using Account Tools 261

 Learning Who’s Online
 Linux permits multiple users to access the computer simultaneously. Most often, this is
done by means of remote access servers such as the Secure Shell (SSH); however, you can use
Linux’s virtual terminal (VT) feature to log in multiple times with a single keyboard and monitor.
Sometimes, you might want to know who is using the computer. You might do this before shut-
ting down the computer, for instance, to ensure that you don’t inconvenience another user.

 To learn who is online, you can use a command known as who :

 $ who
 christine tty7 2019-08-06 10:14 (:0)
 steph tty2 2019-08-06 10:57
 rich pts/0 2019-08-06 10:56 (192.168.0.102)
 devon tty3 2019-08-06 10:57
 ken tty4 2019-08-06 10:57
 $

 This example shows fi ve logins— christine , steph , rich , devon , and ken . Information
provided in the default output includes the following:

Username The fi rst column of who ’s output shows the username.

 Terminal Identifier The second column of who ’s output shows a code associated with the ter-
minal. In this example, christine ’s fi rst login shows tty7 and it is a local GUI login, but some
distributions use the 0 as a GUI identifi er. The remaining logins all have terminal identifi ers of
the form pts/ # or tty# , indicating text sessions. A text session can be a terminal launched in a
GUI, a text-mode console login, or a remote login via SSH or some other protocol.

 Login Date and Time who displays the date and time of each login. You can see that
 christine ’s session began several minutes before steph logged in.

 Remote Host The fi nal column of who ’s output, if present, shows the login source.
Console logins (including both text-mode and GUI-based logins) don’t include a source.
A source of the form # or # . # or : # often indicates a terminal opened in a GUI, such as in
 christine ’s source: (:0) . A hostname or IP address, as in rich ’s session, indicates remote
access from the specifi ed computer.

 By default, the who command pulls its data from the /var/run/utmp file.

 You can obtain additional information, most of which is obscure or specialized, by pass-
ing options to who . One that’s more likely than others to be useful is --count (or -q), which
produces a more compact summary of the data:

 $ who -q
 christine steph rich devon ken
 # users=5
 $

Certification
Objective

262 Chapter 12 ■ Understanding Basic Security

 This output includes just the usernames and a line specifying the total number of ses-
sions. Notice that the users number counts one user with multiple logins multiple times.

 Different distributions have varying minor details for the who command.
However, the major elements are the same.

 Similar to the whoami command but showing more information, passing the am i
arguments to the who command displays data only for your current user ID:

 $ who am i
 rich pts/0 2019-08-06 10:56 (192.168.0.102)
 $

 The who command, on some distributions, ignores the am i arguments and
returns nothing. If your system does accept them, for a little humor, use
the arguments mom likes in place of the am i arguments.

 In this example, the current user account is rich , who is logged into the pts/0 terminal
session. For information on additional who options and arguments, consult its man page.

 An alternative to who is w , which is similar to who but produces somewhat more verbose
output:

 $ w
 11:17:26 up 1:10, 5 users, load average: 0.00, 0.03, 0.04
 USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
 christin tty7 :0 10:14 1:09m 17.12s 0.64s cinnamon[...]
 steph tty2 10:57 4:30 0.21s 0.16s -bash
 rich pts/0 192.168.0.102 10:56 1.00s 0.20s 0.00s w
 devon tty3 10:57 20:05 0.21s 0.15s -bash
 ken tty4 10:57 19:58 0.23s 0.16s -bash
 $

 As you can see, w displays much of the same information as who , including the termi-
nal identifi er (TTY) and login time (in a different format). In addition, w displays further
information:

 ■ The session’s idle time tells you how long it’s been since the user has interacted with
this session. This information can help you identify sessions that the user may have
abandoned.

 ■ The JCPU column identifies the total amount of CPU time associated with the session.
This can be useful debugging information if the computer has become sluggish because
of out-of-control processes.

Certification
Objective

Working as root 263

 ■ The PCPU column identifies the total amount of CPU time associated with the current
process running in the session. Again, this information can help you track down
out-of-control processes.

 ■ The WHAT column tells you what program the session is running.

 Some confi gurations also display a FROM column, which shows a remote hostname. Using
the -f option toggles this option on or off. A few other options can eliminate or modify w ’s
output. Consult the program’s man page for details.

 Working as root
 Linux is modeled after Unix, which was designed as a multiuser OS. In principle, you
can have thousands of accounts on a single Unix (or Linux) computer. At least one user,
though, needs extraordinary power in order to manage the features of the computer as
a whole. Historically, this is the root user account, also known as the super user or the
administrator . Knowing why root exists, how to do things as root (if you must), and how
to use root privileges safely is important for managing a Linux system.

 Understanding User Types
 Most people use computers to do ordinary day-to-day computer tasks—browse the web,
write letters, manage a music collection, and so on. These activities are known collectively
as user tasks , and they don’t require special privileges. As just noted, a Linux computer
can have many user accounts, and the users can use the computer from these user accounts
(also known as unprivileged accounts , unprivileged users , or standard users) to perform
such user tasks.

 The root account exists to enable you to perform administrative tasks . These tasks
include installing new software, preparing a new disk for use in the computer, and manag-
ing ordinary user accounts. Such tasks require access to system fi les that ordinary users do
not need to modify or even read.

 Another user type is a system user . These are nonlogin accounts for dae-
mons, services, or applications. System user accounts typically have a
low UID number; no password (so the account is locked); and /usr/sbin/
nologin , /sbin/nologin , or /bin/false as their default shell.

 To facilitate performing these tasks, root can read and write every fi le on the computer.
Since Linux relies on fi les to store system settings, this effectively gives root the power to
change any detail of the OS’s operation, which is the point of having a super user account.
If the computer is a workstation that’s used by just one individual, you may wonder why
the distinction between root and the user account is necessary. The explanation is that the

Certification
Objective

Certification
Objective

264 Chapter 12 ■ Understanding Basic Security

power of the root account can lead to accidental damage. For instance, take the rm com-
mand. If you mistype an rm command as an ordinary user, you can accidentally delete your
own fi les but not system fi les. Make the same mistake as root , however, and you can delete
system fi les, perhaps making the computer unbootable. Therefore, you should be cautious
when using the root account (or not use it at all), a topic covered more thoroughly in the
upcoming “Using root Privileges Safely” section.

 Acquiring root Privileges
 When you need to perform a command-line task that requires root privileges, you can do
so in any of three ways:

Log In as root You can log in directly as root at a text-mode shell or by using a remote
login tool such as SSH. You can even log into GUI mode as root on some Linux distri-
butions. Some distributions don’t allow root to log in directly by default because it’s
dangerous.

Use su The su command enables you to change your identity within a shell. Type
 su username to change your identity to that of the specifi ed username . If you omit
 username , root is assumed, so typing su enables you effectively to become root .

 You must, however, know the password for the target account (root or otherwise) for this
command to work. After you acquire root privileges in this way, you can type as many
commands as root as you like. When you’re done, type exit to relinquish your super user
status.

 You can also use su to run a single command as root . Use the -c option, as in
 su -c command to run command as root .

 If you use a dash (-) within the command, as in su - or su - luke , the program opens a
login session that runs the target user’s login scripts. This can be important because these
scripts often set environment variables such as $PATH that can be important for that user.

 su stands for switch user or substitute user.

 Use sudo The sudo command is similar to su , but it works for just one command at a
time, which you type after sudo , similar to using su -c . For instance, typing sudo cat
/etc/shadow enables you to see the contents of the /etc/shadow fi le, which is not readable
by ordinary users. You must type either your own password or the root password, depend-
ing on the sudo confi guration, when you use this program. (When using su -c , you must
always type the root password.) The next command you type will be executed using your
ordinary account privileges. Some distributions, such as Ubuntu and Fedora, rely heavily on
 sudo and don’t permit direct root logins by default.

Certification
Objective

Certification
Objective

 the Legalities of Acquiring root Privileges

 If your Linux system is in the workplace, it is important to determine your company’s poli-
cies concerning acquiring root privileges. Logging directly into the root account or using
the su command to obtain root privileges sets up what is called a repudiation environ-
ment. In this environment, a person can deny actions; in this case, the person can deny
that they logged in as root . This environment could allow a root account user to perform
illegal or troublemaking activity and then legally deny being responsible for that activity.
This is a potentially dangerous situation.

 Many companies have (or should have) a policy that insists the sudo command is used for
anyone needing to acquire root privileges. The sudo command tracks and logs a user’s
activity and therefore sets up what is called a nonrepudiation environment in which
actions cannot be legally denied.

 Many modern distributions do not let you log into the root account. However, if you
can acquire root privileges by logging in directly as root or by using su - , your shell
prompt will change:

 [rey@jakku ~]$ su -
 Password:
 [root@jakku ~]#

 It’s a good idea to always use su - , instead of just the su command. The
dash (-) sets up the user account environment correctly. If you don’t use
the dash, you may experience command problems.

 In this example, the username has changed from rey to root and the last character of
the prompt has changed from a dollar sign ($) to a hash mark (#). Because just the last
prompt character was used for most examples printed on their own lines in this book, such
examples implicitly specify whether a command requires root privileges by the prompt
used. For instance, consider accessing the /etc/shadow fi le mentioned earlier:

 # cat /etc/shadow

 The use of the hash mark prompt indicates that you must type this command using root
privileges.

 To use root commands in Linux Mint and Fedora Workstation, you must
either precede them with sudo (as in sudo cat /etc/shadow) or type
 sudo su to acquire a longer-lasting root shell.

Working as root 265

266 Chapter 12 ■ Understanding Basic Security

Some of this book’s chapters describe both GUI and text-mode methods of system
administration. How, then, can you administer Linux in GUI mode if you must use the
text-mode sudo command to acquire root privileges? Most distributions allow you to
launch administrative tools from the computer’s desktop menus, and the GUI tools will
then prompt you for the super user password when administrative privileges are needed, as
shown in Figure 12.3. If you type the password correctly, the program will continue. The
result is similar to that of launching the program from a shell using sudo.

F i gU r e 12 . 3 Administrative tools in the GUI ask for a password when administrator
privileges are needed.

Using root Privileges Safely
As already described, root power is dangerous. You could accidentally wipe out critical
application files and cause hours of downtime. Imagine what would happen if you mistak-
enly corrupted an important configuration file or destroyed a set of important backups.
Everyone makes mistakes—unfortunately, some mistakes can be absolutely disastrous for a
company.

Imagine intruders gaining root access to your computer: unintended changes to configu-
ration files, damage to some (even if not all) of the computer’s system files, and changes to
ownership or permissions on ordinary user files, rendering them inaccessible to their true
owners. You should take the following precautions whenever you need root access:

 ■ Ask yourself if you really need root access. Sometimes there’s a way to achieve a goal
without super user privileges or by using those privileges in a more limited way than
you’d originally planned. For instance, you might find that only root can write to a
removable disk. Such a problem can usually be overcome by adjusting permissions on
the disk in one way or another, thus limiting the use of root.

 ■ Before pressing the Enter key after typing any command as root (or clicking any con-
firmation button in a GUI program running as root), take your hands off the keyboard
and mouse, look over the command, and verify that it’s correct in every respect. A
simple typo can cause a world of pain.

 ■ Never run a suspicious program as root . On multiuser systems, unscrupulous users can
try to trick administrators into running programs that will do nasty things or give the
attacker root privileges. Programs downloaded from random Internet sites could in
principle be designed to compromise your security, and such programs are much more
dangerous when run as root .

 If a program asks you for your password, or the root password, and it’s
not an administrative program that you trust, be suspicious! Research the
program before giving it the password!

 ■ Use root privileges for as brief a period as possible. If you need to type just one or two
commands as root , do so and then type exit in the root shell to log out or return to
your normal privileges. Better yet, use sudo to run the commands. It’s easy to overlook
the fact that you’re using a root shell and therefore type commands as root that don’t
need that privilege. Every command typed as root is a risk.

 ■ Never leave a root shell accessible to others. If you’re performing root maintenance
tasks and are called away, type exit in your root shell before leaving the computer.

 ■ Be careful with the root password. Don’t share the password with others, and be
 cautious about typing it in a public area or when others might be looking over your
shoulder. If you’re using Linux professionally, your employer may have guidelines
concerning who may have root access to a computer. Learn those rules and obey them!
Be sure to select a strong root password, too.

 Chapter 13 describes how to select a strong password.

 Following these rules of thumb can help keep you from damaging your computer or giv-
ing somebody else root access to the computer.

 e X e r c i S e 12 .1

 ■ Type whoami followed by id to review your ordinary user account status. Chances
are that the id command will reveal that you’re a member of various groups. Perform
a web search to learn what each one does.

 ■ Read the /etc/passwd fi le or type getent passwd to review what accounts are
defi ned on the computer. Are there ordinary user accounts (those with UIDs above
500 or 1,000, depending on your distribution) other than your own? Try performing
a web search to learn the purpose of a few of the system accounts (those with UIDs
below 500 or 1,000, depending on your distribution).

Working as root 267

268 Chapter 12 ■ Understanding Basic Security

Summary
Accounts are critical to Linux’s normal functioning. Ordinarily, most of the tasks that
you perform on a Linux computer require the privileges of a standard user, so you’ll use
your own user account to handle these tasks. You can use tools such as whoami, id, who,
and w to identify your account and to determine who else might be using the computer.
Occasionally, you’ll need to perform administrative tasks that require the root account’s
privileges, which can read and write any ordinary file, access hardware in a low-level way,
reconfigure the network, and perform other tasks that ordinary users aren’t allowed to do.
Because root is so powerful, you should use that power sparingly and be extremely careful
when you do use it, lest a typo or other accident cause serious problems.

Exam Essentials
Explain the difference between various Linux accounts. User accounts generally fall into
three categories: the root user, standard users, and system accounts. The root account has
a UID of 0 and is often disabled on many modern Linux distributions so that no one can
directly log into it. This is due to the fact that root can read and write every file on the
computer, making it a rather dangerous user. In addition, if multiple individuals use the
root account, it sets up an insecure repudiation environment.

Users are each given an account on the system to perform productive work. They typically
have regular privileges, but those who perform special administrative system duties may
have access to super user privileges through commands such as sudo. These accounts have
UIDs that start at 500 or 1,000 depending on the distribution configuration.

System accounts help keep the computer running. You cannot log into these accounts,
because they lack passwords, and their default shell is often set to /sbin/nologin. The
UIDs for system accounts are numbers that are lower than the configured base for user
account UIDs.

Describe the files involved in Linux account configuration. The /etc/passwd file has a
record for each account on the system. These records consist of the following fields: user-
name, password, UID, GID, comment, home directory, and default shell.

The /etc/shadow file has password information and data for each account on the system.
Each records contains the following fields: username, salted and hashed password (if a
password is set for the account), the last password change in Epoch format, days until a
password modification is allowed, days before a password change is required, number of
days warning before the password expires, days between account expiration and deactiva-
tion, account expiration date, and a special flag.

Exam Essentials 269

The /etc/group file has a record for every defined group on the system. These records con-
sist of the following fields: group name, group password, GID, and the group’s user list.

Compare the utilities to show who is on the system. The whoami command will display
the current account name in use. For additional information, you can use the id command.
To learn who is currently online besides yourself, the who utility works, but the w command
provides more information.

Summarize methods to gain super user access. You can directly log into the root account
on distributions that allow such access to gain super user access, but it is generally frowned
on due to security issues. The su command will allow you to switch to another account as
long as you have its password; this includes the root account if it is enabled for such use.
The sudo command is the preferred method for gaining super user privileges. Type sudo in
front of the command that needs the privileges and press Enter. It will demand your pass-
word if not recently used.

270 Chapter 12 ■ Understanding Basic Security

Review Questions
You can find the answers in Appendix A.

1. What is the purpose of the system account with a UID of 0?

A. It’s the system administration account.

B. It’s the account for the first ordinary user.

C. Nothing; UID 0 is left intentionally undefined.

D. It varies from one distribution to another.

E. It’s a low-privilege account that’s used as a default by some servers.

2. What type of information will you find in /etc/passwd for ordinary user accounts?
(Choose all that apply.)

A. A user ID (UID) number

B. A complete listing of every group to which the user belongs

C. The path to the account’s home directory

D. The path to the account’s default GUI desktop environment

E. The path to the account’s default text-mode shell

3. You want to run the command cat /etc/shadow as root, but you’re logged in as an ordi-
nary user. Which of the following commands will do the job, assuming that the system is
configured to give you super user access via the appropriate command?

A. sudo cat /etc/shadow

B. root cat /etc/shadow

C. passwd cat /etc/shadow

D. su cat /etc/shadow

E. admin cat /etc/shadow

4. True or false: whoami provides more information than id.

5. True or false: Linux stores information on its groups in the /etc/groups file.

6. True or false: As a general rule, you should employ extra care when running programs
as root.

7. The file that associates usernames with UID numbers in Linux is .

A. /etc/shadow

B. /etc/group

C. /etc/UID

D. /etc/passwd

E. /etc/usernames

Review Questions 271

8. To learn who is currently logged into the computer and what programs they’re currently
running, you can type .

A. who

B. w

C. whoami

D. who -q

E. id

9. UIDs above 0 and below 500 or 1,000 (depending on the distribution) are reserved for use
by account(s).

A. administrator

B. standard user

C. unprivileged

D. root

E. system

10. A environment means that a person cannot deny actions, and the sudo
command helps establish this environment.

A. secure

B. standard

C. nonrepudiation

D. repudiation

E. locked-down

Chapter

13
Creating Users and
Groups

ObjeCtives:

 ✓ 5.2 Creating Users and Groups

Linux is a multiuser OS, meaning that a single Linux com-
puter can support many users, each with a unique account.
With this capability comes the need to manage users’

accounts, and this chapter covers the procedures you’ll use to do so.
The chapter begins with information on how to create accounts. With the accounts cre-

ated, you then need to know how to modify those accounts and, when necessary, delete
them. Finally, groups are similar to accounts in many ways, so you’ll learn how to create
and manage groups.

Creating New Accounts
In many environments, the task of adding accounts is quite common. Large businesses hire
new employees, universities recruit new students, charitable organizations obtain fresh vol-
unteers, and so on. Therefore, you must know how to create new accounts. But first, this
section looks at the important issues of deciding how to use groups and selecting a good
password. You’ll then learn how to create accounts using both GUI and text-mode tools.

Deciding on a Group Strategy
As described in Chapter 12, “Understanding Basic Security,” Linux groups are collections
of users. You can use groups to control who can access particular files. As will be described
in Chapter 14, “Setting Ownership and Permissions,” individuals can change the group
affiliations and group permissions of their own files. Thus, the way you use groups can
influence your computer’s overall security strategy. Two approaches are common:

User Groups Each user can have an associated group; for instance, the user luke can
have a group called luke. This user can then set group ownership on his files to luke or set
group permissions to whatever is desired, and the system administrator can add users to the
luke group. Thereafter, members of the luke group may access files in this group by using
the permissions determined by the user luke. This approach emphasizes controlling access
to individual users’ files.

Project Groups In this method, you create groups based on work projects, departmental
affiliations, or other real-world groupings of users. For instance, you might have a group
called sales for users in the sales department. Members of this group who want to share
files with other members of this group would assign group ownership and permissions
appropriately and store files in an agreed-upon location. This approach works best when
the computer is used by a large number of people who collaborate in easily defined groups.

Creating New Accounts 275

 These two approaches are not mutually exclusive; you can mix and match or create your
own approach. You should also realize that users can be members of multiple groups. In
fact, this is required for the user groups approach to work at all—otherwise, groups are
redundant with accounts.

 By default, some distributions employ a user groups strategy and others
use a project groups strategy. In the latter case, most users are in a group
called users or something similar by default.

 If you use the project group approach, you should think about which group should be a
new user’s primary group. This is the group that will be assigned group ownership of the
user’s fi les by default.

 Selecting a Good Password
 When you create an account, you typically should create a password for it. Sometimes, the
user can select the password when the account is created. At other times, you’ll need to
select a password that the user will use initially. In such cases, instruct the user to change
the password as soon as possible. In either case, it’s important to educate users about select-
ing a good password.

 Be sure to follow the advice in this section yourself, especially for the root
password if you use the root account!

 Poor but common passwords include those based on the following:

 ■ The names of family members, friends, and pets

 ■ Favorite books, movies, television shows, or the characters in any of these

 ■ Telephone numbers, street addresses, or Social Security numbers

 ■ Any other meaningful personal information

 ■ Any single word that’s found in a dictionary (in any language)

 ■ Any simple keyboard or alphanumeric combination, such as qwerty or 123456

 The best possible passwords are random collections of letters, digits, and punctuation.
Unfortunately, such passwords are diffi cult to remember. A reasonable compromise is to
build a password in two steps:

 1. Choose a base that’s easy to remember but difficult to guess.

 2. Modify that base in ways that increase the difficulty of guessing the password.

 One approach to building a base is to use two or more unrelated words, such as bun
and pen. You can then merge these two words (bunpen). Another approach, and one that’s
arguably better than the fi rst, is to use the fi rst letters of a phrase that’s meaningful to
the user. For instance, the fi rst letters of “yesterday I went to the dentist” become yiwttd .

276 Chapter 13 ■ Creating Users and Groups

In both cases, the base should not be a word in any language. As a general rule, the longer
the password, the better.

 Many distributions place lower limits on password length, such as six or
eight characters.

 With the base in hand, it’s time to modify it to create a password. The user should apply
at least a couple of several possible modifi cations:

Adding Numbers or Punctuation One important change is to insert random numbers or
punctuation in the base. This step might yield, for instance, bu3npe?n or y+i9wttd . As a
general rule, add at least two symbols or numbers.

Mixing Case Linux uses case-sensitive passwords, so jumbling the case of letters can
improve security. Applying this rule might produce Bu3nPE?n and y+i9WttD , for instance.

Reversing Order A change that’s very weak by itself but that can add to security when
used in conjunction with the others is to reverse the order of some or all letters. You might
apply this to just one word of a two-word base. This could yield Bu3nn?EP and DttW9i+y ,
for instance.

Growing the Haystack A would-be intruder’s task of discovering a password has been
likened to fi nding a needle in a haystack. One way to make this task harder is to increase
the size of the haystack. In password terms, this means making a password larger. You
can do this by using larger words or phrases, of course, but this can make a password
harder to remember and type. Even a size increase that simply repeats a single char-
acter can be helpful. Thus you might turn the passwords into Bu3nn?EPiiiiiiiiii or
Dtt!!!!!!!!!!!W9i+y .

 The National Institute of Standards and Technology (NIST) is a nonregula-
tory U.S. agency. They publish many commerce recommendations, includ-
ing business computer security. NIST proposals are typically turned into
procedures for companies and government organizations. In 2017, NIST
issued new guidelines regarding secure passwords, and surprisingly long
complicated passwords are no longer recommended. However, it may take
a while before the new NIST password guidelines filter down into your
day-to-day world, if ever.

 Your best tool for getting users to pick good passwords is to educate them. Here are
some insights to share with users:

 ■ Passwords can be guessed by malicious individuals who know them or even who target
them and look up personal information on social media, web-based telephone directo-
ries, business profiles, and so on.

 ■ Although Linux salts and hashes its passwords internally, programs exist that feed
entire dictionaries through Linux’s password salting/hashing algorithms for compari-
son to a Linux system’s passwords. If a match occurs, the password has been found.

Creating New Accounts 277

 ■ User accounts might be used as a first step toward compromising the entire computer
or as a launching point for attacks on other computers.

 ■ Users should never reveal their passwords to others, even people claiming to be system
administrators. This is a common scam, because real system administrators don’t need
users’ passwords.

 ■ The same password should not be used on multiple systems, because doing so quickly
turns a compromised account on one computer into a compromised account on all of
them.

 ■ Writing passwords down or emailing them are both risky practices. Writing a pass-
word on a sticky note stuck to the computer’s monitor is particularly foolish.

Telling your users these things will help them understand the reasons for your concern,
and it’s likely to help motivate at least some of them to pick good passwords.

Don’t Use these Passwords!

If you do a web search on common passwords or a similar phrase, you’ll quickly discover
websites that provide surveys showing the most typical and easily guessed passwords
that security researchers have uncovered. Details vary from one survey to another, but
typically common passwords include the following:

 ■ 123456

 ■ password

 ■ 12345678

 ■ qwerty

 ■ 111111

 ■ sunshine

 ■ iloveyou

 ■ princess

 ■ football

 ■ password1

Such passwords are easily discovered by brute-force password-guessing programs
and are included in collections of passwords distributed on the Internet. Using such a
password is barely better than using no password at all. Do yourself a favor and create a
better one!

278 Chapter 13 ■ Creating Users and Groups

 Creating Accounts Using GUI Tools
 Now that you have some idea of what type of group policy you want to use and how to
create a good password, you can begin creating accounts. Some distributions allow you to
accomplish this task, at least partially, via a GUI tool. Such tools vary from one Linux dis-
tribution to another. Important variations include how you access these tools and the tool
names. On several distributions, using the desktop’s search utility, you can type user to fi nd
the appropriate account creation utility. On other distributions, you will need to navigate
through the desktop menus to locate the correct tool. The utility’s name may be something
similar to Users, User Accounts, or User and Groups Administration.

 When you launch the Users and Groups Administration utility on Linux
Mint, a dialog appears, prompting you to type your account’s password
before you can proceed. If you have super user privileges, you’ll then see
the utility screen in Figure 13.1 .

 As an example of a GUI user account management tool, Figure 13.1 shows Linux Mint’s
User and Groups Administration utility. You can do a great deal more than add accounts
with this particular utility. However, the focus here is on creating accounts.

 F i GU r e 13 .1 The Linux Mint User and Groups Administration utility provides many
options for creating and managing accounts.

Creating New Accounts 279

To add a user with User and Group Administration, follow these steps:

1. Click the Add button. The result is the dialog shown in Figure 13.2.

F i GU r e 13 . 2 You can enter all the basic account information using this dialog.

2. Type the user’s full name in the User’s Full Name field. This entry is stored in the
comment field of /etc/passwd and may be displayed in various tools; for instance, it
appears in some desktop environments when a user logs into the desktop.

3. Type the username in the Username field. This is what the user will type at Linux login
prompts.

4. Click the Add button to finish creating the account.

5. Click the username, and then click the words “no password set” in the account’s
description to open the Change Password dialog shown in Figure 13.3.

6. Type the password twice, once in the Password field and again in the Confirm Pass-
word field.

7. When the utility considers the password strong enough, the Change button is available
(not grayed out) for you to click in order to modify the password.

The new account appear in the Users tab list. You can subsequently modify or delete it,
as described later in this chapter.

280 Chapter 13 ■ Creating Users and Groups

F i GU r e 13 . 3 Set the user account’s password using the Change Password dialog.

Creating Accounts from the Shell
With any distribution, you use the useradd utility to create an account from the command
line. To use this utility, you type its name and the username that you want to associate with
a new account. You may also include options between useradd and the username, as sum-
marized in Table 13.1. The useradd command supports options in addition to those shown
in Table 13.1; consult its man page for details.

ta b le 13 .1 Options for useradd

Option name Option abbreviation Effect

--comment comment -c Specifies the comment field for the user.
(GUI tools generally describe this as the
“full name.”)

--home home-dir -d Specifies the account’s home directory.
It defaults to /home/username.

--expiredate
expire-date

-e Sets the date on which the account
will be disabled, expressed in the
form YYYY-MM-DD. The default is for an
account that does not expire.

Certification
Objective

Creating New Accounts 281

Option name Option abbreviation Effect

--inactive
inactive-days

-f Sets the number of days after a
password expires, after which the
account becomes completely disabled.
A value of -1 disables this feature and is
the default.

--gid default-group -g Sets the name or GID of the user’s
default group. The default for this value
is a new group named after the user.

--groups group[,...] -G Sets the names or GIDs of groups to
which the user belongs—more than one
may be specified by separating them
with commas.

--create-home -m When included with useradd, creates a
home directory for the user. This option
is typically enabled by default.

--skel skeleton-dir -k Normally, default user configuration
files are copied from /etc/skel, but you
may specify another template directory
with this option, which is valid only in
conjunction with -m.

None -M Forces the system not to automatically
create a home directory.

--shell shell -s Sets the name of the user’s default login
shell with this option. The default is
/bin/bash.

--uid UID -u Creates an account with the specified
user ID value (UID).

--non-unique -o Enables a single UID number to be
reused; this option is passed when
creating the second or subsequent
account that reuses a UID.

--system -r Specifies the creation of a system
account. useradd doesn’t create a home
directory for system accounts, and it
gives them UID values below 100.

--no-user-group -N Disables creation of a group for the user.

282 Chapter 13 ■ Creating Users and Groups

 On Debian-based distributions, such as Ubuntu and Linux Mint, you can
use a friendlier front end to the useradd utility by typing adduser . Be
aware that on some distributions, such as Fedora, the adduser command,
if available, is not a front end to the useradd utility but rather a link to it.

 Some of these options aren’t readily accessible when you’re creating accounts using GUI
tools, but the details differ from one GUI utility to another. In some cases, options can be
set in a GUI utility after the account has been created but not when creating it.

 A complete useradd command, including setting a few options, looks like this:

 $ sudo useradd -m -c "Hoburn Washburne" -u 1006 hwash
 [sudo] password for christine:

 This example creates an account with a username hwash , a home directory, a comment
fi eld containing the user’s full name, and a UID of 1006. Notice in the preceding example
that the sudo command was used to obtain super user privileges, a requirement to complete
this command successfully.

 You may want to specify a UID to keep these values synchronized across
computers that share files with the Network File System (NFS), which
identifies file ownership via UIDs.

 When you create an account with useradd , it will be in a locked state—the user will not
be able to log in. To unlock it, you must use the passwd command, as described next, in
“Modifying Accounts.”

 You can add a password with the useradd command’s -p option. How-
ever, for security reasons, this is not recommended. It is better to use the
 passwd command, as described later in this chapter.

 Behind the scenes, useradd (or by extension its GUI front end) modifi es the contents of
the following fi les (described in detail in Chapter 12):

 /etc/passwd

 /etc/shadow

 /etc/group

 If you use --create-home or -m (or if this option is the default for your distribution),
the program creates a home directory and copies fi les from /etc/skel to that location.
Creating an account will also usually create a mail spool fi le in which the user’s incom-
ing email will be stored. (This fi le may go unused on many desktop systems, but it can
be important if you run mail server software on the computer.) You can see that useradd
makes quite a few modifi cations to your computer’s fi les and directories in creating the
account.

Certification
Objective

Modifying Accounts 283

Modifying Accounts
As you’ve just learned, when creating an account you can specify many options that affect
accounts, such as giving an account a specific UID number. Sometimes, though, it’s nec-
essary to change account options after an account has been created. Fortunately, Linux
provides both GUI and text-mode tools to help you do this. Before delving into opera-
tional details of these tools, though, you should understand when you might want to make
changes to accounts and know how to check whether a user is currently logged in.

Deciding When to Modify Accounts
In an ideal world, you’ll create your accounts perfectly every time; however, sometimes
this isn’t possible. You might lack information that’s necessary to create a flawlessly tuned
account (such as the length of time an employee will be with a company), or your needs
might change after the account has been created. Some common specific causes of account
changes include (but are by no means limited to) the following:

 ■ Account expiration data may need to be updated. A contract employee might have their
contract extended, for instance. Sometimes an expired account must be reenabled.

 ■ UID numbers may need to be synchronized with other computers in order to facilitate
file sharing across computers or for other reasons.

 ■ Users’ home directories might change because you’ve added disk space and have to
move some users’ home directories to a new location.

 ■ A user might forget a password. The system administrator can change the password
for any account without knowing the original password, so system administrators fre-
quently have to help users with faulty memories.

When working in a GUI, many of the preceding changes can be handled from the distri-
bution’s GUI account management tool. When working in a text-mode shell, though, you’ll
need to master a few different programs to handle this range of account modifications.

Checking for Logged-in Users
Be aware that some account changes could be disruptive if the user is logged in at the
moment that you perform them. Changing the account’s username and home directory, in
particular, are likely to cause problems. Therefore, you should make such account changes
only when the user is logged out. Several tools can help you check who’s using the computer
and thus avoid problems:

who This utility, described in Chapter 12, produces a list of users who are currently
logged into the computer, along with some details of their login sessions, such as their ter-
minal identifiers and login dates.

284 Chapter 13 ■ Creating Users and Groups

w This command, also described in Chapter 12, is similar to who in broad strokes, but it
provides different details. Most notably, it identifi es the program that’s currently running in
each session.

 For a quick and simple list of who’s using the computer, most distributions
offer the users command as well.

last This program produces a list of recent login sessions, including their starting and
ending times, or a notice that the user is still logged in:

 $ last
 christin pts/2 192.168.0.102 Tue Aug 20 11:46 still logged in
 [...]
 reboot system boot 4.10.0-38-generi Tue Aug 13 10:09 - 11:22 (01:12)
 ken tty4 Tue Aug 6 10:57 - 11:40 (00:43)
 devon tty3 Tue Aug 6 10:57 - 11:40 (00:43)
 steph tty2 Tue Aug 6 10:57 - 11:40 (00:43)
 rich pts/0 192.168.0.102 Tue Aug 6 10:56 - 11:40 (00:43)
 christin tty2 Tue Aug 6 10:34 - 10:57 (00:22)

 One notable limitation of last is that it includes only text-mode logins. This makes its
utility for identifying users who are currently using the computer rather limited, since such
users are likely to be logged in using a GUI session.

 The lastb command displays information similar to last , but it displays
only failed login attempts and pulls its data from /var/log/btmp .

 The last command displays data that is stored in the /var/log/wtmp fi le. You should be
aware that some distributions do not create this fi le by default. See the last command’s
man pages for more information.

 Modifying Accounts Using GUI Tools
 As with adding accounts, the procedure for modifying accounts using GUI tools varies
from one tool to another. Most GUI tools provide similar options, although some are more
complete than others. In this section, you’ll learn how to modify accounts using Linux
Mint’s User and Group Administration utility.

 To make such changes, after you have the User and Groups Administration utility
open, click the account name and then click Item To Modify. An example is shown in
Figure 13.4 .

Certification
Objective

Modifying Accounts 285

 F i GU r e 13 . 4 The User and Groups Administration utility enables you to edit a few
account properties.

 This dialog presents a few account properties. Each of the four items provides access to
particular types of data:

Account Type The account type for the user Richard Blum is shown as Standard in
Figure 13.4 . A standard account, also called an unprivileged user account , was fi rst
described in Chapter 12. If you want this user to be able to acquire super user privileges
when needed via the sudo command, select Administrator from the drop-down menu.

 To use the sudo command, the administrator account will also need to
be part of the sudo or wheel group, depending on your distribution. Add-
ing accounts to groups is covered in the upcoming section “Managing
Groups.”

Name As shown in Figure 13.4 , you can adjust the account’s comment fi eld (identifi ed
as Name). Name changes and, if your company wants job titles in this fi eld, position
advancements can be handled as well.

Password You can modify an account’s password by clicking the account’s Password fi eld.
A dialog appears, as shown earlier in Figure 13.3 . The utility will not allow you to change
the account’s password until it considers the password strong enough. If needed, you can
have the utility set a strong password for you by clicking the circular arrow. In this case,
you’ll need to check the Show Password box so that you can view the new setting.

Groups To add this account to a new group, click the Groups setting. A dialog pops open,
allowing to you to choose additional group memberships.

286 Chapter 13 ■ Creating Users and Groups

 If you want to add the user to an entirely new group, you must first create
the new group, as described in “Managing Groups.”

 Users can change their own passwords by using GUI options in their desktop environ-
ments. For instance, on Fedora within the Users utility, a user’s account information auto-
matically displays when the program is open. Click the password (displayed as a series of
dots) to launch the Change Password screen, shown in Figure 13.5 . Administrators can also
use this tool to add and modify accounts.

 F i GU r e 13 .5 The Users utility enables users to change their own passwords.

 Modifying Accounts from the Shell
One of the most frequent account modifi cations is to change a user’s password, either as
part of account creation or because a user has forgotten their password. You can make this
change with the passwd program. Ordinary users can type passwd to change their own
passwords, but not other user accounts’ passwords. Those with super user privileges, how-
ever, can pass a username to the command to change any account’s password:

 $ sudo passwd hwash
 Enter new UNIX password:
 Retype new UNIX password:
 passwd: password updated successfully
 $

Certification
Objective

Modifying Accounts 287

 As a security measure, the password you type does not echo to the screen as you type
it. If the passwords you type don’t match, the program refuses to accept your change and
prompts you again for a fresh pair of passwords. The program also checks the password’s
strength and may refuse to accept the new password or display a warning message if it
deems the password to be too weak. Notice in the preceding example that the sudo com-
mand is used, indicating that the person changing the hwash account’s password has access
to super user privileges, which are required to complete this command successfully.

 In addition to setting passwords, the passwd utility enables you to adjust
password expiration and aging options. Consult its man page for details.

 You can handle most other account modifi cations by using the usermod program. This
command works much like useradd , but instead of creating a new account, it modifi es an
existing one. Many usermod options are identical to useradd options. Table 13.2 summa-
rizes the most important usermod options.

 ta b le 13 . 2 Options for usermod

Option name Option abbreviation Effect

--append -a Used with --groups (-G), causes the
specified groups to be added to (rather
than replaced) the existing set of groups
for the user.

--comment comment -c Specifies the comment field for the user.
(GUI tools generally describe this as the
“full name.”)

--home home- dir -d Specifies the account’s home directory. It
defaults to /home/ username .

--expiredate
expire-date

-e Sets the date on which the account will
be disabled, expressed in the form YYYY -
 MM - DD . The default is for an account that
does not expire.

--inactive
 inactive-days

-f Sets the number of days after a password
expires, after which the account becomes
completely disabled. A value of -1
disables this feature and is the default.

--gid default-group -g Sets the name or GID of the user’s default
group. The default for this value is a new
group named after the user.

Certification
Objective

288 Chapter 13 ■ Creating Users and Groups

Option name Option abbreviation Effect

--groups group [,...] -G Sets the names or GIDs of groups to
which the user belongs—more than one
may be specified by separating them with
commas.

--login username -l Changes the account’s username to the
specified value.

--lock -L Locks the account’s password, preventing
logins.

--move-home -m When this option is included with --home
(-d), usermod moves the user’s existing
home directory to the new location.

--shell shell -s Sets the name of the user’s default shell
with this option.

--uid UID -u Changes the account’s UID number to the
specified value.

--unlock -U Unlocks a locked account password.

 For example, consider the following use of usermod :

 $ sudo usermod -u 1072 -m -d /home2/hwash hwash

 This command makes three changes to the hwash account:

 ■ It changes the UID value to 1072.

 ■ It changes the account’s home directory to /home2/hwash .

 ■ It moves the contents of the account’s original home directory to its new location.

 You might issue a command like this one if you were migrating user accounts to an NFS
server mounted at /home2 . Such a change might require a new home directory location and
a change in the UID value to match the one used on the NFS server.

 Be careful when making changes to the UID value, because although
usermod changes the UID values of files in common locations such as the
user’s home directory and email files, it can miss user files in unusual
locations.

 If you need to make group changes that require adding new groups, consult the upcom-
ing section, “Managing Groups,” for information on that topic.

ta b le 13 . 2 Options for usermod (continued)

Deleting Accounts 289

 Deleting Accounts
 Deleting accounts can sometimes be as important as adding or modifying them. Unused
accounts can be abused, either by their former owners or by others who might be able to
break into an account if it has a weak password. Therefore, you should routinely delete
unused accounts. Before you do so, though, you should understand what happens when you
delete an account and decide precisely how to do it, lest you create problems by deleting an
account in an inappropriate way. With that knowledge in hand, you can delete accounts by
using either GUI or text-mode tools.

 Avoiding Account Deletion Pitfalls
 Deleting an account may sound simple enough, but a mistake can cause problems, either
immediately or in the future. In addition to obvious issues such as accidentally deleting the
wrong account, consider these two factors:

User File Preservation Users’ fi les might be extremely valuable, either to the users them-
selves or to the organization that owns the computer. You should check your company’s fi le
retention policies when considering whether to delete the user’s home directory or do some-
thing else with it, such as move it into another user’s home directory and change permis-
sions on the fi les it contains. The same is true of the user’s mail queue (normally stored in
 /var/spool/mail/ username , where username is the account’s username).

 Consider archiving a deleted account’s home directory to a long-term
backup medium. This strategy will enable you to recover the files should
they become valuable in the future.

UID and GID Reuse When an account is deleted, the account’s UID and GID become
available for reuse. In many cases, these numbers will not be reused, since most Linux dis-
tributions assign these values based on the highest current value. If you delete any but the
highest-numbered current user, the user’s old UID and GID numbers won’t be reused unless
intervening accounts are also deleted. Nonetheless, if a UID is reused , any fi les previously
owned by the old user will suddenly appear to be owned by the new user. This may not
cause any problems, but it may cause confusion about who created the fi les. In some cases,
it can even cause suspicion of wrongdoing by the new user (if the old fi les contain informa-
tion the new user shouldn’t have, or if the fi les reside in directories to which the new user
shouldn’t have access).

 To avoid any chance of confusion or misbehavior claims falling on new users due to UID
or GID reuse, you can use the find command (covered in detail in Chapter 8, “Searching,
Extracting, and Archiving Data”) to locate all fi les with particular UID or GID values. You
must use the -uid and -gid options, as shown here:

 $ sudo find / -uid 1004

290 Chapter 13 ■ Creating Users and Groups

While you can issue this command without using super user privileges, it will return
errors and may miss some files. Therefore, it’s best to use find in this manner with super
user privileges.

Our previous example finds all files on the computer with a UID of 1004. (Searching
on a GID works the same way but using the -gid option.) You can then reassign owner-
ship of these files by using the chown command (covered in Chapter 14) or delete them.
Ordinarily, you’d issue this command only after deleting or reassigning ownership
of the user’s home directory, since that directory will probably contain far too many
matching files.

Deleting Accounts Using GUI Tools
As with other account management tasks, using a GUI is fairly intuitive, but details vary
from one distribution to another. As an example, to delete an account from Linux Mint’s
User and Groups Administration utility, after you have the utility open, click the account
and then click the Delete button. The result is a confirmation dialog similar to the one
shown in Figure 13.6. If you’re certain of the action, click the Yes button. The account will
be immediately deleted.

F i GU r e 13 .6 When you delete an account with a GUI utility, you are typically asked to
confirm the action.

If the user is currently logged in, the utility will often complain about this fact.
You’ll most likely still be able to delete the account, but the user won’t be logged out
immediately.

Managing Groups 291

Deleting Accounts from the Shell
The userdel command deletes accounts from a text-mode shell. In its simplest form, using
super user privileges you pass it a username and nothing more:

$ sudo userdel hwash
[sudo] password for christine:

The program doesn’t prompt you for confirmation; it just deletes the account. It does
not, however, delete the user’s home directory by default. To have it do so, pass it the
--remove (-r) option.

If the user is currently logged in, userdel notifies you of that fact and does nothing. You
can pass it the --force (-f) option to delete the account even though it’s in use. To both
force account deletion and remove the user’s files, you can pass both options:

$ sudo userdel -rf zwash
[sudo] password for christine:
userdel: user zwash is currently used by process 4800
$

The program still complains about the user being “used by a process” (logged into the
system), but it deletes the account and files just the same.

Managing Groups
In many respects, groups are comparable to accounts. They’re defined in similar files
and managed with similar utilities. Groups are also tied to accounts in that accounts
include group definitions. Until now, it has been assumed that you’ll be using standard
groups or the groups that are defined as part of account creation. Sometimes, though,
you need to create, delete, or modify groups for specific purposes, such as if you use a
project group strategy. Just like account management, you can use either GUI or text-
mode tools.

Managing Groups Using GUI Tools
Many GUI account maintenance tools, such as Linux Mint’s User and Groups
Administration utility, provide group management tools that are similar to the user
management tools described throughout this chapter. Referring back to Figure 13.1,
you’ll see that the User and Groups Administration window includes both Users and
Groups tabs. To manage groups, click the Groups tab. This produces a display resem-
bling Figure 13.7.

292 Chapter 13 ■ Creating Users and Groups

 F i GU r e 13 .7 The User and Groups Administration utility enables you to manage
groups as well as users.

 You can add, modify, and delete groups in a manner that’s comparable to adding, modi-
fying, and deleting accounts, though the number of options available may be much smaller.
Groups don’t have home directories, comment fi elds, login shells, and so on. You might, of
course, want specifi c users to be members of your new group from the start. To do so, fol-
low these steps:

 1. Create a group by clicking the Add button on the Groups tab.

 2. Specify the group name in the resulting dialog box.

 3. Add the group by clicking OK.

 4. Add group members by selecting the Users tab, selecting the account’s username, and
clicking the current groups in the Groups field to open a dialog.

 5. Select the new group name check box in the dialog to make that account a member, as
shown in Figure 13.8 , and click OK.

 You don’t have to add the account to only one group at a time. You can
click multiple groups in the dialog to add the account to several groups
at once.

 Alternatively, you can manage group membership by altering each user’s group member-
ship individually, as described next in “Managing Groups from the Shell.”

Managing Groups 293

F i GU r e 13 . 8 You can add users to a group after creating the group.

the wheel Group

Linux distributions invariably provide several groups by default. One of these, wheel (on
some distributions), is particularly important for system administration. Members of the
wheel group are granted certain special administrative privileges, such as the right to use
the sudo command. The group name comes from the slang term big wheel, which refers
to an important person.

Not all distributions provide this particular group—for example, Linux Mint uses the sudo
group to allow access to the sudo command. You can type grep wheel /etc/group
to determine whether the wheel group exists on your distribution. If it does, see if
membership in this group provides access to the sudo command by typing grep wheel
/etc/sudoers and look for a result similar to %wheel ALL=(ALL) ALL.

Some distributions enable you to add your primary user account to the wheel group
when you install the OS. Be aware that this phrasing is not used often; instead, the
installer asks if you want to add the account to the “administrators group” or some
similar term.

294 Chapter 13 ■ Creating Users and Groups

 Managing Groups from the Shell
 You can create groups from the shell by using the groupadd command, which works much
like useradd for users but takes a smaller set of options, the most important of which
appear in Table 13.3 . Consult the program’s man pages for information on more obscure
options.

 ta b le 13 . 3 Options for groupadd

Option name Option abbreviation Effect

--gid GID -g Provide a specific GID. If you omit it, groupadd
uses the next available GID.

--system -r Instruct groupadd to create a system group,
which is one with a GID of less than 500 or 1,000,
depending on the distribution. Nonsystem
groups are normally used as user private groups.

--force -f Normally, if you try to create a group that already
exists, groupadd returns an error message. This
parameter suppresses that error message.

 Using the groupadd command, including setting an option, looks like this:

 # groupadd -g 1001 consultants

 This example creates a group with a GID of 1001 and a group name of consultants .
Notice in the preceding example that the # prompt is shown, indicating that the root
account was used to obtain the super user privileges required to complete this command
successfully.

 After the group is added, new members can be added to the group. This requires the use
of the usermod command and super user privileges, as follows:

 # usermod -aG consultants rich
 #
 # groups rich
 rich: users consultants

 The -aG options were used together to add the account, rich , to the new consultants
group. If the -a option was not used, the rich account on some distributions would be
 removed from its current group memberships and belong only to the consultants group.
Thus, it is wise to use -aG by default.

 You can check an account’s primary group. Using super user privileges
type id -gn username at the command line. The username ’s primary
group will display.

Certification
Objective

Exam Essentials 295

 Another good habit is to check if the modifi cation was successful by using the groups com-
mand. The groups command shows all the group memberships for the specifi ed user account.

 To modify the group itself, you can use the groupmod command. The --gid
(-g) and --non-unique (-o) options from Table 13.3 can be used with
this command, as well as --new-name name (-n name), which changes the
group’s name.

 Deleting groups from the shell involves use of the groupdel command, which takes a group
name as a single option, as in groupdel consultants to delete the consultant group.

 e X e r C i s e 13 .1

 ■ Create a test account by using the GUI tool provided by your distribution, and then
log into the account that you’ve created to verify that it’s working as you expected.

 ■ Create another test account by using useradd , but do not use passwd to set its pass-
word. Were you able to log in? Use passwd to create a password for the new test
account and try logging in again.

 Summary
 In a GUI environment, you can perform most common account maintenance tasks with
GUI tools, which enable you to add, modify, and delete accounts by selecting options from
menus and lists. Some operations, however, require you to use command-line tools, such
as useradd , usermod , userdel , and passwd . (The groupadd , groupmod , and groupdel com-
mands provide similar functionality for groups.) Even if you don’t need to use the more
obscure features provided by the text-mode tools, they can be quicker to use than the GUI
tools once you’re familiar with them.

 Exam Essentials
 List the various files involved in account creation and management. When an account is
created on a Linux system, the /etc/passwd and /etc/shadow fi les get new records in them
for the account. The /etc/group fi le also receives a new record for a newly created account,
because by default a group is created with the same name as the account. These three fi les
lose records when an account is deleted. By the same token, records in the fi les are changed
when certain modifi cations are made to accounts.

 When an account is created, a home directory is also produced, and fi les from the /etc/skel/
directory are copied into it. This home directory is typically named /home/ username , but the
name can be different based on the distribution’s account creation confi guration.

296 Chapter 13 ■ Creating Users and Groups

Summarize the tools used for account creation and management. The tools used to create,
modify, and delete accounts are useradd, usermod, and userdel, respectively. The passwd
command also modifies or sets an account’s password.

Outline the utilities used for group creation and management. The utilities used to create,
modify, and delete groups are groupadd, groupmod, and groupdel, respectively. The groups
command allows you to view all the various group memberships for a particular account.
The id -gn command shows a user’s current primary group.

Describe the commands used to determine logged-in users. Before modifying an account,
it is a good idea to ensure the account user is not currently logged into the system. To learn
who is currently online besides yourself, the who utility works, but the w command provides
more information. The last program will display any users who are still logged on the
system, as well as recent login sessions, including their starting and ending times.

Review Questions 297

Review Questions
You can find the answers in Appendix A.

1. What would a Linux system administrator type to remove the nemo account and its home
directory?

A. userdel nemo

B. userdel -f nemo

C. userdel -r nemo

D. rm /home/nemo

E. rm -r /home/nemo

2. Of the following, which is the best password?

A. LinusTorvalds

B. uB2op%4q++7K9_z5A++

C. 123456

D. password

E. peanutbuttersandwich

3. Describe the effect of the following command, assuming that it completes successfully:

groupadd henry

A. It creates a new group called henry.

B. It adds the user henry to the current default group.

C. It imports group information from the file called henry.

D. It changes the user’s default group to henry.

E. It adds the group henry to the user’s list of groups.

4. True or false: User accounts have higher UID numbers than do system accounts.

5. True or false: Command-line users should normally use usermod to change their passwords.

6. True or false: After deleting an account, files formerly owned by the deleted account may
remain on the computer.

7. You want to create an account for a new user, using the username thor and giving the user
a UID of 2019. The command to do this is useradd .

A. -uid 2019 thor

B. -g 2019 thor

C. +uid 2019 thor

D. -u 2019 thor

E. 2019 -u thor

298 Chapter 13 ■ Creating Users and Groups

8. You want to change the username of a user from carol to marvel without altering any-
thing else about the account. To do so, you would type .

A. useradd -l marvel carol

B. usermod -l marvel carol

C. useradd -l carol marvel

D. usermod -l carol marvel

E. useradd --login carol marvel

9. To create a system group, you must pass the option to groupadd.

A. -system

B. -s

C. --sys

D. --r

E. -r

10. Information on various groups, such as group name, GID, and group members, is stored in
the file.

A. /etc/passwd

B. /etc/shadow

C. /etc/group

D. /etc/groups

E. /etc/GID

Chapter

14
Setting Ownership
and Permissions

ObjectiveS:

 ✓ 2.3 Using Directories and Listing Files

 ✓ 5.3 Managing File Permissions and Ownership

 ✓ 5.4 Special Directories and Files

As a multiuser OS, Linux provides tools to help you secure
your files against unwanted access—after all, you wouldn’t
want another user to accidentally (or intentionally) read per-

sonal files or even delete your files! Linux handles these tasks through two features of files
and directories: their ownership and their permissions. Every file has an associated owner
(that is, an account with which it’s linked) as well as an associated group. Three sets of per-
missions define what the file’s owner, members of the file’s group, and all other users can do
with the file. Thus, ownership and permissions are intertwined, although you use different
text-mode commands to manipulate them. (GUI tools often combine the two, as described
in this chapter.)

Setting Ownership
The security model for Linux is based on that of Unix, which was designed as a multiuser
OS. This security model therefore assumes the presence of multiple users on the computer and
provides the means to associate individual files with the users who create them—that is, files
have owners. You should thoroughly understand this concept, and with that knowledge, you
can help protect your files, using either a GUI file manager or a text-mode shell command.

Ownership also applies to running programs (that is, processes). Most programs you run
are tied to the account you used to launch them. This identity, in conjunction with the file’s
ownership and permissions, determines whether a program may modify a file.

Understanding Ownership
Chapter 12, “Understanding Basic Security,” and Chapter 13, “Creating Users and
Groups,” described Linux’s system of accounts. These accounts are the basis of file
ownership. Specifically, every file has an owner—an account with which it’s associated.
The user ID (UID) number associates the file with an owner, whereas the group ID (GID)
number associates the file with a group.

As described later, in the section “Setting Permissions,” you control access to the file
through permissions you set independently for the file’s owner, the file’s group, and all
other users of the computer. As root, you can change the owner and group of any file. The
file’s owner can also change the file’s group, but only to a group to which the user belongs.

The same principles of ownership apply to directories as apply to files: directories have
owners and groups. They can be changed by root or, to a more limited extent, by the direc-
tory’s owner.

Setting Ownership 301

 Setting Ownership in a File Manager
 As described in Chapter 4, “Using Common Linux Programs,” you can manipulate fi les
with a fi le manager . You’re probably familiar with fi le managers in Windows or macOS.
Linux’s ownership and permissions are different from those of Windows, though, so you
may want to know how to check on, and perhaps change, ownership features using a
Linux fi le manager. As noted in Chapter 4, you have a choice of several fi le managers in
Linux. Most are similar in broad strokes but differ in some details. In this section we’ll use
GNOME Files fi le manager as an example.

 If you want to change the fi le’s owner, you must run Files as root , but you can change
the fi le’s group to any group to which you belong as an ordinary user. The procedure to
perform this task as root is as follows:

 1. Launch a terminal window.

 2. In the terminal window, type su to acquire root privileges.

 Some Linux distributions don’t allow you to use the su command to
acquire root privileges. For example, if you’re using the GNOME version of
Ubuntu you may instead need to use sudo to launch GNOME Files from the
command line.

 3. In the terminal window, type nautilus to launch GNOME Files (the Files application
was called Nautilus in previous versions of GNOME, and the name has stuck around).
You can optionally include the path to the directory in which you want Files to start
up. If you don’t include a path, it will begin by displaying the contents of the /root
directory.

 The /root directory is the root account’s home directory.

 4. Locate the file whose ownership you want to adjust and right-click it.

 5. In the resulting menu, select Properties. The result is a Properties dialog.

 6. In the Properties dialog, click the Permissions tab. The result resembles Figure 14.1 .

 7. To change the file’s owner, select a new owner in the Owner field. This action is
possible only if you run GNOME Files as root .

 8. To change the file’s group, select a new group in the Group field. If you run GNOME
Files as an ordinary user, you will be able to select any group to which you belong, but
if you run GNOME Files as root , you will be able to select any group.

 9. When you’ve adjusted the features you want to change, click the X in the title bar to
close the window.

 If you want to change a fi le’s group but not its owner, and if you’re a member of the
target group, you can launch GNOME Files as an ordinary user. You can then pick up the
preceding procedure at step 4.

302 Chapter 14 ■ Setting Ownership and Permissions

 F i GU r e 14 .1 Linux file managers give you access to the file’s ownership and
permission metadata.

 You should be extremely cautious about running GNOME Files as root . If you forget
you’re running this program as root , you can easily create new fi les as root , which will
then require root privileges to make any changes to fi le ownership or permissions later on.
It’s also easy to accidentally delete critical system fi les as root that you could not delete as
an ordinary user. For these reasons, I recommend that you use a text-mode shell to adjust
fi le ownership. The change in the prompt makes it easier to notice you’re running as root ,
and if you’re used to using a GUI, you’re less likely to launch additional programs as root
from a text-mode shell than from GNOME Files.

 Setting Ownership in a Shell
The command to change the ownership of a fi le in the preferred text-mode manner is
chown . In its most basic form, you pass it the name of a fi le followed by a username:

 The chown command’s name stands for change owner .

 # chown rich targetfile.odf

 This example gives ownership of targetfile.odf to rich . You can change the fi le’s
principal owner and its group with a single command by separating the owner and group
with a colon (:) or a period (.):

 # chown bob:users targetfile.odf

 This example gives ownership of targetfile.odf to bob and associates the fi le with the
 users group. To change the group without changing the owner, you can omit the owner,
leaving the colon and group name:

 $ chown :users targetfile.odf

Certification
Objective

Setting Ownership 303

Alternatively, you can use the chgrp command, which works in the same way but
changes only the group and does not require the colon before the group name:

$ chgrp users targetfile.odf

Note that the commands used to change the owner require root privileges, whereas you
can change the group as an ordinary user—but only if you own the file and belong to the
target group.

The chown and chgrp commands both support a number of options. The most useful of
these is -R (or --recursive), which causes a change in ownership of all the files in an entire
directory tree. For instance, suppose that the user christine has left a company and an
existing employee, rich, must access her files. If christine’s home directory was /home/
christine, you might type:

chown -R rich /home/christine

This command gives rich ownership of the /home/christine directory; all the files in
the /home/christine directory, including all its subdirectories; the files in the subdirecto-
ries; and so on. To make the transition a bit easier for rich, you might also want to move
christine’s former home directory into rich’s home directory.

cross-installation UiDs and GiDs

You may use multiple Linux installations, either dual-booting on one computer or installed
on multiple computers. If so, and if you transfer files from one installation to another,
you may find that the ownership of files seems to change as you move them around. The
same thing can happen with non-Linux Unix-like OSs, such as macOS. The reason is that
the filesystems for these OSs store ownership and group information using UID and GID
numbers, and a single user or group can have different UID or GID numbers on different
computers, even if the name associated with the account or group is identical.

This problem is most likely to occur when using native Linux or Unix filesystems to trans-
fer data, including both disk-based filesystems (such as ext4fs in Linux or HFS+ in macOS)
or the Network File System (NFS) for remote file access. This problem is less likely to
occur if you use a non-Linux/Unix filesystem, such as the File Allocation Table (FAT) or
the New Technology File System (NTFS) for disks, or the Server Message Block/Common
Internet File System (SMB/CIFS; handled by Samba in Linux) for network access.

If you run into this problem, several solutions exist, but many of them are beyond the
scope of this book. One you can use, though, is to change the UID or GID mappings on one
or more installations so that they all match. Chapter 13 describes how to change a user’s
UID number with usermod and how to change a group’s GID number with groupmod. When
you are transferring data via removable disks, using FAT or NTFS can be a simple solution,
provided you don’t need to preserve Unix-style permissions on the files.

Certification
Objective

304 Chapter 14 ■ Setting Ownership and Permissions

 Setting Permissions
 File ownership is meaningless without some way to specify what particular users can do
with their own or other users’ fi les. That’s where permissions enter the picture. Linux’s per-
mission structure is modeled after that of Unix, and it requires a bit of explanation before
you tackle the issue. After you understand the basics, you can begin modifying permissions,
using either a GUI fi le manager or a text-mode shell. You can also set default permissions
for new fi les you create.

 Understanding Permissions
To understand Unix (and hence Linux) permissions, you may want to begin with the dis-
play created by the ls command, which lists the fi les in a directory, in conjunction with
its -l option, which creates a long directory listing that includes fi les’ permissions. For
instance, to see a long listing of the fi le test , you might type

 Chapter 5, “Getting to Know the Command Line,” introduced the ls
command, and describes additional ls options.

 $ ls -l test
 -rwxr-xr-x 1 rich users 111 Oct 13 13:48 test

 This line consists of several sections, which provide assorted pieces of information on
the fi le:

Permissions The fi rst column (-rwxr-xr-x in this example) is the fi le’s permissions.

 Number of Links The next column (1 in this example) shows the number of hard links to
the fi le—that is, the number of unique fi lenames that may be used to access the fi le.

 Chapter 7, “Managing Files,” describes links in more detail.

Username The next column (rich in this example) identifi es the fi le’s owner by username.

 Group Name The fi le’s group (users in this example) appears next.

 File Size This example fi le’s size is quite small—111 bytes.

 Time Stamp The time stamp (Oct 13 13:48 in this example) identifi es the time the fi le
was last modifi ed.

 Filename Finally, ls -l shows the fi le’s name— test in this example.

Certification
Objective

Setting Permissions 305

The string that begins this output (-rwxr-xr-x in this example) is a symbolic representa-
tion of the permissions string. Figure 14.2 shows how this string is broken into four parts:

F i GU r e 14 . 2 A symbolic representation of file permissions is broken into four parts.

read

File Type
Code Owner Permissions Group Permissions World Permissions

write execute read write execute read write execute

r w x r -- x r - x

The File Type Code The first character is the file type code, which represents the file’s
type, as summarized in Table 14.1. This type character is sometimes omitted from descrip-
tions when the file type is not relevant or when it’s identified in some other way.

ta b le 14 .1 Linux file type codes

Code Name Meaning

- Normal data file May be text, an executable program, graphics, compressed
data, or just about any other type of data.

d Directory Disk directories are files, but they contain filenames and point-
ers to those named files’ data structures.

l Symbolic link The symbolic link file contains the name of another file or
directory. When Linux accesses the symbolic link, it tries to
read the linked-to file.

p Named pipe A pipe enables two running Linux programs to communicate
with each other in a one-way fashion.

s Socket A socket is similar to a named pipe, but it permits network and
bidirectional links.

b Block device A block device file that corresponds to a hardware device to
and from which data is transferred in blocks of more than one
byte. Disk devices (hard disks, floppies, CD-ROMs, and so on)
are common block devices.

c Character device A character device file that corresponds to a hardware device
to and from which data is transferred in units of one byte.
Examples include parallel and RS-232 serial port devices.

306 Chapter 14 ■ Setting Ownership and Permissions

 Most of the files you’ll manipulate are normal files, directories, and sym-
bolic links.

Owner Permissions These permissions determine what the fi le’s owner can do with the
fi le.

 Group Permissions These permissions determine what members of the fi le’s group (who
aren’t its owner) can do with the fi le.

 World (or “Other”) Permissions These permissions determine what users who aren’t the
fi le’s owner or members of its group can do with the fi le

 In each of the three sets of permissions, the string identifi es the presence or absence of
each of three types of access: read, write, and execute. Read and write permissions are
fairly self-explanatory. If the execute permission is present, it means that the fi le may be
run as a program. The absence of the permission is denoted by a dash (-) in the permission
string. The presence of the permission is indicated by the letter r for read, w for write, or x
for execute.

 Setting the execute bit on a non-program file doesn’t turn it into a
program, of course; it just indicates that a user may run a file that is a
program.

 Thus, the example permission string -rwxr-xr-x means that the fi le is a normal data fi le
and that its owner, members of the fi le’s group, and all other users can read and execute the
fi le. Only the fi le’s owner has write permission to the fi le.

 Another representation of permissions is possible. It’s compact but a bit confusing; it
takes each of the three permissions groupings of the permission string (omitting the fi le
type code) and converts it into a number from 0 to 7 (that is, a base 8 or octal number).
The result is a three-digit octal number. Each number is constructed by starting with a
value of 0 and then:

 ■ Adding 4 if read permissions are present

 ■ Adding 2 if write permissions are present

 ■ Adding 1 if execute permissions are present

 The resulting three-digit code represents permissions for the owner, the group, and the
world. Table 14.2 shows some examples of common permissions and their meanings.

Setting Permissions 307

 These procedures involve binary numbers and logical, not arithmetic,
operations. The arithmetic description is easier to understand, though.

 ta b le 14 . 2 Example permissions and their interpretations

Permission string Octal code Meaning

 rwxrwxrwx 777 Read, write, and execute permissions for all users

 rwxr-xr-x 755 Read and execute permission for all users. The file’s
owner also has write permission.

 rwxr-x--- 750 Read and execute permission for the owner and
group. The file’s owner also has write permission.
Other users have no access to the file.

 rwx------ 700 Read, write, and execute permissions for the file’s
owner only; all others have no access.

 rw-rw-rw- 666 Read and write permissions for all users. No execute
permissions for anybody.

 rw-rw-r-- 664 Read and write permissions for the owner and
group. Read-only permission for all others.

 rw-rw---- 660 Read and write permissions for the owner and
group. No world permissions.

 rw-r--r-- 644 Read and write permissions for the owner. Read-
only permission for all others.

 rw-r----- 640 Read and write permissions for the owner, and read-
only permission for the group. No permission for
others.

 rw------- 600 Read and write permissions for the owner. No per-
mission for anybody else.

 r-------- 400 Read permission for the owner. No permission for
anybody else.

 There are 512 possible combinations of permissions, so Table 14.2 is
incomplete. It shows the most common and useful combinations.

308 Chapter 14 ■ Setting Ownership and Permissions

 Several special cases apply to permissions:

Directory Execute Bits Directories use the execute bit to grant permission to enter the
directory and access fi les. Even if you have permission to read a fi le, you must have execute
permission on the directory to access the fi le. This is a highly desirable characteristic for
directories, so you’ll almost always fi nd the execute bit set when the read bit is set.

 Directory Write Permissions Directories are fi les that are interpreted in a special way. As
such, if a user can write to a directory, that user can create, delete, or rename fi les in the
directory, even if the user isn’t the owner of those fi les and does not have permission to
write to those fi les.

 The usual rules for writing to directories can be modified with the sticky
bit , which is described later in “Using Sticky Bits.”

Symbolic Links Permissions on symbolic links are always 777 (rwxrwxrwx , or lrwxrwxrwx ,
to include the fi le type code). This access applies only to the link fi le itself, not to the
linked-to fi le. In other words, all users can read the contents of the link to discover the
name of the fi le to which it points, but the permissions on the linked-to fi le determine its
fi le access. Changing the permissions on a symbolic link affects the linked-to fi le.

root Many of the permission rules don’t apply to root . The superuser can read or write
any fi le on the computer—even fi les that grant access to nobody (that is, those that have
000 permissions). The superuser still needs an execute bit set to run a program fi le.

 Setting Permissions in a File Manager
 The procedure for setting permissions in a fi le manager is similar to that for setting the
ownership of a fi le:

 ■ You normally adjust these settings using the same dialog used to adjust ownership,
such as the GNOME Files dialog shown earlier in Figure 14.1 .

 ■ You don’t need to be root to adjust the permissions of files you own.

 ■ You should use root access for this job only on files you don’t own.

 As seen earlier in Figure 14.1 , there are three Access items, associated with the Owner,
the Group, and Others:

 ■ The Owner item provides two options: Read-Only and Read and Write.

 ■ The Group and Others items both provide Read-Only and Read and Write plus the
None option. You can use these options to set the read and write permission bits on
your file.

Setting Permissions 309

 GNOME Files requires setting the execute bit separately by checking the Allow
Executing File As Program box. This check box sets all three execute permission bits; you
can’t control execute permission more precisely with GNOME Files. You also can’t adjust
the execute permissions on directories with GNOME Files.

 Details on setting permissions vary in other file managers, but the prin-
ciples are the same as those described here for GNOME Files.

 Setting Permissions in a Shell
 In a text-mode shell, you can use chmod to change permissions. This command is rather
complex, mostly because of the complex ways that permissions may be changed. You can
specify the permissions in two forms: as an octal number or in a symbolic form, which is a
set of codes related to the string representation of the permissions.

 The chmod command’s name stands for change mode , mode being another
name for permissions.

 The octal representation of the mode is the same as that described earlier and summa-
rized in Table 14.2 . For instance, to change permissions on report.txt to rw-r--r-- , you
can issue the following command:

 $ chmod 644 report.txt

 A symbolic mode, by contrast, consists of three components:

 ■ A code indicating the permission set you want to modify— u for the user (that is, the
owner), g for the group, o for other users, and a for all permissions

 ■ A symbol indicating whether you want to add (+), delete (-), or set the mode equal to
(=) the stated value

 ■ A code specifying what the permission should be, such as the common r , w , or x sym-
bol, or various others for more advanced operations

 Using symbolic modes with chmod can be confusing, so we don’t describe them fully
here; however, you should be familiar with a few common types of use, as summarized in
Table 14.3 . Symbolic modes are more fl exible than octal modes because you can specify
symbolic modes that modify existing permissions, such as adding or removing execute
permissions without affecting other permissions. You can also set only the user, group, or
world permissions without affecting the others. With octal modes, you must set all three
permission bits equal to a value that you specify.

Certification
Objective

310 Chapter 14 ■ Setting Ownership and Permissions

 As with the chown and chgrp commands, you can use the -R (or --recursive)
option to chmod to have it operate on an entire directory tree.

 ta b le 14 . 3 Examples of symbolic permissions with chmod

Command Initial permissions End permissions

chmod a+x bigprogram rw-r--r-- rwxr-xr-x

chmod ug=rw report.txt r-------- rw-rw----

chmod o-rwx bigprogram rwxrwxr-x rwxrwx---

chmod g-w,o-rw report.txt rw-rw-rw- rw-r-----

 Setting the umask
 The user mask , or umask , determines the default permissions for new fi les and directories.
The umask is the value that is removed from 666 (rw-rw-rw-) permissions when creat-
ing new fi les or from 777 (rwxrwxrwx) when creating new directories. For instance, if the
umask is 022, then fi les will be created with 644 permissions by default and new directo-
ries will have 755 permissions. Note that the removal operation is not a simple subtraction
but a bitwise removal. That is, a 7 value in a umask removes the corresponding rwx permis-
sions, but for fi les, for which the starting point is rw- , the result is --- (0), not –1 (which is
meaningless).

 You can adjust the umask with the umask command, which takes the umask value, as
in umask 022 . Typically, this command appears in a system confi guration fi le, such as
 /etc/profile , or in a user confi guration fi le, such as ~/.bashrc .

 Using Special Permission Bits
and File Features
 When you investigate the Linux directory tree, you will encounter certain fi le types that
require special attention. Sometimes you may just want to be aware of how these fi les
are handled, since they deviate from what you might expect based on the information
presented in Chapter 8. In other cases, you may need to adjust how you use ls or other
commands to deal with these fi les and directories. These special cases include the “sticky
bit,” hiding fi les from view, obtaining long listings of directories, and using special execute
permissions.

Using Special Permission Bits and File Features 311

Using Sticky Bits
Before diving into what sticky bits are, it’s easier to start out with explaining why we need
them. Consider the following commands, typed on a system with a few files and subdirec-
tories laid out in a particular way:

$ whoami
rich
$ ls -l
total 0
drwxrwxrwx 2 root root 80 Oct 14 17:58 subdir
$ ls -l subdir/
total 2350
-rw-r----- 1 root root 2404268 Oct 14 17:59 report.txt

These commands establish the current configuration; the effective user ID is rich and
the current directory has one subdirectory, called subdir, which root owns but to which
rich, like all the system's users, has full read/write access. This subdirectory has one file,
report.txt, which is owned by root and to which rich has no access. You can verify that
rich can’t write to the file by attempting to do so with the touch command:

$ touch subdir/report.txt
touch: cannot touch `subdir/report.txt': Permission denied

This error message verifies that rich could not write to subdir/report.txt. The file,
you might think, is safe from tampering. Not so fast! Try this:

$ rm subdir/report.txt
$ ls -l subdir/
total 0

The rm command returned no error message, and a subsequent check of subdir veri-
fies that it’s now empty—in other words, rich could delete the file even without write
permission to it! This may seem like a bug—after all, if you can’t write to a file, you might
think you shouldn’t be able to delete it. Recall, however, that directories are just a special
type of file, one that holds other files’ names and pointers to their lower-level data struc-
tures. Thus, modifying a file requires write access to the file, but creating or deleting a file
requires write access to the directory in which it resides. In this example, rich has write
access to the subdir directory but not to the report.txt file within that directory. Thus,
rich can delete the file but not modify it. This result is not a bug; it’s just a counterintui-
tive feature.

Although Linux filesystems were designed to work this way, such behavior is not always
desirable. The way to create a more intuitive result is to use a sticky bit, which is a special
permission that alters this behavior. With the sticky bit set on a directory, Linux will per-
mit you to delete a file only if you own it or the containing directory; write permission to

Certification
Objective

312 Chapter 14 ■ Setting Ownership and Permissions

the containing directory is not enough. You can set the sticky bit with chown , in either of
two ways:

Using an Octal Code By prefi xing the three-digit octal code described earlier in this chap-
ter with another digit, you can set any of three special permission bits, one of which is the
sticky bit. The code for the sticky bit is 1, so you would use an octal code that begins with 1,
such as 1755, to set the sticky bit. Specifying a value of 0, as in 0755, removes the sticky bit.

 Other odd numbers will set the sticky bit, too, but will also set additional
special permission bits, which are described shortly, in “Using Special
Execute Permissions.”

Using a Symbolic Code Pass the symbolic code t for the world permissions, as in
chmod o+t subdir , to set the sticky bit on subdir . You can remove the sticky bit in a
similar way by using a minus sign, as in chmod o-t subdir .

 Restoring the fi le and setting the sticky bit enables you to see the effect:

 $ ls -l
 total 0
 drwxrwxrwt 2 root root 80 Oct 14 18:25 subdir
 $ ls -l subdir/
 total 304
 -rw-r--r-- 1 root root 2404268 Oct 14 18:25 report.txt
 $ rm subdir/report.txt
 rm: cannot remove `subdir/report.txt': Operation not permitted

 In this example, although rich still has full read/write access to subdir , rich cannot
delete another user’s fi les in that directory.

 You can identify a directory with the sticky bit set by a small change in the sym-
bolic mode shown by ls -l . The world execute bit is shown as a t rather than an x . In
this example, the result is that subdir ’s permission appears as drwxrwxrwt rather than
drwxrwxrwx .

 The sticky bit is particularly important for directories that are shared by many users.
It’s a standard feature on /tmp and /var/tmp , for instance, since many users store tempo-
rary fi les in these directories, and you wouldn’t want one user to be able to delete another’s
temporary fi les. If you want users who collaborate on a project to be able to write fi les into
each other’s home directories, consider setting the sticky bit on those home directories or
on the subdirectories in which users are sharing fi les.

 If you delete /tmp or /var/tmp and need to re-create it, be sure to set the
sticky bit on your new replacement directory!

Using Special Permission Bits and File Features 313

Using Special Execute Permissions
As described earlier in this chapter, the execute permission bit enables you to identify
program files as such. Linux then enables you to run these programs. Such files run using
your own credentials, which is generally a good thing—associating running processes with
specific users is a key part of Linux’s security model. Occasionally, though, programs need
to run with elevated privileges. For instance, the passwd program, which sets users’ pass-
words, must run as root to write, and in some cases to read, the configuration files it han-
dles. Thus, if users are to change their own passwords, passwd must have root privileges
even when ordinary users run it.

To accomplish this task, two special permission bits exist, similar to the sticky bit
described earlier:

Set User ID (SUID) The set user ID (SUID) option tells Linux to run the program with
the permissions of whoever owns the file rather than with the permissions of the user who
runs the program. For instance, if a file is owned by root and has its SUID bit set, the
program runs with root privileges and can therefore read any file on the computer. Some
servers and other system programs run this way, which is often called SUID root. SUID
programs are indicated by an s in the owner’s execute bit position in the permission string,
as in rwsr-xr-x.

Set Group ID (SGID) The set group ID (SGID) option is similar to the SUID option, but
it sets the group of the running program to the group of the file. It’s indicated by an s in the
group execute bit position in the permission string, as in rwxr-sr-x. When set on a direc-
tory, the SGID option ensures that all files created in the directory are set to the group of
the directory instead of the person who created the file.

You can set these bits using chmod:

Using an Octal Code In the leading digit of a four-digit octal code, set the leading value
to 4 to set the SUID bit, to 2 to set the SGID bit, or to 6 to set both bits. For instance, 4755
sets the SUID bit, but not the SGID bit, on an executable file.

Using a Symbolic Code Use the s symbolic code, in conjunction with u to specify the
SGID bit, g to specify the SGID bit, or both to set both bits. For instance, typing
chmod u+s myprog sets the SUID bit on myprog, whereas chmod ug-s myprog removes
both the SUID bit and the SGID bit.

Ordinarily, you don’t need to set or remove these bits; when necessary, the package
management program sets these bits correctly when you install or upgrade a program. You
might need to alter these bits if they’ve been mistakenly set or removed on files. In some
cases you might want or need to adjust these values on program files that you compile from
source code or if you need to modify the way a program works. Be very cautious when
doing so, though. If you set the SUID or SGID bit on a garden-variety program, it will run
with increased privileges. If the program contains bugs, those bugs will then be able to do
more damage. If you accidentally remove these permissions, the results can be just as bad—
programs like passwd, sudo, and su all rely on their SUID bits being set, so removing this
feature can cause them to stop working.

Certification
Objective

314 Chapter 14 ■ Setting Ownership and Permissions

 Hiding Files from View
 If you’re used to Windows, you may be familiar with the concept of a hidden bit , which
hides fi les from view in fi le managers, by the Windows DIR command, and in most pro-
grams. If you’re looking for something analogous in Linux, you won’t fi nd it, at least not
in the form of a dedicated fi lesystem feature. Instead, Linux uses a fi le-naming convention
to hide fi les from view; most tools, such as ls , hide fi les and directories from view if their
names begin with a dot (.). Thus, ls shows the fi le afile.txt but not .afile.txt . Most
fi le managers and dialogs that deal with fi les also hide such dot fi les , as they’re commonly
called; however, this practice is not universal.

 Many user programs take advantage of this feature to keep their confi guration fi les
from cluttering your display. For instance, ~/.bashrc is a Bash user confi guration fi le,
Evolution’s confi guration fi les go in the ~/.evolution directory, and ~/.fonts.conf holds
user-specifi c font confi guration information.

 You can view dot fi les in various ways depending on the program in question. Some GUI
tools have a check box you can set in their confi guration options to force the program to
display such fi les. At the command line, you can use the -a option to ls :

 $ ls -l
 total 0
 drwxrwxrwt 2 root root 80 Dec 14 18:25 subdir
 $ ls -la
 total 305
 drwxr-xr-x 3 kirk users 104 Dec 14 18:44 .
 drwxr-xr-x 3 kirk users 528 Dec 14 18:21 ..
 -rw-r--r-- 1 kirk users 309580 Dec 14 18:44 .report.txt
 drwxrwxrwt 2 root root 80 Dec 14 18:25 subdir

 This example shows the hidden fi le, .report.txt , in the current directory. It also shows
two hidden directory fi les. The fi rst, . , refers to the current directory. The second, .. , refers
to the parent directory.

 Recall from Chapter 6, “Managing Hardware,” that .. is a relative directory
reference. This hidden entry is why it works.

 Note that renaming a fi le so that it begins with a dot will hide it, but this action will
also make the fi le inaccessible to any program that uses the original fi lename. That is, if
you rename report.txt to .report.txt , and if another program or fi le refers to the fi le as
 report.txt , that reference will no longer work. You must include the leading dot in any
reference to the hidden fi le.

Certification
Objective

Certification
Objective

Exam Essentials 315

Viewing Directories
Chapter 6 introduced the ls command, including many of its options. One of these deserves
elaboration at this point: -d. If you’re working in a directory that holds many subdirectories,
and if you use a wildcard with ls that matches one or more subdirectories, you may get an
unexpected result; the output will show the files in the matched subdirectories, rather than
the information on the subdirectories themselves—for instance, starting in a directory with
two subdirectories, subdir1 and subdir2:

$ ls -l subdir*
subdir1:
total 304
-rw-r--r-- 1 kirk users 309580 Dec 14 18:54 report.txt

subdir2:
total 84
-rw-r--r-- 1 kirk users 86016 Dec 14 18:54 mypaper.doc

If instead you want information on the subdirectories, rather than the contents of those
subdirectories, you can include the -d option:
$ ls -ld subdir*
drwxr-xr-x 2 kirk users 80 Dec 14 18:54 subdir1
drwxr-xr-x 2 kirk users 80 Dec 14 18:54 subdir2

Summary
File security is important on a multiuser OS such as Linux, and one of the pieces of the
puzzle of security is ownership. In Linux, every file has one owner and one associated
group. The superuser can set the owner with chown, and either the superuser or the file’s
owner can set the file’s group with chown or chgrp. By itself, ownership is useless, so Linux
supports the concept of file permissions, which control which other users can access a file,
and in what ways. You can set permissions with the chmod utility. You can view ownership,
permissions, and some additional file features using the -l option to the ls command.

Exam Essentials
Describe how Linux tracks file and directory ownership. Each file and directory in the
Linux filesystem is assigned one owner and one primary group. You can view the owner
and group of a file or directory by using the ls command with the -l option. You can

Certification
Objective

316 Chapter 14 ■ Setting Ownership and Permissions

change the owner and primary group assigned to a file or directory using the chown com-
mand or just the group by using the chgrp command.

Explain how Linux tracks file and directory permissions. Linux assigns permissions
to files and directories based on a three-level hierarchy—the owner, the primary group
assigned to the file or directory, and everyone else on the system. To view the permissions
for a file or directory, use the ls command with the -l option. The permissions appear as
a set of nine characters, three sets of r (for read), w (for write), and x (for execute), ordered
rwx. If a permission is not set, it appears as a dash (-). The first set is the owner’s permis-
sions, the second set is the group permissions, and the third set is the permissions assigned
to all other users who aren’t the owner or in the primary group of the file or directory. You
change the permissions assigned to a file or directory by using the chmod command. You
can either use the symbolic r, w, and x characters, or you can use an octal mode, where
each permission is assigned an octal value.

Explain how Linux makes files or directories hidden. Linux flags a file or directory as
hidden if the file or directory name begins with a period (.). Hidden files and directories
don’t appear in a standard ls listing unless you include the -a option.

Describe the special bits used for files. The sticky bit, when assigned to a directory, tells
Linux to allow only the owners of files contained in the directory to delete them, even if
another user account has write access to the file. The set user ID bit tells Linux to run the
file with the permissions of the file owner instead of the actual user account that runs the
file. The set group ID bit tells Linux to run the file with the permissions of the file’s primary
group instead of the primary group of the user account that runs the file.

Review Questions 317

Review Questions
You can find the answers in Appendix A.

1. What command would you type (as root) to change the ownership of somefile.txt from
ralph to tony?

A. chown ralph:tony somefile.txt

B. chmod somefile.txt tony

C. chown somefile.txt tony

D. chown tony somefile.txt

E. chmod tony somefile.txt

2. Typing ls -ld wonderjaye reveals a symbolic file mode of drwxr-xr-x. Which of the
following are true? (Choose all that apply.)

A. wonderjaye is a symbolic link.

B. wonderjaye is an executable program.

C. wonderjaye is a directory.

D. wonderjaye may be read by all users of the system.

E. wonderjaye may be written by any member of the file’s group.

3. Which of the following commands can you use to change a file’s group?

A. groupadd

B. groupmod

C. chmod

D. ls

E. chown

4. True or false: A file with permissions of 755 can be read by any user on the computer,
assuming all users can read the directory in which it resides.

5. True or false: Only root can use the chmod command.

6. True or false: Only root can change a file’s ownership with chown.

7. The option causes chown to change ownership on an entire directory tree.

A. -L

B. -R

C. -H

D. -P

E. -f

318 Chapter 14 ■ Setting Ownership and Permissions

8. The three-character symbolic string represents read and execute permission but no
write permission.

A. -wx

B. --x

C. r-x

D. rw-

E. rwx

9. The chmod symbolic representation allows all users execute access to a file without
affecting other permissions.

A. u+x

B. u-x

C. g+x

D. a-x

E. a+x

10. You want to set the sticky bit on an existing directory, subdir, without otherwise altering
its permissions. To do so, you would type chmod subdir.

A. o+t

B. o+w

C. a+t

D. g+t

E. a+w

Chapter

15
Managing Network
Connections

ObjeCtive:

 ✓ 4.4 Your Computer on the Network

These days it’s almost a necessity to have your Linux system
connected to some type of network. Whether it’s the need to
share files and printers on a local network, or the need to con-

nect to the Internet to download updates and security patches, most Linux systems have
some type of network connection.

This chapter looks at how to configure your Linux system to connect to a network, as
well as how to troubleshoot network connections if things go wrong. There are a few dif-
ferent methods for configuring network setting in Linux, and you’ll need to know them all
for the Linux Essentials exam. First, we’ll cover the basic settings required for network con-
nectivity. Next, we’ll examine the different tools you have at your disposal that help make
configuring the network settings easier. After that, this chapter explores simple network
troubleshooting techniques you can use to help find the problem if anything goes wrong.

Configuring Network Features
You need to configure five main pieces of information in your Linux system to interact on a
network:

 ■ The host address

 ■ The network subnet address

 ■ The default router (sometimes called gateway)

 ■ The system host name

 ■ A Domain Name System (DNS) server address for resolving host names

You have three ways to configure this information in Linux systems:

 ■ Manually editing network configuration files

 ■ Using a graphical tool included with your Linux distribution

 ■ Using command-line tools

Trying to manually edit the network configuration files is best left for advanced system
administrators and is beyond the scope of this book. For most typical Linux users, you’ll
never have to mess with the configuration files; the graphical and command-line tools can
do all that work for you. The following sections walk through both the graphical and
command-line tools.

Certification
Objective

Configuring Network Features 321

 It’s worth noting that there are two types of IP network address schemes
in use today. The legacy address scheme is technically referred to as IPv4
but is commonly just called IP. It uses 32 bits to represent a host address.
These 32 bits are normally split into four 8-bit values, represented by deci-
mal values, separated by dots (such as 192.168.1.5). Because the world is
running out of unique 32-bit addresses to assign to hosts on the Internet,
IPv6 was created. It uses 128 bits for addresses. These values are com-
monly represented as eight groups of four hexadecimal digits, separated
by colons (such as 2500:1602:1ce0:eeb0:e900:aa10:fa10:cf33).

 Graphical Tools
 The Network Manager tool is a popular program used by many Linux distributions to pro-
vide a graphical interface for defi ning network connections. Network Manager starts auto-
matically at boot time and appears in the system tray area of the desktop as an icon.

 If your system detects a wired network connection, the icon appears as a mini-network
with blocks connected together. If your system detects a wireless network connection, the
icon appears as an empty radio signal. When you click the icon, you’ll see a list of the avail-
able wireless networks detected by the network card (as shown in Figure 15.1).

 F i gu r e 15 .1 Network Manager showing a wireless network connection

 Click your access point to select it from the list. If your access point is encrypted, you’ll
be prompted to enter the password to gain access to the network.

Certification
Objective

322 Chapter 15 ■ Managing Network Connections

After your system is connected to a wireless access point, the icon appears as a radio sig-
nal. Click the icon and then select Edit Connections to edit the network connection settings
for the system, shown in Figure 15.2.

F i gu r e 15 . 2 The Network Connections dialog

Select the network connection you want to configure (either wireless or wired), and then
click the Edit button to change the current configuration.

Network Manager allows you to specify the host address, network subnet address,
default router, and DNS server names by using the manual configuration option, or you can
set the configuration to use Dynamic Host Configuration Protocol (DHCP) to determine
the settings. Network Manager automatically updates the appropriate network configura-
tion files with the updated settings.

Manual DNS Configurations

One topic that the Linux Essentials exam does expect you to know about network con-
figuration files is DNS. You can manually define a DNS server so that the system can use
DNS host names. Fortunately, this is a standard that all Linux systems follow, which is
handled in the /etc/resolv.conf configuration file:

domain mydomain.com
search mytest.com
nameserver 192.168.1.1

The domain entry defines the domain name assigned to the network. By default, the sys-
tem appends this domain name to any host names you specify. The search entry defines
any additional domains used to search for host names. The nameserver entry is where

Certification
Objective

Configuring Network Features 323

you specify the DNS server assigned to your network. Some networks can have more
than one DNS server; just add multiple nameserver entries in the file. Be careful, though,
as this file may reset the next time you boot your Linux system, depending on how your
Linux distribution is configured. To help speed up connections to commonly used hosts,
manually enter their host names and IP addresses in the /etc/hosts file on your Linux
system. The /etc/nsswitch.conf file defines whether the Linux system checks this file
before or after using DNS to look up the host name.

Command-Line Tools
If you’re not working with a graphical desktop client environment, you’ll need to use the
Linux command-line tools to set the network configuration information. Quite a few dif-
ferent command-line tools are at your disposal. This section covers the ones you’re most
likely to run into (and the ones you’ll most likely see on the Linux Essentials exam).

Network Manager Command-Line Tools
Network Manager offers two command-line tools:

 ■ nmtui—Provides a simple text-based menu tool

 ■ nmcli—Provides a text-only command-line tool

Both of these tools help guide you through the process of setting the required network
information for your Linux system. The nmtui tool displays a stripped-down version of the
graphical tool where you can select a network interface and assign network properties to it,
as shown in Figure 15.3.

F i gu r e 15 . 3 The Network Manager nmtui command-line tool

324 Chapter 15 ■ Managing Network Connections

The nmcli tool doesn’t attempt to use any type of graphics capabilities—it just provides a
command-line interface where you can view and change the network settings. By default, the
command displays the current network devices and their settings, as shown in Listing 15.1.

Listing 15.1: The default output of the nmcli command

$ nmcli
enp0s3: connected to enp0s3
 "Intel 82540EM Gigabit Ethernet Controller (PRO/1000 MT Desktop
 Adapter)
 ethernet (e1000), 08:00:27:73:1C:6D, hw, mtu 1500
 ip4 default
 inet4 10.0.2.15/24
 route4 0.0.0.0/0
 route4 10.0.2.0/24
 inet6 fe80::5432:eddb:51ea:fb44/64
 route6 ff00::/8
 route6 fe80::/64
 route6 fe80::/64

The nmcli command uses command-line options to allow you to set the network
settings:

nmcli con add type ethernet con-name eth1 ifname enp0s3 ip4
192.168.1.15/24 gw4 192.168.1.254

In this example, we set the IP address to 192.168.1.15, the subnet mask to /24, and the
default router to 192.168.1.254.

Traditional Command-Line Tools
If your Linux distribution doesn’t support one of the Network Manager tools, you can use
one of four traditional command-line tools:

 ■ ethtool—Displays Ethernet settings for a network interface

 ■ ifconfig—Displays or sets the IP address and netmask values for a network interface

 ■ ip—Displays or sets the IP address, netmask, and router values for a network interface

 ■ iwconfig—Displays or sets the SSID and encryption key for a wireless interface

 ■ route—Displays or sets the default router address

The ethtool command allows you to peek inside the network interface card Ethernet set-
tings and change any properties that you may need to communicate with a network device,
such as a switch.

By default, the ethtool command displays the current configuration settings for the net-
work interface, as shown in Listing 15.2.

Certification
Objective

Configuring Network Features 325

Listing 15.2: Output from the ethtool command

$ ethtool enp0s3
Settings for enp0s3:
 Supported ports: [TP]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Supported pause frame use: No
 Supports auto-negotiation: Yes
 Supported FEC modes: Not reported
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Advertised pause frame use: No
 Advertised auto-negotiation: Yes
 Advertised FEC modes: Not reported
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 0
 Transceiver: internal
 Auto-negotiation: on
 MDI-X: off (auto)
Cannot get wake-on-lan settings: Operation not permitted
 Current message level: 0x00000007 (7)
 drv probe link
 Link detected: yes
$

You can change features such as speed, duplex, and whether or not the network interface
attempts to automatically negotiate features with the switch.

The ifconfig command is a legacy command for configuring network device settings. It
allows you to set the network address and subnet mask for a network interface:

$ sudo ifconfig enp0s3 down 10.0.2.10 netmask 255.255.255.0

The ip command is more robust in what it can do, and it is becoming the most popular
method to use for defining network settings from the command line. The ip utility uses
several command options to display the current network settings or define new network
settings. Table 15.1 show these commands.

Certification
Objective

Certification
Objective

326 Chapter 15 ■ Managing Network Connections

ta b Le 15 .1 The ip utility command options

Parameter Description

address Display or set the IPv4 or IPv6 address on the device.

addrlabel Define configuration labels.

l2tp Tunnel Ethernet over IP.

link Define a network device.

maddress Define a multicast address for the system to listen to.

monitor Watch for netlink messages.

mroute Define an entry in the multicast routing cache.

mrule Define a rule in the multicast routing policy database.

neighbor Manage Address Resolution Protocol (ARP) or Neighbor Discovery
(NDISC) cache entries.

netns Manage network namespaces.

ntable Manage the neighbor cache operation.

route Manage the routing table.

rule Manage entries in the routing policy database.

tcpmetrics Mange TCP metrics on the interface.

token Manage tokenized interface identifiers.

tunnel Tunnel over IP.

tuntap Manage Network Tunnel (TUN) or Network Bridge (TAP) devices.

xfrm Manage IPSec policies for secure connections.

Each command option uses parameters to define what to do, such as display network
settings, or to modify existing network settings. Listing 15.3 demonstrates how to display
the current network settings using the show parameter.

Configuring Network Features 327

Listing 15.3: The ip address show output

$ ip address show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
 link/ether 08:00:27:73:1c:6d brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global noprefixroute dynamic
enp0s3
 valid_lft 84411sec preferred_lft 84411sec
 inet6 fe80::5432:eddb:51ea:fb44/64 scope link noprefixroute
 valid_lft forever preferred_lft forever
$

Listing 15.3 shows two network interfaces on the Linux system:

 ■ lo—The local loopback interface

 ■ enp0s3—A wired network interface

The local loopback interface is a special virtual network interface. Any local program
can use it to communicate with other programs just as if they were across a network. That
can simplify transferring data between programs.

The enp0s3 network interface is the wired network connection for the Linux system.
The ip command shows the IP address assigned to the interface (there’s both an IP and an
IPv6 link local address assigned), the netmask value, and some basic statistics about the
packets on the interface.

If the output doesn’t show a network address assigned to the interface, you can use the
ip command to specify the host address and netmask values for the interface:

ip address add 10.0.2.15/24 dev enp0s3

You can then use the ip command to set the default router for the network interface:

ip route add default via 192.168.1.254 dev enp0s3

Then finally, make the network interface active by using the link option:

ip link set enp0s3 up

Certification
Objective

328 Chapter 15 ■ Managing Network Connections

Although the ip command is a one-stop method for changing network settings,
an alternative way to specify network routing settings for your network is the route
command:

route add default gw 192.168.1.254

You can also use the route command by itself to view the current default router configured
for the system:

$ route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
default 192.168.1.254 0.0.0.0 UG 0 0 0 enp0s3
192.168.1.0 * 255.255.255.0 U 1 0 0 enp0s3
$

The default router defined for the Linux system is 192.168.1.254 and is available from the
enp0s3 network interface. The output also shows that to get to the 192.168.1.0 network you
don’t need a gateway, because that’s the local network the Linux system is connected to.

If your network is connected to multiple networks via multiple routers, you can manu-
ally create the routing table in the system by using the add or del command-line options for
the route command. The format is:

route [add] [del] target gw gateway

where target is the target host or network and gateway is the router address.
If your network uses DHCP, ensure that a proper DHCP client program is running on

your Linux system. The DHCP client program communicates with the network DHCP
server in the background and assigns the necessary IP address settings as directed by the
DHCP server. Three common DHCP client programs available for Linux systems are:

 ■ dhcpcd

 ■ dhclient

 ■ pump

The dhcpcd program is becoming the most popular of the three, but you’ll still see the
other two used in some Linux distributions.

When you use your Linux system’s software package manager utility to install the
DHCP client program, it sets the program to automatically launch at boot time and handles
the IP address configuration needed to interact on the network.

Before you can use the ip command to assign an address to a wireless interface, you
must assign the wireless SSID and encryption key values using the iwconfig command:

iwconfig wlan0 essid "MyNetwork" key s:mypassword

The essid parameter specifies the access point SSID name, and the key parameter speci-
fies the encryption key required to connect to it. Notice that the encryption key is preceded

Certification
Objective

Certification
Objective

Basic Network Troubleshooting 329

by an s:. That allows you to specify the encryption key in ASCII text characters—otherwise,
you’ll need to specify the key using hexadecimal values.

If you don’t know the name of a local wireless connection, you can use the iwlist com-
mand to display all the wireless signals your wireless card detects. Just specify the name of
the wireless device and use the scan option:

$ iwlist wlan0 scan

Obtaining Wi-Fi Drivers

Unfortunately, Linux driver support for Wi-Fi hardware is fairly weak. If you don’t see
your Wi-Fi hardware when you try to configure it, you may need to track down suitable
drivers. You can begin this task with a tool called lspci, which is described in Chapter 6,
“Managing Hardware.” Type this command with no options to see a list of available hard-
ware and search that list for a wireless network adapter. For instance, my laptop’s lspci
output includes the following line:

03:00.0 Network controller: Realtek Semiconductor Co., Ltd.m
 RTL8191SEvB Wireless LAN Controller (rev 10)

This line identifies the Wi-Fi adapter as a Realtek RTL8191SEvB. A search on Realtek’s
website turns up a driver; however, this driver has to be compiled locally, which is a topic
that’s beyond the scope of this book. You also might not be lucky enough to find a driver
in this way.

An alternative to using a native Linux driver is to use a Windows driver. This unusual option
is possible using a package called ndiswrapper (http://ndiswrapper.sourceforge.net),
which enables you to install Windows Wi-Fi drivers in Linux. Not all distributions provide
ndiswrapper in their standard package sets, but you can usually find a binary package in an
add-on repository.

If all other options fail, you may need to buy new networking hardware. Many USB Wi-Fi
adapters are available, but you should research them to find one that has good Linux sup-
port. You can also replace the built-in adapters on some laptops.

Basic Network Troubleshooting
After you have a Linux kernel installed, you can take a few steps to check that things are
operating properly. This section walks through the commands you should know to monitor
the network activity, including watching what processes are listening on the network and
what connections are active from your system.

http://ndiswrapper.sourceforge.net

330 Chapter 15 ■ Managing Network Connections

Sending Test Packets
One way to test network connectivity is to send test packets to known hosts. Linux
provides the ping and ping6 commands to do that. The ping and ping6 commands
send Internet Control Message Protocol (ICMP) packets to remote hosts using either
the IP (ping) or IPv6 (ping6) protocols. ICMP packets work behind the scenes to track
connectivity and provide control messages between systems. If the remote host supports
ICMP, it will send a reply packet back when it receives a ping packet.

The basic format for the ping command is to specify the IP address of the remote host:

$ ping 10.0.2.2
PING 10.0.2.2 (10.0.2.2) 56(84) bytes of data.
64 bytes from 10.0.2.2: icmp_seq=1 ttl=63 time=14.6 ms
64 bytes from 10.0.2.2: icmp_seq=2 ttl=63 time=3.82 ms
64 bytes from 10.0.2.2: icmp_seq=3 ttl=63 time=2.05 ms
64 bytes from 10.0.2.2: icmp_seq=4 ttl=63 time=0.088 ms
64 bytes from 10.0.2.2: icmp_seq=5 ttl=63 time=3.54 ms
64 bytes from 10.0.2.2: icmp_seq=6 ttl=63 time=3.97 ms
64 bytes from 10.0.2.2: icmp_seq=7 ttl=63 time=0.040 ms
^C
--- 10.0.2.2 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6020ms
rtt min/avg/max/mdev = 0.040/4.030/14.696/4.620 ms
$

The ping command continues sending packets until you press Ctrl+C. You can also use
the -c command-line option to specify a set number of packets to send and then stop.

With the ping6 command, things get a little more complicated. If you’re using an IPv6
link local address, you also need to tell the command which interface to send the packets
out on:

$ ping6 –c 4 fe80::c418:2ed0:aead:cbce%enp0s3
PING fe80::c418:2ed0:aead:cbce%enp0s3(fe80::c418:2ed0:aead:cbce) 56 data
bytes
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=1 ttl=128 time=1.47 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=2 ttl=128 time=0.478 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=3 ttl=128 time=0.777 ms
64 bytes from fe80::c418:2ed0:aead:cbce: icmp_seq=4 ttl=128 time=0.659 ms

--- fe80::c418:2ed0:aead:cbce%enp0s3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.478/0.847/1.475/0.378 ms
$

Certification
Objective

Basic Network Troubleshooting 331

%enp0s3 tells the system to send the ping packets out the enp0s3 network interface for
the link local address.

 These days, many hosts don’t support ICMP packets because they can be
used to create a denial-of-service (DOS) attack against the host. Don’t be
surprised if you try to ping a remote host and receive no responses.

 Finding Host Information
 Sometimes the problem isn’t with network connectivity but with the DNS host name system.
You can test a host name using the host command:

 $ host www.linux.org
 www.linux.org is an alias for linux.org.
 linux.org has address 107.170.40.56
 linux.org mail is handled by 20 mx.iqemail.net.
 $

 The host command queries the DNS server to determine the IP addresses assigned to the
specifi ed host name. By default, it returns all IP addresses associated with the host name.
Some hosts are supported by multiple servers in a load-balancing confi guration. The host
command will display all the IP addresses associated with those servers:

 $ host www.google.com
 www.google.com has address 74.125.138.104
 www.google.com has address 74.125.138.105
 www.google.com has address 74.125.138.147
 www.google.com has address 74.125.138.99
 www.google.com has address 74.125.138.103
 www.google.com has address 74.125.138.106
 www.google.com has IPv6 address 2607:f8b0:4002:c0c::67
 $

 You can also specify an IP address for the host command and it will attempt to fi nd the
host name associated with it:

 $ host 107.170.40.56
 56.40.170.107.in-addr.arpa domain name pointer iqdig11.iqnection.com.
 $

 Notice, though, that often an IP address will resolve to a generic server host name that
hosts the website and not the website alias, as is the case here with the www.linux.org IP
address.

Certification
Objective

http://www.linux.org
http://www.linux.org
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://www.linux.org

332 Chapter 15 ■ Managing Network Connections

Another great tool is the dig command. The dig command displays all of the DNS data
records associated with a specific host or network. For example, you can look up the infor-
mation for a specific host name:

$ dig www.linux.org

; <<>> DiG 9.9.4-RedHat-9.9.4-18.el7_1.5 <<>> www.linux.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45314
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;www.linux.org. IN A

;; ANSWER SECTION:
www.linux.org. 14400 IN CNAME linux.org.
linux.org. 3600 IN A 107.170.40.56

;; Query time: 75 msec
;; SERVER: 192.168.1.254#53(192.168.1.254)
;; WHEN: Sat Feb 06 17:44:29 EST 2016
;; MSG SIZE rcvd: 72

$

Or you can look up DNS data records associated with a specific network service, such as
a mail server:

$ dig linux.org MX

; <<>> DiG 9.9.5-3ubuntu0.5-Ubuntu <<>> linux.org MX
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16202
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;linux.org. IN MX

;; ANSWER SECTION:

http://www.linux.org
http://www.linux.org
http://www.linux.org
http://www.linux.org

Advanced Network Troubleshooting 333

linux.org. 3600 IN MX 20 mx.iqemail.net.

;; Query time: 75 msec
;; SERVER: 127.0.1.1#53(127.0.1.1)
;; WHEN: Tue Feb 09 12:35:43 EST 2016
;; MSG SIZE rcvd: 68

$

If you need to look up DNS information for multiple servers or domains, the nslookup
command provides an interactive interface where you can enter commands:

$ nslookup
> www.google.com
Server: 192.168.1.254
Address: 192.168.1.254#53

Non-authoritative answer:
Name: www.google.com
Address: 172.217.2.228
> www.wikipedia.org
Server: 192.168.1.254
Address: 192.168.1.254#53

Non-authoritative answer:
Name: www.wikipedia.org
Address: 208.80.153.224
> exit

$

You can also dynamically specify the address of another DNS server to use for the name
lookups, which is a handy way to determine whether your default DNS server is at fault if a
name resolution fails.

Advanced Network Troubleshooting
Besides the simple network tests shown in the previous section, Linux has some more
advanced programs that can provide complex information about the network environment.
Sometimes it helps to be able to see just what network connections are active on a Linux
system. There are two ways to troubleshoot that issue: the netstat command and the ss
command.

http://www.google.com
http://www.google.com
http://www.wikipedia.org
http://www.wikipedia.org

334 Chapter 15 ■ Managing Network Connections

The netstat Command
The netstat command can provide a wealth of network information for you. By default, it
lists all the open network connections on the system:

netstat

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

Active UNIX domain sockets (w/o servers)

Proto RefCnt Flags Type State I-Node Path

unix 2 [] DGRAM 10825 @/org/freedesktop/systemd1/notify

unix 2 [] DGRAM 10933 /run/systemd/shutdownd

unix 6 [] DGRAM 6609 /run/systemd/journal/socket

unix 25 [] DGRAM 6611 /dev/log

unix 3 [] STREAM CONNECTED 25693

unix 3 [] STREAM CONNECTED 20770 /var/run/dbus/system_bus_socket

unix 3 [] STREAM CONNECTED 19556

unix 3 [] STREAM CONNECTED 19511

unix 2 [] DGRAM 24125

unix 3 [] STREAM CONNECTED 19535

unix 3 [] STREAM CONNECTED 18067 /var/run/dbus/system_bus_socket

unix 3 [] STREAM CONNECTED 32358

unix 3 [] STREAM CONNECTED 24818 /var/run/dbus/system_bus_socket

...

The netstat command produces lots of output, because there are normally several pro-
grams that use network services on Linux systems. You can limit the output to just TCP or
UDP connections by using the –t command-line option for TCP connections or –u for UDP
connections:

$ netstat -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 1 0 10.0.2.15:58630 productsearch.ubu:https CLOSE_WAIT
tcp6 1 0 ip6-localhost:57782 ip6-localhost:ipp CLOSE_WAIT
$

You can get a list of what applications are listening on which network ports by using the
–l option:

$ netstat -l
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 ubuntu02:domain *:* LISTEN

Certification
Objective

Advanced Network Troubleshooting 335

tcp 0 0 localhost:ipp *:* LISTEN
tcp6 0 0 ip6-localhost:ipp [::]:* LISTEN
udp 0 0 *:ipp *:*
udp 0 0 *:mdns *:*
udp 0 0 *:36355 *:*
udp 0 0 ubuntu02:domain *:*
udp 0 0 *:bootpc *:*
udp 0 0 *:12461 *:*
udp6 0 0 [::]:64294 [::]:*
udp6 0 0 [::]:60259 [::]:*
udp6 0 0 [::]:mdns [::]:*
...

As you can see, just a standard Linux workstation still has lots of things happening in
the background, waiting for connections.

Yet another great feature of the netstat command is that the –s option displays statis-
tics for the different types of packets the system has used on the network:

netstat -s
Ip:
 240762 total packets received
 0 forwarded
 0 incoming packets discarded
 240747 incoming packets delivered
 206940 requests sent out
 32 dropped because of missing route
Icmp:
 57 ICMP messages received
 0 input ICMP message failed.
 ICMP input histogram:
 destination unreachable: 12
 timeout in transit: 38
 echo replies: 7
 7 ICMP messages sent
 0 ICMP messages failed
 ICMP output histogram:
 echo request: 7
IcmpMsg:
 InType0: 7
 InType3: 12
 InType11: 38
 OutType8: 7

336 Chapter 15 ■ Managing Network Connections

Tcp:
 286 active connections openings
 0 passive connection openings
 0 failed connection attempts
 0 connection resets received
 0 connections established
 239933 segments received
 206091 segments send out
 0 segments retransmited
 0 bad segments received.
 0 resets sent
Udp:
 757 packets received
 0 packets to unknown port received.
 0 packet receive errors
 840 packets sent
 0 receive buffer errors
 0 send buffer errors
UdpLite:
TcpExt:
 219 TCP sockets finished time wait in fast timer
 15 delayed acks sent
 26 delayed acks further delayed because of locked socket
 Quick ack mode was activated 1 times
 229343 packet headers predicted
 289 acknowledgments not containing data payload received
 301 predicted acknowledgments
 TCPRcvCoalesce: 72755
IpExt:
 InNoRoutes: 2
 InMcastPkts: 13
 OutMcastPkts: 15
 InOctets: 410722578
 OutOctets: 8363083
 InMcastOctets: 2746
 OutMcastOctets: 2826
#

The netstat statistics output can give you a rough idea of how busy your Linux system
is on the network, or if there’s an issue with one of the protocols installed.

Summary 337

Examining Sockets
The netstat tool provides a wealth of network information, but it can often be hard to
determine just which program is listening on which open port. The ss command can come
to your rescue for that.

A program connection to a port is called a socket. The ss command can link which sys-
tem processes are using which network sockets that are active:

$ ss -anpt
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 100 127.0.0.1:25 *:*
LISTEN 0 128 *:111 *:*
LISTEN 0 5 192.168.122.1:53 *:*
LISTEN 0 128 *:22 *:*
LISTEN 0 128 127.0.0.1:631 *:*
LISTEN 0 100 ::1:25 :::*
LISTEN 0 128 :::111 :::*
LISTEN 0 128 :::22 :::*
LISTEN 0 128 ::1:631 :::*
ESTAB 0 0 ::1:22 ::1:40490
ESTAB 0 0 ::1:40490 ::1:22
users:(("ssh",pid=15176,fd=3))
$

The -anpt option displays both listening and established TCP connections, as well as the
process they’re associated with. This output shows that the ssh port (port 22) has an estab-
lished connection and is controlled by process ID 15176, the ssh program.

Summary
Connecting Linux systems to networks can be painless if you have the correct tools. To
connect the Linux system you’ll need an IP address, a netmask address, a default router, a
host name, and a DNS server. If you don’t care what IP address is assigned to your Linux
system, you can obtain those values automatically using DHCP.

Network Manager is the most popular graphical tool used by Linux distributions for
configuring network settings. It allows you to configure both wired and wireless network
settings from a graphical window. If you must configure your network settings from the
command line, there are a few different tools you’ll need to use. For wireless connections,
use the iwconfig command to set the wireless access point and SSID key. For both wireless
and wired connections, use the ifconfig or ip command to set the IP address and netmask
values for the interface. You may also use the route command to define the default router

Certification
Objective

338 Chapter 15 ■ Managing Network Connections

for the local network. When your network configuration is complete, you may have to do
some additional troubleshooting for network problems. The ping and ping6 commands
allow you to send ICMP packets to remote hosts to test basic connectivity. If you suspect
issues with host names, use the host and dig commands to query the DNS server for host
names. For more advanced network troubleshooting, you can use the netstat and ss com-
mands to display what applications are using which network ports on the system.

Exam Essentials
Describe the command-line utilities required to configure and manipulate Ethernet network
interfaces. To set the IP and netmask addresses on an Ethernet interface, you use the
ifconfig or ip command. To set the default router (or gateway) for a network, you use the
router command. Some Linux distributions that have Network Manager installed can use
the nmtui or nmcli commands, which can configure all three values.

Explain how to configure basic access to a wireless network. Linux uses the iwlist com-
mand to list all wireless access points detected by the wireless network card. You can con-
figure the settings required to connect to a specific wireless network by using the iwconfig
command. At a minimum, you’ll need to configure the access point SSID value and most
likely specify the encryption key value to connect to the access point.

Describe how to manipulate the routing table on a Linux system. The route command
is used to display the existing router table used by the Linux system. You can add a new
route by using the add option or remove an existing route by using the del option. Specify
the default router (gateway) used by the network by adding the default keyword to the
command.

Summarize the tools you would need to analyze the status of network devices. The
ifconfig and ip commands display the current status of all network interfaces on the
system. You can also use the netstat or ss command to display statistics for all listening
network ports.

Explain how to test network connectivity. The ping and ping6 commands allow you to
send ICMP messages to remote hosts and display the response received.

Describe how Network Manager is used to configure network settings in Linux. Network
Manager provides a graphical interface for changing settings on the network interfaces.
Network Manager appears as an icon in the desktop panel area. If your Linux system uses
a wireless network card, the icon appears as a radio signal, whereas for wired network con-
nections it appears as a mini-network. When you click the icon, it shows the current net-
work status and, for wireless interfaces, a list of the access points detected. When you open
the Network Manager interface, it allows you to set either static IP address information or
configure the network to use a DHCP server to dynamically set the network configuration.

Review Questions 339

Review Questions
You can find the answers in Appendix A.

1. Which two commands set the IP address, subnet mask, and default router information on
an interface using the command line? (Choose two.)

A. netstat

B. ping

C. nmtui

D. ip

E. route

2. Which command displays the duplex settings for an Ethernet card?

A. ethtool

B. netstat

C. iwconfig

D. iwlist

E. route

3. Which command displays what processes are using which ports on a Linux systems?

A. iwconfig

B. ip

C. ping

D. nmtui

E. ss

4. What network setting defines the network device that routes packets intended for hosts on
remote networks?

A. Default router

B. Netmask

C. Host name

D. IP address

E. DNS server

5. What device setting defines a host that maps a host name to an IP address?

A. Default router

B. Netmask

C. Host name

D. IP address

E. DNS server

340 Chapter 15 ■ Managing Network Connections

6. What is used to automatically assign an IP address to a client?

A. Default router

B. DHCP

C. ARP table

D. Netmask

E. ifconfig

7. Which command would you use to find the mail server for a domain?

A. dig

B. netstat

C. ping6

D. host

E. ss

8. Which ifconfig format correctly assigns an IP address and netmask to the eth0 interface?

A. ifconfig eth0 up 192.168.1.50 netmask 255.255.255.0

B. ifconfig eth0 255.255.255.0 192.168.1.50

C. ifconfig up 192.168.1.50 netmask 255.255.255.0

D. ifconfig up

E. ifconfig down

9. What command displays all the available wireless networks in your area?

A. iwlist

B. iwconfig

C. ifconfig

D. ip

E. arp

10. What command can you use to both display and set the IP address, netmask, and default
router values?

A. ifconfig

B. iwconfig

C. router

D. ifup

E. ip

Answers to Review
Questions

Appendix

A

342 Appendix A ■ Answers to Review Questions

Chapter 1: Selecting an Operating
System
1. A, B, D, and E. The kernel manages the memory, CPU, and devices for programs running

on a computer system, so options A, B, D, and E are correct. The kernel does not manage
features of the GUI desktop environment, so option C is incorrect.

2. A. The Android OS is used on phones as an embedded Linux system, so option A is
correct. The CentOS, Fedora, Mint, and Red Hat Linux distributions are full Linux
distributions intended for desktop and server environments, and they are not used in
embedded systems, making options B, C, D, and E incorrect.

3. B. Linux’s GUI is based on the X Window System. Although macOS provides an X
implementation, its primary GUI is Apple’s proprietary product. Thus, option B is correct.
Option A is incorrect because both Linux and macOS can run most GNU programs.
Option C is incorrect because Linux can run on both Apple Macintosh and Microsoft-
compatible hardware. Option D is incorrect because macOS includes many BSD utilities.
Although most Linux distributions use GNU utilities, you can use BSD utilities in Linux
if you prefer. Option E is incorrect because both Linux and macOS support text-mode
commands, although in macOS you must use the GUI Terminal application.

4. E. The Linux OS was created by Linus Torvalds while he was a student. Although based on
current Linux OSs, it wasn’t derived from any of them, so option E is correct, and options
C and D are incorrect. The Linux OS is not derived from either macOS or Windows, so
options A and B are also incorrect.

5. False. Programs known as terminals enable entry of text-mode commands after you’ve
logged into Linux in GUI mode. You can also switch between multiple virtual terminals by
using keystrokes such as Ctrl+Alt+F2.

6. True. The CentOS distribution release cycle is approximately every two years, which is
long by the standards of other Linux distributions, some of which have release cycles of just
six months.

7. A. The text-mode login prompt is a single text word that prompts you for your user
account ID to access the Linux system. The login term is used to prompt for the user to
enter his or her userid, so Option A is correct. Options B, C, D, and E are not used as login
prompts for the Linux.

8. D. Most attackers who write viruses focus their energy on the Windows platform where
they can find the most victims, so there are very few viruses targeted toward Linux systems.
Thus, Option D is correct. Commercial software purchased from reputable vendors is not
normally considered a security risk, so Option A is incorrect. Linux systems installed on
networks should still utilize network routers and firewalls to protect them from outside
attacks, so Options B and C are incorrect. Software management packages such as the
Microsoft Store are considered a security feature and not a problem, so Option E is correct.

Chapter 2: Understanding Software Licensing 343

9. C. An alpha software release is the first test version of an application or distribution,
which hasn’t been fully tested in all environments and most likely contains bugs. The beta
software release has been tested in some environments but not all, and it may contain
bugs for your particular environments. Thus, Option C is correct. The terms suggested
in Options A, B, D, and E are not used to represent standard first and second releases of
software packages.

10. A. A rolling release is provided as needed for a Linux distribution, with no specific release
dates or version numbers. Thus, Option A is correct. The terms used in Options B, C, D,
and E are not commonly used to indicate version types.

Chapter 2: Understanding Software
Licensing
1. C. Option C does not describe an open source requirement, and so it is the correct answer.

The open source definition specifies that users be able to distribute changes, but it doesn’t
specify that the license require distribution under the terms of the same license. Options A,
B, D, and E all paraphrase actual open source license term requirements.

2. B. Some distributions (particularly “Enterprise” versions that are sold for money) include
software that is neither open source nor even freely redistributable, so option B is correct.
Distributions as a whole use many licenses, not just one, so option A is incorrect. The MIT
license is one of several open source licenses; such software is not an impediment to copying
a distribution, so option C is incorrect. Although some distributions, such as Debian, aim
to make their main systems fully open source compliant, not all do this, so option D is
incorrect. Likewise, not all distributions are composed completely of free software as the
FSF uses the term.

3. E. Option E paraphrases one of the four key points in the FSF’s philosophy and so is
correct. Contrary to option A, the FSF’s philosophy does not mandate use of the GPL,
much less its most recent version, although the GPL is the FSF’s preferred license. Option
B is contrary to the FSF’s position, which is that free software should remain free;
however, this option is compatible with the OSI’s philosophy. Although the FSF advocates
free software and free OSs, option C is not an explicit part of their philosophy and so is
incorrect. Although the FSF wants to see a world dominated by free software, it does not
advocate software piracy, so option D is incorrect.

4. True. Courts and laws explicitly recognize computer software as being creative works
that are governed by copyright law. In some countries, patent laws also apply to software,
although this is not globally true.

5. True. This principle is at the heart of both the free software and the open source software
definitions.

344 Appendix A ■ Answers to Review Questions

6. False. Hardware vendors often do release open source drivers for their products. One
caveat is that the release of open source drivers necessarily renders some programming
interfaces for the hardware open, which some hardware vendors are reluctant to do.

7. D. The Lesser GPL (LGPL) is a variant of the Free Software Foundation’s GPL. Developers
often use the LGPL with libraries (collections of code that can be used by other programs).

8. A. The Creative Commons helps to promote the types of freedoms that also concern the
FSF and the OSI, but in a broader sense. Its licenses are typically aimed at audio recordings,
video recordings, textual works, as well as computer programs.

9. C. The term copyleft came about via a play on the word copyright, reflecting the fact
that copyright provisions are used to ensure freedoms that are, in some respects, the exact
opposite of what copyright was created to do—that is, to guarantee the freedom of users to
copy software, rather than to restrict that right. Copyleft is typically used to reflect the FSF
philosophy and the licenses it inspires.

10. E. A bounty is a crowdfunding method that can help bring together users, each of whom
individually might not be able to offer enough money to motivate development, to entice
programmers to write the desired code. With bounties, the programmer who completes the
project first is allowed to collect the project’s accumulated funds.

Chapter 3: Investigating Linux’s
Principles and Philosophy
1. A. Linux’s multitasking is preemptive, meaning that the kernel can give CPU time to any

process as it sees fit, potentially interrupting (or preempting) other processes. Thus, option
A is correct. Linux is a multiuser OS, but multiuser is not a type of multitasking, so option
B is incorrect. In a cooperative multitasking OS, applications must voluntarily give up CPU
time to each other. Although Linux programs can signal the OS that they don’t need CPU
time, Linux doesn’t rely exclusively on this method, making option C incorrect. A single-
tasking OS can run just one process at a time, so option D is incorrect. A single-user OS
can support just one user at a time. Such OSs can be either single tasking or multitasking,
and in the latter case, can use either cooperative or preemptive multitasking. Thus, option E
is incorrect.

2. C. The open source definition includes 10 points, one of which is that users may modify
the original code and redistribute the altered version. Thus, option C is correct. Although
all open software is available at no charge, nothing in the open source definition forbids
selling it, and in practice, many organizations do sell open source software, so option
A is incorrect. The open source definition requires distribution of source code but does
not require distribution of binaries, so option B is incorrect. Although many open source
projects began life in an academic environment, that’s not a requirement for open source
software, so option D is incorrect. The open source definition does not specify that either
an interpreted or a compile language be used, making option E incorrect.

Chapter 3: Investigating Linux’s Principles and Philosophy 345

3. D. Evolution is an email reader program. Such programs are commonly used in desktop
environments, so option D is correct. Apache is a web server, Postfix is an email server,
and BIND is a Domain Name System (DNS) server, which are all unlikely to be run in
a desktop computer environment, making options A, B, and E incorrect. Android is the
name of a Linux distribution for smartphones and tablets, not a program, so option C is
incorrect.

4. False. VMS was an OS for minicomputers and mainframes when Linux was created. On
x86 computers, DOS was the dominant OS in 1991.

5. True. Digital video recorders (DVRs) are specialized computers for recording TV shows.
Some commercial DVRs such as TiVos, run Linux natively. DVR software for standard
PCs, such as MythTV, which runs under Linux, also exists.

6. True. Most server programs do not require the X Window System (X) GUI, so server
computer administrators often disable X or even remove it entirely to save disk space and
memory and to minimize the risk of security problems.

7. B. The monolithic kernel design incorporates all of the kernel functions into a single
program, whereas the microkernel design splits the kernel functions into separate smaller
programs. Thus, Option B is correct. An exokernel design provide minimal hardware
support in the kernel, relying on external programs for everything else, thus Option A is
incorrect. A hybrid kernel are similar to microkernels, but rely on some external programs
to operate, thus Option C is incorrect. The terms distributed and unified are not used to
describe kernel types, thus Options D and E are both incorrect.

8. D. Shareware allows a program author to release the binary executable program to the
public without payment but ask for payment if the program is used. Thus, Option D is
correct. Open source software does not require a payment, thus Option A is incorrect.
Commercial software requires an up-front payment, making Option B incorrect. Freeware
doesn’t require any payments at all, making option C incorrect. Viruses are not typically
distributed as software packages, making Option E incorrect.

9. B. A desktop Linux system usually utilizes a graphical desktop interface environment
for running graphical programs such as word processors and web browsers, thus Option
B is correct. Server computers typically don’t utilize graphical desktops, making Option
A incorrect. Distributed computers are typically servers, which don’t utilize graphical
desktops, so Option C is incorrect. A client computer may use a graphical desktop, but
it’s not required, so Option C is incorrect. A laptop computer may also utilize a graphical
desktop, but could also be used as a text-only server, so Option E is incorrect.

10. Apache. The Apache software package is a web server program written specifically for the
Linux server environment, taking advantage of how Linux handles processes and memory
for multiple applications. Thus, Option E is correct. The MySQL program is a database
server commonly used in Linux, not a web server, so Option A is incorrect. The LibreOffice
package is a word processing program, not a web server program, so Option B is incorrect.
The Firefox package is a web browser program, not a web server program, so Option C is
incorrect. The GIMP package is a graphics processing program, not a web server program,
so Option D is incorrect.

346 Appendix A ■ Answers to Review Questions

Chapter 4: Using Common Linux
Programs
1. B, C, E. GNOME, KDE Plasma, and Xfce are all Linux desktop environments, so options

B, C, and E are all correct. (LXDE is also a desktop environment.) The GIMP Toolkit
(GTK+) is a GUI programming library. Although GNOME and Xfce are both built atop
GTK+, it’s not a desktop environment, so option A is incorrect. Evolution is a Linux email
client, not a desktop environment, so option D is incorrect.

2. B. The Network File System (NFS) was designed for exactly the task described in the
question, so option B is correct. The Simple Mail Transfer Protocol (SMTP) enables one
computer to send email messages to another computer, so it’s a poor choice for achieving
the stated goal, making option A incorrect. The PHP: Hypertext Processor (PHP) language
is used to generate dynamic content for web pages, so option C is incorrect. The Domain
Name System (DNS) is a protocol for delivering the mappings between hostnames and IP
addresses to computers, so it won’t achieve the stated goals, making option D incorrect.
The Dynamic Host Configuration Protocol (DHCP) enables one computer to provide
network configuration information to another one over a network link, so option E is
incorrect.

3. C. The main language for the Linux kernel is C, so option C is correct. Although Bash
shell scripts control much of the Linux startup process, these scripts are not part of the
kernel, so option A is incorrect. Java is often used for web-based applications, but it’s not
used in the Linux kernel, so option B is incorrect. C++ is a derivative of C that adds object-
oriented features to the language, but the Linux kernel uses regular C, not C++, so option
D is incorrect. Perl is a popular interpreted language, particularly for tasks that involve
processing text, but it’s not the language of the Linux kernel, so option E is incorrect.

4. False. LibreOffice forked from the pre-Apache version of OpenOffice.org. Calligra split
from the KOffice office suite, which is no longer maintained.

5. True. A denial-of-service (DoS) attack can disrupt a server’s operation by directing an
overwhelming quantity of bogus data at the server program, or even just the computer on
which it runs. This is true even if the server is impeccably managed.

6. True. Python, like JavaScript, Perl, PHP, and shell languages, is interpreted. This contrasts
with C and C++, which are two common compiled languages, and with Java, which is
somewhere in-between.

7. C. Email client programs enable you to read and write email messages, and can either
access a mailbox on your own computer or, using email network protocols, send and
receive email over a network. Thunderbird is one common Linux email client. Others
include Evolution, KMail, and Mutt.

8. E. Microsoft uses the SMB/CIFS protocol for file and printer sharing. On Linux, the
Samba software implements this protocol.

Chapter 5: Getting to Know the Command Line 347

9. B. Programmers must convert a program written in a compiled language from its original
source code form into the machine code form. The machine code is run later. Programs
written in interpreted languages (such as Python, Javascript, and Perl) are converted on a
line-by-line basis to machine code at the time they’re run, by a program interpreter.

10. D. Software programs are bundled into a prebuilt package on Linux, which simplifies
their installation and management. Packages are then managed on Linux using a package
management system (PMS).

Chapter 5: Getting to Know the
Command Line
1. A. Pressing Ctrl+A moves the cursor to the start of the line when you are editing a

command in Bash, so option A is correct. The left arrow key moves a single character to the
left, Ctrl+T transposes two characters, the up arrow moves up one item in the history, and
Ctrl+E moves to the end of the line.

2. C, D. Options C and D both describe ways to run a program in the background from
a shell, so options C and D are both correct. Neither start nor bg is a command that
launches a program in the background. The fg command returns a program to the
foreground, meaning that the shell will go back to sleep, which isn’t what the question
specified.

3. D. The less program, like more, displays a text file a page at a time. The less utility
also includes the ability to page backward in the text file, search its contents, and do
other things that more can’t do. Thus, option D is correct. The grep command searches
a file for a specified string, so it doesn’t do a task that’s similar to more, making option A
incorrect. The Hypertext Markup Language (HTML) is a file format, often indicated with
the filename extension .html, that’s commonly used on the web. As such, it’s not a better
version of more, so option B is incorrect. The cat command can concatenate two or more
files, or display a single file on the screen. In the former capacity, cat doesn’t do the task of
more, and in the latter capacity, cat is less capable than more. Thus, option C is incorrect.
The man command displays Linux manual pages. Although man uses less by default, man is
not itself an improved version of more, so option E is incorrect.

4. False. When in the GUI, Ctrl must be added to the VT-switching keystroke, so the correct
keystroke in this case is Ctrl+Alt+F3.

5. True. When you want to override man’s search order, you specify the desired manual
section between man and the command name, filename, or other name on which you’re
searching.

6. False. Although info pages, like web pages, use hyperlinks to tie related documents
together, the two systems use different formats and protocols. Info pages also reside on the
computer’s hard disk; they require no Internet access to read. For these reasons, info pages
are not web-based.

348 Appendix A ■ Answers to Review Questions

7. False. Individual program authors decide on documentation file format based on their
own specific needs and preferences. Although some documents are in OpenDocument text
format, many documents are not.

8. D. Both the logout and the exit commands will end a text-mode terminal session.

9. C. Each info page document is known as a node, and the info page system as a whole is an
interrelated set of nodes. The nodes are organized on levels.

10. E. The locate command searches a database of filenames that is typically updated every
24 hours. Thus, locate is much quicker than the find command in producing results of
files whose names match a specified term.

Chapter 6: Managing Hardware
1. D. The lspci command displays information about PCI devices. Since many motherboard

features appear to Linux as PCI devices, option D provides a great deal of information
about your motherboard, making option D correct. The lscpu command provides
information about the CPU but nothing else on the motherboard, so option A is wrong.
The Xorg program provides information about the display environment but not the
motherboard, so option B is incorrect. The fdisk command displays information about a
hard drive on the system but not the motherboard, so option C is incorrect. Connecting to
web address localhost:631 connects to the CUPS admin web page, which helps you manage
printers on your Linux system, but it doesnt tell you anything about the motherboard,
making option E incorrect.

2. A, D. Disk partitioning allows you to separate data of different types into different parts
of a disk. Examples of reasons to do this include installing multiple OSs and separating
filesystem data from swap space. Thus, options A and D are both correct. The ext4fs and
ReiserFS values in option B are both filesystem types, and they don’t have anything to do
with partitioning, so option B is incorrect. The disk attachment types PATA and SATA are
types of hard drive interfaces and not partition types; you can’t convert one to the other by
changing the partition, so option C is incorrect. Partitioning a hard disk doesn’t separate
the hard disk cache; that’s an internal feature of the hard drive, so option E is incorrect.

3. A. Video monitors normally connect to a video card using a standard video interface such
as VGA or HDMI, not using the serial USB interface, so option A is the correct selection.
Keyboards, external hard disks, printers, and scanners can all connect to the motherboard
using a USB interface, so options B, C, D, and E are all incorrect.

4. True. Most CPU families have multiple names. EM64T is one name that Intel has used for
its implementation of the x86-64 architecture, and AMD64 is one of AMD’s names for the
same architecture. Thus, the two names identify the same architecture, and an AMD64
Linux distribution will run on an EM64T CPU.

Chapter 7: Managing Files 349

5. False. The Universal Disk Format (UDF) is a filesystem that’s used primarily on optical
discs, not hard disks. Using it for a Linux installation on a hard disk would be awkward
if not impossible. Linux-specific filesystems such as ext4s, ReiserFS, or btrfs are the only
practical choices for Linux installations on a hard disk.

6. True. In Linux, most drivers, including those specified, are provided as part of the kernel.
Some other drivers, such as those for specialty video cards, printers, and scanners, exist
outside the kernel, although they may also rely on kernel drivers to do their work.

7. B. The x86 hardware architecture refers to 32-bit microprocessor register, making Option
B correct. The 8-bit microprocessor was used in the early 8080 microprocessor chip, which
doesn’t support Linux, so Option A is incorrect. The 64-bit microprocessor is commonly
referred to as amd64 in Linux, since AMD was the first to come out with one, thus, Option
C is incorrect. Currently Linux doesn’t support 128 or 256-bit microprocessors, making
Options D and E incorrect.

8. A. Computer hardware requires direct current power electricity to operate, making
Option A correct. Three-phase electricity is commonly used for large motors, not computer
hardware, making Option B incorrect. Magnetic electricity is generated by rotating
magnets, which aren’t used in computer power supplies, making Option C incorrect. Static
current is created by rubbing two or more objects together creating friction, and is not used
in computer power supplies, making Option D incorrect. Solar power is used by converting
the energy produced by the sun into electricity, and is not commonly used to power
computers, making Option E incorrect.

9. D. The HDMI standard is a modern standard for sending digital video signals to monitors,
thus Option D is correct. The VGA, SVGA, and SDI standards are old standards for
sending analog signals to monitors, thus Options A, C, and E are all incorrect. The LED
standard defines how images are displayed on a monitor, not the video interface, so Option
B is incorrect.

10. B and C. The X.org and Wayland X software package are currently used in Linux
distributions, making Options B and C both correct. The xFree86 package was the original
X software package for Linux, but is no longer in use, making Option A incorrect. The
GNOME and KDE Plasma packages are graphical desktop management packages and not
X software packages, making Options D and E both incorrect.

Chapter 7: Managing Files
1. A. The mv command moves or renames a file, so option A is correct. The cp command

copies a file so that the original is still in place, so option B is incorrect. The ln command
creates a link between two files, so option C is incorrect. The rn command in option D
is fictitious, so that option is incorrect. The touch command creates a new empty file or
adjusts the time stamps on an existing file, so option E is incorrect.

350 Appendix A ■ Answers to Review Questions

2. C. Because two files (outline.pdf and Outline.pdf) have names that differ only in
case, and because FAT is a case-insensitive filesystem, one of those files will be missing
on the copy. (Both files will be copied, but the second one copied will overwrite the first.)
Thus, option C is correct. The specified cp command does not create links, so option A
is incorrect. Because the specified cp command included the -a option, which performs a
recursive copy, all of the files in MyFiles will be copied, along with the directory itself, so
option B is incorrect. In order to copy all of the files, you will have to change one file’s name
manually; however, cp won’t do this automatically, so option D is incorrect. Because option
C is correct, option E is not correct.

3. A, B. If you try to create a directory inside a directory that doesn’t exist, mkdir responds
with a No such file or directory error. The --parents parameter tells mkdir to create all
necessary parent directories automatically in such situations, so option A is correct. You
can also manually do this by creating each parent directory separately, so option B is also
correct. Option C will have no useful effect; at most, it will change the time stamps on
the mkdir program file, but if you type it as a normal user, it probably won’t even do that.
Options D and E are both based on the premise that you must remove directories that
already exist with the names that you want to use, but this isn’t true, so these options are
both incorrect.

4. True. Symbolic links work by storing the name of the linked-to file in the symbolic link
file. Linux reads this filename and transparently substitutes the linked-to file. This process
works both on a single filesystem and across filesystems, so the statement is true. Hard
links, by contrast, work by providing multiple directory entries that point to a single file.
This method of creating a link does not work across low-level filesystems.

5. False. Linux’s security features prevent accidental damage when you work as an ordinary
user. You must be more careful when you acquire root privileges to perform system
maintenance, though.

6. True. The touch command updates a file’s time stamps, and for this purpose, a directory
counts as a file, so this statement is true.

7. D. The -u and --update options of the cp command tell Linux to update the existing
file with the specified file, thus Option D is correct. The -f option forces a copy if the
destination file cannot be opened, but doesn’t check the file dates, so Option A is incorrect.
The -r option copies directories recursively, it doesn’t check file dates, so Option B is
incorrect. The -s option creates a symbolic link instead of copying files, so Option C is
incorrect. The -v option displays more verbose output, it doesn’t check the file dates, so
Option E is incorrect.

8. D. The -r, -R, and --recursive command-line options of the rm command will
recursively remove files from directories, thus Option D is correct. The rmdir command
can only remove directories, it can’t remove files inside the directories, so Options A, B, and
C are all incorrect. The -f option of the rm command only ignores nonexistent files and
doesn’t prompt before removing the files, it doesn’t recursively remove files from directories,
so Option E is incorrect.

9. A. The question mark (?) wildcard character matches none, one, or a set of characters in a
filename, so Option A is correct. The asterisk (*) matches zero, one, or multiple characters,

Chapter 8: Searching, Extracting, and Archiving Data 351

not just a single character, so Option C is incorrect. The underscore, period, and dash
aren’t used as wildcard characters in matching filenames, so Options B, D, and E are all
incorrect.

10. B. Most Linux applications store their configuration files in the /etc directory structure.
Usually these files are only accessible by root or by the user account the application is
started with.

Chapter 8: Searching, Extracting,
and Archiving Data
1. A. The grep utility finds matching text within a file and prints those lines. It accepts

regular expressions, which means that you can place in brackets the two characters that
differ in the words for which you’re looking. Option A shows the correct syntax for
doing this. The tar utility creates or manipulates archive files, and option B’s syntax is
incorrect for any use of tar, so that option is incorrect. The find utility locates files based
on filenames, file sizes, and other surface features. Furthermore, options C and E both
present incorrect syntax for find, and so are incorrect. Option D’s cat utility displays or
concatenates files, so it won’t have the desired effect, making this option wrong.

2. E. The >> operator appends standard output to a file, so option E is correct. The vertical
bar (|) is the pipe character; it ties one program’s standard output to another’s standard
input, so option A is incorrect. The 2> operator redirects standard error, not standard
output, and it overwrites the target file. Thus, option B is incorrect. The &> operator
redirects both standard output and standard error, and it overwrites the target file, making
option C incorrect. The > operator redirects standard output, but it overwrites the target
file, so option D is incorrect.

3. D. With the tar utility, the --list (t) command is used to read the archive and display its
contents. The --verbose (v) option creates a verbose file listing, and --file (f) specifies the
filename—data79.tar in this case. Option D uses all of these features, and therefore does
as the question specifies. Options A, B, C, and E all substitute other commands for --list,
which is required by the question, so all of these options are incorrect.

4. True. The special characters [^x] match any single character except x, and .* matches any
sequence of any characters. The string Linus Torvalds is just one of many strings to match
the specified regular expression.

5. True. You can use the -size n option in the find command to locate files based on their sizes.

6. False. The zip utility creates or manipulates zip archive files. This file type supports
compression directly, as does the zip program. Thus, there’s no need to involve another
compression program to compress files archived with zip.

7. A. When not used inside brackets within a regular expression, the caret ()̂ represents the
start of a text line. For example, ^172 matches 172 only if it is first in a line of characters.

352 Appendix A ■ Answers to Review Questions

8. B. The cut command can help; in this case it extracts text from specified fields in a file
record and displays them. However, no modifications are made to the file.

9. C. The &> symbol combination redirects both standard output and standard error from
the command or program, and into a designated file (or location).

10. E. Lossless compression is just like it sounds—no data is lost, and the compressed data will
exactly match the original uncompressed data, after a decompression process.

Chapter 9: Exploring Processes
and Process Data
1. E. The apt-get command is used to install software packages on Debian-based Linux

systems, so option E is correct. The yum and rpm commands are package management
commands but are used on Red Hat–based Linux systems, so options A and D are both
incorrect. The zypper command is a package management application but is used on
openSUSE Linux systems and not Debian-based systems, so option B is incorrect. The
dmesg command is used to view the contents of the kernel ring buffer, not to install
software, so option C is incorrect.

2. A, C. The name of the first process that the Linux kernel runs is set in the boot loader
configuration file. That program is normally systemd or init, so options A and C are
correct. The bash program creates an interactive shell, so option B is incorrect. The login
program creates a login prompt on a terminal, allowing users to log into the system, so
option D is incorrect. The grub boot loader program is started by the computer BIOS or
UEFI system, so option E is incorrect.

3. A. Most Linux distributions that follow the filesystem hierarchy standard (FHS) store log
files in the /var/log directory structure, so option A is correct. Using the FHS, the /etc
directory is for storing application configuration files, not log files, so option B is incorrect.
The /usr directory is for storing noncritical applications, so option C is incorrect. The
/home directory is for storing user data, so option D is incorrect. The FHS does not specify
a /log directory, so most Linux systems don’t create one, making option E incorrect.

4. True. Network-enabled package management programs provide a method for ensuring
any dependencies required by an application are already installed on the system before
installing the application. If not, the package management system either installs them
automatically or prompts you to install them first.

5. True. The top program allows you to sort the process data based on any data field, but by
default it displays the data sorted by CPU usage.

6. True. The dmesg command displays the contents of the kernel ring buffer. The kernel ring
buffer stores kernel log messages in a limited space. When that space fills up, older log
messages are removed to make room for newer messages. Thus, the contents of the kernel
ring buffer (and therefore the dmesg output) change as new events occur in the Linux kernel.

Chapter 10: Editing Files 353

7. B. The package database maintains a listing of all software packages installed by the
package manager program, making Option B correct. The kernel interfaces with the system
hardware, it doesn’t manage installed software packages, so Option A is incorrect. The
graphical desktop creates a graphical environment to interact with the Linux system, but
doesn’t maintain the software packages, so Option C is incorrect. The /usr/lib directory
contains library files used by programs, but doesn’t manage software packages, so Option
D is incorrect. The Software updater program is part of the software management system,
but doesn’t maintain information on installed packages, making Option E incorrect.

8. A. When you launch an application from the Bash shell it becomes a child process of
the shell, so Option A is correct. The parent process is the process that launches the new
program, not the new program itself, so Option B is incorrect. The terms client and server
are used in an environment where one program retrieves information from another, not in
the process environment, so Options C and D are incorrect. Parallel processes are programs
that are launched from the same parent process. Since emacs is launched from the Bash
shell, it is not a parallel process, so Option E is incorrect.

9. C. The /var/log/secure file is a common location for some Linux distributions to place
general system messages, so Option C is correct. The secure file is commonly used to track
user login information, not general system messages, so Option A is incorrect. The dmesg
program displays messages logged into the kernel ring buffer by the kernel; it’s not a file
that contains general system messages, so Option B is incorrect. The mail file commonly
contains messages from the email program on the system, not general system messages, so
Option D is incorrect. The wtmp file contains login and logout messages from the system,
not general system messages, so Option E is incorrect.

10. E. The dmesg command displays messages stored in the kernel ring buffer, so Option E is
correct. The ls command displays directory listings, not kernel messages, so Option A is
incorrect. The pwd command displays the current working directory, not kernel messages,
so Option B is incorrect. The chmod command changes file and directory permissions, it
doesn’t display kernel messages, so Option C is incorrect. The cat command displays text
files, but since the kernel ring buffer is not a text file you cannot use cat to display it, so
Option D is incorrect.

Chapter 10: Editing Files
1. D. LibreOffice, like most word processors, uses a binary format that can’t be properly

parsed using an ASCII or Unicode text editor. Thus, nano won’t be useful in examining
such a document, making option D correct. The nano text editor can handle ASCII or
Unicode format, so the text files described in options A and C are incorrect. The other
document types described in options B and E are all likely or certain to be stored in ASCII
or Unicode format, making them incorrect choices.

2. B, E. The F6 and Ctrl+W keystrokes both invoke the search function, so options B and
E are correct. The F3 key writes the current buffer to disk, so option A is incorrect. The
Esc+S keystroke is an obscure one; it enables or disables smooth scrolling, so option C is
incorrect. Ctrl+F moves forward one character, so option D is incorrect.

354 Appendix A ■ Answers to Review Questions

3. A. In the vi editor, dd is the command-mode command that deletes lines. Preceding this
command by a number deletes that number of lines. Thus, option A is correct. Although
yy works similarly, it copies (yanks) text rather than deleting it, so option B is incorrect.
Option C works in many text editors but not in vi. Option D works in emacs and similar
text editors (including nano) but not in vi. Option E, or something similar, works in many
GUI text editors but not in vi, so it is incorrect.

4. False. Unicode provides support for most alphabets around the world.

5. False. Support for underlining, italics, multiple fonts, and similar advanced formatting
features is present in word processors, not plain-text editors—even GUI text editors lack
such support.

6. True. Due to its ease of use, nano is typically the best editor to learn first.

7. B. ASCII is a 7-bit code, meaning that it supports a maximum of 128 characters. Though,
in practice, ASCII uses 8 bits, so an extra 128 characters are available, which can encode
various control characters.

8. A, C, E. Of the choices shown, the ESC+R and Ctrl+\ key combinations as well as pressing
the F4 key will start a search-and-replace activity in the nano text editor.

9. D. Typing u in the vi editor’s command mode will undo the last change you made to the
text, which is handy.

10. C. While you are in command mode, the ZZ key combination will save any file
modifications and then leave the vi editor.

Chapter 11: Creating Scripts
1. A. Before you can run a shell script directly from the command line, you need to allow

execute permissions for at least yourself, so option A is correct. You don’t need to have the
shell script file located in any specific directory as long as you have access to the directory,
so option B is incorrect. Typing the bash scriptname will run the script, not compile it, so
option C is incorrect. Viruses are extremely rare in Linux, and because you just created the
script, the only way in which it could contain a virus would be if your system was already
infected or if you wrote it as a virus, so option D is incorrect. Most spell checkers are
intended for English or other human languages, so they lack the ability to check for valid
Bash commands, such as esac. Furthermore, even if every keyword is spelled correctly, the
script could still contain logic bugs. Thus, option E is incorrect.

2. C. The cp command is the only one called in the script, and that command copies files.
Because the script passes the arguments ($1 and $2) to the cp command in reverse order,
their effect is reversed; whereas cp copies its first argument to the second name, the cp1
script copies the second argument to the first name. Option C correctly describes this effect.
Option A ignores the reversed order of the arguments, so this option is incorrect. The cp
command has nothing to do with compiling C or C++ programs, making options B and D
incorrect. The first line in the script is a valid shebang line, indicating the shell to use to run
the script, so option E is incorrect.

Chapter 11: Creating Scripts 355

3. C. Conditional expressions return a true or false response, enabling the script to execute
one set of instructions or another or to continue or terminate a loop; thus, option C is
correct. Conditional expressions have nothing to do with licensing conditions, so option
A is incorrect, nor do they have anything to do with displaying environment information,
making option B incorrect as well. Conditional expressions also don’t implement Pavlovian
conditioning by themselves (you can create a script to implement that, but the conditional
expressions by themselves don’t), so option D is incorrect. The conditional expressions also
don’t cause the script to run only at a specified time of day—you need to use the at or cron
facility on the Linux system to do that—so option E is incorrect.

4. False. The $0 variable contains the name of the script, which would be myscript in this
example. The first parameter (laser.txt) would be held in the $1 positional variable.

5. True. You can use the for statement to execute a loop a fixed number of times, whereas
while and until execute until a test condition is no longer met or is met, respectively.

6. False. The terminal commands don’t have the ampersand (&) sign after them to indicate
that they should run in background mode, so they will run serially, only one at a time.
QuestionID:

7. A. A shell script should contain the shebang line to indicate the shell required to run the
script. The shebang line contains the #! characters, followed by the shell path. Thus, option
A is correct. Options B and D are both incorrect because they just specify the shell, not the
shebang characters. Option C is incorrect because it uses only the pound symbol, which
makes the line a comment. Option E is incorrect because it doesn’t specify the full path to
the shell.

8. D. The echo command is used to display text to the shell user, so option D is correct.
The case command compares a value to multiple answers, not display text, so option A
is incorrect. The while command performs a loop on a block of code, and doesn’t display
text, so option B is incorrect. The if command tests a condition and if true, executes a
block of code, it doesn’t display text, so option C is incorrect. The exit command stops
the running script and returns to the shell, passing a numeric exit value, not a text value to
display, so option E is incorrect.

9. A. The case command can compare a variable against multiple values and execute
different blocks of code based on the matching value, so option A is correct. The while
command performs loops, it doesn’t compare a variable against multiple values, so option
B is incorrect. The if command tests a variable against a single condition, not multiple
values, so option C is incorrect. The echo command displays text to the script user; it
doesn’t compare multiple values, so option D is incorrect. The exit command stops the
script and returns to the shell, it doesn’t compare a variable against multiple values, so
option E is incorrect.

10. E. The exit command stops the script and returns a specified value back to the shell,
so option E is correct. The case command compares a variable against multiple values,
it doesn’t control the script return value, so option A is incorrect. The while command
performs a loop on a code block, but doesn’t control the script return value, so option B is
incorrect. The if statement allows you to test a variable against a value, but not control the
script return value, so option C is incorrect. The echo statement displays text for the script
user, but doesn’t control the script return value, so option D is incorrect.

356 Appendix A ■ Answers to Review Questions

Chapter 12: Understanding Basic
Security
1. A. UID 0 is reserved for the system administrator’s account, also known as root, so

option A is correct. The first ordinary user account is not a system account, and its UID is
normally 500 or 1000, depending on the distribution, so option B is incorrect. Because A is
correct, C cannot be correct. The association of UID 0 for administrative tasks is very basic
in Linux, so you won’t find variation on this score, making option D incorrect. Since the
root account is not low-privilege, option E is also incorrect.

2. A, C, E. The /etc/passwd file’s fields specify the username, an encrypted password (or x
to denote use of shadow passwords, which is more common), a UID number (option A), a
single default GID number, a comment field that normally holds the user’s full name, the
path to the account’s home directory (option C), and the path to the account’s default text-
mode shell (option E). Option B is incorrect because, although /etc/passwd includes the
user’s default group, the user may belong to additional groups that are defined elsewhere.
Option D is incorrect because the user’s default desktop environment is not defined in /etc/
password.

3. A. The sudo command is the usual way to execute a single command as root, and option
A gives the correct syntax to use it as the question specifies. There is no standard root
command, so option B is incorrect. The passwd command changes passwords, so option C
is incorrect. Although you can use su to execute a single command as root, you must use it
with the -c option to do this, as in su -c “cat /etc/shadow”, so option D is incorrect. Option
E’s admin is a fictitious command, so this option is incorrect.

4. False. The whoami command displays your username only. The id command displays your
username, your UID number, your primary group name, your primary GID number, and
the group names and GID numbers of all your groups.

5. False. The name for the group data file in Linux is /etc/group, not /etc/groups.

6. True. It’s possible to do more damage to a computer as root than as an ordinary user.
Thus, you should be extra cautious when using root—run only trusted programs, double-
check your commands for errors, and so on.

7. D. The /etc/passwd file contains not only user account information such as the username,
primary group ID, and default shell, but it also contains the UID associated with each
username.

8. B. While the who and the who -q commands will display who is currently logged into the
computer, only the w command will also display what programs they are currently running.

9. E. System accounts have UIDs above 0, but below 500 or even 1,000, depending on the
distribution’s configuration. The root account typically has a UID of 0.

10. C. A company policy that demands the sudo command is used to acquire root privileges
sets a desirable nonrepudiation environment in which actions cannot be legally denied.

Chapter 13: Creating Users and Groups 357

Chapter 13: Creating Users and Groups
1. C. The userdel command deletes an account, and the -r switch to userdel causes it to delete

the user’s home directory and mail spool, thus satisfying the terms of the question. Option
A deletes the account but leaves the user’s home directory intact. Option B does the same;
the -f option forces account deletion and file removal under some circumstances, but it’s
only meaningful when -r is also used. Option D’s command will probably have no effect,
since rm works on directories only in conjunction with -r, and /home/nemo is probably the
user’s home directory. Option E’s rm command deletes the user’s home directory (assuming
it’s located in the conventional place, given the username) but doesn’t delete the user’s
account.

2. B. The password in option B uses a combination of upper- and lowercase letters, numbers,
and symbols, and it doesn’t contain any obvious word. Furthermore, it’s a long password.
All of these characteristics make it unlikely to appear in an intruder’s password dictionary
and make it hard to guess. Thus, option B represents a good password, and the best of
those shown. Option A is the name of a well-known celebrity (at least in the Linux world!);
such a name is likely to appear in password-cracking dictionaries, and so makes a poor
password choice. Option C is an extremely common password, which makes it a bad
choice. Furthermore, it’s short and it consists of just one symbol type (digits). Option D
is another popular (and therefore very poor) password. It’s a single common word in all
lowercase and it contains no numbers or other nonalphabetic symbols. Although option E
is fairly long, it consists entirely of lowercase letters, and its three related words, making it a
poor password too.

3. A. The groupadd command creates a new group, as described in option A, so that option
is correct. To add a user to a group, as suggested by option B, you would use the usermod
utility. No standard command imports group information from a file, as option C suggests,
so this option is incorrect. (Some network user management tools do provide such
functionality, though.) To change a user’s default group or list of supplemental groups, you
would use usermod, so options D and E are both incorrect.

4. True. System accounts have UID values between 0 and some number (normally 499 or
999), whereas user accounts have UID values above that number (starting at 500 or 1,000,
typically).

5. False. The usual command-line command for changing passwords is passwd.

6. True. Although the userdel command’s -r option deletes the user’s home directory and mail
files, this command doesn’t track down the user’s files stored in more exotic locations. You
can use find to locate such files if you want to delete them or transfer ownership to another
user.

7. D. The useradd command with -u 2019 thor will create a new user account, with the
username thor and give it a UID of 2019.

8. B. In order to modify a user account with the username of carol to a username of marvel,
you must issue the usermod -l marvel carol command using super user privileges.

358 Appendix A ■ Answers to Review Questions

9. E. The -r option used with the groupadd command will allow you to create a system group
(as long as you have super user privileges).

10. C. The /etc/group file contains group data such as the group’s name, associated GID, and a
list of group members.

Chapter 14: Setting Ownership
and Permissions
1. D. The chown command changes the owner assigned to a file. You list the new file owner

first, then the filename, making option D correct. You can’t change file ownership using the
chmod command, making options B and E incorrect. The new file owner must be listed first
by itself, making options A and C incorrect.

2. C, D. The d at the start of the symbolic file mode indicates that wonderjaye is a directory.
The first set of permissions (rwx) indicate the directory owner has read, write, and execute
permissions on the directory. The second and third sets of permissions (r-x and r-x) indicate
that the directory’s primary group and all others have read and execute permissions on the
directory. Thus, options C and D are correct. A leading l character would indicate the file
is a symbolic link, so option A is incorrect. A leading dash would indicate the object is a
file, but since the leading character is a d option B is incorrect. For members of the group
to have write permissions to the directory, the second set of permissions must include the w
character, which it doesn’t, so option E is incorrect.

3. E. The chown command allows you to change both the file’s owner and group, so option
E is correct. The groupadd command allows you to add a new group to the system, not
change the group assigned to a file, so option A is incorrect. The groupmod command
allows you to modify details of a group definition, not change the group assigned to a
file, so option B is incorrect. The chmod command allows you to change the permissions
assigned to a file, not the file’s primary group, so option C is incorrect. The ls command
allows you to display the file owner, group, and permissions using the -l option, but it
doesn’t allow you to change the file’s group, so option D is incorrect.

4. True. The octal mode permission 755 represents the symbolic mode -rwxr-xr-x. The third
set of permission characters indicates the permissions for all users on the system, so all
users have read permission on the file.

5. False. The chmod command allows users to change the permissions assigned to a file or
directory. Any user can change the permissions of files and directories that the user owns;
therefore, any user can use the chmod command.

6. True. An ordinary user can use chown to change a file’s group to another group the user
belongs to, but ordinary users can’t change the ownership of a file—only the root user can
do that.

Chapter 15: Managing Network Connections 359

7. B. The -R (or --recursive) option allows Linux to recursively change the ownership of
a directory and all files and directories under it, so option B is correct. The -L option tells
Linux to follow any symbolic links encountered in the directory, not recursively change
the entire directory tree, so option A is incorrect. The -H option tells Linux to follow the
symbolic link if it’s listed as the command-line argument, not recursively change ownership
in the entire directory; so option C is incorrect. The -P option tells Linux to not follow
any symbolic links in the directory, not recursively change ownership in the directory tree,
so option D is incorrect. The -f option tells Linux to suppress any error messages, not
recursively change ownership on an entire directory tree, so option E is incorrect.

8. C. Symbolic permissions are indicated by the three-character string rwx. If a permission is
not present, the character is replaced by a dash, so to remove write permissions you would
use the character set r-x, making option C correct. The -wx symbol indicates write and
execute permissions, so option A is incorrect. The --x symbol indicates no read and write
permissions, only execute permissions, so option B is incorrect. The rw- symbol indicates
read and write permissions but no execute permission, making option D incorrect. The rwx
symbol indicates read, write, and execute permissions, so option E is incorrect.

9. E. The chmod command uses the character a to represent permissions assigned to all users.
To add a permission, you use the plus sign (+), and to represent execute permissions you
use the x character. Thus, option E is correct. The u+x symbol assigns execute permissions
to only the user, not all users, so option A is incorrect. The u-x symbol removes execute
permissions from the user and doesn’t change the permissions for everyone else, so option B
is incorrect. The g+x symbol adds execute permissions to the group but not for all users, so
option C is incorrect. The a-x symbol removes execute permission for all users—it does not
add it—so option D is incorrect.

10. A. To add a sticky bit to a directory you use the t character and add it to the owner
permission set (o), so option A is correct. You add the sticky bit permissions to the owner,
not the group, or all users, so options C and D are incorrect. The w character is used to
assign write permissions, not the sticky bit, so options B and E are incorrect.

Chapter 15: Managing Network
Connections
1. C, D. The nmtui command provides an interactive text menu for selecting a network

interface and setting the network parameters, and the ip command provides a command-
line tool for setting network parameters, so both options C and D are correct. The netstat
command displays information about network connections but doesn’t set the network
parameters, so option A is incorrect. The ping command can send ICMP packets to a
remote host but doesn’t set the local network parameters, so option B is incorrect. The
route command sets the routing network parameters but not the IP address or subnet
mask, so option E is incorrect.

360 Appendix A ■ Answers to Review Questions

2. A. The ethtool command displays features and parameters for network cards, so option A
is the correct answer. The netstat command displays network statistics and connections,
so option B is incorrect. The iwconfig and iwlist commands are used to set wireless
network parameters not Ethernet card settings, so options C and D are incorrect. The
route command sets or displays routing information and not Ethernet card settings, so
option E is incorrect.

3. E. The ss command displays a list of the open ports on a Linux system, along with the
processes associated with each port, so option E is correct. The iwconfig command sets
wireless network information, not open ports, so option A is incorrect. The ip command
displays or sets network information on a network interface but doesn’t display open ports,
so option B is incorrect. The ping command sends ICMP messages to a remote host but
doesn’t display any open ports, so option C is incorrect. The nmtui command allows you to
configure network parameters for a network interface but doesn’t display the open ports on
the system, so option D is incorrect.

4. A. The default router is used to send packets from the local network to remote networks,
so to communicate with a remote host you need to define the default router address, making
option A correct. The netmask only defines the local network—it doesn’t define what to do
with packets for remote hosts—so option B is incorrect. The host name and IP address only
define features of the local host, so options C and D are incorrect, whereas the DNS server
defines how to retrieve the IP address of a host based on its domain name, so option E is
incorrect.

5. E. The DNS server maps the host name to an IP address, so you must have a DNS server
defined in your network configuration to be able to use host names in your applications.
Thus, option E is correct. The default router only defines how to send packets to remote
hosts—it doesn’t map the host name to the IP address—so option A is incorrect. The
netmask value defines the local network, not how to map host names to IP addresses, so
option B is incorrect. The host name and IP address define features of the local host, so
options C and D are incorrect.

6. B. The Dynamic Host Configuration Protocol (DHCP) is used to assign dynamic IP
addresses to client workstations on a network, so option B is correct. The default router
can’t assign addresses to devices, so option B is incorrect. The ARP table maps the
hardware address of the network card to IP addresses but doesn’t assign the IP addresses,
so option C is incorrect. The netmask value determines the network address but not the IP
address of the host, so option D is incorrect. The ifconfig command can set the static IP
address of the host but doesn’t automatically assign the IP address, so option E is incorrect.

7. A. The dig command can display individual host records for a domain, which you can
use to find the MX mail host for the domain, so option A is correct. The host command
only displays host IP address information—it can’t determine the server type from the DNS
records—so option D is incorrect. The netstat and ss commands display active network
connections but not the remote host types, so options B and E are both incorrect. The
ping6 command sends IPv6 ICMP packets to test remote hosts but can’t tell if the remote
host is a mail server, so option C is incorrect.

Chapter 15: Managing Network Connections 361

8. A. The ifconfig command must specify the network interface, the IP address, then the
netmask option before the netmask address. You can use the up or down option to place the
network card in an active or inactive state by default, but it’s not required. Option A is the
only option that uses the correct values in the correct order. Option C is close but fails to
specify the network interface. Option B is not in the correct format, and options D and E
fail to list the necessary configuration settings.

9. A. The iwlist command displays the available wireless network access points detected by
the wireless network card, so option A is correct. The iwconfig command configures the
network card to connect to a specific access point but doesn’t list all of the detected access
points, making option B incorrect. Option C specifies the ifconfig command, which is
used to assign an IP address to a wireless network card, but doesn’t list the access points.
The ip command specified in option D likewise can be used to set the IP address of the card
but doesn’t list the access points. Option E, the arp command, maps hardware addresses to
IP addresses so that you can find duplicate IP addresses on your network, but it doesn’t list
the wireless access points.

10. E. The ip command allows you to both display and set the IP address, netmask, and
default router values for a network interface, so option E is correct. The ifconfig
command can set the IP address and netmask values, but not the default router. The
iwconfig command is used to set the wireless access point settings, and the router
command is used to set the default router but not the IP address or netmask values. The
ifup command only activates the network interface—it can’t set the address values.

Appendix

B
Setting Up a Linux
Environment

364 Appendix B ■ Setting Up a Linux Environment

 If you don’t have access to a system running Linux to study for the Linux Essentials certi-
fi cation exam, consider setting up your own learning space on a laptop or desktop. Your
learning space needs to be an environment where you can freely explore Linux and its vari-
ous distributions (called distros for short).

 Creating a virtualized environment for your Linux learning space is ideal. This setting
will allow you to boot multiple Linux distributions at the same time (provided you have
enough computer resources), enabling you to move quickly between them, and to provide
compare-and-contrast experiences. In addition, you can explore networking utilities more
thoroughly in such an environment.

 For a virtualized environment, you need to create a virtual machine. A virtual machine
is a simulated computer system that appears and acts just like a physical machine. It can
be created using a software application on a laptop or desktop. We like Oracle VirtualBox
(virtualbox.org), because it’s free and provides an accurate Linux experience. You can
obtain and install VirtualBox on a Windows or macOS system. The VirtualBox website is
loaded with helpful documentation, and it has community forums to help you create your
Linux learning space. Also, there are several youtube.com videos to help with installing the
VirtualBox software on your computer.

 For this book, the primary Linux distributions used were Linux Mint 18.3 LTS with the
Cinnamon Desktop (linuxmint.com), and Fedora 30 Workstation (getfedora.org). You
can obtain the distributions on these websites and fi nd helpful documentation.

 As time goes on, new Linux Mint and Fedora distribution versions will be
available. Although it is always tempting to get the latest and greatest ver-
sion, it is not beneficial to use it in your learning space. Remember that the
LPI Linux Essentials certification exam objectives are static—until the next
time the certification exam is updated. Therefore, it is wise to use the dis-
tribution versions that were available at the time of the certification exam’s
creation.

 You’ll want to download at least one of the distributions’ installation fi les (called an ISO
� le , because its fi le extension is .iso) from their website. Be aware that these distros update
their software every six months to a year. Thus, if you cannot fi nd the ISO fi le on the distri-
bution’s primary download page, try these locations:

 ■ Fedora 30 Workstation: dl.fedoraproject.org/pub/fedora/linux/releases/30/
Workstation/

 ■ Linux Mint 18.3 LTS: linuxmint.com/download_all.php

 When you have the ISO fi le, install it to VirtualBox. If you need some additional
assistance in accomplishing this last task, then on a computer system with access to
the Internet open your favorite web browser, and in the search engine, type
How to install Linux using VirtualBox . You should fi nd several websites with
helpful information to get your study environment built.

\ (backslash), expressions, 169
() (parentheses), expressions, 170
/ (slash) character, 152
* (asterisk) in expressions, 169
(hash mark) prompt, 5
$ (dollar sign) prompt, 5
| (bar) strings, 169

A
accounts, 252

comment field, 253
creating

GUI tools, 278–280
passwords, 275–277
o itfrom shell, 280–282

default shell, 254
deleting

file preservation and, 289
GID reuse, 289
GUI tools, 290
from shell, 291
UID reuse, 289
userdel command, 291

GID (group ID), 253
home directories, 253–254
id command, 260
identifying, 256–258
locked, 282
login date/time, 261
modifying

causes, 283
GUI tools, 284–286
logged-in users, 283–284
from shell, 286–288
w command, 294
who utility, 283

network account databases, 258
passwords, 253, 275–277

salted hash, 254
remote host, 261
root, 252, 263

acquiring privileges, 264–266
administrative tasks, 263
super user, 263

system accounts, 252
terminal identifier, 261

tools, 259
who, 261–263
whomai, 260

types, 252
UIDs (user identification), 253
user accounts, 252
User and Groups account tool (Mint), 256–257
user types, 263–264
useradd command, 280–282
usernames, 253, 261

AD (Active Domains) domains, 258
administrative tasks, root account, 263
administrator scripts, 245
Adobe Reader, 48
alpha software, 18
Apache, 37, 52
Apache HTTPD, 76
Apache OpenOffice, 69
APM (Apple Partition Map), 128
appliances, embedded computers and, 51
apropos utility, 100
APT (Advanced Package Tool), 200
apt-get package tool, 82
Aqua, 11
Arch, 15
archives, 157, 183–184

review question answers, 351–352
tar program, 183–184

commands, 184
qualifiers, 184–185

arguments, 93, 237
ARM (Advanced RISC Machine) processor, 122
ASCII (American Code for Information

Interchange), 216–217
assembly language, 79
AT&T, 46
Audacity, 69
automotive computers, 51
AWS (Amazon Web Services), 14, 71
Azure (Microsoft), 71

B
background, running programs, 96–97
Base (Apache OpenOffice), 69
Base (LibreOffice), 69
base 8 numbers, 306

Index

366 Bash (Bourne Again Shell) – commands

Bash (Bourne Again Shell), 88
editing, 98–99
history, 98–99

batch files, 234
beta software, 18
/bin, 149
binary code, 11
binary digits (bits), 121
binary packages, 197
BIND (Berkeley Internet Name Domain), 52
bits, 121
Blender, 69
block devices, 305
bounties, 39
bracket expressions, 169
browsers

Chrome, 67
Firefox, 67
Konqueror, 67
Lynx, 67
Microsoft, 67–68
Opera, 67
Web, 67

BSD (Berkeley Source Definition), 37
buffers, kernel ring buffer, 211
build directories, documentation

and, 109
bzip2, 187

C
C, 79

gcc, 79
C++, 80
Calc (Apache OpenOffice), 69
Calc (LibreOffice), 69
Calligra office suite, 68–69
case, file management, 160–161
case statement, 242–243
Castero, 69
cat command, 93–94, 177–178
CC (Creative Commons), 28
CentOS, 15
character devices, 305
chgrp command, 303
child programs, 202
chipset, 123
chmod command, 235, 309–310
chown command, 302–303
Chrome, 67
Cinnamon, 7, 10, 59

terminal, launching, 89
clients, 75
clock rate, 120

cloud computing, 19
distributed computing and, 20
hybrid, 20
methods, 20
private, 20, 71
providers, 71
public, 20, 70–71

cloud services
IaaS (infrastructure as a service), 21–22
PaaS (platform as a service), 22
SaaS (software as a service), 22–23

Cocoa, 11
code

availability, 35
binary code, 11
open source software and, 49
source code, 11

command completion, 97–98
command history, 98–99
command line. See also shell

generating, 182–183
review question answers, 347–348
starting, 88

command substitution, 183
command-line tools

Network Manager, 323–324
networks

ethtool, 324–325
ifconfig, 324, 325
ip, 324, 325–327
iwconfig, 324
route, 324, 328

commands
arguments, 93
cat, 93–94, 123
chgrp, 303
chmod, 235, 309–310
chown, 302–303
cp, 155
cut, 236
dig, 332
dpkg, 201
echo, 237
find, 110, 236
getent passwd, 257–258
grep, 236
history, 99
host, 331
id, 260
install, 200
locate, 110
ls, 6, 149–150, 304
lscpu, 123
mail, 237
man pages, 94

comment field – dig command 367

mkdir, 161–162
mv, 157
netstat, 334–336
ps, 203–205
rm, 159, 311
rmdir, 162–163
rpm, 199–200
running, 235
searches

cat, 177–178
cut, 175
find, 172–173
grep, 170–172
sort, 176–177
wc, 174

sed, 237
switches, 94
syntax, 93
top, 205–207
uname, 123
useradd, 237, 280–282
userdel, 291
whereis, 110
who, 261–263
xargs, 182–183

comment field, 253
compiled languages, 78
compilers, 11
compressing files, 187–188

lossless, 188
lossy, 188
zip, 188–190

computers, embedded, 50–51
conditional expressions, 241–242

case statement, 242–243
if keyword, 241–242
loops, 243–244
text keyword, 242

configuration directories, 148–149
context menus, 61
cooperative multitasking, 45
copying files, 155–157

archive, 157
recursive, 156
update, 157

copyleft, 32
copyright laws, 28–30
cp command, 155
CPUs, 120

ARM (Advanced RISC Machine), 122
bits, 121
clock rate, 120
Intel Core, 121
Itanium, 122

MIPS (Microprocessor without Interlocked
Pipelined Stages), 122

multicore, 122
PowerPC, 122
SPARC (Scalable Processor Architecture), 122
x86, 121
x86-64, 121

Creative Commons, 36
CUPS (Common Unix Printing System), 52
cut command, 175, 236

D
daemons, 76

system log, 210
databases

MySQL, 52
network account databases, 258

Debian, 15
package management, 200–202

default router, 320
default shell, 254
defined path, 95
deleting, files, 159
deriving works, 35
desktop computers, 51–52
desktop environments, 3, 7, 10, 58

build your own, 59
Cinnamon, 7, 10, 59
context menus, 61
desktops, multiple, 8
file managers, 8
GNOME, 59
GNOME (GNU Object Model Environment), 7
icons, 61
KDE Plasma, 7, 58
logout options, 8
LXDE, 59
menus, 61
panels, 61
program launchers, 8
review question answers, 346–347
searches, 61
terminals, 61
window controls, 8
Xfce, 7, 59

desktops
menus, 66
multiple, 8

devices, USB, 137–138
DHCP (Dynamic Host Configuration Protocol),

322, 328–329
servers, 52

dig command, 332

368 directories – editors

directories
/bin, 149
configuration, 148–149
creating, 161–162
deleting, 162–163
/etc, 148–149
executable, 149
FHS, 147–149
home, 64, 253–254
library directories, 149
managing, 163–164
path, 95
/sbin, 149
starting point directory, 172
/usr, 149
/usr/bin, 149
/usr/local/bin, 149
/usr/local/sbin, 149
/usr/sbin, 149
/var/log, 209–210
viewing, 315

disks, 125–126
interfaces, 126
NVMe (Non-volatile Memory Express), 126
optical, 133–134
partitioning, 127

APM (Apple Partition Map), 128
extended partitions, 127
fdisk family, 129
filesystem issues, 130–133
GPT, 128
libparted-based tools, 129
logical partitions, 127
primary partitions, 127

PATA (parallel ATA), 126
removable, 133–134
SAS (Serial Attached SCSI), 126
SATA (Serial ATA), 126
SCSI (Small Computer System Interface), 126
sectors, 127

display
aspect ratio, 136
hardware, 136–137
X Window System, 134–135

distributed computing, 20
distributions, 14

administrator skill requirements, 16
Arch, 15
CentOS, 15
Debian, 15
Fedora, 15
Gentoo, 15
Mint, 15
new, 47
openSUSE, 15

packages, 16
platforms, 17
Red Hat Enterprise, 15
release cycle, 16, 17–18
selecting, 17
setup, 364
Slackware, 15
SUSE Enterprise, 15
types, 17
Ubuntu, 15

DNS (Domain Name System)
configuration, manual, 322–323
servers, 52

address, 320
documentation

authors, 112
build directories, 109
consultants, 113
file formats, 111–112
forums, 113
IRC (Internet Relay Chat), 113
loading, 109–112
mailing lists, 113
online sources, 112
web searches, 113

dollar sign ($) prompt, 5
DOS, 45
DoS (denial-of-service) attack, 77
dot files, 314
dpkg command, 201
dpkg package tool, 81
Draw (Apache OpenOffice), 69
Draw (LibreOffice), 69
drivers

fglrx, 136
installation, 139–140
kernel and, 138–139
locating, 139–140
nvidia, 136

DVR (digital video recorder), 19
DVRs (digital video recorders), 50

E
e-book readers, 50
echo command, 237
editors

emacs, 218, 219
Geany, 219
gedit, 219
Kate, 219
KWrite, 219
nano, 218
review question answers, 353–354

emacs text editor – filesystems 369

selecting, 218–219
vi, 218

emacs text editor, 218, 219
email

Evolution, 68
KMail, 68
Mutt, 68
Thunderbird, 68

embedded computers, 50–51
embedded systems, 18

Android and, 18
IoT devices and, 19
network appliances and, 18–19
TiVo and, 19

encrypted versus hashed, 255
environment setup, 364
environment variables, 240–241
environments, nonrepudiation environment, 265
escapes, expressions, 169
/etc, 148–149
/etc/shadow, 254–256
ethtool, 324–325
EULAs (end-user license agreements), 30
Evolution, 68
executable directories, 149
execute permissions, 313
exit status, variables, 241
exit value, scripts, 245–246
expressions

conditional, 241–242
case statement, 242–243

conditional expressions, loops, 243–244
regular expressions, 168–170

bracket expressions, 169
escapes, 169
parentheses, 170
range expressions, 169
repetition, 169
repetition operators, 169
single characters, 169
start/end of line, 169
strings, 168
multiple, 169
text lines, 169

extended partitions, 127
extended regular expressions, 168

F
fair use, copyright and, 29
FDL (Free Documentation License), 33
Fedora, 15
fglrx driver, 136
FHS (Filesystem Hierarchy Standard), 146–147, 236

directories, 147–149

file management
FHS (Filesystem Hierarchy Standard), 146–147
review question answers, 349–351
system files, 144–146
user files, 144–146

file managers, 8, 63–64
GNOME Files, 64

Home, 64
properties, 65
Starred, 64

ownership, setting, 301
permissions, setting, 308–309

file servers, 52, 75
file type codes, 305
files

absolute references, 152–154
archive files, 183–184
batch files, 234
case sensitivity, 160–161
changing, 151–152
compression, 187–188

lossless, 188
lossy, 188
zip, 188–190

copying, 155–157
creating, 154–155
deleting, 159
formats, documentation, 111–112
hiding, 314
ISO files, 364
links

hard, 157–158
symbolic, 158

listing, 149–151
log files, 208

rotating, 209
moving, 157
relative references, 152–154
renaming, 157
shareable, 146
static, 146
text files, 216

editor selection, 218–219
extracting, 175
review question answers, 353–354
role of, 216–218
sorting text, 176
Unicode, 216

unshareable, 146
variable, 146
wildcards, 160
word count, wc command, 174

filesystems
btrfs, 131
ext2fs, 130

370 find command – host information

ext3fs, 130
ext4fs, 131
FAT (File Allocation Table), 131
HFS (Hierarchical File System), 132
ISO-9660, 132
JFS (Journaled File System), 131
NTFS (New Technology File System), 132
reiserfs, 131
root, 152
UDF (Universal Disk Format), 132
XFS, 131

find command, 110, 172–173, 236
Firefox, 67
FLOSS (free/libre open source software), 34
Flow (Calligra), 69
for loop, 243
foreground, 96
FOSS (free and open source software), 34
free software, 31

versus freeware, 48
freeware, 31, 48

versus free software, 48
FSF (Free Software Foundation), 10, 28, 31

FLOSS (free/libre open source software), 34
FOSS (free and open source software), 34
free software, 31
info pages, 107

function keyword, 244
functions, 244

G
gateways, 320
GCC (GNU Compiler Collection), 79
gcc program, 79
Geany editor, 219
gedit text editor, 219
Gentoo, 15
getent passwd command, 257–258, 267
GiB (gigabit), 121
GID (group ID), 253, 300

cross installation, 303
GIMP (GNU Image Manipulation

Program), 70
GNOME (GNU Object Model Environment), 3,

7, 10, 59
terminal, launching, 90

GNOME Files, 64
Home, 64
nautilus, 301
properties, 65
Starred, 64

GNU (GNU’s Not Unix), 10, 46
FDL (Free Documentation License), 33

GNU Project, 10
Google Cloud, 71
Google Play, 72
GPL (General Public License), 30, 32–33, 37

LGPL (Lesser GPL), 33
GPS (global positioning system), 51
GPU (graphics processing unit), 120
graphical tools, networks, 321–323
grep command, 170–172, 236
groups, 258–259, 300

fields
GID, 259
name, 259
password, 259
user list, 259

managing
GUI tools and, 291–293
from the shell, 294–295

project groups, 274
review question answers, 357–358
user groups, 274

GRUB (Grand Unified Bootloader), 97
GUIs (graphical user interfaces), 3, 4

desktop environments, 7
programs, running, 95
tools, account creation, 278–280

gzip, 187

H
hard links, 157–158
hardware, 12

CPU, 120–122
disks, 125–126

filesystems, 130–133
interfaces, 126
optical, 133–134
partitioning, 127–130
removable, 133–134

display, 136–137
motherboard, 123–125
power supply, 125
review question answers, 348–349

hash mark (#) prompt, 5
hashbang, 234
hashed, versus encrypted, 255
hashpling, 234
header files, C, 79
hidden bits, 314
history command, 99
home directory, 64, 253–254
host address, 320
host command, 331
host information, 331–333

hybrid cloud computing – licensing 371

hybrid cloud computing, 20
hyperlinks, man pages, 106–107

I
i3 CPUs, 121
i5 CPUs, 121
i7 CPUs, 121
IaaS (infrastructure as a service), 21–22, 71
ICMP (Internet Control Message Protocol),

330–331
icons, 61
id command, 260
IEEE (Institute of Electrical and Electronics

Engineers), 128
if keyword, 241–242
ifconfig, 324
ImageMagick, 70
Impress (Apache OpenOffice), 69
Impress (LibreOffice), 69
info pages, 106

FSF (Free Software Foundation), 107
nodes, 107
purpose, 106–107
reading, 107–109

install command, 200
installation

drivers, 139–140
servers, 76–77

installers, 14
Intel Core CPUs, 121
interpreted languages, 78–79
interpreters, 11
IoT (Internet of Things)

devices, 19
monitors, 50

ip, 324, 325–327
$ip, 239
IP addresses, schemes, 321
IPv6, 330
ISC (Internet Software Consortium), 52
ISO files, 364
Itanium processor, 122
iwconfig, 324

J
Java, 80
JavaScript, 80

K
Kate editor, 219
KDE (K Desktop Environment), 3

KDE Plasma, 7, 10
Kdenlive, 70
Kerberos realms, 258
kernel ring buffer, 211
kernels, 2

drivers, 138–139
improvements, 47
interchangeability, 3
Linux, 3, 14
microkernel, 46
monolithic, 46
patches, 14
process hierarchy, 202–203
review question answers, 346

Kexi (Calligra), 69
keywords

function, 244
if, 241–242
test, 242

KMail, 68
Konqueror, 67
ksh shell, 88
KVM switches, 136
KWrite editor, 219

L
laptops, 51–52
LaTeX, 69
launching programs, 61–63
LDAP (Lightweight Directory Access

Protocol), 258
Lessig, Lawrence, 36
LGPL (Lesser GPL), 33, 37
libraries, 4

directories, 149
packages, 196

LibreOffice, 69
licensing

copyleft, 32
copyright terms and, 30
dual licensing, 38
EULAs, 30
FDL (Free Documentation License), 33
GPL, 30
GPL (General Public License), 32–33
LGPL (Lesser GPL), 33
open source licenses, 36–37

Apache, 37
BSD, 37
GNU GPL, 37
LGPL, 37
MIT, 37

permissive, 34

372 links – nano text editor

reciprocal licensing, 32
review question answers, 343–344
site license, 30
Windows, 12

links, files
hard links, 157–158
symbolic, 158

Linux
history, 44–46
kernel, 3, 14
OSs, 14–15
Red Hat, 47
software integration, 49–50
Unix comparison, 9–11
Windows comparison, 12–13

Linux Kernel, 10
Linx, macOS comparison, 11–12
load average, 206
local loopback interface, 327
locate command, 110
log files, 208

creating, 210
entries, verbose, 210–211
kernel ring buffer, 211
locating, 209–210
rotating, 209
system log daemon, 210

log ins, text-mode interfaces, 5
logical partitions, 127
logout options, 8
loops

for, 243
while, 244

lossless compression, 188
lossy compression, 188
ls command, 6, 149–150, 304
LXDE (Lightweight X11 Desktop Environment),

59
Lynx, 67
LyX, 69

M
macOS, Linux comparison, 11–12
mail command, 237
man pages, 99–100

apropos utility, 100
author, 103
bugs, 103
commands, 94
description, 103
files, 103
history, 103
hyperlinks, 106–107

less, 104–106
name, 103
options, 103
purpose, 100
reading, 102–104
searches, 102
sections, 100–101
synopsis, 103
whatis, 100, 102

Math (Apache OpenOffice), 69
Math (LibreOffice), 69
memory

leaks, 207–208
processes, 207–208
swap space, 208

menus, 61
Metro, 13
microkernel, 46
Microsoft, 67–68
Minix OS, 46
Mint, 15

Users and Groups account tool, 256–257
MIPS (Microprocessor without Interlocked

Pipelined Stages), 122
MIT (Massachusetts Inst. of Technology), 37
mkdir command, 161–162
mobile applications, 71–72
mobile phones, 50
monolithic kernel, 46
motherboard, 123–125
moving, files, 157
MS-DOS, 45
multicore processors, 122
multimedia applications

Audacity, 69
Blender, 69
Castero, 69
GIMP, 70
ImageMagick, 70
Kdenlive, 70
OBS (Open Broadcaster Software), 70

multitasking
cooperative multitasking, 45
preemptive multitasking, 45

Mutt, 68
mv command, 157
MySQL, 52
MythTV, 50

N
nano text editor, 218, 219–221

conventions, 221
creating entries, 222–223

nautilus – output 373

key combinations, 221
Meta key, 221
metacharacters, 221
saving changes, 223–224
shortcut list, 221
status bar, 221
title bar, 221

nautilus, 301
netstat command, 334–336
network account databases, 258
Network Manager, 321–323

command-line tools
nmcli, 323–324
nmtui, 323–324

Network Connections dialog, 322
wireless connection, 321

network subnet address, 320
networks

command-line tools
ethtool, 324–325
ifconfig, 324
ip, 324, 325–327
iwconfig, 324
Network Manager, 323–324
route, 324, 328

DHCP (Dynamic Host Configuration
Protocol), 328–329

DNS (Domain Name system), 321
gateways, 321
graphical tools, 321–323
host command, 331
host information, 331–333
IP addresses, 321
local loopback interface, 327
netstat command, 334–336
ping, 330
ping6, 330
review question answers, 359–362
routers, 321
sockets, 337
test packets, 330–331
wireless, 321

Wi-Fi drivers, 329
NFS (Network File System), 52

review question answers, 346
NGINX, 76
nmcli, 323–324
nmtui, 323–324
nodes, info pages, 107
nonrepudiation environment, 265
NTP (Network Time Protocol), 52
nvidia driver, 136

O
object-oriented programming language, 80
OBS (Open Broadcaster Software), 70
octal numbers, 306

sticky bits, 312
ODF (OpenDocument Format), 69
office packages

Apache OpenOffice, 69
Calligra, 68–69
LibreOffice, 69

open source code, 34
commercial software and, 47–48
overview, 47–49

open source code projects
desktop environments, 10
GNU Project, 10
Linux Kernel, 10
server programs, 10
user productivity programs, 10
Xorg-X11, 10

open source drivers, 39
open source licenses, 36–37

Apache, 37
BSD (Berkeley Source Definition), 37
GNU GPL, 37
LGPL, 37
MIT (Massachusetts Inst. of Technology), 37

open source software, 48
business models, 38–39
code and, 49
defining, 35–36

openSUSE, 15
OpenWrt, 19
Opera, 67
operators

redirection, 178–181
repetition, 169

optical disks, 133–134
OS (operating systems), 2

command-line shells, 3
GUIs (graphical user interfaces), 3
kernels, 2
libraries, 4
Linux-based, 14–15
productivity programs, 4
review question answers, 342–343
shells, 3
utility programs, 4

OSI (Open Source Initiative), 28, 33–34
permissive licenses, 34

output, redirecting, 178
operators, 178–181
pipes/pipelines, 181–182

374 ownership – processor

ownership, 300
commands

chgrp, 303
chown, 302–303

permissions, 300
review question answers, 358–359
setting

file managers, 301
in a shell, 302–303

P
PaaS (platform as a service), 22
package database, 197
package management, 196–197

APT (Advanced Package Tool), 200
Debian systems, 200–202
package databases, 197
package systems, 197–198
Red Hat systems, 199–200
Synaptic, 201

package systems, 197–198
repositories, 198

packages, 16
binary, 197
library packages, 196

panels, 61
parameters, 237
parent programs, 202
partitioning disks, 127

APM (Apple Partition Map), 128
extended partitions, 127
fdisk family, 129
filesystem issues, 130–133
GPT (GUID partition table), 128
libparted-based tools, 129
logical partitions, 127
primary partitions, 127

passwords, 253, 275
salted hash, 254
selecting, 275–277

case, 276
haystack, growing, 276
numbers in, 276
punctuation in, 276
reverse order, 276

storage, 254
VTs (virtual terminals), 91

patches, 14
patents, 29
path, 95

directories, 95
PC-DOS, 45
PDF (Portable Document Format), 48

Perl, 80
permissions, 304

directory execute bits, 308
directory write permissions, 308
execute, special, 313
file type codes, 305
groups, 300
interpretations, 307
ls command, 304
octal code, 313
review question answers, 358–359
root, 308
-rwxr-xr-x, 306
setting

file managers, 308–309
in a shell, 309–310

SGID (set group ID), 313
sticky bits, 311–312
SUID (set user ID), 313
symbolic code, 313
symbolic links, 308
symbolic representation, 305
umask, 310

permissive licenses, 34
PHP, 80
ping, 330
ping6, 330
pipes/pipelines, output redirection,

181–182
PMS (package management system), 81

tools
apt-get, 82
dpkg, 81
rpm, 82
yum, 82

ports, 72
POSIX time, 254
Postfix, 52
pound bang, 234
power supply, 125
PowerPC, 122
preemptive multitasking, 45
primary partitions, 127
print servers, 52
private cloud computing, 20, 71
processes

commands, top, 205–207
hierarchy, 202–203
identifying, 205–207
ps command, 203–205
review question answers, 352–353
running, 203–205

identifying, 205–207
memory use, 207–208

processor. See CPU

productivity programs – scripts 375

productivity programs, 4
locating, 66

program launchers, 8
programming languages

assembly language, 79
C, 79
C++, 80
compiled, 78
interpreted, 78–79
Java, 80
JavaScript, 80
object-oriented, 80
Perl, 80
PHP, 80
Python, 80
Shell scripting, 81

programs
running, 92

background, 96–97
GUI programs, 95
text-mode programs, 94–95

text-mode syntax, 93–94
project groups, 274
properties, GNOME Files, 65
protocols

ports, 72
RFCs (requests for comment), 72

ps command, 203–205
public cloud computing, 20, 70–71
Python, 80

R
RAM, swap space, 29
range expressions, 169
reciprocal licensing, 32
recursive acronyms, 10
Red Hat Enterprise, 15
Red Hat Linux, 47
Red Hat systems, package management,

199–200
redirection, 178

operators, 178–181
pipes/pipelines, 181–182

redistribution, 35
regular expressions, 168–170

bracket expressions, 169
escapes, 169
parentheses, 170
range expressions, 169
repetition, 169
repetition operators, 169
single characters, 169
start/end of line, 169

strings, 168
multiple, 169

text lines, 169
release cycle, 17–18

distributions, 16
remote login servers, 52
removable disks, 133–134
renaming, files, 157
repetition operators, 169
repositories, 81

package systems and, 198
RFC (request for comment), 72
rm command, 159, 311
rmdir command, 162–163
root account, 252, 263

administrative tasks, 263
commands

su, 264
sudo, 264

hash mark prompt, 265
permissions, 308
privileges, acquiring, 264–266
security, 266–267
super user, 263

root filesystem, 152
root user, 5
route, 324, 328
router, default, 320
RPM (RPM Package Manager), 16
rpm command, 199–200
rpm package tool, 82
-rwxr-xr-x permission, 306

S
SaaS (software as a service), 22–23
salted hash, 254
Samba, 52
/sbin, 149
scripts, 81, 234

& (ampersand), 236
administrator scripts, 245
arguments, 237
commands, 235

cut, 236
find, 236
grep, 236
useradd, 237

exit value, 245–246
expressions, conditional, 241–242
functions, 244
hashbang, 234
hashpling, 234
parameters, 237

376 searches – SUSE Enterprise

pound bang, 234
review question answers, 354–355
shebang, 234
starting, 234–235
startup scripts, 14
variables, 237, 238

assigning, 239–240
environment variables, 240–241
exit status, 241
$ip, 239

searches, 61
commands

cat, 177–178
cut, 175
find, 172–173
grep, 170–172
sort, 176–177
wc, 174

productivity software, 66
review question answers, 351–352

security
DoS (denial-of-service) attack, 77
review question answers, 356
servers, 77–78

sed command, 237
sendmail, 52
server computers, 52–53, 75
server programs, 10

programs, 72–75
protocols, 72–75

servers
clients, 75
file servers, 75
installation, 76–77
launching, 76–77
security, 77–78
super servers, 77
web servers, 76

SGID (set group ID), 313
shareable files, 146
shareware, 48
shebang, 234
Sheets (Calligra), 68
shell, 3

Bash (Bourne Again Shell), 88
command completion, 97–98
command history, 98–99
default shell, 254
ksh, 88
permissions, setting, 309–310
scripts (See scripts)
starting, 88
tcsh, 88
zsh, 88

shell quoting, 172

SI units, 128
site license, 30
Slackware, 15

tarballs, 16
sockets, 305, 337
software, 12

alpha, 18
beta, 18
browsers

Chrome, 67
Firefox, 67
Konqueror, 67
Lynx, 67
Microsoft, 67–68
Opera, 67
Web, 67

copyright laws, 28–30
email

Evolution, 68
KMail, 68
Mutt, 68
Thunderbird, 68

freeware, 48
multimedia applications

Audacity, 69
Blender, 69
Castero, 69
GIMP, 70
ImageMagick, 70
Kdenlive, 70
OBS (Open Broadcaster Software), 70

office packages
Apache OpenOffice, 69
Calligra, 68–69
LibreOffice, 69

packages, 81
repositories, 81

productivity, 66
shareware, 48

sort command, 176–177
source code, 11
SPARC (Scalable Processor Architecture), 122
SSH (Secure Shell), 52
Stage (Calligra), 68
standard users, 263
starting point directory, 172
startup scripts, 14
static files, 146
sticky bits, permissions, 311–312
strings, 168

grep command, 170–172
SUID (set user ID), 313
super servers, 77
support tools, 47
SUSE Enterprise, 15

swap space – user productivity programs 377

swap space, 29, 208
switches, 94
symbolic links, 158

sticky bits, 312
Synaptic, 201
syntax, commands, 93
system accounts, 252
system files, 144–146
system host name, 320
system log daemon, 210
system messaging, 210
system users, 263

T
tables of equivalents, 66
Tanenbaum, Andrew, 46
tar program, 183–184

commands, 184
qualifiers, 184–185

tarballs, 16, 183–184
tcsh shell, 88
terminal

launching, 88–91
tabs, 91
text-mode interfaces, 6
VTs (virtual terminals), 91

terminal program, shell, starting, 88
terminals, 61
test keyword, 242
test packets, networks, 330–331
text

extracting from files, 175
sorting, 176

text files, 216
editors

emacs, 218, 219
Geany, 219
gedit, 219
Kate, 219
KWrite, 219
nano, 218, 219–224
selecting, 218–219
vi, 218, 224–229

review question answers, 353–354
role of, 216–218
Unicode, 216
vim, 225–226

text-mode user interfaces, 5
(hash mark) prompt, 5
$ (dollar sign) prompt, 5
display size, 6
login, 91–92
ls command, 6

programs, running, 94–95
root user, 5
terminal, 6

Thunderbird, 68
time servers, 52
TiVo, 50
Tomato, 19
tools, package

apt-get, 82
dpkg, 81
rpm, 82
yum, 82

top command, 205–207
Torvalds, Linux, 3, 45–46
trademarks, 30

U
Ubuntu, 15
UEFI (Unified Extensible Firmware Interface),

128
UID (user identification), 253, 300

cross installation, 303
umask, 310
Unicode, 216
Unix, 46

forks, 9
Linux comparison, 9–11
open source code projects

desktop environments, 10
GNU Project, 10
Linux Kernel, 10
server programs, 10
user productivity programs, 10
Xorg-X11, 10

tools, 14
Unix Epoch time, 254
unprivileged accounts, 263
unprivileged users, 263
unshareable files, 146
USB (Universal Serial Bus), 126

devices, 137–138
user accounts, 252

review question answers, 357–358
root, 263
standard users, 263
system users, 263
unprivileged accounts, 263
unprivileged users, 263

user files, 144–146
user groups, 274
user interfaces, 4

text-mode, 5–6
user productivity programs, 10

378 user types – zsh shell

user types, 263–264
useradd command, 280–282
userdel command, 291
usernames, 253
Users and Groups account tool (Mint), 256–257
/usr, 149
/usr/bin, 149
/usr/local/bin, 149
/usr/local/sbin, 149
/usr/sbin, 149
UTF (Unicode Transformation Format), 217
utility programs, 4

V
variable files, 146
variables, 237, 238

assigning, 239–240
environment variables, 240–241
exit status, 241
$ip, 239

/var/log directory, log files, 209–210
VGA (Video Graphics Array), 136
vi text editor, 218

case, 228
modes, 224

colon commands, 225
Command Mode, 225
edit, 225
entry, 225
Ex Mode, 225
Insert Mode, 225
normal, 225

open text, 228
saving changes, 229
searches, 228
text editing procedures, 226–229
undo, 228

vim text editor, 225–226
virtual networks, local loopback interface, 327
virtualized environment, 364
VMS (Virtual Memory System), 45

VNC (Virtual Network Computing), 52
VTs (virtual terminals), 91, 261

W
wc command, 174
Web, 67
web browser. See browsers
web servers, 76

Apache HTTPD, 76
NGINX, 76

whatis utility, 100
whereis command, 110
while loop, 244
who command, 261–263
who utility, modifying accounts, 283
whoami, 260, 267
widget sets, 59
Wi-Fi drivers, 329
wildcards, files, 160
window controls, 8
Windows, Linux comparison, 12–13
wireless networks, 321

Wi-Fi drivers, 329
Words (Calligra), 68
workstations, 51
Writer (Apache OpenOffice), 69
Writer (LibreOffice), 69

X–Y–Z
X Window System, 3, 10
x86 CPUs, 121
x86-64 CPUs, 121
xargs command, 182–183
Xfce, 7, 10, 59
Xorg-X11, 10
xz, 187

yum package tool, 82

zsh shell, 88

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	LPI Linux Essentials Study Guide
	Acknowledgments
	About the Authors
	Contents at a Glance
	Contents
	Introduction
	Assessment Test
	Answers to Assessment Test
	Chapter 1 Selecting an Operating System
	What Is an OS?
	What Is a Kernel?
	What Else Identifies an OS?

	Investigating User Interfaces
	Using a Text-Mode User Interface
	Using a Graphical User Interface

	Where Does Linux Fit in the OS World?
	Comparing Linux to Unix
	Comparing Linux to macOS
	Comparing Linux to Windows

	What Is a Distribution?
	Creating a Complete Linux-Based OS
	A Summary of Common Linux Distributions
	Understanding Release Cycles

	Embedded Linux Systems
	Linux in the Cloud
	What Is Cloud Computing?
	What Are the Cloud Services?

	Summary
	Exam Essentials
	Review Questions

	Chapter 2 Understanding Software Licensing
	Investigating Software Licenses
	Exploring Copyright Protection and Software
	Using Licenses to Modify Copyright Terms

	Looking at the Free Software Foundation
	Understanding the FSF Philosophy
	Examining Free Software and the GPL

	Looking at the Open Source Initiative
	Understanding the Open Source Philosophy
	Defining Open Source Software

	Looking at the Creative Commons
	Using Open Source Licenses
	Understanding Open Source Licenses
	Understanding Open Source Business Models

	Summary
	Exam Essentials
	Review Questions

	Chapter 3 Investigating Linux’s Principles and Philosophy
	Linux Through the Ages
	Understanding Linux’s Origins
	Seeing Today’s Linux World

	Using Open Source Software
	Understanding Basic Open Source Principles
	Linux as a Software Integrator

	Understanding OS Roles
	Looking At Embedded Computers
	Exploring Desktop and Laptop Computers
	Investigating Server Computers

	Summary
	Exam Essentials
	Review Questions

	Chapter 4 Using Common Linux Programs
	Using a Linux Desktop Environment
	Choosing a Desktop Environment
	Launching Programs
	Using a File Manager

	Working with Productivity Software
	Finding the Right Tool for the Job
	Using a Web Browser
	Using Email Clients
	Using Office Tools
	Using Multimedia Applications
	Using Linux for Cloud Computing
	Using Mobile Applications

	Using Server Programs
	Identifying Common Server Protocols and Programs
	Focusing on Web Servers
	Installing and Launching Servers
	Securing Servers

	Managing Programming Languages
	Choosing a Compiled vs. an Interpreted Language
	Identifying Common Programming Languages

	Handling Software Packages
	Understanding Software Packages
	Identifying Common Package Tools

	Summary
	Exam Essentials
	Review Questions

	Chapter 5 Getting to Know the Command Line
	Starting a Command Line
	Launching a Terminal
	Logging into a Text-Mode Console

	Running Programs
	Understanding Text-Mode Program Syntax
	Running Text-Mode Programs
	Running GUI Programs
	Running Programs in the Background

	Using Shell Features
	Using Command Completion
	Using Command History

	Getting Help Using Man Pages
	Understanding the Purpose of Man Pages
	Locating Man Pages by Section Number
	Searching for a Man Page
	Reading Man Pages
	Using less

	Getting Help Using Info Pages
	Understanding the Purpose of Info Pages
	Reading Info Pages

	Finding Additional Documentation
	Locating Program Documentation on Your Computer
	Locating Program Documentation Online
	Consulting Experts

	Summary
	Exam Essentials
	Review Questions

	Chapter 6 Managing Hardware
	Learning About Your CPU
	Understanding CPU Families
	Identifying Your CPU

	Identifying Motherboard Capabilities
	Sizing Your Power Supply
	Understanding Disk Issues
	Disk Interfaces
	Partitioning a Disk
	Understanding Filesystem Issues
	Using Removable and Optical Disks

	Managing Displays
	Understanding the Role of X
	Using Common Display Hardware

	Handling USB Devices
	Managing Drivers
	Understanding Types of Drivers
	Locating and Installing Drivers

	Summary
	Exam Essentials
	Review Questions

	Chapter 7 Managing Files
	Understanding Where Things Go
	User Files vs. System Files
	The Filesystem Hierarchy Standard
	Important Directories and Their Contents

	Exploring Files and Directories
	Obtaining File Listings
	Changing Directories
	Using Absolute and Relative File References

	Manipulating Files
	Creating Files
	Copying Files
	Moving and Renaming Files
	Using Links
	Deleting Files
	Using Wildcards
	Understanding Case Sensitivity

	Manipulating Directories
	Creating Directories
	Deleting Directories
	Managing Directories

	Summary
	Exam Essentials
	Review Questions

	Chapter 8 Searching, Extracting, and Archiving Data
	Using Regular Expressions
	Searching For and Extracting Data
	Using grep
	Using find
	Using wc
	Using cut
	Using sort
	Using cat

	Redirecting Input and Output
	Using Basic Redirection Operators
	Using Pipes
	Generating Command Lines

	Archiving Data
	Using tar
	Using Compression
	Using zip

	Summary
	Exam Essentials
	Review Questions

	Chapter 9 Exploring Processes and Process Data
	Understanding Package Management
	Linux Package Management Principles
	Understanding Package Systems
	Managing Red Hat Systems
	Managing Debian Systems

	Understanding the Process Hierarchy
	Identifying Running Processes
	Using ps to Identify Processes
	Using top to Identify Processes
	Measuring Memory Use

	Using Log Files
	Locating Log Files
	Producing More Verbose Log File Entries
	Examining the Kernel Ring Buffer

	Summary
	Exam Essentials
	Review Questions

	Chapter 10 Editing Files
	Understanding the Role of Text Files
	Choosing an Editor
	Editing Files with nano
	Using Text Editor Conventions
	Exploring Basic nano Text-Editing Procedures
	Saving Your Changes from nano

	Editing Files with vi
	Understanding vi Modes
	Exploring Basic vi Text-Editing Procedures
	Saving Your Changes from vi

	Summary
	Exam Essentials
	Review Questions

	Chapter 11 Creating Scripts
	Beginning a Shell Script
	Using Commands
	Using Arguments
	Using Variables
	Using Conditional Expressions
	Using Loops
	Using Functions
	Setting the Script’s Exit Value
	Summary
	Exam Essentials
	Review Questions

	Chapter 12 Understanding Basic Security
	Understanding Accounts
	Understanding Account Features
	Identifying Accounts
	Understanding Groups

	Using Account Tools
	Discovering Your Own Identity
	Learning Who’s Online

	Working as root
	Understanding User Types
	Acquiring root Privileges
	Using root Privileges Safely

	Summary
	Exam Essentials
	Review Questions

	Chapter 13 Creating Users and Groups
	Creating New Accounts
	Deciding on a Group Strategy
	Selecting a Good Password
	Creating Accounts Using GUI Tools
	Creating Accounts from the Shell

	Modifying Accounts
	Deciding When to Modify Accounts
	Checking for Logged-in Users
	Modifying Accounts Using GUI Tools
	Modifying Accounts from the Shell

	Deleting Accounts
	Avoiding Account Deletion Pitfalls
	Deleting Accounts Using GUI Tools
	Deleting Accounts from the Shell

	Managing Groups
	Managing Groups Using GUI Tools
	Managing Groups from the Shell

	Summary
	Exam Essentials
	Review Questions

	Chapter 14 Setting Ownership and Permissions
	Setting Ownership
	Understanding Ownership
	Setting Ownership in a File Manager
	Setting Ownership in a Shell

	Setting Permissions
	Understanding Permissions
	Setting Permissions in a File Manager
	Setting Permissions in a Shell
	Setting the umask

	Using Special Permission Bits and File Features
	Using Sticky Bits
	Using Special Execute Permissions
	Hiding Files from View
	Viewing Directories

	Summary
	Exam Essentials
	Review Questions

	Chapter 15 Managing Network Connections
	Configuring Network Features
	Graphical Tools
	Command-Line Tools

	Basic Network Troubleshooting
	Sending Test Packets
	Finding Host Information

	Advanced Network Troubleshooting
	The netstat Command
	Examining Sockets

	Summary
	Exam Essentials
	Review Questions

	Appendix A Answers to Review Questions
	Chapter 1: Selecting an Operating System
	Chapter 2: Understanding Software Licensing
	Chapter 3: Investigating Linux’s Principles and Philosophy
	Chapter 4: Using Common Linux Programs
	Chapter 5: Getting to Know the Command Line
	Chapter 6: Managing Hardware
	Chapter 7: Managing Files
	Chapter 8: Searching, Extracting, and Archiving Data
	Chapter 9: Exploring Processes and Process Data
	Chapter 10: Editing Files
	Chapter 11: Creating Scripts
	Chapter 12: Understanding Basic Security
	Chapter 13: Creating Users and Groups
	Chapter 14: Setting Ownership and Permissions
	Chapter 15: Managing Network Connections

	Appendix B Setting Up a Linux Environment
	Index
	EULA

