

Ansible	Up	and	Running
Automating	Configuration	Management	and	Deployment

the	Easy	Way

THIRD	EDITION

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

Bas	Meijer,	Lorin	Hochstein,	and	René	Moser

Ansible	Up	and	Running

by	Bas	Meijer,	Lorin	Hochstein,	and	René	Moser

Copyright	©	2022	Bas	Meijer.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For
more	information,	contact	our	corporate/institutional	sales	department:	800-998-
9938	or	corporate@oreilly.com.

Editors:	John	Devins	and	Sarah	Grey

Production	Editor:	Deborah	Baker

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Kate	Dullea

September	2022:	Third	Edition

Revision	History	for	the	Early	Release

2021-06-03:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781098109158	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Ansible	Up
and	Running,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	authors,	and	do	not	represent
the	publisher’s	views.	While	the	publisher	and	the	authors	have	used	good	faith
efforts	to	ensure	that	the	information	and	instructions	contained	in	this	work	are
accurate,	the	publisher	and	the	authors	disclaim	all	responsibility	for	errors	or

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098109158

accurate,	the	publisher	and	the	authors	disclaim	all	responsibility	for	errors	or
omissions,	including	without	limitation	responsibility	for	damages	resulting
from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions
contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or
the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-098-10908-0

[LSI]

Chapter	1.	Introduction

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	Chapter	1	of	the	final	book.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	dmitri@aboutsqlserver.com.

It’s	an	interesting	time	to	be	working	in	the	IT	industry.	We	no	longer	deliver
software	to	our	customers	by	installing	a	program	on	a	single	machine	and
calling	it	a	day.	Instead,	we	are	all	gradually	turning	into	cloud	engineers.

We	now	deploy	software	applications	by	stringing	together	services	that	run	on	a
distributed	set	of	computing	resources	and	communicate	over	different
networking	protocols.	A	typical	application	can	include	web	servers,	application
servers,	memory-based	caching	systems,	task	queues,	message	queues,	SQL
databases,	NoSQL	datastores,	and	load	balancers.

IT	professionals	also	need	to	make	sure	to	have	the	proper	redundancies	in	place,
so	that	when	failures	happen	(and	they	will),	our	software	systems	will	handle
them	gracefully.	Then	there	are	the	secondary	services	that	we	also	need	to
deploy	and	maintain,	such	as	logging,	monitoring,	and	analytics,	as	well	as	third-
party	services	we	need	to	interact	with,	such	as	infrastructure-as-a-service	(IaaS)
endpoints	for	managing	virtual	machine	instances.

You	can	wire	up	these	services	by	hand:	spinning	up	the	servers	you	need,
logging	into	each	one,	installing	packages,	editing	config	files,	and	so	forth,	but
it’s	a	pain.	It’s	time-consuming,	error-prone,	and	just	plain	dull	to	do	this	kind	of
work	manually,	especially	around	the	third	or	fourth	time.	And	for	more
complex	tasks,	like	standing	up	an	OpenStack	cloud,	doing	it	by	hand	is
madness.	There	must	a	better	way.

1

madness.	There	must	a	better	way.

If	you’re	reading	this,	you’re	probably	already	sold	on	the	idea	of	configuration
management	and	considering	adopting	Ansible	as	your	configuration
management	tool.	Whether	you’re	a	developer	deploying	your	code	to
production,	or	you’re	a	systems	administrator	looking	for	a	better	way	to
automate,	I	think	you’ll	find	Ansible	to	be	an	excellent	solution	to	your	problem.

A	Note	About	Versions
The	example	code	in	this	book	was	tested	against	versions	4.0.0	and	2.9.20	of
Ansible.	Ansible	4.0.0	is	the	latest	version	as	of	this	writing;	Ansible	Tower
includes	version	2.9.20	in	the	most	recent	release.	Ansible	2.8	went	End	of	Life
with	the	release	of	2.8.20	on	April	13,	2021.

For	years	the	Ansible	community	has	been	highly	active	in	creating	roles	and
modules—so	active	that	there	are	thousands	of	modules	and	more	than	20,000
roles.	The	difficulties	of	managing	a	project	of	this	scale	led	creators	to
reorganize	the	Ansible	content	into	three	parts:

Core	components,	created	by	the	Ansible	team

Certified	content,	created	by	Red	Hat’s	business	partners

Community	content,	created	by	thousands	of	enthusiasts	worldwide

Ansible	2.9	has	lots	of	built-in	features,	and	later	versions	are	more	composable.
This	new	setup	makes	it	more	easily	maintainable	as	a	whole.

The	examples	provided	in	this	book	should	work	in	various	versions	of	Ansible,
but	version	changes	in	general	call	for	testing,	which	we	will	address	in	Chapter
14.

WHAT’S	WITH	THE	NAME	ANSIBLE?
It’s	a	science-fiction	reference.	An	ansible	is	a	fictional	communication	device	that	can
transfer	information	faster	than	the	speed	of	light.	Ursula	K.	Le	Guin	invented	the	concept	in
her	book	Rocannon’s	World	(Ace	Books,	1966),	and	other	sci-fi	authors	have	since	borrowed
the	idea,	including	Orson	Scott	Card.	Ansible	cofounder	Michael	DeHaan	took	the	name
Ansible	from	Card’s	book	Ender’s	Game	(Tor,	1985).	In	that	book,	the	ansible	was	used	to
control	many	remote	ships	at	once,	over	vast	distances.	Think	of	it	as	a	metaphor	for

controlling	remote	servers.

Ansible:	What	Is	It	Good	For?
Ansible	is	often	described	as	a	configuration	management	tool	and	is	typically
mentioned	in	the	same	breath	as	Puppet,	Chef,	and	Salt.	When	IT	professionals
talk	about	configuration	management,	we	typically	mean	writing	some	kind	of
state	description	for	our	servers,	then	using	a	tool	to	enforce	that	the	servers	are,
indeed,	in	that	state:	the	right	packages	are	installed,	configuration	files	have	the
expected	values	and	have	the	expected	permissions,	the	right	services	are
running,	and	so	on.	Like	other	configuration	management	tools,	Ansible	exposes
a	domain-specific	language	(DSL)	that	you	use	to	describe	the	state	of	your
servers.

You	can	use	these	tools	for	deployment	as	well.	When	people	talk	about
deployment,	they	are	usually	referring	to	the	process	of	generating	binaries	or
static	assets	(if	necessary)	from	software	written	by	in-house	developers,
copying	the	required	files	to	servers,	and	starting	services	in	a	particular	order.
Capistrano	and	Fabric	are	two	examples	of	open-source	deployment	tools.
Ansible	is	a	great	tool	for	deployment	as	well	as	configuration	management.
Using	a	single	tool	for	both	makes	life	simpler	for	the	folks	responsible	for
system	integration.

Some	people	talk	about	the	need	to	orchestrate	deployment.	Orchestration	is	the
process	of	coordinating	deployment	when	multiple	remote	servers	are	involved
and	things	must	happen	in	a	specific	order.	For	example,	you	might	need	to
bring	up	the	database	before	bringing	up	the	web	servers,	or	take	web	servers	out
of	the	load	balancer	one	at	a	time	to	upgrade	them	without	downtime.	Ansible	is
good	at	this	as	well,	and	DeHaan	designed	it	from	the	ground	up	for	performing
actions	on	multiple	servers.	It	has	a	refreshingly	simple	model	for	controlling	the
order	in	which	actions	happen.

Finally,	you’ll	hear	people	talk	about	provisioning	new	servers.	In	the	context	of
public	clouds	such	as	Amazon	EC2,	provisioning	refers	to	spinning	up	new
virtual	machine	instances	or	cloud-native	Software	as	a	Service	(SaaS).	Ansible
has	got	you	covered	here,	with	modules	for	talking	to	clouds	including	EC2,

2 3

Azure, 	Digital	Ocean,	Google	Compute	Engine,	Linode,	and	Rackspace, 	as
well	as	any	clouds	that	support	the	OpenStack	APIs.

NOTE
Confusingly,	the	Vagrant	tool,	covered	later	in	this	chapter,	uses	the	term	provisioner	to	refer
to	a	tool	that	does	configuration	management.	It	thus	refers	to	Ansible	as	a	kind	of	provisioner.
Vagrant	calls	tools	that	create	machines,	such	as	VirtualBox	and	VMWare,	providers.	Vagrant
uses	the	term	machine	to	refer	to	a	virtual	machine	and	box	to	refer	to	a	virtual	machine	image.

How	Ansible	Works
Figure	1-1	shows	a	sample	use	case	of	Ansible	in	action.	A	user	we’ll	call	Alice
is	using	Ansible	to	configure	three	Ubuntu-based	web	servers	to	run	Nginx.	She
has	written	an	Ansible	script	called	webservers.yml.	In	Ansible,	a	script	is	called
a	playbook.	A	playbook	describes	which	hosts	(what	Ansible	calls	remote
servers)	to	configure,	and	an	ordered	list	of	tasks	to	perform	on	those	hosts.	In
this	example,	the	hosts	are	web1,	web2,	and	web3,	and	the	tasks	are	things	such
as	these:

Install	Nginx

Generate	a	Nginx	configuration	file

Copy	over	the	security	certificate

Start	the	Nginx	service

In	the	next	chapter,	we’ll	discuss	what’s	in	this	playbook;	for	now,	we’ll	focus
on	its	role	in	the	overall	process.	Alice	executes	the	playbook	by	using	the
ansible-playbook	command.	Alice	starts	her	Ansible	playbook	by	typing	two
filenames	on	a	terminal	line:	first	the	command,	then	the	name	of	the	playbook:

$	ansible-playbook	webservers.yml

Ansible	will	make	SSH	connections	in	parallel	to	web1,	web2,	and	web3.	It	will
then	execute	the	first	task	on	the	list	on	all	three	hosts	simultaneously.	In	this
example,	the	first	task	is	installing	the	Nginx	package,	so	the	task	in	the
playbook	would	look	something	like	this:

2 3

playbook	would	look	something	like	this:

-	name:

						install	nginx

						package:

						name:	nginx

Ansible	will	do	the	following:

1.	 Generate	a	Python	script	that	installs	the	Nginx	package

2.	 Copy	the	script	to	web1,	web2,	and	web3

3.	 Execute	the	script	on	web1,	web2,	and	web3

4.	 Wait	for	the	script	to	complete	execution	on	all	hosts

Ansible	will	then	move	to	the	next	task	in	the	list	and	go	through	these	same	four
steps.

It’s	important	to	note	the	following:

1.	 Ansible	runs	each	task	in	parallel	across	all	hosts.

2.	 Ansible	waits	until	all	hosts	have	completed	a	task	before	moving	to	the
next	task.

3.	 Ansible	runs	the	tasks	in	the	order	that	you	specify	them.

Figure	1-1.	Running	an	Ansible	playbook	to	configure	three	web	servers.

What’s	So	Great	About	Ansible?
There	are	several	open-source	configuration	management	tools	out	there	to
choose	from,	so	why	choose	Ansible?	Here	are	27	reasons	that	drew	us	to	it.	In
short:	Ansible	is	simple,	powerful,	and	secure.

Simple
Ansible	was	designed	to	have	a	dead	simple	setup	process	and	a	minimal
learning	curve.

Easy-to-Read	Syntax

Ansible	uses	the	YAML	file	format	and	Jinja2	templating,	both	of	which	are
easy	to	pick	up.	Recall	that	Ansible	configuration	management	scripts	are	called
playbooks.	Ansible	actually	builds	the	playbook	syntax	on	top	of	YAML,	which
is	a	data	format	language	that	was	designed	to	be	easy	for	humans	to	read	and
write.	In	a	way,	YAML	is	to	JSON	what	Markdown	is	to	HTML.

Easy	to	Audit

You	can	inspect	Ansible	playbooks	in	several	ways,	like	listing	all	actions	and
hosts	involved.	For	dry	runs,	we	often	use	ansible-playbook–check.	With	built-in
logging	it	is	easy	to	see	who	did	what	and	where.	The	logging	is	pluggable	and
log	collectors	can	easily	ingest	the	logs.

Nothing	to	Install	on	the	Remote	Hosts

To	manage	servers	with	Ansible,	Linux	servers	need	to	have	SSH	and	Python
installed,	while	Windows	servers	need	WinRM	enabled.	On	Windows,	Ansible
uses	PowerShell	instead	of	Python,	so	there	is	no	need	to	preinstall	an	agent	or
any	other	software	on	the	host.

On	the	control	machine	(that	is,	the	machine	that	you	use	to	control	remote
machines),	it	is	best	to	install	Python	3.8	or	later.	Depending	on	the	resources
you	manage	with	Ansible,	you	might	have	external	library	prerequisites.	Check
the	documentation	to	see	whether	a	module	has	specific	requirements.

Ansible	Scales	Down

The	authors	of	this	book	use	Ansible	to	manage	hundreds	of	nodes.	But	what	got
us	hooked	is	how	it	scales	down.	You	can	use	Ansible	on	very	modest	hardware,
like	a	Raspberry	Pi	or	an	old	PC.	Using	it	to	configure	a	single	node	is	easy:
simply	write	a	single	playbook.	Ansible	obeys	Alan	Kay’s	maxim:	“Simple
things	should	be	simple;	complex	things	should	be	possible.”

Easy	to	Share

We	do	not	expect	you	to	re-use	Ansible	playbooks	across	different	contexts.	In
chapter	7,	we	will	discuss	roles,	which	are	a	way	of	organizing	your	playbooks,
and	Ansible	Galaxy,	an	online	repository	of	these	roles.

The	primary	unit	of	reuse	in	the	Ansible	community	nowadays	is	the	collection.
You	can	organize	your	modules,	plugins,	libraries,	roles	and	even	playbooks	into
a	collection	and	share	it	on	Ansible	Galaxy.	You	can	also	share	internally	using
Automation	Hub,	a	part	of	Ansible	Tower.	Roles	can	be	shared	as	individual
repositories.

In	practice,	though,	every	organization	sets	up	its	servers	a	little	bit	differently,
and	you	are	best	off	writing	playbooks	for	your	organization	rather	than	trying	to
reuse	generic	ones.	We	believe	the	primary	value	of	looking	at	other	people’s
playbooks	is	to	see	how	things	work,	unless	you	work	with	a	particular	product
where	the	vendor	is	a	certified	partner	or	involved	in	the	Ansible	community.

System	Abstraction

Ansible	works	with	simple	abstractions	of	system	resources	like	files,
directories,	users,	groups,	services,	packages,	web	services.

By	way	of	comparison,	let’s	look	at	how	to	configure	a	directory	in	the	shell.
You	would	use	these	three	commands:

mkdir	-p	/etc/skel/.ssh

										chown	root:root	/etc/skel/.ssh

										chmod	go-wrx	/etc/skel/.ssh

By	contrast,	Ansible	offers	the	file	module	as	an	abstraction,	where	you	define
the	parameters	of	the	desired	state.	This	one	action	has	the	same	effect	as	the

https://www.quora.com/What-is-the-story-behind-Alan-Kay-s-adage-Simple-things-should-be-simple-complex-things-should-be-possible

three	shell	commands	combined.

-	name:	create	.ssh	directory	in	user	skeleton

										file:

										path:	/etc/skel/.ssh

										mode:	0700

										owner:	root

										group:	root

										state:	directory

With	this	layer	of	abstraction,	you	can	use	the	same	configuration	management
scripts	to	manage	servers	running	Linux	distributions.	For	example,	instead	of
having	to	deal	with	a	specific	package	manager	like	dnf,	yum	or	apt,	Ansible	has
a	“package”	abstraction	that	you	can	use	instead.	But	you	can	also	use	the
system	specific	abstractions	if	you	prefer.

If	you	really	want	to,	you	can	write	your	Ansible	playbooks	to	take	different
actions,	depending	on	a	variety	of	operating	systems	of	the	remote	servers.	But	I
try	to	avoid	that	when	I	can,	and	instead	I	focus	on	writing	playbooks	for	the
systems	that	are	in	use	where	I	work:	mostly	Windows	and	Red	Hat	Linux,	in
my	case.

Top	to	Bottom	Tasks

Books	on	configuration	management	often	mention	the	concept	of	convergence,
or	eventual	consistent	state.	Convergence	in	configuration	management	is
strongly	associated	with	the	configuration	management	system	CFEngine	by
Mark	Burgess.	If	a	configuration	management	system	is	convergent,	the	system
may	run	multiple	times	to	put	a	server	into	its	desired	state,	with	each	run
bringing	the	server	closer	to	that	state.

Eventual	consistent	state	does	not	really	apply	to	Ansible,	since	it	does	not	run
multiple	times	to	configure	servers.	Instead,	Ansible	modules	work	in	such	a
way	that	running	a	playbook	a	single	time	should	put	each	server	into	the	desired
state.

Powerful
Having	Ansible	at	your	disposal	can	bring	huge	productivity	gains	in	several
areas	of	systems	management.

http://markburgess.org/blog_cd.html

Batteries	Included

You	can	use	Ansible	to	execute	arbitrary	shell	commands	on	your	remote
servers,	but	its	real	power	comes	from	the	wide	variety	of	modules	available.
You	use	modules	to	perform	tasks	such	as	installing	a	package,	restarting	a
service,	or	copying	a	configuration	file.

As	you	will	see	later,	Ansible	modules	are	declarative;	you	use	them	to	describe
the	state	you	want	the	server	to	be	in.	For	example,	you	would	invoke	the	user
module	like	this	to	ensure	there	is	an	account	named	“deploy”	in	the	web	group:

user:

										name:	deploy

										group:	web

Push	Based

Chef	and	Puppet	are	configuration	management	systems	that	use	agents.	They
are	pull-based	by	default.	Agents	installed	on	the	servers	periodically	check	in
with	a	central	service	and	download	configuration	information	from	the	service.
Making	configuration	management	changes	to	servers	goes	something	like	this:

1.	 You:	make	a	change	to	a	configuration	management	script.

2.	 You:	push	the	change	up	to	a	configuration	management	central	service.

3.	 Agent	on	server:	wakes	up	after	periodic	timer	fires.

4.	 Agent	on	server:	connects	to	configuration	management	central	service.

5.	 Agent	on	server:	downloads	new	configuration	management	scripts.

6.	 Agent	on	server:	executes	configuration	management	scripts	locally	that
change	server	state.

In	contrast,	Ansible	is	push-based	by	default.	Making	a	change	looks	like	this:

1.	 You:	make	a	change	to	a	playbook.

2.	 You:	run	the	new	playbook.

3.	 Ansible:	connects	to	servers	and	executes	modules,	which	changes
server	state.

As	soon	as	you	run	the	ansible-playbook	command,	Ansible	connects	to	the
remote	servers	and	does	its	thing.

Parallel	Execution

The	push-based	approach	has	a	significant	advantage:	you	control	when	the
changes	happen	to	the	servers.	You	do	not	need	to	wait	around	for	a	timer	to
expire.	Each	step	in	a	playbook	can	target	one	or	a	group	of	servers.	You	get
more	work	done	instead	of	logging	into	the	servers	by	hand.

Multi-tier	Orchestration

Push-mode	also	allows	you	to	use	Ansible	for	multi-tier	orchestration,	managing
distinct	groups	of	machines	for	an	operation	like	an	update.	You	can	orchestrate
the	monitoring	system,	the	load	balancers,	the	databases,	and	the	webservers
with	specific	instructions	so	they	work	in	concert.	That’s	very	hard	to	do	with	a
pull-based	system.

Master-less

Advocates	of	the	pull-based	approach	claim	that	it	is	superior	for	scaling	to	large
numbers	of	servers	and	for	dealing	with	new	servers	that	can	come	online
anytime.	A	central	system,	however,	slowly	stops	working	when	thousands	of
agents	pull	their	configuration	at	the	same	time,	especially	when	they	need
multiple	runs	to	converge.

Pluggable	and	Embeddable

A	sizable	part	of	Ansible’s	functionality	comes	from	the	Ansible	Plugin	System,
of	which	the	Lookup	and	Filter	plugins	are	most	used.	Plugins	augment
Ansible’s	core	functionality	with	logic	and	features	that	are	accessible	to	all
modules.	You	can	write	your	own	plugins	in	Python	(see	Chapter	10).

You	can	integrate	Ansible	into	other	products,	Kubernetes	and	Ansible	Tower
are	examples	of	successful	integration.	Ansible-runner	“is	a	tool	and	python
library	that	helps	when	interfacing	with	Ansible	directly	or	as	part	of	another
system	whether	that	be	through	a	container	image	interface,	as	a	standalone	tool,
or	as	a	Python	module	that	can	be	imported.”

Using	the	ansible-runner	library	you	can	run	an	Ansible	playbook	from	within	a

Python	script:

#!/usr/bin/env	python3

										import	ansible_runner

										r	=	ansible_runner.run(private_data_dir='./playbooks',

playbook='playbook.yml')

										print("{}:	{}".format(r.status,	r.rc))

										print("Final	status:")

										prinr(r.stats)

Works	with	Lots	of	Stuff

Ansible	modules	cater	for	a	wide	range	of	system	administration	tasks.	This	list
has	the	categories	of	the	kinds	of	modules	that	you	can	use.	These	link	to	the
module	index	in	the	documentation.

Cloud

Files

Monitoring

Source	Control

Clustering

Identity

Net	Tools

Storage

Commands

Infrastructure

Network

System

Crypto

Inventory

Notification

Utilities

https://docs.ansible.com/ansible/2.9/modules/modules_by_category.html
https://docs.ansible.com/ansible/2.9/modules/list_of_cloud_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_files_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_monitoring_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_source_control_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_clustering_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_identity_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_net_tools_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_storage_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_commands_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_web_infrastructure_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_network_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_system_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_crypto_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_inventory_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_notification_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_utilities_modules.html

Database

Messaging

Packaging

Windows

Really	Scalable

Large	enterprises	use	Ansible	successfully	in	production	with	tens	of	thousands
of	nodes	and	have	excellent	support	for	environments	where	servers	are
dynamically	added	and	removed.	Organizations	with	hundreds	of	software	teams
typically	use	AWX	or	a	combination	of	Ansible	Tower	and	Automation	Hub	to
organize	content,	reach	auditability	and	role-based	access	control.	Separating
projects,	roles,	collections,	and	inventories	is	a	pattern	that	you	will	see	often	in
larger	organizations.

Secure
Automation	with	Ansible	helps	us	to	improve	system	security	to	security
baselines	and	compliance	standards.

Codified	Knowledge

Your	authors	like	to	think	of	Ansible	playbooks	as	executable	documentation.
They’re	like	the	README	files	that	used	to	describe	the	commands	you	had	to
type	out	to	deploy	your	software,	except	that	these	instructions	will	never	go	out
of	date	because	they	are	also	the	code	that	executes.	Product	experts	can	create
playbooks	that	takes	best	practices	into	account.	When	novices	use	such	a
playbook	to	install	the	product,	they	can	be	sure	they’ll	get	a	good	result.

Reproducible	systems

If	you	set	up	your	entire	system	with	Ansible,	it	will	pass	what	Steve	Traugott
calls	the	“tenth-floor	test”:	“Can	I	grab	a	random	machine	that’s	never	been
backed	up	and	throw	it	out	the	tenth-floor	window	without	losing	sysadmin
work?”

Equivalent	environments

Ansible	has	a	clever	way	to	organize	content	that	helps	define	configuration	at

https://docs.ansible.com/ansible/2.9/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_messaging_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_packaging_modules.html
https://docs.ansible.com/ansible/2.9/modules/list_of_windows_modules.html
http://www.infrastructures.org/bootstrap/recovery.shtml

Ansible	has	a	clever	way	to	organize	content	that	helps	define	configuration	at
the	proper	level.	It	is	easy	to	create	a	setup	for	distinct	development,	testing,
staging	and	production	environments.	A	staging	environment	is	designed	to	be
as	similar	as	possible	to	the	production	environment	so	that	developers	can
detect	any	problems	before	going	live.

Encrypted	variables

If	you	need	to	store	sensitive	data	such	as	passwords	or	tokens,	then	ansible-
vault	is	an	effective	tool	to	use.	We	use	it	to	store	encrypted	variables	in	git.
We’ll	discuss	it	in	detail	in	Chapter	8.

Secure	Transport

Ansible	simply	uses	Secure	Shell	(SSH)	for	Linux	and	WinRM	for	Windows.
We	typically	secure	and	harden	these	widely	used	systems-management
protocols	with	strong	configuration	and	firewall	settings.

If	you	prefer	using	a	pull-based	model,	Ansible	has	official	support	for	pull
mode,	using	a	tool	it	ships	with	called	ansible-pull.	This	book	won’t	cover	pull
mode,	but	you	can	read	more	about	it	in	the	official	Ansible	documentation.

Idempotency

Modules	are	also	idempotent:	if	the	deploy	user	does	not	exist,	Ansible	will
create	it.	If	it	does	exist,	Ansible	will	not	do	anything.	Idempotence	is	a	nice
property	because	it	means	that	it	is	safe	to	run	an	Ansible	playbook	multiple
times	against	a	server.	This	is	a	vast	improvement	over	the	homegrown	shell
script	approach,	where	running	the	shell	script	a	second	time	might	have	a
different	(and	unintended)	effect.

No	Daemons

There	is	no	Ansible	agent	listening	on	a	port.	Therefore,	when	you	use	Ansible,
there	is	no	attack	surface.

WHAT	IS	ANSIBLE,	INC.’S	RELATIONSHIP	TO
ANSIBLE?

The	name	Ansible	refers	to	both	the	software	and	the	company	that	runs	the	open-source
project.	Michael	DeHaan,	the	creator	of	Ansible	the	software,	is	the	former	CTO	of	Ansible
the	company.	To	avoid	confusion,	I	refer	to	the	software	as	Ansible	and	to	the	company	as

4

https://docs.ansible.com/

the	company.	To	avoid	confusion,	I	refer	to	the	software	as	Ansible	and	to	the	company	as
Ansible,	Inc.

Ansible,	Inc.	sells	training	and	consulting	services	for	Ansible,	as	well	as	a	web-based
management	tool	called	Ansible	Tower,	which	I	cover	in	Chapter	19.	In	October	2015,	Red
Hat	bought	Ansible,	Inc.;	IBM	bought	Red	Hat	in	2019.

Is	Ansible	Too	Simple?
When	Lorin	was	working	an	earlier	edition	of	this	book,	the	editor	mentioned
that	“some	folks	who	use	the	XYZ	configuration	management	tool	call	Ansible	a
for-loop	over	SSH	scripts.”	If	you	are	considering	switching	over	from	another
configuration	management	tool,	you	might	be	concerned	at	this	point	about
whether	Ansible	is	powerful	enough	to	meet	your	needs.

As	you	will	soon	learn,	Ansible	supplies	a	lot	more	functionality	than	shell
scripts.	In	addition	to	idempotence,	Ansible	has	excellent	support	for	templating,
as	well	as	defining	variables	at	different	scopes.	Anybody	who	thinks	Ansible	is
equivalent	to	working	with	shell	scripts	has	never	had	to	support	a	nontrivial
program	written	in	shell.	We	will	always	choose	Ansible	over	shell	scripts	for
configuration	management	tasks	if	given	a	choice.

Worried	about	the	scalability	of	SSH?	Ansible	uses	SSH	multiplexing	to
optimize	performance,	and	there	are	folks	out	there	who	are	managing	thousands
of	nodes	with	Ansible	(see	chapter	12	of	this	book,	as	well	as).

What	Do	I	Need	to	Know?
To	be	productive	with	Ansible,	you	need	to	be	familiar	with	basic	Linux	system
administration	tasks.	Ansible	makes	it	easy	to	automate	your	tasks,	but	it	is	not
the	kind	of	tool	that	“automagically”	does	things	that	you	otherwise	would	not
know	how	to	do.

For	this	book,	we	have	assumed	that	you	are	familiar	with	at	least	one	Linux
distribution	(such	as	Ubuntu,	RHEL/CentOS,	or	SUSE),	and	that	you	know	how
to:

Connect	to	a	remote	machine	using	SSH

Interact	with	the	Bash	command-line	shell	(pipes	and	redirection)

Install	packages

Use	the	sudo	command

Check	and	set	file	permissions

Start	and	stop	services

Set	environment	variables

Write	scripts	(any	language)

If	these	concepts	are	all	familiar	to	you,	you	are	good	to	go	with	Ansible.

We	will	not	assume	you	have	knowledge	of	any	particular	programming
language.	For	instance,	you	do	not	need	to	know	Python	to	use	Ansible	unless
you	want	to	publish	your	own	module.

What	Isn’t	Covered
This	book	is	not	an	exhaustive	treatment	of	Ansible.	It	is	designed	get	you
working	productively	in	Ansible	as	quickly	as	possible.	It	also	describes	how	to
perform	certain	tasks	that	are	not	obvious	from	the	official	documentation.

We	don’t	cover	all	of	Ansible’s	modules	in	detail:	there	are	more	than	3,500	of
them.	You	can	use	the	ansible-doc	command-line	tool	with	what	you	have
installed	to	view	the	reference	documentation	and	the	module	index	mentioned
above.

Chapter	8	covers	only	the	basic	features	of	Jinja2,	the	templating	engine	that
Ansible	uses,	primarily	because	your	authors	memorize	only	basic	features	when
we	use	Jinja2	with	Ansible.	If	you	need	to	use	more	advanced	Jinja2	features	in
templates,	check	out	the	official	Jinja2	documentation.

Nor	do	I	go	into	detail	about	some	features	of	Ansible	that	are	mainly	useful
when	you	are	running	it	on	an	older	version	of	Linux.

Finally,	there	are	several	features	of	Ansible	we	don’t	cover	simply	to	keep	the
book	a	manageable	length.	These	features	include	pull	mode,	logging,	and	using

https://jinja.palletsprojects.com/en/2.11.x/

vars_prompt	to	prompt	the	user	for	passwords	or	input.	We	encourage	you	to
check	out	the	official	documentation	to	find	out	more	about	these	features.

Installing	Ansible
All	the	major	Linux	distributions	package	Ansible	these	days,	so	if	you	work	on
a	Linux	machine,	you	can	use	your	native	package	manager	for	a	casual
installation	(although	this	might	be	an	older	version	of	Ansible).	If	you	work	on
macOS,	I	recommend	using	the	excellent	Homebrew	package	manager	to	install
Ansible:

$	brew	install	ansible

On	any	Unix/Linux/macOS	machine,	you	can	install	Ansible	using	one	of	the
Python	package	managers.	This	way	you	can	add	Python-based	tools	and
libraries	that	work	for	you,	provided	you	add	~/.local/bin	to	your	PATH	shell
variable.	If	you	want	to	work	with	Ansible	Tower	or	AWX,	then	you	should
install	the	same	version	of	ansible-core	on	your	workstation.	Python	3.8	is
recommended	on	the	machine	where	you	run	Ansible.

$	pip3	install	--user	ansible==2.9.20

Installing	ansible>=2.10	installs	ansible-base	as	well.	Use	ansible-galaxy	to
install	the	collections	you	need.

NOTE
As	a	developer,	you	should	install	Ansible	into	a	Python	virtualenv.	This	lets	you	avoid
interfering	with	your	system	Python	or	cluttering	your	user	environment.	Using	Python’s	venv
module	and	pip3,	you	can	install	just	what	you	need	to	work	on	for	each	project.

$	python3	-m	venv	.venv	--prompt	A

$	source	.venv/bin/activate

(A)

During	activation	of	the	environment,	your	shell	prompt	will	change	as	a	reminder.	Enter

https://docs.ansible.com/

deactivate	to	leave	the	virtual	environment.

Windows	is	not	supported	to	run	Ansible,	but	you	can	manage	Windows
remotely	with	Ansible.

Loose	Dependencies

Ansible	plugins	and	modules	might	require	that	you	install	extra	Python
libraries.

(A)	pip3	install	pywinrm	docker

In	a	way,	the	Python	virtualenv	was	a	precursor	to	containers:	it	creates	a	means
to	isolate	libraries	and	avoid	“dependency	hell.”

Running	Ansible	in	containers

Ansible-builder	is	a	tool	that	aids	in	creating	execution	environments	by
controlling	the	execution	of	Ansible	from	within	a	container	for	single-
purpose	automation	workflows.	It	is	based	on	the	directory	layout	of	ansible-
runner.	This	is	an	advanced	subject,	and	outside	the	scope	of	this	book.	If	you’d
like	to	experiment	with	it,	refer	to	the	source	code	repository	that	complements
this	book.

Ansible	Development

If	you	are	feeling	adventurous	and	want	to	use	the	bleeding-edge	version	of
Ansible,	you	can	grab	the	development	branch	from	GitHub:

$	python3	-m	venv	.venv	--prompt	S

								$	source	.venv/bin/activate

								$	python3	-m	pip	install	--upgrade	pip

								$	pip3	install	wheel

								$	git	clone	https://github.com/ansible/ansible.git	--recursive

								$	pip3	install	-r	ansible/requirements.txt

If	you	are	running	Ansible	from	the	development	branch,	you	need	to	run	these
commands	each	time	to	set	up	your	environment	variables,	including	your
PATH	variable,	so	that	your	shell	knows	where	the	Ansible	and	ansible-
playbooks	programs	are:

5

https://github.com/ansiblebook/ansiblebook

playbooks	programs	are:

$	cd	./ansible

								$	source	./hacking/env-setup

Setting	Up	a	Server	for	Testing
You	need	to	have	SSH	access	and	root	privileges	on	a	Linux	server	to	follow
along	with	the	examples	in	this	book.	Fortunately,	these	days	it’s	easy	to	get
low-cost	access	to	a	Linux	virtual	machine	through	most	public	cloud	services.

Using	Vagrant	to	Set	Up	a	Test	Server
If	you	prefer	not	to	spend	the	money	on	a	public	cloud,	I	recommend	you	install
Vagrant	on	your	machine.	Vagrant	is	an	excellent	open-source	tool	for	managing
virtual	machines.	You	can	use	it	to	boot	a	Linux	virtual	machine	inside	your
laptop,	which	you	can	use	as	a	test	server.

Vagrant	has	built-in	support	for	provisioning	virtual	machines	with	Ansible:
we’ll	talk	about	that	in	detail	in	Chapter	3.	For	now,	we’ll	just	manage	a	Vagrant
virtual	machine	as	if	it	were	a	regular	Linux	server.

Vagrant	needs	a	hypervisor	like	VirtualBox	installed	on	your	machine.
Download	VirtualBox	first,	and	then	download	Vagrant.

We	recommend	you	create	a	directory	for	your	Ansible	playbooks	and	related
files.	In	the	following	example,	we’ve	named	ours	“playbooks.”	Directory	layout
is	important	for	Ansible:	if	you	place	files	in	the	right	places,	the	bits	and	pieces
come	together.

Run	the	following	commands	to	create	a	Vagrant	configuration	file	(Vagrantfile)
for	an	Ubuntu/Focal	64-bits	virtual	machine	image,	and	boot	it:

$	mkdir	playbooks

								$	cd	playbooks

								$	vagrant	init	ubuntu/focal64

								$	vagrant	up

NOTE
Note

The	first	time	you	use	Vagrant,	it	will	download	the	virtual	machine	image	file.	This	might
take	a	while,	depending	on	your	internet	connection.

If	all	goes	well,	the	output	should	look	like	this:

$	vagrant	up

								Bringing	machine	'default'	up	with	'virtualbox'	provider...

								==>	default:	Importing	base	box	'ubuntu/focal64'...

								==>	default:	Matching	MAC	address	for	NAT	networking...

								==>	default:	Checking	if	box	'ubuntu/focal64'	version

'20210415.0.0'	is	up	to	date...

								==>	default:	Setting	the	name	of	the	VM:

playbooks_default_1618757282413_78610

								==>	default:	Clearing	any	previously	set	network	interfaces...

								==>	default:	Preparing	network	interfaces	based	on

configuration...

									default:	Adapter	1:	nat

								==>	default:	Forwarding	ports...

									default:	22	(guest)	=>	2222	(host)	(adapter	1)

								==>	default:	Running	'pre-boot'	VM	customizations...

								==>	default:	Booting	VM...

								==>	default:	Waiting	for	machine	to	boot.	This	may	take	a	few

minutes...

									default:	SSH	address:	127.0.0.1:2222

									default:	SSH	username:	vagrant

									default:	SSH	auth	method:	private	key

									default:

									default:	Vagrant	insecure	key	detected.	Vagrant	will

automatically	replace

									default:	this	with	a	newly	generated	keypair	for	better

security.

									default:

									default:	Inserting	generated	public	key	within	guest...

									default:	Removing	insecure	key	from	the	guest	if	it's

present...

									default:	Key	inserted!	Disconnecting	and	reconnecting	using

new	SSH	key...

								==>	default:	Machine	booted	and	ready!

								==>	default:	Checking	for	guest	additions	in	VM...

								==>	default:	Mounting	shared	folders...

									default:	/vagrant	=>

/Users/lorin/dev/ansiblebook/ch01/playbooks

You	should	be	able	to	log	into	your	new	Ubuntu	20.04	virtual	machine	by
running	the	following:

$	vagrant	ssh

If	this	works,	you	should	see	a	login	screen	like	this:

Welcome	to	Ubuntu	20.04.2	LTS	(GNU/Linux	5.4.0-72-generic	x86_64)

								*	Documentation:	https://help.ubuntu.com

								*	Management:	https://landscape.canonical.com

								*	Support:	https://ubuntu.com/advantage

									System	information	as	of	Sun	Apr	18	14:53:23	UTC	2021

									System	load:	0.08	Processes:	118

									Usage	of	/:	3.2%	of	38.71GB	Users	logged	in:	0

									Memory	usage:	20%	IPv4	address	for	enp0s3:	10.0.2.15

									Swap	usage:	0%

								1	update	can	be	installed	immediately.

								0	of	these	updates	are	security	updates.

								To	see	these	additional	updates	run:	apt	list	--upgradable

								vagrant@ubuntu-focal:~$

A	login	with	vagrant	ssh	lets	you	interact	with	the	Bash	shell,	but	Ansible	needs
to	connect	to	the	virtual	machine	by	using	the	regular	SSH	client.	Tell	Vagrant
to	output	its	SSH	configuration	by	typing	the	following:

$	vagrant	ssh-config

On	my	machine,	the	output	looks	like	this:

Host	default

									HostName	127.0.0.1

									User	vagrant

									Port	2222

									UserKnownHostsFile	/dev/null

									StrictHostKeyChecking	no

									PasswordAuthentication	no

									IdentityFile	/Users/lorin/dev/ansiblebook/ch01/playbooks/

											.vagrant/	machines/default/virtualbox/private_key

								IdentitiesOnly	yes

								LogLevel	FATAL

The	important	lines	are	shown	here:

HostName	127.0.0.1

									User	vagrant

									Port	2222

									IdentityFile	/Users/lorin/dev/ansiblebook/ch01/playbooks/

											.vagrant/machines/default/virtualbox/private_key

											.vagrant/machines/default/virtualbox/private_key

NOTE
Note

Starting	with	version	1.7,	Vagrant	has	changed	how	it	manages	private	SSH	keys:	it	now
generates	a	new	private	key	for	each	machine.	Earlier	versions	used	the	same	key,	which	was
in	the	default	location	of	~/.vagrant.d/insecure_private_key.	The	examples	in	this	book	use
Vagrant	2.2.14.

In	your	case,	every	field	should	be	the	same	except	for	the	path	of	the	identity
file.

Confirm	that	you	can	start	an	SSH	session	from	the	command	line	by	using	this
information.	The	SSH	command	also	works	with	a	relative	path	from	the
playbooks	directory.

$	ssh	vagrant@127.0.0.1	-p	2222	-i

.vagrant/machines/default/virtualbox/private_key

You	should	see	the	Ubuntu	login	screen.	Type	exit	to	quit	the	SSH	session.

Telling	Ansible	About	Your	Test	Server
Ansible	can	manage	only	the	servers	it	explicitly	knows	about.	You	provide
Ansible	with	information	about	servers	by	specifying	them	in	an	inventory.	We
usually	create	a	directory	called	“inventory”	to	hold	this	information.

$	mkdir	inventory

Each	server	needs	a	name	that	Ansible	will	use	to	identify	it.	You	can	use	the
hostname	of	the	server,	or	you	can	give	it	an	alias	and	pass	other	arguments	to
tell	Ansible	how	to	connect	to	it.	We	will	give	our	Vagrant	server	the	alias	of
testserver.

Create	a	text	file	in	the	inventory	directory.	Name	the	file	vagrant.ini	vagrant	if
you’re	using	a	Vagrant	machine	as	your	test	server;	name	it	ec2.ini	if	you	use
machines	in	Amazon	EC2.

The	ini-files	will	serve	as	inventory	for	Ansible.	They	list	the	infrastructure	that
you	want	to	manage	under	groups,	which	are	denoted	in	square	brackets.	If	you
use	Vagrant,	your	file	should	look	like	Example	1-1.	The	group	[webservers]	has
one	host:	testserver.	Here	we	see	one	of	the	drawbacks	of	using	Vagrant:	you
need	to	pass	extra	vars	data	to	Ansible	to	connect	to	the	group.	In	most	cases,
you	won’t	need	all	this	data.

Example	1-1.	inventory/vagrant.ini
[webservers]

								testserver	ansible_port=2222

								[webservers:vars]

								ansible_host=127.0.0.1

								ansible_user	=	vagrant

								ansible_private_key_file	=

.vagrant/machines/default/virtualbox/private_key

If	you	have	an	Ubuntu	machine	on	Amazon	EC2	with	a	hostname	like	ec2-203-
0-113-120.compute-1.amazonaws.com,	then	your	inventory	file	will	look
something	like	this:

[webservers]

								testserver	ansible_host=ec2-203-0-113-120.compute-

1.amazonaws.com

								[webservers:vars]

								ansible_user=ec2-user

								ansible_private_key_file=/path/to/keyfile.pem

NOTE
Ansible	supports	the	ssh-agent	program,	so	you	don’t	need	to	explicitly	specify	SSH	key	files
in	your	inventory	files.	If	you	login	with	your	own	userid,	then	you	don’t	need	to	specify	that
either.	See	“SSH	Agent”	in	appendix	A	for	more	details	if	you	haven’t	used	ssh-agent	before.

We’ll	use	the	ansible	command-line	tool	to	verify	that	we	can	use	Ansible	to
connect	to	the	server.	You	won’t	use	the	ansible	command	often;	it’s	mostly
used	for	ad	hoc,	one-off	things.

Let’s	tell	Ansible	to	connect	to	the	server	named	testserver	described	in	the
inventory	file	named	vagrant.ini	and	invoke	the	ping	module:

$	ansible	testserver	-i	inventory/vagrant.ini	-m	ping

If	your	local	SSH	client	has	host-key	verification	enabled,	you	might	see
something	that	looks	like	this	the	first	time	Ansible	tries	to	connect	to	the	server:

The	authenticity	of	host	'[127.0.0.1]:2222	([127.0.0.1]:2222)'	can't

be	established.

								RSA	key	fingerprint	is

e8:0d:7d:ef:57:07:81:98:40:31:19:53:a8:d0:76:21.

								Are	you	sure	you	want	to	continue	connecting	(yes/no)?

You	can	just	type	“yes.”

If	it	succeeds,	the	output	will	look	like	this:

testserver	|	SUCCESS	=>	{

									"ansible_facts":	{

									"discovered_interpreter_python":	"/usr/bin/python3"

									},

									"changed":	false,

									"ping":	"pong"

								}

NOTE
If	Ansible	did	not	succeed,	add	the	-vvvv	flag	to	see	more	details	about	the	error:

$	ansible	testserver	-i	inventory/vagrant.ini	-m	ping	-vvvv

We	can	see	that	the	module	succeeded.	The	“changed”:	false	part	of	the	output
tells	us	that	executing	the	module	did	not	change	the	state	of	the	server.	The
“ping”:	“pong”	output	text	is	specific	to	the	ping	module.

The	ping	module	doesn’t	do	anything	other	than	check	that	Ansible	can	start	an
SSH	session	with	the	servers.	It’s	a	tool	for	testing	that	Ansible	can	connect	to
the	servers:	very	useful	at	the	start	of	a	big	playbook.

Simplifying	with	the	ansible.cfg	File
You	had	to	type	a	lot	to	use	Ansible	to	ping	your	testserver.	Fortunately,	Ansible
has	ways	to	organize	these	sorts	of	variables,	so	you	don’t	have	to	put	them	all	in

one	place.	Right	now,	we’ll	add	one	such	mechanism,	the	ansible.cfg	file,	to	set
some	defaults	so	we	don’t	need	to	type	as	much	on	the	command	line.

WHERE	SHOULD	I	PUT	MY	ANSIBLE.CFG	FILE?
Ansible	looks	for	an	ansible.cfg	file	in	the	following	places,	in	this	order:

1.	 File	specified	by	the	ANSIBLE_CONFIG	environment	variable

2.	 ./ansible.cfg	(ansible.cfg	in	the	current	directory)

3.	 ~/.ansible.cfg	(.ansible.cfg	in	your	home	directory)

4.	 /etc/ansible/ansible.cfg

We	typically	put	ansible.cfg	in	the	current	directory,	alongside	our	playbooks.	That	way,	we
can	check	it	into	the	same	version-control	repository	that	our	playbooks	are	in.

Example	1-2	shows	an	ansible.cfg	file	that	specifies	the	location	of	the	inventory
file	(inventory)	and	sets	parameters	that	affect	the	way	Ansible	runs,	for	instance
how	the	output	is	presented.

Since	the	user	you’ll	log	onto	and	its	SSH	private	key	depend	on	the	inventory
that	you	use,	it	is	practical	to	use	the	vars	block	in	the	inventory	file,	rather	than
in	the	ansible.cfg	file,	to	specify	such	connection	parameter	values.	Another
alternative	is	your	~/.ssh/config	file.

Our	example	ansible.cfg	configuration	also	disables	SSH	host-key	checking.
This	is	convenient	when	dealing	with	Vagrant	machines;	otherwise,	we	need	to
edit	our	~/.ssh/known_hosts	file	every	time	we	destroy	and	re-create	a	Vagrant
machine.	However,	disabling	host-key	checking	can	be	a	security	risk	when
connecting	toother	servers	over	the	network.	If	you’re	not	familiar	with	host
keys,	see	Appendix	A.

Example	1-2.	ansible.cfg
[defaults]

								inventory	=	inventory/vagrant.ini

								host_key_checking	=	false

								stdout_callback	=	yaml

								callback_enabled	=	timer

NOTE

NOTE
Ansible	and	Version	Control

Ansible	uses	/etc/ansible/hosts	as	the	default	location	for	the	inventory	file.	However,	Bas
never	uses	this	because	he	likes	to	keep	his	inventory	files	version-controlled	alongside	his
playbooks.	Also,	he	uses	file	extensions	for	things	like	syntax	formatting	in	an	editor.

Although	we	don’t	cover	version	control	in	this	book,	we	strongly	recommend	you	commit	to
using	the	Git	version-control	system	to	save	all	changes	to	your	playbooks.	If	you’re	a
developer,	you’re	already	familiar	with	version-control	systems.	If	you’re	a	systems
administrator	and	aren’t	using	version	control	yet,	this	is	a	perfect	opportunity	for	you	to	really
start	with	infrastructure	as	code!

With	your	default	values	set,	you	can	invoke	Ansible	without	passing	the	-i
hostname	arguments,	like	so:

$	ansible	testserver	-m	ping

We	like	to	use	the	ansible	command-line	tool	to	run	arbitrary	commands	on
remote	machines,	like	parallel	SSH.	You	can	execute	arbitrary	commands	with
the	command	module.	When	invoking	this	module,	you	also	need	to	pass	an
argument	to	the	module	with	the	-a	flag,	which	is	the	command	to	run.

For	example,	to	check	the	uptime	of	your	server,	you	can	use	this:

$	ansible	testserver	-m	command	-a	uptime

Output	should	look	like	this:

testserver	|	CHANGED	|	rc=0	>>

								10:37:28	up	2	days,	14:11,	1	user,	load	average:	0.00,	0.00,

0.00

The	command	module	is	so	commonly	used	that	it’s	the	default	module,	so	you
can	omit	it:

$	ansible	testserver	-a	uptime

If	your	command	has	spaces,	quote	it	so	that	the	shell	passes	the	entire	string	as
a	single	argument	to	Ansible.	For	example,	to	view	the	last	ten	lines	of	the
/var/log/dmesg	logfile:

$	ansible	testserver	-a	"tail	/var/log/dmesg"

The	output	from	our	Vagrant	machine	looks	like	this:

testserver	|	CHANGED	|	rc=0	>>

								[9.940870]	kernel:	14:48:17.642147	main	VBoxService

6.1.16_Ubuntu	r140961

								(verbosity:	0)	linux.amd64	(Dec	17	2020	22:06:23)	release	log

								14:48:17.642148	main	Log	opened	2021-04-18T14:48:17.642143000Z

								[9.941331]	kernel:	14:48:17.642623	main	OS	Product:	Linux

								[9.941419]	kernel:	14:48:17.642718	main	OS	Release:	5.4.0-72-

generic

								[9.941506]	kernel:	14:48:17.642805	main	OS	Version:

								#80-Ubuntu	SMP	Mon	Apr	12	17:35:00	UTC	2021

								[9.941602]	kernel:	14:48:17.642895	main	Executable:

/usr/sbin/VBoxService

									14:48:17.642896	main	Process	ID:	751

									14:48:17.642896	main	Package	type:	LINUX_64BITS_GENERIC	(OSE)

								[9.942730]	kernel:	14:48:17.644030	main	6.1.16_Ubuntu	r140961

started.

								Verbose	level	=	0

								[9.943491]	kernel:	14:48:17.644783	main

vbglR3GuestCtrlDetectPeekGetCancelSupport:

								Supported	(#1)

If	we	need	root	access,	pass	in	the	-b	flag	to	tell	Ansible	to	become	the	root	user.
For	example,	accessing	/var/log/syslog	requires	root	access:

$	ansible	testserver	-b	-a	"tail	/var/log/syslog"

The	output	looks	something	like	this:

testserver	|	CHANGED	|	rc=0	>>

								Apr	23	10:39:41	ubuntu-focal	multipathd[471]:	sdb:	failed	to

get	udev	uid:

								Invalid	argument

								Apr	23	10:39:41	ubuntu-focal	multipathd[471]:	sdb:	failed	to

get	sysfs	uid:

								No	data	available

								Apr	23	10:39:41	ubuntu-focal	multipathd[471]:	sdb:	failed	to

get	sgio	uid:

								No	data	available

								Apr	23	10:39:42	ubuntu-focal	multipathd[471]:	sda:	add	missing

path

								Apr	23	10:39:42	ubuntu-focal	multipathd[471]:	sda:	failed	to

get	udev	uid:

								Invalid	argument

								Invalid	argument

								Apr	23	10:39:42	ubuntu-focal	multipathd[471]:	sda:	failed	to

get	sysfs	uid:

								No	data	available

								Apr	23	10:39:42	ubuntu-focal	multipathd[471]:	sda:	failed	to

get	sgio	uid:

								No	data	available

								Apr	23	10:39:43	ubuntu-focal	systemd[1]:	session-95.scope:

Succeeded.

								Apr	23	10:39:44	ubuntu-focal	systemd[1]:	Started	Session	97	of

user	vagrant.

								Apr	23	10:39:44	ubuntu-focal	python3[187384]:	ansible-command

Invoked	with

								_raw_params=tail	/var/log/syslog	warn=True	_uses_shell=False

stdin_add_newline=True

								strip_empty_ends=True	argv=None	chdir=None	executable=None

creates=None	removes=None	stdin=None

You	can	see	from	this	output	that	Ansible	writes	to	the	syslog	as	it	runs.

You	are	not	restricted	to	the	ping	and	command	modules	when	using	the	ansible
command-line	tool:	you	can	use	any	module	that	you	like.	For	example,	you	can
install	Nginx	on	Ubuntu	by	using	the	following	command:

$	ansible	testserver	-b	-m	package	-a	name=nginx

NOTE
If	installing	Nginx	fails	for	you,	you	might	need	to	update	the	package	lists.	To	tell	Ansible	to
do	the	equivalent	of	apt-get	update	before	installing	the	package,	change	the	argument	from
name=nginx	to	name=nginx	update_cache=yes.

You	can	restart	Nginx	as	follows:

$	ansible	testserver	-b	-m	service	-a	"name=nginx
state=restarted"

You	need	the	-b	argument	to	become	the	root	user	because	only	root	can	install
the	Nginx	package	and	restart	services.

Kill	your	darlings
We	will	improve	the	setup	of	the	test	server	in	this	book,	so	don’t	become

We	will	improve	the	setup	of	the	test	server	in	this	book,	so	don’t	become
attached	to	your	first	virtual	machine.	Just	remove	it	for	now	with:

$	vagrant	destroy	-f

Moving	Forward
This	introductory	chapter	covered	the	basic	concepts	of	Ansible	at	a	general
level,	including	how	it	communicates	with	remote	servers	and	how	it	differs
from	other	configuration	management	tools.	You’ve	also	seen	how	to	use	the
Ansible	command-line	tool	to	perform	simple	tasks	on	a	single	host.

However,	using	Ansible	to	run	commands	against	single	hosts	isn’t	terribly
interesting.	The	next	chapter	covers	playbooks,	where	the	real	action	is.

1 	For	more	on	building	and	maintaining	these	types	of	distributed	systems,	check	out	Thomas	A.
Limoncelli,	Strata	R.	Chalup,	and	Christina	J.	Hogan,	The	Practice	of	Cloud	System	Administration,
volumes	1	and	2	(Addison-Wesley,	2014),	and	Martin	Kleppman,	Designing	Data-Intensive
Applications	(O’Reilly,	2017).

2 	Yes,	Azure	supports	Linux	servers.

3 	For	example,	see	“Using	Ansible	at	Scale	to	Manage	a	Public	Cloud”	(slide	presentation,	2013),	by
Jesse	Keating,	formerly	of	Rackspace.

4 	If	you	are	interested	in	what	Ansible’s	original	author	thinks	of	the	idea	of	convergence,	see	Michael
DeHaan,	“Idempotence,	convergence,	and	other	silly	fancy	words	we	use	too	often,”	Ansible	Project
newsgroup	post,	November	23,	2013.

5 	To	learn	why	Windows	is	not	supported	on	the	controller,	read	Matt	Davis,	“Why	no	Ansible
controller	for	Windows?”	blog	post,	March	18,	2020.	

https://www.slideshare.net/JesseKeating/ansiblefest-rax
https://groups.google.com/g/ansible-project/c/WpRblldA2PQ/m/lYDpFjBXDlsJ?pli=1
http://blog.rolpdog.com/2020/03/why-no-ansible-controller-for-windows.html
http://blog.rolpdog.com/2020/03/why-no-ansible-controller-for-windows.html

Chapter	2.	Playbooks:	A
Beginning

A	NOTE	FOR	EARLY	RELEASE	READERS

With	Early	Release	ebooks,	you	get	books	in	their	earliest	form—the
author’s	raw	and	unedited	content	as	they	write—so	you	can	take	advantage
of	these	technologies	long	before	the	official	release	of	these	titles.

This	will	be	Chapter	2	of	the	final	book.

If	you	have	comments	about	how	we	might	improve	the	content	and/or
examples	in	this	book,	or	if	you	notice	missing	material	within	this	chapter,
please	reach	out	to	the	author	at	dmitri@aboutsqlserver.com.

When	you	start	using	Ansible,	one	of	the	first	things	you’ll	do	is	begin	writing
playbooks.	A	playbook	is	the	term	that	Ansible	uses	for	a	configuration
management	script.	Let’s	look	at	an	example:	here	is	a	playbook	for	installing
the	Nginx	web	server	and	configuring	it	for	secure	communication.

If	you	follow	along	in	this	chapter,	you	should	end	up	with	the	directory	tree
listed	here:

.

						├──	Vagrantfile

						├──	ansible.cfg

						├──	files

						│			├──	index.html

						│			├──	nginx.conf

						│			├──	nginx.crt

						│			└──	nginx.key

						├──	inventory

						│			└──	vagrant.ini

						├──	requirements.txt

						├──	templates

						│			├──	index.html.j2

						│			└──	nginx.conf.j2

						├──	webservers-tls.yml

						├──	webservers.yml

						└──	webservers2.yml

Note:	The	code	examples	in	this	book	are	available	online	at
https://github.com/ansiblebook.

Preliminaries
Before	we	can	run	this	playbook	against	our	Vagrant	machine,	we	will	need	to
expose	network	ports	80	and	443	so	you	can	browse	the	webserver.	As	shown	in
Figure	2-1,	we	are	going	to	configure	Vagrant	so	that	our	local	machine
forwards	browser	requests	on	ports	8080	and	8443	to	ports	80	and	443	on	the
Vagrant	machine.	This	will	allow	us	to	access	the	web	server	running	inside
Vagrant	at	http://localhost:8080	and	https://localhost:8443.

https://github.com/ansiblebook
http://localhost:8080/
https://localhost:8443/

Figure	2-1.	Exposing	ports	on	a	Vagrant	machine

Modify	your	Vagrantfile	so	it	looks	like	this:

Vagrant.configure(2)	do	|config|

									config.vm.box	=	"ubuntu/focal64"

									config.vm.hostname	=	"testserver"

									config.vm.network	"forwarded_port",

									id:	'ssh',	guest:	22,	host:	2202,	host_ip:	"127.0.0.1",

auto_correct:	false

									config.vm.network	"forwarded_port",

									id:	'http',	guest:	80,	host:	8080,	host_ip:	"127.0.0.1"

									config.vm.network	"forwarded_port",

									id:	'https',	guest:	443,	host:	8443,	host_ip:	"127.0.0.1"

									#	disable	updating	guest	additions

									if	Vagrant.has_plugin?("vagrant-vbguest")

									config.vbguest.auto_update	=	false

									end

									config.vm.provider	"virtualbox"	do	|virtualbox|

									virtualbox.name	=	"ch02"

									end

									end

This	maps	port	8080	on	your	local	machine	to	port	80	of	the	Vagrant	machine,
and	port	8443	on	your	local	machine	to	port	443	on	the	Vagrant	machine.	Also,
it	reserves	the	forwarding	port	2202	to	this	specific	VM,	as	you	might	still	want
to	run	the	other	from	chapter	1.	Once	you	made	these	changes,	tell	Vagrant	to
implement	them	by	running	this	command:

$	vagrant	reload

You	should	see	output	that	includes	the	following:

==>	default:	Forwarding	ports...

									default:	22	(guest)	=>	2202	(host)	(adapter	1)

									default:	80	(guest)	=>	8080	(host)	(adapter	1)

									default:	443	(guest)	=>	8443	(host)	(adapter	1)

								Your	test	server	is	up	and	running	now.

A	Very	Simple	Playbook
For	our	first	example	playbook,	we’ll	configure	a	host	to	run	a	simple	http
server.	You’ll	see	what	happens	when	we	run	the	playbook	in	webservers.yml,

and	then	we’ll	go	over	the	contents	of	the	playbook	in	detail.	This	is	the	simplest
playbook	to	achieve	this	task.	I	will	discuss	ways	to	improve	it.

Example	2-1.	webservers.yml
-	name:	Configure	webserver	with	nginx

								hosts:	webservers

								become:	True

								tasks:

								-	name:	install	nginx

								package:	name=nginx	update_cache=yes

								-	name:	copy	nginx	config	file

								copy:	src=nginx.conf	dest=/etc/nginx/sites-available/default

								-	name:	enable	configuration

								file:	>

									dest=/etc/nginx/sites-enabled/default

									src=/etc/nginx/sites-available/default

									state=link

									-	name:	copy	index.html

									template:	src=index.html.j2

dest=/usr/share/nginx/html/index.html

									-	name:	restart	nginx

									service:	name=nginx	state=restarted

Specifying	an	Nginx	Config	File

This	playbook	requires	an	Nginx	configuration	file.

Nginx	ships	with	a	configuration	file	that	works	out	of	the	box	if	you	just	want
to	serve	static	files.	But	you’ll	always	need	to	customize	this,	so	we’ll	overwrite
the	default	configuration	file	with	our	own	as	part	of	this	playbook.	As	you’ll	see
later,	we’ll	improve	the	configuration	to	support	TLS.	Example	2-2	shows	a
basic	Nginx	config	file.	Put	it	in	playbooks/files/nginx.conf.

Example	2-2.	nginx.conf
server	{

											listen	80	default_server;

											listen	[::]:80	default_server	ipv6only=on;

											root	/usr/share/nginx/html;

											index	index.html;

											server_name	localhost;

											location	/	{

											try_files	$uri	$uri/	=404;

											}

										}

Creating	a	Web	Page

1

Next,	we’ll	create	a	simple	web	page.	Ansible	has	a	system	to	generate	the
HTML	page	from	a	template	file.	Put	the	content	shown	in	Example	2-
3	in	playbooks/templates/index.html.j2.

Example	2-3.	playbooks/templates/index.html.j2
<html>

											<head>

											<title>Welcome	to	ansible</title>

											</head>

											<body>

											<h1>Nginx,	configured	by	Ansible</h1>

											<p>If	you	can	see	this,	Ansible	successfully	installed	nginx.

</p>

											<p>Running	on	{{	inventory_hostname	}}</p>

											</body>

										</html>

This	template	references	a	special	Ansible	variable	named	inventory_hostname.
When	Ansible	renders	this	template,	it	will	replace	this	variable	with	the	name	of
the	host	as	it	appears	in	the	inventory	(see	Figure	2-2).	Rendered	HTML	tells	a
web	browser	how	to	display	the	page.

An	Ansible	convention	is	to	copy	files	from	a	subdirectory	named	files,	and	to
source	Jinja2	templates	from	a	subdirectory	named	templates.	Ansible	searches
these	directories	automatically.	We	follow	this	convention	throughout	the	book.

Figure	2-2.	Rendered	HTML

Creating	a	Group

Let’s	create	a	webservers	group	in	our	inventory	file	so	that	we	can	refer	to	this
group	in	our	playbook.	For	now,	this	group	will	have	only	our	testserver.

The	simplest	inventory	files	are	in	the	.ini	file	format.	We’ll	go	into	this	format
in	detail	later	in	the	book.	Edit	your	playbooks/inventory/vagrant.ini	file	to	put	a
[webservers]	line	above	the	testserver	line,	as	shown
in	playbooks/inventory/vagrant.ini.	This	means	that	testserver	is	in	the
webservers	group.	The	group	can	have	variables	defined	(vars	is	s	a	shorthand
for	variables).	Your	file	should	look	like	example	2-4.

Example	2-4.	playbooks/inventory/vagrant.ini
[webservers]

										testserver	ansible_port=2202

										[webservers:vars]

										ansible_user	=	vagrant

										ansible_host	=	127.0.0.1

										ansible_private_key_file	=

.vagrant/machines/default/virtualbox/private_key

You	created	the	ansible.cfg	file	with	an	inventory	entry	in	Chapter	1,	so	you
don’t	need	to	supply	the	-i	command-line	argument.	You	can	now	check	your
groups	in	the	invent	with	this	command:

$	ansible-inventory	--graph

The	output	should	look	like	this:

@all:

											|--@ungrouped:

											|--@webservers:

											|	|--testserver

Running	the	Playbook
The	ansible-playbook	command	executes	playbooks.	To	run	the	playbook,	use
this	command:

$	ansible-playbook	webservers.yml

Your	output	should	look	like	this.

Example	2-5.	Output	of	ansible-playbook
PLAY	[Configure	webserver	with	nginx]

**

TASK	[Gathering	Facts]

ok:	[testserver]

TASK	[install	nginx]

changed:	[testserver]

TASK	[copy	nginx	config	file]

**

changed:	[testserver]

TASK	[enable	configuration]

**

ok:	[testserver]

TASK	[copy	index.html]

changed:	[testserver]

TASK	[restart	nginx]

changed:	[testserver]

PLAY	RECAP	***

testserver	:	ok=6	changed=4	unreachable=0	failed=0	skipped=0	rescued=0

ignored=0

Playbook	run	took	0	days,	0	hours,	0	minutes,	18	seconds

If	you	don’t	get	any	errors,	you	should	be	able	to	point	your	browser
to	http://localhost:8080	and	see	the	custom	HTML	page,	as	shown	in	Figure	2-
2.

COWSAY
No	O’Reilly	book	about	Ansible	would	be	complete	without	describing	cowsay	support.

If	you	have	the	cowsay	program	installed	on	your	local	machine,	Ansible	output	will	include	a
cow	in	ascii-art	like	this:

<	PLAY	[Configure	webserver	with	nginx]	>

	\	^__^
	\	(oo)_______
			(__)\)\/\
			||----w	|
			||	||

2

http://localhost:8080/

If	you	like	more	animals	in	your	log,	then	try	adding	this	to	your	ansible.cfg	file:

[defaults]

cow_selection	=	random

cowsay_enabled_stencils=bunny,elephant,kitty,koala,moose,sheep,tux,

For	a	full	list	of	alternate	images	available	on	your	local	machine,	do:

cowsay	-l

If	you	don’t	want	to	see	the	cows,	you	can	disable	it	by	adding	the	following	to
your	ansible.cfg	file:

[defaults]

nocows	=	1

You	can	disable	cowsay	by	setting	the	ANSIBLE_NOCOWS	environment
variable	like	this:

$	export	ANSIBLE_NOCOWS=1

Playbooks	Are	YAML
One	writes	Ansible	playbooks	in	YAML	syntax.	YAML	is	a	file	format	very
much	like	JSON,	but	easier	for	humans	to	read	and	write.	Before	we	go	over	the
playbook,	let’s	cover	the	most	important	YAML	concepts	for	writing	playbooks.

NOTE
A	valid	JSON	file	is	also	a	valid	YAML	file.	This	is	because	YAML	allows	strings	to	be
quoted,	considers	true	and	false	to	be	valid	Booleans,	and	has	inline	lists	and	dictionary
syntaxes	that	are	essentially	the	same	as	JSON	arrays	and	objects.	But	don’t	write	your
playbooks	as	JSON—the	whole	point	of	YAML	is	that	it’s	easier	for	people	to	read.

Start	of	File

YAML	data	is	supposed	to	start	with	three	dashes	to	mark	the	beginning:	---

However,	if	you	forget	to	put	those	three	dashes	at	the	top	of	your	playbook

However,	if	you	forget	to	put	those	three	dashes	at	the	top	of	your	playbook
files,	Ansible	won’t	complain.

End	of	File

YAML	files	are	supposed	to	end	with	three	dots,	so	you	can	prove	completeness.
...

However,	if	you	forget	to	put	those	three	dots	at	the	end	of	your	playbook	files,
Ansible	won’t	complain.

Comments

Comments	start	with	a	hashmark	(#)	and	apply	to	the	end	of	the	line,	the	same	as
in	shell	scripts,	Python,	and	Ruby.	Indent	comments	with	the	other	content.

#	This	is	a	YAML	comment

NOTE
There	is	an	exception	to	the	comment	that	is	referred	to	as	a	shebang	(#!),	in	which	the
hashmark	is	followed	by	an	exclamation	mark	and	the	path	to	a	command	interpreter.	You	can
execute	a	playbook	by	invoking	it	directly,	if	the	file	is	executable	and	starts	with	this	line:

#!/usr/bin/env	ansible-playbook

I	start	an	improved	copy	of	the	playbook	like	this:

$./webservers2.yml

Indentation	and	Whitespace

Like	Python	YAML	uses	space	indentation	to	reduce	the	number	of
interpunction	characters.	We	use	two	spaces	as	a	standard.	For	readability	I
prefer	to	add	whitespace	between	each	task	in	a	playbook,	and	between	sections
in	files.

Strings

In	general,	you	don’t	need	to	quote	YAML	strings,	although	you	may	quote
them	if	you	prefer.	Even	if	there	are	spaces,	you	don’t	need	to	quote	them.	For

them	if	you	prefer.	Even	if	there	are	spaces,	you	don’t	need	to	quote	them.	For
example,	this	is	a	string	in	YAML:

this	is	a	lovely	sentence

The	JSON	equivalent	is	as	follows:

"this	is	a	lovely	sentence"

In	some	scenarios	in	Ansible,	you	will	need	to	quote	strings.	Double-quoting
typically	involves	the	use	of	variable	interpolation	or	other	expressions.	Use
single	quotes	for	literal	values	that	should	not	be	evaluated,	or	strings	with
reserved	characters	like	colons,	brackets,	or	braces.	We’ll	get	to	those	later.

Booleans

YAML	has	a	native	Boolean	type	and	provides	you	with	a	variety	of	values	that
evaluate	to	true	or	false.	For	example,	these	are	all	Boolean	true	values	in
YAML:

true,	True,	TRUE,	yes,	Yes,	YES,	on,	On,	ON

JSON	only	uses:

true

These	are	all	Boolean	false	values	in	YAML:

false,	False,	FALSE,	no,	No,	NO,	off,	Off,	OFF

JSON	only	uses:

false

Personally,	I	only	use	lowercase	true	and	false	in	my	Ansible	playbooks.	One
reason	is	that	these	two	are	the	values	that	are	printed	in	debug	when	you	use
any	of	the	allowed	variants.	Also,	true	and	false	are	valid	Booleans	in	JSON	too,
so	sticking	to	these	simplifies	using	dynamic	data.

Never,	ever,	put	Boolean	values	in	quotation	marks!	(This	is	called	“quoting”

Never,	ever,	put	Boolean	values	in	quotation	marks!	(This	is	called	“quoting”
them.)	Remember	this:	‘no’	is	a	string	(the	country	abbreviation	of	Norway).

NOTE
Why	Don’t	You	Use	True	in	One	Place	and	yes	in	Another?

Sharp-eyed	readers	might	have	noticed	that	webservers.yml	uses	True	in	one	spot	in	the
playbook	(to	become	root)	and	yes	in	another	(to	update	the	apt	cache).

Ansible	is	flexible	in	how	you	use	truthy	and	falsey	values	in	playbooks.	Strictly	speaking,
Ansible	treats	module	arguments	(for	example,	update_cache=yes)	differently	from	values
elsewhere	in	playbooks	(for	example,	become:	True).	Values	elsewhere	are	handled	by	the
YAML	parser	and	so	use	the	YAML	conventions	of	truthiness:

1.	 YAML	truthy:	true,	True,	TRUE,	yes,	Yes,	YES,	on,	On,	ON

2.	 YAML	falsey:	false,	False,	FALSE,	no,	No,	NO,	off,	Off,	OFF

Module	arguments	are	passed	as	strings	and	use	Ansible’s	internal	conventions:

module	arg	truthy:	yes,	on,	1,	true
												module	arg	falsey:	no,	off,	0,	false

Bas	checks	all	YAML	files	with	a	command	line	tool	called	yamllint.	In	its	default
configuration	it	will	issue	this	warning:

warning	truthy	value	should	be	one	of	[false,	true]	(truthy)

To	adhere	to	this	‘truthy’	rule,	Bas	only	uses	true	and	false	(unquoted).

Lists

YAML	lists	are	like	arrays	in	JSON	and	Ruby,	or	lists	in	Python.	The	YAML
specification	calls	these	sequences,	but	we	call	them	lists	here	to	be	consistent
with	the	official	Ansible	documentation.

Indent	list	items	and	delimit	them	with	hyphens.	Lists	have	a	name	followed	by
a	colon,	like	this	shows:

shows:

											-	My	Fair	Lady

											-	Oklahoma

											-	The	Pirates	of	Penzance

This	is	the	JSON	equivalent:

This	is	the	JSON	equivalent:

{

											"shows":	[

											"My	Fair	Lady",

											"Oklahoma",

											"The	Pirates	of	Penzance"

]

										}

As	you	can	see,	YAML	is	easier	to	read	because	fewer	characters	are	needed.
We	don’t	have	to	quote	the	strings	in	YAML,	even	though	they	have	spaces	in
them.	YAML	also	supports	an	inline	format	for	lists,	with	comma-separated
values	in	square	brackets:

shows:	[My	Fair	Lady	,	Oklahoma	,	The	Pirates	of	Penzance]

Dictionaries

YAML	dictionaries	are	like	objects	in	JSON,	dictionaries	in	Python,	hashes	in
Ruby,	or	associative	arrays	in	PHP.	The	YAML	specification	calls
them	mappings,	but	I	call	them	dictionaries	here	to	be	consistent	with	the
Ansible	documentation.

They	look	like	this:

address:

											street:	Evergreen	Terrace

											appt:	'742'

											city:	Springfield

											state:	North	Takoma

Notice	that	you	need	single	quotes	for	numeric	values	in	YAML	dictionaries;
these	are	unquoted	in	JSON.

This	is	the	JSON	equivalent:

{

											"address":	{

											"street":	"Evergreen	Terrace",

											"appt":	742,

											"city":	"Springfield",

											"state":	"North	Takoma"

											}

											}

										}

YAML	also	supports	an	inline	format	for	dictionaries,	with	comma-separated
tuples	in	braces:

address:	{	street:	Evergreen	Terrace,	appt:	'742',	city:	Springfield,

state:	North	Takoma}

Multi-line	strings

You	can	format	multi-line	strings	with	YAML	by	combining	a	block	style
indicator	(|	or	>),	a	block	chomping	indicator	(+	or	-)	and	even	an	indentation
indicator	(1	to	9).	For	example:	when	I	need	a	preformatted	block,	I	use	the	pipe
character	with	a	plus	sign	(|+).

										visiting_address:	|+

											Department	of	Computer	Science

											A.V.	Williams	Building

											University	of	Maryland

										city:	College	Park

										state:	Maryland

The	YAML	parser	will	keep	all	line	breaks	as	you	enter	them.

JSON	does	not	support	the	use	of	multi-line	strings.	So,	to	encode	this	in	JSON,
you	would	need	an	array	in	the	address	field:

{

											"visiting_address":	["Department	of	Computer	Science",

											"A.V.	Williams	Building",

											"University	of	Maryland"],

											"city":	"College	Park",

											"state":	"Maryland"

										}

Pure	YAML	Instead	of	String	Arguments

When	writing	playbooks,	you’ll	often	find	situations	where	you’re	passing	many
arguments	to	a	module.	For	aesthetics,	you	might	want	to	break	this	up	across
multiple	lines	in	your	file.	Moreover,	you	want	Ansible	to	parse	the	arguments
as	a	YAML	dictionary,	because	you	can	use	yamllint	to	find	typos	in	YAML
that	you	won’t	find	when	you	use	the	string	format.	This	style	also	has	shorter

that	you	won’t	find	when	you	use	the	string	format.	This	style	also	has	shorter
lines,	which	makes	version	comparison	easier.

Lorin	likes	this	style:

	-	name:	Install	nginx

											package:	name=nginx	update_cache=true

Bas	prefers	pure-YAML	style:

	-	name:	Install	nginx

											package:

											name:	nginx

											update_cache:	true

Anatomy	of	a	Playbook
If	we	apply	what	we’ve	discussed	so	far	to	our	playbook,	then	we	have	a	second
version.

Example	2-6.	webservers2.yml
#!/usr/bin/env	ansible-playbook

								-	name:	Configure	webserver	with	nginx

									hosts:	webservers

									become:	true

									tasks:

									-	name:	install	nginx

									package:

									name:	nginx

									update_cache:	true

									-	name:	copy	nginx	config	file

									copy:

									src:	nginx.conf

									dest:	/etc/nginx/sites-available/default

									-	name:	enable	configuration

									file:

									src:	/etc/nginx/sites-available/default

									dest:	/etc/nginx/sites-enabled/default

									state:	link

									-	name:	copy	index.html

									template:

									src:	index.html.j2

									dest:	/usr/share/nginx/html/index.html

									-	name:	restart	nginx

									service:

									service:

									name:	nginx

									state:	restarted

								...

Plays
Looking	at	the	YAML,	it	should	be	clear	that	a	playbook	is	a	list	of	dictionaries.
Specifically,	a	playbook	is	a	list	of	plays.	Our	example	is	a	list	that	only	has	a
single	play,	named	Configure	webserver	with	nginx.

Here’s	the	play	from	our	example:

-	name:	Configure	webserver	with	nginx

											hosts:	webservers

											become:	true

											tasks:

											-	name:	install	nginx

											package:

											name:	nginx

											update_cache:	true

											-	name:	copy	nginx	config	file

											copy:

											src:	nginx.conf

											dest:	/etc/nginx/sites-available/default

											-	name:	enable	configuration

											file:

											src:	/etc/nginx/sites-available/default

											dest:	/etc/nginx/sites-enabled/default

											state:	link

											-	name:	copy	index.html

											template:

											src:	index.html.j2

											dest:	/usr/share/nginx/html/index.html

											-	name:	restart	nginx

											service:

											name:	nginx

											state:	restarted

										Every	play	must	contain:

										hosts

A	set	of	hosts	to	configure	and	a	list	of	things	to	do	on	those	hosts.	Think	of	a
play	as	the	thing	that	connects	to	a	group	of	hosts	to	do	those	things	for	you.
Sometimes	you	need	to	do	things	on	more	groups	of	hosts,	and	then	you	use
more	plays	in	a	playbook.

In	addition	to	specifying	hosts	and	tasks,	plays	also	support	optional	settings.

In	addition	to	specifying	hosts	and	tasks,	plays	also	support	optional	settings.
We’ll	get	into	those	later,	but	here	are	three	common	ones:

name

A	comment	that	describes	what	the	play	is	about.	Ansible	prints	this	out	when
the	play	starts	to	run.

become

If	this	Boolean	variable	is	true,	Ansible	will	become	the	root	user	to	run	tasks.
This	is	useful	when	managing	Linux	servers,	since	by	default	you	should	not
login	as	the	root	user.	Become	can	be	specified	per	task	if	needed.

vars

A	list	of	variables	and	values.	You’ll	see	this	in	action	later	in	this	chapter.

Tasks

Our	example	playbook	contains	one	play	that	has	five	tasks.	Here’s	the	first	task
of	that	play:

-	name:	install	nginx

											package:

											name:	nginx

											update_cache:	true

In	the	preceding	example,	the	module	name	is	package	and	the	arguments	are
['name:	nginx',	‘update_cache:	yes']	These	arguments	tell	the	package	module	to
install	the	package	named	nginx	and	to	update	the	package	cache	(the	equivalent
of	doing	an	apt-get	update	on	Ubuntu)	before	installing	the	package.

The	name	is	optional,	but	I	recommend	you	use	task	names	in	playbooks
because	they	serve	as	good	reminders	for	the	intent	of	the	task.	(Names	will	be
very	useful	when	somebody	is	trying	to	understand	your	playbook’s	log,
including	you	in	six	months.)	As	you’ve	seen,	Ansible	will	print	out	the	name	of
a	task	when	it	runs.	Finally,	as	you’ll	see	in	chapter	16,	you	can	use	the	--start-
at-task	<task	name>	flag	to	tell	ansible-playbook	to	start	a	playbook	in	the

middle	of	a	play,	but	you	need	to	reference	the	task	by	name.

It’s	valid	for	the	ansible	command	to	use	a	task	that	must	have	a	-m	module	and
-a	argument	values	to	that	module:

$	ansible	webservers	-b	-m	package	-a	'name=nginx	update_cache=true'

However,	it’s	important	to	understand	that	in	this	form,	from	the	Ansible
parser’s	point	of	view,	the	arguments	are	treated	as	one	string,	not	as	a
dictionary.	In	ad-hoc	commands	that’s	fine,	but	in	playbooks	this	means	that
there	is	more	space	for	bugs	to	creep	in,	especially	with	complex	modules	with
many	optional	arguments.	Bas,	for	better	version	control	and	linting,	also	prefers
to	break	arguments	into	multiple	lines.	Therefore,	we	always	use	the	YAML
syntax,	like	this:

-	name:	install	nginx

											package:

											name:	nginx

											update_cache:	true

Modules

Modules	are	scripts	that	come	packaged	with	Ansible	and	perform	some	kind	of
action	on	a	host.	That’s	a	pretty	generic	description,	but	there	is	enormous
variety	among	Ansible	modules.	Recall	from	chapter	1	that	Ansible	executes	a
task	on	a	host	by	generating	a	custom	script	based	on	the	module	name	and
arguments,	and	then	copies	this	script	to	the	host	and	runs	it.	The	modules	that
ship	with	Ansible	are	all	written	in	Python,	but	modules	can	be	written	in	any
language.

The	modules	we	use	in	this	chapter	are:

package

Installs	or	removes	packages	by	using	the	host’s	package	manager

copy

Copies	a	file	from	machine	where	you	run	Ansible	to	the	webservers.

file

Sets	the	attribute	of	a	file,	symlink,	or	directory.

Sets	the	attribute	of	a	file,	symlink,	or	directory.

service

Starts,	stops,	or	restarts	a	service.

template

Generates	a	file	from	a	template	and	copies	it	to	the	hosts.

Viewing	Ansible	Module	Documentation

Ansible	ships	with	the	ansible-doc	command-line	tool,	which	shows
documentation	about	the	modules	you	have	installed.	Think	of	it	as	man	pages
for	Ansible	modules.	For	example,	to	show	the	documentation	for
the	service	module,	run	this:

$	ansible-doc	service

To	find	more	specific	modules	related	to	the	Ubuntu	apt	package	manager,	try:

$	ansible-doc	-l	|	grep	^apt

Putting	It	All	Together

To	sum	up,	a	playbook	contains	one	or	more	plays.	A	play	associates	an
unordered	set	of	hosts	with	an	ordered	list	of	tasks.	Each	task	is	associated	with
exactly	one	module.	Figure	2-3	depicts	the	relationships	between	playbooks,
plays,	hosts,	tasks,	and	modules.

vscode-webview-resource://4fd6af6c-1903-4ce5-bf9d-ad7600ccf6c6/file/Users/bas/code/ansible/ansiblebook/ansible-up-and-running-2e/ch02-playbooks-a-beginning.asciidoc#erd_figure

Figure	2-3.	Entity-relationship	diagram	of	a	playbook

Did	Anything	Change?	Tracking	Host	State
When	you	run	ansible-playbook,	Ansible	outputs	status	information	for	each
task	it	executes	in	the	play.

Looking	back	at	the	output	in	Example	2-5,	you	might	notice	that	some	tasks
have	the	status	“changed,”	and	others	have	the	status	“ok.”	For	example,	the
install	nginx	task	has	the	status	“changed,”	which	appears	as	yellow	on	my
terminal:

TASK:	[install	nginx]

changed:	[testserver]

The	enable	configuration,	on	the	other	hand,	has	the	status	"ok”,	which	appears
as	green	on	my	terminal:

TASK:	[enable	configuration]

**

ok:	[testserver]

Any	Ansible	task	that	runs	has	the	potential	to	change	the	state	of	the	host	in
some	way.	Ansible	modules	will	first	check	to	see	whether	the	state	of	the	host
needs	to	be	changed	before	taking	any	action.	If	the	host’s	state	matches	the
module’s	arguments,	Ansible	takes	no	action	on	the	host	and	responds	with	a
state	of	"ok”.

On	the	other	hand,	if	there	is	a	difference	between	the	host’s	state	and	the
module’s	arguments,	Ansible	will	change	the	state	of	the	host	and
return	"changed”.

In	the	example	output	just	shown,	the	install	nginx	task	was	changed,	which
means	that	before	I	ran	the	playbook,	the	nginx	package	had	not	previously	been
installed	on	the	host.	The	enable	configuration	task	was	unchanged,	which	meant
that	there	was	already	a	symbolic	link	on	the	server	that	was	identical	to	the	one
I	was	creating.	This	means	the	playbook	has	a	noop	(“no	operation”:	that	is,	do
nothing)	that	I	will	remove.

As	you’ll	see	later	in	this	chapter,	you	can	use	Ansible’s	state	change	detection
to	trigger	additional	actions	using	handlers.	But,	even	without	using	handlers,
seeing	what	changes	and	where,	as	the	playbook	runs,	is	still	a	detailed	form	of
feedback.

Getting	Fancier:	TLS	Support
Let’s	move	on	to	a	more	complex	example.	We’re	going	to	modify	the	previous
playbook	so	that	our	web	servers	support	TLSv1.2.	You	can	find	the	full
playbook	in	Example	2-11	at	the	end	of	this	chapter.	This	section	will	briefly
introduce	these	Ansible	features:

Variables

Loops

Handlers

Testing

Validation

NOTE
TLS	versus	SSL

You	might	be	familiar	with	the	term	SSL	(Secure	Sockets	Layer)	rather	than	TLS	(Transport
Layer	Security)	in	the	context	of	secure	web	servers.	SSL	is	a	family	of	protocols	that	secure
the	communication	between	browsers	and	web	servers,	this	adds	the	’s’	in	https.	SSL	has
evolved	over	time;	the	latest	variant	is	TLSv1.3.	Although	it	is	common	to	use	the	term	SSL	to
refer	to	the	https	secured	protocol,	in	this	book,	I	use	TLS.

Generating	a	TLS	Certificate

We	will	create	a	TLS	certificate.	In	a	production	environment,	you’d	obtain	your
TLS	certificate	from	a	certificate	authority.	We’ll	use	a	self-signed	certificate
since	we	can	generate	it	easily	for	this	example.

$	openssl	req	-x509	-nodes	-days	365	-newkey	rsa:2048	\

	-subj	/CN=localhost	\

	-keyout	files/nginx.key	-out	files/nginx.crt

It	should	generate	the	files	nginx.key	and	nginx.crt	in	the	files	sub-directory	of
your	playbooks	directory.	The	certificate	has	an	expiration	date	of	one	month
from	the	day	you	created	it.

Variables

The	play	in	our	playbook	has	a	new	section	called	vars:.	This	section	defines
five	variables	and	assigns	a	value	to	each	variable.

vars:

											tls_dir:	/etc/nginx/ssl/

											key_file:	nginx.key

											cert_file:	nginx.crt

											conf_file:	/etc/nginx/sites-available/default

											server_name:	localhost

In	this	example,	each	value	is	a	string	(such	as	/etc/nginx/sites-available/default),
but	any	valid	YAML	can	be	used	as	the	value	of	a	variable.	You	can	use	lists
and	dictionaries	in	addition	to	strings	and	Booleans.

Variables	can	be	used	in	tasks,	as	well	as	in	template	files.	You	reference
variables	by	using	{{	mustache	}}	notation.	Ansible	replaces	this	{{	mustache
}}	with	the	value	of	the	variable	named	mustache.

Consider	this	task	in	the	playbook:

-	name:	install	nginx	config	template

											template:

											src:	nginx.conf.j2

											dest:	"{{	conf_file	}}"

											mode:	0644

											notify:	restart	nginx

Ansible	will	substitute	{{	conf_file	}}	with	/etc/nginx/sites-available/default
when	it	executes	this	task.

Quoting	in	Ansible	Strings

If	you	reference	a	variable	right	after	specifying	the	module,	the	YAML	parser
will	misinterpret	the	variable	reference	as	the	beginning	of	an	inline	dictionary.
Consider	the	following	example:

-	name:	perform	some	task

-	name:	perform	some	task

											command:	{{	myapp	}}	-a	foo

Ansible	will	try	to	parse	the	first	part	of	{{	myapp	}}	-a	foo	as	a	dictionary
instead	of	a	string,	and	will	return	an	error.	In	this	case,	you	must	quote	the
arguments:

-	name:	perform	some	task

											command:	"{{	myapp	}}	-a	foo"

A	similar	problem	arises	if	your	argument	contains	a	colon.	For	example:

-	name:	show	a	debug	message

											debug:	

	msg:	The	debug	module	will	print	a	message:	neat,	eh?

The	colon	in	the	msg	argument	trips	up	the	YAML	parser.	To	get	around	this,
you	need	to	double-quote	the	entire	msg	string.

-	name:	show	a	debug	message

											debug:	

	msg:	"The	debug	module	will	print	a	message:	neat,	eh?"

This	will	make	the	YAML	parser	happy.	Ansible	supports	alternating	single	and
double	quotes,	so	you	can	do	this:

	-	name:	show	escaped	quotes

											debug:

											msg:	'"The	module	will	print	escaped	quotes:	neat,	eh?"'

											-	name:	show	quoted	quotes

											debug:

											msg:	"'The	module	will	print	quoted	quotes:	neat,	eh?'""

This	yields	the	expected	output:

TASK	[show	escaped	quotes]

										ok:	[localhost]	=>	{

											"msg":	"\"The	module	will	print	escaped	quotes:	neat,	eh?

\""

										}

										TASK	[show	quoted	quotes]

**

**

										ok:	[localhost]	=>	{

											"msg":	"'The	module	will	print	quoted	quotes:	neat,	eh?'"

										}

Generating	the	Nginx	Configuration	Template

If	you’ve	done	web	programming,	you’ve	likely	used	a	template	system	to
generate	HTML.	A	template	is	just	a	text	file	that	has	special	syntax	for
specifying	variables	that	should	be	replaced	by	values.	If	you’ve	ever	received	a
spam	email,	it	was	created	using	an	email	template,	as	shown	in	Example	2-9.

Example	2-7.	An	email	template
Dear	{{	name	}},

You	have	{{	random_number	}}	Bitcoins	in	your	account,	please	click:	{{

phishing_url	}}.

Ansible’s	use	case	isn’t	HTML	pages	or	emails—it’s	configuration	files.	You
don’t	want	to	hand-edit	configuration	files	if	you	can	avoid	it.	This	is	especially
true	if	you	have	to	reuse	the	same	bits	of	configuration	data	(say,	the	IP	address
of	your	queue	server	or	your	database	credentials)	across	multiple	configuration
files.	It’s	much	better	to	take	the	info	that’s	specific	to	your	deployment,	record
it	in	one	location,	and	then	generate	all	of	the	files	that	need	this	information
from	templates.

Ansible	uses	the	Jinja2	template	engine	to	implement	templating,	just	like	the
excellent	web	framework	Flask	does.	If	you’ve	ever	used	a	templating	library
such	as	Mustache,	ERB,	or	Django,	Jinja2	will	feel	very	familiar.

Nginx’s	configuration	file	needs	information	about	where	to	find	the	TLS	key
and	certificate.	We’re	going	to	use	Ansible’s	templating	functionality	to	define
this	configuration	file	so	that	we	can	avoid	hardcoding	values	that	might	change.

In	your	playbooks	directory,	create	a	templates	subdirectory	and	create	the	file
templates/nginx.conf.j2,	as	shown	in	example	2-10.

Example	2-8.	templates/nginx.conf.j2
server	{

											listen	80	default_server;

											listen	[::]:80	default_server	ipv6only=on;

											listen	443	ssl;

											ssl_protocols	TLSv1.2;

											ssl_prefer_server_ciphers	on;

											root	/usr/share/nginx/html;

											index	index.html;

											index	index.html;

											server_tokens	off;

											add_header	X-Frame-Options	DENY;

											add_header	X-Content-Type-Options	nosniff;

											server_name	{{	server_name	}};

											ssl_certificate	{{	tls_dir	}}{{	cert_file	}};

											ssl_certificate_key	{{	tls_dir	}}{{	key_file	}};

											location	/	{

											try_files	$uri	$uri/	=404;

											}

										}

I	use	the	.j2	extension	to	indicate	that	the	file	is	a	Jinja2	template.	However,	you
can	use	a	different	extension	if	you	like;	Ansible	doesn’t	care.

In	our	template,	we	reference	four	variables,	we	defined	these	variables	in	the
playbook:

server_name

The	hostname	of	the	web	server	(such	as	www.example.com)

cert_file

The	filename	of	the	TLS	certificate

key_file

The	filename	of	the	TLS	private	key

tls_dir

The	directory	with	the	above	files.

Ansible	also	uses	the	Jinja2	template	engine	to	evaluate	variables	in	playbooks.
Recall	that	we	saw	the	{{	conf_file	}}	syntax	in	the	playbook	itself.	You	can	use
all	of	the	Jinja2	features	in	your	templates,	but	we	won’t	cover	them	in	detail
here.	Check	out	the	Jinja2	Template	Designer	Documentation	for	more	details.
You	probably	won’t	need	to	use	those	advanced	templating	features,	though.
One	Jinja2	feature	you	probably	will	use	with	Ansible	is	filters;	we’ll	cover
those	in	a	later	chapter.

Loop

http://jinja.pocoo.org/docs/dev/templates/

When	you	want	to	run	a	task	with	items	from	a	list,	you	can	use	a	loop.	A	loop
executes	the	task	multiple	times,	each	time	with	different	input	values.

-	name:	copy	TLS	files

											copy:

											src:	"{{	item	}}"

											dest:	"{{	tls_dir	}}"

											mode:	0600

											loop:

											-	"{{	key_file	}}"

											-	"{{	cert_file	}}"

											notify:	restart	nginx

Handlers

There	are	two	new	elements	that	we	haven’t	discussed	yet	in	our	webservers-
tls.yml	playbook	(Example	2-11).	There’s	a	handlers	section	that	looks	like	this:

handlers:

										-	name:	restart	nginx

											service:

											name:	nginx

											state:	restarted

In	addition,	several	of	the	tasks	contain	a	notify	statement.	For	example:

-	name:	install	nginx	config	template

											template:

											src:	nginx.conf.j2

											dest:	"{{	conf_file	}}"

											mode:	0644

											notify:	restart	nginx

Handlers	are	one	of	the	conditional	forms	that	Ansible	supports.	A	handler	is
similar	to	a	task,	but	it	runs	only	if	it	has	been	notified	by	a	task.	A	task	will	fire
the	notification	if	Ansible	recognizes	that	the	task	has	changed	the	state	of	the
system.

A	task	notifies	a	handler	by	passing	the	handler’s	name	as	the	argument.	In	the
preceding	example,	the	handler’s	name	is	restart	nginx.	For	an	Nginx	server,
we’d	need	to	restart	it	if	any	of	the	following	happens:

The	TLS	key	changes.

The	TLS	certificate	changes.

The	configuration	file	changes.

The	contents	of	the	sites-enabled	directory	change.

We	put	a	notify	statement	on	each	task	to	ensure	that	Ansible	restarts	Nginx	if
any	of	these	conditions	are	met.

A	few	things	to	keep	in	mind	about	handlers

Handlers	usually	run	at	the	end	of	the	play	after	all	of	the	tasks	have	been	run.
To	force	a	notified	handler	in	the	middle	of	a	play,	I	use	these	two	lines	of	code:

-	name:	restart	nginx

											meta:	flush_handlers

If	a	play	contains	multiple	handlers,	the	handlers	always	run	in	the	order	that
they	are	defined	in	the	handlers	section,	not	the	notification	order.	They	run	only
once,	even	if	they	are	notified	multiple	times.

The	official	Ansible	documentation	mentions	that	the	only	common	uses	for
handlers	are	reboots	and	restarting	services.	Lorin	only	uses	them	for	restarting
services—he	thinks	it’s	a	pretty	small	optimization	to	restart	only	once	on
change,	since	we	can	always	just	unconditionally	restart	the	service	at	the	end	of
the	playbook,	and	restarting	a	service	doesn’t	usually	take	very	long.	But	when
you	restart	Nginx,	you	might	affect	user	sessions,	notifying	handlers	help	avoid
unnecessary	restarts.	Bas	likes	to	validate	the	configuration	before	restarting,
especially	if	it’s	a	critical	service	like	sshd.	He	has	handlers	notifying	handlers.

Testing

One	pitfall	with	handlers	is	that	they	can	be	troublesome	when	debugging	a
playbook.	The	problem	usually	unfolds	something	like	this:

You	run	a	playbook.

One	of	the	tasks	with	a	notify	on	it	changes	state.

An	error	occurs	on	a	subsequent	task,	stopping	Ansible.

You	fix	the	error	in	your	playbook.

You	run	Ansible	again.

None	of	the	tasks	reports	a	state	change	the	second	time	around,	so
Ansible	doesn’t	run	the	handler.

When	iterating	like	this,	it	is	helpful	to	include	a	test	in	the	playbook.	Ansible
has	a	module	called	uri	that	can	do	an	https	request	to	check	if	the	webserver	is
running	and	serving	the	web	page.

	-	name:	"test	it!	https://localhost:8443/index.html"

											delegate_to:	localhost

											become:	false

											uri:

											url:	'https://localhost:8443/index.html'

											validate_certs:	false

											return_content:	true

											register:	this

											failed_when:	"'Running	on	'	not	in	this.content"

Validation

Ansible	is	remarkably	good	at	generating	meaningful	error	messages	if	you
forget	to	put	quotes	in	the	right	places	and	end	up	with	invalid	YAML;	yamllint
is	very	helpful	in	finding	even	more	issues.	In	addition,	ansible-lint	is	a	python
tool	that	helps	you	find	potential	problems	in	playbooks.

You	should	also	check	the	ansible	syntax	of	your	playbook	before	running	it.	I
suggest	you	check	all	of	your	content	before	running	the	playbook:

$	ansible-playbook	--syntax-check	webservers-tls.yml

										$	ansible-lint	webservers-tls.yml

										$	yamllint	webservers-tls.yml

										$	ansible-inventory	--host	testserver	-i

inventory/vagrant.ini

										$	vagrant	validate

The	Playbook
Example	2-9.	playbooks/webservers-tls.yml
#!/usr/bin/env	ansible-playbook

										-	name:	Configure	webserver	with	Nginx	and	TLS

											hosts:	webservers

											become:	true

											gather_facts:	false

											gather_facts:	false

											vars:

											tls_dir:	/etc/nginx/ssl/

											key_file:	nginx.key

											cert_file:	nginx.crt

											conf_file:	/etc/nginx/sites-available/default

											server_name:	localhost

											handlers:

											-	name:	restart	nginx

											service:

											name:	nginx

											state:	restarted

											tasks:

											-	name:	install	nginx

											package:

											name:	nginx

											update_cache:	true

											notify:	restart	nginx

											-	name:	create	directories	for	TLS	certificates

											file:

											path:	"{{	tls_dir	}}"

											state:	directory

											mode:	0750

											notify:	restart	nginx

											-	name:	copy	TLS	files

											copy:

											src:	"{{	item	}}"

											dest:	"{{	tls_dir	}}"

											mode:	0600

											loop:

											-	"{{	key_file	}}"

											-	"{{	cert_file	}}"

											notify:	restart	nginx

											-	name:	install	nginx	config	template

											template:

											src:	nginx.conf.j2

											dest:	"{{	conf_file	}}"

											mode:	0644

											notify:	restart	nginx

											-	name:	install	home	page

											template:

											src:	index.html.j2

											dest:	/usr/share/nginx/html/index.html

											mode:	0644

											-	name:	restart	nginx

											meta:	flush_handlers

											-	name:	"test	it!	https://localhost:8443/index.html"

											delegate_to:	localhost

											become:	false

											uri:

											url:	'https://localhost:8443/index.html'

											url:	'https://localhost:8443/index.html'

											validate_certs:	false

											return_content:	true

											register:	this

											failed_when:	"'Running	on	'	not	in	this.content"

											tags:

											-	test

										...

Running	the	Playbook

As	before,	use	the	ansible-playbook	command	to	run	the	playbook:

$	ansible-playbook	webservers-tls.yml

The	output	should	look	something	like	this:

PLAY	[Configure	webserver	with	Nginx	and	TLS]

TASK	[install	nginx]

ok:	[testserver]

TASK	[create	directories	for	TLS	certificates]

changed:	[testserver]

TASK	[copy	TLS	files]

**

changed:	[testserver]	=>	(item=nginx.key)

>changed:	[testserver]	=>	(item=nginx.crt)

>TASK	[install	nginx	config	template]

changed:	[testserver]

TASK	[install	home	page]

ok:	[testserver]

RUNNING	HANDLER	[restart	nginx]

**

changed:	[testserver]

TASK	[test	it!	https://localhost:8443/index.html]

ok:	[testserver]

PLAY	RECAP

testserver	:	ok=7	changed=4	unreachable=0	failed=0	skipped=0	rescued=0

ignored=0

Point	your	browser	to	https://localhost:8443	(don’t	forget	the	s	on	https).	If

you’re	using	Chrome,	you’ll	get	a	ghastly	message	that	says	something	like,
“Your	connection	is	not	private”	(see	Figure	2-4).

Figure	2-4.	Browsers	such	as	Chrome	don’t	trust	self-signed	TLS	certificates.

Don’t	worry,	though.	We	expected	that	error,	since	we	generated	a	self-signed
TLS	certificate:	many	browsers	only	trust	certificates	issued	by	a	certificate
authority.

Conclusion
We’ve	covered	a	lot	in	this	chapter	about	the	“what”	of	Ansible	in	this	chapter,
for	instance	describing	what	Ansible	will	do	to	your	hosts.	The	handlers
discussed	here	are	just	one	form	of	control	flow	that	Ansible	supports.	In	chapter
9	you’ll	learn	more	about	complex	playbooks	with	more	loops	and	running	tasks
conditionally	based	on	the	values	of	variables.	In	the	next	chapter,	we’ll	talk
about	the	“who”:	in	other	words,	how	to	describe	the	hosts	against	which	your
playbooks	will	run.

1 	Although	we	call	this	file	nginx.conf,	it	replaces	the	sites-enabled/default	Nginx	server	block	config
file,	not	the	main	/etc/nginx.conf	config	file.

2 	If	you	do	encounter	an	error,	you	might	want	to	skip	to	Chapter	16	for	assistance	on	debugging.

About	the	Authors

Bas	Meijer	(he/him)	is	a	freelance	software	engineer	and	devops	coach.	With	a
major	from	the	University	of	Amsterdam	he	has	been	pioneering	web
development	since	the	early	nineties.	He	worked	in	high-frequency	trading,
banking,	cloud	security,	aviation,	and	government.	Bas	has	been	an	Ansible
Ambassador	since	2014,	and	was	selected	too	as	a	Hashicorp	Ambassador	in
2020.

Lorin	Hochstein	is	a	senior	software	engineer	on	the	Chaos	Team	at	Netflix,
where	he	works	on	ensuring	that	Netflix	remains	available.	He	is	a	coauthor	of
the	OpenStack	Operations	Guide	(O’Reilly),	as	well	as	numerous	academic
publications.

René	Moser	lives	in	Switzerland	with	his	wife	and	three	kids,	likes	simple
things	that	work	and	scale,	and	earned	an	Advanced	Diploma	of	Higher
Education	in	IT.	He	has	been	engaged	in	the	Open	Source	community	for	the
past	15	years,	most	recently	working	as	an	ASF	CloudStack	Committer	and	as
the	author	of	the	Ansible	CloudStack	integration	with	over	30	CloudStack
modules.	He	became	an	Ansible	Community	Core	Member	in	April	2016	and	is
currently	a	senior	system	engineer	at	SwissTXT.

1.	 1.	Introduction

a.	 A	Note	About	Versions

b.	 Ansible:	What	Is	It	Good	For?

c.	 How	Ansible	Works

d.	 What’s	So	Great	About	Ansible?

i.	 Simple

ii.	 Powerful

iii.	 Secure

e.	 Is	Ansible	Too	Simple?

f.	 What	Do	I	Need	to	Know?

g.	 What	Isn’t	Covered

h.	 Installing	Ansible

i.	 Setting	Up	a	Server	for	Testing

i.	 Using	Vagrant	to	Set	Up	a	Test	Server

ii.	 Telling	Ansible	About	Your	Test	Server

iii.	 Simplifying	with	the	ansible.cfg	File

iv.	 Kill	your	darlings

j.	 Moving	Forward

2.	 2.	Playbooks:	A	Beginning

a.	 Preliminaries

i.	 A	Very	Simple	Playbook

ii.	 Running	the	Playbook

iii.	 Playbooks	Are	YAML

b.	 Anatomy	of	a	Playbook

i.	 Plays

ii.	 Did	Anything	Change?	Tracking	Host	State

iii.	 Getting	Fancier:	TLS	Support

c.	 Conclusion

	1. Introduction
	A Note About Versions
	Ansible: What Is It Good For?
	How Ansible Works
	What’s So Great About Ansible?
	Simple
	Powerful
	Secure

	Is Ansible Too Simple?
	What Do I Need to Know?
	What Isn’t Covered
	Installing Ansible
	Setting Up a Server for Testing
	Using Vagrant to Set Up a Test Server
	Telling Ansible About Your Test Server
	Simplifying with the ansible.cfg File
	Kill your darlings

	Moving Forward

	2. Playbooks: A Beginning
	Preliminaries
	A Very Simple Playbook
	Running the Playbook
	Playbooks Are YAML

	Anatomy of a Playbook
	Plays
	Did Anything Change? Tracking Host State
	Getting Fancier: TLS Support

	Conclusion

