

Start Kubernetes
Peter Jausovec

Version 1.0.0

Table of Contents
What do I need to start with Kubernetes? . 1

Which Kubernetes cluster should I use?. 2

Kubernetes and contexts . 3

What is container orchestration? . 4

What is the difference Kubernetes and Docker? . 5

Kubernetes vs. Docker Swarm? . 5

Kubernetes architecture . 6

Master nodes . 7

Worker nodes . 8

Kubernetes Resources . 10

Labels and selectors . 10

Annotations . 12

Working with Pods . 13

Managing Pods with ReplicaSets . 16

Creating Deployments. 21

Accessing and exposing Pods with Services . 33

Exposing multiple applications with Ingress . 50

Organizing applications with namespaces . 72

Jobs and CronJobs . 76

Configuration. 85

Configuring application through arguments . 86

Creating and using ConfigMaps . 89

Storing secrets in Kubernetes . 99

Stateful Workloads. 106

What are Volumes? . 106

Persisting data with Persistent Volumes and Persistent Volume Claims . 109

Running stateful workloads with StatefulSets . 117

Organizing Containers . 125

Init containers . 125

Sidecar container pattern . 128

Ambassador container pattern . 133

Adapter container pattern. 137

Lifecycle Hooks . 139

Application Health . 142

Application Liveness probe. 143

Application Startup probe . 147

Application Readiness probe . 148

Security in Kubernetes . 151

What are service accounts?. 151

Using Role-Based Access Control (RBAC) . 155

Security contexts . 160

Pod security policies . 170

Network Policies . 175

Scaling and Resources. 185

Scaling and autoscaling Pods . 185

Resource requests and limits . 186

Resource quotas . 189

Horizontal scaling . 192

Using affinity, taints, and tolerations . 197

Extending Kubernetes. 201

Using custom resource definitions (CRDs). 201

Kubernetes Operators. 212

Practical Kubernetes . 218

Using an Ingress controller for SSL termination . 219

Deploying the sample application. 219

Deploying cert-manager . 220

Ambassador . 223

What do I need to start with Kubernetes?
This book is a mix of theoretical explanations and practical examples. You’ll get the most out of this
book if you follow along with the practical examples. To do that, you will need the following tools:

• Docker Desktop

• Access to a Kubernetes cluster, see Which Kubernetes cluster should I use?

• Kubernetes CLI (kubectl)

For some sections, you might also need other tools that I mention in the specific chapters.

1

https://www.docker.com/products/docker-desktop
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

Which Kubernetes cluster should I use?
You have multiple choices. The most 'real-world' option would be to get a Kubernetes cluster from
one cloud provider. However, for numerous reasons, that might not be an option for everyone.

The next best option is to run a Kubernetes cluster on your computer. Assuming you have some
memory and CPU to spare, you can use one of the following tools to run a single-node Kubernetes
cluster on your computer:

• Docker Desktop

• kind

• Minikube

You could go with any of the above options. Creating Kubernetes ReplicaSets, Deployments, and
Pods works with any of them. You can also create Kubernetes Services. However, things get a bit
complicated when you’re trying to use a LoadBalancer service type.

With the cloud-managed cluster, creating a LoadBalancer service type creates an actual instance of
the load balancer, and you would get an external/public IP address you can use to access your
services.

The one solution from the above list closest to simulating the LoadBalancer service type is Docker
Desktop. With Docker Desktop your service gets exposed on an external IP, localhost. You can
access these services using both kind and Minikube as well; however, it requires you to run
additional commands.

For that purpose, I’ll be mostly using Docker Desktop. I’ll specifically call out when I am using either
Minikube or a cloud-managed cluster. You can follow the installation instructions for all options
from their respective websites.

2

https://www.docker.com/products/docker-desktop
https://kind.sigs.k8s.io/docs/user/quick-start/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://kind.sigs.k8s.io/docs/user/quick-start/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://www.docker.com/products/docker-desktop
https://kubernetes.io/docs/tasks/tools/install-minikube/

Kubernetes and contexts
After you’ve installed one of these tools, make sure you download the Kubernetes CLI. Kubernetes
CLI is a single binary called kubectl, and it allows you to run commands against your cluster. To
make sure everything is working correctly, you can run kubectl get nodes to list all nodes in the
Kubernetes cluster. The output from the command should look like this:

$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
docker-desktop Ready master 63d v1.16.6-beta.0

You can also check that the context is set correctly to docker-desktop. Kubernetes uses a
configuration file called config to find the information it needs to connect to the cluster. Kubernetes
CLI reads this file from your home folder - for example $HOME/.kube/config. Context is an element
inside that config file, and it contains a reference to the cluster, namespace, and the user. If you’re
accessing or running a single cluster, you will only have one context in the config file. However,
you can have multiple contexts defined that point to different clusters.

Using the kubectl config command, you can view these contexts and switch between them. You can
run the current-context command to view the current context:

$ kubectl config current-context
docker-desktop

There are other commands such as use-context, set-context, view-contexts, etc. I prefer to use a tool
called kubectx. This tool allows you to switch between different Kubernetes contexts quickly. For
example, if I have three clusters (contexts) set in the config file, running kubectx outputs this:

$ kubectx
docker-desktop
peterj-cluster
minikube

The tool highlights the currently selected context when you run the command. To switch to the
minikube context, I can run: kubectx minikube.

The equivalent commands you can run with kubectl would be kubectl config get-contexts to view
all contexts, and kubectl config use-context minikube to switch the context.

Before you continue, make sure your context is set to docker-desktop if you’re using Docker for
Mac/Windows or minikube if you’re using Minikube.

Let’s get started with your journey to Kubernetes and cloud-native world with the container
orchestration!

3

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://github.com/ahmetb/kubectx

What is container orchestration?
Containers are everywhere these days. People use tools such as Docker for packaging anything
from applications to databases. With the growing popularity of microservice architecture and
moving away from the monolithic applications, a monolith application is now a collection of
multiple smaller services.

Managing a single application has its issues and challenges, let alone managing tens of smaller
services that have to work together. You need a way to automate and manage your deployments,
figure out how to scale individual services, use the network, connect them, and so on.

The container orchestration can help you do this. Container orchestration can help you manage the
lifecycles of your containers. Using a container orchestration system allows you to do the following:

• Provision and deploy containers based on available resources

• Perform health monitoring on containers

• Load balancing and service discovery

• Allocate resources between different containers

• Scaling the containers up and down

A couple of examples of container orchestrators are Marathon, Docker Swarm and the one
discussed in this course, Kubernetes.

Kubernetes is an open-source project and one of the popular choices for cluster management and
scheduling container-centric workloads. You can use Kubernetes to run your containers, do zero-
downtime deployments where you can update your application without impacting your users, and
bunch of other cool stuff.

Figure 1. Kubernetes Numeronym

4

https://docker.com
https://mesosphere.github.io/marathon/
https://docs.docker.com/get-started/swarm-deploy/
https://kubernetes.io
https://kubernetes.io

NOTE

Frequently, people refer to Kubernetes as "K8S". K8S is a numeronym for
Kubernetes. The first (K) and the last letter (S) are the first, and the last letters in the
word Kubernetes, and 8 is the number of characters between those two letters.
Other popular numeronyms are "i18n" for internationalization or "a11y" for
accessibility.

What is the difference Kubernetes and Docker?
Using Docker, you can package your application. This package is called an image or a Docker
image. You can think of an image as a template. Using Docker, you can create containers from
your images. For example, if your Docker image contains a Go binary or a Java application, then the
container is a running instance of that application. If you want to learn more about Docker, check
out the Beginners Guide to Docker.

Kubernetes, on the other hand, is a container orchestration tool that knows how to manage Docker
(and other) containers. Kubernetes uses higher-level constructs such as Pods to wrap Docker (or
other) containers and gives you the ability to manage them.

Kubernetes vs. Docker Swarm?
Docker Swarm is a container orchestration tool, just like Kubernetes is. You can use it to manage
Docker containers. Using Swarm, you can connect multiple Docker hosts into a virtual host. You can
then use Docker CLI to talk to multiple hosts at once and run Docker containers on it.

5

https://www.learncloudnative.com/blog/2020-04-29-beginners-guide-to-docker/

Kubernetes architecture
A Kubernetes cluster is a set of physical or virtual machines and other infrastructure resources
needed to run your containerized applications. Each machine in a Kubernetes cluster is called a
node. There are two types of node in each Kubernetes cluster:

• Master node(s): this node hosts the Kubernetes control plane and manages the cluster

• Worker node(s): runs your containerized applications

Figure 2. Kubernetes Architecture

6

Master nodes
One of the main components on the master node is called the API server. The API server is the
endpoint that Kubernetes CLI (kubectl) talks to when you’re creating Kubernetes resources or
managing the cluster.

The scheduler component works with the API server to schedule the applications or workloads on
to the worker nodes. It also knows about resources available on the nodes and the resources
requested by the workloads. Using this information, it can decide on which worker nodes your
workloads end up.

Figure 3. Kubernetes Master Node

There are two types of controller managers running on master nodes.

The kube controller manager runs multiple controller processes. These controllers watch the state
of the cluster and try to reconcile the current state of the cluster (e.g., "5 running replicas of
workload A") with the desired state (e.g. "I want ten running replicas of workload A"). The
controllers include a node controller, replication controller, endpoints controller, service account
and token controllers.

The cloud controller manager runs controllers specific to the cloud provider and can manage
resources outside of your cluster. This controller only runs if your Kubernetes cluster is running in
the cloud. If you’re running Kubernetes cluster on your computer, this controller won’t be running.
The purpose of this controller is for the cluster to talk to the cloud providers to manage the nodes,
load balancers, or routes.

7

Finally, etcd is a distributed key-value store. Kubernetes stores the state of the cluster and API in the
etcd.

Worker nodes
Just like on the master node, worker nodes have different components running as well. The first
one is kubelet. This service runs on each worker node, and its job is to manage the container. It
makes sure containers are running and healthy, and it connects back to the control plane. Kubelet
talks to the API server, and it is responsible for managing resources on the node it’s running on.

When you add a new worker node to the cluster, the kubelet introduces itself to the API server and
provides its resources (e.g., "I have X CPU and Y memory"). Then, it asks the API server if there are
any containers to run. You can think of the kubelet as a worker node manager.

Kubelet uses the container runtime interface (CRI) to talk to the container runtime. The container
runtime is responsible for working with the containers. In addition to Docker, Kubernetes also
supports other container runtimes, such as containerd or cri-o.

Figure 4. Kubernetes Worker Node

The containers are running inside pods, represented by the blue rectangles in the above figure
(containers are the red rectangles inside each pod). A pod is the smallest deployable unit you can
create, schedule, and manage on a Kubernetes cluster. A pod is a logical collection of containers
that make up your application. The containers running inside the same pod also share the network
and storage space.

Each worker node also has a proxy that acts as a network proxy and a load balancer for workloads

8

https://etcd.io/
https://containerd.io/
https://cri-o.io/

running on the worker nodes. Through these proxies, the external load balancer redirects client
requests to containers running inside the pod.

9

Kubernetes Resources
The Kubernetes API defines many objects called resources, such as namespaces, pods, services,
secrets, config maps, etc.

Of course, you can also define your custom resources using the custom resource definition or CRD.

After you’ve configured Kubernetes CLI and your cluster, you should try and run kubectl api-
resources command. It will list all defined resources - there will be a lot of them.

Resources in Kubernetes can be defined using YAML. People commonly use YAML (YAML Ain’t
Markup Language) for configuration files. It is a superset of JSON format, which means you can also
use JSON to describe Kubernetes resources.

Every Kubernetes resource has an apiVersion and kind fields to describe which version of the
Kubernetes API you’re using when creating the resource (for example, apps/v1) and what kind of a
resource you are creating (for example, Deployment, Pod, Service, etc.).

The metadata includes the data that can help to identify the resource you are creating. Commonly
found fields in the metadata section include the name (for example mydeployment) and the namespace
where Kubernetes creats the resource.

Other fields you can have in the metadata section are labels and annotations. Kubernetes also adds
a couple of fields automatically after creating the resource (such as creationTimestamp, for example).

Labels and selectors
You can use labels (key/value pairs) to label resources in Kubernetes. They are used to organize,
query, and select objects and attach identifying metadata to them. You can specify labels at creation
time or add, remove, or update them later after you’ve created the resource.

Figure 5. Kubernetes Labels

The labels have two parts: the key name and the value. The key name can have an optional prefix
and the name, separated by a slash (/).

The startkuberenetes.com portion in the figure is the optional prefix, and the key name is app-name.
The prefix, if specified, must be a series of DNS labels separated by dots (.). It can’t be longer than
253 characters.

10

The key name portion is required and must be 63 characters or less. It has to start and end with an
alphanumeric character. The key name is made of alphanumerical values and can include dashes (-
), underscores (_), and dots (.).

Just like the key name, a valid label value must be 63 characters or less. It can be empty or being
and end with an alphanumeric character and can include dashes (-), underscores (_), and dots (.).

Here’s an example of a couple of valid labels on a Kubernetes resource:

metadata:
 labels:
 startkubernetes.com/app-name: my-application
 blog.startkubernetes.com/version: 1.0.0
 env: staging-us-west
 owner: ricky
 department: AB1

Selectors are used to query for a set of Kubernetes resources. For example, you could use a selector
to identify all Kubernetes cluster objects with a label env set to staging-us-west. You could write that
selector as env = staging-us-west. This selector is called an equality-based selector.

Selectors also support multiple requirements. For example, we could query for all resources with
the env label set to staging-us-west and are not of version 1.0.0. The requirements have to be
separated by commas that act as a logical AND operator. We could write the above two
requirements like this: env = staging-us-west, blog.startkubernetes.com/version != 1.0.0.

The second type of selector is called set-based selectors. These selectors allow filtering label keys
based on a set of values. The following three operators are supported: in, notin, and exists. Here’s
an example:

env in (staging-us-west,staging-us-east)
owner notin (ricky, peter)
department
department!

The first example selects all objects with the env label set to either staging-us-west or staging-us-
east. The second example uses the notin operator and selects all objects where the owner label
values are not ricky or peter. The third example selects all objects with a department label set,
regardless of it’s value, and the last example selects all objects without the department label set.

Later on, we will see the practical use of labels and selectors when discussing how Kubernetes
services know which pods to include in their load balancing pools.

Labeling resources is essential, so make sure you take your time to decide on the core set of labels
you will use in your organization. Setting labels on all resources make it easier to do bulk
operations against them later on.

Kubernetes provides a list of recommended labels that share a common prefix app.kubernetes.io:

11

Table 1. Recommended Labels

Name Value Description

app.kubernetes.io/name my-app Application name

app.kubernetes.io/instance my-app-1122233 Identifying instance of the
application

app.kubernetes.io/version 1.2.3 Application version

app.kubernetes.io/component website The name of the component

app.kubernetes.io/part-of carts The name of the higher-level
application this component is
part of

app.kubernetes.io/managed-by helm The tools used for managing the
application

Additionally, you could create an maintain a list of your own labels:

• Project ID (carts-project-123)

• Owner (Ricky, Peter, or team-a, team-b, …)

• Environment (dev, test, staging, prod})

• Release identifer (release-1.0.0`)

• Tier (backend, frontend)

Annotations
Annotations are similar to labels as they also add metadata to Kubernetes objects. However, you
don’t use annotations for identifying and selecting objects. The annotations allow you to add non-
identifying metadata to Kubernetes objects. Examples would be information needed for debugging,
emails, or contact information of the on-call engineering team, port numbers or URL paths used by
monitoring or logging systems, and any other information that might be used by the client tools or
DevOps teams.

For example, annotations are used by ingress controllers to claim the Ingress resource (see
Exposing multiple applications with Ingress).

Similar to labels, annotations are key/value pairs. The key name has two parts and the same rules
apply as with the label key names.

However, the annotation values can be both structured or unstructured and can include characters
that are not valid in the labels.

12

metadata:
 annotations:
 startkubernetes.com/debug-info: |
 { "debugTool": "sometoolname", "portNumber": "1234", "email":
"hello@example.com" }

The above example defines an annotation called startkubernetes.com/debug-info that contains a
JSON string.

Working with Pods
Pods are probably one of the most common resources in Kubernetes. They are a collection of one or
more containers. The containers within the Pod share the same network and storage. That means
any containers within the same Pod can talk to each other through localhost and access the same
Volumes.

You always design your Pods as temporary, disposable entities that can get deleted and rescheduled
to run on different nodes. Whenever you or Kubernetes restart the Pod, you are also restarting
containers within the Pod. We will discuss how to persist data between Pod restarts in Stateful
Workloads, What are Volumes?, and Creating Persistent Volumes.

Figure 6. Kubernetes Pod

When created, each Pod gets assigned a unique IP address. The containers inside your Pod can
listen to different ports. To access your containers, you can use the Pods' IP address. Using the
example from the above figure, you could run curl 10.1.0.1:3000 to talk to the one container and
curl 10.1.0.1:5000 to talk to the other container. However, if you wanted to talk between
containers - for example, calling the top container from the bottom one, you could use
http://localhost:3000.

13

http://localhost:3000

If your Pod restarts, it will get a different IP address. Therefore, you cannot rely on the IP address.
Talking to your Pods directly by the IP is not the right way to go.

An abstraction called a Kubernetes Service is what you can to communicate with your Pods. A
Kubernetes Service gives you a stable IP address and DNS name. I’ll talk about services later on.

Scaling Pods

All containers within the Pod get scaled together. The figure below shows how scaling from a single
Pod to four Pods would look like. Note that you cannot scale individual containers within the Pods.
The Pod is the unit of scale, which means that whenever you scale a Pod, you will scale all
containers inside the Pod as well.

WARNING
"Awesome! I can run my application and a database in the same Pod!!" No! Do
not do that.

First, in most cases, your database will not scale at the same rate as your application. Remember,
you’re scaling a Pod and all containers inside that Pod, not just a single container.

Second, running a stateful workload in Kubernetes, such as a database, differs from running
stateless workloads. For example, you need to ensure that data is persistent between Pod restarts
and that the restarted Pods have the same network identity. You can use resources like persistent
volumes and stateful sets to accomplish this. We will discuss running stateful workloads in
Kubernetes in Stateful Workloads section.

Creating Pods

Usually, you shouldn’t be creating Pods manually. You can do it, but you really should not. The
reason being is that if the Pod crashes or if it gets deleted, it will be gone forever. That said,
throughout this book, we will be creating Pods directly for the sake of simplicity and purposes of
learning and explaining different concepts. However, if you’re planning to run your applications
inside Kubernetes, make sure you aren’t creating Pods manually.

Let’s look at how a single Pod can be defined using YAML.

14

ch3/pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: hello-pod
 labels:
 app.kubernetes.io/name: hello
spec:
 containers:
 - name: hello-container
 image: busybox
 command: ["sh", "-c", "echo Hello from my container! && sleep 3600"]

In the first couple of lines, we define the kind of resource (Pod) and the metadata. The metadata
includes the name of our Pod (hello-pod) and a set of labels that are simple key-value pairs
(app.kubernetes.io/name=hello).

In the spec section, we are describing how the Pod should look. We will have a single container
inside this Pod, called hello-container, and it will run the image called busybox. When the container
starts, it executes the command defined in the command field.

To create the Pod, you can save the above YAML to a file called pod.yaml. Then, you can use
Kubernetes CLI (kubectl) to create the Pod:

$ kubectl apply -f pod.yaml
pod/hello-pod created

Kubernetes responds with the resource type and the name it created. You can use kubectl get pods
to get a list of all Pods running the default namespace of the cluster.

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
hello-pod 1/1 Running 0 7s

You can use the logs command to see the output from the container running inside the Pod:

$ kubectl logs hello-pod
Hello from my container!

TIP
When you have multiple containers running inside the same Pod, you can use the -c
flag to specify the container name whose logs you want to get. For example: kubectl
logs hello-pod -c hello-container

If we delete this Pod using kubectl delete pod hello-pod, the Pod will be gone forever. There’s
nothing that would automatically restart it. If you run the kubectl get pods again, you will notice

15

the Pod is gone:

$ kubectl get pods
No resources found in default namespace.

Not automatically recreating the Pod is the opposite of the behavior you want. If you have your
containers running in a Pod, you would want Kubernetes to reschedule and restart them if
something goes wrong automatically.

To make sure the crashed Pods get restarted, you need a controller to manage the Pods' lifecycle.
This controller automatically reschedules your Pod if it gets deleted or if something terrible
happens (cluster nodes go down and Kubernetes need to evict the Pods).

Managing Pods with ReplicaSets
The job of a ReplicaSet is to maintain a stable number of Pod copies. The word replicas is often
used to refer to the number of Pod copies. The ReplicaSet controller guarantees that a specified
number of identical Pods (or replicas) is running . The number of replicas is controlled by the
replicas field in the Pod resource definition.

Let’s say you start with a single Pod, and you want to scale to five Pods. The single Pod is the
current state in the cluster, and the five Pods is the desired state. The ReplicaSet controller uses the
current and desired state and goes to create four more Pods to meet the desired state (five pods).
The ReplicaSet also keeps an eye on the Pods. If you scale the Pod up or down (add a Pod replica or
remove a Pod replica), the ReplicaSet does the necessary to meet the desired number of replicas. To
create the Pods, the ReplicaSet uses the Pod template that’s part of the resource definition.

But how does ReplicaSet know which Pods to watch and control?

To explain that, let’s look at how the ReplicaSet gets defined:

16

ch3/replicaset.yaml

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: hello
 labels:
 app.kubernetes.io/name: hello
spec:
 replicas: 5
 selector:
 matchLabels:
 app.kubernetes.io/name: hello
 template:
 metadata:
 labels:
 app.kubernetes.io/name: hello
 spec:
 containers:
 - name: hello-container
 image: busybox
 command: ['sh', '-c', 'echo Hello from my container! && sleep 3600']

Every Pod that’s created by a ReplicaSet has a field called metadata.ownerReferences. This field
specifies which ReplicaSet owns the Pod. When you delete a Pod, the ReplicaSet that owns it will
know about it and act accordingly (i.e., re-creates the Pod).

The ReplicaSet also uses the selector object and matchLabel to check for any new Pods that it might
own. If there’s a new Pod that matches the selector labels and it doesn’t have an owner reference,
or the owner is not a controller (i.e., if we manually created a pod), the ReplicaSet will take it over
and start controlling it.

Figure 7. ReplicaSet Details

17

Let’s save the above contents in replicaset.yaml file and run:

$ kubectl apply -f replicaset.yaml
replicaset.apps/hello created

You can view the ReplicaSet by running the following command:

$ kubectl get replicaset
NAME DESIRED CURRENT READY AGE
hello 5 5 5 30s

The command will show you the name of the ReplicaSet and the number of desired, current, and
ready Pod replicas. If you list the Pods, you will notice that five Pods are running:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
hello-dwx89 1/1 Running 0 31s
hello-fchvr 1/1 Running 0 31s
hello-fl6hd 1/1 Running 0 31s
hello-n667q 1/1 Running 0 31s
hello-rftkf 1/1 Running 0 31s

You can also list the Pods by their labels. For example, if you run kubectl get po
-l=app.kubernetes.io/name=hello, you will get all Pods that have app.kubernetes.io/name: hello
label set. The output includes the five Pods we created.

Let’s also look at the ownerReferences field. We can use the -o yaml flag to get the YAML
representation of any object in Kubernetes. Once we get the YAML, we will search for the
ownerReferences string:

$ kubectl get po hello-dwx89 -o yaml | grep -A5 ownerReferences
...
 ownerReferences:
 - apiVersion: apps/v1
 blockOwnerDeletion: true
 controller: true
 kind: ReplicaSet
 name: hello

In the ownerReferences, Kubernetes sets the name to hello, and the kind to ReplicaSet. The name
corresponds to the ReplicaSet that owns the Pod.

18

TIP

Notice how we used po in the command to refer to Pods? Some Kubernetes resources
have short names you can use in place of the 'full names'. You can use po when you
mean pods or deploy when you mean deployment. To get the full list of supported short
names, you can run kubectl api-resources.

Another thing you will notice is how the Pods are named. Previously, where we were creating a
single Pod directly, the name of the Pod was hello-pod, because that’s what we specified in the
YAML. When using the ReplicaSet, Pods are created using the combination of the ReplicaSet name
(hello) and a semi-random string such as dwx89, fchrv and so on.

NOTE
Semi-random? Yes, Kubernetes maintainers removed the vowels, and numbers 0,1,
and 3 to avoid creating 'bad words'.

Let’s try and delete one of the Pods. To delete a resource from Kubernetes you use the delete
keyword followed by the resource (e.g. pod) and the resource name hello-dwx89:

$ kubectl delete po hello-dwx89
pod "hello-dwx89" deleted

Once you’ve deleted the Pod, you can run kubectl get pods again. Did you notice something? There
are still five Pods running.

$ kubectl get po
NAME READY STATUS RESTARTS AGE
hello-fchvr 1/1 Running 0 14m
hello-fl6hd 1/1 Running 0 14m
hello-n667q 1/1 Running 0 14m
hello-rftkf 1/1 Running 0 14m
hello-vctkh 1/1 Running 0 48s

If you look at the AGE column, you will notice four Pods created 14 minutes ago and one created
more recently. ReplicaSet created this new Pod. When we deleted one Pod, the number of actual
replicas decreased from five to four. The replica set controller detected that and created a new Pod
to match the replicas' desired number (5).

Let’s try something different now. We will manually create a Pod with labels that match the
ReplicaSets selector labels (app.kubernetes.io/name: hello).

19

https://github.com/kubernetes/kubernetes/pull/37225
https://github.com/kubernetes/kubernetes/pull/50070
https://github.com/kubernetes/kubernetes/pull/50070

ch3/stray-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: stray-pod
 labels:
 app.kubernetes.io/name: hello
spec:
 containers:
 - name: stray-pod-container
 image: busybox
 command: ["sh", "-c", "echo Hello from stray pod! && sleep 3600"]

Save the above YAML in the stray-pod.yaml file, then create the Pod by running:

$ kubectl apply -f stray-pod.yaml
pod/stray-pod created

The Pod gets created, and all looks good. However, if you run kubectl get pods you will notice that
the stray-pod has dissapeared. What happened?

The ReplicaSet makes sure only five Pod replicas are running. When we manually created the
stray-pod with the label app.kubernetes.io/name=hello that matches the selector label on the
ReplicaSet, the ReplicaSet took that new Pod for its own. Remember, manually created Pod didn’t
have the owner. With this new Pod under ReplicaSets' management, the number of replicas was six
and not five, as stated in the ReplicaSet. Therefore, the ReplicaSet did what it’s supposed to do; it
deleted the new Pod to maintain the desired state of five replicas.

Zero-downtime updates?

I mentioned zero-downtime deployments and updates earlier. How can that be done using a replica
set? Well, it you can’t do it with a replica set. At least not in a zero-downtime manner.

Let’s say we want to change the Docker image used in the original replica set from busybox to
busybox:1.31.1. We could use kubectl edit rs hello to open the replica set YAML in the editor, then
update the image value.

Once you save the changes - nothing will happen. Five Pods will still keep running as if nothing has
happened. Let’s check the image used by one of the Pods:

$ kubectl describe po hello-fchvr | grep image
 Normal Pulling 14m kubelet, docker-desktop Pulling image "busybox"
 Normal Pulled 13m kubelet, docker-desktop Successfully pulled image
"busybox"

Notice it’s referencing the busybox image, but there’s no sign of the busybox:1.31.1 anywhere. Let’s

20

see what happens if we delete this same Pod:

$ kubectl delete po hello-fchvr
pod "hello-fchvr" deleted

We already know that ReplicaSet will bring up a new Pod (hello-q8fnl in our case) to match the
desired replica count from the previous test we did. If we run describe against the new Pod that
came up, you will notice how the image is changed this time:

$ kubectl describe po hello-q8fnl | grep image
 Normal Pulling 74s kubelet, docker-desktop Pulling image "busybox:1.31"
 Normal Pulled 73s kubelet, docker-desktop Successfully pulled image
"busybox:1.31"

A similar thing will happen if we delete the other Pods that are still using the old image (busybox).
The ReplicaSet would start new Pods, and this time, the Pods would use the new image
busybox:1.31.1.

We can use another resource to manage the ReplicaSets, allowing us to update Pods in a controlled
manner. Upon changing the image name, it can start Pods using the new image names in a
controlled way. This resource is called a Deployment.

To delete all Pods, you need to delete the ReplicaSet by running: kubectl delete rs hello. rs is the
short name for replicaset. If you list the Pods (kubectl get po) right after you issued the delete
command, you will see the Pods getting terminated:

NAME READY STATUS RESTARTS AGE
hello-fchvr 1/1 Terminating 0 18m
hello-fl6hd 1/1 Terminating 0 18m
hello-n667q 1/1 Terminating 0 18m
hello-rftkf 1/1 Terminating 0 18m
hello-vctkh 1/1 Terminating 0 7m39s

Once the replica set terminates all Pods, they will be gone, and so will be the ReplicaSet.

Creating Deployments
A deployment resource is a wrapper around the ReplicaSet that allows doing controlled updates to
your Pods. For example, if you want to update image names for all Pods, you can edit the Pod
template, and the deployment controller will re-create Pods with the new image.

If we continue with the same example as we used before, this is how a Deployment would look like:

21

ch3/deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello
 labels:
 app.kubernetes.io/name: hello
spec:
 replicas: 5
 selector:
 matchLabels:
 app.kubernetes.io/name: hello
 template:
 metadata:
 labels:
 app.kubernetes.io/name: hello
 spec:
 containers:
 - name: hello-container
 image: busybox
 command: ["sh", "-c", "echo Hello from my container! && sleep 3600"]

The YAML for Kubernetes Deployment looks almost the same as for a ReplicaSet. There’s the replica
count, the selector labels, and the Pod template.

Save the above YAML contents in deployment.yaml and create the deployment:

$ kubectl apply -f deployment.yaml --record
deployment.apps/hello created

NOTE

Why the --record flag? Using this flag, we are telling Kubernetes to store the
command we executed in the annotation called kubernetes.io/change-cause. Record
flag is useful to track the changes or commands that you executed when the
deployment was updated. You will see this in action later on when we do rollouts.

To list all deployments, we can use the get command:

$ kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
hello 5/5 5 5 2m8s

The output is the same as when we were listing the ReplicaSets. When we create the deployment,
controller also creates a ReplicaSet:

22

$ kubectl get rs
NAME DESIRED CURRENT READY AGE
hello-6fcbc8bc84 5 5 5 3m17s

Notice how the ReplicaSet name has the random string at the end. Finally, let’s list the Pods:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
hello-6fcbc8bc84-27s2s 1/1 Running 0 4m2s
hello-6fcbc8bc84-49852 1/1 Running 0 4m1s
hello-6fcbc8bc84-7tpvs 1/1 Running 0 4m2s
hello-6fcbc8bc84-h7jwd 1/1 Running 0 4m1s
hello-6fcbc8bc84-prvpq 1/1 Running 0 4m2s

When we created a ReplicaSet previously, the Pods got named like this: hello-fchvr. However, this
time, the Pod names are a bit longer - hello-6fcbc8bc84-27s2s. The random middle section in the
name 6fcbc8bc84 corresponds to the random section of the ReplicaSet name, and the Pod names get
created by combining the deployment name, ReplicaSet name, and a random string.

Figure 8. Deployment, ReplicaSet, and Pod naming

Just like before, if we delete one of the Pods, the Deployment and ReplicaSet will make sure awalys
to maintain the number of desired replicas:

$ kubectl delete po hello-6fcbc8bc84-27s2s
pod "hello-6fcbc8bc84-27s2s" deleted

$ kubectl get po
NAME READY STATUS RESTARTS AGE
hello-6fcbc8bc84-49852 1/1 Running 0 46m
hello-6fcbc8bc84-58q7l 1/1 Running 0 15s
hello-6fcbc8bc84-7tpvs 1/1 Running 0 46m
hello-6fcbc8bc84-h7jwd 1/1 Running 0 46m
hello-6fcbc8bc84-prvpq 1/1 Running 0 46m

How to scale the Pods up or down?

There’s a handy command in Kubernetes CLI called scale. Using this command, we can scale up (or
down) the number of Pods controlled by the Deployment or a ReplicaSet.

Let’s scale the Pods down to three replicas:

23

$ kubectl scale deployment hello --replicas=3
deployment.apps/hello scaled

$ kubectl get po
NAME READY STATUS RESTARTS AGE
hello-6fcbc8bc84-49852 1/1 Running 0 48m
hello-6fcbc8bc84-7tpvs 1/1 Running 0 48m
hello-6fcbc8bc84-h7jwd 1/1 Running 0 48m

Similarly, we can increase the number of replicas back to five, and ReplicaSet will create the Pods.

$ kubectl scale deployment hello --replicas=5
deployment.apps/hello scaled

$ kubectl get po
NAME READY STATUS RESTARTS AGE
hello-6fcbc8bc84-49852 1/1 Running 0 49m
hello-6fcbc8bc84-7tpvs 1/1 Running 0 49m
hello-6fcbc8bc84-h7jwd 1/1 Running 0 49m
hello-6fcbc8bc84-kmmzh 1/1 Running 0 6s
hello-6fcbc8bc84-wfh8c 1/1 Running 0 6s

Updating the Pod templates

When we were using a ReplicaSet we noticed that ReplicaSet did not automatically restart the Pods
when we updated the image name. However, Deployment can do this.

Let’s use the set image command to update the image in the Pod templates from busybox to
busybox:1.31.1.

TIP
You can use the set command to update the parts of the Pod template, such as image
name, environment variables, resources, and a couple of others.

$ kubectl set image deployment hello hello-container=busybox:1.31.1 --record
deployment.apps/hello image updated

If you run the kubectl get pods right after you execute the set command, you might see something
like this:

24

$ kubectl get po
NAME READY STATUS RESTARTS AGE
hello-6fcbc8bc84-49852 1/1 Terminating 0 57m
hello-6fcbc8bc84-7tpvs 0/1 Terminating 0 57m
hello-6fcbc8bc84-h7jwd 1/1 Terminating 0 57m
hello-6fcbc8bc84-kmmzh 0/1 Terminating 0 7m15s
hello-84f59c54cd-8khwj 1/1 Running 0 36s
hello-84f59c54cd-fzcf2 1/1 Running 0 32s
hello-84f59c54cd-k947l 1/1 Running 0 33s
hello-84f59c54cd-r8cv7 1/1 Running 0 36s
hello-84f59c54cd-xd4hb 1/1 Running 0 35s

The controller terminated the Pods and has started five new Pods. Notice something else in the Pod
names? The ReplicaSet section looks different, right? That’s because Deployment scaled down the
Pods controlled by the previous ReplicaSet and create a new ReplicaSet that uses the latest image
we defined.

Remember that --record flag we set? We can now use rollout history command to view the
previous rollouts.

$ kubectl rollout history deploy hello
deployment.apps/hello
REVISION CHANGE-CAUSE
1 kubectl apply --filename=deployment.yaml --record=true
2 kubectl set image deployment hello hello-container=busybox:1.31.1 --record
=true

The history command shows all revisions you made to the deployment. The first revision is when
we initially created the resource and the second one is when we updated the image.

Let’s say we rolled out this new image version, but for some reason, we want to go back to the
previous state. Using the rollout command, we can also roll back to an earlier revision of the
resource.

To roll back, you can use the rollout undo command, like this:

$ kubectl rollout undo deploy hello
deployment.apps/hello rolled back

With the undo command, we rolled back the changes to the previous revision, which is the original
state we were in before we updated the image:

25

$ kubectl rollout history deploy hello
deployment.apps/hello
REVISION CHANGE-CAUSE
2 kubectl set image deployment hello hello-container=busybox:1.31.1 --record
=true
3 kubectl apply --filename=deployment.yaml --record=true

Let’s remove the deployment by running:

$ kubectl delete deploy hello
deployment.apps "hello" deleted

Deployment strategies

You might have wondered what logic or strategy Deployment controller used to bring up new Pods
or terminate the old ones when we scaled the deployments up and down and updated the image
names.

There are two different strategies used by deployments to replace old Pods with new ones. The
Recreate strategy and the RollingUpdate strategy. The latter is the default strategy.

Here’s a way to explain the differences between the two strategies. Imagine you work at a bank,
and your job is to manage the tellers and ensure there’s always someone working that can handle
customer requests. Since this is an imaginary bank, let’s say you have 10 desks available, and at the
moment, five tellers are working.

Figure 9. Five Bank Tellers at Work

Time for a shift change! The current tellers have to leave their desks and let the new shift come in
to take over.

One way you can do that is to tell the current tellers to stop working. They will put up the "Closed"
sign in their booth, pack up their stuff, get off their seats, and leave. Only once all of them have left
their seats, the new tellers can come in, sit down, unpack their stuff, and start working.

26

Figure 10. New Shift Waiting

Using this strategy, there will be downtime where you won’t be able to serve any customers. As
shown in the figure above, you might have one teller working, and once they pack up, it will take
time for the new tellers to sit down and start their work. This is how the Recreate strategy works.

The Recreate strategy terminates all existing (old) Pods (shift change happens), and only when they
are all terminated (they leave their booths), it starts creating the new ones (new shift comes in).

Using a different strategy, you can keep serving all of your customers while the shift is changing.
Instead of waiting for all tellers to stop working first, you can utilize the empty booths and put your
new shift to work right away. That means you might have more than five booths working at the
same time during the shift change.

Figure 11. Seven Tellers Working

As soon as you have seven tellers working, for example (five from the old shift, two from the new
shift), more tellers from the old shift can start packing up, and new tellers can start replacing them.
You could also say that you always want at least three tellers working during the shift change, and
you can also accommodate more than five tellers working at the same time.

27

Figure 12. Mix of Tellers Working

This is how the RollingUpdate strategy works. The maxUnavailable and maxSurge settings specify the
maximum number of Pods that can be unavailable and the maximum number of old and new Pods
that can be running at the same time.

Recreate strategy

Let’s create a deployment that uses the recreate strategy - notice the highlighted lines show where
we specified the strategy.

ch3/deployment-recreate.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello
 labels:
 app.kubernetes.io/name: hello
spec:
 replicas: 5
 strategy:
 type: Recreate
 selector:
 matchLabels:
 app.kubernetes.io/name: hello
 template:
 metadata:
 labels:
 app.kubernetes.io/name: hello
 spec:
 containers:
 - name: hello-container
 image: busybox
 command: ["sh", "-c", "echo Hello from my container! && sleep 3600"]

Copy the above YAML to deployment-recreate.yaml file and create the deployment:

28

kubectl apply -f deployment-recreate.yaml

To see the recreate strategy in action, we will need a way to watch the changes that are happening
to the Pods as we update the image version, for example.

You can open a second terminal window and use the --watch flag when listing all Pods - the --watch
flag will keep the command running, and any changes to the Pods are written to the screen.

kubectl get pods --watch

From the first terminal window, let’s update the Docker image from busybox to busybox:1.31.1 by
running:

kubectl set image deployment hello hello-container=busybox:1.31.1

The second terminal window’s output where we are watching the Pods should look like the one
below. Note that I have added the line breaks between the groups.

29

NAME READY STATUS RESTARTS AGE
hello-6fcbc8bc84-jpm64 1/1 Running 0 54m
hello-6fcbc8bc84-wsw6s 1/1 Running 0 54m
hello-6fcbc8bc84-wwpk2 1/1 Running 0 54m
hello-6fcbc8bc84-z2dqv 1/1 Running 0 54m
hello-6fcbc8bc84-zpc5q 1/1 Running 0 54m

hello-6fcbc8bc84-z2dqv 1/1 Terminating 0 56m
hello-6fcbc8bc84-wwpk2 1/1 Terminating 0 56m
hello-6fcbc8bc84-wsw6s 1/1 Terminating 0 56m
hello-6fcbc8bc84-jpm64 1/1 Terminating 0 56m
hello-6fcbc8bc84-zpc5q 1/1 Terminating 0 56m
hello-6fcbc8bc84-wsw6s 0/1 Terminating 0 56m
hello-6fcbc8bc84-z2dqv 0/1 Terminating 0 56m
hello-6fcbc8bc84-zpc5q 0/1 Terminating 0 56m
hello-6fcbc8bc84-jpm64 0/1 Terminating 0 56m
hello-6fcbc8bc84-wwpk2 0/1 Terminating 0 56m
hello-6fcbc8bc84-z2dqv 0/1 Terminating 0 56m

hello-84f59c54cd-77hpt 0/1 Pending 0 0s
hello-84f59c54cd-77hpt 0/1 Pending 0 0s
hello-84f59c54cd-9st7n 0/1 Pending 0 0s
hello-84f59c54cd-lxqrn 0/1 Pending 0 0s
hello-84f59c54cd-9st7n 0/1 Pending 0 0s
hello-84f59c54cd-lxqrn 0/1 Pending 0 0s
hello-84f59c54cd-z9s5s 0/1 Pending 0 0s
hello-84f59c54cd-8f2pt 0/1 Pending 0 0s
hello-84f59c54cd-77hpt 0/1 ContainerCreating 0 0s
hello-84f59c54cd-z9s5s 0/1 Pending 0 0s
hello-84f59c54cd-8f2pt 0/1 Pending 0 0s
hello-84f59c54cd-9st7n 0/1 ContainerCreating 0 1s
hello-84f59c54cd-lxqrn 0/1 ContainerCreating 0 1s
hello-84f59c54cd-z9s5s 0/1 ContainerCreating 0 1s
hello-84f59c54cd-8f2pt 0/1 ContainerCreating 0 1s
hello-84f59c54cd-77hpt 1/1 Running 0 3s
hello-84f59c54cd-lxqrn 1/1 Running 0 4s
hello-84f59c54cd-9st7n 1/1 Running 0 5s
hello-84f59c54cd-8f2pt 1/1 Running 0 6s
hello-84f59c54cd-z9s5s 1/1 Running 0 7s

The first couple of lines show all five Pods running. Right at the first empty line above (I added that
for clarity), we ran the set image command. The controller terminated all Pods first. Once they were
terminated (second empty line in the output above), the controller created the new Pods.

The apparent downside of this strategy is that once controller terminates old Pods and stastarts up
the new ones, there are no running Pods to handle any traffic, which means that there will be
downtime. Make sure you delete the deployment kubectl delete deploy hello before continuing.
You can also press CTRL+C to stop running the --watch command from the second terminal window
(keep the window open as we will use it again shortly).

30

Rolling update strategy

The second strategy called RollingUpdate does the rollout in a more controlled way. There are two
settings you can tweak to control the process: maxUnavailable and maxSurge. Both of these settings
are optional and have the default values set - 25% for both settings.

The maxUnavailable setting specifies the maximum number of Pods that can be unavailable during
the rollout process. You can set it to an actual number or a percentage of desired Pods.

Let’s say maxUnavailable is set to 40%. When the update starts, the old ReplicaSet is scaled down to
60%. As soon as new Pods are started and ready, the old ReplicaSet is scaled down again and the
new ReplicaSet is scaled up. This happens in such a way that the total number of available Pods (old
and new, since we are scaling up and down) is always at least 60%.

The maxSurge setting specifies the maximum number of Pods that can be created over the desired
number of Pods. If we use the same percentage as before (40%), the new ReplicaSet is scaled up
right away when the rollout starts. The new ReplicaSet will be scaled up in such a way that it does
not exceed 140% of desired Pods. As old Pods get killed, the new ReplicaSet scales up again, making
sure it never goes over the 140% of desired Pods.

Let’s create the deployment again, but this time we will use the RollingUpdate strategy.

ch3/deployment-rolling.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello
 labels:
 app.kubernetes.io/name: hello
spec:
 replicas: 10
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 40%
 maxSurge: 40%
 selector:
 matchLabels:
 app.kubernetes.io/name: hello
 template:
 metadata:
 labels:
 app.kubernetes.io/name: hello
 spec:
 containers:
 - name: hello-container
 image: busybox
 command: ["sh", "-c", "echo Hello from my container! && sleep 3600"]

31

Save the contents to deployment-rolling.yaml and create the deployment:

$ kubectl apply -f deployment-rolling.yaml
deployment.apps/hello created

Let’s do the same we did before, run the kubectl get po --watch from the second terminal window
to start watching the Pods.

kubectl set image deployment hello hello-container=busybox:1.31.1

This time, you will notice that the new ReplicaSet is scaled up right away and the old ReplicaSet is
scaled down at the same time:

$ kubectl get po --watch
NAME READY STATUS RESTARTS AGE
hello-6fcbc8bc84-4xnt7 1/1 Running 0 37s
hello-6fcbc8bc84-bpsxj 1/1 Running 0 37s
hello-6fcbc8bc84-dx4cg 1/1 Running 0 37s
hello-6fcbc8bc84-fx7ll 1/1 Running 0 37s
hello-6fcbc8bc84-fxsp5 1/1 Running 0 37s
hello-6fcbc8bc84-jhb29 1/1 Running 0 37s
hello-6fcbc8bc84-k8dh9 1/1 Running 0 37s
hello-6fcbc8bc84-qlt2q 1/1 Running 0 37s
hello-6fcbc8bc84-wx4v7 1/1 Running 0 37s
hello-6fcbc8bc84-xkr4x 1/1 Running 0 37s

hello-84f59c54cd-ztfg4 0/1 Pending 0 0s
hello-84f59c54cd-ztfg4 0/1 Pending 0 0s
hello-84f59c54cd-mtwcc 0/1 Pending 0 0s
hello-84f59c54cd-x7rww 0/1 Pending 0 0s

hello-6fcbc8bc84-dx4cg 1/1 Terminating 0 46s
hello-6fcbc8bc84-fx7ll 1/1 Terminating 0 46s
hello-6fcbc8bc84-bpsxj 1/1 Terminating 0 46s
hello-6fcbc8bc84-jhb29 1/1 Terminating 0 46s
...

Using the rolling strategy, you can keep a percentage of Pods running at all times while you’re doing
updates. That means that there will be no downtime for your users.

Make sure you delete the deployment before continuing:

kubectl delete deploy hello

32

Accessing and exposing Pods with Services
Pods are supposed to be temporary or short-lived. Once they crash, they are gone, and the
ReplicaSet ensures to bring up a new Pod to maintain the desired number of replicas.

Let’s say we are running a web frontend in a container within Pods. Each Pod gets a unique IP
address. However, due to their temporary nature, we cannot rely on that IP address.

Let’s create a deployment that runs a web frontend:

ch3/web-frontend.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: web-frontend
 labels:
 app.kubernetes.io/name: web-frontend
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: web-frontend
 template:
 metadata:
 labels:
 app.kubernetes.io/name: web-frontend
 spec:
 containers:
 - name: web-frontend-container
 image: learncloudnative/helloworld:0.1.0
 ports:
 - containerPort: 3000

Comparing this deployment to the previous one, you will notice we changed the resource names
and the image we are using.

One new thing we added to the deployment is the ports section. Using the containerPort field, we
set the port number website server listens on. The learncloudnative/helloworld:0.1.0 is a simple
Node.js Express application.

Save the above YAML in web-frontend.yaml and create the deployment:

$ kubectl apply -f web-frontend.yaml
deployment.apps/web-frontend created

Run kubectl get pods to ensure Pod is up and running and then get the logs from the container:

33

$ kubectl get po
NAME READY STATUS RESTARTS AGE
web-frontend-68f784d855-rdt97 1/1 Running 0 65s

$ kubectl logs web-frontend-68f784d855-rdt97

> helloworld@1.0.0 start /app
> node server.js

Listening on port 3000

From the logs, you will notice that the container is listening on port 3000. If we set the output flag to
gives up the wide output (-o wide), you’ll notice the Pods' IP address - 10.244.0.170:

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
web-frontend-68f784d855-rdt97 1/1 Running 0 15s 172.17.0.4
minikube <none> <none>

If we delete this Pod, a new one will take its' place, and it will get a brand new IP address as well:

$ kubectl delete po web-frontend-68f784d855-rdt97
pod "web-frontend-68f784d855-rdt97" deleted

$ kubectl get po -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
web-frontend-68f784d855-8c76m 1/1 Running 0 15s 172.17.0.5
minikube <none> <none>

Similarly, if we scale up the deployment to four Pods, we will four different IP addresses:

34

$ kubectl scale deploy web-frontend --replicas=4
deployment.apps/web-frontend scaled

$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
web-frontend-68f784d855-8c76m 1/1 Running 0 5m23s 172.17.0.5
minikube <none> <none>
web-frontend-68f784d855-jrqq4 1/1 Running 0 18s 172.17.0.6
minikube <none> <none>
web-frontend-68f784d855-mftl6 1/1 Running 0 18s 172.17.0.7
minikube <none> <none>
web-frontend-68f784d855-stfqj 1/1 Running 0 18s 172.17.0.8
minikube <none> <none>

How to access the Pods without a service?

If you try to send a request to one of those IP addresses, it’s not going to work:

$ curl -v 172.17.0.5:3000
* Trying 172.17.0.5...
* TCP_NODELAY set
* Connection failed
* connect to 172.17.0.5 port 3000 failed: Network is unreachable
* Failed to connect to 172.17.0.5 port 3000: Network is unreachable
* Closing connection 0
curl: (7) Failed to connect to 172.17.0.5 port 3000: Network is unreachable

The Pods are running within the cluster, and that IP address is only accessible from within the
cluster.

Figure 13. Can’t Access Pods from Outside

35

For the testing purposes, you can run a pod inside the cluster and then get shell access to that Pod.
Yes, that is possible!

Figure 14. Accessing Pods from a Pod

The radialbusyboxplus:curl is the image I frequently run inside the cluster if I need to check
something or debug things. Using the -i and --tty flags, we are want to allocate a terminal (tty),
and that we want an interactive session so that we can run commands directly inside the container.

I usually name this Pod curl, but you can name it whatever you like:

$ kubectl run curl --image=radial/busyboxplus:curl -i --tty
If you dont see a command prompt, try pressing enter.
[root@curl:/]$

Now that we have access to the the terminal running inside the container that' inside the cluster,
we can run the same cURL command as before:

36

[root@curl:/]$ curl -v 172.17.0.5:3000
> GET / HTTP/1.1
> User-Agent: curl/7.35.0
> Host: 172.17.0.5:3000
> Accept: */*
>
< HTTP/1.1 200 OK
< X-Powered-By: Express
< Content-Type: text/html; charset=utf-8
< Content-Length: 111
< ETag: W/"6f-U4ut6Q03D1uC/sbzBDyZfMqFSh0"
< Date: Wed, 20 May 2020 22:10:49 GMT
< Connection: keep-alive
<
<link rel="stylesheet" type="text/css" href="css/style.css" />

<div class="container">
 Hello World!
</div>[root@curl:/]$

This time, we get a response from the Pod! Make sure you run exit to return to your terminal. The
curl Pod will continue to run and to reaccess it, you can use the attach command:

kubectl attach curl -c curl -i -t

TIP
You can get a terminal session to any container running inside the cluster using the
attach command.

Using a Kubernetes Service

The Kubernetes Service is an abstraction that gives us a way to reach the Pod IP’s reliably.

The service controller (similar to the ReplicaSet controller) maintains a list of endpoints or the Pod
IP addresses. The controller uses a selector and labels to watch the Pods. Whenever the controller
creates or deletes a Pod that matches the selector, the controller adds or removes the Pods' IP
address from the endpoints list.

Let’s look at how would the Service look like for our website:

37

ch3/web-frontend-service.yaml

kind: Service
apiVersion: v1
metadata:
 name: web-frontend
 labels:
 app.kubernetes.io/name: web-frontend
spec:
 selector:
 app.kubernetes.io/name: web-frontend
 ports:
 - port: 80
 name: http
 targetPort: 3000

The top portion of the YAML should already look familiar - except for the kind field, it’s the same as
we saw with the Pods, ReplicaSets, Deployments.

The highlighted selector section is where we define the labels that Service uses to query the Pods. If
you go back to the Deployment YAML, you will notice that the Pods have this exact label set as well.

38

Figure 15. Kubernetes Services and Pods

Lastly, under the ports field, we are defining the port where the Service will be accessible on (80),
and with the targetPort, we are telling the Service on which port it can access the Pods. The
targetPort value matches the containerPort value in the Deployment YAML.

Save the YAML from above to web-frontend-service.yaml file and deploy it:

39

$ kubectl apply -f web-frontend-service.yaml
service/web-frontend created

To see the created service you can run the get service command:

$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 7d
web-frontend ClusterIP 10.100.221.29 <none> 80/TCP 24s

The web-frontend Service has an IP address that will not change (assuming you don’t delete the
Service), and you use it to access the underlying Pods reliably.

Let’s attach to the curl container we started before and try to access the Pods through the Service:

$ kubectl attach curl -c curl -i -t
If you dont see a command prompt, try pressing enter.
[root@curl:/]$

Since we set the service port to 80, we can curl directly to the service IP and we will get back the
same response as previously:

[root@curl:/]$ curl 10.100.221.29
<link rel="stylesheet" type="text/css" href="css/style.css" />

<div class="container">
 Hello World!
</div>

Even though the Service IP address is stable and won’t change, it would be much better to use a
friendlier name to access the Service. Every Service you create in Kubernetes gets a DNS name
assigned following this format service-name.namespace.svc.cluster-domain.sample.

So far, we deployed everything to the default namespace and the cluster domain is cluster.local
we can access the service using web-frontend.default.svc.cluster.local:

[root@curl:/]$ curl web-frontend.default.svc.cluster.local
<link rel="stylesheet" type="text/css" href="css/style.css" />

<div class="container">
 Hello World!
</div>

In addition to using the full name, you can also use just the service name, or service name and the
namespace name:

40

</div>[root@curl:/]$ curl web-frontend
<link rel="stylesheet" type="text/css" href="css/style.css" />

<div class="container">
 Hello World!
[root@curl:/]$ curl web-frontend.default
<link rel="stylesheet" type="text/css" href="css/style.css" />

<div class="container">
 Hello World!
</div>

I would suggest you always use the Service name and the namespace name when making requests.

Using the Kubernetes proxy

Another way for accessing services that are only available inside of the cluster is through the proxy.
The kubectl proxy command creates a gateway between your local computer (localhost) and the
Kubernetes API server.

The proxy allows you to access the Kubernetes API as well as access the Kubernetes services. You
should NEVER use this proxy to expose your service to the public. You should only use the proxy
for debugging or troubleshooting.

Let’s open a separate terminal window and run the following command to start the proxy server
that will proxy requests from localhost:8080 to the Kubernetes API inside the cluster:

kubectl proxy --port=8080

If you open http://localhost:8080/ in your browser, you will see the list of all APIs from the
Kubernetes API proxy:

{
 "paths": [
 "/api",
 "/api/v1",
 "/apis",
 "/apis/",
 "/apis/admissionregistration.k8s.io",
 "/apis/admissionregistration.k8s.io/v1",
 "/apis/admissionregistration.k8s.io/v1beta1",
]
 ...
}

For example, if you want to see all Pods running in the cluster, you could navigate to
http://localhost:8080/api/v1/pods or navigate to http://localhost:8080/api/v1/namespaces to see

41

http://localhost:8080/
http://localhost:8080/api/v1/pods
http://localhost:8080/api/v1/namespaces

all namespaces.

Using this proxy, we can also access the web-frontend service we deployed. So, instead of running a
Pod inside the cluster and make cURL requests to the service or Pods, you can create the proxy
server and use the following URL to access the service:

http://localhost:8080/api/v1/namespaces/default/services/web-frontend:80/proxy/

NOTE

The URL format to access a service is
PORT/api/v1/namespaces/[NAMESPACE]/services/[SERVICE_NAME]:[SERVICE_PORT]/proxy.
In addition to using the service port (e.g. 80) you can also name your ports an use
the port name instead (e.g. http).

Browsing to the URL above will render the simple HTML site with the Hello World message.

Figure 16. Accessing the Service through Kubernetes Proxy

To stop the proxy, you can press Ctrl  +  C in the terminal window.

Viewing Service details

Using the describe command, you can describe an object in Kubernetes and look at its properties.
For example, let’s take a look at the details of the web-frontend Service we deployed:

42

http://localhost:

$ kubectl describe svc web-frontend
Name: web-frontend
Namespace: default
Labels: app.kubernetes.io/name=web-frontend
Annotations: Selector: app.kubernetes.io/name=web-frontend
Type: ClusterIP
IP: 10.100.221.29
Port: http 80/TCP
TargetPort: 3000/TCP
Endpoints: 172.17.0.4:3000,172.17.0.5:3000,172.17.0.6:3000 + 1 more...
Session Affinity: None
Events: <none>

This view gives us more information than the get command does - it shows the labels, selector, the
service type, the IP, and the ports. Additionally, you will also notice the Endpoints. These IP
addresses correspond to the IP addresses of the Pods.

You can also view endpoints using the get endpoints command:

$ kubectl get endpoints
NAME ENDPOINTS AGE
kubernetes 192.168.64.5:8443 13m
web-frontend 172.17.0.4:3000,172.17.0.5:3000,172.17.0.6:3000 + 1 more... 66s

To see the controller that manages these endpoints in action, you can use the --watch flag to watch
the endpoints like this:

$ kubectl get endpoints --watch

Then, in a separate terminal window, let’s scale the deployment to one Pod:

$ kubectl scale deploy web-frontend --replicas=1
deployment.apps/web-frontend scaled

As soon as the deployment is scaled, you will notice how the endpoints get automatically updated.
For example, this is how the output looks like when the deployment is scaled:

$ kubectl get endpoints -w
NAME ENDPOINTS AGE
kubernetes 192.168.64.5:8443 14m
web-frontend 172.17.0.4:3000,172.17.0.5:3000,172.17.0.6:3000 + 1 more... 93s
web-frontend 172.17.0.4:3000,172.17.0.5:3000,172.17.0.7:3000 95s
web-frontend 172.17.0.5:3000 95s

Notice how it went from four Pods, then down to two and finally to one. If you scale the deployment

43

back to four Pods, you will see the endpoints list populated with new IPs.

Kubernetes service types

From the service description output we saw earlier, you might have noticed this line:

Type: ClusterIP

Every Kubernetes Service has a type. If you don’t provide a service type, the ClusterIP gets assigned
by default. In addition to the ClusterIP, there are three other service types in Kubernetes. These are
NodePort, LoadBalancer, and ExternalName.

Let’s explain the differences between these service types.

ClusterIP

You would use the ClusterIP service type to access Pods from within the cluster through a cluster-
internal IP address. In most cases, you will use this type of service for your applications running
inside the cluster. Using the ClusterIP type, you can define the port you want your service to be
listening on through the ports section in the YAML file.

Kubernetes assigns a cluster IP to the service. You can then access the service using the cluster IP
address and the port you specified in the YAML.

Figure 17. Cluster IP Service

NodePort

At some point, you will want to expose your services to the public and allow external traffic to
enter your cluster. The NodePort service type opens a specific port on every worker node in your

44

cluster. Any traffic sent to the node IP and the port number reaches the Service and your Pods.

Figure 18. NodePort Service

For example, if you use the node IP and the port 30000 as shown in the figure above, you will access
the Service and the Pods.

To create a NodePort Service, you need to specify the service type as shown in the listing below.

45

ch3/nodeport-service.yaml

kind: Service
apiVersion: v1
metadata:
 name: web-frontend
 labels:
 app.kubernetes.io/name: web-frontend
spec:
 type: NodePort
 selector:
 app.kubernetes.io/name: web-frontend
 ports:
 - port: 80
 name: http
 targetPort: 3000

You can set additional field called nodePort under the ports section. However, it is a best practice to
leave it out and let Kubernetes pick a port available on all nodes in the cluster. By default,
Kubernetes allocates the node port between 30000 and 32767 (this is configurable in the API
server).

You would use the NodePort type when you want to control the load balancing. You can expose
your services via NodePort and then configure the load balancer to use the node IPs and node
ports. Another scenario where you could use this is if you are migrating an existing solution to
Kubernetes, for example. In that case, you’d probably already have an existing load balancer, and
you could add the node IPs and node ports to the load balancing pool.

Let’s delete the previous web-frontend service and create one that uses NodePort. To delete the
previous service, run kubectl delete svc web-frontend. Then, copy the YAML contents above to the
nodeport-service.yaml file and run kubectl apply -f web-frontend-nodeport.yaml:

ch3/nodeport-service.yaml

kind: Service
apiVersion: v1
metadata:
 name: web-frontend
 labels:
 app.kubernetes.io/name: web-frontend
spec:
 type: NodePort
 selector:
 app.kubernetes.io/name: web-frontend
 ports:
 - port: 80
 name: http
 targetPort: 3000

46

Once the service is created, run kubectl get svc - you will notice the service type has changed and
the port number is random as well:

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 16m
web-frontend NodePort 10.107.154.215 <none> 80:30417/TCP 4s

Now since we are using a local Kubernetes cluster (kind, Minikube, or Docker for Mac/Windows),
demonstrating the NodePorts is a bit awkward. We have a single node, and the node IPs are private
as well. When using a cloud-managed cluster you can set up the load balancer to access the same
virtual network where your nodes are. Then you can configure it to access the node IPs through the
node ports.

Let’s get the internal node IP:

$ kubectl describe node | grep InternalIP
 InternalIP: 192.168.64.5

TIP If using Minikube, you can also run minikube ip to get the cluster’s IP address.

Armed with this IP we can cURL to the clusters IP address and the node port (30417):

$ curl 192.168.64.5:30417
<link rel="stylesheet" type="text/css" href="css/style.css" />

<div class="container">
 Hello World!
</div>

If you are using Docker for Desktop, you can use localhost as the node address and the node port to
access the service. If you open http://localhost:30417 in your browser, you will be able to access
the web-frontend service.

LoadBalancer

The LoadBalancer service type is the way to expose Kubernetes services to external traffic. If you
are running a cloud-managed cluster and create the Service of the LoadBalancer type, the
Kubernetes cloud controller creates an actual Load Balancer in your cloud account.

47

http://localhost:30417

Figure 19. LoadBalancer Service

Let’s delete the previous NodePort service with kubectl delete svc web-frontend.

ch3/lb-service.yaml

kind: Service
apiVersion: v1
metadata:
 name: web-frontend
 labels:
 app.kubernetes.io/name: web-frontend
spec:
 type: LoadBalancer
 selector:
 app.kubernetes.io/name: web-frontend
 ports:
 - port: 80
 name: http
 targetPort: 3000

We can create a service that uses the LoadBalancer type using the above YAML. Run kubectl apply

48

-f lb-service.yaml to create the service.

If we look at the service now, you’ll notice that the type has changed to LoadBalancer and the
external IP address is pending:

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 19m
web-frontend LoadBalancer 10.106.30.168 <pending> 80:30962/TCP 4s

NOTE
When using a cloud-managed Kubernetes cluster, the external IP would be a public,
the external IP address you could use to access the service.

If you are using Docker Desktop, you can open http://localhost or http://127.0.0.1 in your
browser to see the website running inside the cluster.

If you are using Minikube, you can run the minikube tunnel command from a separate terminal
window. Once the tunnel command is running, run kubectl get svc again to get an external IP
address of the service:

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 21m
web-frontend LoadBalancer 10.106.30.168 10.106.30.168 80:30962/TCP 104s

You can now open http://10.106.30.168 in your browser to access the service running inside the
cluster. We will discuss how the Minikube tunnel command works in the Exposing multiple
applications with Ingress section.

ExternalName

The ExternalName service type is a particular type of a service that does not use selectors. Instead,
it uses DNS names.

Using the ExternalName, you can map a Kubernetes service to a DNS name. When you send a
request to the Service, it returns the CNAME record with the value in externalName field instead of
the service’s cluster IP.

Here’s an example of how ExternalName service would look like:

49

http://localhost
http://127.0.0.1
http://10.106.30.168

ch3/external-name.yaml

kind: Service
apiVersion: v1
metadata:
 name: my-database
spec:
 type: ExternalName
 externalName: mydatabase.example.com

You could use the ExternalName service type when migrating workloads to Kubernetes, for
example. You could keep your database running outside of the cluster and then use the my-database
service to access it from the workloads running inside your cluster.

Exposing multiple applications with Ingress
You can use the Ingress resource to manage external access to the Services running inside your
cluster. With the Ingress resource, you can define the rules on how the services inside the cluster
can be accessed.

The Ingress resource on its own is useless. It’s a collection of rules and paths, but it needs
something to apply these rules to. That "something" is an ingress controller. The ingress controller
acts as a gateway and routes the traffic based on the Ingress resource rules defined.

Figure 20. Kubernetes Ingress

An ingress controller is a collection of the following items:

50

• Kubernetes deployment running one or more Pods with containers running a gateway/proxy
server such as NGINX, Ambassador, etc.

• Kubernetes service that exposes the ingress controller Pods

• Other supporting resources for the ingress controller (configuration maps, secrets, etc.)

NOTE

How about the load balancer? The load balancer is not necessarily part of the
Ingress controller. The Kubernetes service used for the ingress controller can be of
the LoadBalancer type, which triggers a load balancer’s creation if using a cloud-
managed Kubernetes cluster. It is a way for the traffic to enter your cluster and,
subsequently the ingress controller that routes the traffic according to the rules.

The idea is that you can deploy the ingress controller, expose it on a public IP address, then use the
Ingress resource to create the traffic rules. Here’s how an Ingress resource would look like:

ch3/ingress-example.yaml

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: ingress-example
spec:
 rules:
 - host: example.com
 http:
 paths:
 - path: /blog
 backend:
 serviceName: my-blog-service
 servicePort: 5000
 - path: /music
 backend:
 serviceName: my-music-service
 servicePort: 8080

With these rules, we are routing traffic that comes into example.com/blog to a Kubernetes service my-
blog-service:5000. Similarly, any traffic coming to example.com/music goes to a Kubernetes service
my-music-service:8080.

NOTE
The ingress resource will also contain one or more annotations to configure the
Ingress controller. The annotations and options you can configure will depend on
the ingress controller you’re using.

Let’s say we want to run two websites in our cluster - the first one will be a simple Hello World
website, and the second one will be a Daily Dog Picture website that shows a random dog picture.

Assuming you have your cluster up and running, let’s create the deployments for these two
websites.

51

ch3/helloworld-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-world
 labels:
 app.kubernetes.io/name: hello-world
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: hello-world
 template:
 metadata:
 labels:
 app.kubernetes.io/name: hello-world
 spec:
 containers:
 - name: hello-world-container
 image: learncloudnative/helloworld:0.1.0
 ports:
 - containerPort: 3000

Run kubectl apply -f helloworld-deployment.yaml to create the hello-world deployment. Next, we
will deploy the Daily Dog Picture website.

ch3/dogpic-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: dogpic-web
 labels:
 app.kubernetes.io/name: dogpic-web
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: dogpic-web
 template:
 metadata:
 labels:
 app.kubernetes.io/name: dogpic-web
 spec:
 containers:
 - name: dogpic-container
 image: learncloudnative/dogpic-service:0.1.0
 ports:
 - containerPort: 3000

52

Run kubectl apply -f dogpic-deployment.yaml to deploy the Daily Dog Picture website. Make sure
both pods from both deployments are up and running:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
dogpic-web-559f4bb5db-dlrks 1/1 Running 0 24m
hello-world-5fd44c56d7-d8g4j 1/1 Running 0 29m

We still need to deploy the Kubernetes Services for both of these deployments. The services will be
of default, ClusterIP type, so there’s no need to set type field explicitly. You can refer to Kubernetes
service types for the explanation of the ClusterIP service.

ch3/services.yaml

kind: Service
apiVersion: v1
metadata:
 name: dogpic-service
 labels:
 app.kubernetes.io/name: dogpic-web
spec:
 selector:
 app.kubernetes.io/name: dogpic-web
 ports:
 - port: 3000
 name: http

kind: Service
apiVersion: v1
metadata:
 name: hello-world
 labels:
 app.kubernetes.io/name: hello-world
spec:
 selector:
 app.kubernetes.io/name: hello-world
 ports:
 - port: 3000
 name: http

Save the YAML above to service.yaml and then create the services by running kubectl apply -f
services.yaml.

TIP
You can use --- as a separator in YAML files to deploy multiple resources from a single
file.

53

Installing the Ambassador API gateway

Before we create the Ingress resource, we need to deploy an Ingress controller. The job of an
ingress controller is to receive the incoming traffic and route it based on the rules defined in the
Ingress resource.

You have multiple options you can go with for the Ingress controller. Some of the gateways and
proxies you could use are:

• Ambassador

• NGINX

• HAProxy

• Traefik

You can find the list of other controllers in the Kubernetes ingress controller documentation.

In this example, I’ll be using the open-source version of the Ambassador API gateway.

NOTE

"I heard ABC/XZY/DEF is much better than GHI and JKL". Yep, that very well might
be right. My purpose is to explain what an Ingress resource is and how it works.
Some of the ingress controllers use their custom resources, instead of the default
Kubernetes Ingress resource. That way, they can support more features than the
default Ingress resource. I would encourage you to explore the available options
and pick the one that works best for you.

To deploy the Ambassador API gateway, we will start by deploying the custom resource
definitions (CRDs) the gateway uses:

$ kubectl apply -f https://www.getambassador.io/yaml/ambassador/ambassador-crds.yaml
customresourcedefinition.apiextensions.k8s.io/authservices.getambassador.io created
customresourcedefinition.apiextensions.k8s.io/consulresolvers.getambassador.io created
customresourcedefinition.apiextensions.k8s.io/hosts.getambassador.io created
customresourcedefinition.apiextensions.k8s.io/kubernetesendpointresolvers.getambassado
r.io created
customresourcedefinition.apiextensions.k8s.io/kubernetesserviceresolvers.getambassador
.io created
customresourcedefinition.apiextensions.k8s.io/logservices.getambassador.io created
customresourcedefinition.apiextensions.k8s.io/mappings.getambassador.io created
customresourcedefinition.apiextensions.k8s.io/modules.getambassador.io created
customresourcedefinition.apiextensions.k8s.io/ratelimitservices.getambassador.io
created
customresourcedefinition.apiextensions.k8s.io/tcpmappings.getambassador.io created
customresourcedefinition.apiextensions.k8s.io/tlscontexts.getambassador.io created
customresourcedefinition.apiextensions.k8s.io/tracingservices.getambassador.io created

What is the difference between create and apply?

It’s a difference between imperative management (create) and declarative management (apply).

54

https://www.getambassador.io/docs/latest/topics/running/ingress-controller/
https://www.nginx.com/products/nginx/kubernetes-ingress-controller
https://www.haproxy.com/documentation/hapee/1-9r1/installation/kubernetes-ingress-controller/
https://docs.traefik.io/providers/kubernetes-ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://www.getambassador.io

Using the create command, you are telling Kubernetes which resources to create or delete. With
apply, you are telling Kubernetes how you want your resources to look. You don’t define operations
to be taken as you would with create or delete. You are letting Kubernetes detect the operations for
each object. Let’s say you used the create command and create a deployment with image image:123.
If you want to change the image in the deployment to image:999 you won’t be able to use the create
command as the deployment already exists. You’d have to delete the deployment first, then create it
again. Using the apply command, you don’t need to delete the deployment. The apply command will
'apply' the desired changes to an existing resource (i.e., update the image name in our case). You
can use both approaches in production. Using the declarative approach, Kubernetes determines the
changes needed for each object. The object retains any configuration changes made with the
declarative approach. If you’re using the imperative approach, the changes made previously will be
gone as you will replace it. On the other hand, the declarative approach can be harder to debug
because the resulting object is not necessarily the same as in the file you applied.

The next step is to create the Ambassador deployment (ambassador) and other resources needed to
run the API gateway:

$ kubectl apply -f https://www.getambassador.io/yaml/ambassador/ambassador-rbac.yaml
service/ambassador-admin created
clusterrole.rbac.authorization.k8s.io/ambassador created
serviceaccount/ambassador created
clusterrolebinding.rbac.authorization.k8s.io/ambassador created
deployment.apps/ambassador created

NOTE

RBAC stands for Role-Based Access Control, and it is a way of controlling access to
resources based on the roles. For example, using RBAC, you can create roles called
admin and normaluser, and then allow admin role access to everything and
normaluser only access to certain namespaces or control if they can create or only
view resources. You can read more about the RBAC in Using Role-Based Access
Control (RBAC)

Let’s see the resources we created when we deployed the Ambassador API gateway:

$ kubectl get deploy
NAME READY UP-TO-DATE AVAILABLE AGE
ambassador 3/3 3 3 30m
dogpic-web 1/1 1 1 2d
hello-world 1/1 1 1 2d

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ambassador-admin NodePort 10.107.45.225 <none> 8877:31524/TCP 30m
dogpic-service ClusterIP 10.110.213.161 <none> 3000/TCP 48m
hello-world ClusterIP 10.109.157.27 <none> 3000/TCP 48m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 66d

The default installation creates three Ambassador Pods and the ambassador-admin service.

55

We need to separately create a LoadBalancer service that will route traffic to the ambassador Pods.

ch3/ambassador-service.yaml

apiVersion: v1
kind: Service
metadata:
 name: ambassador
spec:
 type: LoadBalancer
 externalTrafficPolicy: Local
 ports:
 - port: 80
 targetPort: 8080
 selector:
 service: ambassador

Create the load balancer service for Ambassador, by running kubectl apply -f ambassador-
service.yaml.

If you list the services again, you will notice the ambassador service doesn’t have an IP address in the
EXTERNAL-IP column. This is because we are running a cluster locally. If we used a cloud-managed
cluster, this would create an actual load balancer instance in our cloud account, and we would get a
public/private IP address we could use to access the services.

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ambassador LoadBalancer 10.109.103.63 <pending> 80:32004/TCP 10d
ambassador-admin NodePort 10.107.45.225 <none> 8877:31524/TCP 10d
dogpic-service ClusterIP 10.110.213.161 <none> 3000/TCP 10d
hello-world ClusterIP 10.109.157.27 <none> 3000/TCP 10d
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 77d

With Minikube, you can access the NodePort services using the combination of the cluster IP and the
port number (e.g., 32004 or 31524). The command minikube ip gives you the clusters' IP address
(192.168.64.3 in this case). You could use that IP and the NodePort, for example, 32004 for the
ambassador service, and access the service.

An even better approach is to use the minikube service command and have Minikube open the
correct IP and port number. Try and run the following command:

$ minikube service ambassador
|-----------|------------|-------------|---------------------------|
NAMESPACE	NAME	TARGET PORT	URL
default	ambassador		http://192.168.64.3:32004
-----------	------------	-------------	---------------------------
Ἰ� Opening service default/ambassador in default browser...

56

The page won’t render because we haven’t created any Ingress rules yet. However, you can try and
navigate to http://192.168.64.3:32004/ambassador/v0/diag to open the Ambassador diagnostics
page.

You could open any other service that’s of type NodePort using the same command.

However, we want to use the LoadBalancer service type and a completely different IP address, so
we don’t have to deal with the cluster IP or the node ports. You can use the tunnel command to
create a route to all services deployed with the LoadBalancer type.

Since this command has to be running, open a separate terminal window and run minikube tunnel:

$ minikube tunnel
Status:
 machine: minikube
 pid: 50383
 route: 10.96.0.0/12 -> 192.168.64.3
 minikube: Running
 services: [ambassador]
 errors:
 minikube: no errors
 router: no errors
 loadbalancer emulator: no errors

WARNING
Minikube tunnel command needs admin privileges and you might get
prompted for a password.

The tunnel command creates a network route on your computer to the cluster’s service CIDR
(Classless Inter-Domain Routing). The 10.96.0.0/12 CIDR includes IPs starting from 10.96.0.0 to
10.111.255.255. This network route uses the cluster’s IP address (192.168.64.3) as a gateway. You
can also get the Minikube clusters' IP address by running minikube ip command.

Let’s list the services again, and this time the ambassador service will get an actual IP address that
falls in the CIDR from the tunnel command:

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
ambassador LoadBalancer 10.102.244.196 10.102.244.196 80:30395/TCP
1h
ambassador-admin NodePort 10.106.191.105 <none> 8877:32561/TCP
21h
dogpic-service ClusterIP 10.104.72.244 <none> 3000/TCP
21h
hello-world ClusterIP 10.108.178.113 <none> 3000/TCP
21h
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
67d

57

http://192.168.64.3:32004/ambassador/v0/diag

Since we will be using the external IP address, let’s store it in an environment variable, so we don’t
have to type it out each time:

$ export AMBASSADOR_LB=10.102.244.196

Now we can open the build-in Ambassador diagnostic web site by navigating to:
http://AMBASSADOR_LB/ambassador/v0/diag (replace the AMBASSADOR_LB with the actual IP address).

58

http://AMBASSADOR_LB/ambassador/v0/diag

Figure 21. Ambassador API Gateway Diagnostics

59

The Ambassador API gateway diagnostics page gives you an overview of the gateway. You could use
this if you are running into any issues or if you need to debug something. Of course, you can also
turn this diagnostics page off for any production scenarios.

Single service Ingress

Now that we have the ingress controller up and running, we can create an Ingress resource.

The simplest version of an Ingress resource is one without any rules. Ingress directs all traffic to the
same backend service, regardless of the traffic origin.

Figure 22. Single Service Ingress

Let’s create an Ingress that only defines a backend service and doesn’t have any rules.

60

ch3/single-service-ing.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: ambassador
 name: my-ingress
spec:
 defaultBackend:
 service:
 name: hello-world
 port:
 number: 3000

Save the YAML to single-service-ing.yaml and deploy the Ingress using kubectl apply -f single-
service-ing.yaml command.

We used the following annotation kubernetes.io/ingress/class: ambassador in the above YAML. The
Ambassador controller uses this annotation to claim the Ingress resource, and any traffic sent to
the controller will be using the rules defined in the Ingress resource.

If you list the Ingress resources, you will see the created resource:

$ kubectl get ing
NAME CLASS HOSTS ADDRESS PORTS AGE
my-ingress <none> * 80 1h

The * in the HOSTS column means that there are no hosts defined. Later, when we define per-host
rules, you will see those rules show up under the HOSTS column.

If you open the browser and navigate to the same IP as before (http://AMBASSADOR_LB), the Hello
World website will show up.

Path based routing with Ingress

Since we want to expose two services through the Ingress, we need to write some rules. Using a
path configuration, you can route traffic from one hostname to multiple services based on the URI
path.

In this example, we want to route traffic from http://AMBASSADOR_LB/hello to the Hello World
service and traffic from http://AMBASSADOR_LB/dog to Dog Pic Service.

61

http://AMBASSADOR_LB
http://AMBASSADOR_LB/hello
http://AMBASSADOR_LB/dog

Figure 23. Path-based Routing with Ingress

To do that, we will define two rules in the Ingress resource:

62

ch3/path-ing.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: ambassador
 name: my-ingress
spec:
 rules:
 - http:
 paths:
 - path: /hello
 pathType: Prefix
 backend:
 service:
 name: hello-world
 port:
 number: 3000
 - path: /dog
 pathType: Prefix
 backend:
 service:
 name: dogpic-service
 port:
 number: 3000

Save the YAML to path-ing.yaml and create the ingress by running kubectl apply -f path-ing.yaml.

Let’s look at the details of the created Ingress resource using the describe command:

$ kubect describe ing my-ingress
Name: my-ingress
Namespace: default
Address:
Default backend: default-http-backend:80 (<error: endpoints "default-http-backend"
not found>)
Rules:
 Host Path Backends
 ---- ---- --------
 *
 /hello hello-world:3000 (172.17.0.4:3000)
 /dog dogpic-service:3000 (172.17.0.5:3000)
Annotations: kubernetes.io/ingress.class: ambassador
Events: <none>

Under the rules section, you will see the two paths we defined and the backends (service names).

If you navigate to http://AMBASSADOR_LB/hello the Hello World website will render, and if you

63

http://AMBASSADOR_LB/hello

navigate to `http://AMBASSADOR_LB/dog you will get the Dog Pic website.

Let’s take this a step further. Wouldn’t it be nice if we could type in http://example.com/dog instead
of the IP address?

Using a hostname instead of an IP address

If we want to use a hostname, we will have to specify it in the Ingress resource, so the controller
knows which hosts and where to direct the traffic.

ch3/hostname-ing.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: ambassador
 name: my-ingress
spec:
 rules:
 - host: example.com
 http:
 paths:
 - path: /hello
 pathType: Prefix
 backend:
 service:
 name: hello-world
 port:
 number: 3000
 - path: /dog
 pathType: Prefix
 backend:
 service:
 name: dogpic-service
 port:
 number: 3000

Save the above YAML to hostname-ing.yaml file and run kubectl apply -f hostname-ing.yaml to
create the Ingress.

This time we defined a host name (example.com) and that will show up when you get the Ingress
details:

64

http://example.com/dog

$ kubectl describe ing my-ingress
Name: my-ingress
Namespace: default
Address:
Default backend: default-http-backend:80 (<error: endpoints "default-http-backend"
not found>)
Rules:
 Host Path Backends
 ---- ---- --------
 example.com
 /hello hello-world:3000 (172.17.0.4:3000)
 /dog dogpic-service:3000 (172.17.0.5:3000)
Annotations: kubernetes.io/ingress.class: ambassador
Events: <none>

Notice how the Host column contains the actual host we defined.

If you try to navigate to the same Ambassador load balancer address as before
(http://AMBASSADOR_LB), you will get an HTTP 404 error. This error is expected because we explicitly
defined the host (example.com), but we haven’t defined a default backend service - this is the service
traffic gets routed to if none of the rules evaluate to true. We will see how to do that later on.

There are multiple ways you can access the IP address using a hostname.

The simplest way is to set a Host header when making a request from the terminal. For example:

$ curl -H "Host: example.com" http://$AMBASSADOR_LB/hello
<link rel="stylesheet" type="text/css" href="css/style.css" />

<div class="container">
 Hello World!
</div>

Setting the Host header works, but it would be much better if we could do the same through a
browser.

I am using a browser extension called ModHeader[https://bewisse.com/modheader]. This extension
allows you to set the same Host header in your browser.

65

http://AMBASSADOR_LB
https://bewisse.com/modheader

Figure 24. ModHeader Extension

If you navigate to http://$AMBASSADOR_LB/hello or http://$AMBASSADOR_LB/dog you will notice both
web pages will load. This option works well, as you can load the page in the browser. However, it
would be helpful to use the hostname e.g. example.com/dog, for example.

You can modify the hosts file on your computer that allows you to map hostnames to IP addresses.
You can map the IP address ($AMBASSADOR_LB) to example.com.

Open the /etc/hosts file (or %SystemRoot%\System32\drivers\etc\hosts on Windows) and add the line
mapping the hostname to an IP address. Make sure you use sudo or open the file as administrator
on Windows.

$ sudo vim /etc/hosts
...
10.102.244.196 example.com
...

Save the file and if you navigate to example.com/hello or example.com/dog you will see both pages
open. Make sure to uncheck/delete the header you have set with ModHeader.

Next, let’s see how we can set a default backend that receives the traffic if Ingress controller can’t
match any of the rules.

Setting a default backend

In most cases, the default backend will be set by the Ingress controller. Some Ingress controllers
automatically install a default backend service as well (NGINX, for example). Then, to configure the
default backend, you can use either annotation or one of the custom resource definitions installed
Ingress controller supports.

Since we don’t want to dig into Ingress controllers' specifics, we will set the default backend directly
in the Ingress resource. Ideally, you would be using your Ingress controller configuration and set
the default backend there. To be completely honest, you might even just use the custom resources
each Ingress controller supports, instead of the vanilla Kubernetes Ingress resource.

66

http://$AMBASSADOR_LB/hello
http://$AMBASSADOR_LB/dog

For this example we will set the default backend to the hello-world service. Here’s the updated
Ingress resource, with modified lines highlighted:

ch3/default-backend-ing.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: ambassador
 name: my-ingress
spec:
 defaultBackend:
 service:
 name: hello-world
 port:
 number: 3000
 rules:
 - host: example.com
 http:
 paths:
 - path: /hello
 pathType: Prefix
 backend:
 service:
 name: hello-world
 port:
 number: 3000
 - path: /dog
 pathType: Prefix
 backend:
 service:
 name: dogpic-service
 port:
 number: 3000

Save the above YAML to default-backend-ing.yaml and update the Ingress with kubectl apply -f
default-backend-ing.yaml. If you describe the Ingress resource using the describe command, you
will get a nice view of all rules and the default backend that we just set:

67

$ kubectl describe ing my-ingress
Name: my-ingress
Namespace: default
Address:
Default backend: hello-world:3000 (172.17.0.8:3000)
Rules:
 Host Path Backends
 ---- ---- --------
 example.com
 /hello hello-world:3000 (172.17.0.8:3000)
 /dog dogpic-service:3000 (172.17.0.9:3000)
Annotations: kubernetes.io/ingress.class: ambassador
Events: <none>

If you open http://example.com you will notice that this time the Hello World web page will load.
The /hello and /dog endpoints will still work the same way.

Name-based Ingress

Sometimes you don’t want to use the fanout option with paths; instead, you want to route the traffic
based on the subdomains. For example, routing example.com to one service, dogs.example.com to
another, etc. For this example, we will try to set up the following rules:

Host name Kubernetes service

example.com hello-world:3000

dog.example dogpic-service:3000

To create the above rules, we need to add two host entries under the Ingress resource’s rules
section. We define the paths and the backend service and port name we wnat to route the traffic to
under each host entry.

68

http://example.com

ch3/name-ing.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: ambassador
 name: my-ingress
spec:
 rules:
 - host: example.com
 http:
 paths:
 - path: /hello
 pathType: Prefix
 backend:
 service:
 name: hello-world
 port:
 number: 3000
 - host: dog.example.com
 http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 service:
 name: dogpic-service
 port:
 number: 3000

Save the above YAML to name-ing.yaml and deploy it using kubectl apply -f name-ing.yaml.

Before we can try this out, we need to add the dog.example.com to the hosts file just like we did with
the example.com. Open the /etc/hosts file (or %SystemRoot%\System32\drivers\etc\hosts on Windows)
and add the line mapping the dog.example.com hostname to the IP address. Make sure you use sudo
or open the file/terminal as an administrator on Windows.

$ sudo vim /etc/hosts
...
10.102.244.196 example.com
10.102.244.196 dog.example.com
...

69

NOTE

When using a real domain name, the entries we added to the hosts file would
correspond to the DNS records at your domains registrar. With an A record, you can
map a name (example.com) to a stable IP address. For example.com, you would create
an A record that points to the external IP address. Another commonly used record is
the CNAME record. You would use CNAME to map one name to another name. For
example, to map dog.mydomain.com to dog.example.com, while dog.example.com uses an
A record and maps to an IP. In the end, the dog.mydomain.com would resolve to the IP
address, same as dog.example.com.

Save the file, open the browser, and navigate to http://example.com. You should see the response
from the Hello World service as shown below.

Figure 25. Hello World Website

Similarly, if you enter http://dog.example.com you will get the Dog Pic website.

70

http://example.com
http://dog.example.com

Figure 26. Dog Pic Service

Cleanup

You can delete the Service, Deployments, and Ingress using the kubectl delete command. For
example, to delete the dogpic-web deployment, run:

$ kubectl delete deploy dogpic-web
deployment.apps "dogpic-web" deleted

To delete a different resource, replace the resource name (deploy in the above example) with
ingress or service.

71

Another way of deleting the resources is to provide the YAML file you used to create the resource.
For example, if you created the dogpic-web from a file called dogpic.yaml you can delete it like this:

$ kubectl delete -f dogpic.yaml

If you get completely stuck and can’t delete something or delete too much (everyone has done that
at some point), you can always just reset your cluster. If you’re using Minikube, you can run
minikube delete to delete the cluster and afterward run minikube start to get a fresh cluster.
Similarly, you can reset the Kubernetes cluster from the Preferences menu when using Docker
Desktop.

Other Ingress controller responsibilities

The job of an ingress controller or an ingress gateway is to proxy or "negotiate" the communication
between the client and the server. The client is anyone making requests, and the server is the
Kubernetes cluster or instead services running inside the cluster.

In addition to routing the incoming requests or exposing service APIs through a single endpoint, the
ingress gateways do other tasks, such as rate-limiting, SSL termination, load balancing,
authentication, circuit breaking, and more.

Organizing applications with namespaces
Up until now, we haven’t talked about namespaces. Namespaces in Kubernetes provide a way to
scope and group different Kubernetes resources. Each namespace can contain multiple resources,
however, a single resource can only be in one namespace. The resource names need to be unique
within a namespace, but not across the namespaces.

For example, you can only have one service called customers inside a namespace called production.
However, you could create a customers service inside a namespace called testing. In thise case, the
full name of the Service would be customers.production and customers.testing.

You will create most of the Kubernetes resources inside a namespace. However some resources are
not in a namespace or are not namespaced. The example of a non-namespaced resource is the
namespace itself because namespaces cannot be nested. Other examples of non-namespaced
resources are Nodes, PersistentVolumes, CustomResourceDefinitions, and others.

TIP
You can get the full list of non-namespaced resources in your cluster by running
kubectl api-resources --namespaced=false. If you switch the flag value to true, you can
list all namespaced resources.

Typically you would use multiple namespaces in clusters with many users spread across different
projects or teams. You can deploy most of the off-the-shelf Kubernetes application using Helm
package manager into separate namespaces. Later in the book, when we talk about resource
quotas, we will show an example of how to divide the cluster resources between multiple users
using namespaces.

For the namespaced resource, you specify the namespace in the metadata section of the resource:

72

...
metadata:
 name: hello
 namespace: mynamespace
...

If you don’t provide the namespace, Kubernetes creates the resources in the default namespace.
The default namespace is called default, however, that can be changed per Kubernetes context. For
example, if you’re working with multiple clusters, you might want to set different default
namespace for your clusters.

Let’s consider the following output:

$ kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO
NAMESPACE
 docker-for-desktop docker-desktop docker-desktop
 kind-kind kind-kind kind-kind
 minikube minikube minikube
* peterjk8s peterjk8s clusterUser_mykubecluster_peterjk8s

Notice the namespace column is empty because I haven’t explicitly set namespaces for my contexts.
If I create a resource without specifying a namespace, it will end up in the default namespace.

You can create namespaces the same way you create other Kubernetes resources. You can either
define the namespace using YAML or use kubectl.

Let’s create a namespace called testing using kubectl:

$ kubectl create namespace testing
namespace/testing created

$ kubectl get namespace
NAME STATUS AGE
default Active 32d
kube-node-lease Active 32d
kube-public Active 32d
kube-system Active 32d
testing Active 3s

TIP Short name for namespace is ns, so you can save typing seven characters!

The YAML representation of a namespace is straightforward, compared to some of the other
resources. You can get the YAML representation of any Kubernetes resource using the --output yaml
flag when running the get command:

73

$ kubect get ns testing --output yaml
apiVersion: v1
kind: Namespace
metadata:
 creationTimestamp: "2020-06-23T21:51:35Z"
 name: testing
 resourceVersion: "3750772"
 selfLink: /api/v1/namespaces/testing
 uid: 266e95ec-7de4-429c-a945-83d91a2a2296
spec:
 finalizers:
 - kubernetes
status:
 phase: Active

The above output contains the field values such as creationTimestamp, resourceVersion, selfLink, and
others that Kubernetes adds when it creates the resource.

A cleaner way of getting the YAML representation of a resource is to add the --dry-run flag when
creating the resource. Any command you execute with the --dry-run flag will not be persisted and
won’t have any side-effects. That means nothing will get created, deleted, or modified. However,
this allows you to see how the resource would look like processed and persisted.

Let’s combine the dry run flag and the output flag and try again. Note that I am using the short
name for the output flag, -o:

$ kubectl create ns testing --dry-run=client -o yaml
apiVersion: v1
kind: Namespace
metadata:
 creationTimestamp: null
 name: testing
spec: {}
status: {}

If we remove the empty and null fields, the YAML representation of the Namespace resource looks
like this:

apiVersion: v1
kind: Namespace
metadata:
 name: testing

You can also specify a namespace with each kubectl command. For example, if you want to get all
Pods inside the kube-system namespace, you can do that using the --namespace or -n flag:

74

$ kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
coredns-66bff467f8-glmzm 1/1 Running 0 8d
coredns-66bff467f8-msvgx 1/1 Running 0 8d
etcd-minikube 1/1 Running 0 8d
kube-apiserver-minikube 1/1 Running 0 8d
kube-controller-manager-minikube 1/1 Running 1 8d
kube-proxy-wqn8f 1/1 Running 0 8d
kube-scheduler-minikube 1/1 Running 0 8d
storage-provisioner 1/1 Running 0 8d

If you don’t explicitly provide a namespace, Kubernetes uses the default namespace. Similarly, you
can use the flag called --all-namespaces or -A to list resources across all namespaces. For example,
to list all Services in your cluster, regardless of the namespace, you would run:

$ kubectl get svc -A
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
default kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
8d
default web-frontend LoadBalancer 10.106.30.168 <pending> 80:30962/TCP
8d
kube-system kube-dns ClusterIP 10.96.0.10 <none>
53/UDP,53/TCP,9153/TCP 8d

As mentioned in section Using a Kubernetes Service a namespace plays a role when resolving
Services. Let’s consider the following listing of services inside a cluster:

$ kubectl get svc -A
NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
production web-frontend ClusterIP 10.96.0.1 <none> 80:30642/TCP
8d
testing web-frontend ClusterIP 10.96.0.2 <none> 80:30962/TCP
8d

We have two Services called web-frontend. One Service is in the production namespace and the other
in the testing namespace.

To correctly reference one or the other, you need to use the full name of the service. For example
web-frontend.production.svc.cluster.local for the service in the production namespace. If your
application that lives inside the production namespace sends a request to web-frontend, that
automatically resolves to the web-frontend service inside the production namespace. However, if you
want to reach the web-frontend service from the testing namespace, you will have to use a fully
qualified name, which is web-frontend.testing.svc.cluster.local. It is a good practice always to use
fully qualified names, so there’s no confusion on which service you are calling.

75

Jobs and CronJobs
The type of workloads we were deploying previously were all long-running applications - things
like websites and services that keep on running continuously. If something went wrong, they get
rescheduled and start running again.

The other type of workloads you often need to run are workloads that perform a particular task,
and once the task is completed they stop running. An example of a workload like that would be
doing a backup or generating daily reports. It does not make sense to keep the reporting workload
running. It only needs to run when it’s generating the report. Once the task generates the report it
can go away. If the task fails, you can configured it to restart automatically.

Kubernetes features a resource called Job you can use to run such workloads. The Job resource can
create one or more Pods and track the number of successful completions. The Job resource ensures
that Pods are run to completion. You could achieve a similar behavior only with Pods, but then
you’d have to be the manage the Pods' lifecycle in case it fails or gets rescheduled.

Let’s run a Job that doesn’t nothing but sleep for a minute:

ch3/sleep-job.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: sleep-on-the-job
spec:
 template:
 metadata:
 labels:
 app.kubernetes.io/name: sleep-on-the-job
 spec:
 restartPolicy: Never
 containers:
 - name: sleep-container
 image: busybox
 args:
 - sleep
 - "60"

Save the above YAML in sleep-job.yaml and run kubectl apply -f sleep-job.yaml to create the Job.

NOTE

We are explicitly setting the restartPolicy to Never. The default value for
restartPolicy is Always, however, the Job resource does not support that restart
policy. The two supported values are Never and OnFailure. Setting one of these
values prevents the container from being restarted when it finishes running.

You can list the Job the same way as any other resource. Notice how the output also shows the
number of completions of the Job and duration of the Job.

76

$ kubectl get job
NAME COMPLETIONS DURATION AGE
sleep-on-the-job 0/1 4s 4s

If you describe the Job you will notice in the Events section that controller creates a Pod to run the
Job:

$ kubectl describe job sleep-on-the-job
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 18s job-controller Created pod: sleep-on-the-job-f9ht8
...

Let’s look at the Pod that was created by this Job. We will use the --labels flag to get all Pods with
the label app.kubernetes.io/name=sleep-on-the-job:

$ kubectl get pods -l=app.kubernetes.io/name=sleep-on-the-job
NAME READY STATUS RESTARTS AGE
sleep-on-the-job-f9ht8 1/1 Running 0 48s

After a minute, the Pod will stop running, however, it won’t be deleted. If you run the same
command as above, you will notice that the Pod is still around. Kubernetes keeps the Pod around so
you can look at the logs, for example.

$ kubectl get pods -l=app.kubernetes.io/name=sleep-on-the-job
NAME READY STATUS RESTARTS AGE
sleep-on-the-job-f9ht8 0/1 Completed 0 28m

Similarly happens with the Job resource. The resource stays around until you explicitly delete it.
Deleting the Job also deletes the Pod. Notice how the number of completions now shows 1/1, which
means that the Job was completed successfully one time.

$ kubectl get job
NAME COMPLETIONS DURATION AGE
sleep-on-the-job 1/1 63s 12m

If you’re wondering if a job can be completed and executed multiple times, the answer is yes, it can.
The Job can track the number of successful completions, and you can use that number as to control
when the Job completes.

By default, Kubernetes sets the number of completions to 1, and you can change that by setting a
different value to the completions field. Let’s create a new Job called three-sleeps-on-the-job where

77

we set the completions to 3. Setting it to 3 causes the Job’s Pod to run three times sequentially:

ch3/three-sleeps.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: three-sleeps-on-the-job
spec:
 completions: 3
 template:
 metadata:
 labels:
 app.kubernetes.io/name: three-sleeps-on-the-job
 spec:
 restartPolicy: Never
 containers:
 - name: sleep-container
 image: busybox
 args:
 - sleep
 - "60"

Save the above YAML in three-sleeps.yaml and deploy it with kubectl apply -f three-sleeps.yaml.

If you look at Jobs now, you will notice the COMPLETIONS column for the latest Job shows 0/3:

$ k get job
NAME COMPLETIONS DURATION AGE
sleep-on-the-job 1/1 63s 40m
three-sleeps-on-the-job 0/3 10s 10s

As soon as the first job finishes (60 seconds later), the column will be updated and will show 1/3 in
the COMPLETIONS column. The Job executes Pods one after another, and Kubernetes marks the Job
completed when there are three successful completions (i.e., three pods ran without any failures).

If you need to execute Pods in parallel, you can use the parallelism setting. The parallelism setting
defines how many Pods you can run in parallel.

Let’s take the previous example and set the parallelism value to two:

78

ch3/three-sleeps-parallel.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: three-sleeps-on-the-job-parallelism
spec:
 completions: 3
 parallelism: 2
 template:
 metadata:
 labels:
 app.kubernetes.io/name: three-sleeps-on-the-job-parallelism
 spec:
 restartPolicy: Never
 containers:
 - name: sleep-container
 image: busybox
 args:
 - sleep
 - "60"

Save the above YAML in three-sleeps-parallel.yaml and deploy it with kubectl apply -f three-
sleeps-parallel.yaml.

If you list the Pods now, you will notice two Pods running at the same time:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
three-sleeps-on-the-job-parallelism-b8ckz 1/1 Running 0 8s
three-sleeps-on-the-job-parallelism-zcrzq 1/1 Running 0 8s

What happens if the Pods keep failing? Well, the Job will keep creating them and retrying based on
the backoffLimit setting. The back-off limit is a setting on the spec that specifies the number of
retries before Kubernetes considers the Job failed. Kubernetes sets the default value to 6 and re-
creates them with an exponential back-off delay. The back-off delay means if the first Pod fails, the
controller will wait for 10 seconds before recreating it. Then if it fails again, it will wait for 20
seconds and so on up until a total of six minutes of delay. Kubernetes resets the back-off delay
either when you delete the Pod or when the Pod completes successfully.

In addition to the backoffLimit, you can also terminate a job using the activeDeadlineSeconds. The
activeDeadlineSeconds represents how long a Job can run, regardless of how many Pods it creates. If
we consider the previous example and set the activeDeadlineSeconds to 10, the Job will fail after 10
seconds. Kubernetes will terminate the Pods and set the Jobs' status to DeadlineExceeded.

Let’s look at this using an example:

79

ch3/failing-job.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: failing-job
spec:
 completions: 3
 activeDeadlineSeconds: 20
 template:
 metadata:
 labels:
 app.kubernetes.io/name: failing-job
 spec:
 restartPolicy: Never
 containers:
 - name: sleep-container
 image: busybox
 args:
 - sleep
 - "60"

Save the above YAML in failing-job.yaml and deploy it with kubectl apply -f failing-job.yaml.

The Job will create a Pod, but after 20 seconds, the Pod will get terminated, and the Job will fail with
the DeadlineExceeded reason:

$ kubectl describe job failing-job
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 86s job-controller Created pod: failing-job-rq9ht
 Normal SuccessfulDelete 66s job-controller Deleted pod: failing-job-rq9ht
 Warning DeadlineExceeded 66s job-controller Job was active longer than
specified deadline

If you ran all these examples, you have probably noticed that Kubernetes does not automatically
remove the Jobs and completed Pods. You can clean up the completed (or failed) Jobs by setting the
ttlSecondsAfterFinished value. After a Job completes (or fails) the controller waits for the duration
specified in the ttlSecondsAfterFinished field and then deletes the Job and Pods.

80

ch3/delete-job.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: delete-job
spec:
 ttlSecondsAfterFinished: 30
 template:
 metadata:
 labels:
 app.kubernetes.io/name: delete-job
 spec:
 restartPolicy: Never
 containers:
 - name: sleep-container
 image: busybox
 args:
 - sleep
 - "10"

Save the above YAML in delete-job.yaml and deploy it with kubectl apply -f delete-job.yaml.

The above Job will complete in 10 seconds. After that, the controller will wait for an extra 30
seconds before deleting the Job and the Pod. If you want to delete the Job right after it finishes, you
can set the ttlSecondsAfterFinished to 0.

Note that this feature is currently in alpha state. To use it, you need to enable alpha features in your
cluster.

CronJobs

A CronJob is a type of a Job you can run at specified times and dates. The regular Jobs start running
when you create them. There are essential settings that allow you to control how Kubernetes runs
the Job. However, you cannot schedule the Job to run at a particular times or intervals. Running
Jobs at particular times or intervals is what the CronJob allows you to do.

The CronJob resource uses a well-known cron format, made out of five fields that represent the
time to execute the command.

81

Figure 27. cron format

The cron format is out of scope for this book, but here are a couple of examples:

Example Description

* * * * * Runs every minute, every hour, day, month and
day of the week)

*/10 * * * * Runs every 10 minutes

00 9,21 * * * Runs at 9 AM and 9 PM, every day, month, and
day of the week

00 7-17 * * * Run at the top of every hour, from 7 AM and 5
PM, every day, month, and day of the week

00 7-17 * * 1-5 Run at the top of every hour, from 7 AM and 5
PM, every day, month, but only during
weekdays.

0,15,30,45 * * * * Runs every 15 minutes of every hour, day,
month, and day of the week

Let’s create a CronJob that runs every minute, so that we can see it in action. You can set the cron
format with the schedule field:

82

ch3/minute-cron.yaml

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: minute-cron
spec:
 schedule: "*/1 * * * *"
 jobTemplate:
 spec:
 template:
 metadata:
 labels:
 app.kubernetes.io/name: minute-cron
 spec:
 restartPolicy: Never
 containers:
 - name: sleep-container
 image: busybox
 args:
 - sleep
 - "10"

Save the above YAML in minute-cron.yaml and deploy it with kubectl apply -f minute-cron.yaml.

Let’s look at the CronJob by running kubectl get cronjob or using the short name kubectl get cj:

$ kubectl get cj
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
minute-cron */1 * * * * False 0 <none> 3s

If you wait for a couple of minutes, you will see the CronJob automatically create the Pods every
minute.

To suspend the CronJob you can edit the resource (e.g. kubectl edit minute-cron) and change the
suspend field from false to true.

In addition to the CronJob schedule, you can also configure how CronJob deals with concurrent
executions. Let’s say you configured the CronJob to run every 5 minutes. The Pod starts, and for
some reason, it runs for more than 5 minutes. What should the CronJob controller do in this case?
Does it create the second Pod as per schedule or do nothing, since the previous Job is still
executing?

You can control this behavior using the concurrencyPolicy setting. This setting has three possible
values - Forbid, Allow, and Replace. The default value is Allow, and if the previous iteration hasn’t
completed when the new one is supposed to start, the allow setting will allow the second instance
to run.

Setting the value to Forbid will do the opposite - the Pod that was supposed to start per schedule will

83

not start.

Finally, the Replace will stop the currently running Job and start a new one.

Another configuration value we need to mention here is the startingDeadlineSeconds. You would set
this in cases where you don’t want to start the job over the scheduled time. If the Job doesn’t start at
the scheduled time + the deadline, it will be marked as Failed.

Consider the following example:

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: ten-minute-cron
spec:
 schedule: "*/10 * * * *"
 startingDeadlineSeconds: 30
 ...

The Job needs to run every ten minutes. Let’s say the first Job is supposed to start at 2 PM (2 hours, 0
minutes, and 0 seconds). The startingDeadlineSeconds says that if the Job doesn’t begin by 2:00:30
the controller should mark it as failed.

84

Configuration
One of the factors from the Twelve-Factor App manifesto talks about application configuration,
specifically about storing configuration in the environment, instead of hardcoding it inside your
services.

In most cases, the application configuration will vary between different deployment environments.
For example, when you’re running your application in a testing or staging environment, it is highly
likely that you want your application to use databases or other backing services from the same
environment. You don’t want the application in a testing environment to talk to your production
database - that would be bad.

Another reason for separating code from your configuration is that you don’t want to rebuild your
application each time you change a configuration value. That would be a massive waste of time and
resources. Instead, you should always deploy the same application or binary, but augment its
behavior using a configuration specific to the environment application is running in.

Figure 28. Configuration per Environment

Typically configuration is anything that your application needs to be able to start and run. Here are
a couple of standard configuration settings:

• Connection strings to databases, queues, or other connection strings

• Credentials (any usernames, passwords, keys, certificates)

• Port numbers, dependent service names, and addresses

We can separate these configuration settings into two groups at a high-level: non-sensitive
configuration values and sensitive configuration values.

The former contains anything that you don’t consider to be sensitive information - things like port
numbers, service names, or perhaps even connection strings, assuming they don’t contain any
usernames or passwords. The latter group includes sensitive information or secrets. Things like

85

https://12factor.net/

passwords, API keys, application secrets, credentials, certificates, etc. Pretty much anything that can
severely compromise your application or your system if this information is leaked.

Configuring application through arguments
The simplest way to configure the application running inside Kubernetes is to set the command and
pass arguments to it - we have already done that in the previous chapter, where we talked about
Pods. Here’s an example we used:

ch4/hello-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: hello-pod
 labels:
 app.kubernetes.io/name: hello
spec:
 containers:
 - name: hello-container
 image: busybox
 command: ["sh", "-c", "echo Hello from my container!"]

With the above YAML, we are invoking sh and then echoing the "Hello from my container!"
message. Another way you can do this is to specify "echo" as the command and pass-in the message
as an argument, just like in the YAML below:

ch4/hello-pod-args.yaml

apiVersion: v1
kind: Pod
metadata:
 name: hello-pod
 labels:
 app.kubernetes.io/name: hello
spec:
 containers:
 - name: hello-container
 image: busybox
 command: ["echo"]
 args: ["Hello from my container!"]

In some cases (depending on how you defined your Dockerfile), you could even omit the command
and specify the arguments. Here’s a snippet from the Traefik deployment YAML and how the
arguments are passed to the Traefik Docker image:

86

...
 spec:
 containers:
 - name: router
 image: traefik:v2.3
 args:
 - --entrypoints.web.Address=:8000
 - --entrypoints.websecure.Address=:4443
 - --providers.kubernetescrd
 - --accesslog=true
 - --accesslog.filepath=/var/log/traefik.log
 - --certificatesresolvers.myresolver.acme.tlschallenge
...

In the above case, the Dockerfile for the traefik image is using ENTRYPOINT command to point to the
traefik binary inside the container. Therefore, you don’t need to set the command name explicitly.
Here’s a snippet from the Traefiks' Dockerfile:

...
EXPOSE 80
VOLUME ["/tmp"]
ENTRYPOINT ["/traefik"]

Let’s quickly look at what the difference between the CMD and ENTRYPOINT is.

Difference between CMD and ENTRYPOINT in Dockerfiles

With the ENTRYPOINT instruction, you can specify a command that Docker executes when the
container starts. On the other hand, with CMD you can specify arguments that get passed to the
ENTRYPOINT instruction. Let’s consider the following Dockerfile:

ch4/Dockerfile

FROM alpine
RUN apk add curl

ENTRYPOINT ["/usr/bin/curl"]
CMD ["google.com"]

If you build this image (let’s call it curlalpine) and then run it without any arguments, you will get
back the response from google.com:

87

$ docker run -it curlalpine
<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>301 Moved</TITLE></HEAD><BODY>
<H1>301 Moved</H1>
The document has moved
here.
</BODY></HTML>

If you run the same image with an argument example.com, the container will curl to the example.com:

$ docker run -it curlalpine example.com
<!doctype html>
<html>
<head>
 <title>Example Domain</title>
...

Now let’s say we modified the Dockerfile, removed the ENTRYPOINT and invoked the curl
google.com within the CMD instruction:

ch4/Dockerfile.cmd

FROM alpine
RUN apk add curl

CMD ["/usr/bin/curl", "google.com"]

Running the container without any arguments will invoke "curl google.com", just like before.
However, if you pass in an argument (example.com, like we did before), you will get an error:

$ docker run -it curlcmd example.com
docker: Error response from daemon: OCI runtime create failed: container_linux.go:349:
starting container process caused "exec: \"example.com\": executable file not found in
$PATH": unknown.
ERRO[0000] error waiting for container: context canceled

The container is trying to run the argument, which in our case, doesn’t make any sense (unless you
have a binary called example.com in the container). If you replace example.com with a command that
exists inside the container (let’s say ls), the container will execute that command:

$ docker run -it curlcmd ls
bin etc lib mnt proc run srv tmp var
dev home media opt root sbin sys usr

In addition to passing arguments to containers, Kubernetes also has dedicated resources to store

88

the configuration. A resource for storing configuration settings is called a ConfigMap, and the
resource for storing secret configuration values is named Secret. Let’s look at the ConfigMaps first.

Creating and using ConfigMaps
A ConfigMap resource can store configuration values (key-value pairs). These values can be
consumed or 'mounted' to containers inside a Pod either as environment variables or files. Here’s a
YAML representation of a ConfigMap that stores single values ("8080", "Ricky") as well as values that
look like fragments of a configuration file (e.g. "someVariable" and "anotherName" under the
settings.env key):

ch4/simple-config.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: simple-config
 namespace: default
data:
 portNumber: "8080"
 name: Ricky
 settings.env: |
 someVariable=5
 anotherName=blah

Save the above YAML into a file called simple-config.yaml and create it by running kubectl apply -f
simple-config.yaml.

To see the details of the ConfigMap you create, you can use the describe command:

89

$ kubectl describe cm simple-config
Name: simple-config
Namespace: default
Labels: <none>
Annotations:
Data
====
name:
\----
Ricky
portNumber:
\----
8080
settings.env:
\----
someVariable=5
anotherName=blah

Events: <none>

For Pod to use the values from the ConfigMap, both Pod and ConfigMap need to reside in the same
namespace. You can mount a ConfigMap to your Pod and use the values in one of the following
ways:

• As command-line arguments

• As environment variables

• As a file in a read-only-volume

• Through Kubernetes API that reads the ConfigMap

Let’s create a Pod and show how to consume the values from a ConfigMap.

90

ch4/config-pod-1.yaml

apiVersion: v1
kind: Pod
metadata:
 name: config-pod
 labels:
 app.kubernetes.io/name: config-pod
spec:
 containers:
 - name: config
 image: busybox
 command: ["sh", "-c", "sleep 3600"]
 env:
 - name: FIRST_NAME
 valueFrom:
 configMapKeyRef:
 name: simple-config
 key: name
 - name: PORT_NUMBER
 valueFrom:
 configMapKeyRef:
 name: simple-config
 key: portNumber

We are using the valueFrom and configMapKeyRef to specify where the value for the environment
variable is coming from. The environment variable name (e.g. FIRST_NAME) is and can be different
from the key name stored in the ConfigMap (e.g. name or portNumber).

Save the above YAML in config-pod-1.yaml and create the Pod with kubectl apply -f config-pod-
1.yaml. Once the Pod is running, let’s get the terminal inside the container and look at the
environment variables:

91

$ kubectl exec -it config-pod -- /bin/sh
/ # env
KUBERNETES_PORT=tcp://10.96.0.1:443
KUBERNETES_SERVICE_PORT=443
HOSTNAME=config-pod
SHLVL=1
HOME=/root
PORT_NUMBER=8080
TERM=xterm
KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_PROTO=tcp
FIRST_NAME=Ricky
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443
KUBERNETES_SERVICE_HOST=10.96.0.1
PWD=/

Notice the PORT_NUMBER and FIRST_NAME environment variables values are coming from the
ConfigMap.

How about the values under the settings.env key? Let’s mount that as a file inside the Pod. Here’s
the updated YAML for the config-pod:

92

ch4/config-pod-2.yaml

apiVersion: v1
kind: Pod
metadata:
 name: config-pod
 labels:
 app.kubernetes.io/name: config-pod
spec:
 containers:
 - name: config
 image: busybox
 command: ["sh", "-c", "sleep 3600"]
 env:
 - name: FIRST_NAME
 valueFrom:
 configMapKeyRef:
 name: simple-config
 key: name
 - name: PORT_NUMBER
 valueFrom:
 configMapKeyRef:
 name: simple-config
 key: portNumber
 volumeMounts:
 - name: config
 mountPath: "/config"
 readOnly: true
 volumes:
 - name: config
 configMap:
 name: simple-config
 items:
 - key: "settings.env"
 path: "local.env"

To bring in the settings.env from the ConfigMap, we create a Volume called config from the
ConfigMap and mount the items (or, in our case, just one item called settings.env) to the path called
local.env. Mounting creates a file local.env file containing the key-value pairs defined under the
key settings.env from the ConfigMap. Using a volumeMount field, we mount the config volume under
the /config folder inside the container.

Before deploying the above YAML, make sure you delete the previous Pod first, by running kubectl
delete pod config-pod. Then, save the above YAML in config-pod-2.yaml and apply it with kubectl
apply -f config-pod-2.yaml.

Once the Pod is deployed, let’s use the exec command to get a shell inside the container and look in
the /config folder:

93

$ kubectl exec -it config-pod -- /bin/sh
/ # cat config/local.env
someVariable=5
anotherName=blah
/ #

In the previous two examples, we were setting two configuration settings as environment variables
and mounting the settings.env as a file from a volume. Instead of mounting configuration as
environment variables, we can mount the whole ConfigMap as a Volume. In this case, each
configuration setting name (e.g., portNumber, name) will be created as a file containing the respective
value.

Once you’ve delete the previous pod (kubectl delete po config-pod), deploy the following YAML:

ch4/config-pod-3.yaml

apiVersion: v1
kind: Pod
metadata:
 name: config-pod
 labels:
 app.kubernetes.io/name: config-pod
spec:
 containers:
 - name: config
 image: busybox
 command: ["sh", "-c", "sleep 3600"]
 volumeMounts:
 - name: config
 mountPath: "/config"
 readOnly: true
 volumes:
 - name: config
 configMap:
 name: simple-config

The above YAML looks similar to what you’ve seen before. The only difference is that we aren’t
explicitly calling out any configuration settings - we are merely creating a volume (config) from a
ConfigMap and then mounting that volume under /config folder inside the Pod.

If you look at the contents of the /config folder inside the container, you will notice that there’s a
separate file created for every configuration setting from the ConfigMap:

$ kubectl exec -it config-pod -- ls /config
name portNumber settings.env

Each of the files contains the value(s) set in the ConfigMap:

94

$ kubectl exec -it config-pod -- cat /config/name
Ricky

The mounted ConfigMaps are updated automatically. Let’s edit the simple-config ConfigMap and
change the portNumber from 8080 to 5000. Run kubectl edit cm simple-config to launch the editor
from the terminal and change the value of portNumber to 5000. Save the changes and exit the editor.

Kubelet periodically checks if the ConfigMap was updated and sets the new value. If you check the
value of the /config/portNumber file, you will notice that the value is updated to 5000:

$ kubectl exec -it config-pod -- cat /config/portNumber
5000

Similarly, you can use envFrom field to automatically set all configuration settings from a ConfigMap
as environment variables. Here’s how the Pod YAML looks like in this case:

ch4/pod-env-prefix.yaml

apiVersion: v1
kind: Pod
metadata:
 name: config-pod
 labels:
 app.kubernetes.io/name: config-pod
spec:
 containers:
 - name: config
 image: busybox
 command: ["sh", "-c", "sleep 3600"]
 envFrom:
 - prefix: SIMPLE_CONFIG_
 configMapRef:
 name: simple-config

Instead of using the env field, you use the envFrom, specify the prefix you want to set to each entry,
and reference the ConfigMap. If you don’t set the prefix, the variable names will look like this:

portNumber
name
settings.env

With the prefix set to SIMPLE_CONFIG_, Kubernetes names the variables like this:

95

SIMPLE_CONFIG_portNumber
SIMPLE_CONFIG_name
SIMPLE_CONFIG_settings.env

The prefix is optional, and you don’t have to set it. However, it might make sense to select it,
especially if you have values coming from different ConfigMaps, and want to group them.

If you deploy the above YAML and run the env command in the container, you will see the
environment variables being set with the prefix:

$ kubectl exec -it config-pod -- env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=config-pod
TERM=xterm
SIMPLE_CONFIG_name=Ricky
SIMPLE_CONFIG_portNumber=8080
SIMPLE_CONFIG_settings.env=someVariable=5
anotherName=blah

KUBERNETES_SERVICE_PORT=443
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT=tcp://10.96.0.1:443
KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443
KUBERNETES_PORT_443_TCP_PROTO=tcp
KUBERNETES_PORT_443_TCP_PORT=443
KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1
KUBERNETES_SERVICE_HOST=10.96.0.1
HOME=/root

Up until now, you’ve been creating ConfigMaps through YAML. In some cases, though, that might
not be practical. Think about having an environment variable file with 10+ key-value pairs - it
doesn’t make sense to re-type all of them to create the YAML for the ConfigMap. For this purpose,
you can also use Kubernetes CLI to create the ConfigMaps.

Creating ConfigMaps using Kubernetes CLI

The Kubernetes CLI supports creating ConfigMaps in three different ways:

• Creating key-value pairs using --from-literal setting

• Creating key-value pairs from an environment file (list of key=value pairs) using --from-env-file
setting

• Creating key-value pairs from the file name and file contents using --from-file setting

Let’s look at the first option where you can create key-value pairs using the --from-literal setting:

96

$ kubectl create cm literal-config --from-literal=portNumber=8080 --from-literal
=firstName=Ricky
configmap/literal-config created

$ kubectl describe cm literal-config
Name: literal-config
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
firstName:
\----
Ricky
portNumber:
\----
8080
Events: <none>

You should use the --from-env-file setting if you are using .env files in your projects. Let’s consider
the following local.env file:

PORT=8080
SERVICE_URL=http://myservice
FIRST_NAME=Ricky
RETRIES=10

You could use --from-literal for each of the settings, but it’s much easier to use --from-env-file
command like this:

97

$ kubectl create cm env-config --from-env-file=local.env
configmap/env-config created

$ kubectl describe cm env-config
Name: env-config
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
FIRST_NAME:
\----
Ricky
PORT:
\----
8080
RETRIES:
\----
10
SERVICE_URL:
\----
http://myservice
Events: <none>

Finally, let’s consider a scenario where you’re storing configuration settings in a config.json file
that looks like this:

{
 "portNumber": "5000",
 "firstName": "Ricky",
 "serviceUrl": "http://myservice"
}

It is fairly safe to assume that your applications consume the JSON configuration as is - so it
wouldn’t make sense to split the file into regular key-value pairs and mount them as environment
variables or something like that. You need a single configuration item that has the JSON contents as
its value. To do this, you can use the --from-file setting:

98

$ kubectl create cm fromfile-cm --from-file=config.json
configmap/fromfile-cm created

$ kubectl describe cm fromfile-cm
Name: fromfile-cm
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
config.json:
\----
{
 "portNumber": "5000",
 "firstName": "Ricky",
 "serviceUrl": "http://myservice"
}

Events: <none>

The --from-file setting will use the file name (config.json) as the configuration key, and the value
will be the contents of the file. If you have multiple configuration files, you can also pass in the
folder name to the --from-file setting. The CLI will iterate through the files in the folder and create
the configuration items, just like a single file.

You can combine one of the file options with the literal option in a single command and create a
ConfigMap from multiple sources. For example:

$ kubectl create cm combined-cm --from-file=config.json --from-literal=HELLO=world

Note that the command fails if you use more than one option that reads a file (e.g. --from-file and
--from-env-file) together in the same command.

Storing secrets in Kubernetes
The Secret resource in Kubernetes is similar to ConfigMaps. Just like with ConfigMaps, you can use
Secrets to store key-value pairs. You can mount them into your containers either as files in a
volume or use them as environment variables.

The choice between using a ConfigMaps or a Secret is straightforward: if the value you’re storing
contains sensitive information (keys, passwords, credentials, etc.) store it in a Secret. Otherwise,
store the values in a ConfigMap. The Secret resource values are stored encrypted in the etcd (etcd is
the key-value store used by Kubernetes to store the objects and their state).

There are three types of Secrets you can create as shown in the table below.

Table 2. Secrets

99

Secret type Description Example

generic Secret that can be created from
a file, directory or a literal
value

kubectl create secret generic
service-auth --from
-literal=username=ricky --from
-file=password=password
-file.txt

docker-registry Secret for use with Docker
registry. You can pass in
.dockercfg file or manually
specify values needed to
authenticate with the Docker
registry (docker-server, docker-
username, docker-password,
docker-email)

kubectl create secret docker-
registry my-docker-registry
--docker
-server=https://index.docker.i
o/v1/ --docker
-username=username --docker
-password=ILOVEPIZZA2

tls Secret that holds the
public/private key pair.

kubectlcreate tls my-tls-
secret
--cert=my/certs/tls.cert
--key=/my/certs/tls.key

Let’s create a generic secret using kubectl:

$ kubectl create secret generic service-auth --from-literal=username=ricky --from
-literal=password=ILOVEPIZZA2
secret/service-auth created

You can now use the describe command to describe the Secret:

$ kubectl describe secret service-auth
Name: service-auth
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
password: 11 bytes
username: 5 bytes

If you remember from earlier when you describe a ConfigMap, you could see the actual key values.
Let’s create a ConfigMap with the same two values and describe it:

100

$ kubectl create cm service-auth-cm --from-literal=username=ricky --from-literal
=password=ILOVEPIZZA2
configmap/service-auth-cm created

$ kubetl describe cm service-auth-cm
Name: service-auth-cm
Namespace: default
Labels: <none>
Annotations: <none>

Data
====
password:
\----
ILOVEPIZZA2
username:
\----
ricky
Events: <none>

When describing the ConfigMap, you can see the actual key values (the username and password),
while in the Secret you only know the size (11 and 5 bytes).

Let’s also look at the YAML representation of the Secret to see how the values are stored:

$ kubectl get secret service-auth -o yaml
apiVersion: v1
data:
 password: SUxPVkVQSVpaQTI=
 username: cmlja3k=
....

>You can add the -o yaml flag to the get command to show the YAML representation of any resource
in Kubernetes:

Kubernetes stores the values as a Base64-encoded string. Encoding the values like that allows you to
store not just plain text, but also binary data. If you are creating a secret through YAML, you will
have to Base64-encode all binary values. However, if you have any secrets that don’t need to be
Base64-encoded (i.e., non-binary values), you can provide them in plain text using the stringData
field.

Here’s the same Secret as before, but in this case, we are providing the username in plain text, while
the password is still provided as Base64-encoded string:

101

ch4/svc-auth-2.yaml

apiVersion: v1
kind: Secret
metadata:
 name: service-auth-2
 namespace: default
stringData:
 username: ricky
data:
 password: SUxPVkVQSVpaQTI=

Save the above YAML in svc-auth-2.yaml file and create it using this command: kubectl apply -f
svc-auth-2.yaml.

If you get the YAML representation, you will see that both values still end up being Base64-encoded
and the field stringData is omitted (Kubernetes uses it to create the Base64-encode entries under
the data field):

$ kubectl get secret service-auth-2 -o yaml
apiVersion: v1
data:
 password: SUxPVkVQSVpaQTI=
 username: cmlja3k=
kind: Secret
metadata:
....

Just like with ConfigMaps, Pods can consume Secrets through environment variables and volumes.
When you use the Secret is a Pod, the values are stored as plain text. You don’t have to Base64-
decode the values in your containers.

Consuming Secrets as environment variables

Let’s look at how you can consume the values from a Secret we created earlier as environment
variables:

102

ch4/pod-secret.yaml

apiVersion: v1
kind: Pod
metadata:
 name: secret-pod
 labels:
 app.kubernetes.io/name: secret-pod
spec:
 containers:
 - name: secret
 image: busybox
 command: ["sh", "-c", "sleep 3600"]
 env:
 - name: USERNAME
 valueFrom:
 secretKeyRef:
 name: service-auth
 key: username
 - name: PASSWORD
 valueFrom:
 secretKeyRef:
 name: service-auth
 key: password

Save the above YAML in pod-secret.yaml and deploy it using kubectl apply -f pod-secret.yaml.

If you compare the above to the example we did in the ConfigMaps section you won’t see many
differences. The difference is in the field name. When referencing a Secret, you use secretKeyRef,
instead of configMapKeyRef when you reference a ConfigMap.

Once the Pod is running, let’s look at the environment variables set in the container:

$ kubectl exec -it secret-pod -- env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=secret-pod
TERM=xterm
USERNAME=ricky
PASSWORD=ILOVEPIZZA2
KUBERNETES_PORT_443_TCP_ADDR=10.96.0.1
KUBERNETES_SERVICE_HOST=10.96.0.1
KUBERNETES_SERVICE_PORT=443
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_PORT=tcp://10.96.0.1:443
KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443
KUBERNETES_PORT_443_TCP_PROTO=tcp
KUBERNETES_PORT_443_TCP_PORT=443
HOME=/root

103

Note that we didn’t have to do any Base64-encoding, and the Secret values show up encoded. To
delete this Pod, run kubectl delete pod secret-pod.

Even though you can use secrets as environment variables, it is not recommended as it is much
easier to expose them unintentionally. For example, you might be writing all environment variables
to log files when your application crashes or when the application starts up. To be safe, you should
instead use volumes to mount secrets into Pods.

Consuming Secrets from Volumes

Let’s look at an example of how to mount the Secret values through files. Mounting Secrets as files
is the preferred and more secure way of consuming secrets than using them through environment
variables.

ch4/secret-pod-volume.yaml

apiVersion: v1
kind: Pod
metadata:
 name: secret-pod
 labels:
 app.kubernetes.io/name: secret-pod
spec:
 containers:
 - name: secret
 image: busybox
 command: ["sh", "-c", "sleep 3600"]
 volumeMounts:
 - name: auth-secret
 mountPath: "/var/secrets"
 readOnly: true
 volumes:
 - name: auth-secret
 secret:
 secretName: service-auth

We define the volume holding the Secret similarly as we did the ConfigMap. We are using the secret
field and then providing the secretName. Finally, we are mounting the volume using the volumeMounts
field and specifying the volume name and the container’s location where we want to store the
secrets.

Save the above YAML in secret-pod-volume.yaml and create the Pod using kubectl apply -f secret-
pod-volume.yaml.

If you run the ls command inside the container, you will notice two files: password and username.
These two files contain the Secret values in plain-text.

104

$ kubectl exec -it secret-pod -- ls /var/secrets
password username

$ kubectl exec -it secret-pod -- cat /var/secrets/username
ricky

$ kubectl exec -it secret-pod -- cat /var/secrets/password
ILOVEPIZZA2

105

Stateful Workloads
Running stateful workloads inside Kubernetes is different from running stateless services. The
reason being is that the containers and Pods can get created and destroyed at any time. If any of the
cluster nodes go down or a new node appears, Kubernetes needs to reschedule the Pods.

If you ran a stateful workload or a database in the same way you are running a stateless service, all
of your data would be gone the first time your Pod restarts.

Therefore we need to store the data outside of the container. Storing the data outside ensures that
nothing happens to it when the container restarts.

What are Volumes?
The Volume abstraction in Kubernetes solves this problem. The Volume lives as long as the Pod
lives. If any of the containers within the Pod get restarted, Volume preserves the data. However,
once you delete the Pod, the Volume gets deleted as well.

Figure 29. Volumes in a Pod

The Volume is just a folder that may or may not have any data in it. The folder is accessible to all
containers in a pod. How this folder gets created and the backing storage is determined by the
volume type.

The most basic volume type is an empty directory (emptyDir). When you create a Volume with the

106

emptyDir type, Kubernetes creates it when it assigns a Pod to a node. The Volume exists for as long
as the Pod is running. As the name suggests, it is initially empty, but the containers can write and
read from the Volume. Once you delete the Pod, Kubernetes deletes the Volume as well.

There are two parts to using the Volumes. The first one is the Volume definition. You can define the
volumes in the Pod spec by specifying the volume name and the type (emptyDir in our case). The
second part is mounting the Volume inside of the containers using the volumeMounts key. In each Pod
you can use multiple different Volumes at the same time.

Inside the volume mount we refer to the Volume by name (pod-storage) and specifying which path
we want to mount the Volume under (/data/).

ch5/empty-dir-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: empty-dir-pod
spec:
 containers:
 - name: alpine
 image: alpine
 args:
 - sleep
 - "120"
 volumeMounts:
 - name: pod-storage
 mountPath: /data/
 volumes:
 - name: pod-storage
 emptyDir: {}

Save the above YAML in empty-dir-pod.yaml and run kubectl apply -f empty-dir.pod.yaml to create
the Pod.

Next, we are going to use the kubectl exec command to get a terminal inside the container:

$ kubectl exec -it empty-dir-pod -- /bin/sh
/ # ls
bin dev home media opt root sbin sys usr
data etc lib mnt proc run srv tmp var

If you run ls inside the container, you will notice the data folder. The data folder is mounted from
the pod-storage Volume defined in the YAML.

Let’s create a dummy file inside the data folder and wait for the container to restart (after 2
minutes) to prove that the data inside the data folder stays around.

From inside the container create a hello.txt file under the data folder:

107

echo "hello" >> data/hello.txt

You can type exit to exit the container. If you wait for 2 minutes, the container will automatically
restart. To watch the container restart, run the kubectl get po -w command from a separate
terminal window.

Once container restarts, you can check that the file data/hello.txt is still in the container:

$ kubectl exec -it empty-dir-pod -- /bin/sh
/ # ls data/hello.txt
data/hello.txt
/ # cat data/hello.txt
hello
/ #

Kubernetes stores the data on the host under the /var/lib/kubelet/pods folder. That folder contains
a list of pod IDs, and inside each of those folders is the volumes. For example, here’s how you can get
the pod ID:

$ kubectl get po empty-dir-pod -o yaml | grep uid
 uid: 683533c0-34e1-4888-9b5f-4745bb6edced

Armed with the Pod ID, you can run minikube ssh to get a terminal inside the host Minikube uses to
run Kubernetes. Once inside the host, you can find the hello.txt in the following folder:

$ sudo cat /var/lib/kubelet/pods/683533c0-34e1-4888-9b5f-
4745bb6edced/volumes/kubernetes.io~empty-dir/pod-storage/hello.txt
hello

If you are using Docker Desktop, you can run a privileged container and using nsenter run a shell
inside all namespace of the process with id 1:

$ docker run -it --privileged --pid=host debian nsenter -t 1 -m -u -n -i sh
/ #

Once you get the terminal, the process is the same - navigate to the /var/lib/kubelet/pods folder
and find the hello.txt just like you would if you’re using Minikube.

Kubernetes supports a large variety of other volume types. Some of the types are generic, such as
emtpyDir or hostPath (used for mounting folders from the nodes' filesystem). Other types are either
used for cloud-provider storage (such as azureFile, awsElasticBlockStore, or gcePersistentDisk),
network storage (cephfs, cinder, csi, flocker, …), or for mounting Kubernetes resources into the
Pods (configMap, secret).

108

Lastly, another particular type of Volumes are Persistent Volumes and Persistent Volume Claims we
discuss in Persisting data with Persistent Volumes and Persistent Volume Claims.

The lack of the word "persistent" when talking about other volumes can be misleading. If you are
using any cloud-provider storage volume types (azureFile or awsElasticBlockStore), the data will
still be persisted. The persistent volume and persistent volume claims are just a way to abstract
how Kubernetes provisions the storage.

For the full and up-to-date list of all volume types, check the Kubernetes Docs

Persisting data with Persistent Volumes and Persistent
Volume Claims
A persistent volume (PersistentVolume or PV) is another volume type you can use to mount a
persistent volume into a Pod.

Using a PV and persistent volume claim (PersistentVolumeClaim or PVC), you can claim a portion of
durable storage (such as persistent disks from cloud providers) without knowing any details about
the cloud environment and how that storage was provisioned or created.

If you think about this as a user or a developer, you only want to get a piece of durable storage to
store your apps' data, but you don’t necessarily care about the data’s location.

You can create PVs in two different ways:

1. Provisioned by cluster administrators

2. Dynamically provisioned using Storage Classes

Once the persistent volume is created (either by the administrator or dynamically using a storage
class), you need a way to request it or claim it. You use the persistent volume claim
(PersistentVolumeClaim or PVC) to request or claim the volume. Inside the PVC, you can request a
volume of a specific size and different access modes. For example, you might have multiple
persistent volumes available - one optimized for heavy reads, other optimized for writes, etc.

When you create a PVC, a Kubernetes controller will try to match the PVC with a requested PV and
bind them together. In case the matching PV does not exist, the claim remains unbound. As soon as
the PV is available again, the PVC will get bound to it.

Storage classes

A storage class (StorageClass) is a resource that describes a type of storage. A cluster administrator
can create multiple storage classes with different provisioners and properties. Here’s an example of
a StorageClass that uses an Azure Disk as its provisioner:

109

https://kubernetes.io/docs/contepcts/storage/volumes

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: azure-disk-slow
provisioner: kubernetes.io/azure-disk
parameters:
 skuName: Standard_LRS
 location: westus
 storageAccount: [storage-account-name]

If azure-disk-slow storage class is requested as part of the persistent volume claim, Kubernetes will
use the storage class information to either use the existing storage account or create a new one.

The parameters for each type of storage class depend on the provisioner. For Azure Disk
provisioner, we set the skuName, location, and storageAccount. The Glusterfs provisioner might
require us to set parameters such as URL cluster ID, secret name, etc.

A Kubernetes cluster running with Docker Desktop uses a hostpath storage class provisioner. You
can get a list of all storage classes in your cluster by running the following command:

Docker Desktop
$ kubectl get storageclass
NAME PROVISIONER AGE
hostpath (default) docker.io/hostpath 44h

Similarly, a cluster running with Minikube has the following storage class:

Minikube
$ kubectl get storageclass
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
standard (default) k8s.io/minikube-hostpath Delete Immediate
false 2m49s

You will also notice the word default next to the hostpath storage class name. You can mark a
storage class as default, so when, for example, you request some storage using a PVC without
specifying the storage class, Kubernetes uses the default storage class.

Creating Persistent Volumes

Let’s start by creating a persistent volume using the hostPath volume plugin. In the resource, we
define the storage capacity (5 gibibytes), the access mode (ReadWriteOnce), and a host path of
/mnt/data. This means that we will allocate 5Gi on the node in the folder /mnt/data, and the Volume
can only be mounted as read-write by a single node.

There are three different access modes we can choose from:

110

Table 3. Access Modes

Access mode Short name Description

ReadWriteOnce RWO The volume can be mounted as
read-write by a single node only

ReadOnlyMany ROX The volume can be mounted
read-only by many nodes

ReadWriteMany RWX The volume can be mounted as
read-write by many nodes

Note that not all volume plugins support all access modes. For example, the hostPath plugin only
supports the ReadWriteOnce access mode, and so does the Azure Disk plugin. However, Azure File,
Glusterfs, and a couple of other plugins support all three access modes.

Let’s save the YAML below in local-pv.yaml and run kubectl apply -f local-pv.yaml to create the
PersistentVolume.

ch5/local-pv.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
 name: local-pv-volume
spec:
 storageClassName: manual
 capacity:
 storage: 5Gi
 accessModes:
 - ReadWriteOnce
 hostPath:
 path: "/mnt/data"

You can view the created persistent volume by running the following command:

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
local-pv-volume 5Gi RWO Retain Available
manual 16s

The reclaim policy for the volume (Retain in the above case) specifies that Kubernetes retains the
data, and it’s up to the user/administrator to reclaim the space manually. The other two options are
Recycle where volume contents are deleted, and Delete that applies to cloud-provider backed
storage where the storage resource is deleted.

Now that we have the persistent volume, we can create a persistent volume claim to request
storage. Let’s look at the YAML first and then explain the different fields:

111

ch5/local-pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: local-pv-claim
spec:
 storageClassName: manual
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Using the above claim we request 1Gb of storage using the manual storage class name and RWO
access mode. Surprise, surprise, this exactly matches the persistent volume we create before.

Save the above YAML in local-pvc.yaml and run kubectl apply -f local-pvc.yaml to create the
PersistentVolumeClaim.

If we look at the status of the persistent volume and run the kubectl get pv command, you will
notice the STATUS column shows the Bound status and the CLAIM column shows the name of the claim:

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS REASON AGE
local-pv-volume 5Gi RWO Retain Bound default/local-
pv-claim manual 14m

You can also see the Volume name and status by looking at the PVC:

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE
local-pv-claim Bound local-pv-volume 5Gi RWO manual
19s

Before we create a Pod that consumes this Volume, let’s create a file in the /mnt/data folder on the
host.

If you’re using Docker Desktop, you can use the command below to get into the virtual machine
(host):

docker run -it --privileged --pid=host debian nsenter -t 1 -m -u -n -i sh

If you’re using Minikube, the equivalent command is minikube ssh.

112

Once inside the host, let’s start by creating the /mnt/data folder. If you’re using Docker Desktop,
create the folder under the /containers/services/docker/rootfs folder. If using Minikube, just
create the /mnt/data folder.

The data folder will have an index.html file inside. In the Pod, we will run an Nginx container that
will show that index.html file.

create the folder (Docker Desktop)
mkdir -p /containers/services/docker/rootfs/mnt/data

create the folder (Minikube)
sudo mkdir -p /mnt/data

create index.html (Docker Desktop)
echo "Hello from Storage!" >> /containers/services/docker/rootfs/mnt/data/index.html

create index.html (Minikube)
sudo sh -c "echo 'Hello from Storage!' > /mnt/data/index.html"

exit the shell
exit

With the volume populated, let’s create a Pod that consumes the volume:

ch5/pv-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pv-pod
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - name: http
 containerPort: 80
 volumeMounts:
 - name: pv-storage
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: pv-storage
 persistentVolumeClaim:
 claimName: local-pv-claim

We refer to the persistent volume claim under volumes, not to the underlying volume. Inside the
containers field, we are then referencing the volume (pv-storage) and mounting it under
/usr/share/nginx/html (this is the folder Nginx uses by default).

113

Save the above YAML in pv-pod.yaml file and create it by running kubectl apply -f pv-pod.yaml.

To check if the volume mount worked correctly, we are going to use the port-forward command to
forward port 5000 on the local machine to port 80 on the container. Open a separate terminal
window and run:

$ kubectl port-forward po/pv-pod 5000:80
Forwarding from 127.0.0.1:5000 -> 80
Forwarding from [::1]:5000 -> 80

You can either open a browser and navigate to http://localhost:5000 or run curl
http://localhost:5000 from another terminal window. You should get back the contents of the
index.html file we created earlier:

$ curl http://localhost:5000
Hello from Storage!

You can clean up everything by deleting the Pod, PVC, and then the PV:

$ kubectl delete po pv-pod
$ kubectl delete pv local-pv-volume
$ kubectl delete pvc local-pv-claim

Finally, you can also delete the contents of the /mnt/data folder inside the host VM.

Using Storage Class for dynamic provisioning

In the previous examples, we manually created a PersistentVolume first (using manual storage class),
before we could claim the storage and then use it.

Both Minikube and Docker Desktop have a default storage class set - in both cases, they use the
hostPath provisioner.

Let’s try and create a persistent volume claim, but this time we won’t specify the storage class field
at all:

114

http://localhost:5000
http://localhost:5000

ch5/default-pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: default-pv-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Save the above YAML in default-pvc.yaml and run kubectl apply -f default-pvc.yaml to create the
persistent volume claim that uses the default storage class.

If you list the PVC, you will notice that it was bound to a volume called pvc-bf222497-024e-4ff1-
a29f-1f4d3a441607 using hostpath storage class (this is the default storage class name if using Docker
Desktop).

$ kubectl get pvc
NAME STATUS VOLUME CAPACITY
ACCESS MODES STORAGECLASS AGE
default-pv-claim Bound pvc-d1cb8b49-bb9b-499b-baca-3631b40a44bf 1Gi RWO
hostpath 3s

You can also list the PV to see the persistent volume that was created dynamically by the storage
class:

$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY
STATUS CLAIM STORAGECLASS REASON AGE
pvc-d1cb8b49-bb9b-499b-baca-3631b40a44bf 1Gi RWO Delete
Bound default/default-pv-claim hostpath 90s

On Docker Desktop the volume gets created under /var/lib/k8s-pvs/[pvc-name]/[pv-name] folder on
the host VM, where the PVC name in our case is default-pv-claim and the PV name is that randomly
generate volume name (pvc-d1cb8b49-bb9b-499b-baca-3631b40a44bf).

So, let’s get a shell inside the VM and create an index.html file, just like we did before:

115

Get a shell inside host VM
docker run -it --privileged --pid=host debian nsenter -t 1 -m -u -n -i sh

Create index.html file
echo "Hello Dynamic Volume!" >> /var/lib/k8s-pvs/default-pv-claim/pvc-d1cb8b49-bb9b-
499b-baca-3631b40a44bf/index.html

exit the VM
exit

Finally, let’s create the Pod - the resource looks exactly the same as before, the only difference is the
PVC name:

ch5/default-pv-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pv-pod
spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - name: http
 containerPort: 80
 volumeMounts:
 - name: pv-storage
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: pv-storage
 persistentVolumeClaim:
 claimName: default-pv-claim

Save the above YAML in default-pv-pod.yaml and run kubectl apply -f default-pv-pod.yaml to
create the Pod.

When the Pod starts running, use port-forward to forward local port 5000 to the port 80 on the
container:

$ kubectl port-forward po/pv-pod 5000:80
Forwarding from 127.0.0.1:5000 -> 80
Forwarding from [::1]:5000 -> 80

Just like before, you can open http://localhost:5000 in the browser or run the curl command to get
back the response, contents of the index.html file:

116

http://localhost:5000

$ curl http://localhost:5000
Hello Dynamic Volume!

If you delete the Pod and then the PVC, you will notice that the Persistent Volume gets deleted
automatically. The automatic deletion is due to the reclaim policy on the default storage class. The
value is set to Delete, and Kubernetes controller automatically deletes the volume once the claim is
gone.

Running stateful workloads with StatefulSets
Using PersistentVolumes and PersistentVolumeClaims, you could run multiple Pod replicas using a
ReplicaSet. These replicas have different names and IP addresses, but other than that, they are the
same.

Let’s consider the following snippet from one of the previous examples of a Pod and a PVC:

...
spec:
 containers:
 ...
 volumeMounts:
 - name: pv-storage
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: pv-storage
 persistentVolumeClaim:
 claimName: local-pv-claim
....

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: local-pv-claim
spec:
 storageClassName: manual
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

The Volume and the persistent volume claim reference are both defined in the Pod spec, the
template ReplicaSet uses to create the new Pods. If you have a single Pod, it will reference a single
PVC and a single PV.

117

Figure 30. Single Pod with a PVC and PV

When you scale the Pods, each newly created Pod gets a different name and an IP address. Since
you include PV and PVC in the Pod template, all replicas use the same PVC and the same PV as
shown in the figure below.

Figure 31. Multiple Pods with a Single PVC and PV

Because you defined the reference to the PVC in the Pod template, you can’t make each replica use
its persistent volume claim. For that reason, you can’t use a single ReplicaSet to run a distributed
data store where each Pod has its storage.

There are a couple of workarounds, such as creating the Pods manually and have them use
separate PVC in that way, however, you don’t want to manually manage the Pods' lifecycle
(remember that any manually created Pod will not get automatically restarted when or if it
crashes). Another workaround would be to use multiple ReplicaSets - one for each Pod. This
solution could work; however, it is painful to maintain.

118

In addition to have a separate storage per Pod, you also need to ensure the Pods have a stable and
persistent identity. Stable identity means if the Pod is restarted, it comes back with the same
identifier (the same name and the same IP address). The reason for stable identity is that you often
need to address a specific replicate, especially when running a storage system. That is complicated
to do if you don’t have stable identifiers.

A resource called a StatefulSet can help. You can use StatefulSets for applications that require a
stable name and state. The main difference between a StatefulSet and a ReplicaSet is that when
Pods created by a ReplicaSet are rescheduled, they get a new name and a new IP address. On the
other hand, the StatefulSet ensures that Pod keeps the same name and the same IP address even
when it gets rescheduled.

StatefulSets also allow you to run multiple Pod replicas. These replicas are not the same - the can
have their own set of volume claims or, more specifically volume claim templates. The replicas
don’t have random names. Instead, each Pod gets assigned an index.

We have mentioned earlier that in some scenarios, you want to be able to address a specific replica
from the StatefulSet. You can do that by creating a headless Kubernetes service.

In the next example, we will show how to run MongoDB using a StatefulSet. As the first step, we
will create a headless service called mongodb. We need to create this first because we will reference
the service name in the StatefulSet.

ch5/mongodb-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: mongodb
 labels:
 app: mongodb
spec:
 clusterIP: None
 selector:
 app: mongodb
 ports:
 - port: 27017
 targetPort: 27017

Save the above YAML in mongodb-svc.yaml and create the Service by running kubectl apply -f
mongodb-svc.yaml. If you list the Services, you will notice the mongodb Service does not have an IP
address set:

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 47h
mongodb ClusterIP None <none> 27017/TCP 1s

Next, we will create the following StatefulSet:

119

ch5/mongodb-statefulset.yaml

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: mongodb
spec:
 serviceName: mongodb
 replicas: 1
 selector:
 matchLabels:
 app: mongodb
 template:
 metadata:
 labels:
 app: mongodb
 selector: mongodb
 spec:
 containers:
 - name: mongodb
 image: mongo:4.0.17
 ports:
 - containerPort: 27017
 volumeMounts:
 - name: pvc
 mountPath: /data/db
 volumeClaimTemplates:
 - metadata:
 name: pvc
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Looking at the YAML above, you will notice that it looks very similar to the ReplicaSet. The critical
part is the volumeClaimTemplates section. That’s the section where we defined the
PersistentVolumeClaim. When the StatefulSet needs to create a new Pod replica, it uses that
template also to create a PersistentVolume and a PersistentVolumeClaim resource for each Pod, as
shown in the figure below.

120

Figure 32. Pods Created by StatefulSet

Save the above YAML in mongodb-statefulset.yaml and create the StatefulSet by running kubectl
apply -f mongodb-statefulset.yaml.

If you list the Pods, you will notice you created a single Pod named mongodb-0:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
mongodb-0 1/1 Running 0 29m

Similarly, let’s list the PersistentVolumes and PersistentVolumeClaims:

$ kubectl get pv,pvc
NAME CAPACITY ACCESS MODES
RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
persistentvolume/pvc-275f7731-0f10-4b33-b99a-3cc95d0be30a 1Gi RWO
Delete Bound default/pvc-mongodb-0 standard 31m

NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/pvc-mongodb-0 Bound pvc-275f7731-0f10-4b33-b99a-
3cc95d0be30a 1Gi RWO standard 31m

Notice the naming of both resources - the PVC uses the name (pvc) we provided under the
volumeClaimTemplates, and it appends the name of the Pod (mongodb-0) to it. Kubernetes prefixes the
PersistentVolume name with the PVC name (pvc). The rest of the name is a unique identifier.

121

Let’s see what happens if we scale the StatefulSet to 3 Pods:

$ kubectl scale statefulset mongodb --replicas=3
statefulset.apps/mongodb scaled

If you watch the Pods as Kubernetes creates them (kubectl get pods -w) you will notice they are
created in order - the replica named mongodb-1 is created first, and after that replica mongodb-2 is
created.

A StatefulSet stores the name of the pod in label called statefulset.kubernetes.io/pod-name. You can
see these labels if you run kubectl get po --show-labels:

$ kubectl get po --show-labels
NAME READY STATUS RESTARTS AGE LABELS
mongodb-0 1/1 Running 0 44m statefulset.kubernetes.io/pod-name
=mongodb-0
mongodb-1 1/1 Running 0 2m34s statefulset.kubernetes.io/pod-name
=mongodb-1
mongodb-2 1/1 Running 0 2m30s statefulset.kubernetes.io/pod-name
=mongodb-2

These Pods have other labels (selector, app, controller-revision-hash). I removed them from the
above output for better readability.

Using this label, you could create a service to target a specific replica. Remember when we created
a headless service? Let’s see how we can use it to access a particular replica.

We have 3 Pods running, and they are named mongodb-0, mongodb-1, and mongodb-2. We also have a
headless service called mongodb. To access each instance, we use the following format
[podName].[serviceName]. For example, to access mongodb-1 we can use mongodb-1.mongodb or mongodb-
1.mongodb.default.svc.cluster.local, where default is the namespace where the Pods (and Service)
reside, and cluster.local is the local cluster domain.

Let’s try accessing these instances. We will run a mongo container inside the cluster and use that
container to access the mongodb-0,mongodb-1, and mongodb-2 instances.

Run the following command to get create a Pod called mongo-shell and run a /bin/bash inside it:

$ kubectl run -it mongo-shell --image=mongo:4.0.17 --rm -- /bin/bash
If you don\'t see a command prompt, try pressing enter.
root@mongo-shell: # /

The container has the mongo shell installed, and we can use this binary to connect to the MongoDB
instances. Let’s try and connect to the mongodb-0 instance.

To do that, we will use the mongodb-0.mongodb name - remember that this only works because we are
running the mongo-shell container inside of the cluster.

122

root@mongo-shell:/# mongo mongodb-0.mongodb
MongoDB shell version v4.0.17
connecting to: mongodb://mongodb-0.mongodb:27017/test?gssapiServiceName=mongodb
Implicit session: session { "id" : UUID("7972f9c4-f04e-42fe-aa15-e63adfaea2eb") }
MongoDB server version: 4.0.17
Welcome to the MongoDB shell.
....
...
>

The shell will automatically connect us to the collection called test. Let’s insert a dummy entry into
that collection so that we can prove the MongoDB instances are each storing the data in a different
volume.

Run the command below to insert a single entry with the name field set to first MongoDB instance:

> db.test.insert({ name: "first MongoDB instance" })
WriteResult({ "nInserted" : 1 })

You can also run db.test.find() to list all documents from the test collection (there will only be one
in there):

> db.test.find()
{ "_id" : ObjectId("5f540f288a4810beb9d9237a"), "name" : "first MongoDB instance" }

Let’s connect to the second instance now. You can type exit to exit the first instance, and get back to
the mongo-shell container. Just like before, we will use the mongo binary to connect to a different
instance:

$ root@mongo-shell:/# mongo mongodb-1.mongodb

Once connected, you can look at the contents of the test collection and, as expected, there will be 0
documents in the collection:

> db.test.find()
>

We can create a different document here:

> db.test.insert({ name: "second MongoDB instance" })
WriteResult({ "nInserted" : 1 })

Let’s see if the data is persistent when we delete the mongodb-1 Pod. Open a separate terminal

123

window and delete the mongodb-1 Pod:

$ kubectl delete po mongodb-1
pod "mongodb-1" deleted

As soon as the Pod is deleted, StatefulSet will re-create it again - it will use the same name, PVC and
PV. If you run the db.test.find() from the mongo shell in the first terminal window you will notice
that it contains the same data we inserted earlier right after it reconnects to the Pod:

> db.test.find()
2020-09-05T22:29:43.690+0000 I NETWORK [js] trying reconnect to mongodb-
1.mongodb:27017 failed
2020-09-05T22:29:43.693+0000 I NETWORK [js] reconnect mongodb-1.mongodb:27017 ok
{ "_id" : ObjectId("5f5411034901f8a94bfdcc7c"), "name" : "second MongoDB instance" }

124

Organizing Containers

Init containers
Init containers allow you to separate your application from the initialization logic and provide a
way to run the initialization tasks such as setting up permissions, database schemas, or seeding
data for the main application, etc. The init containers may also include any tools or binaries that
you don’t want to have in your primary container image due to security reasons.

The init containers are executed in a sequence before your primary or application containers start.
On the other hand, any application containers have a non-deterministic startup order, so you can’t
use them for the initialization type of work.

The figure below shows the execution flow of the init containers and the application containers.

Figure 33. Init Containers

The application containers will wait for the init containers to complete successfully before starting.
If the init containers fail, the Pod is restarted (assuming we didn’t set the restart policy to

125

RestartNever), which causes the init containers to run again. When designing your init containers,
make sure they are idempotent, to run multiple times without issues. For example, if you’re seeding
the database, check if it already contains the records before re-inserting them again.

Since init containers are part of the same Pod, they share the volumes, network, security settings,
and resource limits, just like any other container in the Pod.

Let’s look at an example where we use an init container to clone a GitHub repository to a shared
volume between all containers. The Github repo contains a single index.html. Once the repo is
cloned and the init container has executed, the primary container running the Nginx server can use
index.html from the shared volume and serve it.

You define the init containers under the spec using the initContainers field, while you define the
application containers under the containers field. We define an emptyDir volume and mount it into
both the init and application container. When the init container starts, it will run the git clone
command and clone the repository into the /usr/share/nginx/html folder. This folder is the default
folder Nginx serves the HTML pages from, so when the application container starts, we will be able
to access the HTML page we cloned.

ch6/init-container.yaml

apiVersion: v1
kind: Pod
metadata:
 name: website
spec:
 initContainers:
 - name: clone-repo
 image: alpine/git
 command:
 - git
 - clone
 - --progress
 - https://github.com/peterj/simple-http-page.git
 - /usr/share/nginx/html
 volumeMounts:
 - name: web
 mountPath: "/usr/share/nginx/html"
 containers:
 - name: nginx
 image: nginx
 ports:
 - name: http
 containerPort: 80
 volumeMounts:
 - name: web
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: web
 emptyDir: {}

126

Save the above YAML to init-container.yaml and create the Pod using kubectl apply -f init-
container.yaml.

If you run kubectl get pods right after the above command, you should see the status of the init
container:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
website 0/1 Init:0/1 0 1s

The number 0/1 indicates a total of 1 init containers, and 0 containers have been completed so far.
In case the init container fails, the status changes to Init:Error or Init:CrashLoopBackOff if the
container fails repeatedly.

You can also look at the events using the describe command to see what happened:

Normal Scheduled 19s default-scheduler Successfully assigned default/website to
minikube
Normal Pulling 18s kubelet, minikube Pulling image "alpine/git"
Normal Pulled 17s kubelet, minikube Successfully pulled image "alpine/git"
Normal Created 17s kubelet, minikube Created container clone-repo
Normal Started 16s kubelet, minikube Started container clone-repo
Normal Pulling 15s kubelet, minikube Pulling image "nginx"
Normal Pulled 13s kubelet, minikube Successfully pulled image "nginx"
Normal Created 13s kubelet, minikube Created container nginx
Normal Started 13s kubelet, minikube Started container nginx

You will notice as soon as Kubernetes schedules the Pod, the first Docker image is pulled (
alpine/git), and the init container (clone-repo) is created and started. Once that’s completed (the
container cloned the repo) the main application container (nginx) starts.

Additionally, you can also use the logs command to get the logs from the init container by
specifying the container name using the -c flag:

$ kubectl logs website -c clone-repo
Cloning into '/usr/share/nginx/html'...
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 0), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (6/6), done.

Finally, to actually see the static HTML page can use port-forward to forward the local port to the
port 80 on the container:

127

$ kubectl port-forward pod/website 8000:80
Forwarding from 127.0.0.1:8000 -> 80
Forwarding from [::1]:8000 -> 80

You can now open your browser at http://localhost:8000 to open the static page as shown in figure
below.

Figure 34. Static HTML from Github repo

Lastly, delete the Pod by running kubectl delete po website.

Sidecar container pattern
The sidecar container aims to add or augment an existing container’s functionality without
changing the container. In comparison to the init container, we discussed previously, the sidecar
container starts and runs simultaneously as your application container. The sidecar is just a second
container you have in your container list, and the startup order is not guaranteed.

Probably one of the most popular implementations of the sidecar container is in Istio service mesh.
The sidecar container (an Envoy proxy) is running next to the application container and
intercepting inbound and outbound requests. In this scenario, the sidecar adds the functionality to
the existing container and allows the operator to do traffic routing, failure injection, and other
features.

128

http://localhost:8000

Figure 35. Sidecar Pattern

A simpler idea might be having a sidecar container (log-collector) that collects and stores
application container’s logs. That way, as an application developer, you don’t need to worry about
collecting and storing logs. You only need to write logs to a location (a volume, shared between the
containers) where the sidecar container can collect them and send them to further processing or
archive them.

If we continue with the example we used for the init container; we could create a sidecar container
that periodically updates runs git pull and updates the repository. For this to work, we will keep
the init container to do the initial clone, and a sidecar container that will periodically (every 60
seconds for example) check and pull the repository changes.

To try this out, make sure you fork the original repository (https://github.com/peterj/simple-http-
page.git) and use your fork in the YAML below.

129

https://github.com/peterj/simple-http-page.git
https://github.com/peterj/simple-http-page.git

ch6/sidecar-container.yaml

apiVersion: v1
kind: Pod
metadata:
 name: website
spec:
 initContainers:
 - name: clone-repo
 image: alpine/git
 command:
 - git
 - clone
 - --progress
 - https://github.com/peterj/simple-http-page.git
 - /usr/share/nginx/html
 volumeMounts:
 - name: web
 mountPath: "/usr/share/nginx/html"
 containers:
 - name: nginx
 image: nginx
 ports:
 - name: http
 containerPort: 80
 volumeMounts:
 - name: web
 mountPath: "/usr/share/nginx/html"
 - name: refresh
 image: alpine/git
 command:
 - sh
 - -c
 - watch -n 60 git pull
 workingDir: /usr/share/nginx/html
 volumeMounts:
 - name: web
 mountPath: "/usr/share/nginx/html"
 volumes:
 - name: web
 emptyDir: {}

We added a container called refresh to the YAML above. It uses the alpine/git image, the same
image as the init container, and runs the watch -n 60 git pull command.

NOTE
The watch command periodically executes a command. In our case, it executes git
pull command and updates the local repository every 60 seconds.

Another field we haven’t mentioned before is workingDir. This field will set the working directory
for the container. We are setting it to /usr/share/nginx/html as that’s where we originally cloned the

130

repo to using the init container.

Save the above YAML to sidecar-container.yaml and create the Pod using kubectl apply -f sidecar-
container.yaml.

If you run kubectl get pods once the init container has executed, you will notice the READY column
now shows 2/2. These numbers tell you right away that this Pod has a total of two containers, and
both of them are ready:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
website 2/2 Running 0 3m39s

If you set up the port forward to the Pod using kubectl port-forward pod/website 8000:80 command
and open the browser to http://localhost:8000, you will see the same webpage as before.

We can open a separate terminal window and watch the logs from the refresh container inside the
website Pod:

$ kubectl logs website -c refresh -f

Every 60.0s: git pull
Already up to date.

The watch command is running, and the response from the last git pull command was Already up
to date. Let’s make a change to the index.html in the repository you forked.

I added <div> element and here’s how the updated index.html file looks like:

ch6/index.html

<html>
 <head>
 <title>Hello from Simple-http-page</title>
 </head>
 <body>
 <h1>Welcome to simple-http-page</h1>
 <div>Hello!</div>
 </body>
</html>

Next, you need to stage this and commit it to the master branch. The easiest way to do that is from
the Github’s webpage. Open the index.html on Github (I am opening https://github.com/peterj/
simple-http-page/blob/master/index.html, but you should replace my username peterj with your
username or the organization you forked the repo to) and click the pencil icon to edit the file (see
the figure below).

131

http://localhost:8000
https://github.com/peterj/simple-http-page/blob/master/index.html
https://github.com/peterj/simple-http-page/blob/master/index.html

Figure 36. Editing index.html on Github

Make the change to the index.html file and click the Commit changes button to commit them to the
branch. Next, watch the output from the refresh container, and you should see the output like this:

Every 60.0s: git pull

From https://github.com/peterj/simple-http-page
 f804d4c..ad75286 master -> origin/master
Updating f804d4c..ad75286
Fast-forward
 index.html | 1 +
 1 file changed, 1 insertion(+)

The above output indicates changes to the repository. Git pulls the updated file to the shared
volume. Finally, refresh your browser where you have http://localhost:8000 opened, and you will
notice the changes on the page:

132

http://localhost:8000

Figure 37. Updated index.html page

You can make more changes, and each time, the page will get updated within 60 seconds. You can
delete the Pod by running kubectl delete po website.

Ambassador container pattern
The ambassador container pattern aims to hide the primary container’s complexity and provide a
unified interface through which the primary container can access services outside of the Pod.

133

Figure 38. Ambassador Pattern

These outside or external services might present different interfaces and have other APIs. Instead
of writing the code inside the main container that can deal with these external services' multiple
interfaces and APIs, you implement it in the ambassador container. The ambassador container
knows how to talk to and interpret responses from different endpoints and pass them to the main
container. The main container only needs to know how to talk to the ambassador container. You
can then re-use the ambassador container with any other container that needs to talk to these
services while maintaining the same internal interface.

Another example would be where your main containers need to make calls to a protected API. You
could design your ambassador container to handle the authentication with the protected API. Your

134

main container will make calls to the ambassador container. The ambassador will attach any
needed authentication information to the request and make an authenticated request to the
external service.

Figure 39. Calls Through Ambassador

To demonstrate how the ambassador pattern works, we will use The Movie DB
(TMBD)[https://www.themoviedb.org/]. Head over to the website and register (it’s free) to get an API
key.

The Movie DB website offers a REST API where you can get information about the movies. We have
implemented an ambassador container that listens on path /movies, and whenever it receives a
request, it will make an authenticated request to the API of The Movie DB.

Here’s the snippet from the code of the ambassador container:

func TheMovieDBServer(w http.ResponseWriter, r *http.Request) {
 apiKey := os.Getenv("API_KEY")
 resp, err := http.Get(fmt.Sprintf
("https://api.themoviedb.org/3/discover/movie?api_key=%s", apiKey))
 // ...
 // Return the response
}

We will read the API_KEY environment variable and then make a GET request to the URL. Note if you
try to request to URL without the API key, you’ll get the following error:

$ curl https://api.themoviedb.org/3/discover/movie
{"status_code":7,"status_message":"Invalid API key: You must be granted a valid key."
,"success":false}

I have pushed the ambassador’s Docker image to startkubernetes/ambassador:0.1.0.

135

https://www.themoviedb.org/

Just like with the sidecar container, the ambassador container is just another container that’s
running in the Pod. We will test the ambassador container by calling curl from the main container.

Here’s how the YAML file looks like:

ch6/ambassador-container.yaml

apiVersion: v1
kind: Pod
metadata:
 name: themoviedb
spec:
 containers:
 - name: main
 image: radial/busyboxplus:curl
 args:
 - sleep
 - "600"
 - name: ambassador
 image: startkubernetes/ambassador:0.1.0
 env:
 - name: API_KEY
 valueFrom:
 secretKeyRef:
 name: themoviedb
 key: apikey
 ports:
 - name: http
 containerPort: 8080

Before we can create the Pod, we need to create a Secret with the API key. Let’s do that first:

$ kubectl create secret generic themoviedb --from-literal=apikey=<INSERT YOUR API KEY
HERE>
secret/themoviedb created

You can now store the Pod YAML in ambassador-container.yaml file and create it with kubectl apply
-f ambassador-container.yaml.

When Kubernetes creates the Pod (you can use kubectl get po to see the status), you can use the
exec command to run the curl command inside the main container:

$ kubectl exec -it themoviedb -c main -- curl localhost:8080/movies

{"page":1,"total_results":10000,"total_pages":500,"results":[{"popularity":2068.491,"v
ote_count":
...

136

Since containers within the same Pod share the network, we can make a request against
localhost:8080, which corresponds to the port on the ambassador container.

You could imagine running an application or a web server in the main container, and instead of
making requests to the api.themoviedb.org directly, you are making requests to the ambassador
container.

Similarly, if you had any other service that needed access to the api.themoviedb.org you could add
the ambassador container to the Pod and solve access like that.

Adapter container pattern
For the ambassador container pattern, we said that it hides outside services' complexity and
provides a unified interface to the main container. The adapter container pattern does the opposite.
It provides a unified interface to the external services.

137

Figure 40. Adapter Pattern

Using the adapter pattern, you use common interfaces across multiple containers. An excellent
example of this pattern are adapters that ensure all containers have the same monitoring interface.
For example, adapter for exposing the application or container metrics on /metrics and port 9090.

Your application might write the logs and metrics to a shared volume, and the adapter reads the
data and serves it on a common endpoint and port. Using this approach, you can add the adapter
container to each Pod to expose the metrics.

Another use of this pattern is for logging. The idea is similar as the metrics - your applications can
use an internal logging format. Simultaneously, the adapter takes that format, cleans it up, adds
additional information, and then serves it to the centralized log aggregator.

138

Lifecycle Hooks
The concept of hooks is well-known in the tech world. Events usually trigger hooks, and they allow
developers to react to those events and run some custom code. Let’s take a simple user interface
with a button and a text box. There might be multiple events that developers might be interested in
handling (i.e., running some code whenever the event happens). One of these events could be the
onClick event. You could write an onClick handler that gets called whenever a user clicks a button.

Another popular example of hooks is webhooks. For example, your e-commerce website can define
webhooks that can send you a JSON payload with the purchase information to a URL you specified
whenever a sale occurs. You write a handler (in this case, it could be a serverless function) and set
your serverless function as a handler for an event. This allows you to loosely couple the
functionality and handle events that happen on a different system.

Figure 41. Simple Webhook

Similarly, Kubernetes provides so-called container hooks. The container hooks allow you to react
to container lifecycle events. There are two hooks you can use, the PostStart and PreStop.

Kubernetes executes the PostStart hook as soon as the container is created. However, there’s no
guarantee that the hook runs before the containers' ENTRYPOINT command is called (they fire
asynchronously). Note that if the hook handler hangs, it will prevent the container from reaching a
running state.

Kubernetes calls the PreStop hook before a container gets terminated. For the container to stop, the
hook needs to complete executing. If the code in the handler hangs, your Pod will remain in the
Terminating state until it gets killed.

If either of the hook handlers fails, the container will get killed. If you decide on using these hooks,
try to make your code as lightweight as possible, so your containers can start/stop quickly.

As for the handlers, you can use a command that gets executed inside the container (e.g.

139

myscript.sh) or send an HTTP request to a specific endpoint on the container (e.g. /shutdown).

The most common scenarios you’d use the hooks for are performing some cleanup or saving the
state before the container is terminated (PreStop) or configure application startup once the
container starts (PostStart).

We’ve talked about init containers, and there are differences between the two:

• Init containers have their image while lifecycle hooks are executed inside the parent containers

• Init containers are defined at the Pod level, while lifecycle hooks are defined per each container

• Init containers are guaranteed to execute before the application containers start, while the
PreStart hook might not execute before the ENTRYPOINT is called

Figure 42. Lifecycle Hooks

Let’s look at an example to see how these lifecycle handlers work.

140

ch3/deployment.yaml

apiVersion: v1
kind: Pod
metadata:
 name: hooks-pod
spec:
 containers:
 - name: hooks-pod
 image: kennethreitz/httpbin
 lifecycle:
 postStart:
 exec:
 command: ["/bin/sh", "-c", "echo Hello postStart! > /var/tmp/hello.txt"]
 preStop:
 exec:
 command: ["/bin/sh","-c","sleep 10"]

In this Pod YAML, we define both hooks. In the preStart hook, we are writing "Hello postStart!" to a
file in the container (/var/tmp/hello.txt). The Save the above YAML contents to hooks-pod.yaml and
create the Pod:

$ kubectl apply -f hooks-pod.yaml
pod/hooks-pod created

Once the Pod is running, we can check the contents of the hello.txt file inside the container:

$ kubectl exec -it hooks-pod -- cat /var/tmp/hello.txt
Hello postStart!

If you delete the Pod, you will also notice that it takes an extra 10 seconds for Kubernetes to delete
it.

141

Application Health
The kubelet component in Kubernetes uses different health checking mechanisms to verify if the
containers inside your Pods have started (startup probe), are ready to receive traffic (readiness
probe), and are healthy (liveness probe).

To explain how health checks or probes in Kubernetes work, we will be using a sample application
with endpoints defined in the table below.

Table 4. Endpoints

Endpoint Description

/healthy Returns an HTTP 200. If you set the
HEALTHY_SLEEP environment variable, it will sleep
for the period defined in the variable. For
example, if you set HEALTHY_SLEEP=5000, the
endpoint waits for 5 seconds before returning
HTTP 200.

/healthz The endpoint returns HTTP 200 for the first 10
seconds. After 10 seconds, it starts returning an
HTTP 500.

/ready Functionally equivalent to the /healthy endpoint
(returns HTTP 200). Uses READY_SLEEP
environment variable to sleep for the amount of
millisecond defined in the variable before
returning HTTP 200.

/readyz The endpoint returns HTTP 500 for the first 10
seconds. After that, it starts returning an HTTP
200.

/fail Returns an HTTP 500 error. Uses FAIL_SLEEP
environment variable to sleep for the period (in
milliseconds) defined in the variable before
returning.

With the combination of the endpoints above and a couple of environment variables, we will
simulate different failure scenarios and see how probes can help out.

There are three methods you can use to determine if containers are healthy or not:

• Invoke a command inside the container. The exit code determines if the liveness probe failed or
not. A non-zero exit code indicates that the container is unhealthy

• Open a TCP socket. If the socket opens, the probe is successful, otherwise the probe fails

• Send an HTTP request to the provided URI. The HTTP response code is used to determine if the
liveness probe succeeds or fails

With the combination of different methods and probes, you can ensure that your containers are

142

ready to receive traffic, healthy, and get restarted in case of a deadlock.

Application Liveness probe
The liveness probe indicates whether your application is still working as it’s supposed to. In case
the liveness probe fails, the kubelet will restart the failing container.

Without the liveness probe set, Kubernetes assumes the container healthy and keeps it running.
Using this probe, you can handle scenarios where your code is deadlocked, or your application is
not responding anymore. Without the probe, Kubernetes keeps the application running, however, if
you provide and implement the probe, Kubernetes will restart the container in case the probe fails.

HTTP Probe

Let’s use the App Health example we mentioned at the beginning of this chapter.

In the YAML, we define the liveness probe using an HTTP get request. Kubelet send the HTTP GET
request to the /healthz endpoint on the container, on port 3000. Kubernetes considers the container
healthy, as long as the response is greater or equal than 200 and less than 400. In our example, we
are returning HTTP 200 for the first 10 seconds, and then HTTP 500 afterward.

The initialDelaySeconds field tells Kubernetes to wait 3 seconds before it starts calling the probe.
Similarly, the periodSeconds field specifies that the Kubernetes should perform the probe every
second. "Performing the probe," in this case, means sending a GET request to the specified path and
port on the container. The kubelet performs the first probe 4 seconds after the container starts (3
seconds is the initial delay and then 1 second for the first period).

ch7/liveness.yaml

apiVersion: v1
kind: Pod
metadata:
 name: liveness
 labels:
 app.kubernetes.io/name: liveness
spec:
 containers:
 - name: web
 image: startkubernetes/app-health:0.1.0
 ports:
 - containerPort: 3000
 livenessProbe:
 httpGet:
 path: /healthz
 port: 3000
 initialDelaySeconds: 3
 periodSeconds: 1

Save the above YAML in liveness.yaml and create the Pod with kubectl apply -f liveness.yaml.

143

Let’s use the describe command to look at the Pod events:

$ kubectl describe po liveness
...
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
 node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 12s default-scheduler Successfully assigned default/liveness
to minikube
 Normal Pulled 11s kubelet, minikube Container image "startkubernetes/app-
health:0.1.0" already present on machine
 Normal Created 11s kubelet, minikube Created container web
 Normal Started 11s kubelet, minikube Started container web
 Warning Unhealthy 0s kubelet, minikube Liveness probe failed: HTTP probe
failed with statuscode: 500

The Pod is healthy for the first 10 seconds or so. After that, looking at the last line in the output, the
liveness probe fails, and Kubernetes restarts the container. Once the container restarts, the same
story repeats - the liveness probe is healthy for 10 seconds, and then fails.

You can see the number of times Kubernetes restarted the container if you run the kubectl get po
command and look at the RESTARTS column:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
liveness 1/1 Running 5 2m31s

In addition to just specifying the path and port for the HTTP check, you can also use the httpHeaders
field to specify the headers you want the probe to use. For example, if you want to add the Host
header to the call, you could do it like this:

144

ch7/liveness-headers.yaml

apiVersion: v1
kind: Pod
metadata:
 name: liveness-headers
 labels:
 app.kubernetes.io/name: liveness-headers
spec:
 containers:
 - name: web
 image: startkubernetes/app-health:0.1.0
 imagePullPolicy: Always
 ports:
 - containerPort: 3000
 livenessProbe:
 httpGet:
 path: /healthz
 port: 3000
 httpHeaders:
 - name: Host
 value: liveness-host
 initialDelaySeconds: 3
 periodSeconds: 1

Save the above YAML in liveness-headers.yaml and create the Pod using kubectl apply -f liveness-
headers.yaml. The App Health application automatically logs the headers from incoming requests,
so after the Pod starts, you can look at the logs:

$ kubectl logs liveness-headers

> app-health@0.1.0 start /app
> node server.js

appHealth running on port 3000.
{"host":"liveness-host","user-agent":"kube-probe/1.18","accept-encoding":"gzip"
,"connection":"close"}
GET /healthz 200 7.083 ms - 2

Notice the host header value is set to liveness-host, just like we configured it in the probe
configuration.

In addition to the fields mentioned above, you can set a couple of other fields to control the probes'
behavior. I am mentioning the additional fields in the table below.

Table 5. Fields

145

Field name Description

timeoutSeconds The number of seconds after which the probe
times out. The default value is set to 1 second.
Consider increasing this value if your health
check probe depends on other services (i.e.,
you’re invoking other services to determine the
health of your current service).

successThreshold The number of consecutive successes for the
probe to be considered successful again after
having failed. For example, if set to 5, the health
probe needs to succeed five times in a row after
a failure to be considered successful. The default
and minimum value are 1. For the liveness
probe, this value must to be set to 1.

failureThreshold The number of times probe is retried in case of a
failure. If the probe is still failing after this
threshold, the container is either restarted when
using the liveness probe or marked as unhealthy
if using the readiness probe. The default value is
3. The minimum value is 1.

Command Probe

The second mechanism is a command probe. With the comman probe, Kubernetes runs a command
inside of your container to determine if the container is healthy or not. If the command returns
with exit code 0, Kubernetes considers the container healthy. If exit code is different from 0,
Kubernetes considers the container unhealthy.

You can use the command probe when you can’t run an HTTP probe. Let’s consider an example
where your REST API running in the container requires an Authorization header. You can provide
header to HTTP probe. However, you can’t specify the authorization header value in the YAML.
What you could do in this case is to mount the authorization token secret inside the container and
then run curl as part of the command probe.

Here’s how you can provide a command to execute to the liveness probe:

146

...
livenessProbe:
 exec:
 command:
 - curl
 - --fail
 - -u $(USER)
 - -p $(PASSWORD)
 - localhost:3000/healthz
initialDelaySeconds: 30
periodSeconds: 1
...

We are using localhost because the command will run inside the same container your application
is running in.

TCP Probe

With the TCP probe, Kubernetes tries to establish a TCP connection on the specified port. The
configuration is almost identical to the HTTP probe. Instead of using the httpGet field, you use
tcpSocket field, like this:

...
livenessProbe:
 tcpSocket:
 port: 3000
 initialDelaySeconds: 10
 periodSeconds: 5

The above tcpSocket probe will try to open a socket on port 3000, 15 seconds after the container
starts. An excellent example of the TCP probe would be a gRPC service.

Application Startup probe
When you’re dealing with applications that can take longer to start up, it might be tricky to set up a
proper liveness check that’s going to work both for the startup of the container and during the
lifetime of the container. For that purpose, you can use the startup probe that uses the probe
method (HTTP, TCP, or command), but with a higher failure threshold. The higher threshold is for
cases where the application takes a long time to start.

147

livenessProbe:
 httpGet:
 path: /healthz
 port: 3000
 periodSeconds: 4
startupProbe:
 httpGet:
 path: /healthz
 port: 3000
 failureThreshold: 30
 periodSeconds: 4

Based on the startup probe’s above settings, the container will have a maximum of 2 minutes (30
from the failure threshold setting multiplied by 4 seconds from the periodSeconds field) to finish the
startup. The formula for calculating the maximum time is:

initialDelaySeconds + failureThreshold * periodSeconds

So if the probe is failing for the first 2 minutes, Kubernetes won’t restart it yet. Once 2 minutes pass,
the startup probe will be considered as failed.

If the application starts up within the 2 minutes, the liveness probe will take over and ensure the
container stays alive.

Application Readiness probe
You can use the readiness probe to determine when your application is ready to start receiving
traffic. In some cases, applications might take a while to startup. That could be because they depend
on external services for the startup or loading a more considerable amount of data that takes time.
During this time, you don’t want to restart the container or send any requests to the container
either.

If the readiness probe determines that the container is not ready yet, Kubernetes will mark the Pod
as unhealthy and won’t send any traffic. It will not restart the container; rather, it will invoke the
probe based on the settings to determine when it’s ready to receive traffic. Once the probe
succeeds, the Pod is marked as healthy and can start receiving requests.

To demonstrate the readiness probe, we will use the /readyz endpoint. This endpoint will return
HTTP 500 for the first 10 seconds (simulate the container doing some work). In those first 10
seconds, the container will be marked as unhealthy and won’t receive any traffic.

The configuration for the readiness probe looks similar to the liveness probe. You only need to
replace the livenessProbe key with readinessProbe key. Other configuration settings are also the
same.

148

ch7/readiness.yaml

apiVersion: v1
kind: Pod
metadata:
 name: readiness
 labels:
 app.kubernetes.io/name: readiness
spec:
 containers:
 - name: web
 image: startkubernetes/app-health:0.1.0
 ports:
 - containerPort: 3000
 readinessProbe:
 httpGet:
 path: /readyz
 port: 3000
 initialDelaySeconds: 3
 periodSeconds: 1

Save the above YAML in readiness.yaml and create the Pod with kubectl apply -f readiness.yaml.

If you describe the Pod, you will notice that under the Ready and ContainersReady values under the
Conditions section:

$ kubectl describe po readiness
...
Conditions:
 Type Status
 Initialized True
 Ready False
 ContainersReady False
 PodScheduled True
...

If you re-run the describe command after 10 seconds, both values for Ready and ContainersReady will
change to True, indicating the Pod and containers are ready:

$ kubectl describe po readiness
...
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
...

149

Similarly, if you look at the logs when the Pod starts, you will notice it is returning HTTP 500, and
after 10 seconds, it starts returning HTTP 200:

$ kubectl logs readiness

> app-health@0.1.0 start /app
> node server.js

appHealth running on port 3000.
{"host":"172.17.0.2:3000","user-agent":"kube-probe/1.18","accept-encoding":"gzip"
,"connection":"close"}
GET /readyz 500 7.179 ms - 21
{"host":"172.17.0.2:3000","user-agent":"kube-probe/1.18","accept-encoding":"gzip"
,"connection":"close"}
...
GET /readyz 200 0.279 ms - 2
{"host":"172.17.0.2:3000","user-agent":"kube-probe/1.18","accept-encoding":"gzip"
,"connection":"close"}
GET /readyz 200 0.862 ms - 2
...

You can use the readiness probe together with the liveness probe to health and ready-check the
same containers. Using both probes, you can ensure Kubernetes restarts the failed containers when
they are unheathy and allows them to receive the requests only when they are ready to receive
traffic.

150

Security in Kubernetes

What are service accounts?
To access the Kubernetes API server, you need an authentication token. The processes running
inside your containers use a service account to authenticate with the Kubernetes API server. Just
like a user account represents a human, a service account represents and provides an identity to
your Pods.

Each Pod you create has a service account assigned to it. Even if you don’t explicitly provide the
service account name, Kubernetes sets the default service account to your Pods. This default service
account (called default) is in every namespace in Kubernetes, which means that the account is
bound to the namespace it lives in. You can try creating a new namespace and listing the service
accounts (e.g. kubectl get serviceaccount), and you’ll see there’s a service account called default. A
Pod can only use one service account, and they both need to be in the same namespace. However,
multiple Pods can share the same service account.

I will be using Minikube in this section. Let’s start by creating a Pod to see where the service
account is specified:

$ kubectl run simple-pod --image=nginx

You can use -o yaml to get the YAML representation of the Pod, like this: kubectl get po simple-pod
-o yaml. If you look through the output, you will notice the following line:

serviceAccountName: default

Even though we haven’t explicitly set the service account name, Kubernetes assigned the default
service account to the Pod.

Let’s run kubectl describe serviceaccount default or kubectl describe sa default to see the details
of the default service account:

$ kubectl describe sa default
Name: default
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: default-token-qjdzv
Tokens: default-token-qjdzv
Events: <none>

Like any other resource, the service account has the name, namespace, and labels and annotations.
Additionally, it has the Image pull secrets, Mountable secrets, and Tokens sections. If you defined

151

image pull secrets (these are used by Pods to pull the images from private registries), Kubernetes
will automatically added them to all Pods that are using this service account. The mountable secrets
field is specifying the secrets that can be mounted by the Pods using this service account. Lastly, the
tokens fields list all authentication tokens in the service account. Kubernetes automatically mounts
the first token inside the container.

Here’s how the YAML representation of the service account looks like, if you run kubectl get sa
default -o yaml:

apiVersion: v1
kind: ServiceAccount
metadata:
 creationTimestamp: "2020-09-03T22:09:47Z"
 name: default
 namespace: default
 resourceVersion: "320"
 selfLink: /api/v1/namespaces/default/serviceaccounts/default
 uid: 7395b383-6f90-4fef-946c-87bcc3211891
secrets:
- name: default-token-qjdzv

The mountable secret from the account (the default-token-qjdzv above) gets mounted
automatically in each Pod under /var/run/secrets/kubernetes.io/serviceaccount. The Secret stores
these three values:

• the authentication token (mounted as token file)

• namespace name (mounted as namespace file)

• public certificate authority of the API server (mounted as ca.crt file)

Kubernetes can use different authentication mechanisms or plugins - client certificates, bearer
tokens, authenticating proxy, or HTTP basic auth - to authenticate API requests. Whenever the API
server receives a request, the request goes through all configured plugins, and the plugins try to
determine the requests' sender. The plugins try to extract the caller’s identity from the request, and
the first plugin that’s able to extract that information will send it to the API server. At this point, the
request will continue to the authorization phase.

The identity consists of the following attributes:

• Username (a string that identifies the user)

• User ID (UID) (a string that identifies the user - more unique than the username)

• Groups: a set of strings that indicats the groups user belongs (e.g., developers, system:admins,
etc.)

• Other extra fields

The service account usernames use the following format:

152

system:serviceaccount:[namespace]:[service-account-name]

The API server uses this username to determine if the caller (the process inside the container,
inside your Pod) can perform the desired action (for example, getting the Pods list from the API
server).

Each service account can belong to one or more groups. These groups are used to grant permissions
to multiple users at the same time. For example, a group called administrators grants
administrative privileges to all accounts of that group. These groups are just simple, unique strings -
admins, developers, etc.

Let’s go back to our simple-pod and invoke the Kubernetes API using the service account token.
First, we will get a shell inside the container:

$ kubectl exec -it simple-pod -- /bin/bash
root@simple-pod:/#

We will store the auth token in the TOKEN variable, so we can use it when invoking the API:

$ TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)

If you’re curious about the encoded information in the token, you can head to https://jwt.io and
decode your token to look at the payload. Here’s how the payload for my token looks like:

{
 "iss": "kubernetes/serviceaccount",
 "kubernetes.io/serviceaccount/namespace": "default",
 "kubernetes.io/serviceaccount/secret.name": "default-token-qjdzv",
 "kubernetes.io/serviceaccount/service-account.name": "default",
 "kubernetes.io/serviceaccount/service-account.uid": "7395b383-6f90-4fef-946c-
87bcc3211891",
 "sub": "system:serviceaccount:default:default"
}

We will use the TOKEN as the bearer token and invoke the Kubernetes API. The Kubernetes API is
exposed through the Service called kubernetes in the default namespace.

Here’s how we can try and invoke the API from within the container:

153

https://jwt.io

root@simple-pod:#/ curl -sSk -H "Authorization: Bearer $TOKEN"
https://kubernetes.default:443/api
{
 "kind": "APIVersions",
 "versions": [
 "v1"
],
 "serverAddressByClientCIDRs": [
 {
 "clientCIDR": "0.0.0.0/0",
 "serverAddress": "192.168.64.9:8443"
 }
]
}

If we tried to access the namespaces or Pods, we would get a "403 Forbidden" response back. That’s
because the default service account doesn’t have any permissions - Kubernetes treats the default
service account as an unauthenticated user.

Here’s the response we get back if we try to get the information about the simple-pod Pod:

root@simple-pod:/# curl -sSk -H "Authorization: Bearer $TOKEN"
https://kubernetes.default:443/api/v1/namespaces/default/pods/simple-pod
{
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {

 },
 "status": "Failure",
 "message": "pods \"simple-pod\" is forbidden: User
\"system:serviceaccount:default:default\" cannot get resource \"pods\" in API group
\"\" in the namespace \"default\"",
 "reason": "Forbidden",
 "details": {
 "name": "simple-pod",
 "kind": "pods"
 },
 "code": 403
}

The detailed message says that the user system:serviceaccount:default:default (note the first
default is the namespace name, and the second one is the service account name) cannot get the
Pods from the default namespace. What we could do is add the default service account to a group
that has more permissions. However, that would be a horrible idea, because if you remember, the
default service account gets automatically assigned to each Pod if the Pod doesn’t specify its service
account. A much better practice is to create a new service account and explicitly set it for the Pod.

154

You can exit the container by typing exit and then deleting the Pod by running kubectl delete po
simple-pod.

Using Role-Based Access Control (RBAC)
Kubernetes manages the authorization (i.e., regulating access to resources based on roles) through
the role based access control or RBAC for short.

Using RBAC, you can dynamically configure policies and control access to the Kubernetes resources.
There are four Kubernetes resources related to RBAC - Role (and ClusterRole) and RoleBinding (and
ClusterRoleBinding).

Roles

The Role resource contains the rules that represent a set of permissions. The Role is defined on the
namespace level, and rules only apply within that namespace. The second resource is the
ClusterRole resource, and this resource can be used to apply the permissions cluster-wide (across
all namespaces).

The other couple of use cases for ClusterRole are if you are defining rules for cluster-scoped
resources. An example of a cluster-scope resource is cluster nodes. You could apply rules for
namespaced resources across all namespaces, such as all Services or all Pods in the cluster.
Similarly, you would use a ClusterRole if you are defining permissions for non-resource endpoints
(e.g., /healthz).

If we continue with the previous example where we tried to list the Pods from within the container,
here’s how we could define a Role called pod-reader that grants read access to Pods:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: default
 name: pod-reader
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

The apiGroups indicates which core API group the role applies to. The empty value means that the
rules apply to the core API group. You can get the list of all API groups by running kubectl api-
resources -o wide. The APIGROUP column shows the name, and the VERBS column will show you the
supported verbs for a particular API group. For example, the deployments fall under the apps API
group, and the following verbs are supported: [create delete deletecollection get list patch
update watch]. Since Pods are part of the core API, we don’t have to specify an apiGroup for them.

The resources field holds the list of resources the rules apply to. In the above case, we are setting it
to pods. If we wanted to apply the rules to any other resource from the core API group, we could
add it to the list. For example, to apply the rules to Services and ConfigMaps, the resources field

155

value would be :`["pods", "services", "configmaps"]`.

The array in the verbs field maps to the HTTP verbs used when making the API’s request. The table
below shows how the HTTP verbs map to the verbs you can use in the Role (or ClusterRole)
resource.

Table 6. HTTP Verbs

HTTP verb Verb in Role

POST create

GET, HEAD get, list, watch

PUT update

PATCH patch

DELETE delete, deletecollection

There’s also the resourceNames field that you can set under the rules if you want to specify the exact
resource the rules should apply to. The example below shows how you could create a rule that only
applies to Deployment called my-deployment:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: default
 name: deployment-role
rules:
- apiGroups: ["apps"]
 resources: ["deployments"]
 resourceName: ["my-deployment"]
 verbs: ["get"]

Once you have created the roles, you have to use one of the binding resources to grant the
permissions (from the role) to the users.

Bindings

You use the RoleBinding and ClusterRoleBinding resources to bind the permissions from the Role or
ClusterRole resource to the users. The users, in this case, could be groups or service account. Like
with the Role and ClusterRole before, the RoleBinding grants the permissions within a specific
namespace, whereas the ClusterRoleBinding grants the permissions cluster-wide.

Here’s how we could create a RoleBinding that binds the pod-reader Role to a service account called
pod-reader-sa:

156

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: read-pods
 namespace: default
subjects:
- kind: ServiceAccount
 name: pod-reader-sa
roleRef:
 kind: Role
 name: pod-reader
 apiGroup: rbac.authorization.k8s.io

Under subjects, you can define multiple subjects - these can either be service accounts, users, or
groups. The binding assigns these subjects the role that’s referenced under the roleRef field.

Now that we have a basic understanding of how RBAC and service accounts work together let’s
create a service account called pod-reader-sa service account, a Role, and a RoleBinding that grants
the permission to read the Pods. We will then create the same Pod as we did at the beginning of this
chapter and assign the pod-reader-sa service account to it.

First, let’s create the service account:

ch8/pod-reader-sa.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: pod-reader-sa

Save the above to pod-reader.sa.yaml and create the service account using kubectl apply -f pod-
reader-sa.yaml.

ch8/pod-reader-role.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: default
 name: pod-reader
rules:
 - apiGroups: [""]
 resources: ["pods"]
 verbs: ["list"]

NOTE
Another way to create Roles is by using kubectl directly. For example kubectl create
role pod-reader --verb=list --resource=pods -n default.

157

Next, we create the Role that only allows listing the Pods. This Role will prevent us from retrieving
the Pod details, for example (that’s the get verb). Save the above to pod-reader-role.yaml and create
it with kubectl apply -f pod-reader-role.yaml.

To assign the Role to the service account we need to create the RoleBinding:

ch8/pod-reader-role-binding.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: read-pods
 namespace: default
subjects:
 - kind: ServiceAccount
 name: pod-reader-sa
 namespace: default
roleRef:
 kind: Role
 name: pod-reader
 apiGroup: rbac.authorization.k8s.io

NOTE To bind a Role to a subject with Kubernetes CLI, use kubectl create rolebinding
read-pods --role=pod-reader --serviceaccount=default:pod-reader-sa -n default

You can describe the role binding, and it should look similar to this:

$ kubectl describe rolebinding read-pods
Name: read-pods
Labels: <none>
Annotations: <none>
Role:
 Kind: Role
 Name: pod-reader
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 ServiceAccount pod-reader-sa default

The figure below shows how the connection between the service account, Role, and the
RoleBinding.

158

Figure 43. Service Account, Role, and RoleBinding

Finally, we can create the Pod with the serviceAccountName field set to pod-reader-sa.

ch8/pod-with-sa.yaml

apiVersion: v1
kind: Pod
metadata:
 labels:
 run: simple-pod
 name: simple-pod
spec:
 serviceAccountName: pod-reader-sa
 containers:
 - image: nginx
 name: simple-pod

Save the above YAML to pod-with-sa.yaml and create the Pod with kubectl apply -f pod-with-
sa.yaml.

Let’s get the shell inside the container and then try send a request to the Kubernetes API:

159

$ kubectl exec -it simple-pod -- /bin/bash
root@simple-pod:/# TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)
root@simple-pod:/# curl -sSk -H "Authorization: Bearer $TOKEN"
https://kubernetes.default:443/api/v1/namespaces/default/pods
{
 "kind": "PodList",
 "apiVersion": "v1",
 "metadata": {
 "selfLink": "/api/v1/namespaces/default/pods",
 "resourceVersion": "7768"
 },
 "items": [
 {
 "metadata": {
 "name": "simple-pod",
 "namespace": "default",
 "selfLink": "/api/v1/namespaces/default/pods/simple-pod",
...

This time the request worked! If you try to get the details about the simple-pod for example, the
request fails as we don’t have the get verb in the role. Similarly, if you try to list any other
resources, the request will fail as well.

Security contexts
The way to apply security-related configuration is through the securityContext field. The objects
that describe the security context are called PodSecurityContext and SecurityContext. You can set
the security context at the Pod level or the container level. If you set the same values at both levels,
the container securityContext value will take precedence.

Privileged containers

If you set the privileged setting to true, your container will run in a privileged mode, which nearly
equals root on the container host. The default value is false. You would use this if your container
needs to manipulate the network stack or access hardware devices on the host. In general, you
shouldn’t be running your container in the privileged mode at all.

...
securityContext:
 privileged: true
....

User (UID) and group ID (GID)

Using the runAsUser and runAsGroup fields, you can specify the UID or GID the containers' processes
will use to execute. Let’s consider the following snippet:

160

....
spec:
 securityContext:
 runAsUser: 1000
 runAsGroup: 3000
 fsGroup: 2000
...

All processes in the container that uses the above security context will run as user ID 1000. The
group ID for all processes in the containers is 3000. With fsGroup we are specifying that all
processes will also be apart of the supplementary group with ID 2000.

Let’s take a look at an example:

ch8/pod-ids.yaml

apiVersion: v1
kind: Pod
metadata:
 name: hello-pod
 labels:
 app.kubernetes.io/name: hello
spec:
 securityContext:
 runAsUser: 1000
 runAsGroup: 3000
 fsGroup: 2000
 containers:
 - name: hello-container
 image: busybox
 command: ["sh", "-c", "sleep 3600"]

Save the above YAML to pod-ids.yaml and create the Pod with kubectl apply -f pod-ids.yaml. Let’s
get the terminal inside the Pod and run ps to look at the list of running processes:

$ kubectl exec -it hello-pod -- /bin/sh
/ $ ps
PID USER TIME COMMAND
 1 1000 0:00 sleep 3600
 17 1000 0:00 /bin/sh
 27 1000 0:00 ps
/ $

Notice the ID in the USER column is 1000, just like we set it in the security context.

161

/ $ id
uid=1000 gid=3000 groups=2000
/ $

Similarly, if you run the id command, you will notice the uid set to 1000, the gid set to 3000, and
supplemental group (groups) to 2000.

Linux capabilities

Using the capabilities field, you can set a list of Linux capabilities you want to add or drop from
the containers. Even though containers are running in isolated namespaces they don’t have
permissions to everything. Using these capabilities, you can fine-tune the permissions you want to
grant to the containers.

For example, if you’d want your containers to use privileged ports (any port number smaller than
1024), you could use the NET_BIND_SERVICE capability. To add this capability to the container, you can
specify it under the capabilities field under the container:

...
 securityContext:
 capabilities:
 add:
 - NET_BIND_SERVICE

Let’s try setting this to a sample Pod:

ch8/add-cap-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: hello-pod
 labels:
 app.kubernetes.io/name: hello
spec:
 containers:
 - name: hello-container
 image: debian
 command: ["sh", "-c", "sleep 3600"]
 securityContext:
 capabilities:
 add:
 - NET_BIND_SERVICE

NOTE
We have updated the image name to debian, because it already has the capsh binary
installed.

162

Once the container is up and running you can use the capsh command to look at the capabilities:

$ kubectl exec -it hello-pod -- capsh --print
Current: =
cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_se
tpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_se
tfcap+eip
Bounding set
=cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_s
etpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_s
etfcap
Securebits: 00/0x0/1'b0
 secure-noroot: no (unlocked)
 secure-no-suid-fixup: no (unlocked)
 secure-keep-caps: no (unlocked)
uid=0(root)
gid=0(root)
groups=

You can find the cap_net_bind_service capability in the list. Also, notice all other capabilities that
are available in the container by default. A good practice is to drop all capabilities first and then
only add the capabilities your application need. To do that, you can use the drop field.

Delete the previous Pod with kubectl delete po hello-pod and let’s create one that drops all
capabilities:

ch8/drop-all-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: hello-pod
 labels:
 app.kubernetes.io/name: hello
spec:
 containers:
 - name: hello-container
 image: debian
 command: ["sh", "-c", "sleep 3600"]
 securityContext:
 capabilities:
 drop:
 - all

If you run capsh this time, you will notice that all capabilities have been dropped:

163

$ kubectl exec -it hello-pod -- capsh --print
Current: =
Bounding set =
Securebits: 00/0x0/1'b0
 secure-noroot: no (unlocked)
 secure-no-suid-fixup: no (unlocked)
 secure-keep-caps: no (unlocked)
uid=0(root)
gid=0(root)
groups=

The above capabilites are a good starting point for all your containers. The next step would be to
dig deeper into individual capabilities your application might need and grant them. You can find
the full reference and explanation of Linux capabilities here.

SELinux

Security-Enhanced Linux (SELinux) is a Linux kernel security module that allows you to have more
control over who can access things in the system. SELinux is a labeling system, and every process,
file, or a directory has a label. You can write policy rules that control access between labeled
processes and labeled objects, and the OS kernel will enforce these rules. The detailed explanation
of SELinux and how it works is out of scope for this book. Here are a couple of resources you can
use to get more familiar with the SELinux:

• Your visual how-to guide for SELinux policy enforcement [https://opensource.com/business/13/
11/selinux-policy-guide] (article by Daniel Walsh)

• Security-Enhanced Linux for mere mortals [https://www.youtube.com/watch?v=_WOKRaM-HI4]
(talk by Thomas Cameron)

To assign SELinux labels to a container, you can use the seLinuxOptions field in the securitySection.
Note that you can apply the seLinuxOptions at both Pod and container level.

...
securityContext:
 seLinuxOptions:
 level: "s0:c123,c456"

AppArmor

AppArmor is another Linux kernel security module. In allows you to confine applications to a
limited set of resources and it’s used together with the traditional permissions (users and groups).
You can create AppArmor profiles that restrict actions such as reading, writing, or executing
specific files or limiting access to networks. Default AppArmor profiles limit access to /proc and
/sys locations, and this gives you a way to isolate the containers from the node they are running on.

Note that AppArmor is not available on all operating systems. Suppose you’re running your
Kubernetes cluster on Ubuntu or SUSE Linux (or running Minikube with the KVM driver on those

164

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://opensource.com/business/13/11/selinux-policy-guide
https://opensource.com/business/13/11/selinux-policy-guide
https://www.youtube.com/watch?v=_WOKRaM-HI4

operating systems). In that case, the AppArmor is supported and enabled by default. To quickly
check if the AppArmor is enabled, run the following command:

$ cat /sysmodule/apparmor/parameters/enabled
Y

The AppArmor profiles are defined per-container through an annotation with the following format:

container.apparmor.security.beta.kubernetes.io/<container_name>: <profile_name>

Here’s an earlier example of a Pod but this time with the AppArmor profile selected for the
container:

apiVersion: v1
kind: Pod
metadata:
 name: hello-pod
 labels:
 app.kubernetes.io/name: hello
 annotations:
 container.apparmor.security.beta.kubernetes.io/hello-container: runtime/default
spec:
 containers:
 - name: hello-container
 image: busybox
 command: ["sh", "-c", "echo Hello from my container! && sleep 3600"]

The above annotation applies the runtime/default AppArmor profile to the hello-container. If you
don’t have AppArmor enabled on your cluster nodes, you can’t run any Pods with the AppArmor
annotation. The Pods will have a Blocked status, like this:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
hello-pod 0/1 Blocked 0 65s

If you get more details from the Pod using the describe command, you will notice the following
message in the output:

165

...
Annotations: container.apparmor.security.beta.kubernetes.io/hello-container:
runtime/default
Status: Pending
Reason: AppArmor
Message: Cannot enforce AppArmor: AppArmor is not enabled on the host
...

To check which AppArmor profiles operating systems loads on your cluster nodes, you can look in
the /sys/kernel/security/apparmor/profiles file. To do that, you will have to SSH into your cluster
nodes. Enabling SSH access to the nodes depends on the cloud provider your cluster is hosted in. If
you’re running Linux or Minikube with KVM driver, you’re in luck because you can directly look at
that /sys/kernel/security/apparmor/profiles folder.

Here’s a sample output from one of the nodes on the cloud-managed cluster I used that shows all
AppArmor profiles on the node:

$ sudo cat /sys/kernel/security/apparmor/profiles
docker-default (enforce)
/usr/lib/snapd/snap-confine (enforce)
/usr/lib/snapd/snap-confine//mount-namespace-capture-helper (enforce)
/usr/sbin/tcpdump (enforce)
/usr/lib/connman/scripts/dhclient-script (enforce)
/usr/lib/NetworkManager/nm-dhcp-helper (enforce)
/usr/lib/NetworkManager/nm-dhcp-client.action (enforce)
/sbin/dhclient (enforce)
/usr/lib/lxd/lxd-bridge-proxy (enforce)
/usr/bin/lxc-start (enforce)
lxc-container-default-with-nesting (enforce)
lxc-container-default-with-mounting (enforce)
lxc-container-default-cgns (enforce)
lxc-container-default (enforce)

Notice the word enforce in the parenthesis? AppArmor can run in two modes: enforce and complain.
If the profile is loaded in enforcement mode, the policies in the profile will be enforced. However, if
you load it in the complain mode, the policy will not be enforced. Instead policy violations will be
reported (via syslog or auditd).

Let’s create a sample policy and see how it looks like when it’s enforced on a container.

166

deny-all.profile

#include <tunables/global>
profile apparmor-example-deny-all flags=(attach_disconnected) {
 #include <abstractions/base>

 file,
 # Deny all file reads/writes.
 deny /** rw,
}

The sample policy called apparmor-example-deny-all from the listing above denies all reads and
writes to files. To add the profile, you can use apparmor_parser command:

$ sudo apparmor_parser deny-all.profile

NOTE
There won’t be any output from the command if the AppArmor profile is loaded
correctly.

If you look at all loaded profiles again, you’ll notice our profile in the list:

$ sudo cat /sys/kernel/security/apparmor/profiles
apparmor-example-deny-all (enforce)
....

Let’s see this AppArmor profile in action. We prefix the AppArmor profile name with localhost and
set it the annotation:

ch8/pod-apparmor.yaml

apiVersion: v1
kind: Pod
metadata:
 name: hello-pod
 labels:
 app.kubernetes.io/name: hello
 annotations:
 container.apparmor.security.beta.kubernetes.io/hello-container:
localhost/apparmor-example-deny-all
spec:
 containers:
 - name: hello-container
 image: busybox
 command: ["sh", "-c", "echo Hello from my container! && sleep 3600"]

The above annotation applies our AppArmor profile to the container called hello-container. Save
the above YAML to pod-apparmor.yaml and create the Pod using kubectl apply -f pod-armor.yaml.

167

Once the Pod is running, let’s try creating a file using the touch command:

$ kubectl exec -it hello-pod -- touch hello.txt
touch: hello.txt: Permission denied
command terminated with exit code 1

As expected, we get the "Permission denied" messsage because we applied the AppArmor profile to
it. If we’d execute the same command against a Pod without the AppArmor profile, we’d be able to
create the file.

One tool I’d like to mention is the profile generation utility called aa-genprof. You can install it by
running sudo apt install apparmor-utils. Using this tool, you can automatically generate an
AppArmor profile for your application.

Let’s create a trivial Go application that writes a string to a file in the /tmp folder:

ch8/main.go

package main

import (
 "io/ioutil"
)

func main() {
 d1 := []byte("hello")
 err := ioutil.WriteFile("/tmp/file1.txt", d1, 0644)
 if err != nil {
 panic(err)
 }
}

To run the above app, run go run main.go. There won’t be any output, but you can check that the
app created the /tmp/file1.txt file. Let’s also build the binary, and we will use the aa-genprof to
generate the AppArmor profile for it:

$ go build main.go
$ sudo aa-genprof main
~/apparmor-test$ sudo aa-genprof main
Writing updated profile for /home/user/apparmor-test/main.
Setting /home/user/apparmor-test/main to complain mode.
....
Profiling: /home/user/apparmor-test/main

[(S)can system log for AppArmor events] / (F)inish

Now you have to run the binary from a different terminal window for the tool to generate the
profile. Once you’ve done that, press the S key, so the tool reads the AppArmor events. This is what

168

you should see:

...
Reading log entries from /var/log/syslog.
Complain-mode changes:

Profile: /home/user/apparmor-test/main
Path: /tmp/file1.txt
Mode: w
Severity: unknown

 [1 - /tmp/file1.txt]
[(A)llow] / (D)eny / (I)gnore / (G)lob / Glob with (E)xtension / (N)ew / Abo(r)t / (F
)inish / (M)ore

You can then decide if you want to Allow this action, Deny it, or pick any other available options.
After you’ve decided what to do, you will be prompted to save the profile changes. You can now exit
the tool (use the F key) and look at the generated profile. All profiles are stored under
/etc/apparmor.d folder. Here’s how the profile looks like if you’ve selected Allow action for writing
to the /tmp/file1.txt file:

$ sudo cat /etc/apparmor.d/home.user.apparmor-test.main
#include <tunables/global>

/home/user/apparmor-test/main {
 #include <abstractions/base>

 /home/user/apparmor-test/main mr,
 /tmp/file1.txt w,
}

The profile would look similar if we’d deny the action:

 deny /tmp/file1.txt w,

Seccomp

Seccomp or secure computing mode allows a process to transition into a protected state where it
can’t make any system calls, except to exit(), sigreturn(), read() and write() to already-open file
descriptors. In case the process tries to call any other system calls, the kernel will terminate it. You
can provide the Secomp profile either at the Pod or container level. If you provide it at both levels,
the options at the container level will take precedence.

You can define the seccomp profile name using the seccompProfile field, like this:

169

...
securityContext:
 seccompProfile:
 type: RuntimeDefault

There are three valid options for the type: RuntimeDefault, Unconfined, and Localhost. Additionally,
you can also create your Seccomp profiles. You can reference them using the Localhost type and
and a localhostProfile field pointing to the file in a kubelet root directory (e.g.
[kubelet]/seccomp/profiles/my-profile.json). For example:

...
securityContext:
 seccompProfile:
 type: Localhost
 localhostProfile: profiles/my-profile.json

Pod security policies
With the PodSecurityPolicy API, you can define and manage all security-related fields in your Pods.
For example, you can limit what can run on your cluster and with what level of privilege. For the
PodSecurityPolicy to work, you need to enable corresponding admission controllers. The admission
controller enforces the conditions defined in the PodSecurityPolicy.

In addition to the security settings we described previously, you can use the PodSecurityPolicy to
control the following:

• Running privileged containers

• Using host namespaces

• Using the host network and ports

• Using volume types

• Using host filesystem

• Using user and group Ids of the container

• Restricting root privilege escalations

• Linux capabilities

• SELinux settings

• AppArmor profiles

• Seccomp profiles

If you want to try out the PodSecurityPolicy using Minikube, you have to make sure to start it with
the PodSecurityPolicy admission controller and pod-security-policy addon enabled. Alternatively,
you can use one of the cloud-managed clusters that have the PodSecurityPolicy enabled. Here’s the
command you can use to start the Minikube cluster with:

170

minikube start --extra-config=apiserver.enable-admission-plugins=PodSecurityPolicy
--addons=pod-security-policy

Once the cluster starts, you can run kubectl get podsecuritypolicy (or psp) to get the list of pod
security policies defined in the cluster:

$ kubectl get podsecuritypolicy
NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
READONLYROOTFS VOLUMES
privileged true * RunAsAny RunAsAny RunAsAny RunAsAny
false *
restricted false RunAsAny MustRunAsNonRoot MustRunAs MustRunAs
false configMap,emptyDir,projected,secret,downwardAPI,persistentVolumeClaim

Installing the addon created a privileged and restricted PodSecurityPolicy. In addition to the
policies, the addon created two ClusterRoles that grant the service account access to use these
policies through the verb use. The two ClusterRoles are named psp:privileged and psp:restricted.

Here’s how the privileged ClusterRole is defined:

$ kubectl describe clusterrole psp:privileged
Name: psp:privileged
Labels: addonmanager.kubernetes.io/mode=EnsureExists
Annotations: <none>
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 podsecuritypolicies.policy [] [privileged] [use]

The last resource that the addon created is the ClusterRoleBinding called default:restricted. This
binding allows the system:serviceaccounts group access to the psp-restricted ClusterRole.

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: psp-restricted
subjects:
- kind: Group
 name: system:serviceaccounts
 namespace: kube-system
roleRef:
 kind: ClusterRole
 name: psp-restricted
 apiGroup: rbac.authorization.k8s.io

Let’s create a Pod and see which policy gets applied to the Pod:

171

ch8/just-a-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: just-a-pod
spec:
 containers:
 - name: test
 image: busybox
 command: ["sh", "-c", "sleep 1h"]

Save the above YAML to just-a-pod.yaml and create the Pod using kubectl apply -f just-a-
pod.yaml.

When the Pod starts, you can use the -o yaml to get the YAML and look for the kubernetes.io/psp
annotation:

$ kubectl get po
NAME READY STATUS RESTARTS
AGE
just-a-pod 1/1 Running 0
16s

$ kubectl get po just-a-pod -o yaml | grep kubernetes.io/psp
 kubernetes.io/psp: privileged

Kubernetes assigned the privileged pod security policy. Let’s do another test, but this time we will
create a Deployment instead of a Pod:

172

ch8/just-a-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: just-a-deployment
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test
 template:
 metadata:
 labels:
 app: test
 spec:
 containers:
 - name: test
 image: busybox
 command: ["sh", "-c", "sleep 1h"]

Save the above YAML to just-a-deployment.yaml and create the Deployment using kubectl apply -f
just-a-deployment.yaml.

If you list the Pods, you will notice that the Pod is not created and the status is set to
CreateContainerConfigError:

$ kubectl get po
NAME READY STATUS RESTARTS
AGE
just-a-deployment-7fd6bd7964-pdhb8 0/1 CreateContainerConfigError 0
50s
just-a-pod 1/1 Running 0
5m21s

If you look at the errors in the events list, you will see a more detailed error:

$ kubectl get event | grep Error
9s Warning Failed pod/just-a-deployment-7fd6bd7964-pdhb8
Error: container has runAsNonRoot and image will run as root

This error tells us that we need to provide the runAsUser setting in the security context. Why is that?
The Pod template in the Deployment is identical to the Pod we created earlier.

When we created the Pod directly using kubectl, Kubernetes used our user credentials. Since you’re
the one who set up the cluster, you have cluster-admin privileges. When we created the
Deployment, it was the Deployment and ReplicaSet controllers who created the Pods. In this case,
Kubernetes used the ReplicaSet controllers' service account to create the Pods.

173

Let’s check the policy that Kubernetes applied to the failing Pod:

$ kubectl get po just-a-deployment-7fd6bd7964-pdhb8 -o yaml | grep kubernetes.io/psp
 kubernetes.io/psp: restricted

Because we used a different service account, Kubernetes applied the restricted policy to the Pod.
Per restricted policy we must define the runAsNonRoot setting and a couple of other settings:

 allowPrivilegeEscalation: false
 fsGroup:
 ranges:
 - max: 65535
 min: 1
 rule: MustRunAs
 requiredDropCapabilities:
 - ALL
 runAsUser:
 rule: MustRunAsNonRoot
 seLinux:
 rule: RunAsAny
 supplementalGroups:
 ranges:
 - max: 65535
 min: 1
 rule: MustRunAs

The MustRunAs rule means that we must specify a value for those settings. Otherwise the Pod won’t
run. Let’s update the Deployment and include these settings.

174

ch8/secure-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: just-a-deployment
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test
 template:
 metadata:
 labels:
 app: test
 spec:
 securityContext:
 runAsUser: 1000
 runAsGroup: 3000
 fsGroup: 2000
 containers:
 - name: test
 image: busybox
 command: ["sh", "-c", "sleep 1h"]

Save the above YAML to secure-deployment.yaml and create the Deployment using kubectl apply -f
secure-deployment.yaml.

If you list the Pod this time, you will notice the Pod is running:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
just-a-deployment-7d996d5849-ph8hb 1/1 Running 0 3s

Network Policies
Using the NetworkPolicy resource, you can control the traffic flow for your applications in the
cluster, at the IP address level or port level (OSI layer 3 or 4).

NOTE
Open Systems Interconnection model (OSI model) is a conceptual model that
characterises and standardizes the communication functions, regardless of the
underlying technology. For more information, see OCI model.

With the NetworkPolicy you can define how your Pod can communicate with various network
entities over the cluster. There are three parts to defining the NetworkPolicy:

1. Select the Pods the policy applies to. You can do that using labels. For example, using app=hello
applies the policy to all Pods with that label.

175

https://en.wikipedia.org/wiki/OSI_model

2. Decide if the policy applies for incoming (ingress) traffic, outgoing (egress) traffic, or both.

3. Define the ingress or egress rules by specifying IP blocks, ports, Pod selectors, or namespace
selectors.

Here is a sample NetworkPolicy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: my-network-policy
 namespace: default
spec:
 podSelector:
 matchLabels:
 app: hello
 policyTypes:
 - Ingress
 - Egress
 ingress:
 - from:
 - ipBlock:
 cidr: 172.17.0.0/16
 except:
 - 172.17.1.0/24
 - namespaceSelector:
 matchLabels:
 owner: ricky
 - podSelector:
 matchLabels:
 version: v2
 ports:
 - protocol: TCP
 port: 8080
 egress:
 - to:
 - ipBlock:
 cidr: 10.0.0.0/24
 ports:
 - protocol: TCP
 port: 500

Let’s break down the above YAML. The podSelector tells us that the policy applies to all Pods in the
default namespace that have the app: hello label set. We are defining policy for both ingress and
egress traffic.

The calls to the Pods policy applies to can be made from any IP within the CIDR block 172.17.0.0/16
(that’s 65536 IP addresses, from 172.17.0.0 to 172.17.255.255), except for Pods whose IP falls within
the CIDR block 172.17.1.0/24 (256 IP addresses, from 172.17.1.0 to 172.17.1.255) to the port 8080.
Additionally, the calls to the Pods policy applies to can be coming from any Pod in the namespace(s)

176

with the label owner: ricky and any Pod from the default namespace, labeled version: v2.

Figure 44. Ingress Network Policy

The egress policy specifies that Pods with the label app: hello in the default namespace can make
calls to any IP within 10.0.0.0/24 (256 IP addresses, from 10.0.0.0, 10.0.0.255), but only to the port
5000.

177

Figure 45. Egress Network Policy

The Pod and namespace selectors support and and or semantics. Let’s consider the following
snippet:

 ...
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 user: ricky
 podSelector:
 matchLabels:
 app: website
 ...

The above snippet with a single element in the from array, includes all Pods with labels app: website
from the namespace labeled user: ricky. This is the equivalent of and operator.

If you change the podSelector to be a separate element in the from array by adding -, you are using
the or operator.

178

 ...
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 user: ricky
 - podSelector:
 matchLabels:
 app: website
 ...

The above snippet includes all Pods labeled app: website or all Pods from the namespace with the
label user: ricky.

Installing Cilium

Network policies are implemented (and rules enforced) through network plugins. If you don’t
install a network plugin, the policies won’t have any effect.

I will use the Cilium plugin and install it on top of Minikube. You could also use a different plugin,
such as Calico.

If you already have Minikube running, you will have to stop and delete the cluster (or create a
separate one). You will have to start Minikube with the cni flag for the Cilium to work correctly:

$ minikube start --network-plugin=cni

Once Minikube starts, you can install Cilium.

$ kubectl create -f
https://raw.githubusercontent.com/cilium/cilium/1.8.3/install/kubernetes/quick-
install.yaml
all/kubernetes/quick-install.yaml
serviceaccount/cilium created
serviceaccount/cilium-operator created
configmap/cilium-config created
clusterrole.rbac.authorization.k8s.io/cilium created
clusterrole.rbac.authorization.k8s.io/cilium-operator created
clusterrolebinding.rbac.authorization.k8s.io/cilium created
clusterrolebinding.rbac.authorization.k8s.io/cilium-operator created
daemonset.apps/cilium created
deployment.apps/cilium-operator created

Cilium is installed in kube-system namespace, so you can run kubectl get po -n kube-system and
wait until the Cilium Pods are up and running.

Let’s look at an example that demonstrates how to disable egress traffic from the Pods.

179

https://docs.cilium.io/en/stable/gettingstarted/minikube/#install-cilium
https://www.projectcalico.org/

ch8/no-egress-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: no-egress-pod
 labels:
 app.kubernetes.io/name: hello
spec:
 containers:
 - name: container
 image: radial/busyboxplus:curl
 command: ["sh", "-c", "sleep 3600"]

Save the above YAML to no-egress-pod.yaml and create the Pod using kubectl apply -f no-egress-
pod.yaml.

Once the Pod is running, let’s try calling google.com using curl:

$ kubectl exec -it no-egress-pod -- curl -I -L google.com
HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Thu, 24 Sep 2020 16:30:59 GMT
Expires: Sat, 24 Oct 2020 16:30:59 GMT
Cache-Control: public, max-age=2592000
Server: gws
Content-Length: 219
X-XSS-Protection: 0
X-Frame-Options: SAMEORIGIN

HTTP/1.1 200 OK
...

The call completes successfully. Let’s define a network policy that will prevent egress for Pods with
the label app.kubernetes.io/name: hello:

180

ch8/deny-egress-hello.yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-egress
spec:
 podSelector:
 matchLabels:
 app.kubernetes.io/name: hello
 policyTypes:
 - Egress

If you run the same command this time, curl won’t be able to resolve the host:

$ kubectl exec -it no-egress-pod -- curl -I -L google.com
curl: (6) Couldn't resolve host 'google.com'

Try running kubectl edit pod no-egress-pod and change the label value to hello123. Save the
changes and then re-run the curl command. This time, the command works fine because we
changed the Pod label, and the network policy does not apply to it anymore.

Common Network Policies

Let’s look at a couple of scenarios and corresponding network policies.

Deny all egress traffic

Denies all egress traffic from the Pods in the namespace, and Pods cannot make any outgoing
requests.

ch8/deny-all-egress.yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all-egress
spec:
 podSelector: {}
 policyTypes:
 - Egress

Deny all ingress traffic

Denies all ingress traffic, and Pods cannot receive any requests.

181

ch8/deny-all-ingress.yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all-ingress
spec:
 podSelector: {}
 policyTypes:
 - Ingress

Allow ingress traffic to specific Pods

Allow ingress to specific Pods, identified by a label.

ch8/pods-allow-all.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: pods-allow-all
spec:
 podSelector:
 matchLabels:
 app: my-app
 ingress:
 - {}

Deny ingress to specific Pods

Denies ingress to specific Pods, identified by a label.

ch8/pods-deny-all.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: pods-deny-all
spec:
 podSelector:
 matchLabels:
 app: my-app
 ingress: []

Restrict traffic to specific Pods

Allows traffic from certain Pods only. Allow traffic from app: customers to any frontend Pods (role:
frontend) that are part of the same app (app: customers).

182

ch8/frontend-allow.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: frontend-allow
spec:
 podSelector:
 matchLabels:
 app: customers
 role: frontend
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: customers

Deny all traffic to and within a namespace

Denies all incoming traffic (no ingress rules defined) to all Pods (empty podSelector) in the prod
namespace. Any calls from outside of the default namespace will be blocked and any calls between
Pods in the same namespace.

ch8/prod-deny-all.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: prod-deny-all
 namespace: prod
spec:
 podSelector: {}
 ingress: []

Deny all traffic from other namespaces

Denies all traffic from other namespaces, coming to the Pods in the prod namespace. It matches all
pods (empty podSelector) in the prod namespace and allows ingress from all Pods in the prod
namespace, as the ingress podSelector is empty as well.

183

ch8/deny-other-namespaces.yaml

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-other-namespaces
 namespace: prod
spec:
 podSelector: {}
 ingress:
 - from:
 - podSelector: {}

Deny all egress traffic for specific Pods

Denies Pods labeled with app: api from making any external calls.

ch8/api-deny-egress.yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: api-deny-egress
spec:
 podSelector:
 matchLabels:
 app: api
 policyTypes:
 - Egress
 egress: []

184

Scaling and Resources

Scaling and autoscaling Pods
In Managing Pods with ReplicaSets, we discussed how to manually scale the Pods by increasing the
value in the replicas field. Scaling where you’re increasing the number of Pod instances is also
called horizontal scaling.

The other type of scaling we will discuss in this chapter is vertical scaling, where you’re increasing
the number of resources (CPU and memory) containers can consume.

Figure 46. Scaling Pods

To gather the CPU and memory information, you need to install the metrics server. The metrics
server aggregates the resource usage data across the cluster. Through the metrics API, you can get
the number of resources used by nodes or Pods. There are two metrics reported: CPU and memory.

If you’re using Minikube, you have to enable the metrics-server addon before using the HPA. To
enable the metrics-server addon, run:

$ minikube addons enable metrics-server
ἱ� The 'metrics-server' addon is enabled

You can check metrics server was installed by looking at the apiservice and the Deployment called
metrics-server that Minikube created in the kube-system namespace:

185

$ kubectl get apiservices | grep metrics
v1beta1.metrics.k8s.io kube-system/metrics-server True 3m20s

$ kubectl get deployment metrics-server -n kube-system
NAME READY UP-TO-DATE AVAILABLE AGE
metrics-server 1/1 1 1 5m4s

With the metrics server installed, you can use the kubectl top command. The top command allows
you to see the resource consumption for nodes and Pods.

$ kubectl top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
minikube 437m 7% 594Mi 6%

Let’s look at how you can specify the amount of resources your Pods need and how you can limit
the resources they consume.

Resource requests and limits
For each container in a Pod, you can specify the resource request. Assuming your cluster has
multiple nodes, Kubernetes uses this information to decide which node to place the Pod on. For
example, if you set the memory request to 512 MiB and Kubernetes places the container on a node
with 12 GiB, then the container can use up more memory (assuming no other Pods is running on
that node).

To limit how much resources container consumes, you can specify the resource limit. The limit
prevents the container from using more than you specified. If we continue with the previous
example, if the request is set to 512 MiB and limit to 1024 MiB, regardless of how much memory is
available on the node, the container will never use more than 1024 MiB. If the container’s process
tries to allocate more than the specified limit, the system kernel will terminate the process.

As mentioned earlier, there are two resources, CPU and memory. CPU represents the compute
processing,and you can specify it in units of Kubernetes CPUs. The CPU resources are measured in
"cpu" units. One "cpu" unit in Kubernetes is equivalent to 1 vCPU/Core for cloud providers and 1
hyperthread on bare-metal Intel processors. You can also request fractional units. For example, the
value of 0.1 is equivalent to 100m or 100 millicpu.

Memory is measured in bytes. The value can be expressed as an integer or a fixed-point number,
using the following suffixes: E, P, T, G, M, K (exabyte, petabyte, terabyte, gigabyte, megabyte, and
kilobyte). You can also use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki (exbibyte, pebibyte,
tebibyte, gibibyte, mebibyte, kibibyte). For example, 128 MiB is about 134 MB.

Both CPU and memory limits and requests can be specified under the resources field, like this:

186

ch9/memory-sample.yaml

apiVersion: v1
kind: Pod
metadata:
 name: memory-sample
spec:
 containers:
 - name: stress
 image: polinux/stress
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"
 command: ["stress"]
 args: ["--vm", "1", "--vm-bytes", "150M", "--vm-hang", "1"]

Save the above YAML to memory-sample.yaml and create the Pod using kubectl apply -f memory-
sample.yaml. If you look at the memory consumption with top, you will see the memory is at 150 Mi,
which is above the requested (100Mi) and below the limit (200Mi):

$ kubectl top po memory-sample
NAME CPU(cores) MEMORY(bytes)
memory-sample 75m 150Mi

Let’s see what happens if we try to exceed the memory limit. We will use the same limit and
requests as before, but instead, we will pass in 250M to the stress command.

NOTE stress is a Linux tool for load and stress testing. You can read more about it here.

ch9/exceed-limit.yaml

apiVersion: v1
kind: Pod
metadata:
 name: memory-sample
spec:
 containers:
 - name: stress
 image: polinux/stress
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"
 command: ["stress"]
 args: ["--vm", "1", "--vm-bytes", "250M", "--vm-hang", "1"]

187

https://linux.die.net/man/1/stress

Save the above YAML to exceed-limit.yaml and create the Pod using kubectl apply -f exceed-
limit.yaml. If you look at the Pods, you will notice Kubernetes killed the Pod:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
memory-sample 0/1 OOMKilled 0 5s

The OOMKilled status means that Kubernetes killed the Pod because it exceeded the limit and is Out
Of Memory. Let’s kill the Pod with kubectl delete pod memory-sample.

Another scenario you might run into, especially if you’re running a local cluster, is if you try to run
too many workloads, and the nodes cannot accommodate them. Let’s try to simulate this scenario
by requesting more memory that’s available in the cluster.

ch9/memory-hog.yaml

apiVersion: v1
kind: Pod
metadata:
 name: memory-hog
spec:
 containers:
 - name: stress
 image: polinux/stress
 resources:
 limits:
 memory: "1000Gi"
 requests:
 memory: "1000Gi"
 command: ["stress"]
 args: ["--vm", "1", "--vm-bytes", "250M", "--vm-hang", "1"]

Save the above YAML to memory-hog.yaml and create the Pod using kubectl apply -f memory-
hog.yaml.

If you look at the Pod, you will notice that it’s Pending. Running the describe command shows the
reason for the status:

$ kubectl describe po memory-hog
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 43s (x2 over 43s) default-scheduler 0/1 nodes are
available: 1 Insufficient memory.

Delete the Pod with kubectl delete po memory-hog.

188

You can set the CPU requests and limits similarly as you did the memory. If we set cpu field to a
crazy number of 100 CPUs you will get a similar error as we did with the memory.

ch9/cpu-hog.yaml

apiVersion: v1
kind: Pod
metadata:
 name: cpu-hog
spec:
 containers:
 - name: stress
 image: polinux/stress
 resources:
 limits:
 cpu: "100"
 requests:
 cpu: "100"
 command: ["stress"]
 args: ["--cpu", "2"]

Save the above YAML to cpu-hog.yaml and create the Pod using kubectl apply -f cpu-hog.yaml.
Then, look at the Pod details for the error:

$ kubectl describe po cpu-hog
...
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 80s (x2 over 81s) default-scheduler 0/1 nodes are
available: 1 Insufficient cpu.

Before continuing, delete the cpu-hog Pod using kubectl delete po cpu-hog.

When designing your Pods, make sure you configure the limits and requests. That way, you can
make efficient use of the available resources. If you don’t specify the limits, your containers don’t
have an upper bound. You could potentially run into a situation where a single container can use
up all available memory.

Resource quotas
If you are working with a cluster shared between multiple team members and namespaces, it is
important to enable resource quotas on the namespace. With a quoate you can limit the total
resources that can be requested in a given namespaces.

In addition to the CPU and memory quotas, you can also enable storage quotas and object count
quotas. The storage quota can limit the number of storage resources - the number of persistent
volume claims and the sum of storage requests. With the object count quota, you can go a step
further and limit the number of specific resources created in a namespace. For example, you can

189

limit the number of Secrets, Services, ConfigMaps, and other Kubernetes resources.

The resource for defining quotas is called a ResourceQuota. Here’s a sample quota that limits the
number of Pods to 5:

ch9/res-quota.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: res-quota
spec:
 hard:
 pods: "5"

Save the above YAML to res-quota.yaml and create the ResourceQuota using kubectl apply -f res-
quota.yaml. Next, we will create Deployment and then try to scale it over the limit of 5 Pods.

ch9/quota-deployment.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello
 labels:
 app.kubernetes.io/name: hello
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: hello
 template:
 metadata:
 labels:
 app.kubernetes.io/name: hello
 spec:
 containers:
 - name: hello-container
 image: busybox
 command: ["sh", "-c", "echo Hello from my container! && sleep 3600"]

Save the above YAML to quota-deployment.yaml and create the Deployment using kubectl apply -f
quota-deployment.yaml.

Now you can try and scale the Deployment to 10 replicas:

$ kubectl scale deploy hello --replicas=10

If you list the Pods, there will be five of them running. If you look at the events, you will see the

190

error Kubernetes reported:

$ kubectl get events | grep replicaset/hello
...
71s Warning FailedCreate replicaset/hello-56f578b46f Error
creating: po
ds "hello-56f578b46f-96t4j" is forbidden: exceeded quota: pods-limit, requested: pods
=1, used:
pods=5, limited: pods=5
...

Let’s modify the quota and include some CPU and memory limits as well.

ch9/res-quota-mem-cpu.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: res-quota
spec:
 hard:
 pods: "5"
 memory: "200m"
 cpu: "0.5"

Save the above YAML to res-quota-mem-cpu.yaml and update the ResourceQuota using kubectl apply
-f res-quota-mem-cpu.yaml.

You can look at the quota details using the describe command:

$ kubectl describe quota res-quota
Name: res-quota
Namespace: default
Resource Used Hard
-------- ---- ----
cpu 0 500m
memory 0 200m
pods 5 5

Let’s scale down the Deployment back to 1 Pod with kubectl scale deploy hello --replicas=1. If
you try to create a Pod that exceeds the memory or CPU, the Kubernetes CLI will fail right away.
Here’s a message you might get if that happens:

Error from server (Forbidden): pods "quota-pod" is forbidden: exceeded quota: res-
quota, requested: memory=100Mi, used: memory=0, limited: memory=200m

Similarly, if you try to create a Pod without the CPU and memory requests defined, you will get an

191

error. Here’s what happens if you run kubectl create deploy my-nginx --image=nginx and then look
at the ReplicaSet details:

$ kubectl describe replicaset my-nginx
...
Error creating: pods "my-nginx-6b74b79f57-dfljt" is forbidden: failed quota: res-
quota: must specify cpu,memory
...

Let’s create a Pod that defines the memory and CPU requests:

ch9/quota-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: quota-pod
spec:
 containers:
 - name: quota-pod
 image: busybox
 command: ["sh", "-c", "sleep 3600"]
 resources:
 requests:
 memory: "100m"
 cpu: "0.1"

Save the above YAML to quota-pod.yaml and create the Pod using kubectl apply -f quota-pod.yaml.

If you describe the quota now, you will see how much memory and CPU is the Pod using:

$ kubectl describe quota
Name: res-quota
Namespace: default
Resource Used Hard
-------- ---- ----
cpu 100m 500m
memory 100m 200m
pods 2 5

Before we continue, make sure you delete the quota using kubectl delete quota res-quota, and the
Deployment (kubectl delete deploy hello) and the Pod (kubectl delete po quota-pod).

Horizontal scaling
Previously, you’ve learned how to scale the Pods manually, and now you also know how to request
and limit the resources. With the help of the metrics server, we can horizontally scale Pods. For

192

example, if the CPU utilization is getting high or close to the limit, you can add more replicas, and
once the utilization drops, you can scale the Pods down.

The resource and controller you can use to scale Pods automatically is the Horizontal Pod
Autoscaler (HPA). HPA periodically checks the Pod resource utilization and calculates the number
of replicas required, based on the HPA resource settings. Based on these values, it adjusts the
replicas field.

Let’s create a Deployment with an image that runs a computation that takes a while. Then, we will
start sending request to it, to see the metrics we get from the Pods:

ch9/computations.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: computations
 labels:
 app.kubernetes.io/name: computations
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: computations
 template:
 metadata:
 labels:
 app.kubernetes.io/name: computations
 spec:
 containers:
 - name: computations
 image: startkubernetes/computations:0.1.0
 ports:
 - containerPort: 8080
 resources:
 limits:
 cpu: 100m
 memory: 10Mi

apiVersion: v1
kind: Service
metadata:
 name: computations
 labels:
 app.kubernetes.io/name: computations
spec:
 selector:
 app.kubernetes.io/name: computations
 ports:
 - port: 8080

193

Save the above YAML to computations.yaml and create the Service and Deployment with kubectl
apply -f computations.yaml.

Next, we will create a Pod called load and run the shell inside. From inside the Pod, we will call the
computations service in an endless loop:

$ kubectl run -it --rm load --image=radial/busyboxplus:curl -- /bin/sh

When you get the terminal inside the container, run the endless loop:

$ while true; do curl http://computations:8080; done
DoneDoneDoneDoneDoneDone
...

You will start getting back the response from the service (Done). Leave it running for a couple of
minutes and then run the kubectl top pod command to see the load. You can also specify the
--containers flag to show the container names:

$ kubectl top pod --containers
POD NAME CPU(cores) MEMORY(bytes)
computations-b6f8f97c4-d9rbg computations 96m 5Mi
load load 95m 2Mi

Both the computations Pod and the load Pod report the memory and CPU usage. Notice the CPU
usage for the computations Pod is getting close to 100m - this is the limit we set in the Deployment.

Let’s create a horizontal pod auto-scaler that will scale out the Pods when the average CPU
utilization hits 50%. We also specify the upper bound, the max number of replicas, as we don’t want
to scale the Pod indefinitely. With the scaleTargetRef we are defining which resource to use
(Deployment). Under metrics we are specifying the resource the HPA should use to determine if the
Deployment should be scaled or not.

194

ch9/hpa.yaml

kind: HorizontalPodAutoscaler
apiVersion: autoscaling/v2beta2
metadata:
 name: computations
spec:
 maxReplicas: 10
 minReplicas: 1
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: computations
 metrics:
 - type: Resource
 resource:
 name: cpu
 target:
 type: Utilization
 averageUtilization: 50

Save the above YAML to hpa.yaml and create the HorizontalPodAutoscaler using kubectl apply -f
hpa.yaml. With the curl command from earlier still running, if you look at the details of the HPA,
you should how many replicas were already created by the HPA. After a couple of minutes, the HPA
will scale the Pod as shown in the REPLICAS column:

$ kubectl get hpa
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
computations Deployment/computations 59%/50% 1 10 3 3m8s

Looking at the top command, you will see that this time each Pod is consuming around 57m of CPU,
which is under the limit of 100m and less than a single Pod was consuming:

$ kubectl top pod --containers
POD NAME CPU(cores) MEMORY(bytes)
computations-b6f8f97c4-4k5mx computations 57m 3Mi
computations-b6f8f97c4-d9rbg computations 57m 3Mi
computations-b6f8f97c4-mn2ld computations 59m 4Mi

By scaling out the Pods, we distributed the load across multiple instances.

Let’s stop the endless curl loop and observe what happens. You can pass the -w flag to the kubectl
get hpa command to watch the changes:

195

$ kubectl get hpa -w
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
computations Deployment/computations 51%/50% 1 10 4
5m29s
computations Deployment/computations 47%/50% 1 10 4
5m34s

The time it takes for HPA to scale down the replicas depends on the stabilization window setting in
the field stabilizationWindow. The default stabilization window for scaling down is 300 seconds (5
minutes). Because of this, it will take at least 5 minutes for HPA to start scaling down the Pods.

In addition to CPU, you can also use other metrics, such memory, and even combine them:

...
 metrics:
 - type: Resource
 resource:
 name: memory
 targetAverageValue: 10M
...

You can use two other groups of metrics in the horizontal pod scaler: the custom and external
metrics. The custom metric is any metric associated with a Kubernetes resource, while the external
metric is any custom metric that’s not related to a Kubernetes resource.

To use these metrics, you need to instrument your application (to emit the metrics) first, then install
a metrics collector that’s going to collect the desired metrics and pass them to the metrics server. A
popular metrics collector is Prometheus[https://prometheus.io/]. Prometheus can collect the metrics
from your containers. For the metrics to be available to the HPA, for example, you will also need to
install a Prometheus Adapter[https://github.com/DirectXMan12/k8s-prometheus-adapter]. The
Prometheus adapter is a metrics server, and it implements the same metrics API interface.

Once your application is emitting metrics, and Prometheus is collecting and exposing them through
the metrics API, you can create an HPA that uses the custom metric. For example, let’s say your
application emits a metric called invoke_count, then you can write a HPA like this:

196

https://prometheus.io/
https://github.com/DirectXMan12/k8s-prometheus-adapter

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: invoke-count-hpa
spec:
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: my-app
 minReplicas: 1
 maxReplicas: 10
 metrics:
 - type: Pods
 pods:
 metric:
 name: invoke_count
 target:
 type: AverageValue
 averageValue: 2

Using affinity, taints, and tolerations
Using node affinity, you can constrain which nodes your Pod is eligible to run on based on the
node’s labels. Node affinity can be set on Pods using the affinity and nodeAffinity fields. There are
two types of node affinity - with the first one (requiredDuringSchedulingIgnoredDuringExecution) you
can specify rules that must be met for a Pod to be scheduled onto a node, for example, "only run
the Pod on node ABC". The second one (preferredDuringSchedulingIgnoredDuringExecution) specifies
the preferences - for example, "try to run this Pod on node ABC, but if it’s not possible, then run it
somewhere else".

Let’s look at the labels set on the Minikube node:

$ kubectl get node --show-labels
NAME STATUS ROLES AGE VERSION LABELS
minikube Ready master 4h39m v1.19.0 beta.kubernetes.io/arch
=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=min
ikube,kubernetes.io/os=linux,minikube.k8s.io/commit=0c5e9de4ca6f9c55147ae7f90af97eff5b
efef5f,minikube.k8s.io/name=minikube,minikube.k8s.io/updated_at=2020_09_20T12_00_03_07
00,minikube.k8s.io/version=v1.13.0,node-role.kubernetes.io/master=

For example, if we wanted the Pods to end up on nodes with the following label
kubernetes.io/os=linux, we could define the Pod like this:

197

apiVersion: v1
kind: Pod
metadata:
 name: pod-affinity
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/os
 operator: In
 values:
 - linux
 containers:
 - name: container
 image: busybox
 command: ["sh", "-c", "sleep 3600"]

If you deploy the above Pod to your Minikube cluster, it will all work. Let’s say we wanted the Pod
to end up on a node running Windows (e.g., kubernetes.io/os=windows).

apiVersion: v1
kind: Pod
metadata:
 name: pod-affinity
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/os
 operator: In
 values:
 - windows
 containers:
 - name: container
 image: busybox
 command: ["sh", "-c", "sleep 3600"]

In this case, the Pod will stay pending because we don’t have a node with that label. This is the
error you will get if you describe the Pod:

198

$ kubectl describe po pod-affinity
...
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedScheduling 8s (x2 over 8s) default-scheduler 0/1 nodes are
available: 1 node(s) didn't match node selector.
...

While the affinity 'attracts' Pods to specified nodes, taints do the opposite. You can use taints to
keep Pods off specific nodes. You use taints in combination with tolerations. They work together to
ensure Pods don’t get scheduled onto appropriate nodes. You can apply taints onto nodes to mark
them that they should not accept any Pods that do not tolerate them.

Each taint has three parts: a key, value, and effect, and it looks like this: key=value:effect. The key
and value is something you can pick, but the effect can only be one of the following value:
NoSchedule, PreferNoSchedule, or NoExecute.

One of the use cases for using taints and tolerations is to dedicate a set of nodes for specific users or
running specialized hardware (GPUs). In that case, you only want to run workloads that need the
specialized hardware on those nodes and keep the rest of the Pods off those nodes.

Here’s an example of how you can use kubectl taint command to add a taint to the node:

$ kubectl taint nodes my-node special=true:NoSchedule

The above command adds a taint with a key special and value true to my-node. You could then
define the tolerations in your Pods like this:

apiVersion: v1
kind: Pod
metadata:
 name: pod-taint
spec:
 tolerations:
 - key: "special"
 operator: "Equal"
 value: "true"
 effect: "NoSchedule"
 containers:
 - name: container
 image: busybox
 command: ["sh", "-c", "sleep 3600"]

The toleration in the above Pod YAML has the exact key, value, and the effect as the taint on the
node. Since it matches the taint, you can schedule it on that node. Since the tolerations field is an
array, you can specify multiple tolerations. In case of multiple tolerations, all of them need to match
for the Pod to be scheduled.

199

If you already have a mix of Pods running on the node and want to evict the ones without the taint,
you can use the NoExecute effect. When using NoExecute effect, you can also specify an optional
tolerationSeconds field. The Pod that tolerates the taint remains running on the node for the
duration specified in that field. Pods that don’t specify the tolerationSeconds field will remain
bound to the node forever, and the ones with no tolerations will be evicted immediately.

The difference between NoSchedule and NoExecute is that if the Pod is already running on the node
before you apply the taint, the Pod won’t get rescheduled if using NoSchedule. However, if you use
NoExecute the Pod might get evicted.

The last effect is PreferNoSchedule. When using this effect, Kubernetes avoids scheduling Pods that
don’t tolerate the taint. However, the Pods might still get scheduled onto these nodes if other nodes
are at capacity.

200

Extending Kubernetes

Using custom resource definitions (CRDs)
Throughout this book, we discussed various Kubernetes resources, their purpose, how to use them,
and how they work. However, you might run into scenarios where the existing resources are too
limiting or not precisely what you need. For these purposes, Kubernetes also support custom
resource definitions (CRDs).

Each resource in Kubernetes (Pod, Service, Deployment, etc.) is an endpoint in the Kubernetes API.
This endpoint stores the collection of Kubernetes objects. You have seen an example of the API
endpoint in the section called What are service accounts?. In that section, we were accessing the
Pod information using an URL like this: https://kubernetes.default:443/api/v1/namespaces/default/
pods/simple-pod. Other Kubernetes services have similar endpoints in the API, and you can use that
API to get the objects or create, update, and delete it. You can check out the full Kubernetes API
reference here.

Custom resources are a way of extending the Kubernetes API. You can develop your custom
resource (for example, MyCoolPod) and install it on your cluster or any other Kubernetes clusters.
Once the custom resource is installed, you can create its objects using the Kubernetes CLI, just like
you would do it for Pods or Services. Let’s say you registered a custom resource called MyCoolPod.
You could use kubectl get mycoolpod or kubectl describe mycoolpod pod-instance to interact with
the object of the MyCoolPod kind.

Custom resource on their own simply allows you to store and retrieve the data. To make them more
powerful, you can combine them with a custom controller. Using a custom controller, you can get
a proper declarative API that allows you to declare your resource’s desired state and keep the
object’s current state in sync with the desired state. Just like the ReplicaSet controller does when it
tries to maintain the Pod replicas.

Let’s say we want to create a custom resource called PdfDocument that takes the text in the
resource and saves it to an MD (Markdown) file and then converts it to a PDF file. We will use a
Kubernetes Volume to store the MD and the PDF file. There are two init containers. The first one
saves the text to .MD file, and the second one uses that .MD file to create a PDF file.

201

https://kubernetes.default:443/api/v1/namespaces/default/pods/simple-pod
https://kubernetes.default:443/api/v1/namespaces/default/pods/simple-pod
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/

Figure 47. PdfDocument Flow

Here’s how the resource could look like:

kind: PdfDocument
metadata:
 name: my-document
spec:
 documentName: my-text
 text: |
 ### This is a title
 Here is some **BOLD** text

If you try to create this resource using Kubernetes CLI, you’ll get an error because you haven’t
provided the apiVersion field. We need a way to tell Kubernetes about the PdfDocument kind.

Create a CustomResourceDefinition

To be able to create custome resources, we need to tell Kubernetes about the resource. You can do
that using a CustomResourceDefinition resource. Here’s how we would create the CRD for the
PdfDocument type:

202

ch10/pdf-crd.yaml

apiVersion: apiextensions.k8s.io/v1
kind: CustomResourceDefinition
metadata:
 name: pdfdocuments.k8s.startkubernetes.com
spec:
 group: k8s.startkubernetes.com
 scope: Namespaced
 versions:
 - name: v1
 served: true
 storage: true
 schema:
 openAPIV3Schema:
 type: object
 properties:
 spec:
 type: object
 properties:
 documentName:
 type: string
 text:
 type: string
 names:
 kind: PdfDocument
 singular: pdfdocument
 plural: pdfdocuments
 shortNames:
 - pdf
 - pdfs

Save the YAML to pdf-crd.yaml. There’s a lot of going on in the YAML. Refer to the table below to
understand the different fields, sections, and their usage.

Table 7. CRD Fields

Field Description Example

name Name of the CRD must match
the following format:
plural.group. The values are
coming from the fields with the
same names, from the names
section

pdfdocuments.k8s.startkubernet
es.com

group Name of the group to use for
the REST API. For example
/apis/[group]/[version]

k8s.startkubernetes.com

scope Resource can be Namespaced or
Cluster scoped

Namespaced or Cluster

203

Field Description Example

versions List of all supported versions of
the API

See the YAML

plural Plural name of the resource.
Used in the REST API URL:
/apis/[group]/[version]/[plura
l]

pdfdocuments

singular Singular name of the resource.
Use as an alias the CLI (e.g.,
kubectl get [singular])

pdfdocument

shortNames Short names used for the
resource in the CLI

pdf, pdfs

The schema of the resource is specified using the OpenAPI v3.0 specification format. OpenAPI v3.0
spec also allows you to define a more structural schema, where you can define required fields or
patterns field values need to conform to. For example, if we wanted to restrict the values for the
documentName field to lowercase names with exactly ten characters, we could do it using the pattern
field:

...
documentName:
 type: string
 pattern: '^[a-z]{10}$'

Let’s create the CustomResourceDefinition.

$ kubectl apply -f pdf-crd.yaml
customresourcedefinition.apiextensions.k8s.io/pdfdocuments.k8s.startkubernetes.com
created

You can now use pdf, pdfs or pdfdocument to list the PdfDocument resouces in the cluster. The
resource kind is also visible when you run the api-resources command:

204

https://swagger.io/specification/

$ kubectl get pdfdocument
No resources found in default namespace.

$ kubectl get pdf
No resources found in default namespace.

$ kubectl api-resources | grep pdf
NAME SHORTNAMES APIGROUP
NAMESPACED KIND
...
pdfdocuments pdf,pdfs k8s.startkubernetes.com true
PdfDocument
...

Kubernetes also creates a new namespaced REST API endpoint for the pdfresources. Let’s look at
how we can access the API. You have already talked to the Kubernetes API in the Bindings section,
where we accessed the API through a Pod. We will use kubectl proxy command to set up a proxy to
the API server this time.

Open a separate terminal window and start the proxy:

$ kubectl proxy --port=8080
Starting to serve on 127.0.0.1:8080

Leave the proxy running, and from a different terminal, you can now access the Kubernetes API.
For example, to get the list of all supported APIs, run:

$ curl localhost:8080/apis
...
 {
 "name": "k8s.startkubernetes.com",
 "versions": [
 {
 "groupVersion": "k8s.startkubernetes.com/v1",
 "version": "v1"
 }
],
 "preferredVersion": {
 "groupVersion": "k8s.startkubernetes.com/v1",
 "version": "v1"
 }
 },
...

To access the PdfDocuments API, you have to use the API name and the version, like this:

205

$ curl localhost:8080/apis/k8s.startkubernetes.com/v1/namespaces/default/pdfdocuments
{"apiVersion":"k8s.startkubernetes.com/v1","items":[],"kind":"PdfDocumentList","metada
ta":{"continue":"","resourceVersion":"21553","selfLink":"/apis/k8s.startkubernetes.com
/v1/namespaces/default/pdfdocuments"}}

We get back an empty list of items,because we haven’t created the PdfDocument resource yet. Now
that the API is registered and we have the apiVersion, we can create and deploy the PdfDocument.
The apiVersion consists of the group name and one of the support versions. In this case, the
apiVersion is k8s.startkubernetes.com/v1.

ch10/my-document.yaml

apiVersion: k8s.startkubernetes.com/v1
kind: PdfDocument
metadata:
 name: my-document
spec:
 documentName: my-text
 text: |
 ### This is a title
 Here is some **BOLD** text

Save the above YAML to my-document.yaml and create the PdfDocument resource.

$ kubectl apply -f my-document.yaml
pdfdocument.k8s.startkubernetes.com/my-document created

If you list the pdfs you will see the resource we created. You can also look at the YAML
representation of the resource and the fields Kubernetes added.

206

$ kubectl get pdfs
NAME AGE
my-document 57s

$ kubectl describe pdf my-document
Name: my-document
Namespace: default
Labels: <none>
Annotations: <none>
API Version: k8s.startkubernetes.com/v1
Kind: PdfDocument
Metadata:
 Creation Timestamp: 2020-09-21T22:37:30Z
 Generation: 1
 Managed Fields:
 API Version: k8s.startkubernetes.com/v1
 Fields Type: FieldsV1
 fieldsV1:
 f:metadata:
 f:annotations:
 .:
 f:kubectl.kubernetes.io/last-applied-configuration:
 f:spec:
 .:
 f:documentName:
 f:text:
 Manager: kubectl-client-side-apply
 Operation: Update
 Time: 2020-09-21T22:37:30Z
 Resource Version: 21796
 Self Link:
/apis/k8s.startkubernetes.com/v1/namespaces/default/pdfdocuments/my-document
 UID: 62283c82-cbb3-4676-b71d-770004151c6d
Spec:
 Document Name: my-text
 Text: ### This is a title
Here is some **BOLD** text

Events: <none>

The resource behaves just like any other Kubernetes resource. Without a controller, the resource is
useless. Let’s see how we can create a simple controller. The controller creates a Job whenever you
create a new PdfDocument resource. The Job takes the text from the resource and uses init
containers to create a PDF document from it.

Create a controller

The PdfDocument controller will watch the PdfDocument resources and act accordingly. Whenever
you create or update a PdfDocument resource, the controller creates a Job that generates a PDF

207

document from the text inside the resource. I’ve used the Kubebuilder to build the CRD and the
controller. You will also need Kustomize to build the controller locally.

Once you have installed Kubebuilder, you can initialize the project:

$ go mod init k8s.startkubernetes.com/v1
go: creating new go.mod: module k8s.startkubernetes.com/v1

$ kubebuilder init
Writing scaffold for you to edit...
Get controller runtime:
...
go build -o bin/manager main.go
Next: define a resource with:
$ kubebuilder create api

The kubebuilder creates the project structure and other files for the controller. The next step is to
create the code, and struct for the custom resource using the kubebuilder create api command:

$ kubebuilder create api --group k8s.startkubernetes.com --version v1 --kind
PdfDocument
Create Resource [y/n]
y
Create Controller [y/n]
y
Writing scaffold for you to edit...
api/v1/pdfdocument_types.go
controllers/pdfdocument_controller.go
...

The command creates the api/v1 folder with the emtpy resource type. I’ve added the two fields that
we one in the spec section to the pdfdocument_types.go file:

type PdfDocumentSpec struct {
 // INSERT ADDITIONAL SPEC FIELDS - desired state of cluster
 // Important: Run "make" to regenerate code after modifying this file

 DocumentName string `json:"documentName,omitempty"`
 Text string `json:"text,omitempty"`
}

The next part is to implement a controller inside the controllers/pdfdocument_controller.go file. To
implement the functionality, I am using two init containers (you can read more about in Init
containers section). The first init container reads the text from the resource and stores it in a .md
file on a Volume, shared between all containers.

Once the .md file is stored, the second init container runs pandoc to converts the .md file into the PDF

208

https://book.kubebuilder.io/quick-start.html
https://kubernetes-sigs.github.io/kustomize/installation/homebrew/

file. This file is stored on the shared volume as well.

Finally, the main container will just sleep, so that we can copy the result over to the local machine.
To make this more realistic, you could use a persistent volume and store the converted PDF
documents there. For the sake of simplicity and to demonstrate how controllers work, I am using a
regular volume.

The logic in the Reconcile function in pdfdocument_controller.go looks like this:

 var pdfDoc k8sstartkubernetescomv1.PdfDocument
 if err := r.Get(ctx, req.NamespacedName, &pdfDoc); err != nil {
 log.Error(err, "unable to fetch PdfDocument")
 return ctrl.Result{}, client.IgnoreNotFound(err)
 }

 jobSpec, err := r.createJob(pdfDoc)
 if err != nil {
 log.Error(err, "failed to create Job spec")
 return ctrl.Result{}, client.IgnoreNotFound(err)
 }

 if err := r.Create(ctx, &jobSpec); err != nil {
 log.Error(err, "unable to create Job")
 }

The main function of every controller is the Reconcile function. During the reconciliation process,
the controller needs to ensure that the actual state in the cluster matches the desired state in the
object. Each controller focuses on a single kind of resource, but that doesn’t prevent you from
interacting with other kinds and resources. In our case, we will be creating a Job in addition to
reading the PdfDocument kind.

If we encounter any errors during the reconciliation, we return an error from the function.
Otherwise, we return an empty result that indicates we successfully reconciled the object.

The full source code for the controller is available customcontroller folder with other source code.

To test the controller against the current cluster, you can use the make run command:

209

$ make run
/Users/peterj/projects/go/bin/controller-gen object:headerFile="hack/boilerpla
te.go.txt" paths="./..."
go fmt ./...
go vet ./...
/Users/peterj/projects/go/bin/controller-gen "crd:trivialVersions=true" rbac:r
oleName=manager-role webhook paths="./..." output:crd:artifacts:config=config/
crd/bases
go run ./main.go
2020-09-21T18:26:49.349-0700 INFO controller-runtime.metrics metric
s server
....

Once the controller is running, you can create the PdfDocument resource, just like you did before.

ch10/my-document.yaml

apiVersion: k8s.startkubernetes.com/v1
kind: PdfDocument
metadata:
 name: my-document
spec:
 documentName: my-text
 text: |
 ### This is a title
 Here is some **BOLD** text

Save the above YAML to my-document.yaml and create the PdfDocument resource using kubectl apply
-f my-document.yaml. As Kubernetes creates the resource you will notice the following output from
the controller:

2020-09-21T18:41:26.852-0700 DEBUG controller-runtime.controller Successfully
Reconciled {"controller": "pdfdocument", "request": "default/my-document"}

This output message means that the PdfDocument resource was created and that the controller also
created a Job:

210

$ kubectl get pdfdocument
NAME AGE
my-document 37s

$ kubectl get job
NAME COMPLETIONS DURATION AGE
my-document-job 0/1 66s 66s

$ kubectl get po
NAME READY STATUS RESTARTS AGE
my-document-job-rrvzz 1/1 Running 0 70s

Note that the Job won’t complete until the Pod finishes executing - we are running a sleep
command, so that it gives us enough time to grab the converted PDF document from the Volume.

To copy the PDF file from the container to the local machine, you can use the kubectl cp command:

$ kubectl cp my-document-job-rrvzz:/data/my-text.pdf ${PWD}/my-text.pdf

The above command copies a file from /data/my-text.pdf location inside the container (which is on
the shared volume), and copies it to the current folder you’re running kubectl in.

Figure 48. Generated PDF Document

211

Ensure you delete the CRD and the resource as the make run is not going to remove the deployed
resources.

Kubernetes Operators
Operators use custom resources and controllers to manage applications and their components. One
of the Kubernetes operators' purposes is to automate tasks that a person operating a Kubernetes
application would do. That way, you can simplify the installation and administration of your
applications.

Let’s look at a concrete example with the Istio service mesh. Installing and managing Istio service
mesh was (and still is, to a certain extent) a complicated task. There are multiple components and
various resources involved in operating a service mesh on Kubernetes. The way you would install
Istio is to either render a full YAML template based on a configuration profile and deploy that, or
you would use Helm. The initial installation usually worked fine. However, operators would run
into issues later when they tried to re-configure the installation or upgrade components as it was
challenging to administer.

For that reason, Istio decided to implement an operator. Using the operator Istio significantly
simplified the installation and administration of the mesh. Previously, you would have to run Helm
and depend on a third-party tool for the installation. With the operator, you create a custom
resource (IstioControlPlane) that 'describes' how you want your service mesh to look like. You can
select a profile or fine-tune any of the configuration settings of the mesh.

After you install the operator in your cluster, you can install the mesh using the custom resource,
like the one below:

apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:
 namespace: istio-system
 name: my-istiocontrolplane
spec:
 profile: demo

The controller responds to the resource being created, and starts installing Istio. Later, suppose you
decide to change the configuration setting, you can use a different installation profile or even
upgrade the installation, by updating the IstioOperator resource. The operator takes the update
resources and reconfigures the installation. The knowledge that one needs to operate an
application is now coded inside an operator, for everyone to use.

In the Create a controller section, we explained how to use Kubebuilder to build a custom resource
controller. Just to be exact - the custom resource controller and operators are using the same things
behind the scenes. Other tools are available for creating controllers or operators, such as KUDO and
Operator Operator Framework. KUDO provides you with a declarative approach to building
Kubernetes operators, while the Operator Framework features an Operator SDK that makes it
easier to build, test, and package Operators.

212

https://helm.sh
https://kudo.dev
https://operatorframework.io

Instead of writing custom code, as we did in Create a controller, some of these tools allow you to
create Helm-based operators, for example.

For example, let’s say you are creating an operator for your Cool App, called coolapp-operator.
Using the Operator SDK, you can create a custom resource called CoolApp and handle the
reconciliation logic.

The first step is to initialize the operator using the Helm plugin, by running operator-sdk init
--plugins=helm. This command will create initial the project structure, including the configuration,
Dockerfile, and Makefile.

Then, just like before, you need to create an API - this includes the group name, version, and the
resource kind. For example:

$ operator-sdk create api --group k8s.startkubernetes.com --version v1 --kind CoolApp
Created helm-charts/coolapp
Generating RBAC rules
WARN[0000] The RBAC rules generated in config/rbac/role.yaml are based on the chart's
default manifest. Some rules may be missing for resources that are only enabled with
custom values, and some existing rules may be overly broad. Double check the rules
generated in config/rbac/role.yaml to ensure they meet the operator's permission
requirements.

The above command will create the Helm chart, include the Deployment, Ingress, Service,
ServiceAccount, and HorizontalPodAutoscaler resources for your application. Alternatively, if you
already have a Helm chart you want to use, you can provide it using the --help-chart-repo flag to
the create api command.

The interesting part of this operator is in the watches.yaml file. In that file, you specify which
resource you want the operator to watch for and create new Helm releases for:

Use the 'create api' subcommand to add watches to this file.
- group: k8s.startkubernetes.com.my.domain
 version: v1
 kind: CoolApp
 chart: helm-charts/coolapp
+kubebuilder:scaffold:watch

Helm 101

Helm is the package manager for Kubernetes. As you’ve seen throughout this book, several
Kubernetes resources together for your application. If you’re deploying a single resource, you can
probably manage the YAML file and deployments manually. However, that’s usually not the case. If
you try to manually manage, track, and update YAML files for your application, you will quickly
notice that it can get relatively complicated, and it doesn’t make sense.

Helm can help with this complexity. Helm allows you to templatize your YAML files. Let’s take a
simple Deployment, for example:

213

apiVersion: apps/v1
kind: Deployment
metadata:
 name: simple-deployment
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test
 template:
 metadata:
 labels:
 app: test
 spec:
 containers:
 - name: test
 image: busybox
 command: ["sh", "-c", "sleep 1h"]

One of the things you will probably be updating in the YAML is the image name. Helm allows to
'extract' these values into a separate values file (usually called values.yaml, but you can name it
whatever you like). If we take the above Deployment and use the variable, here’s how it would look:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: simple-deployment
spec:
 replicas: 1
 selector:
 matchLabels:
 app: test
 template:
 metadata:
 labels:
 app: test
 spec:
 containers:
 - name: test
 image: "{{ .Values.image.repository }}:{{ .Values.image.tag }}"
 command: ["sh", "-c", "sleep 1h"]

Notice the image value consists of two values: the repository and tag. You can then store the actual
values that will be replaced by Helm, in a values.yaml file, like this:

214

image:
 repository: busybox
 tag: "1.32"

The collection of all templatized files is called a Helm chart.

If you try to deploy the above Deployment YAML, you will get an error. However, you can use Helm
to take the values from the values.yaml file and replace them in Deployment file.

$ helm install -f values.yaml ./mychart

Once you install a Helm chart, you can upgrade it or create new releases by modifying the values
file or passing in values you want to replace from the command line.

Back to the watches.yaml file and the Operator SDK. Let’s look at the
config/samples/k8s.startkubernetes.com_v1_coolapp.yaml file. The file shows an example of a
CoolApp resource that define how you should configure the CoolApp.

apiVersion: k8s.startkubernetes.com.my.domain/v1
kind: CoolApp
metadata:
 name: coolapp-sample
spec:
 # Default values copied from <project_dir>/helm-charts/coolapp/values.yaml
 affinity: {}
 autoscaling:
 enabled: false
 maxReplicas: 100
 minReplicas: 1
 targetCPUUtilizationPercentage: 80
 fullnameOverride: ""
 ...

The values in this resource are coming from the Helm values.yaml file. So if you deploy the CoolApp
resource, the Operator SDK will invoke Helm behind the scenes and deploy the chart. Later, when
you decide to change your application’s configuration, the Operator SDK will do the reconciliation
and make sure your application is updated accordingly.

To deploy the CoolApp operator, you can run make install from the operator folder. This will
deploy the CRD:

$ kubectl api-resources | grep cool
coolapps k8s.startkubernetes.com.my.domain
true CoolApp

The next step is to build the operator image, push it to a Docker registry, and deploy it to the cluster.

215

NOTE
If you’re building your image, make sure to replace the image name in the
command below.

export IMG=startkubernetes/coolapp-operator:0.1.0
make docker-build docker-push IMG=$IMG

After you pushed the image, you can deploy the operator:

$ make deploy IMG=startkubernetes/coolapp-operator:0.1.0
....
rolebinding.rbac.authorization.k8s.io/coolapp-operator-leader-election-rolebinding
created
clusterrolebinding.rbac.authorization.k8s.io/coolapp-operator-manager-rolebinding
created
clusterrolebinding.rbac.authorization.k8s.io/coolapp-operator-proxy-rolebinding
created
service/coolapp-operator-controller-manager-metrics-service created
deployment.apps/coolapp-operator-controller-manager created

Operator SDK creates the necessary Kubernetes resources and deploys the operator to coolapp-
operator-system namespace:

$ kubectl get po -n coolapp-operator-system
NAME READY STATUS RESTARTS
AGE
coolapp-operator-controller-manager-54bf54c4f9-kjvkb 2/2 Running 0
107s

Let’s tail the logs from the manager container in the above Pod. Open a separate terminal window,
and run: kubectl logs coolapp-operator-controller-manager-54bf54c4f9-kjvkb -n coolapp-operator-
system -c manager -f.

Now we can try deploying the sample CoolApp resource from
/config/samples/k8s.startkubernetes.com_v1_coolapp.yaml by running kubectl apply -f
/config/samples/k8s.startkubernetes.com_v1_coolapp.yaml.

As you deploy the resource you will notice the logs from the manager containers saying that the
release was installed:

216

...
{"level":"info","ts":1600803466.9313226,"logger":"helm.controller","msg":"Installed
release","namespace":"default","name":
"coolapp-sample","apiVersion":"k8s.startkubernetes.com.my.domain/v1","kind":"CoolApp"
,"release":"coolapp-sample"}
...
{"level":"info","ts":1600803470.5439534,"logger":"helm.controller","msg":"Reconciled
release","namespace":"default","name"
:"coolapp-sample","apiVersion":"k8s.startkubernetes.com.my.domain/v1","kind":
"CoolApp","release":"coolapp-sample"}
...

The operator installed the CoolApp using Helm. Under the covers, Helm created a release:

$ helm ls
NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
coolapp-sample default 1 2020-09-22 19:37:43.6701905 +0000 UTC
deployed coolapp-0.1.0 1.16.0

If you would edit the original resource, you will notice that the operator will pick it up and update
the Helm release. To remove the deployed operator and other resources, run make undeploy from
the root controller folder.

217

Practical Kubernetes

218

Using an Ingress controller for SSL
termination
SSL stands for secure socket layer protocol. The SSL termination, or also called SSL offloading, is the
process of decrypting encrypted traffic. When encrypted traffic hits the ingress controller, it gets
decrypted there and then passed to the backend applications. Doing SSL termination at the ingress
controller level also lessens the burden on your server. You are only doing it once at the ingress
controller level and not in each application.

I will be using a cloud-managed cluster and an actual domain name to demonstrate how to set up
SSL termination. I’ll be using the Ambassador controller, cert-manager for managing and issuing
TLS certificates, Let’s Encrypt as the certificate authority (CA), and Helm to install some of the
components.

Before continuing, making sure you have installed Helm by following the instructions here. You can
run helm version to make sure Helm is installed:

$ helm version
version.BuildInfo{Version:"v3.2.4",
GitCommit:"0ad800ef43d3b826f31a5ad8dfbb4fe05d143688", GitTreeState:"dirty",
GoVersion:"go1.14.3"}

NOTE

Helm is a package manager for Kubernetes. Instead of dealing with individual
deployments, services, configuration maps, secrets, and other Kubernetes resources,
Helm packages them into "charts". A chart is a collection of different Kubernetes
resource files. You can then take the charts and version, deploy, upgrade, and
manage them as a single unit.

Deploying the sample application
As a sample application, I will be using the Dog Pic website.

219

https://github.com/jetstack/cert-manager
https://letsencrypt.org/
https://helm.sh
https://helm.sh/docs/intro/install/

practical/dogpic-app.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: dogpic-web
 labels:
 app.kubernetes.io/name: dogpic-web
spec:
 replicas: 1
 selector:
 matchLabels:
 app.kubernetes.io/name: dogpic-web
 template:
 metadata:
 labels:
 app.kubernetes.io/name: dogpic-web
 spec:
 containers:
 - name: dogpic-container
 image: learncloudnative/dogpic-service:0.1.0
 ports:
 - containerPort: 3000

kind: Service
apiVersion: v1
metadata:
 name: dogpic-service
 labels:
 app.kubernetes.io/name: dogpic-web
spec:
 selector:
 app.kubernetes.io/name: dogpic-web
 ports:
 - port: 3000
 name: http

Save the above YAML in dogpic-app.yaml file and use kubectl apply -f dogpic-app.yaml to create the
deployment and service.

Deploying cert-manager
We will deploy the cert-manager inside the cluster. As the name suggests, the cert-manager will
deal with certificates. So, whenever we need a new certificate or renew an existing certificate, the
cert-manager will do that for us.

The first step is to create a namespace to deploy the cert-manager in:

220

$ kubectl create ns cert-manager
namespace/cert-manager created

Next, we will add the jetstack Helm repository and refresh the local repository cache:

$ helm repo add jetstack https://charts.jetstack.io
"jetstack" has been added to your repositories

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "jetstack" chart repository
Update Complete. ⎈ Happy Helming!⎈

Now we are ready to install the cert-manager. Run the following Helm command to install the cert-
manager:

helm install \
 cert-manager jetstack/cert-manager \
 --namespace cert-manager \
 --version v0.15.1 \
 --set installCRDs=true

In the output, you will notice the message saying that Helm deployed the cert-manager successfully.

Before we can use it, we need to set up either a ClusterIssuer or an Issuer resource and configure
it. This resource represents a certificate signing authority (CA) and allows cert-manager to issue
certificates.

The difference between a ClusterIssuer and an Issuer is that the ClusterIssuer operates at the
cluster level and the Issuer resource works on a namespace. For example, you could configure
different Issuer resources for each namespace. Alternatively, you could create a ClusterIssuer to
issue certificates in any namespace.

Cert-manager supports multiple issuer types. Let’s Encrypt uses the ACME protocol, and therefore
we will configure an ACME issuer type. These protocols support different challenge mechanisms to
determine and verify domain ownership.

Challenges

In the ACME protocol, cert-manager supports two challenges to verify the domain ownership: the
HTTP-01 and DNS-01 challenge. You can read more details about each one of these on Let’s Encrypt
website.

In short, the HTTP-01 challenge is the most common challenge type. The challenge involves a file
with a token that you put in a certain location on your server. For example: http://[my-cool-
domain]/.well-known/acme-challenge/[token-file].

221

https://letsencrypt.org/docs/challenge-types/
https://letsencrypt.org/docs/challenge-types/

The DNS-01 challenge involves modifying a DNS record for your domain. To pass this challenge, you
need to create a TXT DNS record with a specific value under the domain you want to claim. Using
the DNS-01 challenge only makes sense if your domain registrar has an API that automatically
updates the DNS records. See the full list of providers that integrate with the Let’s Encrypt DNS
validation.

I will be using the HTTP-01 challenge as it is more generic than the DNS-01, which depends on your
domain registrar.

Let’s deploy a ClusterIssuer we will be using. Make sure you replace the email with your email
address:

practical/cluster-issuer.yaml

apiVersion: cert-manager.io/v1alpha2
kind: ClusterIssuer
metadata:
 name: letsencrypt-prod
spec:
 acme:
 email: hello@example.com
 server: https://acme-v02.api.letsencrypt.org/directory
 privateKeySecretRef:
 name: letsencrypt-prod
 solvers:
 - http01:
 ingress:
 class: nginx
 selector: {}

Let’s make sure ClusterIssuer gets created, and it’s ready by running kubectl describe
clusterissuer and confirming that the ACME account was registered (i.e., the email address you
provided):

...
Status:
 Acme:
 Last Registered Email: hello@example.com
 Uri: https://acme-v02.api.letsencrypt.org/acme/acct/89498526
 Conditions:
 Last Transition Time: 2020-06-22T20:36:04Z
 Message: The ACME account was registered with the ACME server
 Reason: ACMEAccountRegistered
 Status: True
 Type: Ready
Events: <none>

Similarly, if you run kubectl get clusterissuer you should see the indication that the ClusterIssuer
is ready:

222

https://community.letsencrypt.org/t/dns-providers-who-easily-integrate-with-lets-encrypt-dns-validation/86438
https://community.letsencrypt.org/t/dns-providers-who-easily-integrate-with-lets-encrypt-dns-validation/86438

$ kubectl get clusterissuer
NAME READY AGE
letsencrypt-prod True 2m30s

Later on, once we deployed the Ingress controller and set up the DNS record on the domain, we will
also create a Certificate resource.

Ambassador
To install Ambassador gateway, run the two commands below. The first one will take care of
installing all CRD (custom resource definitions), and the second one installs the RBAC (Role-Based
Access Control) resources and creates the Ambassador deployment.

$ kubectl apply -f https://www.getambassador.io/yaml/ambassador/ambassador-crds.yaml
...
$ kubectl apply -f https://www.getambassador.io/yaml/ambassador/ambassador-rbac.yaml

Finally, we need to create a LoadBalancer service that exposes two ports: 80 for HTTP traffic and
443 for HTTPS.

practical/ambassador-svc.yaml

apiVersion: v1
kind: Service
metadata:
 name: ambassador
spec:
 type: LoadBalancer
 ports:
 - name: http
 port: 80
 targetPort: 8080
 - name: https
 port: 443
 targetPort: 8443
 selector:
 service: ambassador

Save the above YAML in ambassador-svc.yaml file and run kubectl apply -f ambassador-svc.yaml.

NOTE
Deploying the above service will create a load balancer in your cloud providers
account.

If you list the services, you will notice an External IP assigned to the ambassador service:

223

$ kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
ambassador LoadBalancer 10.0.78.66 51.143.120.54 80:31365/TCP 97s
ambassador-admin NodePort 10.0.65.191 <none> 8877:30189/TCP 4m20s
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 30d

Now that we have the External IP address, you can go to the website where you registered your
domain and create an A DNS record that will point the domain to the external IP. Pointing the
domain to an external IP will allow you to enter http://[my-domain.com] in your browser, and it will
resolve to the above IP address (the ingress controller inside the cluster).

I will be using my domain called startkubernetes.com. I will set up a subdomain
dogs.startkubernetes.com to point to my load balancer (e.g. 51.143.120.54) using an A record.
Regardless of where you registered your domain, you should be able to update the DNS records.
Check the documentation on your domain registrars website on how to do that.

Let’s set up an Ingress resource, so we can reach the Dog Pic website we deployed on the
subdomain (make sure you replace the dogs.startkubernetes.com with your domain or subdomain
name):

practical/dogs-ingress.yaml

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: my-ingress
 annotations:
 kubernetes.io/ingress.class: ambassador
spec:
 rules:
 - host: dogs.startkubernetes.com
 http:
 paths:
 - backend:
 serviceName: dogpic-service
 servicePort: 3000

With ingress deployed, you can open http://dogs.startkubernetes.com. You should see the Dog Pic
website below.

224

http://dogs.startkubernetes.com

Figure 49. Dog Pic Website

Requesting a certificate

To request a new certificate, you need to create a Certificate resource. This resource includes the
issuer reference (ClusterIssuer we created earlier), DNS names we want to request certificates for

225

(dogs.startkubernetes.com), and the Secret name the certificate will be stored in.

practical/certificate.yaml

apiVersion: cert-manager.io/v1alpha2
kind: Certificate
metadata:
 name: ambassador-certs
 namespace: default
spec:
 secretName: ambassador-certs
 issuerRef:
 name: letsencrypt-prod
 kind: ClusterIssuer
 dnsNames:
 - dogs.startkubernetes.com

Make sure you replace the dogs.startkubernetes.com with your domain name. Once you’ve done
that, save the YAML in cert.yaml and create the certificate using kubectl apply -f -cert.yaml.

If you list the pods, you will notice a new pod called cm-acme-http-solver:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
ambassador-9db7b5d76-jlcdg 1/1 Running 0 22h
ambassador-9db7b5d76-qcwgk 1/1 Running 0 22h
ambassador-9db7b5d76-xsfw4 1/1 Running 0 22h
cm-acme-http-solver-qzh6l 1/1 Running 0 25m
dogpic-web-7bf547bd54-f2pff 1/1 Running 0 22h

Cert-manager created this pod to serve the token file as explained in the Challenges section and
verify the domain name.

You can also look at the logs from the pod to see the values pod expects for the challenge:

$ kubectl logs cm-acme-http-solver-qzh6l
I0622 20:39:26.712391 1 solver.go:39] cert-manager/acmesolver "msg"="starting
listener" "expected_domain"="dogs.startkubernetes.com" "expected_key"
="iqUZlG9v1K8czpAKaTpLfL278piwf-
mN4VZNvuwD0Ks.xonKHFvEQg2Ox_mI0cPM7UpCUHfu6H4aKtRcdrpiLik" "expected_token"
="iqUZlG9v1K8czpAKaTpLfL278piwf-mN4VZNvuwD0Ks" "listen_port"=8089

However, this pod is not exposed, so there’s no way for Let’s Encrypt to access it and do the
challenge. So we need to expose this pod through an ingress. This involves creating a Kubernetes
Service that points to the pod and updating the ingress. To update the ingress, we will use the
Mapping resource from Ambassador. This resource defines a mapping to redirect requests with the
prefix ./well-known/acme-challenge to the Kubernetes service that goes to the pod.

226

practical/challenge.yaml

apiVersion: getambassador.io/v2
kind: Mapping
metadata:
 name: challenge-mapping
spec:
 prefix: /.well-known/acme-challenge/
 rewrite: ""
 service: challenge-service

apiVersion: v1
kind: Service
metadata:
 name: challenge-service
spec:
 ports:
 - port: 80
 targetPort: 8089
 selector:
 acme.cert-manager.io/http01-solver: "true"

Store the above in challenge.yaml and deploy it using kubectl apply -f challenge.yaml. The cert-
manager will retry the challenge and issue the certificate.

You can run kubectl get cert and confirm the READY column shows True, like this:

$ kubectl get cert
NAME READY SECRET AGE
ambassador-certs True ambassador-certs 35m

Here are the steps we followed to request a certificate and a figure to visualize the process.

1. Request the certificate by creating the Certificate resource.

2. Cert-manager creates the http-solver pod (exposed through the challenge-service we created)

3. Cert-manager uses the issuer referenced in the Certificate and requests the certificates for the
dnsNames from the authority (Let’s Encrypt)

4. The authority sends the challenge for the http-solver to prove that we own the domains and
checks that the challenges are solved (i.e. downloads the file from /.well-known/acme-challenge/)

5. Issued certificate and key are stored in Secret, referenced by the Issuer resource

227

Figure 50. Requesting Certificates

Configuring TLS in Ingress

To secure an Ingress, we have to specify a Secret that contains the certificate and the private key.
We defined the ambassador-certs secret name in the Certificate resource we created earlier.

228

practical/ingres-tls.yaml

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: my-ingress
 annotations:
 kubernetes.io/ingress.class: ambassador
spec:
 tls:
 - hosts:
 - dogs.startkubernetes.com
 secretName: ambassador-certs
 rules:
 - host: dogs.startkubernetes.com
 http:
 paths:
 - path: /
 backend:
 serviceName: dogpic-service
 servicePort: 3000

Under resource specification (spec), we use the tls key to specify the hosts and the secret name
where the certificate and private key are stored.

Save the above YAML in ingress-tls.yaml and apply it with kubectl apply -f ingress-tls.yaml.

If you navigate to your domain using https (e.g. https://dogs.startkubernetes.com) you will see that
the connection is secure, and it is using a valid certificate from Let’s Encrypt.

229

https://dogs.startkubernetes.com

Figure 51. Dog Pic Website via HTTPS

Cleanup

Use the commands below to remove the everything you installed in this section:

kubectl delete cert ambassador-certs
kubectl delete secret ambassador-certs
kubectl delete -f https://www.getambassador.io/yaml/ambassador/ambassador-crds.yaml
kubectl delete -f https://www.getambassador.io/yaml/ambassador/ambassador-rbac.yaml
kubectl delete svc ambassador
helm uninstall cert-manager -n cert-manager
kubectl delete svc dogpic-service challenge-service
kubectl delete deploy dogpic-web
kubectl delete ing my-ingress

230

	Start Kubernetes
	Table of Contents
	What do I need to start with Kubernetes?
	Which Kubernetes cluster should I use?
	Kubernetes and contexts
	What is container orchestration?
	What is the difference Kubernetes and Docker?
	Kubernetes vs. Docker Swarm?

	Kubernetes architecture
	Master nodes
	Worker nodes

	Kubernetes Resources
	Labels and selectors
	Annotations
	Working with Pods
	Managing Pods with ReplicaSets
	Creating Deployments
	Accessing and exposing Pods with Services
	Exposing multiple applications with Ingress
	Organizing applications with namespaces
	Jobs and CronJobs

	Configuration
	Configuring application through arguments
	Creating and using ConfigMaps
	Storing secrets in Kubernetes

	Stateful Workloads
	What are Volumes?
	Persisting data with Persistent Volumes and Persistent Volume Claims
	Running stateful workloads with StatefulSets

	Organizing Containers
	Init containers
	Sidecar container pattern
	Ambassador container pattern
	Adapter container pattern
	Lifecycle Hooks

	Application Health
	Application Liveness probe
	Application Startup probe
	Application Readiness probe

	Security in Kubernetes
	What are service accounts?
	Using Role-Based Access Control (RBAC)
	Security contexts
	Pod security policies
	Network Policies

	Scaling and Resources
	Scaling and autoscaling Pods
	Resource requests and limits
	Resource quotas
	Horizontal scaling
	Using affinity, taints, and tolerations

	Extending Kubernetes
	Using custom resource definitions (CRDs)
	Kubernetes Operators

	Practical Kubernetes
	Using an Ingress controller for SSL termination
	Deploying the sample application
	Deploying cert-manager
	Ambassador

