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Introduction

The interconnected world of the current era has drastically changed everything, 

including banking, entertainment, and even statecraft. Despite differences in users, 

purposes, and security profiles, these digital applications have at least one thing in 

common: they all require properly applied cryptography to work correctly.

Informally, cryptography is the mathematics of secrets. We need secret codes to 

make messages unreadable to unauthorized eyes, to make messages unchangeable, and 

to know who sent the message. Practical cryptography is the design and use of these 

codes in real systems.

This book is primarily for computer programmers with little or no previous 

background with cryptography. Although mathematics makes brief appearances in the 

book, the overall approach is to teach introductory cryptography concepts by example.

Our journey begins with some introductory components, including hashing 

algorithms, symmetric encryption, and asymmetric encryption. Next, we go beyond 

encryption and into the realm of digital certificates, signatures, and message 

authentication codes. The final chapters show how these various elements come 

together in interesting and useful combinations, such as Kerberos and TLS.

Another important part of cryptography by example is cryptography by bad 

example! In this book we will break things on purpose to help the reader appreciate what 

motivates accepted best practices. Exercises and examples include walk-throughs of real 

vulnerabilities that have afflicted the Internet. The bad examples will help the reader 

gain a greater intuition of what goes wrong in cryptography and why.
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CHAPTER 1

Cryptography: More  
Than Secrecy
Welcome to the world of practical cryptography! The intent of this book is to teach 

you enough about cryptography that you can reason about what it does, when certain 

types can be effectively applied, and how to choose good strategies and algorithms. 

There are examples and exercises throughout each chapter, usually with a follow-along 

exercise right at the beginning to help you get your bearings. These examples are often 

accompanied by some fictitious stage setting to add some context. After you’ve had some 

exposure and experience, the technical terms that follow those examples should make 

more sense and be more memorable. We hope you like it.

�Setting Up Your Python Environment
In order to dive in, we’ll need a place to swim, and that’s a Python 3 environment. If you 

are already a Python 3 pro and have no trouble installing modules that you discover 

you need, skip this section and do some actual diving. Otherwise, read on, and we’ll get 

through the setup steps quickly.

All of the examples in this book are written using Python 3 and the third-party 

“cryptography” module.

If you do not want to mess around with your system Python environment, we suggest 

creating a Python virtual environment using the venv module. This will configure a 

selected directory with a Python interpreter and associated modules. Using an “activate” 

script, the shell is directed to use this custom environment for Python rather than the 

system-wide installation. Any modules you install are only locally installed.
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We will walk through installing the system in Ubuntu Linux in this section. 

Installation will be slightly different for other versions of Linux or Unix and may be 

considerably different for Windows.

First, we need to install Python 3, Pip, and the venv module:

apt install python3 python3-venv python3-pip

Next, we use venv to set up the environment in an env directory:

python3 -m venv env

This will set up the interpreter and modules within the path. Once the installation is 

complete, the environment can be used at any time by the following command:

source env/bin/activate

You should now see a prefix to your shell prompt with the name of your 

environment. Once your environment is activated, install the cryptography module. 

Remember to activate your Python virtual environment first if you don’t want 

cryptography installed system-wide.

pip install cryptography

We will be using the cryptography module throughout the book. Many times we 

will refer directly to the module’s documentation that can be found online at https://

cryptography.io/en/latest/.

For some practices, we will also need the gmpy2 module. This does require a few 

system-wide packages.

apt install libmpfr-dev libmpc-dev libgmp-dev python3-gmpy2

Once you have these packages installed, you can install the Python gmpy2 module 

within your virtual environment

pip install gmpy2

Note that within the virtual environment, you can use “python” instead of “python3” 

and “pip” instead of “pip3.” This is because when you created the environment with 

venv, you did so using Python3. Within the virtual environment, Python3 is the only 

interpreter and there is no need to differentiate between version 2 and version 3. If you 
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install any of these packages system-wide, you may need to use pip3 instead of just pip. 

Otherwise, the packages might be installed for Python 2.

If you have trouble with gmpy2 or do not wish to install all the system-wide packages, 

you can skip this step. There are only a few exercises you will not be able to complete.

Now let’s get diving!

�Caesar’s Shifty Cipher
The two (made-up) countries of East Antarctica (EA) and West Antarctica (WA) don’t 

like each other very much and are spying on each other incessantly. In this scenario, 

two spies from EA, with code names “Alice” and “Bob,” have infiltrated their western 

neighbors and are sending messages back and forth through covert channels.

They don’t like it when their adversaries in West Antarctica read their messages, so 

they communicate using a secret code.

Unfortunately, East Antarctica is not particularly advanced in the realm of 

cryptography. For a code, the East Antarctica Truth-Spying Agency (EATSA)  creates 

a simple substitution by replacing each letter with another letter later in the alphabet. 

Both countries use the standard ASCII alphabet with the letters “A” through “Z.”

Suppose for a moment that they choose to code their messages using this 

substitution technique with the shift distance set to 1. In that case, the letter “A” would 

be replaced with “B,” the letter “B” would be replaced with “C,” and so on. The last letter 

of the alphabet, “Z,” would wrap around to the beginning and be replaced with “A.” This 

table shows the whole (uppercase) mapping of plaintext (original, untouched) letters to 

ciphertext (coded) letters. Non-letters like spaces and punctuation are left intact.

A B C D E F G H I J K L M

B C D E F G H I J K L M N

N O P Q R S T U V W X Y Z

O P Q R S T U V W X Y Z A

Using this table, HELLO WORLD encodes to IFMMP XPSME.
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Now try it with distance 2, where “A” goes to “C,” “B” goes to “D,” and so on until “Y,” 

which maps to “A,” and “Z,” which maps to “B.”

A B C D E F G H I J K L M

C D E F G H I J K L M N O

N O P Q R S T U V W X Y Z

P Q R S T U V W X Y Z A B

Now, the message HELLO WORLD is encoded as JGNNQ YQTNF.

Happy with their simple shift cipher, the East Antarctica Truth-Spying Agency 

(EATSA) decides to create a Python program to handle encoding and decoding 

messages.

Tip: Write Code

This book walks through a lot of sample Python programs. At the beginning of 
each one, we will list the requirements and perhaps a hint or an overview of a 
cryptographic API. You should go ahead and try to write the program yourself first. 
It’s fine if you get stuck or make mistakes. Even if you can’t figure everything 
out on your own, your experience with trying to write the program will help you 
understand the provided samples much better.

EXERCISE 1.1. SHIFT CIPHER ENCODER

Create a Python program that encodes and decodes messages using the shift cipher described 

in this section. The amount of shift must be configurable.

Let’s walk through this exercise together. We use Python 3 for all exercises.

First, let’s create a simple function for creating our substitution tables. For simplicity, 

we will create two Python dictionaries: one containing the encoding table and one 

creating the decoding table. We will also only encode and decode uppercase ASCII 

letters, as shown in Listing 1-1.
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Listing 1-1.  Creating Substitution Tables

 1   # Partial Listing: Some Assembly Required

 2

 3   import string

 4

 5   def create_shift_substitutions(n):

 6       encoding = {}

 7       decoding = {}

 8       alphabet_size = len(string.ascii_uppercase)

 9       for i in range(alphabet_size):

10           letter       = string.ascii_uppercase[i]

11           subst_letter = string.ascii_uppercase[(i+n)%alphabet_size]

12

13           encoding[letter]       = subst_letter

14           decoding[subst_letter] = letter

15       return encoding, decoding

Observe that this function is parameterized on n, the shift parameter. We don’t 

have any error checking in this function; we will check parameters elsewhere. Note, 

though, that any integer value of n is valid because Python handles negative modulus 

in a reasonable way. Even the value 0 is okay: it just produces a mapping from each 

character to itself! Values larger than 26 also work fine because we apply a final modulus 

of alphabet_size before indexing into the alphabet.

Now, for encoding and decoding, we simply substitute each letter in a message for 

one in the corresponding dictionary, shown in Listing 1-2.

Listing 1-2.  Shift Encoder

 1   # Partial Listing: Some Assembly Required

 2

 3   def encode(message, subst):

 4       cipher = ""

 5       for letter in message:

 6           if letter in subst:

 7               cipher += subst[letter]

 8            else:
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 9                cipher += letter

10       return cipher

11

12   def decode(message, subst):

13       return encode(message, subst)

Note: Compactness vs. Clarity   

We tend to favor universal clarity over compactness when there is a conflict 
between them. We will even write things in ways that might not be widely 
considered idiomatic if it helps to illustrate what is happening.

The code in Listing 1-2 has a nice example of favoring clarity over common idioms. 
An idiomatic function body would probably be a one-liner:

def encode(message, subst):
    return "".join(subst.get(x, x) for x in message)

That’s a lovely bit of Python if you’re used to it, but we’re trying not to make too 
many assumptions here.

In our implementation, the encode function takes an incoming message and a 

substitution dictionary. For each letter in the message, we replace it if a substitution 

is available. Otherwise, we just include the character itself with no transformation 

(preserving spaces and punctuation).

Obviously, the decode operation in this listing is completely unnecessary, but we 

have included it to emphasize that encoding and decoding in a substitution cipher work 

exactly the same. Only the dictionary needs to change.

These functions are sufficient to build an application, but for fun we will add in 

another function in Listing 1-3 to take a substitution dictionary and create a string that 

shows the mapping. This will allow us to print out our different tables created from 

different shift values.
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Listing 1-3.  Printable Substitutions

 1   # Partial Listing: Some Assembly Required

 2

 3   def printable_substitution(subst):

 4       # Sort by source character so things are alphabetized.

 5       mapping = sorted(subst.items())

 6

 7       # Then create two lines: source above, target beneath.

 8       alphabet_line = " ".join(letter for letter, _ in mapping)

 9       cipher_line = " ".join(subst_letter for _, subst_letter in mapping)

10       return "{}\n{}".format(alphabet_line, cipher_line)

Using these functions, we can build a simple application for encoding and decoding 

messages, shown in Listing 1-4.

Listing 1-4.  Shift Cipher Application

 1   # Partial Listing: Some Assembly Required

 2

 3   if __name__ == "__main__":

 4       n = 1

 5       encoding, decoding = create_shift_substitutions(n)

 6       while True:

 7           print("\nShift Encoder Decoder")

 8           print("--------------------")

 9           print("\tCurrent Shift: {}\n".format(n))

10           print("\t1. Print Encoding/Decoding Tables.")

11           print("\t2. Encode Message.")

12           print("\t3. Decode Message.")

13           print("\t4. Change Shift")

14           print("\t5. Quit.\n")

15           choice = input(">> ")

16           print()

17

18           if choice == '1':

19               print("Encoding Table:")
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20               print(printable_substitution(encoding))

21               print("Decoding Table:")

22               print(printable_substitution(decoding))

23

24           elif choice == '2':

25               message = input("\nMessage to encode: ")

26               print("Encoded Message: {}".format(

27                  encode(message.upper(), encoding)))

28

29           elif choice == '3':

30               message = input("\nMessage to decode: ")

31               print("Decoded Message: {}".format(

32                   decode(message.upper(), decoding)))

33

34           elif choice == '4':

35               new_shift = input("\nNew shift (currently {}): ".format(n))

36               try:

37                   new_shift = int(new_shift)

38                   if new_shift < 1:

39                       raise Exception("Shift must be greater than 0")

40               except ValueError:

41                   �print("Shift {} is not a valid number.".format(new_

shift))

42               else:

43                   n = new_shift

44                   encoding, decoding = create_shift_substitutions(n)

45

46           elif choice == '5':

47               �print("Terminating. This program will self destruct in 5 

seconds .\n")

48               break

49

50           else:

51               print("Unknown option {}.".format(choice))
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The encoding and decoding program completed, the East Antarctica Truth-Spying 

Agency (EATSA ) sends Alice and Bob off to their covert destinations hopeful that their 

communications, if intercepted, will not be readable by the West Antarctica Central 

Knights Office (WACKO).

The problem is this code is quite easy to break. Can you see why? There are all kinds 

of ways to figure it out by clever guessing. For example, try to break this:

FA NQ AD ZAF FA NQ FTMF UE FTQ CGQEFUAZ

Using a couple of simple two-letter words such as “if,” “or,” “in,” “to,” and so forth, it 

quickly becomes obvious that this phrase is

TO BE OR NOT TO BE THAT IS THE QUESTION

The preserved spaces make it easy to figure out. For this reason, real spies before 

modern cryptography would typically remove all of the spaces in their messages, like this:

FANQADZAFFANQFTMFUEFTQCGQEFUAZ

With this change, at least it isn’t obvious where to try easy word substitutions. But 

even if Alice and Bob remove all spaces and punctuation, it is still trivial to break their 

codes. Although this code is so trivial it can be broken with pen and paper, we are going 

to write a Python program to crack it. Do you already see how? If so, go ahead and do it 

yourself. If not, keep reading!

The problem with the substitution cipher used by EATSA is that there are only 25 

unique and effective shifts. You can easily construct a Python program to try all possible 

25 combinations.

How do we know when we are using the same shift as Alice and Bob? We’ll know it 

when we see it because it will be readable.

Let’s switch sides in this Antarctic cold war and work for the West Antarctica Central 

Knights Office (WACKO). They know that spies have infiltrated their country, and they 

are monitoring for communications between those spies and EATSA. One of their 

counter-intelligence agents, code named “Eve,” has just come across the following 

message:

FANQADZAFFANQFTMFUEFTQCGQEFUAZ
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With this message, Eve also has intel that EA agents are using substitution ciphers. 

She decides to construct a program for encoding and decoding such messages. In an 

amazing coincidence, she constructs a Python program just like EATSA!

Running the program, she tries decoding the message with a shift of 1, producing this:

EZMPZCYZEEZMPESLETDESPBFPDETZY

That doesn’t look right. So Eve tries again with shifts 2, 3, and so forth.

1:  EZMPZCYZEEZMPESLETDESPBFPDETZY

2:  DYLOYBXYDDYLODRKDSCDROAEOCDSYX

3:  CXKNXAWXCCXKNCQJCRBCQNZDNBCRXW

4:  BWJMWZVWBBWJMBPIBQABPMYCMABQWV

5:  AVILVYUVAAVILAOHAPZAOLXBLZAPVU

6:  ZUHKUXTUZZUHKZNGZOYZNKWAKYZOUT

7:  YTGJTWSTYYTGJYMFYNXYMJVZJXYNTS

8:  XSFISVRSXXSFIXLEXMWXLIUYIWXMSR

9:  WREHRUQRWWREHWKDWLVWKHTXHVWLRQ

10: VQDGQTPQVVQDGVJCVKUVJGSWGUVKQP

11: UPCFPSOPUUPCFUIBUJTUIFRVFTUJPO

12: TOBEORNOTTOBETHATISTHEQUESTION

Using a shift of 12, Eve sees a string of obviously English text. This is clearly the message.

This type of substitution cipher is often called a Caesar cipher because Julius Caesar 

used it for his secret messages [3]. This cipher is more than 2000 years old. Obviously, 

we’ve come a long way since then. This technology is quite obsolete.

Even so, there are a lot of principles of modern cryptography that can be discussed 

using the Caesar cipher, including

	 1.	 Key size

	 2.	 Block size

	 3.	 Preserved structure (structure that survives encoding)

	 4.	 Brute-force attacks

We will be learning about all of these concepts in this book in the context of modern 

cryptography. Mathematical advances have enabled new ciphers that are almost 

impossible to break if used correctly. Before we go on, though, here are a few additional 

exercises for the intellectually curious.
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EXERCISE 1.2. AUTOMATED DECODING

In our example, Eve tried decoding various messages until she saw something that looked like 

English. Try automating this.

•	 Get a data structure containing a few thousand English words.1

•	 Create a program that takes in an encoded string, then try decoding it with all 25 

shift values.

•	 Use the dictionary to try to automatically determine which shift is most likely.

Because you have to deal with messages with no spaces, you can simply keep a count of how 

many dictionary words show up in the decoded output. Occasionally, one or two words might 

appear by accident, but the correct decoding should have significantly more hits.

EXERCISE 1.3. A STRONG SUBSTITUTION CIPHER

What if instead of shifting the alphabet, you randomly jumbled the letters? Create a program 

that encodes and decodes messages using this kind of substitution.

Some newspapers publish puzzles like this called cryptograms.

EXERCISE 1.4. COUNT THE DICTIONARIES

How many substitution dictionaries are possible for the cryptogram-style substitution in the 

previous exercise?

1�You can find lists of such words online, and your program can automatically populate 

your data structure with them.
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EXERCISE 1.5. IDENTIFYING THE DICTIONARY

Modify your cryptogram program so that you can identify and pick the jumbled character 

substitution map with a number. That is, each mapping has a unique number that identifies it: 

picking substitution n should create the same substitution mapping every time. This exercise 

is a little tougher than the others. Do your best!

EXERCISE 1.6. BRUTE FORCE

Try having your cryptogram-decoding program brute force a message. How long would it take 

to test every possible mapping? Can you write a program that can speed this up with any kind 

of “smart guess”?

�A Gentle Introduction to Cryptography
With the example out of the way, we are ready to get into some real cryptography. 

Welcome! Hopefully you had fun with the substitution cipher. As mentioned earlier, this 

particular form of encryption is called a “Caesar cipher” because it was used by Julius 

Caesar for protecting important documents.

Like Caesar, most of us have information that we would like to keep secret. In 

cryptography terms, we would like to keep it confidential. Encryption is a cornerstone of 

data confidentiality.

What do you think of Caesar’s cipher? Even without a computer, how long do you 

think it would take you to break something like that? Perhaps in Caesar’s time it was 

reasonably effective if Caesar’s enemies were not well educated. This is an important 

lesson in cryptography and computer security. The effectiveness of cryptography is 

typically dependent on context. Good cryptography is effective no matter how well 

educated your adversaries are, how many computers they have, whether they know the 

algorithms you use, or how motivated they are.

In short, you’re better off when you aren’t too dependent on context, at least context 

that is out of your control.
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Good security will always depend on your choices, however. The goal of this book is 

to help cryptographic beginners understand a little bit about how certain cryptographic 

algorithms work and a little bit about the contexts they are designed for. This book 

is directed at programmers and thus uses a lot of source code to teach and illustrate 

concepts. As we use the Python programming language, Python programmers will 

especially enjoy these exercises. However, the concepts are not language-dependent.

Thus, we assume some familiarity with programming. Python is easy enough to learn 

to read that it should be easy for anyone to at least follow the examples, and we try to stay 

away from very special Python idioms to facilitate that.

We do not, however, assume that the reader has any prior familiarity with 

cryptography. If you know cryptography a little, please be patient with some of the 

explanations in the book that may be directed to the absolute beginner. If you are a 

beginner, this book is for you. We hope that you enjoy getting your feet wet.

�Uses of Cryptography
You are probably aware that cryptography is everywhere in today’s modern 

interconnected world. The world’s people are exchanging information in mind-boggling 

quantities and at mind-boggling speeds. A 2018 Forbes article reported the following 

statistics [10]:

	 1.	 2.5 quintillion bytes of data are created each day, and that number 

is accelerating.

	 2.	 Google processes 3.5 billion searches each day.

	 3.	 Snapchat users share 500,000 photos per second.

	 4.	 More than 16 million text messages are sent every second.

	 5.	 More than 150 million email messages are sent every second.

What’s amazing from an information security perspective is that the vast majority of 

these transmissions are meant to be protected in some way. There are nearly 4 billion 

users of the Internet at the time of this writing, but almost all of the data transmitted 

is meant for a vanishingly small percentage of them. Even when someone posts to 

social media publicly for the world to see, they are posting to a specific platform. The 

communication is meant for Facebook, or Twitter, or Snapchat, or Instagram first, and 

the platform then makes it available publicly.
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Cryptography is the primary tool for protecting information. Cryptography can be 

used to help provide the following protections:

Confidentiality: Only authorized parties can read the protected 

information. This is probably the first thing that you think of when 

you think about encryption or secret codes.

Authentication: You know that you are talking to the right  

entity/person and that they have not delegated their identity 

(they’re “present”). Many people know that the little lock icon in 

their browser means that their data is encrypted, but fewer know 

that it also means the service’s identity (e.g., your bank) has been 

verified by a trusted authority. That is pretty important, after all: 

encrypting data to the wrong party doesn’t really help.

Integrity: A message hasn’t been changed between the sender 

and receiver. This applies equally to plaintext and to encrypted 

messages. It may seem unintuitive in some cases, but it is possible 

to change an encrypted message without being able to read it, 

even in ways that “make sense” to the receiver.

While there are a lot of books on cryptography, not many of them are focused 

on programming as the primary method of teaching the algorithms and associated 

principles. Our goal is to walk you, the computer programmer, through hands-on 

exercises that will help make these concepts understandable and useful.

�What Could Go Wrong?
Unfortunately, there are a lot of ways to use cryptography incorrectly. In fact, there are 

a lot more ways to use it incorrectly than correctly. There are many reasons for this, but 

two that we will focus on here.

First, cryptography is based on a lot of pretty esoteric mathematics that most 

programmers and IT professionals have little experience with. You don’t have to know 

the mathematics to use the cryptography, but sometimes not knowing the math behind 

it makes it difficult to have correct intuition about what will work and what will not.

Second, and perhaps the biggest problem, is that correct usage is also dependent 

on context. It is rare to find a universal “this is how you should always do it under all 
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circumstances” algorithm. A big part of learning cryptography is learning how various 

parameter settings impact the operation.

We will talk about this a lot in the book. In fact, many of your exercises will be to 

break cryptography that has been set up incorrectly. Looking at something break is a 

great way to understand how it works. It is also a lot of fun.

�YANAC: You Are Not A Cryptographer

Warning T his Section Is Critical. Please Read It Carefully

To repeat, there are more ways to mess up cryptography than you can possibly 

imagine. The pages of cryptography history are filled with stories of very smart people 

that unintentionally created vulnerable algorithms and systems. Many times, non-

experts learned just enough to be dangerous and threw together a cryptography-based 

module that provided little more than a false sense of security. Even some of the very 

best cryptographic minds have had to correct their protocols after finding out they 

overlooked a subtle edge case.

If this book is your first exposure to cryptography, you will still not be an expert by 

the time you finish. This book will not prepare you to create algorithms and protocols 

that provide industrial strength protections. Please, please, do not finish reading this 

book and then think that you are ready to slap together your own custom cryptography 

for a real application.

Even for experts, the current best thinking in the cryptography community is to 

not create new or custom mechanisms. This is typically stated as, “Don’t roll your own 

crypto.” Instead, find and use existing libraries, protocols, and algorithms that have been 

heavily tested and are both well documented and consistently maintained. When new 

algorithms are truly needed, these are typically created and tested to within an inch of 

their lives by committees of experts, then presented for peer review and public comment 

before ever being trusted to protect sensitive data.

So why read this book at all? If only the experts should develop cryptography, why 

should non-experts learn this stuff?

First and foremost, cryptography is fun! Regardless of how ready you are to secure 

data communications between an app you write and a back-end server, learning 

cryptography is interesting, enjoyable, and worthwhile. Moreover, maybe after you get 
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a taste for it you will want to do the hard work required to become an expert yourself! 

Perhaps this book will be the first step in your journey to becoming a cryptography wiz!

Second, we live in an imperfect world. You may be working on a project where 

former contributors (unfortunately) did roll their own cryptography. If you are in that 

situation, you need to encourage your organization to replace it as quickly as possible. 

Such situations are like a land mine just waiting to go off and may require a significant 

financial investment to fix. Your organization may need to hire a cryptography 

consultant to investigate and assess the risks. Without giving advance notice to the bad 

guys, you may need to send mandatory security patches to all of your customers. As bad 

as this situation is, it is still better to discover it yourself than to wait for the bad guys 

to find it for you. Reading this book can help you to recognize these issues and make a 

preliminary assessment of what you are dealing with.

Third, even when you are using a reputable algorithm (or better yet, third-party 

library), it is helpful to understand the underlying cryptography principles at least a little 

bit. It is handy to know how to use cryptography and particularly how to set parameters 

of various cryptographic methods. There is a big push from some in the cryptography 

community to create libraries with APIs that require minimal configuration and are 

nearly impossible to use incorrectly (we will talk about an example of this later in the 

book). Even for these, however, if a weakness is found inside these black boxes, an 

informed user can better understand how that weakness affects the security of the 

system and thus better select mitigation strategies.

Finally, an informed user is better able to recognize good advice and trustworthy 

experts. Let’s discuss this point a little more in the next couple of sections.

�“Jump Off This Cliff”—The Internet
Most of us that write code depend heavily on the Internet. It is common to search for 

API documentation, example code, and even best practices. But please be cautious 

when searching the Web for recommendations about cryptography. Many answers are 

good, but many more are terrible. If you’re not an expert, it can be hard to recognize the 

difference.

For example, some researchers published a research paper in 2017 entitled “Stack 

Overflow Considered Harmful? The Impact of Copy&Paste on Android Application 

Security” [5]. They detailed over 4000 posts on the Stack Overflow web site that included 

security-related code snippets. After forensically examining 1.3 million Android 
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applications, they found that a full 15% included code copied from these posts, most of 

which were insecure to some degree or another.

One of the first things you can do is educate yourself about cryptography in practice, 

and this is one of our goals in writing this book. You do not have to be an expert to be 

well-informed. Most of you reading this book know enough about computer hardware 

to not get taken advantage of by a pushy salesman even though you aren’t personally 

designing circuit boards. Similarly, knowing just a little more about cryptography 

fundamentals can help you recognize good advice from bad. And it can help you know 

when you can figure it out yourself and when you should get expert help.

�The cryptodoneright.org Project
One of the authors is a founding member of the Crypto Done Right project. The goal 

of this project is to bring together in one place the very best in practical cryptographic 

guidance. At the cryptodoneright.org web site, we are creating and maintaining a 

collection of cryptography recommendations designed for software developers, IT 

professionals, and managers. The goal is to bridge the gap between the crypto experts 

that know all the crazy math and the users of cryptography that just need an application 

to communicate securely with a cloud-based server.

Anyone can submit or suggest an entry to Crypto Done Right, but an editorial board 

of the very best experts ensure correct content. At the time of this writing, editorial 

control is still located with the Johns Hopkins University, but moving this into an 

independent, community-driven organization is on the road map.

We encourage you to use this web site as an authoritative source on cryptographic 

best practices, and we endorse the content. As a general knowledge base, it will never 

have everything that everyone needs or answer every question about every application. 

But it is a good start to understand how cryptographic algorithms work, which 

parameters matter, and what common problems to avoid. If you are trying to figure out 

what to do with cryptography in your development project, start there and then branch 

out to other sources for more detailed recommendations applicable to your situation. 

Crypto Done Right can sensitize you to the relevant issues so that you can recognize 

which sources are trustworthy.

Chapter 1  Cryptography: More Than Secrecy 
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�Enough Talk, Let’s Sum Up
This book is a Python programming book. We will write a lot of very fun, very interesting 

code to learn about cryptography. To keep things interesting, we are going to rely on 

Alice, Bob, and Eve throughout the book. Computer security people actually talk about 

scenarios this way where “Alice” represents “Party A,” Bob represents “Party B,” and Eve 

represents the “Eavesdropper.” There are sometimes other common names, but these 

will be our three most common actors.

We will motivate a lot of our examples using a hypothetical cold war between East 

and West Antarctica, which are totally fictitious. Please do not read anything political 

into any of this. We use Antarctica because it was the least political place we could think 

of. If we have inadvertently offended you, we apologize in advance.

Although the sample code is written to be entertaining, it is also written to be 

relevant and illuminating. Take time to play around with the examples. Try out your own 

experiments. Learn from positive and negative examples.

Please be very careful not to ever use sample “bad” code in your projects. Even the 

“good” code should not just be copied and pasted into applications without carefully 

deciding that it is appropriate.

The rest of the book is organized as follows:

In Chapter 2, we will get started with hashing. You are probably familiar with hashes 

to some degree or another already, but we will do some interesting experiments in brute-

force attacks against a hash algorithm and even talk a little about Proof of Work like 

what is used in Bitcoin. From a security perspective, hashes are extremely important for 

password protection. They are also useful for file integrity and will make a reappearance 

in later chapters when we talk about message integrity and digital signatures.

In Chapter 3, we really get into encryption with a discussion of symmetric encryption. 

If you have heard of AES, that is an example of a symmetric encryption scheme. It’s 

called “symmetric” because the same key that encrypts the data is used to decrypt the 

data. These algorithms are fast and used almost exclusively for encrypting most data 

whether in transit or on disk.

In contrast to symmetric algorithms, Chapter 4 dives into asymmetric encryption. 

This kind of cryptography involves two keys that work together. What one encrypts, the 

other decrypts. These types of algorithms are used in certificates and digital signatures, 

although in that chapter we will focus on the algorithms themselves.
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Although most people think of encryption when they hear of cryptography, it has 

other uses. Chapter 5 focuses on integrity and authentication. Integrity is making sure 

that messages don’t change between the sender and the receiver. You might be surprised 

to learn that even if you cannot read a message, you might still be able to change it in 

useful and meaningful ways. We will explore some neat examples of this when we get to 

that chapter. Also, we will look at digital signatures and certificates, bringing together our 

asymmetric tools from Chapter 4 and our hashing tools from Chapter 2.

Chapter 6 introduces how to use asymmetric and symmetric encryption together 

and why you want to, and Chapter 7 explores additional modern algorithms for 

symmetric encryption.

In Chapter 8, we will look very specifically at the TLS protocol used, among other 

things, for securing HTTPS traffic. This chapter will bring together almost everything we 

have looked at in the entire book because TLS is a complicated protocol that builds on 

all of these tools. Don’t worry about the complicated stuff though; you will find that it’s a 

great review of the book and a helpful way to see everything come together.

�Onward
We have now had a quick introduction to the basics of cryptography, including simple 

ciphers and the fact that it isn’t all about secrecy: there are other important factors as 

well. Ideally, you now have a good Python environment set up, have tried some code on 

your own, and are ready to learn more.

Let’s get going!
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CHAPTER 2

Hashing
Hashing is a cornerstone of cryptographic security. It involves the concept of a one-way 

function or fingerprint. Hash functions only work well when a couple of things are true 

about them:

•	 They produce repeatable, unique values for every input.

•	 The output value provides no clues about the input that produced it.

Some hashing functions are better at satisfying these requirements than others, and 

we’ll talk about some good ones (SHA-256) and some not-so-good ones (MD5, SHA-1) to 

demonstrate both how they work and why choosing a good one is so terribly important.

�Hash Liberally with hashlib

WARNING: MD5 Is No Good

We are going to use an algorithm called MD5 for about the first half of the 
chapter. MD5 is deprecated and  should not be used for any security-sensitive 
operations, or really any operations at all, except when you have to interact with 
legacy systems.

This discussion is for introducing the concept of hashing and for providing 
historical context. MD5 is nice for that because it produces short hashes, has a rich 
history, and gives us something to break.

When we last left our two favorite spies from East Antarctica, Alice and Bob were 

working out some codes using simple substitution ciphers. Even though the cipher was 

very weak, it provided a rudimentary form of message confidentiality.
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It did nothing, however, for message integrity. If you haven’t already guessed, 

message confidentiality means that nobody but the authorized parties can read the 

message. Message integrity means that no unauthorized parties can change the message 

without the change being noticed.

It is important to understand the distinction. Even with modern ciphers, just because 

a message can’t be read doesn’t mean it can’t be altered, even in ways that make sense 

after decryption.

Also, when Alice and Bob go through customs at the WA border, sometimes 

their laptops are inspected. It would be nice to know that none of the files have been 

tampered with during that process.

Fortunately for Alice and Bob, their new technology officer introduces them 

to something called a “message digest” to “fingerprint” their files and message 

transmissions. He explains that they can combine their messages’ contents with message 

digests, then using the two together, they can tell whether part of any message was 

altered. That sounds like just the thing!

Since they don’t know anything about digests, it’s time for some training. Let’s follow 

along with their instructor in our own Python interpreter, starting with Listing 2-1.

Listing 2-1.  Intro to hashlib

>>> import hashlib

>>> md5hasher = hashlib.md5()

>>> md5hasher.hexdigest()

'd41d8cd98f00b204e9800998ecf8427e'

Importing a library called hashlib seems straightforward enough, but what is md5?

The instructor explains that the “MD” in MD5 stands for “message digest.” We’ll get 

into some interesting details in just a moment, but for now, a digest like MD5 converts a 

document of any length (even an empty document) into a large number that takes up a 

fixed amount of space. It should have at least these features:

•	 The same document always produces the same digest.

•	 The digest “feels” random: if you have a digest, it gives you no clues 

about the document.
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In this way, a digest is like a fingerprint and is sometimes called one: it is a small 

amount of data that stands in for the document’s identity; every document we might ever 

care about should have a completely unique digest.

Human fingerprints are similar in other ways. If you have a person at hand, it’s easy 

to produce a (relatively) consistent and unique fingerprint; but if the only thing you have 

is a fingerprint, it’s not so easy to find out whose it is. Digests work the same way: given a 

document, it’s easy to calculate its digest; but given only a digest, it’s very hard to find out 

what document produced it. Very hard. The harder, the better, in fact.

The MD5 digest creates a number that always occupies 16 bytes of memory. In our 

example interpreter session, we asked it to produce a digest for the empty document, 

which is why we didn’t add any data to the md5hasher before asking it to produce a digest 

for us. The use of hexdigest is shown to demonstrate a more human-readable format 

for the number, where each of the 16 bytes in the digest is shown as a two-character 

hexadecimal value.

The instructor, anxious to move on, asks Alice and Bob to hash each of their names 

(expressed as bytes). To the interpreter, and Listing 2-2!

Listing 2-2.  Hash Names

>>> md5hasher = hashlib.md5(b'alice')

>>> md5hasher.hexdigest()

'6384e2b2184bcbf58eccf10ca7a6563c'

>>> md5hasher = hashlib.md5(b'bob')

>>> md5hasher.hexdigest()

'9f9d51bc70ef21ca5c14f307980a29d8'

For short strings like these, it’s not uncommon to combine operations, like Listing 2-3.

Listing 2-3.  Combine Operations

>>> hashlib.md5(b'alice').hexdigest()

'6384e2b2184bcbf58eccf10ca7a6563c'

>>> hashlib.md5(b'bob').hexdigest()

'9f9d51bc70ef21ca5c14f307980a29d8'

“So, Alice, Bob, what did you learn from this?” the instructor asks. When neither one 

answers, she suggests that they experiment some more. Let’s follow along.
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Python differentiates between Unicode strings and raw byte strings. A full 
explanation of the differences is beyond the scope of this book, but for almost all 
cryptographic purposes, you must use bytes. Otherwise you can end up with some 
very nasty surprises when the interpreter attempts (or refuses) to convert Unicode 
strings into bytes for you. We forced our string literals to be bytes using the b'' 
string syntax. In other examples where user input requires us to start with Unicode 
strings, we will encode those to bytes ensuring that it is safe to do so.

EXERCISE 2.1. WELCOME TO MD5

Compute more digests. Try computing the MD5 sum of the following inputs:

•	 b'alice' (again)

•	 b'bob' (again)

•	 b'balice'

•	 b'cob'

•	 b'a'

•	 b'aa'

•	 b'aaaaaaaaaa' (ten copies of the letter “a”)

•	 b'a'*100000 (100,000 copies of the letter “a”)

What did you learn about MD5 sums from Exercise 2.1? We will talk about these 

further in the chapter, but let’s jump back to our intrepid Antarcticans.

“Okay, Alice and Bob,” the instructor says. “A couple of things. These digest objects 

don’t require the entire input all at once. It can be inserted a chunk at a time using the 

update method,” as shown in Listing 2-4.
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Listing 2-4.  Hash Update

>>> md5hasher = hashlib.md5()

>>> md5hasher.update(b'a')

>>> md5hasher.update(b'l')

>>> md5hasher.update(b'i')

>>> md5hasher.update(b'c')

>>> md5hasher.update(b'e')

The instructor asks Alice and Bob, “What do you think the output of the md5hasher.

hexdigest() instruction will be?” Try it out and see if you got it right!

“Great,” the instructor says when they’ve finished. “Your introductory training is 

almost over. Just one more exercise!”

EXERCISE 2.2. GOOGLE KNOWS!

Do a quick Google search using the following hashes (enter the hashes literally into the Google 

search bar):

	1.	 5f4dcc3b5aa765d61d8327deb882cf99

	2.	 d41d8cd98f00b204e9800998ecf8427e

	3.	 6384e2b2184bcbf58eccf10ca7a6563c

�Making a Hash of Education
Within the realm of computer security, the terms “hashing” or “hash function” always 

refer to cryptographic hash functions, unless otherwise stated. There are some very 

useful non-cryptographic hash functions as well. In fact, you were taught a very simple 

one in grade school: computing whether a number is even or odd. Let’s see how this 

simple, familiar function illustrates principles that apply to all hash functions.

Hash functions are fundamentally trying to map an enormous (even infinite) 

number of things onto a (relatively) small set of things. When using MD5, for example, 

no matter how big our document is, we end up with a 16-byte number. In discrete 

algebra terms, this means that the domain of a hash function is much larger than its 

range. Given a very, very large number of documents, chances are that many of them will 

produce the same hash.
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Hash functions are therefore lossy. We lose information going from our source 
document to a digest or hash. This is actually critical to their function, because 
without a loss of information, there would be a way to go backward from the hash 
to the document. We really don’t want that, and we’ll see why soon.

Thus, computing whether a number is even or odd fits this description quite well. No 

matter how large or interesting the (integer) number, we can squash it down into a single 

bit of space: 1 for odd, 0 for even. That’s a hash! Given any number of any size, we can 

efficiently produce its “oddness” value, but given its oddness, we would be hard-pressed 

to figure out which number produced it. We can create a very, very large number of 

possible inputs, but we can’t know which one specifically was used to make that answer.

An “even or odd” bit is sometimes called a “parity” bit and has often been used as 
a rudimentary error detection code.

The even/odd hash example illustrates this principle of “squashing” an input down 

to a fixed size value. This value is consistent, meaning you won’t get a different value 

out if you put the same number into it twice. It compresses large inputs into a fixed-size 

space (just one bit!), and it is lossy: you can’t tell me which number was used as input by 

examining only the output.

All hash functions, including non-cryptographic hash functions, have the 

fundamental qualities of consistency, compression, and lossiness and have all kinds 

of important applications in computer science. These qualities alone, however, are not 

enough for a hash function to be cryptographic or secure: for those, a hash function 

needs a few more properties [11, Chap. 9]:

•	 Preimage resistance

•	 Second-preimage resistance

•	 Collision resistance

We’ll talk about each of these important qualities in turn.
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�Preimage Resistance
Informally, a preimage is the set of inputs for a hash function that produce a specific 

output. If we were to apply that to our parity example from earlier, the preimage for an 

odd parity bit is the (infinite!) set of all odd integers. Similarly, the preimage for an even 

parity bit is the set of all even integers.

What does this mean for a cryptographic hash? Earlier, we computed that the MD5 

hash value 6384e2b2184bcbf58eccf10ca7a6563c could be generated by the input 

b'alice'. Thus, the preimage of

MD5(x) = 6384e2b2184bcbf58eccf10ca7a6563c

contains the element x == b'alice'.

This is important, so let’s state it in more precise terms (using integers in our domain 

and range—remember, a document is ordered bits and is therefore just a big integer):

Preimage: A preimage for a hash function H and a hash value k is the set of values of 

x for which H(x) = k.

For cryptographic hash functions, this concept of the preimage is important. If I give 

you a digest value, there might (should) be infinitely many input numbers that could be 

used to produce it. Those numbers are the preimage for that digest. Remember, every 

document is just a large integer number from the computer’s point of view. It’s all just 

bytes, and we’re just performing a mathematical operation on them. The preimage is 

therefore just an infinite set of integer numbers.1

The idea of preimage resistance is basically this: if you hand me a digest and I don’t 

already know how you got it, I can’t even find one element in the preimage for it without 

doing a ridiculous amount of work. Ideally I would have to do an impossible amount of 

work.

It’s already hard to (in general) find the entire preimage; it’s way too big. What 

we’re really interested in is making it tough to find any element in the preimage unless 

you already happen to know one. That’s where lossiness comes in: the digest should 

give us no information whatsoever about the document that produced it. Without any 

1�If thinking about the domain helps, a good quality for every preimage of a hash function would 
be that all of its elements are very spread out with unpredictable spacing. That way you are very 
unlikely to accidentally choose one by guessing (they’re really spread out), and given a hit, you’re 
just as unlikely to find any others (unpredictable spacing). That last part is something we’ll dive 
into in just a moment.
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information to guide us, the best we can do is random guessing or trying everything until 

we accidentally land on one that produces the right digest. That is preimage resistance.

The process of attempting to find an element in the preimage for a given output is 

called inverting the hash: trying to run it backward to get an input for a given output. 

Preimage resistance means that finding any inverse is hard.

This is why the even/odd function is a potentially useful hash function, but  

not a secure hash function. If I give you an even/odd value, you can readily come up  

with something that matches. I say “even,” you say “2,” for example. That’s not very 

preimage-resistant, because you just told me an input that produces the given output, 

and you didn’t have to think very hard to do it. In fact, you can describe the entire 

preimage without much trouble: “all even integers.” For cryptographic hash functions, if I 

tell you MD5(x) = ca8a0fb205782051bd49f02eae17c9ee, you (ideally) can’t tell me what x 

is unless you can find someone who already knows and is willing to tell you. MD5 is hard  

to invert.

Now, you could just try random (or ordered) documents to see if any of them produce 

ca8a0fb205782051bd49f02eae17c9ee, and you might get (very!) lucky. That approach 

is one kind of a brute-force attack because you just have to pick your way through 

every single straw in the haystack to find the needle you are looking for. All you can do is 

commit to looking at an awful lot of straw, relying on raw stamina to carry you through.

Because consistency is a property of hashes, if you already happen to have an 

input that maps to a given output, or you can find it by searching Google, for example, 

then that particular output is trivially inverted. The ASCII text “alice” always maps to 

“6384e2b2184bcbf58eccf10ca7a6563c” when run through MD5, no matter what, so if 

you happen to know that those two things go together, you can easily find “alice” from 

the digest. For that particular output, MD5 is trivially inverted. That doesn’t mean MD5 

is not preimage-resistant, though: to break that you would need to find an easy way to 

always find an input given an output without knowing one beforehand.

That leaves us with brute force again. How long would it take you to “guess” an 

element of the preimage for an MD5 hash using a brute-force technique (either random 

guessing or sequential searching)? To answer this, we first need to look at how many 

possible hash values there are. We know that MD5 always produces a 16-byte digest, 

and we can use that to figure out how hard it should ideally be to invert MD5. To do so, 

we’ll need some understanding of binary (base-2), decimal (base-10), and hexadecimal 

(base-16) positive integers (plus 0, but we usually just say “non-negative”).

If you already understand those pretty well, feel free to skip to the next section.
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�Byte into Some Non-negative Integers

Most computers use binary to represent everything. The binary number system is 

represented in base 2. One nice way to be introduced to it is through counting. Here we 

have the familiar base-10 (decimal) number on the left and the corresponding binary 

number on the right:

0     0

1     1

2    10

3    11

4   100

5   101

6   110

7   111

8  1000

9  1001

How does counting work in this system? We start with 0, which is nice and familiar. 

Adding 1 gives us 1, which is expected. So far, so good. But then, since we’re in base 2, we 

run out of digits when we try to do it again! Just like there is no single digit representing 

the number “10” in our decimal system, there is no single digit representing “2” in 

binary!

What do we do when we run out of digits in base 10? We use place values. The very 

number “10” shows this: there is “1 ten” and “0 ones” in that number. It’s the number 

that comes after “9.”

Binary is similar. When we move up one number from “1,” we run out of digits, so we 

put a “1” in the “twos column” and start over at “0” in the “ones column.”

What might seem remarkable is the fact that you can represent every non-negative 

integer this way, just like you can with decimal. The base value (“base-2,” “base-10,” 

“base-16,” etc.) tells you how many digits you have to work with and therefore what 

the place values mean. Here are a few place values in different number systems. Note 

that people get a little bit careless with these things, using decimal to talk about them, 

but really the number system is arbitrary. When it comes to that, there are ten kinds of 

people in the world: those who understand binary and those who don’t.2

2�An old joke. You’re welcome. And we’re sorry.
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That’s a big problem when teaching number systems: what does “10” mean 
without knowing what base we’re operating in? The default is to assume it 
means “ten” unless the base is explicitly stated, or is really obvious, like with 
hexadecimal, where we see “a”–“f” along with the more common decimal digits. 
We’ll do that here too: if you don’t see a base or you can’t easily tell what it is, you 
are looking at decimal.

Place 3 Place 2 Place 1 Place 0

Binary 8 4 2 1

Decimal 1000 100 10 1

Hexadecimal 4096 256 16 1

Or, put another way:

Place 3 Place 2 Place 1 Place 0

Binary 23 22 21 20

Decimal 103 102 101 100

Hexadecimal 163 162 161 160

All of these number systems work in the same way: place value is determined by 

adding one to an exponent on the base.

In decimal, therefore, the number 237 really means 2 ⋅ 102 + 3 ⋅ 101 + 7 ⋅ 100 = 200 + 30 + 7.

The same number in hex (we’ll use xh to mean “x in hexadecimal”) is edh, which 

means e dh h h h× + ×10 101 0 . But what does that mean? Well, eh = 14d in decimal, and dh = 13d. 

Since 10h has a 1 in the sixteens column, we get (in decimal) 14 ⋅ 16 + 13 = 237.

Why do we care about hexadecimal in the first place, other than its relative 

compactness? Hexadecimal (or “hex”) is useful because its place values are multiples 
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of 2 (they’re multiples of 24, to be exact), so it lines up nicely with binary. Consider the 

following table with hex on the left and binary on the right:

0     0

1     1

2    10

3    11

4   100

5   101

6   110

7   111

8  1000

9  1001

A  1010

B  1011

C  1100

D  1101

E  1110

F  1111

We ran out of digits in hex at exactly the same time that we needed to go from four 

columns to five in binary! That’s really helpful, because it means we can trivially convert back 

and forth between a computer’s native and sprawling binary numbers to the much more 

human-friendly and compact hex numbers. People even get good enough at this that they 

can just translate them on sight. Here’s an example with binary on top and hex underneath:

101 1100 1010 0011 0111

5   c    a    3    7

No matter how big a binary number gets, you can take every four bits and write them 

as a single hexadecimal digit.

The point of walking through this review of binary is to emphasize once again that 

every sequence of bits in a computer is a number. What if those bits are a document? 

That’s a number. What about if they represent an image? That’s just a big number.
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The “meaning” of those bits is not in the computer, it’s in our minds.

We may display the bits a certain way, but we humans choose to do that based 
on what we think they mean. The computer has no idea what they really mean. 
They’re just numbers. Can we store the meaning itself somehow? Well, sure, but 
that would force us to encode the meaning as a number, because numbers are all 
that computers understand. Even their instructions are just numbers.

Philosophize much, do we? It’s actually a pretty important thing to understand if 
you really want to know how computers work, and we definitely need people in the 
world who do. Data and code are just big numbers, and computers basically just 
fetch, store, and do arithmetic on them.

�How Hard a Hash!

With that little side trip, we can now answer what we wanted to answer in the first place: 

how hard would it be, in general, to invert MD5 using brute force? We can take a stab 

at this by looking at the size of its output. MD5 outputs a value in 16 bytes, which is 

16 ⋅ 8 = 128 bits. With n bits we can express 2n individual values, so MD5 can output a lot 

of different digests. This many, in fact (in decimal):3

340,282,366,920,938,463,463,374,607,431,768,211,456.

Even if you checked 1 million values per second (and were guaranteed that nothing 

you checked produced an output you had seen before), it would still take you about 1026 

years (100 million billion billion!) to find a suitable input by brute force. By comparison, 

our sun is only expected to continue sustaining earth life for at most another 5 billion 

years; your computer would need to keep running for many, many times that long.

If you have a cryptographic algorithm whose only means of being broken is brute 

force, you have a good algorithm. The trouble is, you don’t necessarily know that it’s 

good. But this gives us an upper bound on how long it would take to find an input that 

produces a particular hash in MD5. At least it won’t take longer!

3�In hex, this number is much more tightly related to binary and looks a little more sensible: 10000
0000000000000000000000000000.
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�Second-Preimage and Collision Resistance
Once preimage resistance is understood, the other two properties are relatively easy to 

grasp. We wandered a bit into brute force and binary near the end of that last section, so 

let’s quickly review:

Preimage resistance means it is really hard to find a document 

that produces a particular digest, unless you already know one.

�Second-Preimage Resistance

Second-preimage resistance means that if you already have one document that 

produces a particular digest, it’s still really hard to find a different document that 

produces that same digest.

In other words, just because you know that

MD5(alice) = 384e2b2184bcbf58eccf10ca7a6563c,

it doesn’t mean you can find another value to put into MD5 ×( )  that will give you the same 

value. You would have to resort to brute force again.

To tie it back to its name, if you have one member of the preimage already, it is not 

any easier to find a second member of the preimage: there is no exploitable pattern in 

the preimage.

�Collision Resistance

Collision resistance is a bit more subtle than either of the preimage characteristics we 

just mentioned. Collision resistance means that it’s hard to find any two inputs that 

produce the same output: not a specific output, just the same output.

A classic way of describing this is by using birthdays.4 Suppose you are in a room full 

of people and you want to find two of them whose birthday is February 3. How likely is 

that? Not necessarily very likely, if you really picked it at random.

But now let’s say you want to do something else. You want to know whether any 

two people have the same birthday. You don’t care what day of the year it falls on, you 

just want to know whether anyone’s birthday overlaps with anyone else’s. How likely is 

4�The “birthday problem” is a classic problem in probability theory, of uncertain origin.

Chapter 2  Hashing



34

that? It turns out that, in general, it is far, far more likely. After all, we just removed the 

constraint of a particular day, and now all we want is a collision on any day.

That’s the basic idea behind collision resistance. When a hash algorithm is resistant 

to collision, it is resistant to being able to purposefully create or pick any two inputs that 

produce the same digest, without deciding what that digest should be beforehand.

MD5 appears to be fairly collision-resistant. One property that helps with this is the 

fact that small changes in input can produce very large changes in output. Consider 

Exercise 2.1, where you produced hashes for very similar values like “a” and “aa,” or 

“bob” and “cob.” The digests resulting from performing MD5 on these values were not 

just different, they were wildly different:

bob: 9f9d51bc70ef21ca5c14f307980a29d8

cob: 386685f06beecb9f35db2e22da429ec9

There is no discernible pattern that would tie one to the other. This is due to a 

property shared by many hashes and cryptographic ciphers called the avalanche 
property: a change to the input, no matter how small, creates a large and unpredictable 

change in the output. Ideally, 50% of the output bits should be altered for small input 

changes [11, Chap. 7]. Did we achieve that with “bob” and “cob”? Let’s take a look at the 

digests in binary using some Python to aid our exploration (note that our bit string is 

quite long, so it is broken over two lines in Listing 2-5).

Listing 2-5.  Avalanche

>>> hexstring = hashlib.md5(b'bob').hexdigest()

>>> hexstring

'9f9d51bc70ef21ca5c14f307980a29d8'

>>> binstring = bin(int(hexstring, 16))

>>> print("{}\n{}".format(binstring[2:66], binstring[66:]))

1001111110011101010100011011110001110000111011110010000111001010

0101110000010100111100110000011110011000000010100010100111011000
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The following illustration visualizes the changes in bits when given inputs b'bob' 

and b'cob',

MD5(bob):

   9   f   9   d   5   1   b   c   7   0   e   f   2   1   c   a

1001111110011101010100011011110001110000111011110010000111001010

   5   c   1   4   f   3   0   7   9   8   0   a   2   9   d   8

0101110000010100111100110000011110011000000010100010100111011000

MD5(cob):

   3   8   6   6   8   5   f   0   6   b   e   e   c   b   9   f

0011100001100110100001011111000001101011111011101100101110011111

   3   5   d   b   2   e   2   2   d   a   4   2   9   e   c   9

0011010111011011001011100010001011011010010000101001111011001001

Changed Bits:

X_X__XXXXXXXX_XXXX_X_X___X__XX_____XX_XX_______XXXX_X_X__X_X_X_X

_XX_X__XXX__XXXXXX_XXX_X__X__X_X_X____X__X__X___X_XX_XXX___X___X

In this example, the difference between the hash of “bob” and “cob” impacted 64 bits 

out of 128. Not bad! Avalanche is an important property, and we will see it again with 

ciphers in Chapter 3.

EXERCISE 2.3. OBSERVING AVALANCHE

Compare the bit changes between a wide range of input values.

Avalanche helps collision resistance, because it is hard to produce a document, then 

come up with predictable changes that will still cause it to produce the same digest. If a 

small change in a document produces an unpredictable and large change in the digest, 

then creating collisions on purpose is likely to be a difficult problem, pushing us toward 

brute force again to solve it.

Remember the birthday analogy from earlier? Finding collisions is not as hard 

as finding a value in the preimage. Preimage resistance for an n-bit digest means an 

attacker would expect to compromise your hash after trying 2n, where it would only 

take 2(n/2) attempts to find a collision. That’s not half as many tries, that’s a number of 
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tries with half as many zeros in it. The difference is astounding. Concretely for MD5, 

finding a document for a given digest should take about 2128 attempts, where finding two 

documents that collide should only take 264 attempts.

As it happens, MD5’s collision resistance is actually nowhere near that good. It has 

been “broken,” meaning that techniques have been discovered for finding collisions 

in far fewer than the expected 264 attempts. In short, the problem can be solved by 

something other than brute force and in less than an hour [17]. Keep that in mind, and 

we’ll come back to it later on.

�Digestible Hash
By this point, you should know enough to create a Python program that computes the 

MD5 digest5 of a file. This is a common use for hashes and a good exercise to work 

through. Remember, you must use Python bytes, not Python Unicode strings, as inputs. 

If you try to open a Python file with the default mode, it may open it as a text file and read 

the data as strings, doing implicit decoding. You should, instead, open the file in “rb” 

mode so that all reads produce raw bytes. For a text file, you might be tempted to read the 

data as a string and then use the string’s encode method to convert to bytes, but depending 

on configuration, this encoding may not be what you expect and lead to nasty surprises.

EXERCISE 2.4. MD5 OF A FILE

Write a python program that computes the MD5 sum of the data in a file. You don’t need to 

worry about any of the file’s metadata, such as last modified time or even the file’s name, only 

its contents.

You should check your work for Exercise 2.4. If you’re using an Ubuntu Linux system, 

the md5sum utility is already installed. Run this utility from the command line with a file 

as input and see if it produces the same hex digest as your utility.

Speaking of Ubuntu, this is a perfect example of using hashes for file integrity.  

Visit the web site for Ubuntu releases. At the time of this writing, the web site is https://

releases.ubuntu.com. If you take a look at the “Bionic Beaver” distribution, for example, 

5�Sometimes called the “MD5 sum,” where “sum” is short for “checksum,” a name with some 
interesting (and long) history of its own, from error detection in digital transmissions.
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you will find that there are number of files available for download. In particular, there 

are two ISOs, but they are available directly or through other downloading technologies 

such as BitTorrent.

There’s also a file called MD5SUMS. Take a look. For this distribution, the contents of 

this file should be as follows:

f430da8fa59d2f5f4262518e3c177246 *ubuntu-18.04.1-desktop-amd64.iso

9b15b331455c0f7cb5dac53bbe050f61 *ubuntu-18.04.1-live-server-amd64.iso

Once downloaded, you can verify that the data is uncorrupted by running an MD5 

sum on the ISO.

How is the MD5 hash value helpful? It will not protect you from somebody that has 

compromised the Ubuntu web site. If they upload a fake Ubuntu to the web server, they 

can upload a fake MD5 sum as well.

The MD5 sum does, however, make it easier for you to obtain the Ubuntu ISO from 

other sources and know that it’s authentic. For example, suppose that you were about to 

download the ISO file directly from the Ubuntu web site when a coworker stops by and 

says that you can use the already-downloaded one they have on a USB drive. You can 

download the (relatively small) file of MD5 sums from Ubuntu’s official site and check 

them against the (much larger) files on the drive before trusting them.

Looking in the Ubuntu directory, you will also see a file called SHA1SUMS and 

SHA256SUMS. What are these?

So far, we’ve only talked about MD5 as a way of teaching some of the principles of 

hashing. MD5 was a standard approach to cryptographic hashing for a long time too, but 

it has been broken: people have discovered methods much faster than brute force for 

inducing collisions, so it is being phased out in favor of other hash functions.

Interestingly enough, being “broken” often means “someone can solve a problem 

in an order of magnitude less time than brute force.” For example, that might mean that 

preimage values can be found in 2127 tries on average instead of 2128. That’s still hard, 

just not as hard as it should be. When looking at articles indicating that something has 

been broken, it’s important to find out exactly what that means. Does it mean one of the 

fundamental properties no longer holds? Does it mean it holds, but isn’t as hard to get 

around? What if it’s more than one property? These things matter.

With MD5, researchers have found a way to “break” preimage resistance [12]. They 

showed that they could find a preimage for an MD5 hash faster than 2128 tries. How much 

faster? Well, their algorithm takes slightly longer than 2123 tries or, in decimal, 10,633, 
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823,966,279,326,983,230,456,482,242,756,608 tries. This attack is considered theoretical 

because it is still not useful in practice: 2123 is still huge.

On the other hand, MD5 has been shown to be very, very broken where collision 

resistance is concerned. It is reasonably easy to create two inputs that produce the 

same MD5 output. This has been shown to enable a practical attack for getting a false 

certificate for use in TLS, which is used for all kinds of secure Internet communication. 

We won’t get into the details here, because we haven’t talked about certificates yet, but 

we’ll revisit this when we get to TLS at the end of the book.

On the other hand, collision resistance is not the same as second-preimage 

resistance. Remember that second-preimage resistance prevents you for finding a 

second member of the preimage for an output when you already have the first. Even 

though MD5’s collision resistance is broken, its preimage resistance is not. Returning 

to our Ubuntu distribution example, if you’re getting your distribution from an 

intermediary, they are not able to create an alternate distribution with the same MD5 

digest.

The Ubuntu organization, however, could exploit the MD5 collision resistance 

weakness to create two separate distributions that have the same MD5 sum. Perhaps, in 

conjunction with a government, they could sell one distribution with all kinds of tracking 

software to another government hostile to the first. The MD5 sum could not be used to 

ensure that the same ISO was being distributed to all parties.

Also, once a cryptographic algorithm is broken in one way, there is increased 

suspicion that it is broken in other ways as well. So even though nobody has 

demonstrated a practical attack on MD5’s preimage or second-preimage resistance, 

many cryptographers worry that such vulnerabilities exist.

To reiterate the warning at the beginning of the chapter, DO NOT USE MD5. It has 

been deprecated for over 10 years (decimal), and some of its security flaws have been 

known for two decades.

The SHA-1 hash is another algorithm that was widely viewed as the replacement for 

MD5. SHA-1’s collision resistance has also recently been broken, however, as researchers 

have shown that it is relatively easy to create two inputs that hash to the same output 

[13]. So, as with MD5, DO NOT USE SHA-1, either.

At the time of this writing, best practice is to use SHA-256. Fortunately, this means 

very little to you if you are using hashlib: just change the hasher, as shown in Listing 2-6.
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Listing 2-6.  Change to SHA-256

>>> import hashlib

>>> hashlib.md5(b'alice').hexdigest()

'6384e2b2184bcbf58eccf10ca7a6563c'

>>> hashlib.sha1(b'alice').hexdigest()

'522b276a356bdf39013dfabea2cd43e141ecc9e8'

>>> hashlib.sha256(b'alice').hexdigest()

'2bd806c97f0e00af1a1fc3328fa763a9269723c8db8fac4f93af71db186d6e90'

You should notice that these different hash algorithms have different lengths. MD5, 

of course, outputs 16 bytes (128 bits). If it isn’t obvious, SHA-1’s output is 20 bytes (160 

bits). And, more simply, SHA-256’s output is 32 bytes (256 bits).

If you thought it would take a long time to invert MD5 (find a preimage for a given 

output), take a look at SHA-1. Because the output is 160 bits, it will take 2160 tries, or

1,461,501,637,330,902,918,203,684,832,716,283,019,655,932,542,976

tries to find a preimage. And SHA-256 requires 2256 tries, or

115,792,089,237,316,195,423,570,985,008,687,907,853,269,984,665,640,564,039,457, 

584,007,913,129,639,936.

Good luck with that!

�Pass Hashwords...Er...Hash Passwords
Another common use for hash functions is password storage. When you create an 

account on a web site, for example, they almost never store your password. Typically, 

they store a hash of the password. That way, if the web site is ever compromised and the 

password file is stolen, the attacker cannot recover anyone’s password.

What does this mean? When you send your password (over a secure channel, 

via HTTPS), the server doesn’t need to store it to check it. When you registered, your 

password was hashed, and the hash was stored. We’ll call that H(password). When you 

go to log in later, you send a password that we’ll call the “proposal”: you’re proposing 

that this is your true password, and the server needs to verify that.

So, you attempt to log in by sending your proposed password over a secure 

connection, and the server now has two things for you: it can look up H(password) from 

your username, and it has the proposal that you just submitted. All it has to do is check 

that H(proposal) = H(password) and let you through if they are the same.
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What if you don’t trust the service to not actually store your password? That can be a 

valid worry, particularly since we’ve seen so many sites with stolen passwords in recent 

years. Why not use the power of JavaScript to hash your password in the browser, then 

send that to the server? Then the server never even sees your password in memory, let 

alone in its database!

There are a few big problems with this:

•	 The code that hashes the password in your browser came from that 

server in the first place, so you still have to trust the service.

•	 If you don’t have a secure channel for your password, then someone 

can read it in transit. If you do have a secure channel, then you might 

as well just send the password. You have to trust the service already.

•	 If you send a hash successfully, that just became your password. Yes, 

you can generate it from some other easy-to-remember thing, but 

now you have to protect that hash value as well. The server has to 

hash your hash anyway, so that an attacker that makes off with the 

database can’t just log in using what’s stored there.

In short, if you were to use a hash as your password, the right way is to generate that 

hash from your password and the site name of interest using a tool separate from your 

browser, and then use the result as your password. This is essentially the same thing 

as just creating a brand new password and remembering it in a secure place, like a 

password manager.

Just do that instead. Then the server will never see a password that you use 

somewhere else, because you created a brand new random one for it.

Far better than trying to solve security with a hash is to use multiple forms of 

authentication that are proven to make it harder to steal your identity online, typically 

involving a hardware token attached to your computer.
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Most common forms of two-factor authentication don’t help and actually make 
things worse. Secret questions are one of those. It’s usually easy to get answers to 
them, and if it isn’t, they’re just one more hard thing to remember, unless written 
down. Plus, now you have several things that can be used as a password for the 
site, which means attackers have more opportunities to get in by guesswork. SMS 
has been shown to be critically weak and easy to hijack as well, so having a code 
sent via SMS to your phone is no good.

Properly deployed challenge-response hardware tokens don’t have any of these 
problems. They are something you possess instead of just another thing you know, 
and they can’t be guessed or spoofed by people listening in on the connection or 
pretending to be some other site’s login form. They can’t be given over the phone 
accidentally, and they can’t be forged.

Ultimately you need two or more factors for authentication anyway for true 
security. “Fixing passwords” is the wrong place to look for a complete solution.

If server-side hashing is correctly used and if an attacker steals the password file, they 

will see something like this. From looking at it, can you tell smithj’s password?

...

smithj,5f4dcc3b5aa765d61d8327deb882cf99

...

Look closely. Have you seen that hash value before?

The eagle-eyed reader will remember that hash value from the beginning of the 

chapter exercises. You were asked to look for that value online. What did you find?

That hash value is the MD5 hash of “password,” and yes, that password is still used 

far too often. But the deeper problem here is that hash values are deterministic: the 

same input always hashes to the same output. If an attacker has seen the MD5 sum 

of “password” once, he will be able to look for that same digest in every password file 

stolen. How can we fix this?

First, let’s not assume that we can make people stop using dumb passwords.

Let’s assume that they’re going to and we need to fix it anyway. We’ll start with the 

digest itself.
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Recall that MD5 is not broken (in practice) with respect to preimage resistance or 

second-preimage resistance. So there is no practical attack, at present, for inverting this 

hash value to the password. Nevertheless, MD5 is broken and should not be used! So 

let’s take a look at a new password file.

...

smithj,5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

...

Any idea what smithj’s password is now? Yes, it is still “password” but now it’s hashed 

under SHA-1. That’s better, right? Oh yeah, SHA-1 is broken and should not be used! 

Let’s try one more time!

...

smithj,5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8

...

There! Finally! We’re using a hash algorithm without known vulnerabilities. That’s 

better, but the problem with deterministic hashing is still a problem. If the attacker 

knows that this hash maps to the SHA-256 of “password,” smithj is still compromised.

This is where the idea of a “salt” comes into play. A salt is a publicly known value that 

is mixed in with the user’s password before hashing. By mixing in a salt value, the user’s 

password will not be immediately discernible as it is now.

This salt has to be chosen correctly. It needs to be unique, and it needs to be 

sufficiently long. One way of doing this is to use os.urandom and base64.b64encode to 

generate a strong, random6 salt:

>>> import hashlib

>>> hashlib.md5(b'alice').hexdigest()

'6384e2b2184bcbf58eccf10ca7a6563c'

>>> hashlib.sha1(b'alice').hexdigest()

'522b276a356bdf39013dfabea2cd43e141ecc9e8'

>>> hashlib.sha256(b'alice').hexdigest()

'2bd806c97f0e00af1a1fc3328fa763a9269723c8db8fac4f93af71db186d6e90'

6�The requirement is uniqueness, not randomness, but randomness provides us with a simple 
approach that works well for our examples.
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Obviously, your salt output will be different from that shown in the code listing and 

will be different every time you call it.

Once you have the salt, you store it, then mix the password and the salt with 

concatenation. For example, prepend the password with the salt before hashing. Now, 

if the attacker gets your password file, it will be impossible to “recognize” the password 

from any kind of pre-computed table.

They can still try hashing the salt plus “password” to see if anything matches, 

though. Guesswork is always a strategy, and it’s a particularly good one for most people’s 

password choices.

It should be easy to see that the same salt has to be used every time for checking 

a user’s password. But should the same salt be used for multiple users? Could you 

generate the salt once for an entire web site and just reuse it?

The answer is a very strong “No!” Can you think of why? What will be the impact if 

two users are using the same salt? At the very least, it means that it is instantly easy to 

recognize if two users are sharing the same password. Thus, best practice is to store the 

user name and salt along with the password hash.

If our friend smithj has the terribly chosen password, “password”, at least it will be 

stored correctly on our system:

...

smithj,cei6LtJVQYSM+n6Cty0O2w==,

    bd51dac1e2fca8456069f38fcce933f1ff30a656320877b596a14a0e05db9567

...

We have now walked through the basics of password storage, but there are better 

algorithms. They are built on the same principle but do additional steps to make it even 

harder for an attacker to invert the password. One highly recommended algorithms 

for password storage is called scrypt by Colin Percival and described in RFC 7914 [16]. 

Other popular ones are the newer bcrypt7 (https://pypi.org/project/bcrypt/) and 

the algorithm considered by some to be its successor: Argon2 (https://pypi.org/

project/argon2/).

Fortunately, using scrypt is easy using the cryptography module you set up in 

Chapter 1. Listing 2-7 is an example derived from the cryptography module’s online 

documentation. The listing derives the key (hash) to be stored on the file system.

7�The bcrypt algorithm is quite good and has only one “difficulty” parameter, making it easier to 
use correctly than approaches with many parameters.
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Listing 2-7.  Scrypt Generate

 1   import os

 2   from cryptography.hazmat.primitives.kdf.scrypt import Scrypt

 3   from cryptography.hazmat.backends import default_backend

 4

 5   salt = os.urandom(16)

 6

 7   kdf = Scrypt(salt=salt, length=32,

 8                   n=2**14, r=8, p=1,

 9                   backend=default_backend())

10

11   key = kdf.derive (b"my great password")

Both the key and the salt must be stored to disk. The scrypt parameters must be 

fixed or must also be stored. We will walk through these parameters in a moment, but 

first, verification is depicted in Listing 2-8 (it is presumed that salt and key are restored 

from disk).

Listing 2-8.  Scrypt Verify

1   kdf = Scrypt(salt =salt, length =32,

2                n=2**14, r=8, p=1,

3                backend=default_backend())

4   kdf.verify(b"my great password", key)

5   print("Success! (Exception if mismatch)")

�Pick Perfect Parameters
With regard to the scrypt parameters, let’s talk about backend first. The cryptography 

module is primarily a wrapper around a lower-level engine. For example, the module 

can make use of OpenSSL as such an engine. This makes the system faster (because 

computations aren’t being done in Python) and more secure (because it relies on a robust, 

well-tested library). Throughout this book, we will always rely on default_backend().

The other parameters are specific to scrypt. The length parameter is how long the 

key will be once the process is finished. In these examples, the password is processed 

into an output of 32 bytes. The parameters r, n, and p are tuning parameters that 
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impact how long it will take to compute and how much memory is required. To better 

protect your password, you want the process to take longer and require more memory, 

preventing attackers from compromising large chunks of a database at once (every 

compromise should take a long time).

Fortunately for you, recommended parameters are available. The r parameter 

should be 8, and the p parameter should be 1. The n parameter can vary based on 

whether you are doing something like a web site that needs to give a relatively prompt 

response or something more securely stored that does not need quick responsiveness. 

Either way, it must be a power of 2. For the interactive logins, 214 is recommended. For 

the more sensitive files, a number as high as 220 is better.

This is actually an excellent segue into a more general discussion about parameters. 

A lot of the security in cryptography depends on how parameters are set. Unless you 

are a cryptography expert, know the exact details of the algorithm, and understand why 

they are what they are, it may be difficult to choose them properly. It is important that 

you familiarize yourself with what the parameters mean, at least at a high level, and how 

they should be used in different contexts. Refer to trusted sources, such as https://

cryptodoneright.org, for advice and recommendations. Keep an eye on these sources 

too. What is presumed to be secure can change as new attacks and computational 

resources are unveiled.

�Cracking Weak Passwords
Let’s take a look at how attackers try to crack passwords. Unfortunately for smithj, 

choosing such a bad password means that he will most likely be compromised if the 

password file gets stolen, since attackers will try common words (including words 

in other stolen databases) against all the hashes anyway. But even less sophisticated 

methods would probably figure out the password as well.

In this section, we are going to practice cracking weak passwords using the least 

sophisticated method of all: brute force. This exercise is meant to reinforce why good 

passwords are so important.

The scenario is this: an attacker has a password file with usernames, salts, and 

password hashes. What can they do? Well, they could just try all lowercase letter 

combinations up to a certain length, starting, for example, with “a,” “b,” “c,” and so on.
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To make these exercises a little bit easier to start, Listing 2-9 shows some simple code 

for generating all possible combinations of an alphabet set up to a maximum length.

Listing 2-9.  Alphabet Permutations

1   def generate(alphabet, max_len):

2       if max_len <= 0: return

3       for c in alphabet:

4           yield c

5       for c in alphabet:

6           for next in generate(alphabet, max_len-1):

7               yield c + next

Calling generate('ab', 2) will generate 'a', 'b', 'aa', 'ab', 'ba', 'bb'. Using helpful sets 

in the built-in string module, such as

•	 string.ascii_lowercase

•	 string.ascii_uppercase

•	 string.ascii_letters

makes the following exercises fairly easy. Recall that hashing algorithms require bytes as 

inputs, so don’t forget to do an encode operation before passing these generated strings 

to the hashing function, like this:

string.ascii_letters.encode('utf-8').

ASCII letters encode correctly to bytes, so this will not lead to incorrect hashing or 

unexpected behaviors.

EXERCISE 2.5. THE POWER OF ONE

Write a program that does the following ten times (so, ten full loops with the time computed):

•	 Randomly select a single, lowercase letter. This is the “preimage seed.”

•	 Use MD5 to compute the hash of this initial letter. This is the “test hash.”
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•	 In a loop, iterate through all possible lowercase one-letter inputs.

–– Hash each letter in the same way as before, and compare against the test hash.

–– When you find a match, stop.

•	 Compute the amount of time it took to find a match.

How long, on average, did it take to find a match for a random preimage seed?

EXERCISE 2.6. THE POWER OF ONE, BUT BIGGER!

Repeat the previous exercise, but use an increasingly bigger input alphabet set. Try the test 

with both lowercase and uppercase letters. Then try it with lowercase letters, uppercase 

letters, and numbers. Finally, try all printable characters (string.printable).

•	 How many total symbols are in each input set?

•	 How much longer does each run take?

EXERCISE 2.7. PASSWORD LENGTH’S EFFECTS ON ATTACK TIME

Repeat the previous exercise, but this time for two-symbol inputs. Then try it with three and 

four symbols at a time. How much longer does it take to invert the randomly chosen input?

You will notice that increasing the length of the password and increasing the size of 

the alphabet both increase the time it takes to invert the hash. Let’s look at the math.

When using just lowercase letters, how many possible one-symbol inputs are there? 

Rather trivially, there are 26 lowercase letters in ASCII, so 26 one-symbol inputs. At worst, 

it will take 26 hash computations to invert a one-letter password. But, if we have both 

lowercase and uppercase letters, this increases the number of hashes needed to 52. Adding 

digits increases this to 62. There are 100 characters in string.printable. That’s nearly a 

fourfold increase of the worst-case number of hashes required to do brute-force inversion.

What about when we increase the size to two input symbols? How many two-symbol 

passwords are there using just lowercase letters? If you can have 26 characters for the 

first symbol and 26 characters for the second symbol, then there are 26 ∗ 26 = 676 total 

combinations. That’s quite a jump!
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Now look what happens if you use two symbols drawn from the 52 uppercase and 

lowercase letters. The math works out to be 52 ∗ 52 = 2704! Doubling the size of the input 

set quadrupled the complexity for two-symbol inputs! If we throw in digits, the worst-

case computation is 3844 hashes, and for all printable ASCII characters, it is around 

10,000 hashes.

Do the math for three, four, and five symbols, and you can easily see why longer 

passwords matter. Hackers with GPU-enabled rigs are able to invert anything smaller 

than six characters, and most passwords under eight, so at a minimum, passwords 

should be that long. And for the reasons demonstrated here, choosing from all printable 

letters greatly increases the complexity.

EXERCISE 2.8. MORE HASH, MORE TIME

Choosing a complex-to-invert password is the responsibility of the user, but the systems 

storing the passwords can also slow down attackers by using a more complicated hashing 
function. Repeat any of the preceding exercises that use MD5, but now use SHA-1 and  

SHA-256 instead. Record how much longer it takes to get through the brute-force operations. 

Finally, try out brute force using scrypt. You might not get very far!

One final note. Just because a password is big doesn’t mean it is secure. Attackers 

will also use large dictionaries to look for known words and phrases, even with various 

common number or symbol substitutions. A password such as “chocolatecake” is pretty 

long, but still easily broken. Randomly chosen letters or words are still the best bet. The 

key is that they are “random,” meaning you would never find them in any real writing 

or common transformations on real writing. Typically, choosing passphrases that are 

composed of common utterances reduces a successful attack to seconds instead of years.

�Proof of Work
Another area where hashing is used extensively is so-called “proof-of-work” schemes in 

blockchain technologies. To introduce this, we need to do a very quick overview of how 

blockchains work.

The basic idea of a blockchain is a “distributed ledger.” The system is a ledger because 

it records information related to transactions between participants. It can also store 
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additional information, but the primary operations are transactions. It is a distributed 

ledger because its contents are stored across the set of participants and not in any  

central location.

The problem is that there is no central location to enforce the correctness of the 

system. How does the ledger not get corrupted (intentionally or otherwise) by the users? 

Note that we won’t go into the ledger in detail here, but we do want to talk about the 

blocks that a ledger is composed of.

Every transaction must be stored in a block. There’s nothing special about a “block”; 

it’s just a collection of data. Each transaction within the block must be digitally signed by 

the transactor (we will discuss signatures more in Chapter 5, but for now, simply accept 

that it means nobody can create a transaction for somebody else without their private 

key). The overall block structure is protected by a hash. Blocks are copied to the entire 

set of participants; should anyone try to “lie” about the contents of a block, the data 

wouldn’t verify correctly and their information would be rejected.

How does a new block get created, and how does it get the protective hash? For this 

part of the discussion, we will use the Bitcoin network blockchain to walk through these 

concepts. The designer (or designers, the source is actually unknown) of Bitcoin, who 

goes by “Satoshi Nakamoto,” wanted to control how quickly new blocks could be created 

and also wanted the system to incentivize participation. The solution was to award 

bitcoins to the “miner” that produced a new block while making the production of the 

new block very difficult.

Basically, at any given time, various parties known as miners are searching for the 

next block in the blockchain. Any user of blockchain can request a transaction. They 

broadcast their desired transaction throughout the blockchain network and miners will 

pick them up. The miners take some set of requested transactions (there is a limited 

number per block) and create a candidate block. This candidate block has all the right 

pieces of information. It has the transactions, the metadata, and so forth. But it isn’t the 

next block in the blockchain until the miner can solve a cryptographic puzzle.

That puzzle is to find a special kind of SHA-256 hash value, specifically a value 

smaller than a certain threshold. As we discussed earlier, finding an input that produces 

one particular output would take a really, really long time, but finding any output less 

than a certain value takes a lot less time. Making that threshold smaller reduces the 

number of valid hashes, requiring more work to find a suitable value, and that’s how 

Bitcoin adjusts the difficulty to account for faster hardware or larger computational pools 

as time goes on. Ultimately, it takes about 10 minutes for the entire Bitcoin network 
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to find a suitable hash. If it takes less than that on average over a period of weeks, the 

maximum allowed hash value is decreased. Figure 2-1 shows two different example 

blocks, one with a suitable nonce (a random value that miners are trying to find to 

produce an acceptable hash) and one without, where the maximum allowed hash 

value is 2236–1 (20 leading zeros required). For Bitcoin, the very easiest that a problem is 

allowed to be is determined by a maximum value of 2224–1, which would take our little 

program an average of 212 times longer than before. That translates to 11.3 hours, and the 

difficulty is much harder than that today.

Hello, Blockchain!
:5
b366873e9261b5a72b642d
ad804bfbd00cd30e69fa85
a0a9ae4d4ca5f8889990

Hello, Blockchain!
:1030399
000008c8e96b7b13885b48
21a38082492278c2a7ae9a
2c33ec1a1e91b62be712

Invalid Block Valid Block

Figure 2-1.  Two block hashes with the same content but different nonce values. 
A nonce that produces a hash with 20 leading binary zeros (5 leading zeros in 
hexadecimal) is valid. Requiring 20 leading zeros is the same as requiring that the 
hash number be less than 2 ∗  ∗ 236.

Our program definitely won’t be beating the network’s 10-minute average 

expectation anytime soon.

Saying that the first few bits must be zero is the same, by the way, as saying the hash 

value number (the hash is just a number, just like any other string of bits) should be less 

than some threshold that happens to be a power of 2. Since good hash functions (like 

SHA-256) produce essentially random hash values, the more structure you impose on 

the hash, the longer it takes to find one that fits. You can get some intuition for this by 

thinking about the number of zeros as defining the size of the search space: if you must 

have a single leading zero, then it’s basically a coin flip; it should only take two tries on 

average to find a suitable hash that starts with a zero bit. If, on the other hand, you need 

to find a hash with 8 leading zeros, that’s a harder problem: 256 different numbers can be 

represented in 8 bits, so on average it will take 256 attempts to find a suitable value.

That’s why this strategy is called “Proof of Work”: if you found a suitable hash under 

the threshold, you had to have done some work (or you broke the hash function, which is 

deemed to be extremely unlikely, but potentially awesome for you).
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This raises an interesting question: how do each of the network participants decide 

how hard the problem should be? It isn’t like there is a central authority telling everyone 

that the difficulty just went from 11 to 12, for example. That would defeat the whole 

purpose of the network. The “authority” in the network is tacit agreement between 

participants to use the same algorithms for determining these things. When there is 

someone on the network doing things differently, their blocks are simply rejected by 

everyone else and they thus have no incentive to do it wrong. Majority rules.

In the specific case of hashing difficulty, each participant knows the standard 

algorithm for computing what the number of leading zeros should be and uses that to 

do mining (or to reject bad proposals from wayward participants looking to compute an 

easy hash).

You might be asking, however, how a different value of hash is computed when the 

input data really doesn’t change. That’s a great question, since hashes are deterministic: 

they always produce the same output given the same input (they wouldn’t be very 

useful, otherwise!). The answer is that they change one little piece of the input, called the 

“nonce.” It’s just a number, and it isn’t part of the actual block data: its sole purpose is to 

enable the proof-of-work concept. When searching for a suitable hash, the participant 

tries hashing the block with different values for the nonce, typically searching randomly 

or merely adding 1 to the last value at each attempt. Eventually a suitable hash value is 

found and the block is sent to all other participants for validation.

Every participant then verifies the block by performing the hash for themselves, 

checking the leading zeros against their algorithm, and making sure that their answer 

matches the submitted hash value. If it’s good, they accept it and the chain lengthens.

EXERCISE 2.9. PROOF OF WORK

Write a program that feeds a counter into SHA-256, taking the output hash and converting it 

to an integer (we did this earlier before converting to binary). Have the program repeat until it 

finds a hash that is less than a target number. The target number should start out pretty big, 

like 2255. To make this more like blockchain, include some arbitrary bytes to be combined with 

the counter.

Chapter 2  Hashing



52

�Time to Rehash
We have covered a lot of information about what hashes are and how to use them, 

including why you should never use MD5 unless you are teaching people that it is 

broken, and how to use them for more secure password storage and even crypto 

currency. Hashing is a powerful and important part of cryptography, and we will be 

seeing it again and again as we move forward.

Now that we have learned a bit about how to digest a document into a safely 

representative value, it’s time to back up a bit and revisit encryption.
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CHAPTER 3

Symmetric Encryption: 
Two Sides, One Key
Symmetric encryption is at the foundation of all modern secure communications. It is 

what we use to “scramble” messages so that people can only decrypt them if they have 

access to the same key used to encrypt them. That’s what “symmetric” means in this 

case: one key is used on both ends of the communication channel, to both encrypt and 

decrypt messages.

�Let’s Scramble!
Unsurprisingly, the villains1 of East Antarctica are at it again, causing all kinds of trouble 

for their neighbors. This time, Alice and Bob are spying on the enemy troops to the west, 

doing reconnaissance on the size of their snowballs and the accuracy of their throws.

In earlier missions, Alice and Bob used the Caesar cipher from Chapter 1 to protect 

their messages. As you discovered, this cipher is easy to crack. As a result, the East 

Antarctica Truth-Spying Agency (EATSA) has equipped them with modern cryptography 

that uses a key to encode and decode secret messages. This new technology belongs to a 

class of encryption algorithms called symmetric ciphers, because both the encryption 

and decryption processes use the same shared key. The specific algorithm they are using 

in this post-et-tu-Brute world is the Advanced Encryption Standard (AES).2

1�...or heroes, depending on your point of view, Padawan.
2�The name “Advanced Encryption Standard” is actually more of a title. Many algorithms 
competed to become the “Advanced Encryption Standard” including many algorithms that are 
still available today. The original name of the algorithm was Rijndael, which is a composite of the 
last names of the two inventors.
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Alice and Bob don’t have a lot of information about the proper care and handling of 

AES. They have just enough documentation to get encryption and decryption working.

“The docs say we have to create AES keys,” Alice says holding one of the manuals. 

“Apparently, it’s fairly easy. We have sample code here.”

import os

key = os.urandom(16)

“Wait... really?” Bob asks. “That’s it?”

Alice is right: that’s all it takes! An AES key is just random bits: 128 of them (16 bytes’ 

worth) in this example. This will allow us to use AES-128.

With the random key created, how do we then encrypt and decrypt messages? 

Earlier, we used the Python cryptography module to create hashes. It does many other 

things as well. Let’s see how Bob—encouraged by the ease of creating keys—uses it now 

to encrypt messages with AES.

Bob takes the documentation from Alice and looks at the next section, noting that 

there are many different modes of AES computation. Having to choose between them 

sounds a bit overwhelming, so Bob picks the one that looks easiest to use.

“Let’s use ECB mode, Alice,” he says, looking up from the docs.

“ECB mode? What is that?”

“I don’t really know, but this is the Advanced Encryption Standard. It should all work 

fine, right?”

Warning: ECB: Not for You

We’re going to find out later that ECB mode is terrible and should never be used. 
But we’ll just follow along for now.

Listing 3-1 has the code they used to create an “encryptor” and “decryptor.”

Listing 3-1.  AES ECB Code

 1   # NEVER USE: ECB is not secure!

 2   �from cryptography.hazmat.primitives.ciphers import Cipher,  

algorithms, modes

 3   from cryptography.hazmat.backends import default_backend

 4   import os
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 5

 6   key = os.urandom(16)

 7   aesCipher = Cipher(algorithms.AES(key),

 8                      modes.ECB(),

 9                      backend=default_backend())

10   aesEncryptor = aesCipher.encryptor()

11   aesDecryptor = aesCipher.decryptor()

“That’s not so bad,” Alice says. “What happens now?”

“Apparently, both the encryptor and decryptor have an update method. That’s pretty 

much it. The encryptor’s update returns the ciphertext.”

EXERCISE 3.1. A SECRET MESSAGE

Without looking at additional documentation, try to figure out how the aesEncryptor.

update() and aesDecryptor.update() methods work. Hint: You are going to get some 

unexpected behavior, so try lots of inputs. Consider starting with b"a secret message" and 

then decrypting the result.

Alice and Bob start trying to figure out the update method. Perhaps inspired by the 

previous chapter on hashing, where they hashed their names, they try encrypting their 

names in an interactive Python shell. Alice goes first.

The AES example code here uses the key b"\x81\xff9\xa4\x1b\xbc\xe4\
x84\xec9\x0b\x9a\xdbu\xc1\x83" in case you want to get identical results.

>>> aesEncryptor.update(b'alice')

b''

“I didn’t get any ciphertext,” Alice grumbles. “What did I do wrong?”

“I don’t know. Let me try,” Bob responds.

>>> aesEncryptor.update(b'bob')

b''
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“Me too,” he says, confused. Out of frustration, he tries it several more times.

>>> aesEncryptor.update(b'bob')

b''

>>> aesEncryptor.update(b'bob')

b''

>>> aesEncryptor.update(b'bob')

b'\xe7\xf9\x19\xe3!\x1d\x17\x9f\x80\x9d\xf5\xa2\xbaTi\xb2'

“Wait!” Alice stops him. “You got something!”

“Weird!” Bob exclaims. “I didn’t do anything different. What happened?”

“Now try decrypting it,” Alice suggests.

>>> aesDecryptor.update(_)

b'alicebobbobbobbo'

Playing around a bit more, and re-reading docs, Alice and Bob learn what you 

already discovered from the exercise: the update functions for both encryption and 

decryption always work on 16 bytes at a time. Calling update with fewer than 16 bytes 

produces no immediate result. Instead, it accumulates data until it has at least 16 bytes 

to work with. Once 16 or more bytes are available, as many 16-byte blocks of ciphertext 

as possible are produced. This is illustrated in Figure 3-1.

Figure 3-1.  Two calls to the update method. The first 8 bytes return nothing 
because there isn’t a full block of data to encrypt yet.
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EXERCISE 3.2. UPDATED TECHNOLOGY

Upgrade the Caesar cipher application from Chapter 1 to use AES. Instead of specifying a shift 
value, figure out how to get keys in and out of the program. You will also have to deal with the 

16-byte message size issue. Good luck!

�What Is Encryption, Really?
For those who have heard of cryptography, encryption is probably what they have heard 

about most. Web sites and online services will often mention encryption to reassure 

you that your information is “secure.” They will typically include phrases like “All data 

transmitted over the Internet is protected by 128-bit encryption, preventing theft.”

Don’t you feel better already?

Statements like that are really just marketing. They sound nice, but don’t usually 

mean much. That’s because “encryption” includes easy-to-break things like Caesar 

ciphers, it also isn’t enough by itself to make communications secure. In cryptography, 

there are several properties that contribute to different aspects of security, and they 

need to work together [11, Chap. 1]. These properties are commonly viewed as the most 

critical:

	 1.	 Confidentiality

	 2.	 Integrity

	 3.	 Authentication

The encryption we explore in this chapter is all about confidentiality. Confidentiality 

means that only folks with the right key are able to read the data. We use encryption to 

protect messages so that outsiders cannot read them.

Equally important is integrity. Integrity means that the data cannot be changed 

without you noticing. It is critical to understand that just because something cannot be 

read does not mean it cannot be usefully altered. To drive that point home, we are going 

to do exactly that sort of mischief in this chapter.
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Finally, authentication relates to knowing the identity of the party with whom you are 

communicating. Authentication typically includes some mechanism to establish identity 

and presence,3 as well as the ability to tie communication to the established identity.

Hopefully it is obvious that all three of these properties are essential in many forms 

of communication. Confidentiality will do Alice and Bob little good if Eve can change 

what the messages actually say without them knowing: Eve doesn’t need to read the 

messages to cause real problems. Likewise, Alice and Bob will have little success in their 

covert communications if they aren’t sure they have the right person on the other end of 

the channel.

Keep these ideas in mind as you go through this chapter! Our focus on confidentiality 

is useful for presentation and it is indeed a critical component of security, but it is not 

enough. Spending some time with confidentiality by itself will help us to demonstrate 

how inadequate it is without its friends.

�AES: A Symmetric Block Cipher
As mentioned before, the idea behind symmetric encryption is that the same key is used 

for both encryption and decryption. In the real world, almost all keys to physical locks 

can be thought of as “symmetric”: the same key that locks your door also unlocks it. 

There are other extremely important approaches to encryption that use distinct keys for 

each operation, but we’ll get to those in later chapters.

Symmetric key encryption algorithms are often divided into two subtypes: block 
ciphers and stream ciphers. A block cipher gets its name from the fact that it works on 

blocks of data: you have to give it a certain amount of data before it can do anything, 

and larger data must be broken down into block-sized chunks (also, every block must be 

full). Stream ciphers, on the other hand, can encrypt data one byte at a time.

3�Identity and presence mean loosely “I know who this is, and I know that they consent to my 
knowing that right now.” If you have ever had to dig out your credit card to provide the “CVV 
code” to a web site that already has your card on file, you have run into the concept of presence: 
the CVV code is meant to be an indication that your card is there with you and therefore that you 
are around to consent to its use. This assumes that you are the only one who can hold your own 
card, a huge and easily falsified assumption. Thus, the CVV is an extremely weak indication of 
presence, but ultimately establishment of presence is exactly what it’s trying to accomplish.
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AES is fundamentally a symmetric key, block cipher algorithm. It is not the only one 

by any stretch, but it is the only one that we will pay any attention to here. It is used in 

many common Internet protocols and operating system services, including TLS (used by 

HTTPS), IPSec, and file-level or full-disk encryption. Given its ubiquity, it is arguably the 

most important cipher to know how to use properly. More importantly, the principles of 

correct use of AES transfer easily to correct use of other ciphers.

Finally, even though AES is essentially a block cipher, it (like many other block 

ciphers) can be used in a way that makes it behave like a stream cipher, so we don’t lose 

any teaching opportunities by excluding native stream ciphers from the discussion. In 

the past, RC4 was a commonly used stream cipher, but it has been found vulnerable to 

various attacks and is being replaced by stream modes of AES.

Also, as Bob says, “It’s advanced!” That ought to be enough for anyone, right?

EXERCISE 3.3. HISTORY LESSON

Do some research online about DES and 3DES. What is the block size for DES? What is its key 

size? How does 3DES strengthen DES?

EXERCISE 3.4. OTHER CIPHERS

Do a little research about RC4 and Twofish. Where are they used? What kinds of problems 

does RC4 have? What are some of Twofish’s advantages over AES?

Since AES is a pretty good place to start, let’s dig in with a little bit of background. We 

know it’s a symmetric key block cipher. Given what we saw of Alice’s and Bob’s attempts 

to use it, can you guess the block size?

If you were thinking “16 bytes!” (128 bits), you get a gold star. Tell all your friends!4

4�...over an encrypted channel.
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AES has several modes of operation that allow us to achieve different cryptographic 

properties:

	 1.	 Electronic code book (ECB) (WARNING! DANGEROUS!)

	 2.	 Cipher block chaining (CBC)

	 3.	 Counter mode (CTR)

These are not the only modes of operation for AES [11, Chap. 7]. In fact, while CBC 

and CTR are still used, a newer mode called GCM is now recommended to replace them 

in many circumstances, and we will examine GCM in detail later in this book. These 

three modes are, however, very instructive, and together they cover the most important 

concepts. They will provide a solid foundation on which to build greater understanding 

of block ciphers in general and AES in particular.

�ECB Is Not for Me
Be warned, relying on ECB mode for security is irresponsibly dangerous and it should 

never be used. Think of it as being good for testing and educational purposes only. 

Please, don’t ever use it in your applications or projects! Seriously. You have been 

warned. Don’t make us come over there.

By the way, do you see a pattern developing here? Sometimes the best approaches 
for explaining a thing are not at all suitable for using it in practice. This seems to 
apply particularly well to cryptography, which is one reason that we urge people 
to always use a well established library instead of building their own. The basic 
principles are simple, but without all of the complex trappings that come with 
mature libraries and a solid understanding of how to use them, those principles 
alone will give you very poor security, not just “slightly imperfect” security. There 
is rarely much in the way of middle ground; once the safe is cracked, it doesn’t 
matter how thick its walls are. Cryptographic concepts are often simple, but safe 
and correct implementation is usually complex.
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With all of those warnings out of the way (not really, there will be more), what is 

ECB? In a way, ECB is “raw” AES: it treats every 16-byte block of data independently, 

encrypting each one in exactly the same way using the provided key. As we will see with 

counter mode and cipher block chaining mode, there are a lot of interesting ways to use 

that approach as a building block for a more advanced (and secure) cipher, but it’s really 

not a good way to go about encryption by itself.

The name “electronic code book” hearkens back to earlier days of cryptographic 

code books, where you would take your (small) key, go to the right page in the book, and 

use the table on that page to look up the output (ciphertext) that corresponded to each 

part of your input (plaintext). AES ECB mode can be thought of in that way, but with a 

mind-bogglingly huge book. The key similarity (ha!) is that once you have the key, every 

possible block’s encrypted value is known, and the same is true for decryption; it’s like 

we’re looking them up, as visualized in Figure 3-2.

Figure 3-2.  ECB mode is analogous to having a big dictionary of plaintext to 
ciphertext. Every 16 bytes of plaintext has a corresponding 16-byte output.

As we will see, the properties of determinism and independence are useful but not 

sufficient properties for message security. ECB mode is useful because it can be used for 

testing, for example, to make sure that the AES algorithm is behaving as expected. Some 

systems will pick a special key, say, all zeros, as a “test key.” As part of a self-test, the 

system will run AES in ECB mode with the test key to see if it encrypts as expected. You 

will sometimes see tests of this kind called “KATs” (known answer tests).

The National Institute of Standards and Technology (NIST) in the United States 

publishes a list of KATs that are used for implementation validation. You can download 

a zip file with these KATs from https://csrc.nist.gov/CSRC/media/Projects/

Cryptographic-Algorithm-Validation-Program/documents/aes/KAT_AES.zip. That 
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archive contains response (.rsp) files that identify expected outputs for given inputs. For 

example, in the ECBGFSbox128.rsp file, the first four ENCRYPT entries are

COUNT = 0

KEY = 00000000000000000000000000000000

PLAINTEXT = f34481ec3cc627bacd5dc3fb08f273e6

CIPHERTEXT = 0336763e966d92595a567cc9ce537f5e

COUNT = 1

KEY = 00000000000000000000000000000000

PLAINTEXT = 9798c4640bad75c7c3227db910174e72

CIPHERTEXT = a9a1631bf4996954ebc093957b234589

COUNT = 2

KEY = 00000000000000000000000000000000

PLAINTEXT = 96ab5c2ff612d9dfaae8c31f30c42168

CIPHERTEXT = ff4f8391a6a40ca5b25d23bedd44a597

COUNT = 3

KEY = 00000000000000000000000000000000

PLAINTEXT = 6a118a874519e64e9963798a503f1d35

CIPHERTEXT = dc43be40be0e53712f7e2bf5ca707209

That seems useful. Let’s test that theory using Listing 3-2.

Listing 3-2.  AES ECB KATs

 1   # NEVER USE: ECB is not secure!

 2   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 3   from cryptography.hazmat.backends import default_backend

 4

 5   # NIST AES ECBGFSbox128.rsp ENCRYPT Kats

 6   # First value of each pair is plaintext

 7   # Second value of each pair is ciphertext

 8   nist_kats = [

 9       �('f34481ec3cc627bacd5dc3fb08f273e6', 

'0336763e966d92595a567cc9ce537f5e'),
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10       �('9798c4640bad75c7c3227db910174e72', 

'a9a1631bf4996954ebc093957b234589'),

11       �('96ab5c2ff612d9dfaae8c31f30c42168', 

'ff4f8391a6a40ca5b25d23bedd44a597'),

12       �('6a118a874519e64e9963798a503f1d35 ',  

'dc43be40be0e53712f7e2bf5ca707209')

13   ]

14

15   # 16–byte test key of all zeros.

16   test_key = bytes.fromhex('00000000000000000000000000000000')

17

18   aesCipher = Cipher(algorithms.AES(test_key),

19                      modes.ECB(),

20                      backend=default_backend())

21   aesEncryptor = aesCipher.encryptor()

22   aesDecryptor = aesCipher.decryptor()

23

24   # test each input

25   for index, kat in enumerate(nist_kats):

26       plaintext, want_ciphertext = kat

27       plaintext_bytes = bytes.fromhex(plaintext)

28       ciphertext_bytes = aesEncryptor.update(plaintext_bytes)

29       got_ciphertext = ciphertext_bytes.hex()

30

31       result = "[PASS]" if got_ciphertext == want_ciphertext else "[FAIL]"

32

33       print("Test {}. Expected {}, got {}. Result {}.".format(

34           index, want_ciphertext, got_ciphertext, result))

Assuming that your processor is working correctly, you should see a 4/4 passing score.

EXERCISE 3.5. ALL NIST KATS

Write a program that will read one of these NIST KAT “rsp” files, and parse out the encryption and 

decryption KATs. Test and validate your AES library on all vectors on a couple of ECB test files.
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This all seems very reasonable. So, what’s wrong with ECB? Unless you’ve been 

completely asleep, you’ve noticed our dire warnings about it. Why? In a nutshell, 

because of its independence properties.

Let’s return to Alice, Bob, and their nemesis Eve down in Antarctica. Alice and 

Bob are on a covert mission within the West Antarctica borders. They will send secret 

messages to each other over radio channels that Eve can monitor. Before they leave, they 

generate a shared key for encrypting and decrypting their messages, and they keep that 

key safe during their travels.

We can do that too. We’ll start by generating a key. Normally, the key would be 

random, but we’ll just pick one that is easy to remember, then we can also perfectly 

reproduce the following results. Here is the key:

key = bytes.fromhex('00112233445566778899AABBCCDDEEFF')

Alice and Bob, being government agents, use a standardized EATSA form for sending 

each other messages. For example, to arrange a meeting:

FROM: FIELD AGENT<codename>

TO: FIELD AGENT<codename>

RE: Meeting

DATE: <date>

Meet me today at <location> at <time>

If Alice is telling Bob to meet her at the docks at 11 p.m., the message would be

FROM: FIELD AGENT ALICE

TO: FIELD AGENT BOB

RE: Meeting

DATE: 2001-1-1

Meet me today at the docks at 2300.

We’ll encrypt this message under the key we set out previously. We need to pad the 

message to make sure it is a multiple of 16 bytes long. We can do that by adding extra 

characters to the end until its length is a multiple of 16, like so.5

5�We take advantage of Python’s convenient “negative modulus” behavior, where -len(msg) % 16 
is the same as 16 - (len(msg) % 16).
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Listing 3-3.  AES ECB Padding

 1   # NEVER USE: ECB is not secure!

 2   from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes

 3   from cryptography.hazmat.backends import default_backend

 4

 5   # Alice and Bob's Shared Key

 6   test_key = bytes.fromhex('00112233445566778899AABBCCDDEEFF')

 7

 8   aesCipher = Cipher(algorithms.AES(test_key),

 9                      modes.ECB(),

10                      backend=default_backend())

11   aesEncryptor = aesCipher.encryptor()

12   aesDecryptor = aesCipher.decryptor()

13

14   message = b"""

15   FROM: FIELD AGENT ALICE

16   TO: FIELD AGENT BOB

17   RE: Meeting

18   DATE: 2001-1-1

19

20   Meet me today at the docks at 2300."""

21

22   message += b"E" * (-len(message) % 16)

23   ciphertext = aesEncryptor.update(message)

Listing 3-3 shows a straightforward but perhaps not optimal padding. We’ll use more 

standard approaches in the next section. It is, however, good enough for now. When Bob 

decodes his message, it will simply have a few extra “E” characters at the end.

EXERCISE 3.6. SENDING BOB A MESSAGE

Using either a modification of the preceding program or your AES encryptor from the beginning 

of the chapter, create a couple of meetup messages from Alice to Bob. Also create a few from 

Bob to Alice. Make sure that you can correctly encrypt and decrypt the messages.
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With their new cryptographic technology at the ready, Alice and Bob begin 

surveillance in West Antarctica. They meet occasionally to share information and 

coordinate their activities.

Meanwhile, Eve and her counter-intelligence colleagues learn of the infiltration and 

soon begin to identify the coded messages. Take a look at several messages from Alice 

to Bob from Eve’s perspective, where all she can see is the ciphertext. Do you notice 

anything?

Consider these two messages:

FROM: FIELD AGENT ALICE

TO: FIELD AGENT BOB

RE: Meeting

DATE: 2001-1-1

Meet me today at the docks at 2300.

FROM: FIELD AGENT ALICE

TO: FIELD AGENT BOB

RE: Meeting

DATE: 2001-1-2

Meet me today at the town square at 1130.

Look at the two ciphertext outputs of these messages side-by-side. Note: even 

spacing and newlines matter, so make sure to use the format exactly as shown.

Message 1, Block 1 a3a2390c0f2afb700959b3221a95319a

Message 2, Block 1 a3a2390c0f2afb700959b3221a95319a

Message 1, Block 2 0fd11a5dcfa115ba89630f93e09312b0

Message 2, Block 2 0fd11a5dcfa115ba89630f93e09312b0

Message 1, Block 3 87597bf7f98759410ae3e9a285912ee6

Message 2, Block 3 87597bf7f98759410ae3e9a285912ee6

Message 1, Block 4 8430e159229e4bf5c7b39fe1fb72cfab

Message 2, Block 4 8430e159229e4bf5c7b39fe1fb72cfab

Message 1, Block 5 a5c7412fda6ac67fe63093168f474913
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Message 2, Block 5 c9b3ccefda71f286895b309d85245421

Message 1, Block 6 dbd386db053613be242c6059539f93da

Message 2, Block 6 699f1cd5adbeb94b80980a0860ead320

Message 1, Block 7 800d3ece3b12931be974f36ef5da4342

Message 2, Block 7 a8ff0ed2ca9b80908757f8c3ecbc9b0d

How many of the 16-byte blocks are identical? Why?

Remember that AES in its raw mode is like a code book. For every input and key, 

there is exactly one output, independent of any other inputs. Thus, because much of the 

message header is shared between messages, much of the output is also the same.

Eve and her colleagues notice the repeating elements of the messages they see day 

after day and soon start to figure out what they mean. How do they do this? They might 

make a good start by guessing. If you saw the same message being sent repeatedly, you 

could start to guess at some of its contents.

Another way to make progress might be to utilize a deserter or mole within the 

enemy organization. They could conceivably get Eve a copy of the form or a discarded 

decoded message. All told, there are many ways for an adversary to learn about the 

structure and organization of an encrypted message, and you should never assume 

otherwise. A common error made by those trying to protect information is to assume 

that the enemy cannot know some detail about how the system works.

Instead, always live by Kerckhoff’s principle. This nineteenth-century (long before 

modern computers) cryptographer taught that a cryptographic system must be secure 

even if everything is known about it, except the key. That means we should find a way for 

our messages to be secure if the enemy knows just about everything about our system 

and merely lacks access to the key.

We made this silly example with an overly bureaucratic form, but even in real 

messages, there is often a significant amount of predictable structure. Consider HTML, 

XML, or email messages. Those often have huge amounts of predictably positioned, 

identical data. It would be a terrible thing for an eavesdropper to start learning what’s in 

a message just because it shares protocol headers with every other message.

Even worse, imagine if Eve’s team can figure out a way to do what is called a “chosen 

plaintext” attack. In this attack, they figure out a way to get Alice or Bob to encrypt 

something on their behalf. Imagine, for example, that they figure out that Alice always 

calls a meeting with Bob after the Prime Minister of Western Antarctica gives a public 
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speech. Once they know this, they can use political speeches to trigger a message where 

much of the content is known. Or maybe they manage to slip Bob some false information 

to send to Alice, encrypted. Once they can control some or all of the plaintext, they can 

look at the encryption and begin to create their own code book.

Eve can also easily create new messages by putting together bits and pieces of old 

messages. If Eve knows that the first blocks of a ciphertext are the header with a current 

date, she can take an old message body that directs Bob to an old meeting site and attach 

it to the new header. Then Bob ends up in the wrong place at the wrong time.

EXERCISE 3.7. SENDING BOB A FAKE MESSAGE

Take two different ciphertexts from Alice to Bob with different meeting instructions on different 

dates. Splice the ciphertext from the body of the first message into the body of the second 

message. That is, start by replacing the last block of the newer message with the last block (or 

blocks if it was longer) of the previous message. Does the message decrypt? Did you change 

where Bob goes to meet Alice?

All of this may still seem just a bit hypothetical. Perhaps ECB mode isn’t really all that 

bad. Perhaps it is only bad in extreme situations or something like that. Just in case there 

is a shadow of a doubt remaining, let’s do one more test (a pretty fun one) to convince 

ourselves that ECB mode should never, ever be used for real message confidentiality.

In this experiment, you will build a very basic AES encrypting program. It doesn’t 

matter what key is used; feel free to generate a random one, or use a fixed test key. Read 

in a binary file, encrypt everything except the first 54 bytes, and then write it out to a new 

file. It might look something like Listing 3-4.6

Listing 3-4.  AES Exercise Example

1   # Partial Listing: Some Assembly Required

2

3   ifile, ofile = sys.argv[1:3]

4   with open(ifile, "rb") as reader:

6�This code listing does not show all the necessary imports, but it requires nothing new over 
previous listings. In the interest of space, we will regularly leave out details that have been shown 
in previous examples.
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5       with open(ofile, "wb+") as writer:

6           image_data = reader.read()

7           header, body = image_data[:54], image_data[54:]

8           body += b"\x00"*(16-(len(body)%16))

9           writer.write(header + aesEncryptor.update(body))

The reason we’re not encrypting the first 54 bytes is because this program is going to 

encrypt the contents of a bit map file (BMP) and the header is 54 bytes in length.7 Once 

you have this listing written, in the image editor of your choice, create a large image with 

text that takes up most of the space. In Figure 3-3, our image simply has the words “TOP 

SECRET.” It is 800x600 pixels.

Figure 3-3.  An image with the text “TOP SECRET.” Encrypting it should make it 
unreadable, right?

Take your newly created file and run it through your encryption program, saving the 

output to something like encrypted_image.bmp. When finished, open the encrypted file 

in an image viewer. What do you see?

Our encrypted image is shown in Figure 3-4.

7�In real life, if the header were encrypted, you could just overwrite it with something reasonable 
based on the file size.
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Figure 3-4.  This image was encrypted using ECB mode. This message is not very 
confidential.

What happened here? Why is the text of the image still so readable?

AES is a block cipher that operates on 16 bytes at a time. In this image, many 16-byte 

chunks are the same. A chunk of black pixels is encoded with the same bits everywhere. 

Every time there’s a 16-byte block of all black or all white, they encode to the same 

encrypted output. The structure of the image is thus still visible even once the individual 

16-byte chunks are encrypted.

Really. Never use ECB. Leave that kind of thing to the “professionals” of the East 

Antarctica Truth-Spying Agency.

�Wanted: Spontaneous Independence
To have an effective cipher, we need to

•	 Encrypt the same message differently each time.

•	 Eliminate predictable patterns between blocks.

To solve the first problem, we use a simple but effective trick to ensure that we never 

send the same plaintext twice, which means that we also never send the same ciphertext 

twice! We do this with an “initialization vector,” or IV.

An IV is typically a random string that is used as a third input—in addition to the key 

and plaintext—into the encryption algorithm. Exactly how it is used depends on the mode, 

but the idea is to prevent a given plaintext from encrypting to a repeatable ciphertext. 
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Unlike the key, the IV is public. That is, one assumes that an attacker knows, or can obtain, 

the value of the IV. The presence of an IV doesn’t help to keep things secret so much as it 

helps to keep them from being repeated, avoiding exposure of common patterns.

As for the second problem, that of being able to eliminate patterns between blocks, 

we will solve it by introducing new ways to encrypt the message as a whole, rather than 

treating each block as an individual, independent mini-message like ECB mode does.

The details of each solution are specific to the mode being used, but the principles 

generalize well.

�Not That Blockchain
Recall from Chapter 2 that good hash algorithms are expected to have the avalanche 

property. That is, a single change in one input bit will cause approximately half of the 

output bits to change. Block ciphers should have a similar property, and thankfully,  

AES does. In ECB mode, however, the avalanche’s impact is limited to the block size: if 

the plaintext is ten blocks long, a change in the very first bit will only change the output 

bits of the very first block. The remaining nine blocks will remain unchanged.

What if a change in the ciphertext of one block could affect all subsequent blocks? 

Well, it can, and it is quite easy to accomplish. When encrypting, for example, one can 

XOR the encrypted output of a block with the unencrypted input of the next block. To 

reverse this while decrypting, the ciphertext is decrypted and then the XOR operation 

is again applied to the previous ciphertext block to obtain the plaintext. This is called 

cipher block chaining (CBC) mode.

Let’s pause here for just a quick moment to review an operation called XOR, often 

written symbolically as ⊕. We are going to use XOR constantly throughout the book so 

it’s worthwhile to review it. XOR is a binary boolean operator with the following truth 

table (where we use 0 and 1 instead of “false” and “true’).

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0
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Truth tables are useful, showing precisely how functions like XOR behave for all 

combinations of inputs, but you actually don’t need to think about XOR at this level. 

What is important is that XOR has an amazing inversion property: the XOR operation 

is its own inverse! That is, if you start with some binary number A and XOR it with B, 

you can recover A by XORing the output with B again. Mathematically, it looks like this: 

(A ⊕ B) ⊕ B = A.

Why does this work? If you look at “Input 1” as a control bit, when it is 0, what comes 

out is simply “Input 2.” When “Input 1” is 1, on the other hand, what comes out is the 

inverse of “Input 2.” If you take the outputs and apply XOR with “Input 1” again, it leaves 

the previously unchanged things unchanged (XOR with 0 again) while flipping the 

inverted things back to the way they were (XOR with 1 again).

Quite often we XOR not individual bits, but sequences of bits all at once. This is how 

we will use XOR throughout this book: as an operation between blocks of bits, like this:

11011011

10110001
01101010

10110001
11011011

Å

Å

You can see here how applying ⊕10110001 twice to 11011011 causes it to reappear.

EXERCISE 3.8. XOR EXERCISE

Because we will use XOR so much, it’s a good idea to get comfortable with XOR operations. In 

a Python interpreter, XOR a few numbers together. Python supports XOR directly using ^ as the 

operator. So, for example, 5^9 results in 12. What do you get when you try 12^9? What do you 

get when you try 12^5? Try this out with several different numbers.
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EXERCISE 3.9. THE MASK OF XOR-O?

Although this exercise will be even more important in counter mode, it’s useful to understand 

how XOR can be used to mask data. Create 16 bytes of plaintext (a 16-character message) 

and 16 bytes of random data (e.g., using os.urandom(16)). XOR these two messages 

together. There’s no built-in operation for XORing a series of bytes, so you’ll have to XOR each 

byte individually using, for example, a loop. When you are done, take a look at the output. 

How “readable” is it? Now, XOR this output with the same random bytes again. What does the 

output look like now?

Returning from our XOR interruption to CBC, in this mode we XOR the output of 

one block of ciphertext with the next plaintext block. More precisely, if we call P [n] 

block n of plaintext and P′[n] block n of “munged, pre-encryption plaintext” (using the 

XOR operation to accomplish the very scientifically named “munging” process), we first 

create P′[n] from the previous encrypted block C[n − 1], then we encrypt it to make C[n]. 

The formula for creating P′[n] is this:

¢[ ] = [ ]Å -[ ]P n P n C n 1 ,

From there we can apply AES encryption to P′[n], which is the length of an AES 

block, to get C[n]. When decrypting, then, we don’t get the plaintext, we get the 

“munged, pre-encryption plaintext” P′[n]. To get the actual plaintext, we need to reverse 

the preceding process, which we can do by running it through XOR with the previous 

encrypted block (recalling that XOR is its own inverse). You can see why this works by 

performing some basic algebraic manipulations:

¢
¢
¢

[ ] = [ ]Å -[ ]
[ ]Å [ ] = [ ]Å [ ]Å -[ ]
[ ]Å [ ] = -

P n P n C n

P n P n P n P n C n

P n P n C n

1

1

11

1

1

[ ]
[ ]Å [ ]Å [ ]= [ ]Å -[ ]

[ ] = [ ]Å -[ ]
¢ ¢ ¢

¢
P n P n P n P n C n

P n P n C n .

Thus, to get the original plaintext when decrypting, we need only XOR the decrypted 

block with the previous encrypted block. The very first block, which has no predecessor, 

is simply XORed with the initialization vector after decryption. That is the essence of 
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CBC mode: every block is dependent on the blocks that came before. This process is 

visualized, perhaps a little more intuitively, in Figure 3-5.

In CBC mode, changes to any input block thus affect the output block for all 

subsequent blocks. This doesn’t produce a complete or perfect avalanche property 

because it does not affect any preceding blocks, but even having the avalanche effect 

moving forward prevents exposing the kinds of patterns that we observe in ECB mode.

Configuration of CBC mode is mostly familiar: we generate a key and then take the 

extra step of generating an initialization vector (IV). Because the IV is XORed with the 

first block, AES-CBC IVs8 are always 128 bits long (16 bytes), even if the key size is larger 

(typically 196 or 256 bits). In the following example, the key is 256 bits and the IV is 128 

bits, as it must be (Listing 3-5).

Figure 3-5.  Visual depictions of CBC encryption and decryption. Note that in 
encryption, the first block of plaintext is XORed with the IV before AES, while in 
decryption, the ciphertext goes through AES first and is then XORed with the IV to 
correctly reverse the encryption process.

8�We promise to use more initialisms next time.
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Listing 3-5.  AES-CBC

 1   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 2   from cryptography.hazmat.backends import default_backend

 3   import os

 4

 5   key = os.urandom(32)

 6   iv = os.urandom(16)

 7

 8   aesCipher = Cipher(algorithms.AES(key),

 9                      modes.CBC(iv),

10                      backend=default_backend())

11   aesEncryptor = aesCipher.encryptor()

12   aesDecryptor = aesCipher.decryptor()

Notice that in this example, algorithms.AES takes the key as the parameter while 

modes.CBC takes the IV; AES always needs a key, but the use of an IV is dependent on  

the mode.

�Proper Padding

While we are in the business of improving things, let’s introduce a better padding 

mechanism. The cryptography module provides two schemes, one following what is 

known as the PKCS7 specification and the other following ANSI X.923. PKCS7 appends 

n bytes, with each padding byte holding the value n: if 3 bytes of padding are needed, it 

appends \x03\x03\x03. Similarly, if 2 bytes of padding are needed, it appends \x02\x02.

ANSI X.923 is slightly different. All appended bytes are 0, except for the last byte, 

which is the length of the total padding. In this example, 3 bytes of padding is \x00\x00\

x03, and two bytes of padding is \x00\x02.

The cryptography module provides a padding context that is analogous to the AES 

cipher context. In the next code listing, padder and unpadder objects are created for 

adding and removing padding. Note that these objects also use update and finalize, 

since no padding is created from calling the update() method. It does, however, 

return full blocks, storing the rest of the bytes for either the next call to update() or the 

finalize() operation. When finalize() is called, all remaining bytes are returned 

along with enough bytes of padding to make a full block size.
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Although the API seems straightforward, it doesn’t necessarily behave as one  

might expect.

Listing 3-6.  AES-CBC Padding

 1   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 2   from cryptography.hazmat.backends import default_backend

 3   from cryptography.hazmat.primitives import padding

 4   import os

 5

 6   key = os.urandom(32)

 7   iv = os.urandom(16)

 8

 9   aesCipher = Cipher(algorithms.AES(key),

10                      modes.CBC(iv),

11                      backend=default_backend())

12   aesEncryptor = aesCipher.encryptor()

13   aesDecryptor = aesCipher.decryptor()

14

15   # Make a padder/unpadder pair for 128 bit block sizes.

16   padder = padding.PKCS7(128).padder()

17   unpadder = padding.PKCS7(128).unpadder()

18

19   plaintexts = [

20       b"SHORT",

21       b"MEDIUM MEDIUM MEDIUM",

22       b"LONG LONG LONG LONG LONG LONG",

23   ]

24

25   ciphertexts = []

26

27   for m in plaintexts:

28       padded_message = padder.update(m)

29       ciphertexts.append(aesEncryptor.update(padded_message))

30
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31   ciphertexts.append(aesEncryptor.update(padder.finalize()))

32

33   for c in ciphertexts:

34       padded_message = aesDecryptor.update(c)

35       print("recovered", unpadder.update(padded_message))

36

37   print("recovered", unpadder.finalize())

Run the code in Listing 3-6 and observe the output. Is it what you expected? It should 

have looked like this:

recovered b''

recovered b''

recovered b'SHORTMEDIUM MEDIUM MEDIUMLONG LO'

recovered b'NG LONG LONG LON'

recovered b'G LONG '

Why did it not produce the original messages exactly as specified?

There is technically nothing incorrect with this code, but there is definitely a 

mismatch between the apparent intention of the code and the actual output. This 

code suggests that the author intended to encrypt each one of the three strings as an 

independent message. In other words, the probable intention of the code was to encrypt 

three distinct messages and get back three equivalent messages upon decryption.

That is not what we got. Listing 3-6 is reporting five outputs and two of them are 

empty.

Let’s talk about the update() and finalize() API one more time. Because of how 

these methods behave for certain modes (e.g., ECB mode), it can be tempting to think 

about update() as a stand-alone encryptor wherein a plaintext block is provided as 

input and a ciphertext block is provided as output.

In reality, the API is designed such that the number of calls to update() is  

irrelevant. That is, what is being encrypted is not the input to \lstinline{update()}, but 

\emph{the concatenation of every input} to some number of \lstinline{update()} 

calls, and, of course, output (if any) from a finalize() call at the end.

Thus, the program in Listing 3-6 is not encrypting three inputs and producing five 

outputs, it is processing a single continuous output and producing a single continuous 

output.
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Understanding the update() and finalize() API is especially important for the 

padding operations that we’ve introduced. Padding behavior can appear unusual if you 

try to think of update() as an independent operation. Figure 3-6 illustrates how padding 

processes the inputs from Listing 3-6. Note that individual calls to update() produce no 

padding. Only the finalize() operation will do that.

Unpadding can be even more jarring. Unlike the padding operations, you can submit 

a full block to the unpadder and still get nothing back. This is because the unpadder has 

to reserve the last block received in update() calls in case it is the last block. Because 

Figure 3-6.  PKCS7 padding does not add any padding until the finalize 
operation
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unpadding requires examining the last block, the unpadder has to be sure it has received 

all the blocks to know that it has the last one.

Walking through Listing 3-6 one more time illustrates how the effects of these 

operations are compounded when the padder and encryptor are used together. On 

the first pass through the loop for encrypting the messages, the input is SHORT. Five 

characters is less than of a block. The padder’s update() method does not add any 

padding, so the padder buffers these five characters and the update() method returns 

an empty byte string. When this gets passed to the encryptor, there is obviously not a 

full block so the encryptor’s update method also returns an empty byte string. This gets 

appended to the list of ciphertexts.

On our second pass through the loop, the input is MEDIUM MEDIUM MEDIUM. These 20 

characters are passed into the padder’s internal buffer and are added to the 5 that were 

there before. The UPDATE method now returns the first 16 of those 25 bytes (a full block), 

leaving the remaining 9 bytes in the internal buffer. The 16 bytes from the padder are 

encrypted and stored in the list of ciphertexts.

In the final pass, the LONG LONG LONG LONG LONG LONG input is added to the 

padder’s internal buffer. These 29 bytes are added to the current 9 bytes in the buffer for 

a total of 38 bytes. The padder returns the 2 full blocks (of 16 bytes each) leaving the last 

6 bytes in its buffer. The two blocks are encrypted, and the two-block output is stored in 

the list of ciphertexts.

Once the loop exits, the padder’s finalize method is called. It takes the last bytes of 

input, appends the necessary padding, and passes it to the encryption operation. The 

ciphertext is appended to the list and encryption is over. There are now four ciphertext 

messages to decrypt. Reversing the process, the first message is, you may recall, the 

empty buffer. It just passes straight through everything and comes out as an empty 

message.

But the next recovered text is also empty. That’s because the first full block to the 

unpadder is reserved for the reasons we explained. It produces an empty output fed into 

the AES decryptor’s update() method. This generates our second empty output.

The remaining three are more straightforward.

Now that the walk-through is finished, did you notice that we were still using the 

incorrect terminology? We referred to individual outputs from update() methods as 

individual ciphertexts rather than a snippet of the ciphertext. Similarly, we called the 

output of the decryptor update methods recovered texts rather than part of a single 

recovered message.
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This was intentional. The crucial principle is that semantics matter. How we think 

about our code can be different from how it operates, and this can result in unexpected, 

and often insecure, results. When you use a library (always better than creating your 

own!), you must understand the API’s approach and design. It is critical that you think 

the way the API is designed to be used.

For the cryptography library, always think about everything submitted to a 

sequence of encryption update() calls and one finalize() call as a single input. 

Similarly, think about everything that is recovered from a series of decryption update() 

calls and one finalize() call as a single output.

And what is going on with the decryption? How did we get five outputs instead of 

four? The first ciphertext in the list was just the empty string so it makes sense that the 

first “recovered” plaintext was empty. But why was the second one empty too?

Let’s look at another way to do this wrong.9 Suppose we decide to create our own API 

that will actually work on a message level. That is, every message can be encrypted and 

decrypted individually and independently. The code is shown in Listing 3-7.

Listing 3-7.  Broken AES-CBC Manager

 1   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 2   from cryptography.hazmat.backends import default_backend

 3   from cryptography.hazmat.primitives import padding

 4   import os

 5

 6   class EncryptionManager:

 7       def __init__(self):

 8           self.key = os.urandom(32)

 9           self.iv = os.urandom(16)

10

11       def encrypt_message(self, message):

12           # WARNING: This code is not secure!!

13           encryptor = Cipher(algorithms.AES(self.key),

14                              modes.CBC(self.iv),

9�Yes, this is a theme in the book. We have found that it is often when things are broken that they 
are best understood.
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15                              backend=default_backend()).encryptor()

16           padder = padding.PKCS7(128).padder()

17

18           padded_message = padder.update(message)

19           padded_message += padder.finalize()

20           ciphertext = encryptor.update(padded_message)

21           ciphertext += encryptor.finalize()

22           return ciphertext

23

24       def decrypt_message(self, ciphertext):

25           # WARNING: This code is not secure!!

26           decryptor = Cipher(algorithms.AES(self.key),

27                              modes.CBC(self.iv),

28                              backend=default_backend()).decryptor()

29           unpadder = padding.PKCS7(128).unpadder()

30

31           padded_message = decryptor.update(ciphertext)

32           padded_message += decryptor.finalize()

33           message = unpadder.update(padded_message)

34           message += unpadder.finalize()

35           return message

36

37   # Automatically generate key/IV for encryption.

38   manager = EncryptionManager()

39

40   plaintexts = [

41       b"SHORT",

42       b"MEDIUM MEDIUM MEDIUM",

43       b"LONG LONG LONG LONG LONG LONG"

44   ]

45

46   ciphertexts = []

47

48   for m in plaintexts:

49       ciphertexts.append(manager.encrypt_message(m))
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50

51   for c in ciphertexts:

52       print("Recovered", manager.decrypt_message(c))

Run the code and observe the output. Did you get each message individually this 

time? Good! You probably like this version a lot better!

The API might be more semantically aligned, this time, but the implementation 

is very broken and incredibly dangerous. Before we tell you what is wrong with it, can 

you try and see it yourself? Are there any security principles we’ve talked about in this 

chapter that we are violating? If it isn’t obvious, read on!

�A Key to Hygienic IVs

The problem with Listing 3-7 is that it is reusing the same key and IV for different 

messages. Take a look at the constructor where the key and IV are created. Using that 

single key/IV pair, the offending code re-creates encryptor and decryptor objects in 

every call to encrypt_message and decrypt_message. Remember, the IV is supposed to 

be different each time you encrypt, preventing the same data from being encrypted to the 

same ciphertext! This is not optional.
Once again, it is important to understand how an API is built and the security 

parameters associated with it. Go back and look at Figure 3-5. Remember that in CBC 

encryption, the algorithm combines the first plaintext block with the IV using the XOR 

operation before the AES operation is applied. Each subsequent plaintext block is combined 

with the previous ciphertext block using XOR before AES encryption. With the Python API, 

each call to update() adds blocks to this chain, leaving data less than a full block in an 

internal buffer for subsequent calls. The finalize() method does not actually do any more 

encrypting, but will raise an error if there is incomplete data still waiting to be encrypted.

Calling the update() method over and over is not reusing a key and IV because 

we are appending to the end of the CBC chain. On the other hand, if you create new 

encryptor and decryptor objects, as we did in Listing 3-7, you are re-creating the chain 

from the beginning. If you reuse a key and IV here, you will with the same key and IV! 

This results in exactly the same output for the same input every time!

Accordingly, when using the API of Python’s cryptography module, never give the 

same key and IV pair to an encryptor more than once (obviously, you give the same key 

and IV to the corresponding decryptor). In fact, it’s probably best to never reuse the 

same key again, period.
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In Listing 3-8 we correct our previous error and only use a key/IV pair once. The 

encryptor and decryptor objects are moved to the constructor and, instead of having 

a single encrypt_message() or decrypt_message() call, we use the update/finalize 

pattern used by the cryptography module.

Listing 3-8.  AES-CBC Manager

 1   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 2   from cryptography.hazmat.backends import default_backend

 3   from cryptography.hazmat.primitives import padding

 4   import os

 5

 6   class EncryptionManager:

 7       def __init__(self):

 8           key = os.urandom(32)

 9           iv = os.urandom(16)

10           aesContext = Cipher(algorithms.AES(key),

11                               modes.CBC(iv),

12                               backend=default_backend())

13           self.encryptor = aesContext.encryptor()

14           self.decryptor = aesContext.decryptor()

15           self.padder = padding.PKCS7(128).padder()

16           self.unpadder = padding.PKCS7(128).unpadder()

17

18       def update_encryptor(self, plaintext):

19           return self.encryptor.update(self.padder.update(plaintext))

20

21       def finalize_encryptor(self):

22           �return self.encryptor.update(self.padder.finalize()) + self.

encryptor.finalize()

23

24       def update_decryptor(self, ciphertext):

25           return self.unpadder.update(self.decryptor.update(ciphertext))

26

27       def finalize_decryptor(self):
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28           �return self.unpadder.update(self.decryptor.finalize()) + self.

unpadder.finalize()

29

30   # Auto generate key/IV for encryption

31   manager = EncryptionManager()

32

33   plaintexts = [

34       b"SHORT",

35       b"MEDIUM MEDIUM MEDIUM",

36       b"LONG LONG LONG LONG LONG LONG"

37   ]

38

39   ciphertexts = []

40

41   for m in plaintexts:

42       ciphertexts.append(manager.update_encryptor(m))

43   ciphertexts.append(manager.finalize_encryptor())

44

45   for c in ciphertexts:

46       print("Recovered", manager.update_decryptor(c))

47   print("Recovered", manager.finalize_decryptor())

Listing 3-8 does not reuse key/IV pairs, but you have probably noticed that we are 

no longer treating the individual messages as individual messages. Now that we’re back 

to the update() finalize() pattern, we have to treat all the data passed to a single 

context as a single input. If we want each message treated separately, with a sequence 

of update() calls and finalize() call per input. Alternatively, we can submit all three 

messages as a single input from the perspective of the encryption and decryption 

and have an independent mechanism for splitting the single decryption output into 

messages.

In summary, it is important to carefully understand any cryptography APIs that you 

use, how they work, and what their requirements (especially security requirements) are. 

It is also important to understand how easy it can be to create an API that looks like it 

does the right thing but is actually leaving you vulnerable.

Remember, YANAC (You Are Not A Cryptographer... yet!). Don’t roll your own crypto 

like we are doing in these educational examples.
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So why does the cryptography module use the update/finalize pattern? Quite often, 

data needs to be processed in chunks in many practical cryptographic operations. 

Suppose that you are transmitting data over the network. Do you really want to wait 

until you have the entire content before you can encrypt it? Even if you were encrypting 

a local file on the hard drive, it might be impractically large for all-at-once encryption. 

The update() method allows you to feed data to an encryption engine as it becomes 

available.

The finalize() operation is useful for enforcing requirements such as the CBC 

operation did not leave an incomplete block unencrypted and that the session is over.

Of course, there’s nothing wrong with a per-message API so long as a key and IV 

aren’t reused. We will look at strategies for this later.

EXERCISE 3.10. DETERMINISTIC OUTPUT

Run the same inputs through AES-CBC using the same key and IV. You can use Listing 3-7 as 

a starting point. Change the inputs to be the same each time and print out the corresponding 

ciphertexts. What do you notice?

EXERCISE 3.11. ENCRYPTING AN IMAGE

Encrypt the image that you encrypted with ECB mode earlier. What does the encrypted image 

look like now? Don’t forget to leave the first 54 bytes untouched!

EXERCISE 3.12. HAND-CRAFTED CBC

ECB mode is just raw AES. You can create your own CBC mode using ECB as the building 

block.10 For this exercise, see if you can build a CBC encryption and decryption operation that 

is compatible with the cryptography library. For encryption, remember to take the output 

of each block and XOR it with the plaintext of the next block before encryption. Reverse the 

process for decryption.

10�Never use this for production code! Always use well-tested libraries.
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�Cross the Streams
Counter mode has a number of advantages to CBC mode and, in our opinion, is 

significantly easier to understand than CBC mode. Also, while CTR is the traditional 

abbreviation, “CM” is a really nice set of initials.

Although simple, the concept behind this mode can be a little counter-intuitive at 

first (yup). In CTR mode, you actually never use AES for encryption or decryption of the 

data. Instead, this mode generates a key stream that is the same length as the plaintext 

and then uses XOR to combine them together.

Recall from earlier exercises in this chapter that XOR can be used to “mask” plaintext 

data by combining it with random data. The previous exercise masked 16 bytes of 

plaintext with 16 bytes of random data. This is a real form of encryption called a “one-

time pad” (OTP) [11, Chap. 6]. It works great but requires that the key is the same size as 

the plaintext. We don’t have the space here to explore the OTP further; the important 

concept is that using XOR to combine plaintext and random data is a great way to create 

ciphertext.

AES-CTR mimics this aspect of OTP. But instead of requiring the key to be the same 

size as the plaintext (a real pain when encrypting a 1TB file), it uses AES and a counter to 

generate a key stream of almost arbitrary length from an AES key as small as 128 bits.

To do this, CTR mode uses AES to encrypt a 16-byte counter, which generates 16 

bytes of key stream. To get 16 more bytes of key stream, the mode increases the counter 

by one and encrypts the updated 16 bytes. By continually increasing the counter and 

encrypting the result, CTR mode can produce an almost arbitrary amount of key stream 

material.11 Once a sufficient amount of key material is generated, the XOR operation is 

used to combine them together to produce the ciphertext.

Although the counter is changing by a small amount each time (often just changing 

by a single bit!), AES has good per-block avalanche properties. Thus, each output block 

appears completely different from the last, and the stream as a whole appears to be 

random data.

11�There are limits but these are beyond the scope of this book.
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Note: Random Thoughts   

Randomness is actually a huge deal in cryptography. Many otherwise acceptable 
algorithms have been compromised in practice if they did not have sufficient 
sources of randomness for keys, among other things. The OTP algorithm we briefly 
mentioned requires a key that is the same size as the plaintext (no matter how 
large) and that the entire key be truly random data. AES-CTR mode only requires 
that the AES key be truly random. The key stream produced by AES-CTR looks 
random, but is actually pseudo-random. This means that if you know the AES key, 
you know the whole key stream no matter how random it appears to be.

Ensuring that you have a sufficiently random source of data is beyond the scope 
of this book. For our purposes, we will assume that os.urandom() can return 
acceptably random data for our needs. In production cryptography environments, 
you would need to analyze this far more carefully.

Randomness is so important that we will mention it more than once. In fact, we will 
return to it near the end of this very chapter.

Although AES-CTR is a stream cipher, we can still think about it one block at a time. 

To encrypt any given block of plaintext, generate the key stream for that block’s index 

and XOR it with the (possibly partial) block. Expressed another way (where the subscript 

k indicates “encrypted with key k”):

C n P n nk[ ] = [ ]Å .

That’s mostly it! The only other slight twist is that we don’t want to start with the 

same counter value every time. So, our IV, which we’ll call our “nonce,” is used as the 

starting counter value. To update our definition:

C n P n IV n
k[ ] = [ ]Å +( ) .

XOR is a really versatile mathematical operation. You can think of it as “controlled 

bit-flipping”: to compute A ⊕ B, you march down their bits in tandem; when you 

encounter a 1 in B, you invert the corresponding bit in A, and when you encounter a 0 in 
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B, you leave that bit in A alone. Thinking of it that way, it’s easy to see how doing that 

twice simply restores A to what it was before.

More formally, as discussed earlier, XOR is its own inverse: (A ⊕ B) ⊕ B = A. Since 

we created a stream of encrypted blocks by applying XOR to the appropriate value in the 

key stream, we simply do exactly the same thing to decrypt: apply XOR to the encrypted 

blocks and their corresponding keys:

P n C n IV n
k[ ] = [ ]Å +( ) .

Of course, nothing happens if you merely XOR with 0 (since A ⊕ 0 = A, which is 

where the inverse property comes from), so the keys in the stream need to be composed 

of random-looking bits, but that is exactly the type of key stream that AES produces.

Figure 3-7 provides a visual representation of AES-CTR operations.

Figure 3-7.  Visual depictions of CTR encryption and decryption. Note that 
encryption and decryption are the same process!

Happily, stream ciphers do not require padding! It is quite simple to only XOR a 

partial block, discarding the later parts of the key that aren’t needed.
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In general, this approach is much simpler. Padding goes away and blocks can again 

be encrypted independent of one another.

Let’s see it in action in the cryptography module (Listing 3-9).

Listing 3-9.  AES-CTR

 1   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 2   from cryptography.hazmat.backends import default_backend

 3   import os

 4

 5   class EncryptionManager:

 6       def __init__(self):

 7           key = os.urandom(32)

 8           nonce = os.urandom(16)

 9           aes_context = Cipher(algorithms.AES(key),

10                                modes.CTR(nonce),

11                                backend=default_backend())

12           self.encryptor = aes_context.encryptor()

13           self.decryptor = aes_context.decryptor()

14

15       def updateEncryptor(self, plaintext):

16           return self.encryptor.update(plaintext)

17

18       def finalizeEncryptor(self):

19           return self.encryptor.finalize()

20

21       def updateDecryptor(self, ciphertext):

22           return self.decryptor.update(ciphertext)

23

24       def finalizeDecryptor(self):

25           return self.decryptor.finalize()

26

27   # Auto generate key/IV for encryption

28   manager = EncryptionManager()

29
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30   plaintexts = [

31       b"SHORT",

32       b"MEDIUM MEDIUM MEDIUM",

33       b"LONG LONG LONG LONG LONG LONG"

34   ]

35

36   ciphertexts = []

37

38   for m in plaintexts:

39       ciphertexts.append(manager.updateEncryptor(m))

40   ciphertexts.append(manager.finalizeEncryptor())

41

42   for c in ciphertexts:

43       print("Recovered", manager.updateDecryptor(c))

44   print("Recovered", manager.finalizeDecryptor())

Because no padding is needed, the finalize methods are actually unnecessary except 

for “closing” the object. They are kept for symmetry and pedagogy.

How do you choose between CTR and CBC modes? In almost all circumstances, 

counter mode (CTR) is recommended.12 Not only is it easier, but in some circumstances 

it is also more secure. As if that wasn’t enough, counter mode is also easier to parallelize 

because keys in the key stream are computed from their index, not from a preceding 

computation.

12�You can remember it because it also stands for “choose the right.” You can even buy “CTR” rings 
as a friendly, constant, and, when twisted a bit to our purposes, cryptographic reminder.
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Why even talk about CBC, then? At the very least it is still in wide use, so you will 

benefit from understanding it when you encounter it in the wild.

We will introduce other modes later in the book that build on counter mode to make 

something even better. For now, it is enough to understand the basic characteristics 

of CBC and CTR modes and how each one works to build a better algorithm from an 

underlying block cipher.

EXERCISE 3.13. WRITE A SIMPLE COUNTER MODE

As you did with CBC, create counter mode encryption from ECB mode. This should be even 

easier than it was with CBC. Generate the key stream by taking the IV block and encrypting 

it, then increasing the value of the IV block by one to generate the next block of key stream 

material. When finished, XOR the key stream with the plaintext. Decrypt in the same manner.

EXERCISE 3.14. PARALLEL COUNTER MODE

Extend your counter mode implementation to use a thread pool to generate the key stream in 

parallel. Remember that to generate a block of key stream, all that is required is the starting IV 

and which block of key stream is being generated (e.g., 0 for the first 16-byte block, 1 for the 

second 16-byte block, etc.). Start by creating a function that can generate any particular block 

of key stream, perhaps something like keystream(IV, i). Next, parallelize the generation 

of a key stream up to n by dividing the counter sequence among independent processes any 

way you please, and have them all work on generating their key stream blocks independently.

�Key and IV Management
As you have seen, having a library such as cryptography makes all kinds of encryption 

convenient and simple to use. Unfortunately, this simplicity can be deceptive and lead to 

mistakes; there are many ways to get it wrong. We have already touched briefly on one of 

them: reuse of keys or IVs.

That kind of mistake falls under the broader category of “Key and IV Management,” 

and doing it incorrectly is a common source of problems.
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Important Y ou must never reuse key and IV pairs. Doing so seriously 
compromises security and disappoints cryptography book authors. Just don’t do it. 
Always use a new key/IV pair when encrypting anything.

Why don’t you want to reuse a key and IV pair? For CBC, we already mentioned one 

of the potential problems: if you reuse a key and IV pair, you will get predictable output 

for predictable headers. Parts of your messages that you might be inclined not to think 

about at all, because they are boilerplate or contain hidden structure, will become a 

liability; adversaries can use predictable ciphertext to learn about your keys.

Think about an HTML page, for example. The first characters are often the same 

across multiple pages (e.g., "<!DOCTYPE html>\n"). If the first 16 bytes (an AES block) 

of HTML pages are the same and you encrypt them under the same key/IV pair, the 

ciphertext will be the same for each one. You have just leaked data to your enemy, and 

they can start to analyze your encrypted data for patterns.

If your web site has a large amount of static content or dynamic results that are 

identically generated, each encrypted page becomes uniquely identifiable. The enemy 

may not know what each page says, but they can determine the frequency of use and 

track which parties receive the same pages.

Reusing a key and IV in CBC mode is bad.

Reusing a key and IV in counter mode, on the other hand, is much worse. Because 

counter mode is a stream cipher, the plaintext is simply XORed with the key stream. If 

you happen to know the plaintext, you can recover the key: K ⊕ P ⊕ P = K!

“So what?” you might be thinking. “Who cares if they can get the key stream? If they 

already know the plaintext, why do we care?”

The problem is, under many circumstances an attacker might know some or all of 

the contents of one of your plaintext messages. If other messages are encrypted with the 

same key stream, the attacker can recover those messages too!

Bad, bad, bad.

Let’s explore this idea a little further. Suppose that you buy something for $100.00 

with a credit card at a store. Let’s assume a simplified version of the world where the card 

reader sends a message to your bank to authorize the purchase protected by only AES-

CTR encryption.
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Imagine that the message to the bank from the credit card reader is XML that looks 

like this:

1   <XML>

2     <CreditCardPurchase>

3       <Merchant>Acme Inc</Merchant>

4       <Buyer>John Smith</Buyer>

5       <Date>01/01/2001</Date>

6       <Amount>$100.00</Amount>

7       <CCNumber>555-555-555-555</CCNumber

8     </CreditCardPurchase>

9   </XML>

The store creates this message, encrypts it, and sends it to the bank. In order to 

communicate, the store and the bank must share a key. If the programmers who wrote 

the code were lazy and negligent, they may have created a system with a constant key 

and IV that are reused on every message, like what we find in Listing 3-10.

Listing 3-10.  AES-CTR for a Store

 1   # ACME generates a purchase message in their storefront.

 2   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 3   from cryptography.hazmat.backends import default_backend

 4

 5   # WARNING! Never do this. Reusing a key/IV is irresponsible!

 6   preshared_key = bytes.fromhex('00112233445566778899AABBCCDDEEFF')

 7   preshared_iv = bytes.fromhex('00000000000000000000000000000000')

 8

 9   purchase_message = b"""

10   <XML>

11     <CreditCardPurchase>

12       <Merchant>Acme Inc</Merchant>

13       <Buyer>John Smith</Buyer>

14       <Date>01/01/2001</Date>

15       <Amount>$100.00</Amount>

16       <CCNumber>555-555-555-555</CCNumber
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17     </CreditCardPurchase>

18   </XML>

19   """

20

21   aesContext = Cipher(algorithms.AES(preshared_key),

22                       modes.CTR(preshared_iv),

23                       backend=default_backend())

24   encryptor = aesContext.encryptor()

25   encrypted_message = encryptor.update(purchase_message)

For simplicity, the purchase message was included in the preceding code. Feel free 

to change it to accept a file or command-line flags that set the buyer’s name, purchase 

price, and so forth. You probably ought to also write the encrypted message to a file.

Back to our scenario, if you are trying to crack this system, you can spend $100.00 at 

this store, then tap the line and intercept the purchase message transmitted to the bank. 

If you do this, how much of the plaintext message do you know? You know all of it! You 

know who made the purchase, you know the amount of the purchase, you know the date, 

and you know your own credit card number.

That means that you can recreate the plaintext message, XOR it with the ciphertext, 

and recover keystream material. Because the merchant is reusing the same key and IV 

for the next customer, you can trivially decrypt the message and read the contents. Oops. 

We feel a news story about a data breach coming on.

EXERCISE 3.15. RIDING THE KEYSTREAM

Put into practice this keystream-stealing attack. That is, encrypt two different purchase 

messages using the same key and IV. “Intercept” one of the two messages and XOR the 

ciphertext contents with the known plaintext. This will give you a keystream. Next, XOR the 

keystream with the other message to recover that message’s plaintext. The message sizes 

may be a little different, but if you’re short some keystream bytes, recover what you can.
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Even if the attacker does not know any of the plaintext and cannot recover a 

keystream, he or she can still take advantage of messages encrypted with the same key 

and IV pair. If you have two messages encrypted with the same keystream, you can do 

the following trick (where K is the key stream):

c m K

c m K

c c m K m K

c c m m K K

c c m m

1 1

2 2

1 2 1 2

1 2 1 2

1 2 1

= Å
= Å

Å = Å( )Å Å( )
Å = Å Å Å
Å = Å 22

What do you get out of having the XOR of the two plaintext messages? Is that 

readable? It depends. Because plaintext messages often have structure, private data 

is often extractable or guessable. Take these made-up purchase messages from our 

example. If you XORed two such messages together, what could you learn?

First of all, any parts that overlap exactly simply reduce to 0. Instantly, you know 

where the messages are the same and where they diverge. If the attacker were lucky 

enough that two messages had the same length of name for the buyer, the amount fields 

would line up as well. This field yields a lot of information when the two are XORed 

together because there are so few legal characters for this field (“0”–“9” and “.”). The XOR 

of the ASCII characters for the digits leaves open only a few possibilities.

For example, there are only two pairs of digits for which the XOR of their ASCII 

values is 15. These are “7” and “8” (ASCII values 55 and 56) and “6” and “9” (ASCII 

values 54 and 57). So, if we know that we have the XOR of two purchase amount field 

digits and the XOR value is 15, then the two messages each have one of these two pairs of 

numbers. That’s only four possibilities, which will not be very difficult for an attacker to 

figure out under most circumstances.

You might be surprised how often this vulnerability can show up if you’re not careful. 

One simple example is full-duplex messages. If you have two parties that want to send 

encrypted messages to each other, they must not use the same key and IV to encrypt 

each side of the connection. Each side’s encryption must be independent of the other. 

If you think about how CBC and CTR mode work, this will be pretty obvious. If you are 
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going to write messages in both directions, each side needs a separate read key and write 

key.13 The read key of the first party will be the write key of the second and vice versa. 

This way, different messages will not be written under the same key and IV pair.

EXERCISE 3.16. SIFTING THROUGH XOR

XOR together some plaintext messages and look around for patterns and readable data. 

There’s no need to use any encryption for this, just take some regular, human-readable 

messages and XOR the bytes. Try human-readable strings, XML, JSON, and other formats. You 

may not find a lot that is instantly decipherable, but it’s a fun exercise.

�Exploiting Malleability
Some aspects of cryptography are unintuitive at first. For example, an enemy can fail to 

read a confidential message while still being able to change it in meaningful, deceptive 

ways. In this section, we will experiment with altering encrypted messages while not 

being able to read them.

Counter mode is a really good encryption mode for all of the reasons described 

earlier. At the risk of being too repetitive, however, it only guarantees confidentiality. 

In fact, because it is a stream cipher, it is trivial to change a small part of the message 

without changing the rest of it. In counter mode, for example, if an attacker modifies one 

byte of the ciphertext, it only affects the corresponding byte of plaintext. While that one 

byte of plaintext will not decrypt correctly, the remaining bytes will remain intact.

Cipher block chaining mode is different because a change to a single byte of 

ciphertext will affect all subsequent blocks.

13�Technically, they could use the same key, provided the IVs were different. However, there are a 
number of ways in practice that IVs might intentionally or accidentally overlap, so it is typically 
recommended to use different keys and not rely on having different IVs.
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EXERCISE 3.17. VISUALIZING CIPHERTEXT CHANGES

To better understand the difference between counter mode and cipher block chaining mode, 

go back to the image encryption utility you wrote previously. Modify it to first encrypt and 

then decrypt the image, using either AES-CBC or AES-CTR as the mode. After decryption, the 

original image should be completely restored.

Now introduce an error into the ciphertext and decrypt the modified bytes. Try, for example, 

picking the byte right in the middle of the encrypted image data and setting it to 0. After 

corrupting the data, call the decryption function and view the restored image. How much of a 

difference did the edit make with CTR? How much of a difference did the edit make with CBC?

HINT: If you can’t see anything, try an all-white image. If you still can’t see it, change 50 

bytes or so to figure out where the changes are happening. Once you find where the changes 

are happening, go back to changing a single byte to view the differences between CTR and 

CBC. Can you explain what’s happening?

To illustrate this concept of malleability, we are going to let our attacker know some 

of the plaintext of an encrypted message. This knowledge is going to allow them to 

change the message en route. What’s different this time around is that this vulnerability 

is not dependent on a reused keystream.

If an attacker knows the plaintext behind a keystream-enciphered message, it is easy 

to extract the keystream from the ciphertext. If the keystream is reused, the attacker can 

decrypt all messages that used it. Even if it is not reused, the attacker can alter a message 

with known plaintext.

Let’s revisit our encrypted purchase messages. Suppose that Acme’s competitor, 

Evil LLC, wants to redirect this payment to themselves. They have a tap on the network 

connection coming out of Acme’s store and can intercept and modify the message. When 

an encrypted form of this message comes along, even though they don’t have the key 

and cannot decrypt it, they can strip out the original message parts that are known and 

replace them with their own chosen parts.

The part that Evil LLC wants to change is this part:

1   <XML>

2     <CreditCardPurchase>

3       <Merchant>Acme Inc</Merchant>
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That data is known and fixed in every payment message. To obtain the keystream, 

all Evil LLC has to do is XOR this data with the ciphertext. Once this part is XORed, they 

have the keystream for this many bytes. Then, they create their modified message:

1   <XML>

2     <CreditCardPurchase>

3       <Merchant>Evil LLC</Merchant>

This message has the exact same size as the true message. Because AES-CTR is so 

malleable, it is easy to XOR this partial message with the extracted keystream and join it 

to the rest of the still-encrypted message. This process is illustrated in Figure 3-8.

Figure 3-8.  If an attacker knows the plaintext in CTR mode ciphertext, she can 
extract the keystream to encrypt her own evil message!
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EXERCISE 3.18. EMBRACING EVIL

You work for (or own!) Evil LLC. Time to steal some payments from Acme. Start with one of 

the encrypted payment messages you created in the earlier exercises. Calculate the size of 

the header up through the identification of the merchant and extract that many bytes of the 

encrypted data. XOR the plaintext header with the ciphertext header to get the keystream. 

Once you have this, XOR the extracted keystream with a header identifying Evil LLC as the 

merchant. This is the “evil” ciphertext. Copy it over the bytes of the encrypted file to create 

a new payment message identifying your company as the recipient. Prove that it works by 

decrypting the modified file.

The key lesson here is that encryption is insufficient to protect data by itself. 

In subsequent chapters, we will use message authentication codes, authenticated 

encryption, and digital signatures to ensure that data cannot be altered without 

disrupting communications.

�Gaze into the Padding
While CBC mode is less susceptible to alteration than counter mode, it is by no means 

perfect in that regard. In fact, it is CBC’s malleability that made one of the early versions of 

SSL vulnerable. Remember that CBC mode is a block-based mode and requires padding. 

An interesting error in the padding specification and the malleability of AES-CBC enabled 

attackers to execute a “padding oracle attack” and decrypt confidential data.

Let’s create that attack right now. It’s extremely interesting and educational.

For this little exercise, you will need to write your own padding functions; the ones 

in the cryptography module are too secure. Your functions will follow the very broken 

SSL 3.0 specification (we’ll talk about SSL/TLS more in the last chapter). Basically, N–1 

bytes of anything followed by a single byte that indicates the total length of the padding. 

Because padding was always required in that specification, it would be added even if the 

plaintext was a multiple of the block size. This will be important later.
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Listing 3-11.  SSLv3 Padding

1   def sslv3Pad(msg):

2       padNeeded = (16 - (len(msg) % 16)) - 1

3       padding = padNeeded.to_bytes(padNeeded+1, "big")

4       return msg+padding

5

6   def sslv3Unpad(padded_msg):

7       paddingLen = padded_msg[-1] + 1

8       return padded_msg[:-paddingLen]

Let’s talk about what we have so far (Listing 3-11). The padding bytes in this scheme 

are completely ignored except for the last byte. It doesn’t matter what the bytes are, so 

long as the last byte is correct. Padding goes at the end of a message, right? Guess which 

part of a CBC message is the most malleable.

The reason that the last part of the CBC message is more malleable is that it has no 

impact on any subsequent blocks. It can be changed without messing up anything else. 

Recall that CBC decryption starts out the same for every single block no matter where it 

is. The ciphertext block is decrypted by AES with the key. It’s only after decryption that it 

is XORed with the ciphertext from the previous block.

This means that you could substitute any block from the CBC chain at the very 

end of the chain. It will get decrypted at the end just like it would in the middle or the 

beginning. After decryption, it is XORed with the ciphertext from the previous block.

How is this helpful? Well, suppose that we are fortunate enough to have the original 

plaintext message be a multiple of 16 bytes long, the AES block length. Because we’re 

using a padding scheme that always uses padding, there will be a full block of padding at 

the end. Since we don’t care what bytes are in the padding except for the last one, we can 

correctly recover the entire message, even if we replace the last block, so long as the very 

last byte decodes to 15 (the padding length when there is a full block of padding).

Explained another way, when there is a full block of padding at the end, 15 of the 

16 bytes are completely ignored. It doesn’t matter what they are. If we’re going to try to 

“fool” the decryption, this is a great place to do it, because we only have to get one  

byte correct!
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This small change, only caring about the value of the last byte, changes everything! 

It reduces brute-force guessing to something reasonable. Normally, if you wanted to 

“guess” a correct AES block, you would have to try all possible combinations of all 16 

bytes. You might recall from previous discussion that this works out to a very big number 

and it is impossible to try every combination for all practical purposes.

But now that we only care about the last byte, we only need to correctly guess 

one byte of data. To repeat, so long as the last byte decrypts to 15, our padding will 

be “correct.” One byte of data has 256 possible values, so if our last byte is randomly 

selected, then 1 out of 256 times it will correctly decrypt to 15!

You might protest that the data isn’t random. We are trying to decrypt a specific byte. 

Very true! But remember that in CBC we XOR the real plaintext with the ciphertext of the 

previous block! The ciphertext, at least for our purposes here, behaves like random data. 

For any given key/IV pair, the last byte of ciphertext that will be XORed with our plaintext 

byte has an equal chance of being any of the 256 possible 1-byte values. If we are lucky, 

the “random” byte of ciphertext XORed with our plaintext byte will be 15!

If the padding is accepted and decrypts to 15, we can use our knowledge of the 

previous ciphertext block to get the true plaintext byte.

Actually, recovering the plaintext byte is a little trick and requires that we think 

through CBC decryption carefully. Remember that the last block of plaintext (e.g., the 

true padding in the original message) was XORed with the ciphertext from the second-

to-last block. This intermediate data was encrypted by the AES algorithm. So, working 

backward, if we overwrite the final ciphertext block, the CBC operation will first run 

this block through the AES decryption operation to produce an intermediate value that 

is then XORed with the preceding ciphertext. If this is difficult to follow, refer back to 

Figure 3-5.

If the padding is accepted (e.g., the last byte is 15), we know that the last byte of the 

intermediate value decrypted by AES is the XOR of 15 and the last byte of the previous 

ciphertext block. We, of course, have the ciphertext. Now, even without the AES key, we 

can simply compute the intermediate byte directly (e.g., by taking the XOR of 15 and the 

last byte of the second-to-last ciphertext block).

But the intermediate value isn’t the plaintext byte. Remember, we are decrypting an 

earlier ciphertext block. That ciphertext block is the AES encryption of the real plaintext 

XORed with the actual preceding ciphertext (or the IV if it’s the first plaintext block). So, 
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when we recover the intermediate last byte, we still have to remove that mixed-in data 

with an appropriate XOR.

Let’s work on putting this into code. First, we need to define our “oracle.” In real life, 

the oracle was the SSLv3 server. If you sent it a message with bad padding, it would send 

you an error message that the padding was bad. That knowledge is all that is necessary 

to pull off this attack. For our code in Listing 3-12, we will just have an accept() method 

in an Oracle class that indicates whether the padding is valid, performing the same 

purpose as the server.

Listing 3-12.  SSLv3 Padding Oracle

 1   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 2   from cryptography.hazmat.backends import default_backend

 3

 4   class Oracle:

 5       def __init__(self, key, iv):

 6           self.key = key

 7           self.iv = iv

 8

 9       def accept(self, ciphertext):

10           aesCipher = Cipher(algorithms.AES(self.key),

11                              modes.CBC(self.iv),

12                              backend=default_backend())

13           decryptor = aesCipher.decryptor()

14           plaintext = decryptor.update(ciphertext)

15           plaintext += decryptor.finalize()

16           return plaintext[-1] == 15

This might seem a little weird: we have the key and are using it to create the oracle. 

Just remember: we’re simulating a vulnerable remote server, which would have its own 

key. The attack we write below will proceed without knowledge of the key used here.

Once we have the oracle, it’s a pretty easy function to see if we can get lucky and 

decode the last byte of an arbitrary block in the ciphertext, as in Listing 3-13.
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Listing 3-13.  Lucky SSLv3 Padding Byte

 1   # Partial Listing: Some Assembly Required

 2

 3   # This function assumes that the last ciphertext block is a full

 4   # block of SSLV3 padding

 5   def lucky_get_one_byte(iv, ciphertext, block_number, oracle):

 6       block_start = block_number * 16

 7       block_end = block_start + 16

 8       block = ciphertext[block_start: block_end]

 9

10       # Copy the block over the last block.

11       mod_ciphertext = ciphertext[:-16] + block

12       if not oracle.accept(mod_ciphertext):

13           return False, None

14

15       # This is valid! Let's get the byte!

16       # We first need the byte decrypted from the block.

17       # It was XORed with second to last block, so

18       # byte = 15 XOR (last byte of second-to-last block).

19       second_to_last = ciphertext[-32:-16]

20       intermediate = second_to_last[-1]^15

21

22       # We still have to XOR it with its *real*

23       # preceding block in order to get the true value.

24       if block_number == 0:

25           prev_block = iv

26       else:

27           prev_block = ciphertext[block_start-16: block_start]

28

29       return True, intermediate ^ prev_block[-1]

To repeat: we are counting on the penultimate (second-to-last) block being lucky! 

As shown in Figure 3-9, we have to be lucky enough that the last byte of the penultimate 

block will just happen to XOR with our intermediate byte to be 15. This luck that we are 

counting on is dependent on the key and IV chosen. Once again, for any given key/IV 
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Is that really all that useful? In the first place, we have to be lucky enough to have a 

full block of padding. In the second place, we only have a 1-in-256 chance of decoding a 

single byte. That doesn’t seem terribly helpful.

Or does it?

Again, cryptography can be very counter-intuitive. Computers don’t behave like we 

would expect them to, and that’s where we get into trouble.

While SSLV3 was busy protecting web traffic, it turned out there were a number of 

ways that a malicious advertisement could generate traffic to an SSL-encrypted web site. 

But because that advertisement was generating the traffic, its authors could control how 

long the encrypted message was. Thus, if the attacker was trying to decrypt an encrypted 

cookie, triggering a GET request of various lengths could control how long the overall 

message was.

pair, there is a 1-in-256 chance that the penultimate block will “accidentally” XOR with 

our intermediate plaintext block to give us 15.

Figure 3-9.  If the first 15 bytes of the padding block are ignored, we can substitute 
in the second to last block and see if the oracle tells us the padding is correct. If so, 
we can figure out the last byte in the previous block.
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It’s still just one byte, right? As illustrated in Figure 3-10, the attacker can control the 

length of the message. Once one byte is decoded, it’s pretty straightforward to increase 

the message length by 1 by inserting a byte earlier in the message, pushing the new byte 

into the last slot of the arbitrary block. Another 256 tries and that second byte will be 

decoded too! Wash, rinse, and repeat!

Getting the full block of padding in this case really isn’t very difficult as the malicious 

requester could put arbitrary data in the GET request.

And it is nothing for a computer to make 256 requests over a network. Note that, 

in the SSLV3 context, the client and server are going to use different keys with every 

connection (for good reason, as we have seen!). This means that on each connection, the 

ciphertext will be different! So, if the attacker sends 256 requests, the penultimate block 

will be different each time, providing a new opportunity to be lucky and have the right 

“random” number that will provide the needed 15.

Figure 3-10.  In order to decrypt a byte that matters, an attacker controls the GET 
request size so that the cookie is in the right spot. This requires the ability to insert 
arbitrary requests such as an advertiser within a TLS-secured context.
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EXERCISE 3.19. RESISTANCE IS FUTILE

Finish the code for the padding oracle attack. We’ve given you the major pieces, but it will still 

take some work to put everything together. We will do a few things to try and simplify as much 

as possible. First, pick a message that is exactly a multiple of 16 bytes in length (the AES block 

size) and create a fixed padding to append. The fixed padding can be any 16 bytes as long as 

the last byte is 15 (that’s the whole point of the exercise, right?). Encrypt this message and 

pass it to the oracle to make sure that code is working.

Next, test recovering the last byte of the first block of the message. In a loop, create a new key 

and IV pair (and a new oracle with these values), encrypt the message, and call the lucky_

get_one_byte() function, setting block number to 0. Repeat the loop until this function 

succeeds and verify that the recovered byte is correct. Note that, in Python, an individual byte 

isn’t treated as a byte type but is converted to an integer.

The last step in order to decode the entire message is to be able to make any byte the last byte 

of a block. Again, for simplicity, keep the message being encrypted a perfect multiple of 16.  

To push any byte to the end of a block, add some extra bytes at the beginning and cut off an 

equal number at the end. You can now recover the entire message one byte at a time!

EXERCISE 3.20. STATISTICS ARE ALSO FUTILE

Instrument your padding oracle attack in the previous exercise to calculate how many guesses 

it took to fully decrypt the entire message and calculate an average number of tries per byte. 

In theory, it should work out to about 256 tries per byte. But you’re probably working with such 

small numbers that it will vary widely. In our tests on a 96-byte message, our averages varied 

between about 220 guesses per byte and 290 guesses per byte.

Once again, encryption is about confidentiality, and confidentiality is simply not 

enough to solve all security problems. In subsequent chapters we will learn how to 

combine confidentiality and integrity to solve a larger class of problems.
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�Weak Keys, Bad Management
To conclude this chapter, let’s briefly discuss keys. Hopefully, it has already become very 

clear to you how important keys are.

In almost all cryptographic systems, key management is the hardest part. It can be 

difficult to generate good keys, to share keys, and to manage keys afterward (e.g., keeping 

them secret, updating them, or revoking them). For now, we’ll focus on key generation.

Keys must be drawn from good sources of randomness. We mentioned randomness 

once already in this chapter in a brief aside, but let’s take a second look. For example, the 

following code is really wrong.

import random

key = random.getrandbits(16, "big")

The random package is a pseudo-random number generator and not even a good 

one at that. Pseudo-random generators are deterministic, generating numbers that 

appear random to humans, but are always the same given a known seed value. Default 

seeds used to be based on the system time. This may seem reasonable, but it means 

that if the attacker can guess when the random number generator was seeded, they can 

completely predict all the random numbers produced. About the only way to make this 

worse is to hard-code the key or the seed (which is effectively the same thing).

import random

# Set the random number generator seed to 0.

r = random.Random(0)

key = r.getrandbits(16, "big")

This code will produce the same “random” numbers on every run of the program. 

This can sometimes be useful for testing, but you must not leave it in production code!

Although Python’s default seeding is no longer quite so predictable, it is not suitable 

for generating secrets like passwords. Instead, always pull from os.urandom() or, if using 

Python 3.6 or later, secrets.SystemRandom(). Under most circumstances, this is enough 

randomness. If you need something stronger, you might need to use different hardware 

and should consult an expert cryptographer.
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In some deployments, a key is not pulled from random numbers. Instead, it is 

derived from a password. If you are going to derive a key from a password, the password 

needs to be very secure! In the previous chapter, you learned about brute-force attacks 

and all of those lessons apply here.

Let’s get a feel for the difference in difficulty of guessing a key in these scenarios. How 

long would it take to try every possible 128-bit (random) key? How many tries is that?

There are 2128 different 128-bit keys. That’s this many different keys:

340,282,366,920,938,463,463,374,607,431,768,211,456.

If your key is derived from a five-digit pin number, though, you have reduced it to 

99,999! It’s true that very few passwords will be as hard to brute force as a truly random 

128-bit key. After all, you’d need to have a password composed of about 20 random 

characters to require the same kind of brute-force effort as a 128-bit key. But still, 99,999 

is just begging a computer to accept your challenge. You can do better than that!

As a reminder, there are proven algorithms for deriving a key from a password. 

Make sure you use a good one. In the previous chapter, we used scrypt. There are others 

that some people feel are even better (such as bcrypt or Argon2). What makes a good 

derivation function? One characteristic is how long it takes. If someone picks a weak 

password (e.g., “puppy1”), it won’t take the attacker long to figure it out. It might be 

possible, however, to make it take too long if the derivation function is slow.

In short, don’t bother using a good cipher with a bad key. Make sure that your keys 

are securely generated and adequately resistant to abuse by a determined adversary.

EXERCISE 3.21. PREDICTING TIME-BASED RANDOMNESS

Write an AES encryption program (or modify one of the others you’ve written for this chapter) 

that uses the Python random number generator to generate keys. Use the seed method to 

explicitly configure the generator based on the current time using time.time() rounded to 

the nearest second. Then use this generator to create a key and encrypt some data. Write a 

separate program that takes the encrypted data as input and tries to guess the key. It should 

take a minimum time and a maximum time as a range and try iterating between these two 

points as seed values for random.
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�Other Encryption Algorithms
In this chapter, we have focused exclusively on AES encryption. There are good reasons 

for this. AES is the most popular symmetric cipher currently in use. It’s used in network 

communications as well as storing data on disk. And as we will see in Chapter 7, it is the 

basis for several advanced AEAD (authenticated encryption with associated data).

However, there are other symmetric key ciphers that can be used. Here are a few that 

are supported by the cryptography library:

•	 Camellia

•	 ChaCha20

•	 TripleDES

•	 CAST5

•	 SEED

Even though we are always encouraging you to use a well-tested, well-respected 

third-party library, be aware that libraries often include support for less desirable 

algorithms for legacy support. In this list of algorithms supported by cryptography, a 

few ciphers are already known to be insecure and are being phased out. For example, 

while DES is not included in the cryptography library’s ciphers (GOOD! DES is VERY 

BAD!), the module does include 3DES (TripleDES). While 3DES is not as broken as DES, 

it should be retired ASAP. CAST5 fits in this same category.

Another cipher supported by cryptography is Blowfish. This algorithm is also not 

recommended for use, and its stronger successor, Twofish, is not available in the current 

cryptography implementation.

�finalize()
This chapter covered a lot of material, and we barely scratched the surface. Perhaps the 

most important principle that you can take away from this chapter is that cryptography 

is usually far more complicated than perhaps it first seems. The different modes of 

operation we reviewed have different strengths and weaknesses, some of which we 

explored by example. We found that even how we approach the APIs to cryptographic 

operations can have a significant impact on security.
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Hopefully, this lesson reinforced the YANAC principle (You Are Not A 

Cryptographer... yet!). Please remember that these exercises are introductory and 

educational. Please do not go copying this code into production and don’t use the 

introductory knowledge you have gained to write security-critical operations. Do 

you really want to risk people’s personal information, financial information, or other 

sensitive data on your newly developed skills?

At the same time, after just one chapter on encryption, you have a broader view 

of what that word even means. The next time you hear “protected by AES 128-bit 

encryption,” you might wonder whether they’re using CTR, CBC, or (heaven forbid!) 

ECB mode. You might also wonder if they are using their encryption correctly because 

you already have experienced some of the ways (often unexpected) that symmetric 

encryption can be broken.

Yes, you’ve taken your first steps into a cryptography world. Are you ready to take a 

few more? Then let’s talk about asymmetric encryption!
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CHAPTER 4

Asymmetric Encryption: 
Public/Private Keys
Asymmetric encryption is one of the most important advances in cryptographic security 

ever made. It underpins all of the security on the Web, in your Wi-Fi connections, and in 

secure email and other communication of all kinds. It is ubiquitous, but it is also subtle 

and easy to implement or use incorrectly, and a lack of correctness means a sometimes 

drastic reduction in security.

Perhaps you’ve heard of “public keys,” “public key infrastructure,” and/or “public key 

encryption.” There are actually multiple operations within asymmetric cryptography and 

a number of different algorithms. Within this chapter, we are going to focus exclusively 

on asymmetric encryption and specifically using an algorithm known as RSA. We are 

going to leave other asymmetric operations, such as signatures and key exchange, for 

later chapters.

RSA encryption is, in fact, almost completely obsolete. Why study it? Because RSA is 

one of the classic asymmetric algorithms and does a good job, in our opinion anyway, of 

introducing some core concepts that will be helpful when learning about more modern 

approaches.

�A Tale of Two Keys
The East Antarctica Truth-Spying Agency (EATSA) has a new mission for Alice and Bob. 

Bob is to remain behind in East Antarctica (EA) as Alice’s handler and Alice is to get an 

undercover position in the West Antarctica Government Greasy Spoon (WAGGS). Alice 

will report back to Bob what the West Antarctica (WA) politicians are eating. EATSA 

plans to blackmail these politicians over how much hot food they are eating, while their 

constituents are stuck eating frozen dinners.
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EATSA, however, is concerned about compromised communications. If Alice is 

captured with a symmetric key, the West Antarctica Central Knights Office (WACKO) will 

be able to use it to decrypt any messages they have intercepted from her to EATSA. That 

would ruin the entire plan!

EATSA decides to implement a new technology they’ve been hearing about: 

asymmetric encryption. Their collective minds are blown when they find out that there 

are encryption schemes with two keys: what is encrypted with one key can only be 

decrypted by the other!

Using this new technology, Bob can send Alice into the field with just one of the 

two keys (the “public” key). Alice will be able to encrypt messages back to Bob that 

not even she can decrypt! Only Bob, safe within EA territory and in possession of the 

corresponding “private” key, can decrypt the messages. That sounds perfect—if her key 

is compromised, it will at least not allow her captors to decrypt what she has written, 

which is strictly better than before.1 What could go wrong?

To finish cooking up this scheme, EATSA chooses to use RSA encryption, an 

asymmetric algorithm that uses very large integers as both keys and messages, and the 

“modular exponentiation” as the primary mathematical operator for encryption and 

decryption. The algorithm is simple to understand and, with modern programming 

languages, relatively easy to implement. It looks in all ways to be the perfect recipe for 

culinary subterfuge.

�Getting Keyed Up
Generating keys in RSA is a little bit tricky, as it requires finding two very large integers 

with a high likelihood of being co-prime. That looked like a lot of math to the agents of 

EATSA, so they opted to just use existing libraries to do that part. Listing 4-1 shows the 

package they pulled into Python 3 and the code they wrote that makes use of it.

1�They can still send fake messages pretending to be her, but that was possible with symmetric 
encryption as well.
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Listing 4-1.  RSA Key Generation

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives.asymmetric import rsa

 3   from cryptography.hazmat.primitives import serialization

 4

 5   # Generate a private key.

 6   private_key = rsa.generate_private_key(

 7        public_exponent=65537,

 8        key_size=2048,

 9        backend=default_backend()

10   )

11

12   # Extract the public key from the private key.

13   public_key = private_key.public_key()

14

15   # Convert the private key into bytes. We won't encrypt it this time.

16   private_key_bytes = private_key.private_bytes(

17       encoding=serialization.Encoding.PEM,

18       format=serialization.PrivateFormat.TraditionalOpenSSL,

19       encryption_algorithm=serialization.NoEncryption()

20   )

21

22   # Convert the public key into bytes.

23   public_key_bytes = public_key.public_bytes(

24       encoding=serialization.Encoding.PEM,

25       format=serialization.PublicFormat.SubjectPublicKeyInfo

26   )

27

28   # Convert the private key bytes back to a key.

29   # Because there is no encryption of the key, there is no password.

30   private_key = serialization.load_pem_private_key(

31       private_key_bytes,

32       backend=default_backend(),

33       password=None)

34
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35   public_key = serialization.load_pem_public_key(

36       public_key_bytes,

37       backend=default_backend())

That’s not too bad, once you know how it’s used. This pattern is the same for any 

private/public key generation, so even though there are a few constants in there with 

long names, it definitely seemed like the library was making this easier for EATSA.

See how everything hinges on the private key in RSA? The public key is derived 
from it. While either key can be used to encrypt (and the other can be used to 
decrypt), the private key is special because of this property. RSA keys are not 
only asymmetric because one encrypts and the other decrypts, they are also 
asymmetric because you can derive an RSA public key from the private key, but 
not the other way around.

The private_bytes and public_bytes methods convert large integer keys 
into bytes that are in a standard network- and disk-ready encoding called a 
PEM. The corresponding serialization “load” methods can be used to decode 
these after reading those bytes from disk so that they look like keys again to the 
encryption and decryption algorithms.

It is possible (and a very good idea) to encrypt the private key itself, but we opted 
not to do that here, which is why no password is used.

�RSA Done Wrong: Part One
Alice and Bob are going to help us learn about RSA largely by exploring all the ways to 

use RSA incorrectly.

The actual encryption and decryption parts looked pretty simple to EATSA, and 

every library they looked at seemed to have a lot of unnecessary extra stuff making it 

harder to understand and even (gasp) slowing it down. Not having been taught the 

YANAC principle, they decided to implement encryption and decryption on their own. 

Rather than using the third-party library as written, they opted to omit padding. This 

results in a very “raw” or basic form of RSA that will be useful to us in learning about 

internals even though the results will be very broken.
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Warning: Do Not Roll Your Own Encryption   

Once again, implementing your own RSA encryption/decryption, rather than 
using a library, is not a good idea at all. Using RSA without padding is especially 
unsafe and insecure for numerous reasons, just a few of which we’ll explore 
in this section. Although we will be writing our own RSA functions here for 
educational purposes, do not under any circumstances use this code for real 
communication.

Here is the math for encryption, where c is the ciphertext, m is the message, and the 

remaining parameters form the public and private keys, to be explained later:

	 c m neº ( )mod 	 (4.1)

Similarly, here it is for decryption:

	 m c ndº ( )mod 	 (4.2)

That doesn’t seem too bad, right? Modular exponentiation is a pretty standard 

operation in large integer math libraries,2 so there really isn’t much to this.

If you’re new to this, don’t be thrown off by ≡. For simplicity, you can usually just 
think about it as an equal sign.

The operations in (4.1) and (4.2) can be written concisely in Python using gmpy2, 

a large number math library. The powmod function performs the necessary modular 

exponentiation operation, as shown in Listing 4-2.

Listing 4-2.  GMPY2

 1   #### DANGER ####

 2   # The following RSA encryption and decryption is

 3   # completely unsafe and terribly broken. DO NOT USE

2�It certainly became popular after PKI was invented.
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 4   # for anything other than the practice exercise

 5   ################

 6   def simple_rsa_encrypt(m, publickey):

 7       �# Public_numbers returns a data structure with the 'e' and 'n' 

parameters.

 8       numbers = publickey.public_numbers()

 9

10       # Encryption is(m^e) % n.

11       return gmpy2.powmod(m, numbers.e, numbers.n)

12

13   def simple_rsa_decrypt(c, privatekey):

14       �# Private_numbers returns a data structure with the 'd' and 'n' 

parameters.

15       numbers = privatekey.private_numbers()

16

17       # Decryption is(c^d) % n.

18       return gmpy2.powmod(c, numbers.d, numbers.public_numbers.n)

19   #### DANGER ####

As mentioned before, and perhaps more obvious now, RSA operates on integers, 

not message bytes. How do we convert messages into integers? Python makes this 

convenient because its int type has to_bytes and from_bytes methods. Let’s make 

them a little nicer to use in Listing 4-3.

Listing 4-3.  Integer/Byte Conversion

1   def int_to_bytes(i):

2       # i might be a gmpy2 big integer; convert back to a Python int

3       i = int(i)

4       return i.to_bytes((i.bit_length()+7)//8, byteorder='big')

5

6   def bytes_to_int(b):

7       return int.from_bytes(b, byteorder='big')
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Important B ecause RSA works on integers, not bytes, the default 
implementation loses leading zeros. As far as integers are concerned, 01 and 1 
are the same number. If your byte sequence begins with any number of zeros, they 
will not survive encryption/decryption. For our example, we are sending text, so it 
won’t ever be a problem. For binary data transmissions, however, it could be. This 
problem will be solved with padding.

EATSA now has all of the necessary pieces to create a simple RSA encryption/

decryption application. Before looking at their code in Listing 4-4, try creating your own 

version.

Listing 4-4.  RSA Done Simply

  1   # FOR TRAINING USE ONLY! DO NOT USE THIS FOR REAL CRYPTOGRAPHY

  2

  3   import gmpy2, os, binascii

  4   from cryptography.hazmat.backends import default_backend

  5   from cryptography.hazmat.primitives.asymmetric import rsa

  6   from cryptography.hazmat.primitives import serialization

  7

  8   #### DANGER ####

  9   # The following RSA encryption and decryption is

 10   # completely unsafe and terribly broken. DO NOT USE

 11   # for anything other than the practice exercise

 12   ################

 13   def simple_rsa_encrypt(m, publickey):

 14       numbers = publickey.public_numbers()

 15       return gmpy2.powmod(m, numbers.e, numbers.n)

 16

 17   def simple_rsa_decrypt(c, privatekey):

 18       numbers = privatekey.private_numbers()

 19       return gmpy2.powmod(c, numbers.d, numbers.public_numbers.n)

 20   #### DANGER ####

 21
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 22   def int_to_bytes(i):

 23       # i might be a gmpy2 big integer; convert back to a Python int

 24       i = int(i)

 25       return i.to_bytes((i.bit_length()+7)//8, byteorder='big')

 26

 27   def bytes_to_int(b):

 28       return int.from_bytes(b, byteorder='big')

 29

 30   def main():

 31       public_key_file = None

 32       private_key_file = None

 33       public_key = None

 34       private_key = None

 35       while True:

 36           print("Simple RSA Crypto")

 37           print("--------------------")

 38           print("\tprviate key file: {}".format(private_key_file))

 39           print("\tpublic key file: {}".format(public_key_file))

 40           print("\t1. Encrypt Message.")

 41           print("\t2. Decrypt Message.")

 42           print("\t3. Load public key file.")

 43           print("\t4. Load private key file.")

 44           print("\t5.  Create and load new public and private key files.")

 45           print("\t6. Quit.\n")

 46           choice = input(" >> ")

 47           if choice == '1':

 48               if not public_key:

 49                   print("\nNo public key loaded\n")

 50               else:

 51                   message = input("\nPlaintext: ").encode()

 52                   message_as_int = bytes_to_int(message)

 53                   �cipher_as_int = simple_rsa_encrypt(message_as_int, 

public_key)

 54                   cipher = int_to_bytes(cipher_as_int)
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 55                   �print("\nCiphertext (hexlified): {}\n".

format(binascii.hexlify(cipher)))

 56           elif choice == '2':

 57               if not private_key:

 58                   print("\nNo private key loaded\n")

 59               else:

 60                    �cipher_hex = input("\nCiphertext (hexlified): ").encode()

 61                   cipher = binascii.unhexlify(cipher_hex)

 62                   cipher_as_int = bytes_to_int(cipher)

 63                   �message_as_int = simple_rsa_decrypt(cipher_as_int, 

private_key)

 64                   message = int_to_bytes(message_as_int)

 65                   print("\nPlaintext: {}\n".format(message))

 66           elif choice == '3':

 67               public_key_file_temp = input("\nEnter public key file: ")

 68               if not os.path.exists(public_key_file_temp):

 69                   print("File {} does not exist.")

 70               else:

 71                   �with open(public_key_file_temp, "rb") as public_key_

file_object:

 72                       public_key = serialization.load_pem_public_key(

 73                                        public_key_file_object.read(),

 74                                        backend=default_backend())

 75                       public_key_file = public_key_file_temp

 76                       print("\nPublic Key file loaded.\n")

 77

 78                       # unload private key if any

 79                       private_key_file = None

 80                       private_key = None

 81           elif choice == '4':

 82               private_key_file_temp = input("\nEnter private key file: ")

 83               if not os.path.exists(private_key_file_temp):

 84                   print("File {} does not exist.")

 85               else:
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 86                   �with open(private_key_file_temp, "rb") as private_

key_file_object:

 87                       private_key = serialization.load_pem_private_key(

 88                                        private_key_file_object.read(),

 89                                        backend = default_backend(),

 90                                        password = None)

 91                       private_key_file = private_key_file_temp

 92                       print("\nPrivate Key file loaded.\n")

 93

 94                       # load public key for private key

 95                       # (unload previous public key if any)

 96                       public_key = private_key.public_key()

 97                       public_key_file = None

 98           elif choice == '5':

 99               �private_key_file_temp = input("\nEnter a file name for 

new private key: ")

100               �public_key_file_temp = input("\nEnter a file name for a 

new public key: ")

101               �if os.path.exists(private_key_file_temp) or os.path.

exists(public_key_file_temp):

102                   print("File already exists.")

103               else:

104                   �with open(private_key_file_temp, "wb+") as private_

key_file_obj:

105                       �with open(public_key_file_temp, "wb+") as public_

key_file_obj:

106

107                           private_key = rsa.generate_private_key(

108                                             public_exponent =65537,

109                                             key_size =2048,

110                                             backend = default_backend()

111                                         )

112                           public_key = private_key.public_key()

113
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114                           �private_key_bytes = private_key.private_

bytes(

115                               encoding=serialization.Encoding.PEM,

116                               �format=serialization.PrivateFormat.

TraditionalOpenSSL,

117                               �encryption_algorithm=serialization.

NoEncryption()

118                           )

119                           private_key_file_obj.write(private_key_bytes)

120                           public_key_bytes = public_key.public_bytes(

121                               encoding=serialization.Encoding.PEM,

122                               �format=serialization.PublicFormat.

SubjectPublicKeyInfo

123                           )

124                           public_key_file_obj.write(public_key_bytes)

125

126                           public_key_file = None

127                           private_key_file = private_key_file_temp

128           elif choice == '6':

129               �print("\n\nTerminating. This program will self destruct 

in 5 seconds.\n")

130               break

131           else:

132               print("\n\nUnknown option {}.\n".format(choice))

133

134   if __name__ == '__main__':

135       main()

Take a few minutes to try this exercise on your own before we walk through it 

together. Note, by the way, that because a public key can be derived from a private key, 

loading the private key also loads the public key.

When you are ready, continue reading! You may want to refer back to Listing 4-4 

from time to time. Many of our subsequent listings will reuse these imports and function 

definitions. To save space, we will generally not reprint them so this listing is also useful 

as a template.
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EXERCISE 4.1. SIMPLE RSA ENCRYPTION

Using the preceding application, set up communication from Alice to Bob and then send a few 

encrypted messages from Alice to Bob for decryption.

�Stuffing the Outbox
Once EATSA has built the RSA encryption application, they hand it off to Alice and Bob 

and order them to begin the mission. Alice will infiltrate WAGGS and send updates to 

Bob. What do Alice and Bob need to do first?

What’s amazing about public/private key pairs is that they don’t have to agree on 

much of anything before they split up in order for Alice to send secure messages to Bob!3 

As long as Alice knows where to look, Bob can publish a public key to her anywhere. 

He could send it in a newspaper, recite it to her over the phone, or publicize it on a 

Goodyear blimp flying around West Antarctica. The key is public. It does not matter if 

the West Antarctica Counter Intelligence sees it: they won’t be able to decrypt Alice’s 

messages.

Right?

Alice departs from EATSA headquarters, crosses the border, and makes her way to 

West Antarctica City where she infiltrates WAGGS. While she’s thus engaged in her covert 

culinary caper, Bob generates a public/private key pair. He hangs onto the private key 

and publishes the public key for Alice to see.

Let’s follow along. Start up an instance of the application that represents Bob’s 

version and select option 5, which generates new paired keys and saves them to disk. 

Once that’s done, you will have two files you can inspect in an editor.

Take a look at the public key file (you chose the name for it when prompted). Its 

contents should look something like this:

-----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAuGFr+NV3cMu2pdl+i52J

XkYwwSHgZvA0FyIPsZ/rp6Ts5iBTkpymt7cf+cQCQro4FSw+udVt4A8wvZcppnBZ

h+17ZZ6ZZfj0LCr/3sJw8QfZwuaX5TZxFbJDxWWwsR4jLHsiGsPNf7nzExn7yCSQ

3�Bob won’t necessarily know who they’re coming from, but that’s a separate (and very interesting) 
problem. At least he’ll know he’s the only one who can read them.

Chapter 4  Asymmetric Encryption: Public/Private Keys



123

sXLNqc+mLKP3Ud9ta14bTQ59dZIKKDHVGlQ1iLlhjcE1dhOAjWlsdCVfE+L/bSQk

Ld9dWKCM57y5tiMsoqnVjl28XcsSuiOd4QPGITprsX0jb7/p/rzXc9OQHHGyAQzs

WTAbZNaQxf9AY1AhE4wgMVwhnrxJA2g+DpY1yXUapOIH/hpD0sMH56IGcMx9oV/y

SwIDAQAB

-----END PUBLIC KEY-----

That’s a PEM-formatted public key. Congratulations! Bob can take this key and 

publish it to a West Antarctica newspaper in the classifieds.

Meanwhile, Alice has been carefully observing what the West Antarctica politicians 

like to eat. How un-Antarctican! she thinks to herself as she watches them eat hot dogs 

and hot chocolate. Then, glancing back to the newspaper in her hands, she finds the 

classified ad she’s been looking for! The public key has arrived! She copies it down 

carefully into a file and now has the ability to encrypt messages for Bob’s eyes only.

Following along, let’s copy the public key we just generated into a new file. This 

represents the file that Alice creates after copying the text out of the classified ads. Now 

launch a new instance of the application that represents Alice’s copy of the program. 

Choose option 3 to load her public key.

Alice needs to send a message back to Bob. That’s option 1 in our program. Run 

it, select option 1, and enter the text “hot dogs” into the plaintext field. Out pops the 

encrypted message.4 If you used the preceding public key, you would get the following 

output:

Plaintext: hot dogs

Ciphertext (hexlified): b'56d5586cab1764fae575bc5815115f1c5d759

daddccbd6c9cb4a077026e2616dfca756ffa7733538e66997f06ebbbb853028

3926383a6bb80b7145990a29236d042048eed8eb7607bd35fcafe3dadd5d60a

1f8694192bddedac5728061234ffbb7a407155844a7e79b3dbc9704df0de818

d24acad32ccd6d2afe2d0734199c76e5c5c770fa8c3c208eceae00554aa2f29

9a8510121d388d85f35fa49c08f3e9d7540f22fe5eb4ea15da5f387dbdd0e00

6710aa9031b885094773ef3329cde91dbede53ed77b96483d34daa4fedbf5bc

d95e95b6b482a7decbf47fe2df0e309d706ab9c73ce73a2bdef33b786dd12e9

8a9ce34bbc1847f36e13ae9eea4007b616'

4�The message is displayed as the hex representation of its bytes to make it easy to select and paste 
elsewhere.
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Let’s do it again, but this time for “hot chocolate.” If you do so using the preceding 

public key we showed you, you would get this output (but go ahead and use your own 

generated public key):

Plaintext: hot chocolate

Ciphertext (hexlified): b'4d1e544e71c4cb15636ef4b0d629294538a05

979db762952cc5f0fc494f71535dff326dbb8543d0f2ace51a2279f65c2a76b

2a5ca5a3ee151e65e516afcb1d4da9ca9871dc7ce1dd4361a3b49def05c5089

99f5fab81b869b251ba8694fb171ab56ca1cde7cef0ac3934da4c28f7bfbb65

b03afa9cff30db974f0bd4fb8dee7fac75c99cd4def94ca8de83d46fffa092a

90642c9cfbfbf07c371f5aa3a62dc997d20e9959fcbec7dd0b434709b679619

ea195008a9a12eaa7462ffdbe8e6f765dd86b21f0f1d9b8b2b523ca7f11785e

fc6da84ec717bd1f0e2191e5a3bef74e489b5e396c49bd8f222ccd89984dbec

8b5e4cbb23ba739637d3307bca4e9f57e7'

Again, Alice cannot decrypt these messages, even though she encrypted them 

herself: she doesn’t have the private key. At least, that’s what the theory tells them.

Confident in her edible espionage, she takes these messages and sends them to 

Bob via an insecure carrier penguin [15]. Bob receives the message and reloads his 

application. First, he loads the private key file using option 4 and then chooses option 

2 to attempt a decryption. Sure enough, when he copies in the message for Alice, it 

decrypts correctly:

Ciphertext (hexlified): 56 d5586cab1764fae575bc5815115f1c5d759da

ddccbd6c9cb4a077026e2616dfca756ffa7733538e66997f06ebbbb85302839

26383a6bb80b7145990a29236d042048eed8eb760735fcafe3dadd5d60a1f86

94192bddedac5728061234ffbb7a407155844a7e79b3dbc9704df0de818d24a

cad32ccd6d2afe2d0734199c76e5c5c770fa8c3c208eceae00554aa2f299a85

10121d388d85f35fa49c08f3e9d7540f22fe5eb4ea15da5f387dbdd0e006710

aa9031b885094773ef3329cde91dbede53ed77b96483d34daa4fedbf5bcd95e

95b6b482a7decbf47fe2df0e309d706ab9c73ce73a2bdef33b786dd12e98a9c

e34bbc1847f36e13ae9eea4007b616

Plaintext: b'hot dogs'

Chapter 4  Asymmetric Encryption: Public/Private Keys



125

“Hot dogs!” Bob exclaims. “Disgraceful!”

Ciphertext (hexlified): 4d1e544e71c4cb15636ef4b0d629294538a05979

db762952cc5f0fc494f71535dff326dbb8543d0f2ace51a2279f65c2a76b2a5c

a5a3ee151e65e516afcb1d4da9ca9871dc7ce1dd4361a3b49def05c508999f5f

ab81b869b251ba8694fb171ab56ca1cde7cef0ac3934da4c28f7bfbb65b03afa

9cff30db974f0bd4fb8dee7fac75c99cd4def94ca8de83d46fffa092a90642c9

cfbfbf07c371f5aa3a62dc997d20e9959fcbec7dd0b434709b679619ea195008

a9a12eaa7462ffdbe8e6f765dd86b21f0f1d9b8b2b523ca7f11785efc6da84ec

717bd1f0e2191e5a3bef74e489b5e396c49bd8f222ccd89984dbec8b5e4cbb23

ba739637d3307bca4e9f57e7

Plaintext: b'hot chocolate'

Bob’s eyes narrow. “Hot chocolate?! Have they no shame?!”

So far, so good! Alice’s messages got to Bob. They were intercepted by agent Eve of 

WACKO, but she shouldn’t be able to read them, even though she also has the public 

key. If Alice can’t read her own messages, why should Eve be able to?

What Alice and Bob don’t know is that Eve is about to wreak all kinds of havoc. 

In the rest of this chapter, we’ll be walking through some of the ways that RSA can be 

compromised and how to do it right. But first, exercises!

EXERCISE 4.2. WHO GOES THERE? BOB? IS THAT YOU?

Assume the role of Eve and imagine that you know everything about Alice’s and Bob’s 

operation except the private key. That is, suppose you know about the classified ads, the 

carrier penguins, and even the encryption program.5 Their scheme is strengthened by using 

asymmetric encryption, but is still vulnerable to an MITM (man-in-the-middle) attack. How can 

Eve position herself such that she can trick Alice into sending messages that Eve can decrypt, 

and Bob into receiving only false messages from Eve instead of Alice?

5�Remember Kerckhoff’s principle? Here it is again!
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EXERCISE 4.3. WHAT’S THE ANSWER TO LIFE, THE UNIVERSE, AND EVERYTHING?

We have already talked about chosen plaintext attacks in the previous chapter. The same 

attack can be used here. Again assume the role of Eve, the WACKO agent. You’ve intercepted 

Bob’s public key in the newspaper, and you have access to the RSA encryption program. If you 

suspect you know what Alice is sending in her encrypted messages, explain or demonstrate 

how you would verify your guesses.

�What Makes Asymmetric Encryption Different?
As you learned already in this section, RSA is an example of asymmetric encryption.  

If you haven’t heard of asymmetric encryption before now, hopefully the exercises you 

just walked through have exposed you to the key concepts. Now let’s make a few things 

explicit.

In symmetric encryption, there is a single, shared key that works to both encrypt and 

decrypt the message. This means that anyone with the power to create an encrypted 

message has the same ability to decrypt the same message. It is impossible to give 

somebody the power to decrypt a symmetrically encrypted message without also giving 

them the ability to encrypt the same kind of messages and vice versa.

In asymmetric cryptography, there is always a private key that must never be 

disclosed and a public key that can be disclosed widely. Exactly what can be done with 

the key pair depends on the algorithm. In this chapter we have been focusing on RSA 

encryption. We’ll review RSA’s operations in this section as a concrete example but keep 

in mind that they may not apply to other asymmetric algorithms and operations.

Specifically, RSA supports an asymmetric encryption scheme in which you can 

use one key to encrypt the message and a different key to decrypt a message. Typically, 

either key can act in either role: a private key can encrypt messages that can be 

decrypted by the public key and vice versa. With RSA, of course, one key is clearly the 

private key because the public key can be derived from the private key, but not the other 

way around. It is impossible to have an RSA private key and not also have the matching 

public key. Thus, one key is unambiguously designated as “private” and the other is 

“public.”
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The possessor of a properly protected RSA private key and an adequately robust 

protocol can use asymmetric encryption for two purposes:

	 1.	 Cryptographic dropbox: Anyone with the public key can encrypt 

a message and send it to the owner of the private key. Only 

someone with the private key can decrypt the message.

	 2.	 Signatures: Anyone with the public key can decrypt a message 

encrypted by the private key. This obviously is not helpful for 

confidentiality (anyone can decrypt the message) but it helps to 

prove the identity of the sender, or at least that the sender is in 

possession of the private key; they wouldn’t be able to encrypt a 

public-key-decryptable message otherwise. This is an example of 

a cryptographic signatures, which we will talk about later.

Note: RSA Encrypts Small Things

The cryptographic dropbox operation we are learning about right now is almost 
never used to send complete messages in this way. The most common way RSA 
encryption was used (again, it is being phased out) was to encrypt a symmetric 
key for transport from one party to another. This is another concept we’ll save for a 
later chapter.

What is really fantastic about the asymmetric nature of RSA encryption is that the 

two parties do not need to have met each other to begin exchanging messages. In our 

example, Alice and Bob did not need to create any shared keys together. Alice did not 

even need to meet or know Bob. So long as Alice had Bob’s public key, she can encrypt 

messages that only Bob can read.

Unfortunately, the ability to encrypt something for only one person is not the 

only important thing in real life. As demonstrated in the exercises, the advantage of 

asymmetric encryption is also its weakness. The ability to communicate without any 

previous interactions also means that, absent additional information, there is no way to 

know that you are communicating with the right person.
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If you worked through the earlier exercises, you will have also learned that it is quite 

simple for WACKO to both read and alter the communications between Alice and Bob by 

deceiving both parties by intercepting messages and keys.

	 1.	 They can deceive Alice by intercepting and modifying the public key 

published in the newspaper. By inserting their own public key—which 

Alice now wrongly assumes is Bob’s—they can read all messages 

sent by Alice intended for Bob. Alice, without additional information, 

cannot know that the public key has been compromised.

	 2.	 They can then deceive Bob by preventing Alice’s incorrectly 

encrypted messages from reaching him and sending him false 

messages encrypted under the correct public key, which they 

intercepted. Bob, without additional information, has no way of 

knowing who is sending the messages.

This is a critical difference between symmetric keys and asymmetric keys. In fact, 

some cryptographers distinguish between a “secret” symmetric key and a “private” 

asymmetric key. Two people can share a secret, but only one person knows their own 

private key. What this means in practice is that a symmetric key, provided that it remains 

secret to both parties, can be used to establish that you are talking to the right person (i.e., 

the person you created the shared secret key with) while asymmetric keys cannot.6

Let’s sidestep that problem for now and save it for later, since there is indeed a 

solution to it that is discussed in the context of certificates.

�Pass the Padding
Recall from earlier that the EATSA chose to implement RSA without any padding. They 

really shouldn’t have done that; it’s a pretty serious mistake. In fact, it’s so serious that 

the cryptography module does not even allow you to encrypt with RSA without padding!

What, then, is padding, and why is padding such a big deal?

6�Unless the public key is also guaranteed to be secret, but then we’ve just defeated the purpose of 
asymmetric keys, in a way, by requiring a secure shared channel for key exchange.
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The best way to explain this is to demonstrate how to read messages encrypted with 

the public key even if you don’t have the private key, so long as those messages are not 

padded. Another great exercise is to search the Internet for RSA padding attacks. There 

are many problems with using unpadded plaintext.

�Deterministic Outputs
Let’s start with the most basic problem. RSA by itself is a deterministic algorithm. That 

means that, given the same key and message, you will always get the same ciphertext, 

byte for byte. Recall that we had the same problem with symmetric key ciphers like 

AES. It was essential to use the initialization vector (IV) to prevent deterministic outputs. 

Do you remember why deterministic outputs are so bad?

The problem with deterministic outputs is that they enable passive eavesdroppers, 

such as Eve, to do some cryptographic reverse engineering. Because the encryption is 

deterministic, if Eve knows that m encrypts to c then any time Eve sees c she knows what 

the plaintext is.

Figure 4-1.  If RSA’s outputs are deterministic, an adversary that discovers the 
mapping between a plaintext and the corresponding ciphertext can record it into a 
lookup table for later use. Does this figure look familiar?

Eve has both the public key and the algorithm (you can never assume that a 

cryptographic algorithm is secret). She can encrypt any number of potential messages 

and store a lookup table of pre-encrypted values. Does Figure 4-1 look familiar? We 

showed this same image in Chapter 3 to talk about ECB mode for symmetric ciphers and 

the problems with it.
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But a deterministic asymmetric encryption would be worse. Unlike symmetric 

encryption we have to assume that the adversary has the (public) key. In our 

hypothetical Antarctican conflict, Eve could discover, or simply guess, that Alice is 

sending messages based on her surveillance of the cafeteria. If she tries encrypting a few 

hundred words by making a list of things found within the room (e.g., the names of the 

politicians eating in the cafeteria, topics of conversation, and the food being eaten),  

as soon as she encrypted “hot dogs” or “hot chocolate,” the encrypted values would 

match up perfectly with what is intercepted in the message back to Bob. For short 

messages such as these, especially if EA Intelligence always writes words in lowercase, 

there are less than 300 million messages to try that are 8 characters long. It’s not too 

much trouble to create a table of that many messages to their ciphertext. Using this 

lookup table, Eve could identify “hot dogs” relatively quickly.

Even if Eve cannot guess the message, there is still all kinds of analysis that can be 

done. Suppose that Alice continues to send the same message day after day. While Eve 

may not be able to decrypt the message, she would still be able to confidently state that 

it was the same message. We have considered numerous examples wherein this kind of 

“information leak” is exploited in previous chapters.

EXERCISE 4.4. BRUTE-FORCE RSA

Write a program that uses brute force to decrypt an RSA-encrypted word that is all lowercase 

(no spaces) and less than four characters. The program should take a public key and the RSA-

encrypted ciphertext as the inputs. Use the RSA encryption program to generate a few words 

of four or fewer letters and break these codes with your brute-force program.

EXERCISE 4.5. WAITING IS THE HARDEST PART

Modify the brute-force program to try all possible words of five or fewer letters. Measure the 

time it takes (worst cast) to brute force a four-letter word vs. a five-letter word. About how many 

times longer does it take and why? How long would it take to try all possible six-letter words?
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EXERCISE 4.6. DICTIONARY ATTACKS

It should be pretty clear that it will take longer than your probable attention span to try all 

possible lowercase ASCII words of length much greater than four or five. But we already saw 

this same problem in previous chapters. Let’s try the same solutions. Modify your brute-force 

program to take a dictionary as input for trying arbitrary English words.

�Chosen Ciphertext Attack
RSA without padding is also vulnerable to something called a “chosen ciphertext attack.”7 

This type of attack works when you can get the victim to decrypt some ciphertexts of your 

choosing on your behalf. That may sound counter-intuitive. Why would anyone decrypt 

anything for you? For example, why would Bob decrypt anything for Eve?

Remember that a lot of computer security is all about psychology, trickery, and 

human thinking [1, Chap. 2]. What is Bob looking for? Bob is assuming that he is 

decrypting human-readable messages from Alice. What if he got a message that was not 

human readable? Suppose, for example, that upon decrypting a message (supposedly 

from Alice) he got the following output:

b'\xe8\xca\xe6\xe8'

It’s entirely possible that this is just assumed to be due to a transmission error. Those 

things happen in real life all the time. It could be bit error, or a carrier penguin might 

have smudged the ink. Bob probably sees a lot of messages that do not decrypt correctly.

What does Bob do? If he does not have very good security controls in place, he might 

just throw it away. But if Alice can infiltrate the enemy, it can work the other way as well. 

Which do you think is easier for Eve to get into her hands? Top-secret messages that 

are being sent up the chain of command for analysis, or “incorrect” messages that get 

thrown away in the trash? If Eve has a covert agent of her own on the janitorial staff, it 

might be very possible to get discarded paper or inadequately destroyed data.

7�Chosen ciphertext attacks (CCA) are way more complicated than we have space to discuss here. 
Please consider our CCA discussion to be hyper-simplistic. If you want to know more about CCA 
and indistinguishability under CCA, Dr. Matthew Green has some great blog posts [7].
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Let’s assume this scenario then: Eve can send arbitrary ciphertext to Bob. For our 

purposes, Eve cannot see any of the human-readable messages but can recover the 

supposedly erroneous messages discarded by Bob because they seem to make no sense.

Unfortunately for Alice and Bob, Eve can use this trick to decrypt almost any message 

Alice sends back to her home base. The mathematics behind this trick are really cool and 

are used in multiple examples throughout the chapter. So let’s pause a minute to talk 

about homomorphisms in encryption.

The basic concept of an encryption homomorphism is that if you perform some kind 

of computation on the ciphertext, the result is reflected in the plaintext. Not all crypto 

systems have homomorphic properties, but RSA does to some extent. In RSA we will see 

that there are ways to do multiplication on the ciphertext that results in multiplications 

on the plaintext. There are other special homomorphic encryption technologies that 

exist and are being developed right now that enable third parties to provide services 

on data without being able to read it. You may have heard of some of these; if not, try 

searching for “homomorphic encryption” online. It’s pretty interesting stuff.

While RSA is not a homomorphic encryption scheme, this multiplication property is 

very interesting (and also powers a number of vulnerabilities). Do you remember from 

algebra class that (ac)(bc) = (abc)? The same is true for modular exponentiation as shown 

in the following equation:

	 m m n mm n
e e e

1 2 1 2( ) ( ) ( ) = ( ) ( )mod mod 	 (4.3)

Does any part of this equation look familiar? Take a look back at (4.1). Do you see  

it now?

Any time we encrypt a value (m) in RSA, we end up with me mod n. On the left-hand 

side of the (4.3), we have two encryptions, one of m1 and one of m2, both using the same 

public exponent e and both modulo the same modulus n.

On the right-hand side, we have a single encryption of the value m1 times m2. What 

this equation tells us is that if you take each of these individually encrypted values and 

multiply them together (mod n), you get the encrypted result of the multiplication!

Restated another way, the product of two ciphertexts (encrypted under the same 

public key) decrypts to the product of the two plaintexts. Try to do the following exercise 

on your own before we walk through it.
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EXERCISE 4.7. HOMOMORPHIC PROPERTY OF UNPADDED RSA

Use (4.3) to multiply two RSA-encrypted numbers together and decrypt the result to verify the 

equation.

The code for this exercise is very simple, so definitely try it yourself first. When you’re 

ready, our solution is in Listing 4-5.

Listing 4-5.  Solution

 1   # FOR TRAINING USE ONLY! DO NOT USE THIS FOR REAL CRYPTOGRAPHY

 2

 3   import gmpy2, sys, binascii, string, time

 4   from cryptography.hazmat.backends import default_backend

 5   from cryptography.hazmat.primitives import serialization

 6   from cryptography.hazmat.primitives.asymmetric import rsa

 7

 8   #### DANGER ####

 9   # The following RSA encryption and decryption is

10   # completely unsafe and terribly broken. DO NOT USE

11   # for anything other than the practice exercise

12   ################

13   def simple_rsa_encrypt(m, publickey):

14       numbers = publickey.public_numbers()

15       return gmpy2.powmod(m, numbers.e, numbers.n)

16

17   def simple_rsa_decrypt(c, privatekey):

18       numbers = privatekey.private_numbers()

19       return gmpy2.powmod(c, numbers.d, numbers.public_numbers.n)

20

21   private_key = rsa.generate_private_key(

22         public_exponent=65537,

23         key_size=2048,

24         backend=default_backend()

25   )

26   public_key = private_key.public_key()
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27

28   n = public_key.public_numbers().n

29   a = 5

30   b = 10

31

32   encrypted_a = simple_rsa_encrypt(a, public_key)

33   encrypted_b = simple_rsa_encrypt(b, public_key)

34

35   encrypted_product = (encrypted_a * encrypted_b) % n

36

37   product = simple_rsa_decrypt(encrypted_product, private_key)

38   print("{} x {} = {}".format(a,b, product))

If this kind of math doesn’t make a lot of sense, don’t worry too much about it at this 

point. Just try to grasp how it is used even if you aren’t fully sure how it works.

Returning to our current example, suppose that Eve has a ciphertext c obtained by 

the RSA public key encryption of m. Without the private key, Eve should not be able 

to decrypt it. And presumably Bob won’t decrypt it for her either. If he will decrypt a 

multiple of it, however, Eve can recover the original.

For our example, let’s choose our multiple to just be 2. Eve starts by encrypting 2 

using (4.1) and the public key to get cr.

For clarity, let’s call the original ciphertext c0. If we multiply c0 and cr (modulo n), 

we’ll get a new ciphertext that we’ll call c1.

	 c c c nr1 0= ( )mod . 	

From (4.3), this works out to be

	

c c c n

m r n

mr n

r
e e

e

1 0= ( )
= ( )
= ( ) ( )

mod

mod

mod . 	

So how does Eve use this? Suppose that Eve has intercepted one of Alice’s ciphertexts c.  

Eve takes her computed cr (again, this is just the value of 2 encrypted under the public key) 

and then multiplies the two encrypted values together (modulo n). Eve sends this new 

ciphertext c1 to Bob.
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Bob receives c1 and decrypts it to mr and converts the integers to bytes. He finds that 

it does not decrypt to anything legible and assumes that something was damaged in 

transport. Shrugging his shoulders, he crumples up the paper and throws it in the waste 

basket. Later that night, Eve’s agent goes through the trash and finds the crumpled up 

paper. Creating a quick copy, she sends it by secret carrier back to Eve.

Eve now has mr and needs to extract m. No problem. She chose r to be 2. In 

familiar arithmetic you would divide by r to extract m. But when doing this arithmetic 

with modulo operations, you have to use a different inverse operation: r−1 (mod n). 

Fortunately, there are libraries that compute these kinds of numbers for us, like gmpy2.

r_inv_modulo_n = gmpy2.powmod(r, -1, n)

EXERCISE 4.8. EVE’S PROTEGE

Recreate Eve’s chosen ciphertext attack. Create a sample message in Python, as you have 

done previously, using the public key to encrypt it. Then, encrypt a value of r (such as 2). 

Multiply the two numeric versions of the ciphertext together and don’t forget to take the 

answer modulo n. Decrypt this new ciphertext and try to convert it to bytes. It shouldn’t be 

anything human readable. Take the numeric version of this decryption and multiply it by the 

inverse of r (mod n). You should be back to the original number. Convert it to bytes to see the 

original message.

�Common Modulus Attack
Another problem for RSA without padding is the “common modulus” attack. Recall that 

the n parameter is the modulus and is included in both the public key and private key. 

For mathematical reasons beyond the scope of this book, if the same RSA message is 

encrypted by two different public keys with the same n modulus, the message can be 

decrypted without the private key.

In the chosen ciphertext example, we walked through the math in some detail both 

because it can be described relatively easily and because it is critical to multiple attacks. 

For this example, in the interests of simplicity and conserving space, we won’t get into the 

mathematical details. Instead, use the code in Listing 4-6 to test and explore the attack. If 

you’re interested in the details of the math, you can read “Common Modulus Attacks on 

Small Private Exponent RSA and Some Fast Variants (in Practice)” by Hinek and Lam.
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Listing 4-6.  Common Modulus

 1   # Partial Listing: Some Assembly Required

 2

 3   �# Derived From: https://github.com/a0xnirudh/Exploits-and-Scripts/

tree/master/RSA At tacks

 4   def common_modulus_decrypt(c1, c2, key1, key2):

 5       key1_numbers = key1.public_numbers()

 6       key2_numbers = key2.public_numbers()

 7

 8       if key1_numbers.n != key2_numbers.n:

 9           �raise ValueError("Common modulus attack requires a common 

modulus")

10       n = key1_numbers.n

11

12       if key1_numbers.e == key2_numbers.e:

13           �raise ValueError("Common modulus attack requires different 

public exponents")

14

15       e1, e2 = key1_numbers.e, key2_numbers.e

16       num1, num2 = min(e1, e2), max(e1, e2)

17

18       while num2 != 0:

19           num1, num2 = num2, num1 % num2

20       gcd = num1

21

22       a = gmpy2.invert(key1_numbers.e, key2_numbers.e)

23       b = float(gcd - (a*e1))/float(e2)

24

25       i = gmpy2.invert(c2, n)

26       mx = pow(c1, a, n)

27       my = pow(i, int(-b), n)

28       return mx * my % n
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Note that in order to test this attack, you will need two public keys with the 

same modulus (n value) and different public exponents (e values). Recall that e is 

recommended to always be 65537. But obviously you won’t use that for both keys in this 

example.

How does one create a public key? In all of our examples so far, we either generated 

new keys or loaded them from disk.

Recall that the n and e values define the public key. Everything else is just wrappers 

for convenience. The cryptography module provides an API for creating a key directly 

from these values. The RSA private key objects have a method called private_numbers, 

and the RSA public key objects have a method called public_numbers. These methods 

return data structures with data elements such as n, d, or e. These “numbers” objects can 

also be used to create the key objects.

In Listing 4-7, we generate a private key and then manually create another key with 

the same modulus and different public exponent.

Listing 4-7.  Common Modulus Key Generation

 1   # Partial Listing: Some Assembly Required

 2

 3   private_key1 = rsa.generate_private_key(

 4       public_exponent =65537,

 5       key_size=2048,

 6       backend = default_backend()

 7   )

 8   public_key1 = private_key1.public_key()

 9

10   n = public_key1.public_numbers().n

11   public_key2 = rsa.RSAPublicNumbers(3, n).public_key(default_backend())

Now you should have all the Python code you need to test out this attack.

At this point you might be asking yourself, “how practical is this attack?” In order to 

carry it out, you have to have the same message encrypted under two keys with the same 

modulus. Why would the same message ever be encrypted twice under two different 

keys and why would two different keys ever have the same modulus?

When dealing with cryptography, you should never rely on this kind of thinking. If 

there is a way for the cryptography to be exploited, the bad guy will figure out a way to 
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exploit it. Let’s start by thinking about how to get the same message encrypted by two 

different keys.

One possibility is to convince Alice that a new public key has been created and that 

she needs to switch. If we control the new public key, we can give her a key with n and e 

values of our choosing.

But if we can control her key, why would we need to use the common modulus 

attack? Why not just give her a public key that we created and for which we have the 

paired private key?

It is true that a new private key/public key pair will allow Eve to decrypt any 

messages Alice sends in the future. But the common modulus attack will allow Eve 

to potentially determine some messages sent in the past. In our example with Alice 

infiltrating the cafeteria, the food service probably repeats with some regularity. In fact, 

as we discussed previously, Eve can already tell if the same message is being resent even 

if she cannot decrypt it. If Eve observes that the same messages are being sent over and 

over, the common modulus attack provides a much greater view into the history of what 

is sent as well as information about messages sent in the future.

EXERCISE 4.9. COMMON MODULUS ATTACK

Test out the code in this section by creating a common modulus attack demo.

EXERCISE 4.10. COMMON MODULUS USE CASES

Write out an additional scenario when the use of the common modulus attack might be useful 

to an attacker.

�The Proof Is in the Padding
As we have just demonstrated, this very raw form of RSA, sometimes referred to as 

“textbook RSA,” is relatively easy to break. There are two critical problems. As we have 

already seen, one problem with textbook RSA is that the outputs are deterministic. This 

makes attacks like the common modulus attack, which require encrypting the same 

message twice, much easier.

Chapter 4  Asymmetric Encryption: Public/Private Keys



139

Perhaps the bigger problem is how malleable the messages are. We talked about 

malleability with symmetric encryption in the previous chapter. With RSA we have 

similar problems, for example, multiplying the RSA ciphertext and getting a decryptable 

value.

There are also potential problems with trying to encrypt tiny messages, such as some 

of the small messages we have encrypted in our exercises. In addition to the brute-force 

methods in the exercises, there are ways to break smaller messages especially with 

smaller public exponents (e.g., e = 3).

To reduce or eliminate these problems, practical uses of RSA always utilizes 

padding with random elements. RSA padding is applied to the plaintext message before 

encryption by the raw RSA computations we have been working with. The padding 

ensures that messages are not too small and provide a certain amount of structure 

that reduces malleability. Also, the randomized elements operate not unlike an IV 

for symmetric encryption: good randomized padding ensures that each ciphertext 

produced by the RSA encryption operation, even for the same plaintext, is (with very 

high probability) unique.

RSA without padding is dangerous enough that the cryptography module does not 

even have a padding-free RSA operation. It should be absolutely clear to you that you 

must not use RSA for encryption without padding. While the cryptography module does 

not allow this, other libraries do. Significantly, this includes OpenSSL.

At the time of this writing, there are two padding schemes that are typically used. 

The older scheme is called PKCS #1 v1.5 and the other is OAEP, which stands for Optimal 

Asymmetric Encryption Padding. Either of these padding schemes can be used with the 

cryptography module as shown in Listing 4-8.

Listing 4-8.  RSA Padding

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives.asymmetric import rsa

 3   from cryptography.hazmat.primitives import serialization

 4   from cryptography.hazmat.primitives import hashes

 5   from cryptography.hazmat.primitives.asymmetric import padding

 6

 7   def main():

 8       message = b'test'

 9
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10       private_key = rsa.generate_private_key(

11             public_exponent =65537,

12             key_size=2048,

13             backend=default_backend()

14         )

15       public_key = private_key.public_key()

16

17       ciphertext1 = public_key.encrypt(

18           message,

19           padding.OAEP(

20               mgf = padding.MGF1(algorithm = hashes.SHA256()),

21               algorithm = hashes.SHA256(),

22               label = None # rarely used. Just leave it 'None'

23           )

24       )

25

26       ###

27       # WARNING: PKCS #1 v1.5 is obsolete and has vulnerabilities

28       # DO NOT USE EXCEPT WITH LEGACY PROTOCOLS

29       ciphertext2 = public_key.encrypt(

30           message,

31           padding.PKCS1v15()

32       )

33

34       recovered1 = private_key.decrypt(

35       ciphertext1,

36       padding.OAEP(

37           mgf=padding.MGF1(algorithm=hashes.SHA256()),

38           algorithm=hashes.SHA256(),

39           label=None # rarely used.Just leave it 'None'

40       ))

41
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42       recovered2 = private_key.decrypt(

43       ciphertext2,

44        padding.PKCS1v15()

45     )

46

47       print("Plaintext: {}".format(message))

48       �print("Ciphertext with PKCS #1 v1.5 padding(hexlified): {}".

format(ciphertext1.hex()))

49       �print("Ciphertext with OAEP padding (hexlified): {}".

format(ciphertext2.hex()))

50       print("Recovered 1: {}".format(recovered1))

51       print("Recovered 2: {}".format(recovered2))

52

53   if __name__=="__main__":

54       main()

If you run this demonstration script repeatedly, you will observe that the ciphertext 

for both padding schemes causes the output to change every time. Consequently, 

adversaries like Eve cannot execute the chosen ciphertext attack nor the common 

modulus attack demonstrated earlier in this chapter. She is also unable to use RSA’s 

deterministic encryption to analyze message patterns, frequency, and so forth.

Padding also solves the problem of losing leading zeros during encryption. Padding 

ensures that the input is always a fixed size: the bit size of the modulus. So, for example, 

with padding, the input to RSA encryption with a modulus size of 2048 will always be 256 

bytes (2048 bits). Because the size of the output is known, it also allows the plaintext to 

start with leading zeros. Regardless of whether the combined message starts with 0, the 

known size means that zeros can be affixed until the correct size is reached.

So everything is fine now, right? Alice and Bob will switch to using padding and Eve 

will be shut out of their communications?

First of all, please note that padding does not solve either of the man-in-the-middle 

or authentication problems. Eve can still intercept and change the public key, enabling 

complete decryption of Alice’s messages. Bob still cannot tell who is sending him 

messages. These are problems for another chapter.

Second, the astute reader probably noticed the warning in the source code listing. 

Just in case you glanced over it without paying attention, we will emphasize it again.
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Warning: Say “No” to PKCS #1 v1.5 

Do not use PKCS #1 v1.5 unless you must do so to be compatible with legacy 
protocols. It is obsolete and has vulnerabilities (including one we will test in the 
next section)! For encryption, always use OAEP when possible.

Before moving on from this section, two other comments are in order regarding the 

use of OAEP:

	 1.	 You may have noticed the “label” parameter to OAEP. This is 

rarely used and can typically be left as None. Using a label does not 

increase security, so ignore it for now.

	 2.	 OAEP requires the use of a hashing algorithm. In the example 

we used SHA-256. Why not SHA-1? Is this related to known 

weaknesses in SHA-1? No. Actually, there are no known attacks 

against OAEP that depend on SHA-1’s weaknesses. Because 

SHA-1 is considered obsolete, it is best to not use it when writing 

your own code, but if you have to use OAEP with SHA-1 for 

compatibility reasons or to maintain someone else’s code, it is not 

known to be less secure than SHA-256 as of the time of this writing.

EXERCISE 4.11. GETTING AN UPGRADE

Help Alice and Bob out. Rewrite the RSA encryption/decryption program to use the 

cryptography module instead of gmpy2 operations.

�Exploiting RSA Encryption with PKCS #1 v1.5 Padding
This section is going to be exciting and fun! Eve is not a cryptographer and you—because 

you are reading this book—are probably not a master cryptographer either. However, you 

and Eve are going to implement an attack designed by a brilliant cryptographer and use 

it to break Alice and Bob’s cipher.

This attack is not only fun, but it is very real. Not only has it been a real attack in the 

past, but it even continues to be used today against poorly configured TLS servers. It’s 

both historical and contemporary at the same time.
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The paper in question is “Chosen Ciphertext Attacks Against Protocols Based on 

the RSA Encryption Standard PKCS #1” by Daniel Bleichenbacher [2]. You can find 

this paper online, and some readers may be interested in the mathematics behind the 

attack. In the sections that follow, we are going to walk through this paper creating an 

implementation of the attack. At the same time, we will try to give some intuition behind 

certain key concepts. If you find the in-depth details frustrating or uninteresting, you 

should be able to ignore most of the explanation and just put together a working RSA 

cracker from the source code listings. We won’t be offended.

There are going to be a lot of code snippets for this example. You should start with 

Listing 4-9 that initializes a few imports. Don’t forget about the dependencies on other 

functions we’ve already seen in this chapter. As we work through new snippets, add them 

to this skeleton.

Listing 4-9.  RSA Padding Oracle Attack

 1   from cryptography.hazmat.primitives.asymmetric import rsa, padding

 2   from cryptography.hazmat.primitives import serialization

 3   from cryptography.hazmat.primitives import hashes

 4   from cryptography.hazmat.backends import default_backend

 5

 6   import gmpy2

 7   from collections import namedtuple

 8

 9   Interval = namedtuple('Interval', ['a','b'])

10   # Imports and dependencies for RSA Oracle Attack

11   # Dependencies: simple_rsa_encrypt(), simple_rsa_decypt()

12   #                bytes_to_int()

Alice and Bob are at it again. This time, though, they’re using RSA with padding. But 

EATSA is still making bad decisions. They decide to use PKCS #1 v1.5 simply because it 

requires no parameters. Originally they were going to use OAEP, but the East Antarctica 

Taskforce for Modern Operational RSA Employment and Better Encryption, Especially 

in the Field (EATMOREBEEF) apparently argued for weeks about the task force name. 

Pressing up against a deadline, and unable to agree about which hashing algorithm 

should be used for OAEP, and whether “EATMOREBEEF” should be used for the label, 

they threw up their hands and said, “We’re pretty sure PKCS #1 v1.5 is good enough.”
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Once again, we find Alice in the West Antarctica spying on her neighbors. This time, 

however, Alice is posing as a CEO for an ice-making company meeting other executives 

in the ice industry at a conference in West Antarctica City. Sales of ice have melted 

in the last few years, and the government, facing its own problems with frozen assets 

and decreased liquidity, has been either unable or unwilling to offer subsidies. Alice’s 

mission is to continue crystallizing the dissent against the current party in power, in an 

attempt to solidify influence in the next election.

After the conference, Alice needs to send Bob a report of CEOs that she has 

convinced to donate significantly to the opposition party. Alice transmits the following 

message using RSA with PKCS #1 v1.5: “Jane Winters, F. Roe Zen, and John White.”

Alice whips out a mobile flip phone (they are slowly catching up in technology... 

no smart phones yet, but they finally did away with carrier penguins). She keys in the 

message to Bob and it automatically converts it to a number, encrypts it, and transmits it. 

A few seconds later, her phone vibrates with a new message:

Received: OK

Elsewhere in the city, Eve watches this communication. She has been tracking Alice 

since crossing the border. But she cannot decrypt the messages. Alice even came with 

the public key already installed in the phone so Eve can’t give her a fake key either. What 

can she do?

Fortunately for Eve, she finds out through her own intelligence agency that Alice and 

Bob are using PKCS #1 v1.5 for the RSA padding. Eve is surprised. After all of the events 

of the earlier part of this chapter, Eve has been reading up on RSA quite a bit, and she 

knows that this padding scheme has known vulnerabilities. Why are they using it, she 

wonders. Did they not get the memo?

Eve has a copy of the Bleichenbacher paper and begins reading. The paper explains 

that the PKCS #1 v1.5 padding can be broken with an oracle attack similar to the one we 

saw in the previous chapter.

In this case, Eve needs an oracle to tell her whether or not a given ciphertext  

(a number) decrypts to something with proper padding. The oracle will not, of course, 

tell her what the ciphertext decrypted to; all it needs to say is “yes” or “no” with regard to 

the padding.

Fortunately, Eve has been monitoring EA communications, and it appears that 

they built an error-reporting system into their technologies. When Alice sends a valid 

message, she gets back

Received: OK
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But when Eve sends a random number (ciphertext), she almost always gets back

Failed: Padding

After sending a thousands of random numbers, she did eventually get back one 

that answered with the OK message. As far as she could tell, it was not a “real” message 

(human readable, or one that Bob understood), but it did have the correct padding as 

reported by the automated processing system.

This is Eve’s oracle. It is all she needs to completely decrypt a ciphertext message.

For convenience in writing her attack program, Eve will start by breaking a message 

encrypted locally with a self-generated private key. Eve will use a pluggable oracle 

configuration so that when it’s time to attack Bob, she can simply switch out the oracle 

used to power the attack. The test oracle uses the real private key to decrypt the message 

and check whether the message has the proper formatting.

Eve starts reading up on PKCS v1.5 and starts playing around with her own 

experiments. Creating her own key pair, she encrypts messages with the padding and then 

examines the output. She encrypts the message “test” and then decrypts the message 

without removing the padding. Listing 4-10 shows the key snippet of the code that she used.

Listing 4-10.  Encrypt with Padding

 1   # Partial Listing: Some Assembly Required

 2

 3   from cryptography.hazmat.primitives.asymmetric import rsa, padding

 4   from cryptography.hazmat.primitives import hashes

 5   from cryptography.hazmat.backends import default_backend

 6   import gmpy2

 7

 8   # Dependencies: int_to_bytes(), bytes_to_int(), and simple_rsa_decrypt()

 9

10   private_key = rsa.generate_private_key(

11         public_exponent=65537,

12         key_size=2048,

13         backend=default_backend()

14     )

15   public_key = private_key.public_key()

16

17   message = b'test'

18
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19   ###

20   # WARNING: PKCS #1 v1.5 is obsolete and has vulnerabilities

21   # DO NOT USE EXCEPT WITH LEGACY PROTOCOLS

22   ciphertext = public_key.encrypt(

23       message,

24       padding.PKCS1v15()

25   )

26

27   ciphertext_as_int = bytes_to_int(ciphertext)

28   recovered_as_int = simple_rsa_decrypt(ciphertext_as_int, private_key)

29   recovered = int_to_bytes(recovered_as_int)

30

31   print("Plaintext: {}".format(message))

32   print("Recovered: {}".format(recovered))

You can see that she is using the cryptography module to create the encryption. 

But she is using her own simple_rsa_decrypt operation for the decryption in order to 

preserve the padding.

This is what she sees:

Plaintext: b'test'

Recovered: b'\x02@&\x1cC\xb1\xe4\x0f\x14\xd9\x93oU

\x07\x1b\xfdC\xe1\xe2K\xeeP\xdd\x8b\x10\xf9cZJ\x0c

42\x8e\xbblZ\xfb\x80\x8b\xfcA?p\xac\xba\xf7I\x9e\x

11\x1cn&t\xb8\x15\xbfo\xfe\xcc\xdf\xe7=\xc2\x9e\x

ca<v\xcd\x9ep\xd8\x1c\xf6b2"\x8c\xc0\x1e\xb8\xdb\x

97\x89\xfauj\x8f``\x99m~,\x18h\xc2k6d~qr-\x0c\xb9\

xfe?\xf9\xf9\xa6o\x05\\ZV\xfd4?\x0e;y\xf3\xd3q\xb2

\x94\xf6\xf8~a\xc1eA\xe4\x14\xce\x82\xdcc\xbf4e\xa

e\xa3<"\xcb,L\xd8\xed\xca}\xeb\x82\xa67\x1a\xd1\xc

7)\x13\xc1D)\xe8\x05h\xbe/\x97\xdf>\xf0\xef\xeb\xe

4Q\xc2\x85(*\xdcE\x9ct\x08c0\xb1\x80la\x94_/2\xd4y

\xc7\x95\x01\x90@\xea\x92\xaa\xb8\x18!\xc7\xff\xab

\x03\xea\x8b\xa3\xb4\xf6\xf2\xd6GH\x98-fM\x1c\x99\

x84\x8d4\xaf"\x95\xa7XR(M\x836\xd4\x17\x99m\xa8\x1

a\xb3\x00test'
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Eve notices that the actual message is at the end of the padding, consistent with the 

PKCS #1 v1.5 standard. (From the rest of this section, we will just say “PKCS.”)

She does notice that the first byte of the recovered text is 2. That seems weird to her 

because the standard says that the padding should start with a 0 and a 2. Where did the 

initial 0 go?

Then Eve remembers! Of course! Because RSA works with integers instead of bytes, 

any leading zeros are wiped out. Fortunately, when RSA padding is used, the size of 

the bytes is fixed to the key size. Eve decides to update her conversion function with an 

optional parameter for minimum size,8 shown in Listing 4-11.

Listing 4-11.  Integer to Bytes

 1   # Partial Listing: Some Assembly Required

 2

 3   # RSA Oracle Attack Component

 4   def int_to_bytes(i, min_size = None):

 5       # i might be a gmpy2 big integer; convert back to a Python int

 6       i = int(i)

 7       b = i.to_bytes((i.bit_length()+7)//8, byteorder='big')

 8       if min_size != None and len(b) < min_size:

 9           b = b'\x00'*(min_size-len(b)) + b

10       return b

Now properly updated, Eve writes her “fake” oracle that she will use just for testing. 

The code in Listing 4-12 performs a simple RSA decryption, converts the result to bytes 

(using the minimum size parameter we just implemented), and checks if the first and 

second bytes are 0 and 2, respectively. Make sure that the new int_to_bytes is working 

correctly. The old version will always drop the leading zero and the oracle will always 

report false.

8�In most sources, because the size is fixed, it is specified as the expected size and the code checks 
to make sure it isn’t too big.

Chapter 4  Asymmetric Encryption: Public/Private Keys



148

Listing 4-12.  Fake Oracle

 1   # Partial Listing: Some Assembly Required

 2

 3   # RSA Oracle Attack Component

 4   class FakeOracle:

 5       def __init__(self, private_key):

 6           self.private_key = private_key

 7

 8       def __call__(self, cipher_text):

 9           �recovered_as_int = simple_rsa_decrypt(cipher_text, self.

private_key)

10           �recovered = int_to_bytes(recovered_as_int, self.private_key.

key_size //8)

11           return recovered [0:2] == bytes([0, 2])

With an oracle in place, Eve prepares to attack the algorithm described in the paper. 

The algorithm is described in four steps. We will review each one individually and 

develop the code incrementally.

�Step 1: Blinding
Bleichenbacher’s algorithm requires the blinding step both for setup and for “blinding” 

the message. However, the remarks section at the end of the algorithm explains that 

most of this is not necessary for our situation:

Step 1 can be skipped if c is already PKCS-conforming (i.e., when c 

is an encrypted message). In that case, we set s0 ← 1.

There are three values that get configured in this step. Because we are dealing with 

an already PKCS-padded encrypted message, we only need to set these values to the 

prescribed defaults:

	

c c s n
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Because s0 = 1, we can reduce the first assignment to

	 c c0 ¬ 	

Obviously, 1 to any power is still just 1, so neither the power nor the modulus has  

any effect.

The M parameter is going to be a list of lists of intervals (more on intervals in a 

second). This algorithm consists of repeated steps identified by i. M0 records a list of 

intervals identified in the step identified by i = 1. In this case, there is only the single 

interval [2B, 3B – 1].

What is B? As explained earlier in the paper, B is the number of legal values that have 

the proper padding. It is defined as

	 B k= -( )28 2 . 	

Basically, k is the key size in bytes. So, if we’re using a 2048-bit key, k = 256. But why 

subtract 2?

Let’s break it down this way. For RSA with padding, our plaintext size in bytes is always 

supposed to be the same as the key size. If we’re using a 2048-bit key, our padded plaintext 

must be 2048 bits (256 bytes) as well. That means that there are 22048 possible plaintext values.

That isn’t really true, though, is it? We know that the first two bytes must be 0 and 2, 

and that reduces the number of legal values by 2 × 8 = 16 bits. Thus, B is the maximum 

number of values for this key size when you account for the first two fixed bytes.

Returning to the intervals, what is 2B and 3B? The intervals in this data structure 

represent legal values of PKCS numbers in which the actual plaintext message resides. 

Because the bytes at the beginning are the most significant bytes, the 0 has no impact on 

the integer number (e.g., 0020 = 20). But the 2 means that any legal number must be at a 

minimum 2B but must be less than 3B.

Think about it this way. If I told you that a two-digit number must fall between 20 

and 30, you would know that there are ten possible values that it could be. Moreover, you 

know that the minimum value is 2 × 10. This is the same idea.

The way this algorithm works is by narrowing down the legal interval until it is just a 

single number. That number is the plaintext message!

Eve decides to create a function for each of the steps of the algorithm. Given that 

there is state data that needs to be shared between these functions (e.g., B, M, etc.), she 

decides to use a class for storing state. The constructor takes a public key and an oracle. 
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Remember, the oracle simply takes a ciphertext as input and returns true if the ciphertext 

decrypts to a proper PKCS-padded plaintext.

Now, Eve writes the code for this step (step 1) of the algorithm. This step requires a 

ciphertext as input (c) and initializes the values of c0, B, s, and M. Eve also copies n out of 

the public key in a convenience function called _step1_blinding, as in Listing 4-13.

Listing 4-13.  RSA Oracle Attack: Step 1

 1   # Partial Listing: Some Assembly Required

 2

 3   class RSAOracleAttacker:

 4       def __init__(self, public_key, oracle):

 5           self.public_key = public_key

 6           self.oracle = oracle

 7

 8       def _step1_blinding(self, c):

 9           self.c0 = c

10

11           self.B = 2**(self.public_key.key_size-16)

12           self.s = [1]

13           self.M = [ [Interval(2*self.B, (3*self.B)-1)] ]

14

15           self.i = 1

16           self.n = self.public_key.public_numbers().n

The value of B is computed directly from bits rather than converting from bytes. 

Everything else is computed exactly as described in the paper.

The Interval data structure in this code is created using the collections.

namedtuple factory. Its two values are a (for lower bounds) and b (for upper bounds).

�Step 2: Searching for PKCS-Conforming Messages
For this section, we need to dust off our mathematics from about multiplying RSA 

ciphertexts. Take a quick minute to review (4.3).

Conceptually, step 2 is about searching within the Mi–1 intervals for new  

PKCS-conforming messages that are a multiples of the original plaintext message m and 

some other integer si.

Chapter 4  Asymmetric Encryption: Public/Private Keys



151

Figure 4-2 depicts a (simplified) view of the PKCS-conformant space within all 

possible RSA ciphertext values. An RSA encryption ranges in output from 0 up to 2k–1 

where k is the key size in bits. Regardless of the key size, every number (in hexadecimal) 

begins with 1 of 16 digits 0 through f. The highlighted slice between 2 and 3 represents 

RSA ciphertext values that have proper PKCS padding. (This view is overly simplified 

because, in reality, the correct slice should be from 02 up to 03 out of a range from 00 to 

ff, so it would actually just be 1 slice out of 256.)

The reason the message space is shown as a ring is because we are dealing with 

modular (wrap-around) arithmetic. If you take two numbers within this space and 

multiply them together (modulo n), if the product is greater than n, it just wraps around.

Figure 4-2.  Simplified view of PKCS-conformant space

This brings us back to multiplying the plaintext message m by another number. In 

our simplified view in Figure 4-2, m must be inside the highlighted region somewhere. 

If we use modular multiplication, multiplying m by certain numbers (modulo n) will 

produce other numbers that have wrapped around that are also within the same region.

Of course, we don’t know exactly where m is located because all we have is the 

encrypted version c. All we know is that, because it is PKCS-conformant, it is somewhere 

within the region. Similarly, because we don’t know where m is, we also have no idea 

where a multiple of m will land in the ring. The exception, of course, is that using our 

oracle, we can determine if the multiple landed back inside the PKCS-conformant region!
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Using the oracle, then, we will search for an si value that, when multiplied by m 

(modulo n), is PKCS-conformant and thus within the PKCS-conformant region of the 

RSA message space. We still won’t know where m is, but knowing that it has a multiple 

that falls within a certain region introduces additional constraints on the interval that 

contains it. We’ll talk more about those constraints and how to use them in step 3. But for 

now, let’s find si!

Bleichenbacher breaks up finding si into three sub-steps:

	 1.	 2a Starting the search is for the very first time we do this 

operation (i.e., when i = 1).

	 2.	 2b Searching with more than one interval left is for rare cases 

when we have two intervals instead of just one.

	 3.	 2c Searching with one interval left is for when there is just one 

interval and i is not 1. This should be all other cases.

Each of these sub-steps requires searching a range of possible si values to see if it 

produces a conformant ciphertext.

Specifically, for each candidate si, we encrypt it with RSA to produce ci.

	 c s ni i
e= ( )mod . 	

We multiply the encrypted si value by our original ciphertext c0 to create a test  

cipher ct. Because c0 is the encryption of the unknown plaintext m0
9, we get

	

s c c n

s m n

t i

i
e e

= ( )
= ( )

0

0

mod

mod . 	

We send ct to the oracle to test if it is conformant. For our fake oracle, it simply uses 

the private key to decrypt the ct and check if the plaintext starts with bytes 0 and 2.  

(Remember, to break Alice’s messages, we won’t have a private-key-enabled oracle. 

Instead, we will send the ciphertext to Bob and check for padding error message 

responses.)

9�We were just calling this m, but to tie it to the c0 value, we will refer to it as m0.
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Because each sub-step needs to be able to check a range of si values in this way, Eve 

decides to create a helper function for performing the search. It takes a starting value 

and an optional inclusive upper bound (as in Listing 4-14).

Listing 4-14.  Find “s”

 1   # Partial Listing: Some Assembly Required

 2

 3   # RSA Oracle Attack Component, part of class RSAOracleAttacker

 4       def _find_s(self, start_s, s_max = None):

 5           si = start_s

 6           ci = simple_rsa_encrypt(si, self.public_key)

 7       while not self.oracle((self.c0 * ci) % self.n):

 8           si += 1

 9           if s_max and (si > s_max):

10               return None

11           ci = simple_rsa_encrypt(si, self.public_key)

12       return si

Using this helper function, the first two sub-steps are very straightforward. Step 2a 

requires testing all values of si ≥ n/(3B) until one of them is conformant. Eve encodes this 

step as shown in Listing 4-15.

Listing 4-15.  Step 2a

1   # Partial Listing: Some Assembly Required

2

3   # RSA Oracle Attack Component, part of class RSAOracleAttacker

4       def _step2a_start_the_searching(self):

5           si = self._find_s(start_s=gmpy2.c_div(self.n, 3*self.B))

6           return si

Notice that the starting s value is computed as n/(3B) using the c_div function from 

the gmpy2 module. Because we are working with such big numbers, we cannot trust 

Python’s built-in floating point. Many of the values we are computing are just ranges and 

are not guaranteed to be integers, so fractional values are possible. The gmpy2 module 

provides us with fast operations on very large numbers, including floating point.
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The c_div function itself provides division rounding up toward the ceiling. So, for 

example, c_div(3,4) computes 3/4 and rounds up, returning 1.

Using these RSA concepts, this step searches for values of si that multiply c to another 

PKCS-conformant value. Specifically, for a candidate value of si, we RSA encrypt it, then 

multiply it by the original ciphertext. We use the ceiling because si must be an integer 

and must be greater than or equal to the starting value. Whether the starting value is a 

whole number or not, the next integer (i.e., ceiling) is the starting point for si.

Sub-step 2b is also quite easy to do. This sub-step deals with rare occurrences where 

the interval for m0 gets split in two. When this happens, we iterate si forward until we find 

another conforming value (Listing 4-16).

Listing 4-16.  Step 2b

1   # Partial Listing: Some Assembly Required

2

3   # RSA Oracle Attack Component, part of class RSAOracleAttacker

4       def _step2b_searching_with_more_than_one_interval(self):

5       si = self._find_s(start_s=self.s[-1]+1)

6       return si

We will save every s value we find in the self.s array for being able to access these 

values. In truth, we only ever need the previous value, but we use this idiom to match the 

way the paper is written.

Finally, the last sub-step, 2c, is a bit more complicated. It requires searching for 

s across a range of possible values. Recall that there is only one interval found in the 

previous step and we take the lower bound as a and the upper bound as b. Next, we must 

iterate through ri values:

	
r

bs B

ni
i³

--2
21 . 	

We use these ri values to bound both sides of the si search:

	

2 3B rn

b
s

B rn

a
i

i
i+

³ <
+

. 	

Chapter 4  Asymmetric Encryption: Public/Private Keys



155

What we are doing here is picking si values within a particular range that will help us 

continue to narrow down the solution. Bleichenbacher explains in his paper why these 

bounds work, and we will not repeat his comments here. When we talk about step 3, we will 

give some further intuition on the entire algorithm that will help to clarify what is happening.

In the meantime, Eve encodes this algorithm as Listing 4-17.

Listing 4-17.  Step 2c

 1   # Partial Listing: Some Assembly Required

 2

 3   # RSA Oracle Attack Component, part of class RSAOracleAttacker

 4       def _step2c_searching_with_one_interval_left(self):

 5           a,b = self.M[-1][0]

 6           ri = gmpy2.c_div(2*(b*self.s[-1] - 2*self.B),self.n)

 7           si = None

 8

 9           while si == None:

10               si = gmpy2.c_div((2*self.B+ri*self.n),b)

11

12               s_max = gmpy2.c_div((3*self.B+ri*self.n),a)

13               si = self._find_s(start_s=si, s_max=s_max)

14               ri += 1

15           return si

Figure 4-3.  Depiction of Bleichenbacher’s attack
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As with previous computations, division is handled using gmpy2.c_div. This is very 

important. If you just use Python’s division operators, you are likely to get incomplete results.

�Step 3: Narrowing the Set of Solutions
Once an si value has been found from step 2, we update our bounds on the location of m. 

Before walking through the math, let’s talk about what is going on in this algorithm.

In Figure 4-3 we are again visualizing the slice of the RSA message space ring that 

contains legitimate PKCS-padded values. The lower bound of this space is numbers 

beginning with 000200...00 and the inclusive upper bound is 0002FF...FF. The plaintext 

message m0 is somewhere in here. At the start of the algorithm, we have no idea where.

However, for each si value we find that is conformant, we learn of a new value m0si 

that is within this region as well (wrapping around because of modulo arithmetic). The 

fact that we know that m0si (modulo n) falls within a particular range introduces new 

constraints on where m0 can be. We are able to use these constraints to calculate a new 

interval a to b within which m0 must be.

Once we update the bounds, we can repeat the process using new values of si that 

further tighten the bounds. Eventually, the bounds will restrict m0 to being a single value. 

That is the plaintext we’re looking for!

Hopefully this intuition will help even if the following formulas don’t make much 

sense. Or, it will be helpful if you do try to tackle Bleichenbacher’s paper. In any event, we 

compute the new upper and lower bounds as follows.

For each a, b interval in the previous M0 (there will usually be one, but sometimes 

two), find all integer values of r such that
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For each of these values of a, b, and r, we calculate a new interval. First, we calculate 

a lower-bound candidate as follows:

	
a

B rn

sii =
+2

. 	

and an upper-bound candidate

	
b

B rn

sii =
- +3 1

. 	

We define a new interval as [max(a, ai), min(b, bi)].

The set of all intervals is inserted into Mi. Again, there is typically only one interval.

Eve encodes this step of the algorithm as in Listing 4-18.

Listing 4-18.  Step 3

 1   # Partial Listing: Some Assembly Required

 2

 3   # RSA Oracle Attack Component, part of class RSAOracleAttacker

 4       def _step3_narrowing_set_of_solutions(self, si):

 5           new_intervals = set()

 6           for a,b in self.M[-1]:

 7               r_min = gmpy2.c_div((a*si - 3*self.B + 1),self.n)

 8               r_max = gmpy2.f_div((b*si - 2*self.B),self.n)

 9

10               for r in range(r_min, r_max+1):

11                   a_candidate = gmpy2.c_div((2*self.B+r*self.n),si)

12                   b_candidate = gmpy2.f_div((3*self.B-1+r*self.n),si)

13

14                   �new_interval = Interval(max(a, a_candidate), min(b, 

b_candidate))

15                   new_intervals.add(new_interval)

16           new_intervals = list(new_intervals)

17           self.M.append(new_intervals)

18           self.s.append(si)

19
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20           �if len(new_intervals) == 1 and new_intervals[0].a == new_

intervals[0].b:

21               return True

22           return False

In this code, note that r_max is calculated using f_div. This computes division 

rounding to the floor instead of the ceiling. We use this value because r is an integer and 

must be less than or equal to the value.

Once the intervals are computed, the code adds them to the self.M data structure 

and adds the si value to self.s.

Finally, it checks to see if we’ve found a solution. Eve is getting ahead of herself here. 

This is part of step 4, but it was simply more convenient to put it here.

�Step 4: Computing the Solution
As hinted at in previous sections, this algorithm has termination criteria. Hopefully, it is 

fairly obvious considering the previous discussion. Either

•	 Mi contains only one interval, or

•	 The upper and lower bound in the interval of Mi are the same.

In short, we terminate when the interval that bounds the location of m is reduced to 

a single number.

We have already seen Eve’s code for checking this condition at the end of step 3. 

Bleichenbacher’s step 4 also deals with a more general problem than ours and includes 

steps that are unnecessary for when s0 is 1. Recall that for processing RSA encryption 

messages where the plaintext was already PKCS-padded, s0 was set to 1.

Although it’s somewhat unnecessary, for sake of completeness and consistency,  

Eve does create a method for step 4 (Listing 4-19).

Listing 4-19.  Step 4

1   # Partial Listing: Some Assembly Required

2

3   # RSA Oracle Attack Component, part of class RSAOracleAttacker

4       def _step4_computing_the_solution(self):

5           interval = self.M[-1][0]

6           return interval.a
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That’s it! That’s the entire algorithm! Eve combines these steps into Listing 4-20’s 

attack method.

Listing 4-20.  Attack!

 1   # Partial Listing: Some Assembly Required

 2

 3   # RSA Oracle Attack Component, part of class RSAOracleAttacker

 4       def attack(self, c):

 5           self._step1_blinding(c)

 6

 7           # do this until there is one interval left

 8           finished = False

 9           while not finished:

10               if self.i == 1:

11                   si = self._step2a_start_the_searching()

12               elif len(self.M[ -1]) > 1:

13                   �si = self._step2b_searching_with_more_than_one_

interval()

14               elif len(self.M[-1]) == 1:

15                   interval = self.M[-1][0]

16                   si = self._step2c_searching_with_one_interval_left()

17

18               finished = self._step3_narrowing_set_of_solutions(si)

19               self.i += 1

20

21           m = self._step4_computing_the_solution()

22           return m

Please note that the attack() method’s input is the ciphertext, but it must already be 

in integer form. Don’t forget to call bytes_to_int() on the ciphertext first!
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EXERCISE 4.12. RUN THE ATTACK!

Take the preceding code and run some experiments with breaking RSA encryption with PKCS 

padding. You should use the cryptography module to create the encrypted message, 

convert the encrypted message to an integer, and then use your attack program (and fake 

oracle) to break the encryption. To begin with, test your program on RSA keys of size 512. This 

breaks faster and will enable you to validate your code sooner.

EXERCISE 4.13. TAKING THE TIME

How long does the attack take? Instrument your code with timing checks and a count of how 

many times the oracle function is called. Run the attack on a suite of inputs and determine the 

average amount of time required to break keys of sizes 512, 1024, and 2048.

EXERCISE 4.14. STAYING UP TO DATE

Despite the fact that this attack is over 20 years old, it continues to haunt the Internet. Do 

a little Google searching and find out about the current state of this attack both in terms of 

prevention and updated variants. Make sure to find out about the ROBOT attack. We’ll talk 

about this one again when we discuss TLS.

�Additional Notes About RSA
We’ve spent a lot of time on RSA in this chapter, and we haven’t even gotten into much 

of how it is actually used in practice. RSA, like most asymmetric ciphers, is almost 

never used to encrypt messages like we had Alice and Bob do throughout the chapter. 

When it is used, it is typically used to encrypt a session key for a symmetric cipher, or for 

signatures.

It is, however, critical to understand how asymmetric ciphers work and how they 

can be broken. Despite all of its weaknesses, RSA is still widely used, often incorrectly. 

Walking through the exploits and vulnerabilities in this chapter should help put you on 

the right path.

Here are a few other items for consideration.
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�Key Management
As with all ciphers, much of their security comes down to correctly creating and 

safeguarding keys.

When creating an RSA key, make sure to use a library. Do not try to generate the 

public and private keys yourself. At the same time, keep tabs on any bug reports for the 

library you do use. For example, some libraries have been found to generate RSA private 

keys without sufficient randomness, thus producing private keys that were vulnerable to 

various attacks. You can’t possibly anticipate all of the things that will go wrong, or when 

the library or algorithm you use will be exposed as vulnerable, so you must “maintain” 

your cryptography by keeping up to date on known vulnerabilities.

Vulnerabilities can be system-specific. The ROCA vulnerability, for example, was 

largely confined to certain hardware chips.

It is also important to use the proper parameters when creating an RSA key. The key 

size should typically be at least 2048 bits unless legacy constraints force you to choose 

something smaller. And the value of the public exponent e should always be 65537.

You must also be careful to guard and protect private keys and their secrets. 

Obviously the private key itself should be stored securely and with appropriate 

permissions. Your private key should, at the very least, be stored with absolutely minimal 

permissions on the file system. A very sensitive key might need to be stored offline.

You should also consider storing the private key in encrypted form. This will 

require a password to decrypt the key which can have its own set of difficulties in a fully 

automated system. However, properly used, it can reduce the risk of a private key being 

compromised if an attacker gains access to the host system.

Moreover, the private key is made up of a number of component values. In our 

examples, we could think of d as the private key because that is the value we use to 

actually decrypt. But in addition to d, care must also be taken not to expose the secrets 

used to generate it. For example, the modulus n is not, itself, secret, but the two large 

primes, p and q, that generated it are.

There are additional values generated when creating a private key that will 

compromise security if disclosed. Along with p and q, these values are not strictly 

necessary after the key is generated, as everything can be computed from e, d, and n. 

However, most libraries do keep them as part of the private key both in memory and on 

disk. You should read your library’s documentation about private key generation and 

follow recommended handling procedures.
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One of the weaknesses of asymmetric cryptography is the inability to “revoke” a 

private key. If Bob’s private key is compromised, how does Alice know to stop sending 

data encrypted under the associated public key? In practice, your RSA keys will probably 

be used in conjunction with certificates, which can include a hierarchy of certificates and 

keys allowing some keys to be less sensitive than others and also include an expiration 

date to limit the exposure of a compromised key. More is said on that elsewhere.

EXERCISE 4.15. FACTORING RSA KEYS

In this section, we recommended using 2048-bit keys. For this exercise, do an Internet search 

to find out the current size of keys that can easily be factored. For example, do a search for 

“factoring as a service” and see how much it costs to factor a 512-bit key.

EXERCISE 4.16. ROCA VULNERABLE KEYS

Unless your RSA keys are being generated by certain RSA hardware modules, the keys you 

have generated for the exercises in this chapter should not be vulnerable to ROCA, but it  

never hurts to check. For this exercise, visit the online ROCA vulnerability checking site at 

https://keychest.net/roca#/ and test a couple of keys.

�Algorithm Parameters
If there is one thing that you should take away from this chapter, it is this: pay special 

attention to RSA’s padding parameter. As of the time of this writing, you should use 

the OAEP padding scheme for encryption operations and the PSS padding scheme for 

signatures. Do not use PKCS #1 v1.5 unless it is absolutely necessary for legacy applications.

�Quantum Cryptography
We don’t have the space to delve into quantum cryptography in this book, but we can’t 

close out our discussion of RSA without mentioning it. When quantum computing 

arrives, most of our current asymmetric algorithms will become breakable. RSA is 

already vulnerable to a number of contemporary attacks, but when quantum computing 
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becomes viable, it will be thoroughly broken. Thus, within the next decade or so, RSA 

will be completely useless.

�Really Short Addendum
If there is one thing to get out of this chapter, it is this: parameters matter, and correct 

implementations are subtle and evolve over time. The intuition for how asymmetric 

encryption works and can be used is simple to explain, but there are numerous details 

that can make one implementation safe and another highly vulnerable.

Choose the right tool for the job, and choose the right parameters for the tool.

Oh, and breaking stuff is fun!
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CHAPTER 5

Message Integrity, 
Signatures, and Certificates
In this chapter, we will be talking about “keyed hashes” and how asymmetric 

cryptography can be used to provide not only message privacy but also message integrity 

and authenticity via digital signatures. We will also be talking about how certificates 

differ from keys and why that distinction is important. Let’s dive right into an example 

and some code!

�An Overly Simplistic Message Authentication  
Code (MAC)
Checking in with Alice and Bob, our East Antarctic espionage duo has had some 

trouble on their most recent adventure in adversarial territory to the west. Apparently, 

Eve managed to intercept a few communications sent between them. The messages, 

encrypted with symmetric encryption, were unreadable, but Eve figured out how to alter 

them, inserting some false instructions and information. Alice and Bob, acting on false 

information, were almost trapped in an ambush. Fortunately for them, a bunch of ice 

melted due to global warming, and they managed to swim home to safety!

Quick to learn from their close call, they spent a little time at headquarters drying 

off and devising new communication mechanisms to prevent the unauthorized 

modification of their encrypted data.

Eventually, the East Antarctica Truth-Spying Agency (EATSA) discovered a new 

concept: “message authentication codes” or “MACs.”

A MAC, Alice and Bob are told, is any “code” or data transmitted along with a 

message that can be evaluated to determine if the message has been altered. This is an 

informal definition for intuition purposes. Be patient while Alice and Bob work through 
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this introductory and incorrect starting point. The basic idea for this overly simplistic 

MAC is this:

	 1.	 The sender computes a code C1 using a function f (M1) for a given 

message M1.

	 2.	 The sender transmits M1 and C1 to the recipient.

	 3.	 The recipient receives the data as M and C, but does not know if 

they have been modified.

	 4.	 The recipient recomputes f (M) and compares the output to C to 

verify that the message is unaltered.

Suppose that Eve intercepts M1 and C1 sent by Alice to Bob. If Eve wants to change 

the message M1 to M2, she must also recompute C2 = f (M2) and send both M2 and C2 to 

Bob. Otherwise, Bob will detect that something has been changed because f (M) and C 

will not match.

If you are asking, “So what? Eve can just recompute the MAC, right?” then you are 
seeing the problem with our overly simplistic setup. We have to assume that Eve 
has everything except the key, but this example also assumes she does not have f. 
We will fix that shortly. Stay tuned!

For now, Alice and Bob are just going to assume that Eve can’t compute, or easily 

compute, the function f. If this assumption is true (which it isn’t in reality), then just 

about any mechanism for creating a fingerprint will work. The East Antarctican spying 

agency decides to send the message hash as an attachment to the message. Thus, the 

MAC is a hash in this case.

Let’s dive into some code to see how this simple idea comes together. While we’re at 

it, we can combine our new fake MAC technology with some symmetric encryption from 

Chapter 3. This is demonstrated in Listing 5-1.

Listing 5-1.  Fake MAC with Symmetric Encryption

 1   # THIS IS NOT SECURE. DO NOT USE THIS!!!

 2   from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes

 3   from cryptography.hazmat.backends import default_backend

 4   import os, hashlib
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 5

 6   class Encryptor:

 7       def __init__ (self, key, nonce):

 8           aesContext = Cipher(algorithms.AES(key),

 9                                modes.CTR(nonce),

10                                backend=default_backend())

11           self.encryptor = aesContext.encryptor()

12           self.hasher = hashlib.sha256()

13

14       def update_encryptor(self, plaintext):

15           ciphertext = self.encryptor.update(plaintext)

16           self.hasher.update(ciphertext)

17           return ciphertext

18

19       def finalize_encryptor(self):

20           return self.encryptor.finalize() + self.hasher.digest()

21

22   key = os.urandom(32)

23   nonce = os.urandom(16)

24   manager = Encryptor(key, nonce)

25   ciphertext = manager.update_encryptor(b"Hi Bob, this is Alice !")

26   ciphertext += manager.finalize_encryptor()

Recall that “counter mode” requires no padding and that in our previous examples 

the “finalize” functions really didn’t do much. But now, when we finalize our manager, 

it not only finalizes encryption, it also returns the computed hash as the last few bytes to 

be appended to the encrypted data. Thus, the final encrypted message has our simple 

MAC tacked onto the end of it.

EXERCISE 5.1. TRUST BUT VERIFY

Finish out the code of the simple encryption plus hash system and add a decryption operation. 

The decryption operation should, upon finalization, recompute the hash of the ciphertext 

and compare it to the hash that was sent over. If the hashes don’t match, it should raise an 

exception. Be careful! The MAC is not encrypted and should not be decrypted! If you don’t 

think carefully about this, you might decrypt data that doesn’t exist!
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EXERCISE 5.2. EVER EVIL EVE

Go ahead and “intercept” some of the messages encrypted by the code you wrote in this 

section. Modify the intercepted messages and verify that your decryption mechanism correctly 

reports an error.

�MAC, HMAC, and CBC-MAC
Alice and Bob were told by their support people that any mechanism for authenticating 

a message is a message authentication code (MAC). As we hinted, this is not a complete 

definition. A real MAC also requires a key.1

We’ve used keys for encryption, but so far we haven’t used them for much else.  

A MAC key, as you might have guessed, isn’t really related to encryption at all. Rather, 

it ensures that the message authentication code can only be computed by parties that 

know the key.

In our example, Alice and Bob had to assume that Eve couldn’t compute the 

function f (M). That, of course, isn’t reasonable. Alice and Bob used SHA-256 to derive a 

fingerprint, so obviously Eve can use it to compute her own authentication code as well. 

Assuming that she can deterministically alter the ciphertext, as we saw in the previous 

chapter that she could under certain circumstances, she could insert a new message and 

a new fake MAC.

A real MAC, however, which depends on a key, cannot be generated by Eve unless 

she has compromised the key! Remember, good security means that everything can be 

known except the key and it still works right.2

A MAC protects the integrity of the message. An attacker without a key cannot 

undetectably alter the data. Furthermore, if the key remains secret, the MAC also 

provides authenticity: the receiver knows that only the other person sharing the key 

could have sent the MAC because only a person with a key could have generated a legal 

MAC at all.

While there are many MAC algorithms, we will look at two easy-to-understand 

approaches: HMAC and CBC-MAC. These algorithms do a good job of teaching how and 

why a MAC works. They are useful in practice as well.

1�This is still just an informal definition. Formal definitions exist for the persnickety [11, Chap. 9].
2�Kerckhoff’s principle strikes again!
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�HMAC
An HMAC is a “hash-based message authentication code.” In fact, you already know the 

most complicated characteristic of an HMAC: hashing. An HMAC is mostly just a hash 

that is keyed.

What does it mean to be “keyed”? To illustrate, let’s first review standard 

cryptographic hashes that are not keyed. For such hashes, if the input doesn’t change, 

neither does the output. They are fully deterministic based only on a single input: the 

message contents. If you revisit the exercise “GOOGLE KNOWS!” in Chapter 2, you will 

recall that we can actually enter some hash values into Google and find matching inputs.

Pull up a Python shell and test this one or two more times:

>>> import hashlib

>>> hashlib.sha256(b"hello world").hexdigest()

'b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9'

>>> hashlib.sha256(b"happy birthday").hexdigest()

'd7469a66c4bb97c09aa84e8536a85f1795761f5fe01ddc8139922b6236f4397d'

The SHA-256 outputs for “hello world” and “happy birthday” are always these 

values on every computer for the rest of eternity. They will never change. You can verify 

this by running the code yourself. The SHA-256 definition demands it. You can also try 

searching for the hashes online.

To repeat, with an unkeyed algorithm the same input always produces the same output.

When an algorithm is keyed, it means that the output is dependent on both the input 

and a key. But how can a hashing algorithm be keyed?

Conceptually, it is actually pretty easy. Because even a minor change to the input of 

a hashing algorithm completely changes the output, we can have the key be part of the 

input itself!

While the following example is not a real HMAC and is not considered sufficiently 

secure, it illustrates the idea:

>>> import hashlib

>>>

>>> password1 = b"CorrectHorseBatteryStaple" # See XKCD 936

>>> password2 = b"LiverKiteWorkerAgainst"

>>>

>>> # This is not really HMAC, it is for illustration ONLY:
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>>> hashlib.sha256(password1 + b"hello world").hexdigest()

'ca7d4abd13bceb305eef2738e3592da77ed826aa1665ba684b80f36bd7522b32'

>>>

>>> hashlib.sha256(password2 + b"hello world").hexdigest()

'b22786bc894c8bb27d1e7e698a9bddfd6b95f35dcd063e37d764fa296216408a'

In this example, we used human-readable passwords as the keys. We hashed the 

input “hello world” two more times, but inserted a different password each time as a 

prefix. Basically we used the key to change what we were hashing. Each password results 

in a completely different output, meaning that the only way for someone to recreate 

the output MAC for the message “hello world” is to also know the password (or break it 

through brute force). As with any other cryptographic algorithm, the key/password must 

be both sufficiently large and sufficiently random.

Speaking of size, it is worth noting that the size of the password is not a factor in how 

effectively it changes the hash output. Do you recall the avalanche principle? Changing 

a single bit of input to a hash function completely changes the output hash value. You 

could have a terabyte document, change only a single character of it, and produce a 

new hash that has no relationship to the unaltered document’s hash. Similarly, your 

password could be a single character, and it would effectively “scramble” the output for 

any given input, no matter how large. All you need to worry about is that your password 

length (and randomness) is sufficiently strong to prevent brute-force attacks.

EXERCISE 5.3. BRUTE FORCE AGAIN

You should already have done some brute-force attacks in previous chapters, but it’s important 

to repeat the exercise until you develop intuition for the concept. Using our preceding fake 

HMAC, have the computer generate a random password of specific sizes and use brute-force 

methods to find out what it is. To be more specific, assume that you already know what the 

message is (e.g., “hello world,” “happy birthday,” or a message of your choosing). Write a 

program to create a random password of characters, prepend the password to the message, 

and then print out the MAC (hash). Take the output and iterate through all possible passwords 

until you find the right one. Start with a simple test of a single-letter character, then try 

two characters, and so forth. Mix things up by using different sets of characters such as all 

lowercase, lowercase and uppercase, either case plus numbers, and so forth.
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EXERCISE 5.4. BRUTE FORCE FOUR-WORD PASSWORDS

Repeat the previous exercise. But instead of using letters drawn from a source of letters, use 

words drawn from a source of words. Find or create a text file with a list of common words.  

It should be at least 2000 words. Using this dictionary, create passwords by picking n random 

words. Attempt to brute force this password by trying every possible combination from the 

dictionary. Start with n = 1 (one-word password) and go up from there.

Even the preceding approach isn’t quite good enough, so let’s talk about the real 

HMAC. We have repeatedly said that merely prepending the password is not sufficiently 

secure. “HMAC” is the official name given to an algorithm defined in a standard 

document called “RFC 2104.” If you haven’t ever looked at an RFC before, these are 

documents from the Internet Engineering Task Force (IETF) that represent standards, 

best practices, experiments, and discussions for Internet protocols and algorithms.  

They are all freely available and can be found online. RFC 2104 can be found  

at https://tools.ietf.org/html/rfc2104.

The abstract for the document states:

This document describes HMAC, a mechanism for message 

authentication using cryptographic hash functions. HMAC can 

be used with any iterative cryptographic hash function, e.g., MD5, 

SHA-1, in combination with a secret shared key.

That part should already make sense. The experiments we already did used SHA-256 

and a secret shared key, but we obviously could have used SHA-1 or MD5. As a reminder, 

though, those hash algorithms are considered “broken” and should not be used except 

as necessary with legacy applications.

Returning to page 3 of the RFC, we see that once a hashing function H is picked, the 

HMAC over an input text is computed, thus

H(K XOR opad, H(K XOR ipad, text))

Let’s take a look at each of these terms. We already know H; that’s the underlying 

hash function. The term “text” refers to the input, but does not have to be composed of 

readable text characters any more than any “plaintext” message needs to be: it can be 

arbitrary binary data. Oh, and we need to address the commas. Because H is a function, 

you might be tempted to think that this definition is showing a hashing function that 
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takes two parameters. But in this definition in the RFC, the comma can be thought of as 

concatenation. As in all of our other examples, a hash function only takes a single input.

The term K refers to the key, but it can’t be just anything. The RFC has a number 

of requirements for the key that will often require some pre-processing. Most of these 

requirements are related to the block size of H. Recall from Chapter 3 that we used the 

term “block size” with block ciphers to describe the size of data that the block cipher 

operates on at one time. AES, for example, has a block size of 16 bytes (128 bits). Hashing 

algorithms can hash any size of input, so what is the block size of a hash algorithm?

In actuality, hashing functions typically operate on one block at a time, but feed 

the hash output from one chunk into the hashing computations of the next. SHA-1, for 

example, has a 64-byte (512-bit) block size, while SHA-256 has a 128-byte (1024-bit) 

block size. The RFC refers to the block size of H as B (bytes).

The first requirement for our key is that if it is shorter than the block size B, it has to 

be padded with zeros until it is B bytes long.

The second requirement is that if the key is longer than B, it is first reduced by 

hashing the key with H. Don’t let this surprise you. We will use H multiple times in a 

single HMAC operation.

In summary, if K is too short, it is padded with zeros, and if K is too long, H(K)  

is used instead.

The eagle-eyed reader will notice that the length of a hash may be also be shorter 

than the block size. SHA-1’s hash is 20 bytes long and its block size is 64 bytes. SHA-256’s 

hash is 32 bytes long but its block size is 128 bytes. After reducing the key that is too long 

with the hashing function, it will generally be too short and will then require padding.

In the end, we should have a key that is exactly B bytes long.

Next, we need to compute K ⊕ ipad (XOR). The term “ipad” stands for “inner 

padding” because this is the inner hashing operation in the HMAC. The RFC defines 

ipad as “the byte 0x36 repeated B times” and “opad” as “the byte 0x5c repeated B times.” 

The values chosen for ipad and opad were picked arbitrarily. What is most important is 

that they are different.
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The reasons for the pads go beyond the scope of this book, but they give HMAC 
some extra security in case the underlying hash function is broken. So, for 
example, these paddings made HMAC-MD5 relatively strong even after MD5 was 
shown to be broken. That’s helpful, but not a good reason to use HMAC-MD5 for 
new applications. Please don’t. HMAC’s padding means that HMAC-SHA256 will 
be a reasonably strong MAC even if someone finds a vulnerability in the SHA-256 
hashing function, which can help keep existing uses (that might not be easily 
upgraded to a better hash function immediately) relatively secure.

The computation of K ⊕ ipad is pretty easy because they are the same size. The 

subsequent value is prepended to the input “text,” and the combined data is hashed 

by H. We have now computed H(K ⊕ (ipad, text)). Again, this is the inner hash 

computation.

Now, for the outer hash, we compute K ⊕ opad. The subsequent value is prepended 

to the output of the inner hash, and the aggregated bytes are hashed again. The hash of 

the outer function is the HMAC of the input text keyed on K.

Fortunately for you, cryptographic libraries almost always have HMAC as a primitive.

>>> from cryptography.hazmat.backends import default_backend

>>> from cryptography.hazmat.primitives import hashes, hmac

>>>

>>> key = b"CorrectHorseBatteryStaple"

>>> h = hmac.HMAC(key, hashes.SHA256(), backend=default_backend())

>>> h.update(b"hello world")

>>> h.finalize().hex()

'd14110a202b607dc9243f83f5e0b1f4a1e59fba572fc5ea5f41d263dd4e78608'

Why go to all the trouble of learning how HMAC works on the inside, rather than just 

learning how to use a supplied library? There are a few reasons. First, it’s good to have at 

least a little bit of an idea of how things work. It helps with intuition and reasoning about 

when to use it and why.

Second, and perhaps most important, it is to remind you that YANAC (You Are Not 

A Cryptographer... yet!). You must remember this principle! Use cryptographic libraries 

as much as possible and do not try to come up with your own “clever” algorithm. Take 

a look at HMAC again. It’s built on some of the same concepts as simply prefixing an 
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input with a key, but has much higher complexity. That complexity comes from deeper 

and subtler goals, including forward security in the event of a broken hash function. 

That complexity is not arbitrary; the HMAC operation was based on a research paper 

by cryptographers that mathematically proved certain security properties. Unless you 

are a cryptographer who publishes your work (often with formal proofs) for public peer 

scrutiny, test, and debate, then you really should not be creating your own algorithms 

except for the purposes of education or demonstration.

EXERCISE 5.5. TEST PYTHON’S HMAC

Although you should not roll your own crypto, it doesn’t mean you shouldn’t verify 

implementations! Create your own implementation of HMAC following the instructions 

from RFC 2104 and test some inputs and keys with both your implementation and Python’s 

cryptography library’s implementation. Ensure that they produce the same outputs!

�CBC-MAC
HMAC is a very popular MAC and is used, for example, in TLS, but there are other ways 

to create MACs. For example, we can take what you learned in Chapter 3 about cipher 

block chaining (CBC) mode as another way to derive a secure MAC.

Let’s quickly introduce some new terminology. A MAC is also sometimes called a 

“tag.” When we create a MAC of a message, we can call it the “tag” of the message; it’s 

like a tag on a gift or a piece of clothing: it’s a little bit of information that is attached to 

the main article. In mathematical notation, a tag is often denoted t. Thus, a MAC over 

message m1 produces a tag t1, and the pair (m1, t1) is transmitted to the receiver for 

verification.
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Recall that when encrypting with AES, we were limited to encrypting 128 bits at a 

time. If we encrypted each 128-bit block independently, there was still information that 

could “leak” through about the overall data. For example, large image features might still 

be recognizable. One of the solutions to the problem was to “chain” the encryption so 

that the input from one block carried over and influenced the encryption of the next. In 

other words, a change in a bit at the beginning would have a cascading effect all the way 

down to the very last block.

Put another way, the very last block of ciphertext is determined by the value of every 

other block in the chain: any changes anywhere in the input will be reflected in the last 

block! That makes the last block of a CBC encryption mode a MAC over the entire data as 

shown in Figure 5-1.

Hopefully as you have learned by this point in the book, all cryptography comes with 

limitations and critical parameters. As with HMAC, we will do some naive examples 

first to see both the basic concepts behind the CBC-MAC algorithm and how naive 

approaches are exploitable.

Let’s start by taking a message and running it through AES-CBC encryption. For 

security reasons that we will explain shortly, we will fix the initialization vector to zero. In 

order to have our messages be a multiple of a block size, we will also use the same PKCS7 

padding used for encryption. We will need some full block messages MAC’d without 

padding to simplify the next exercise, so we include a flag for turning padding off.

Figure 5-1.  Because all of the message impacts the value of the last encrypted 
block of data, C[n] is a MAC over all of P... with a few flaws.

Chapter 5  Message Integrity, Signatures, and Certificates



176

Listing 5-2.  Fake MAC with CBC

 1   # WARNING! This is a fake CBC–MAC that is broken and insecure!!!

 2   # DO NOT USE!!!

 3   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 4   from cryptography.hazmat.backends import default_backend

 5   from cryptography.hazmat.primitives import padding

 6   import os

 7

 8   def BROKEN_CBCMAC1(message, key, pad=True):

 9       aesCipher = Cipher(algorithms.AES (key),

10                          modes.CBC(bytes(16)), # 16 zero bytes

11                          backend=default_backend())

12       aesEncryptor = aesCipher.encryptor()

13

14       if pad:

15           padder = padding.PKCS7(128).padder()

16           padded_message = padder.update(message)+padder.finalize()

17       elif len(message) % 16 == 0:

18           padded_message = message

19       else:

20            raise Exception("Unpadded input not a multiple of 16!")

21       ciphertext = aesEncryptor.update(padded_message)

22       return ciphertext[-16:] # the last 16 bytes are the last block

23

24   key = os.urandom(32)

25   �mac1 = BROKEN_CBCMAC1(b"hello world, hello world, hello world, hello 

world", key)

26   �mac2 = BROKEN_CBCMAC1(b"Hello world, hello world, hello world, hello 

world", key)

The code in Listing 5-2, although not secure, does show the basic concept behind 

the MAC. A piece of data is first padded and then encrypted. No matter how long it is, 

however, the last block (16 bytes) is determined by all of the preceding input. Change the 

first letter from an “h” to an “H,” and the MACs are completely different.
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Nevertheless, it can be exploited. Recall that a MAC must be unique for a given 

message and key pair. If an attacker can generate the same MAC for a different message 

with the same key, the MAC algorithm is broken.

It turns out that for this naive version of CBC-MAC, you can do exactly that. Let’s do 

it in code first and see if you can guess what’s going on. Note that Listing 5-3 is intended 

to be combined with Listing 5-2.

Listing 5-3.  MAC Prepend Attack

 1   # Partial Listing: Some Assembly Required

 2

 3   # Dependencies: BROKENCBCMAC1

 4   def prependAttack(original, prependMessage, key):

 5       # assumes prependMessage is multiple of 16

 6       # assumes original is at least 16

 7       prependMac = BROKEN_CBCMAC1(prependMessage, key, pad = False)

 8       newFirstBlock = bytearray(original [:16])

 9       for i in range (16):

10           newFirstBlock[i] ^= prependMac[i]

11       newFirstBlock = bytes(newFirstBlock)

12       return prependMessage + newFirstBlock + original [16:]

13

14   key = os.urandom(32)

15   originalMessage = b"attack the enemy forces at dawn!"

16   prependMessage = b"do not attack. (End of message, padding follows)"

17   newMessage = prependAttack(originalMessage, prependMessage, key)

18   mac1 = BROKEN_CBCMAC1(originalMessage, key)

19   mac2 = BROKEN_CBCMAC1(newMessage, key)

20   print("Original Message and mac:", originalMessage, mac1.hex())

21   print("New message and mac     :", newMessage, mac2.hex())

22   if mac1 == mac2:

23       print("\tTwo messages with the same MAC! Attack succeeded!!")

The two MACs produced by Listing 5-3 are identical. Our attack prepends another 

message of our choosing to the original and also corrupts the first block. The only 

restriction on the prepended message is that it must also have the CBC-MAC value for 

the prepended message under the same key. We turned off padding for this prepended 
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message to make the attack a little easier, but this is only for our convenience and not a 

prerequisite for the attack to succeed.

Sadly for the attacker, the original message requires modification to the first block; 

otherwise, the attack could have been even worse. The attacker could then create 

messages that say “do not attack the enemy forces at dawn!” The attacker also cannot 

scrub any of the data beyond the first block. In running the code, you probably noticed 

that “forces at dawn!” was still readable in the new message. Even so, this is still pretty 

bad: we added an entirely different message without changing the value of the MAC!

For this simple example, where we assume that a human is reading the output, 

we hope that our message that says the rest of the data is padding will be enough to 

convince the sender not to read further. In real attacks, transmitted data lengths and 

other similar mechanisms can often be used to achieve the same effect. If we are 

successful, we can basically send arbitrary message with the original MAC.

What went wrong? Before we give you an explanation, see if you can figure it out 

yourself. You might need to revisit how CBC mode works. If you need an additional hint, 

remember that A ⊕ B ⊕ B = A.

Let’s work through it together anyway. Suppose that we have a message M composed 

of arbitrary blocks of data m1 through mn. In the formulas that follow, let E represent the 

AES encryption operation and let t be the CBC-MAC tag computed over the data:

t = E(mn ⊕ E(mn−1 ⊕ ... E(m2 ⊕ E(m1, k), k) ... , k), k)

Notice that m1, the first block of the message, is encrypted by AES under key k and 

the output is XORed with m2 before being encrypted.

Suppose that we prepended a message P that was exactly one block in length. How 

would that change things? The CBC-MAC would obviously produce something different 

because we’re changing the first computation:

tP = E(mn ⊕ E(mn−1 ⊕ ... E(m2 ⊕ E(m1 ⊕ E(P, k), k), k) ... , k), k)

The outcome is as it should be. Changing the message (i.e., prepending a new block) 

changed the tag. But what if we already knew the output of the AES encryption of the 

prepended block E(P, k)? Let’s call it C. If E(P, k) = C, then we can prepend P to the chain 

without changing the final tag if we also corrupt the original first block m1 to be m1 ⊕ C.

t = E(mn ⊕ ... E(m2 ⊕ E(m1 ⊕ C ⊕ E(P, k), k), k) ... , k), k)
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When CBC operates on this corrupted chain, it attempts to XOR the encrypted 

output of the prepended block (C) into the plaintext of the corrupted first block (m1 ⊕ C). 

But the corrupted first block already has the XOR of C mixed in, the C values cancel! This 

just reduces to

t = E(mn ⊕ E(mn−1 ⊕ ... E(m2 ⊕ E(m1 ⊕ C ⊕ C, k), k) ... , k), k)

Effectively, we have canceled out the input of the prepended block on the final tag! 

We’re back to the original MAC of the message!

t = E(mn ⊕ E(mn−1 ⊕ ... E(m2 ⊕ E(m1, k), k) ... , k), k)

This example was just for a single block. But it turns out that no matter how long the 

prepended message is, we only care about the part that will be XORed with m1 before it 

is encrypted. In a CBC chain of arbitrary length, the only part that carries over into the 

next block is the last encrypted block of the chain. In other words, the MAC output of the 

CBC-MAC operation, t, is the only part of a prepended message that would impact what 

follows it!

Suppose, then, that you have two messages M1 and M2 and two corresponding tags 

t1 and t2, both of which were generated under the same key using our broken CBC-MAC 

algorithm. To create a falsified message, first XOR t1 with the first block of M2 to produce 

M2’. Now create M3 = M1 + M2′ (plus means concatenation). The CBC-MAC of M3 will also 

be t2 because (using C(·) to mean “MAC”):

t2 = E(M2,n ⊕ E(M2,n−1 ⊕ ... E(M2,1 ⊕ t1 ⊕ C(M1, k), k) ... , k), k)

As the MAC of M1 is t1, it cancels out with the other t1 and the MAC of what is left is 

just the MAC of M2.

A visualization of this attack, and the math we just worked through, is depicted in 

Figure 5-2.

Importantly, you do not need the key to do this attack. In our code example, we had 

the key ourselves and generated an arbitrary message. This is still an attack, because 

even the possessor of the shared key should not be able to send two messages with the 

same MAC.
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But with this attack, an attacker without the key can generate a new message 

and a falsified tag from two existing messages (e.g., generated by the victim) and 

corresponding tags.

There are various solutions to this problem, but the only one we’ll mention here is to 

enforce that each message is prepended with the length of the message, as in Listing 5-4.

Listing 5-4.  Prepend Message Length

 1   # Reasonably secure concept. Still, NEVER use it for production code.

 2   # Use a crypto library instead!

 3   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 4   from cryptography.hazmat.backends import default_backend

 5   from cryptography.hazmat.primitives import padding

 6   import os

 7

 8   def CBCMAC(message, key):

 9       aesCipher = Cipher(algorithms.AES(key),

10                           modes.CBC(bytes(16)), # 16 zero bytes

11                           backend=default_backend())

12       aesEncryptor = aesCipher.encryptor()

13       padder = padding.PKCS7(128).padder()

Figure 5-2.  An attacker can prepend a message without changing the (simple) 
CBC-MAC by corrupting just the first block
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14

15       padded_message = padder.update(message)

16       �padded_message_with_length = len(message).to_bytes(4, "big") + 

padded_message

17       ciphertext = aesEncryptor.update(padded_message_with_length)

18       return ciphertext[-16:]

To use CBC-MAC securely, there are a few additional caveats:

	 1.	 If you are also encrypting the data with AES-CBC, you must not 

use the same key for both encryption and MAC.

	 2.	 The IV should be fixed to zero.

A full explanation of each of these is beyond the scope of this book. Assuming 

that you follow them, however, the included CBC-MAC code is reasonably secure. 

We still don’t recommend using it because it is always dangerous to create your own 

cryptographic algorithms or even your own implementations of known cryptographic 

algorithms. Instead, always use algorithms in trusted cryptographic libraries.

The Cryptography library that we are using for our example code includes 

CMAC. This algorithm is an updated and improved CBC-MAC defined in RFC 4493. 

Either CMAC or HMAC are good choices for a MAC algorithm; HMAC might be faster on 

most systems without specialized AES encryption hardware.

Using CMAC from the library is straightforward. The following is taken directly from 

the online documentation:

>>> from cryptography.hazmat.backends import default_backend

>>> from cryptography.hazmat.primitives import cmac

>>> from cryptography.hazmat.primitives.ciphers import algorithms

>>> c = cmac.CMAC(algorithms.AES(key), backend=default_backend())

>>> c.update(b"message to authenticate")

�Encrypting and MACing
In many circumstances a message needs to be encrypted and protected from 

modification. In the first code example in this chapter, Alice and Bob used an unkeyed 

hash to protect an encrypted message. Obviously, that doesn’t work because without a 

key, anyone can generate the corresponding hash. Now that our intrepid (or dastardly) 

duo know how to use HMAC and CMAC, they can update their code.
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EXERCISE 5.6. ENCRYPT THEN MAC

Update the code from the beginning of the chapter to do a proper MAC by replacing the  

SHA-256 operation with HMAC or CMAC. Use two keys.

Pay attention to when you use MAC and what you use it on in the previous exercise. 

You will notice that it is the ciphertext that the MAC is applied to, not the plaintext. As the 

name of the exercise implied, this is called Encrypt-Then-MAC. There are two other ways 

of sending an encrypted and authenticated message that have been done in the past.

One is MAC-Then-Encrypt. In this version, the MAC is applied to the plaintext, and 

then both the plaintext and the MAC are encrypted together. This approach was taken by 

early versions of TLS (which is used for HTTPS connections).

Another approach is called Encrypt-And-MAC. To take this approach, the MAC 

is again computed over the plaintext, but the MAC itself is not encrypted. It is sent 

(unencrypted) along with the ciphertext. If you’ve ever used Secure Shell (SSH or 

PuTTY), it uses Encrypt-And-MAC.

It is strongly recommended by most cryptographers, with a few dissenters, as there 

are always some of those, to use Encrypt-Then-MAC3 over these other two approaches. 

In fact, certain practical vulnerabilities have been found against certain combinations 

of MAC-Then-Encrypt. You have already demonstrated one! The padding oracle attack 

against CBC in the previous chapter only works against MAC-Then-Encrypt scenarios.

There’s an even better approach called AEAD (authenticated encryption with 

additional data) that we will learn about in Chapter 7 that combines encryption and 

message integrity into a single operation. If, for whatever reason, you need to combine 

encryption and MAC, make sure you choose Encrypt-Then-MAC (i.e., encrypt the 

plaintext and then compute a MAC over the ciphertext).

We won’t go into the various arguments for why Encrypt-Then-MAC is generally 

considered better but one point is worth mentioning. As we have talked about in other 

circumstances, we generally don’t want bad guys messing around with our ciphertext. It 

can be unintuitive because we tend to think about the end goal: protecting the plaintext. 

But bad things happen when the bad guys can change the ciphertext without us being 

3�Are you confused, yet? “Encrypt-And-MAC” means to apply them both to the plaintext, while 
“Encrypt-Then-MAC” means to apply the MAC to the ciphertext: after encryption.
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able to detect it. When you do Encrypt-Then-MAC, the ciphertext should be protected 

against modification.

EXERCISE 5.7. KNOW THY WEAKNESS

Encrypt-Then-MAC is the recommended approach to combining encryption and MACs. 

However, it is good to understand all three approaches. If nothing else, if you ever have to 

maintain code you did not write, or have to be compatible with legacy systems, you may 

encounter this in the future. Modify your (highly recommended) Encrypt-Then-MAC system to 

create a MAC-Then-Encrypt variant. Finally, create a MAC-And-Encrypt version as well.

�Digital Signatures: Authentication and Integrity
Alice and Bob love sending encrypted messages with HMACs (using Encrypt-Then-

MAC). On their current assignment in West Antarctica, they each have four keys. 

One pair allows them to send encrypted and MAC-protected messages to each other 

(remember, one key for encryption, one key for MAC generation), and the second pair 

allows them to send and receive encrypted and MAC-protected messages to and from 

HQ back in East Antarctica.

Unfortunately, one day Alice is captured as she attempts to infiltrate the West 

Antarctic Snowball Testing Edifice. Instantly, everything is thrown into disarray as Eve 

now has access to all of her keys.

This is a terrible compromise. Eve is now able to send messages as though they are 

from Alice or HQ! Trying to mitigate this loss of confidentiality and authentication is 

a nightmare. Bob’s situation is bad. He needs two new keys to communicate with HQ 

and perhaps two new keys for communicating with a new partner in the field. This can 

only be done by returning to HQ, which means pulling him out of the field, potentially 

wasting time and resources he has spent infiltrating his targets and gathering data. 

Worse, he can’t even be reliably told about what is going on! If he doesn’t have first-hand 

knowledge of Alice’s capture, any messages sent by HQ informing him of the event or 

instructing him to come home can be intercepted and changed.

As bad as things are for Bob, HQ is in far worse shape. They were using the same 

shared keys for encrypting and tagging all of their messages. Every single agent in the 

field has the compromised keys lost by Alice. Eve can impersonate HQ to any of them. 
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And Eve can send messages to HQ as any of the agents, because they did not have their 

own individual keys for communicating with HQ.

The loss of the shared keys sets EATSA back at least 12 months.

As bad as it is that Eve can read the traffic between HQ and their agents using the 

encryption keys, it might be worse that she can send messages pretending to be any 

of these parties by using the MAC keys. To repeat one of our earlier comments, when 

people first start to learn about cryptography, they typically think about “encryption”  

as its main purpose or characteristic. As our fictional example illustrates, 

authentication—knowing who sent a message—is at least as important, and arguably 

more so.

Even once EATSA manages to get all of their agents’ home and is no longer using 

the old keys (the old keys are thus “revoked”), they have the problem of coming up with 

a key management system to avoid the same problem in the future. One option they 

consider is for each agent to have their own individual key. If either HQ or an agent 

wants to send a message, they use their individual key to tag it.

The problem is MACs require shared keys. The receiver of the message must have the 

same key as the sender. How will they obtain it? Will every agent have every other agent’s 

key? If so, an agent’s capture is just as bad as if there was only one key. Worse, nothing 

keeps an agent from using another agent’s key (impersonating them) either by accident 

or because they go rogue.

Eventually, one of the scientists remembers asymmetric encryption from Chapter 4,  

specifically that it can be used for something called a digital signature. Like message 

authentication codes, digital signatures are designed to provide authenticity (you can 

tell who sent the message) and message integrity (the message cannot be changed 

undetectably). Furthermore, because they use asymmetric encryption, there are no 

shared keys. At the time the EA started playing around with asymmetric encryption, 

they became very, very focused on encryption of messages (confidentiality) and digital 

signatures fell off to the side.

It is time to remedy that.

What exactly is a digital signature? First, let’s review how asymmetric encryption 

works for the RSA algorithm we studied in Chapter 4. Unlike symmetric encryption 

where there is a single shared key between parties, RSA’s asymmetric encryption 

involves a pair of keys: the public key and the private key. These keys work as opposites 

of one other: what one encrypts, the other decrypts. Moreover, the RSA public key can be 

derived from the private key but not the other way around.
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As the name implies, a party should keep the RSA private key private and disclose 

it to nobody, ever. On the other hand, the RSA public key can and typically should be 

widely disseminated. This setup enables two very interesting operations.

First, because the RSA public key is held by anyone (and potentially by everyone!), 

it is easy for anyone in the world to send an encrypted message to the owner of the 

corresponding RSA private key. Anyone can use the public key to encrypt the message, 

but only the party with the private key can decrypt it.

This is important! The person that sends the encrypted message knows that only 

the party possessing the private key can decrypt the message. This is a different kind of 

reverse authenticity. The recipient of the message has no idea who sent it, but the sender 

can be certain (if the keys are secure) that only the intended party can read the message. 

Our introduction to RSA asymmetric encryption in Chapter 4 focused on this use case.

But, the direction of the encryption can be reversed: RSA private keys can also be used to 

encrypt messages. The party that has the private key can thus use it to encrypt something that 

can only be decrypted by the public key. What good would that do? Anybody (everybody!) 

could have the public key. This encryption certainly won’t keep data confidential!

This is true! But, a message sent encrypted under the RSA private key can only have 

been encrypted by someone who has that private key. Even if everyone can decrypt it, the 

fact that it can be decrypted by a particular public key is a proof that the sender holds the 

private key. In other words, if you get a message that you can decrypt using my public key, 

you know that it came from me; nobody else could have encrypted it. That sounds useful!

Let’s suppose that the EA wants to publish a manifesto of West Antarctica’s crimes to 

the whole world. First they could disseminate their RSA public key everywhere and then 

encrypt the document under the associated private key. Now, when they distribute the 

document, anyone in the world can decrypt it, and that fact proves to them that it came 

from the EA.

This system is great, but it has a couple of important flaws. First of all, how does the 

world know that the RSA public key really belongs to the EA (and is not a fake from the 

WA, for example)? This is a critically important question and we’ll get to it a bit later. 

For now, we will assume that recipients have a legitimate, trusted RSA public key for the 

intended party.

Another problem is efficiency. RSA encryption is slow. Decrypting long documents 

to verify the sender is not a remotely efficient way of doing things. Worse, some 

asymmetric algorithms do not have any built-in message integrity. Oh, and while 

we’re talking about RSA’s limitations, it can’t encrypt something as long as a document 

anyway.
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These latter two problems of efficiency and integrity are fortunately easily addressed. 

Recall that we are not encrypting for confidentiality, but for proof of origin or authenticity. 

Instead of encrypting the message itself, how about encrypting a hash of the message?

That is the basic idea of an RSA digital signature over arbitrary data. It consists of two 

steps. First, hash the data. Second, encrypt the hash with the private key. The encrypted 

hash is the sender’s signature applied to the data. The signature can now be transmitted 

along with the original (potentially unencrypted) data. When the recipient receives data 

and a signature, the recipient generates the hash, decrypts the signature with the public 

key, and verifies that the two hashes (generated and decrypted) are identical.

Here is how cryptographers might represent this. First, for a message M, we generate 

a hash using a hash function: h = H(M).

Once we have the hash h, we encrypt it under the RSA private key. To depict this 

operation, we are going to use some notation that is often used in cryptographic 

protocols. Specifically, we will use {⋅} to indicate RSA-encrypted data. Everything 

within the braces is plaintext, but the braces indicate that the plaintext is within some 

cryptographic envelope. The braces will also have a subscript indicating the key. So, 

for example, the ciphertext C is the plaintext P encrypted under some key K, and this is 

depicted as C = {P }K.

From this point forward in the book, a shared key between two parties will be 

depicted with a subscript indicating both parties. So, for example, a key between Alice 

and Bob can be depicted as KA,B. This would be an example of a symmetric key.

Public keys, such as RSA public keys, will be denoted by a key with just one 

identifying party. For example, Alice’s public key could be denoted KA and Bob’s would 

similarly be KB. Because the public key is what is distributed, it is what is named. The 

private key is denoted instead as the inverse of a public key: K–1
A and K–1

B).

In this chapter, we will also typically use the letter t to represent RSA signatures 

because a signature is also sometimes called a tag, just like a MAC is. Thus, we  

represent an R:

tM = {H(M)}K
−1

When another party with possession of the RSA public key K receives M, {H′(M)}K
−1, 

the signature is decrypted by the public key to recover H′(M). The receiving party 

generates their own H(M), and the signature is considered authentic if H′(M) = H(M).

At the risk of being repetitive, remember that RSA public key encryption is used for 

different things than private key encryption. Encryption with the RSA public key keeps 
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the message confidential: only the private key owner can read it. Encrypting with the RSA 

private key proves authenticity: only the owner could have authored it.

In the EA spy agency, this seems miraculous! The agency generates an RSA key  

pair for itself and also has all of the agents generate an RSA key pair. The agency keeps a 

copy of all the public keys of all the agents, and every agent takes a copy of the agency’s 

public key.

When the agency sends an encrypted message to Alice, they encrypt it under her 

public key and only Alice will be able to decrypt it. They also sign the message with 

their private key, and Alice can use the agency public key to verify that the message is 

authentic and uncorrupted. So long as Alice and Bob have a copy of each other’s public 

keys, they can likewise send encrypted and authenticated messages to each other.

This is a big step forward, and it seems pretty great.

It really is, but as has so often been true with the EA’s cryptographic experiences, 

there are complications, caveats, and subtleties. Before we get into that, however, let’s 

help Alice and Bob learn how to send each other some signed communications. For 

simplicity, we are not going to encrypt them.

Again, the cryptography library comes to our rescue with its signing and verification 

functions: we do not need, nor should we attempt, to implement digital signatures 

ourselves. Rather, using our library, we will generate some RSA signatures.

Listing 5-5.  Sign Unencrypted Data

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives.asymmetric import rsa

 3   from cryptography.hazmat.primitives import hashes

 4   from cryptography.hazmat.primitives.asymmetric import padding

 5

 6   private_key = rsa.generate_private_key(

 7       public_exponent=65537,

 8       key_size=2048,

 9       backend=default_backend()

10   )

11   public_key = private_key.public_key()

12

13   message = b"Alice, this is Bob. Meet me at Dawn"

14   signature = private_key. sign(

Chapter 5  Message Integrity, Signatures, and Certificates



188

15       message,

16       padding.PSS(

17           mgf=padding.MGF1(hashes.SHA256()),

18           salt_length=padding.PSS.MAX_LENGTH

19       ),

20       hashes.SHA256()

21   )

22

23   public_key.verify(

24       signature,

25       message,

26       padding.PSS(

27           mgf=padding.MGF1(hashes.SHA256()),

28           salt_length=padding.PSS.MAX_LENGTH

29       ),

30       hashes.SHA256()

31   )

32   print("Verify passed! (On failure, throw exception)")

There’s probably a bit more in Listing 5-5 than expected, particularly in the padding 

configuration. Let’s walk through it all.

First, we generate a key pair. For RSA, the public key is derivable from the private key, 

so generating the private key generates the key pair. The API includes a call to obtain the 

public key from the private key. In this example, both keys are used. In a real example, 

the signing and verification code would live in completely different programs, and the 

verification program would only have access to the public key, not the private key.

In Chapter 4 we also learned how to serialize and de-serialize these kinds of RSA 
keys from disk.

In the next part of the code, we sign the message. You will notice that we are 

using padding here just as we did for RSA encryption, but it is a different scheme. The 

recommended paddings for RSA are OAEP for encryption and PSS for signatures. 

Perhaps that surprises you given that RSA signatures are generated by encrypting a hash. 

If it’s all encryption anyway, why do we need different padding schemes?
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The answer is that, because signatures are operating on a hash, there are certain 

characteristics that must be true about the data. The nature of arbitrary data encryption 

vs. hash encryption drives the two different padding schemes.

Like the OAEP padding used in Chapter 4, PSS padding function also requires the 

use of a “mask generation function.” At the time of this writing, there is only one such 

function, MGF1.

Finally, the signature algorithm requires a hashing function. In this example, we are 

using SHA-256.

The parameters to the verification algorithm should be self-explanatory. Note that 

the validation function does not return a true or false, rather it raises an exception if the 

data does not match the signature.

Important P lease pay careful attention to this next paragraph. It is very 
important and somewhat counter-intuitive.

If you wanted to encrypt and sign, should you sign first and then encrypt, or should 

you encrypt first and then sign? After the discussion in the previous section on Encrypt-

Then-MAC, you might be thinking Encrypt-Then-Sign.

But signatures are not MACs, and you should generally not use Encrypt-Then-Sign. 

There are two very important reasons.

First, remember that the goal of the signature is not just message integrity but also 

sender authentication. Suppose that Alice is sending an encrypted message to Bob, and 

she encrypts the message before signing it. Anyone can intercept the message, strip off 

the signature, and send the message re-signed under their own key. Oops.

It isn’t clear how practical this attack is because the data was encrypted under the 

receiver’s public key that everyone already has. The attacker could just send their own 

encrypted message to Bob (encrypted by Bob’s public key) anyway. The attacker can’t 

even decrypt Alice’s message to see if he/she wants to take credit for it. But the point is, 

there is no association between the plaintext and the signature, and there really needs to 

be: Bob is interested in knowing that the message he can read comes from Alice and not 

someone else. If the encrypted data is signed instead of the plaintext, when Bob receives 

the ciphertext and the signature, he cannot reliably determine who authored the original 

message.
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In short, if you sign an encrypted message, it is too easy for it to be intercepted and 

signed by someone else instead, which compromises its authenticity. The signature 

should be applied to the plaintext.

Second, and far more important, signatures cannot prevent the bad guys from 

altering the ciphertext. Remember, the number one reason for using Encrypt-Then-MAC 

was to prevent undetectable alteration of the encrypted data. With Encrypt-Then-Sign, 

Eve, for example, could intercept a message from Alice to Bob, strip off Alice’s signature, 

alter the ciphertext, and then sign the altered data with her own key. What good is this, 

you might ask? After all, Bob will see that the message is now signed by Eve and not 

Alice. Why would he trust it?

There are any number of reasons Bob will accept the signature. For example, 

Eve may have compromised another agent’s key. The whole reason for using RSA 

encryption was to prevent the compromise of one agent’s key from compromising the 

communications of another. But if Eve gets a legitimate signing key, she can strip off 

Alice’s signature, modify the ciphertext, and re-sign with something Bob will accept.

Once this happens, Eve can observe Bob’s behavior to learn things about Alice’s 

message. As we used in earlier examples, even Bob throwing away a message is 

information that Eve can use to her advantage (e.g., she knows that the message she sent 

to him was unreadable).

Does this sound far-fetched? Well, exactly this kind of vulnerability in Apple’s 

iMessage was discovered by Matt Green. You can read about it on his blog [6]. We won’t 

discuss his attack in detail here other than to say that this kind of attack is actually very 

practical.

So please, do not Encrypt-Then-Sign.

Why is this so different from MACs? Why does Encrypt-Then-MAC work? The 

fundamental difference comes back to the keys. With a MAC, there is a shared key, 

typically shared between just the two parties. Nobody should be able to replace a MAC 

created by a key shared between Alice and Bob because nobody else should have the 

key. The private key used to create a digital signature, however, is not shared and does 

not bind any parties together.

What should you do? In the first place, there don’t seem to be many crypto systems 

this applies to. If you are using symmetric encryption, it is usually no problem to include 

a symmetric MAC. If Apple had done this, the iMessage attack we mentioned wouldn’t 

have been possible. Asymmetric encryption is not generally used for bulk encryption. 

When encrypting a lot of data is necessary, the usual approach is to exchange or create 
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a symmetric key using the asymmetric cryptography and then switch to symmetric 

algorithms. We will talk about this in the next chapter.

If you absolutely must sign and encrypt without the benefit of a symmetric MAC 

(e.g., RSA encryption plus some signatures), the plaintext message should be signed and 

both the plaintext and signature should be encrypted (Sign-Then-Encrypt). Although 

this means that an attacker can try to mess around with the ciphertext, a good RSA 

padding scheme like OAEP should make this very difficult.

While there are no known attacks against Sign-Then-Encrypt, some of the most 

paranoid still Sign-Then-Encrypt-Then-Sign-Again. The inner signature is over 

the plaintext, proving authorship, and the outer signature is over the ciphertext, 

ensuring the integrity of the message. One other alternative is something called 

“signcryption.” Because signcryption isn’t supported by the Python cryptography 

library, we won’t spend any time on it here, but the curious can read this paper 

about it: www.cs.bham.ac.uk/~mdr/teaching/modules04/security/students/SS3/

IntroductiontoSigncryption.pdf.

For now we will stick with the slightly less paranoid Sign-Then-Encrypt strategy. 

Remember, however, that RSA encryption can only encrypt a very limited number of 

bytes. When OAEP padding is used with SHA-256, the maximum plaintext that can 

be encrypted is only 190 bytes! If you start encrypting signatures, there may be very 

little room left for anything else. If your message is too long, you will have to break it 

up and encrypt it in 190-byte chunks. This is all the more reason to use the combined 

asymmetric and symmetric operations we will see in the next chapter.

EXERCISE 5.8. RSA RETURNS!

Create an encryption and authentication system for Alice, Bob, and EATSA. This system 

needs to be able to generate key pairs and save them to disk under different operator names. 

To send a message, it needs to load a private key of the operator and a public key of the 

recipient. The message to be sent is then signed by the operator’s private key. Then the 

concatenation of the sender’s name, the message, and the signature is encrypted.

To receive a message, the system loads the private key of the operator and decrypts the data 

extracting the sender’s name, the message, and the signature. The sender’s public key is 

loaded to verify the signature over the message.
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EXERCISE 5.9. MD5 RETURNS!

In Chapter 2, we discussed some of the ways that MD5 is broken. In particular, we emphasized 

that MD5 is still not broken (in practice) for finding the preimage (i.e., working backward). 

But it is broken in terms of finding collisions. This is very important where signatures are 

concerned because signatures are typically computed over the hash of data and not the data 

itself.

For this exercise, modify your signature program to use MD5 instead of SHA-256. Find two 

pieces of data with the same MD5 sum. You can find some examples at or with a quick search 

of the Internet. Once you have the data, verify that the hashes are the same for the two files. 

Now, create a signature for both files and verify that they are the same.

One last thing should be mentioned. In some cases, you may not have all of the data 

to be signed all at once. The sign function does not have an update method like hashing 

functions do. It does have an API to submit pre-hashed data, however. This allows you 

to hash the data that needs to be signed separately. Here is an example drawn from the 

cryptography module documentation:

>>> from cryptography.hazmat.primitives.asymmetric import utils

>>> chosen_hash = hashes.SHA256()

>>> hasher = hashes.Hash(chosen_hash, default_backend())

>>> hasher.update(b"data & ")

>>> hasher.update(b"more data")

>>> digest = hasher.finalize()

>>> sig = private_key.sign(

...     digest,

...     padding.PSS(

...         mgf=padding.MGF1(hashes.SHA256()),

...         salt_length=padding.PSS.MAX_LENGTH

...     ),

...     utils.Prehashed(chosen_hash)

... )
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�Elliptic Curves: An Alternative to RSA
It’s time we told you the truth about asymmetric cryptography. Everything we’ve told you 

so far has been RSA-specific and quite a bit of what RSA does is actually unique.

When we talk about asymmetric, or public key, cryptography, we are referring  

to any cryptographic operations that involve a public and private key pair. In  

Chapter 4 we looked almost exclusively at RSA encryption, and in this chapter, we 

explored RSA signatures. Conveniently, RSA signatures are also based on RSA encryption 

(i.e., encrypting a hash of the data to be signed). But most other asymmetric algorithms 

do not even support encryption as a mode of operation at all and do not use encryption 

for generating a signature. Other asymmetric algorithms, for example, generate a 

signature or tag that does not involve any encryption and verify the signature without 

any kind of reversible operation such as decryption.

This is one reason why we have tried to qualify our conversations about asymmetric 

cryptography through the book by referring specifically to “RSA public keys,” “RSA 

encryption,” and “RSA asymmetric operations.” You should not assume that other 

asymmetric algorithms provide the same operations or do them in the same way.

Why focus so much on RSA encryption? We do this here because RSA has been one 

of the most popular algorithms for asymmetric operations for decades. It is still found 

absolutely everywhere, and you will be hard-pressed not to run into it somewhere. DSA 

(digital signing algorithm) is another asymmetric algorithm, but it is only usable for 

signatures, not for encryption. For educational and practical purposes, then, RSA is a 

great place to start.

With that said, RSA is slowly getting phased out. It has been found to have a lot of 

weaknesses, some of which we have explored already. Cryptography based on “elliptic 

curves”4 has been used both to sign data and to exchange keys. In this chapter we will 

look at ECDSA’s signing capabilities. In Chapter 6 we will look at something called 

Elliptic-Curve Diffie-Hellman (ECDH) that is used to create and agree on session keys. 

ECDH’s key agreement provides an alternative (arguably a better alternative) to the key 

transport functionality enabled by RSA encryption.

To sign data with elliptic curves, you make use of the ECDSA algorithm. Just as you 

must choose parameters for RSA (such as e, the public exponent), you must also choose 

parameters in EC-based operations. The most obvious of these is the underlying curve. 

4�The math upon which elliptic-curve cryptography is based is beyond the scope of the book. The 
goal of this section is simply to make you aware of the algorithms and show you how to use them.
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Again, the actual mathematics are not discussed in this book, so we will satisfy ourselves 

by saying that different elliptic curves can be used in these algorithms.

For ECDSA, the cryptography library provides a number of NIST-approved curves. 

It should be noted that some cryptographers are wary of these curves because it is 

possible that the US government recommends curves that it knows can be broken. With 

that said, these are the only curves currently provided by the library. If you use these 

in production, you should keep an eye out for additional information about security 

vulnerabilities and potential replacements.

For this test, we will use NIST’s P-384 curve, which is referred to as SECP384r1 in the 

library. From the cryptography documentation

>>> from cryptography.hazmat.backends import default_backend

>>> from cryptography.hazmat.primitives import hashes

>>> from cryptography.hazmat.primitives.asymmetric import ec

>>> private_key = ec.generate_private_key(

...     ec.SECP384R1(), default_backend()

... )

>>> data = b"this is some data I'd like to sign"

>>> signature = private_key.sign(

...     data,

...     ec.ECDSA(hashes.SHA256())

... )

>>> public_key = private_key.public_key()

>>> public_key.verify(signature, data, ec.ECDSA(hashes.SHA256()))

As with RSA signing, you do have to pick a hash function. Again, we have chosen 

SHA-256. You will notice that, although it might seem daunting to pick a curve function, 

once that’s done, the rest of the operation is very straightforward.

ECDSA also has the same pre-hashed API as RSA for processing large amounts  
of data.
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�Certificates: Proving Ownership of Public Keys
In our example with Alice and Bob and public keys, we assumed that every interested 

party had the public key of every other interested party. In our scenario, this might be 

possible. The HQ could gather all the spies together and have everyone exchange  

public keys.5

This might not be feasible over time, however.

What if Noel, a new spy, enters the field after everyone else? Assume agent Charlie 

has been captured and Noel has been sent to take his place. Alice and Bob already had 

Charlie’s key, but they don’t yet have Noel’s key.

Of course, Noel can’t just show up and hand out a public key. Otherwise, Eve could 

send in fake agents handing out public keys claiming to be real EA agents. She can create 

certificates just as easily as HQ. How can Alice and Bob recognize that Noel is a true 

EATSA agent and is not working for Eve?

One possibility is to have HQ send Alice and Bob a message with the name and 

public key of the new agent. Alice and Bob already trust HQ and already have HQ’s 

public key. HQ can act as a trusted third party between them and Noel. In the early days 

of PKI, this was exactly what was proposed to establish trust. This model was called a 

“registry.” A registry would be a central repository of identity-to-public-key mappings. 

The registry’s own public key would be disseminated everywhere: newspapers, 

magazines, textbooks, physical mailings, and so forth. So long as everyone had a true 

copy of the registry’s key, they could look up the public key of anyone registered within it.

The problem at the time, although it is less of a problem now, was scale. Although 

contemporary computing envisions the Googles, Amazons, and Microsofts of the world 

handling billions of connections from all over the world all the time, such was not the 

case in the 1990s. It was believed that an online registry was simply not scalable.

In the case of our spies, they have to assume they may be cut off from HQ. They may 

have to go into deep cover, or they may be on the run from Eve, or maybe the EA wants to 

disavow any of their activities for a time. For any or all of these reasons, they may not be 

able to get a timely message from HQ. If they’re on the run from Eve, it would be great if 

they could tell whether the spy who meets them at the safe house is on their side.

This brings us to certificates. A public key certificate is just data; it generally includes 

a public key, the metadata related to ownership of the key, and a signature over all of the 

5�An analog of this happens in the real world: PGP signing parties. You might want to look for more 
information about this using your favorite web search engine.
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contents by a known “issuer.” The metadata includes information such as the identity of 

the owner, the identity of the issuer, an expiration date, a serial number, and so forth. The 

concept is to bind the metadata, especially for identity, to the public key. The identity 

can be a name, an email address, a URL, or any other agreed-upon identifier.

Instead of simply handing out public keys to their agents, HQ can now hand out 

certificates.6 First, the agent generates their own key pair (nobody, not even HQ, should 

ever have the agent’s private key). Next, HQ takes the agent’s public key and starts 

creating a certificate by including the identifying information about the agent, such as 

their code name.7 To complete the certificate, HQ signs it with the HQ private key and 

becomes the issuer.

To repeat, the public key in the certificate belongs to the agent. The agent keeps their 

own private key private.8 As illustrated in Figure 5-3, the signature on the certificate was 

generated by the issuer’s private key (in this case, HQ’s private key).

6�Remember, these contain public keys, but are also signed, etc.
7�Although, remember that certificates are public! Don’t put information in a certificate that you 
don’t want other people to see. Maybe that’s not the right place for a code name?

8�Apparently, some web servers ask for a “certificate” to be installed but require both a certificate 
and a private key. This is an unfortunate misuse of words that have clear meanings. Certificates 
are public and only contain public keys. Private keys are private and are not part of a certificate.

Figure 5-3.  The primary purpose of a certificate is to bind an identity and a public 
key together. An issuer can sign the certificate data preventing modification and 
providing trust.
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Let’s go back to our scenario where Alice is on the run in West Antarctica with Eve’s 

agents hot on her trail. She gets to a safe house and sees an agent she’s never met before: 

Charlie. To prove that he is who he says he is, Charlie presents his certificate. Alice 

checks that the identity data matches his claim (e.g., that the identity in the certificate is 

“charlie”). Next, Alice checks that the issuer of the certificate is HQ and then verifies the 

signature included in the certificate. Remember, the signature in the certificate is signed 

by the issuer (HQ). Using HQ’s public key issued to her before she left on the mission, 

Alice’s signature check is successful. Thus, Alice knows that the certificate must have 

been issued by HQ because nobody else could have generated a valid signature. The 

certificate is authentic, and Alice now has (and trusts) Charlie’s public key for future 

communications.

Of course, there is one more wrinkle. Charlie’s certificate is public! There’s nothing to 

stop Eve from having a copy and present it to Alice herself. How does Alice know that the 

person at the door that claims to be Charlie, with certificate in hand, really is Charlie?

Charlie must now prove his identity by signing some data for Alice. Alice gives him 

some kind of test message, and Charlie signs it with his private key. Alice verifies the 

signature on this data using the public key from his certificate. The signature check 

passes, so Alice knows that Charlie must be the owner of the certificate. Only the owner 

has (or should have!) the private key associated with the public key necessary to sign 

data. Of course, if Charlie were captured and his private key compromised, all bets 

would be off!

In summary, Charlie signs with his private key to prove it is his certificate, but Alice 

checks the signature in the certificate to ensure that the certificate itself was issued by 

someone she trusts. Alice’s point of view for this process is shown in Figure 5-4.
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Let’s go through some examples to see how this works. For the first exercise, we are 

not going to use real certificates, at least not yet. For now, we’re going to use a simple 

dictionary as our certificate data structure, and we’re going to use the Python json 

module to convert it to bytes.

Warning: Not for Production Use 

My, we do say that “not for production use” thing a lot, don’t we? We kind of have to. 
Cryptography is uniquely and simultaneously subtle and alluring: the concepts are 
relatively simple to describe, but tiny details can make the difference between good 
security and no security. Those details are sometimes hard to discover, and proving 
that they are correct is hard.

Don’t use any of the non-library implementations from this book in production  
and do not assume that even our use of libraries is an appropriate solution.  
Don’t assume that an example has taught you enough to roll your own crypto,  

Figure 5-4.  Who’s knocking at the door? Alice would like to know before she lets in 
whoever it is!
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and don’t assume that you have mastered the correct use of the libraries. Don’t even 
assume that our list of things that go wrong is complete!

Remember, YANAC (You Are Not A Cryptographer... yet!). We’ll be saying this again. 
It’s what we do.

The example we’re going to work has three parties: the party claiming an identity 

(Charlie), also known as the subject, the party verifying the claim (Alice), and the trusted 

third party that issued the certificate (HQ). Two of these parties, Charlie and HQ, will 

need RSA key pairs. You can generate RSA key pairs and save them to disk using the 

rsa_simple.py script from Chapter 4. For the rest of this exercise, we will assume that 

HQ’s keys are saved in hq_public.key and hq_private.key and Charlie’s keys are saved 

in charlie_public.key and charlie_private.key.

Also, for clarity, we have created three separate scripts for each one of these  

parties. The first script is used by the issuer (HQ) to generate a certificate from an existing 

public key.

Listing 5-6.  Fake Certificate Issuer

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives.asymmetric import rsa

 3   from cryptography.hazmat.primitives.asymmetric import padding

 4   from cryptography.hazmat.primitives import hashes

 5   from cryptography.hazmat.primitives import serialization

 6

 7   import sys, json

 8

 9   ISSUER_NAME = "fake_cert_authority1"

10

11   SUBJECT_KEY = "subject"

12   ISSUER_KEY = "issuer"

13   PUBLICKEY_KEY = "public_key"

14

15   def create_fake_certificate(pem_public_key, subject, issuer_private_key):

16       certificate_data = {}

17       certificate_data[SUBJECT_KEY] = subject
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18       certificate_data[ISSUER_KEY] = ISSUER_NAME

19       certificate_data[PUBLICKEY_KEY] = pem_public_key.decode('utf-8')

20       raw_bytes = json.dumps(certificate_data).encode('utf-8')

21       signature = issuer_private_key.sign(

22           raw_bytes,

23           padding.PSS(

24               mgf=padding.MGF1(hashes.SHA256()),

25               salt_length=padding.PSS.MAX_LENGTH

26           ),

27           hashes.SHA256()

28       )

29       return raw_bytes + signature

30

31   if __name__=="__main__":

32       issuer_private_key_file = sys.argv[1]

33       certificate_subject = sys.argv[2]

34       certificate_subject_public_key_file = sys.argv[3]

35       certificate_output_file = sys.argv[4]

36

37       with open(issuer_private_key_file, "rb") as private_key_file_object:

38           issuer_private_key = serialization.load_pem_private_key(

39                            private_key_file_object.read(),

40                            backend=default_backend(),

41                            password=None)

42

43       �with open(certificate_subject_public_key_file, "rb") as public_

key_file_object:

44           �certificate_subject_public_key_bytes = public_key_file_object.

read()

45

46       �certificate_bytes = create_fake_certificate(certificate_subject_

public_key_bytes,

47                                                   certificate_subject,

48                                                   issuer_private_key)

49
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50       with open(certificate_output_file, "wb") as certificate_file_object:

51           certificate_file_object.write(certificate_bytes)

Let’s walk through Listing 5-6. There is only one function: create_fake_certificate. 

We are using the name “fake” not to indicate fraud, but rather that this is not a real 

certificate. Again, please don’t ever use this in production.9

The function creates a dictionary and loads three fields: a subject name (identity), 

an issuer name, and a public key. Note that there are (parts of) two key pairs being used 

in this file. There is an issuer private key and the subject public key. It is the subject’s 

private key that is being stored in the certificate. This public key in many ways represents 

the subject as it will be used to prove his or her identity. That is why it is so important 

that the certificate be signed.10 Otherwise, anyone could create a certificate to claim any 

identity they like.

Once the dictionary is loaded, we use json to serialize the dictionary to a string. 

JSON is a common and standard format, but in Python 3.x, it cannot encode bytes 

directly and it outputs a text string. For compatibility with the Python cryptography 

library, we load the PEM-encoded keys as binary bytes rather than as text. The public key 

to be stored in this JSON certificate has to be converted to a string first, but because it is 

PEM-encoded (i.e., it is already plaintext), we can convert it to UTF-8 safely. Similarly, 

the entire output of the json.dumps() operation is converted to bytes with a safe UTF-8 

conversion.

The bytes are then signed using the issuer’s private key. Only the issuer should have 

access to this private key because it is the issuer’s way of proving to the world that it 

(the issuer) has created the certificate. Our final certificate is the raw bytes from json 

concatenated with the bytes from the signature.

In our hypothetical example, Charlie wants to claim the identity “charlie.” Charlie 

starts out by generating a key pair. The public key (not the private key) is sent to the HQ 

certificate-issuing department and a request to make a certificate. The human beings 

within the issuing department should verify that Charlie has the right to claim the 

identity “charlie.” For example, the officer in charge might ask to see Charlie’s agency ID, 

review paperwork from a superior officer, check fingerprints, and so forth to ensure that 

the real Charlie will be given the certificate.

9�Told you.
10�By a trusted authority.
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The issuer script takes four parameters: the issuer private key file, the claimed 

identity that will be put into the certificate, the public key associated with the identity, 

and an output filename for the certificate. Using the keys you generated for this exercise, 

run the script as shown in the following:

python fake_certs_issuer.py \

  hq_private.key \

  charlie \

  charlie_public.key \

  charlie.cert

This will generate a (fake) certificate for Charlie with the claimed identity and 

associated public key, all signed by HQ.

Now Charlie can prove that he has the identity “charlie” to Alice. He starts by giving 

her the claimed identity (“charlie”) and providing the certificate.

The second script here is for Alice to verify Charlie’s claimed identity.

Listing 5-7.  Verify Identity in a Fake Certificate

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives.asymmetric import rsa

 3   from cryptography.hazmat.primitives.asymmetric import padding

 4   from cryptography.hazmat.primitives import hashes

 5   from cryptography.hazmat.primitives import serialization

 6

 7   import sys, json, os

 8

 9   ISSUER_NAME = "fake_cert_authority1"

10

11   SUBJECT_KEY = "subject"

12   ISSUER_KEY = "issuer"

13   PUBLICKEY_KEY = "public_key"

14

15   def validate_certificate(certificate_bytes, issuer_public_key):

16       �raw_cert_bytes, signature = certificate_bytes[:-256], certificate_

bytes [-256:]

17
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18       issuer_public_key.verify(

19           signature,

20           raw_cert_bytes,

21           padding.PSS(

22               mgf=padding.MGF1(hashes.SHA256()),

23               salt_length=padding.PSS.MAX_LENGTH

24           ),

25           hashes.SHA256())

26       cert_data = json.loads(raw_cert_bytes.decode('utf-8'))

27       cert_data[PUBLICKEY_KEY] = cert_data[PUBLICKEY_KEY].encode('utf-8')

28       return cert_data

29

30   def verify_identity(identity, certificate_data, challenge, response):

31       if certificate_data[ISSUER_KEY] != ISSUER_NAME:

32           raise Exception("Invalid (untrusted) Issuer!")

33

34       if certificate_data[SUBJECT_KEY] != identity:

35           raise Exception("Claimed identity does not match")

36

37       certificate_public_key = serialization.load_pem_public_key(

38           certificate_data[PUBLICKEY_KEY],

39           backend=default_backend())

40

41       certificate_public_key.verify(

42           response,

43           challenge,

44           padding.PSS(

45               mgf=padding.MGF1(hashes.SHA256()),

46               salt_length=padding.PSS.MAX_LENGTH

47           ),

48           hashes.SHA256())

49

50   if __name__ == "__main__":

51       claimed_identity = sys.argv[1]

52       cert_file = sys.argv[2]
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53       issuer_public_key_file = sys.argv[3]

54

55       with open(issuer_public_key_file, "rb") as public_key_file_object:

56           issuer_public_key = serialization.load_pem_public_key(

57                            public_key_file_object.read(),

58                               backend=default_backend())

59

60       with open(cert_file, "rb") as cert_file_object:

61           certificate_bytes = cert_file_object.read()

62

63       cert_data = validate_certificate(certificate_bytes, issuer_public_key)

64

65       print("Certificate has a valid signature from {}".format(ISSUER_NAME))

66

67       challenge_file = input("Enter a name for a challenge file: ")

68       print("Generating challenge to file {}".format(challenge_file))

69

70       challenge_bytes = os.urandom(32)

71       with open(challenge_file, "wb+") as challenge_file_object:

72           challenge_file_object.write(challenge_bytes)

73

74       response_file = input("Enter the name of the response file: ")

75

76       with open (response_file, "rb") as response_object:

77           response_bytes = response_object.read()

78

79       verify_identity(

80           claimed_identity,

81           cert_data,

82           challenge_bytes,

83           response_bytes)

84       print("Identity validated")

Listing 5-7 requires three arguments: the claimed identity of the party, the certificate 

presented, and the issuer’s public key.
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The verification of the claimed identity has to run in two parts. First, it loads the 

certificate to see if it is signed by HQ’s public key. This is performed by the verify_

certificate function. Remember that the signature verification function raises an 

exception if the signature check fails. You will notice that to get the signature, the script 

just takes the last 256 bytes of the certificate. Because the signature is concatenated at the 

end, and because we always use an RSA signature from a 2048-bit key, the signature is 

always 256 bytes.

If the signature verifies, we take the other bytes and load them into a dictionary using 

the json module (again converting bytes to string for the JSON operation and then from 

string to bytes for the public key data).

Alice runs the script:

python fake_certs_verify_identity.py \

  charlie \

  charlie.cert \

  hq_public.key

At this point Alice’s script has given her some information, but it is waiting for more 

input. What does Alice know right now, at this phase of the process? She knows that she 

has been presented with a true certificate that was actually signed by HQ. What happens 

next? She doesn’t yet know if the party presenting the certificate is really Charlie. To do 

that, she needs to test him or her to see if they have the private key.

She generates a random message and saves it to the file charlie.challenge, which 

she will ask the person claiming to be Charlie to sign with his private key. The script is 

waiting for that random message, so Alice provides the name of the file she just created, 

charlie.challenge.

Although Alice isn’t finished, we now need to switch over to Charlie’s operations. 

Leave Alice’s script running until we get back. Charlie will use another script, and his 

private key, to answer Alice’s challenge.

Listing 5-8.  Prove Identity on a Fake Certificate

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives.asymmetric import rsa

 3   from cryptography.hazmat.primitives.asymmetric import padding

 4   from cryptography.hazmat.primitives import hashes

 5   from cryptography.hazmat.primitives import serialization
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 6

 7   import sys

 8

 9   def prove_identity(private_key, challenge):

10       signature = private_key.sign(

11           challenge,

12           padding.PSS(

13               mgf = padding.MGF1(hashes.SHA256()),

14               salt_length = padding.PSS.MAX_LENGTH

15           ),

16           hashes.SHA256()

17       )

18       return signature

19

20   if __name__ == "__main__":

21       private_key_file = sys.argv[1]

22       challenge_file = sys.argv[2]

23       response_file = sys.argv[3]

24

25       with open(private_key_file, "rb") as private_key_file_object:

26           private_key = serialization.load_pem_private_key(

27                            private_key_file_object.read(),

28                            backend=default_backend(),

29                            password=None)

30

31       with open(challenge_file, "rb") as challenge_file_object:

32           challenge_bytes = challenge_file_object.read()

33

34       signed_challenge_bytes = prove_identity(

35           private_key,

36           challenge_bytes)

37

38       with open(response_file, "wb") as response_object:

39           response_object.write(signed_challenge_bytes)
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Charlie’s script in Listing 5-8 is straightforward. It takes in three arguments: the 

certificate subject’s private key, the challenge filename, and the response filename 

that will be used to store the response. The response is generated simply by taking the 

challenge bytes and signing them with the private key. Run this script (in a separate 

terminal from Alice’s) as shown:

python fake_certs_prove_identity.py \

  charlie_private.key \

  charlie.challenge \

  charlie.response

Charlie has thus answered Alice’s challenge and put the response into the file 

charlie.response. Now we can finally finish Alice’s script, which is waiting for the 

response filename. Enter the filename generated by Charlie (charlie.response) to 

proceed.

Alice’s script loads the response and verifies it. To do this, Alice’s script now moves 

to the verify_identity function. It starts by checking that the name in the certificate 

matches the identity claimed (e.g., “charlie”) and that the issuer is HQ. Next, it loads the 

public key from the certificate and verifies that the signature on the challenge bytes is 

valid.

This proves to Alice that not only is the certificate Charlie presented valid, but 

Charlie is the subject (owner). The person claiming to be Charlie must have the 

associated private key or he would not have been able to answer her challenge.

EXERCISE 5.10. DETECT FAKE CHARLIES

Experiment with the preceding scripts to check out the various errors from trying to deceive 

Alice. Create a false issuer and sign the certificate with this private key. Have someone with 

the wrong private key present Charlie’s certificate. Make sure to understand all the different 

checks being performed in the code.

Although our certificates are “fake,” they are designed to teach the basic principles 

behind the certificate concept. Real certificates typically use a format called X.509. We 

will discuss X.509 in detail in Chapter 8.
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�Certificates and Trust
One question you might have asked yourself is, why did we name the issuer? After all, if 

Alice, Bob, and all the other agents are always going to trust HQ, why require the issuer 

to be named in the certificate?

In our hypothetical world in which Antarctica is locked in its civil cold war, there may 

be many issuers of certificates. For example, other agencies besides the espionage unit 

may want to issue certificates. What if the EA military starts to issue certificates? What 

if the EA Department of Education starts to issue certificates? Should Alice and Bob 

trust those as well? Maybe they will want to trust military certificates but not education 

certificates?

In certificate parlance, we also call an issuer a “certificate authority” (CA), and 

certificate validators have to decide which certificate authorities they will trust. In fact, 

CAs also have their own certificates with their identity name and their public key. Thus, 

the Issuer field of a certificate should be the same identity as the Subject in the CA’s 

certificate.

If the CA has a certificate, who signs that? There is a concept called an 

“intermediate” CA. An intermediate CA has its certificate signed by a “higher” CA. In 

the EA government, perhaps, there might be a top-level CA that signs all other CAs 

for defense, education, espionage, and so forth. This creates a hierarchical chain of 

certificates with the highest certificate called a “root” certificate.

Who signs this ultimate root CA?

The answer is: itself. This CA’s certificate is known as a self-signed certificate. Note 

that anyone can generate a self-signed certificate, so great care must be taken in deciding 

which self-signed, root certificates to trust. Basically, they become axiomatically trusted 

along with all of the certificates that they sign!

While this can be a little complicated to visualize, it does make things a little bit easier 

to manage. The entire EA government could have a single top-level CA. All employees, 

agents, or even citizens need only have the very top-most, root CA certificate. All other 

identities can be verified in a chain. For example, Charlie might keep three certificates: 

his personal certificate, the intermediate certificate for the espionage CA that signed his 

certificate, and the root EA certificate itself. Charlie can present these three certs to any 

other EA employee and have him or her verify the chain back to the root.

Things become slightly more complicated (and introduce potential security risks) 

when there are multiple roots. For example, perhaps the EA government doesn’t have a 

single, top-level root. After all, do you really want your espionage orders to be signed by 
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a CA that can be traced back to the government? Suppose then that the EA government 

keeps two roots: one for departments and organizations that operate “visibly” and one 

for groups and individuals that operate covertly.

Should Charlie and the other agents trust both roots?

EXERCISE 5.11. THE CHAINS WE FORGED IN LIFE

Modify the identity validation programs to support a chain of trust. First, create some self-

signed certificates for the EA government (at least two as described previously). The existing 

issuer script can already do this. Just make the issuer private key for the self-signed 

certificate to be the organization’s own private key. Thus, the organization is signing its own 

cert, and the private key used to sign the certificate matches the public key in the certificate.

Next, create certificates for intermediate CAs such as “Department of Education,” “Department 

of Defense,” “Espionage Agency,” and so forth. These certificates should be signed by the self-

signed certificates in the previous step.

Finally, sign certificates for Alice, Bob, and Charlie by the espionage CA. Perhaps create some 

certificates for employees of the defense department and the education department. These 

certificates should be signed by the appropriate intermediate CA.

Now modify the verification program to take a chain of certificates instead of just a single 

certificate. Get rid of the command-line parameter for the issuer’s public key and instead 

hard-code which of the root certificate filenames are trusted. To specify the chain of 

certificates, have the program take the claimed identity as the first input (as it already does) 

and then an arbitrary number of certificates to follow. Each certificate’s issuer field should 

indicate the next certificate in the chain. For example, to validate Charlie, there may be 

three certificates: charlie.cert, espionage.cert, covert_root.cert. The issuer 

of charlie.cert should have the same subject name as espionage.cert and so forth. 

The verify program should only accept an identity if the last certificate in the chain is already 

trusted.

Certificates are very important to modern cryptography and computer security. In 

Chapter 8, we will introduce real X.509 certificates and discuss how real CAs operate and 

additional issues and solutions as part of learning about TLS.
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�Revocation and Private Key Protection
Certificates and the public keys they contain are very powerful. At the same time, they 

come with a very dangerous Achilles heel. How do you disable them if the associated 

private key is compromised?

What we are talking about here is a concept called “revocation.” To revoke a 

certificate is to reverse the endorsement of the issuer. HQ might have issued a certificate 

to Charlie, but if Charlie is captured and his private key lost, HQ needs to figure out a way 

to tell all of the other agents not to trust that certificate anymore.

Unfortunately, this is not easily done. If you recall, one of the reasons why CAs came 

into existence instead of online registries was the desire for offline verification. How can 

an offline verification process provide real-time revocation data?

The simple answer is, “It can’t.” There are only two options. Either the verification 

process must have a real-time component or the revocation cannot be updated in real 

time. Both options are available for certificates today in the form of the Online Certificate 

Status Protocol (OCSP), which checks a certificate’s status on the fly, and Certificate 

Revocation Lists (CRLs), which are lists published from time to time with revoked certs. 

We will review both of these in more detail in Chapter 8.

Because of the difficulty of revoking a certificate, private keys must be protected 

with the utmost care. When real-time signing is not needed, private keys should be 

kept offline and in a secure environment. If they must be used in real time, and must 

be stored on a server, certificates should be stored with the minimum permissions 

necessary and readable on a strictly need-to-know basis. For end-user keys, such as 

those used for email and other applications, private keys stored on disk should be 

adequately protected by symmetric encryption with a strong password. Ideally, avoid 

storing private keys on desktops and servers altogether (especially in the modern era of 

continuous backups) and, instead, store private keys in a hardware security module.

It might not be a bad idea to keep certificates with a relatively short expiration date 

and rotate them as necessary.

�Replay Attacks
There is one last security issue to address before moving on from message integrity.  

It applies equally to both MACs and signatures. The issue is replay attacks.
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A replay attack occurs when a legitimate message from a previous communication is 

used by an attacker at a later time when it should no longer be valid.

Let’s consider the following message: “We attack at dawn!”

We can secure this message from modification and authenticate the sender with 

either MACs or signatures. But what would prevent Eve from intercepting that message 

and sending it on a different day? Perhaps she would choose to send it on a day when 

the EA is not planning an attack? Eve may not be able to change the message contents; 

perhaps she cannot even read them, but that does not stop her from resending 

(replaying) the message whenever she wants.

For this reason, almost all cryptographically secured messages typically need some 

kind of unique component that distinguishes them from all other messages. This piece 

of data is often referred to as a nonce. In many circumstances a nonce can be a random 

number. If you take a quick peek back at Chapter 3, you will see that the IV value passed 

to AES counter mode was called a nonce. Nonces, especially random number nonces, 

are also used to keep messages from being the same when doing so would introduce 

security vulnerabilities.

However, to prevent replay attacks, simply using a random number won’t do. In 

order to detect a replay, the receiver must keep track of the nonces that have been used 

and reject them when seen a second time.

This can be terribly problematic. How big of a list of nonces should be kept? A 

hundred? A thousand? Do you remove a nonce from the list after a certain period 

of time? If you do and the attacker knows it, the attacker can now use it in a replay. 

For example, if the attacker knows you only keep track of nonces received in the last 

5 minutes, the attacker can replay something from 6 minutes ago with a reasonable 

amount of success.

Some systems use timestamps instead of random nonces. Using a timestamp, a 

receiver can reject data that is too old. The problem with this approach is that all of the 

computers have to have synchronized clocks for it to work reliably. Plus, data with an 

“old” timestamp must be accepted within some window. After all, the message won’t 

arrive instantaneously. How large a window do you permit? However big it is, the bad 

guy will figure out a way to use it against you.

It’s possible to combine both approaches together. You can send data with a 

timestamp and a random number. The timestamp is used to get rid of data that is really 

old and the nonce is used to prevent replays within the time window permitted. This 
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means that the clocks only need to be relatively close (perhaps even within 24 hours) 

and that the list of nonces to be stored is bounded.

You have now seen two pieces of metadata that you need to consider sending in 

a message: the nonce and/or timestamp to prevent replays and the sender/receiver 

names. In general, you should put all relevant context into the message so that it cannot 

be used outside of that context.

EXERCISE 5.12. REPLAY IT AGAIN SAM!

Use either MAC or signatures to send a message from Alice to Bob or vice versa. Include a 

nonce in the message to prevent replays using all three mechanisms described in this section. 

Send some replays from Eve and try to get around Alice and Bob’s defenses.

�Summarize-Then-MAC
Another chapter, another firehose of information! In this chapter we covered message 

authentication codes, which are keyed codes computed over a series of data. Without the 

key, it is impossible to change the data undetectably. Moreover, when two parties share a 

MAC key, they can be sure that (unless the shared key has been compromised) if one of 

them received a correctly MACed message, it came from the other party.

Using asymmetric operations, one can use a private key to create a signature over 

a piece of data (typically over the hash of the data). Unlike MAC operations, which can 

only ensure correctness and authenticity to those individuals sharing the key, a widely 

distributed public key can be used theoretically by anyone (that trusts it) to validate the 

signature over the data.

And we also provided a quick overview of basic certificate operations.

And now that our summary is complete, here is the HMAC-SHA256 (in hex) over 

the preceding three paragraphs (i.e., from “Another chapter...” through “... certificate 

operations.”) using our twice-cited XKCD password:

c4d60c7336911cd0a23132f11ae1ca8ba392a05ae357c81bc995876693886b9e

Now you have a way of telling if any corrections or changes were made to this 

summary by our editors after we submitted it to them!
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CHAPTER 6

Combining Asymmetric 
and Symmetric Algorithms
In this chapter, we’ll spend time getting familiar with how asymmetric encryption is 

typically used, where it is a critical part of communication privacy, but not responsible 

for all of it. Typically, asymmetric encryption, also known as “public key cryptography”, 

is used to establish a trusted session between two parties, and the communication while 

within that session is protected with much faster symmetric methods.

Let’s dive in with a short example and some code!

�Exchange AES Keys with RSA
Armed with their newer cryptography technologies, Alice and Bob have become more 

brazen in their covert operations. Alice has managed to infiltrate the Snow Den Records 

Center in West Antarctica and is attempting to steal a document related to genetic 

experiments to turn penguins completely white, thus creating a perfectly camouflaged 

Antarctic soldier. WA soldiers are quickly moving on her position, and she decides to 

risk transmitting the document over a short-wave radio to Bob who is monitoring from 

outside the building. Eve is certainly listening and Alice does not want her to know 

which document has been stolen.

The document is nearly ten megabytes. RSA encryption of the entire document will 

take forever. Fortunately, she and Bob agreed beforehand to use RSA encryption to send 

AES session keys and then transmit the document using AES-CTR with HMAC. Let’s 

create the code they will use to make this alphabet soup work.
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First, let’s assume that Alice and Bob already have each other’s certificates and 

public keys. Bob cannot risk giving away his position by transmitting; he will be limited 

to monitoring the channel, and Alice will just have to hope that the message is received. 

The agreed-upon transmission protocol is to transmit a single stream of bytes with all 

data concatenated together. The transmission stream includes

•	 An AES encryption key, IV, and a MAC key encrypted under Bob’s 

public key

•	 Alice’s signature over the hash of the AES key, IV, and MAC key

•	 The stolen document bytes, encrypted under the encryption key

•	 An HMAC over the entire transmission under the MAC key

As we have done before, let’s create a class to manage this transmission process. The 

code snippet in Listing 6-1 shows key pieces of the operations.

Listing 6-1.  RSA Key Exchange

 1   import os

 2   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 3   from cryptography.hazmat.primitives import hashes, hmac

 4   from cryptography.hazmat.backends import default_backend

 5   from cryptography.hazmat.primitives.asymmetric import padding, rsa

 6

 7   # WARNING: This code is NOT secure. DO NOT USE!

 8   class TransmissionManager:

 9       def __init__(self, send_private_key, recv_public_key):

10           self.send_private_key = send_private_key

11           self.recv_public_key = recv_public_key

12           self.ekey = os.urandom(32)

13           self.mkey = os.urandom(32)

14           self.iv = os.urandom(16)

15

16           self.encryptor = Cipher(

17                algorithms.AES(self.ekey),

18                modes.CTR(self.iv),
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19                backend=default_backend()).encryptor()

20           self.mac = hmac.HMAC(

21                self.mkey,

22                hashes.SHA256(),

23                backend=default_backend())

24

25       def initialize(self):

26           data = self.ekey + self.iv + self.mkey

27           h = hashes.Hash(hashes.SHA256(), backend=default_backend())

28           h.update(data)

29           data_digest = h.finalize()

30           signature = self.send_private_key.sign(

31               data_digest,

32               padding.PSS(

33                   mgf=padding.MGF1(hashes.SHA256()),

34                   salt_length=padding.PSS.MAX_LENGTH),

35               hashes.SHA256())

36           ciphertext = self.recv_public_key.encrypt(

37               data,

38               padding.OAEP(

39                   mgf=padding.MGF1(algorithm=hashes.SHA256()),

40                   algorithm=hashes.SHA256(),

41                   label=None)) # rarely used.Just leave it 'None'

42           ciphertext = data+signature

43           self.mac.update(ciphertext)

44           return ciphertext

45

46       def update(self, plaintext):

47           ciphertext = self.encryptor.update(plaintext)

48           self.mac.update(ciphertext)

49           return ciphertext

50

51       def finalize(self):

52           return self.mac.finalize()
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Hopefully, all of the pieces here are familiar, and if you follow the code paths, it 

should also be pretty easy to see how things come together. Perhaps you’ve noticed that 

we are drawing on concepts from Chapter 3, Chapter 4, and Chapter 5! All of these pieces 

are coming together to shape a more advanced whole.

A few points are worth noting. First, we chose to use AES-CTR, so there is no need 

for padding. Earlier in the book, we used the term “nonce” to describe the initialization 

value to the algorithm, as this is what the cryptography library calls it. In other literature 

it is still called an IV, however, so we use that term here. Either way, the IV (or nonce) is 

the starting value for the counter.

Note that we are not using Sign-Then-Encrypt as we discussed in Chapter 5. As 

always, this is an example program not meant to be used for real security. You might 

want to review the issues we discussed in relation to Sign-Then-Encrypt to see how Eve 

could strip out the signature, change the keys, and re-sign.

Nevertheless, that’s not the major vulnerability we will discuss. After all, in our 

scenario, Bob is probably only going to accept data from Alice. The issues of swapping 

out a signature are more applicable when more than one signature can be accepted.

Like most of the APIs you’ve seen so far, we use update and finalize, but we added 

a new method called initialize. For transmission, Alice would call initialize first to 

get the signed and encrypted header with the session keys. Next, she would call update 

as many times as needed to feed the entire document through. When everything is 

finished, she would call finalize to get the HMAC trailer over all of the transmitted 

contents.

EXERCISE 6.1. BOB’S RECEIVER

Implement the reverse of this transmitter by creating a ReceiverManager. The exact API 

might vary a little, but you will probably need at least an update and finalize method. You 

will need to unpack the keys and IV using Bob’s private key and verify the signature using 

Alice’s public key. Then, you will decrypt data until it’s exhausted, finally verifying the HMAC 

over all received data.

Remember, the last bytes of the transmission are the HMAC trailer and are not data to be 

decrypted by AES. But when update is called, you may not yet know whether these are the 

last bytes or not! Think through it carefully!
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�Asymmetric and Symmetric: Like Chocolate 
and Peanut Butter
Hopefully, Alice’s transmission to Bob in the exercise at the beginning of this chapter 

gave you a small taste for how asymmetric and symmetric cryptography work together. 

The protocol we outlined in code works, but lacks some important subtlety, as is often 

the case with our first attempts. As you might expect by now, the preceding code is not 

secure and we will demonstrate at least one problem with it shortly. It does illustrate the 

ideas behind putting the two systems together, though.

Let’s see what we can learn from what we have. We’ll start with session keys.

We first introduced the term session key in Chapter 4 but did not discuss it much. 

A session key is by nature a temporary thing; it is used for a single communication 

session and then discarded permanently, never to be reused. In the preceding code, 

notice that the AES and MAC keys are generated at the beginning of a session by the 

communications manager. Every time a new communications manager is created, a new 

set of keys is created. The keys are not stored or recorded anywhere. Once all the data is 

encrypted, they are thrown away.1

On the receiving end, the session keys are decrypted using the recipient’s private 

key. Once these keys are decrypted, they are then used to decrypt the rest of the data 

and process the MAC. Again, after the transmitted data is processed, the keys can—and 

should—be destroyed.

Symmetric keys make good session keys for multiple reasons. First of all, symmetric 

keys are easy to create; in our example, we simply generated random bytes. We could 

also derive symmetric keys from a base secret by using key derivation functions. This is a 

common approach, and we will see later that you almost always need to derive multiple 

keys for typical secure communication. Regardless of how they are created, symmetric 

keys (and IVs) are plain old ordinary bytes, unlike most asymmetric keys that require 

some additional structure (e.g., public exponents, chosen elliptic curves, etc.).

Second, symmetric keys are good session keys because symmetric algorithms are 

fast. We have already mentioned this a time or two, but it is worth repeating. AES is 

typically on the order of hundreds of times faster than RSA, so the more data that can be 

1�Well, they should be thrown away. In real applications, this might mean securely overwriting 
memory with zeros and ensuring that all copies are accounted for. It’s not paranoia when they 
are actually out to get you.

Chapter 6  Combining Asymmetric and Symmetric Algorithms



218

encrypted by AES, the better. This is another reason that symmetric keys are sometimes 

called “bulk data transfer” keys.

Finally, let’s also recognize that symmetric keys are good session keys because they 

are not always good long-term keys! Remember, symmetric keys cannot be private keys 

because they must always be shared between at least two parties. The longer a shared key 

is in use, the higher the risk that trust breaks down between the parties and the key should 

no longer be shared. In the case of Alice’s break-in to the Snow Den archive, she risks 

capture and the compromise of any keys she has with her. The loss of her asymmetric 

private key is serious, as we discussed when we talked about certificate revocation, but if 

Alice and Bob were using the same shared symmetric key for all of their communications, 

the loss of that key would be even worse as any intercepted communications between 

them that were encrypted using that key could now be decrypted.

On the other hand, asymmetric keys are very useful for long-term identification. Using 

certificates, asymmetric keys can establish a sort of proof of identity; once this is done, the 

shorter-term keys do the work of actually transmitting data between the authenticated 

parties. That said, sometimes ephemeral (quickly discarded) asymmetric keys are 

incredibly valuable. We will see this both with key exchanges that have the “forward 

secrecy” attribute and with how ransomware attackers lock up their victims’ files.

�Measuring RSA’s Relative Performance
Even though we’ve hammered home just how much slower RSA is than AES, let’s 

have some fun and run a few experiments. We’re going to write a tester that will 

generate random test vectors for encryption and decryption. Then we can compare the 

performance of RSA and AES for ourselves.

For this walk-through, we are going to create a more complex file from smaller bits. 

Listing 6-2 shows the imports for the overall script. You can start with this as a skeleton 

and build/copy the other pieces in.

Listing 6-2.  Imports for Encryption Speed Test

 1   # Partial Listing: Some Assembly Required

 2

 3   # Encrypt ion Speed Test Component

 4   from cryptography.hazmat.backends import default_backend

 5   from cryptography.hazmat.primitives.asymmetric import rsa
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 6   from cryptography.hazmat.primitives import serialization

 7   from cryptography.hazmat.primitives import hashes

 8   from cryptography.hazmat.primitives.asymmetric import padding

 9   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

10   import time, os

Let’s start by creating some algorithms to test. We will define one class for each 

algorithm, and the instances of the class will build encryption and decryption objects. 

Builders will be self-contained, providing all keys and necessary configuration. Each will 

have a name attribute with a human-readable label and a get_cipher_pair() method to 

create a new encryptor and decryptor. This method must generate new encryption and 

decryption objects each time it is called.

AES is very straightforward because the cryptography library already provides most 

of the machinery, as shown in Listing 6-3.

Listing 6-3.  AES Library Use

 1   # Partial Listing: Some Assembly Required

 2

 3   # Encryption Speed Test Component

 4   class AESCTRAlgorithm:

 5       def __init__(self):

 6           self.name = "AES-CTR"

 7

 8       def get_cipher_pair(self):

 9           key = os.urandom(32)

10           nonce = os.urandom(16)

11           aes_context = Cipher(

12               algorithms.AES(key),

13               modes.CTR(nonce),

14               backend=default_backend())

15           return aes_context.encryptor(), aes_context.decryptor()

The get_cipher_pair() operation creates new keys and nonces each time it is 

invoked. We could put this in the constructor because we don’t really care if we reuse 
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keys for these speed tests, but the re-generation of a few bytes for a key and a nonce is 

probably not really a limiting factor for speed.

RSA encryption is a little more complicated. It really wasn’t meant to encrypt 

arbitrary amounts of data. Unlike AES, which has counter and CBC modes to tie blocks 

together, RSA must encrypt its data all at once, and the size of data it can manipulate is 

limited by various factors. An RSA key with a 2048-bit modulus cannot encrypt more 

than 256 bytes at a time. In fact, once you add in the OAEP (with SHA-256 hash) padding, 

it’s significantly less: only 190 bytes!2

If we were actually concerned about the security of the encryption, we could thus 

not use RSA for more than 190 bytes of data. However, what we are really testing here is a 

hypothetical RSA encryptor that does not exist in the real world. What we want to explore 

is this: if RSA could encrypt arbitrary amounts of data, how long would it take? For this 

test, we will encrypt each chunk of 190 bytes one at a time and concatenate the results 

together. Note that when we encrypt with the OAEP padding, the 190 bytes of plaintext 

becomes 256 bytes of ciphertext. When we are decrypting, we need to decrypt 256-byte 

chunks.

Although a truly secure RSA encryption algorithm would have to bind the bytes of 

the different individual encryption operations together, this version is the fastest it could 

ever be, so it gives us an upper bound on speed, making for an interesting comparison.

With this in mind, we can construct our RSA encryption and decryption algorithm 

like Listing 6-4.

Listing 6-4.  RSA Implementation

 1   # Partial Listing: Some Assembly Required

 2

 3   # Encryption Speed Test Component

 4   class RSAEncryptor:

 5       def __init__(self, public_key, max_encrypt_size):

 6           self._public_key = public_key

 7           self._max_encrypt_size = max_encrypt_size

 8

 9       def update(self, plaintext):

2�Don’t confuse bytes and bits here! Even an AES-256 key is 256 bits, or just 32 bytes. So RSA can 
safely hold even a “large” AES key.
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10           ciphertext = b""

11           for offset in range(0, len(plaintext), self._max_encrypt_size):

12               ciphertext += self._public_key.encrypt(

13                   plaintext[offset:offset+self._max_encrypt_size],

14                   padding.OAEP(

15                       mgf=padding.MGF1(algorithm=hashes.SHA256()),

16                       algorithm=hashes.SHA256(),

17                       label=None))

18           return ciphertext

19

20       def finalize(self):

21           return b""

22

23   class RSADecryptor:

24       def __init__(self, private_key, max_decrypt_size):

25           self._private_key = private_key

26           self._max_decrypt_size = max_decrypt_size

27

28       def update(self, ciphertext): 

29           plaintext = b""

30           for offset in range(0, len(ciphertext), self._max_decrypt_size):

31               plaintext += self._private_key.decrypt(

32                   ciphertext[offset:offset+self._max_decrypt_size],

33                   padding.OAEP(

34                       mgf=padding.MGF1(algorithm=hashes.SHA256()),

35                       algorithm=hashes.SHA256(),

36                       label=None))

37           return plaintext

38

39       def finalize(self):

40           return b""

41

42   class RSAAlgorithm:

43       def __init__(self):

44           self.name = "RSA Encryption"
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45

46       def get_cipher_pair(self):

47           rsa_private_key = rsa.generate_private_key(

48             public_exponent=65537,

49             key_size=2048,

50             backend=default_backend())

51           max_plaintext_size = 190 # largest for 2048 key and OAEP

52           max_ciphertext_size = 256

53           rsa_public_key = rsa_private_key.public_key()

54           return (RSAEncryptor(rsa_public_key, max_plaintext_size),

55                   RSADecryptor(rsa_private_key, max_ciphertext_size))

Note that we created our encryptor and decryptor to have the same API as the AES 

encryptor and decryptor. Namely, we provide update and finalize methods. The 

finalize methods don’t do anything as RSA encryption (with padding) processes each 

chunk exactly the same way. The chunk-by-chunk encryption takes each 190-byte piece 

of the input, encrypts it to the 256-byte ciphertext, and returns the concatenation of all 

of these pieces. The decryptor reverses the processes, taking each 256-byte chunk in for 

decryption. Our RSAAlgorithm class constructs the appropriate encryptor and decryptor 

using these classes.

Now that we have a couple of algorithms to test, we need to create a mechanism for 

generating plaintext and keeping track of the encryption and decryption times. To this 

end, we created a class in Listing 6-5 that generates plaintexts randomly and receives 

notification of each individual ciphertext chunk produced. When the test calls for 

ciphertexts for the subsequent decryption test stage, it replays those ciphertext chunks 

exactly how it received them. Based on the notification of encrypted ciphertexts and 

decrypted plaintexts, it can also keep track of how long the overall operation takes.

Listing 6-5.  Random Text Generation

 1   # Partial Listing: Some Assembly Required

 2

 3   # Encryption Speed Test Component

 4   class random_data_generator:

 5       def __init__(self, max_size, chunk_size):

 6           self._max_size = max_size

 7           self._chunk_size = chunk_size
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 8

 9           # plaintexts will be generated,

10           # ciphertexts recorded

11           self._ciphertexts = []

12

13           self._encryption_times = [0, 0]

14           self._decryption_times = [0,0]

15

16       def plaintexts(self):

17           self._encryption_times[0] = time.time()

18           for i in range(0, self._max_size, self._chunk_size):

19               yield os.urandom(self._chunk_size)

20

21       def ciphertexts(self):

22           self._decryption_times[0] = time.time()

23           for ciphertext in self._ciphertexts:

24               yield ciphertext

25

26       def record_ciphertext(self, c):

27           self._ciphertexts.append(c)

28           self._encryption_times [1] = time.time()

29

30       def record_recovertext(self, r):

31           # don't store, just record time

32           self._decryption_times[1] = time.time()

33

34       def encryption_time(self):

35           return self._encryption_times [1] - self._encryption_times [0]

36

37       def decryption_time(self):

38           return self._decryption_times [1] - self._decryption_times [0] 

Notice that a new random_data_generator contains timing and data specific to each 

individual test run. So a new object needs to be created for each test.

Now, armed with an algorithm and a data generator, we can, as in Listing 6-6, write a 

fairly generic test function.

Chapter 6  Combining Asymmetric and Symmetric Algorithms



224

Listing 6-6.  Encryption Tester

 1   # Partial Listing: Some Assembly Required

 2

 3   # Encryption Speed Test Component

 4   def test_encryption(algorithm, test_data):

 5       encryptor, decryptor = algorithm.get_cipher_pair()

 6

 7       # run encryption tests

 8       # might be slower than decryption because generates data

 9       for plaintext in test_data.plaintexts():

10           ciphertext = encryptor.update(plaintext)

11           test_data.record_ciphertext(ciphertext)

12       last_ciphertext = encryptor.finalize()

13       test_data.record_ciphertext(last_ciphertext)

14

15       # run decryption tests

16       # decrypt the data already encrypted

17       for ciphertext in test_data.ciphertexts():

18           recovertext = decryptor.update(ciphertext)

19           test_data.record_recovertext(recovertext)

20       last_recovertext = decryptor.finalize()

21       test_data.record_recovertext(last_recovertext)

Using these building blocks, we can test these encryption algorithms over various 

chunk sizes to see if speed increases or decreases based on the amount of data they’re 

handling. For example, Listing 6-7 is a test of AES-CTR and RSA on 100MB of data with 

chunk sizes ranging from 1 KiB to 1 MiB.

Listing 6-7.  Algorithm Tester

 1   # Encryption Speed Test Component

 2   test_algorithms = [RSAAlgorithm(), AESCTRAlgorithm()]

 3

 4   data_size = 100 * 1024 * 1024 # 100 MiB

 5   chunk_sizes = [1*1024, 4*1024, 16*1024, 1024*1024]

 6   stats = { algorithm.name : {} for algorithm in test_algorithms }
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 7   for chunk_size in chunk_sizes:

 8       for algorithm in test_algorithms:

 9           test_data = random_data_generator(data_size, chunk_size)

10           test_encryption(algorithm, test_data)

11           stats[algorithm.name][chunk_size] = (

12               test_data.encryption_time(),

13               test_data.decryption_time())

The stats dictionary is used for holding encryption and decryption times for the various 

algorithms in the various tests. These can be used to generate some fun graphs. For example, 

Figure 6-1 and Figure 6-2 are the encryption and decryption graphs for the tests we ran.

Figure 6-1.  A Comparison of RSA encryption speeds vs. AES-CTR
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As you can see, RSA operations are so much slower, it’s not even really a comparison. 

By the way, if you run the tests we did, RSA encryption over 100 MiB can be slow (about 

20 seconds on our computer), but decryption is so bad, it’s just off the charts (about 

400 seconds for our tests!). RSA decryption is slower than RSA encryption, so this isn’t a 

surprise. When you have tests that run this long, make sure to save the statistics in raw, 

numerical format and then generate graphs from this data. That way you can regenerate 

graphs quickly and easily without running the entire test again.

EXERCISE 6.2. RSA RACING!

Use your preceding tester to compare the performance of RSA with a 1024-bit modulus, a 

2048-bit modulus, and a 4096-bit modulus. Please note, you will need to change your chunk 

size to 62 bytes for 1024-bit RSA keys with OAEP (and SHA-256 hashing) and 446 bytes for 

4096-bit RSA keys with OAEP (and SHA-256 hashing).

Figure 6-2.  A Comparison of RSA decryption speeds vs. AES-CTR
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EXERCISE 6.3. COUNTERS VS. CHAINS!

Use your tester to compare the performance of AES-CTR against AES-CBC.

EXERCISE 6.4. MACS VS. SIGNATURES

Modify your algorithms to sign or apply a MAC to the data in the finalize methods. Try 

disabling encryption (just have the update methods return the unmodified plaintext) so that 

you can compare only the speed of the MAC and signature. Is the difference as extreme? Can 

you think why this is so?

EXERCISE 6.5. ECDSA VS. RSA SIGNING

In addition to testing the speed of MAC vs. RSA signing, also compare the speed of RSA 

signing with ECDSA signing. It’s hard to get a fair comparison because it isn’t always 

obvious what your key size is with ECDSA, but look at the list of supported curves in the 

cryptography library documentation and try them out to see which ones are faster in 

general, as well as how they compare to RSA signing using different modulus sizes.

Hopefully, these timed tests have helped to reinforce why, security reasons aside, 

symmetric ciphers are preferred over asymmetric ciphers for bulk data transfer.

�Diffie-Hellman and Key Agreement
For the last couple of sections in this chapter, we will look at another type of  

asymmetric cryptography known as Diffie-Hellman (or DH) and a more recent variant 

called Elliptic-Curve Diffie-Hellman (or ECDH).

DH is a little different than RSA. Where RSA can be used to encrypt and decrypt 

messages, DH is only used for exchanging keys. In fact, it is technically called the 

Diffie-Hellman key exchange. As we have already explored in this chapter, outside of 

signatures, RSA encryption is largely used only for transmitting keys, also called “key 

transport.” This means that if Alice has Bob’s RSA public key, Alice can send Bob an 

encrypted key that only Bob can decrypt.

Figure 6-3 shows key transport in a TLS 1.2 handshake. We will discuss the TLS 1.2 

handshake in more detail in Chapter 8, where this figure will also make an appearance. 
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But notice that the client in this figure can generate a random session key, encrypt it 

under the server’s public key, and “transport” it back. This process also proves the server 

is in possession of the certificate because only the server could decrypt the session key 

and use it to communicate. No signatures are required for the server.3

On the other hand, DH and ECDH actually create a key seemingly out of thin air. 

No secrets are transmitted between the parties, encrypted or otherwise. Instead, they 

exchange public parameters that allow them to simultaneously compute the same key 

on both sides. This process is called key agreement.

To get started, Diffie-Hellman creates a pair of mathematical numbers, one private, 

one public, for each participant. The DH and ECDH key agreement protocol requires 

that both Alice and Bob have key pairs. In over-simplistic terms, Alice and Bob share 

their public keys with each other. The foreign public key and the local private key—when 

combined—create a shared secret on both sides.

A non-mathematical explanation in A. J. Han Vinck’s course “Introduction to Public 

Key Cryptography” [14] is depicted in Figure 6-4.

Please note that, unlike RSA, DH and ECDH do not allow for the transmission of 

arbitrary data. Alice can send Bob any message she chooses, encrypted under Bob’s 

RSA public key. Using DH or ECDH, however, all that the two can do is agree upon some 

3�TLS does not typically authenticate the client. But if client authentication is requested, it will have to 
independently prove it is the owner of a certificate by signing a challenge nonce from the server.

Figure 6-3.  An illustration of key transport using TLS
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random data; they don’t get to choose the message contents. The random data can be, 

and typically is, used as a symmetric key or for deriving symmetric keys.

In addition to not being able to exchange arbitrary contents, key exchange is also 

limited in that it requires bidirectional information exchange. In our scenario at the 

beginning of this chapter, Bob could not transmit for fear of discovery. Were that actually 

the case, DH and ECDH key exchanges would be impossible and RSA encryption would be 

the only option. This really isn’t an issue in almost all real-world scenarios. In real Internet 

applications, we typically assume that both sides are free to communicate with each other.

Coding a DH key exchange in Python is straightforward. The example in Listing 6-8 

is taken, with a few simplifications, directly from the cryptography module’s online 

documentation.

Listing 6-8.  Diffie-Hellman Key Exchange

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives import hashes

 3   from cryptography.hazmat.primitives.asymmetric import dh

 4   from cryptography.hazmat.primitives.kdf.hkdf import HKDF

 5   from cryptography.hazmat.backends import default_backend

 6

 7   # Generate some parameters. These can be reused.

 8   parameters = dh.generate_parameters(generator=2, key_size=1024,

 9                                         backend=default_backend())

10

11   # Generate a private key for use in the exchange.

12   private_key = parameters.generate_private_key()

13

14   # In a real handshake the peer_public_key will be received from the

15   # other party. For this example we'll generate another private key and

16   # get a public key from that. Note that in a DH handshake both peers

17   # must agree on a common set of parameters.

18   peer_public_key = parameters.generate_private_key().public_key()

19   shared_key = private_key.exchange(peer_public_key)

20

21   # Perform key derivation.

22   derived_key = HKDF(
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Figure 6-4.  Intuition behind Diffie-Hellman

23        algorithm=hashes.SHA256(),

24        length=32,

25        salt=None,

26        info=b'handshake data',

27        backend=default_backend()

28   ).derive(shared_key)
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Unlike RSA there are a lot fewer pitfalls and gotchas.

There are only two parameters to the exchange: the generator and the key size. There 

are only two legal values for the generator, 2 and 5. Strangely enough, for a cryptographic 

protocol, the choice of generator doesn’t matter for security reasons but must be the 

same for both sides of the exchange.

The key size, however, is important and should be at least 2048 bits. Key lengths 

between 512 and 1024 bits are vulnerable to known attack methods.

Warning: Slow Parameter Generation

Diffie-Hellman is touted as being pretty fast for generating keys on the fly. 
However, generating the parameters that can generate keys can be pretty slow. We 
warned you against using key sizes smaller than 2048 and then used 1024 in our 
own code example. We wanted to give you code that wouldn’t take forever to run 
to illustrate the basic operations.

So if parameter generation is so slow, why do we say DH is fast? The same 
parameters can generate many keys so the cost is amortized. So make sure not to 
regenerate the parameters with every key generation, or DH will run unacceptably 
slow. Alternatively, use ECDH which is much faster.

Figure 6-5.  An illustration of key agreement using TLS
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The other recommended setting is to derive another key from the shared key rather 

than using the shared key directly. The key derivation function is similar to the ones we 

looked at in Chapter 3.

The TLS 1.2 handshake can either do the key transport using RSA encryption or 

key agreement using DH/ECDH. Again, this will be discussed in Chapter 8 in detail, 

but Figure 6-5 shows that both sides exchange the public data, derive a key, and can 

communicate using the agreed-upon keys. Unlike key transport, however, there is 

no authentication. Either or both sides will have to sign the public data to prove that 

possession of a public key.

Elliptic-Curve Diffie-Hellman (or ECDH) is a variant of DH that is becoming popular 

in modern use. It works in the same way but uses elliptic curves for some of the internal 

mathematical computations. The code for using ECDH is almost identical to DH in the 

cryptography module as shown in Listing 6-9.

Listing 6-9.  Elliptic-Curve DH

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives import hashes

 3   from cryptography.hazmat.primitives.asymmetric import ec

 4   from cryptography.hazmat.primitives.kdf.hkdf import HKDF

 5

 6   # Generate a private key for use in the exchange.

 7   private_key = ec.generate_private_key(

 8       ec.SECP384R1(), default_backend()

 9   )

10   # In a real handshake the peer_public_key will be received from the

11   # other party. For this example we'll generate another private key

12   # and get a public key from that.

13   peer_public_key = ec.generate_private_key(

14       ec.SECP384R1(), default_backend()

15   ).public_key()

16   shared_key = private_key.exchange(ec.ECDH(), peer_public_key)

17

18   # Perform key derivation.

19   derived_key = HKDF(

20       algorithm=hashes.SHA256(),
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21       length=32,

22       salt=None,

23       info=b'handshake data ',

24       backend=default_backend()

25   ).derive(shared_key)

In most circumstances, creating keys with DH or ECDH key agreement is preferred 

over RSA key exchange. There are a number of reasons but perhaps the biggest one is 

forward secrecy.

�Diffie-Hellman and Forward Secrecy
Using RSA encryption, we can generate a symmetric key, encrypt it under someone’s 

public key, and send it to them. This allows both parties to share a session key securely, 

provided that the exchange protocol follows certain rules. There are even ways to have 

both sides contribute to a key. Each party could send the other some random data, and 

the concatenation of both could be fed to a hash function to produce the session key.

Unfortunately, RSA key transport does not provide a really fantastic property called 

forward secrecy. Forward secrecy means that even if a key is eventually compromised, it 

does not reveal anything about previous communications.

Let’s go back to Alice, Bob, and Eve. Alice and Bob already assume that Eve is 

recording everything that is transmitted. That’s why they are encrypting the transmission 

in the first place. So, after the transmission is complete, Eve has a recording of the 

ciphertext that she cannot yet decrypt. But, rather than toss it aside, Eve files it away  

in storage.

But also recall that, in our scenario, Alice actually believed she was on the verge of 

being captured. If the guards capture her and her keys are compromised, what is lost? 

Fortunately, nothing. Remember that Alice encrypted the session keys under Bob’s 

public key. Capturing Alice won’t make it any easier to decrypt that data (do you see the 

advantage of this over shared keys?).

But suppose that Eve finds Bob, perhaps even a long time in the future. Even if it’s 

years later, if Eve manages to get Bob’s private key, she can go back to her recording 

of Alice’s previous transmission and decrypt it! Bob’s private key will still decrypt the 

session keys, and Eve will then be able to decrypt the entire transmission.
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Forward secrecy is much stronger than this. If a protocol has forward secrecy, Eve 

can never recover data from a terminated session no matter what long-term keys she 

manages to obtain. Forward secrecy is not possible when session keys are sent directly 

via RSA encryption (in the way we’ve just described) because once the RSA private key is 

compromised, any recorded data from previous sessions is now vulnerable.

With Diffie-Hellman (DH) and Elliptic-Curve Diffie-Hellman (ECDH), forward 

secrecy is achieved by the use of ephemeral keys. RSA produces an ephemeral symmetric 

session key, but DH and ECDH actually produce ephemeral asymmetric keys as well! 

A new ephemeral key pair is (or should be!) generated with every single key agreement 

operation and then thrown away. The symmetric key is also ephemeral and thrown away 

after each session. Because DH and ECDH are typically used in this fashion, an “E” is 

often tacked onto the end of the acronym (DHE or ECDHE).4

Now that a new key pair is used for every exchange, compromising a single 

asymmetric key only reveals a single symmetric key and, accordingly, a single 

communications session. And when the ephemeral DH and ECDH private keys are 

properly disposed of, there is no key left for Eve to compromise and no way that she 

could ever decrypt these sessions. In some ways, it is akin to the old spy trope of 

swallowing the key so the spy’s nemesis can’t unlock the movie’s McGuffin.

Observe that, in theory, Alice and Bob could also do an ephemeral RSA key exchange. 

They could generate new RSA key pairs for every single key transport, sending each other 

their new public keys before transmitting the session key, then destroying the key pair 

after transmission.

The problem is that generating RSA keys is slow in computer terms. You might 

not have thought it took very long to generate your RSA keys for the examples in this 

book, but for computers involved in rapid communications (such as setting up a secure 

connection from your browser to a web site), RSA is mind-numbingly slow. DH and 

ECDH are much, much faster. Because of the key generation speed, DH and ECDH are 

the common choices for forward-secrecy-style communications.

This ephemeral mode of operation is the preferred mode for DH and ECDH under 

almost all circumstances, which is why DH and ECDH often mean DHE and ECDHE.

4�The TLS protocol, which we’ll talk about at the end of this book, is very strict. When TLS says 
“DH,” it does not mean DHE and vice versa. This distinction is not always so clear in other 
contexts.
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EXERCISE 6.6. OFF TO THE RACES!

Write a python program to generate a thousand or so 2048-bit RSA private keys and a program 

to generate a thousand or so DH and ECDH keys. How does the performance compare?

There’s only one other limitation to Diffie-Hellman methods: they have no 

authentication. Because the keys are completely ephemeral, there is no way to tie them 

to an identity; you don’t know with whom you are speaking. Remember that beyond 

communicating confidentially, we need to know with whom we’re communicating 

confidentially. By itself, DH and ECDH do not provide any such assurances.

For this reason, many DH and ECDH key exchanges also require a long-term public 

key, such as RSA or ECDSA, and that key is typically protected within a signed certificate. 

These long-term keys, however, are never used for encryption or key transport and are 

not used in the actual exchange of key data in any way. Their sole purpose is to establish 

the identity of the other party, usually by signing some of the ephemeral DH/ECDH data 

being exchanged, and to ensure freshness via some kind of challenge or nonce.

Remember, to ensure forward secrecy, the Diffie-Hellman parameters must be 

regenerated for every key exchange. If you take a look through the cryptography library 

documentation, you’ll notice that they include sample code that, as written, does not 

provide forward secrecy. This code sample saves what should be a single-use key for 

later. Make sure that your keys are destroyed after use (never logged).

Now that we’ve walked through the very high-level concepts, let’s help Alice and Bob 

with authenticated ECDH key exchange code. First we will create some code for the key 

exchange (Listing 6-10), and then we’ll modify it to be authenticated.

Listing 6-10.  Unauthenticated ECDH

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives import hashes, serialization

 3   from cryptography.hazmat.primitives.asymmetric import ec

 4   from cryptography.hazmat.primitives.kdf.hkdf import HKDF

 5

 6   class ECDHExchange:

 7       def __init__(self, curve):

 8           self._curve = curve

 9
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10           # Generate an ephemeral private key for use in the exchange.

11           self._private_key = ec.generate_private_key(

12                curve, default_backend())

13

14           self.enc_key = None

15           self.mac_key = None

16

17       def get_public_bytes(self):

18           public_key = self._private_key.public_key()

19           raw_bytes = public_key.public_bytes(

20               encoding=serialization.Encoding.PEM,

21               format=serialization.PublicFormat.SubjectPublicKeyInfo)

22           return raw_bytes

23

24       def generate_session_key(self, peer_bytes):

25           peer_public_key = serialization.load_pem_public_key(

26               peer_bytes,

27               backend=default_backend())

28           shared_key = self._private_key.exchange(

29               ec. ECDH(),

30               peer_public_key)

31

32           # derive 64 bytes of key material for 2 32–byte keys

33           key_material = HKDF(

34               algorithm=hashes.SHA256(),

35               length=64,

36               salt=None,

37               info=None,

38               backend=default_backend()).derive(shared_key)

39

40           # get the encryption key

41           self.enc_key = key_material[:32]

42

43           # derive an MAC key

44           self.mac_key = key_material[32:64] 
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To use the ECDHExchange, both parties instantiate the class and call the get_public_

bytes method to get the data that needs to be sent to the other party. When those bytes 

are received, they are passed to generate_session_key where they are de-serialized into 

a public key and used to create a shared key.

So, what’s with HKDF? This is a key derivation function that is useful for real-time 

network communications, but should not be used for data storage. It takes the shared 

key as input and derives a key (or key material) from it. Notice that in our example, we 

derive both an encryption key and a MAC key. This is done by using HKDF to derive 

64 bytes of key material and then splitting it into two 32-byte keys. In reality, we need 

to derive a lot more data, and we’ll discuss this in the next section. But for now, it 

demonstrates the basics of the ECDH exchange.

To repeat one last time, notice that ECDH is generating its private key on the fly. This 

key must be destroyed after every key exchange, along with any session keys created.

EXERCISE 6.7. RUDIMENTARY ECDH EXCHANGE

Use the ECDHExchange class to create shared keys between two parties. You will need to 

have two instances of the program running. Each program should write their public key bytes 

to disk for the other program to load. When they’re finished, have them print out the bytes of 

the shared key so that you can verify that they both come up with the same key.

EXERCISE 6.8. NETWORK ECDH EXCHANGE

In the upcoming chapters, we will start using the network to exchange data between two 

peers. If you already know how to do some client-server programming, modify the previous 

ECDH exchange program to send the public data over the network instead of saving it to disk.

Our ECDH code so far just does the ECDH ephemeral key exchange. Both sides have 

a key, but since we aren’t yet doing any authentication, neither side can be certain about 

whom they’re talking to! Remember, the ephemeral nature of the ECDH keys means that 

they cannot be used to establish identity.
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To remedy this, we are going to modify our ECDHExchange program to also be 

authenticated. In addition to an ephemeral asymmetric key, it will also use a long-term 

asymmetric key to sign the data.

Let’s modify our ECDHExchange class and rename it AuthenticatedECDHExchange, 

which we do in Listing 6-11. First, we need to modify the constructor to take a long-term 

(persistent) private key as a parameter. This will be used for signing.

Listing 6-11.  Authenticated ECHD

 1   # Partial Listing: Some Assembly Required

 2

 3   from cryptography.hazmat.backends import default_backend

 4   from cryptography.hazmat.primitives import hashes, serialization

 5   from cryptography.hazmat.primitives.asymmetric import ec

 6   from cryptography.hazmat.primitives.kdf.hkdf import HKDF

 7   import struct # needed for get_signed_public_pytes

 8

 9   class AuthenticatedECDHExchange:

10       def __init__(self, curve, auth_private_key):

11           self._curve = curve

12           self._private_key = ec.generate_private_key(

13                self._curve,

14                default_backend())

15           self.enc_key = None

16           self.mac_key = None

17

18           self._auth_private_key = auth_private_key

Please note the difference between _private_key, which is generated and is 

ephemeral, and _auth_private_key. The latter is passed in as a parameter. This persistent 

key will be used to establish identity. We could use an RSA key here and it would work just 

fine, but in keeping with the elliptic-curve theme, we will assume this is an ECDSA key.

Instead of just generating public bytes to send to the other side, we will use  

Listing 6-12 to generate signed public bytes.
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Listing 6-12.  Authenticated ECDH Signed Public Bytes

 1   # Partial Listing: Some Assembly Required

 2

 3   # Part of AuthenticatedECDHExchange class

 4   def get_signed_public_bytes(self):

 5       public_key = self._private_key.public_key()

 6

 7       # Here are the raw bytes.

 8       raw_bytes = public_key.public_bytes(

 9           encoding=serialization.Encoding.PEM,

10           format=serialization.PublicFormat.SubjectPublicKeyInfo)

11

12       # This is a signature to prove who we are.

13       signature = self._auth_private_key.sign(

14           raw_bytes,

15           ec.ECDSA(hashes.SHA256()))

16

17       # Signature size is not fixed.Include a length field first.

18       return struct.pack("I", len(signature)) + raw_bytes + signature

When the other side receives our data, they will need to unpack the first four bytes to 

get the length of the signature before they do anything else. The signature can be verified 

using the other party’s long-term public key (just like we did with RSA). If the signature 

works out, we have some confidence that the ECDH parameters we received came from 

the expected party.

EXERCISE 6.9. ECDH LEFT TO THE READER

We did not show code for verifying the public parameters received in the 

AuthenticatedECDHExchange class. Luckily for you, we’ve left it as an exercise to the 

reader! Update the generate_session_key method to be generate_authenticated_

session_key. This method should implement the algorithm previously described for getting the 

signature length, verifying the signature using a public key, and then deriving the session keys.
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The principles in this section are important. You might consider working 

through this section a couple of times until you are comfortable with both sending 

a key encrypted under RSA and generating an ephemeral key on the fly using DH or 

ECDH. Make sure you also understand why the DH/ECDH approach has forward 

secrecy and the RSA version does not.

EXERCISE 6.10. BECAUSE YOU LOVE TORTURE

To emphasize that RSA technically could be used as an ephemeral exchange mechanism, 

modify your preceding ECDH program to generate an ephemeral set of RSA keys. Exchange 

the associate public keys and use each public key to send 32 bytes of random data to the 

other party. Combine both 32-byte transmissions with XOR to create a “shared key” and run it 

through HKDF just as the ECDH example does. Once you’ve proved to yourself that this works, 

review your results from Exercise 6.2 to see why this is too slow to be practical.

Also, creating a shared key with RSA encryption requires a round trip to create the key 

(transmission of certificate and reception of encrypted key), whereas DH and ECDH only 

require one transmission from each party to the other. When we learn about TLS 1.3, for 

example, you’ll see how this can greatly impact performance.

�Challenge-Response Protocols
We have briefly introduced challenge-response protocols in Chapter 5. In particular, 

Alice used challenge-response to validate that the man claiming to be Charlie was the 

owner of the certificate with the identity “charlie.” At its core, a challenge-response 

protocol is about one party proving to another that they currently control either a shared 

secret or a private key. Let’s look at both examples.

First, suppose that Alice and Bob share some key KA,B. If Alice is communicating 

over a network with Bob, a simple authentication protocol is to send Bob a nonce N 

(potentially unencrypted) and ask him to encrypt it. For security reasons, it’s a good idea 

for the response to include the identity of the communicating parties. Accordingly, Bob 

should reply with {A, B, N}KA,B. If only Alice and Bob share the key KA,B, then only Bob 

could have responded to Alice’s challenge correctly. Even if Eve overhears the challenge 

and knows N, she should not be able to encrypt it without the key.
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For the asymmetric example, it is more or less the same, but uses signatures 

generated by private keys. This time, Bob is communicating with Alice over the network 

and wishes to be sure that he is talking to the real Alice. So he sends a nonce N and asks 

her to sign it with her public key. As with Bob’s challenge, Alice should also send her 

name and Bob’s. Her transmission should therefore look like {H(B, A, N)}K –1A (for RSA 

signatures anyway). Bob verifies with the Alice’s public key that the signature is correct. 

Only the possessor of the private key could have signed that challenge.

Challenge-response algorithms are relatively simple, but they can go wrong in many 

ways. For one thing, the nonce must be sufficiently large and sufficiently random to be 

unguessable, even with knowledge of previous transmissions. In the early days of remote 

keys for cars, for example, the transmitter used a 16-bit nonce. Thieves only had to 

record a transmission once and then interrogate the system over and over until it cycled 

through all the possible nonces and returned to the one they recorded. At that point, 

they could replay the nonce and gain access to the car.

Another way this can go wrong is via a “(hu)man-in-the-middle” (MITM) attack. 

Suppose that Eve wants to convince Alice that she is Bob. Eve waits until Bob wants 

to talk to Alice and then intercepts all of their communications. Then, she initiates 

communication with Alice pretending to be Bob. Alice responds with a challenge N to 

prove that the person she is talking to (Eve) is Bob. Eve immediately turns around and 

sends the challenge to Bob who, wanting to talk to Alice, was already expecting it. Bob 

happily signs the challenge and sends it back to Eve who forwards it directly on to Alice. 

(For a fascinating, but probably fictional example, Ross Anderson describes a “MIG-in-

the-middle” scenario of this attack [1, Chap. 3].)

One way to defeat this MITM problem is to transmit information that only the true 

party can use. For example, even if Eve forwards along Bob’s response to the challenge it 

won’t help her if Alice’s response is to send Bob a session key encrypted under his public 

key. Eve won’t be able to decrypt it. If all subsequent communication takes place using 

that session key, Eve is still locked out. Alternatively, Alice and Bob could use ECDH 

plus signatures to generate a session key. Even if Eve can intercept every transmission 

between the two of them, Alice and Bob can create a session key that only they can use. 

The most Eve can do is block the communications.

The point here is to illustrate all the different kinds of considerations that need to go 

into authenticating the party you’re talking to.
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Once the identity of a party has been established, all subsequent communications 

of the session must be tied to that authentication. For example, Alice and Bob might 

authenticate one another using challenge-response, but unless they establish a session 

MAC key and use it to digest all of their subsequent communications, they cannot be 

sure who is sending the message.

Sometimes, initialization data must be sent in the clear before encrypted 

communications can be established. All of this data must also be tied together at some 

point. After session keys have been established, one option is to send a hash of all the 

unauthenticated data sent so far using the newly established secure channel. If the hash 

doesn’t match what is expected, then the communicating parties can assume that an 

attacker, like Eve, has modified some of the initialization data.

In summary, when combining asymmetric and symmetric cryptography, don’t 

just think about the confidentiality part (encryption). Remember that knowing to 

whom you are speaking is just as important as, if not more important than, knowing 

that the communications between the two of you are unreadable to anyone else. You 

might not want the whole world to read your love poetry, but you definitely don’t want 

your amorous expressions to be received by the wrong person! Keep in mind that 

after establishing the other party’s identity, you must ensure that there is a chain of 

authenticity for all the remaining communications for the rest of the session. If the initial 

identity is proved with signatures and the remaining data is authenticated by MACs, 

ensure that there is no break in the chain as you switch from one to the other.

�Common Problems
After seeing a bit about how asymmetric and symmetric keys work together, you might 

be tempted to create your own protocol. Definitely resist that urge. The goal of these 

exercises is to teach you the principles and to illuminate your understanding, but that 

alone is not sufficient to prepare you to develop cryptographic protocols. The history 

of cryptography is littered with protocols that were later found to be exploitable even 

though they were written by cryptographers with more experience than you or I have.

Let’s take the example we used with Alice sending the encrypted document to Bob. 

Did you notice that we broke one of our recommendations from previous chapters? Our 

data has no nonce! This means that Bob has no idea if the message from Alice is “fresh.” 

What if that data was recorded by Eve from a year ago and is just being replayed now?
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Here’s another example. In our derivation of encryption keys, we only generated 

a single encryption key between both parties. This is only secure for one-way 

communication! If you want full-duplex communication (the ability to send data in both 

directions), you will need an encryption key for each direction!

But wait. Why can’t we use the same key to send data from Alice to Bob as we use to 

send data from Bob to Alice?

Do you remember what you learned about in Chapter 3? You do not reuse the same 

key and IV to encrypt two different messages! In full-duplex communication, that is 

exactly what you would be doing. Suppose that AEC-CTR mode is being used for the 

bulk data transport. If Alice uses a key to encrypt messages she sends to Bob, and Bob 

uses the same key to encrypt messages to Alice, both data streams could be XORed 

together to get the XOR of the plaintext messages! As we have seen, that is catastrophic. 

In fact, if Eve can trick Alice or Bob into encrypting data on her behalf (e.g., by planting 

“honeypot” data that will certainly be picked up and transmitted), she can XOR that data 

out leaving the other data as plaintext.

A naive key exchange using RSA encryption could be exploited using this very same 

principle. Suppose that Alice sends Bob an initial secret K encrypted under Bob’s public 

key. Alice and Bob correctly derive session keys and IVs for full-duplex communication 

from K. As an example, Bob has a key KB,A that he uses to send encrypted messages to 

Alice, and Alice has a key KA,B that she uses to send encrypted messages to Bob. (Bob 

uses KA,B to decrypt Alice’s messages and Alice uses KB,A to encrypt Bob’s messages.)

But suppose that Eve records all of these transmissions. Then, at a much later date, 

she replays the initial transmission of K to Bob. Bob doesn’t know that it’s a replay and he 

uses K to derive KB,A. Now he starts sending data to Eve encrypted under this key.

While it’s true that Eve does not have KB,A and cannot decrypt Bob’s messages 

directly, she does have the messages Bob sent to Alice under the same key from the 

earlier transmissions. Again, assuming that Alice and Bob use AES-CTR, the two 

transmission streams can be XORed together to potentially extract sensitive information. 

There are ways to solve this (e.g., by reintroducing challenge-response) but there are 

many ways it can go wrong even still.

It is very difficult to get all the parts of a cryptographic protocol right, even for the 

experts. In general, do not design your own protocols. Use existing protocols as much as 

possible and existing implementations whenever feasible. Above all, we want to remind 

you one more time, YANAC (You Are Not A Cryptographer... yet!).
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EXERCISE 6.11. EXPLOITING FULL-DUPLEX KEY REUSE

In previous exercises, you XORed some data together to see if you could still find patterns, but 

you didn’t actually XOR the two cipher streams together. Imagine if Alice and Bob used your 

ECDH exchange and derived the same key for full-duplex communication. Use the same key 

to encrypt some documents together for Alice to send to Bob and for Bob to send to Alice. XOR 

the cipher streams together and validate that the result is the XOR of the plaintext. See if you 

can figure out any patterns from the XORed data.

EXERCISE 6.12. DERIVING ALL THE PIECES

Modify the ECDH exchange program to derive six pieces of information: a write encryption key, 

a write IV, a write MAC key, a read decryption key, a read IV, and a read MAC key. The hard part 

will be getting both sides to derive the same keys. Remember, the keys will be derived in the 

same order. So how does Alice determine that the first key derived is her write key and not 

Bob’s write key? One way to do this is to take the first n bytes of each side’s public key bytes 

as an integer and whoever has the lowest number goes “first.”

�An Unfortunate Example of Asymmetric 
and Symmetric Harmony
Most of our examples of cryptography are beneficial in some way, or are at least 

not inherently evil. Unfortunately, bad guys can use cryptography just as well as the 

good guys. And given that they can make a lot of money from evil, they can be highly 

motivated to produce creative, efficient uses of the technology.

One area where bad guys are incredibly good at using cryptography is ransomware. 

If you’ve been living in a cave in West Antarctica for the past decade and haven’t heard 

about ransomware, it’s basically software that encrypts your files and refuses to unlock 

them until you pay the extortionists behind it.

The cryptography behind early ransomware was simplistic and naive. The 

ransomware encrypted every file with a different AES key, but all of the AES keys were 

stored on the system in a file. The ransomware’s decryptor could easily find the keys and 

decrypt the file, but so could security researchers. If you don’t want somebody to unlock 

a file, it’s bad idea to leave the keys just lying around (under the doormat, so to speak).
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Ransomware authors logically turned to asymmetric encryption as a solution. The 

immediately obvious advantage of asymmetric cryptography is that a public key could 

be on the victim’s system and a private key could be somewhere else. For all of the 

reasons you’ve seen in this chapter, the files themselves cannot be encrypted with RSA 

directly. RSA doesn’t even have the capacity to encrypt data larger than between 190 and 

256 bytes, and if it did, it would be too slow. The user might notice their system getting 

locked down long before the encryption was complete.

Instead, the ransomware could encrypt all of the AES keys individually. After all, an 

AES key is just 16 bytes for AES-128 and 32 bytes for AES-256. Each key can be easily RSA 

encrypted before being stored on the victim’s system. RSA encrypts with the public key, so as 

long as the private key isn’t available to the victim, they won’t be able to decrypt the AES keys.

There are two naive variants of this approach, both of which are problematic. The first 

approach is to generate the key pair ahead of time and hard-code the public key into the 

malware itself. After the malware encrypts all the AES keys with the public key, a victim has 

to pay the ransom to have the private key sent to them for decryption. The obvious flaw 

in this design is that the same private key would unlock all of the systems attacked by the 

ransomware, as each copy of the malicious attack file had the same public key baked into it.

The second approach is for the ransomware to generate the RSA key pair on the 

victim’s system and transmit the private key to the command and control server. Now 

there is a unique public key encrypting the AES keys, and when the attacker releases 

the private key for decryption, it only unlocks the specific victim’s files. The problem 

here is that the system has to be online to get rid of the private key, and many network 

monitoring systems will detect transmissions to risky IPs where command and control 

servers often operate. Transmitting the private key might give away the ransomware 

before it has even started encrypting files on the system. It is stealthier to do everything 

locally until the system is fully locked.

Modern ransomware solves all of these problems with a pretty clever approach. 

First, the attacker generates a long-term asymmetric key pair. For our purposes, let’s just 

assume it is an RSA key pair, and we will call these keys the “permanent” asymmetric keys.

Next the attacker creates some malware and hard-codes the permanent public key 

into the malware. When the malware activates on a victim’s machine, the first thing that 

it does is generate a new asymmetric key pair. Again, for simplicity, let’s assume that it 

is an RSA key pair. We will call it the “local” key pair. It immediately encrypts the newly 

generated local private key by the attacker’s permanent public key embedded in the 

malware. The unencrypted local private key is deleted.
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Now the malware begins to encrypt the files on the disk using AES-CTR or AES-CBC. 

Each file is encrypted under a different key, and then each key is encrypted by the local 

public key. The unencrypted version of the key is destroyed as soon as the file is finished 

being encrypted.

When the whole process is done, the victim’s files are encrypted by AES keys that are 

themselves encrypted by the local RSA public key. These AES keys could be decrypted 

by the local RSA private key, but that key is encrypted under the attacker’s permanent 

public key, and the private key is not on the computer.

Now the attacker contacts the victim and demands the ransom. If the victim agrees 

and pays the ransom (usually by way of Bitcoin), the attacker provides some kind of 

authentication code to the malware. The malware transmits the encrypted local private 

key to the attacker. Using his or her permanent private key, he or she decrypts the local 

private key and sends it back to the victim. Now all of the AES keys can be decrypted and 

the files subsequently decrypted.

What’s clever about this algorithm is that the attacker does not disclose his or her 

permanent private key. It remains private. A secondary private key is decrypted by the 

attacker for the victim to use in unlocking the rest of the system.

Warning: Risky Exercise 

The upcoming exercise is somewhat risky. You should not do this exercise unless 
you have a virtual machine that can be restored to a snapshot or a jail (e.g., a 
chroot jail) with files that can be permanently lost.

Furthermore, this exercise has you create a simplified version of ransomware. We 
do not condone nor encourage any actual use of ransomware in any form. Don’t be 
stupid, don’t be evil.

EXERCISE 6.13. PLAYING THE VILLAIN

Help Alice and Bob create some ransomware to infect WA servers. Start by creating a function 

that will encrypt a file on disk using an algorithm of your choice (e.g., AES-CTR or AES-CBC). 

The encrypted data should be saved to a new file with some kind of random name. Before 

moving on, test encrypting and decrypting the file.
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Next, create the fake malware. This malware should be configured with a target directory and 

the permanent public key. The public key can be hard-coded directly into the code if you wish. 

Once up and running, it needs to generate a new RSA key pair, encrypt the local private key 

with the permanent public key, and then delete any unencrypted copies of the local private 

key. If the private key is too big (e.g., more than 190 bytes), encrypt it in chunks.

Once the local key pair is generated, begin encrypting the files in the target directory. As an 

extra precaution, you can ask for manual approval before encrypting each file to make sure 

you don’t accidentally encrypt the wrong thing. For each file, encrypt it under a new random 

name and store a plaintext metadata file with the original name of the file, the encrypted 

key, and IV. Delete the original file if you feel that you can do so safely (we will not be held 

responsible for any mistakes on your part! Use a VM, only operate in a target directory on 

copies of unimportant files, and manually confirm each deletion!).

The rest should be straightforward. Your “malware” utility needs to save the encrypted private 

key to disk. This should be decrypted by a separate command and control utility that has 

access to the permanent private key. Once decrypted, it should be loaded by the malware and 

used to decrypt/release the files.

While you are hopefully not a malware/ransomware author, this section should also 

be helpful to you in thinking about how to encrypt “data at rest.” Much of what we talk 

about in this book is to protect “data in motion,” which is data traveling across a network 

or in some other way between two parties. The ransomware example illustrates protecting 

data that stays largely in place, typically to be encrypted and decrypted by the same party.

Utilities that encrypt files on disk have to deal with the wretched key management 

problem just like they do with data in motion. In general, there will have to be one 

key per file just like there has to be one key per network communications session; 

this prevents key reuse. The keys (and IVs) must be stored, or it must be possible to 

regenerate them. If they are stored, they must be encrypted by some kind of master key 

and stored along with additional metadata about the algorithm used and so forth. This 

information can be prepended to the beginning of the encrypted file, or it can be stored 

somewhere in a manifest.

If the keys are regenerated later, this is typically done by deriving the keys from a 

password, as we have already discussed in Chapter 2. As there needs to be a different key 

for each file, a random per-file salt is used in the derivation process to ensure that key’s 

uniqueness. The salt must be stored with the file, and the loss of the salt would result in a 

lost file that could never be decrypted.

Chapter 6  Combining Asymmetric and Symmetric Algorithms



248

This is the basic cryptographic concept behind securing data at rest, but production 

systems are usually far more complicated. NIST, for example, requires that compliant 

systems have a defined cryptographic key life cycle. This includes a pre-operational, 

operational, post-operational, and deletion stages as well as an operational “crypto” 

period for each key. This period is further broken down into an “originator usage period” 

(OUP) for when sensitive data can be generated and encrypted and a “recipient usage 

period” (RUP) for when this data can be decrypted and read. Key management systems 

are expected to handle key rollover (migrating encrypted data from one key to another), 

key revocation, and many other such functions.

We won’t bother you with another reference to YANAC... but by this point in the 

book, we hope your own subconscious is starting to do it for us!

�That’s a Wrap
The main thrust of this chapter is that you can wrap up a temporary symmetric 

communication session within an initial asymmetric session establishment protocol. 

A lot of the world’s asymmetric infrastructure is focused on long-term identification of 

parties and that infrastructure is useful for establishing identities in some way and based 

on some model of trust. But once that trust is established, it’s more secure and more 

efficient to create a temporary symmetric key (well, actually several of them) to handle 

encrypting and MACing the data going forward.

We reviewed, for example, that you can transport a key from one party to another using 

RSA encryption. This approach was the primary approach used for a long time. Although 

still present in many systems, it is being retired for many reasons. More favored these days 

is using an ephemeral key agreement protocol, such as DH and ECDH (actually, DHE and 

ECDHE to be precise) to create a session key with perfect forward secrecy.

Either way, whether by key transport or key agreement, the parties can then derive 

the suite of keys necessary for communications. Or, a single party can derive the keys 

necessary for encrypting data on a hard drive. In both cases, the asymmetric operations 

are primarily used to establish identity and get an initial key, while the symmetric 

operations are used for the actual encryption of data.

If you can understand these principles, you can be conversant about most 

cryptography systems you’ll find.
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CHAPTER 7

More Symmetric Crypto: 
Authenticated Encryption 
and Kerberos
In this chapter we’ll be covering some advanced symmetric cryptography, and we’ll get 

deeper into authenticated encryption.

Let’s dive right into an example and some code using AES-GCM.

�AES-GCM
Alice and Bob have had a few close calls with Eve over the past month. During that time, 

they have been exchanging USB drives with encrypted files. This has worked out for 

them so far, but they seem to have trouble remembering a handful of key things: that 

they should Encrypt-Then-MAC, that the MAC needs to cover unencrypted data, and 

that they need to have two separate keys. After some exasperation and close calls due 

to their understandably imperfect memory under pressure, they let HQ know that they 

would like something less error-prone.

As it happens, there is something new that they can use. New symmetric modes 

of operation are available called “authenticated encryption” (AE) and “authenticated 

encryption with additional data” (AEAD). These new modes of operation provide both 

confidentiality and authenticity for the data. AEAD can also provide authenticity over 

“additional data” that is not encrypted. This is far more important than it might sound, so 

we’re actually going to leave AE behind and focus exclusively on AEAD.

In this exercise, we’re going to use a mode of AES called “Galois/Counter Mode” 

(GCM). The API for this mode is just a little different than what we have seen before, 
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so let’s give Alice and Bob a crash course in using it. In Listing 7-1, we use AES-GCM to 

encrypt a document and authenticate the IV and salt used in the encryption process.

Listing 7-1.  AES-GCM

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives.kdf.scrypt import Scrypt

 3   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 4   import os, sys, struct

 5

 6   READ_SIZE = 4096

 7

 8   def encrypt_file(plainpath, cipherpath, password):

 9       # Derive key with a random 16-byte salt

10       salt = os.urandom(16)

11       kdf = Scrypt(salt=salt, length=32,

12                   n=2**14, r=8, p=1,

13                   backend=default_backend())

14       key = kdf.derive(password)

15

16       # Generate a random 96-bit IV.

17       iv = os.urandom(12)

18

19       # Construct an AES-GCM Cipher object with the given key and IV.

20       encryptor = Cipher(

21           algorithms.AES(key),

22           modes.GCM(iv),

23           backend=default_backend()).encryptor()

24

25       associated_data = iv + salt

26

27       # associated_data will be authenticated but not encrypted,

28       # it must also be passed in on decryption.

29       encryptor.authenticate_additional_data(associated_data)

30
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31       with open(cipherpath, "wb+") as fcipher:

32           # Make space for the header (12 + 16 + 16), overwritten last

33           fcipher.write(b"\x00"*(12+16+16))

34

35           # Encrypt and write the main body

36           with open(plainpath, "rb") as fplain:

37               for plaintext in iter(lambda: fplain.read(READ_SIZE), b''):

38                   ciphertext = encryptor.update(plaintext)

39                   fcipher.write(ciphertext)

40               ciphertext = encryptor.finalize() # Always b''.

41                   fcipher.write(ciphertext) # For clarity

42

43               header = associated_data + encryptor.tag

44               fcipher.seek(0,0)

45               fcipher.write(header)

Most of this function should look familiar. Because we’re storing this data on disk,  

we are using Scrypt instead of HKDF, and we use this to generate a key from a password. 

As described in the previous chapter, because a user might use the same password 

across multiple files, each file needs its own salt in order to generate a per-file key. 

Remember, we do not want to use the same key and IV on different files or even on 

the same file (e.g., if we encrypt, then modify the file and encrypt again). To be extra 

cautious, we won’t even use the same key.

Similar to what we’ve done before, we also create a Cipher object. But instead of 

using CTR or CBC modes, we use GCM mode. That mode takes an IV, and we’ll talk 

momentarily about why it is 12 bytes instead of the 16 bytes we’ve seen in the past. The 

only new method on the encryptor is authenticate_additional_data. As you can 

probably guess, this method takes in the data that will not be encrypted, but that still 

needs to be authenticated.

The unencrypted data that we’re authenticating in this case is the salt and the 

IV. This data must be in plaintext because we can’t decrypt without it. By authenticating 

it, we can be certain—once the decryption is done—that nobody has tinkered with these 

unencrypted values.

The other unique part of this GCM operation is the encryptor.tag. This value is 

computed after the finalize method and is more or less the MAC over the encrypted 

and additional data. In our implementation, we choose to put the associated data  
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(the salt and the IV) and the tag at the beginning of the file. Because that data (at least 

the tag data) won’t be available until the end of the encryption process, we preallocate 

several bytes (initially zeros) that we’ll overwrite when we finally have the tag at the 

end of the process. In some operating systems, there is no way to prepend data, so the 

preallocated prefix bytes ensure that we have room for the header when finished.

The function in Listing 7-2 doesn’t delete or overwrite the original file, so it’s pretty 

safe to play with. Use it to create an encrypted copy of a file on your system. Examine the 

bytes using a utility like hexdump to ensure that the data is, in fact, encrypted.

Warning: Beware the Files of Unusual Size

Do not encrypt a file greater than 64 GiB, as there are limits to GCM that we will 
discuss shortly.

Now, let’s write a decrypt_file function, shown in Listing 7-2.

Listing 7-2.  AES-GCM Decryption

 1   from cryptography.hazmat.backends import default_backend

 2   from cryptography.hazmat.primitives.kdf.scrypt import Scrypt

 3   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 4   import os, sys, struct

 5

 6   READ_SIZE = 4096

 7   def decrypt_file(cipherpath, plainpath, password):

 8       with open(cipherpath, "rb") as fcipher:

 9           # read the IV (12 bytes) and the salt (16 bytes)

10           associated_data = fcipher.read(12+16)

11

12           iv = associated_data[0:12]

13           salt = associated_data[12:28]

14

15           # derive the same key from the password + salt

16           kdf = Scrypt(salt=salt, length=32,

17                   n=2**14, r=8, p=1,
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18                   backend=default_backend())

19           key = kdf.derive(password)

20

21           # get the tag. GCM tags are always 16 bytes

22           tag = fcipher.read(16)

23

24           # Construct an AES-GCM Cipher object with the given key and IV

25           # For decryption, the tag is passed in as a parameter

26           decryptor = Cipher(

27               algorithms.AES(key),

28               modes.GCM(iv, tag),

29               backend=default_backend()).decryptor()

30           decryptor.authenticate_additional_data(associated_data)

31

32           with open(plainpath, "wb+") as fplain:

33               for ciphertext in iter(lambda: fcipher.read(READ_SIZE),b''):

34                   plaintext = decryptor.update(ciphertext)

35                   fplain.write(plaintext)

This decryption operation starts by first reading out the unencrypted salt, IV, and tag. 

The salt is used in conjunction with the password to derive the key. The key, the IV, and 

the tag are parameters to the GCM decryption process. The associated data (the salt and 

the IV) are also passed into the decryptor using the authenticate_additional_data 

function.

When the decryptor’s finalize method is called and any data has been changed, 

either in the ciphertext or the additional data, the method throws an invalid tag exception.

This function does not attempt to recreate the original filename. You can thus safely 

restore the encrypted file to a new filename and then compare the newly recovered file 

with the original.

EXERCISE 7.1. TAG! YOU’RE IT!

Artificially “damage” different parts of an encrypted file including both the actual ciphertext 

and the salt, IV, or tag. Demonstrate that decrypting the file throws an exception.
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�AES-GCM Details and Nuances
In our introductory exercise, Alice and Bob were introduced to the GCM mode of 

operation for AES. AES-GCM is an AEAD (authenticated encryption and associated data) 

mode. A summary of key details includes

•	 The mode both encrypts and authenticates data with a single key.

•	 The encryption and authentication is integrated; there is no need  

to worry about when to do what (i.e., Encrypt-Then-MAC vs.  

MAC-Then-Encrypt).

•	 AEAD includes authentication over data that is not encrypted.

You may have noticed that these features address Alice and Bob’s concerns. It 

significantly reduces misuse and misconfiguration, making it easier for Alice and Bob 

(and you) to do it right.

One element of this that deserves particular emphasis is the authentication of 

additional data. There have been many issues in the history of cryptography where an 

attacker takes data out of one context to misuse it in another. Replay attacks, for example, 

are classic examples of this kind of problem. In many cases, these attacks would fail if the 

context of the sensitive data were enforced.

In our file encryption example, we authenticated the IV and salt values, but we 

could have easily thrown in the filename and a timestamp. One problem with encrypted 

files is recognizing a replay of an older, but correctly encrypted, version of the file. If a 

timestamp is authenticated with a file, or alternatively a version number or other nonce 

is included, the encrypted file is more tightly bound to a recognizable context.

When you are encrypting data, think carefully over what data needs to be authentic, 

not just private. The better you can identify and secure the surrounding context of 

encryption, the more secure your system will be.

In terms of securing data against modification, it is important to note that the 

AEAD algorithm decrypts data before it knows if the data is unmodified. In your 

experimentation with the preceding file decryption, you may have noticed that 

even if the encrypted file is damaged, the decryptor will still create a decrypted file. 

The exception thrown by GCM is thrown after everything is decrypted and (in our 

implementation) written to the recovered file.

In summary, remember that the decrypted data cannot be trusted until the tag is 

verified!
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AEAD is great, but the combined operation introduces an interesting problem. How 

long do you have to wait for a tag? Suppose that, instead of file decryption, Alice and 

Bob are using AES-GCM to send data over a network. Suppose it’s a lot of data. Suppose 

it will take many hours to completely transmit the data. If we encrypt this data like we 

encrypted the file, the tag will not be sent until the entire transmission is complete.

Do you really want to wait until the very end of those hours to finally receive the tag?

Worse, how do you calculate the “end” of a secure channel? If you have an encrypted 

channel open for days sending arbitrary amounts of data, at what point do you decide to 

stop, calculate, and send the tag?

In network protocols like TLS, which we will explore more fully in Chapter 8, each 

individual TLS record (a TLS packet more or less) is individually GCM-encrypted with 

its own individual tag. That way, malicious or accidental modifications are detected 

almost in real time, rather than at the end of transmission. In general, a more bite-sized 

approach to GCM encryption is recommended for streams.

The cryptography library has a simpler user interface for this bite-sized AES-GCM 

encryption operation. It has an added bonus in that the decryption operation will not 

return the decrypted data unless the tag is correct, preventing you from accidentally 

using bad data. Here is some sample code from the cryptography library documentation 

demonstrating its use:

>>> import os

>>> from cryptography.hazmat.primitives.ciphers.aead import AESGCM

>>> data = b"a secret message"

>>> aad = b"authenticated but unencrypted data"

>>> key = AESGCM.generate_key(bit_length=128)

>>> aesgcm = AESGCM(key)

>>> nonce = os.urandom(12)

>>> ct = aesgcm.encrypt(nonce, data, aad)

>>> aesgcm.decrypt(nonce, ct, aad)

b'a secret message'

This API is easy to use and the concept is not too difficult, but it comes with one 

critical security consideration: the nonce. Recall that the “C” in GCM stands for 

“Counter.” GCM is more or less like CTR with a tag operation integrated into it. This 

is important because many of the problems with counter mode that we’ve discussed 

previously still apply. In particular, while you should never reuse a key and IV pair in 
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any mode of AES encryption, it is especially bad for counter mode (and GCM). Doing so 

makes it possible to trivially expose the XOR of the two plaintexts. The IV/nonce to GCM 

must never be reused.

To illustrate the issue, let’s briefly revisit how counter mode works. Remember that 

unlike CBC mode, AES counter mode does not actually encrypt the plaintext with AES 

block encryption. Rather, a monotonically increasing counter is encrypted with AES, and 

this stream is XORed with the plaintext. It’s worth repeating that the AES block cipher is 

first applied to the counter, and then to the counter +1, and then to the counter +2, and 

so on to generate the full stream. Reusing the nonce results in reusing the stream.

That’s important. If you are not even more careful, though, you might run into a 

slightly similar problem that is equally disastrous. For example, suppose that you decide 

to start with a nonce of 0 (16 bytes of 0) instead of picking a random IV for counter mode. 

You use that nonce (0) to encrypt a bunch of data (maybe a file) under a key and then 

you increase your nonce by 1 to initialize a new AES counter context to encrypt a new set 

of data (such as another file) under the same key. Your nonce is thus nothing more than 

an ever-incrementing counter.

The problem with this is that—even though you think you’re not reusing a nonce 

(it’s different every time)—counter mode works by increasing the nonce by one for each 

block. The first operation encrypted 0, then 1, then 2, and so forth; the second operation 

encrypted 1, then 2, then 3, and so forth. In other words, the second file encrypted with 

the second nonce repeats the same key stream after the first 128-bit block. There is a very 

large amount of overlap between subsequent streams.

For relatively small amounts of data like we are using in examples, using a 

completely random 16-byte IV is probably enough for standard counter mode. In 

production code, you would have to do a security analysis to determine exactly how long 

you have on average before you create cipher streams that overlap. This calculation is 

dependent on how much data you plan to encrypt under the same key. If you want to 

explicitly control your IVs to ensure that it is not possible to overlap a key/counter pair, 

there are some rules that you can follow that help.

GCM, for example, mandates a 12-byte IV to explicitly solve this problem  

(it does permit longer IVs, but this introduces new problems and is beyond the scope of 

the book). The selected 12-byte nonce is then padded with 4 zero bytes to produce a  

16-byte counter. Even if a nonce is chosen that is just one more than the previous nonce, 

the counters will not overlap, provided you do not overflow the 4-byte block counter.  
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A 4-byte counter on 128-bit blocks means no more than 236 bytes (or 64 GiB) of data can 

be encrypted before overflowing the counter, which is why 64 GiB of data is designated 

as an upper bound for GCM encryption.

Using 12-byte IVs and no more than 64 GiB of plaintext per key/IV pair means that 

there will never be any overlap. For reasons that are beyond the scope of this book, the 

only other requirement on GCM IVs is that they not be zero.

Let’s return to the problem of using AES-GCM to encrypt a bunch of smaller 

messages in a stream. How do we keep from reusing a key/IV pair? We could try to 

come up with a deterministic way of rotating the key on each side of the transmission, 

but that’s too complicated and error-prone. What we can do instead is use different IV/

nonce values for each individual encryption. In a worst-case scenario, the nonce can 

be sent with each packet. Unlike the key, the nonce does not have to be secret, merely 

authentic.

Additionally, we can use certain nonce construction algorithms to help prevent 

reuse. It is not OK to limit the randomness of a key because the key must be secret, and 

any bits chosen deterministically reduce the brute-force difficulty of discovering that 

secret. It is acceptable to reduce the randomness of some bits in an IV so long as the IV is 

never reused with the same key.

For example, some number of bytes of the IV could be device-specific. This ensures 

that two different devices can never generate the same nonce. Alternatively—or 

additionally—some bytes of the IV could be inferred, reducing the amount of IV data that 

has to be stored or transmitted. Perhaps part of the IV for a file encryption could depend 

on where the file is stored on disk.

For now, we will continue to generate random IVs and transmit them as needed, but 

it’s good to understand some of the different ways that IVs can be generated and used.

EXERCISE 7.2. CHUNKY GCM

Modify the document encryption code from earlier in the chapter to encrypt in chunks no 

larger than 4096 bytes. Each encryption will use the same key, but a different nonce. This 

change means that rather than storing one IV and one tag at the top of the file, you will need to 

store an IV and a tag with each encrypted chunk.
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�Other AEAD Algorithms
In addition to AES-GCM mode, there are two other popular AEAD algorithms 

supported by the cryptography library. The first one is AES-CCM. The second is known 

as ChaCha.

AES-CCM is very similar to AES-GCM. Like GCM, it uses counter mode for the 

encryption; however, the tag is generated by a method similar to, but also superior to, 

CBC-MAC.

One critical difference between AES-CCM and AES-GCM is that the IV/nonce can be 

of variable length: between 7 and 13 bytes. The smaller the IV/nonce, the larger the data 

size that can be encrypted by the key/IV pair. Like GCM, this nonce is just a part of the 

full 16-byte counter value. Thus, the fewer of the 16 bytes used by the nonce, the more 

bytes that can be used by the counter before overflowing.

For reasons beyond the scope of this book, the nonce is constrained to be 15-L 

bytes long, where L is the size of the length field: if your data requires 2 bytes to store the 

length, the nonce can be up to 13 bytes. On the other hand, if the size of the data would 

require 8 bytes to store the length, the nonce is limited to 7 bytes. These two values 

represent the minimum and maximum values supported by the CCM mode.

Assuming that you want to use CCM for large amounts of data, just select a nonce of 

7 bytes and move on. The security of the algorithm doesn’t change based on nonce size, 

so long as you do not reuse a nonce with a key.

Besides this painful nonce issue, CCM has no other API differences over GCM. In 

terms of performance, however, GCM is more easily parallelized. That may not make 

much of a difference in your python programming, but it does make a difference if you 

want to use your graphics card as a cryptographic accelerator.

When using the cryptography library, CCM is not supported as a mode of operation 

to the AES cipher context. Only the self-contained AESCCM object is available.

>>> import os

>>> from cryptography.hazmat.primitives.ciphers.aead import AESCCM

>>> data = b"a secret message"

>>> aad = b"authenticated but unencrypted data"

>>> key = AESCCM.generate_key(bit_length=128)

>>> aesccm = AESCCM(key)

>>> nonce = os.urandom(7)
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>>> ct = aesccm.encrypt(nonce, data, aad)

>>> aesccm.decrypt(nonce, ct, aad)

b'a secret message'

The last AEAD mode that we’ll introduce to you is known as ChaCha20-Poly1305. 

This cipher is unique among the AEAD approaches discussed in this book, as it is the 

only AEAD algorithm not based on AES. Designed by Daniel J. Bernstein, it combines 

a stream cipher he designed named ChaCha20 with a MAC algorithm also designed 

by Bernstein named Poly1305. Bernstein is quite the cryptographer and is currently 

working on a number of projects related to elliptic curves, hashing, encryption, and 

asymmetric algorithms resistant to quantum-enabled attacks. He is also a programmer 

and has written a number of security-related programs.

Some in the security community worry that the popularity of AES means that if a 

severe vulnerability were ever found in AES, the cryptographic wheels of the Internet 

might grind to a halt. Establishing ChaCha as an effective alternative means that, should 

such a vulnerability be found, there would be a well-tested, well-established alternative 

already available. The fact that ChaCha20-Poly1305 is available as authenticated 

encryption is even better.

ChaCha20 has some other advantages. For purely software-powered 

implementations, ChaCha is typically faster than its peers. Moreover, it is a stream cipher 

by design. Whereas AES is a block cipher that can be used as a stream cipher, ChaCha is 

only a stream cipher. In the earlier days of the Internet, RC4 was a stream cipher that was 

used in a lot of security contexts including TLS and Wi-Fi. Unfortunately, it was found to 

have major vulnerabilities and weaknesses that have all but eliminated its use. ChaCha is 

seen by some as its spiritual successor.

Like AES-GCM, ChaCha20-Poly1305 expects a 12-byte nonce. Its API within the 

cryptography library is pretty much identical:

>>> import os

>>> �from cryptography.hazmat.primitives.ciphers.aead import 

ChaCha20Poly1305

>>> data = b"a secret message"

>>> aad = b"authenticated but unencrypted data"

>>> key = ChaCha20Poly1305.generate_key()

>>> chacha = ChaCha20Poly1305(key)

>>> nonce = os.urandom(12)
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>>> ct = chacha.encrypt(nonce, data, aad)

>>> chacha.decrypt(nonce, ct, aad)

b'a secret message'

Any of these AEAD algorithms can be used with more or less the same security 

guarantees. All three of them are considered to be much better than creating 

authenticated encryption by doing a separate cipher along with an accompanying 

MAC. Whenever AEAD algorithms are available, you should take advantage of them.

You may have noticed the generate_key methods for these three different modes. 

This is a convenience function, not a requirement. You can still use, for example, a 

key derivation function to create keys just as you always have. But as you can see with 

ChaCha, you don’t even have to specify a bit size. It just gives you an appropriately sized 

key, which can eliminate a common class of errors.

EXERCISE 7.3. SPEEDY CHACHA

Create some speed comparison tests for AES-GCM, AES-CCM, and ChaCha20-Poly1305. Run 

one set of tests where a large amount of data is fed into each encrypt function exactly once. 

Test the speed of the decryption algorithm as well. Note that this also tests the tag check.

Run a second set of tests where large data is broken up into smaller chunks (perhaps 4 KiB 

each), and each chunk is individually encrypted.

�Working the Network
The spies of East Antarctica are finally getting out of the stone age and have begun 

hooking computers up to the Internet. It’s time that Alice and Bob learned to write some 

network-capable code for sending their codes back and forth.

Because they’re using Python 3, Alice and Bob are going to do some asynchronous 

network programming using the asyncio module. If you’ve programmed with sockets 

before, this is going to be a little bit different.

By way of explanation, sockets are typically a blocking or synchronous approach to 

network communications. Sockets can be configured to be non-blocking, and in that 

mode you can use them with something like the select function to keep the program 

from getting stuck while you wait for data. Alternatively, sockets can be put in a thread to 

keep data flowing into the main program loop.
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The asyncio module takes an asynchronous approach and attempts to model the 

data structure after the conceptual model of network communications. In particular, 

network data is processed by a Protocol object that has methods for handling 

connection_made, data_received, and connection_lost events. The Protocol object is 

plugged into an asynchronous event loop, and the Protocol’s event handlers are called 

when events are triggered.

A Protocol class typically looks something like Listing 7-3.

Listing 7-3.  Network Protocol Intro

 1   import asyncio

 2

 3   class ConcreteProtocol(asyncio.Protocol):

 4       def connection_made(self, transport):

 5           self.transport = transport

 6

 7       def data_received(self, data):

 8           pass

 9           # process data

10           # send data using transport.write as needed

11

12       def connection_lost(self, exc):

13           pass

14           # do cleanup

The contract for a Protocol object is that, after construction, there will be one call 

to connection_made when the underlying network is ready. This event will be followed 

by zero or more calls to data_received, followed by a single connection_lost call when 

the underlying network connection is broken.

A protocol can send data to the peer by calling self.transport.write and can force 

the connection to close by calling self.transport.close.

It should be noted that there is exactly one protocol object created per connection: 

when a client makes an outbound connection, there is only ever one connection and 

there is only ever one protocol. But, when a server is listening for connections on a port, 

there are potentially many connections at one time. A server spawns connections for 

each incoming client, and asyncio spawns a protocol object for each new connection.
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That was a really fast overview of asyncio’s network API. A more detailed 

explanation is beyond the scope of this book, but if you need more information, the 

asyncio documentation is very thorough. Also, much of this will probably become clear 

as you follow along with the examples. Speaking of which, let’s use what we have learned 

and create a “secure” echo server.

The echo protocol is the “Hello World” of network communications. Basically, a 

server listens on a port for client connections. When a client connects, it sends to the 

server a string of data (usually human readable). The server responds by mirroring back 

the exact same message (hence, “echo”) and closing the connection. You can find plenty 

of examples of this on the Web, including an example in the asyncio documentation.

We are going to add a twist. We’re going to build a variant that encrypts on 

transmission and decrypts on reception.

Let’s start by creating the server, shown in Listing 7-4.

Listing 7-4.  Secure Echo Server

 1   �from cryptography.hazmat.primitives.ciphers.aead import 

ChaCha20Poly1305

 2   from cryptography.hazmat.primitives import hashes

 3   from cryptography.hazmat.primitives.kdf.hkdf import HKDF

 4   from cryptography.hazmat.backends import default_backend

 5   import asyncio, os

 6

 7   PW = b"password"

 8

 9   class EchoServerProtocol(asyncio.Protocol):

10       def __init__(self, password):

11           # 64 bytes gives us 2 32-byte keys.

12           key_material = HKDF(

13               algorithm=hashes.SHA256(),

14               length=64, salt=None, info=None,

15               backend=default_backend()

16           ).derive(password)

17           self._server_read_key = key_material[0:32]

18           self._server_write_key = key_material[32:64]

19
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20       def connection_made(self, transport):

21           peername = transport.get_extra_info('peername')

22           print('Connection from {}'.format(peername))

23           self.transport = transport

24

25       def data_received(self, data):

26           # Split out the nonce and the ciphertext.

27           nonce, ciphertext = data[:12], data[12:]

28           plaintext = ChaCha20Poly1305(self._server_read_key).decrypt(

29               nonce, ciphertext, b"")

30           message = plaintext.decode()

31           print('Decrypted message from client: {!r}'.format(message))

32

33           print('Echo back message: {!r}'.format(message)) 

34           reply_nonce = os.urandom(12)

35           ciphertext = ChaCha20Poly1305(self._server_write_key).encrypt(

36               reply_nonce, plaintext, b"")

37           self.transport.write(reply_nonce + ciphertext)

38

39           print('Close the client socket')

40           self.transport.close()

41

42   loop = asyncio.get_event_loop()

43   # Each client connection will create a new protocol instance

44   �coro = loop.create_server(lambda: EchoServerProtocol(PW),  

'127.0.0.1', 8888)

45   server = loop.run_until_complete(coro)

46

47   # Serve requests until Ctrl+C is pressed

48   print('Serving on {}'.format(server.sockets[0].getsockname()))

49   try:

50       loop.run_forever()

51   except KeyboardInterrupt:

52       pass

53
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54   # Close the server

55   server.close()

56   loop.run_until_complete(server.wait_closed())

57   loop.close()

There is a single protocol class in this file: EchoServerProtocol. For illustrative 

purposes, the connection_made method reports the details of the connecting client. This 

will typically be the client’s IP address and outbound TCP port. This is for flavor only and 

not essential to the operation of the server.

The real meat is in data_received method. This method receives data, decrypts it, 

re-encrypts it, and sends it back to the client.

Actually, we’re getting a little ahead of ourselves: for this encryption, where does the 

key come from? The password is a parameter to the EchoServerProtocol constructor, 

but if you look down at the create_server line later in the code, you will see that we are 

passing in a hard-coded value. In honor of the fact that “password” is still a common 

password, we have chosen that string as the “secret”1.

Using the password, the EchoServerProtocol derives two keys: a “read” key and a 

“write” key. Because we will be using randomized nonces, we could use the same key 

for both the client and the server, but having two separate keys is easy to do and is good 

practice. We use HKDF to generate 64 bytes of key material and split that into two keys: the 

server’s read key and the server’s write key.

Going back to the data_received method, remember that this method is called 

when we have received something from the client. Thus, the data variable is what the 

client sent us. We are assuming (without any error checking) that the client sent a 12-

byte nonce followed by an arbitrary amount of ciphertext. Using that nonce and our 

server’s read key, we can decrypt the ciphertext. Note that the third parameter is just an 

empty byte string because we are not authenticating any additional data for now.

Once the data is decrypted, the recovered plaintext is re-encrypted under the server’s 

write key and a newly generated nonce. We could have reused the nonce because we 

have a different key, but using a separate nonce is good practice and keeps both sides of 

the transmission using the same message format. The new nonce and the re-encrypted 

message are then sent back to the client.

1�If anyone reading this book is still using “password” for any passwords that actually matter, 
please stop reading and go change it. Really. We’ll wait.
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The rest of this sets up the server. You can ignore most of it, with the exception of the 

create_server method. This method sets up a listener on local port 8888 and associates 

it with an anonymous factory function. That lambda will get called each time there is a 

new incoming connection. In other words, for each incoming client connection, a new 

EchoServerProtocol object is produced.

With the server code finished, we create the client code in Listing 7-5 that sends the 

initial message and decrypts the response.

Listing 7-5.  Secure Echo Client

 1   �from cryptography.hazmat.primitives.ciphers.aead import ChaCha20Poly1305

 2   from cryptography.hazmat.primitives import hashes

 3   from cryptography.hazmat.primitives.kdf.hkdf import HKDF

 4   from cryptography.hazmat.backends import default_backend

 5   import asyncio, os, sys

 6

 7   PW = b"password"

 8

 9   class EchoClientProtocol(asyncio.Protocol):

10       def __init__(self, message, password):

11           self.message = message

12

13           # 64 bytes gives us 2 32-byte keys

14           key_material = HKDF(

15               algorithm=hashes.SHA256(),

16               length=64, salt=None, info=None,

17               backend=default_backend()

18           ).derive(password)

19           self._client_write_key = key_material[0:32]

20           self._client_read_key = key_material[32:64]

21

22       def connection_made(self, transport):

23           plaintext = self.message.encode()

24           nonce = os.urandom(12)

25           ciphertext = ChaCha20Poly1305(self._client_write_key).encrypt(

26               nonce, plaintext, b"")
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27           transport.write(nonce + ciphertext)

28           print('Encrypted data sent: {!r}'.format(self.message)) 

29

30       def data_received(self, data):

31           nonce, ciphertext = data[:12], data[12:]

32           plaintext = ChaCha20Poly1305(self._client_read_key).decrypt(

33               nonce, ciphertext, b"")

34           �print('Decrypted response from server: {!r}'.format(plaintext.

decode()))

35

36       def connection_lost(self, exc):

37           print('The server closed the connection')

38           asyncio.get_event_loop().stop()

39

40   loop = asyncio.get_event_loop()

41   message = sys.argv[1]

42   coro = loop.create_connection(lambda: EchoClientProtocol(message, PW),

43                                 '127.0.0.1', 8888)

44   loop.run_until_complete(coro)

45   loop.run_forever()

46   loop.close()

This code has some similarities to the server that should be readily apparent. First 

of all, we have the same hard-coded (really bad) password. Obviously we need the same 

password or the two sides wouldn’t be able to communicate with each other. We also 

have the same key derivation routine in the constructor.

There are important differences, though. If you look at how the key material is 

divided up, this time the first 32 bytes is the client’s write key and the second 32 bytes is 

the client’s read key. In the server code, this is of course reversed.

This is not an accident. We are dealing with symmetric keys; what the client writes, 

the server reads and vice versa. In other words, the client’s write key is the server’s read 

key. When you derive keys, you have to make sure that the order in which key material is 

split up is correctly managed on both sides. There were a few earlier exercises that dealt 

with this without so much explanation. If those exercises didn’t make as much sense at 

the time, now might be a good time to go revisit them.
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Another way to solve this problem is to always call the derived keys the same thing 

on both sides. So, for example, instead of deriving a “read” key and a “write” key, you 

could instead choose to use the names “client write” key and a “server write” key for both 

the client and the server. That way, the first 32 bytes can always be the client’s write key 

and the second 32 bytes is the server’s write key.

Once these two keys are created, the other names are just aliases. That is, “client 

read” key is just an alias for “server write” key and “server read” key is just an alias for 

“client write” key.

EXERCISE 7.4. WHAT’S IN A NAME?

In many circumstances, “read” and “write” are the correct names to use because despite 

calling one computer a client and one computer a server, they behave as equal peers.

But, if you are dealing with a context where a client only makes requests and the server only 
responds to requests, you can rename your keys appropriately. The echo client/server we have 

created is an example of this pattern.

Starting with the code in Listings 7-4 and 7-5, change all references to “read” and “write” 

data or keys to be “request” and “response” instead. Name them appropriately! The client 

writes a request and reads a response, while the server reads a request and writes a 

response. What happens to the relationship between client and server code?

Another difference from the server code is that we transmit data in the client’s 

connection_made method. This is because the server waits for the client to send 

something before it responds, while the client just transmits as soon as it can.

The transmission of the data itself should look familiar. A nonce is generated and the 

nonce and ciphertext are written using transport.write.

The server’s response is handled in data_received. This should also look familiar. 

The nonce is split out and the ciphertext is decrypted using the read key and the received 

nonce.

In the create_connection method, you will notice that we still use an anonymous 

lambda function to build instances of the client protocol class. This might surprise 

you. In the server, using a factory function makes sense because there may be multiple 

connections requiring multiple protocol instances. In an outbound connection, though, 

there is just one protocol instance and one connection. Practically speaking, the factory 
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is unnecessary. It is used so that the APIs for create_server and create_connection are 

as similar as possible.

This code is a good start for playing around with network protocols that use 

cryptography. For real network communications, though, additional machinery is often 

needed. One problem that might appear in production code is messages that get split 

across multiple data_received calls, or multiple messages that get condensed into a 

single data_received call. The data_received method treats incoming data as a stream, 

which means that there are no guarantees on how much data will be received in a single 

call. The asyncio library has no idea whether the data you send is meant to be split up 

or not. To solve this problem, you need to be able to recognize where one message ends 

and another begins. That typically requires some buffering in case not all data is received 

at once and a protocol that indicates where to split out the individual messages.

�An Introduction to Kerberos
Although PKI is widely used today for establishing and authenticating identity, there are 

algorithms for establishing identity and trust between two parties using only symmetric 

encryption. As with PKI, these algorithms require a trusted third party.

One of the most well-known protocols for authenticated communications between 

two parties is Kerberos. Kerberos is a type of single sign-on (SSO) service that was 

developed into its current (version 5) form by the early 1990s. Although it has had 

updates since then, the protocol has remained largely the same. It allows someone to log 

in to the Kerberos system first and then have access to other network resources without 

logging in again. What’s really cool about it is that, while extensions have been added to 

use PKI for certain components, the core algorithms all use symmetric cryptography.

Alice and Bob have heard that Kerberos is now being deployed on systems within 

certain WA networks. In order to explore various opportunities for infiltrating these 

systems and looking for weaknesses therein, Alice and Bob spend some time back at HQ 

learning how Kerberos works.

We are going to help Alice and Bob create some Kerberos-like code. As with most 

of the examples in this book, this is not real Kerberos and the full system is beyond the 

scope of this book. We can still explore the basic components and get a feel for how 

Kerberos performs its magic using relatively simple network protocols. We will attempt 

to identify the more advanced and complicated pieces that we are leaving out, but if 

you really want to understand production Kerberos in depth, you will need to research 

additional sources.

Chapter 7  More Symmetric Crypto: Authenticated Encryption and Kerberos



269

We are also going to introduce some new notation for describing messages sent in 

a cryptographic protocol. Building upon how we already denote ciphertext under a key 

({plaintext}K), we now add in some notation to express one party (principal) sending 

a message to another. Suppose Alice wants to send a message to Bob that includes her 

name (in the clear) and some ciphertext encrypted under a shared key. Our notation for 

this intended exchange looks like this:

A B A KA B® { }: , .,plaintext

The arrow you see does not represent receiving the message. Bob may never get it 

because of data loss or because Eve intercepts it. The arrow represents intent, so A → B 

means that A (Alice) intends to send a message to B (Bob). For practical purposes, 

however, it is sometimes simpler to just think of it as sending and receiving, so we will 

make that simplifying assumption as well.

The A represents Alice’s name, or identity string. Identity strings can be a lot of 

things. It could be Alice’s legal name, a username, a URI, or just an opaque token. 

Because the A in the message is not within any braces, it is plaintext. The ciphertext 

under KA, B is the same notation we’ve used before to represent a key shared by A and B. 

However, when A is sending data to B encrypted under a secret that “belongs” to B  

(e.g., under a key derived from a password associated with B), we will label this key as KB. 

Even though A knows this secret and, technically, it is a shared key, the idea is that the 

message is being encrypted exclusively for use by B.

Kerberos has multiple principals and the message exchange can be a little 

complicated. We will use this notation to help express who is sending data to whom.

Thus prepared, Alice and Bob sit down for a class on how Kerberos works. The first 

lesson is about how Kerberos uses a central repository of identities and passwords. 

Unlike a certificate authority that does not necessarily keep an online registry of all 

signed certificates—and certainly does not store any private keys—the Kerberos 

authentication server (AS) tracks every usable identity and maps it to a password. This 

data must be available at all times.

The Kerberos AS is a very sensitive part of the system obviously. Should the AS be 

compromised, the attacker gains knowledge of every password for every user. Thus, this 

system should be carefully guarded. Moreover, if the AS goes down, the rest of Kerberos 

falls apart. The AS must, therefore, be resistant to denial-of-service (DoS) attacks.

Let’s pause and build a quick skeletal framework of our toy AS. Throughout this 

example and starting in Listing 7-6, we will refer to our system as SimpleKerberos to 

Chapter 7  More Symmetric Crypto: Authenticated Encryption and Kerberos



270

indicate that this is not the full protocol. We’ll start by creating a protocol class for the AS 

and hard-coding a dumb dictionary-based password database. We don’t know what the 

AS does yet, so we’ll leave all the networking methods blank.

Listing 7-6.  Kerberos Authentication Server

 1   # Partial Listing: Some Assembly Required

 2

 3   # Skeleton for Kerberos AS Code, User Database, initial class decl

 4   import asyncio, json, os, time

 5   from cryptography.hazmat.backends import default_backend

 6   from cryptography.hazmat.primitives import hashes

 7   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

 8   from cryptography.hazmat.primitives import padding

 9   from cryptography.hazmat.primitives.kdf.hkdf import HKDF

10

11   # we used the most common passwords

12   # from 2018 according to wikipedia

13   # https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

14   USER_DATABASE = {

15       "johndoe": "123456",

16       "janedoe": "password",

17       "h_world": "123456789",

18   }

19

20   class SimpleKerberosAS(asyncio.Protocol):

21       def connection_made(self, transport):

22           self.transport = transport

23

24       def data_received(self, data):

25           pass

There’s nothing complicated in Listing 7-6 so far: just a username-to-password 

dictionary and an empty protocol class. To fill in these methods, we need to know how 

the AS works.
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At this point, some really cool cryptography appears! How should a user log in? We 

definitely don’t want to send a password in the clear over the wire. The user obviously 

had to register with the AS in order for their password to be stored there, so should we 

have used that as an opportunity to create a shared encryption key?

It turns out that none of these things are necessary! A user can log in just by sending 

their name. Using our protocol notation, here is how Alice logs in to the AS:

A A®AS : .

Really? How does that work? What keeps Eve from just sending Alice’s name?

The magic is in the response. The AS is going to send back encrypted data that only the 

real Alice can decrypt. This assumes that Alice knows her password and nobody else does.

First, the AS is going to derive Alice’s key KA from her password. Then, the AS will 

send back a newly generated session key encrypted under Alice’s KA key!

AS session® { }A K KA:

If Alice knows the password, she will be able to derive KA and decrypt the session 

key, the purpose of which we will explain in just a moment. For now, we’ll just say that 

it’s needed as part of the SSO operation.

Kerberos resists replay attacks by using both timestamps and nonces. While 

configurable, Kerberos will typically not accept messages that are more than 5 minutes 

old. The timestamp is also used as a nonce, meaning that the same timestamp cannot 

be used twice. The timestamp includes a microsecond field; it is difficult to imagine a 

client sending two requests within the same microsecond. The real Kerberos checks to 

see if, by some small chance, it is sending multiple packets with the same time (down 

to the microsecond). If that happens, it should artificially increase the value of the 

microsecond field in the timestamp by one.

For simplicity, we are going to use timestamps without treating them like nonces 

(e.g., checking for repeats). We’ll update our protocol to include t1 as Alice’s timestamp:

A A t®AS : , .1

Let’s update our AS to receive Alice’s message and to send back an encrypted 

session key. For messages we’ve sent in previous examples and exercises, we’ve just 

concatenated data together with enough fixed-length pieces that we could break apart 

all of the individual elements.
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This time, we’re sending messages of less predictable length. When Alice transmits 

her username and timestamp, how will the AS be able to split out the two parts of the 

message? We could use a delimiter, such as a comma, and prohibit it from being part of 

a username, but we will be sending multiple encrypted values. How will we know where 

one ends and another begins? Delimiters can’t be used directly on raw encrypted data 

because that data makes use of all possible byte values.

In real network communications, this problem is solved in many ways. For example, 

HTTP sends metadata using delimiters (e.g., key: value<newline>), and if any data is 

arbitrary (and might contain the delimiter), it is either escaped or converted to ASCII 

using some predefined algorithm, such as Base-64 encoding. Other network packets are 

created by serializing all values and including a length field as part of the binary packet.

To keep things simple for this exercise, we are going to use Python’s json library to 

serialize and de-serialize dictionaries for us. We already used this once in a previous 

chapter for storing data to disk. Now we will use json to encode data transmitted over a 

network. However, json doesn’t always play nice with byte strings. Listing 7-7 defines 

two quick methods for quickly dumping our dictionaries to JSON and reloading from 

them again. Make sure you have this code in all three of the Kerberos scripts we will 

create in this example (or import them from a common file).

Listing 7-7.  Utility Functions for JSON Handling

 1   # These helper functions deal with json's lack of bytes support

 2   def dump_packet(p):

 3       for k, v in p.items():

 4           if isinstance(v, bytes):

 5               p[k] = list(v)

 6       return json.dumps(p).encode('utf-8')

 7

 8   def load_packet(json_data):

 9       p = json.loads(json_data)

10       for k, v in p.items():

11           if isinstance(v, list):

12               p[k] = bytes(v)

13       return p
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Real Kerberos calls the packet sent from Alice to the AS an “AS_REQ packet.” We will 

use that notation as well. Alice’s packet to our simple Kerberos AS will be a dictionary 

with the following fields:

•	 type: AS_REQ

•	 principal: Alice’s username

•	 timestamp: A current timestamp

When the AS receives the data, it needs to check if the timestamp is fresh and if the 

user is in the database. Let’s update our data_received method to handle this in  

Listing 7-8.

Listing 7-8.  Kerberos AS Receiver

 1   # Partial Listing: Some Assembly Required

 2

 3   class SimpleKerberosAS(asyncio.Protocol):

 4   ...

 5       def data_received(self, data):

 6           packet = load_packet(data)

 7           response = {}

 8           if packet["type"] == "AS_REQ":

 9               clienttime = packet["timestamp"]

10               if abs(time.time()-clienttime) > 300:

11                   response["type"] = "ERROR"

12                   response["message"] = "Timestamp is too old"

13               elif packet["principal"] not in USER_DATABASE:

14                   response["type"] = "ERROR"

15                   response["message"] = "Unknown principal"

Once the “packet” is restored, it is just a dictionary. We first check the type and make 

sure it is the type of packet we expected. Next, we check the timestamp. If the delta is 

greater than 300 seconds (5 minutes), we send back an error. Similarly, if the username is 

not in the password database, we also send back an error.

This error packet type is completely made up. Kerberos uses a different packet 

structure to report an error, but this will meet our needs.
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Now we get to the fun part. Assuming the timestamp is recent and the username is in 

our database, we need to derive the user’s key from their password, create a session key, 

and send back this session key encrypted under the user’s key.

What algorithms and parameters should we use?

This is one area where the real Kerberos is significantly more complicated than 

what we’re going to do. The real Kerberos, like many cryptographic protocols, actually 

defines a suite of algorithms that can be used for its various operations. When Kerberos 

v5 was first deployed, the DES symmetric encryption algorithm was widely used. Now, of 

course, that’s largely been retired and AES has been added.

We know better by now than to think that “AES” is a complete answer. What mode of 

AES are we using? And where do we get the IV from?

Interestingly, Kerberos uses a mode of operation called “CTS” (ciphertext stealing). 

We aren’t going to spend a lot of time on this mode of operation (which is typically built 

on top of CBC mode), but we will briefly mention that for many Kerberos cipher suites, 

they are not using an IV to differentiate the messages. Instead, they use a “confounder.” 

A confounder is a random, block-sized plaintext message prepended to the real data. 

When using CBC mode, a random first block serves, in many ways, the same function as 

an IV.

We’re not going to mess with these complexities. We will focus on the encryption 

process and how symmetric encryption is used in the protocol. So, for our simple 

Kerberos, we will use AES-CBC with a fixed IV full of zeros. We will also leave out the 

MAC operation for now. It should be obvious that this is not secure and should not be 

used in production environments.

Let’s write helper functions for deriving keys from passwords, encrypting, and 

decrypting. These are found in Listing 7-9.

Listing 7-9.  Kerberos with Encryption

 1   # Partial Listing: Some Assembly Required

 2

 3   # Encryption Functions for Kerberos AS

 4   def derive_key(password):

 5       return HKDF(

 6               algorithm=hashes.SHA256(),

 7               length=32,

 8               salt=None,
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 9               info=None,

10              backend=default_backend()

11       ).derive(password.encode())

12

13   def encrypt(data, key):

14       encryptor = Cipher(

15           algorithms.AES(key),

16           modes.CBC(b"\x00"*16),

17           backend=default_backend()

18       ).encryptor()

19       padder = padding.PKCS7(128).padder()

20       padded_message = padder.update(data) + padder.finalize()

21       return encryptor.update(padded_message) + encryptor.finalize()

22

23   def decrypt(encrypted_data, key):

24       decryptor = Cipher(

25           algorithms.AES(key),

26           modes.CBC(b"\x00"*16),

27           backend=default_backend()

28       ).decryptor()

29       unpadder = padding.PKCS7(128).unpadder()

30       �padded_message = decryptor.update(encrypted_data) +  

decryptor.finalize()

31       return unpadder.update(padded_message) + unpadder.finalize()

Notice that we used padding in order to satisfy the CBC requirements. As a side 

note, one reason why Kerberos uses CTS mode is because it doesn’t require padding. It’s 

called “stealing” because it steals some cryptographic data from the penultimate block to 

fill in the last block’s missing bytes.

The preceding three functions will be used in multiple scripts, so you may want to 

save them in a separate file and import them.

Now we’re ready to send our response from the AS, in Listing 7-10. Kerberos calls 

this packet an AS_REP and we will do the same. Our response will be a dictionary that we 

serialize before sending. For reasons that we will explain shortly, we are not encrypting 

the entire packet; we are only encrypting a portion we call the user_data.
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Listing 7-10.  Kerberos AS Responder

 1   # Partial Listing: Some Assembly Required

 2

 3   class SimpleKerberosAS(asyncio.Protocol):

 4   ...

 5       def data_received(self, data):

 6           packet = load_packet(data)

 7           response = {}

 8           if packet["type"] == "AS_REQ":

 9               if ... # check errors

10               else:

11                   response["type"] = "AS_REP"

12

13                   session_key = os.urandom(32)

14                   user_data = {

15                       "session_key":session_key,

16                       }

17                   user_key = derive_key(USER_DATABASE[packet["principal"]])

18                   �user_data_encrypted = encrypt(dump_packet(user_data), 

user_key)

19                   response["user_data"] = user_data_encrypted

20               self.transport.write(dump_packet(response))

21           self.transport.close()

That seems pretty reasonable. Now we need to write the client side of this, but before 

we do, it’s time to explain how the next piece of the Kerberos protocol works.

Once Alice has logged in via the AS, she next needs to talk to a different entity called 

the Ticket-Granting Service (TGS). Alice will tell the TGS which service, or application, 

she would like to connect to. The TGS will verify that she is logged in and then provide 

her with the credentials to use for that service.

To enable Alice to convince the TGS that she is logged in, the AS also sends her what 

is called a Ticket-Granting Ticket (TGT). The TGT is information encrypted under the 

TGS’s key that proves to the TGS that the AS has verified Alice’s identity. This modifies 

our protocol thus:

AS TGTsessoin® { }A K KA: , .
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The TGT is opaque to Alice. She cannot decrypt or read it in any way; she can only 

pass it to the TGS. The TGT contains the very same session key sent to Alice, Alice’s 

name (identity), and a timestamp. Real Kerberos includes additional data such as the 

IP address and a ticket lifetime, but the first three elements are the most critical for 

cryptography. This first phase of the Kerberos protocol is shown in Figure 7-1.

As stated, the session key is sent both to Alice (under her key) and to the TGS within 

the TGT (encrypted under the TGS key). This key is a session key between Alice and the 

TGS that will allow them to communicate. We should rename Ksession to be KA,TGS. If we 

expand TGT within our protocol notation, what we now have is

	
AS , ,TGS TGS TGS® { } { }A K K K A t KA A A: , ., , 2 	

We need to update our code to include the TGT. We also need to update our user 

database to have an entry for the TGS. In real Kerberos, the TGS’s key is not necessarily 

derived from a password stored in the password database, but it will be easier for us to 

run the AS, TGS, and other services if the shared keys are all derived from passwords we 

can input at the command line. This is shown in Listing 7-11.

Figure 7-1.  Alice initiates the Kerberos login process with a clear text message of 
her identity. The AS looks up her key in its database and encrypts a session key for 
the TGS. It also sends the TGT to Alice encrypted under the TGS’s key.
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Listing 7-11.  Kerberos Ticket-Granting Ticket

 1   # Partial Listing: Some Assembly Required

 2

 3   # we used the most common passwords

 4   # from 2018 according to wikipedia

 5   # https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

 6   USER_DATABASE = {

 7       "johndoe": "123456",

 8       "janedoe": "password",

 9       "h_world": "123456789",

10       "tgs": "sunshine"

11   }

12

13   class SimpleKerberosAS(asyncio.Protocol):

14   ...

15       def data_received(self, data):

16           packet = load_packet(data)

17           response = {}

18           if packet["type"] == "AS_REQ":

19               if ... # check errors

20               else:

21                   response["type"] = "AS_REP"

22

23                   session_key = os.urandom(32)

24                   user_data = {

25                       "session_key":session_key,

26                       }

27                   tgt = {

28                       "session_key":session_key,

29                       "client_principal":packet["principal"],

30                       "timestamp":time.time()

31                       }

32                   user_key = derive_key(USER_DATABASE[packet["principal"]])

33                   �user_data_encrypted = encrypt(dump_packet(user_data), 

user_key)
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34                   response["user_data"] = user_data_encrypted

35

36                   tgs_key = derive_key(USER_DATABASE["tgs"])

37                   tgt_encrypted = encrypt(dump_packet(tgt), tgs_key)

38                   response["tgt"] = tgt_encrypted

39               self.transport.write(dump_packet(response))

40           self.transport.close()

Let’s start working on the client now and create a protocol class for that side of the 

communication. First, our class (Listing 7-12) needs to be able to transmit the username 

to the AS, and it needs the password for deriving its own key. We’ll pass these in as 

parameters to the class constructor.

We will also pass in a callback function on_login for receiving the session key and 

TGT when they are received.

Listing 7-12.  Kerberos Login

 1   # Partial Listing: Some Assembly Required

 2

 3   # Skeleton for Kerberos Client Code. Imports, initial class decl

 4   # Dependencies: derive_key(), encrypt(), decrypt(),

 5   #               load_packet(), dump_packet()

 6   import asyncio, json, sys, time

 7   from cryptography.hazmat.backends import default_backend

 8   from cryptography.hazmat.primitives import hashes

 9   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

10   from cryptography.hazmat.primitives import padding

11   from cryptography.hazmat.primitives.kdf.hkdf import HKDF

12

13   class SimpleKerberosLogin(asyncio.Protocol):

14       def __init__(self, username, password, on_login):

15           self.username = username

16           self.password = password

17           self.on_login = on_login

18
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19           self.session_key = None

20           self.tgt = None

The SimpleKerberosLogin class should transmit the user’s identity as soon as the 

connection is made, so let’s put that functionality into the connection_made method in 

Listing 7-13.

Listing 7-13.  Kerberos Login Connection

 1   # Partial Listing: Some Assembly Required

 2

 3   # Dependencies: derive_key(), encrypt(), decrypt()

 4   class SimpleKerberosLogin(asyncio.Protocol):

 5   ...

 6       def connection_made(self, transport):

 7           self.transport = transport

 8           request = {

 9               "type":      "AS_REQ",

10               "principal": self.username,

11               "timestamp": time.time()

12           }

13           self.transport.write(dump_packet(request))

There should be no surprises in there. We create our AS_REQ packet and send it 

along. When the server writes back to us, it will either be an error or an AS_REP packet. 

If it’s the latter, we will need to decrypt the user_data to get our session key. The TGT is 

opaque to us and is not processed in any other way.

Listing 7-14.  Kerberos Login Receiver

 1   # Partial Listing: Some Assembly Required

 2

 3   # Dependencies: derive_key(), encrypt(), decrypt()

 4   class SimpleKerberosLogin(asyncio.Protocol):

 5   ...

 6      def data_received(self, data):

 7          packet = load_packet(data)

 8          if packet["type"] == "AS_REP":
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 9              user_data_encrypted = packet["user_data"]

10              user_key = derive_key(self.password)

11              user_data_bytes = decrypt(user_data_encrypted, user_key)

12              user_data = load_packet(user_data_bytes)

13              self.session_key = user_data["session_key"]

14              self.tgt = packet["tgt"]

15          elif packet["type"] == "ERROR":

16              print("ERROR: {}".format(packet["message"]))

17

18          self.transport.close()

19

20      def connection_lost(self, exc):

21          self.on_login(self.session_key, self.tgt)

The connection will close one way or another in Listing 7-14. When it does, we trigger 

our callback with the session key and TGT. If there were errors, these values will be None.

The code we’ve written so far should give us a client that can connect to the AS, send 

an identity, and receive back an encrypted session key and TGT. Now, it’s time to create 

the TGS (Ticket-Granting Service)!

In many Kerberos systems, the AS and TGS are co-located on the same host. They 

serve similar purposes and have similar security requirements. In many cases, they may 

need to share database information. For our exercise, however, and in order to visualize 

the TGS as a separate entity, we have it run as a separate script.

When Alice is logged in and wishes to talk to a service S, Alice sends a message to 

the TGS with the TGT, the name of the service, and an “authenticator.” The authenticator 

contains Alice’s identity and a timestamp encrypted under KA,TGS, the session key 

generated by the AS. That same session key is within the TGT. When the TGS decrypts 

the TGT and obtains KA,TGS, the TGS will be able to decrypt the authenticator and verify 

that Alice also has the Key KA,TGS. If Alice did not have that key, she would not have been 

able to create the authenticator. The fact that she has that key, and that the same key is in 

the TGT, means that the AS authorized her for this communication.
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By way of protocol notation, here is the message that Alice sends to the TGS:

	
A S A t K K A t KA A® { } { }TGS , , ,TGS TGS TGS: , , ., ,3 2 	

If the TGS validates the data and approves the request, it sends back a ticket and a 

new session key for Alice to communicate with the service S. Like the TGT, the ticket is 

opaque to Alice. It is encrypted under S’s key and contains authorization data related 

to Alice. Specifically, it contains Alice’s identity, the service’s identity, and a timestamp. 

Again, the real Kerberos ticket contains additional data not included here. The protocol 

notation for this transmission is

	
TGS , , ,TGS® { } { }A S K K K A t KA S A A S S: , ., , , 3 	

Figure 7-2 depicts this process.

Alice will use her session key with the TGS to decrypt the new session key for her to 

use with service S. But before we do that part, let’s get the TGS written.

Figure 7-2.  Alice uses the TGT to prove her identity and asks the TGS for a session 
key to communicate with the echo service. Similar to the TGT, Alice will receive an 
encrypted message for the echo service that she cannot open but can forward.
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Much of the Ticket-Granting Service’s operations are the same as the Authentication 

Service’s, and we will not write out all the code again. However, it is worth noting that the 

TGS requires a database with keys for the various services it authorizes. We have, again, 

used a database with passwords to make things easier. Our sample code in Listing 7-15 

has just one service: echo.

Listing 7-15.  Kerberos Ticket-Granting Service

 1   # Partial Listing: Some Assembly Required

 2

 3   # Skeleton for Kerberos TGS. Imports, initial class decl, Service DB

 4   # Dependencies: derive_key(), encrypt(), decrypt(),

 5   #               load_packet(), dump_packet()

 6   import asyncio, json, os, time, sys

 7   from cryptography.hazmat.backends import default_backend

 8   from cryptography.hazmat.primitives import hashes

 9   �from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, 

modes

10   from cryptography.hazmat.primitives import padding

11   from cryptography.hazmat.primitives.kdf.hkdf import HKDF

12

13   # we used the most common passwords

14   # from 2018 according to wikipedia

15   # https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

16   SERVICE_DATABASE = {

17       "echo":"qwerty",

18   }

19

20   class SimpleKerberosTGS(asyncio.Protocol):

21       def __init__(self, password):

22           self.password = password

Notice that we also handed a password to the constructor. Our SimpleKerberosTGS 

needs to be able to derive its key; otherwise, it wouldn’t be able to decrypt the TGT sent 

to it by the AS.
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The meat of the TGS code is within data_received in Listing 7-16. We will jump 

right inside that method to where the TGS server receives a TGS_REQ packet (following 

Kerberos naming).

Listing 7-16.  Kerberos TGS Receiver

 1   # Partial Listing: Some Assembly Required

 2

 3   class SimpleKerberosTGS(asyncio.Protocol):

 4   ...

 5       def data_received(self, data):

 6           packet = load_packet(data)

 7           response = {}

 8           if packet["type"] == "TGS_REQ":

 9               tgsKey = derive_key(self.password)

10               tgt_bytes = decrypt(packet["tgt"], tgsKey)

11               tgt = load_packet(tgt_bytes)

12

13               �authenticator_bytes = decrypt(packet["authenticator"], 

tgt["session_key"])

14               authenticator = load_packet(authenticator_bytes)

15

16               clienttime = authenticator["timestamp"]

17               if abs(time.time()-clienttime) > 300:

18                   response["type"] = "ERROR"

19                   response["message"] = "Timestamp is too old"

20               �elif authenticator["principal"] != tgt["client_principal"]:

21                   response["type"] = "ERROR"

22                   response["message"] = "Principal mismatch"

23               elif packet["service"] not in SERVICE_DATABASE:

24                   response["type"] = "ERROR"

25                   response["message"] = "Unknown service"

26               else:

27                   response["type"] = "TGS_REP"

28
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29                   service_session_key = os.urandom(32)

30                   user_data = {

31                       "service":             packet["service"],

32                       "service_session_key": service_session_key,

33                       }

34                   ticket = {

35                       "service_session_key": service_session_key,

36                       "client_principal":    authenticator["principal"],

37                       "timestamp":           time.time()

38                       }

39                   �user_data_encrypted = encrypt(dump_packet(user_data), 

tgt["session_key"])

40                   response["user_data"] = user_data_encrypted

41

42                   �service_key = derive_key(SERVICE_

DATABASE[packet["service"]])

43                   �ticket_encrypted = encrypt(dump_packet(ticket), 

service_key)

44                   response["ticket"] = ticket_encrypted

45               self.transport.write(dump_packet(response))

46           self.transport.close()

Much of this looks very similar to the AS code, as we suggested it would. But there 

are a few key differences.

First, the TGS has to decrypt the authenticator to get the timestamp. It is not sent in 

the clear this time, but it ensures that the encrypted data (the authenticator) is at least 

somewhat fresh (within the last 5 minutes). In real Kerberos, timestamps would be 

stored and duplicates identified and discarded.

Also note that the TGS checks that the principal is the same in the authenticator as 

in the TGT. It must do this check to ensure that the identity authorized by the AS is the 

same identity asking for a ticket.

Finally, the user’s data with the session key and so forth is not encrypted under a 

key derived from their password (which the TGS doesn’t have anyway). Rather, it is 

encrypted under the session key KA, TGS. The TGS encrypts with this key because only 

Alice should be able to decrypt it.

Chapter 7  More Symmetric Crypto: Authenticated Encryption and Kerberos



286

We need to update the client code to handle the TGS communications. This 

involves processing the login information received from the AS and triggering a new 

communication to the TGS. Let’s first create the SimpleKerberosGetTicket class in 

Listing 7-17 to communicate with the TGS server we just created.

Listing 7-17.  Get Kerberos Ticket

 1   # Partial Listing: Some Assembly Required
 2

 3   # SimpleKerberosGetTicket is also part of the Client

 4   # This class connects to the TGS to get a ticket

 5   class SimpleKerberosGetTicket(asyncio.Protocol):

 6       def __init__(self, username, service, session_key, tgt, on_ticket):

 7           self.username = username

 8           self.service = service

 9           self.session_key = session_key

10           self.tgt = tgt

11           self.on_ticket = on_ticket
12

13           self.server_session_key = None

14           self.ticket = None
15

16       def connection_made(self, transport):

17           print("TGS connection made")

18           self.transport = transport

19           authenticator = {

20               "principal": self.username,

21               "timestamp": time.time()

22           }

23           �authenticator_encrypted = encrypt(dump_packet(authenticator ), 

self.session_key) 

24           request = {

25               "type":          "TGS_REQ",

26               "service":       self.service,

27               "authenticator": authenticator_encrypted,

28               "tgt":           self.tgt

29           }
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30           self.transport.write(dump_packet(request))

31

32       def data_received(self, data):

33            packet = load_packet(data)

34            if packet["type"] == "TGS_REP":

35                user_data_encrypted = packet["user_data"]

36                �user_data_bytes = decrypt(user_data_encrypted, self.

session_key)

37                user_data = load_packet(user_data_bytes)

38                self.server_session_key = user_data["service_session_key"]

39                self.ticket = packet["ticket"]

40           elif packet["type"] == "ERROR":

41                print("ERROR: {}".format(packet["message"]))

42

43           self.transport.close()

44

45       def connection_lost(self, exc):

46           self.on_ticket(self.server_session_key, self.tgt)

Figure 7-3.  Both Alice and the echo service end up with a shared symmetric key 
that they can use for secure communications
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This protocol, on connection, sends the TGS_REQ packet along with the encrypted 

authenticator, the service name, and the TGT. Remember, the TGT was transmitted 

by the AS, as was the session key. These pieces of data are passed to the constructor 

of this protocol. Once we receive the TGS_REP, we can extract the service’s session key 

and the ticket to send to the service. We use another callback on_ticket to process this 

information.

Figure 7-3 shows the rest of the protocol.

To glue all of this together, we use a ResponseHandler class in Listing 7-18 to receive 

the callbacks on_login and on_ticket. The on_login will also trigger the call to the TGS.

Listing 7-18.  Kerberos Client

 1   # Partial Listing: Some Assembly Required

 2

 3   # ResponseHandler is also part of the client. It connects to the service.

 4   class ResponseHandler:

 5       def __init__(self, username):

 6           self.username = username

 7

 8       def on_login(self, session_key, tgt):

 9           if session_key is None:

10               print("Login failed")

11               asyncio.get_event_loop().stop()

12               return

13

14           �service = input("Logged into Simpler Kerberos. Enter Service 

Name: ")

15           getTicketFactory = lambda: SimpleKerberosGetTicket(

16               self.username, service, session_key, tgt, self.on_ticket)

17

18           coro = asyncio.get_event_loop().create_connection(

19               getTicketFactory, '127.0.0.1', 8889)

20           asyncio.get_event_loop().create_task(coro)

21
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22       def on_ticket(self, service_session_key, ticket):

23           if service_session_key is None:

24               print("Login failed")

25               asyncio.get_event_loop().stop()

26               return

27

28           print("Got a server session key:",service_session_key.hex())

29           asyncio.get_event_loop().stop()

The only other part of this code worth pointing out is the use of input to get the name 

of the service to connect to. This is normally not the best way to use asyncio programs 

because it is a blocking call and prevents anything else from working. But, for our simplistic 

client, this is reasonable. It should be in between network communications anyway.

Note that the only service the TGS has in our example is “echo,” so this should be the 

service name you enter, unless you want to test the error-handling code. We also hard-

coded the IP address and port of the TGS to be local port 8889. You should adjust this 

accordingly.

When all is said and done, and if everything was done correctly, the on_ticket 

callback should have a service session key and a ticket.

In real Kerberos, this is where things get a little tricky. Each service that is going 

to use Kerberos for authentication has to be “Kerberized.” This means that the service 

has to be modified to accept a Kerberos ticket instead of a username and password (or 

whatever other authentication methods it normally uses). However this is configured, 

Alice will send the ticket along with her identity and another timestamp under the 

service session key. Optionally, the service can respond with the timestamp under the 

same service session key. We can write this protocol exchange as
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When this is finished, Alice and the service S know that they are communicating with 

the right parties (based on trust in the AS/TGT) and they have a session key to enable 

them to communicate.

You will notice that the session key is shown working in both directions. This is 

primarily for the actual authentication of the principals (Alice and service S) to one 

another. Once that is established, they can negotiate session keys further if necessary. 
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The Kerberos documentation has instructions about “subkeys” that can be sent or 

derived as necessary.

For the actual Kerberos authentication exchange, the messages will be unique if the 

confounder is used, even under the same key.

To repeat once more, Kerberos itself is far more complicated than what we 

have illustrated here. There are various extensions, for example, for enabling PKI 

authentication to the AS, AEAD algorithm support, extensive options, and additional 

details in the core specification.

Nevertheless, this walk-through should help Alice and Bob (and you!) have a better 

idea of how Kerberos works specifically and how symmetric keys can be used in general 

to establish identity between parties.

EXERCISE 7.5. KERBERIZE THE ECHO PROTOCOL

We didn’t show any code for a Kerberized echo protocol. We’ve left that for you to figure out. 

We have already set up some of the pieces you need, however. In real Kerberos, a Kerberized 

service has to register with the TGS. We have already done that. Our TGS code has “echo” in 

the service database with a password “sunshine”.

You will need to modify the echo client and echo server to use the session key from the  

TGS instead of deriving the session keys from a password. You can treat the session key from 

the TGS as key material and still use the HKDF to derive the write key and read key  

(two sub-session keys, as Kerberos would call them).

Many Kerberized implementations accept the ticket along with the request, and you can do the 

same here. In other words, send the Kerberos message along with the (encrypted) data to be 

echoed. Because you are sending a human-readable message, you can use the null terminator 

to indicate the end of the echo message and the beginning of the Kerberos message, if that’s 

easiest. Alternatively, you could do something more complicated like transmit the Kerberos 

message first, prepended by its length, with the human-readable echo message as a trailer.

The server will also need to be modified to accept a password for deriving its key with the 

TGS. The server already has a password given as a parameter. You could simply change  

it to derive its Kerberos key instead of the read and write keys. Also, make sure to use  

the appropriate derivation function. The read and write keys will need to be derived in the 

data_received method after the ticket is received and decrypted. You can leave out the 

optional Kerberos response to the echo client.
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Finally, you will have to figure out a way to get the Kerberos ticket data to the echo client. You 

can either build the echo client protocol directly into your Kerberos client or find some other 

way to transfer it.

EXERCISE 7.6. CONFOUNDER

Check to see if any part of your encrypted packets are repeating. This will happen if the 

data going into the encryption routine (with a fixed IV and key) is the same at the beginning. 

Because dictionaries do not necessarily order their data, the username may come after the 

timestamp, in which case the packets may be different each time. If your packets aren’t 

repeating any bytes at all, perhaps fix the timestamp or otherwise force the encrypt function to 

encrypt the same data twice.

Once you have repeating bytes, introduce confounders into your code by prepending 16 bytes 

of random plaintext in front of the serialized bytes. Make sure to remove it upon decryption. 

Does that get rid of the repeating bytes? Would a confounder work for AES-CTR mode?

EXERCISE 7.7. PREVENTING SERVER REPLAY

The transmissions to the client from our AS and TGS do not include a timestamp. With no 

timestamp and no nonce, they can be completely replayed. Add timestamps into the user data 

structures transmitted by both servers and modify the client code to check them.

�Additional Data
This section was a little simpler in terms of concepts and a little heavier in terms of 

engineering.

In the first place, we did introduce some new modes of operation for AES encryption 

and the new ChaCha encryption algorithm as well. AEAD algorithms (authenticated 

encryption with additional data) are largely seen as superior to doing encryption and 

MAC separately (e.g., using AES-CTR and HMAC). You should use these modes of 

operation whenever they are available.
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We also introduced the Kerberos SSO service which is interesting because it is built 

from symmetric key algorithms. In a world where PKI is everywhere, it is nice to see that 

a 25-year-old (as of the time of this writing), symmetric-based system continues to be 

widely used.

Hopefully it was fun to get your hands dirty and actually write some client/server 

code. We hope so. Because the last chapter is coming up and network communications 

are what TLS is all about!
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CHAPTER 8

TLS Communications
In this chapter, we will discuss one of the cornerstones of secure Internet 

communication: TLS. The topic, like so many things in cryptography, is a big one, filled 

with fiddly parameters, subtle pitfalls, and breathtaking logic. Let’s find out more!

�Intercepting Traffic
Eve is very proud of herself. She managed to get into computer rooms across East 

Antarctica and install “sniffing” software. Basically, she has managed to intercept HTTP 

(web) traffic and exfiltrate it for later analysis by the intelligence officers for her agency 

(the “West Antarctica Central Knights Office,” or WACKO).

The HTTP protocol natively supports proxying. An HTTP client can connect to a 

server through an intermediary HTTP server (the proxy). When the client first connects 

to the proxy, it sends a special HTTP command called CONNECT that tells the proxy where 

the real destination is. Once the proxy has connected to the true server, it serves as a 

simple pass-through, forwarding the data from one party to the other.

Eve managed to install an HTTP proxy onto her enemy’s computers. It was very 

similar to the code in Listing 8-1.

Listing 8-1.  HTTP Proxy

 1   import asyncio

 2

 3   class ProxySocket(asyncio.Protocol):

 4       CONNECTED_RESPONSE = (

 5           b"HTTP/1.0 200 Connection established\n"

 6           b"Proxy-agent: East Antarctica Spying Agency\n\n")

 7
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 8       def __init__ (self, proxy):

 9           self.proxy = proxy

10

11       def connection_made(self, transport):

12           self.transport = transport

13           self.proxy.proxy_socket = self

14           self.proxy.transport.write(self.CONNECTED_RESPONSE)

15

16       def data_received(self, data):

17           print("PROXY RECV:", data)

18           self.proxy.transport.write(data)

19

20       def connection_lost(self, exc):

21           self.proxy.transport.close()

22

23

24   class HTTPProxy(asyncio.Protocol):

25       def connection_made(self, transport):

26           peername = transport.get_extra_info('peername')

27           print('Connection from {}'.format(peername))

28           self.transport = transport

29           self.proxy_socket = None

30

31       def data_received(self, data):

32           if self.proxy_socket:

33               print("PROXY SEND:", data)

34               self.proxy_socket.transport.write(data)

35               return

36

37           # No socket, we need to see CONNECT.

38           if not data.startswith(b"CONNECT"):

39               print("Unknown method")

40               self.transport.close()

41               return

42
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43           print("Got CONNECT command:", data)

44           serverport = data.split(b" ")[1]

45           server, port = serverport.split(b":")

46           �coro = loop.create_connection(lambda: ProxySocket(self), 

server, port)

47           asyncio.get_event_loop().create_task(coro)

48

49       def connection_lost(self, exc):

50           if not self.proxy_socket: return

51           self.proxy_socket.transport.close()

52           self.proxy_socket = None

53

54   loop = asyncio.get_event_loop()

55   coro = loop.create_server(HTTPProxy, '127.0.0.1', 8888)

56   server = loop.run_until_complete(coro)

57

58   # Serve requests until Ctrl+C is pressed

59   print('Proxying on {}'.format (server.sockets[0].getsockname()))

60   try:

61       loop.run_forever()

62   except KeyboardInterrupt:

63       pass

64

65   # Close the server

66   server.close()

67   loop.run_until_complete(server.wait_closed())

68   loop.close()

This HTTP proxy prints out everything it receives from either endpoint. Eve’s real 

proxy doesn’t do this. Instead, it sends the intercepted data over the network to a 

command and control server. Alternatively, she could have made it save the data to disk 

for later extraction.
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Let’s see what our network traffic looks like connecting to an unprotected HTTP 

server. First, copy the code for the HTTP proxy (it’s only about 70 lines) and start it up.1 It 

should be serving on localhost:8888. This is shown as follows in the Python shell.

>>> import http.client

>>> conn = http.client.HTTPConnection("127.0.0.1", 8888)

>>> conn.set_tunnel("www.example.com")

>>> conn.request("GET", "/")

>>> r1 = conn.getresponse()

>>> r1.read()

#SHELL# output_ommitted

Python’s http.client module has some built-in methods for interacting with  

HTTP servers. It also has HTTP proxying capabilities. In the example code, the 

HTTPConnection object was configured with the proxy’s IP address and port.  

The set_tunnel method re-configured the object to assume it is connecting to a proxy 

but will request "www.example.com" via the CONNECT method.

After it gets the response, the read method gets the output. You should see 

something akin to an HTML document as a result. This represents the data received by 

the WA user’s browser when they navigate to www.example.com.

Note: Finding an HTTP Site

For this exercise to work, you need to browse to a web site that still supports HTTP. 
More and more web sites are disabling HTTP altogether, and you can only connect to 
them via HTTPS. At the time of this writing, www.example.com still supports both.

1�If you are already comfortable using something like Wireshark, Fiddler, or tcpdump, you can 
use any of those tools instead. We are providing this proxy script for those that haven’t done any 
traffic sniffing before. This script is lightweight, easy to use, and self-explanatory.
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Meanwhile, Eve is watching. In the terminal where you have the HTTP proxy 

running, you should see something like this:

Got CONNECT command: b'CONNECT www.example.com:80 HTTP/1.0\r\n\r\n'

PROXY SEND: b'GET/HTTP/1.1\r\nHost: www.example.com\r\nAccept-Encoding: 

identity\r\n\r\n'

PROXY RECV: b'HTTP/1.1 200 OK\r\nCache-Control: max-age=604800\r\nContent-

Type: text/html...

You will notice that they see the entire communications stream between the client 

(e.g., browser) and the web server. Eve has hit upon a fantastic source of intelligence.

Warning: Multiple Proxy Methods

Our proxy is using the CONNECT method. There are multiple ways to configure a 
web proxy, and our basic source code only supports this one method. Thus, it will 
not work with browsers or tools that attempt to make use of other methods.

Eve is happily collecting traffic on her enemies one day when suddenly everything 

stops working. To be clear, the proxy is still proxying data. In fact, the CONNECT method 

still appears, but almost all of the data that flows across the proxy is unreadable!

Looking carefully over the logs, Eve notices an interesting change.

Got CONNECT command: b'CONNECT www.example.com:443 HTTP/1.0\r\n\r\n'

Do you see the difference? Almost everything is the same except for one thing: the 

port. Eve used to see browsers connecting to www.example.com on port 80. Now it’s on 

port 443. What is going on?

It turns out that the EA adversaries have switched to using HTTPS (“HTTP Secure”). 

While HTTP uses port 80 by default, HTTPS uses port 443. Just to be clear, it is not the 

port that is making things secure, it is the new protocol. The port difference is merely 

Eve’s first clue that something has intentionally been changed.

To test this out for yourself, try the same exercise again but with one small difference, 

shown as follows.

>>> import http.client

>>> conn = http.client.HTTPSConnection("127.0.0.1", 8888)

>>> conn.set_tunnel("www.example.com")
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>>> conn.request("GET", "/")

>>> r1 = conn.getresponse()

>>> r1.read()

#SHELL# output_ommitted

This code is literally different by just one character. Do you see it? We changed 

HTTPConnection to HTTPSConnection.

Take a look at your HTTP proxy sniffer. There will be a lot of output. A portion of it 

might look something like this:

Got CONNECT command: b'CONNECT www.example.com:443 HTTP/1.0\r\n\r\n'

PROXY SEND: b"\x16\x03\x01\x02\x00\x01\x00\x01\xfc\x03\x03\x81<\x06f...

...

PROXY RECV: b'\x16\x03\x03\x00E\x02\x00\x00A\x03\x03\xb1\xf0T\xd0\xc...

Eve, disturbed that she can no longer read the network traffic that she is intercepting, 

heads back to WA to do some research on HTTPS. She learns that HTTPS encapsulates 

HTTP traffic inside another protocol called TLS. This protocol allows a client to verify 

the identity of a server and for the two parties to establish a secret key between them. 

This key remains secret even if an eavesdropper (like Eve) is listening to the entire 

communication stream. TLS, in theory, will completely shut Eve out from snooping on 

Alice, Bob, and the EA!

Eve is frustrated by this discovery. But, being the determined person that she is, she 

decides to start searching for weaknesses. If there’s one thing she’s learned throughout 

this book, it’s that cryptography is often done incorrectly and is therefore exploitable.

EXERCISE 8.1. WHAT’S IN WEB TRAFFIC?

Pretend to be Eve and examine some of your own encrypted traffic. That is, configuring your 

browser to use your proxy, navigate to some HTTP web sites and spy on your own data. Hint: 

Are there parts of the secure communications that are still in plaintext?

If you don’t know how to configure your browser for proxying, please do some searching 

on the search engine of your choice! Be aware that you may not be able to configure your 

browser to use your proxy correctly for unencrypted (HTTP) traffic. We personally tested 

Chrome and found that it uses the CONNECT method for HTTPS but not for HTTP.
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�Digital Identities: X.509 Certificates
To start searching for weaknesses, Eve first turns to the authentication part of the TLS 

protocol.

She learns that TLS uses a public key infrastructure (PKI) to establish identities and 

secure communications. Parties that wish to have an identity for use with TLS (typically) 

require an X.509 certificate.

In Chapter 5, we introduced the concept of certificates. At the time, to keep things 

simple, we used fake certificates that were nothing more than dictionaries we serialized 

with the Python json library. Now it’s time to dig into real X.509 certificates, the most 

common type of certificate used on the Internet today.

�X.509 Fields
Somewhat similar to our dictionary-based certificates, X.509 is a collection of key/value 

pairs. These pairs could also be represented using a dictionary, although X.509’s fields 

permit hierarchical subfields.

Specifically, version 3 of X.509 has the following hierarchical keys:

	 1.	 Certificate

	 (a)	 Version Number

	 (b)	 Serial Number

	 (c)	 Signature Algorithm ID

	 (d)	 Issuer Name

	 (e)	 Validity Period

	  i.	 Not Before

	 ii.	 Not After

	 (f )	 Subject Name

	 (g)	 Subject Public Key Info

	  i.	 Public Key Algorithm

	 ii.	 Subject Public Key
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	 (h)	 Issuer Unique Identifier (optional)

	 (i)	 Subject Unique Identifier (optional)

	 (j)	 Extensions (optional)

	 2.	 Certificate Signature Algorithm

	 3.	 Certificate Signature

Versions 1 and 2 of X.509 are subsets. The most important addition of version 3 

is the extensions. These extensions are used in making certificate-enabled PKI more 

secure by, for example, limiting what a certificate can be used for. Nevertheless, version 1 

certificates still exist and are usable, as we will see in a moment when we start generating 

some samples.

The primary purpose of a certificate is to tie a subject’s identity to a public key under 

the signature of an issuer. The fields that identify the subject, the public key, and the 

issuer are the most critical, but the other fields provide contextual information necessary 

to understand and interpret the data.

For example, the validity period is used to determine when a certificate should be 

considered valid. While the “Not Before” field is important and must be checked, in 

practice the “Not After” period usually gets the most attention. Certificates with a higher 

risk of compromise can be issued with a shorter validity period to mitigate the damage 

done if a compromise occurs.

Another important piece of context with an X.509 certificate is found in the fields for 

identifying the certificate creation algorithms used and the type of public key embedded 

within it. Unlike most of our toy examples in this book, real cryptographic systems make 

use of a wide range of algorithms, and certificates have to be flexible enough to support 

them.

Scanning through the preceding X.509 fields, there is a “Certificate:Signature 

Algorithm ID” field that identifies how the certificate is signed.2 Because it specifies 

all the details for the actual signature embedded in the certificate, it includes both the 

signing algorithm (e.g., RSA) and the message digest (e.g., SHA-256).

2�The “Certificate Signature Algorithm” that appears later is a duplicate, for reasons not relevant to 
our current discussion.
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The “Certificate:Subject Public Key Info:Public Key Algorithm” field, on the other 

hand, specifies what type of public key is being used by the certificate owner.

The last contextual field we will mention is the serial number. This is a unique 

number (per issuer) that identifies the certificate uniquely. This number is useful for 

revocation purposes discussed later in the chapter.

Now let’s go back to the real reason we have certificates in the first place: identifying 

the subject, the subject’s public key, and the trusted third party that “proves” this.

Clearly, the fields “Issuer Name” and “Subject Name” describe the identities claimed 

by the issuer and the subject. In our fake certificates from previous chapters, these 

were just simple strings. In real certificates, these are not just raw text fields but have 

a structure and subcomponents. Called the “Distinguished Name,” these two identity 

fields typically have the following subfields3:

	 1.	 CN: CommonName

	 2.	 OU: OrganizationalUnit

	 3.	 O: Organization

	 4.	 L: Locality

	 5.	 S: StateOrProvinceName

	 6.	 C: CountryName

So, for example, a “Subject Name” or an “Issuer Name” might look like this:

CN= Charlie, OU= Espionage, O=EA, L= Room 110, S=HQ, C=EA

Not all of these subfields have to be filled in, but CN (Common Name) is typically 

the critical subfield. Later, when we look to validate a certificate, the subject’s common 

name is used as the primary identifier. Additionally, most modern certificates include a 

field called “Subject Alternative Name” (which is a version 3 to store alternative subject 

names. While in many of our examples we have been using agent (code) names (e.g., 

“Charlie”) as the subject name, certificates associated with TLS-protected web servers 

have to identify the host name—such as google.com—as the subject’s identity.

You may also have noticed that the certificate included “Issuer Unique Identifier” 

and “Subject Unique Identifier” fields, but these can usually be left out and are not 

discussed here.

3�Other kinds of identifiers are used, but these fields are the “classic” identity definition.
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With the subject and the issuer identified, the remaining fields are the public key and 

the signature computed on the certificate’s contents. The signature is calculated over a 

binary encoding of the certificate called the “DER” (“Distinguished Encoding Rules”). 

The signature both proves that the certificate was signed by the true issuer and that it has 

not been modified.

�Certificate Signing Requests
To create a certificate in real life, a party creates a certificate signing request (CSR) 

and transmits it to a certificate authority (CA). The CSR has almost all of the same 

fields as an X.509 certificate but is missing, for example, an issuer (since issuance is 

what we’re trying to obtain with the request). Once the CA has the CSR, it uses its own 

certificate and associated private key to generate the finalized certificate, filling in fields 

as necessary. One of the most important fields is the “Issuer” field. The issuer of one 

certificate should be identical to the “Subject” field of the signer’s certificate. Once all of 

the fields are populated, the CA signs the certificate with its own private key.

Note: Private Keys Are Still Private

The party requesting a certificate did not send its private key to the CA. It only sent 
a CSR with its public key! Nobody, not even the CA, should have the private key!

We mentioned earlier that certificates are encoded in a format known as DER before 

signing. The DER format is, as we said, a binary format. Most on-disk representations 

of certificates (and CSRs and private keys) are actually in a text (ASCII) format known 

as PEM (“Privacy-Enhanced Mail”). Because all of the binary data has been encoded 

as ASCII, it is easy to send these certificates by text-based transmission systems, for 

example, email.

Armed with this knowledge about certificates, Eve decides to create a certificate. 

Because Eve doesn’t have a certificate authority (CA) to sign her certificate, she will 

experiment with two alternative approaches: self-signed and signed by a “fake” CA she 

creates herself.4

4�The CA certificate will be self-signed.
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One common method for generating an X.509 certificate is using openssl from the 

command line. As you’re using the cryptography module (which uses OpenSSL libraries 

under the hood) for the exercises in this book, you should have OpenSSL installed. Eve 

does, so she is going to use it.

First, Eve needs to create a private key and an associated CSR (“certificate signing 

request”). She starts by creating a CSR with a 2048-bit-modulus RSA public key, and a 

SHA-256 message digest. A lot of the following commands can be combined together for 

a simpler command line, but we are breaking them up to emphasize the different steps 

that Eve takes:

	 1.	 Generate an RSA key.

	 2.	 Create a CSR from the key.

	 3.	 Send to a certificate authority for signing (or sign it herself).

�Generate a Key

First, she generates an RSA key. We have done this from Python before, but to get some 

practice with OpenSSL, let’s look at the command-line approach:

openssl genpkey -algorithm RSA -out domain_key.pem -pkeyopt rsa_keygen_ 

bits:2048

In the various instructions for generating RSA keys that litter the Internet, there are 

many guides and walk-throughs that use a different OpenSSL command called genrsa. 

Please note that genpkey, which is more general, has superseded genrsa. Eve’s example 

command says to generate a 2048-bit private key using the RSA algorithm. The output 

will be saved in domain_key.pem (in PEM format).

Eve examines the key file in a text editor and sees something like this:

-----BEGIN PRIVATE KEY-----

MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCpQ0VUe4P0r8+l

6rX4qQGyNHD613X16sqeIW2x+PtkeE9pjAm6sNhFKAspHKa7nWgFoW/O9iiT8oiy

1ah7KbtJsAXceUEbj9Yt6fHPytGe+qIidI1/Rg7ah4k7cn6pbPrqaxGc8n8368pM

NzJZMnLZL0ePVn/y2mTsGX5wR+Cm+imEFBWxL7jgnhYAyLRdOYsdGaZi5DJQaHl7

HqXaL7+6G6RAjhW+Hn34ImBufOvY9eV3dCRvOFCSWr4e5uHv5ofUyRWB2Emwm8u6

SM3zzI30OFb6zHWoBsccU8xJadhWgPXLq27rcSl3A5NK6y1p7KKHimqcp6WDUgMK

3NzCIXK9AgMBAAECggEAB2zfDry4ZjSMPHAWeYkYfPPV/PsUvqwFJXi78jHE/XxV
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p4CwMJNveWEvVCdgnRxjotOZLxAXaZ4bJxU+ZeDHyYzCRRDArW/a6nq30/DGz12Z

XT+VsX6mSinl+Eimi9IvE7eMt0DgGdjrL/q/56/R3/s1/XDC/ilcggsAQ/azQT/n

3cOxWoo0HYQQdbMkoi7YDRKOC7F2sfV3X02WMDq4PuWG6mFtLg4j8tpAaJRCOlEz

bNnJnbBS6Dj3RnU53nj5TKBObCIZWkgpYcGK9e2iIg5+kMgkmwY5uxv3hTB5QHZY

tKDOPM9wgvDIR6NrccOGQOJ0cvJmMHDNS8apT2rewQKBgQDhjsS3M3qWT6lzhFx3

+w6NJv7i/uOA2eNd+Kor0q5XYOTicT8XCShSO2gFT6Fg4HRrSvwcjaTpjacUIyjZ

IhfrIIcSEe8Bk1VoBbrcS2NEZ3hMpPrPQ/hZtzUchhA1ftMJOfnysYGtqjA4drpq

HS8rPGmcP8NN1zYnv29ptfkmzQKBgQDAG3W8gA/mqjpboOB/OeC1fMX7u6pJVWGj

f+Bahjj5FAwfOYHJ80N10m/NpUD7BnKKds0dYyOwV287+hhLnQZ2c3glxM/zONUn

9uYIgAWNm0wjsCKOVY6r9nc6kWW07I0kIm628K50BPxiXC/GqsXVpKSPjSrDhKnQ

vG1xFN4bsQKBgA1kP5Os78NK2YGtQxwwgK2quglaHsHArfofUGMnsAgqDYzQMnG4

rncrZcKi9q7cxKy2F//N/ROMwHW2nK8/kfH4zWwqOml6iOCTLoPzyeH+zqqmROnX

XEBfWzzlTMMQU5FBqvBYz50y9If1rJ2uO+WyQYbwVjUh6Oo1OHUrQ66lAoGAXKti

aiHkicLID/dVFEpZKXMdFkf65xE23mYLVd+1kAGpr05QW5jri+SNZkg3RmBf1Idm

fqyaRLCIygfkvGTs/yrIZH/CSHO772FcqfEHvL2TRwvqP3rqLe3gqfIFe/c4RpwN

iFYl8XWOQexyZ4VtlZesgkr4vAQ83qJmsMv+MKECgYEAjRVzqXEAV8DB5nzN+1cf

20vCrZxd1Ktgb/DUqRfZwpAWU5K9YFCHbLWTS96KiMFh45kuAUg/hSKJIktuY1eI

Pl+r3g9FwlnntIHaUiRstDGXuyZku//+gWZMAZU4t5DwvhIXXAG3AqSe0EsB/bi4

kdlstdXcN/HgthWvTQkVycY=

-----END PRIVATE KEY-----

�Create a CSR from a Key

Now that Eve has her key, she creates a CSR for this key. The CSR generation process will 

extract the public key from the private key Eve created and put it into the request. Eve 

uses the openssl req command for this operation with the following parameters:

openssl req -new -key domain_key.pem -out domain_request.csr

This instructs OpenSSL to build a CSR from the private key and put the result in 

domain_request.csr. Running this command results in some interactive questions for 

filling in elements of the subject name. Only the “Common Name” is absolutely required 

for TLS to work, but many certificate authorities will require these fields to be filled in 

before they will be willing to sign it.

You are about to be asked to enter information that will be incorporated

into your certificate request.

Chapter 8  TLS Communications



305

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

-----

Country Name (2 letter code) [AU]: WA

State or Province Name (full name) [Some-State]:West Antarctic Shelf

Locality Name (eg, city) []:West Antarctic City

Organization Name (eg, company) [Internet Widgits Pty Ltd]:WACKO

Organizational Unit Name (eg, section) []:Espionage

Common Name (e.g. server FQDN or YOUR name) []:wacko.westantarctica.

southpole.gov

Email Address []:eve@wacko.westantarctica.southpole.gov

Once Eve enters all of these fields, OpenSSL produces the CSR file and saves it to disk 

(also in PEM format). Eve uses the same utility (openssl req) to load the CSR from disk 

and view the fields in a human-readable format.

Executing the command

openssl req -in domain_request.csr -text

results in the following output:

Certificate Request:

    Data:

         Version: 1 (0 x0)

         Subject: C = WA, ST = West Antarctic Shelf, L = West Antarctic City,

              \

         O = WACKO, OU = Espionage, CN = wacko.westantarctica.southpole.gov,

             \

         emailAddress = eve@wacko.westantarctica.southpole.gov

         Subject Public Key Info:

             Public Key Algorithm: rsaEncryption

                 Public-Key: (2048 bit)

...

    Signature Algorithm: sha256WithRSAEncryption

         6d:ef:8c:91:cd:a0:5d:9f:56:42:44:7f:1a:06:94:3f:8e:e1:

...
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You’ll notice that the version of Eve’s CSR is version 1 and not version 3. OpenSSL 

always assigns version 1 unless version 3 extensions are in use. But remember, this is 

just the request, not the actual certificate. When CAs generate the actual certificate, they 

may insert V3 extensions for security reasons, resulting in a certificate that is using X.509 

version 3.

Additionally, some certificate fields are not present, such as “Serial Number.” Those 

will also be added when the CSR is signed by the CA.

In looking over Eve’s shoulder, you may also have been surprised to see that the CSR 

already has a signature (the data on the line following Signature Algorithm). Where did 

that come from? Aren’t signatures created when the issuer signs the certificate?

CSRs are typically signed by their own key as a way of indicating that the private 

key is actually held by the requester. Anybody could throw anyone’s public key into a 

CSR. By having it be self-signed, this proves to the CA that the requester is in control of 

the private key, sometimes called “proof of possession.” The real signing by the CA to 

produce a certificate is a separate process, and the next step.

�Signing a CSR to Produce a Certificate

To review, let’s remember that a certificate always has to be signed by the CA/issuer. 

If Eve, for example, created a web site and wanted a TLS certificate for it, she would 

generate the CSR and send it to a CA for a signature as we discussed. This signature is 

their stamp of approval that Eve’s certificate is valid and she is permitted to claim the 

requested identity. The CA is responsible for a certain level of verification. If Eve requests 

an identity within the East Antarctica government, for example, the CA should determine, 

as part of their verification process, that she can’t claim that identity. They would then 

deny her request. On the other hand, she can claim an identity within her native West 

Antarctica and may need to provide the government with physical documentation and 

have an in-person meeting with a representative of the CA to prove it.

Eve does have another option besides sending her CSR to a CA. She could sign 

the certificate herself using the same private key. This is called generating a self-signed 

certificate. All root certificates (e.g., root certificates held by a CA) are self-signed. After 

all, the chain has to stop somewhere.

We’re getting ahead of ourselves. What is a certificate chain anyway?

We mentioned the concept briefly in Chapter 5. If you recall, when we were using our 

simplified (not very real) certificates, we discussed having an issuer of an issuer chain 

that could be arbitrarily long. That is, a party’s certificate (say Eve’s certificate) could be 
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signed by an issuer, that is in turn signed by a “higher” issuer, that is signed by an even 

higher issuer, until some root certificate is the highest level issuer for the entire chain. 

The root certificate is signed by itself! In fact, the subject and issuer sections of a root 

certificate are identical.

This is one reason why verifying a certificate requires great care. You have to ensure 

that your certificate chain ends with a root that is trustworthy. The entire security of the 

system rests on this requirement. Anybody, including Eve in West Antarctica, you, or a 

Mafia Mob Boss in America, can create a self-signed certificate for any identity (the West 

Antarctica government, Google, Amazon, your bank, etc.). The only reason your browser 

won’t trust Eve’s self-signed certificate is because it isn’t signed by an issuer that it (the 

browser) already trusts.

How does a browser know which root certificates to trust? Most browsers are 

shipped with certain trusted root certificates baked in. In our hypothetical Antarctic 

example, East Antarctica and West Antarctica could produce browsers with only 

government-authorized CAs installed. This would literally prevent the two countries 

from communicating with each other (at least over HTTPS or TLS).

But let’s get back to Eve. She cannot get a certificate signed by an EA root. Instead, a 

self-signed certificate can be useful, and generating one is instructive. It is also Eve’s best 

option at present, so let’s move her forward. Eve signs her CSR using the openssl x509 

command:

openssl x509 -req \

  -days 30 \

  -in domain_request.csr \

  -signkey domain_key.pem \

  -out domain_cert.crt

This command creates a certificate valid until 30 days from now. It is signed by 

domain_key.pem, which is the same key associated with the CSR. The self-signed 

certificate is saved in the file domain_cert.crt.

Using syntax similar to what we used for openssl req, Eve dumps the fields into a 

human-readable format for viewing. The command

openssl x509 -in domain_cert.crt -text
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produces output similar to the following:

Certificate:

    Data:

        Version: 1 (0x0)

        Serial Number:

            a5:f5:15:a8:55:58:12:5e

    Signature Algorithm: sha256WithRSAEncryption

        Issuer: C = WA, ST = West Antarctic Shelf, L = West Antarctic City,

            \

        O = WACKO, OU = Espionage, CN = wacko.westantarctica.southpole.gov,

            \

        emailAddress = eve@wacko.westantarctica.southpole.gov

        Validity

            Not Before: Jan 6 01:13:18 2019 GMT

            Not After : Feb 5 01:13:18 2019 GMT

        Subject: C = WA, ST = West Antarctic Shelf, L = West Antarctic City,

             \

        O = WACKO, OU = Espionage, CN = wacko.westantarctica.southpole.gov,

            \

        emailAddress = eve@wacko.westantarctica.southpole.gov

        Subject Public Key Info:

            Public Key Algorithm: rsaEncryption

                Public-Key: (2048 bit)

                Modulus:

                    00:a9:43:45:54:7b:83:f4:af:cf:a5:ea:b5:f8:a9:

...

    Signature Algorithm: sha256WithRSAEncryption

         20:da:25:88:db:4e:ee:21:19:78:58:ed:b8:7b:3f:28:dd:83:

...

Now all of the fields are filled in. For example, Eve did not specify a serial number so 

one was automatically generated. The issuer field is also filled in and, as expected for a 

self-signed certificate, it has the same identity as the subject.

Eve decides to create a second certificate and sign it with this certificate. She sets 

about creating the new certificate and decides to assign it the identity of 127.0.0.1 
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(localhost). Eve decides it might be good to experiment with creating keys other than 

RSA keys, and she sets about creating an EC (elliptic-curve) key pair.

openssl genpkey \

  -algorithm EC \

  -out localhost_key.pem \

  -pkeyopt ec_paramgen_curve:P-256

This EC key is based on the P-256 curve which is a very popular and widely used 

curve and a reasonable choice.5

Eve generates a new CSR from the EC key using the same command line as before:

openssl req -new -key localhost_key.pem -out localhost_request.csr

Now Eve has a request to create a certificate, not a signed certificate. Not yet, anyway. 

To create the certificate, Eve needs to sign with domain_key.pem, as she is treating that 

key and certificate like a CA key/cert.

She is also going to add some X.509 V3 options. These options are used for limiting 

how a certificate can be used. For example, Eve wants to use her first certificate and 

private key (domain_cert.crt and domain_key.pem) to sign her second certificate. She 

wants her first certificate to be able to be used as a CA. She does not, however, want her 

second certificate (for localhost) to be able to sign other certificates. Using V3 extensions, 

it is possible for Eve to encode these limitations directly into the certificate itself.

To see why this is important, imagine if Eve is granted a certificate by a real CA for 

wacko.westantarctica.southpole.gov. If this certificate does not have limitations on 

its use, nothing stops Eve from using it to sign a new certificate granting her the identity 

of eatsa.eastantarctica.southpole.gov. This would give Eve a chain of authority back 

to the CA for an identity she shouldn’t have. Thus, in order for certificate chains to mean 

something, Eve’s certificate must deny her the right to create other certificates.

In Eve’s experimentation, the two fields she cares most about are

•	 Key Usage

•	 Basic Constraints

5�The SafeCurves organization lists certain concerns with a number of curves, including 
P-256. There are no known vulnerabilities against this curve, but there are questions about 
its parameters and whether it was designed with a “back door.” Other curves, such as Curve 
25519 might be better choices, but are not yet supported by the cryptography library for digital 
signatures.
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Eve is going to use these fields to express that this new certificate should not be used 

as a CA. In fact, it will say so expressly in the “Basic Constraints” field. The “Key Usage” 

field will include normal key uses such as “Digital Signature” but it will leave out things 

like being used as signing “Certificate Revocation Lists” (CRLs).

To add these V3 features into her certificate, Eve creates an extension file called  

v3.ext. It contains the following two lines:

keyUsage=digitalSignature

basicConstraints=CA:FALSE

Now Eve is ready to sign the CSR.

openssl x509 -req \

  -days 365 \

  -in localhost_request.csr \

  -CAkey domain_key.pem \

  -CA domain_cert.crt \

  -out localhost_cert.crt \

  -set_serial 123456789 \

  -extfile v3.ext

When signing with a CA key and certificate, the signkey parameter is removed and 

CA option and CAkey parameters are added. The CA option specifies the certificate of the 

CA/issuer, and the CAkey specifies the associated private key used for signing. Eve plugs 

in the private key and self-signed certificate from her first experiment.

Although not required when creating a self-signed certificate, Eve now has to 

explicitly specify a serial number when signing with a CA key and certificate. A real CA 

must not reuse serial numbers and must keep a record of the serial numbers issued in 

case the certificate needs to be revoked.

Using her command line, Eve reviews this new certificate and identifies a few 

differences:

Certificate:

    Data:

        Version: 3 (0x2)

        Serial Number: 123456789 (0x75bcd15)

    Signature Algorithm: sha256WithRSAEncryption

        Issuer: C = WA, ST = West Antarctic Shelf, L = West Antarctic City,
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            \

        O = WACKO, OU = Espionage, CN = wacko.westantarctica.southpole.gov,

            \

        emailAddress = eve@wacko.westantarctica.southpole.gov

        Validity

            Not Before: Jan 6 05:41:35 2019 GMT

            Not After : Jan 6 05:41:35 2020 GMT

        Subject: C = WA, ST = WhoCares, L = MyCity, O = Localhost,

            OU = Office, CN = 127.0.0.1

        Subject Public Key Info:

            Public Key Algorithm: id-ecPublicKey

                Public-Key: (256 bit)

                pub:

                    04:46:64:ca:95:0c:fc:dd:85:fb:cc:54:5a:9b:e9:

...

                NIST CURVE: P-256

        X509v3 extensions:

            X509v3 Key Usage:

                Digital Signature

            X509v3 Basic Constraints:

                CA:FALSE

    Signature Algorithm: sha256WithRSAEncryption

         07:78:b5:1d:4a:2f:e4:33:a6:f6:a8:fb:e2:51:16:eb:c5:3b:

...

As you would expect, the issuer is not the same as the subject this time around. 

In fact, the issuer field from this certificate matches the subject field from the signing 

certificate. This is required for correct certificate chain validation.

Also, the public key algorithm is elliptic curve now instead of RSA, but the Signature 

Algorithm is still sha256WithRSAEncryption. That’s because this certificate is signed by 

the domain_cert.crt Eve created earlier, and that is still RSA.

As you can see, the X.509 V3 extensions are present and the version of the certificate 

is now listed as “3” as well.
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Eve made the subject identity 127.0.0.1 on purpose. She decides to test  

out her newly minted certificates and see how a web browser treats them. Using  

openssl s_server, Eve quickly sets up a test of the certificates she has generated.

openssl s_server -accept 8888 -www \

    -cert localhost_cert.pem -key localhost_key.pem \

    -cert_chain domain_cert.crt -build_chain

This command starts the server listening on port 8888 (for your own tests, make sure 

your HTTP proxy is turned off or else pick a different port). It uses the localhost cert as its 

identity certificate, but uses the domain cert file as a list of certificates for use in building 

chains. The build_chain option instructs the server to attempt to build a complete chain 

of certificates for transmission to clients. In other words, it sends the entire chain to the 

client, not just the identity certificate.

Once Eve has the server running, she points a browser at https://127.0.0.1:8888. 

She sees something like Figure 8-1.

That is an image from the Chrome browser reporting that it doesn’t like the 

certificate Eve created. Note that what Eve received is the ERR_CERT_AUTHORITY_INVALID 

error. Using Chrome’s developer tools, Eve gets more information on how the browser 

views this certificate and its chain, shown in Figure 8-2.

Figure 8-1.  Chrome’s warning about an untrusted certificate
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Figure 8-2(b) is an image with details about the certificate chain, specifically. Notice 

that it received the chain (both the certificate and its issuing certificate). It recognizes 

that the domain certificate Eve created (identified in this figure by the common name 

wacko.westantarctica.southpole.gov) as a “root” certificate, because it is self-signed. 

But, it says that this root certificate is not a trusted certificate. If a root certificate is not 

trusted, then the entire security of the chain cannot be established.

There are ways to add a root certificate to a browser’s trusted certificate store. Eve 

studies this concept very closely as she might be able to use this approach to defeat 

TLS. We are not going to include the details in this book, however, as it is actually a pretty 

bad and dangerous idea. It is probably the most dangerous thing we have discussed so 

far.6 If you install a new root certificate into your browser, your browser will trust any 

6�Many companies, universities, and other organizations require their employees to do this. That 
is ill-advised at best. It undermines the security of everything those people do from within the 
corporate network, making them vulnerable in the same ways the company itself is, because 
their traffic, which should be encrypted end to end, isn’t. This means that a company that 
represents an attractive target for motivated criminals is also placing their individual employees 
at risk of losing their data, which is traversing part of the company network unencrypted. This is 
bad.

Figure 8-2.  Chrome’s warnings for untrusted situations
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certificate signed by that root. If, somehow, your ill-conceived trusted root escaped 

into the wild, an attacker could basically convince your browser that any web site was 

authentic.

Speaking of which, how do browsers trust any certificate authorities at all? The 

answer, which is uncomfortably arbitrary, is that a small number of “authorities” have 

established themselves as reliable root authorities. These organizations and companies 

have their root public keys installed by default in popular computer systems and 

browsers. All other trust must be derived from these arbitrary authorities. Does that 

make you feel safe?

In summary, however, for TLS to work correctly, it has to have correctly configured 

(and correctly limited) trust anchors. There may be times when engineering teams 

need to use self-signed certificates for testing and other temporary purposes. Generally, 

though, browsers will not trust them, and any TLS-enabled code you write should not 

trust them either.

EXERCISE 8.2. CERTIFICATE PRACTICE

Generate some different TLS certificates experimenting with different algorithms and 

parameters (such as key sizes).

EXERCISE 8.3. FANTASY CERTIFICATES

Create some “fantasy” certificates for some of your favorite organizations. Self-sign a 

certificate or two that reads amazon.com or google.com. You can’t use these as nobody’s 

browser will accept them.7 But it is kind of a fun game.

Maybe you could print out a copy of Openssl’s text representation and frame it. After all, how 

many of your friends have an Amazon TLS certificate?

7�And seriously, don’t be evil. This exercise is not meant to encourage fraud in any way.
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�Creating Keys, CSRs, and Certificates in Python
After getting done with her OpenSSL certificate tests, Eve explores creating these same 

objects programmatically using the Python cryptography library. Using this library, Eve 

can generate self-signed certificates, certificate requests, signed certificates, and keys. 

Alice, Bob, Eve, and you have already generated keys in previous chapters, so let’s skip 

ahead to certificate requests.

The cryptography library has a “builder” class for constructing a CSR and a separate 

class for representing the CSR. When building a CSR using the builder, the only 

information required is the subject name data and the private key. All other fields can be 

derived or otherwise automatically populated. Extensions can optionally be added.  

The following code is taken from the cryptography module’s documentation:

>>> from cryptography import x509

>>> from cryptography.hazmat.backends import default_backend

>>> from cryptography.hazmat.primitives import hashes

>>> from cryptography.hazmat.primitives.asymmetric import rsa

>>> from cryptography.x509.oid import NameOID

>>> private_key = rsa.generate_private_key(

...     public_exponent=65537,

...     key_size=2048,

...     backend=default_backend())

>>> builder = x509.CertificateSigningRequestBuilder()

>>> builder = builder.subject_name(x509.Name([

...     x509.NameAttribute(NameOID.COMMON_NAME, 'cryptography.io')]))

>>> builder = builder.add_extension (

...     x509.BasicConstraints(ca=False, path_length=None),

...     critical=True)

>>> request = builder.sign(

...     private_key,

...     hashes.SHA256(),

...     default_backend())

The CertificateSigningRequestBuilder follows the object-oriented “builder 

pattern” wherein each building method returns a new copy of the builder object. This 

is handy for when Eve decides to construct multiple CSRs with partially overlapping 
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parameters. One builder can be configured with the overlapping parameters, and then 

individual builders are created when the parameters diverge.

As a side note about X.509 extensions, you will note that the CSR created in our 

example set ca=False. As with our earlier OpenSSL example, we are explicitly marking 

this certificate as not being able to sign other certificates (e.g., act as a CA). In this 

example, it also sets path_length=None, but that’s a superfluous piece of data because 

path_length only applies when ca=True. The critical flag indicates that this is a 

mandatory extension that must be processed by processing software.

When ready, Eve uses the sign method to build the actual CSR request object using 

a private key. Recall that CSRs are self-signed to ensure that the requester has the private 

key corresponding to the embedded public key. The sign method extracts the public 

key from the private key, inserts it into the CSR, and then signs with the private key. The 

object built by this method is an instance of CertificateSigningRequest.

To save a CSR to disk, Eve uses the public_bytes method in the 

CertificateSigningRequest object that returns the PEM serialization of the data.

>>> from cryptography.hazmat.primitives.serialization import Encoding

>>> csr.public_bytes(Encoding.PEM)

b'-----BEGIN CERTIFICATE REQUEST-----\

    nMIICcDCCAVgCAQAwGjEYMBYGA1UEAwwPY3J5cHRvZ3JhcGh5LmlvMIIBIjANBgkq\

    nhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAntx7bGVFlIa0/dlImzUHbN4xCQ8d8/if\

    ng8GQaASN9oyfXUmOB8r+P8p4K6U8xoPXa+lc+KgexZrqibY5x1FEAvzQPanhm0w8\

    nhS7Uo1Pqt3okP6zsdfzXcjgceud8JJhVTqZWpN1Q5e+RldYwuzIsJyxNUFMUZrpL\

    �nqZNQ0S/KG5re7YIHJLy3iCx6a/KAW5BbqW9cq989sdTp0Fo462+qCqoHaQ0//hQM\

nTmWI/

    IJIZ9mIcP4ggJr0sy8JLAw/RLzcrpMRut8e1/A9mozo+YZJDPt9d+WzXj5p\

    nZvTkpFUfOB8HpogCdtbhPmc5jfgbN/rwOzSO8bQTdHAwTS/5fQjtAQIDAQABoBEw\

    nDwYJKoZIhvcNAQkOMQIwADANBgkqhkiG9w0BAQsFAAOCAQEAR1E3c/aF1X41x4tI\

    n2kUeCeV38C01ZFrCJADXKKl4k6wvHU81ZoDCV6F1ytCeJAlD1ShGS6DmlfH78xay\

    nrefzaIjCp0tRs5R4rccoRNK3LhyBnxEqLY1LZx1fq2F0XiMHlG8jEcK/jjhWm70B\

    naKwBbvWwlHGgha5ZlOgvALOPSFUC9+6LvTStanSABtlBM4eA2izLG2hMek9S5xIw\

    nK53WJG42Mz3PHDMUfYWdGtsJalAnGMkQtqbvR4yKi9o5y4RcvihQtitGFeYQmZc+\

    nhmuVB0BGCe9LUB0iL9J3kUgL4avO2AviCFev48i9OYGD54G73vKrd5KODtY78own\

    nVrbzMw==\n-----END CERTIFICATE REQUEST-----\n'
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CSR objects cannot be constructed directly. They can be built by the builder class or 

loaded from disk. The class is a read-only style class that allows access to data fields but 

does not permit altering them. Eve uses the builder class to construct new CSRs when 

necessary. She also uses the load_pem_x509_csr method to load CSRs from disk. The 

following example code is taken from the cryptography documentation.

>>> from cryptography import x509

>>> from cryptography.hazmat.backends import default_backend

>>> pem_req_data = b'''------BEGIN CERTIFICATE REQUEST------\

    nMIICcDCCAVgCAQAwGjEYMBYGA1UEAwwPY3J5cHRvZ3JhcGh5LmlvMIIBIjANBgkq\

    nhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAntx7bGVFlIa0/dlImzUHbN4xCQ8d8/if\

    ng8GQaASN9oyfXUmOB8r+P8p4K6U8xoPXa+lc+KgexZrqibY5x1FEAvzQPanhm0w8\

    nhS7Uo1Pqt3okP6zsdfzXcjgceud8JJhVTqZWpN1Q5e+RldYwuzIsJyxNUFMUZrpL\

    �nqZNQ0S/KG5re7YIHJLy3iCx6a/KAW5BbqW9cq989sdTp0Fo462+qCqoHaQ0//

hQMnnTmWI/

    IJIZ9mIcP4ggJr0sy8JLAw/RLzcrpMRut8e1/A9mozo+YZJDPt9d+WzXj5p\

    nZvTkpFUfOB8HpogCdtbhPmc5jfgbN/rwOzSO8bQTdHAwTS/5fQjtAQIDAQABoBEw\

    nDwYJKoZIhvcNAQkOMQIwADANBgkqhkiG9w0BAQsFAAOCAQEAR1E3c/aF1X41x4tI\

    n2kUeCeV38C01ZFrCJADXKKl4k6wvHU81ZoDCV6F1ytCeJAlD1ShGS6DmlfH78xay\

    nrefzaIjCp0tRs5R4rccoRNK3LhyBnxEqLY1LZx1fq2F0XiMHlG8jEcK/jjhWm70B\

    naKwBbvWwlHGgha5ZlOgvALOPSFUC9+6LvTStanSABtlBM4eA2izLG2hMek9S5xIw\

    nK53WJG42Mz3PHDMUfYWdGtsJalAnGMkQtqbvR4yKi9o5y4RcvihQtitGFeYQmZc+\

    nhmuVB0BGCe9LUB0iL9J3kUgL4avO2AviCFev48i9OYGD54G73vKrd5KODtY78own\

    nVrbzMw==\n------END CERTIFICATE REQUEST------\n'''

>>> csr = x509.load_pem_x509_csr(pem_req_data, default_backend())

For making certificates, Eve discovers that the cryptography library follows a similar 

pattern as it did for making CSRs. There is a builder class and a read-only certificate class 

that can also be serialized to and from disk.

Interestingly, there is no method for creating a certificate from a CSR. The 

cryptography documentation explicitly identifies that the purpose of the certificate 

builder class is to generate self-signed certificates. There is no reason to start from a CSR.

Even if Eve wanted to establish a CA (for her own West Antarctic colleagues), it 

would be better for her to not automate CSR signing. As we discussed earlier, CAs need 

to verify CSR information very carefully, and sometimes manually; correctness and 

validity must be established before signing.
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Still, Eve finds that if she needs to create a certificate from a CSR, she can load the 

CSR and then use its data fields to fill in the certificate builder.

From the cryptography documentation, Listing 8-2 contains an example for building 

a self-signed certificate. After this code runs, the certificate variable has what we need.

Note: Dot Chaining

We take advantage of the fact that each operation on the builder returns itself. 
This allows the method “dot chaining” approach you see. Since the final call to 
“sign” returns a certificate, not a builder, we can assign this long operation to the 
certificate itself.

Listing 8-2.  TLS Builder

 1   from cryptography import x509

 2   from cryptography.hazmat.backends import default_backend

 3   from cryptography.hazmat.primitives import hashes

 4   from cryptography.hazmat.primitives.asymmetric import rsa

 5   from cryptography.x509.oid import NameOID

 6

 7   import datetime

 8

 9   one_day = datetime.timedelta(1, 0, 0)

10

11   private_key = rsa.generate_private_key(

12       public_exponent=65537,

13       key_size=2048,

14       backend=default_backend())

15

16   public_key = private_key.public_key()

17

18   certificate = x509.CertificateBuilder(

19   ).subject_name(x509.Name([

20        x509.NameAttribute(NameOID.COMMON_NAME, 'cryptography.io')])

21   ).issuer_name(x509.Name([
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22        x509.NameAttribute(NameOID.COMMON_NAME, 'cryptography.io')])

23   ).not_valid_before(datetime.datetime.today() - one_day

24   ).not_valid_after(datetime.datetime.today() + (one_day * 30)

25   ).serial_number(x509.random_serial_number()

26   ).public_key(public_key

27   ).add_extension(

28        x509.SubjectAlternativeName([x509.DNSName('cryptography.io')]),

29        critical=False,

30   ).add_extension(

31        x509.BasicConstraints(ca=False, path_length=None),

32        critical=True,

33   ).sign(

34        private_key=private_key, algorithm=hashes.SHA256(),

35        backend=default_backend())

To modify this example to create the certificate from a CSR, Eve can extract the 

subject name, public key, and optional extensions directly from the CSR object and copy 

them into the certificate builder. To sign the certificate with a CA certificate/key pair, 

Eve needs to load the CA certificate and key, copy the “Issuer” field from the signing 

certificate into the certificate builder, and sign using the certificate’s private key.

Certificates can be loaded using load_pem_x509_certificate, then serialized for 

storage or transmission using the public_bytes method.

EXERCISE 8.4. OPENSSL TO PYTHON AND BACK

Generate a CSR with Python and sign it with Openssl.

Generate a CSR with Openssl, open it in Python, and create a self-signed certificate from it.

EXERCISE 8.5. CERTIFICATE INTERCEPT IN THE MIDDLE

In the next section, we will talk about TLS, the security protocol that underlies HTTPS. TLS 

relies on the certificates you learned about in this section. Going back to your HTTP proxy, 

intercept some more HTTPS traffic and see if you can figure out when the certificate is  

being sent.

Chapter 8  TLS Communications



320

This is a tough exercise and more for those interested in experimentation and tinkering. As 

a hint, certificates are not sent in PEM format, but DER. This is a binary format. But it’s not 

encrypted. You can try poking around for certain binary byte combinations. You could also use 

openssl to convert the certificates you’ve created into DER format and examine them in a hex 

editor to see if there are common bytes to look for.

EXERCISE 8.6. CERTIFICATE MODIFICATION IN THE MIDDLE

If you do manage to find when certificates are going over the wire, modify your HTTP proxy 

program to intercept and modify them. At the very least, you could just have a certificate of 

your own pre-loaded that you send instead. How does your browser feel about this?

�An Overview of TLS 1.2 and 1.3
With a little bit of knowledge about X.509 certificates under her belt, Eve turns to 

studying the TLS protocol. As you follow along, you should recognize that the TLS 

protocol draws on cryptography components that we have studied through all the 

preceding chapters. This is a chance for you and Eve to see how all of the pieces are put 

together in a modern security protocol.

The goal of the TLS protocol is to provide transport security (TLS stands for 

“Transport Layer Security”). The TCP/IP protocol suite, upon which the Internet is built, 

does not have any security guarantees. It does not provide confidentiality, which is why 

Eve was able to use an HTTP proxy to read the data being sent between two parties.

At least as bad, if not worse, is the fact that TCP/IP does not provide authenticity 

either. Eve could have used her HTTP proxy with a few modifications to masquerade 

as the true destination (example.com), and Alice and Bob would have had no idea. The 

TCP/IP protocol suite also does not provide message integrity. The proxy could change 

the data and the change would not be detected.

TLS is designed to add these security features on top of TCP/IP. The protocol 

originated as the “Secure Sockets Layer” (SSL) protocol from Netscape in the mid-

1990s. Version 2 was the first public release, followed by version 3 shortly thereafter. 
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Subsequently, it received a few changes and was renamed TLS 1.0.8 The updated 

versions since that time have been released to update cryptography and alleviate 

problems with the cryptographic protocol. Version 1.2 has been around for a number of 

years and is still considered current. Recently, version 1.3 was also released, but is not 

currently being described as a replacement to 1.2 (both versions are considered current).

How does TLS work? It starts with a handshake. That handshake is extremely 

critical. Keep in mind that TLS has two major goals: first, establish identity9 and, second, 

mutually derive session keys for secure transport. These two goals are typically achieved 

by a successful TLS handshake.

The handshake is also where the various TLS versions are most different from one 

another. For this section, we will review the TLS 1.2 handshake and then briefly discuss 

how TLS 1.3’s handshake is different. The TLS 1.3 changes will make more sense after the 

TLS 1.2 handshake has been explained.

Please note that this section is somewhat academic. There isn’t much in the way of 

programming for Eve to experiment with. This background will help her understand how 

TLS is supposed to work and places where it has gone wrong in the past. Eve can use this 

information to figure out which servers are going to be easier to crack than others.

At the same time, you, the reader, will benefit from watching Eve’s attempts to break 

through the cryptography shield that TLS is supposed to provide. Throughout this 

entire book, we’ve been pounding it into your head that you shouldn’t create your own 

algorithms and shouldn’t create your own implementations whenever a well-tested 

library is present.

TLS is actually a protocol you can and should use, and there is plenty of library 

support for it in Python, which helps a lot. Still, you want to know what kinds of things 

Eve will be looking for if she wants to attack your system. Let’s dive in.

8�Old habits die hard. Many times the term “SSL” is still used, even when talking about 
TLS. Certificates, for example, are still often referred to as SSL certificates even if they’re only 
used for TLS.

9�In common practice, only the server’s identity is verified, though there are increasing use cases 
for “Mutual TLS” (MTLS), where the client verifies the server and the server also verifies the 
client.
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�The Introductory “Hellos”
TLS 1.2 begins with a client sending a client “hello” message to the server. The client 

hello message includes information about its TLS configuration, as well as a nonce. 

One of those bits of configuration is the client’s list of cipher suites. Possibly one of the 

most confusing characteristics of TLS to newcomers is that the TLS protocol is actually 

a combination of protocols that work together. And it supports a number of different 

algorithms and protocol combinations.

The hello message must, out of necessity, get the client and the server preparing to 

communicate using the same algorithms and component protocols. The client sends a 

list of cipher suites to indicate all the different ways that it is willing to talk and the server 

will select one in its response (presuming there is any overlap between the cipher suites 

they support).

A cipher suite for TLS typically includes one choice of algorithm each for key 

exchange, signing, bulk encryption, and hashing. As we said, TLS brings together all the 

different elements you have been learning about in this book, so these terms should look 

familiar!

One cipher suite used by TLS 1.2 is TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384. 

This cipher suite can be understood as follows:

•	 TLS: The protocol the cipher suite is meant for. Easy enough.

•	 ECDHE: As described in Chapter 6, the client and server will use 

ECDHE to create a symmetric key.

•	 ECDSA: Recall from learning about ECDHE that it is not 

authenticated. In order to be sure that the server is who it claims to 

be, it will use ECDSA signatures on some of the handshake data.

•	 AES_256_CBC: After the handshake is over, the client and server will 

send data protected by AES-256 in CBC mode.

•	 SHA_384: This parameter has to do with two different parts of the TLS 

operation. The SHA-384 algorithm will be used in a key derivation 

function during the handshake. Additionally, the bulk encryption 

messages sent after the handshake (encrypted by AES-256 in CBC 

mode) will be protected from modification by HMAC-SHA-384.
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These elements will make more sense as we go through the rest of the TLS protocol. 

Meanwhile, it is a good introduction to the number of components that are a part of TLS 

operations.

Note: ECDH vs. ECDHE

Throughout this book, we have not made too much of a distinction between  
DH/ECDH and DHE/ECDHE. As a reminder, the “E” stands for “ephemeral.” When 
DH/ECDH is used in ephemeral mode, the public/private key pair is used once and 
discarded.

The reason we haven’t made an effort to say “DHE” instead of “DH” is that in many 
contexts DH is implicitly ephemeral.

This is not the case with TLS. There are modes of operation that are not ephemeral 
at all. Accordingly, we will use the full DHE/ECDHE term throughout this chapter to 
be explicit.

Notice that the strength of TLS depends greatly on its cipher suite. What is a little 

frightening is that two servers can be “using” TLS 1.2 where one server is strongly 

protected and the other is vulnerable to attack because of the choice of cipher suite. 

Don’t ignore the hello part of the TLS handshake!

It is really important!

There are a few other fields in the client’s hello. Figure 8-3 is an actual hello message 

intercepted by Wireshark (a network sniffer that can capture any kind of network traffic, 

not just HTTP like your proxy).
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Notice that there is a whole section for cipher suites! In Figure 8-4 we see the 

expanded list. That’s quite a list of cipher suites! Remember, this is a hello message from 

the client to the server, and this list is all of the cipher suites the client is willing to use.

Figure 8-3.  Wireshark decoding of a TLS 1.2 hello message
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When the server receives the client’s hello, it will see if it is willing to use on of the 

client’s proposed cipher suites. If so, it sends back a response with multiple elements:

•	 Hello: The server’s hello message includes its own random nonce.

•	 Certificate: The server’s TLS certificate or certificate chain, the details 

of which we covered earlier in this chapter.

•	 Key exchange: If the cipher suite uses DHE or ECDHE, the server 

will also transmit its portion of the Diffie-Hellman exchange along 

with the hello. For RSA key transport, the server does not send this 

element.

•	 Finished: An end-of-message kind of marker.

The TLS specification actually gives specific names to each kind of message sent in 

the handshake. So while we’ve been informally referring to a client hello message, TLS 

1.2 actually specifies that the name of the message is ClientHello. The exchange of 

the ClientHello and ServerHello, along with the official message names, is shown in 

Figure 8-5.

Figure 8-4.  Wireshark decoding of the cipher suites component of a TLS 1.2 hello 
message
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EXERCISE 8.7. WHO GOES THERE?

If you’ve been practicing with your HTTP proxy (specifically in the previous exercise), you 

should already be getting a feel for the back and forth exchanges in TLS. So, now that you 

know how a TLS handshake starts with the initial hellos, try to reverse engineer it a little. 

Remember, this part of the communication is clear text!

Can you figure out whether you’re looking at a TLS 1.2 or 1.3 handshake? That’s a great start!

�Client Authentication
The most popular configuration of TLS today authenticates only the server when the 

server’s certificate is sent with the ServerHello. Unless explicitly requested by the server, 

the client will not send a certificate to authenticate itself.

For a lot of Internet applications, this is sufficient. The servers are running on the 

Internet, broadcasting their information to the world. They want to prove to the world 

that they are who they say they are. Anyone is welcome to come and visit without 

proving their identity. Plus, exactly what a client’s identity should be is less clear. A 

server’s identity is usually tied to a domain name (e.g., google.com) or an IP address. But 

when you are browsing the Internet, what should your computer’s identity be?

Figure 8-5.  TLS 1.2 client and server hello exchange
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For circumstances where the server needs to identify the client, like bank 

transactions, or any other kind of account access, the user’s identity (rather than the 

machine’s) is what really matters. Usernames and passwords (or other kinds of personal 

identification) are what the server concerns itself with in those cases. Conceptually, by 

first authenticating the server and creating a shared key with it, the user can then safely 

identify themselves to the server using something like a password without worrying 

about disclosing their confidential information to the wrong party.

There are times, however, when security policy dictates that the client device must 

also be authenticated. When TLS is thus configured, it is referred to as “Mutual TLS” 

(MTLS). In this mode, the server lets the client know that it requires a certificate and 

proof of certificate ownership.

EXERCISE 8.8. CLIENT AUTHENTICATION RESEARCH

Mutual TLS is not used very frequently, but it is used. The authentication of clients, even when 

certificates are used, is often a little different. Do a little Internet search about how to configure 

a browser with a client certificate, how one obtains such a certificate, and what kind of 

identifier is chosen for the subject.

�Deriving Session Keys
Recall from Chapter 6 that a very common configuration for cryptography is to have 

asymmetric operations used to exchange or generate a symmetric session key. In that 

same chapter, we discussed two different ways of doing that: key transport and key 

agreement.

In the TLS 1.2 handshake, the goal is to get both the client and the server the same 

copy of a symmetric key. Actually, that’s not completely true. The goal is to get what is 

called the “pre-master secret” (PMS). The PMS, along with some other non-secret data, 

will be used to generate the “master secret.” The master secret will be used to generate all 

the necessary session keys for bulk data communications.

TLS 1.2, through its various cipher suites, provides both key transport and key 

agreement approach to provisioning the PMS.

TLS cipher suites that begin with TLS_RSA refer to TLS suites that use RSA encryption 

for key transport. For example, the cipher suite TLS_RSA_WITH_3DES_EDE_CBC_SHA. 
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You might notice that for ECDHE in our previous example we also required ECDSA 

signatures. Why do we not need RSA or ECDSA signatures with RSA key transport?

As we said in the previous section, if ECDHE or DHE is being used for key exchange, 

the server sends those parameters along with the server hello. But if RSA key transport is 

used, it sends nothing. Instead, in RSA key transport mode, the client receives the server’s 

certificate that was sent with the server’s hello, extracts the public key, and encrypts the 

PMS with the public key. It transmits the encrypted PMS to the server and only the server 

can subsequently decrypt it. Now both client and server have the same PMS.

The reason no signatures are required is because RSA encryption can only be opened 

by the party with the corresponding private key. If the server is able to use the session 

key derived from the PMS to communicate, it must be in possession of the private key 

and must be the owner of the certificate. This process is depicted in Figure 8-6.

Figure 8-6.  TLS key exchange using RSA key transport

DHE and ECDHE behave differently. They are called key agreement protocols 

because the PMS is not transmitted. Instead, both sides exchange DH/ECDH ephemeral 

public keys that can be used to simultaneously derive the PMS on both sides. As a 

reminder, exchanged DH/ECDH public keys are not like RSA or ECDSA public keys in 

the certificate. The DH/ECDH public keys are generated on the spot and are used only 

once. That’s what makes them ephemeral.
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That is also why they can’t be trusted. If the public key was just made up on the spot, 

how does the client know that the public key really came from the server? How does the 

server know that the public key it received really came from the client?

The long-term RSA or ECDSA private key is used by the server to sign its DHE or 

ECDHE public key and parameters (e.g., curve). When the client receives them, it can 

use the server’s public key in the certificate to verify that the DHE or ECDHE data came 

from the proper source. As discussed in the previous section, usually the client does not 

sign anything.

The DHE/ECDHE version of key exchange for the TLS handshake is depicted in 

Figure 8-7.

The security of these two approaches is very different. As we have already discussed 

in Chapter 6, the DH/ECDH approach provides perfect forward secrecy, while the RSA 

encryption approach does not. Furthermore, the RSA encryption approach has the 

pre-master secret generated entirely by the client. The server has to trust that the client 

is not reusing the same pre-master secret (or generating them from poor sources of 

randomness).

Even though the session key derivation from the pre-master secret depends  

on additional data—including the ClientHello nonce and the ServerHello  

nonce—that prevents a trivial replay attack, reusing the pre-master secret is suboptimal 

and potentially reduces the security of the system. On the other hand, when using  

Figure 8-7.  TLS key agreement using DHE/ECDHE
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DH/ECDH the server and the client both contribute to the generation of the key 

material, ensuring that the server is not wholly dependent on the client for this value.

The RSA encryption scheme is problematic for one other reason: it uses PKCS 

1.5 padding. You found that this scheme was vulnerable to a padding oracle attack in 

Chapter 4. TLS 1.2 has “countermeasures” designed to eliminate the oracle (remember, 

for the attack to work, the attacker needs to know when the padding was accepted), but 

unfortunately they aren’t always successful. As described in more detail later in this 

chapter, this attack is still a threat.

For these reasons and others, most security experts are encouraging TLS servers to 

stop using RSA encryption for key transport. At the very least, this form of key exchange 

should be an option of last resort.

EXERCISE 8.9. KEY EXERCISES

Try re-creating TLS’s key transport and key agreement operations. Let’s start with key 

transport. Start by taking one of the RSA certificates you’ve generated. If you were a browser, 

this is what you would receive over the wire. Create a Python program to import the certificate, 

extract the RSA public key, and use it to encrypt some random bytes (i.e., like a key) that you 

write back to disk.

There were already exercises in Chapter 6 for key agreement, even over a network. If you 

didn’t do those exercises, then maybe try it again now.

�Switching to the New Cipher
Once the client has finished sending the key exchange information (either using RSA 

encryption or DHE/ECDHE), it no longer needs to send data in the clear. All subsequent 

information should be sent encrypted and authenticated.

To signal this, the client sends a message called a ChangeCipherSpec message 

to the server. This basically says that everything else sent from the client from this 

point forward will be sent using the negotiated cipher. Once the server has received 

the client key exchange data, it can also derive the session keys. As with the client, 

there is no further reason to communicate in the clear and the server sends its own 

ChangeCipherSpec message.
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Each side then sends a Finished message to complete the handshake. The Finished 

message has a hash of all the handshake messages sent thus far, and because it is sent 

after the ChangeCipherSpec message, it is encrypted and authenticated under the new 

cipher suite.

The whole handshake, excluding a few less common messages, is visualized in 

Figure 8-8.

The purpose of this hash of handshake messages is to prevent an attacker from 

altering any of the messages sent in the clear before the changed cipher spec. For 

example, if an attacker intercepted and altered the client hello message, they could 

eliminate tougher ciphers and leave weak ones enabled, decreasing the difficulty 

of cracking the system. However, both sides keep a record of the messages sent and 

transmit a hash over all of these messages under the new cipher suite. If the hashes don’t 

match, then what one side sent is not what the other side received. The communications 

channel is considered compromised in this case and is immediately closed.

�Deriving Keys and Bulk Data Transfer
At this point, the TLS 1.2 handshake is over. The client has verified the server’s identity 

using public key certificates, and both sides share a pre-master secret.

Figure 8-8.  TLS 1.2 handshake
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Regardless of how the pre-master secret is generated, both client and server derive 

keys using it. These keys are to create a secure authenticated channel using symmetric 

encryption and message authentication. Application data is set using this channel. But 

first, let’s talk about these derived keys.

In this book, we’ve derived keys from data using a number of methods. Many 

are built in one form or another around hashing. In TLS 1.2, the pre-master secret 

is expanded into the “master secret” using what the specification calls the “pseudo-

random function” (PRF). By default, the PRF is built using HMAC-SHA256 using an 

expansion mechanism based on HMAC being called repeatedly; the output from one call 

is fed into another to expand data to any arbitrary size. The PRF can also be built using a 

different underlying mechanism if specified by the cipher suite.

As a reminder, the idea of key expansion is simply to take a secret and expand it into 

more bytes. In the case of TLS, we expand the pre-master secret, whatever size it is, into 

48 bytes. This is the master secret. The master secret is, itself, expanded into as many 

bytes as necessary for all of the session keys and IVs required by a cipher suite. Different 

suites require different parameters and different sizes, so the final output of the master 

suite, called the key_block, is of variable length.

There are at most six parameters:

•	 client write MAC key

•	 server write MAC key

•	 client write key

•	 server write key

•	 client write IV

•	 server write IV

It can be a little confusing to think about expanding the PMS to the master secret and 

the master secret to the key_block. To illustrate all of these moving parts, take a look at 

Figure 8-9.
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You will notice that there are no read keys listed. That’s because these are symmetric 

keys. In other words, the server’s write key is the client’s read key.

EXERCISE 8.10. IMPLEMENT THE PRF

Look in RFC 5246, available online, and look up the PRF. There is a description of how it works 

on pages 13 and14. Implement the PRF for HMAC-SHA256 and try out some key expansion. 

Generate a hundred bytes or so and divide some up for different keys.

Not all of these parameters are used for every cipher suite either. AEAD algorithms 

such as AES-GCM and AES-CCM do not need a MAC key. Even so, every cipher suite 

provides both confidentiality and authentication.10 This either involves encrypting and 

applying a MAC or using AEAD encryption.

Speaking of which, the AES-CBC modes in TLS 1.0 are vulnerable to a padding oracle 

attack because they apply MAC first, then encrypt. This is vulnerable to the same attack 

you performed as an exercise in Chapter 3. While TLS 1.2 should theoretically not be 

vulnerable to this, some implementations did not follow the specification correctly and 

10�There are a few rare algorithms that are used for authentication only.

Figure 8-9.  TLS key derivation. The pre-master secret is expanded to the master 
secret, which is expanded into the key_block. The final output is divided up as 
needed into individual keys and IVs.
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were found to be vulnerable. For this reason, CBC modes of operation have fallen out of 

favor in recent years.

It’s also good to understand where the MAC is applied. We had a brief discussion 

about this issue back in Chapter 5. You might remember that we talked about how much 

data would someone want to encrypt before they include a MAC. In a communications 

context, would you wait until the very end of a communications session to send a MAC 

of all data transmitted? That’s probably a bad idea. After all, what if the communications 

session lasted a month! It would be a terrible thing to reach the end of the month and 

find out that all of the data received was bogus. TLS chooses instead to put a MAC on 

every packet (after the ChangeCipherSpec).

TLS transmits all of the bulk data in a data structure called TLSCipherText. You can 

think of TLSCipherText as something like a TLS-encrypted data packet, each of which 

can hold around 16K of plaintext. The TLS standard expresses this data structure like a 

C-style struct:

 1   struct {

 2         ContentType type;

 3         ProtocolVersion version;

 4         uint16 length;

 5         select (SecurityParameters.cipher_type) {

 6             case stream: GenericStreamCipher;

 7             case block: GenericBlockCipher;

 8             case aead: GenericAEADCipher;

 9         } fragment;

10   } TLSCiphertext;

If you’re not familiar with C-style structs, this is really just a raw data structure. It’s 

kind of like a class in Python but without any methods. The structure has type, version, 

and length fields that are reasonably straightforward. The exact types of ContentType 

and ProtocolVersion are defined elsewhere in the document, but the intent is clear 

even without looking them up.

The select statement is perhaps a little more confusing. What this part of the 

struct is expressing is that there is a fragment field, but its type is one of three options: 

GenericStreamCipher, GenericBlockStream, and GenericAEADCipher. Each of these 

three options represents a different kind of cipher.
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Just to be clear, the struct shown here is conceptual. This struct shows how data is 

laid out and concatenated in binary form in a way that is easy to understand, as well as 

hierarchical (data structures within data structures). When sending data, TLS constructs 

a stream of binary data with these pieces in it, in this order.

The stream and block cipher types both include MACs as part of the cipher type. The 

subtypes are defined thus:

 1   stream-ciphered struct {

 2         opaque content[TLSCompressed.length];

 3         opaque MAC[SecurityParameters.mac_length];

 4   } GenericStreamCipher ;

 5

 6   struct {

 7         opaque IV[SecurityParameters.record_iv_length];

 8         block-ciphered struct {

 9             opaque content[TLSCompressed.length];

10             opaque MAC[SecurityParameters.mac_length];

11             uint8 padding[GenericBlockCipher.padding_length];

12             uint8 padding_length;

13         };

14   } GenericBlockCipher;

The content field for both of these types is the plaintext (potentially compressed). 

The stream-ciphered and block-ciphered keywords in front of the respective structs 

indicate that the binary data is encrypted. The MAC for both of these cipher types 

is within the enciphered structure. The documentation states that these MACs are 

computed over the content which includes the content type, version, length, and the 

plaintext itself. Obviously, this is a MAC-Then-Encrypt scheme.

AEAD algorithms work just a little differently. The conceptual struct defined in the 

protocol looks like this:

1   struct {

2        opaque nonce_explicit[SecurityParameters.record_iv_length];

3        aead-ciphered struct {

4            opaque content[TLSCompressed.length];

5        };

6   } GenericAEADCipher ;

Chapter 8  TLS Communications



336

There is no MAC for this because the MAC is included by default in the output.  

Recall from Chapter 7 that the “AD” in AEAD means “additional data” that is 

authenticated, but not encrypted. In the case of TLS AEAD ciphers, the AD includes the 

same data—to which the MAC is applied—in the stream and block ciphers, namely, 

the content type, version, and length. By inserting this AD directly into the decryption 

process, the algorithm will not decrypt the plaintext unless the contextual data is correct. 

This helps reduce errors and ensure correctness.

Importantly, because there is a MAC for each record, the AEAD encryption is 

finalized for each TLSCiphertext chunk. In Chapter 7, we discussed the idea of not 

wanting to wait for gigabytes of data before determining that the ciphertext has been 

modified. Accordingly, the AEAD algorithm is run with an individual key and IV (nonce) 

on each one of these TLSCiphertext structures (the same key and IV must not be reused 

after finalizing an encryption and producing a tag).

In the GenericAEADCipher struct defined for TLS, it includes a nonce_explicit field 

that carries a certain amount of IV/nonce data. For AEAD algorithms, it is common 

to have an implicit part of the IV and an explicit part of the IV. The implicit part is 

calculated. For TLS 1.2, the server (or client) IV derived in the key derivation operation 

is the implicit part. Both parties calculate this internally without sending it over the 

network. The explicit part included in the fragment makes up the rest of the IV/nonce, 

permitting the nonce to be unique for each packet.

EXERCISE 8.11. THE TLS 1.2 PIECES

Try stringing together something similar to TLS 1.2 from the other exercises in the chapter 

so far. Exchange a certificate over the network (you can leave it in PEM format if it’s easier). 

Once you get the server’s certificate, have the client either send back a PMS encrypted or use 

ECDHE to generate the PMS on both sides.

You can leave out all of TLS’s complicated stuff. You don’t need to negotiate cipher suites, 

create an underlying record layer, or do the hash over all messages at the end. Exchange a 

certificate, get a PMS, and derive some keys. For “packet” structure, you can use the same 

JSON dictionaries you did for the Kerberos exercises.
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�TLS 1.3
The TLS 1.3 protocol represents the biggest change to the handshake process in the 

history of TLS.

First, TLS 1.3 gets rid of almost all of the ciphers included in TLS 1.2. There are only 

five ciphers available and all of them are AEAD ciphers:

•	 TLS_AES_256_GCM_SHA384

•	 TLS_CHACHA20_POLY1305_SHA256

•	 TLS_AES_128_GCM_SHA256

•	 TLS_AES_128_CCM_8_SHA256

•	 TLS_AES_128_CCM_SHA256

Basically, TLS 1.3 supports AES-GCM, AES-CCM, and ChaCha20-Poly1305. You have 

seen all three of these algorithms in this book. By reducing the cipher suites available 

and requiring AEAD, TLS 1.3 makes it much harder for servers to accidentally or 

unknowingly secure their web site with weak encryption or authentication.

RSA encryption is also no longer available as a key transport mechanism.

An even bigger change for TLS 1.3 is that the handshake is now a single round 

trip. This significantly reduces the latency for setup. The new handshake is depicted in 

Figure 8-10.

Figure 8-10.  A simplified depiction of the TLS 1.3 handshake. The entire 
handshake is designed to work in a single round trip.
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Technically, there is a second message from the client in the form of a “finished” 

message, but as shown in the figure, it can be piggybacked with the client’s first 

application message. The server may have already transmitted application data 

piggybacked with its handshake message as well.

This speedup is especially important for stateless protocols like HTTP. Most HTTP 

messages are single-shot, one-time transmissions. Setting up a new TLS 1.2 tunnel for 

every single message really slows down a web site’s speed and responsiveness. Cutting 

that latency in half makes a big difference for web communications.

More importantly, weak ciphers and modes have been removed. By eliminating 

RSA key transport, for example, TLS 1.3 makes forward secrecy mandatory! Limiting 

algorithms to AEAD is also an important improvement.

There are other differences and details for both protocols not covered here, but this 

is sufficient for an introduction.

Warning: Extra Terrible Lacking Security (eTLS)

There is a “variation” of TLS 1.3 being promoted called eTLS. We put variation 
in quotes because it is not a standard developed by the IETF, the standards body 
behind TLS. It takes TLS 1.3 and removes some of its most important security 
features including forward secrecy.

The purported motivations are data loss prevention (DLP), performance, and other 
usability reasons. But we, ourselves, do not support cryptographic standards that 
intentionally weaken protocols and algorithms. We highly recommend that you 
should not use eTLS under any circumstances and applaud browsers that refuse to 
support it. Be aware that eTLS will be renamed Enterprise Transport Security (ETS) 
in a future release [9].

EXERCISE 8.12. WHAT’S BROKEN NOW?

Do some research to see if you can find new vulnerabilities that have been uncovered in 

TLS (any version) since the publication of this book. It’s important to stay up to date on 

vulnerabilities happening all around you and a mitigation path forward. It’s a terrible thing 

when bad guys find out you’re vulnerable before they do.
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�Certificate Verification and Trusting Trust
Eve is done reading about TLS. She has already collected a few possibilities for  

attacking TLS:

•	 Padding oracle attack against RSA encryption in some versions and 

implementations of TLS.

•	 Padding oracle attack against AES-CBC encryption in some versions 

and implementations of TLS.

•	 Attempting to coerce the client and server into using a weak  

cipher suite.

There are defenses to all of these, but they are areas that Eve can examine. Maybe 

she’ll get lucky and find a poorly configured server. We will explore these attacks, and 

a few others, shortly. But first, Eve decides to look at one other potentially massive 

vulnerability: certificate checking.

In the preceding section, we made only the briefest of references to certificate 

verification. When a client receives a server’s certificate, the client must ensure that the 

certificate is valid and trusted. The client certificate may rely on a chain of CAs, and the 

verification process is said to follow a certificate path. The path must terminate with a 

trusted root.

A high-level overview of this process is

•	 The client certificate’s subject name must match the expected host 

name from the URI (e.g., if we navigated to https://google.com, 

then google.com needs to be the subject of the TLS certificate).

–– The host name can match the subject’s common name, or

–– The host name can match one of the subject’s alternate names  

(V3 extension).

•	 None of the certificates in the path can be expired.

•	 None of the certificates in the path can be revoked.

•	 The issuer of a certificate must be the subject of the next certificate in 

the chain until the root is reached.
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•	 Certificate limitations (such as KeyUsage and BasicConstraints) are 

enforced.

•	 Policies are enforced related to maximum path length, name 

constraints, and so forth.

Eve realizes that this is a complicated process. There are a lot of checks to be made, 

and an error in any one of them might grant her access. Many TLS exploits have less to 

do with the protocol and more to do with programmer or user errors.

The entire security of TLS depends on certificates being issued to authorized parties. 

If Eve can get an unauthorized certificate, steal a private key, or convince Alice or Bob 

(or you) that she has an authorized certificate, the rest of the security breaks down. The 

most powerful certificate attack Eve could attempt is to convince Alice or Bob (or you) to 

install an evil root certificate! If that happens, TLS will accept any certificate Eve chooses 

to send!

�Certificate Revocation
We mentioned in Chapter 5 that certificates have a big weakness in the realm of 

revocation. Unfortunately, revoking a certificate is a major pain, and Eve is looking 

closely at how she can exploit this.

There are two classic approaches to revoking certificates. The first is a certificate 

revocation list (CRL). As the name suggests, this is just a static record of certificates that 

have been revoked. To keep the size of the CRL manageable, the certificate is identified by 

its serial number. CRLs are often CA-specific and are signed by the CA, so it is important 

that the CA keep track of issued serial numbers. It must ensure that no serial number is 

used more than once, and it must ensure that the serial number matches the expected 

owner information. CRLs tend to be published on a fixed schedule (e.g., once per day).

Certificate verification systems, such as one used in TLS, must keep a list of all 

revoked certificates so that any such detected certificates can be invalidated during the 

verification process.

The other classic approach to checking for revocation is to use the Online Certificate 

Status Protocol (OCSP). As with CRLs, this protocol is used to check the validity of a 

certificate by serial number lookup. Unlike CRLs, however, this protocol is used with an 

online server in real time and can be executed during the certificate validation process. 

Once again, the issuing CA is often the OCSP responder for certificates that they have 

issued.
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Obviously, OCSP will have more up-to-date information than static CRLs. OCSP, 

however, introduces additional latency into a TLS handshake setup. Worse, what should 

a client, like a browser, do if the OCSP responder doesn’t respond? Should it not connect? 

Should it tell the user that “I’m sorry, I can’t let you do online banking today because the 

OCSP server is down?”

Most browsers refuse to take this hard line. If the browser can’t get an OCSP 

response, it just moves forward and assumes that the certificate isn’t revoked. This 

makes Eve super excited. If she can get a revoked certificate (or a certificate that is 

immediately revoked once her theft is discovered), she can use it against Alice’s and 

Bob’s browsers. If the browsers try to reach out to OCSP servers, she will just execute a 

denial-of-service attack and ensure that the OCSP responses are never received. It’s an 

easy way around the security measure.

For these and many other reasons, CRLs and OCSPs are considered obsolete. Many 

browsers, such as Google Chrome, don’t even have an option to turn these features on.11

The truth is, revocation is still a hard problem and Eve is going to do everything she 

can to exploit this fact.

The good news is, new forms of certificate revocation are being explored right 

now including mandatory OCSP stapling. The concept for this is that a server includes 

an OCSP response along with their certificate. The OCSP response is only good for a 

relatively short period of time, so the server has to refresh regularly. The full details 

of this approach are beyond the scope of this book, but this might be a good topic of 

research for Alice and Bob.

�Untrustworthy Roots, Pinning, and Certificate Transparency
Unfortunately for us (and to Eve’s delight), as with all known approaches to establishing 

trust, TLS requires a trusted third party. And, as the Roman poet Juvenal would say, 

“Quis custodiet ipsos custodes?” (“Who guards the guards?” or “Who watches the 

watchmen?”)

What is problematic about CAs is that if a CA private key is compromised, the 

thief can generate certificates for themselves for any domain. This is not a theoretical 

problem. By way of example, there was a successful attack on the now defunct DigiNotar 

11�Google Chrome and Firefox actually create their own lists of “bad” certificates and send them 
out to the browsers as part of software updates. They’re essentially creating a proprietary CRL of 
sorts. This has actually been reasonably good in practice for certain kinds of certificates.
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CA in 2011 [8]. The attacker infiltrated their servers and managed to generate forged 

certificates including a “wild card” certificate for google.com, plus additional certificates 

for Yahoo, WordPress, Mozilla, and TOR. The DigiNotar CA had to be removed from the 

trusted CA list of browsers and mobile devices. Unsurprisingly, DigiNotar went out of 

business almost immediately after the attack was uncovered.

For a more recent, and in some ways more disturbing, example, Trustico, a TLS 

certificate reseller, asked DigiCert to revoke more than 20,000 certificates. That, by itself, 

was not problematic. The certificates were being revoked because of a loss of trust in the 

issuer. What was shocking was the admission that Trustico had the private keys for these 

certificates and had sent them to DigiCert by email [4]! This means that the reseller was 

generating the key pairs for their customers and holding on to the private key. Although 

reportedly kept in “cold storage,” in theory the reseller, an employee of the reseller, or a 

disgruntled former employee of the reseller could have taken a customer’s private key 

and assumed their digital identity.

This particular problem of a CA keeping customer private keys cannot be solved 

technologically. If a party gives up their private key, there are no mechanisms for 

keeping them secure. All cryptography rests on keeping secrets secret.

The issue of fraudulent and misused certificates is more serious and more common. 

Eve desperately wants to compromise a CA or a CA’s cert if she can (specifically one 

trusted by Alice or Bob). Stealing one cert only gives her one fraudulent identity. Stealing 

a CA cert gives her an unlimited number of fraudulent identities.

Fortunately, there are methods that Alice and Bob can use to protect themselves. 

Let’s look at two of them.

The first is “certificate pinning.” The term is used in a number of different ways, so 

make sure you are careful in your research. The basic concept is that a client like Alice 

or Bob has, one way or another, an expectation of what a certificate should be before 

receiving it. When the certificate is received, it is compared to the expected version—the 

“pinned” version—and a policy is invoked if there is a mismatch. It is assumed that a 

mismatch means, with high probability, that Eve is using a fraudulent certificate.

Although pinning is more general, some sources treat the more specific HTTP Public 

Key Pinning (HPKP) as a synonym. Perhaps this is because there was a time when some 

parties, including Google, were pushing for this technology as a general solution to 

identifying and rejecting compromised certificates. Since then, there has been a general 

consensus that this approach is insufficient and the new move is toward “certificate 

transparency” (CT).
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Pinning (as a general concept) continues to have its uses even so, especially in 

mobile applications. An app on a phone, for example, can have its author’s certificate 

baked into the app itself. This pinned version of the cert is always compared against the 

cert received in the TLS handshake. If it doesn’t match, something is wrong. Should the 

company need to change out their certificate or rotate a key, they can push a new pinned 

version in an app upgrade. Mobile applications aside, Google and Firefox do this kind of 

static pinning in their browsers.

This is effective. Google actually discovered the issue with the compromised 

DigiNotar-issued Google certificate because of static pinning.

EXERCISE 8.13. MONITOR CERTIFICATE ROTATION

Assuming you successfully intercepted TLS certificates in your HTTP proxy program, visit a site 

multiple times and see if you receive the same certificate every time. How often do you expect 

a server’s certificate to change?

HPKP, on the other hand, is a general purpose, dynamic pinning technology that 

relies on trust-on-first-use (TOFU) principles. Basically, the first time a client visits 

a web site, that web site can request that the client pin the certificate for a certain 

period of time. Should the certificate change within that period of time, it should treat 

the modified certificate as an imposter. The idea is interesting and reasonable, but it 

introduces a number of problems and can still be exploited by attackers in unhappy 

ways. Hence, the idea is already dying out.

Instead, the aforementioned certificate transparency (CT) is a second method of 

addressing certificate issues that is gaining momentum. The basic idea is in some ways 

similar to blockchain and distributed ledgers. Whenever a certificate is issued, it is also 

submitted to a public log. The public log is hosted by a third party, perhaps even the CA that 

issued the certificate, but it is verifiable so that the third party does not have to be trusted.

The purpose of the log is transparency: CAs are thus essentially audited for the 

certificates they produce. The goal is to have all issued certificates publicly available for 

inspection in a cryptographically verifiable way.12 Browsers will eventually be configured 

to not accept any certificate that is not found in such a log.

12�The name of one of the original projects behind this was called “Sunshine” and was started after 
the DigiNotar hack.
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What do we get from using CT logs? It’s deceptively simple but surprisingly helpful. 

Suppose that Eve attempts to create a fake certificate to an EA server. If EA browsers 

will not accept the cert unless it is published, Eve will have to submit it to one of the 

public logs. If that happens, EA can immediately detect that a forged certificate has been 

generated. While this does require that EA be monitoring the logs, it is easy to deploy 

an automated system that checks to see if any new certificates have been issued that 

shouldn’t have been. The EA knows (or should know) which certs it has legitimately 

issued and can flag ones that aren’t.

Even if Eve is so clever as to somehow interfere with East Antarctica’s auditing 

system and does manage to get away with some subterfuge, once the attack is detected, 

the public logs will enable a thorough investigation of the problem and an accurate 

assessment of the damage. It is terrifying that in the DigiNotar hack, investigators were 

unable to even fully identify all the certificates that had been generated! To this day, 

nobody knows exactly how many certificates the attacker created. That is one reason 

why DigiNotar had to completely shut down. It was impossible to identify all of the 

certificates that needed to be revoked.

CT is still somewhat new, so it may continue evolving over time. It does not, for 

example, provide a mechanism for verifying revocation, and there is already a proposal 

for “revocation transparency” to be added to it. This is definitely the technology to watch 

and to start using as soon as possible.

�Known Attacks Against TLS
Eve will always be trying to break certificates in some way or another. If she gets past that 

gate, everything else is broken. Of course, if Alice and Bob are using DHE or ECDHE with 

forward secrecy, everything else in the future is broken, but at least not the past.

Beyond certificates, there are some other contemporary attacks against TLS to be 

aware of. The following is a brief overview of well-known attacks against TLS and how to 

prevent them.

�POODLE
POODLE stands for “Padding Oracle On Downgraded Legacy Encryption.” TLS 1.0, as 

we’ve discussed, could be exploited when using CBC mode. At the time, the block cipher 

was DES, but the attack works on DES or AES so long as the mode of operation is CBC.
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TLS 1.1 and 1.2 were supposed to fix this problem by changing how the CBC 

encryption was padded. But the POODLE attack showed that, even for servers running 

1.1 and 1.2, they could be re-negotiated down to TLS 1.0 in order to be attacked.

Worse, it was later discovered that some TLS 1.1 and 1.2 implementations were 

using the same padding as TLS 1.0 (contrary to specifications). This kind of error caused 

no problem with normal communications because the two padding schemes are 

compatible for legitimate traffic. It is only when the data is attacked that it becomes clear 

that the padding is wrong. For the implementations that had the faulty implementation, 

they were vulnerable without the downgrade.

Defenses include

	 1.	 Disable TLS 1.0 (and 1.1 really).

	 2.	 Verify that TLS 1.2 is not vulnerable using an auditing tool.

�FREAK and Logjam
The Logjam attack, like POODLE, relies on forcing a downgrade to earlier versions of 

TLS. Actually, the goal is to downgrade the cipher suites.

In the 1990s, the US government had a policy of now allowing strong cryptography 

to be exported to foreign countries. The government’s policy treated these kinds of 

algorithms as weapons.13 Security software still bears the scars of this policy, and there 

were specific TLS cipher suites that were called EXPORT algorithms. These algorithms 

were, in fact, very weak.

In Logjam, an attacker intercepts the client’s message and removes all of the 

proposed cipher suites and replaces them with EXPORT variants of Diffie-Hellman 

(DH). The server picks weak parameters accordingly and sends them back to the client. 

The client doesn’t know that anything is wrong and just accepts the server’s poorly 

chosen configuration.

The resulting keys are easily broken.

Notice that the Finished message of the TLS protocol should detect this attack. The 

whole point of sending a message with a hash of all messages exchanged during the 

handshake was to reveal this kind of manipulation.

The problem is that the Finished message is sent encrypted under the new (weak) 

key. If Eve is attempting this attack, she can intercept the real message while still 

13�Maybe that’s why East and West Antarctica are so far behind the times?
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cracking the key. Once the key is cracked, she can create a false Finished message and 

encrypt it now using the cracked session key. Unless the time it takes to get the key 

cracked is longer than internal timeouts, Eve can succeed.

FREAK is a very similar attack to Logjam, but uses “export” RSA parameters instead.

Defenses for both Logjam and FREAK include

	 1.	 Disable weak cipher suites—especially “export” ciphers—on the 

sever.

	 2.	 Use clients that unconditionally refuse to accept weak parameters 

(e.g., DH/ECDH or RSA parameters that are weak).

�Sweet32
The Sweet32 attack is a little different from the ones we’ve seen before. It is designed 

specifically for block ciphers that have a block size of 64 bits. For most TLS 1.2 

installations, there is only one cipher in use that has such a block size: 3DES.

Although a full explanation of 3DES is beyond the scope of this book, it uses DES 

underneath. It is slow, but it at least isn’t as weak as DES. DES keys can be compromised 

in fairly reasonable time; 3DES cannot, yet.

Nevertheless, 3DES is using a 64-bit block size. The block size of an algorithm 

impacts how much data should be encrypted under a single key before rotation. The 

math is outside the scope of this book, but cryptography breaks down once more than 

2n/2 blocks have been encrypted. For 64-bit block sizes, the limit is about 32GB of data, 

which is easily generated on modern computers. Even worse, 2n/2 is an upper bound! 

Vulnerabilities creep in much sooner in practice.

Sadly, many TLS implementations do not enforce maximum data limits with a key. 

The Sweet32 attack exploits this to send enough data to force collisions and recover data.

Defenses include

•	 Disable 3DES-based cipher suites (and any other 64-bit ciphers if any 

happen to be present).
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�ROBOT
Recall that in Chapter 4 we spent a lot of time beating up on RSA. We showed that it 

was trivially defeated when used without padding. We also showed that certain forms 

of padding could be exploited as well. In particular, PKCS 1.5 is vulnerable to a padding 

oracle attack. This is the very padding that is used for RSA encryption in TLS, up to and 

including version 1.2.

Bleichenbacher discovered the attack against PKCS 1.5 in 1999. Obviously, that was 

long before TLS version 1.2. Why wasn’t it changed?

For compatibility reasons, the designers behind TLS decided to keep the same 

padding scheme and insert countermeasures. As we mentioned earlier in the chapter, 

the padding oracle attack requires an oracle! If the TLS protocol can keep from revealing 

the success or failure of padding, it should eliminate the attack.

Unfortunately, it isn’t that simple. ROBOT stands for “Return Of Bleichenbacher’s 

Oracle Threat.” What the researchers behind ROBOT found is that TLS countermeasures 

aren’t always successful. They also found new ways to extract oracle information from 

TLS, and they were able to demonstrate that their attack was practical. They could, for 

example, sign messages for Facebook without access to the appropriate private keys.

Defenses for ROBOT include

•	 Disable all cipher suites that use RSA encryption for the key exchange 

(any cipher that starts with TLS_RSA).

�CRIME, TIME, and BREACH
TLS version 1.2 provides for compression of data before encryption. This has been 

disabled in TLS 1.3. The problem with compression is that it leaks information to people 

like Eve. That information can be used to recover information within the ciphertext.

CRIME, which stands for “Compression Ratio Info-leak Made Easy,” was first 

demonstrated in 2012. The problem with compression is that it really only works well if 

data is repeated. So, even if you only have the ciphertext of some compressed plaintext, 

if you can insert or partially insert messages, a drop in the ciphertext size strongly 

suggests that there was some repeated data resulting in a better compression ratio. This 

information can be used to recover small numbers of bytes. Any loss of data, no matter 

how small, is unacceptable. But if the data being attacked is already small (e.g., a web 

cookie with authentication information), a small number of bytes lost can be catastrophic.
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CRIME was followed by TIME, which was slightly more effective. It also inspired 

BREACH, which is a different attack, but also uses compression to reveal information.

Defenses include

•	 Disable compression.

�Heartbleed
Heartbleed is a special mention in our list because it is not a vulnerability in TLS itself. 

Rather, it was a bug in OpenSSL’s implementation (yes, the library you’ve been using). 

Specifically, it was a bug in an extension to TLS that enables heartbeats for detecting 

dead connections. Although an extension, it is a commonly used one.

The problem with OpenSSL’s implementation was that they were not doing bounds 

checking on heartbeat request received from the other side. A typical heartbeat request 

included some data to echo back and the length of the data. If the length was longer than 

the data to echo, the incorrect implementation simply read contents out of memory. 

Although there were no guarantees on what would be included in those contents, it 

might include private keys and other secrets.

The point of this vulnerability is to indicate that not all attacks are on the protocols 

themselves but sometimes on the implementations. It is important to watch for both 

kinds of issues.

Defenses include

•	 Keep TLS libraries and applications up to date.

�Using OpenSSL with Python for TLS
We have done a lot of talking in this chapter, but not a lot of programming. This 

background was helpful to Eve, though, and hopefully helpful to you. Let’s get our hands 

dirty just a little bit to wrap up.

Many of Python’s built-in networking operations have TLS support (often under 

parameter names referencing SSL because that name has persisted even after 20 years 

of TLS). Eve is concerned about TLS keeping her from sniffing traffic. From what she’s 

learned in this chapter, however, she has seen that there are a lot of ways to do things 

wrong. Eve decides to walk through some examples to see what she might exploit.
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She begins by connecting to a TLS server like Alice and Bob might do. Execute the 

code from the beginning of this chapter but, for simplicity, this time without the HTTP 

proxy snooping in the middle.

The bad news for Eve (and the good news for you) is that Python is trying to make 

sure programmers don’t shoot themselves in the foot. This code, by default, tries to do 

a number of things reasonably correct where SSL is concerned. The default parameter 

loads the system’s trusted certificates, validates the host name, and verifies the 

certificate. These things might sound obvious, but some APIs require the programmer to 

implement all of these checks on their own increasing the risk of leaving something out 

or implementing it incorrectly.

Eve decides to see how well TLS checks are enforced. She starts up the openssl 

s_server again using the certificates she created. She tries to connect with Python and 

encounters the following error (slightly truncated):

>>> import http.client

>>> conn = http.client.HTTPSConnection("127.0.0.1", 8888)

>>> conn.request("GET", "/")

#SHELL# output_match: '''certificate verify failed'''

Traceback (most recent call last):

  File "<stdin >", line 1, in <module>

  File "/usr/lib/python3.6/http/client.py", line 1239, in request

    self._send_request(method, url, body, headers, encode_chunked)

...

  File "/usr/lib/python3.6/ssl.py", line 689, in do_handshake

    self._sslobj.do_handshake()

ssl.SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed 

(_ssl.c:841)

It rejected Eve’s certificate, as is to be expected. After all, it has no reason to trust it. 

The certificate sent by the server (s_server) is not rooted in a valid certificate authority. 

The Python code, by default, did the right thing. Eve curses under her breath.

Still, after searching through Python documentation, Eve discovers that Python will 

let you shoot yourself in the foot if you really, really want to.
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The HTTPSConnection class can take a parameter called context. It expects an 

instance of a class called SSLContext.14 Eve experiments by plugging in her own version, 

shown in the following code block and runs the test again.

>>> import http.client

>>> import ssl

>>> evil_context = ssl.SSLContext()

>>> �conn = http.client.HTTPSConnection("127.0.0.1", 8888, context=evil_

context)

>>> conn.request("GET", "/")

>>> r1 = conn.getresponse()

>>> r1.read()

#SHELL# output_ommitted

Eve is pleased! She successfully received a response from s_server. Why?

The SSLContext object contains TLS configuration parameters and controls (at least 

partially) the processing of the TLS handshake including certificate checking. An empty 

SSLContext does no checking on certificates.

In fact, the Python documentation recommends not creating an SSLContext in this 

way. Instead, programmers should typically use SSLContext. create_default_context(). 

This method creates an SSLContext that performs the default checks Eve encountered 

earlier that resulted in a rejected certificate.

But using this manual method, Eve can have greater control over how  

certificate verification works. Rolling up her sleeves, Eve configures her evil_context 

to trust her domain certificate that is the issuer of her localhost certificate. She uses the 

load_verify_locations method to specify her domain certificate as a trusted CA file.

>>> import http.client

>>> import ssl

>>> evil_context = ssl.SSLContext()

>>> evil_context.verify_mode = ssl.CERT_REQUIRED

>>> evil_context.load_verify_locations("domain_cert.crt")

14�The following examples all use HTTPSConnection class, but the SSLContext objects are used 
throughout Python in various network operations, so this information is more general than the 
examples we’re using.
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>>> �conn = http.client.HTTPSConnection("127.0.0.1", 8888, context=evil_

context)

>>> conn.request("GET", "/")

>>> r1 = conn.getresponse()

>>> r1.read()

#SHELL# output_ommitted

To verify that the trust system is working, Eve re-runs this test with the verify_mode 

= ssl.CERT_REQUIRED left in but the load_verify_locations left out. It results in the 

failed certificate check she saw earlier. Only by telling her context where her roots of trust 

are was she able to get her certificates validated.

There’s yet another check that is currently disabled: host name checking. Recall 

that when validating a certificate, the certificate should have the same subject name 

(either in the distinguished name’s Common Name or in the subject’s Alternative 

Name) as the host URI. Eve created this localhost certificate with the common name of 

127.0.0.1 on purpose so she could run host name matching tests. When she browses to 

https://127.0.0.1, she wants the certificate’s subject name to match.

To see if host name checking is working, Eve first stops the openssl s_server and 

restarts it with new parameters. This time, she uses her domain certificate as the server’s 

certificate (instead of as the issuer). Because she is using a self-signed cert, she won’t 

need the command-line parameters related to chains. Her command looks something 

like this:

openssl s_server -accept 8888 -www -cert domain_cert.crt -key domain_key.pem

She re-runs the test code and it still works. Even though the URI is 

https://127.0.0.1 and the subject common name is wacko.westantarctica.

southpole.gov, the data was permitted. Without host checking enabled, this mismatch 

doesn’t result in an error.

Eve now repeats her test after turning on host checking.

>>> import http.client

>>> import ssl

>>> evil_context = ssl.SSLContext()

>>> evil_context.verify_mode = ssl.CERT_REQUIRED

>>> evil_context.load_verify_locations("domain_cert.crt")

>>> evil_context.check_hostname = True
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>>> �conn = http.client.HTTPSConnection("127.0.0.1", 8888, context = evil_

context)

>>> conn.request("GET", "/")

#SHELL# output_match: '''doesn't match'''

Traceback (most recent call last):

  File "<stdin>", line 1, in <module>

  File "/usr/lib/python3.6/http/client.py", line 1239, in request

    self._send_request(method, url, body, headers, encode_chunked)

...

  File "/usr/lib/python3.6/ssl.py", line 331, in match_hostname

    % (hostname, dnsnames[0]))

ssl.CertificateError: hostname '127.0.0.1' doesn't match'wacko.

westantarctica.southpole.gov'

As you can see in our truncated exception trace, TLS complained that the host name 

(127.0.0.1) didn’t match the subject name (wacko.westantarctica.southpole.gov).

In general, programmers that don’t want Eve getting fake certificates past them 

shouldn’t be messing around with these parameters. The default context with its default 

checking is a good start.

EXERCISE 8.14. SOCIAL ENGINEERING

This is a thought exercise; there is no programming involved. How might Eve try to get others 

using less secure software? What could she do to convince them to use a poorly configured 

SSL context?

The additional functionality does have important uses, though. What if Alice and 

Bob would like to do static certificate pinning. Maybe Bob is running a command and 

control server, and Eve is in the field with a Python program that needs to securely 

communicate with it. How can Alice pin the certificate to Bob’s server? There isn’t an API 

for the SSLContext to do this. It can only specify trusted CA certificates. It has no method 

for specifying a trusted server certificate.
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There are fortunately other Python APIs for getting the peer’s certificate after 

connecting. For example:

>>> import http.client

>>> import hashlib

>>> conn = http.client.HTTPSConnection("google.com", 443)

>>> conn.request("GET", "/")

>>> conn.sock.getpeercert(binary_form=True)

#SHELL# output_match: ''''''

b'0\x82\x02\xdb0\x82\x01\xc3\xa0\...

>>> peer_cert = conn.sock.getpeercert(binary_form=True)

>>> hashlib.sha256(peer_cert).hexdigest ()

#SHELL# output_match: ''''''

'bf52e8d42812c7a09586aa19219b0c15a92de6664aad380ed4c66dea7c6a5b3a'

The hash can be compared against a pinned value to ensure that it’s the expected 

certificate. Certificate pinning, especially static certificate pinning, might be a good idea 

in certain contexts.

Unfortunately for Alice and Bob, there isn’t yet an API for using CT logs. The Python 

cryptography library is starting to add support, but it appears right now to be limited to 

extensions in X.509 certificates. There is no API for submitting a serial number to get a 

CT response nor a mechanism for submitting a certificate to a log for insertion.

Again, keep your eyes on this (Eve certainly will). There will probably be new 

additions to Python libraries soon.

If Eve had her way, she would love to see Alice and Bob writing their own  

certificate-checking algorithms. She wishes they would do something like that instead of 

using Python’s built-in checker.

Alice and Bob could, for example, get the entire chain of certificates and try to 

manually verify each one. The cryptography module does have certificate “validation” 

using the issuer’s public key, shown as follows.

 1   �from cryptography.hazmat.primitives.serialization import load_pem_

public_key

 2   from cryptography.hazmat.primitives.asymmetric import padding

 3   from cryptography.hazmat.backends import default_backend

 4   from cryptography import x509

 5
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 6   import sys

 7

 8   issuer_public_key_file, cert_to_check = sys.argv[1:3]

 9   with open(issuer_public_key_file,"rb") as key_reader:

10       issuer_public_key = key_reader.read()

11

12   issuer_public_key = load_pem_public_key(

13       issuer_public_key,

14       backend=default_backend())

15

16   with open (cert_to_check,"rb") as cert_reader:

17       pem_data_to_check = cert_reader.read()

18   cert_to_check = x509.load_pem_x509_certificate(

19       pem_data_to_check,

20       default_backend())

21   issuer_public_key.verify(

22       cert_to_check.signature,

23       cert_to_check.tbs_certificate_bytes,

24       padding.PKCS1v15(),

25       cert_to_check.signature_hash_algorithm)

26   print("Signature ok! (Exception on failure!)")

Note that the tbs_certificate_bytes are the DER-encoded (not PEM-encoded) 

bytes that are hashed for signing the certificate. So, in the sample code, the issuer’s 

public key is used to check the signature in the certificate over those bytes. To repeat, the 

signature is not over the PEM data.

The reason Eve wants Alice and Bob to do this is because this is just a small part of 

real certificate validation!15 In the preceding code, there are no checks for valid data, no 

checks against revocation lists, and not even checks that the client certificate’s issuer 

matches the subject line for the issuing certificate. There are a lot of ways to get this 

wrong, and Eve is far more likely to find a vulnerability if Alice and Bob use their own 

methods.

15�Hence, the reason we put “validation” in quotes.
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If you are smarter than Alice and Bob, leave certificate verification up to library 

operations. If you really feel that you want to do some specialized verification, do it in 

addition to, not in place of, these widely deployed and widely tested library functions.

Finally, beyond correct certificate checking, there is one other set of parameters that 

Eve decides to investigate: the supported TLS versions and supported cipher suites.

With respect to versions, even though TLS 1.0 and 1.1 are deprecated, most TLS 

implementations continue to support them for backward compatibility and legacy 

operations. This is almost always the wrong thing to do. Servers and clients should be 

disabling TLS 1.0 and 1.1 by default and only re-enabling them if this causes some kind 

of real, concrete, unresolvable problem. Eve hopes to find that she can use attacks like 

POODLE, Logjam, and FREAK against servers that still support these legacy versions.

Happily for Eve, she finds out that these vulnerable versions are still very much 

present. SSLv3 and SSLv2 are disabled, but this isn’t enough. TLS 1.0 absolutely must be 

disabled and TLS 1.1 should be as well.

Python does permit turning them off, however, and perhaps we should show 

Alice and Bob how to do so. The following code turns off TLS 1.0 and 1.1 for a specific 

SSLContext object.16

>>> import ssl

>>> good_context = ssl.create_default_context()

>>> good_context.options |= ssl.OP_NO_TLSv1

>>> good_context.options |= ssl.OP_NO_TLSv1_1

After checking Python to see which versions of TLS are enabled, Eve now turns 

her attention to default cipher suites. She runs the following code to see all the ciphers 

installed on her test system.

>>> default_ctx = ssl.create_default_context()

>>> for cipher in default_ctx.get_ciphers():

...   print(cipher["name"])

...

ECDHE-ECDSA-AES256-GCM-SHA384

ECDHE-RSA-AES256-GCM-SHA384

16�Version 3.7 introduced a new API for specifying a minimum version and a maximum version. 
However, not only was this book written for Python 3.6 but the new API also requires a certain 
version of the underlying OpenSSL. We have decided to stick with the 3.6 API for the time being.
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ECDHE-ECDSA-AES128-GCM-SHA256

ECDHE-RSA-AES128-GCM-SHA256

ECDHE-ECDSA-CHACHA20-POLY1305

ECDHE-RSA-CHACHA20-POLY1305

DHE-DSS-AES256-GCM-SHA384

DHE-RSA-AES256-GCM-SHA384

DHE-DSS-AES128-GCM-SHA256

DHE-RSA-AES128-GCM-SHA256

DHE-RSA-CHACHA20-POLY1305

ECDHE-ECDSA-AES256-CCM8

ECDHE-ECDSA-AES256-CCM

ECDHE-ECDSA-AES256-SHA384

ECDHE-RSA-AES256-SHA384

ECDHE-ECDSA-AES256-SHA

ECDHE-RSA-AES256-SHA

DHE-RSA-AES256-CCM8

DHE-RSA-AES256-CCM

DHE-RSA-AES256-SHA256

DHE-DSS-AES256-SHA256

DHE-RSA-AES256-SHA

DHE-DSS-AES256-SHA

ECDHE-ECDSA-AES128-CCM8

ECDHE-ECDSA-AES128-CCM

ECDHE-ECDSA-AES128-SHA256

ECDHE-RSA-AES128-SHA256

ECDHE-ECDSA-AES128-SHA

ECDHE-RSA-AES128-SHA

DHE-RSA-AES128-CCM8

DHE-RSA-AES128-CCM

DHE-RSA-AES128-SHA256

DHE-DSS-AES128-SHA256

DHE-RSA-AES128-SHA

DHE-DSS-AES128-SHA

ECDHE-ECDSA-CAMELLIA256-SHA384

ECDHE-RSA-CAMELLIA256-SHA384
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ECDHE-ECDSA-CAMELLIA128-SHA256

ECDHE-RSA-CAMELLIA128-SHA256

DHE-RSA-CAMELLIA256-SHA256

DHE-DSS-CAMELLIA256-SHA256

DHE-RSA-CAMELLIA128-SHA256

DHE-DSS-CAMELLIA128-SHA256

DHE-RSA-CAMELLIA256-SHA

DHE-DSS-CAMELLIA256-SHA

DHE-RSA-CAMELLIA128-SHA

DHE-DSS-CAMELLIA128-SHA

AES256-GCM-SHA384

AES128-GCM-SHA256

AES256-CCM8

AES256-CCM

AES128-CCM8

AES128-CCM

AES256-SHA256

AES128-SHA256

AES256-SHA

AES128-SHA

CAMELLIA256-SHA256

CAMELLIA128-SHA256

CAMELLIA256–SHA

CAMELLIA128-SHA

The default list on Eve’s test computer is very bad for her (good for us!). No RSA 

encryption for key exchange, no AES-CBC mode ciphers, and no 3DES. It doesn’t look 

like Alice and Bob need to make any changes. According to the Python documentation, 

most of the weak ciphers have already been disabled. Still, it doesn’t hurt to check.

If Alice and Bob do have any ciphers that use RSA encryption for key exchange  

(e.g., TLS_RSA_WITH_AES_128_CBC_SHA), they should remove them from the cipher suites 

by curating the list returned by get_ciphers and then update the SSLContext using the 

set_ciphers method.
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Eve sighs and then leaves the room. She’s on her way back to East Antarctica to try 

some new approaches to stealing information. She might try to fake a certificate, or she 

might try to find a vulnerable TLS implementation. It might be a challenge; it might take 

some time, but Eve is patient, crafty, and persistent. And she’s always listening.

EXERCISE 8.15. LEARN TO POKE AROUND

One of the best things you can do with your newly acquired (or improved) cryptography 

knowledge is learn to poke around. Most of the example code for this chapter was written as 

if executed in a Python shell on purpose. Get comfortable using the shell to poke a server or 

test a connection. There are many tools for testing publicly accessible TLS servers, but what 

about internal ones? If you find that your company is using poor security for internal TLS 

connections, let IT know. It’s important to be aware of what’s going on around you.

With that in mind, write a diagnostic program in Python that connects to a given server 

and looks for weak algorithms or configuration data. For example, you have seen that the 

SSLSocket class has the getpeercert() method to get the remote certificate. Write a 

program that, upon connecting to a server, obtains the certificate and reports if the signature 

on the certificate uses a SHA-1 hash (very broken and unlikely) or still supports RSA 

encryption (more probable).

You can also use the SSLSocket object to check the current cipher using cipher(). Which 

cipher suite is the server picking out of all the ones proposed? Is that a good choice?

Building on this cipher check, change your Python SSLContext to only support weak 

ciphers. That is, create a context that disables strong ciphers and re-enables weak ones. You 

can set a context’s ciphers using the SSLContext.set_ciphers() function. The list of 

available cipher suites, for each version of TLS, can be found at www.openssl.org/docs/

manmaster/man1/ciphers.html. The goal of this test is to see if a server is still supporting 

older, deprecated ciphers.

Should your analysis tool uncover any weaknesses, report them to the appropriate IT or 

administrative staff with recommendations for remediation.
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�The End of the Beginning
Well, reader, this is the end of this book. Hopefully it’s a beginning for you. There is a 

lot to learn about cryptography and, to repeat for the thousandth time, this is just an 

introduction. You have learned much, but you are not a (crypto) Jedi yet!

Eve, representative of the EVEr listening EaVEsdropper, is not to be underestimated. 

Eve, along with Alice and Bob, was sometimes made out to be a little behind the 

times throughout most of this book. The truth is that Eve is always on the forefront 

of technology. There are still a lot of ways TLS servers get successfully attacked on a 

regular basis. Keep an eye out for news and updates about TLS. Unfortunately, new 

vulnerabilities and weaknesses are discovered more often than we’d like, and there are 

many who love to see and exploit them.

The good news is that, with strong cipher suites in use and legacy versions of TLS 

disabled, you already have a lot of good security in place. This chapter is an introduction 

to TLS security in Python programming. If you can understand the concepts in this 

chapter, it will be a good foundation to build on, but keep learning! Eve’s most effective 

weapon against us is ignorance.

Python aside, if you’re running a TLS-enabled web site, take time to occasionally 

have your site reviewed by a TLS audit program. For example, Qualys SSL Labs  

currently runs a free project to report on a site’s TLS hygiene. You can try it out free  

here: www.ssllabs.com/ssltest/index.html.

Also, check in on the cryptodoneright.org web site as well. This project aims to 

keep crypto users as informed and well advised as possible.

In short, let’s make Eve’s life as difficult as possible. There will always be risks, but 

don’t give her any easy wins. Make any victories painful and short-lived. After all, she is 

always keeping us on our toes, so we should return the favor!

EXERCISE 8.16. THREE CHEERS!

This is the last exercise in the book! Give yourself a round of applause for reaching this point.

And as you close the cover, please feel free to send the authors feedback, good or bad. And 

especially if you let us know if we’ve missed anything!
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