A PRACTICAL
GUIDE TO
ALURE
JEVOPS

IIIIIIIIIIII

A Practical Guide to
Azure DevOps

Learn by doing

Third Edition

Milindanath Hewage
Copyright © 2019 by Milindanath Hewage

All rights reserved. No part of this book may be reproduced, distributed or
transmitted in any form or by any means without the prior permission of the
author.

The example organizations, products, projects depicted in this book are
fictitious. It has no association with any real organization, product or project.

Although every step has been taken to maintain the correctness of the
content, the author assumes no responsibility for errors or omissions.
Information contained in this book is sold without warranty, either expressed
or implied. The author of the book will not be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

2019-12-24

Contents

Acknowledgements

Introduction

Chapter 1 Creating an Azure DevOps Organization

Other organizational settings
Projects
Users
Billing
Extensions

Security -> Policies

Security -> Permissions
Boards - > Process

Summary

Chapter 2 Creating Your First Project
Basic
Agile
Scrum
CMMI (Capability Maturity Model Integration)

Project Settings
General -> Overview

General -> Teams
General -> Permissions
General -> Service hooks

Boards -> Team configuration
Boards -> GitHub connections

Repos -> Repositories

Repos -> Cross-repo policies
Summary

Chapter 3 Azure Boards
Work items

Details tab

History tab

Links tab

Attachments tab
Boards

Backlogs
Sprints
Planning the sprint
During the sprint
Queries
Summary

Chapter 4 Azure Repos

MyQuiz — a Vue.js project

Step 1: Install node and npm

Step 2: Verify node and npm

Step 3: Install vue-cli

Step 4: Install Visual Studio Code

Step 5: Create the project using Vue CLI

First commit to Azure Repos
Files

Commits

Pushes

Branches
Trunk-based branching
Git flow

Tags
Pull requests

Summary

Chapter 5 Azure Pipelines
Continuous Integration (CI)

Introduction to YAML,

Structure of the basic build definition
Extend the build pipeline

Save and run the build pipeline

Edit the build pipeline

Build summary
Approve pull request

Disable the pipeline
Continuous Delivery (CD)

Release environment
Create the release pipeline

Trigger release pipeline

Finalize the Azure app service task
Rename the build pipeline

Release options and variables

Edit release pipeline
End to end testing of the pipelines

Create a new task

Create a new branch for the task

Fix the bug
Commit and push changes
Create the pull request

Build pipeline kicks off
Release pipeline kicks off next
Combine the pipelines
Extract the yaml code from the release pipeline

Add the yaml code to the build pipeline
Test and Production environments

Plan the release process

Test stage

Production stage

Approvals
Summary

Index

Bibliography

Acknowledgements

I would like to thank my wife, Viveka for being so patient during my busy
days writing this book. This book would not have been a reality without my
parents who brought me up to this level. So, my wishes go to them for a long
and a happy life ahead.

I would also like to thank both Vindya & Viveka for proofreading the content
of the book. Finally, I would like to thank you who have spent time and
money to buy this book and I hope it will be a useful tool in your Azure
DevOps journey.

Introduction

D evOps has been a major topic among developers, testers, project
managers and many others involved in building software products

nowadays. The general term DevOps is basically the combination of
Development(Dev) and Operations(Ops). However, there are many
definitions of DevOps. Microsoft defines DevOps as

the union of people, process, and technology to
continually provide value to customers[1]

Azure DevOps has been created by Microsoft to achieve the core objectives
of this definition.

There are many books written on the subject Azure DevOps. However, this
book has taken a different approach. Rather than going into details of so
many technical information, this book mainly focuses on the practical
aspect of Azure DevOps for beginners. Therefore, you will see theoretical
explanations only when needed to explain a certain scenario. I have tried my
best to keep things very simple and always focus on completing a specific
task using Azure DevOps.

In this edition, I focus on discussing the core features of Azure DevOps such
as organization, projects, Azure Boards, Azure Repos and Azure Pipelines.
As the Azure DevOps team regularly releases new updates to the product, I

will try to update the book regularly to cover new topics in future editions of
the book.

Who this book is intended for?

This book is mainly intended for project managers, release managers,
stakeholders and developers who are beginners to Azure DevOps and are not
interested in reading detailed technical descriptions but rather would like to
start things by doing. This will also help advanced users to understand some
advanced concepts in a simple manner. Screenshots and images have been
added as visual support for understanding each topic.

Requirements to run the examples.

All the examples used in this book are done using a PC with Windows 10 Pro
operating system. Although it is not mandatory, it will be easy to follow
along if you have a Windows PC. All the examples are done using Azure
DevOps Services which is the cloud-based service for Azure DevOps.

Conventions used in this book

Q Helpful tips will be shown like this

Your feedback on the book

As a reader of this book your feedback is very significant to improve the
future versions of the book. So, please send your comments to

milindanath@viminorge.com

Chapter 1
Creating an Azure DevOps
Organization

C reating a new organization is the first thing you must do to get started
with Azure DevOps. For that, you have to have a Microsoft account. If

you do not have one yet, you can create an account during the creation of
your first organization.

Navigate to https://dev.azure.com. Here, you have two options to select. You
can either click on the Start free button or if you already have a GitHub
account you can click on the Start free with GitHub button. In this case, I
am going to select the Start free button.

mailto:milindanath@viminorge.com
https://dev.azure.com

Azure DevOps

Plan smarter, collaborate better, and ship faster with a set of
modern dev services.

Start free with GitHub >

Already have an account?

Sign in to Azure DevOps >

Figure 1: Azure DevOps Home Page

You will be redirected to the sign in page. If you do not have a Microsoft
account, there is a possibility to create an account by clicking on the Create
one! link.

B Microsoft
Sign in

|E|“1.ail phone, or Skype

Mo account? Create one!
Can't access your account?

Sign in with a security key (7)

O Sign in with GitHub

Figure 2: Sign into Microsoft account

Once you have successfully logged in, you can create your first project as
shown in Figure 3.

l':J Azure DevOps
|

Get started with Azure DevOps

Project name

Practical Guide

Project visibility
Private A

p

Choosing Continue means that you agree to our Terms of

Service, Privacy Staternent, and Code of Conduct.

+ A

| would like information, tips, and offers about Azure

DevOps and other Microsoft products and services, Privacy

Statement.

Figure 3: Create a project

Provide a name for your project and set the visibility according to your
preference. You can select from Private or Public. Select Public if you want
everyone in the public to interact with your project. Select Private if you
want a closed-source project, where you and only those you give access to,
can interact with the project. Once you have done all the necessary changes
click on the Continue button.

A new organization will be created together with this new project. Now we
are all set to start work in Azure DevOps. You have your first organization
and the first project. However, the organization name might be selected
randomly by Azure DevOps. Let us see how we can change the given

organization name.

Navigate to the home page by clicking on the Azure DevOps logo. Now
click on the Organization settings link on the bottom left hand corner.

I":J Azure DevOps

Mew organization

£9¢ Organization settings

Figure 4: Azure DevOps logo & organization settings

You can change the name of your organization in the Overview section.
Moreover, the owner of the Microsoft account who created the organization
will be the owner of the organization. But if you want, you can transfer the
ownership to someone else.

After you have done all these necessary changes to the new organization
click on Save.

l:l Azure DevOps Overview £ Search

Organization Settings Overview
PracticalOrg Name
L Search Settings PracticalOrg
General m Use the new URL: https://dev.azure.com/
i Learn more about URLs
B Overview
& Projects Privacy URL
& Users ‘ |
Learn more about the Privacy URL
W Billing
Description
E auditing i
e = Add organization description
= Global notifications
b Usage
Time zone
<% Extensions
uTC w
& Azure Active Directory
Region
Security
West Europe
8 Policies Learn more about the Region
61 Permissions m) Changes made will affect all projects and members of the organization

Figure 5: Organization Settings - General - Overview

You will see the following dialog box after clicking on the Save button.
Accept the new changes by typing in your new organization name as shown
in Figure 6.

AL UK AT F OO I TEEO SO S RS b r 1

Change organization name

Changing your organization name has several side effects. Please read the following before you
proceed.

Save all your work and ensure that nobody is using the service. The existing organization URL
https://dev.azure.com/| R/ il not be redirected. Workspaces and connection strings
will need to be updated to point to the new URL. Learn more

Current name: IR

Retype new organization name

‘ PracticalOrg|

(] 1understand the consequences of renaming this organization.

Cancel

Figure 6: Change organization name

The new URL for your organization takes the form
https://dev.azure.com/{org.name}. For example, in this case it will be
https://dev.azure.com/practicalorg

Other organizational settings

There are number of settings that you can configure for your organization. In
this section, let us focus on some of the most important and most used
settings.

Projects

This section shows a list of all the projects associated with the selected
organization. In addition to that, you can create a new project, rename the
project, delete selected projects or search for existing projects in the
organization.

https://dev.azure.com/practicalorg

Organization Settings

PracticalOrg PrOJeCtS % Filter projects
/O Search Settings

Total 1 il Delete
General

Name T Description Last Proc Visib.
B Overview
& Projects | ° PracticalGuide A practical guide to Azure DevOps A g Prac.. Priv..
£ Users

& Rename

W Billing

[Delete Project
B Global notifications

Figure 7: Projects Settings

Users
All the users added to the organization are displayed here.

General

Y Filter users Access Level » AAD User Type v
B Overview
& Projects
£ Users |
Name T Access Level Date Added
' Billing O
E Auditing 0 9 Eric Martin Basic 12/27/2019

E Global notifications

Figure 8: List of users connected to the organization

You can add new users to the organization by clicking on the Add users
button. However, you need to have administrator rights to perform this type
of operation.

— == = = —

Add new users X

Users
Q Users

Access level

Basic N

Add to projects

Send email invites

Figure 9: Add new users

First, type in the email of the person you want to add as a new user, and then
select the user’s access level. At the time of writing this book, for the free
plan of Azure DevOps Services, you can add maximum of 5 free users under
the access level Basic. Refer to section Billing for more information. In
addition to that, you can specify on which projects, this user will be working
on using the Add to projects dropdown. At the end, you can check Send
email invites to notify the user about the invitation. Once the user has
accepted the invitation, he/she will be added to the organization.

Billing

You can set up your billing information here. It is free for the first 5 Basic
users. However, you have to setup billing if your team has more than 5 Basic
users. You get 1800 (30 hours) free minutes of Microsoft Hosted CI/CD
pipelines per month, and 1 Self-Hosted CI/CD. With this plan, you can only
run one job at a time. In addition to that, you will get 2GB free storage for the
Artifacts. You can find more information about pricing and subscriptions at
https://docs.microsoft.com/en-us/azure/devops/organizations/billing/billing-
fag?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts

https://docs.microsoft.com/en-us/azure/devops/organizations/billing/billing-faq?view=azure-devops&tabs=new-nav&viewFallbackFrom=vsts

Organization Settings

PracticalOrg Bllllng
O Search Settings Billing has not been set up for this organization. Access will be available up to free tier
g 9 p g P
limits.
General
B Overview
=1 Projects Pipelines for private projects Free Paid
£ Users
MS Hosted CI/CD 2 1800 minutes 0
= Billing
. Self-Hosted CI/CD 2 1 0
[El Global notifications
bh Usage Visit parallel jobs for full details on free pipelines and public concurrency
<2 Extensions
& Azure Active Directory
Boards, Repos and Test Plans Free Paid
Security
s Basic users(= 5 0
@ Policies
& Permissions Basic + Test Plans 2 0

Figure 10: Billing settings under organization

Check Azure DevOps home page for latest
O information. At the moment the pricing

information is located at
https://azure.microsoft.com/en-

ns/nricina/details/devons/aziire-devons-services/

Extensions

You can add extensions to your projects using the Azure DevOps
marketplace. Click on the Browse marketplace button to see extensions
available.

Organization Settings .
Extensions Security Browse marketplace

PracticalOrg

Installed Requested Shared Y
/O Search Settings

General
No installed extensions were found matching your criteria.
Overview

=t

=1 Projects

£ Users

Y Billing

[El Global notifications

bh Usage

<3 Extensions

Azure Active Directory

Figure 11: Install extensions at organization level

For example, if you want time tracking for your tasks you can get the
extension “timetracker”.

timeshee‘d X

3 Results Showing: All categories ~ H

%

; O
Timesheet Timetracker SSW TimePRO
CETAS INFORM! SME Tpace = 12K S5W = 11K
Use hot reload and debug The complete solution to Stop wasting time entering
directly in W5 Code track and manage working timesheets, TimePRO lets you
time on work items. add your timesheets for the
FREE L FREE TRIAL * 7 FREE

Figure 12: Azure DevOps marketplace

Security -> Policies

Here you can set up your policies with regards to security. For example, if
your organization does not allow any public projects, then you can turn off
Allow public projects option.

Organization Settings

Policies
PracticalOrg
0]) @ Beginning March 2nd 2020, Azure DevOps will no longer support Alternate
Search Settings Credentials authentication. You must transition to a more secure

authentication method to avoid this breaking change in your DevOps
General workflows. We recommend PATs. Learn More
B Overview
S B Application connection policies
T (s off Alternate authentication credentials @
W Billing

Third-party application access via OAuth

[E Global notifications On pAPere
bh Usage

on SSH authentication @

<% Extensions

Azure Active Directory
Security policies

Security
on Allow public projects @
@ Policies
£ Permissions off Enable Azure Active Directory Conditional Access Policy Validation @

Figure 13: Security policies

Security -> Permissions

You can add groups to your organization and give them permission on
different areas. For example, whether a group/user can create new projects or
delete an existing project etc.

Organization Settings

PracticalOrg
L search Settings

General

Overview

Projects

231

&

£ Users
2 Billing
=

Global notifications
bh Usage
& Extensions

Azure Active Directory

Security

8 Policies

& Permissions

Boards - > Process

Permissions

Groups Users

Project Collection Admini...

Project Collection Build S...

Project Collection Proxy S...

Figure 14: Security permissions

o Project Collection Build A...

% Search groups

New Group

Description

Members of this application group car
perform all privileged operations on tr
Team Project Collection.

Members of this group should include
accounts for people who should be ab
administer the build resources.

Members of this group should include
service accounts used by the build sen
set up for this project collection.

This group should only include service
accounts used by proxies set up for thi
team project collection.

Here you can see the work item processes defined in Azure DevOps. You can
customize these processes by creating inherited process if necessary. More
information about these processes can be found in Chapter 2.

B Overview Al processes Y Filter by process name
@ Help
= :
il Processes Fields
£ Users
Name Description
W Billing
o ~ £ Basic (default) This template is flexible for any proce
[El Global notifications
bl Usage T PracticalOrg Basic
42 Extensions ‘ : : . ;
O Agile This template is flexible and will work
Azure Active Directory
& Scrum This template is for teams who follow
Security
& CMMI This template is for more formal proje
B Policies

8 Permissions

Boards

s Process

Figure 15: Work item process settings

Summary

In this chapter, we created our first organization. This is the start of a long
journey into Azure DevOps. In addition to creating the organization, we
learned about some of the settings available at the organization level. So, in
the next chapter, let us move on to create a project within the created
organization.

Chapter 2
Creating Your First Project

I n the previous chapter, we were prompted to create a project during the
process of creating a new Azure DevOps account. But in this section, I am
going to create a new project from scratch.

Click on the New project button on the top right-hand corner to navigate to
the new project creation page.

W Filter projects

Figure 16: New project button

Provide a suitable name and a description to your project and make it either
Public or Private. Here, you have the possibility to select your version
control system for versioning your project resources. By default, it is set to
Git, which is a distributed version control system. If you prefer a centralized
version control system, then you can use the TFVC option.

In addition to that, you can select which work item process you prefer to

Create a project to get started

Project name *

Description

Visibility
@

Public

Anyone on the internet can
view the project. Certain
features like TFVC are not
supported.

Version control @
Git

=

Private

Only people you give
access to will be able to
view this project.

~ Advanced

Work item process (2

Basic

Figure 17: Create project dialog

choose. There are 4 main options to choose from.

W

4.

Let us have a brief look into these different work item processes.

Basic

Basic

Agile

Scrum
CMMI

This is the simplest model you can choose out of the four. It has only 3 work
item types (WITs)

Portfolio backlog :
1. <«—Epic
Product backlog
2. | <« Issue
3. Task

These 3 work item types help us to organize our work in a hierarchical way.
Task is the smallest unit. Issue is the parent of Task, and Epic is the parent
of Issue. Epic comes under portfolio backlog which lets you to organize your
work starting from a high-level business perspective. Following are some
examples for Epics.

e Improve the user friendliness and user experience
e Convert the paper-based quiz into a web-based application

Issues on the other hand, focus more on implementing the Epics on a feature
basis. An issue can be considered as a shippable feature of the product.
Following are some examples of Issues.

Add a login functionality

Create a notification feature

Add new icons to improve look and feel
Design a new colour scheme

Issues can be further divided into small tasks. Usually, these tasks should not
take more than one day to complete. So, the whole purpose of each task is to
implement/fix a given issue.

Agile
This is good for teams using Agile planning. Here, the development and test
activities are tracked separately.

Following are the main WITs associated with Agile process.

1. Epic
2. Feature

3. User Story
4. Bug
5. Task

Epic and Feature are on the top level, and User Story and Bug can be
managed separately. You can create Tasks for both User Story and Bug. Like
the Basic process, you can group your work items according to your needs.
Here, you have more flexibility to organize your work than the Basic process.
However, the concepts are basically the same described under the Basic
process.

Scrum

If your team is supposed to practice Scrum, then this is the most suitable type
for you. It is quite like Agile where User Story is replaced by Product
Backlog Item (PBI), and Issue is replaced by Impediment.

CMMI (Capability Maturity Model Integration)

This process can be used if your team follows a more formal approach that
requires a framework for improving the process and decision making. It is
possible to track requirements, change requests, risks and reviews.

Now, we have some understanding about the work item process. So, in this
project, I am going to select the simplest process - Basic. Click on the Create
Project /Save button to create the new project.

Now you have created your first Azure DevOps project for your organization.
The project summary page is shown in Figure 18.

PracticalGuide B private

Project stats

9 No stats are available at this moment
| i .! »

Setup a service to see project activity.

Welcome to the project!

What service would you like to start with?
Boards Repos Pipelines Test Plans

Artifacts
Members 1

or manage your service:

Figure 18: Project summary page

Project Settings

In this section, I will highlight some of the most important settings under the
project section. To access the settings page, navigate to your project and click
on the Project Settings link on the bottom left hand corner.

l':l Azure DevOps

PracticalGuide +

ﬂ Overview

‘ ™ Summary

@ Dashboards

Bl wiki

503 Project settings

Figure 19: Project settings link

General -> Overview

Here, you can rename your project, change the work item process and
visibility of the project etc. However, be careful when changing the work
item process, as it can be a breaking change and you have to manually fix
states of your tasks.

In addition to that, you can add more administrators to the project by clicking

on the Add administrator button.

Project administrators

@ Milindanath Hewage
milind i
o Viveka Edirisinghe

Add administrator

Figure 20: Add administrator

Another nice feature that you can change here is the Azure DevOps services.

Azure DevOps services

Boards m on
Flexible agile planning with boards and cross-product issues
g oo @ o
Repos, pull requests, advanced file management and more
Pipelines

; On
Build, manage, and scale your deployments to the cloud m
Test Plans D on
Structured manual testing at any scale for teams of all sizes
Artifacts
Continuous delivery with artifact feeds containing NuGet, npm, Maven, D On

Universal, and Python packages

Figure 21: Azure DevOps services

Here, you can turn on/off different Azure DevOps services. For example, if
you only need a place to store your source code, then you can only turn on
Repos and turn off all the other features.

General -> Teams

You might have several teams working on the same project. For example, a
developer team, sales team or a support team. That can be done under this
section. In addition to that, you can add users to different teams.

Project Settings Teams

PracticalGuide
% Filter teams
General

B Overview
Q

Teams

— Name | Description Membet
Permissions

Notifications)
PracticalGuide T... Default The default project team &1
Service hooks

Dashboards

H = il »

Figure 22: General -> Teams settings

General -> Permissions

This section is more or less the same as the permission in the organization
settings. But in this case, these permissions you set here will only be
applicable to the current project.

General -> Service hooks

Here, you can integrate with third party software/applications. For example,
say your support team uses Zendesk as their software to register tickets
considering customer issues, then you can integrate those tickets with Azure
DevOps using a service hook.

NEW SERVICE HOOKS SUBSCRIPTION

Service

Select a service to integrate with. Discover more integrations

Grafana Zendesk

HipChat Zendesk is a SaaS$ suite that offers help desk ticketing,

issue tracking, and customer service support.
HockeyApp

Supported events:
Work item commented an

Jenkins

Microsoft Teams
Supported actions:
Create a private comment in a ticket

MyGet
Office 365
Slack Learn more about this service
Trello

UserVaice

Web Hooks

Workplace Messaging Apps
Zapier

Zendesk

Previous Test Finish

]

Figure 23: Service hooks

Boards -> Team configuration
Here you can set which working days, the team is working on this project.

Project Settings Boards

PracticalGuide General lterations Areas Templates
General
Backlogs
B Overview g
See only the backlogs your team manages.
¥ Teams
Backlog navigation levels
&1 Permissions St
¥ I*° Epics
& Notifications 4 ¥ [ssues
& Service hooks
Dashboards Working days
Capacity and burndown are based on the days your team works.
Boards
Select days
[8 Project configuration ¥ Monday
% Team configuration B Tuesday
¥ Wednesday
) GitHub connections ¢ Thursday
¥ Friday
Repos ¥ Saturday
. o ¥ Sund
Repositories uncay

Figure 24: Working days under Team configuration

Boards -> GitHub connections

To connect your GitHub account, click on the button Connect your GitHub
account. After you have given authorization to GitHub to access the project,
then you can select which GitHub project you want to associate with this
project.

Connect GitHub with Azure Boards

ﬂ Link commits and pull requests to work items, and see the status of your
development from within Azure Boards.

Connect your GitHub account

-\3/ Alternative connection options
N
Y Personal Access Token
S
f — GitHub Enterprise Server

Figure 25: Connect GitHub with Azure Boards

Repos -> Repositories
Here you can either create a new repository or edit security, options and
policies of an existing repository.

Repos -> Cross-repo policies

If you want to protect certain branches of your source code, then you can use
this settings page. Click on the Add branch protection button to load the
modal dialog to add branch protection. For example, if you want to protect
the default branch (usually the master branch), you select the first option. If
your release branches are located in the releases folder, then you can use the
second option to protect all your release branches as shown in Figure 26.

Add branch protection X

Branches to protect

;s all of your repositories —~ _
- - & _J Protect the default branch of each repository

@ Protect current and future branches matching a specified pattern

releases/*

No matching branches found

Note: When defining branch protection policies, the branch

) pattern you specify doesn't have to exist in any repositories yet.
.

N
rotect matching branches

juest completion requirements to branches matching a |
across all of your repositories.

+ Add branch protection

Figure 26: Add branch protection

After you have done that, you get more options to protect your branches. For
example, you can add a minimum number of reviewers to approve a certain
pull request to that branch. In addition to that, you might always want every
commit to the branch be linked to an associated work item. Likewise, you can

apply many policies according to your need.

Summary

In this chapter, we investigated creating a new project and some of the
settings that we can use to control the project structure and behaviour.
Although there are so many things to discuss in these settings, the focus of
this book is to minimize details and do some practical tasks with the tool.
However, we will come back to some of these settings when we work on
Azure Boards, Repos and Pipelines.

Chapter 3
Azure Boards

Azure boards is the place, where you can track the work of your team, using
work items. In this book, I have used the Basic work item process, which is
the simplest work item process in Azure DevOps which contains only 3 work
item types (WITs).

1. Epic
2. Issue
3. Task

To access Azure Boards, navigate to your project and click on Boards menu
item on the left.

g:ﬁ Boards Boards

Repos [Work items
E%= Boards

f Pipelines = Backlogs

A Test Plans O, Sprints
=¥ Queries

F! Artifacts

Figure 27: Azure Boards menu

There are 5 sub menu items under Boards.

1. Work items
2. Boards

3. Backlogs
4. Sprints
5. Queries

Work items

Use this, when you want to create a new work item of any type or see all the
work items you and your team members have created. To create a new work
item, click on New Work Item button.

Throughout this book, we use a simple application called MyQuiz to
demonstrate real world use of Azure DevOps. However, before starting with
the source code, it is quite important that we plan the work and create a
backlog of tasks. As mentioned above, click on the New Work Item button
to create your first work item. Then select Issue as the work item type.

In Basic Work Item Process, there is a hierarchy
between work item types. Epic is the top level
and Task is the lowest. You can decide if you use
the Epic level or Issue level as the top work item
type for your project.

\

Work items

Recently updated

M Epic

N Filter by keyword

Figure 28: Creating a new work item

lssue

Task

-+ New Work Item ~ 2 1

New Work Item dialog box for an Issue is shown in Figure 29. Let us try to
understand some of the important information that we need to fill in, when

creating a new work item.

1 Create a GUI for the application "1

@ Eric Martin (2 ¥ 0 comments Add tag
State ToDo |3 Area PracticalGuide | 4
Reason &) Added to backlog teration PracticalGuide\Sprint 1 5

Description | 7

Please create a simple GUI as the starting point of our application

Discussion | g S~

o

Planning

2 10
or

15 11

16

15 17
‘" Follow 217)
Updated by Viveka Edirisinghe: Dec 29, 2019

etails H | & [4) 1]

Deployment |12

¢

To track releases associated with
this work item, go to Releases and
turn on deployment status
reporting for Beards in your
pipeline’s Options menu. Learn
more

Development ' 13

+ Add link

Link an Azure Repos commit,
pull request or branch to see the
status of your development. You
can also create a branch to get
started.

Related Work 14

+ Add link ~

Parent

web site to MyCQuiz

Figure 29: Create new issue window

It is mandatory to provide a title for the new issue 1" . Then, you can assign

it to a particular member of your team 2 Leaveitas “unassigned” if you
have not decided who is going to work on the issue. By default, the initial

state of every issue is set to “To Do” 3 . Basic work item process provides
you 3 states, To Do — Doing — Done. You can later change into a different
state when you are working on the issue. In addition to that, you can assign

this to an Area 4 and specify in which iteration this task is going to be fixed

5 . As we have not planned any iterations yet, we can keep the default value
for now.

Create new work item page is divided into 4 sections 6

Details tab
The details tab is selected by default. Inside that, there is the Description

area / , where you can describe the issue in detail. If you need to collaborate
with other members of the team and want to make any comments related to

the issue, then you can use the Discussion section. 8

Under the Planning section 9 you can specify the Priority 10 (1 is the

highest priority) of the task and the Effort 11 you need to put to complete
the issue. You can select a unit best suits you, for example it could be in
hours or days. Setting a value to effort is important when we break our work
into small iterations.

If you select a work item of type Task, you will
get the option to specify the Remaining Work
instead of Effort.

O Planning
— 2
oot)
-

Development

10

Deployment section 12 will show all the releases that are associated with

this work item. Under Development 13, you can either link a commit done
to the source code, a branch of the source code or a pull request, or it will be
automatically linked when there is a development link related to this work

item. Under Related Work M, it shows the other work items that have any
relationship to this issue.

History tab
Under history tab, you can see all the changes done to this issue throughout
its life cycle, via graphically and textually.

Links tab

Here, you have the possibility to link an existing work item, a commit to the
source code, branch, a pull request etc. In other words, all the links connected

to Development 13 and Related Work 14 will be shown under this section.

Attachments tab
The last tab is the attachments tab, where you can attach any images,
documents etc. related to the issue.

On the top right-hand corner of the window, you will find some other actions

regarding the issue. For example, you can follow this issue 15 and get

notifications when a certain event occurs related to the issue. Notification

settings can be modified by clicking on the gear icon 16 pext to follow

button. In addition to that, there is a context menu 17 where you can perform
additional work related to the issue. These options are shown in Figure 30.
After you have filled all the necessary information, you can click on the Save
& Close button to save the changes you made.

¥ Save 8 Close ~ @ Follow &) 9 e

B

T

L
m
o

T 0 X 0§ &

]

Mew linked work item
Change type...

Create copy of work item...
Email work item

Celste

Templates b
Mew branch...

Request feedback
Customize

Keyboard shortcuts

Figure 30: Context menu for additional functionality

Once you have created an Issue, it will be shown in the Work items list.

Work items

Recently updated + NewWork ltem ~ ¢ OpeninQueries /¥ Column Options T Import Work ltems] Recycle Bin = N AL
S Filter by keyword Types »~ Assignedto States ~ Area ™ Tags v K
ID Title Assigned To State Ares Path
12 Create a heading for the appliction ' Milindanath Hewage #® Doing PracticalGuide
5 Create a wireframe using Adobe XD ‘ Eric Martin ® Doing PracticalGuide

Figure 31: Created issues shown in a list

You can change the work item type by clicking on the ellipsis icon next to the
title and then clicking on the Change type menu item.

Each work item has a unique number as its
identifier. This number increments sequentially
for every work item you create in your

organization. Keep in mind that it does not start
from 1 for each project as it is organization
based.

To Do

£ Edit..

£+ Assign to >

'y Copy to clipboard

XK Delete

= Templates >
Add link b
Move to iteration b

Change parent..

& Change type...
[Z> Move to team project...

<1 Email...

¥ MNew branch..

Figure 32: Change work item type

Then select the new work item type you want to change from the Type
dropdown menu. You can also add a reason why you change the type. Click
the OK button to complete the change process.

Change work item type

Select a work item type

=]
4
=]

Learn more about changing the type @

Cancel

Figure 33: Change work item type dialog

Boards

After you have created all the work items for the project, then you can view
those items in two different ways.

1. As a Kanban board or
2. As abacklog

By navigating to the Boards section, you can see a board view of your tasks
as shown in Figure 34.

E2 PracticalGuide Team - £
Board Analytics (3 View as Backlog B= Issues = ¥ @& A
To Do < Doing 0/s Done <
MNew item L

Bl 1 Create a GUI for the application

@ Eric Martin 15

State To Do

H 2 Create a source code repository for the

application

@ Eric Martin 4

State To Do

ﬂ 3 Create a new Question

@ Eric Martin E]

State To Do

Figure 34: Kanban Board view of the backlog

The board has 3 columns to match the 3 states provided by the Basic Work
item process. Those are To Do, Doing and Done. The board can be filtered
by either Issues or Epics. In Figure 34, it is showing only the Issues. It is
possible to create an Issue or an Epic using this board by clicking on the New
item button in the To Do column. Here, you type only the title and the rest
you can edit by navigating to the issue itself.

Board Analytics (2) View as Backlog
To Do £
Mew item pe

Figure 35: Creating a new item

Each Card on the board is associated with a context menu, where you can do
things, such as creating a task or a test case, edit title and so on.

To Do £ Doing
Bl Mew item)CJ
H 4 Create a timer functionality that restricts tin ===
usage
* Open
Priority 2
teration Path Sprint 1 /7 Edit title

b

Move to iteration
H 1 Create a GUI for the application

@ Eric Martin

i T
Pricrity 2

Add Task

+

Add Test

+

¥ Delete

H 2 Create a source code repository for the §* MNew branch...
apolication

Figure 36: Context menu for additional actions

If you select the Add Task item for example, then it will be shown inside the
card as shown in Figure 37.

H 1 Create a GUI for the application nes

@ Eric Martin 15

riorif) P

=
B

0/2

+ Add Task
Create a wireframe using Adobe XD

Create a color palette that can be used
throughout the site

Figure 37: Card of an issue listing all its sub tasks

You can customize the Board view according to your needs, as it is
configurable. Click on the gear icon on the top right-hand corner to do this.
You can customize your cards, Board and General settings on the Kanban
board.

Settings
Cards Rleles
Eeide | Show the important information to your team. Fields are editable directly on the card.
i Issue

Core fields
« Show ID
¥ Show Assigned To as:

Board Avatar and full name (default) '

¥l Show Effort

¥ Show Tags

Additional fields
Add up to 10 fields in the order that you want them to appear on the card.

= Field
General
Priority ~ X
Iteration Path v X

Cancel

Figure 38: Kanban board settings page

Backlogs

Backlogs is also another way of showing your work items. This view is
showing the work items in a list. Similarly, to Boards, you can filter items by
Issues or Epics. This backlog view has a side pane on the right-hand side
which can be used to plan your work items in different sprints and map your
issues to Epics. This can be turned off according to your wish. You can
switch between these two modes by clicking on either Mapping or Planning
as shown in Figure 39.

i
|

lssues

Mapping s
Drag and drop work items ==

Epics for PracticalGuic @) off

W Create awebsiteto @D on

@ on

« Mapping
Planning

Off

Figure 39: Backlog settings with Mapping and Planning options

Figure 40 shows the mapping side pane where you can drag and drop your
issues to an existing Epic.

2= PracticalGuide Team o

Backlog Analytics + New Work ltem (3 View asBoard /? Column Options - -- = lssues v T Y &
[Order 1D Title Assigned .
a _ _ _ Mapping x
1 2 3 Create a source code repository for the application ==« Eric Mart Drag and drop work items to map them to Epics.
2 1 > [l Create a GUI for the application +s+ Eric Mart
3 3 > [Create a new Question -« EricMart Epics for PracticalGuide Team ~ O
-+ 4 4 > Create a timer functionality that restricts time usage ==+ Eric Mart

Wi Create a web site to MyQuiz

Figure 40: Mapping issues to Epic

You can select multiple work items by clicking on
one issue on the list and holding the Shift key

while clicking on the last item you want to select.
Use Ctrl key to select multiple items from several

random rows. This way you can drag multiple
items to the Epic you want to group the issues
into.

Sprints
A sprint is a short iteration of your product life cycle. The definition of a
sprint given by the Scrum guide is as follows.

The heart of Scrum is a Sprint, a time-box of one month or less during which
a "Done", useable, and potentially releasable product Increment is created.
Sprints have consistent durations throughout a development effort. A new
Sprint starts immediately after the conclusion of the previous Sprint. [2]

So, the final goal of a sprint is to produce a releasable product increment.
Keeping that in mind, we have to plan our sprint. Usually, the duration of a
sprint is equal to or less than one month. Let us say, our plan is to have 2
weeks lengthy sprints.

In a sprint, you work on small tasks that usually
take less than a day to complete. So, remember

to add at least one Task to your issues in the
backlog.

First, navigate to Sprints sub menu under Azure Boards. The Basic process
has already created a sprint for us with the name Sprint 1. But it is not yet
configured properly. So, as the first thing, you need to define the start and the
end dates of the sprint. So, click on the Set dates link on the top right-hand
corner.

O, Sprint1 ~ g® Persom:All ¥ % @

Figure 41: Set dates for the sprint

Specify the dates as shown in Figure 42.

Edit iteration

Sprint 1
Sprint 1
29.12.2019 =
12.01.2020 |

Save and close Cancel

Figure 42: Edit iteration page

Planning the sprint

Planning the 2 weeks of the sprint is quite important to reach your goal at the
end of the sprint. First, go to the Sprints sub menu item and click on the gear
icon to set the working days of your sprint. As shown in Figure 43, we have
planned to work only on weekdays.

Settings

General

Working days

Capacity and burndown are based on the days your team works.
Select days

Monday
Tuesday
Wednesday
Thursday

S L R Wi YR

Friday
Saturday
Sunday

Figure 43: Working days settings

Suppose we have 2 developers working on the project and each of them is
working 6 hours a day. Click on the Capacity link to plan your sprint.

Taskboard

2 Collapse all

" |

Backlog | Capacity | Analytics -+ New Wor

To Do

ﬂ 4 Create a timer
functionality that restricts time

usage
@ Unassigned
shate To Do

Figure 44: Capacity planning link

As shown in Figure 45, the two developers working 6 hours a day and they

are both doing development. If one person is involved in several activities
like Design, Requirements, Deployment etc., then you can add them here as

well.

Taskboard Backlog Capacity Analytics + Adduser [Save %) Undo

User Days off Activity Capacity per day
@ Eric Martin 0 days Development : B

@' Milindanath Hewage 0 days Development : 6

Team days off 0 days These days off apply to the whole team.

Figure 45: Capacity planning for two members

Before the start of the sprint, Eric Martin says he is planning to have 2 days
off during the sprint. So, we have to take that into account and plan for that.
Click on 0 days link in front of Eric Martin to add that information.

Days off for: Eric Martin X
Start End Days off
31.12.2019 EH 01.01.2020 | 2
- Add additional days off Total 2

Figure 46: Day offs for individual team members

During the sprint planning meeting, both found that they have to participate
in another meeting not related to this project during the course of the sprint.
So, they need to exclude that day from the planning. So, click on the 0 days
link in front of the Team days off and set that date as a day off.

Start End Days off
01.01.2020 B 01.01.2020 E
+ Add additional days off Total 1

Figure 47: Days off for the entire team

Now the capacity planning is completed and click on the Save button to save
all your changes. Now click on the Backlogs sub menu under Azure DevOps,
and on the right-hand side you can see the Planning / Work Details panes.
Now you can drag and drop which Issues you will be fixing in Sprint 1.

= PracticalGuide Team - B
Backlog Analytics -+ NewWorkltem (@) Viewas Board 2 Column Options = lssues v Y 3 S
FH & Order D Title Ass
] . i Planning b
1 2 > B Create a source code repositary for the application ==+ Eric Mart _ . - ek = .
! Drag and drop work items to include them in a
2 1 » [Create a GUI for the application wee Eric Mart sprint.
3 3 > [Create a new Question == Eric Mart : 3
_ PracticalGuide Team Backlog

25 4 4 > H Create a timer functionality that restricts time usage s+ Eric Mart

Sprint 1 28.12.2019 - 12.01.2020
Planned Effort: 37 15 working days

04 9
T New Sprint

Figure 48: Backlog with planning

After you have assigned all the backlog item issues which will be considered
in the current sprint, go back to the Sprints sub menu. If you know who is
going to work on which task, then it is better to use the Work Details view to
directly assign tasks to the developers. You can drag and drop Tasks to the
team member who is supposed to fix that task, as shown in Figure 49.

make sure you have filled the effort values for
Issues, and the Remaining Work for the Tasks.

O Before assigning tasks to the team members,

In this example, the whole team has 102 hours to work during the sprint. Erik
Martin has 48 hours and Milindanath Hewage has 52 hours. So, it is the
responsibility of the team leader to distribute tasks according to the capacity.
Make sure not to overestimate or underestimate the work. Try to balance
when estimating work.

Taskboard Backlog Capacity Analytics + NewWork tem /¥ Column Options «-- ¢ sprint1 v FH Y @,
HE order 1D Title Assigt g
i . A F i Work details X
i 4 ~ Create a timer functionality that restricts time usage Eric b
Drag and drop work items to balance work across your team.
g on top of the window show the remaining time Eric b
2 1 v [l Create a GUI for the application Eric b Work =
5 Create 2 wireframe using Adobe XD Team_ I
3] Create a color palette that can be used throughout the site (55 of 102 h)
3 2 v [l Create a source code repository for the application Eric b ‘Work By: Activity i
9 Build the front end using Vue.js Miline Development I
10 Add the front end application to git Miline (55 of 102 h)
+ a 3 ~ [Create a new Question s Erich Work By: Assigned To -
11 Design how the question should be displayed Miline @ Unassigned
{15 h)
o Eric Martin
(10 of 48 h)

@ Milindanath Hewage

(30 of 54 h)

Figure 49: Sprint backlog for Sprint 1 with work details pane

During the sprint

Based on the priority of the tasks, team members can select which tasks they
are going to focus on first. Naturally, it is those with the highest priority
should be fixed at first. Unfortunately, in Azure DevOps, the backlog board is
not automatically sorted by Priority. So, you have to arrange your board by
dragging and dropping backlog items. Figure 50 shows a backlog board that
is ordered manually by its priority.

To Do ¢

[l 2 Create & scurce cade repositary for the
application

@ Eric Martin 4

Priority 1

teration Path Sprint 1

H 1 Create a GUI for the application

@ Eric Martin 15

Pricrity 2

teration Path Sprint 1

0/2

H 3 Create a new Question

Eric Martin 3
ity 3

teration Path Sprint 1

01

ﬂ 4 Create a timer functionality that restricts time

usage
Eric Martin 15
Pricrity 4
teration Path Sprint 1
01

Figure 50: Kanban board sorted by its priority

Once you select a specific item to work on, then drag the task from To Do
column to Doing column to indicate your team, that you are committed to
work on that task.

2 Collapse all ToDo 45h Doing 10 h

F |

ﬂ 2 Create a source code 10 Add the front end 9 Build the front end using
repository for the application application to git Vue,js
@ Eric Martin 20 h @ Milindanath He... 10 @ Milindanath He... 10
State To Do State To Do State @ Doing

|

Figure 51: State change from To Do -> Doing

You can move the Task to state Done once you have finished your work on
that task. When you move a task to the Done column, it automatically resets
the Remaining Work to 0.

Analytics

You can measure the progress of your sprint using the Analytics section.
Here, you can see the burndown trend of your work items in your Task
backlog. You can compare the ideal trend and the actual trend of your
team’s work. This might be very helpful to check, how you have planned
your work during a sprint and how successful you were doing that. As an
example, the burndown chart shown in Figure 52 which shows an
overestimated sprint, have failed to achieve the goal at the end of the sprint.

Burndown Trend @

Start Date End Date Backlogs / Work ltems Burndown on Advanced
12/9/2019 to | 12/20/2019 Tasks backlog v Sum of Remaining Work ~ | (] Show non-working days
12/9/2019 - 12/20/2019 Rernaining Work
Remaining
Completed ()0, Average ltems not Total Scope _
0/6 burndown 2 estimated O Increase 28'5
45

40

35

30

12/9/2019 12/10/2019 12/11/2019 12/12/201% 12/13/2019 12/14/2018 12/16/2019 12/17/2019 12/18/2019 12/19/2019 12/20/2019

M Remaining —- Remaining Capacity — Idzal Trend

Figure 52: Task burndown trend of a sprint

Queries

Both Work items and Backlog views we discussed above are predefined.
However, if you need to view your own customized backlogs according to
your need, then you can use Queries for that. Here, you can filter your
queries using different field values.

Navigate to the Queries sub menu item in Azure Boards. Then you will see
the page shown in Figure 53.

B reacticaisuide t Queries

B Cvenview Favorites Al T Mewquery T Import Work tem:
Tithe

E Boards
~ My favorites

w

L Work items

M Boards

B Backlogs

Ll Sprints

Figure 53: Queries page

You can create a new query by clicking on the New query button. Let us
create a query to list all the work items which has a priority value of 1. The
query should be as follows.

Type of query BB Flat list of work items
evel work items
And/

Or Field Operator Value

+ X Woaork Item Type W= v | [Any]
+ X And | State W= | [Any]
+ X And ~ || Priority = 1

=+ Add new clause

Figure 54: Query for listing Priority 1 work items

Run your query by clicking on the button Run query. Now we have one task
and one issue with Priority 1. So, the query produces 2 results. Once you are
satisfied with the results, you can save the query for later use. So, click on the
button Save query to save your query. When you save it, you either make it a
shared query or a private query which is only available to you.

D Work ltem... Title Aszzigned To State Tags

2 Issue H Create a source code repository for the application == Eric Martin ¥ To Do

1 Task Design how the question should be displayed Milindanath Hewa... ® To Do

Figure 55: Query results

If you save the query as a shared query, then you have the possibility to show
it in the project dashboard. In order to do that, click on Overview and then
Dashboards. Click on Add a widget if this is your first time working on the

Dashboards section.

& Edit () Refresh

This dashboard doesn't have widgets
just yet!

Add one or more widgets to gain visibility into your team's progress.

Add a widget

Figure 56: Add widget

Then search for the value “Query” in the add widget search box as shown in
Figure 57.

Add Widget
‘ pe Query{

Query Results

Displays rasults from a query.

Query Tile

Displays the total number of results for a
query.

Figure 57: Search for Query Results widget

Then add the Query Results widget and click on the gear icon to configure
your widget.

Query Results o8 | X

Configure widget

Rl

.a.

Figure 58: Configure widget

Under the settings, provide a suitable name to your widget and select the
query you saved under shared queries.

Configuration X

Query Results

[EN]
£
]

b
4 Shared Queries
First Priority Work ltems
Available columns Selected columns
¥ T
< &

Figure 59: Select and configure the widget

Now you will see the First Priority Work Items in the dashboard of your
Team project.

Azure DevOps

PracticalGuide

Overview

Summary

Overview Dashboards

HF LB PracticalGuide Team - Overview ~

AR Search

8 & Edit () Refresh

First Priority Work Items (2)

Dashboards

Wiki

Boards

Repos

D doead @ 0

Pipelines

b &

Test Plans

Summary

ID Work ... Title
2 Issue H Create a source code rep...
11 Task Design how the question ...

Assig... State

Eric M... To Do

Milind... To Do
View query

Figure 60: Query results shown in the widget

In this chapter, we learned the basics of Azure Boards. We used the Basic
work item process for our project and created our first work item using the
Work Items functionality in Azure Boards. Moreover, we went through the
Kanban board and backlog views. In addition to that, you learned how to plan
a sprint based on the capacity of your team. Finally, you learned how to
create customized queries and how to use them in Dashboards of your

project.

Chapter 4
Azure Repos

W hen you create a new project in Azure DevOps, you get a new git
repository with the same name as your project. You can see this when

you click on the side menu item Repos as shown in Figure 61. As
depicted in the figure, there are several ways you can store your source code
and other resources on a remote git repository.

g Azure DevOps PracticalOrg PracticalGuide Repos Files PracticalGuide
ﬂ PracticalGuide - = -
PracticalGuide is empty. Add some code!
ﬂ Overview
Clone to your computer
ﬁ Boards
m SSH https://PracticalOrg@dev.azure.com/PracticalOrg/PracticalGuide/_git D OR) Clone in VS Code v
Repos
B Fil Generate Git Credentials
les
R s @ Having problems authenticating in Git? Be sure to get the latest versian Git for Windows or our plugins for Intelli, Eclipse, Android Studio or Windows command line
&, Pushes
% Branches Push an existing repository from command line
o8
44 Pull requests git remote add origin I}
https://PracticalOrg@dev.azure.com/PracticalOrg/PracticalGuide/_git/PracticalGuide =
f Pipelines
A Test Plans
Import a repository
F= Artifacts

Import

Initialize with a README or gitignore

Add 2 README Add a .gitignore: None Initialize

Figure 61: Default Git repository

1. Clone to your computer. (From Azure Repos to your
computer)
Using this method, you can take a copy of the repository and
download it to a directory in your computer using the following
command, or you can directly clone it to Visual Studio Code.
However, in this case it will be an empty repository.

git clone {{your repository URL}}

2. Push an existing repository to Azure Repos (From your
computer to Azure Repos)
You can use this option if you already have your project files
inside a folder in your computer. Then it is a matter of just
transferring your files from your computer to Azure Repos. The
following two commands must be run from your project folder.

git remote add origin {{your repository URL}}
git push -u origin —all

3. Import an existing repository (From another Git Repo to
Azure Repos)
If you already have a git repository in GitHub, Bitbucket, GitLab
or any other location, then you can use this option to import that
repository to Azure Repos as shown in Figure 62.

To issue git commands, you will need to download
and install git software to your computer. For

windows, download it from https://qgit-
scm.com/download/win

Import a Git repository X
Repository type

® Git v
Clone URL *

e.g. https://github.com/Microsoft/vscode.git
Requires Authentication

Username

Password / PAT *

Figure 62: Import an existing repository

MyQuiz — a Vue.js project

Let us create our first application locally and then add it to the source control
using the second option shown above. This application is a simple node.js
application which uses the Vue.js framework.

The focus of this simple application is to
demonstrate you the different aspects of Azure

Repos and it is not intended to provide you any
coding or programming styles or best practices.

Step 1: Install node and npm

If you have not installed node.js on your computer, go ahead and install it
from https://nodejs.org/en/. At the time of this writing the version of node is
12.14.0. This will also install the Node Package Manager (npm) which will
be used to download different JavaScript packages for our project.

https://nodejs.org/en/

Step 2: Verify node and npm

Ensure that you have correctly installed node and npm by opening a
command prompt and typing the following commands. If you see the version
numbers, then your installation is successful.

$ node —version

$ npm --version

Step 3: Install vue-cli

Let us use vue-cli (Vue Command Line Interface) to create the project. First,
create a project folder in your computer. In windows, right click your folder
and open Git Bash terminal by clicking on the Git Bash Here link.

View >
Sort by >
Group by >
Refresh

Customise this falder...

Paste

Paste shortcut

Undo Rename Ctrl+£
Open in Yisual Studio

Git GUI Here

Git Bash Here

Open with Code

&

Share
View online

Always keep on this device

Clear space

Give access to >
Mew };
Properties

Figure 63: Open Git Bash

Write the following command to install vue-cli globally. The version used
here is 4.1.2

$ npm install -g @vue/cli

Step 4: Install Visual Studio Code
In this book, we use Visual Studio Code as our preferred code editor. But you
can choose any other code editor which is suitable for you.

Step 5: Create the project using Vue CLI
Let us try to create the project from Visual Studio Code. So, from your Git

Bash terminal, type the following command to open your current folder
inside VS Code.

$ code .

Click on the menu view -> terminal to open the built-in terminal in VS
Code.

Debug Terminal Help

Command Palette...

Open View...

Appearance

Editor Layout

Explorer
Search
SCM
Debug

Extensions

Qutput
Debug Console
Terminal

Problems

Toggle Word Wrap

/" Show Minimap

/" Show Breadcrumbs

Render Whitespace

Ctrl+Shift+p

Ctri+Shift+E
Ctri+Shift+F
Ctrd +Shift+G
Ctrl+Shift+D

Ctrl +Shift+X

Ctrl+Shift+U
Ctrl+5Shift+Y
Ctrl+g

Cirl+Shift+M

Render Control Characters

Figure 64: Open terminal in VS Code

Here, you can type the following command to create the project with the
name my-quiz-ui.

$ vue create my-quiz-ui
Then, it will ask you to pick a preset. Choose Manually select features.

Then, use the space key and arrow keys to select different features as shown
in Figure 65.

Check the features needed for your project:

) TypeScript
) Progressive Web App (PWA) Support
Router
Vuex
C55 Pre-processors
Linter / Formatter
Unit Testing
E2E Testing

(
(

Figure 65: Select features for the project

For use history mode for router? Set it to n. Next, you can select a linter
and select the ESLint + Standard config option.

Pick a linter / formatter config:
ESLint with error prevention only
ESLint + Airbnb config

ESLint + Prettier

Figure 66: Pick a linter/formatter config

Pick Lint on save as the next selection and save config files in dedicated
config files.

Pick additional lint features: (Press <sp: <a> to topggle all, <i» to invert selection)

{() Lint and fix on commit

Where do you prefer placing config for Babel, ESLint, etc.? (Use arrow keys)

In package.json

If you want, you can save this preset for later use. Once you have come to
this point your project is finally created. In the terminal, change your current
directory to the my-quiz-ui and you can build and run the project by running
the following command. The website can be viewed on by navigating to the
URL http://localhost:8000

http://localhost:8000

$ npm run serve

Welcome to Your Vue.js App

For a guide and recipes on how to configure / customeze this prosect
chack out the

Installed CLI Plugins
Essential Links

Ecosystem

Figure 67: How the website looks at the beginning

As this is not a book on Vue.js, we are not going to explain how Vue works
here. However, if you are interested, you can find more information on
https:/cli.vuejs.org/

First commit to Azure Repos

Now we have a running application as shown in Figure 67. However, this is
not exactly how we want our site to look like. Therefore, let us do some

https://cli.vuejs.org/

changes in the code to achieve something that we need.

Inside the component HelloWorld.vue, delete the HTML inside the first
<div> under <template> tag, and add the code shown in Figure 68.
(Although HelloWorld.vue is not a good starting file for the myQuiz project,
let us keep it simple for now).

~ OPEN EDITORS
X W Helloworld.vue src\compon... M
~ MY-QUIZ-UI

/ class="hello"

1>Hello world, Welcome to MyQuiz

Figure 68: Helloworld.vue changed

Now, our web site looks something like below.

Home | About

Hello world, Welcome to MyQuiz

Figure 69: Welcome to MyQuiz heading

It is quite important that there is a one-to-one mapping between an
application and a git repository. Now we have created our front-end part of
the application. So, it is an isolated application and it needs to live in its own

repository. So, navigate into the folder my-quiz-ui and you will see that it
already has got a .git folder, which means it has been initialized as a local git
repository. If you open a git bash terminal inside this folder you might see
that you are currently in the master branch of your git repository.

~/0Onedrive/Documents /Projects /MyQuiz,/my-quiz-ui (master)

Figure 70: Master branch selected

If you type git status, you will see all your uncommitted changes. In this
case, we changed only one file.

~/0neDri ocuments/Company-Yimi Norge/source 1z/my-quiz-ui (n
$ git status
On branch master
Your branch is up to date with 'origin/master'.

Changes not staged for commit:
e "git add <file> ' to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")

Figure 71: Changes made so far

Add your changes to the staging area using the following command.
$ git add src¢/components/HelloWorld.vue

Now you can commit the change to your local master branch. When you
commit, you can link the work item related to your commit. For example, the
goal of our change is to add a heading to our web site. Suppose the related
task for this change is “12- Create a heading for the application” as shown
in Figure 72.

12 Create a heading for
the appliction

@ Milindanath He... 1

Ltate @ Doing

— = . -

"
=

Figure 72: Work item related to the change

Write the following command with your #task-number and a meaningful
message describing the change.

$ git commit -m “#12 Created a heading for the application”

Now we have successfully committed our first change to the local git
repository. However, it is not available in Azure Repos yet, so that our team
members can see it. In order to achieve that, let us create a brand-new
repository in Azure Repos.

Click on the menu item Repos and select New repository in Azure DevOps
as shown in Figure 73.

PracticalOrg PracticalGuide Repos Files PracticalGuide

PracticalGuide is empty. Add some coc g

Clone to your computer ~+ MNew repository
T Import repository
HTTPS SSH https://Practical Org@dev.azure JR

¢0% Manage repositories

Generate Git Credentials

= ——— . . prmtEy E . : "
() Hawving problems authenticating in Git? Be sure to get the latest version Git for Windows or our plugins for Intelli), Eclipse, An

Figure 73: Create a new repository

Name it as MyQuiz.UI. Remember to uncheck the checkbox Add a
README and click on the Create button.

Create a repository X

Repository type

© Git v

Repository name *
MyQuiz.Ul

(] Adda README

Add a .gitignore: None v

Figure 74: Create a new repository dialog

In order to push our application to the Azure DevOps remote repository, use
the commands we discussed in the second option at the beginning of this
chapter.

Push an existing repository from command line

3 -

git remote add origin Iy
https://PracticalOrg@dev.azure.com/PracticalOrg/PracticalGuide/_git/MyQuiz.Ul -

Figure 75: Command to add an existing repository to Azure Repos

If you have not opened a Git Bash under the my-quiz-ui folder, then open it
and paste these two commands you copied earlier one after the other. You
have to probably authenticate yourself if you have not done so yet.

£ git remote add origin https://Pra Or racticall _git/MyQuiz. UI

2

git push -u origin --al]|

If everything goes well, you will see a different page in your Azure DevOps
repos page, once you do a refresh. This is shown in Figure 76.

PracticalOrg PracticalGuide Repos Files ¢ Quiz.U
© MyQuiz.Ul £
> W public Files
> src Contents History
[.browserslistrc
[.editorcenfig =
IS wsliticE public 2h ago 77e2ed39 init Milindanath Hewage
Bl oitigors src 1h ago 45b4e@33 #2 Created the basic web site for the app Milindanath Hewage
J5 babel.configjs [.browserslistrc 2h ago 77e2ed39 init Milindanath Hewage
[package-lockjson [.editorconfig 2h ago 77e2ed39 init ndanath Hewage
[packagejson JS .eslintrcjs 2h ago 77e2ed39 init Milindana
Ml README.md [.gitignore 2h ago 77e2ed39 init Milindanath Hewage
15 babel.configjs 2h ago 77e2ed39 init Milindan
[package-lockjson 2h ago 77e2ed39 init Milindanath b
[packagejson 2h ago 77e2ed39 init Milindan

ML README.md 2hago 77e2ed39 init Milindan

Figure 76: MyQuiz-UI repository after pushing the code changes

Remember that all your changes are pushed to the master branch of your
repository. So, now we have successfully pushed our code to Azure DevOps
Repos. Let us now look closer into each sub menu under Repos menu in
Azure DevOps.

Files

Here, you can see the name of the project and all the files in a tree structure
under that. You can also filter the results by the branch you need to see as
shown in Figure 77. In addition to that, you can search for a specific file or a
folder.

PracticalGuide Repos Files € MyQuiz.U
O MyQuiz.Ul E* master 3/ Type to find a file or folder...

Figure 77: Top of the Files section

Contents tab is selected by default and you see the same file structure in the
right-hand side as shown in Figure 78. You can also see the commits and
when you did the last change.

% master v [/ Type to find a file or folder...
Files gy Setupbuild [EEEEEEGTE
Contents History o
Name 1 Last change Commits
public Jan f8c938e@ init Milindanath Hewage
T Jan 12 C28b538b #13 Added checkboxf...
[browserslistrc Jan b f8c%38e8 init Milindanath Hewage

Figure 78: File contents

In the History tab, you can see all your commits to the repository. For

example, you can see the last commit we did for the task 12.

1* master / Type to find a file or folder...

Files

Contents History

Graph Commit

Merge branch ‘'master’ of https://viminorge.visualstudio.com/MyQuiz/_git/MyQuiz

\ 437decss ﬂ Milindanath Hewage Today at 8:50 Pl
Set up Cl with Azure Pipelines
g 79aea732 @ Milindanath Hewage Mon at 9:04 Ph
} “#12 Created a heading for the application
ed2312fe @ Milindanath Hewage Today at 8:30 PM

j init
St : 5 SRS

VT
[

Figure 79: Commits history

If you remember when we committed the change, we added #12 at the
beginning of the commit message. Now, if you navigate to Azure Boards and
navigate to task number 12, you will find a link to the commit. This can be
very useful to link your code changes to the tasks you are working on.

Deployment

To track releases associated with this work item, go to
Releases and turn on deployment status reporting for Boards
in your pipeline’s Options menu. Learn more

Development

+ Add link

o @ ed2312fe "#12 Created a heading for the application

(8]

=

SR e 1
i Tes afo

m

—

~ Related Work

+ fdd link ~

Parent

Figure 80: Link to the git commit related to the task

Commits
Under the commits section, you can see all the commits done to the whole
repository. It shows a graphical view in addition to the commit messages as

shown in Figure 81.

[

¥ master

Commits

Merge branch "master” of 4 ——
Set up Cl with Azure Pipelines

L} 3 2 @ v
“#12 Created a heading for the application
init

. taco3ges @)
Figure 81: Commits to the repository

Pushes

Pushes section under Repos shows all the pushes you have done to the
repository. If you expand a specific push, you can see all the commits related
to that push.

P master v

Pushes

Sat Dec 28 2019 (1 update)

@

Created at 45b4e033: #2 Created the basic web site for the app

45hdaf3i3 I ndanath Hewane Todaw 3t 11:4 F"
Ry =) - I s L AWal)e laggy at s

Figure 82: Pushes to the repository

Branches

When we are working in a team, we have to collaborate with other team
members and share the code with each other. That is why we are using Azure
Repos through Git repositories. Branches in Azure Repos provide a smooth
way to achieve this.

We have already worked with the master branch in our previous examples.
However, master branch itself is not enough for a better collaboration.
Therefore, we need to create branches off the master branch to work on
different work item tasks assigned to us through Azure Boards. To create a
branch from the master, you can navigate to Repos -> Branches and click on
the more icon on the right to get the context menu. Click on the link New
Branch.

Mew branch

i Delete branch

Figure 83: New branch from master

In the following modal dialog, give a name to your new branch, and select
master as the “Based on” option. In addition to that, you can link a work
item to this branch.

Create a branch

Mame *

users/milindanath/13

Based on
E—° master '
Work items to link 1 Clear all
Search work items by ID or title N
Task 13: Possibility to create a new question %

Updated Just now, @ To Do

Figure 84: Modal dialog for creating a branch

Then, click on the Create button to create you branch. The branch is created
under the folder users/milindanath as shown in Figure 85.
Branch

LY users/milindanath
G

:—"' master E'| B Default Compare

Figure 85: New branch hierarchy

Use a branch naming convention that matches
your team. For example,

. features/feature-id

. users/username/feature-id

. features/feature-name
. bugfix/description
. releases/release-number

We also need a suitable branching strategy based on the team and
environment we work on. Basically, there are two well-known branching
strategies used by teams.

Trunk-based branching
This is a very simple branching strategy with the following features.

1. Master branch is the central branch. (Completed work)

2. Create a feature branch from the master for all new features and
bug fixes. (Work in progress)

3. Merge feature branches into the master branch using pull
requests. (Transition from Work in progress to Completed)

4. Create a release branch from the master when you need to
release a version of the code. (Completed work goes to
production)

5. Create a hotfix branch from the master to fix critical production
bugs. Merge the changes back to master, and use git cherry-pick
command to bring back the changes into the release branch.

releases/1.0

o—0

4 T Tcherr*,-'— pick

o-Oo—-O0-0—0—-0—0—0—

R B Y

2

Oo—0—-0 =O=—

feature hotfix
Figure 86: trunk-based branching strategy

The master branch requires to be kept up to date, and it needs to contain the
latest code. In our previous example, we did our change directly on the
master branch. However, in trunk-based scenario, it is not recommended to
do so. Instead, you need to create a feature branch. For example, when we
work on task 12, we can create a feature branch named feature/12. Now, the
question is how we get the changes in the feature branch back into the master
branch. The solution is to use pull requests (We will discuss more about pull
requests in the next section). So, it is quite important that you do not allow
the team members directly push their changes to the master branch. Instead, it
should be done through pull requests. Let us see how we can lock the master
branch for editing in Azure DevOps.

1. Navigate to Repos -> Branches.

Mine Al Stale Y Search branch name

Branch Commit Author Authored D... Behind | Aheac Status Pull Request

I* master Default £970dobs @ Milind... 3hago
Figure 87: master branch in the branches page

2. In the master branch, click on the more icon on the right-hand

corner and select branch policies.

New branch

il Delete branch

View files

L) View history

& Lock

Branch policies

7 Branch security

Figure 88: Select branch policies

3. Create at least one branch policy (For example, Require a
minimum number of reviewers) in the following page so that you
can prevent members directly pushing changes to the master
branch.

Branch policies for master

Protect this branch

= Setting a Required policy will enforce the use of pull requests when updating the branch
* Setting a Required policy will prevent branch deletion
* Manage permissions for this branch on the Security page

|| Require a minimum number of reviewers
Require approval from a specified number of reviewers on pull requests.

| | Check for linked work items
Encourage traceability by checking for linked work items on pull requests.

| | Check for comment resolution
Check to see that all comments have been resclived on pull requests.

|| Limit merge types
Control branch history by limiting the available types of merge when pull requests are completed.

Build validation
Validate code by pre-merging and building pull request changes

(T} No build pipelines were found

Require approval from additional services
Require other services to post successful status to complete pull requests. Learn more

-+ Add status policy

Automatically include code reviewers
Include specific users or groups in the code review based on which files changed.

-+ Add automatic reviewers

Figure 89: Branch policies page

4. Now, let us check if we can edit any file in master branch. So,
navigate to Files sub menu and open src -> components ->
HelloWorld.vue page.

Src Contents History Compare Blame

assets

1 <template:

2 ¢div class="hello":
components 3 <h1¥Hello world, Welcome to MyQui

a

D HelloWorld.wue 5 <prQuestion 1</p>
6 fdive
7
8
9
e
1

<ftemplate>

router
¢script»
store 18 export default {
1 name: "HelloWorld',
views 12 props: 1

13 msg: String

Figure 90: File contents

5. Click on the Edit button and do a small change in the file.
Z7 Edit

6. Now click on the Commit button.

7. Type in a comment and then click Commit again. Then you will
see that you cannot commit any change to the master branch
anymore.

Commit e

e TF402455: Pushes to this branch are not permitted; you
* must use a pull request to update this branch.

e e e

Figure 91: Error message about preventing pushes to the master branch

Git flow

Git flow uses a set of long running branches to represent different stages of
the development cycle. The master branch always contains the stable code
that is deployed (or will be deployed) to production. In addition to the master
branch, there is a parallel branch called develop that is used by developers to
work from. Developers can create their feature branches from the develop
branch. Once the develop branch comes to a stable point, you can merge it to
the master branch for the next release. This can be done through a release
branch and the bug fixing on the release branch has to be continuously
merged back into the develop branch. Once you are satisfied with the release
branch, you can merge it to the master branch for the next release. Hotfixes to
the current version can be done on a hotfix branch from master and merged
back to both master and develop. This is shown in Figure 92.

<9 Vo.1 <¥ V0.2 <BV0.2.1

ok —)
il 4 v ¢

b ']

develop * *
Oo—0—-0

feature

Figure 92: git flow branching strategy

As explained in the previous section, you can use pull requests to merge
changes to develop, release and master branches.

Tags

Git tags are used to mark a specific commit as an important point in the
history. Usually, this is used to mark a release point, at which commit a
certain version of the code was released. However, you do not need to create
tags if you are using release branches to manage your releases.

The easiest way to create a tag is by navigating to the Commits sub menu.
Here, you go to a specific comment and click on the more icon on the right-
hand corner.

Pull Request Status

Y Copy full SHA

L Browse files

k= MNew branch...

{J Create tag..

Figure 93: Create tag from the context menu

Now, click on the Create tag link. In the modal dialog, you can write a name
and a description for your tag and click on the Create button.

' Create a tag

Mame ™

tag-from-1ab02ff7

Based on

¢ 1ab02ff7 v

Description *

A sample tag

Figure 94: Modal dialog for creating a tag

Now, you will see a new tag is created with the whole source code of the
project.

© MyQuiz.Ul <7 tag-from-1ab02ff7 B2 / Type tofind a file or folder...
Figure 95: Tag created
Moreover, you will see a label attached to the commit you created the tag for.

Commits Y L% on Com

Graph Commit Pull Request

Question 1 {? tag-from-1ab02£7
| 1ab@2f7 ° Milindanath Hewage Today at 1:22 PM

Figure 96: commit related to the tag

You can see all the tags created for your project by navigating to the Tags
sub menu.

Tags m % Search tag name

Tag Commit Tagger Creation Date

7 tag-from-1ab02ff7 A sample tag 1abe2ff7 ° Milindanath Hewage 10m ago

Figure 97: Tags list page

In order to edit the source code in a tagged
version, you have to create a branch from the tag

and then do a pull request to bring the changes
back to the master.

Pull requests

Pull requests is a very good way of maintaining a high quality in your code.
This allows you to discuss, review and quality assure your code changes
before they get merged into your base branch. Pull requests functionality can
be enabled to branches by setting branch policies. Let us see how we can use
pull requests to our master branch. Open branch policies page for the master

branch.

Branch policies for master

Save changes “) Discard changes

Protect this branch

» Setting a Required policy will enforce the use of pull requests when updating the branch
» Setting a Required policy will prevent branch deletion
» Manage permissions for this branch on the Security page

Require a minimum number of reviewers
Require approval from a specified number of reviewers on pull requests,

Minimum number of reviewers 1

[] Requestors can approve their own changes

(L) Allow completion even if some reviewers vote to wait or reject

|| Reset code reviewer votes when there are new changes

Check for linked work items

Encourage traceability by checking for linked work items on pull requests.

Policy requirement

[] Check for comment resolution
Check to see that all comments have been resolved on pull requests.

(] Limit merge types
Control branch history by limiting the available types of merge when pull requests are completed.

Build validation
Walidate code by pre-merging and building pull request changes

—~+ Add build policy

Figure 98: Set branch policies for the master branch

Here, you can add some restrictions and checks before a certain pull request
can be accepted. For example,

1. Specify the number of reviewers who will review the code. You
can also add an automatic code reviewer.

2. The application has to be built successfully in order to complete

the pull request.
3. At least one work item has to be linked to the pull request.

Suppose we have set up our branch policy as shown in Figure 98. Now, let us
try to work on a task and do some code changes.

1. Create a branch from your master branch with the name
feature/13

2. Add some changes to your HelloWorld.vue file.

Commit and push those changes to the Azure Repos branch

4. Now, you can go to the Repos and to your branch feature/13.
Then you will see the following message.

w

Contents History s

(D You updated I feature/13 Just now Create a pull request X

Figure 99: Create a pull request message

5. Click on the Create a pull request button to create the pull
request

6. In the following page you can see that the pull request is from
feature/13 into master branch. You can also provide a suitable
title and description for the pull request. Then add who is going to
review your code. If you have not linked a task in your commit
message, then do it here. After you fill all the required
information, click on the Create button to start the pull request.

8% New Pull Request

¢ feature/13 ~ | into & master v P

Title *

13 Adding of question 1

Description

13 Adding of question 1

Marikdown supported.

Il
i
®
ks
o0
ot

%‘ v B I @ <>
13 Adding of question 1
Reviewers

Search users and groups to add as reviewers

Waork ltems
v

Search work items by ID or title

Create |

Figure 100: New pull request page

7. 1f you do not specify a reviewer and a work item, then you will
see that you have violated the branch policies as below.

Palicies

Required

X 0of 1 reviewers approved

X Mo work items linked

Work Items +

Mo related work items

Reviewers

K
+

Mo reviewers

Labels

[
[
i

Xalal
[¥ LY

Figure 101: Branch policies not fulfilled yet
8. Even here you can add that information by clicking on the + sign.

9. In addition to that, the reviewers can start a conversation with the
developer by adding comments in the comments section.

=
i @ Add a comment...

@ Milindanath Hewage joined as a reviewer

Created by@ Milindanath Hewage minutes
Figure 102: Comments section in the pull request

10. Once you click on the Files tab, you can see the

changes related to the pull request. Here, the reviewer can add
comments at specific lines in the file.

QOverview Files Updates Commits

All updates ~ = Active (0)
ing 1 file change: 1

£ Find a file or folder

/src/components =
Jsrcfcomp - D H.ell_oyh_'or!d_._\;u_e_f. 1] View

[HelloWorld.vue

<div class="hello">

<div class="hello™>
<hlrHello world, Welcome to MyQuiz</hl>

<hlyHello world, Welcome to MyQuiz</hl:

<p>Question 1</p> + <h2>Question 1: Who is the founder of Mic
%] 7 + <div>A: Bill Gates</divs
3 - <div>B: Satya Madella</div:
Click to add a comment <d1l.\:)C: Steve Jobs</div> :
<div>D: Mark Zuckerberg</divy
</div> 11 <fdivy
</template> 12 </template>

Figure 103: Add comment to a file

11. Then you can start the conversation with the developer
mentioning your concerns about the code. In this way, the team
members can communicate back and forth to produce a high-
quality code.

<hZ>Question 1: Who is the founder of Microsoft2</h2>»

+
+
+ <divef: Bill Gates</divy
This should be clickable and add a checkbox to
select.l
Markdown supported. Drag & drop, paste, or select files fo insert.
% iz B -E- o Eance'
This should be clickable and add a checkbox to select.
= £div»B: Satya Nadella</div:
+ «div>C: Steve Jobs</div:
+ <diveD: Mark Zuckerberg</dive
<fdivy
</template:

Figure 104: Add comments to specific portions of the code

12. Then, the developer can fix issues mentioned in the
comment on the same branch and push the changes back to the
server. Then, the new commit will appear under the pull request.
You can also Resolve the comment added by the reviewer.

E @ Milindanath Hewage pushed 1 commit creating update 2

c28b538b #13 Added checkbox for each question @ Milindanath Hewage just now
i) ™ HellowWorld.vue View ariginal diff NG
sre/compenents/HelloWorld.vue
a Sig <p>Question 1</p> 5 o+ <h2>»Question 1: Who is the founder of Microsc
G i <div>
1 73 2divd<input type="checkbox" value="A" class
g + <div><input type="checkbox" value="B" «clas
g + <div><input type="checkbox" value="C" clas
- 18 + <divr<input type="checkbox" value="D" «clas
»
Milindanath Hewage 7 minutes acc Active v
This should be clickable and add a checkbox to select.
Write a reply... Resolve

Figure 105: New commit that resolves the reviewer’s suggestion

13. Once both the parties have agreed on the changes, the
reviewer can approve the change by clicking on the Approve
button.

Approve A

14. Now, you will see that all the required branch policies
are fulfilled. Click on the Complete button to finally start
merging the code changes to master branch.

@E Approve | o Complete | v

15. You can add a comment if you wish and set which
merge type you want to merge the changes. Also, you can delete
the feature branch after merge and set the work item to Done
state.

Complete pull request X

T h

Merge commit comment
Merged PR 1: 13 Adding of question 1
13 Adding of question 1

Related work items: #13

Merge type
Merge (no fast-forward) W
Post-completion options

Complete associated work items after merging (0

Delete feature/13 after merging

Figure 106: Complete pull request dialog

16. You will see a message saying that you have
completed the pull request.

Milindanath Hewage completed the pull request on 12.01.2020 13:14 (just now). Cherry-pick Revert

d225345¢ & @ Merged PR 1: 13 Adding of question 1...

Figure 107: Pull request completed message

17. You can verify that your changes are committed to the
master branch, by inspecting the commits to the master.

Graph Commit Pull Request

Merged PR 1: 13 Adding of question 1 1
” o - o ao

d225345¢ @) Milindanath Hewage Today at 2:14 BV

#13 Added checkbox for each question o
@ 2805380 @) Milindanath Hewage Today at 2:03 P a1
| 13 Adding of question 1 21
AE9cT A Milindanath Hewade Az 2t 126 DM o
Question 1 O tag-from-1ab02ff7
* 1lab@2Ff7 @ Milindanath Hewage Yesterday at 1:22 PM

Figure 108: Commits related to the pull request

Summary

In this chapter, we learned about creating an application and moving its
source code to a git repository located in Azure Repos. We also looked into
different methods of creating a git repository in Azure Repos. Moreover, we
learned about different parts of Azure Repos, such as Files, Commits, Pushes,
Branches, Tags and pull requests.

Chapter 5
Azure Pipelines

O nce you have pushed your code to Azure Repos, you can create a build
pipeline and a release pipeline using Azure Pipelines. This is also known
as Continuous Integration (CI) and Continuous Delivery (CD). Build

pipeline (CI pipeline) allows you to automate the build and test process of
your application. You can setup a build pipeline so that it builds and tests the
application code each time a developer commits a change to the source code.
The release pipeline (CD pipeline), with the help of the output of the build
pipeline, allows you to automate the release process and continuously deliver
a high-quality product to your customers.

Continuous Integration (CI)

Creating a build pipeline is the first step of Azure Pipelines. There are
basically two ways you can start creating a build pipeline.

Method 1: Navigate to your repository by clicking on Repos and click on the
Set up build button. In this option, you can skip the selection of the source
code location as you are already inside the myquiz repository.

I® master B3 / Type to find afile or folder...
Files iy Set up build] Clone

Contents History e

Figure 109: Set up build button

Method 2: Click on the menu item Pipelines on the left-hand side and then
click on the button Create Pipeline.

Create your first Pipeline

Automate your build and release processes using our wizard, and go from
code to cloud-hosted within minutes.

Create Pipeline

Figure 110: Create Pipeline page

If you choose Method 2, you have to specify where your source code resides.
In this example, our source code resides in Azure Repos Git. Therefore,
select Azure Repos Git (YAML) option as shown in Figure 111.

Connect Select Configure Review

New pipeline

Where is your code?

Azure Repos Git YAML
Free private Git repositories, pull requests, and code search

Bitbucket Cloud YAML
Hosted by Atlassian

GitHub vAML

Home to the world’s largest community of developers

GitHub Enterprise Server YAML
The self-hosted version of GitHub Enterprise

Other Git

Any generic Git repository

Subversion
Centralized version control by Apache

We OO

Use the classic editor to create a pipeline without YAML.
Figure 111: Select version control location

Next, you select your code repository. Select MyQuiz.UI that we created in
the previous chapter.

o

~" Connect Select Configure

Mew pipeline

Select a repository

S Filter by keywords PracticalGuide

Q} MyQuiz.Ul

Figure 112: Select repository

Then you can configure your pipeline to match the technology you have
selected to build your application. As we have built our application in Vue
and Node.js, we select Node.js with Vue option.

" Connect " Select Configure Review

New pipeline

Configure your pipeline

“ Node.js
Build a general Node,js project with npm.

0 Node.js Express Web App to Linux on Azure

Build a Node.js Express app and deploy it to Azure as a Linux web app.

v Node js with Vue
Build a Node.js project that uses Vue.

Node.js with webpack

Build a Node.js project using the webpack CLI.

Node.js with React
Build a Node.js project that uses React.

Node.js React Web App to Linux on Azure

Build a Node.js React app and deploy it to Azure as a Linux web app.

w Node js with Angular
Build a Node.js project that uses Angular.

Figure 113: Configure pipeline for Node.js with Vue

Based on this selection, Azure pipelines creates a basic starting pipeline
definition in YAML that matches Vue.js and Node. You can see the created
azure-pipelines.yml file in Figure 114.

~ Connect ~ Select ~" Configure Review

Mew pi

pipeline

Review your pipeline YAML

€ MyQuiz / azure-pipelines.yml * =p

1 F Node.js with Vue

2 # Build a Node.js project that uses Vue.

= # Add steps that analyze code, save build artifacts, deploy, and more:

4 # https://docs.microsoft.com/azure/devops/pipelines/languages/javascript

trigger:

- ‘master

pool:
1@ vmImage: "ubuntu-latest’
12 steps:

13 - -task: NodeTool@ge

14 inputs:

15 versionSpec: '18.x'

16 displayMame: - "Install Node.js’

18 - -script:

19 npm-install

20 npm-run-build

21 displayMame: - "npm-install -and build’

Figure 114: Basic pipeline definition file

In order to understand this file, we need some knowledge about YAML data
serialization language. Let us try to understand the YAML syntax.

Introduction to YAML,

YAML (YAML Ain’t Markup Language) is a data serialization language
that is used by Azure pipelines to describe different commands in the
pipeline. In other words, you define your build pipeline in code. The
language is quite similar to JSON (JavaScript Object Notation) and

represented in key value pairs. However, you need to pay attention to the
correct indentation when writing YAML and use spaces for indentation. Two
space indentation is recommended [4]. YAML files have the extension
“.yaml” or “.yml”. Let us look into a simple example to understand the
YAML syntax.

Suppose we want to represent a person’s data in YAML, and the person
object has following attributes.

- name (string),
- age (integer),
- marital status (Boolean),

- favourite sports (array) and
- contact details (a structure that has a certain format).

We could write this information in YAML as in the following.

person:
name: ‘Mark Henry’
age: 25
married: true

favourite_sports:

- Football
- Cycling
- Swimming
Contact: |

(+47) 12345679
abcde@abc.com

key: value pairs are the basic building blocks. value can come in different
types. For example object, array, string, numbers, Boolean etc..

- =item in an array

| = preserve the formatting exactly as it is

mailto:abcde@abc.com

Structure of the basic build definition
Using this syntax, let us try to understand the .yml build pipeline. Consider
the first key-value pair.

trigger:
- master

According to what we have learned; this represents an array. In other words,
an array of triggers. Basically, we want to trigger our build pipeline each time
a developer checks in new code changes to the master branch. Assume, you
want to run the build pipeline on all the release branches located under the
releases folder, then you can modify this as follows.

trigger:
- master
- releases/*

If you want the build pipeline to kick off on every commit in every branch,
then you can set it as follows.

trigger:

_ Tkt

Let’s move on to the next command which defines the build agent pool.

pool:
vmlImage: 'ubuntu-latest'

In this command, it specifies a Microsoft-hosted agent pool. In Azure
Pipelines, the name of this pool is Azure Pipelines. An agent pool is used to
organize build agents.

Agent pool

agent 1

agent 4

agent 3

agent 2

agent5

agentn

A build agent can be considered as the heart of the build pipeline, which
performs all the jobs defined in the build pipeline. In an Azure DevOps
services context, it is an installable software, which is hosted in a virtual

machine.

As you can see, the pool object contains the vimImage property which
contains the value ‘ubuntu-latest’. This means that we want to run our build
pipeline in a build agent hosted in an Ubuntu virtual machine. Azure
pipelines hosted pool gives you the option to select from several virtual

machine images.

Table 1: Azure Pipelines hosted VM images

Virtual machine image

YAML label

Windows Server 2019 with Visual
Studio 2019

Windows Server 2016 with Visual
Studio 2017

Ubuntu 18.04
Ubuntu 16.04
macOS X Mojave 10.14

windows-latest OR windows-2019

vs2017-win2016

ubuntu-latest OR ubuntu-18.04
ubuntu-16.04

macOS-latest OR macOS-10.14

prefer or if you are using on-premise builds using
Azure DevOps server.

O You can also create a self-hosted agent if you

For example, if you want to run your build agent on a Windows Server 2019
machine having Visual Studio 2019, then you can change the yaml file as
following.

pool:
vmlmage: 'windows-latest'

A fresh virtual machine instance will be created
in the Azure cloud each time you run your build

pipeline and it will be discarded after the build
process is completed.

The next set of commands define a job containing a series of steps performed
by the agent. These steps are all about building the application.

steps:
- task: NodeTool@0
inputs:
versionSpec: '10.x'
displayName: 'Install Node.js'

- script: |
npm install
npm run build
displayName: 'npm install and build'

There are two steps defined here. The first one is a task to install node.js 10.x
on the VM image. If you click on the Settings link on top of steps, you can
see a graphical view of the task which gives you the possibility to add options

to various inputs.

< MNode.js tool installer

Version Spec * 0

10.x

(] Check for Latest Version &

Figure 115: Node.js tool installer task

Another way to achieve the same task is by adding a demands attribute to the
agent pool. Here, you say that you want node package manager, installed on
the agent machine.

pool:
vmlImage: 'ubuntu-latest'
demands:
- npm

The second task use npm install command to install the node packages and
create a production build of our application using npm run build command.
The pipe (|) symbol is used to preserve the formatting of two commands.

npm run build command will build our
application and creates a folder called dist under
the root folder. Contents of the dist folder will be

used when deploy our application to the
production.

Extend the build pipeline
Now we have an understanding about the default yaml pipeline. Let us try to
extend this by adding our own tasks to the steps list. What we are missing

here is a way to package the build output into an artifact which we can use to
deploy our application.

The bottom line is that your artifact should be copied into the artifact staging
directory (represented by the variable $(Build.ArtifactStagingDirectory)) so
that we can deploy it to production environment. The build output will be
copied to the dist folder in the sources directory (represented by the variable
$(Build.SourcesDirectory) or $(System.DefaultWorkingDirectory)).

dist

-1}

s(B””d‘SO“'S:FESD[reCtOW) S(Build.ArtifactStagingDirectory)

I . or
S(Build.Repository.LocalPath) $(Build.StagingDirectory)
or

S(System.DefaultWorkingDirectory)

|

Copy files

There are basically three tasks associated for this step. First, you have to copy
your dist folder to the artifiact staging directory (represented by the Azure
variable $(Build.ArtifactStagingDirectory)) in Azure pipelines. Search for the
Copy files task in the assistant section as shown in Figure 116.

Tasks (=]

L copy files‘

[th Azure file copy
Copy files to Azure Blob Storage or virtual machin...

[D Copy files
Copy files from a source folder to a target folder ...

[tb' Copy files over SSH
S5H

Copy files or build artifacts to a remote machine ...

Figure 116: Copy files task

The source folder is optional. By default, it will use the root folder of your
code repository. This can be accessed by the variable
$(Build.SourcesDirectory). Under Contents, specify the location to our dist
folder, relative to the Source Folder. Type in dist/** to select all the content
under the dist folder. Finally, specify the target folder by adding the variable
$(Build.ArtifactStagingDirectory) to specify the artifact staging directory in
Azure pipelines.

Be aware that for Linux build agents you have to

use “/” path separator when specifying paths.

< Copy files
Source Folder ®
$(Build.SourcesDirectory)

Contents * ©

dist/**

Target Folder * ©

$(Build.ArtifactStagingDirectory)

Advanced A

Clean Target Folder @

About this task m

Figure 117: Settings for copy files

Archive the copied files

Then archive the copied dist folder using a preferred compression format. So,
click on the show assistant button on the right and search for archive files
task and select it.

Tasks [=1]

£ arq

Archive files
Compress files into .7z, .tar.gz, or .zip

¥ 1Y

Extract files
E Extract a variety of archive and compression files ...

ﬁ Xcode
. Build, test, or archive an Xcode workspace on mac...

Figure 118: Archive files task

The options for this task are shown in Figure 119. The root folder is the dist
folder copied to the artifact staging directory, and the drop.zip file will be
created on the same artifact staging directory.

<& Archive files

Root folder or file to archive * ©

$(Build.ArtifactStagingDirectory)/dist

0O E;etﬁjnd root folder name to archive ®

Archive A
Archive type * ©

zip v
Archive file to create * ®

$(Build.ArtifactStagingDirectory)/drop.zip
Replace existing archive * ©

() Force verbose output @

About this task m

Figure 119: Options for Archive files task

Publish artifact to Azure pipelines

In the third step, we need a publish build artifacts task. In the Tasks
window, type “publish” to find the task Publish build artifacts and click to
select it.

Tasks (=]

L publish

.NET Core

Build, test, package, or publish a dotnet applicatio...

dotnet

[=1 Index sources and publish symbols

ot . your source code and publish symbols to a ...
npm
Install and publish npm packages, or run an npm ...

I=»| E] ,

Publish build artifacts

Publish build artifacts to Azure Pipelines or a Win...

Publish code coverage results

Publish Cobertura or JaCoCo code coverage resul...

{

Figure 120: Publish build artifacts task

Lo

Now, we have 3 options to consider here. First, specify where your build
output resides at the moment. As a result of the archive files task, our
deployment ready files are located in
$(Build.ArtifactStagingDirectory)/drop.zip folder. Next, you can provide a
name to your artifact created in the first step. Finally, you specify where your
artifact is going to be placed. This can be under your build agent - Azure
Pipelines or in a file share which build agent can find. Here, we select the
default Azure Pipelines and click Add.

<~ Publish build artifacts
Path to publish * ©
$(Build.ArtifactStagingDirectory)/drop.zip

Artifact name * ©
drop

Artifact publish location * ©

Azure Pipelines

About this task m

Figure 121: Inputs for Publish build artifacts task

All the steps in the yaml file are listed as follow.

steps:

Settings

- -task: NodeTool@d
inputs:
versionSpec: - '10.x'
displayName: "Install Node.js'

. scpipt: - |
npm-install
npm- run-build
displayName: "npm- install and build’

Settings
- - task: CopyFiles@2
inputs:
SourceFolder: '"$(Build.SourcesDirectory)’
Contents: - "dist/***
TargetFolder: '$(Build.ArtifactStagingDirectory)’
CleanTargetFolder: true

Settings
- -task: ArchiveFiles@2
inputs:

rootFolderOrFile: '%(Build.ArtifactStagingDirectory)/dist’
includeRootFolder: false
archiveType: 'zip’
archiveFile: '%(Build.ArtifactStagingDirectory)/drop.zip’
replaceExistingArchive: true

Settings
- -task: PublishBuildArtifacts@l
inputs:
PathtoPublish: "$(Build.ArtifactStagingDirectory)/drop.zip'
ArtifactName: ‘'drop’
publishlLocation: - 'Container’

Figure 122: Final build pipeline code

This is not the only way to publish your build
artifacts to the staging area. So feel free to play

around with different tasks to find out different
ways to publish to the staging folder.

Save and run the build pipeline

Once you have finalized your build pipeline, it is now time to save all the
changes. Click on the button Save and run to save the pipeline in your
source code and run it immediately.

Now, you will be asked to save the azure-pipelines.yml file to your
repository. Here, you can provide a message and commit either to the master
branch or to a new branch. As we have setup a policy against committing
directly to our master branch, we have to create a new branch for this and
merge the changes to the master branch through a pull request.

Save and run X

iy srire-ninalines vml #0 the renncit

Commit message

Set up Cl with Azure Pipelines|

Optional extended description

(O Commit directly to the master branch

@ Create a new branch for this commit

users/milindanath/ci-pipeline

Start a pull request

Save and run

Figure 123: Pull request to merge the pipeline file

When your build pipeline runs, the build agent begins one or more jobs. In
this case, we have only one job, and it starts under the section Jobs as shown
in Figure 124. Click on Job to see the ongoing build process.

© #20200129.1 Set up CI with Azure Pipelines Cancel

on MyQuiz.Ul

Summary

Pull request by 0 Milindanath Hewage

€ MyQuizUl ¥ users/milind... 7efde55 Duration: Tests: Changes Work items: Artifacts:
B Just now - - & 10 commits [2 linked

Jobs

Mame Status Duration

© Job Queued

Figure 124: Build pipeline starting its jobs

<& Jobs in run #20200201.1 % Job

{ 11
VIYIULZ U

Pool: Azure Pipelines

Jobs ? Image: ubuntu-latest
Agent: Hosted Agent
v @ Job 386 4 Started: Today at 1:21 PM
Duration: 38s
Initialize job 1s
7 » Job preparation parameters
@ Checkout MyQuiz.UI@users/milin... 1s ¢ HE 1artifact produced
@ Install Nodejs 2c
@ npminstall and build 795
@ CopyFiles 15
@ rublishBuildArtifacts 1s
@ Post-job: Checkout MyQuiz.UI@... <1s
Finalize Job <1s
Report build status <1s

Figure 125: Build pipeline summary after the run

After successful completion of the build pipeline, we end up with a
deployable build artifact as shown in Figure 125. If you click on that, you can
see which files will be deployed when you deploy your application.

& Artifacts

Published

(5]

Mame
~ B drop 251 KB

[drop.zip 251 KB
Figure 126: Drop folder (Output of the build process)

Edit the build pipeline
If you click on the Pipelines menu on the left pane, you will see our new
build pipeline as shown in Figure 127.

Recently run pipelines

Pipeline Last run

#20200201.1 « Merged PR 4: Cha... B Zhago
o MyQuiz.Ul e y)

F o
. (5 34s

Figure 127: Newly created build pipeline

You can edit this pipeline by clicking on MyQuiz.UI row and then by
clicking on the Edit button.

< MyQuiz.Ul

Runs Branches Analytics

Description

#20200201.8 Merged PR 37: Update azure-pipelines.y...

ndividual Cl ¥ master e978doh =

Figure 128

Build summary

Edit Run pipeline

W
Stages
B 5m ago
© @ 47s
: Edit pipeline

You can click on the first item in the list to see the build summary. It shows
the following information related to the build

who triggered the build

date and time of the build
duration it took to run

Nk =

the produced artifact

code repository, branch and commit in which the build was run

how many commits involved in the build
how many work items linked

These are highlighted in the Figure 129.

© #20200203.1 Merged PR 39: Update azure-pipelines.yml for Azure Pipelines

on MyQuiz.Ul

Summary Releases

Triggered by @ Milindanath Hewage

Q}Mﬁguiz.Ul i# master 019ech7

@ Feb 3 at 9:56 PM

o1

)uration:

m s

Tests
Get started

Artifacts:
51 published

Work items:

1 linked

Changes:

¢ 2 commits

Jobs

Name

® Job

Status Duration

Success

Figure 129: Build Summary

Approve pull request

If you examine your master branch, you will notice that the yaml
configuration file for our build is not yet added to the master branch. It is
waiting for the approval through the pull request created while saving our
build pipeline. Once you approve the pull request, you can see that the yaml
file will be part of your source code.

Having the build configuration file together with the source code is a very
nice feature. This gives you the possibility to go back to previous versions of
your source code at any given time and build the project without any
problems using the configuration you used in that exact same version. In
other words, you can version control your build pipeline.

Disable the pipeline

If you want to disable / pause the build pipeline, you can do it through the
edit page. Click on the options button on the right and select Settings.

Variables mE

Frd —
3 Triggers

(el B

Inside the settings page, you can select either paused or disabled option to
disable the build pipeline. Click on the Save button to save your changes.

Pipeline settings X

Processing of new run requests

() Enabled

() Paused

@ Disabled

YAML file path

azure-pipelines.ymil

Continuous Delivery (CD)

We have automated our build process using the build pipeline. So, the next
step is to automate the deployment process using a release pipeline (CD
pipeline). Before creating the release pipeline, you will have to design your
release pipeline.

Release environment

In the example shown in Figure 130, we have 3 stages/deployment phases in
the release pipeline. First a Dev environment where you deploy the build
artifacts and perform initial testing. Then, you deploy it to the Test
environment where your test team quality assures the application thorough
testing before deploying to production. You can also have a staging
environment between test and production (Although I have skipped in this
example).

Figure 130: Deployment strategy

The release environments which are connected to these 3 stages can come in
different forms based on your preference. It could be an IIS web app on an
on-premise server/Virtual Machine, a containerized environment like
Kubernetes, a managed service like Azure App service, or a serverless
environment like Azure functions. Let us use Azure App service to deploy
our application.

You can navigate to https://azure.microsoft.com/en-us/ to access the
Microsoft Azure web site. If you have not created an Azure account yet, you
can create a new account for free.

Azure. Invent with purpose.

Turn ideas into solutions with more than 100 services to build, deploy, and manage
applications—in the cloud, on-premises, and at the edge—using the tools and

frameworks of your choice.

Figure 131: Azure front page

https://azure.microsoft.com/en-us/

Once you are finished with the account creation, navigate to
https://portal.azure.com/#home to access the Azure portal. Click on the
Create a resource link on the home page.

AzZure services

] @ ¢

Create a App Services Cost
resource Management...

Figure 132: Create a new resource in Azure

Now find out the Web app option from the next window and click on it.

@ Ubuntu Server 18.04 LTS

Learn more

Web App

Quickstart tutorial

Figure 133: Create a Web App Service

Follow these steps to complete the rest of the process.

1. Select your Azure subscription
2. Create a new resource group by clicking on the Create new link

https://portal.azure.com/#home

3.

4.

5.

Select existing...

Create new

A resource group is a container that holds related
resources for an Azure solution.

&
Name *
myquiz—rescurce—group| v F
o [
Next, provide a name for your web app for the Dev environment.
Let us say we want to call our dev url milindanath-myquiz-
dev.azurewebsites.net.
Then, select a runtime stack that matches the application. As we
developed our application in node.js version 12, select Node 12
LTS.
Instance Details
Name * ‘ milindanath-myquiz-dev i

.azurewebsites.net

Publish * (@@= Docker Container)
Runtime stack * | lSeIect a runtime stack. N
Operating System * Node
. Node 12 LTS
Region *
Node 10 LTS

Now, select an operating system.

N

Then, select a region matching and close to your area.

Create an app service plan and remember to select a Free F1
tier if you want to start with a basic app for free. You can change
the Sku and size by clicking on the change size link.

N

Windows Plan (North Europe) * (D (New) myquiz-app-service-plan

Create new

Sku and size * Standard S1
100 total ACU, 1.75 GB memory

Spec Picker

X

Dev / Test

For less demanding workloads

Recommended pricing tiers

Shared infrastructure
1 GB memory

60 minutes/day compute
Free

8. After everything is filled in, click on the Review + create button
to create the app service for your dev environment.

Sku and size * Free F1

Shared infrastructure, 1 GB memory

Change size

Review + create < Previous Next : Monitoring >

Repeat the same process to create the other two environments - test and
production. The final setup of the environment is as shown in Figure 134.

Figure 134: Release environments with Azure App Service URLs

Create the release pipeline
Click on Pipelines -> Releases to navigate to release pipeline page.

q Pipelines Pipelines

ikl Pipelines
A Test Plans
.E-, Environments

haine

% Library

Task groups
T Deployment groups
Figure 135: Releases menu item

Now click on the New pipeline button to create your first release pipeline.

F AN

; a

No release pipelines found

Automate your release process in a few easy steps with a new pipeline
New pipeline
Figure 136: New pipeline button

As we want to deploy our application to Azure, select the option Azure App
Service deployment and click on the Apply button as shown in Figure 137.

Select a template

lSeal'ch

Or start with an & Empty job

Featured

.@. Azure App Service deployment -
— Deploy your application to Azure App Service. Choose from Apply

.@. Deploy a Java app to Azure App Service

Figure 137: Azure App Service deployment template

In the next window, you have to specify to which stage you are going to
deploy to. According to our plan, the first stage we want to deploy our code is
Dev. Therefore, select Dev environment as shown in Figure 138.

Stage [i] Delete < Move

Dev

£ Properties ~

Name and owners of the stage

Stage name

Dev

Stage owner

@ Milindanath Hewage X

Figure 138: Dev stage

Once you close this dialog, you can see that the Dev stage is created. Each
stage has one or more jobs that runs on a release agent. You can navigate to
the stage configuration page by clicking on one of the highlighted links in
Figure 139.

Pipeline (L Tasks ~ Variables Retention Options History

Artifacts | -+ Add Stages | + Add v

: |
| Dev a

Q I@ 1job, 1 task |

Figure 139: Navigate to stage configuration
First, click on the Dev to setup the basic stage settings.

Pipeline @ Tasks v Variables Retention Options History

Dev »
(D Some settings need attention age name
Dev
Eun s ?,,‘Cfnt t Parameters © | @ unlink al
5 Azure subscription * @ | Manage 2
.@. Deploy Azure App Service
e (D Some settings nead attention s o

@ This setting is required.

App type @

Web App on Windows '

App service name * =5
PP

| 1] ©

(D) This setting is required.

Here, you have to specify 2 mandatory fields. The first one is your azure
subscription. If nothing is shown in the dropdown, click on the Manage link
to connect your azure subscription to Azure DevOps. In the second option,
select the App service name which was created when setting up the release

environments.

App type &

Web App on Windows s

App service name * &

‘ milindanath-myquiz-dev v O

Now we have successfully connected our Azure App Service Dev
environment to the Dev stage in the pipeline. Now, click on the Run on
agent section to select an agent from the Azure Pipelines agent pool. Let us
keep the default configuration for this and move on to the task Deploy Azure
App Service.

However, before moving even further with the Dev stage setup, we have to
provide the artifact we created in the build pipeline as an input to the release
pipeline. Click on the Pipeline tab and then click on add link or on the Add
an artifact links to add this as shown in Figure 140 and Figure 141.

All pipelines > " MyQuiz Release Pipeline

Pipeline | Tasks v Variables Retention Options History

Dev
Deployment process

Figure 140: Pipeline tab

Artifacts | Stages | + Add v

& | Dev Q

2 | O 1jeb, 1task

® Schedule

Figure 141: Add an artifact links

In add an artifact window, Select Build as the Source type. Then, select

your project and the build pipeline name as shown in Figure 142. You can
also specify which version of the artifact should be used when the release

pipeline runs. Here, we take the latest version of the artifact.

Add an artifact

Source type

4, o O &

+ Build Azure Repos .. SitHub

5 more artifact types v
Project* (1)
PracticalGuide W

Source (build pipeline) * O]

MyQuiz.Ul ~
Default version * @
Latest ~

Source alias * @

MyQuiz_Dist

@ The artifacts published by each version will be available for deployment in release pipelines. The
latest successful build of MyQuiz.Ul published the following artifacts: drop.

Figure 142: Add an artifact window

Click on the Add button to add the artifact as the input to the release pipeline.

Trigger release pipeline

One of the key features in DevOps automation is continuously deliver your
product to the customers. In order to do that, we have to enable continuous
integration for your release pipeline. We can do it in two ways as discussed
below.

Method 1: By scheduling a new release at a specific time

In this page, you have the possibility to run your release pipeline on a regular
basis. For example, suppose you want to run your release every Tuesday at
03:00 a.m whenever there is a new build available. In that case, you can click
on the button Schedule as shown in Figure 143.

Artifacts | + Add
&
4
L-:::-J
MyQuiz_Dist

rﬂﬂ Schedule set

_——

Figure 143: Schedule set button

In the next window, enable Create a new release at the specified times
option, and set the times as shown in Figure 144.

Scheduled release trigger

Define schedules to trigger releases

@D cnabled
Create a new release at the specified times

YO Tue at 2:00 A

() wed ()] Thu (] Fri (] sat (] Sun
(UTC) Coordinated Universal Time o

Only schedule releases if the source or pipeline has changed

Add a new time
Figure 144: Trigger releases on every Tuesday 3 o’clock

Method 2: Each time a new build is available

The other method is to trigger the release, each time the build pipeline
produces a new artifact. If you revisit the build pipeline, it will produce an
artifact each time you commit changes to the master branch. Click on the
button Continuous deployment trigger button as shown in Figure 145.

Artifacts | -+ Add

MyQuiz_Dist

0 | Schedule set

Figure 145: Continuous deployment trigger button

Enable the Continuous deployment trigger option to enable this feature. By
default, this will select the master branch to trigger this event.

Continuous deployment trigger
Build: MyQuiz_Dist

o Enabled

Creates a release every time 2 new build is available.

Build branch filters (©

Mo filters added.

+ Add | v

Figure 146: Continuous deployment trigger for master branch

Suppose you do not want to trigger a release for the master branch build, but
for another branch, then you can use the Build branch filters option. For
example, if you want to trigger a release each time you create a branch under
the releases folder, then you can do it as shown in Figure 147.

Continuous deployment trigger
Build: MyQuiz_Dist

0 Enabled

Creates a release every time a new build is available,

Build branch filters

Type Build branch Build tags

Include s ‘l 1 releases/* I N

|—|—Add vl

Figure 147: Trigger release for builds in releases folder

Finalize the Azure app service task

Now, we can go back to our tasks list, and finalize the Deploy to azure app
service task. So, click on the Tasks menu, and then click on the Deploy to
Azure App Service task. What is important here is to provide the path to your
drop.zip file.

Scoped to subscription 'Pay-As-You-Go

App Service type * =

Web App on Windows

App Service name * &

milindanath-myquiz-dev

] Deploy to Slot or App Service Environment @

Virtual application @

Package or folder * @

Figure 148: Azure app service deployment task options

Rename the build pipeline

Now, we have setup our release pipeline. Before saving, let us rename our
pipeline to a suitable name. I am going to call it MyQuiz Release Pipeline.
To do that, click on the current name which is shown on the breadcrumb on
the top.

All pipelines > T JMyQuiz Release Pipeline|

Pipeline Tasks - Variables Retention Options History

Figure 149: Rename the release pipeline

Release options and variables
In Azure pipelines, you can make use of variables to contain variable data
that can be used in different places. There are pre-defined variables defined

by Azure DevOps. For example, the variables we used earlier such as
$(Build.SourcesDirectory) are pre-defined variables. Moreover, you can
create your own custom variables.

Click on the Variables tab in your release pipeline to create some custom
variables.

Pipeline Tasks v Variables | Retention Options History

Pipeline variables
Y Filter by keyw

Variable groups

" ' N
Predefined variables (2 e

Figure 150: Variables tab

Click on the Add button to create variables to represent the major and minor
versions of the release.

Y Filter by keywords Scope i= List = Grid
Name Value
major-version 1
minor-version W o
—+ Add

Figure 151: Set major and minor versions using variables

Now we can change the format of the release name using these custom
variables. You can set additional information such as the format of the release
name under the tab Options. Here, we combine the two custom variables
with the pre-defined variable $(Build. BuildNumber) to create a unique name
for the release.

Options History

Description ()

Deploy the myquiz application to Dey, Test and Prod

Release name format (i)

V$(major-version).$(minor-version).$(Build.BuildNumber)

Figure 152: Change the release format name using variables
Now click on the Save button to save all the changes done to the pipeline.

Edit release pipeline

You can edit your pipeline by navigating to the Releases section from the
Pipelines navigation pane. Now select the newly created pipeline and click
on the Edit button.

q Pipelines

G Pipelines

E-. Envircnments

Figure 153: Pipelines -> Releases

Yy .. y i
~ Search all pipelines

= B —+ New W

MyQuiz Release Pipeline

No deployments found

Figure 154: New release pipeline

End to end testing of the pipelines

As we have finalized setting up both the build and release pipelines, let us try
to do a full end to end test to check that the whole process we defined so far
works as expected.

Create a new task
Suppose, one of the testers in our team finds out that our home page has the
Vue.js logo. So, he creates a task to fix this issue.

6 Create a color palette

1 Create a GUI for the

application that can be used throughout
the site

@ Eric Martin 16 h

Laie To Do

L

a2

riont
ALY

15 Remove the Vue logo

from the home page

@ Milindanath He..

Figure 155: New work item reporting the issue

Create a new branch for the task
The next step is to create a new branch for the task. Let us do it in VS Code

terminal using the following git command.

$ git checkout -b bug/15

Fix the bug

Navigate to the views folder and open Home.vue file and remove the img tag

to fix the issue.

class="home"
alt="Vue logo" src="../assets/logo.png"

msg="Welcome to Your Vue.js App"/

Figure 156: Fix the issue by removing the img tag

Commit and push changes
Commit and push your changes to the remote repository.

$ git add src/views/Home.vue
$ git commit -m “#15 Removed the Vue logo”

$ git push origin bug/15

Create the pull request
Now, go back to your Azure DevOps services and click on Azure Repos. You
will see the option to Create a pull request. Click on the button.

Contents History ”

@ You updated ¥ bug/15 Just now Create a pull request X

Figure 157: Create a new pull request

Next, approve your changes to accept the changes and merge them into the
master branch.

Build pipeline kicks off

Remember that we have setup our build pipeline so that every commit to the
master branch will trigger the build pipeline. Let us find out if it kicks off the
build. This can be seen in Figure 158.

Recently run pipelines

Pipeline Last run

#20200205.7 » Merged PR 46: #15 Removed the Vue
© wauizu o A

Figure 158: Build pipeline starting

Release pipeline kicks off next

After the build pipeline succeeded, you will see that our release pipeline
kicks off, and publish the application to Azure App Service. If everything has
gone well, we get a green status on the Dev stage as shown in Figure 159

V1.0.20200208.1
g4 20200208.1 §° master SR et S © Dev

Figure 159: Successful deployment to Dev stage.

Click on the Dev button to inspect what has happened during the Deployment
process. In this example, the release agent downloaded the artifact and

published it to the Azure App service which is located at https://milindanath-
myquiz-dev.azurewebsites.net/#/.

L =]

+ MyQuiz Release Pipeline > Release-1 > Dev -

< Pipeline Tasks Variables Logs Tests O Deploy O Refresh --- e
P‘?_P'F’_)f_mem PrROCESS Run on agent Started: 2/5/2020, 11:26:58 PM
Pool: Azure Pipelines - Agent: Hosted Agent ==+ 30s

o f{un on agent
Q Initialize job - succeeded ds
@ Download artifact - MyQuiz.Dist - drop - succeeded 2s
o Deploy myquiz to Azure App Service - succeeded 225
@ Finalize Job - succeeded <1s

This can be verified by navigating to the dev URL located at

https://milindanath-myquiz-dev.azurewebsites.net/#/ . You can see that the
bug #15 is fixed and deployed.

https://milindanath-myquiz-dev.azurewebsites.net/#/
https://milindanath-myquiz-dev.azurewebsites.net/#/

= C & milindanath-myquiz-dev.azurewebsites.net/#/ w OV °

Home | About

Hello world, Welcome to MyQuiz

Question 1: Who is the founder of Microsoft?

A: Bill Gates
B: Satya Nadella
C: Steve Jobs
D: Mark Zuckerberg

Figure 160: The deployment successfully published the change to the site

Congratulations! Now you have implemented end-to-end automation to your
Dev environment using Azure Boards, Repos and pipelines.

Combine the pipelines

Probably you have noticed that there is an issue with our release pipeline. In
the build pipeline, we created a .yaml file that defines the build process in
code. That file is committed to the source control and get versioned with the
build. Unfortunately, we do not have that facility in the release pipeline yet.

However, there is a method to write the release pipeline in yaml. It is by
incorporating the release process into the build pipeline. Let us try to do that.

Extract the yaml code from the release pipeline
Navigate to your release pipeline and click on the Edit button. Now go to the

Dev stage to view the tasks. Click on the Deploy myquiz to Azure App
Service task. Now click on the link View YAML.

Dev B . -
2 R S Azure App Service deploy © (1 view vamL | Tl Remove

Run on agent 4 Task version 4. w

= Run on agent

Deploy myquiz to Azure ... Qi Display name *

Azure App Service deploy

: | Deploy myquiz to Azure App Service ‘

Figure 161: View the YAML code
Here, you can copy the web deployment step to clipboard. Click on the Copy
to clipboard button.
Copy to clipboard

Below is a clipboard-friendly view of your selection. To copy to the clipboard, either

right-click and choose 'Copy’ from the browser's context menu or press Ctrl+C. [more
information about YAML builds]

MTTPS . [/EO. MICrosSoTT . COM/ TWIITNK/ " IINKIG=5059/7 2

#Your build pipeline references an undefined variable named
‘Parameters.WebAppName?’. Create or edit the build pipeline for this
YAML file, define the variable on the Variables tab. See
https://go.microsoft.com/fwlink/?1inkid=865972

steps:
- task: AzureRmWebAppDeployment@d
displayName: 'Deploy myquiz to Azure App Service'
inputs:
azureSubscription: '$(Parameters.ConnectedServicelame)’
appType: '%$(Parameters.WeblfppkKind)"
WebApplame: '$(Parameters.WebAppHame)®
packageForLinux:

'$(System.DefaultWorkingDirectory) /MyQuiz.Dist/drop/drop.zip"’

Copy to clipboard

Figure 162: Copy the task to the clipboard

There are basically 3 variables you have to note down here.

1. $(Parameters.ConnectedServiceName), which is your azure
subscription name

2. $(Parameters.WebAppKind) = webApp

3. $(Parameters.WebAppName) = milindanath-myquiz-dev

WebAppKind variable can have different values based on the deployment
environment. Here are some of the options available.

webApp (used in this example)
webAppLinux
webAppContainer
functionApp
functionAppLinux
functionAppContainer

kW=

Add the yaml code to the build pipeline

First, open your build pipeline definition. Before pasting the yaml code
copied to the clipboard, you have to add another task that downloads the zip
files from the artifact staging directory to the artifacts directory. So, search
for the Download build artifacts task as shown in Figure 163.

Tasks £l

‘ /C‘ download

L?) Azure Key Vault

™ - F - o B S
Tail Pt T IT T ot
Download Azure Key Vault secrets
]

‘ Download artifacts from file share

Download artifacts from a file share, like \\share\,...

Cownload build artifacts

Download files that were saved

Figure 163: Search for download build artifacts task

Here, we download the drop artifact from the Artifact staging directory to the
Artifact directory.

Download type *

Settings
- task: PublishBuildArtifacts@l @ Spedific artifact
inputs: : ; () Spedific files

.ArtifactstagingDirectory)/d

Artifact name * @
ainer’

ArtifactName: ‘drop’

puDIisnLocation: rcon
drop 4
#Deploy stage
- stage: Deploy Matching pattern ®©
pool: A
vmImage: $(vmImage)
jobs:
- job: Depoly 1
steps: Destination directory * @

| | 3 $(System.ArtifactsDirectory)

ings

! . ' = EE— — . P

The final pipeline definition are as follows. The highlighted text are the new
changes added to the previous build pipeline definition.

Node.js with Vue
Build and deploy a Node.js project that uses Vue.

Add steps that analyze code, save build artifacts, deploy, and more:

https://docs.microsoft.com/azure/devops/pipelines/languages/javascript

trigger:
- master

variables:
Parameters.ConnectedServiceName: <<your_azure_subscription>>
Parameters.WebAppKind: webApp
Parameters. WebAppName: milindanath-myquiz-dev
vmlmage: 'ubuntu-latest'

stages:
#Build stage
- stage: Build
pool:
vmImage: $(vimImage)
demands:
- npm
jobs:
- job: Build
steps:
- task: NodeTool@0
inputs:
versionSpec: '10.x'
displayName: 'Install Node.js'

- script: |
npm install
npm run build

displayName: 'npm install and build'

- task: CopyFiles@2
inputs:
SourceFolder: '$(Build.SourcesDirectory)'
Contents: 'dist/**'
TargetFolder: '$(Build.ArtifactStagingDirectory)'
CleanTargetFolder: true

- task: ArchiveFiles@?2
inputs:
rootFolderOrFile: '$(Build.ArtifactStagingDirectory)/dist’
includeRootFolder: false
archiveType: 'zip'
archiveFile: '$(Build.ArtifactStagingDirectory)/drop.zip'
replaceExistingArchive: true

- task: PublishBuildArtifacts@1
inputs:
PathtoPublish: '$(Build. ArtifactStagingDirectory)/drop.zip'
ArtifactName: 'drop'

publishLocation: 'Container

#Deploy stage
- stage: Deploy
pool:
vmImage: $(vmImage)
jobs:
- job: Depoly
steps:
- task: DownloadBuildArtifacts@0
inputs:
buildType: 'current'
downloadType: 'single’
artifactName: 'drop'
downloadPath: '$(System.ArtifactsDirectory)'

- task: AzureRmWebAppDeployment@4
displayName: 'Deploy myquiz to Azure App Service'
inputs:
azureSubscription: '$(Parameters.ConnectedServiceName)'
appType: '$(Parameters.WebAppKind)'
WebAppName: '$(Parameters. WebAppName)'
packageForLinux: '$(System.ArtifactsDirectory)/**/*.zip'

Click on save and create a pull request. Before you approve the pull request,
go to the release pipeline and disable the continuous deployment trigger and

the scheduled time we add earlier. If you accept the pull request, you can see
your code is built and deployed from one single pipeline file as shown in
Figure 164. Most importantly, it will be committed to your source code.

When the build is starting it shows a progress icon as shown in Figure 164.

Runs Branches Analytics Y

Description Stages

& Just now

#20200206.9 Merged PR 54: Update azure-pipelines.yml for Az...

2 ®-O

ndividual C| ¥ master 78f50e6 ® 11s

Figure 164: Multi-stage pipeline starting

(® #20200206.3 Merged PR 49: Update az...

L i UL U

Summary Releases

Triggered by@ Milindanath Hewage

© MyQuiz.Ul
7 Just now

Duration

Stages Jobs

® Build

1 completed

@ Build

Figure 165: Release summary page

If you have not authorized your azure subscription, then you have to give
permission to continue to deploy to azure as shown in Figure 166 and Figure

167.

¥ master 84370db

9 & commits

B Deploy

Cancel

Waiting for review X

Deploy

Permission e
- &° Pay-As-You-Go .7 ~...
Fermis .Ix n nesde

Figure 166: Give permission to access Azure subscription

Permit access? 4

Granting permission here will permit the use of service mnnectmn

- -—- s m & m 5 - - -

Bay-As=Nouaoil . Pl o T E . L R ST IR Ty e dll
waiting and future runs of this pipeline.

Figure 167: Grant permission

If the build and deploy stages are successful, you will see green status icons
as shown in Figure 168.

Stages Jobs

@ Build © Deploy
1 job completed 51s 1 job completed 155
BT 1 artifact
Q Depoly 13s
® suid 48s

Rerun stage

Rerun stage

Figure 168: Successful runs of Build and Deploy stages

Test and Production environments

So far, we have only setup our Dev environment which is basically used by
developers to test their changes in a build environment. However, when we
do a full release of the application, we need to deploy it to a test/QA server
where the testers can do their testing routines. However, we do not want that
each developer’s commit to the master branch gets deployed to the test or
production environment.

Plan the release process

Suppose our team uses the trunk-based branching flow when dealing with the
source code and releases. As we already have done, we create a branch when
we want to try a new feature or a bug fix. Then we merge it to master branch
using a pull request with code review.

We can use the same strategy when we want to do a release. Simply, create a
branch off of master branch for the release and name the branch as
release/1.0.

environments, remember to comment out the
Deploy stage of your current build pipeline.

O Before moving into setting up the Test and Prod

Let us change the build pipeline so that it triggers our build on any commit to
any branch. However, we want to control the release pipeline.

6 trigger:
? _ 'I;.].q'l

Test stage
Go to the edit page of the release pipeline and clone the Dev stage.

% | Dev
2 1 job, 1 task

| E Clone stage

Figure 169: Clone the Dev stage

Rename the stage to Test.

Stage

Test

& Properties ~

Name and owners of the stage

Stage name

Test

Stage owner
@ Milindanath Hewage
Figure 170: Test stage

In the Tasks page, point the App service name to the correct azure test
environment you created earlier.

App type @

Web App on Windows W

App service name * @
milindanath—myquiz v| M2
Figure 171: Set the correct app service name

Now, go back to the Pipeline tab, and click on the pre-deployment
conditions button on the Test stage.

Pre-deployment conditions

Test
1job, 1 task

+ i I

Figure 172: Pre-deployment conditions for the test stage

Select After release options under the Triggers section.

Pre-deployment conditions
Test

#s Triggers A
Define the trigger that will start deployment to this stage

Select trigger ()

4 = éZ

EEE = R
After After Manual
release stage only

Figure 173: Select After release option

Now, enable Artifact filter and click on the Add button. Select the Artifact
MyQuiz.Dist.

Artifact filters 4 add v @D Enabled
No filters added. e MyQuiz.Dist

Figure 174: Artifact filters

Type in releases/* and press the enter key on the keyboard.

Artifact filters () 3 kil me @D cEnabled

O MyQuiz.Dist ~
Type Build branch Build tags

Include i Select a branch... b

Mine All branches
(D Specify branch or t

releases\/*

- Add

Press Enter to search in "All branches'
Figure 175: Select releases branch

Close the window by clicking on the X button. Now you will see two stages
are in parallel.

Artifacts | + Add Stages | + Add v

%

v
1] % | Dev Q
MyQuiz.Dist 8 | 1job, 1task

Schedule
C not set

% | Test
joy

8 | 1job, 1task

Figure 176: Dev and Test stages in parallel

However, the Test stage will only run when you create a branch under the
path releases/ . Dev stage will be triggered as usual for all the changes in any
branch including the release branch.

Save everything and create a new branch off master branch. Create a pull
request and merge it to master branch. In both cases, you will see that only
Dev release will occur as shown in Figure 177.

Created Stages

2/7/2020,12:22:20 AM [@ Dev || O Test

Figure 177: Only dev stage is triggered

Now, let us create a new branch from the master and name it releases/6.
After you create the branch, the build pipeline will kick off immediately.

Description Stages

#20200206.12 Merged PR 57: Update azure-pi...) &2 Just now

¢ Individual C1 & releases/6 | 38bdef2 @ 41s
—

Figure 178: Build pipeline is starting

Not only that, it will deploy to both Dev and Test after the build is
succeeded.

Releases Created Stages

Release-6

i e]
e 2/7/2020, 12:27:36 AM [© Dev] [@ Test

Figure 179: Both Dev and Test stages run

' @ milindanath-myquiz-test.azurewebsites.net/#/ % ©

Home | About

Hello world, Welcome to MyQuiz

Question 1: Who is the founder of Microsoft?

| A: Bill Gates
B: Satya Nadella
C: Steve Jobs
D: Mark Zuckerberg

Figure 180: myquiz test site

Production stage

The testing process is done, and it is time to deploy to production. So, we
need to create a new stage for the prod environment. Clone the Test stage and
rename it to Prod. Set the App service name to your production azure app
service (here it is milindanath-myquiz-prod). Now the stages look like the
following.

%

+

ks # | Dev Q
MyQuiz.Dist 2 | 1job, 1 task
Schedule
A frris
' |
| Test Q % | Prod Q
2 | 1job, 1task L | 1job, 1 task

Figure 181: Prod stage is created

However, there is a problem with this setup. With this setup, the application
will be deployed to both test and production each time you create a release
branch. We do not want that to happen. So, we need some control here.

Approvals

This can be achieved by having approvals at certain key stages in the
pipeline. For example, suppose your test team performs testing in the Test
environment. Once they are satisfied with the testing, the leader of the test
team or whoever responsible for testing, can approve the release to go
forward. Let us see how we can achieve this.

Click on the post-deployment conditions button for the Test stage as shown
in Figure 182

Post-deployment conditions

% | Test
Q 1job, 1 task

Figure 182: post-deployment conditions of the Test stage

Now enable post deployment approvals and select the test leader as the
approver. Here, you can also setup approval policies as shown in Figure 183.

2 Post-deployment approvals A @D cnabled

Select the users who can approve or reject deployments to this stage

Approvers (D

Test responsible

@ Viveka Edirisinghe X

Search users and groups for approvers

Timeout (i)

30 Days b

Approval policies

(J The user requesting a release or deployment should not approve it

() Revalidate identity of approver before completing the approval.

Figure 183: Select approver

Based on this, the release pipeline is paused at the Test stage until the test
leader gives her permission to release to the production. Now, we have some
control over the production release. But this control along might not be
enough to release to the production. Probably, you need to perform some
actions prior to every production release. For an example, your Database
Administrator (DBA) wants to run the release scripts and other checks prior

to production. We can setup the pre-deployment conditions of the Prod stage
to achieve this.

Pre-deployment conditions

% PI.‘Dd Q
Q 1job, 1 task

Figure 184: pre-deployment conditions of Prod

Here you can assign your DBA as the approver, and without his clear signal
the release will not go forward.

2 Pre-deployment approvals ~ m Enabled

Select the users who can approve or reject deployments to this stage

Approvers (D

@ Eric Martin X Search users and groups for approvers

Timeout (i)

30 Days e

Approval policies

(J The user requesting a release or deployment should not approve it
(J Revalidate identity of approver before completing the approval.
() skip approval if the same approver approved the previous stage (D

Figure 185: pre-deployment approval

Under the triggers section, you have the possibility to schedule the release.
For example, if you want your releases to automatically be deployed on a
Tuesday at 23:00 local time, then you can set it as below.

Schedule () 0 Enabled

O Tue at 23:00 A

D Mon Tue [:] Wed C] Thu [:] Fri D Sat
(3 Sun

23h v 00m

(UTC+01:00) Amsterdam, Berlin, Bern, Rome, Sto...

Figure 186: Schedule the production release

Even after the release, you can take some actions. For example, you might
want to do things like checking if there are any alerts from the deployed
environment after the deployment. As we are using Azure to deploy our
application, we can add a gate to check for any Azure Monitor alerts as
shown in Figure 187.

-] Gates ~ Q Enabled

Define gates to evaluate after the deployment. Learn more

The delay before evaluation ()

5 Minutes
Deployment gates (i) I Add v
7 Query Azure Monitor alerts @D cnabled
Query Azure Monitor alerts
Task version 1+ v

Display name *
Query Azure Monitor alerts

Azure subscription* () | Manage L2

Pay-As-You-Go (I ") ~ O

Scoped to subscription 'Pay-As-You-Go

Resource group* (@

myquiz-resource-group v O

Figure 187: Query Azure monitor alerts using Gates

Create a release and try to check all the conditions. You will see windows
like the following where things need to be approved.

—
Test z |
@ Processing_gates 2

Evaluation to start in 3m

Figure 188: Waiting for approvals and gate checks

In this way, you have full control over your release process and automating
makes your life easier as a developer, release manager or any other involved
in the process. In other words, the whole organization develops a DevOps
culture that will unite people, processes and products which allows
continuous delivery of high-quality value to your customers.

Summary

In this chapter about Azure Pipelines, you learned the most vital section in
the DevOps process. You created a build pipeline that builds your application
on a build agent. We used yaml as a data serialization language to define the
build definition. Then you created a release pipeline that is used to take the
output of the build pipeline as an input and deploy it to various environments
such as dev, test and production. Approvals, triggers and gates help us to
have control over the full release process.

Index

Agent
build, 106
pool, 106
Analytics, 52
Approval, 165, 170
azure
subscription, 133, 150, 155
Azure
app service, 140, 141
boards, 30
Azure App service
create, 125
Azure App Service
deployment, 131
Azure DevOps Services
free plan, 11
turn on/off, 24
Azure Monitor alerts, 168
Backlog, 42
Billing, 11
Board, 38
Kanban, 38, 41
Branch, 78
new, 78
protection, 28
Branching
git flow, 85
trunk-based, 80
Build
summary, 122
Build branch filters, 140
Build pipeline
disable, 123
edit, 121
rename, 141
CI/CD, 11
Comment, 94
Commit, 75, 76, 77, 86, 98
Continuous Delivery, 124
Continuous deployment
trigger, 139
File, 73
search, 73
Git, 18

GitHub
connect, 27
start free with, 3, 61
Groups
add, 14
Integrate, 25
Mapping, 42
marketplace, 13
Marketplace
extensions, 12
Microsoft account, 3, 4, 5, 7
create, 4
Node
install, 62
verify, 62
organization, ii, 1, 3, 6, 7, 8, 9, 11, 16
create, 3
name, 6
Organization, 25
name, 7, 8, 9
owner, 7
settings, 7
Pipelines
build, 99
combine, 149
end to end testing, 144
release, 99, 124
Planning, 42
Production, 157, 164
Project
add administrator, 23
create, 5,9, 17, 59
description, 18
name, 18
settings, 9, 10, 21
visibility, 6, 22
Projects
disable public, 14
existing, 9
Pull requests, 89
approve, 96, 123
complete, 96
Push, 77, 98
Queries, 31, 53, 54
Release
plan, 157
trigger, 136, 138
Release environment, 124

Release pipeline
edit, 143
Repository
clone, 60
commit, 67
import, 61
new git, 59
policies, 28
push an existing, 60
settings, 28
Security
policies, 14
Service hooks, 25, 26
Sprint, 43
capacity, 46
duration, 44
during, 50
planning, 45
Tags, 86, 88, 98
Tasks
archive files, 112
copy files, 110
download build artifact, 151
publish artifact, 114
Teams, 24
configuration, 26
Test
stage, 158, 159, 160, 162, 164, 165, 166
TFVC, 18
Tracking
time, 13
trigger a release, 140
Users, 10
access level, 11
add, 10
basic, 11
list, 10
Variables, 142
Version Control, 18
Virtual machine, 107
Visual Studio Code
install, 63
Vue
install, 62
project, 62
Work
track, 30
Work item, 31, 36, 53

assign, 33
attachments, 35
create, 31, 32, 33, 37
description, 34
effort, 34
history, 35
links, 35
priority, 34
state, 33

Work Item Process, 18
Agile, 20
Basic, 19
change, 22
CMMI, 20
customize, 15
Scrum, 20

YAML, 101, 103
introduction, 104

Bibliography
[1] What is Azure DevOps - https://azure.microsoft.com/en-
us/overview/what-is-devops/

[2] Definition of Scrum - https://www.scrumguides.org/scrum-
guide.html#definition
[3] Adopt a Git branching strategy

https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-

guidance?view=azure-devops

[4] Azure DevOps Home page - https://azure.microsoft.com/en-
us/services/devops/?nav=min

[5] Choose a process - https://docs.microsoft.com/en-
us/azure/devops/boards/work-items/guidance/choose-process?view=azure-

devops&tabs=basic-process

https://azure.microsoft.com/en-us/overview/what-is-devops/
https://www.scrumguides.org/scrum-guide.html#definition
https://docs.microsoft.com/en-us/azure/devops/repos/git/git-branching-guidance?view=azure-devops
https://azure.microsoft.com/en-us/services/devops/?nav=min
https://docs.microsoft.com/en-us/azure/devops/boards/work-items/guidance/choose-process?view=azure-devops&tabs=basic-process

	Acknowledgements
	Introduction
	Chapter 1 Creating an Azure DevOps Organization
	Other organizational settings
	Projects
	Users
	Billing
	Extensions
	Security -> Policies
	Security -> Permissions
	Boards - > Process

	Summary

	Chapter 2 Creating Your First Project
	Basic
	Agile
	Scrum
	CMMI (Capability Maturity Model Integration)
	Project Settings
	General -> Overview
	General -> Teams
	General -> Permissions
	General -> Service hooks
	Boards -> Team configuration
	Boards -> GitHub connections
	Repos -> Repositories
	Repos -> Cross-repo policies

	Summary

	Chapter 3 Azure Boards
	Work items
	Details tab
	History tab
	Links tab
	Attachments tab

	Boards
	Backlogs
	Sprints
	Planning the sprint
	During the sprint

	Queries
	Summary

	Chapter 4 Azure Repos
	MyQuiz – a Vue.js project
	Step 1: Install node and npm
	Step 2: Verify node and npm
	Step 3: Install vue-cli
	Step 4: Install Visual Studio Code
	Step 5: Create the project using Vue CLI

	First commit to Azure Repos
	Files
	Commits
	Pushes
	Branches
	Trunk-based branching
	Git flow

	Tags
	Pull requests
	Summary

	Chapter 5 Azure Pipelines
	Continuous Integration (CI)
	Introduction to YAML,
	Structure of the basic build definition
	Extend the build pipeline
	Save and run the build pipeline
	Edit the build pipeline
	Build summary
	Approve pull request
	Disable the pipeline

	Continuous Delivery (CD)
	Release environment
	Create the release pipeline
	Trigger release pipeline
	Finalize the Azure app service task
	Rename the build pipeline
	Release options and variables
	Edit release pipeline

	End to end testing of the pipelines
	Create a new task
	Create a new branch for the task
	Fix the bug
	Commit and push changes
	Create the pull request
	Build pipeline kicks off
	Release pipeline kicks off next

	Combine the pipelines
	Extract the yaml code from the release pipeline
	Add the yaml code to the build pipeline

	Test and Production environments
	Plan the release process
	Test stage
	Production stage
	Approvals

	Summary

	Index
	Bibliography

