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Preface

PQCrypto 2020, the 11th International Conference on Post-Quantum Cryptography,
was held in Paris, France, during April 15–17, 2020. The aim of the PQCrypto con-
ference series is to serve as a forum for researchers to present results and exchange
ideas on cryptography in an era with large-scale quantum computers. Following the
same model as its predecessors, PQCrypto 2020 adopted a two-stage submission
process in which authors registered their paper one week before the final submission
deadline. The conference received 91 submissions with authors from 25 countries.
Each paper (that had not been withdrawn by the authors) was reviewed in private by at
least three Program Committee members. The private review phase was followed by an
intensive discussion phase, conducted online. At the end of this process, the Program
Committee selected 29 papers for inclusion in the technical program and publication in
these proceedings. The accepted papers cover a broad spectrum of research within the
conference’s scope, including code-, hash-, isogeny-, and lattice-based cryptography,
multivariate cryptography, and quantum cryptanalysis. Along with the 29 contributed
technical presentations, the program featured outstanding invited talks and a presen-
tation on NIST’s post-quantum cryptography standardization. Organizing and running
this year’s edition of the PQCrypto conference series was a team effort and we are
indebted to everyone who helped make PQCrypto 2020 a success. In particular, we
would like thank all members of the Program Committee and the external reviewers
who were vital in compiling the technical program. Evaluating and discussing the
submissions was a labor-intensive task and we truly appreciate the work that went into
this. In the name of the community, let us say that we are all indebted to Antoine Joux
from Sorbonne University and Nicolas Sendrier from Inria for organizing this meeting.

February 2020 Jintai Ding
Jean-Pierre Tillich



Organization

General Chairs

Antoine Joux Sorbonne University, France
Nicolas Sendrier Inria, France

Program Chairs

Jintai Ding University of Cincinnati, USA
Jean-Pierre Tillich Inria, France

Steering Committee

Daniel J. Bernstein University Illinois at Chicago, USA, and Ruhr
University Bochum, Germany

Johannes Buchmann Technische Universität Darmstadt, Germany
Claude Crépeau McGill University, Canada
Jintai Ding University of Cincinnati, USA
Philippe Gaborit University of Limoges, France
Tanja Lange Technische Universiteit Eindhoven, The Netherlands
Daniele Micciancio University of California at San Diego, USA
Michele Mosca Waterloo University and Perimeter Institute, Canada
Nicolas Sendrier Inria, France
Tsuyoshi Takagi University of Tokyo, Japan
Bo-Yin Yang Academia Sinica, Taiwan

Program Committee

Reza Azarderakhsh Florida Atlantic University and PQSecure
Technologies, USA

Jean-Philippe Aumasson Teserakt AG, Switzerland
Yoshinori Aono National Institute of Communication Technology,

Japan
Magali Bardet University of Rouen, France
Daniel J. Bernstein University Illinois at Chicago, USA, and Ruhr

University Bochum, Germany
Olivier Blazy University of Limoges, France
André Chailloux Inria, France
Chen-Mou Cheng Osaka University and Kanazawa University, Japan
Jung Hee Cheon Seoul National University, South Korea
Tung Chou Osaka University, Japan, and Academia Sinica, Taiwan
Dung Duong University of Wollongong, Australia



Scott Fluhrer Cisco Systems, USA
Philippe Gaborit University of Limoges, France
Tommaso Gagliardoni Kudelski Security, Switzerland
Steven Galbraith The University of Auckland, New Zealand
Xiao-Shan Gao Chinese Academy of Sciences, China
Tim Güneysu Ruhr University Bochum and DFKI, Germany
David Jao University of Waterloo and evolutionQ, Canada
Jiwu Jing Chinese Academy of Sciences, China
Thomas Johansson Lund University, Sweden
Antoine Joux Sorbonne University, France
Kwangjo Kim KAIST, South Korea
Elena Kirshanova I. Kant Baltic Federal University, Russia
Yi-Kai Liu NIST and University of Maryland, USA
Prabhat Mishra University of Florida, USA
Michele Mosca Waterloo University and Perimeter Institute, Canada
María Naya-Plasencia Inria, France
Khoa Nguyen Nanyang Technological University, Singapore
Ruben Niederhagen Fraunhofer SIT, Germany
Ray Perlner NIST, USA
Christophe Petit University of Birmingham, UK
Rachel Player University of London, UK
Thomas Pöppelmann Infineon Technologies, Germany
Thomas Prest PQShield, UK
Nicolas Sendrier Inria, France
Junji Shikata Yokohama National University, Japan
Daniel Smith-Tone NIST and University of Louisville, USA
Rainer Steinwandt Florida Atlantic University, USA
Damien Stehlé ENS de Lyon, France
Tsuyoshi Takagi University of Tokyo, Japan
Routo Terada University of São Paulo, Brasil
Serge Vaudenay EPFL, Switzerland
Keita Xagawa NTT Secure Platform Laboratories, Japan
Bo-Yin Yang Academia Sinica, Taiwan
Zhenfeng Zhang Institute of Software, Chinese Academy of Sciences,

China

Additional Reviewers

Nicolas Aragon
Florian Bache
Subhadeep Banik
Khashayar Barooti
Loic Bidoux
Nina Bindel
Xavier Bonnetain

Wouter Castryck
Ming-Shing Chen
Ding-Yuan Cheng
Ilaria Chillotti
Wonhee Cho
Gwangbae Choi
Alain Couvreur

Benjamin Curtis
Bernardo David
Luca De Feo
Rafael Pablo Del Pino
Amit Deo
Hülya Evkan
Xiutao Feng

viii Organization



Tim Fritzmann
Leon Groot Bruinderink
Qian Guo
Yasufumi Hashimoto
Minki Hhan
Seungwan Hong
James Howe
Zhenyu Huang
Loïs Huguenin-Dumittan
Aaron Hutchinson
Yasuhiko Ikematsu
Mitsugu Iwamoto
Saqib A. Kakvi
Elif Bilge Kavun
Duhyeong Kim
Brian Koziel
Peter Kutas
Norman Lahr

Georg Land
Keewoo Lee
Seungbeom Lee
Matthieu Lequesne
Sarah McCarthy
Romy Minko
Erik Mårtensson
Alexander Nilsson
Richard Petri
Ben Pring
Renato Renner
Jan Richter-Brockmann
Yolan Romailler
Miruna Rosca
Rei Safavi-Naini
Amin Sakzad
John Schanck
André Schrottenloher

Hwajeong Seo
Arnaud Sipasseuth
Yongha Son
Junichi Tomida
David Urbanik
Valentin Vasseur
Javier Verbel
Reynaldo Villena
Fernando Virdia
Daniel Volya
Yacheng Wang
Yuntao Wang
Yohei Watanabe
Julian Wälde
Haiyang Xue
Masaya Yasuda
Greg Zaverucha

Organization and Sponsors

The conference was organized by Inria and Sorbonne University, with the support
of the ERC Almacrypt1.
The organizers thank the following companies and institutions for their generous
financial support:

Amazon Web Services, USA
Cisco Systems, USA
Infineon Technologies, Germany
PQShield, UK
Worldline, France

1 European Union’s H2020 Program under grant agreement number ERC-669891.

Organization ix



Contents

Code-Based Cryptography

Randomized Decoding of Gabidulin Codes Beyond the Unique
Decoding Radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Julian Renner, Thomas Jerkovits, Hannes Bartz, Sven Puchinger,
Pierre Loidreau, and Antonia Wachter-Zeh

About Low DFR for QC-MDPC Decoding. . . . . . . . . . . . . . . . . . . . . . . . . 20
Nicolas Sendrier and Valentin Vasseur

QC-MDPC Decoders with Several Shades of Gray . . . . . . . . . . . . . . . . . . . 35
Nir Drucker, Shay Gueron, and Dusan Kostic

Implementation

Isochronous Gaussian Sampling: From Inception to Implementation:
With Applications to the Falcon Signature Scheme. . . . . . . . . . . . . . . . . . . 53

James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi

Benchmarking Post-quantum Cryptography in TLS . . . . . . . . . . . . . . . . . . . 72
Christian Paquin, Douglas Stebila, and Goutam Tamvada

Efficient Key Generation for Rainbow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Albrecht Petzoldt

Isogeny-Based Cryptography

CSIDH on the Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Wouter Castryck and Thomas Decru

LegRoast: Efficient Post-quantum Signatures from the Legendre PRF . . . . . . 130
Ward Beullens and Cyprien Delpech de Saint Guilhem

The Supersingular Isogeny Problem in Genus 2 and Beyond . . . . . . . . . . . . 151
Craig Costello and Benjamin Smith

Sashimi: Cutting up CSI-FiSh Secret Keys to Produce an Actively Secure
Distributed Signing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Daniele Cozzo and Nigel P. Smart



Lattice-Based Cryptography

Defeating NewHope with a Single Trace . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Dorian Amiet, Andreas Curiger, Lukas Leuenberger, and Paul Zbinden

Decryption Failure Is More Likely After Success . . . . . . . . . . . . . . . . . . . . 206
Nina Bindel and John M. Schanck

Compact Privacy Protocols from Post-quantum and Timed
Classical Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Jonathan Bootle, Anja Lehmann, Vadim Lyubashevsky,
and Gregor Seiler

Efficient Post-quantum SNARKs for RSIS and RLWE and Their
Applications to Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner

Short Zero-Knowledge Proof of Knowledge for Lattice-Based Commitment . . . 268
Yang Tao, Xi Wang, and Rui Zhang

COSAC: COmpact and Scalable Arbitrary-Centered Discrete Gaussian
Sampling over Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad

Multivariate Cryptography

Combinatorial Rank Attacks Against the Rectangular Simple Matrix
Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Daniel Apon, Dustin Moody, Ray Perlner, Daniel Smith-Tone,
and Javier Verbel

A Structural Attack on Block-Anti-Circulant UOV at SAC 2019. . . . . . . . . . 323
Hiroki Furue, Koha Kinjo, Yasuhiko Ikematsu, Yacheng Wang,
and Tsuyoshi Takagi

Generalization of Isomorphism of Polynomials with Two Secrets
and Its Application to Public Key Encryption . . . . . . . . . . . . . . . . . . . . . . . 340

Bagus Santoso

Practical Cryptanalysis of k-ary C� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Daniel Smith-Tone

A Rank Attack Against Extension Field Cancellation. . . . . . . . . . . . . . . . . . 381
Daniel Smith-Tone and Javier Verbel

Multivariate Encryption Schemes Based on Polynomial Equations
over Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Takanori Yasuda, Yacheng Wang, and Tsuyoshi Takagi

xii Contents



Quantum Algorithms

Improved Quantum Circuits for Elliptic Curve Discrete Logarithms. . . . . . . . 425
Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler,
and Mathias Soeken

The Power of Few Qubits and Collisions – Subset Sum Below
Grover’s Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Alexander Helm and Alexander May

On Quantum Distinguishers for Type-3 Generalized Feistel Network Based
on Separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Samir Hodžić, Lars Knudsen Ramkilde, and Andreas Brasen Kidmose

Security Proofs

Many a Mickle Makes a Muckle: A Framework for Provably
Quantum-Secure Hybrid Key Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Benjamin Dowling, Torben Brandt Hansen, and Kenneth G. Paterson

A Note on the Instantiability of the Quantum Random Oracle . . . . . . . . . . . 503
Edward Eaton and Fang Song

Collapseability of Tree Hashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Aldo Gunsing and Bart Mennink

Encryption Schemes Using Random Oracles: From Classical
to Post-Quantum Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Juliane Krämer and Patrick Struck

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

Contents xiii



Code-Based Cryptography



Randomized Decoding of Gabidulin
Codes Beyond the Unique

Decoding Radius

Julian Renner1(B), Thomas Jerkovits2, Hannes Bartz2, Sven Puchinger3,
Pierre Loidreau4, and Antonia Wachter-Zeh1

1 Technical University of Munich (TUM), Munich, Germany
{julian.renner,antonia.wachter-zeh}@tum.de

2 German Aerospace Center (DLR), Oberpfaffenhofen-Wessling, Germany
{thomas.jerkovits,hannes.bartz}@dlr.de

3 Technical University of Denmark (DTU), Lyngby, Denmark
svepu@dtu.dk

4 Univ Rennes, DGA MI, CNRS, IRMAR - UMR 6625, 35000 Rennes, France
pierre.loidreau@univ-rennes1.fr

Abstract. We address the problem of decoding Gabidulin codes beyond
their unique error-correction radius. The complexity of this problem is
of importance to assess the security of some rank-metric code-based
cryptosystems. We propose an approach that introduces row or column
erasures to decrease the rank of the error in order to use any proper
polynomial-time Gabidulin code error-erasure decoding algorithm. The
expected work factor of this new randomized decoding approach is a

polynomial term times qm(n−k)−w(n+m)+w2+min{2ξ( n+k
2 −ξ),wk}, where n

is the code length, q the size of the base field, m the extension degree of
the field, k the code dimension, w the number of errors, and ξ := w− n−k

2
.

It improves upon generic rank-metric decoders by an exponential factor.

Keywords: Gabidulin codes · Decoding · Rank metric · Code-based
cryptography

1 Introduction

Code-based cryptography relies on the hardness of certain coding-theoretic prob-
lems, e.g., decoding a random code up to its unique decoding radius or, as con-
sidered in this paper, decoding more errors than the unique decoding radius and

The work of J. Renner and A. Wachter-Zeh was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 801434).
Sven Puchinger has received funding from the European Union’s Horizon 2020 research
and innovation program under the Marie Sklodowska-Curie grant agreement no. 713683
(COFUNDfellowsDTU).

c© Springer Nature Switzerland AG 2020
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4 J. Renner et al.

beyond the capabilities of all known polynomial-time decoding algorithms. Rank-
metric schemes that rely on the latter problem have the promising potential to
achieve key sizes that are linear in the security parameter and are for instance
the (modified) Faure–Loidreau system [9,33] or the RAMESSES system [21].

In the Hamming metric as well as in the rank metric, it is well-known that the
problem of decoding beyond the unique decoding radius, in particular Maximum-
Likelihood (ML) decoding, is a difficult problem concerning the complexity. In
Hamming metric, many works have analyzed how hard it actually is, cf. [6,27],
and it was finally shown for general linear codes that ML decoding is NP-hard
by Vardy in [29]. For the rank metric, some complexity results were obtained
more recently in [15], emphasizing the difficulty of ML decoding. This potential
hardness was also corroborated by the existing practical complexities of the
generic rank metric decoding algorithms [14].

For specific well-known families of codes such as Reed–Solomon (RS) codes
in the Hamming metric, (ML or list) decoding can be done efficiently up to a
certain radius. Given a received word, an ML decoder returns the (or one if
there is more than one) closest codeword to the received word whereas a list
decoder returns all codewords up to a fixed radius. The existence of an efficient
list decoder up to a certain radius therefore implies an efficient ML decoder up to
the same radius. Vice versa, this is however not necessarily true, but we cannot
apply a list decoder to solve the ML decoding problem efficiently.

In particular, for an RS code of length n and dimension k, the following is
known, depending on the Hamming weight w of the error:

– If w ≤ ⌊
n−k
2

⌋
, the (ML and list) decoding result is unique and can be found

in quasi-linear time,
– If w < n − √

n(k − 1), i.e., the weight of the error is less than the Johnson
bound, list decoding and therefore also ML decoding can be done efficiently
by Guruswami–Sudan’s list decoding algorithm [16],

– The renewed interest in RS codes after the design of the Guruswami–Sudan
list decoder [16] motivated new studies of the theoretical complexity of ML
and list decoding of RS codes. In [17] it was shown that ML decoding of RS
codes is indeed NP-hard when w ≥ d − 2, even with some pre-processing.

– Between the Johnson radius and d − 2, it has been shown in [5] that the
number of codewords in radius w around the received word might become a
number that grows super-polynomially in n which makes list decoding of RS
codes a hard problem.

Gabidulin codes [7,10,24] can be seen as the rank-metric analog of RS codes.
ML decoding of Gabidulin codes is in the focus of this paper which is much
less investigated than for RS codes (see the following discussion). However, both
problems (ML decoding of RS and Gabidulin codes) are of cryptographic interest.
The security of the Augot–Finiasz public-key cryptosystem from [3] relied on the
hardness of ML decoding of RS codes but was broken by a structural attack.
More recently, some public-key cryptosystems based their security partly upon
the difficulty of solving the problem Dec-Gab (Decisional-Gabidulin defined in
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the following) and Search-Gab (Search-Gabidulin), i.e., decoding Gabidulin codes
beyond the unique decoding radius or derived instances of this problem [9,21,33].

Dec-Gab has not been well investigated so far. Therefore, we are interested
in designing efficient algorithms to solve Dec-Gab which in turn assesses the
security of several public-key cryptosystems. We deal with analyzing the problem
of decoding Gabidulin codes beyond the unique radius where a Gabidulin code
of length n and dimension k is denoted by Gabk(g) and g = (g0, g1, . . . , gn−1)
denotes the vector of linearly independent code locators.

Problem 1 (Dec-Gab)

– Instance: Gabk(g) ⊂ F
n
qm , r ∈ F

n
qm and an integer w > 0.

– Query: Is there a codeword c ∈ Gabk(g), such that rk(r − c) ≤ w?

It is trivial that Dec-Gab(Gabk(g), r, w) can be solved in deterministic poly-
nomial time whenever:

– w ≤ ⌊
n−k
2

⌋
, with applying a deterministic polynomial-time decoding algo-

rithm for Gabidulin codes to r.
– w ≥ n − k: In this case the answer is always yes since this just tantamounts

to finding a solution to an overdetermined full rank linear system (Gabidulin
codes are Maximum Rank Distance codes).

However, between
⌊

n−k
2

⌋
and n − k, the situation for Dec-Gab is less clear

than for RS codes (which was analyzed above).
For instance, concerning RS codes, the results from [17] and [5] state that

there is a point in the interval [
⌊

n−k
2

⌋
, n − k] where the situation is not solvable

in polynomial-time unless the polynomial hierarchy collapses. For RS codes, we
can refine the interval to [n−√

n(k − 1), n−k], because of the Guruswami-Sudan
polynomial-time list decoder up to Johnson bound [16].

On the contrary, for Gabidulin codes, there is no such a refinement. In [31],
it was shown that for all Gabidulin codes, the list size grows exponentially in
n when w > n − √

n(k − 1). Further, [22] showed that the size of the list is
exponential for some Gabidulin codes as soon as w =

⌊
n−k
2

⌋
+ 1. This result

was recently generalized in [28] to other classes of Gabidulin codes (e.g., twisted
Gabidulin codes) and, more importantly, it showed that any Gabidulin code
of dimension at least two can have an exponentially-growing list size for w ≥⌊

n−k
2

⌋
+ 1.

To solve the decisional problem Dec-Gab we do not know a better approach
than trying to solve the associated search problem, which is usually done for all
decoding-based problems.

Problem 2 (Search-Gab)

– Instance: Gabk(g) ⊂ F
n
qm , r ∈ F

n
qm and an integer w > 0.

– Objective: Search for a codeword c ∈ Gabk(g), such that rk(r − c) ≤ w.
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Since Dec-Gab and Search-Gab form the security core of some rank-metric
based cryptosystems, it is necessary to evaluate the effective complexity of solv-
ing these problems to be able to parameterize the systems in terms of security.

In particular, the problems Dec-Gab and Search-Gab are related to the NIST
submission RQC [1], the (modified) Faure–Loidreau (FL) cryptosystem [9,33],
and RAMESSES [21].

A part of the security of the newly proposed RAMESSES system [21] directly
relies on the hardness of Search-Gab as solving Search-Gab for the public key
directly reveals an alternative private key.

The (modified) FL cryptosystem [9,33] is based on the hardness of decoding
Gabidulin codes beyond their unique decoding radius. Both, the security of the
public key as well as the security of the ciphertext are based on this assumption.
The public key can be seen as a corrupted word of an interleaved Gabidulin
code whose decoders enabled a structural attack on the original system [13]. In
the modified FL system [33], only public keys for which all known interleaved
decoders fail are chosen, therefore making the structural attack from [13] impos-
sible. As shown in [19], the component codewords of the public key as well as
the ciphertext are a Gabidulin codeword that is corrupted by an error of large
weight. Therefore, solving Search-Gab has to be considered when determining
the security level of the system.

The NIST submission RQC is based on a similar problem. Here, the cipher-
text is also the sum of a Gabidulin codeword and an error of weight larger than
the unique decoding radius. The error in this setting has a special structure.
However, our problem cannot be applied directly to assess the security level of
RQC since the error weight is much larger than in the FL and RAMESSES
systems and solving Search-Gab for the RQC setting would return a codeword
that is close to the error and therefore not the one that was encoded from the
plaintext. It is not clear how to modify our algorithm to be applicable to RQC
since we would have to be able to find exactly the encoded codeword and not just
any codeword. We are not aware of how this can be done but want to emphasize
that the underlying problem of RQC is very similar to Problem 2.

In this paper, we propose a randomized approach to solve Search-Gab and
analyze its work factor. The new algorithm consists of repeatedly guessing a
subspace that should have a large intersection with the error row and/or column
space. Then the guessed space is used as erasures in an Gabidulin error-erasure
decoder, e.g., [26,32]. The algorithm terminates when the intersection of the
guessed space and the error row and/or column space is large enough such that
the decoder outputs a codeword that is close enough to the received word r.

This paper is structured as follows. In Sect. 2, we introduce the used notation
and define Gabidulin codes as well as the channel model. In Sect. 3, we recall
known algorithms to solve Search-Gab and state their work factors. We propose
and analyze the new algorithm to solve Problem 2 in Sect. 4. Further, numerical
examples and simulation results are given in Sect. 5. Open questions are stated
in Sect. 6.
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2 Preliminaries

2.1 Notation

Let q be a power of a prime and let Fq denote the finite field of order q and Fqm

its extension field of order qm. This definition includes the important cases for
cryptographic applications q = 2 or q = 2r for a small positive integer r. It is
well-known that any element of Fq can be seen as an element of Fqm and that
Fqm is an m-dimensional vector space over Fq.

We use F
m×n
q to denote the set of all m×n matrices over Fq and F

n
qm = F

1×n
qm

for the set of all row vectors of length n over Fqm . Rows and columns of m × n-
matrices are indexed by 1, . . . , m and 1, . . . , n, where Ai,j is the element in the
i-th row and j-th column of the matrix A. In the following of the paper, we will
always consider that n ≤ m. This is the necessary and sufficient condition to
design Gabidulin codes.

For a vector a ∈ F
n
qm , we define its (Fq-)rank by rk(a) := dimFq

〈a1, . . . , an〉Fq
,

where 〈a1, . . . , an〉Fq
is the Fq-vector space spanned by the entries ai ∈ Fqm of a.

Note that this rank equals the rank of the matrix representation of a, where the
i-th entry of a is column-wise expanded into a vector in F

m
q w.r.t. a basis of Fqm

over Fq.
The Grassmannian G(V, k) of a vector space V is the set of all k-dimensional

subspaces of V.
A linear code over Fqm of length n and dimension k is a k-dimensional sub-

space of Fn
qm and denoted by [n, k]qm .

2.2 Gabidulin Codes and Channel Model

Gabidulin codes are a special class of rank-metric codes and can be defined by
a generator matrix as follows.

Definition 1 (Gabidulin Code [10]). A linear Gabk(g) code over Fqm of
length n ≤ m and dimension k is defined by its k × n generator matrix

GGab =

⎛

⎜
⎜
⎜
⎝

g1 g2 . . . gn

gq
1 gq

2 . . . gq
n

...
...

. . .
...

gqk−1

1 gqk−1

2 . . . gqk−1

n

⎞

⎟
⎟
⎟
⎠

∈ F
k×n
qm ,

where g1, g2, . . . , gn ∈ Fqm are linearly independent over Fq.

The codes are maximum rank distance (MRD) codes, i.e., they attain the maxi-
mal possible minimum distance d = n−k+1 for a given length n and dimension
k [10].

Let r ∈ F
n
qm be a codeword of a Gabidulin code of length n ≤ m and

dimension k that is corrupted by an error of rank weight w, i.e.,

r = mGGab + e,
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where m ∈ F
k
qm , GGab ∈ F

k×n
qm is a generator matrix of an [n, k]qm Gabidulin

code and e ∈ F
n
qm with rk(e) = w > n−k

2 . Each error e of rank weight w can be
decomposed into

e = aB,

where a ∈ F
w
qm and B ∈ F

w×n
q . The subspace 〈a1, . . . , aw〉Fq

is called the column
space of the error and the subspace spanned by the rows of B, i.e. RFq

(
B

)
, is

called the row space of the error.
We define the excess of the error weight w over the unique decoding radius as

ξ := w − n − k

2
.

Note that 2ξ is always an integer, but ξ does not necessarily need to be one.
The error e can be further decomposed into

e = aCBC + aRBR + aEBE, (1)

where aC ∈ F
γ
qm , BC ∈ F

γ×n
q , aR ∈ F

ρ
qm , BR ∈ F

ρ×n
q , aE ∈ F

t
qm and BE ∈ F

t×n
q .

Assuming neither aE nor BE are known, the term aEBE is called full rank
errors. Further, if aC is unknown but BC is known, the product aCBC is called
column erasures and assuming aR is known but BR is unknown, the vector
aRBR is called row erasures, see [26,32]. There exist efficient algorithms for
Gabidulin codes [11,23,25,32] that can correct δ := ρ + γ erasures (sum of row
and column erasures) and t errors if

2t + δ ≤ n − k. (2)

3 Solving Problem 2 Using Known Algorithms

3.1 Generic Decoding

Problem 3 (Search-RSD)

– Instance: Linear code C ⊂ F
n
qm , r ∈ F

n
qm and an integer w > 0.

– Objective: Search for a codeword c ∈ C, such that rk(r − c) ≤ w.

A generic rank syndrome decoding (RSD) algorithm is an algorithm solv-
ing Problem 3. There are potentially many solutions to Problem 3 but for our
consideration it is sufficient to find only one of them.

Given a target vector r to Problem 3, the probability that c ∈ C is such that
rk(r − c) ≤ w is given by

Pr
c∈C

[rk(r − c) ≤ w] =

∑w−1
i=0

[∏i−1
j=0 (qm − qj)

] [
n
i

]

q

qmk
.

There are two standard approaches for solving Problem 3. The first method
is combinatorial decoding which consists of enumerating vector spaces. If there
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is only one solution to the problem, the complexity of decoding an error of rank
w in an [n, k]qm code is equal to

WComb = P (n, k)qw�(k+1)m/n�−m,

where P (n, k) is a cubic polynomial [2]. In the security evaluations, this polyno-
mial is often neglected and only the exponential term is taken into account. Note
that in the case where m > n there might be a better combinatorial bound [14].
Since we do not address this setting, we do not consider this case.

For the evaluation of the post-quantum security, Grover’s algorithm has to
be taken into account which reduces the complexity of enumeration by a factor
of 0.5 in the exponent. Thus, the estimated complexity is

WPQ Comb = P (n, k)q0.5(w�(k+1)m/n�−m).

Since this is an enumerative approach, the work factors for solving the problem
with input r have to be divided by N = max(|C| · Prc∈C [rk(r − c) ≤ w], 1),
corresponding to the estimated number of candidates.

The second approach is algebraic decoding. It consists of expressing the prob-
lem in the form of a multivariate polynomial system and computing a Gröbner
basis to solve it. A very recent result [4] estimates rather precisely the cost of
the attack and gives generally much better estimations than the combinatorial
approach. In case there is a unique solution to the system, then the work factor
of the algorithm is

WAlg =

⎧
⎨

⎩

O
([

((m+n)w)w

w!

]μ)
if m

(
n−k−1

w

) ≤ (
n
w

)

O
([

((m+n)w)w+1

(w+1)!

]μ)
otherwise,

where μ = 2.807 is the linear algebra constant. For algebraic decoding, it is
neither known how to improve the complexity by using the fact that there are
multiple solutions, nor it is known how to speed up the algorithm in the quantum
world.

Problem 2 is a special instance of Problem 3, where the linear code is a
Gabidulin code. In the following, we will show how to reduce the complexity of
solving Problem 2 by using that fact.

3.2 Key Equation Based Decoding

In [10], a decoding algorithm of Gabidulin codes is presented that is based on
solving a linear system of n − k − w equations and w unknowns (called the key
equation [10, Lemma 4]). If w > �n−k

2 	, there are w − (n−k −w) = 2ξ solutions
to this linear system of equations [30, Lemma 4], which include all c ∈ Gabk(g)
such that rk(r − c) ≤ w. Brute-force search through all solutions of the key
equation solution space for a valid solution to Problem 2 has a work factor of

WKey =
n2qm2ξ

N ,

where checking one solution of the key equation solution space is in O(n2).
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4 A New Algorithm Solving Problem 2

In the considered problem, rk(e) = w > n−k
2 and we do not have any knowledge

about the row space or the column space of the error, i.e., δ = 0 and t > n−k
2 ,

meaning that the known decoders are not able to decode r efficiently.
The idea of the proposed algorithm is to guess parts of the row space and/or

the column space of the error and use a basis for the guessed spaces to solve
the corresponding error and column/row erasures (see (1)). This approach is a
generalization of the algorithm presented in [19], where only criss-cross erasures
are used to decode certain error patterns beyond the unique decoding radius.

The proposed algorithm is given in Algorithm 1. The function Dec(r,aR,BC)
denotes a row/column error-erasure decoder for the Gabidulin code Gabk(g) that
returns a codeword ĉ (if rk(r − ĉ) ≤ t + ρ + γ) or ∅ (decoding failure) and δ is
the total number of guessed dimensions (sum of guessed dimensions of the row
space and the column space).

Algorithm 1. Column-Erasure-Aided Randomized Decoder

Input: Received word r ∈ F
n
qm ,

Gabidulin error/erasure decoder Dec(·, ·, ·),
Dimension of guessed row space δ,
Error weight w,
Maximum number of iterations Nmax

Output: ĉ ∈ F
n
qm : rk(r − ĉ) ≤ w or ∅ (failure)

1 foreach i ∈ [1, Nmax] do

2 U $←− G(Fn
q , δ) // guess δ-dimensional subspace of F

n
q

3 BC ← full-rank matrix whose row space equals U
4 ĉ ← Dec(r,0,BC) // error and row erasure decoding

5 if ĉ �= ∅ then
6 if rk(r − ĉ) ≤ w then
7 return ĉ

8 return ∅ (failure)

In the following, we derive the work factor of the proposed algorithm. By
ε, we denote the dimension of the intersection of our guess and the true error
subspaces. As stated above, if

2(w − ε) + δ ≤ n − k, (3)

any Gabidulin error-erasure decoder is able to correct the error, e.g., [26,32].

Lemma 1. Let U be a fixed u-dimensional Fq-linear subspace of Fq� . Let V
be chosen uniformly at random from G(Fq� , v). Then, the probability that the
intersection of U and V has dimension at least ω is
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Pr[dim(U ∩ V) ≥ ω] =

∑min{u,v}
i=ω

[
� − u
v − i

]

q

[
u
i

]

q

q(u−i)(v−i)

[
�
v

]

q

≤ 16(min{u, v} + 1 − ω)q(j
∗−v)(�−u−j∗),

where j∗ := min{v − ω, 1
2 (� + v − u)}.

Proof. See Appendix A.

In the following, we analyze guessing only the row space of the error, i.e.,
δ = γ and ρ = 0.

Lemma 2. Let r′ = mGGab + e′ ∈ F
n
qm , where rk(e′) = j, e′ = a′B′ with

a′ ∈ F
j
qm , B′ ∈ F

j×n
q and neither parts of the error row space nor column space

are known, i.e., γ = ρ = 0 and t = j. For δ ∈ [2ξ, n − k], the probability that
an error-erasure decoder using a random δ-dimensional guess of the error row
space outputs mGGab is

Pn,k,δ,j :=

min{δ,j}∑

i=�j− n−k
2 + δ

2 �

[
n − j
δ − i

]

q

[
j
i

]

q

q(j−i)(δ−i)

[
n
δ

]

q

≤ 16nq−(� δ
2+j− n−k

2 �)(n+k
2 −� δ

2 �),

if 2j + δ > n − k and Pn,k,δ,j := 1 else.

Proof. First, consider the case where 2j + δ > n − k and define ξ′ := j − n−k
2 .

Let the rows of B̂C ∈ F
δ×n
q be a basis of the random guess. From (3) follows

that if

n − k ≥ 2j − 2ε + δ = n − k + 2ξ′ − 2ε + δ, (4)

where ε is the dimension of the intersection of the Fq-row spaces of B̂C and B′, an
error and erasure decoder is able to decode efficiently. Since ε ≤ δ, equation (4)
gives a lower bound on the dimension δ of the subspace that we have to estimate:

2ξ′ ≤ 2ε − δ ≤ δ ≤ n − k. (5)

From (4) follows further that the estimated space doesn’t have to be a subspace of
the row space of the error. In fact, it is sufficient that the dimension of the inter-
section of the estimated column space and the true column space has dimension
ε ≥ ξ′+ δ

2 . This condition is equivalent to the condition that the subspace distance
(see [20]) between U and V satisfies ds(U ,V) := dim(U)+dim(V)−2 dim(U∩V) ≥
j − 2ξ′.
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From Lemma 1 follows that the probability that the randomly guessed space
intersects in enough dimensions such that an error-erasure decoder can decode
to one particular codeword in distance j to r is

∑min{δ,j}
i=�ξ′+ δ

2 �

[
n − j
δ − i

]

q

[
j
i

]

q

q(j−i)(δ−i)

[
n
δ

]

q

≤16
(

min{j, δ} + 1 −
(
ξ′ +

δ

2

))
q−(� δ

2+ξ′�)(n+k
2 −� δ

2 �)

≤16nq−(� δ
2+ξ′�)(n+k

2 −� δ
2 �).

For the case 2j + δ ≤ n − k, it is well known that that an error erasure decoder
always outputs mGGab. �

Lemma 2 gives the probability that the error-erasure decoder outputs exactly
the codeword mGGab. Depending on the application, it might not be necessary
to find exactly mGGab but any codeword c ∈ Gabk(g) such that rk(r − c) ≤ w,
which corresponds to Problem 2. In the following lemma, we derive an upper
bound on the success probability of solving Problem 2 using the proposed algo-
rithm.

Lemma 3. Let r be a uniformly distributed random element of Fn
qm . Then, for

δ ∈ [2ξ, n − k] the probability that an error-erasure decoder using a random δ-
dimensional guess of the error row space outputs c ∈ Gabk(g) such that rk(r −
c) ≤ w is at most

w∑

j=0

ĀjPn,k,δ,j ≤ 64nqm(k−n)+w(n+m)−w2−(� δ
2+w− n−k

2 �)(n+k
2 −� δ

2 �),

where Āj = qm(k−n)
∏j−1

i=0
(qm−qi)(qn−qi)

qj−qi .

Proof. Let Ĉ be the set of codewords that have rank distance at most w from
the received word, i.e.,

Ĉ := {c ∈ Gabk(g) : rk(r − c) ≤ w} = {ĉ1, . . . , ĉN }.

Further, let Xi be the event that the error-erasure decoder outputs ĉi for i =
1, . . . ,N and Aj := {i : rk(r − ĉi) = j}. Observe that Pn,k,δ,j = Pr[Xi] for
i ∈ Aj , where Pr[Xi] is the probability that the error-erasure decoder outputs
ĉi and Pn,k,δ,j is defined as in Lemma 2. Then we can write

Pr[success] = Pr

[ N⋃

i=1

Xi

]

≤
N∑

i=1

Pr[Xi] =
w∑

j=0

|Aj |Pn,k,δ,j .
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Let Āj be the average cardinality of the set Aj , we have that

Āj = qm(k−n)

j−1∏

i=0

(qm − qi)(qn − qi)
qj − qi

≤ 4qm(k−n)+j(n+m)−j2
.

Since Āw is exponentially larger than Āw−i for i > 0, one can approximate

Pr[success] = ĀwPn,k,δ,w

≤ 64nqm(k−n)+w(n+m)−w2−(� δ
2+w− n−k

2 �)(n+k
2 −� δ

2 �). �
Based on Lemma 3, we can derive a lower bound on the average work factor

of Algorithm 1.

Theorem 1. Let r be a uniformly distributed random element of Fn
qm . Then,

Algorithm 1 requires on average at least

WRD = min
δ∈[2ξ,n−k]

{
n2∑w

j=0 ĀjPn,k,δ,j

}

= min
δ∈[2ξ,n−k]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2

[
n
δ

]
q

� n−k−δ
2 �∑

j=0

qm(k−n)
j−1∏
�=0

(qm − q�)(qn − q�)

qj − q�
+

w∑
j=� n−k−δ

2 �+1

qm(k−n)

. . .

(
j−1∏
�=0

(qm − q�)(qn − q�)

qj − q�

)(
min{δ,j}∑

i=�j− n−k
2 + δ

2 �

[
n − j
δ − i

]
q

[
j
i

]
q

q(j−i)(δ−i)

)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

operations over Fqm to output c ∈ Gabk(g), such that rk(r − c) ≤ w, where Āj

and Pn,k,δ,j are defined as in Lemma 3.

Proof. Lemma 3 gives the probability that an error-erasure decoder using a δ
dimensional guess of the row space finds c ∈ Gabk(g) such that rk(r − c) ≤ w.
This means that one has to estimate on average at least

min
δ∈[2ξ,n−k]

{
1

∑w
j=0 ĀjPn,k,δ,j

}

row spaces in order to output c ∈ Gabk(g). Since the complexity of error-erasure
decoding is in O(n2), we get a work factor of

WRD = min
δ∈[2ξ,n−k]

{
n2

∑w
j=0 ĀjPn,k,δ,j

}

.
�
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Notice that the upper bound on the probability given in Lemma 3 is a convex
function in δ and maximized for either 2ξ or n − k. Thus, we get the following
lower bound on the work factor.

Corollary 1. Let r be a uniformly distributed random element of Fn
qm . Then,

Algorithm 1 requires on average at least

WRD ≥ n

64
· qm(n−k)−w(n+m)+w2+min{2ξ(n+k

2 −ξ),wk}

operations over Fqm .

Remark 1. We obtain a rough upper bound of on the expected work factor,

WRD ≤ n2qm(n−k)−w(n+m)+w2+min{2ξ(n+k
2 −ξ),wk},

by the same arguments as in Lemmas 2, 3, and Theorem 1, using

– lower bounds on the Gaussian binomial coefficient in [20, Lemma 4],
– taking the maximal terms in the sums and
– taking the maximal probability of events instead of union-bound arguments.

If r ∈ F
n
qm is defined as in Sect. 2.2, where neither parts of the error row space

nor column space are known, i.e., γ = ρ = 0 and t = w, the vector r can be seen
as a uniformly distributed random element of Fn

qm . Thus, Theorem 1 gives an
estimation of the work factor of the proposed algorithm to solve Problem 2. To
verify this assumption, we conducted simulations which show that the estimation
is very accurate, see Sect. 5.

Remark 2. In Theorem 1, we give a lower bound on the work factor of the pro-
posed algorithm. One observes that especially for small parameters, this bound
is not tight which is mainly caused by the approximations of the Gaussian bino-
mials. For larger values, the relative difference to the true work factor becomes
smaller.

Another idea is to guess only the column space or the row and column space
jointly. Guessing the column space is never advantageous over guessing the row
space for Gabidulin codes since we always have n ≤ m. Hence, replacing n
by m in the formulas of Lemma 2 and in the expression of the probability Pj

inside the proof of Theorem 1 will only increase the resulting work factor. For
joint guessing, some examples indicate that it is not advantageous, either. See
Appendix B for more details.

5 Examples and Simulation Results

We validated the bounds on the work factor of the proposed algorithm in Sect. 4
by simulations. The simulations were performed with the row/column error-
erasure decoder from [32] that can correct t rank errors, ρ row erasures and γ
column erasures up to 2t+ρ+γ ≤ d−1. Alternatively, the decoders in [12,26] may
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be considered. One can also observe that the derived lower bounds on the work
factor give a good estimate of the actual runtime of the algorithm denoted by
WSim. The results in Table 1 show further, that for parameters proposed in [21,
33], the new algorithm solves Problem 2 (Search-Gab) with a significantly lower
computational complexity than the approaches based on the known algorithms.

Therefore, for the RAMESSES system, our algorithm determines the work
factor of recovering the private key for all sets of parameters given in [21]. For
the modified Faure–Loidreau system, our algorithm provides the most efficient
key recovery attack for one set of parameters, shown in Line 5 of Table 1. Notice
however that there is a message attack (called Algebraic Attack in [33]) which
has smaller complexity.

Table 1. Comparison of different work factors for several parameter sets including
simulation results for one specific parameter set.
WSim: work factor of the new randomized decoder (simulations).
WRD: work factor of the new randomized decoder (theoretical lower bound).
WComb/N : work factor of the combinatorial RSD algorithm.
WAlg: work factor of the algebraic RSD algorithm.
WKey: work factor of the näıve key equation based decoding.

q m n k w ξ δ Iterations Success WSim WRD
WComb

N WAlg WKey

2 24 24 16 6 2 4 6844700 4488 219.74 219.65 238.99 2126.01 243.40

2 64 64 32 19 3 6 – – – 2257.20 2571.21 2460.01 2371.21

2 80 80 40 23 3 6 – – – 2401.85 2897.93 2576.15 2492.64

2 96 96 48 27 3 6 – – – 2578.38 21263.51 2694.93 2589.17

2 82 82 48 20 3 6 – – – 2290.92 2838.54 2504.70 2410.92

6 Open Problems

There is a list decoding algorithm for Gabidulin codes based on Gröbner bases
that allows to correct errors beyond the unique decoding radius [18]. However,
there is no upper bound on the list size and the complexity of the decoding
algorithm. In future work, the algorithm from [18] should be adapted to solve
Problem 2 which could allow for estimating the complexity of the resulting algo-
rithm.

A Proof of Lemma 1

The number of q-vector spaces of dimension v, which intersections with U have
dimension at least ω, is equal to

min{u,v}∑

i=ω

[
� − u
v − i

]

q

[
u
i

]

q

q(u−i)(v−i) =
v−ω∑

j=max{0,v−u}

[
� − u

j

]

q

[
u

v − j

]

q

qj(u−v+j),
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see [8]. Since the total number of v-dimensional subspaces of a �-dimensional

space is equal to
[
�
v

]

q

, the probability

Pr[dim(U ∩ V) ≥ ω] =

∑min{u,v}
i=ω

[
� − u
v − i

]

q

[
u
i

]

q

q(u−i)(v−i)

[
�
v

]

q

=

∑v−ω
j=max{0,v−u}

[
� − u

j

]

q

[
u

v − j

]

q

qj(u−v+j)

[
�
v

]

q

.

Using the upper bound on the Gaussian coefficient derived in [20, Lemma 4], it
follows that

Pr[dim(U ∩ V) ≥ ω] ≤ 16
v−ω∑

j=max{0,v−u}
qj(�−u−j)+v(u−v+j)−v(�−v)

= 16
v−ω∑

j=max{0,v−u}
q(j−v)(�−u−j)

≤ 16 (min{u, v} + 1 − ω)q(j
∗−v)(�−u−j∗),

where j∗ := min{v −ω, 1
2 (�+ v −u)}. The latter inequality follows from the fact

that the term (j − v)(� − u − j) is a concave function in j and is maximum for
j = 1

2 (� + v − u). �

B Guessing Jointly the Column and Row Space
of the Error

We analyze the success probability of decoding to a specific codeword (i.e., the
analog of Lemma 2) for guessing jointly the row and the column space of the
error.

Lemma 4. Let r ∈ F
n
qm be defined as in Sect. 2.2, where neither parts of the

error row space nor column space are known, i.e., γ = ρ = 0 and t = w. The
probability that an error-erasure decoder using a random

– δr-dimensional guess of the error row space and a
– δc-dimensional guess of the error column space,

where δr + δc =: δ ∈ [2ξ, n − k], outputs mGGab is upper-bounded by
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min{δ, w}∑

i=�ξ+ δ
2 �

∑

0≤wr,wc≤i
wr+wc=i

[
n − w

δr − wr

]

q

[
w
wr

]

q

q(w−wr)(δr−wr)

[
m − w
δc − wc

]

q

[
w
wc

]

q

q(w−wc)(δc−wc)

[
n
δr

]

q

[
m
δc

]

q

.

Proof. The statement follows by the same arguments as Lemma 2, where we com-
puted the probability that the row space of a random vector space of dimension δ
intersects with the w-dimensional row space of the error in i dimensions (where i
must be sufficiently large to apply the error erasure decoder successfully). Here, we
want that a random guess of δr- and δc-dimensional vector spaces intersect with
the row and column space of the error in exactly wr and wc dimensions, respec-
tively. We sum up over all choices of wr and wc that sum up to an i that is suffi-
ciently large to successfully apply the error erasure decoder. This is an optimistic
argument since guessing correctly wr dimensions of the row and wc dimensions of
the column space of the error might not reduce the rank of the error by wr + wc.
However, this gives an upper bound on the success probability. �

Example 1 shows that guessing row and column space jointly is not advan-
tageous for some specific parameters.

Example 1. Consider the example q = 2, m = n = 24, k = 16, w = 6. Guessing
only the row space of the error with δ = 4 succeeds with probability 1.66 · 10−22

and joint guessing with δr = δc = 2 succeeds with probability 1.93·10−22. Hence,
it is advantageous to guess only the row space (or due to m = n only the column
space). For a larger example with m = n = 64, k = 16, and w = 19, the two
probabilities are almost the same, ≈ 5.27 · 10−82 (for δ = 32 and δr = δc = 16).
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Abstract. McEliece-like code-based key exchange mechanisms using
QC-MDPC codes can reach IND-CPA security under hardness assump-
tions from coding theory, namely quasi-cyclic syndrome decoding and
quasi-cyclic codeword finding. To reach higher security requirements, like
IND-CCA security, it is necessary in addition to prove that the decod-
ing failure rate (DFR) is negligible, for some decoding algorithm and
a proper choice of parameters. Getting a formal proof of a low DFR
is a difficult task. Instead, we propose to ensure this low DFR under
some additional security assumption on the decoder. This assumption
relates to the asymptotic behavior of the decoder and is supported by
several other works. We define a new decoder, Backflip, which features
a low DFR. We evaluate the Backflip decoder by simulation and extrap-
olate its DFR under the decoder security assumption. We also measure
the accuracy of our simulation data, in the form of confidence intervals,
using standard techniques from communication systems.

1 Introduction

Moderate Density Parity Check (MDPC) codes were introduced for cryptogra-
phy1 in [17]. They are related to Low Density Parity Check (LDPC) codes, but
instead of admitting a sparse parity check matrix (with rows of small constant
weight) they admit a somewhat sparse parity check matrix, typically with rows
of Hamming weight O(

√
n) and length n. Together with a quasi-cyclic structure

they allow the design of a McEliece-like public-key encryption scheme [16] with
reasonable key size and a security that provably reduces to generic hard prob-
lems over quasi-cyclic codes, namely the hardness of decoding and the hardness
of finding low weight codewords.

Because of these features, QC-MDPC have attracted a lot of interest from
the cryptographic community. In particular, the BIKE suite of key exchange
mechanisms has been selected to the second round of the NIST call for stan-
dardization of quantum safe cryptographic primitives2. The second round BIKE
1 MDPC were previously defined, in a different context, by Ouzan and Be’ery in 2009,
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2 https://csrc.nist.gov/Projects/Post-Quantum-Cryptography.
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document [1] mentions the Backflip decoder, a new variant of bit flipping decod-
ing, as well as claims about its DFR. The low DFR is an essential feature to
achieve IND-CCA security, and incidentally to resist to the GJS key recovery
attack [11] which exploits decoding failures.

The Backflip algorithm and its DFR claims were never fully described in
an academic work. We provide here the rationale and a precise description of
Backflip as well as a justification and a description of the simulation methodology
and assumptions that were used for estimating the DFR.

The decoding of MDPC codes can be achieved, as for LDPC codes, with
iterative decoders [10] and in particular with the (hard decision) bit flipping
algorithm. The Backflip algorithm will introduce soft information (i.e. reliabil-
ity information) by flipping coordinates for a limited time which depends on the
confidence we have in each flipping decision. This confidence is measured from
quantities that were already computed in bit flipping decoders and are thus avail-
able at no extra cost. This way, the new decoder will use soft decision decoding,
as in [2,14] for instance, while keeping the very simple logic and arithmetic which
makes it suited to hardware and embedded device implementations [13].

No theoretical argument is known to guaranty a low DFR for the Backflip
decoder. We will resort to simulation. However proving a very low DFR (e.g.
2−128) cannot be achieved by simulation alone. Instead, we will use simulation
data to extrapolate the DFR in a region of parameters where it is too small to
be estimated by simulation. This extrapolation technique for the DFR is valid
under an additional assumption on the asymptotic behavior of the decoder.

The paper is organized as follows. The Sect. 2 will state and comment the
security assumption related to decoding. The Sect. 3 will describe the Backflip
algorithm and explain its rationale. The Sect. 4 will explain, under the decoder
security assumption, how to obtain DFR estimates with accurate simulation
data.

Notation. For any binary vector v, we denote vi its i-th coordinate and |v| its
Hamming weight. Moreover, we will identify v with its support, that is i ∈ v if
and only if vi = 1. Given two binary vectors u and v of same length, we will
denote u ∩ v the set of all indices that belong to both u and v, or equivalently
their component-wise product as vectors.

1.1 Previous Works

A binary Quasi-Cyclic Moderate Density Parity Check (QC-MDPC) code, is a
quasi-cyclic code which admits a parity check matrix of density proportional to
1/

√
n where n is the code length. A QC-MDPC code can efficiently correct an

error of Hamming weight t proportional to
√

n thanks to bit flipping decoding
(Algorithm 1). A (2r, r, w, t)-QC-MDPC-McEliece is an instance of the McEliece
scheme [16] using an QC-MDPC code of index 2 correcting t errors. Such a code
admits a parity check matrix consisting of two sparse circulant blocks of size
r × r and row weight w/2 proportional to

√
n.
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We denote R = F2[x]/(xr − 1). The ring R is isomorphic to r × r circulant
matrices. The scheme is fully described by the knowledge of the error weight t
and of two polynomials h0, h1 of R of Hamming weight w/2. Its security relates
to the following hard problems.

Problem 1. (2, 1)-QC Syndrome Decoding
Instance: s, h in R, an integer t > 0.
Property: There exists e0, e1 in R such that |e0| + |e1| ≤ t and e0 + e1h = s.

Problem 2. (2, 1)-QC Codeword Finding
Instance: h in R, an integer w > 0.
Property: There exists h0, h1 in R such that |h0| + |h1| = w and h1 + h0h = 0.

In the rest of Sect. 1.1 we will consider an instance of a (2r, r, w, t)-QC-MDPC-
McEliece scheme. The code length is n = 2r, its dimension is k = r, and we will
denote d = w/2.

Security Assumptions. The security of QC-MDPC-McEliece for QC codes of
index 2 (and rate 1/2) relies on two assumptions.

Assumption 1. Problem 1 is hard on average over s, h in R.

Assumption 2. Problem 2 is hard on average over h in R.

The above assumptions are enough to guaranty the one-wayness of the underly-
ing encryption primitive. With the ad-hoc conversion they will also be enough to
prove that the related Key Encapsulation Mechanism (KEM) is IND-CPA (see
[1]). To go further and design and prove an IND-CCA KEM, a further assump-
tion on the decoding failure rate (DFR) is required. This will be examined later
in the paper.

Tightness and Best Known Attacks. The security proofs for QC-MDPC
code-based schemes are tight in the following sense: the proofs require the deci-
sional versions of Problem 1 and 2 to be hard on average for the size (r, t) and
(r, w) while the best known attacks only require to solve the search version of
either Problem 1 or 2 for the same size (r, t) or (r, w). Note that there is a search
to decision reduction for Syndrome Decoding [9] but it has not been transferred
so far to the quasi-cyclic case. The best solvers for Problem 1 and 2 use Infor-
mation Set Decoding (ISD). As explained in [17], it is possible to make use of
the quasi-cyclicity together with the multitarget variant of ISD [20] to slightly
improve the decoding. If WF(n, k, t) is the expected cost of the best ISD solver
for the decoding t errors in a binary linear [n, k] code, the cost of the best solver
for Problem 1 and Problem 2 is upper bounded respectively by WF(2r,r,t)√

r
and

WF(2r,r,w)
r . When t � r, which is the case here, it was shown in [4] that asymptot-

ically the complexity exponent of all variants of ISD was equivalent to the com-
plexity exponent of Prange algorithm [18], that is WF(n, k, t) = 2t log2

n
n−k (1+o(1)).
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In particular, the value WF(2r, r, t) = 2t(1+o(1)) does not depend, for its first
order term, on the block size r.

QC-MDPC-McEliece Practical Security. The security of an instance of the
(2r, r, w, t)-QC-MDPC-McEliece scheme reduces to Problem 1 with parameters
(r, t) and Problem 2 with parameters (r, w). We give in Table 1 the security expo-
nents for the message and key securities, respectively WF(2r,r,t)√

r
and WF(2r,r,w)

r

when the workfactor is computed for the BJMM variant of ISD [3] using the
methodology described in [12]. We remark that, as expected, the security expo-
nent grows very slowly with the block size r. The parameters of Table 1 are those
of the NIST proposal BIKE [1]. For each security level, the first and second rows
correspond respectively to the IND-CPA and IND-CCA variants.

Table 1. Security exponent of (2r, r, w, t)-QC-MDPC-McEliece (BIKE parameters)

(r, w, t) Problem 2 Problem 1

Key security Message security

BIKE level 1 (10163, 142, 134) 129.5 128.6

(11779, 142, 134) 129.8 128.9

BIKE level 3 (19853, 206, 199) 191.6 192.1

(24821, 206, 199) 192.4 193.0

BIKE level 5 (32749, 274, 264) 258.0 255.9

(40597, 274, 264) 258.8 256.9

Bit Flipping Decoding. All decoders for QC-MDPC codes derive from the
bit flipping decoder given in Algorithm 1 in its syndrome decoding variant. In
Algorithm 1, the counter |s′ ∩ hj | is the number of unsatisfied equations involving
j. Positions with high counter values are flipped. If s′ = s − eHᵀ for some (e, s′),
with H, s′ and e sparse enough, then the algorithm return e with high probability.

Algorithm 1. Bit Flipping Algorithm, (Noisy-)Syndrome Decoding Variant

Require: H ∈ F
(n−k)×n
2 , s ∈ F

n−k
2 , integer u ≥ 0 //u > 0 for noisy syndrome

Ensure:
∣
∣s − e′Hᵀ∣

∣ ≤ u or time > max time
e′ ← 0 ; time ← 1
while

∣
∣s − e′Hᵀ∣

∣ > u and time ≤ max time do
time ← time + 1
s′ ← s − e′Hᵀ

T ← threshold(context)
for j ∈ {0, . . . , n − 1} do

if |s′ ∩ hj | ≥ T then //hj the j-th column of H
e′

j ← 1 − e′
j

return e′
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The variant presented allows noisy syndrome with u > 0 (as needed for BIKE-3),
else if u = 0, it defines the usual QC-MDPC decoding (used by BIKE-1/2).

Threshold Selection. Selecting the proper threshold is an essential step of the
bit flipping algorithm. In the current state of the art [5,21] the optimal threshold
is given as a function of the syndrome weight and of the error weight. We consider
an execution of Algorithm 1. At any time, let e denote the (remaining) error
vector, the syndrome is s′ = eHᵀ = s − e′Hᵀ. The optimal threshold is defined
as in Fig. 1 with the call threshold(|eHᵀ| , |e|). Note that the syndrome weight
S = |eHᵀ| = |s − e′Hᵀ| is always known by the the decoder while the error
weight t′ = |e| is only known at the first iteration, since |e| = t by design. Later
on the exact error weight is unknown and a value for t′ has to be chosen somehow.
One possibility is to guess it by using the fact that the expected value of S is
a function of t′, E(S) = r

∑
ρ2�+1(t′). Though this identity is only exact at the

first iteration, it provides a good enough estimate of t′ as a function of S. Finally,
even though the procedure for computing the threshold seems involved, it is not
the case in practice. For a given set of parameters, the threshold is a function
of S which can be precomputed and is usually well approximated by an affine
function.

T = threshold(S, t′) is the smallest integer T such that

(n − t′) d
T

)
πT
0 (1 − π0)d−T ≤

{
t′ d

T

)
πT
1 (1 − π1)d−T if π1 < 1

1 else

where

π1 =
S + X(S, t′)

t′d
, π0 =

(w − 1)S − X(S, t′)
(n − t′)d

and

X(S, t′) =

S
∑

� odd

(� − 1)ρ�(t′)

∑
� odd

ρ�(t′)
with ρ�(t′) =

w
�

n−w
t′−�

)
n
t′
) .

Fig. 1. Threshold function

Attacks on the Decoder. The bit flipping algorithm is iterative and proba-
bilistic. In particular, it has a small but positive Decoding Failure Rate (DFR).
This is not an issue if the scheme uses ephemeral keys (e.g. TLS using BIKE
specification) but creates a threat when static keys are used. It was shown in
[11] how to exploit the decoding failures to recover the secret key. This stresses
the importance of reducing the DFR to a negligible value. This is mandatory
to reach CCA security and requires an evolution of the decoder, an increase of
the parameters, an accurate estimate of the DFR, and arguments to support the
accuracy of this estimate.
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The GJS technique was later extended [8] to efficiently recover the secret key
if the adversary has access to the number of effective decoding iterations. The
latter attack stresses the need of a constant-time implementation when static
keys are used. Allowing constant-time implementation may in turn require an
evolution of the decoder and of the system parameters.

1.2 Related Works

The Backflip decoding algorithm and claims about its DFR were given in [1].
The purpose of this work is to detail and support those claims. A simplified bit
flipping variant, the step-by-step decoder, is modelled with a Markov chain in
[21], the model has a DFR which decreases provably exponentially with the block
size. The asymptotic analysis of [22] of QC-MPDC also predicts an exponential
decrease in the range of interest for cryptography, but the analysis is made in
a specific setting and cannot be directly applied to practical BIKE decoder and
parameters. Another recent work [7] explores another decoder variant for BIKE
to reach simultaneously a low DFR and a constant-time implementation.

2 An Additional Security Assumption

Preliminary: Tangent Extrapolation. When observing the plot of the logarithm
of the simulated DFR versus the block size r (the other parameters w and t are
fixed), one observes that it is always concave. It seems rather natural to assume
that it will remain so and to extrapolate the DFR accordingly. The strategy
will then consist in making a simulation for the largest possible r to accurately
measure the tangent of the lowest possible point of the curve. For instance in
Fig. 2, suppose the low curve (blue) is giving the log2(DFR) and we are able to
make accurate simulation as long as the DFR is above 2−25 (black dots). Taking
the tangent at the last point gives us the red line from which we derive an upper
bound r′ for a block size with a DFR below 2−128 as well as an upper bound
2−s for the DFR for a given block size r.

r

log2(DFR)

−128

r′r

−s

−25

Fig. 2. DFR tangent extrapolation (Color figure online)
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2.1 Target Parameters

We will consider here three levels of security named according to the NIST
postquantum security nomenclature. For each security level λ below, we denote
rCPA
λ the block size of the IND-CPA variants of BIKE (1 and 2).

Level 1: (w, t) = (142, 134) for λ = 128 bits of classical security, rCPA
λ = 10 163

Level 3: (w, t) = (206, 199) for λ = 192 bits of classical security, rCPA
λ = 19 853

Level 5: (w, t) = (274, 264) for λ = 256 bits of classical security, rCPA
λ = 32 749

As mentioned previously, the security of the (2r, r, w, t)-QC-MDPC-McEliece
scheme only marginally depends of the block size r. To reach IND-CCA security
the block size must be increased slightly, at most 25% [1]. To allow constant-
time implementation, the current state-of-art [7] suggests an extra 10%. We
thus expect that for any security level λ the values of interest for the block size
r lie in the interval [rCPA

λ , 2rCPA
λ ].

2.2 The Decoder Security Assumption

By decoder, say we denote it D, we mean a family of decoding algorithms which
can be applied to QC-MDPC codes corresponding to various security levels λ,
including the three levels above, and to any block size rCPA

λ /2 ≤ r ≤ 2rCPA
λ .

For a given security level λ, corresponding to a value of (w, t), we will denote
DFRD,λ(r) the decoding failure rate when the decoder D is applied to an instance
of (2r, r, w, t)-QC-MDPC-McEliece.

Assumption 3. For a given decoder D, and a given security level λ, the func-
tion r �→ log(DFRD,λ(r)) is decreasing and is concave if DFRD,λ(r) ≥ 2−λ.

2.3 Validity of the Concavity Assumption

Error Floors for QC-MDPC. The mapping r �→ log(DFRD,λ(r)) cannot be
concave in the whole range r ∈ [0,∞). As explained in appendix, there is an
additive term Pλ(r) in DFRD,λ(r), coming from the code weight distribution,
whose logarithm is asymptotically equivalent to Cλ − (w/2−1) log2 r. This term
will dominate when r grows but only for very large values of r. We have

λ = 128, log2 Pλ(rCPA
λ ) = −396.8, and log2 Pλ(r) ≈ 535.0 − 70 log2 r

λ = 192, log2 Pλ(rCPA
λ ) = −618.5, and log2 Pλ(r) ≈ 837.8 − 102 log2 r

λ = 256, log2 Pλ(rCPA
λ ) = −868.7, and log2 Pλ(r) ≈ 1171.2 − 136 log2 r

and this will not affect the DFR for values of r relevant for Assumption 3.

Theoretical Models for the Decoder. In [21] A Markovian model is given for
a simple variant of bit flipping, the step-by-step decoder. This decoder corrects
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less errors than other bit flipping variants, however it uses the same ingredients:
computing counters and flipping the corresponding positions if they are above
some threshold. The model can be computed for arbitrary large values of r
and we observe that in the range of interest for r the log(DFR) is first strictly
concave and eventually decreases linearly with r. This observation is consistent
with Assumption 3. Note that the model does not capture the contribution of
the weight distribution to the DFR.

Another work explores the asymptotic behavior of QC-MDPC decoding [22].
The asymptotic formula it provides for the DFR cannot be used directly because
the setting is different (w and t vary with r), and also the conditions under which
it can be proven are not relevant for decoders and parameters of practical interest.
However the indication provided by the formula is consistent, the dominant term
in the exponent decreases linearly with r.

To conclude this section, the Assumption 3 is and remains an assumption
in the current state-of-the-art. We point out though that, for all variants of bit
flipping decoding, every related theoretical and simulation results are consistent
with it.

3 Backflip: A New Decoder for QC-MDPC Codes Using
Reliability

Design Rationale: Positions with higher counters in Algorithm 1 have higher
probabilities to be erroneous. Positions are flipped when the counter is above a
threshold, how much above doesn’t matter and a part of the reliability informa-
tion is lost. Better performance are achieved with soft-decision decoders such as
the belief propagation algorithm for LDPC codes. These decoders work by prop-
agating probabilities back and forth between variable nodes and check nodes in
the Tanner graph until the confidence on all values is high enough. Their logic
and arithmetic are more complex though. See [2,14] for examples of soft-decision
MDPC decoding. The idea of Backflip is to use the reliability information while
keeping the simplicity of the bit flipping decoder.

Among the flip decisions, most are good (an error is removed) and some are
bad (an error is added). Bad decisions tend to induce more bad decisions and
may lead to a failure. To exploit the reliability information a decoder could lessen
the impact of the least reliable decisions and strengthen the impact of the most
reliable ones. We propose Backflip, a new bit flipping algorithm which uses time
to leverage the reliability information given by the counters on each flip. Every
flip gets a (finite) time-to-live (an iteration count). When its time is over, the
flip is canceled. Positions with a higher counter stay flipped for a longer time
than positions with a counter just above the threshold. The design of Backflip
is based on the following principles:

– the most reliable decisions will have more influence in the decoding process,
– all bad decisions will be cancelled at some point,
– conservative threshold selection hinders bad decisions in cascade.
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In addition, it is readily seen that, compared to Algorithm 1, the Algorithm 2
only requires a few more operations to manage a delay table D. Moreover, as for
the threshold, the ttl is very well approximated by an affine function for any
fixed set of parameters and its computation has a negligible cost in practice.

Algorithm 2. Backflipping Algorithm

Require: H ∈ F
(n−k)×n
2 , s ∈ F

n−k
2 , integer u ≥ 0 //u > 0 for noisy syndrome

Ensure:
∣
∣s − e′Hᵀ∣

∣ ≤ u or time > max time
e′ ← 0 ; time ← 1 ; D ← 0 //Dj = time-of-death of j
while

∣
∣s − e′Hᵀ∣

∣ > u and time ≤ max time do //here max time is 100, 10 or 11
for j such that Dj = time do e′

j ← 0 //Undo flips at time-of-death
time ← time + 1
s′ ← s − e′Hᵀ

T ← threshold(|s′| , t − |e′|)
for j ∈ {0, . . . , n − 1} do

if |s′ ∩ hj | ≥ T then //hj the j-th column of H
e′

j ← 1 − e′
j ; Dj ← time + ttl(|s′ ∩ hj | − T )

return e′

Threshold Selection Rule threshold(S, t′). As the time-to-live of a flip is
always finite, a bad flip will always be canceled eventually. However, it is neces-
sary to avoid adding more bad flips during the period during which it remains
flipped. To achieve this, thresholds from Fig. 1 are used with S = |s′| and
t′ = t − |e′|. This is the best case estimate for the error weight, it supposes
that every flip removed an error. When many errors were added, the correspond-
ing threshold is higher than for the usual bit flipping algorithm, this will slow
down the decoding process, leaving time to cancel the bad decisions while mak-
ing only very reliable new flips. In the typical case, most flip decisions were good,
the threshold is close to optimal, and the decoding converges quickly.

Time-to-Live Rule ttl(δ). Empirically, it appears that the time-to-live should
be increasing with the difference δ between the position’s counter and the itera-
tion threshold. It should also be finite because otherwise outlier counter values
could lead to adding errors that are harder to detect: correct positions with a
high counter will become errors with a low counter once flipped, their counter
will have to change drastically before it is corrected by an algorithm relying solely
on a threshold. The ttl function depends on the code parameters (especially w
and t) as well as the maximum number of iterations of the decoder. In practice,
a saturating affine function in δ can be used.

ttl(δ) = max(1,min(max ttl, �α δ + β)) .

To determine a suitable function, w, t, and the number of iterations are fixed.
The block size r is chosen so that a sufficiently precise measure of the DFR can
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be made with a reasonable number of samples (≈108). A nonlinear optimization
method (such as Nelder-Mead’s) is then used to find values for α and β that
minimize the DFR.

Table 2. ttl function parameters

Iteration count λ (w, t) (α, β) max ttl

100 128 (142, 134) (0.45, 1.1) 5

192 (206, 199) (0.36, 1.41) 5

256 (274, 264) (0.45, 1) 5

10,11 128 (142, 134) (1, 1) 5

192 (206, 199) (1, 1) 5

256 (274, 264) (1, 1) 5

Complexity and Constant Time Implementation. Backflip was primar-
ily designed to work with a maximum of 100 iterations. Reducing this num-
ber to 10 is possible and requires an adjustment to the ttl function. How-
ever it increases significantly the estimated DFR (see Sect. 4). Nevertheless, in
both cases, the average number of iterations is much smaller, between 2.03 for
(r, w, t) = (24821, 206, 199) and 4.38 for (r, w, t) = (32749, 274, 264).

The interest of reducing max time is to allow constant time implementation.
The Backflip iteration can be implemented in constant time [7], but to mask the
effective number of iterations and keep the DFR claims, the algorithm has to
execute exactly max time iterations.

4 Estimating the DFR from Simulation

Under Assumption 3 for a decoder D and a security level λ, we may extrapolate
the DFR by accurately estimating the tangent of the function r �→ log2(DFR(r))
for some value of r. We obtain an estimate of the tangent by taking the line
joining the values for two points r1 < r2. Note that, except for a possible lack of
accuracy (discussed below), this will provide upper bounds for the extrapolated
DFRs. Results are presented in Table 3, we denote rD,λ the smallest r such
that DFRD,λ(r) ≤ 2−λ. We denote rCPA

λ and rCCA
λ the blocks sizes in BIKE

for CPA and CCA security. Known asymptotic analysis [21,22] indicate that
the log2(DFR) is ultimately decreasing linearly, but this linear regime probably
starts much beyond the simulated region. Thus it is best to choose r1, r2 as large
as possible, but not too large else we would decrease the accuracy.

Finally note that a significant computational effort was needed to compute
the data of Table 4, a total of several years of CPU time (on a single core).
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Table 3. DFR estimation for Backflip limited to max time iterations.

#iter λ r1 r2 log2(p1) log2(p2) rD,λ rCCA
λ log2(r

CCA
λ ) rCPA

λ log2(r
CPA
λ )

100 128 9200 9350 −21.4 −27.7 11717 11779 −130.7 10163 −62.2

192 18200 18300 −23.0 −25.6 24665 24821 −196.1 19853 −66.2

256 30250 30400 −23.3 −26.2 42418 40597 −221.2 32749 −71.1

10 128 10000 10050 −22.7 −24.6 12816 11779 −89.2 10163 −28.8

192 19550 19650 −23.5 −25.7 26939 24821 −143.7 19853 −30.4

256 32250 32450 −22.9 −26.6 44638 40597 −180.0 32749 −32.3

11 128 10000 10050 −25.1 −27.1 12573 11779 −96.3 10163 −31.6

192 19550 19650 −25.9 −28.6 25580 24821 −171.1 19853 −34.2

256 32250 32450 −25.1 −29.5 42706 40597 −209.4 32749 −36.1

Accurary of Simulated DFRs. The decoding failure is a Bernoulli trial of proba-
bility p. If we observe F failures out of N trials our estimate is p̂ = F/N . The
normal distribution gives a good approximation of this distribution in which the
standard deviation for F is

√
p(1 − p)N . For p � 1 (the case of interest) we

have
∣
∣
∣ p̂−p

p

∣
∣
∣ ≤ ε = z/

√
pN with probability 1−α ≈ 0.68, 0.95, 0.997 for z = 1, 2, 3

respectively. We observe that the precision decreases as z/
√

F where F is the
number of failures observed and z will be determined by the confidence we wish
to achieve. Note that for the same confidence, |log p̂ − log p| ≤ ε. In our case,
we use Clopper–Pearson intervals [6] which are exact (they use the correct bino-
mial distribution and not an approximation). Those intervals are not symmetric,
the confidence interval is ε− below and ε+ above the measured values. In the
simulation for max time = 10 we let the decoder run up to 50 iterations and
store the number of effective iterations. We are thus able to measure the DFR
for 11 iterations of Backflip. We observe in Table 3 a significant improvement
in the DFR, but a lower confidence (Table 4) because the block sizes were cho-
sen for 10 iterations. Nevertheless, this suggests that increasing max time could

Table 4. Raw simulation data with confidence intervals (α = 0.01)

#iter λ r1 F1 N1 log2 p1 ε− ε+ r2 F2 N2 log2 p2 ε− ε+

100 128 9200 1253 3.45 109 −21.4 0.107 0.104 9350 102 2.30 1010 −27.7 0.390 0.361

192 18200 499 4.13 109 −23.0 0.171 0.165 18300 90 4.57 109 −25.6 0.416 0.383

256 30250 282 2.96 109 −23.3 0.229 0.219 30400 80 6.14 109 −25.3 0.443 0.407

10 128 10000 1074 7.29 109 −22.7 0.115 0.113 10050 282 6.99 109 −24.6 0.229 0.219

192 19550 440 5.08 109 −23.5 0.182 0.176 19650 81 4.55 109 −25.7 0.440 0.404

256 32250 513 3.91 109 −22.9 0.168 0.163 32450 37 3.83 109 −26.6 0.673 0.591

11 128 10000 200 7.29 109 −25.1 0.274 0.259 10050 48 6.99 109 −27.1 0.584 0.522

192 19550 83 5.08 109 −25.9 0.435 0.399 19650 11 4.55 109 −28.6 1.348 1.054

256 32250 109 3.91 109 −25.1 0.376 0.350 32450 5 3.83 109 −29.5 2.214 1.501
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provide interesting trade-offs between complexity and DFR for constant time
implementations.

Additional Comments. In [21], the BIKE round 1 algorithm was estimated to
have a DFR around 2−47.5 for (r, w, t) = (32 749, 274, 264). A significant improve-
ment is made with Backflip as its DFR is estimated around 2−71.1 for the same
parameters, with a smaller complexity on average.

Finally, note that the suggested parameters for the CCA variant of BIKE
Level 5 (λ = 256) have not been correctly estimated. The extrapolated block
size to reach a DFR of 2−256 is 42418 rather than 40597 in [1]. This is due to the
imprecision of the measures at the time. To mitigate this issue, it is very likely
that the tangent we are using is pessimistic and that the actual DFR is much
lower than the extrapolated value given here.

5 Conclusion

We have given in this paper the description and the rationale of the Backflip
decoder of BIKE [1]. We also explain how the DFR claims were obtained by
extrapolating simulation data. To justify the extrapolation technique we intro-
duce a new security assumption, related to the decoder, under which the DFR
claims are valid. The assumption is supported by other works analyzing the
asymptotic behavior of the bit flipping decoding for QC-MDPC codes. Under
this additional assumption, it is possible to prove that the BIKE KEMs, derived
from QC-MDPC codes, are IND-CCA. Doing this requires extensive simulations
in order to obtain accurate simulation data.

Backflip with 100 iterations would hardly produce efficient constant time
implementations. Reducing the number of iterations to 10 increases the DFR
and would require larger block size to reach a low enough DFR for IND-CCA
security. This was remarked in another independent work [7] which considers
another variant of the bit flipping algorithm, closer to the round 1 BIKE decoder,
and which is more efficient when the number of iterations is bounded to a small
number. The methodology we develop here is valid for other variants of bit
flipping and can be used to justify the conclusions of [7]: we may produce efficient
constant time variants of BIKE with provably low DFR (under Assumption 3)
but it requires a small increase of the block size, in the order of 5% to 10%.

Finally, there is one extra feature of the tangent extrapolation technique.
With a larger amount a computational effort for the simulation, it should be
possible, under the same assumptions, to get the same security guaranty (e.g.
IND-CCA) for a smaller block size.

A Error Floors for QC-MDPC

The DFR study we are making here differs from what is done for communication
systems where the code is fixed and the signal to noise ratio increases (i.e. the
bit error probability decreases). We expect to observe the same kind of DFR
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behavior here for QC-MDPC when we fix (w, t) and let r grow. Some classes of
error correcting codes, namely turbo-codes and LDPC codes to which MDPC
codes are akin, suffer from a phenomenon known as error floor. The log(DFR)
curve is first concave and quickly decreasing (the waterfall). Then at some point
the concavity changes and the DFR decreases much more slowly, this is known as
the error floor [15,19]. This could contradict the Assumption 3, but fortunately
error floors usually occur very low in DFR curves. The error floors are due to
the existence of low weight codewords, in the case of turbo codes, or, for LDPC
codes, to the existence of specific error configurations known as near-codewords.
An (u, v)-near-codeword is an error pattern of relatively small weight u with a
syndrome of small weight v (the syndrome is computed with the sparse parity
check matrix). Intuitively, it can be seen as a cluster of errors which are less
visible because, together, they only invalidate a few parity equations. If the
initial error pattern contains a near-codeword the decoder is more prone to fail.
If many near-codewords exist it may cause an error floor.

Error Floors From Near-Codewords. To affect decoding in a (2r, r, w, t)-QC-
MDPC-McEliece scheme, an (u, v)-near-codewords (see definition above) must
be such that u is smaller than t, and v significantly smaller than the typical
syndrome weight. The probability that such a near-codeword exists when the
QC-MDPC is chosen at random is extremely small. A very small number of QC-
MDPC codes may admit such words, but if they do there will be few of them.
Moreover, the decoding of the few error patterns containing near-codewords will
not automatically fail, the DFR will just increase a bit, with little impact on the
average DFR. Unless there is an algebraic structure which is not immediately
apparent, we do not expect near-codewords to have an impact on QC-MDPC
DFR.

Error Floors from Low Weight Codewords. Regardless of the algorithm,
the decoding of a noisy codeword will almost certainly fail if the noisy codeword
comes closer to a codeword c1 different from the original one c0. For a given
error e of weight t, and two codewords c0 and c1 at distance w from one another,
the decoding will fail if |c0 + e − c1| ≤ |e|, which happens with probability

Pw =
w∑

i=w/2

(
w
i

)(
n−w
t−i

)

(
n
t

) . (1)

An index 2 QC-MDPC code with block size r and parity check matrix row weight
w will generally have exactly r codewords of weight w. If H = (H0 | H1) is the
sparse parity check matrix, with two circulant blocks H0,H1, then G = (Hᵀ

1 |
Hᵀ

0) is a generator matrix of the code. With overwhelming probability, the r rows
of that generator matrix are the only minimal weight codewords. Let us denote
Pλ(r) ≈ rPw the failure probability due to those codewords. A simple analysis
shows that log2 Pλ(r) ∼r→∞ Cλ − (w/2 − 1) log2 r where Cλ only depends of
w and t. We have DFRD,λ(r) ≥ Pλ(r) for any decoder, this term will dominate
when r grows and thus the logarithm of the DFR is not concave in the whole
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range r ∈ [0,∞[. However the change of slope only happens for very large values
of r. We have

λ = 128, log2 Pλ(rCPA
λ ) = −396.8, and log2 Pλ(r) ≈ 535.0 − 70 log2 r

λ = 192, log2 Pλ(rCPA
λ ) = −618.5, and log2 Pλ(r) ≈ 837.8 − 102 log2 r

λ = 256, log2 Pλ(rCPA
λ ) = −868.7, and log2 Pλ(r) ≈ 1171.2 − 136 log2 r

and this will not affect the DFR for values of r relevant for Assumption 3. Finally
note that the sum of two (or more) rows of G may also contribute to the DFR.
However, it is easily observed that the contribution of those codewords is even
smaller.

Additional Comment. The error floor issue is new for QC-MDPC codes. As
far as this work is concerned, we assume through Assumption 3 that the error
floor occurs below the required 2−λ, validating the DFR estimation method. We
give above some arguments to support the assumption. We agree, as suggested
by one of the reviewers, that the matter needs to be more thoroughly studied,
but this goes beyond the scope of the present work.
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Abstract. QC-MDPC code-based KEMs rely on decoders that have a
small or even negligible Decoding Failure Rate (DFR). These decoders
should be efficient and implementable in constant-time. One example for
a QC-MDPC KEM is the Round-2 candidate of the NIST PQC standard-
ization project, “BIKE”. We have recently shown that the Black-Gray
decoder achieves the required properties. In this paper, we define sev-
eral new variants of the Black-Gray decoder. One of them, called Black-
Gray-Flip, needs only 7 steps to achieve a smaller DFR than Black-Gray
with 9 steps, for the same block size. On current AVX512 platforms, our
BIKE-1 (Level-1) constant-time decapsulation is 1.9× faster than the
previous decapsulation with Black-Gray. We also report an additional
1.25× decapsulating speedup using the new AVX512-VBMI2 and vector-
PCLMULQDQ instructions available on “Ice-Lake” micro-architecture.

Keywords: BIKE · QC-MDPC codes · Constant-time
implementation · QC-MDPC decoders

1 Introduction

The Key Encapsulation Mechanism (KEM) called Bit Flipping Key Encapsula-
tion (BIKE) [2] is based on Quasi-Cyclic Moderate-Density Parity-Check (QC-
MDPC) codes, and is one of the Round-2 candidates of the NIST PQC Stan-
dardization Project [15]. The submission includes several variants of the KEM
and we focus here on BIKE-1-CCA Level-1 and Level-3.

The common QC-MDPC decoding algorithms are derived from the Bit-
Flipping algorithm [12] and come in two main variants.

– “Step-by-Step”: it recalculates the threshold every time that a bit is flipped.
This is an enhancement of the “in-place” decoder described in [11].

– “Simple-Parallel”: a parallel algorithm similar to that of [12]. It first calculates
some thresholds for flipping bits and then flips the bits in all of the relevant
positions, in parallel.
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BIKE uses a decoder for the decapsulation phase. The specific decoding algo-
rithm is a choice shaped by the target DFR, security, and performance. The
IND-CCA version of BIKE Round-2 [2] is specified with the “BackFlip” decoder,
which is derived from Simple-Parallel. The IND-CPA version is specified with
the “One-Round” decoder, which combines the Simple-Parallel and the Step-By-
Step decoders. In the “additional implementation” [7] we chose to use the “Black-
Gray” decoder (BG) [5,8], with the thresholds defined in [2]. This decoder (with
different thresholds) appears in the BIKE pre-Round-1 submission “CAKE” and
is due to N. Sendrier and R. Misoczki.

This paper explores a new family of decoders that combine the BG and the
Bit-Flipping algorithms in different ways. Some combinations achieve the same
or even better DFR compared to BG with the same block size, and at the same
time also have better performance.

For better security we replace the mock-bits technique of the additional
implementation [5] with a constant-time implementation that applies rotation
and bit-slice-adder as proposed in [3] (and vectorized in [13]), and enhance it with
further optimizations. We also report the first measurements of BIKE-1 on the
new Intel “Ice-Lake” micro-architecture, leveraging the new AVX512-VBMI2,
vector-AESENC and vector-PCLMULQDQ instructions [1] (see also [4,10]).

The paper is organized as follows. Section 2 defines notation and offers some
background. The Bit-Flipping and the BG algorithms are given in Sect. 3. In
Sect. 4 we define new decoders (BGF, B and BGB) and report our DFR per block
size studies in Sect. 5. We discuss our new constant-time QC-MDPC implemen-
tation in Sect. 6. Section 7 reports the resulting performance. Section 8 concludes
the paper.

2 Preliminaries and Notation

Let F2 be the finite field of characteristic 2. Let R be the polynomial ring
F2[X]/ 〈Xr − 1〉. For every element v ∈ R its Hamming weight is denoted by
wt(v), its bits length by |v|, and its support (i. e., the positions of its set bits) by
supp(v). Polynomials in R are viewed, interchangeably, also as square circulant
matrices in F

r×r
2 . For a matrix H ∈ F

r×r
2 , let Hi denote its i-th column written

as a row vector. We denote a failure by the symbol ⊥. Uniform random sam-
pling from a set W is denoted by w

$←− W . For an algorithm A, we denote its
output by out = A() if A is deterministic, and by out ← A() otherwise. Here-
after, we use the notation x.ye−z to denote the number (x + y

10 ) · 10−z (e. g.,
1.2e−3 = 1.2 · 10−3.
BIKE-1 IND-CCA. BIKE-1 (IND-CCA) flows are shown in Table 1. The com-
putations are executed over R, and the block size r is a parameter. The weights
of the secret key h = (h0, h1, σ0, σ1) and the errors vector e = (e0, e1), are w
and t, respectively, the public key, ciphertext, and shared secret are f = (f0, f1),
c = (c0, c1), and k, respectively. H, K denote hash functions (as in [2]). Cur-
rently, the parameters of BIKE-1 IND-CCA for NIST Level-1 are: r = 11, 779,
|f | = |c| = 23, 558, |k| = 256, w = 142, d = w/2 = 71 and t = 134.
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Table 1. BIKE-1-CCA

Key generation • h0, h1
$←− R of odd weight wt(h0) = wt(h1) = w/2

• σ0, σ1
$←− R

• g
$←− R of odd weight (so wt(g) ≈ r/2)

• (f0, f1) = (gh1, gh0)

Encapsulation • m
$←− R

• (e0, e1) = H(mf0, mf1) where wt(e0) + wt(e1) = t

• (c0, c1) = (mf0 + e0, mf1 + e1)

• k = K(mf0, mf1, c0, c1)

Decapsulation • Compute the syndrome s = c0h0 + c1h1

• (e′
o, e

′
1) ← decode(s, h0, h1)

• If wt ((e′
0, e

′
1)) �= t or decoding failed then k = K(σ0, σ1, c)

• else k = K(c0 + e′
0, c1 + e′

1, c0, c1)

3 The Bit-Flipping and the Black-Gray Decoders

Algorithm 1 describes the Bit-Flipping decoder [12]. The computeThreshold
step computes the relevant threshold according to the syndrome, the errors vec-
tor, or the Unsatisfied Parity-Check (UPC) values. The original definition of [12]
takes the maximal UPC as its threshold.

Algorithm 1. e=Bit-Flipping(c, H)
Input: H ∈ F

r×n
2 (parity-check matrix), c ∈ F

n
2 (ciphertext), X (Maximal number

of iterations), u (Maximal syndrome weight)
Output: e ∈ F

n
2 (errors vector)

Exception: A “decoding failure” returns ⊥
1: procedure Bit-Flipping(c, H)
2: s = HcT , e = 0, upc[n-1:0] = 0n

3: for itr = 0 . . . X do
4: th = computeThreshold(s,e)
5: for i in 0 . . . n − 1 do
6: upc[i] = Hi · s
7: if upc[i] > th then e[i] = e[i] ⊕ 1 � Flip an error bit

8: s = H(cT + eT ) � Update the syndrome

9: if (wt(s) = u) then return e
10: else return ⊥

Algorithm 2 describes the BG decoder. It is implemented in BIKE additional
code package [7]. Every iteration of BG involves three main steps. Step I calls
BitFlipIter to perform one Bit-Flipping iteration and sets the black and
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gray arrays. Steps II and III call BitFlipMaskedIter. Here, another Bit-
Flipping iteration is executed, but the errors vector e is updated according to
the black/gray masks, respectively.

In Step I the decoder uses some threshold (th) to decide whether or not a
certain bit is an error bit. The probability that the bit is indeed an error bit
increases as a function of the gap (upc[i] - th). The algorithm records bits with
a small gap in the black/gray masks so that the subsequent Step II and Step
III can use the masks in order to gain more confidence in the flipped bits. In
this paper δ = 4.

Algorithm 2. e=BG(c, H)
Input: H ∈ F

r×n
2 (parity-check matrix), c ∈ F

n
2 (ciphertext), XBG (maximal

number of iterations)
Output: e ∈ F

n
2 (errors vector)

Exception: A “decoding failure” returns ⊥
1: procedure BitFlipIter(s, e, th, H)
2: black[n − 1 : 0] = gray[n − 1 : 0] = 0n

3: for i in 0 . . . n − 1 do
4: upc[i] = Hi · s
5: if upc[i] ≥ th then
6: e[i] = e[i] ⊕ 1 � Flip an error bit
7: black[i] = 1 � Update the Black set
8: else if upci >= th − δ then
9: gray[i] = 1 � Update the Gray set

10: s = H(cT + eT ) � Update the syndrome
11: return (s, e, black, gray)

12: procedure BitFlipMaskedIter(s, e, mask, th, H)
13: for i in 0 . . . n − 1 do
14: upc[i] = Hi · s
15: if upc[i] ≥ th then
16: e[i] = e[i] ⊕ mask[i] � Flip an error bit

17: s = H(cT + eT ) � Update the syndrome
18: return (s, e)

19: procedure Black-Gray(c, H)
20: s = HcT , e[n − 1 : 0] = 0n, δ = 4
21: for itr in 1 . . . XBG do
22: th = computeThreshold(s)
23: (s, e, black, gray) = BitFlipIter(s, e, th, H) � Step I
24: (s, e) = BitFlipMaskedIter(s, e, black, ((d + 1)/2), H) � Step II
25: (s, e) = BitFlipMaskedIter(s, e, gray, ((d + 1)/2), H) � Step III

26: if (wt(s) �= 0) then
27: return ⊥
28: else
29: return e
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4 New Decoders with Different Shades of Gray

In cases where Algorithm 2 can safely run without a constant-time implemen-
tation, Step II and Step III are fast. The reason is that the UPC values are
calculated only for indices in supp(black)/supp(gray), and the number of these
indices is at most the number of bits that were flipped in Step I (certainly less
than n). By contrast, if constant-time and constant memory-access are required,
the implementation needs to access all of the n positions uniformly. In such case
the performance of Step II and Step III is similar to the performance of Step I.
Thus, the overall decoding time of the BG decoder with XBG iterations, where
each iteration is executing steps I, II, and III, is proportional to 3 · XBG.

The decoders that are based on Bit-Flipping are not perfect - they can
erroneously flip a bit that is not an error bit. The probability to erroneously
flip a “non-error” bit is an increasing function of wt(e)/n and also depends on
the threshold (note that wt(e) is changing during the execution). Step II and
Step III of BG are designed to fix some erroneously flipped bits and therefore
decrease wt(e) compared to wt(e) after one iteration of Simple-Parallel (without
the black/gray masks). Apparently, when wt(e)/n becomes sufficiently small
the black/gray technique is no longer needed because erroneous flips have low
probabilities. This observation leads us to propose several new variations of the
BG decoder (see Appendix A for their pseudo-code).

1. A Black decoder (B): every iteration consists of only Steps I, II (i. e., there is
no gray mask).

2. A Black-Gray-Flip decoder (BGF): it starts with one BG iteration and con-
tinues with several Bit-Flipping iterations.

3. A Black-Gray-Black decoder (BGB): it starts with one BG iteration and
continues with several B-iterations.

Example 1 (Counting the number of steps). Consider BG with 3 iterations. Here,
every iteration involves 3 steps (I, II, and III). The total number of practically
identical steps is 9. Consider, BGF with 3 iterations. Here, the first iteration
involves 3 steps (I, II, and III) and the rest of the iterations involve only one
step. The total number of practically identical steps is 3 + 1 + 1 = 5.

5 DFR Evaluations for Different Decoders

In this section we evaluate and compare the B, BG, BGB, and BGF decoders
under two criteria.

1. The DFR for a given number of iterations and a given value of r.
2. The value of r that is required to achieve a target DFR with a given number

of iterations.

In order to approximate the DFR we use the extrapolation method [16], and
apply two forms of extrapolation: “best linear fit” [8] and “two large r’s fit” (as
in [8][Appendix C]). We point out that the extrapolation method relies on the
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assumption that the dependence of the DFR on the block size r is a concave
function in the relevant range of r. Table 2 summarizes our results. It shows the
r-value required for achieving a DFR of 2−23(≈ 10−8), 2−64, and 2−128. It also
shows the approximated DFR for r = 11, 779 (which is the value used for BIKE-
1 Level-1 CCA). Appendix B provides the full information on the experiments
and the extrapolation analysis.

Table 2. The DFR achieved by different decoders. Two extrapolation methods are
shown: “best linear fit” (as in [8]), “two large r’s fit” (as in [8][Appendix C]). The
second column shows the number of iterations for each decoder. The third column
shows the total number of (time-wise identical) executed steps.

Best linear fit Two large r’s fit

Decoder #I #S DFR =
2−23

2−64 2−128 DFR at
11, 779

DFR =
2−23

2−64 2−128 DFR at
11, 779

BG 3 9 10, 253 11, 213 12, 739 2−88 10, 253 11, 171 12, 619 2−90

4 12 10, 163 11, 003 12, 347 2−100 10, 163 10, 909 12, 107 2−110

5 15 10, 133 10, 909 12, 107 2−111 10, 133 10, 853 11, 987 2−116

BGB 4 9 10, 253 11, 093 12, 491 2−95 10, 253 11, 083 12, 491 2−96

5 11 10, 163 10, 973 12, 227 2−105 10, 163 11, 027 12, 413 2−99

6 13 10, 133 10, 973 12, 269 2−104 10, 133 10, 949 12, 197 2−107

BGF 5 7 10, 301 11, 171 12, 539 2−92 10, 301 11, 131 12, 491 2−95

6 8 10, 253 11, 027 12, 277 2−102 10, 253 10, 973 12, 197 2−107

7 9 10, 181 10, 949 12, 149 2−108 10, 181 10, 949 12, 107 2−112

B 4 8 10, 259 11, 699 13, 901 2−67 10, 301 11, 813 14, 221 2−63

5 10 10, 133 11, 437 13, 229 2−79 10, 133 11, 437 13, 451 2−76

6 12 10, 067 11, 213 13, 037 2−84 10, 067 11, 437 13, 397 2−78

Interpreting the Results of Table 2. The conclusions from Table 2 indicate
that it is possible to trade BG with 3 iterations for BGF with 6 iterations. This
achieves a better DFR and also a 9

8 = 1.125× speedup. Moreover, if the required
DFR is at most 2−64, it suffices to use BGF with only 5 iterations (and get
the same DFR as BG with 3 iterations). This achieves a factor of 9

7 = 1.28×
speedup. The situation is similar for BG with 4 iterations compared to BGB with
5 iterations: this achieves a 12

11 = 1.09× speedup. If a DFR of 2−128 is required it
is possible to trade BG with 4 iterations for BGF with 7 iterations and achieve a
12
9 = 1.33× speedup. Another interesting trade off is available if we are willing to
slightly increase the value of r. Compare BG with 4 iterations (i. e., 12 steps) and
BGF with 6 iterations (i. e., 8 steps). For a DFR of 2−64 we have rBG = 11, 003
and rBGF = 11, 027. A very small relative increase in the block size, namely
(rBGF − rBG)/rBG = 0.0022, gives a 12

8 = 1.5× speedup.

Example 2 (BGF versus BG with 3 iterations). Fig. 1 shows a qualitative com-
parison (the precise details are provided in Appendix B). The left panel indicates
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that BGF has a better DFR than BG for the same number of (9) steps when
r > 9, 970. Similarly, The right panel shows the same phenomenon even with
a smaller number of BGF steps (7) when r > 10, 726 (with the best linear fit
method) and r > 10, 734 (with the two large r’s method) that correspond to a
DFR of 2−43 and 2−45, respectively. Both panels show that that crossover point
appears for values of r below the range that is relevant for BIKE.

Fig. 1. DFR comparison of BG with 3 iterations (9 steps) to BGF with: (Left panel)
7 iterations (9 steps); (Right panel) 5 iterations (7 steps). See the text for details.

6 Constant-Time Implementation of the Decoders

The mock-bits technique was introduced in [5] for side-channel protection in
order to obfuscate the (secret) supp(h0), supp(h1). Let Mi denote the mock-bits
used for obfuscating supp(hi) and let Mi = Mi � supp(hi). For example, the
implementation of BIKE-1 Level-1 used |Mi| = 62 mock-bits and thus |Mi| =
133. The probability to correctly guess the secret 71 bits of hi if the whole set
|Mi| is given is

(
133
71

)−1 ≈ 2−128. This technique was designed for ephemeral keys
but may leak information on the private key if it is used multiple times (i. e.,
if most of |Mi| can be trapped). By knowing that supp(hi) ⊂ Mi, an adversary
can learn that all the other (r − |Mi|) bits of hi are zero. Subsequently, it can
generate the following system of linear equations (h0, h1)T · (f0, f1) = 0, set
the relevant variables to zero and solve it. To avoid this, |Mi| needs to be at
least r/2 (probably more) so the system is sufficiently undetermined. However,
using more than Mi mock-bits makes this method impractical (it was used as
an optimization to begin with).

Therefore, to allow multiple usages of the private key we modify our imple-
mentation and use some of the optimizations suggested in [3] that were later vec-
torized in [13]1. Specifically, we leverage the (array) rotation technique (which
was also used in [14] for FPGAs). Here, the syndrome is rotated, d times, by
supp(hi). The rotated syndrome is then accumulated in the upc array, using a
bit-slice technique that implements a Carry Save Adder (CSA).
1 The paper [13] does not point to publicly available code.
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6.1 Optimizing the Rotation of an Array

Consider the rotation of the syndrome s (of r bits) by e. g., 1, 100 positions.
It starts with “Barrel shifting” by the word size of the underlying architecture
(e. g., for AVX512 the words size is 512-bits), here twice (1, 024 positions). It
then continues with internal shifting here by 76 positions. Reference [13] shows
a code snippet (for the core functionality) for rotating by a number of positions
that is less than the word size. Figure 2 presents our optimized and simplified
snippet for the same functionality using the mm512 permutex2var epi64
instruction instead of the BLENDV and the VPALIGND.

1__m512i previous , current , a0, a1 , idx , idx1 , num_full_qw , one;
2uint64_t count64 = bitscount & 0x3f;
3
4num_full_qw = _mm512_set1_epi8(bitscount >> 6);
5one = _mm512_set1_epi64 (1);
6previous = _mm512_setzero_si512 ();
7idx = _mm512_setr_epi64 (0x0, 0x1 , 0x2, 0x3, 0x4 , 0x5, 0x6 , 0x7);
8idx = _mm512_add_epi64(idx , num_full_qw);
9idx1 = _mm512_add_epi64(idx , one);
10
11for(int i = R_ZMM; i >= 0; i--)
12{
13current = _mm512_loadu_si512(in[i]);
14a0 = _mm512_permutex2var_epi64(current , idx , previous);
15a1 = _mm512_permutex2var_epi64(current , idx1 , previous);
16a0 = _mm512_srli_epi64(a0, count64);
17a1 = _mm512_slli_epi64(a1, 64 - count64);
18_mm512_storeu_si512(out[i], _mm512_or_si512(a0 , a1));
19previous = current;
20}

Fig. 2. Right rotate of 512-bit R ZMM registers using AVX512 instructions.

The latest Intel micro-architecture “Ice-Lake” introduces a new instruction
VPSHRDVQ as part of the new AVX512-VBMI2 set. This instruction receives two
512-bit (ZMM) registers (a, b) together with another 512-bit index register (c) and
outputs in dst the following results:

1For j = 0 to 7
2i = j*64
3dst[i+63:i] := concat(b[i+63:i], a[i+63:i]) >> (c[i+63:i] & 63)

Figure 3 shows how VPSHRDVQ can be used in order to replace the three
instructions in lines 16–18 of Fig. 2.

Remark 1. Reference [13] remarks on using tables for some syndrome rotations
but mentions that it does not yield significant speedup (and in some cases even
shows a performance penalty). This is due to two bottlenecks in a constant-time
implementation: (a) extensive memory access; (b) pressure on the execution port
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that the shift operations are using. In our case, the bottleneck is (a) so using
tables to reduce the number of shifts is not a remedy. For completeness, we
describe a new table method that can be implemented using Ice-Lake CPUs.
The new VPERMI2B ( mm512 permutex2var epi8) instruction [1] allows to
permute two ZMMs at a granularity of bytes, and therefore to perform the rota-
tion in lines 16–18 of Fig. 2 at a granularity of 8 bits (instead of 64). To use tables
for caching: (a) initialize a table with i = 0, . . . , 7 right-shifts of the syndrome
(only 8 rows); (b) modify lines 14–15 to use VPERMI2B; (c) load (in constant-time)
the relevant row before calling the Barrel-shifter. As a result, lines 16–18 can be
removed to avoid all the shift operations. As explained above, this technique does
not improve the performance of the rotation.

1__m512i count64 = _mm512_set1_epi64(bitscount & 0x3f);
2
3for(int i = R_ZMM; i >= 0; i--)
4{
5data = _mm512_loadu_si512 (&in->qw[8 * i]);
6a0 = _mm512_permutex2var_epi64(current , idx , previous);
7a1 = _mm512_permutex2var_epi64(current , idx1 , previous);
8a0 = _mm512_shrdv_epi64(a0 , a1 , count64);
9_mm512_storeu_si512 (&out ->qw[8 * i], a0);
10previous = current;
11}

Fig. 3. Right rotate of 512-bit R ZMM registers using AVX512-VBMI2 instructions. The
initialization in Fig. 2 (lines 1–10) is omitted.

6.2 Using Vector-PCLMULQDQ and vector-AESENC

The Ice-Lake processors support the new vectorized PCLMULQDQ and AESENC
instructions [1]. We used the multiplication code presented in [9][Figure 2], and
the CTR DRBG code of [6,10], in order to improve our BIKE implementation.
We also used larger caching of random values (1, 024 bytes instead of 16) to fully
leverage the DRBG. The results are given in Sect. 7.

7 Performance Studies

We start with describing our experimentation platforms and measurements
methodology. The experiments were carried out on two platforms, (Intel R© Turbo
Boost Technology was turned off on both):

– EC2 Server: An AWS EC2 m5.metal instance with the 6th

Intel R©CoreTM Generation (Micro architecture Codename “Sky Lake” [SKL])
Xeon R©Platinum 8175M CPU 2.50 GHz. This platform has 384 GB RAM, 32K
L1d and L1i cache, 1MiB L2 cache, and 32MiB L3 cache.

– Ice-Lake: Dell XPS 13 7390 2-in-1 with the 10th Intel R©CoreTM Generation
(Micro architecture Codename “Ice Lake” [ICL]) Intel R©CoreTM i7-1065G7
CPU 1.30 GHz. This platform has 16 GB RAM, 48K L1d and 32K L1i cache,
512K L2 cache, and 8MiB L3 cache.
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The Code. The code is written in C and x86-64 assembly. The implementations
use the (vector) PCLMULQDQ, AES-NI, AVX2, AVX512 and AVX512-VBMI2
instructions when available. The code was compiled with gcc (version 8.3.0) in
64-bit mode, using the “O3” Optimization level with the “-funroll-all-loops” flag,
and run on a Linux (Ubuntu 18.04.2 LTS) OS.

Measurements Methodology. The performance measurements reported here-
after are measured in processor cycles (per single core), where lower count is
better. All the results were obtained using the same measurement methodology,
as follows. Each measured function was isolated, run 25 times (warm-up), fol-
lowed by 100 iterations that were clocked (using the RDTSC instruction) and
averaged. To minimize the effect of background tasks running on the system,
every experiment was repeated 10 times, and the minimum result was recorded.

7.1 Decoding and Decapsulation: Performance Studies

Performance of BG. Table 3 shows the performance of our implementation
which uses the rotation and bit-slice-adder techniques of [3,13], and compares the
results to the additional implementation of BIKE [7]. The results show a speedup
of 3.75×−6.03× for the portable (C code) of the decoder, 1.1× speedup for the
AVX512 implementations but a 0.66× slowdown for the AVX2 implementation.
The AVX512 implementation leverages the masked store and load operations
that do not exist in the AVX2 architecture. Note that key generation is faster
because generation of mock-bits is no longer needed.

Table 4 compares our implementations with different instruction sets
(AVX512F, AVX512-VBMI2, vector-PCLMULQDQ, and vector-AES). The results
for BIKE-1 Level-1 show speedups of 1.47×, 1.28×, and 1.26× for key genera-
tion, encapsulation, and decapsulation, respectively. Even better speedups are
shown for BIKE-1 Level-3 of 1.58×, 1.39×, and 1.24×, respectively.

Consider the 6th column and the BIKE-1 Level-1 results. The ∼ 94K (93, 521)
cycles of the key generation consists of 13K, 13K, 1K, 1K, 5.5K, 26K, 26K
cycles for generating h0, h1, σ0, σ1, g, f0, f1, respectively (and some additional
overheads). Compared to the 3rd column of this table (with only AVX512F
implementation): 13.6K, 13.6K, 2K, 2K, 6K, 46K, 46K, respectively. Indeed,
as reported in [9], the use of vector-PCLMULQDQ contributes a 2× speedup to
the polynomial multiplication. Note that the vector-AES does not contribute
much, because the bottleneck in generating h0, h1 is the constant-time rejection
sampling check (if a bit is set) and not the AES calculations.

Table 5 compares our right-rotation method to the snippet shown in [13]. To
accurately measure these “short” functionalities, we ported them into separate
compilation units and compiled them separately using the “-c” flag. In addition,
the number of repetitions was increased to 10, 000. This small change improves
the rotation significantly (by 2.3×) and contributes ∼ 2% to the overall decoding
performance.
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8 Discussion

Our study shows an unexpected shades-of-gray combination decoders:
BGF offers the most favorable DFR-efficiency trade off. Indeed (see Table 2), it
is possible to trade BG, which was our leading option so far, for another decoder
and have the same or even better DFR for the same block size. The advantage

Table 3. The EC2 server performance of BIKE-1 Level-1 when using the BG decoder
with 3 iterations. The cycles (in columns 4, 5) are counted in millions.

Implementation Level Op Additional
Implementa-
tion [7]

This
paper

Speedup

C-portable stand-alone Level-1 Keygen 1.67 1.37 1.22

Decaps 60 15.99 3.75

Level-3 Keygen 4.75 4.03 1.18

Decaps 242.72 64.09 3.79

C-portable + OpenSSL Level-1 Keygen 0.86 0.56 1.54

Decaps 52.38 8.68 6.03

Level-3 Keygen 2.71 1.98 1.37

Decaps 218.42 39.82 5.48

AVX2 Level-1 Keygen 0.27 0.15 1.81

Decaps 3.03 3.62 0.84

Level-3 Keygen 0.62 0.38 1.64

Decaps 10.46 15.84 0.66

AVX512 Level-1 Keygen 0.26 0.15 1.79

Decaps 2.59 1.83 1.42

Level-3 Keygen 0.57 0.37 1.57

Decaps 8.97 8.14 1.10

Table 4. BIKE-1 Level-1 using the BG decoder with 3 iterations. Performance on
Ice-Lake using various instruction sets.

Level Op AVX512F AVX512F
AVX512-VBMI2
VPCLMULQDQ

Speedup AVX512F
AVX512-VBMI2
VPCLMULQDQ, VAES

Speedup

Level-1 Keygen 137,095 95,068 1.44 93,521 1.47

Encaps 192,123 150,860 1.27 150,612 1.28

Decaps 2,192,433 1,711,127 1.28 1,737,912 1.26

Level-3 Keygen 375,604 240,350 1.56 238,198 1.58

Encaps 432,577 310,908 1.39 310,533 1.39

Decaps 9,019,103 7,201,222 1.25 7,277,357 1.24
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Table 5. Rotation performance, comparison of our impl. and the snippet of [13].

Level |R| Platform Snippet
of [13]

Fig. 2 Fig. 3 AVX512
Speedup

AVX512-VBMI
Speedup

L1 11,779 EC2 server 128 105 – 1.21 –

L1 11,779 Ice-Lake 149 120 63.97 1.24 2.33

L3 24,821 EC2 server 250 205 – 1.22 –

L3 24,821 Ice-Lake 296 236 121.72 1.25 2.43

L5 40,597 EC2 server 404 329 – 1.23 –

L5 40,597 Ice-Lake 475 382 194.46 1.24 2.44

is either in performance (e. g., BGF with 6 iterations is 12
8 = 1.5× faster than

BG with 4 iterations) or in implementation simplicity (e. g., the B decoder that
does not involve gray steps).

A Comment on the Backflip Decoder. In [8] we compared Backflip with
BG and showed that it requires a few more steps to achieve the same DFR (in the
relevant range of r). We note that a Backflip iteration is practically equivalent to
Step I of BG plus the Time-To-Live (TTL) handling. It is possible to improve the
constant-time TTL handling with the bit-slicing techniques and reduce this gap.
However, this would not change the DFR-efficiency properties reported here.

Further Optimizations. The performance of BIKE’s constant-time implemen-
tation is dominated by three primitives: (a) polynomial multiplication (it remains
a significant portion of the computations even after using the vector-PCLMULQDQ
instructions); (b) polynomial rotation (that requires extensive memory access);
(c) the rejection sampling (approximately 25% of the key generation). This paper
showed how some of the new Ice-Lake features can already be used for perfor-
mance improvement. Further optimizations are an interesting challenge.

Parameter Choice Recommendations for BIKE. BIKE-1 Level-1 (IND-
CCA) [2] uses r = 11, 779 with a target DFR of 2−128, and uses the Backflip
decoder. Our paper [8] shows some problems with this decoder and therefore
recommends to use BG instead. It also shows that even if DFR = 2−128 there
is still a gap to be addressed, in order to claim IND-CCA security (roughly
speaking - a bound on the number of weak keys). We set aside this gap for now
and consider a non-weak key. If we limit the number of usages of this key to Q
and choose r such that Q · DFR < 2−µ (for some target margin μ), then the
probability that an adversary with at most Q queries sees a decoding failure is
at most 2−µ. We suggest that KEMs should use ephemeral keys (i. e., Q = 1)
for forward secrecy, and this usage does not mandate IND-CCA security (IND-
CPA suffices). Here, from the practical view-point, we only need to target a
sufficiently small DFR such that decapsulation failures would be a significant
operability impediment. However, an important property that is desired, even
with ephemeral keys, is some guarantee that an inadvertent 1 ≤ α times key
reuse (where α is presumably not too large) would not crash the security. This
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suggests the option for selecting r so that α · DFR < 2−µ. For example, taking
μ = 32 and α = 232 (an extremely large number of “inadvertent” reuses), we
can target a DFR of 2−64. Using BGF with 5 iterations, we can use r = 11, 171,
which is smaller than 11, 779 that is currently used for BIKE.

Acknowledgments. We thank Ray Perlner from NIST for pointing out that the
mock-bits technique is not sufficient for security when using static keys, which drove
us to change our BIKE implementation. This research was partly supported by: The
Israel Science Foundation (grant No. 3380/19); The BIU Center for Research in Applied
Cryptography and Cyber Security, and the Center for Cyber Law and Policy at the
University of Haifa, both in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office.

A Pseudo-Code for B, BG, BGB, BGF

A description of the B, BG, BGB, BGF decoders is given in Sect. 4. Algorithm
3 provides a formal definition of them.

Algorithm 3. e=decoder(D, c, H)
Input: D (decoder type one of {B, BG, BGB, BGF}), H ∈ F

r×n
2 (parity-check

matrix), c ∈ F
n
2 (ciphertext), X (maximal number of iterations)

Output: e ∈ F
n
2 (errors vector)

Exception: A “decoding failure” returns ⊥
1: procedure decoder(D, c, H)
2: s = HcT , e[n − 1 : 0] = 0n, δ = 3
3: for itr in 1 . . . X do
4: th = computeThreshold(s)
5: (s, e, black, gray) = BitFlipIter(s, e, th, H) � Step I
6: if (D ∈ {B, BG, BGB}) or (D = BGF and it = 1) then
7: (s, e) = BitFlipMaskedIter(s, e, black, ((d + 1)/2), H) � Step II

8: if (D ∈ {BG, BGB, BGF} and itr = 1) then
9: (s, e) = BitFlipMaskedIter(s, e, gray, ((d + 1)/2), H) � Step III

10: if (wt(s) �= 0) then
11: return ⊥
12: else
13: return e

B Additional Information on the Experiments
and Results

The following values of r were used by the best linear fit extrapolation method:

– BIKE-1 Level-1: 9349, 9547, 9749, 9803, 9859, 9883, 9901, 9907, 9923, 9941,
9949, 10037, 10067, 10069, 10091, 10093, 10099, 10133, 10139.
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For Level-1 studies the number of tests for every value of r is 3.84M for r ∈
[9349, 9901] and 384M for (larger) r ∈ [9907, 10139]. For the line through two
large points extrapolation method (see [8][Appendix C] and Level-1, we chose:
r = 10141 running 384M tests, and r = 10259 running ∼ 7.3 (technically 7.296)
billion tests (Table 6).
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Abstract. Gaussian sampling over the integers is a crucial tool in
lattice-based cryptography, but has proven over the recent years to be
surprisingly challenging to perform in a generic, efficient and provable
secure manner. In this work, we present a modular framework for gen-
erating discrete Gaussians with arbitrary center and standard deviation.
Our framework is extremely simple, and it is precisely this simplicity
that allowed us to make it easy to implement, provably secure, portable,
efficient, and provably resistant against timing attacks. Our sampler is
a good candidate for any trapdoor sampling and it is actually the one
that has been recently implemented in the Falcon signature scheme. Our
second contribution aims at systematizing the detection of implementa-
tion errors in Gaussian samplers. We provide a statistical testing suite
for discrete Gaussians called SAGA (Statistically Acceptable GAussian).
In a nutshell, our two contributions take a step towards trustable and
robust Gaussian sampling real-world implementations.

Keywords: Lattice based cryptography · Gaussian sampling ·
Isochrony · Statistical verification tools

1 Introduction

Gaussian sampling over the integers is a central building block of lattice-based
cryptography, in theory as well as in practice. It is also notoriously difficult
to perform efficiently and securely, as illustrated by numerous side-channel
attacks exploiting BLISS’ Gaussian sampler [9,21,49,56]. For this reason, some
schemes limit or proscribe the use of Gaussians [6,36]. However, in some sit-
uations, Gaussians are unavoidable. The most prominent example is trapdoor
sampling [26,40,48]: performing it with other distributions is an open question,

c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 53–71, 2020.
https://doi.org/10.1007/978-3-030-44223-1_4
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except in limited cases [37] which entail a growth O(
√

n) to O(n) of the out-
put, resulting in dwindling security levels. Given the countless applications of
trapdoor sampling (full-domain hash signatures [26,53], identity-based encryp-
tion (or IBE) [18,26], hierarchical IBE [1,11], etc.), it is important to come up
with Gaussian samplers over the integers which are not only efficient, but also
provably secure, resistant to timing attacks, and in general easy to deploy.

Our first contribution is to propose a Gaussian sampler over the integers with
all the properties which are expected of a sampler for widespread deployment.
It is simple and modular, making analysis and subsequent improvements easy.
It is efficient and portable, making it amenable to a variety of scenarios. Finally,
we formally prove its security and resistance against timing attacks. We detail
below different aspects of our sampler:

– Simplicity and Modularity. At a high level, our framework only requires
two ingredients (a base sampler and a rejection sampler) and combines them
in a simple and black-box way. Not only does it make the description of our
sampler modular (as one can replace any of the ingredients), this simplicity
and modularity also infuses all aspects of its analysis.

– Genericity. Our sampler is fully generic as it works with arbitrary center μ
and standard deviation σ. In addition, it does not incur hidden precompu-
tation costs: given a fixed base sampler of parameter σmax, our framework
allows to sample from DZ,σ,μ for any ηε(Zn) ≤ σ ≤ σmax. In comparison, [42]
implicity requires a different base sampler for each different value of σ; this
limits its applicability for use cases such as Falcon [53], which has up to 2048
different σ’s, all computed at key generation.

– Efficiency and Portability. Our sampler is instantiated with competitive
parameters which make it very efficient in time and memory usage. For
σmax = 1.8205 and SHAKE256 used as PRNG, our sampler uses only 512
bytes of memory and achieved 1,848,428 samples per second on an Intel i7-
6500U clocked at 2.5 GHz. Moreover, our sampler can be instantiated in a
way that uses only integer operations, making it highly portable.

– Provable Security. A security analysis based on the statistical distance
would either provide very weak security guarantees or require to increase
the running time by an order of magnitude. We instead rely on the Rényi
divergence, a tool which in the recent years has allowed dramatic efficiency
gains for lattice-based schemes [3,52]. We carefully selected our parameters
as to make them as amenable to a Rényi divergence-based analysis.

– Isochrony. We formally show that our sampler is isochronous: its running
time is independent of the inputs σ, μ and of the output z. Isochrony is
weaker than being constant-time, but it nevertheless suffices to argue secu-
rity against timing attacks. Interestingly, our proof of isochrony relies on
techniques and notions that are common in lattice-based cryptography: the
smoothing parameter, the Rényi divergence, etc. In particular, the isochrony
of our sampler is implied by parameters dictated by the current state of the
art for black-box security of lattice-based schemes.
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One second contribution stems from a simple observation: implementations of
otherwise perfectly secure schemes have failed in spectacular ways by introduc-
ing weaknesses, a common one being randomness failure: this is epitomized by
nonce reuses in ECDSA, leading to jailbreaking Sony PS3 consoles1 and exposing
Bitcoin wallets [8]. The post-quantum community is aware of this point of failure
but does not seem to have converged on a systematic way to mitigate it [46]. Ran-
domness failures have been manually discovered and fixed in implementations of
Dilithium [45], Falcon [47,51] and other schemes; the case of Falcon is particu-
larly relevant to us because the sampler implemented was the one described in
this document!

Our second contribution is a first step at systematically detecting such fail-
ures: we propose a statistical test suite called SAGA for validating discrete Gaus-
sians. This test suite can check univariate samples; we therefore use it to validate
our own implementation of our sampler. In addition, our test suite can check mul-
tivariate Gaussians as well; this enables validation at a higher level: if the base
sampler over the integers is validated, but the output of the high-level scheme
does not behave like a multivariate Gaussian even though the theory predicts it
should, then this is indicative of an implementation mistake somewhere else in
the implementation (or, at the worst case, that the theory is deficient). We illus-
trate that with a simple example of a (purportedly) deficient implementation of
Falcon [53], however it can be used for any other scheme sampling multivariate
discrete Gaussians, including but not limited to [5,12,18,25,40]. The test suite
is publicly available at: https://github.com/PQShield/SAGA.

2 Related Works

In the recent years, there has been a surge of works related to Gaussian sampling
over the integers. Building on convolution techniques from [42,50] proposed an
arbitrary-center Gaussian sampler base, as well as a statistical tool (the max-log
distance) to analyse it. [3,39,52] revisited classical techniques with the Rényi
divergence. Polynomial-based methods were further studied by [4,52,60]. The
use of rounded Gaussians was proposed in [31]. Knuth-Yao’s DDG trees have
been considered in [20,32].2 Lazy floating-point precision was studied in [16,19].
We note that techniques dating back to von Neumann [57] allow to generate
(continuous) Gaussians elegantly using finite automata [2,24,33]. While these
have been considered in the context of lattice-based cryptography [15,17] they
are also notoriously hard to make isochronous. Finally, [58] studied previously
cited techniques with the goal of minimizing their relative error.

1 https://media.ccc.de/v/27c3-4087-en-console hacking 2010.
2 We note that one could use [32] to speed up our base sampler; however this results in

a huge code size (more than 50 kB). Since the running time of the base sampler was
not a bottleneck for the usecase we considered, we instead relied on a straightforward,
slightly less efficient CDT-based method.

https://github.com/PQShield/SAGA
https://media.ccc.de/v/27c3-4087-en-console_hacking_2010
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3 Preliminaries

3.1 Gaussians

For σ, μ ∈ R with σ > 0, we call Gaussian function of parameters σ, μ and
denote by ρσ,μ the function defined over R as ρσ,μ(x) = exp

(
− (x−μ)2

2σ2

)
. Note

that when μ = 0 we omit it in index notation, e.g. ρσ(x) = ρσ,0(x). The param-
eter σ (resp. μ) is often called the standard deviation (resp. center) of the Gaus-
sian. In addition, for any countable set S � R we abusively denote by ρσ,μ(S)
the sum

∑
z∈S ρσ,μ(z). When

∑
z∈S ρσ,μ(z) is finite, we denote by DS,σ,μ and

call Gaussian distribution of parameters σ, μ the distribution over S defined by
DS,σ,μ(z) = ρσ,μ(z)/ρσ,μ(S). Here too, when μ = 0 we omit it in index nota-
tion, e.g. DS,σ,μ(z) = DS,σ(z). We use the notation Bp to denote the Bernoulli
distribution of parameter p.

3.2 Renyi Divergence

We recall the definition of the Rényi divergence, which we will use massively in
our security proofs.

Definition 1 (Rényi Divergence). Let P, Q be two distributions such that
Supp(P) ⊆ Supp(Q). For a ∈ (1,+∞), we define the Rényi divergence of order
a by

Ra(P,Q) =

⎛
⎝ ∑

x∈Supp(P)

P(x)a

Q(x)a−1

⎞
⎠

1
a−1

.

In addition, we define the Rényi divergence of order +∞ by

R∞(P,Q) = max
x∈Supp(P)

P(x)
Q(x)

.

The Rényi divergence is not a distance; for example, it is neither symmetric
nor does it verify the triangle inequality, which makes it less convenient than the
statistical distance. On the other hand, it does verify cryptographically useful
properties, including a few listed below.

Lemma 1 ([3]). For two distributions P,Q and two families of distributions
(Pi)i, (Qi)i, the Rényi divergence verifies these properties:

– Data processing inequality. For any function f , Ra(f(P), f(Q)) ≤
Ra(P,Q).

– Multiplicativity. Ra(
∏

i Pi,
∏

i Qi) =
∏

i Ra(Pi,Qi).
– Probability preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E)
a

a−1 /Ra(P,Q), (1)
Q(E) ≥ P(E)/R∞(P,Q). (2)
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The following lemma shows that a bound of δ on the relative error between
two distributions implies a bound O(aδ2) on the log of the Rényi divergence (as
opposed to a bound O(δ) on the statistical distance).

Lemma 2 (Lemma 3 of [52]). Let P,Q be two distributions of same support
Ω. Suppose that the relative error between P and Q is bounded: ∃δ > 0 such that∣∣P
Q − 1

∣∣ ≤ δ over Ω. Then, for a ∈ (1,+∞):

Ra(P,Q) ≤
(

1 +
a(a − 1)δ2

2(1 − δ)a+1

) 1
a−1

∼
δ→0

1 +
aδ2

2

3.3 Smoothing Parameter

For ε > 0, the smoothing parameter ηε(Λ) of a lattice Λ is the smallest value
σ > 0 such that ρ 1

σ
√

2π
(Λ�\{0}) ≤ ε, where Λ� denotes the dual of Λ. In the

literature, some definitions of the smoothing parameter scale our definition by a
factor

√
2π. It is shown in [41] that ηε(Zn) ≤ η+

ε (Zn), where:

η+
ε (Zn) =

1
π

√
1
2

log
(

2n

(
1 +

1
ε

))
. (3)

3.4 Isochronous Algorithms

We now give a semi-formal definition of isochronous algorithms.

Definition 2. Let A be a (probabilistic or deterministic) algorithm with set of
input variables I, set of output variables O, and let S ⊆ I ∪ O be the set of
sensitive variables. We say that A is perfectly isochronous with respect to S if
its running time is independent of any variable in S.

In addition, we say that A statistically isochronous with respect to S if there
exists a distribution D independent of all the variables in S, such that the running
time of A is statistically close (for a clearly identified divergence) to D.

We note that we can define a notion of computationally isochronous algo-
rithm. For such an algorithm, it is computationally it hard to recover the sensi-
tive variables even given the distribution of the running time of the algorithm.
We can even come up with a contrived example of such an algorithm: let A()
select in an isochronous manner an x uniformly in a space of min-entropy ≥ λ,
compute y = H(x) and wait a time y before outputting x. One can show that
recovering x given the running time of A is hard if H is a one-way function.

4 The Sampler

In this section, we describe our new sampler with arbitrary standard devia-
tion and center. The main assumption of our setting is to consider that all
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Algorithm 1. SamplerZ(σ, μ)
Require: μ ∈ [0, 1], σ ≤ σmax

Ensure: z ∼ DZ,σ,μ

1: while True do
2: z0 ← BaseSampler()
3: b ← {0, 1} uniformly
4: z := (2b − 1) · z0 + b

5: x :=
z2
0

2σ2
max

− (z−μ)2

2σ2

6: if AcceptSample(σ, x) then
7: return z

Algorithm 2. AcceptSample(σ, x)
Require: σmin ≤ σ ≤ σmax, x < 0
Ensure: b ∼ B σmin

σ
·exp(x)

1: p := σmin
σ

· ApproxExp(x)
Lazy Bernoulli sampling
2: i := 1
3: do
4: i := i · 28

5: u ← �0, 28 − 1� uniformly
6: v := �p · i� & 0xff

7: while u = v
8: return (u < v)

the standard deviations are bounded and that the center is in [0, 1]. In other
words, denoting the upper bound and lower bound on the standard deviation as
σmax > σmin > 0, we present an algorithm that samples the distribution DZ,σ,μ

for any μ ∈ [0, 1] and σmin ≤ σ ≤ σmax.
Our sampling algorithm is called SamplerZ and is described in Algorithm1.

We denote by BaseSampler an algorithm that samples an element with the fixed
half Gaussian distribution DZ+,σmax . The first step consists in using BaseSampler.
The obtained z0 sample is then transformed into z := (2b − 1) · z0 + b where b
is a bit drawn uniformly in {0, 1}. Let us denote by BGσmax the distribution of
z. The distribution of z is a discrete bimodal half-Gaussian of centers 0 and 1.
More formally,

BGσmax(z) =
1
2

{
DZ+,σmax(−z) if z ≤ 0
DZ+,σmax(z − 1) if z ≥ 1.

(4)

Then, to recover the desired distribution DZ,σ,μ for the inputs (σ, μ), one
might want to apply the classical rejection sampling technique applied to lattice
based schemes [35] and accept z with probability

DZ,σ,μ(z)
BGσmax(z)

=

⎧
⎨
⎩

exp
(

z2

2σ2
max

− (z−μ)2

2σ2

)
if z ≤ 0

exp
(

(z−1)2

2σ2
max

− (z−μ)2

2σ2

)
if z ≥ 1

= exp
(

z20
2σ2

max

− (z − μ)2

2σ2

)
.

The element inside the exp is computed in step 5. Next, we also introduce
an algorithm denoted AcceptSample. The latter performs the rejection sampling
(Algorithm 2): using ApproxExp an algorithm that returns exp(·), it returns a
Bernoulli sample with the according probability. Actually, for isochrony matters,
detailed in Sect. 6, the latter acceptance probability is rescaled by a factor σmin

σ .
As z follows the BGσmax distribution, after the rejection sampling, the final
distribution of SamplerZ(σ, μ) is then proportional to σmin

σ ·DZ,σ,μ which is, after
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Table 1. Number of calls to SamplerZ, BaseSampler and ApproxExp

Notation Value for Falcon

Calls to sign (as per NIST) Qs ≤ 264

Calls to SamplerZ QsamplZ Qs · 2 · n ≤ 275

Calls to BaseSampler Qbs Niter · QsamplZ ≤ 276

Calls to ApproxExp Qexp Qbs ≤ 276

normalization exactly equal to DZ,σ,μ. Thus, with this construction, one can
derive the following proposition.

Proposition 1 (Correctness). Assume that all the uniform distributions are
perfect and that BaseSampler = DZ+,σmax and ApproxExp = exp, then the con-
struction of SamplerZ (in Algorithms 1 and 2) is such that SamplerZ(σ, μ) =
DZ,σ,μ.

In practical implementations, one cannot achieve perfect distributions. Only
achieving BaseSampler ≈ DZ+,σmax and ApproxExp ≈ exp is possible. Section 6
proves that, under certain conditions on BaseSampler and ApproxExp and on the
number of sampling queries, the final distribution remains indistinguishable from
DZ,σ,μ.

5 Proof of Security

Table 1 gives the notations for the number of calls to SamplerZ, BaseSampler
and ApproxExp and the considered values when the sampler is instanciated for
Falcon. Due to the rejection sampling in step 6, there will be a (potentially
infinite) number of iterations of the while loop. We will show later in Lemma 3,
that the number of iterations follows a geometric law of parameter ≈ σmin·√2π

2·ρσmax (Z
+) .

We note Niter a heuristic considered maximum number of iterations. By a central
limit argument, Niter will only be marginally higher than the expected number of
iterations. To instantiate the values Qexp = Qbs = Niter ·QsamplZ for the example
of Falcon, we take Niter = 2. In fact, σmin·√2π

2·ρσmax (Z
+) ≤ 2 for Falcon’s parameters.

The following Theorem estimates the security of SamplerZ, it is independant
of the chosen values for the number of calls.

Theorem 1 (Security of SamplerZ). Let λIdeal (resp. λReal) be the security
parameter of an implementation using the perfect distribution DZ,σ,μ (resp. the
real distribution SamplerZ). If both following conditions are respected, at most
two bits of security are lost. In other words, Δλ := λIdeal − λReal ≤ 2.

∀x < 0,

∣∣∣∣
ApproxExp(x) − exp(x)

exp(x)

∣∣∣∣ ≤
√

2 · λReal

2 · (2 · λReal + 1)2 · Qexp

(Cond. (1))

R2·λReal+1

(
BaseSampler,DZ+,σmax

) ≤ 1 +
1

4 · Qbs
(Cond. (2))
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The proof of this Theorem is given in the full version of our paper [30].
To get concrete numerical values, we assume that 256 bits are claimed on the

original scheme, thus 254 bits of security are claimed for the real implementation.
Then for an implementation of Falcon, the numerical values are

√
2 · λReal

2 · (2 · λReal + 1)2 · Qexp

≈ 2−43 and
1

4 · Qbs
≈ 2−78.

5.1 Instanciating the ApproxExp

To achieve condition (1) with ApproxExp, we use a polynomial approximation of
the exponential on [− ln(2), 0]. In fact, one can reduce the parameter x modulo
ln(2) such that x = −r − s ln(2). Compute the exponential remains to compute
exp(x) = 2−s exp(−r). Noting that s ≥ 64 happen very rarely, thus s can be
saturated at 63 to avoid overflow without loss in precision.

We use the polynomial approximation tool provided in GALACTICS [4].
This tool generates polynomial approximations that allow a computation in fixed
precision with chosen size of coefficients and degree. As an example, for 32-bit
coefficients and a degree 10, we obtain a polynomial Pgal(x) :=

∑10
i=0 ai ·xi, with:

◦ a0 = 1;
◦ a1 = 1;
◦ a2 = 2−1;
◦ a3 = 2863311530 · 2−34;
◦ a4 = 2863311481 · 2−36;
◦ a5 = 2290647631 · 2−38;

◦ a6 = 3054141714 · 2−41;
◦ a7 = 3489252544 · 2−44;
◦ a8 = 3473028713 · 2−47;
◦ a9 = 2952269371 · 2−50;
◦ a10 = 3466184740 · 2−54.

For any x ∈ [− ln(2), 0], Pgal verifies
∣∣∣Pgal(x)−exp(x)

exp(x)

∣∣∣ ≤ 2−47, which is suffi-
cient to verify condition (1) for Falcon implementation.

Flexibility on the Implementation of the Polynomial. Depending on the
platform and the requirement for the signature, one can adapt the polynomial
to fit their constraints. For example, if one wants to minimize the number of
multiplications, implementing the polynomial with Horner’s form is the best
option. The polynomial is written in the following form:

Pgal(x) = a0+x(a1+x(a2+x(a3+x(a4+x(a5+x(a6+x(a7+x(a8+x(a9+xa10))))))))).

Evaluating Pgal is then done serially as follows:

y ← a10
y ← a9 + y × x

...
y ← a1 + y × x
y ← a0 + y × x
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Some architectures with small register sizes may be faster if the size of the
coefficients of the polynomial is minimized, thus GALACTICS tool can be used
to generate a polynomial with smaller coefficients. For example, we propose an
alternative polynomial approximation on [0, ln(2)

64 ] with 25 bits coefficients.

P = 1 + x + 2−1x2 + 699051 · 2−22 · x3 + 699299 · 2−24 · x4 + 605552 · 2−26 · x5

To recover the polynomial approximation on [0, ln(2)], we compute P ( x
64 )64.

Some architectures enjoy some level of parallelism, in which case it is desirable
to minimise the depth of the circuit computing the polynomial3. Writing Pgal in
Estrin’s form [22] is helpful in this regard.

x2 ← x × x
x4 ← x2 × x2
Pgal(x) ← (x4 × x4) × ((a8 + a9 × x) + x2 × a10)

+ (((a0 + a1 × x) + x2 × (a2 + a3 × x)) + x4 × ((a4 + a5 × x) + x2 × (a6 + a7 × x)))

5.2 Instanciating the BaseSampler

To achieve condition (2) with BaseSampler, we rely on a cumulative distribution
table (CDT). We precompute a table of the cumulative distribution function
of DZ+,σmax with a certain precision; then, to produce a sample, we generate
a random value in [0, 1] with the same precision, and return the index of the
last entry in the table that is greater than that value. In variable time, the
sampling can be done rather efficiently with a binary search, but a constant-
time implementation has essentially no choice but to read the entire table each
time and carry out each comparison. This process is summed up in Algorithm3.
The parameters w and θ are respectively the number of elements of the CDT and
the precision of its coefficients. Let a = 2 · λReal + 1. To derive the parameters
w and θ we use a simple script that, given σmax and θ as inputs:

1. Computes the smallest tailcut w such that the Renyi divergence Ra between
the ideal distribution DZ+,σmax and its restriction to {0, . . . , w} (noted
D[w],σmax) verifies Ra(D[w],σmax ,DZ+,σmax) ≤ 1 + 1/(4Qbs);

2. Rounds the probability density table (PDT) of D[w],σmax with θ bits of abso-
lute precision. This rounding is done “cleverly” by truncating all the PDT
values except the largest:

◦ for z ≥ 1, the value D[w],σmax(z) is truncated: PDT (z) = 2−θ⌊
2θD[w],σmax(z)

⌋
.

◦ in order to have a probability distribution, PDT (0) = 1 − ∑
z≥1

PDT (z).
3. Derives the CDT from the PDT and computes the final

Ra(SampleCDTw=19,θ=72,DZ+,σmax).

3 We are thankful to Thomas Pornin for bringing up this fact.
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Algorithm 3. SampleCDT: full-table access CDT
z ← 0
u ← [0, 1) uniformly with θ bits of absolute precision
for 0 ≤ i ≤ w do

b ← (CDT[w] ≥ u) � b = 1 if it is true and 0 otherwise
z ← z + b

return z

Taking σmax = 1.8205 and θ = 72 as inputs, we found w = 19.

◦ PDT(0) = 2−72 × 1697680241746640300030
◦ PDT(1) = 2−72 × 1459943456642912959616
◦PDT(2) = 2−72 × 928488355018011056515
◦ PDT(3) = 2−72 × 436693944817054414619
◦ PDT(4) = 2−72 × 151893140790369201013
◦ PDT(5) = 2−72 × 39071441848292237840
◦ PDT(6) = 2−72 × 7432604049020375675
◦ PDT(7) = 2−72 × 1045641569992574730
◦ PDT(8) = 2−72 × 108788995549429682
◦ PDT(9) = 2−72 × 8370422445201343

◦ PDT(10) = 2−72 × 476288472308334

◦ PDT(11) = 2−72 × 20042553305308

◦ PDT(12) = 2−72 × 623729532807

◦ PDT(13) = 2−72 × 14354889437

◦ PDT(14) = 2−72 × 244322621

◦ PDT(15) = 2−72 × 3075302

◦ PDT(16) = 2−72 × 28626

◦ PDT(17) = 2−72 × 197

◦ PDT(18) = 2−72 × 1

Our experiment showed that for any a ≥ 509, Ra(SampleCDTw=19,θ=72,

DZ+,σmax) ≤ 1 + 2−80 ≤ 1 + 1
4Qbs

, which validates condition (2) for Falcon
implementation.

6 Analysis of Resistance Against Timing Attacks

In this section, we show that Algorithm 1 is impervious against timing attacks.
We formally prove that it is isochronous with respect to σ, μ and the output z (in
the sense of Definition 2). We first prove a technical lemma which shows that the
number of iterations in the while loop of Algorithm 1 is (almost) independent
of σ, μ, z.

Lemma 3. Let ε ∈ (0, 1), μ ∈ [0, 1] and let σmin, σ, σ0 be standard deviations
such that η+

ε (Zn) = σmin ≤ σ ≤ σ0. Let p = σmin·√2π
2·ρσmax (Z

+) . The number of itera-
tions of the while loop in SamplerZ(σ, μ) follows a geometric law of parameter

Ptrue(σ, μ) ∈ p ·
[
1, 1 +

(1 + 2−80)ε
n

]
.

The proof of Lemma 3 can be found in the full version of our paper [30].
Next, we show that Algorithm 1 is perfectly isochronous with respect to z

and statistically isochronous (for the Rényi divergence) with respect to σ, μ.

Theorem 2. Let ε ∈ (0, 1), μ ∈ R, let σmin, σ, σ0 be standard deviations such
that η+

ε (Zn) = σmin ≤ σ ≤ σ0, and let p = σmin·√2π
2·ρσmax (Z

+) be a constant in (0, 1).
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Suppose that the elementary operations {+,−,×, /} over integer and floating-
point numbers are isochronous. The running time of Algorithm1 follows a dis-
tribution Tσ,μ such that:

Ra(Tσ,μ‖T ) � 1 +
aε2 max(1, 1−p

p )2

n2(1 − p)
= 1 + O

(
aε2

n2

)

for some distribution T independent of its inputs σ, μ and its output z.

Finally, we leverage Theorem 2 to prove that the running time of
SamplerZ(σ, μ) does not help an adversary to break a cryptographic scheme.
We consider that the adversary has access to some function g(SamplerZ(σ, μ))
as well as the running time of SamplerZ(σ, μ): this is intended to capture the
fact that in practice the output of SamplerZ(σ, μ) is not given directly to the
adversary, but processed by some function before. For example, in the signature
scheme Falcon, samples are processed by algorithms depending on the signer’s
private key. On the other hand, we consider that the adversary has powerful
timing attack capabilities by allowing him to learn the exact runtime of each
call to SamplerZ(σ, μ).

Corollary 1. Consider an adversary A making Qs queries to g(SamplerZ(σ, μ))
for some randomized function g, and solving a search problem with success prob-
ability 2−λ for some λ ≥ 1. With the notations of Theorem 2, suppose that
max(1, 1−p

p )2 ≤ n(1 − p) and ε ≤ 1√
λQs

. Learning the running time of each call
to SamplerZ(σ, μ) does not increase the success probability of A by more than a
constant factor.

The proof of Corollary 1 can be found in the full version of our paper [30]. A
nice thing about Corollary 1 is that the conditions required to make it effective
are already met in practice since they are also required for black-box security of
cryptographic schemes. For example, it is systematic to set σ ≥ η+

ε (Zn).

Impact of the Scaling Factor. The scaling factor σmin
σ ≤ σmin

σmax
is crucial in

making our sampler isochronous, as it decorrelates the running time Tσ,μ from σ.
However, it also impacts the Tσ,μ, as one can easily show that Tσ,μ is proportional
to the scaling factor. It is therefore desirable to make it as small as possible. The
maximal value of the scaling factor is actually dependent on the cryptographic
scheme in which our sampler is used. In the full version of our paper [30], we
show that for the case of the signature scheme Falcon, σmin

σmax
≤ 1.17−2 ≈ 0.73 and

the impact of the scaling factor is limited. Moreover, one can easily show that
for Peikert’s sampler [48], the scaling factor is equal to 1 and has no impact.

7 “Err on the Side of Gaussian”

This section focuses on ensuring correct and verified implementations of our pro-
posed isochronous Gaussian sampler. The motivation for this section is to min-
imize implementation bugs, such as implementation issues with Falcon [47,51]
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or the famous Heartbleed (CVE-2014-0160) or ROCA vulnerabilities [44] (CVE-
2017-15361). We propose a test suite named SAGA (Statistically Acceptable
GAussians) in order to verify correct univariate or multivariate Gaussian vari-
ables. At the very least, SAGA can act as a “sanity check” for implementers and
practitioners. Furthermore, SAGA is designed to run in a generic fashion, agnos-
tic to the technique used, by only requiring as input a list of univariate (i.e.,
outputs of SamplerZ) or multivariate (i.e. a set of signatures) Gaussian samples.
Although we evaluate SAGA by applying it to Falcon, SAGA is applicable to any
lattice-based cryptographic scheme requiring Gaussian sampling, such as other
GPV-based signatures [5,12], FrodoKEM [43], identity-based encryption [10,18],
and in fully homomorphic encryption [54].

7.1 Univariate Tests

The statistical tests we implement here are inspired by a previous test suite pro-
posal called GLITCH [29]. We use standard statistical tools to validate a Gaussian
sampler is operating with the correct mean, standard deviation, skewness, and
kurtosis, and finally we check whether it passes a chi-square normality test.
Skewness and kurtosis are descriptors of a normal distribution that respectively
measure the symmetry and peakedness of a distribution. To view the full sta-
tistical analysis of these tests we created a Python class, UnivariateSamples,
which take as initialization arguments the expected mean (mu), expected stan-
dard deviation (sigma), and the list of observed univariate Gaussian samples
(data). An example of how this works, as well as its output, is shown in the full
version of our paper [30].

7.2 Multivariate Tests

This section details multivariate normality tests. The motivation for these tests
is to detect situations where the base Gaussian sampler over the integers is
correctly implemented, yet the high-level scheme (e.g. a signature scheme) uses
it incorrectly way and ends up with a defective multivariate Gaussian.

Multivariate Normality. There are a number of statistical tests which eval-
uate the normality of multivariate distributions. We found that multivariate
normality tests predominantly used in other fields [13,28,38] suffer with size
and scaling issues. That is, the large sample sizes we expect to use and the poor
power properties of these tests will make a type II error highly likely4. In fact, we
implemented the Mardia [38] and Henze-Zirkler [28] tests and found, although
they worked for small sample sizes, they diverged to produce false negatives for
sample sizes ≥ 50 even in small dimensions n = 64.

However, the Doornik-Hansen test [14] minimises these issues by using trans-
formed versions of the skewness and kurtosis of the multivariate data, increasing

4 Type I and type II errors are, respectively, rejection of a true null hypothesis and
the non-rejection of a false null hypothesis.
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the test’s power. We also note that it is much faster (essentially linear in the
sample size) than [28,38] (essentially quadratic in the sample size). As with
the univariate tests, we created a Python class, denoted MultivariateSamples,
which outputs four results; two based on the covariance matrix, and two based
on the data’s normality. An example of how this works, as well as its output, is
shown in the full version of our paper [30].

A Glitch in the (Covariance) Matrix. Our second multivariate test asks the
following question: how could someone implement correctly the base sampler, yet
subsequently fail to use it properly? There is no universal answer to that, and
one usually has to rely on context, experience and common sense to establish
the most likely way this could happen.

For example, in Falcon, univariate samples are linearly combined according
to node values of a balanced binary tree computed at key generation (the Falcon
tree). If there is an implementation mistake in the procedure computing the
tree (during key generation) or when combining the samples (during signing),
this effectively results in nodes of the Falcon tree being incorrect or omitted.
Such mistakes have a very recognizable effect on the empiric covariance matrix
of Falcon signatures: they make them look like block Toeplitz matrices (Fig. 1a)
instead of (scaled) identity matrices in the nominal case (Fig. 1b).

We devised a test which discriminates block Toeplitz covariance matrices
against the ones expected from spherical Gaussians. The key idea is rather sim-
ple: when adding O(n) coefficients over a (block-)subdiagonal of the empiric
covariance matrix, the absolute value of the sum will grow in O(

√
n) if the

empiric covariance matrix converges to a scaled identity matrix, and in O(n) if
it is block Toeplitz. We use this difference in growth to detect defective Gaus-
sians. While we do not provide a formal proof of our test, in practice it detects
reasonably well Gaussians induced by defective Falcon trees. We see proving
our test and providing analogues for other GPV-based schemes as interesting
questions.

Supplementary Tests. In the case where normality has been rejected, SAGA
also provides a number of extra tests to aid in finding the issues. More details
for this can be found in the full version of our paper [30].

8 Application and Limitations

Our sampler has been implemented by Pornin as part of the new isochronous
implementation of Falcon [51]. This implementation can use floating-point hard-
ware or AVX2 instructions when available, but also includes floating-point
emulation code that uses only usual integer operations. On ARM Cortex M4
CPUs, which can only support single-precision floating-point instructions, this
implementation provides assembly implementations for the core double-precision
floating-point operations more than twice faster than the generic emulation. As
a result, our sampler can be efficiently implemented on embedded platforms as
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(a) Nominal case (b) Defective Gaussian

Fig. 1. Empiric covariance matrices of Falcon signatures. Figure 1a corresponds to a
correct implementation of Falcon. Figure 1b corresponds to an implementation where
there is a mistake when constructing the Falcon tree.

Table 2. Number of samples per second at 2.5 GHz for our sampler and [59].

Algorithm Number of samples

This worka 1.84 × 106/sec

This work (AVX2)b 7.74 × 106/sec

[59] (AVX2)c 5.43 × 106/sec
a[51] standard double-precision floating-
point (IEEE 754) with SHAKE256.
b[51] AVX2 implementation with eight
ChaCha20 instances in parallel (AVX2).
c[59] constant-time implementation with
hardware AES256 (AES-NI).

limited as Cortex M4 CPUs, while some other samplers (e.g. [32] due to a huge
code size) are not compact enough to fit embedded platforms.

We perform benchmarks of this sampler implementation on a single Intel
Core i7-6500U CPU core clocked at 2.5 GHz. In Table 2 we present the running
times of our isochronous sampler. To compare with [59], we scale the numbers
to be based on 2.5 GHz. Note that for our sampler the number of samples per
second is on average for 1.2915 < σ ≤ 1.8502 while for [59] σ = 2 is fixed.

In Table 3 we present the running times of the Falcon isochronous imple-
mentation [51] that contains our sampler and compare it with a second non-
isochronous implementation nearly identical excepting the base sampler which
is a faster lazy CDT sampler, and the rejection sampling which is not scaled by
a constant. Compared to the non-isochronous implementation, the isochronous
one is about 22% slower, but remains very competitive speed-wise.
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Table 3. Falcon signature generation time at 2.5 GHz.

Degree Non-isochronous (using AVX2) isochronous (using AVX2)

512 210.88 µs (153.64 µs) 257.33 µs (180.04 µs)

1024 418.76 µs (311.33 µs) 515.28 µs (361.39 µs)

Cache-Timing Protection. Following this implementation of the proposed
sampler also ensures cache-timing protection [23], as the design should5 bypass
conditional branches by using a consistant access pattern (using linear searching
of the table) and have isochronous runtime. This has been shown to be sufficient
in implementations of Gaussian samplers in Frodo [7,43].

Adapting to Other Schemes. A natural question is how our algorithms could
be adapted for other schemes than Falcon, for example [5,12,18,25,40]. An obvi-
ous bottleneck seems to be the size of the CDT used in SampleCDT, which is
linear in the standard deviation. For larger standard deviations, where linear
searching becomes impractical, convolutions can be used to reduce σ, and thus
the runtime of the search algorithm [34,50]. It would also be interesting to see if
the DDG tree-based method of [32] has better scalability than our CDT-based
method, in which case we would recommend it for larger standard deviations.
On the other hand, once the base sampler is implemented, we do not see any
obvious obstacle for implementing our whole framework. For example, [12] or
using Peikert’s sampler [48] (in Falcon) entail a small constant number of stan-
dard deviations, therefore the rejection step would be very efficient once a base
sampler for each standard deviation is implemented.

Advantages and Limitations. Our sampler has an acceptance rate ≈ σmin
σmax+0.4

making it especially suitable when σmin and σmax are close. In particular, our
sampler is, so far, the fastest isochronous sampler for the parameters in Falcon.
However, the larger the gap between σmin and σmax, the lower the acceptance
rate. In addition, our sampler uses a cummulative distribution table (CDT)
which is accessed in an isochronous way. This table grows when σmax grows,
while making both running time and memory usage larger. When σmax is large
or far from σmin, there exist faster isochronous samplers based on convolution [42]
and rejection sampling [59]6 techniques.
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Abstract. Post-quantum cryptographic primitives have a range of trade-
offs compared to traditional public key algorithms, either having slower
computation or larger public keys and ciphertexts/signatures, or both.
While the performance of these algorithms in isolation is easy to mea-
sure and has been a focus of optimization techniques, performance in
realistic network conditions has been less studied. Google and Cloudflare
have reported results from running experiments with post-quantum key
exchange algorithms in the Transport Layer Security (TLS) protocol with
real users’ network traffic. Such experiments are highly realistic, but can-
not be replicated without access to Internet-scale infrastructure, and do
not allow for isolating the effect of individual network characteristics.

In this work, we develop and make use of a framework for running such
experiments in TLS cheaply by emulating network conditions using the
networking features of the Linux kernel. Our testbed allows us to inde-
pendently control variables such as link latency and packet loss rate, and
then examine the performance impact of various post-quantum-primitives
on TLS connection establishment, specifically hybrid elliptic curve/post-
quantum key exchange and post-quantum digital signatures, based on
implementations from the Open Quantum Safe project. Among our key
results, we observe that packet loss rates above 3–5% start to have a sig-
nificant impact on post-quantum algorithms that fragment across many
packets, such as those based on unstructured lattices. The results from this
emulation framework are also complemented by results on the latency of
loading entire web pages over TLS in real network conditions, which show
that network latency hides most of the impact from algorithms with slower
computations (such as supersingular isogenies).

Keywords: Post-quantum key exchange · Post-quantum
authentication · Transport Layer Security (TLS) · Network
performance · Emulation

1 Introduction

Compared to traditional public key algorithms, post-quantum key encapsu-
lation mechanisms (KEMs) and digital signature schemes have a range of
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trade-offs, either having slower computation, or larger public keys and cipher-
texts/signatures, or both. Measuring the performance of these algorithms in
isolation is easy; doing so accurately in the broader context of Internet proto-
cols such as the Transport Layer Security (TLS) protocol, and under realistic
network traffic conditions, is more difficult.

Alongside the development and standardization of post-quantum algorithms
in the NIST Post-Quantum Cryptography Standardization project, there have
been various efforts to begin preparing the TLS ecosystem for post-quantum
cryptography. We can see at least three major lines of work: (draft) specifica-
tions of how post-quantum algorithms could be integrated into existing proto-
col formats and message flows [9,17,33,34,37,41]; prototype implementations
demonstrating such integrations can be done [6–8,15,19,20,30,31] and whether
they would meet existing constraints in protocols and software [10]; and per-
formance evaluations in either basic laboratory network settings [6,7] or more
realistic network settings [8,15,19,21,22]. This paper focuses on the last of these
issues, trying to understand how post-quantum cryptography’s slower computa-
tion and larger communication sizes impact the performance of TLS.

A line of work starting with initial experiments by Google [8,21], with follow-
up collaborations between Google, Cloudflare, and others [19,22], has involved
Internet companies running experiments to measure the performance of real con-
nections using post-quantum key exchange (combined with traditional elliptic
curve Diffie–Hellman, resulting in so-called “hybrid” key exchange), by modi-
fying client browsers and edge servers to support select hybrid key exchange
schemes in TLS 1.3. Such experiments are highly realistic, but cannot be repli-
cated without access to commensurate infrastructure, and do not allow for iso-
lating the effect of individual network characteristics: it is neither possible to
precisely quantify the effect of just a change in (say) packet loss on a network
route on the latency of TLS connection establishment, nor is it possible to (say)
increase just the packet loss on a route and analyze the resulting effects.

Contributions. In this paper, we develop an experimental framework for mea-
suring the performance of the TLS protocol under a variety of network condi-
tions. Our framework is inspired by the NetMirage [40] and Mininet [23] network
emulation software, and uses the Linux kernel’s networking stack to precisely and
independently tune characteristics such as link latency and packet loss rate. This
allows for emulation of client–server network experiments on a single machine.

Using this framework, we analyze the impact that post-quantum cryptog-
raphy has on TLS 1.3 handshake completion time (i.e., until application data
can be sent), specifically in the context of hybrid post-quantum key exchange
using structured and unstructured lattices and supersingular isogenies; and post-
quantum authentication using structured lattices and symmetric-based signa-
tures. Our emulated experiments are run at 4 different latencies (emulating
round-trip times between real-world data centres), and at packet loss rates rang-
ing from 0–20%.

Some of our key observations from the network emulation experiments mea-
suring TLS handshake completion time are as follows. For the median connection,
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handshake completion time is significantly impacted by substantially slower algo-
rithms (for example, supersingular isogenies (SIKE p434) has a significant per-
formance floor compared to the faster structured and unstructured lattice algo-
rithms), although this effect disappears at the 95th percentile. For algorithms
with larger messages that result in fragmentation across multiple packets, per-
formance degrades as packet loss rate increases: for example, median connection
time for unstructured lattice key exchange (Frodo-640-AES) matches structured
lattice performance at 5–10% packet loss, then begins to degrade; at the 95th per-
centile, this effect is less pronounced until around 15% packet loss. We see sim-
ilar trends for post-quantum digital signatures, although with degraded perfor-
mance for larger schemes starting around 3–5% packet loss since a TLS connection
includes multiple public keys and signatures in certificates.

We also carry out experiments across real networks, measuring page load
time over TLS using geographically scattered virtual machines communication
over the Internet. From these, we observe that, as page size or network latency
increases, the overhead of slower TLS connection establishment diminishes as a
proportion of the overall page load time.

Our key exchange results complement those of Google, Cloudflare, and oth-
ers [19,22]: they provide a holistic look at how post-quantum key exchange algo-
rithms perform for users on real network connections of whatever characteristic
the users happened to have, whereas our results show the independent effect of
each network characteristic, and our techniques can be applied without access
to commensurate Internet-scale client and edge server infrastructure.

Closely related to our post-quantum signature experiments are the recent
works [15,36] on the performance of post-quantum signatures in TLS 1.3. They
measure how handshake time varies with server distance (measured in num-
ber of hops) and how handshake time and failure rate varies with throughput.
Our experiments complement theirs by measuring the impact of other network
characteristics: connection latency and packet loss rates.

Organization. In Sect. 2, we describe how we integrated post-quantum algo-
rithms into TLS. Section 3 describes the network emulation framework, and
Sect. 4 describes the setup for our two experiments (emulated; and over the
real Internet, data-centre-to-data-centre). Section 5 presents and discusses results
from the two experiments. Section 6 concludes. Additional data appears in the
appendix. Code and complete result data for all the experiments can be found
at our GitHub repository: https://github.com/xvzcf/pq-tls-benchmark.

2 Post-quantum Cryptography in TLS

There have been a variety of proposed specifications, implementations, and
experiments involving post-quantum cryptography in TLS 1.2 and TLS 1.3.

In the context of TLS 1.2, Schanck, Whyte, and Zhang [34] and Campagna
and Crockett [9] submitted Internet-Drafts to the Internet Engineering Task
Force (IETF) with proposals for adding post-quantum and hybrid key exchange
to TLS 1.2; implementations of these drafts (or ad hoc specifications) in TLS

https://github.com/xvzcf/pq-tls-benchmark
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1.2 include experiments by Google [8] and Amazon [1], in research papers [6,7],
as well as the Open Quantum Safe project’s OQS-OpenSSL 1.0.2 [30,38].

For hybrid and post-quantum key exchange in TLS 1.3, there have been
Internet-Drafts by Kiefer and Kwiatowski [17], Whyte et al. [41], Schanck and
Stebila [33], and Stebila et al. [37]. Experimental demonstrations include earlier
experiments by Google [20,22], more recent experiments by a team involving
Cloudflare, Google, and others [19], as well as the Open Quantum Safe project’s
OQS-OpenSSL 1.1.1 [10,31], a fork of OpenSSL 1.1.1. There has also been some
work on experiments involving post-quantum and hybrid authentication in TLS
1.3, including OQS-OpenSSL 1.1.1 [31] and experiments based on it [15,36].

The experiments in this paper are based on the implementation of hybrid key
exchange and post-quantum authentication in TLS 1.3 in OQS-OpenSSL 1.1.1.
We now describe the mechanisms used in this particular instantiation of post-
quantum cryptography in TLS 1.3. For a broader discussion of design choices
and issues in engineering post-quantum cryptography in TLS 1.3, see [37].

2.1 Hybrid Key Exchange in TLS 1.3

Our experiments focused on hybrid key exchange, based on the perspective that
early adopters of post-quantum cryptography may want post-quantum long-term
forward secrecy while still using ECDH key exchange either because of a lack of
confidence in newer post-quantum assumptions, or due to regulatory compliance.

The primary way to negotiate an ephemeral key in TLS 1.3 [32] is to use
elliptic-curve Diffie-Hellman (ECDH). To do so, a client, in its ClientHello mes-
sage, can send a supported groups extension that names its supported elliptic
curve groups; the client can then also provide corresponding keyshares, which
are the public cryptographic values used to initiate key exchange. By defining
new “groups” for each post-quantum and hybrid method, this framework can
also be used in a straightforward manner to support the use of post-quantum
key-exchange algorithms. Mapping these on to key encapsulation mechanisms,
the client uses a KEM ephemeral public key as its keyshare, and the server
encapsulates against the public key and sends the corresponding ciphertext as
its keyshare. Despite performing ephemeral key exchange, we only use the IND-
CCA versions of the post-quantum KEMs1.

In the instantiation of hybrid methods in OQS-OpenSSL 1.1.1, the number
of algorithms combined are restricted to two at a time, and a “group” identifier
is assigned to each such pair; as a result, combinations are negotiated together,
rather than individually. Moreover, in such a hybrid method, the public keys
and ciphertexts for the hybrid scheme are simply concatenations of the ellip-
tic curve and post-quantum algorithms’ values in the keyshare provided by the

1 It may be possible that IND-CPA KEMs suffice for ephemeral key exchange, but
this is an open question. Proofs of Diffie–Hellman key exchange in TLS 1.2 [13,18]
showed that security against active attacks is required; existing proofs of TLS 1.3 [11]
also use an “active” Diffie–Hellman assumption, but whether an active assumption
is necessary has not yet been resolved.
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ClientHello and ServerHello messages. For computing the shared secret, indi-
vidual shared secrets are concatenated and used in place of the ECDH shared
secret in the TLS 1.3 key schedule. As OpenSSL does not have a generic KEM
or key exchange API in its libcrypto component, the modified OpenSSL imple-
mentation primarily involves changes in OpenSSL’s ssl directory, and calls into
OpenSSL’s libcrypto for the ECDH algorithms and into the Open Quantum
Safe project’s liboqs for the post-quantum KEMs.

2.2 Post-quantum Authentication in TLS 1.3

Our experiments focused on post-quantum-only authentication, rather than
hybrid authentication. We made this choice because, with respect to authen-
ticating connection establishment, the argument for a hybrid mode is less clear:
authentication only needs to be secure at the time a connection is established
(rather than for the lifetime of the data as with confidentiality). Moreover, in
TLS 1.3 there is no need for a server to have a hybrid certificate that can be
used with both post-quantum-aware and non-post-quantum aware clients, as
algorithm negotiation will be complete before the server needs to send its cer-
tificate.

In TLS 1.3, public key authentication is done via signatures, and public keys
are usually conveyed via X.509 certificates. There are two relevant negotiation
mechanisms in TLS 1.3: the signature algorithms cert extension which is used
to negotiate which algorithms are supported for signatures in certificates; and the
signature algorithms extension for which algorithms are supported in the pro-
tocol itself. Both of these extensions are a list of algorithm identifiers [32].

In the instantiation in OQS-OpenSSL 1.1.1, new algorithm identifiers are
added for each post-quantum signature algorithm to be used, and the algo-
rithms themselves are added to OpenSSL’s generic “envelope public key” object
(EVP PKEY) in libcrypto, which then percolate upwards to the X.509 certifi-
cate generation and management and TLS authentication, with relatively few
changes required at these higher levels.

3 The Network Emulation Framework

To carry out experiments with full control over network characteristics, we rely
on features available in Linux to implement a network emulation framework.

The Linux kernel provides the ability to create network namespaces [3], which
are independent, isolated copies of the kernel’s network stack; each namespace
has its own routes, network addresses, firewall rules, ports, and network devices.
Network namespaces can thus emulate separate network participants on a single
system.

Two namespaces can be linked using pairs of virtual ethernet (veth) devices
[4]: veth devices are always created in interconnected pairs, and packets trans-
mitted on one device are immediately received on the other device in the pair.
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Table 1. Key exchange algorithm communication size and runtime

Algorithm Public key (bytes) Ciphertext (bytes) Key gen. (ms) Encaps. (ms) Decaps. (ms)

ECDH NIST P-256 64 64 0.072 0.072 0.072

SIKE p434 330 346 13.763 22.120 23.734

Kyber512-90s 800 736 0.007 0.009 0.006

FrodoKEM-640-AES 9,616 9,720 1.929 1.048 1.064

Table 2. Signature scheme communication size and runtime

Algorithm Public key (bytes) Signature (bytes) Sign (ms) Verify (ms)

ECDSA NIST P-256 64 64 0.031 0.096

Dilithium2 1,184 2,044 0.050 0.036

qTESLA-P-I 14,880 2,592 1.055 0.312

Picnic-L1-FS 33 34,036 3.429 2.584

Outgoing traffic on these virtual devices can be controlled by the network emula-
tion (netem) kernel module [24], which offers the ability to instruct the kernel to
apply, among other characteristics, a delay, an independent or correlated packet
loss probability, and a rate-limit to all outgoing packets from the device.

To give the link a minimum round trip time of xms, netem can be used to
instruct the kernel to apply on both veth devices a delay of x

2 ms to each outgoing
packet. Similarly, to give the link a desired packet loss rate y%, netem can
instruct the kernel to drop on both devices outgoing packets with (independent
or correlated) probability y%. While netem can be used to specify other traffic
characteristics, such as network jitter or packet duplication, we consider varying
the round-trip time and packet loss probability to be sufficient to model a wide
variety of network conditions. If the round-trip time on a link connecting a server
and client conveys the geographical distance between them, then, for example,
a low packet loss can model a high-quality and/or wired ethernet connection.
Moderate to high packet losses can model low-quality connections or congested
networks, such as when the server experiences heavy traffic, or when a client
connects to a website using a heavily loaded WiFi network.

Tools such as NetMirage [40] and Mininet [23] offer the ability to emu-
late larger, more sophisticated, and more realistic networks where, for exam-
ple, namespaces can serve as autonomous systems (AS) that group clients, and
packets can be routed within an AS or between two ASes. We carried out our
experiments over a single link (client–server topology) with direct control over
network characteristics using netem to enable us to isolate the effect of individ-
ual network characteristics on the performance of post-quantum cryptography
in TLS 1.3.

4 Experimental Setup

In this section we describe the two experimental setups employed – the emulated
network experiment, and the Internet data-centre-to-data-centre experiment.
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Table 3. Key exchange and signature algorithms used in our experiments

Notation Hybrid Family Variant Implementation

Key exchange

ecdh-p256 × Elliptic-curve NIST P-256 OpenSSL optimized

ecdh-p256-sike-p434 � Supersingular isogeny SIKE p434 [14] Assembly optimized

ecdh-p256-kyber512 90s � Module LWE Kyber 90s level 1 [35] AVX2 optimized

ecdh-p256-frodo640aes � Plain LWE Frodo-640-AES [27] C with AES-NI

Signatures

ecdsa-p256 × Elliptic curve NIST P-256 OpenSSL optimized

dilithium2 × Module LWE/SIS Dilithium2 [25] AVX2 optimized

qtesla-p-i × Ring LWE/SIS qTESLA provable 1 [5] AVX2 optimized

picnic-l1-fs × Symmetric Picnic-L1-FS [42] AVX2 optimized

4.1 Cryptographic Scenarios

We consider the two cryptographic scenarios in TLS 1.3: hybrid key exchange and
post-quantum authentication. Table 3 shows the four key exchange algorithms
and four signature algorithms used in our experiments2. Their integration into
TLS 1.3 was as described in Sect. 2. We used liboqs for the implementations
of the post-quantum algorithms; liboqs takes its implementations directly from
teams’ submissions to NIST or via the PQClean project [16]. Tables 1 and 2
show public key/ciphertext/signature size and raw performance on the machine
used in our network emulation experiments.

For the key exchange scenario, the rest of the algorithms in the TLS con-
nection were as follows: server-to-client authentication was performed using an
ECDSA certificate over the NIST P-256 curve using the SHA-384 hash function.
For the signature scenario, key exchange was using ecdh-p256-kyber512 90s;
the hash function used was SHA-384. In both cases, application data was pro-
tected using AES-256 in Galois/counter mode, and the certificate chain was root
→ server, all of which were using the same algorithms.

4.2 Emulated Network Experiment Setup

The goal of the emulated network experiments was to measure the time elapsed
until completion of the TLS handshake under various network conditions.

Following the procedure in Sect. 3, we created two network namespaces and
connected them using a veth pair, one namespace representing a client, and the
other a server. In the client namespace, we ran a modified version of OpenSSL’s

2 Our Internet data-centre-to-data-centre experiment actually included all Level
1 algorithms supported by liboqs (additionally bike1l1cpa, newhope512cca,
ntru hps2048509, lightsaber, and picnic2l1fs) and additionally hybrid authentica-
tion with RSA-3072. The network emulation experiments take much longer to run
than the Internet experiments, so we did not have time to collect corresponding net-
work emulation results. For parity, in this paper we only present the results obtained
using the same algorithms as in the network emulation experiment. The additional
data collected can be found on our GitHub repository.
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s time program, which measures TLS performance by making, in a given time
period, as many synchronous (TCP) connections as it could to a remote host
using TLS; our modified version (which we’ve called s timer), for a given num-
ber of repetitions, synchronously establishes a TLS connection using a given
post-quantum algorithm, closes the connection as soon as the handshake is com-
plete, and records only the time taken to complete the handshake. In the server
namespace, we ran the nginx [28] web server, built against OQS-OpenSSL 1.1.1
so that it is post-quantum aware.

We chose 4 round-trip times to model the geographical distance to servers
at different locations: the values were chosen to be similar to the round-trip
times in the Internet data-centre network experiment (see Sect. 4.3), but are
not exactly the same, partly because netem internally converts a given latency
to an integral number of kernel packet scheduler “ticks”, which results in a
slight (and negligible) accuracy loss. For each round-trip time, the packet loss
probability was varied from 0% to 20% (the probability applies to each packet
independently). For context, telemetry collected by Mozilla on dropped packets
in Firefox (nightly 71) in September and October 2019, indicate that, on desktop
computers, packet loss rates above 5% are rare: for example, in the distribution
of WEBRTC AUDIO QUALITY OUTBOUND PACKETLOSS RATE, 67% of the 35.5 million
samples collected had packet loss less than 0.1%, 89% had packet loss less than
1%, 95% had packet loss less than 4.3%, and 97% had packet loss less than
20% [26].

Finally, for each combination of round-trip time and packet loss rate, and for
each algorithm under test, 40 independent s timer “client” processes were run,
each making repeated synchronous connections to 21 nginx worker processes,
each of which was instructed to handle 1024 connections3.

The experiments were run on a Linux (Ubuntu 18.04) Azure D64s v3 virtual
machine, which has 64 vCPUs (2.60 GHz Intel Xeon Platinum 8171M, bursting
to 3.7 GHz) and 256 GiB of RAM, in order to give each process its “own” core
so as to minimize noise from CPU process scheduling and make the client and
server processes as independent of each other as possible.

4.3 Internet Data-Centre-To-Data-Centre Experiment Setup

The emulated network experiment concerned itself only with handshake times. In
practice, the latency of establishing TLS might not be noticeable when compared
to the latency of retrieving application data over the connection. Accordingly, we
conducted a set of experiments that involved a client cloud VM requesting web
pages of different sizes from various server VMs over the Internet, and measured
the total time to receive the complete file.

We set up one client VM and four server VMs in various cloud data centres
using Azure, ranging from the server being close to the client to the server being
on the other side of the planet. Table 4 shows the data centre locations and gives
the round-trip times between the client and server.
3 nginx worker processes handle connections using an asynchronous, event-driven app-

roach.
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Table 4. Client and server locations and network characteristics observed for the
Internet data-centre-to-data-centre experiments; packet loss rates were observed to be
0%

Virtual machine Azure region Round-trip time

Client East US 2 (Virginia) –

Server – near East US (Virginia) 6.193 ms

Server – medium Central US (Iowa) 30.906 ms

Server – far North Europe (Ireland) 70.335 ms

Server – worst-case Australia East (New South Wales) 198.707 ms

It should be noted that the RTT times between any two VMs depend on
the state of the network between them, which is highly variable; our values in
Table 4 are one snapshot. Given that these are data-centre-to-data-centre links,
the packet loss on these links is practically zero. The VMs were all Linux (Ubuntu
18.04) Azure D8s virtual machines, which each have 8 vCPUs (either 2.4 GHz
Intel Xeon E5-2673 v3 (Haswell) or 2.3 GHz Intel Xeon E5-2673 v4 (Broad-
well), depending on provisioning, bursting to 3.5 GHz) and 32 GiB of RAM. The
Apache Benchmark (ab) tool [2] was installed on the client VM to measure con-
nection time; it was modified to use TLS 1.3 via OQS-OpenSSL 1.1.1 and verify
the server certificate.

We installed nginx (compiled against OQS-OpenSSL 1.1.1) on all server VMs,
and we configured it to listen on multiple ports (each one offering a certificate
with one of the signature algorithms under test) and to serve HTML pages of var-
ious sizes (1 kB, 10 kB, 100 kB, 1000 kB). (The http archive [12] reports that the
median desktop and mobile page weight is close to 1950 kB and 1750 kB respec-
tively. Experiments with files as large as 2000 kB took an inordinate amount of
time, and all the relevant trends can also be seen at the 1000 kB page size.)

All C code in both experiments was built using the GCC compiler.

5 Results and Discussion

5.1 Emulated Network Experiment Results

Key Exchange. Figure 1 shows handshake completion times at the 50th
(median) and 95th percentile for different round trip times for the four key
exchange mechanisms under test. For each key exchange scenario, we collected
4500 samples4. Most of the charts we show report observations at the 50th and
95th percentile comparing across all algorithms under test. Figures 5 and 6 show

4 The slight downward slope for the first few packet loss rates in the median results for
ecdh-p256-sike-p434 is an artifact of the experiment setup used: at low packet loss
rates, the setup results in many connection requests arriving simultaneously, causing
a slight denial-of-service-like effect while the server queues some calculations.



Benchmarking Post-quantum Cryptography in TLS 81

observations at a more granular range of percentiles for each key exchange mech-
anism and round-trip time; the full data set is available at https://github.com/
xvzcf/pq-tls-benchmark.

At the median, over high quality network links (packet loss rates ≤ 1%),
we observe that public key and ciphertext size have little impact on handshake
completion time, and the predominant factor is cryptographic computation time:
ECDH, Kyber512-90s, and Frodo-640-AES have raw cryptographic processing
times less than 2 ms resulting in comparable handshake completion times; the
slower computation of SIKE p434, where the full cryptographic sequence takes
approximately 60 ms, results in a higher latency floor.

As packet loss rates increase, especially above 5%, key exchange mecha-
nisms with larger public keys / ciphertexts, by inducing more packets, bring
about longer completion times. For example, at the 31.2 ms RTT, we observe
that median Frodo-640-AES completion time starts falling behind. This is to
be expected since the maximum transmission unit (MTU) of an ethernet con-
nection is 1500 bytes whereas Frodo-640-AES public key and ciphertext sizes
are 9616 bytes and 9720 bytes respectively, resulting in fragmentation across
multiple packets. Using the packet analyzer tcpdump, we determined that 16
IP packets must be sent by the client to establish a TLS connection using
ecdh-p256-frodo640aes. If the packet loss loss probability is p = 5%, the prob-
ability of at least one packet getting dropped is already 1 − (1 − p)16 ≈ 58%, so
the median ecdh-p256-frodo640aes has required a retransmission. In contrast,
only 5 IP packets are required to establish a TLS connection with ecdh-p256
and ecdh-p256-sike-p434, and 6 packets for ecdh-p256-kyber512 90s, which
explains why SIKE p434’s small public-key and ciphertext sizes do not offset its
computational demand.

At the 95th percentile, we see the impact of raw cryptographic processing
times nearly eliminated. Up to 10% packet loss, the performance of the 4 key
exchange algorithms are quite close. Past 15% packet loss, the much larger num-
ber of packets causes ecdh-p256-frodo640aes completion times to spike.

At the 5.6 ms and 31.2 ms RTTs, the median ecdh-p256-kyber512 90s con-
nection briefly outperforms the median ecdh-p256 connection at packet loss
rates above 15%. This is noise due to the high variability inherent in our mea-
surement process.

Digital Signatures. Figure 2 shows handshake completion times at the 50th
(median) and 95th percentile for different round trip times for the four key
exchange mechanisms under test. For each point, we collected 6000 samples. As
with the key-exchange results, some noise is still present, especially at the 95th
percentile.

The trends here are similar to key exchange, with respect to impact of com-
putation costs and number of packets: at the median, dilithium2 imposes the
least slowdown of all post-quantum signature schemes, and is commensurate
with ecdsa-p256 at low latencies and packet loss rates. qtesla-p-i results in a
higher latency floor. picnic-l1-fs, which produces 34,036-byte signatures, also
degrades rapidly as the link latency and packet loss probability increases.

https://github.com/xvzcf/pq-tls-benchmark
https://github.com/xvzcf/pq-tls-benchmark
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Fig. 1. Network emulation experiment, key exchange scenario: handshake com-
pletion time (median & 95th percentile) vs. packet loss, at different round trip times
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Fig. 2. Network emulation experiment, signature scenario: Handshake com-
pletion time (median & 95th percentile) vs. packet loss at different round trip times
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5.2 Internet Data-Centre-To-Data-Centre Experiment Results

For each post-quantum scenario, we collected data points by running the ab tool
for 3 min, resulting in between 100 and 1000 samples for each scenario.

Key Exchange. Figure 3 (left) shows the results for median page download
times from our four data centres. Figure 4 in the appendix shows results for the
95th percentile; behaviour at the 95th percentile is not too different from median
behaviour, likely due to the extremely low packet loss rate on our connections.

For small-RTT connections and small web pages, the TLS handshake con-
stitutes a significant portion of the overall connection time; faster algorithms
perform better. As page size and RTT time increase, the handshake becomes
less significant. For example, for the near server (US East, 6.2 ms RTT), in com-
paring ecdh-p256 with ecdh-p256-sikep434, we observe that, at the median,
ecdh-p256 is 3.12 times faster than ecdh-p256-sikep434 for 1 kB web pages.
However this ratio decreases as page sizes increase to 100 or 1000 kB, and as
round trip time increases; for example decreasing to 1.07× and 1.03× for the
worst-case server (Australia, 198.7 ms RTT) at 1 and 1000 KB.

Digital Signatures. Fig. 3 (right) shows the results for median round-trip times
to the four data centres; Fig. 4 in the appendix shows results for the 95th

Fig. 3. Internet data-centre-to-data-centre experiment: median retrieval time
for various web page sizes from 4 data centres; key exchange (left), signatures (right)



Benchmarking Post-quantum Cryptography in TLS 85

percentile. Just like with the emulated experiment, we observe similar trends
between the signature and the key encapsulation mechanisms tests. While the
TLS handshake represents a significant portion of the connection establishment
time, over increasingly long distances or with increasingly larger payloads, the
proportion of time spent on handshake cryptographic processing diminishes.

We do observe some variability in the comparisons between signature algo-
rithms in the Internet experiment in Fig. 3 (especially at 100 and 1000 kB, and for
the more distant data centres) that we believe may be due to real-world network
conditions changing when running different batches sequentially. This effect,
expected to a degree due to the nature of internet routing, might be reduced by
interweaving batches and collecting a larger number of samples, which we would
like to try in future experimental runs.

6 Conclusion and Future Work

Our experimental results show under which conditions various characteristics of
post-quantum algorithms affect performance. In general, on fast, reliable network
links, TLS handshake completion time of the median connection is dominated by
the cost of public key cryptography, whereas the 95th percentile completion time
is not substantially affected. On unreliable network links with packet loss rates of
3–5% or higher, communication sizes come to govern handshake completion time.
As application data sizes grow, the relative cost of TLS handshake establishment
diminishes compared to application data transmission.

With respect to the effect of communication sizes, it is clear that the maxi-
mum transmission unit (MTU) size imposed by the link layer significantly affects
the TLS establishment performance of a scheme. Large MTUs may be able to
improve TLS establishment performance for post-quantum primitives with large
messages. Some ethernet devices provide (non-standard) support for “jumbo
frames”, which are frames sized anywhere from 1500 to 9000 bytes [39]. Since
the feature is non-standard, it is not suitable for use in Internet-facing appli-
cations, which cannot make assumptions about the link-layer MTUs of other
servers/intermediaries, but may help in local or private networks where every
link can be accounted for.

Future work obviously includes extending these experiments to cover more
algorithms and more security levels; we intend to continue our experiments and
will post future results to our repository at https://github.com/xvzcf/pq-tls-
benchmark. It would be interesting to extend the emulation results to bigger
networks that aim to emulate multiple network conditions simultaneously using
NetMirage or Mininet. On the topic of post-quantum authentication, our exper-
iments focused on a certificate chain where the root CA and endpoint used the
same algorithms (resulting in transmission of one public key and two signatures);
it would be interesting to experiment with different chain sizes, and with multi-
algorithm chains, perhaps optimized for overall public key + signature size. It
would also be possible to measure throughput of a server under load from many
clients. Finally, our emulation framework could be applied to investigate other
protocols, such as SSH, IPsec, Wireguard, and others.

https://github.com/xvzcf/pq-tls-benchmark
https://github.com/xvzcf/pq-tls-benchmark
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A Additional Charts

Fig. 4. Internet data-centre-to-data-centre experiment: 95th percentile retrieval
time for various web page sizes from four data centres; key exchange scenario (left),
signature scenario (right)
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Fig. 5. Network emulation experiment, key exchange scenario: handshake com-
pletion time versus packet loss rate at various percentiles, part 1
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Fig. 6. Network emulation experiment, key exchange scenario: handshake com-
pletion time versus packet loss rate at various percentiles, part 2
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Abstract. Multivariate Cryptography is one of the main candidates
for securing communication in a post-quantum world. One of the most
promising schemes from this area is the Rainbow signature scheme. While
this scheme provides very fast signature generation and verification, the
key generation process of Rainbow is relatively slow. In this paper, we
propose an algorithm which speeds up the key generation process of the
standard Rainbow signature scheme by up to two orders of magnitude,
such eliminating one of the few drawbacks of this scheme. Furthermore,
we present an improved key generation algorithm for the CyclicRainbow
signature scheme. This algorithm allows to generate a key pair for Cyclic
Rainbow in essentially the same time as a key pair for standard Rain-
bow, thus making CyclicRainbow a practical alternative to the standard
scheme. Our algorithms are implemented in the Rainbow proposal for
the second round of the NIST standardization process for post-quantum
cryptosystems.

Keywords: Multivariate cryptography · Rainbow · CyclicRainbow ·
Efficient key generation · NIST standardization process for
post-quantum cryptosystems

1 Introduction

In our modern digital world, cryptographic techniques are an indispensable
building block to guarantee the security of our communication systems. Besides
encryption, the second important cryptographic primitive are digital signature
schemes, which guarantee the authenticity and integrity of signed data such as
emails and software updates. The currently used schemes for this purpose are
the factoring based RSA cryptosystem [16] and the discrete logarithm based
Digital Signature Algorithm (DSA) [11]. However, due to Shor’s algorithm [17],
the mathematical problems underlying the security of these schemes can be
efficiently solved on a large scale quantum computer. In order to preserve the
security of communication in an era where quantum computer exist, we therefore
need cryptographic schemes which are resistant against such attacks. Especially
in the area of digital signature schemes, multivariate cryptography is one of
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the most promising candidates for this. Multivariate digital signature schemes
mainly come in two flavours. On the one hand, we have the BigField schemes
such as HFEv- or the NIST candidate GeMSS [3]. On the other hand, there are
the SingleField schemes such as UOV and Rainbow. In this paper, we concentrate
on these schemes.

UOV and Rainbow. The research in this field was initiated in 1997 by Patarin
with his (balanced) Oil and Vinegar signature scheme [12], which was itself
inspired by his Linearization Equations attack against the Matsumoto-Imai cryp-
tosystem. After this original proposal was broken by a linear algebra attack by
Kipnis and Shamir [9], it was recommended in [8] to choose v > o (Unbalanced
Oil and Vinegar (UOV)). In order to increase the efficiency of this scheme, Ding
and Schmidt proposed in [6] the Rainbow signature scheme, which can be seen
as a multilayer version of UOV. In the following years, Petzoldt et al. proposed
in a series of papers [13–15] a number of improvements to this scheme. Com-
pared to the standard Rainbow scheme, their CyclicRainbow signature scheme
offers a much smaller public key as well as a faster verification process. How-
ever, since existing key generation algorithms for the scheme were very slow, the
CyclicRainbow scheme was far from being practical.

Together with (some of) these improvements, Rainbow was accepted as a
second round candidate for the NIST standardization process of post-quantum
public key cryptosystems [10]. While the signature generation and verification
processes of Rainbow are very fast, the key generation process of the scheme
was, in the first round proposal, relatively slow.

In this paper we propose two new algorithms for the key generation of the
standard and the CyclicRainbow signature schemes. For the standard scheme,
our algorithm outperforms existing algorithms (such as that of the first round
submission) by up to two orders of magnitude, such eliminating one of the few
drawbacks of the scheme. For the CyclicRainbow scheme, our new algorithm
is less than 10% slower than that of the standard scheme, such making Cyclic
Rainbow a practical alternative to the standard scheme. Furthermore, we show
how our techniques could be used to reduce the private key size of the Cyclic
Rainbow scheme as well. Our algorithms are inspired by the work of Beullens et
al. to create the LUOV signature scheme [2].

The rest of this paper is organized as follows. In Sect. 2, we give a short intro-
duction into the field of multivariate cryptography and present the Rainbow sig-
nature scheme of [6]. Section 3 describes our improved key generation algorithm
for the standard Rainbow scheme, while Sect. 4 deals with the CyclicRainbow
signature scheme of [14]. Section 5 shows the results of our implementation and
Sect. 6 sketches a technique to reduce the private key size of CyclicRainbow.
Finally, Sect. 7 concludes this paper.
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2 Multivariate Public Key Cryptography

The public key of a multivariate public key cryptosystem (MPKC) is a system
P of m quadratic polynomials in n variables over a finite field F (see Eq. (1)).

p(1)(x1, . . . , xn) =
n∑

i,j=1

p
(1)
ij xixj +

n∑

i=1

p
(1)
i xi + p

(1)
0

p(2)(x1, . . . , xn) =
n∑

i,j=1

p
(2)
ij xixj +

n∑

i=1

p
(2)
i xi + p

(2)
0

...

p(m)(x1, . . . , xn) =
n∑

i,j=1

p
(m)
ij xixj +

n∑

i=1

p
(m)
i xi + p

(m)
0 (1)

The security of MPKC’s is based on the

MQ-Problem: Given a system of m quadratic equations p(1)(x), . . . , p(m)(x)
in n variables as shown in Eq. (1), find a vector x̄ = (x̄1, . . . , x̄n) such that
p(1)(x̄) = . . . = p(m)(x̄) = 0 holds.

The MQ-Problem (for m ∼ n) has been proven to be NP-hard, even for
polynomials over GF(2) [7] and is believed to be hard on average (for both
classical and quantum computers).

In order to create a public key cryptosystem on the basis of the MQ-Problem,
one starts with an easily invertible quadratic map F : Fn → F

m (central map).
To hide the structure of F in the public key, one composes it with two affine
(or linear) invertible maps S and T . The public key of the cryptosystem is the
composed quadratic map P = S ◦ F ◦ T which is (hopefully) difficult to invert.
The private key consists of S, F and T and therefore allows to invert P.

In this paper we concentrate on multivariate signature schemes. For such a
scheme we have n ≥ m, which ensures that every message has a signature. The
standard process for signature generation and verification works as shown in
Fig. 1.

Signature Generation

d h F
m x F

m y F
n z F

nS−1 −1 −1

Signature Verification

Fig. 1. Workflow of multivariate signature schemes
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Signature Generation: In order to generate a signature for a document
d ∈ {0, 1}�, we use a hash function H : {0, 1}∗ → F

m to compute the hash value
h = H(d) ∈ F

m. Then we compute x = S−1(h), y = F−1(x) and z = T −1(y).
The signature of the document d is z ∈ F

n. Here, F−1(x) means finding one (of
possibly many) pre-image of x under the central map F .

Signature Verification: To check the authenticity of a document d, one simply
computes h′ = P(z) and the hash value h = H(d) of the document. If h′ = h
holds, the signature is accepted, otherwise it is rejected.

2.1 The Rainbow Signature Scheme

In [6], Ding and Schmidt proposed a signature scheme called Rainbow, which is
based on the idea of (unbalanced) Oil and Vinegar [8].

Let F be a finite field and V be the set {1, . . . , n}. Let v1, . . . , vu+1, u ≥ 1
be integers such that 0 < v1 < v2 < . . . < vu < vu+1 = n and define the
sets of integers Vi = {1, . . . , vi} for i = 1, . . . , u. We set oi = vi+1 − vi and
Oi = {vi +1, . . . , vi+1} (i = 1, . . . , u). The number of elements in Vi is vi and we
have |Oi| = oi. For k = v1+1, . . . , n we define multivariate quadratic polynomials
in the n variables x1, . . . , xn by

f (k)(x) =
∑

i,j∈Vl, i≤j

α
(k)
ij xixj +

∑

i∈Ol, j∈Vl

β
(k)
ij xixj +

∑

i∈Vl∪Ol

γ
(k)
i xi + η(k), (2)

where l is the only integer such that k ∈ Ol.

The map F(x) = (f (v1+1)(x), . . . , f (n)(x)) can be inverted as follows. First,
we choose x1, . . . , xv1 at random and substitute these values into the polynomials
f (v1+1), . . . , f (n). Thus we get a system of o1 linear equations (given by the
polynomials f (k) (k ∈ O1)) in the o1 unknowns xv1+1, . . . , xv2 , which can be
solved by Gaussian elimination. The so computed values of xi (i ∈ O1) are
plugged into the polynomials f (k)(x) (k > v2) and a system of o2 linear equations
(given by the polynomials f (k) (k ∈ O2)) in the o2 unknowns xi (i ∈ O2) is
obtained. By repeating this process we can compute the values of all the variables
xi (i = 1, . . . , n)1.

In order to hide the structure of F in the public key, we combine it with two
invertible affine maps S : Fm → F

m and T : Fn → F
n. The public key P of the

scheme is given as the composed map P = S ◦ F ◦ T . The private key consists
of S, F and T and therefore allows to invert the public key.

1 It may happen, that one of the linear systems does not have a solution. If so, one
has to choose other values for the Vinegar variables x1, . . . xv1 and try again.
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3 Efficient Key Generation of Rainbow

In the following we restrict to Rainbow schemes with two layers. Note that this is
the standard design of Rainbow and also corresponds to the parameter proposals
used in the NIST submission. Thus, the scheme is determined by the parameters
v1, o1 and o2 and we have m = o1 + o2 equations and n = v1 + m variables. We
furthermore restrict to homogeneous maps S, F and T . Note that, due to this
choice, the public key P is a homogeneous quadratic map from F

n to F
m.

We choose the matrices S and T representing the linear maps S and T to be
of the form

S =
(

Io1×o1 S′
o1×o2

0o2×o1 Io2×o2

)
, T =

⎛

⎜⎝
Iv1×v1 T

(1)
v1×o1

T
(2)
v1×o2

0o1×v1 Io1×o1 T
(3)
o1×o2

0o2×v1 0o2×o1 Io2×o2

⎞

⎟⎠ . (3)

Note that, for every Rainbow public key P, there exists a corresponding private
key (S,F , T ) with S and T being of form (3) [18]. So, the above restriction does
not weaken the security of our scheme.

For our special choice of S and T we have det(S) = det(T ) = 1 and (for
fields of characteristic 2)

S−1 =
(

Io1×o1 S′
o1×o2

0o2×o1 Io2×o2

)
= S, T−1 =

⎛

⎝
I T (1) T (1) · T (3) + T (2)

0 I T (3)

0 0 I

⎞

⎠ . (4)

For abbreviation, we set T (4) := T (1) · T (3) + T (2).
We introduce an intermediate map Q = F ◦ T . Note that we can write the

components of the two maps F and Q as quadratic forms

f (i)(x) = xT · F (i) · x (5)
q(i)(x) = xT · Q(i) · x (6)

with upper triangular matrices F (i) and Q(i). Note that, due to the relation
Q = F ◦ T , we get

Q(i) = TT · F (i) · T (i = v1 + 1, . . . , n). (7)

Note further that, due to the special form of the Rainbow central map, the
matrices F (i) look as shown in Fig. 2. The matrices Q(i) (i = v1 + 1, . . . , n) are
divided into submatrices Q

(i)
1 , . . . , Q

(i)
9 analogously.

In order to generate a Rainbow key pair, we choose the non zero elements of
the matrices S, T and F (v1+1), . . . , F (n) uniformly at random from the field F

and perform the following three steps.



Efficient Key Generation for Rainbow 97

0

F
(i)
1 F

(i)
2

i v1 + 1, . . . , v2}

0

F
(i)
1 F

(i)
2 F

(i)
3

F
(i)
5 F

(i)
6

i v2 + 1, . . . , n}

0

Q
(i)
1 Q

(i)
2 Q

(i)
3

Q
(i)
5 Q

(i)
6

Q
(i)
9

i{ { {v1 + 1, . . . , n}
n

v2

v1

n

v2

v1

F (i) Q(i)

v1 v2 n v1 v2 n v1 v2 n

Fig. 2. Matrices F (i) (left) and Q(i) (right) representing the polynomials of the Rain-
bow central and intermediate maps. The only non-zero elements are contained in the
gray spaces.

First Step: Compute the Matrices Q(i) of the First Layer
In the first step, we compute from the matrices F (v1+1), . . . , F (v2) the matrices
Q(v1+1), . . . , Q(v2). Since the only non zero elements of the matrices F (i) (i =
v1 + 1, . . . , v2) are contained in the submatrices F

(i)
1 and F

(i)
2 , we obtain from

Q(i) = TT · F (i) · T

Q
(i)
1 = F

(i)
1 ,

Q
(i)
2 = (F

(i)
1 + (F

(i)
1 )

T
) · T1 + F

(i)
2 ,

Q
(i)
3 = (F

(i)
1 + (F

(i)
1 )

T
) · T2 + F

(i)
2 · T3,

Q
(i)
5 = UT(T

T
1 · F

(i)
1 · T1 + T

T
1 · F

(i)
2 ), (8)

Q
(i)
6 = T

T
1 (F

(i)
1 + (F

(i)
1 )

T
) · T2 + T

T
1 · F

(i)
2 · T3 + (F

(i)
2 )

T · T2,

Q
(i)
9 = UT(T

T
2 · F

(i)
1 · T2 + T

T
2 · F

(i)
2 · T3).

Here, UT(A) transforms a matrix A into an equivalent upper triangular matrix
(i.e. aij = aij + aji for i < j, aij = 0 for i > j).
Step 2: Compute the Matrices Q(i) of the Second Layer
In the second step, we compute from the matrices F (v2+1), . . . , F (n) the matrices
Q(v2+1), . . . , Q(n). Since the only non zero elements of the matrices F (i) (i =
v2+1, . . . , n) are contained in the submatrices F

(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
5 and F

(i)
6 , we

obtain from Q(i) = TT · F (i) · T
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Q
(i)
1 = F

(i)
1 ,

Q
(i)
2 = (F (i)

1 + (F (i)
1 )T ) · T1 + F

(i)
2 ,

Q
(i)
3 = (F (i)

1 + (F (i)
1 )T ) · T2 + F

(i)
2 · T3 + F

(i)
3 ,

Q
(i)
5 = UT(TT

1 · F (i)
1 · T1 + TT

1 · F (i)
2 + F

(i)
5 ), (9)

Q
(i)
6 = TT

1 · (F (i)
1 + (F (i)

1 )T ) · T2 + TT
1 · F (i)

2 · T3

+ TT
1 · F (i)

3 + (F (i)
2 )T · T2 + (F (i)

5 + (F (i)
5 )T ) · T3 + F

(i)
6 ,

Q
(i)
9 = UT(TT

2 · F (i)
1 · T2 + TT

2 · F (i)
2 · T3 + TT

3 · F (i)
5 · T3 + TT

2 · F (i)
3 + TT

3 · F (i)
6 ).

Here, again, UT(A) transforms the matrix A into an equivalent upper triangular
matrix.

Step 3: Compute the Public Key
In the third step, we compute from the matrices Q(i) (i = v1 + 1, . . . , n) the
public key P of the scheme. To do this, we first transform the matrices Q(i) into
a Macaulay matrix MQ. For i = v1 + 1, . . . , v2, we copy the n·(n+1)

2 non-zero
entries of the matrix Q(i) into the (i − v1)-th row of the matrix MQ1 (from left
to right and top to bottom). Similarly, we copy the elements of the matrices Q(i)

of the second layer into the matrix MQ2. After this, we compute the Macaulay
matrix MP of the public key as MP = S · MQ or

MP1 = MQ1 + S′ · MQ2

MP2 = MQ2 (10)

By following this strategy, the monomials in the Macaulay matrix MP will be
ordered according to the lexicographical order. The whole process of computing
the matrices MP1 and MP2 from Q(v1+1), . . . , Q(n) is illustrated by Fig. 3.

0

Q
(i)
1 Q

(i)
2 Q

(i)
3

Q
(i)
5 Q

(i)
6

Q
(i)
9

MQ1

MQ2

eq. (10)

MP2

MP1

Fig. 3. Computing the public key

Algorithm 1 shows our key generation algorithm for the standard Rainbow
scheme in compact form.
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4 Key Generation of CyclicRainbow

4.1 The CyclicRainbow Signature Scheme

In [14], Petzoldt et al. proposed the CyclicRainbow signature scheme, which
reduces the public key size of the standard Rainbow signature scheme by up to
70%. The idea of the scheme is illustrated in Fig. 4. We set D1 = v1·(v1+1)

2 +
v1o1, D2 = v2·(v2+1)

2 + v2o2 and D3 = n·(n+1)
2 . As in the previous chapter, we

restrict to Rainbow schemes with two layers, homogeneous maps S, F and T
and assume that the matrices S and T representing the linear maps S and T
are of the form (3).

Instead of computing the public key out of the private key, we generate major
parts of the public key by a PRNG (using a public seed sp) and compute the
central map from the public key. In particular, we generate the elements of the
three matrices B1, B2 and B3 as well as the matrices representing the linear maps
S and T (using a private seed sST ). From this, we can compute the matrices
F1, F2 and F3 (i.e. the non-zero parts of the central map F) by solving systems
of linear equations. Finally, we compute from F the missing parts of the public
key P (i.e. the matrices C1, C2 and C3).

Note that the monomials in the Macaulay matrices of F , Q and P are
ordered according to a special monomial order. In this order, we first have a
block containing the D1 quadratic monomials xixj (1 ≤ i ≤ v1, i ≤ j ≤ v2).
After that, we have a second block containing the quadratic monomials xixj

(1 ≤ i ≤ v1, v2 + 1 ≤ j ≤ n or v1 + 1 ≤ i ≤ v2, i ≤ j ≤ n). The third
block contains the remaining D3 − D2 quadratic monomials. Inside the blocks,
the monomials are ordered according to the lexicographical order. Similar to the
matrices MP and MF of Fig. 4, we divide the Macaulay matrix of the map Q
into 6 submatrices, which we denote by MQi,j (i ∈ {1, 2}, j ∈ {1, 2, 3}).

In the original proposal [14], the matrices B1, B2 and B3 where chosen as
cyclic matrices (hence the name of the scheme). Besides the significant reduc-
tion of the public key size, this choice enabled the authors to design a special
technique of evaluating the public polynomials, which lead to a speed up of the
verification process of up to 60% [15]. However, in order to simplify the secu-
rity analysis of the scheme, the NIST propsal follows the above strategy using a
PRNG. Furthermore, it seems that the above mentioned speed up of the verifi-
cation procees is hard to realize when using vector instructions to speed up the
evaluation of the public polynomials.

The key generation process of CyclicRainbow proposed in [14] required the
inversion of a large D3 × D3 matrix and therefore was very inefficient, which
prevented the CyclicRainbow scheme from being used in practice. Our new key
generation algorithm for the CyclicRainbow scheme as presented in the next
section is essentially as fast as the key generation process for the standard Rain-
bow scheme and therefore solves this problem.
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B1

B2 B3

o1

m

D1 D2 D3

MF MPMP

MF1

MF2 MF3

S T
0 0

0

B1,1

B2 B3

C1 C2

C3

o1

m

D1 D2 D3D1 D2 D3

Fig. 4. Key generation of the CyclicRainbow signature scheme. The dark gray parts
are chosen by the user, while the light gray parts are computed from them.

4.2 Efficient Key Generation of CyclicRainbow

We generate the entries of the matrices S and T representing the linear maps
S and T of form (3) and the three matrices B1, B2 and B3 of Fig. 4 using the
PRNG (using the seeds sST and sp respectively). Our algorithm performs the
key generation process of CyclicRainbow as illustrated in Fig. 4 following four
steps.
Step 1: Compute the Matrices MQ1,1, MQ2,1 and MQ2,2

Due to the special form of the matrix S, the relation P = S ◦ Q yields

MQ1,1 = B1 + S′ · B2,

MQ2,1 = B2, (11)
MQ2,2 = B3.

Step 2: Compute the Central Polynomials of the First Rainbow Layer
For this, we represent the first o1 components of the maps Q and F as upper
triangular matrices Q(i) and F (i) respectively (see Fig. 2).

0

Q
(i)
1 Q

(i)
2

eq. (12)

0

F
(i)
1 F

(i)
2

0

eq. (13)

0

Q
(i)
1 Q

(i)
2 Q

(i)
3

Q
(i)
5 Q

(i)
6

Q
(i)
9

Fig. 5. Computing the central polynomials of the first layer

We insert the D1 elements of the i-th row of MQ1,1 into the dark gray parts of
the matrices Q

(i)
1 and Q

(i)
2 (from left to right and top to bottom; see Fig. 5 (left)).

The corresponding matrices F (i) representing the i-th central polynomial look
as shown in Fig. 5 (middle). Note that the only non-zero elements are located
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in the submatrices F
(i)
1 and F

(i)
2 . Due to the special form of the map T of our

scheme, the relation F (i) = (T−1)T · Q(i) · T−1 yields

F
(i)
1 = Q

(i)
1 ,

F
(i)
2 = (Q(i)

1 + (Q(i)
1 )T ) · T1 + Q

(i)
2 . (12)

All the other elements of the matrices F (i) (i ∈ {1, . . . , o1}) are zero. So, after
having determined the elements of F

(i)
1 and F

(i)
2 , we can use the inverse relation

Q(i) = TT ·F (i) ·T to compute the light gray parts of the matrices Q(i). We find

Q
(i)
3 = (F (i)

1 + (F (i)
1 )T ) · T2 + F2 · T3,

Q
(i)
5 = UT(TT

1 · F
(i)
1 · T1 + TT

1 · F
(i)
2 ),

Q
(i)
6 = TT

1 (F (i)
1 + (F (i)

1 )T ) · T2 + TT
1 · F

(i)
2 · T3 + (F (i)

2 )T · T2,

Q
(i)
9 = UT(TT

2 · F
(i)
1 · T2 + TT

2 · F
(i)
2 · T3). (13)

(see Fig. 5 (right)). Here, UT(A) again denotes the transformation of the matrix
A into an equivalent upper triangular matrix.

Step 3: Compute the Central Polynomials of the Second Rainbow
Layer
For this, we insert the D1 elements of the i-th row of MQ2,1 into the dark gray
parts of the matrices Q

(i+v2)
1 and Q

(i+v2)
2 (from left to right and top to bottom).

The D2 − D1 elements of the i-th row of the matrix MQ2,2 are inserted into
the dark gray parts of the matrices Q

(i)
3 , Q

(i)
5 and Q

(i)
6 (again from left to right

and top to bottom; i.e. we fill the matrix Q
(i)
3 first). Therefore, the matrices Q(i)

(i ∈ {v2 + 1, . . . , n}) look as shown in Fig. 6 (left).
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Fig. 6. Computing the central polynomials of the second layer
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Due to the special form of the matrix T and the relation F (i) = (T−1)T ·Q(i) ·
T−1 we can compute the non-zero parts of the matrices F (i) (i = v2 + 1, . . . , n)
as

F
(i)
1 = Q

(i)
1 ,

F
(i)
2 = (Q(i)

1 + (Q(i)
1 )T ) · T1 + Q

(i)
2 ,

F
(i)
3 = (Q(i)

1 + (Q(i)
1 )T ) · T4 + Q

(i)
2 · T3 + Q

(i)
3 ,

F
(i)
5 = UT(TT

1 · Q
(i)
1 · T1 + TT

1 · Q
(i)
2 + Q

(i)
5 ),

F
(i)
6 = TT

1 · (Q(i)
1 + (Q(i)

1 )T ) · T4 + TT
1 · Q

(i)
2 · T3

+ TT
1 · Q

(i)
3 + (Q(i)

2 )T · T4 + (Q(i)
5 + (Q(i)

5 )T ) · T3 + Q
(i)
6 . (14)

After this, we can use the inverse relation Q(i) = TT · F (i) · T to compute the
matrices Q

(i)
9 (i = v2 + 1, . . . , n). We get

Q
(i)
9 = UT(TT

2 ·F (i)
1 ·T2+TT

2 ·F (i)
2 ·T3+TT

3 ·F (i)
5 ·T3+TT

2 ·F (i)
3 +TT

3 ·F (i)
6 ). (15)

Step 4: Compute the Remaining Parts of the Public Key
For this last step, we transform the matrices Q(i) (i = v1 + 1, . . . , n) back into
a Macaulay matrix MQ. This is done as shown in Fig. 7. For i = v1, . . . , n, we
perform the following 4 steps

– First, we write the D1 elements of the submatrix (Q(i)
1 ||Q(i)

2 ) into the (i−v1)-
th row of the matrix MQ (from left to right and top to bottom).

– The following v1o2 columns of the (i−v1)-th row of the matrix MQ are filled
with the elements of the matrix Q

(i)
3 . Again, these are read from left to right

and top to bottom.
– We continue with the elements of the submatrix (Q(i)

5 ||Q(i)
6 ).

– The last D3 − D2 columns of the (i − v1)-th row are filled with the entries of
the matrix Q

(i)
9 (again from left to right and top to bottom).

0

Q
(i)
1 Q

(i)
2 Q

(i)
3

Q
(i)
5 Q

(i)
6

Q
(i)
9

MQ

Fig. 7. Building the matrix MQ of CyclicRainbow

The matrix MQ is divided into submatrices as described in Sect. 4.1.
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Finally, we compute the matrix MP by MP = S · MQ or, with the special
form of our matrix S,

C1 = MQ1,2 + S′ · MQ2,2,

C2 = MQ1,3 + S′ · MQ2,3,

C3 = MQ2,3. (16)

Note that the coefficients in MP are ordered according to the special monomial
order defined in Sect. 4.1.

Algorithm 2 presents this key generation algorithm in compact form.

5 Results

Table 1 shows the running time of our key generation algorithms for the standard
and the CyclicRainbow signature schemes. The numbers in brackets denote the
corresponding timings of the algorithm used in the first round submission to the
NIST Standardization Process.

Table 1. Running times of our key generation algorithms on an Intel Xeon @ 3.6 GHz
(Skylake) using AVX2 vector instructions. The numbers in brackets give the running
times of the first round submission of Rainbow.

NIST security category I/II III/IV V/VI

Parameter set (GF(16),32,32,32) (GF(256),68,36,36) (GF(256),92,48,48)
Standard Cyclic Standard Cyclic Standard Cyclic

Mcycles 8.29 (1,081) 9.28 94.8 (1,430) 110 126 (4,633) 137

Time (ms) 2.30 (328) 2.58 26.3 (433) 30.5 34.9 (1,404) 38.0

Memory (MB) 3.5 (3.5) 3.5 4.6 (4.6) 4.6 7.0 (7.0) 7.0

As the table shows, our algorithm for the standard scheme is up to 100 times
faster than the algorithm used in the first round submission. The algorithm for
the cyclic scheme is only about 10% slower than that for the standard scheme,
thus making CyclicRainbow to be a practical alternative to the standard scheme.

6 Reducing the Private Key Size of CyclicRainbow

The simple structure of the equations shown in the previous sections makes it
possible to store parts of the central map F of CyclicRainbow in the form of a
random seed, too. In particular, we can generate (parts of) the central map F on
demand during the signature generation process using the seed sp, the PRNG
and (a subset of the) Eqs. (11), (12) and (14). In the following we show that this
leads to a tradeoff between the size of the private key and the running time of
the signature generation process of CyclicRainbow.
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Algorithm 1. Key Generation Algorithm for the standard Rainbow Signature
Scheme
Input: matrices S, T of form (3), Rainbow central map F

(given as matrices F (i) (i = v1 + 1, . . . , n); see Figure 2)
Output: Rainbow public key P (consisting of the matrices MP1 and MP2)
1: for i = v1 + 1 to v2 do
2: Compute the matrices Q

(i)
1 , Q

(i)
2 , Q

(i)
3 , Q

(i)
5 , Q

(i)
6 and Q

(i)
9 using equation (8).

3: end for
4: for i = v2 + 1 to n do
5: Compute the matrices Q

(i)
1 , Q(i)

2 , Q(i)
3 , Q(i)

5 , Q(i)
6 and Q

(i)
9 using equation (9).

6: end for
7: for i = v1 + 1 to n do
8: Insert the elements of the matrix Q(i) into the (i− v1)-th row of the matrix

MQ (as described in the text)
9: end for

10: Compute the Rainbow public key using equation (10).
11: return MP1,MP2.

As a first step, we see from Eqs. (11) and (14) directly, that the entries of the
matrices P

(i)
1 and F

(i)
1 (i = v2 + 1, . . . , n) are identical (i = v2 + 1, . . . , n). This

allows us to generate this part of the central map using the PRNG and the seed
sP . By doing so, we can reduce the size of the private key by up to 9% nearly
without slowing down the signature generation process of our scheme.

The matrices F
(i)
1 corresponding to the polynomials of the first layer can be

computed by generating the matrices B1 and B2 from the seed sp and applying
the first equation of (11). By doing so, we can reduce the size of the private key
by another 9%. However, we have to compute a large matrix product each time
we create a signature, which will slow down the signature generation process of
the CyclicRainbow scheme significantly.

As a second example, we can compute the whole second layer of the central
map F by generating the matrices B2 and B3 from the seed sP and using Eq. (14)
to compute the matrices F

(i)
1 , F

(i)
2 , F

(i)
3 , F

(i)
5 and F

(i)
6 (i = v2+1, . . . , n). For the

parameters recommended in the NIST submission, this reduces the private key
size of CyclicRainbow by 65–71%, but delegates a large number of computations
to the signature generation process.

Finally, by using the complete equation set, we can generate the whole private
key on demand from the seed sP . However, in order to recover the central map
F as needed to generate a signature, we have to perform the computation of
Eqs. (11), (12) and (14) during the signature generation process, which slows
down this process drastically.

Since the speed of the signature generation process is one of the main selling
points of Rainbow, generating the whole private key from the seed sp seems, in
general, not to be promising. On the other hand, on memory constraint devices,
using the above mentioned tradeoff might lead to interesting results. However,
since it is not completely clear yet how these techniques will influence the running
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time of the signature generation process of Rainbow, more research is needed to
find an optimal tradeoff between the size of the private key and the speed of the
signature generation algorithm.

Algorithm 2. Our Key Generation Algorithm for the CyclicRainbow Signature
Scheme
Input: Random seeds sp and sST .
Output: Rainbow central map F , matrices C1, C2 and C3 (see Figure 4).
1: Use a PRNG to generate from sST matrices S and T of form (3).
2: Use the PRNG to generate from sp the matrices B1, B2 and B3 of Figure 4.
3: Compute the matrices MQ1,1, MQ2,1 and MQ2,2 using equation (11).
4: for i = v1 + 1 to v2 do
5: Insert the coefficients of the (i− v1)-th row of the matrix MQ1,1 into the

submatrices Q
(i)
1 and Q

(i)
2 .

6: Set F
(i)
1 = Q

(i)
1 and F

(i)
2 = (Q(i)

1 + (Q(i)
1 )T ) · T1 +Q

(i)
2 .

7: Compute the matrices Q
(i)
3 , Q

(i)
5 , Q

(i)
6 and Q

(i)
9 using equation (13).

8: end for
9: for i = v2 + 1 to n do

10: Insert the coefficients of the (i− v2)-th row of the matrix MQ2,1 into the
submatrices Q

(i)
1 and Q

(i)
2 .

11: Insert the coefficients of the (i− v2)-th row of the matrix MQ2,2 into the
submatrices Q

(i)
3 , Q

(i)
5 and Q

(i)
6 .

12: Compute the matrices F
(i)
1 , F (i)

2 , F (i)
3 , F (i)

5 and F
(i)
6 using equation (14).

13: Compute the matrix Q
(i)
9 using equation (15).

14: end for
15: for i = v1 + 1 to n do
16: Insert the elements of the matrix Q(i) into the (i− v1)-th row of the matrix

MQ (as described in the text)
17: end for
18: Compute the matrices C1, C2 and C3 by equation (16).
19: return F (v1+1), . . . , F (n), C1, C2, C3.

7 Conclusion

In this paper we proposed new efficient algorithms for the key generation of the
standard and the CyclicRainbow signature schemes. With regard to the standard
scheme, our algorithm speeds up the running time of the key generation process
by up to two orders of magnitude (compared to the timings of the first round
submission to the NIST post-quantum standardization process). Using our algo-
rithm for CyclicRainbow, the key generation process of this scheme is only about
10% slower than that of standard Rainbow, which makes CyclicRainbow to be
a practical alternative to the standard scheme. Furthermore we show how our
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techniques can also be used to reduce the size of the private key of CyclicRain-
bow, leading to a tradeoff between private key size and signature generation
time. However, since it is not yet clear how these techniques influence the speed
of the signature generation process, more research in this direction is required.
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Abstract. For primes p ≡ 3 mod 4, we show that setting up CSIDH
on the surface, i.e., using supersingular elliptic curves with endomor-
phism ring Z[(1 +

√−p)/2], amounts to just a few sign switches in the
underlying arithmetic. If p ≡ 7 mod 8 then horizontal 2-isogenies can be
used to help compute the class group action. The formulas we derive
for these 2-isogenies are very efficient (they basically amount to a sin-
gle exponentiation in Fp) and allow for a noticeable speed-up, e.g., our
resulting CSURF-512 protocol runs about 5.68% faster than CSIDH-
512. This improvement is completely orthogonal to all previous speed-
ups, constant-time measures and construction of cryptographic prim-
itives that have appeared in the literature so far. At the same time,
moving to the surface gets rid of the redundant factor Z3 of the acting
ideal-class group, which is present in the case of CSIDH and offers no
extra security.

Keywords: Isogeny-based cryptography · Hard homogeneous spaces ·
CSIDH · Montgomery curves

1 Introduction

A hard homogeneous space [10] is an efficiently computable free and transitive
action � : G × S → S of a finite commutative group G on a set S, for which
the parallelization problem is hard: given s0, s1, s2 ∈ S, it should be infeasible
to find g1g2 � s0, where g1, g2 ∈ G are such that s1 = g1 � s0 and s2 = g2 � s0.
This generalizes the notion of a cyclic group C in which the Diffie–Hellman
problem is hard, as can be seen by considering the set S of generators of C,
acted upon by G = (Z|C|)× through exponentiation. The main appeal of hard
homogeneous spaces lies in their potential for post-quantum cryptography: while
exponentiation-based Diffie–Hellman succumbs to Shor’s polynomial-time quan-
tum algorithm [22], in this more general setting the best attack available is
Kuperberg’s subexponential-time algorithm for finding hidden shifts [16]. This
line of research has led to a number of efficient post-quantum cryptographic
primitives, such as non-interactive key exchange [7] and digital signatures [4],
which stand out in terms of bandwidth requirements, and verifiable delay func-
tions [11].

Unfortunately, we only know of one source of candidate hard homogeneous
spaces that are not based on exponentiation. They descend from CM theory,
c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 111–129, 2020.
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which yields a family of isogeny-wise actions by ideal-class groups on sets of
elliptic curves over finite fields, whose use in cryptography was proposed inde-
pendently by Couveignes [10] and Rostovtsev–Stolbunov [20,23,24]. The current
paper revisits CSIDH [7], which is an incarnation of this idea, using supersingu-
lar elliptic curves rather than ordinary elliptic curves (as originally suggested),
thereby speeding up the resulting protocols by several orders of magnitude.

Concretely, we focus on the following design choice of CSIDH: as put forward
in [7], it works over a large finite prime field Fp with p ≡ 3 mod 8, and it acts
by G = C�(Z[

√−p]) on the set S of Fp-isomorphism classes of elliptic curves
with endomorphism ring Z[

√−p] — such curves are said to live on the floor.
The motivation for this choice comes from [7, Prop. 8], which identifies S with

S+
p = { a ∈ Fp | y2 = x3 + ax2 + x is supersingular },

i.e., every curve on the floor has a unique representative in Montgomery form
and, conversely, every supersingular Montgomery curve over Fp has endomor-
phism ring Z[

√−p]. This convenient fact allows for compact and easily verifiable
public keys. Furthermore 0 ∈ S+

p makes for a natural choice of s0.

Contributions
The main contributions of this paper are as follows.

(a) One of our main observations is that for p ≡ 7 mod 8, a very similar state-
ment applies to the surface, consisting of Fp-isomorphism classes of elliptic
curves with endomorphism ring Z[(1 +

√−p)/2]. Concretely, we show that
this set can be identified with

S−
p = {A ∈ Fp | y2 = x3 + Ax2 − x is supersingular }, (1)

which again contains 0 as a convenient instance of s0. The tweaked Mont-
gomery form y2 = x3 + Ax2 − x does not seem to have been studied before.
From the viewpoint of efficient arithmetic, it is equivalent with the standard
Montgomery form: we will show that the required adaptations to the Mont-
gomery ladder and to Vélu’s isogeny formulae (in the version of Renes [19])
just amount to a few sign flips, with the exception of 2-isogenies, which
require a separate treatment. Therefore, the protocols built from the action
of C�(Z[(1 +

√−p)/2]) on S−
p are near-copies of those built from CSIDH.1

(b) If p ≡ 7 mod 8 then the prime 2 splits in Q(
√−p), which allows for the use

of horizontal 2-isogenies. We show that computing 2-isogenies is an order
of magnitude faster than computing �-isogenies for odd �. The cost of a
2-isogeny is dominated by a single exponentiation over Fp, leading to a
noticeable speed-up (e.g., our CSURF-512 protocol below performs about
5.68% faster than CSIDH-512). We stress that this improvement is totally
orthogonal to all previous speed-ups, constant-time measures (see e.g. [9,15])
and cryptographic applications (see e.g. [4,7,11]) that have appeared in the
literature so far.

1 Moreover, if p ≡ 3 mod 4 then x3 + Ax2 − x is automatically square-free, allowing
for a marginally simpler key validation. But this deserves a footnote, at most.
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We note along the way that, by working on the surface, we naturally get rid
of the factor Z3 that is present in C�(Z[

√−p]) when p ≡ 3 mod 8. Because of
the interplay between floor and surface, this factor does not give extra security
(see Remark 2). Furthermore, it provides a possible hindrance for isogeny-based
threshold schemes: when using more than two parties one must map the prob-
lem into C�(Z[

√−p])3, which comes at a small cost if the group structure is
unknown [12].

Apart from these benefits, given the limited pool of hard homogeneous spaces
available, having the complete supersingular picture at our disposal adds freedom
to the parameter selection and leads to a better understanding of the interplay
between floor and surface. This being said, primes p ≡ 1 mod 4 are omitted from
our discussion, the main reason being Lemma 1 below: for such p, supersingular
elliptic curves over Fp never admit a model of the form y2 = x3 +Ax2 ± x. This
complicates comparison with [7]. It is possible that other elliptic curve models
can fill this gap, but we leave that for future research.

Acknowledgments
A partial proof of Theorem 3 below can be found in Berre Baelen’s master
thesis [1], which was the direct inspiration for this research. We thank Luca De
Feo for pointing out the relevance to isogeny-based threshold schemes [12], and
Frederik Vercauteren for helpful feedback regarding the proof of Lemma 4. We
also note that independent and near-simultaneous work by Fan, Tian, Li and
Xu [14] largely overlaps with the material in Sect. 3. This work was supported in
part by the Research Council KU Leuven grants C14/18/067 and STG/17/019
and by CyberSecurity Research Flanders with reference number VR20192203.

2 Background, and Formulation of Our Main Theorem

Consider a prime number p > 3 and a supersingular elliptic curve E/Fp. Its
Frobenius endomorphism πE satisfies πE ◦ πE = −p, hence Z[

√−p] can be
viewed as a subring of the ring Endp(E) of Fp-rational endomorphisms of E. If
p ≡ 1 mod 4 then this leaves us with one option for Endp(E), namely Z[

√−p]
itself. If p ≡ 3 mod 4, which is our main case of interest, then we are left with
two options for Endp(E), namely Z[

√−p] and Z[(1 +
√−p)/2].

For each such option O, we let E��p(O) denote the set of Fp-isomorphism
classes of elliptic curves E/Fp for which Endp(E) ∼= O. If p ≡ 3 mod 4 then
E��p(Z[

√−p]) is called the floor, whereas E��p(Z[(1 +
√−p)/2]) is called the

surface; this terminology stems from the structure of the 2-isogeny graph of
supersingular elliptic curves over Fp, see Delfs–Galbraith [13].

Remark 1. If p ≡ 3 mod 4 then it is easy to decide whether a given supersingular
elliptic curve E/Fp is located on the floor or on the surface: in the former case
|E(Fp)[2]| = 2 while in the latter case |E(Fp)[2]| = 4. If p ≡ 3 mod 8 then
the 3 outgoing 2-isogenies from a curve on the surface all go down, that is,
the codomain curves all live on the floor. If p ≡ 7 mod 8 then only one of the
codomain curves is located on the floor.
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Recall that S−
p denotes the set of all coefficients A ∈ Fp such that E−

A : y2 =
x3 + Ax2 − x is a supersingular elliptic curve. The elements of S−

p will be called
Montgomery− coefficients and the corresponding elliptic curves Montgomery−

curves. As we will see below, such curves are always located on the surface.
Mutatis mutandis, the set S+

p contains the Montgomery+ coefficients a ∈ Fp \
{±2} such that the Montgomery+ curve E+

a : y2 = x3+ax2+x is supersingular.
If p ≡ 3 mod 8 then such curves are necessarily located on the floor. However,
this is not true if p ≡ 7 mod 8, in which case we will occasionally write S+

p,O to
denote the subset of S+

p corresponding to curves with endomorphism ring O.
To every E ∈ E��p(O) and every a ⊆ O we can associate the subgroup

E[a] =
⋂

φ∈a

{P ∈ E |φ(P ) = ∞} ⊆ E,

where, of course, φ should be viewed as an endomorphism of E through the
isomorphism Endp(E) ∼= O identifying πE with

√−p. We then have:

Theorem 1. The map ρ : C�(O) × E��p(O) → E��p(O) sending ([a], E) to a �
E := E/E[a] is a well-defined free and transitive group action.

Proof. See [21, Thm. 4.5] and its proof. 
�
Here C�(O) denotes the ideal-class group of O, and [a] denotes the class of an
invertible ideal a ⊆ O.

The assumption underlying CSIDH is that this is a hard homogeneous space,
as soon as p is large enough. From a constructive point of view, the following
version of Theorem 1, obtained by incorporating [7, Prop. 8] and Vélu’s isogeny
formulas (in the version of [19, Prop. 1]), forms its backbone.

Theorem 2. If p ≡ 3 mod 8 then the map ρ+ : C�(Z[
√−p])×S+

p → S+
p sending

([a], a) to

[a] � a :=

⎛

⎜⎜⎝a − 3
∑

P∈E+
a [a]

P �=∞

(
x(P ) − 1

x(P )

)
⎞

⎟⎟⎠ ·
∏

P∈E+
a [a]

P �=∞

x(P )

is a well-defined free and transitive group action. Here we assume (0, 0) /∈ E+
a [a].

The assumption (0, 0) /∈ E+
a [a] is not a restriction since C�(Z[

√−p]) is generated
by ideals of odd norm, and by design CSIDH acts by such ideals only.2

Our main theoretical tool is the following variant of Theorem 2, on which
our CSURF-512 protocol from Sect. 6 relies:

2 It has been pointed out, e.g. in [8,17], that allowing for the action of (4,
√−p − 1)

could lead to a minor improvement. See also Remark 2.
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Theorem 3. If p ≡ 3 mod 4 then the maps

ρ− :
{ C�(Z[

√−p]) × S−
p → S−

p if p ≡ 3 mod 8,
C�(Z[(1 +

√−p)/2]) × S−
p → S−

p if p ≡ 7 mod 8

sending ([a], A) to

[a] � A :=

⎛

⎜⎜⎜⎝A − 3
∑

P∈E−
A [a]

P �=∞

(
x(P ) +

1
x(P )

)
⎞

⎟⎟⎟⎠ ·
∏

P∈E−
A [a]

P �=∞

x(P )

are well-defined free and transitive group actions. Here, we assume that the ideal
a representing [a] has odd norm.

We again note that the class group is generated by ideals of odd norm. However,
if p ≡ 7 mod 8 then C�(Z[(1 +

√−p)/2]) also admits invertible ideals of norm 2,
which can be used to speed up the evaluation of ρ− significantly. These require
a separate treatment, which is outlined in Sect. 4.

Apart from a striking analogy with Theorem 2, the reader might notice that
Theorem 3 is in seeming conflict with Theorem 1 when p ≡ 3 mod 8. Indeed,
since the curves E−

A always have endomorphism ring Z[(1 +
√−p)/2], it seems

that ρ− is acting by the wrong class group! However, in Sect. 3 we will see that
every curve on the surface has three representants in S−

p , and at the same time
|C�(Z[

√−p])| = 3|C�(Z[(1 +
√−p)/2]|. It turns out that, somewhat surprisingly,

Vélu’s formulas consistently link both factors 3 to each other.
We note that Theorem 2 can be extended to cover p ≡ 7 mod 8 as well, by

merely adding a subscript Z[
√−p] to S+

p . But for such p there is also a surface
version of Theorem 2, which is more subtle and will be discussed in Sect. 5.

Further Notation and Terminology
The identity element of an elliptic curve E will be denoted by ∞ and context
will make it clear to which curve it belongs. An important convention is that
if p ≡ 3 mod 4, then for a a square in Fp we denote by

√
a the unique square root

which is again a square; this can be computed as a(p+1)/4. Finally, for B ∈ Z>0

we write [−B;B] for the set of integers [−B,B] ∩ Z.

3 Properties of Montgomery− Curves

3.1 Montgomery− Arithmetic: Just a Few Sign Flips

One of the advantages of Montgomery+ curves is that arithmetic on them can
be done very efficiently. Fortunately, this can easily be adjusted to work for
Montgomery− curves. E.g., the formulas for point doubling and differential addi-
tion, for use in the Montgomery ladder, take the following form.

Proposition 1. Let E−
A : y2 = x3 + Ax2 − x be an elliptic curve over a field K

of characteristic different from two, with P,Q ∈ E−
A (K).
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1. If P = ∞ or x(P )3 + Ax(P )2 − x(P ) = 0, then 2P = ∞. Else

x(2P ) =
(x(P )2 + 1)2

4(x(P )3 + Ax(P )2 − x(P ))
.

2. If {P,Q, P + Q,P − Q} ∩ {∞} = ∅, then

x(P + Q)x(P − Q) =
(x(P )x(Q) + 1)2

(x(P ) − x(Q))2
.

Proof. This is almost a copy of the corresponding proofs in [2]. 
�
Likewise, computing odd degree isogenies between Montgomery− curves just

amounts to a few sign changes with respect to the formulas from [19, Prop. 1],
leading to the following statement (we will treat 2-isogenies separately in Sect. 4).

Proposition 2. Let E−
A : y2 = x3 + Ax2 − x be an elliptic curve over a field of

characteristic not two. Let G ⊆ E−
A (K) be a finite subgroup such that |G| is odd,

and let φ be a separable isogeny such that ker(φ) = G. Then there exists a curve
E−

B : y2 = x3 + Bx2 − x such that, up to composition with an isomorphism,

φ : E−
A → E−

B

(x, y) �→ (f(x), c0yf ′(x)),

where
f(x) = x

∏

T∈G\{∞}

xxT + 1
x − xT

.

Writing

π =
∏

T∈G\{∞}
xT , σ =

∑

T∈G\{∞}

(
xT +

1
xT

)
,

we also have that B = π(A − 3σ), c20 = π.

Proof. Let i, θ ∈ K̄ be such that i2 = −1 and θ2 = i, and let � = |G|. We will
construct the isogeny φ as the concatenation φ3 ◦ φ2 ◦ φ1 as illustrated in the
following diagram,

E−
A E−

B

E+
a E+

b

φ

φ1

φ2

φ3

where φ2 : E+
a → E+

b is the isogeny from [19, Prop. 1], and the elliptic curves
are given by the Montgomery+ forms E+

a : y2 = x3 + ax2 + x and E+
b : y2 =

x3 + bx2 + x.
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The isogenies φ1 and φ3 are in fact isomorphisms (over an extension field)
given by

φ1 : E−
A → E+

a

(x, y) �→ (−ix, θy)

and

φ3 : E+
b → E−

B

(x, y) �→ (ix,−iθy).

It is easy to verify that a = −iA and B = ib. The rest of the proof is just a
straightforward calculation. With the formulas from [19] we can compute the
coefficient b as π̃(a − 3σ̃) = (−i)�π(A − 3σ) where

π̃ =
∏

T∈φ1(G)\{∞}
xT =

∏

T∈G\{∞}
−ixT = (−i)�−1π,

σ̃ =
∑

T∈φ1(G)\{∞}

(
xT − 1

xT

)
=

∑

T∈G\{∞}

(
−ixT +

1
ixT

)
= −iσ.

Similarly if we define

f̃ = x

⎛

⎝
∏

T∈φ1(G)\{∞}

(
xxT − 1
x − xT

)⎞

⎠ ,

then with c̃0
2 = π̃ = (−i)�−1π, we have

(φ2 ◦ φ1)(x, y) =
(
f̃(−ix), c̃0θyf̃ ′(−ix)

)

=

⎛

⎝−ix
∏

T∈φ1(G)\{∞}

(−ixxT − 1
−ix − xT

)
, c̃0θyf̃ ′(−ix)

⎞

⎠

=

⎛

⎝−ix
∏

T∈G\{∞}

( −xxT − 1
−ix + ixT

)
, c̃0θyf̃ ′(−ix)

⎞

⎠

=
(
−i�f(x), c̃0θyf̃ ′(−ix)

)

=
(−i�f(x), c̃0θy(−i)�−1f ′(x)

)
.

If we assume � ≡ 1 mod 4 then (−i)�−1 = 1 such that c̃0 is just a square root
of π. Composing this with φ3(x, y) = (ix,−iθy) we get that

φ(x, y) = (f(x), c̃0yf ′(x)),

as well as B = π(A − 3σ). In this case we let c0 = c̃0.
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If � ≡ 3 mod 4 then c̃0
2 = −π and the isogeny may not be defined over K.

Post-composing it with the isomorphism τ : (x, y) �→ (−x, iy) fixes this if needed.
In this case we find

φ(x, y) = (f(x),−ic̃0yf ′(x)),

and again B = π(A − 3σ). Defining c0 = −ic̃0 finishes the proof. 
�
As usual, it is better to use projective coordinates to avoid costly field inver-

sions, i.e., to represent the x-coordinate of a projective point P = (X : Y : Z)
as x(P ) = X/Z; the required adaptations are straightforward.

3.2 Locating Supersingular Montgomery± Curves

We now switch to curves over finite prime fields Fp. The lemma below shows that
supersingular Montgomery− curves over Fp are always located on the surface.

Lemma 1. Let p > 3 be a prime number and let A ∈ Fp be such that E−
A : y2 =

x3 + Ax2 − x is supersingular. Then p ≡ 3 mod 4, and there is no P ∈ E−
A (Fp)

such that 2P = (0, 0); in particular, Endp(E−
A ) ∼= Z[(1 +

√−p)/2].

Proof. Let P be a point doubling to (0, 0); note that, necessarily, both coordi-
nates are non-zero. The tangent line at P has slope

3x(P )2 + 2Ax(P ) − 1
2y(P )

.

But, since the line should pass through (0, 0), a simpler expression for this slope
is y(P )/x(P ). Equating both expressions leads to x(P )2 + 1 = 0. Now:

– If p ≡ 1 mod 4 then we conclude x(P ) = ±i ∈ Fp and hence y(P )2 = −A ∓ 2i.
If both expressions on the right-hand side are non-squares then their product
A2 + 4 is a square, but then x3 + Ax2 − x factors completely over Fp. We
conclude that in any case 4 | |E−

A (Fp)| = p + 1, which is a contradiction.
– If p ≡ 3 mod 4 then this shows that such a point P cannot be Fp-rational.

But then E−
A (Fp)[2∞] ∼= Z/(2e) × Z/(2) for some e ≥ 1, since |E−

A (Fp)| =
p + 1 ≡ 0 mod 4. Thus there are 3 outgoing Fp-rational 2-isogenies, hence in
view of [13, Thm. 2.7] our curve must be located on the surface. 
�

The conclusion p ≡ 3 mod 4 also applies to supersingular Montgomery+ curves,
since it is known [2] that these always carry an Fp-rational point of order 4.

So, from now on, let us assume that p ≡ 3 mod 4. Then the above lemma
settles the ‘if’ part of Proposition 4 below, which can be viewed as the surface
version of the following statement:

Proposition 3. Let p > 3 be a prime number such that p ≡ 3 mod 4 and let
E be a supersingular elliptic curve over Fp. If Endp(E) ∼= Z[

√−p] then there
exists a coefficient a ∈ Fp \ {±2} for which E is Fp-isomorphic to the curve
E+

a : y2 = x3 + ax2 + x. Furthermore,
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– this coefficient is always unique,
– if p ≡ 3 mod 8 then the converse implication holds as well.

Proof. If p ≡ 3 mod 8 then this is [7, Prop. 8]. If p ≡ 7 mod 8 then the relevant
part of the proof of [7, Prop. 8] still applies. 
�
Proposition 4. Let p > 3 be a prime number such that p ≡ 3 mod 4 and let E
be a supersingular elliptic curve over Fp. Then Endp(E) ∼= Z[(1 +

√−p)/2] if
and only if there exists a coefficient A ∈ Fp for which E is Fp-isomorphic to the
curve E−

A : y2 = x3 + Ax2 − x. Furthermore,

– if p ≡ 3 mod 8 then there exist exactly three such coefficients,
– if p ≡ 7 mod 8 then this coefficient is unique.

We will prove this proposition by means of the following convenient tool,
connecting floor and surface:

Lemma 2. Let p > 3 be a prime number such that p ≡ 3 mod 4. Then

τ : S+
p,Z[

√−p]
→ S−

p : a �→ −2a/
√

4 − a2

is a well-defined bijection.

Proof. For a, b ∈ Fp with a2 − 4b �= 0 let us write Ea,b for the elliptic curve
y2 = x3 + ax2 + bx, which admits the well-known 2-isogeny

Ea,b → E−2a,a2−4b : P �→
{(

y(P )2

x(P )2 , y(P )(1 − b
x(P )2 )

)
if P �= (0, 0),∞

∞ if P ∈ {(0, 0),∞}.
(2)

If a ∈ S+
p,Z[

√−p]
then we find that E+

a = Ea,1 is 2-isogenous to the curve

E−2a,a2−4 : y2 = x3 − 2ax2 + (a2 − 4)x,

which is necessarily supersingular. Since E+
a lives on the floor we see that a2 − 4

is not a square in Fp, hence 4 − a2 is a square and letting δ =
√

4 − a2, the
substitution x ← δx, y ← δ3/2y transforms the above equation into y2 = x3 −
2a/

√
4 − a2x2 − x. We conclude that τ is indeed well-defined.

Conversely, if A ∈ S−
p then we find that E−

A = EA,−1 is 2-isogenous to

E−2A,A2+4 : y2 = x3 − 2Ax2 + (A2 + 4)x.

Since E−
A lives on the surface by Lemma 1, we have that A2 + 4 is a square

in Fp. Letting δ =
√

A2 + 4, the same substitution transforms our equation
into y2 = x3 − 2A/

√
A2 + 4x2 + x. It is easily checked that this curve has no

Fp-rational points of order 2 besides (0, 0), hence the map

S−
p → S+

p,Z[
√−p]

: A �→ −2A/
√

A2 + 4 (3)

is also well-defined. An easy calculation shows that it is an inverse of τ . 
�
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Proof of Proposition 4. By Proposition 3 each Fp-isomorphism class of elliptic
curves on the floor is represented by a unique Montgomery+ curve. Since such
curves have a unique Fp-rational point of order 2, the proof of Lemma 2 shows
that Fp-rational 2-isogenies give a 1-to-1 correspondence between E��p(Z[

√−p])
and S−

p . But on the level of Fp-isomorphism classes, by [13, Thm. 2.7] this cor-
respondence is 3-to-1 if p ≡ 3 mod 8 and 1-to-1 if p ≡ 7 mod 8. 
�

If p ≡ 7 mod 8 then Proposition 3 leaves open whether or not there exist
a ∈ S+

p such that E+
a is located on the surface. To answer this, we rely on the

following lemma.

Lemma 3. If p ≡ 7 mod 8 then every E ∈ E��p(Z[(1 +
√−p)/2]) comes with

three distinguished points of order 2:

– P−, the x-coordinates of whose halves are not defined over Fp,
– P+

1 , whose halves are not defined over Fp, but their x-coordinates are,
– P+

2 , whose halves are defined over Fp.

Proof. From the structure of E(Fp)[2∞] one sees that there is indeed a unique
point P+

2 of order 2 whose halves are Fp-rational. If we position P+
2 at (0, 0) we

find a model y2 = x3 + ax2 + bx, where necessarily b is a square, as can be seen
by mimicking the proof of Lemma 1. When translating the other points of order
2 to the origin we get similar equations, of which the coefficients at x become
δ(δ ± a)/2 with δ =

√
a2 − 4b. The product of these coefficients equals −bδ2,

hence we conclude that one coefficient is a non-square and one coefficient is a
square. So, again as in the proof of Lemma 1, we see that the former translated
point equals P−, while the latter translated point equals P+

1 . 
�
Corollary 1. If p ≡ 7 mod 8 then each E ∈ E��p(Z[(1 +

√−p)/2]) admits
exactly 2 coefficients a ∈ Fp \ {±2} for which E is Fp-isomorphic to the curve
E+

a : y2 = x3 + ax2 + x.

Proof. By Proposition 4, such curves admit a unique Montgomery− model. Note
that, for this model, P− is positioned at (0, 0). The two Montgomery+ models
are obtained by translating P+

1 or P+
2 to (0, 0) and scaling down the resulting

b-coefficient (which is a square) to 1, by means of a coordinate change. 
�
Table 1 summarizes how and with what frequency Montgomery± curves show

up as representatives of Fp-isomorphism classes of supersingular elliptic curves.
Figures 1 and 2 give an accompanying visual representation.

4 2-Isogenies Between Montgomery− Curves

In this section we assume that p ≡ 7 mod 8 and we consider the maximal order
Z[(1 +

√−p)/2], in which (2) = (2, (
√−p − 1)/2)(2, (

√−p + 1)/2). We describe
a fast method for computing the repeated action of one of the factors as a chain
of 2-isogenies. This relies on the following remarkably precise statement (recall
our convention on square roots!):
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Table 1. The ratio of the number of Montgomery± coefficients to the number of
Fp-isomorphism classes of supersingular elliptic curves.

(|S+
p,O| : |E��p(O)|) (|S−

p | : |E��p(O)|)

p ≡ 3 mod 8 O = Z
[
1+

√−p
2

]
0 (3 : 1)

O = Z[
√−p] (1 : 1) 0

p ≡ 7 mod 8 O = Z
[
1+

√−p
2

]
(2 : 1) (1 : 1)

O = Z[
√−p] (1 : 1) 0

p ≡ 1 mod 4 0 0

S−
p

E p(Z 1+
√−p
2

)

E p(Z[
√−p])

S+
p

Fig. 1. The supersingular isogeny graph over Fp with p ≡ 3 mod 8. The black dots
represent supersingular elliptic curves up to Fp-isomorphism. The yellow lines represent
the 2-isogenies, which are necessarily between the surface and the floor. The purple lines
represent the �-isogenies for some fixed � such that (�, π−1) generates C�(Z[

√−p]). This
implies that the �-isogenies on the floor create one big cycle which we need to depict as
spiraling around three times. Indeed, the action of (�, π−1) on the surface should result
in the same Fp-isomorphism class as first computing a vertical 2-isogeny taking us to the
floor, then performing the action of (�, π−1), and finally computing a vertical 2-isogeny
back to the surface. The red dots and lines represent the Montgomery+ coefficients,
which are 1-to-1 with the isomorphism classes on the floor. This correspondence forms
the basis for the original CSIDH setting described in [7]. The blue dots and lines
represent the Montgomery− coefficients, which are 3-to-1 with the isomorphism classes
on the surface. (Color figure online)
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S+

p,Z 1+
√−p
2

S+

p,Z[√−p]

S−
p

E p(Z 1+
√−p
2

)

E p(Z[
√−p])

Fig. 2. The supersingular isogeny graph over Fp with p ≡ 7 mod 8. The black dots
represent supersingular elliptic curves up to Fp-isomorphism. The yellow lines represent
the 2-isogenies, where we assumed that (2, (

√−p−1)/2) generates the class group. The
red dots and lines represent the Montgomery+ coefficients, which are 2-to-1 with the
isomorphism classes on the surface and 1-to-1 with the isomorphism classes on the floor.
The blue dots and lines represent the Montgomery− coefficients, which are 1-to-1 with
the isomorphism classes on the surface. Unlike in Fig. 2, no �-isogenies for odd � are
depicted here since it is more natural to draw the cycle of 2-isogenies on the surface.
(Color figure online)

Lemma 4 (Addendum to Lemma 3). Assume p ≡ 7 mod 8 and consider an
elliptic curve E : y2 = x3 + ax2 + bx ∈ E��p(Z[(1 +

√−p)/2]). Let δ =
√

a2 − 4b
and T1 = ((−a + δ)/2, 0), T2 = ((−a − δ)/2, 0). Then:

1. if (0, 0) = P− then T1 = P+
2 and T1 = P+

1 ,
2. if (0, 0) = P+

1 then T1 = P+
2 and T2 = P−,

3. if (0, 0) = P+
2 then T1 = P− and T2 = P+

1 .

Proof. The change of coordinates x ← x + (−a + δ)/2 yields

y2 = x

(
x +

−a + δ

2

)
(x + δ) = x3 +

−a + 3δ

2
x2 +

δ(−a + δ)
2

x (4)

and positions T1 at the origin. As in the proof of Lemma 1 we see that T1 = P+
1

or T1 = P+
2 if and only if the coefficient δ(−a + δ)/2 is a square, i.e., if and only

if −a + δ is a square.
In particular, for case 2 it suffices to show that −a + δ is a square. To this

end, note that the 2-isogeny from the proof of Lemma 2 takes our input curve
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E : y2 = x3 + ax2 + bx to y2 = x3 − 2ax2 + δ2x, while mapping P+
2 to (0, 0).

But then an Fp-rational half of P+
2 is mapped to an Fp-rational half of (0, 0),

which is necessarily of the form (±δ,
√

2δ2(−a ± δ)). We conclude that at least
one of −a + δ or −a − δ is a square, but then both elements are squares since
their product equals the square 4b.

Similarly, for case 3 it suffices to prove that −a + δ is not a square. We can
consider the same 2-isogeny, which now maps P+

1 to (0, 0). Using that any point
Q ∈ E(Fp2 \ Fp) doubling to P+

1 satisfies πE(Q) = −Q, which is different from
both Q and Q+(0, 0), we conclude that the image of P+

1 cannot be Fp-halvable.
From this the desired conclusion follows.

Finally, to settle case 1, consider the curve (4), whose point (0, 0) is either
P+
1 or P+

2 . Also note that the first non-trivial factor in (4) corresponds to P−.
But using the identity

(−a + 3δ

2

)2

− 4
δ(−a + δ)

2
=

(
a + δ

2

)2

,

we can rewrite (4) as

y2 = x

(
x − −−a+3δ

2 + a+δ
2

2

) (
x − −−a+3δ

2 − a+δ
2

2

)
.

Using 2 and the fact that (a + δ)/2 is a square, we see that if (0, 0) = P+
1 , then

the first non-trivial factor of (4) would instead correspond to P+
2 . We conclude

that (0, 0) = P+
2 , from which the lemma follows. 
�

This will be combined with the following fact:

Lemma 5. Assume that p ≡ 7 mod 8 and let E ∈ E��p(Z[(1 +
√−p)/2]). Then

E

[(
2,

√−p − 1
2

)]
= 〈P+

2 〉 and E

[(
2,

√−p + 1
2

)]
= 〈P+

1 〉.

Proof. As in the proof of Lemma 2 one checks that P− takes us down to the floor,
so it suffices to prove the first equality. Let Q ∈ E(Fp) be such that 2Q = P+

2

and let φ denote the endomorphism πE−1
2 , then φ(P+

2 ) = φ(2Q) = 2φ(Q) =
πE(Q) − Q = ∞, from which the statement follows. 
�

The formulas to compute 2-isogenies between Montgomery− curves seem
easiest if we perform almost all of them on isomorphic Montgomery+ curves. We
formulate the procedure in the form of an algorithm.

Sketch of the Proof of Algorithm 1. Note that quadratic twisting swaps the roles
of P+

1 and P+
2 , so with Lemma 5 in mind, we can simply flip the sign of A

at the start and the end of the algorithm and focus on P+
2 . Line 4 constitutes

a translation x ← x + (−a + δ)/2, which by Lemma 4 positions T1 = P+
2

at the origin, followed by the 2-isogeny from (2) and a rescaling to obtain a
Montgomery+ curve.
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Algorithm 1. Computing the action of (2, (
√−p − 1)/2)e on A ∈ S−

p , with
p ≡ 7 mod 8
1: if e = 0 then return A
2: else
3: A ← sign(e) · A

4: A ← 2
A−3

√
A2+4

A+
√

A2+4

5: for i from 2 to e do
6: A ← 2(3 + A(

√
A2 − 4 − A))

7: A ← A+3
√

A2−4√
2
√

A2−4
(
A+

√
A2−4

)

8: return sign(e) · A

Line 6 is immediate from [19, Proposition 2], where it should be noted that,
due to our choice of canonical square root, x(P+

2 ) is always a square so that we
do not need to consider possible twists. Line 7 is just a translation followed by
a rescaling to put everything back in Montgomery− form. 
�

5 ‘New’ Hard Homogeneous Spaces

For each non-zero entry of Table 1 we obtain a specialization of Theorem 1. For
instance, Theorem 2 corresponds to the entry covering Montgomery+ curves,
primes p ≡ 3 mod 8 and endomorphism ring O = Z[

√−p]. The main goal of
this section is to prove Theorem 3, which takes care of two further entries,
namely those corresponding to Montgomery− curves, primes p ≡ 3, 7 mod 8 and
endomorphism ring O = Z[(1 +

√−p)/2]:

Proof of Theorem 3. If p ≡ 7 mod 8 then this follows immediately from Theo-
rem 1, along with Proposition 2 and the fact that each Fp-isomorphism class on
the surface is represented by exactly one Montgomery− curve.

If p ≡ 3 mod 8 then consider the bijection τ from Lemma 2, and let ρ+ be
the group action from Theorem 2. We then define

C�(Z[
√−p]) × S−

p → S−
p : ([a], A) �→ τ(ρ+([a], τ−1(A))),

which is clearly a well-defined free and transitive group action, simply because τ
is a bijection. So it suffices to show that this matches with ρ−. For this, consider
a Montgomery− coefficient A and an invertible ideal a ⊆ Z[

√−p] having odd
norm, along with the subgroup of E−

A spanned by E−
A [a] and (0, 0). We quotient

out this subgroup in the following two ways:

– We first quotient out by E−
A [a], using the formulas from Proposition 2, yielding

a Montgomery− curve E−
B . Let us abusingly denote the corresponding isogeny

by ρ−, and note that it maps (0, 0) to (0, 0). So we can continue by applying
the 2-isogeny from (2), in order to arrive at the Montgomery+ curve E+

τ−1(B)

on the floor.
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– Conversely, we apply the 2-isogeny from (2), taking us to the Montgomery+

curve E+
τ−1(A). Note that this maps E−

A [a] to E+
τ−1(A)[a], which we quotient

out in turn, by means of the formulas from [19, Prop. 1]. By the same abuse of
notation, we denote the latter isogeny by ρ+. Because every curve on the floor
is represented by a unique Montgomery+ coefficient, this necessarily takes us
to E+

τ−1(B).

Thus we obtain the diagram

E−
A E−

B

E+
τ−1(A) E+

τ−1(B)

ρ−

θA θB

ρ+

with θA and θB denoting the above 2-isogenies, where our reasoning in fact
shows that [±1] ◦ θB ◦ ρ− = ρ+ ◦ θA. This implies that [±2] ◦ ρ− = θ̂B ◦ ρ+ ◦ θA.
Multiplication by ±2 does not change the curve E−

B , so we are done. 
�
Remark 2. Here are two examples of how the surface can help in understanding
the floor. We assume p ≡ 3 mod 8.

– Let a, a′ ∈ S+
p be given and let [a] ∈ C�(Z[

√−p]) be an unknown ideal class
such that a′ = [a] � a (action by ρ+ on the floor). By the foregoing proof this
is equivalent with τ(a′) = [a] � τ(a) (action by ρ− on the surface), which on
the level of Fp-isomorphism classes implies that

E−
τ(a′)

∼= [ã] � E−
τ(a),

where ã is the ideal of Z[(1+
√−p)/2] generated by a. Clearly, in order to find

[a] it suffices to find [ã], and then simply try the 3 corresponding possibilities
for a. This confirms that the factor 3 in |C�(Z[

√−p])| offers little extra security
to CSIDH.

– If we want a fast evaluation of the action of [(4,
√−p − 1)] ∈ C�(Z[

√−p]) on
S+

p , this can be done by composing two 2-isogenies, thereby passing through
the surface using τ and τ−1. We leave it as an exercise to verify that this
leads to the simple formula [(4,

√−p − 1)] � a = 2(a − 6)/(a + 2), which was
first derived in [17, §4.2].

This leaves us with the two entries corresponding to Montgomery+ curves
and primes p ≡ 7 mod 8. This behaves less uniformly since some curves live on
the surface and some live on the floor, and in any case these entries seem of
lesser cryptographic interest.

If p ≡ 7 mod 8 then |C�(Z[
√−p])| = |C�(Z[(1 +

√−p)/2])|. Hence in view
of Table 1 there are exactly 3 times as many supersingular Montgomery+ coeffi-
cients a ∈ Fp \{±2} as there are Fp-isomorphism classes of supersingular elliptic
curves:
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– Under the map a �→ E+
a , one third of these are in a 1-to-1 correspondence

with E��p(Z[
√−p]). In particular, Theorem 2 remains valid for p ≡ 7 mod 8,

provided that we replace S+
p with S+

p,Z[
√−p]

.
– According to the proof of Corollary 1, the other two thirds split into

S+
p,Z[(1+

√−p)/2],1
= { a ∈ S+

p,Z[(1+
√−p)/2]

| (0, 0) /∈ 2E+
a (Fp) }

and

S+
p,Z[(1+

√−p)/2],2
= { a ∈ S+

p,Z[(1+
√−p)/2]

| (0, 0) ∈ 2E+
a (Fp) },

and both sets are in a 1-to-1 correspondence with E��p(Z[(1 +
√−p)/2]).

Since the instantiated versions of Vélu’s formulae map (0, 0) to (0, 0), in
the statement of Theorem 2 we are equally allowed to replace Z[

√−p] with
Z[(1 +

√−p)/2] and S+
p with S+

p,Z[(1+
√−p)/2],i

, for any choice of i = 1, 2.

Remark 3. The latter setting again allows for horizontal 2-isogenies, therefore it
should give rise to very similar timings as those reported upon in Sect. 6. One
minor drawback is that Alice and Bob should agree on the value of i and validate
each other’s public keys as such; moreover 0 can no longer be used as a starting
coefficient.

Remark 4. Alternatively, it is natural to view

S+
p,Z[(1+

√−p)/2],1
and S+

p,Z[(1+
√−p)/2],2

as two orbits under the free but non-transitive action

ρ+ : C�(Z[(1 +
√−p)]) × S+

p,Z[(1+
√−p)/2]

→ S+
p,Z[(1+

√−p)/2]

described by the same formulae. Using that the quadratic twisting map E+
a �→

E+
−a jumps back and forth between the two orbits, along with the fact that

[a] � Et ∼= ([a]−1 � E)t (see e.g. [8, Lem. 5]), the two orbits can be glued together
into a single orbit under an action by the dihedral group Dih C�(Z[(1+

√−p)/2]).

6 Implementation

We assume that the reader is familiar with how CSIDH is being set up in prac-
tice [7]. In this section we use Theorem 3 and Algorithm 1 to design a variant of
CSIDH acting on S−

p rather than S+
p . Recall from [7] that CSIDH-512 uses the

prime
p = 4 · (3 · . . . · 373)︸ ︷︷ ︸

73 first odd primes

· 587 − 1 ≈ 2510.668,

and then samples exponents from the range [−5; 5]74 to represent an element in
the class group and let it act on 0 ∈ S+

p , for a conjectured 128 bits of classical
security. Concretely, the exponent vector (e1, . . . , e74) in this case represents
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the class group element (3,
√−p − 1)e1 · · · (587,

√−p − 1)e74 . For the sake of
comparison, we propose CSURF-512 which works over Fp where

p = 23 · 3 · (3 · . . . · 389)︸ ︷︷ ︸
74 consecutive primes,

skip 347 and 359

− 1 ≈ 2512.880.

This prime will speed up the computation of a class group action in multiple
ways. First of all, the largest isogeny we need to compute is of degree 389 instead
of 587. Secondly, p+1 carries an extra factor 3 that can help with sampling points
of order 3 to compute 3-isogenies. Indeed, finding an �-torsion point typically
amounts to sampling a random point P and multiplying it by (p+1)/�, which has
a 1/� chance of failure (i. e. we end up in ∞). For CSURF-512 we can multiply
a random point P by both (p + 1)/9 and (p + 1)/3 to try and find a point of
order 3, improving our chance of failure to only 1/9.

The biggest speed-up however stems from the fact that p ≡ 7 mod 8, so we
now have 2 as a 75th prime to use. Furthermore 2-isogenies are very fast due
to their simple and explicit formulae, see Algorithm 1, so we can sample the
exponent for 2 from a much larger interval. In practice we evaluate these 2-
isogenies first, without pushing through points, and then proceed with the other
primes as in CSIDH.

We implemented both CSIDH-512 and CSURF-512 in Magma [6] to compare
their performance. With the exception of 2-isogenies, both implementations are
totally similar, making use of the (projective) Montgomery ladder, the pushing
through of points, etc., the only differences being the sign switches discussed
in Sect. 3.1. However, we did not implement any of the constant-time measures
since these are orthogonal to the speed-up we described. Based on experiments,
a near-optimal set to sample exponent vectors from seems to be

I = [−137; 137] × [−4; 4]3 × [−5; 5]46 × [−4; 4]25,

which results in 275 · 928 · 1146 ≈ 2255.995 distinct secret vectors. As in CSIDH-
512, we heuristically expect that these vectors represent the elements in the
class group quasi-uniformly, by mimicking the reasoning from [7, §7.1]. Note
that for 3-, 5- and 7-isogenies we sample from a smaller interval, since the ease of
computing the isogeny is outweighed by the high failure probability of finding the
needed torsion points. Sampling from this specific set of exponent vectors gives
CSURF-512 a speed-up of about 5.68% compared to CSIDH-512; this estimate
is based on an experiment generating 25 000 public keys in both settings. Our
source code can be found at https://github.com/TDecru/CSURF.

As a final remark, we note that the advantage of working on the surface
is expected to diminish when the underlying prime p becomes larger, since the
relative contribution of 2-isogenies will decrease. This is especially relevant given
the ongoing discussion about the conjectured quantum security of the protocol,
see for example [3,5,18]. However, if p ≡ 7 mod 8 then the surface will always
outperform the floor to some extent. This means that setting up these larger
instantiations of the CSIDH protocol should preferably be done on the surface,
in any case.

https://github.com/TDecru/CSURF
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Abstract. We introduce an efficient post-quantum signature scheme
that relies on the one-wayness of the Legendre PRF. This “LEGen-
dRe One-wAyness SignaTure” (LegRoast) builds upon the MPC-in-the-
head technique to construct an efficient zero-knowledge proof, which is
then turned into a signature scheme with the Fiat-Shamir transform.
Unlike many other Fiat-Shamir signatures, the security of LegRoast can
be proven without using the forking lemma, and this leads to a tight
(classical) ROM proof. We also introduce a generalization that relies on
the one-wayness of higher-power residue characters; the “POwer Residue
ChaRacter One-wAyness SignaTure” (PorcRoast).

LegRoast outperforms existing MPC-in-the-head-based signatures
(most notably Picnic/Picnic2) in terms of signature size and speed. More-
over, PorcRoast outperforms LegRoast by a factor of 2 in both signature
size and signing time. For example, one of our parameter sets targeting
NIST security level I results in a signature size of 7.2 KB and a sign-
ing time of 2.8ms. This makes PorcRoast the most efficient signature
scheme based on symmetric primitives in terms of signature size and
signing time.

Keywords: Post-quantum signatures · Legendre PRF ·
MPC-in-the-head

1 Introduction

In 1994, Shor discovered a quantum algorithm for factoring integers and solv-
ing discrete logarithms in polynomial time [26]. This implies that an adversary
with access to a sufficiently powerful quantum computer can break nearly all
public-key cryptography that is deployed today. Therefore, it is important to
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look for alternative public-key cryptography algorithms that can resist attacks
from quantum adversaries. Recently, the US National Institute of Standards and
Technology (NIST) has initiated a process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptographic algorithms [22]. One of
the 9 signature schemes that advanced to the second round of the NIST project is
Picnic [7,19,27], a signature scheme whose security only relies on symmetric-key
primitives.

Indeed, a key pair for Picnic consists of a random secret key sk and the cor-
responding public key pk = F (sk), where F is a one-way function which can be
computed with a low number of non-linear binary gates [7]. To sign a message
m the signer then produces a non-interactive zero-knowledge proof of knowledge
of sk such that F (sk) = pk in a way that binds the message m to the proof.
These zero-knowledge proofs (whose security relies additionally only on a secure
commitment scheme) are constructed using the MPC-in-the-head paradigm [17].
This results in a signature scheme whose signatures are 33 KB large for 128 bits
of security. Later, Katz et al. developed Picnic2 [19], which reduces the signa-
ture size to only 14 KB by moving from a 3-party MPC protocol in the honest
majority setting to an n-party protocol with preprocessing secure in the dishon-
est majority setting. However, this increased number of parties slows down the
signing and verification algorithms. Picnic and Picnic2 are round 2 candidates
in the NIST project [27]. To study the effect of selecting a different function
F , Delpech de Saint Guilhem et al. constructed the BBQ scheme using MPC
protocols for arithmetic secret sharing to base the signatures on the security of
the AES algorithm instead of the less scrutinized block cipher LowMC [24].

Contributions. In this work we propose to use the Legendre PRF [9], denoted
by LK(·), as one-way function, instead of LowMC or AES. The Legendre PRF
is a promising alternative since it can be computed very efficiently in the MPC
setting [15]. However, a major limitation of the Legendre PRF is that it only
produces one bit of output, which means that the public key should consist
of many PRF evaluations LK(i1), . . . ,LK(iL), at some fixed arbitrary list I =
(i1, · · · , iL) of L elements of Fp, to uniquely determine the secret key K. Hence,
the zero-knowledge proof needs to prove knowledge of a value K ′ such that
LK′(i) = LK(i) for all i ∈ I simultaneously, which results in prohibitively large
signatures. Luckily, we can relax the relation to overcome this problem. Instead
of proving that the signer knows a K ′ such that LK′(i) = LK(i) for all i ∈ I, we
let a prover prove knowledge of a K ′ such that this holds for a large fraction of
the i in I. We show that the relaxed statement allows for a much more efficient
zero-knowledge proof. This allows us to establish LegRoast, an MPC-in-the-head
based scheme with a signature size of 12.2 KB and with much faster signing and
verification algorithms than the Picnic2 and BBQ schemes. To further improve
the efficiency of LegRoast, we propose to use higher-power residuosity symbols
instead of just the quadratic one (i.e. the Legendre symbol) in a second scheme
called PorcRoast. This results in signatures that are only 6.3 KB large and in
signing and verification times that are twice faster than LegRoast.
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A comparison between the signature size and signing time of LegRoast and
PorcRoast versus existing signatures based on symmetric primitives (Picnic [27]
and SPHINCS+ [16]) is shown in Fig. 1. Even though LegRoast and PorcRoast
do not have an AVX optimized implementation yet, we see that LegRoast has
faster signing times than both Picnic and SPHINCS+, and that PorcRoast is
even faster than LegRoast. We conclude that PorcRoast is the most efficient post-
quantum signature scheme based on symmetric primitives in terms of signature
size and signing time.

However, note that there are several other branches of post-quantum signa-
tures, such as lattice-based (e.g. Dilithium and Falcon [12,21,23]), Multivariate
signatures (e.g., Rainbow, LUOV, MQDSS, MUDFISH [2,5,6,10,11,25]) and
isogeny-based signatures (e.g. CSI-FISH [4]), some of which result in more effi-
cient signature schemes.

Roadmap. After some preliminaries in Sect. 2, we introduce a relaxed PRF
relation in Sect. 3. We then sketch an identification scheme in Sect. 4 which we
formalize as a signature scheme in Sect. 5. We finally discuss parameter choices
and implementation results in Sect. 6.

Fig. 1. Signature sizes and timings of post-quantum signature schemes based only on
symmetric primitives.

2 Preliminaries - The Legendre and Power Residue PRFs

For an odd prime p the Legendre PRF is conjectured to be a pseudorandom
function family, indexed by a key K ∈ Zp, such that LK takes as input an
element a ∈ Fp and outputs the bit

LK(a) =
⌊

1
2

(
1 −

(
K + a

p

))⌋
∈ Z2,
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where (a
p ) ∈ {−1, 0, 1} denotes the quadratic residuosity symbol of a mod p. We

note that the function LK above is defined such that L0(a · b) = L0(a) + L0(b)
for all a, b ∈ F

×
p . (Note also that LK(a) = L0(K + a).)

The seemingly random properties of quadratic residues have been the subject
of study for number theorists at least since the early twentieth century, which is
why Damg̊ard proposed to use this construction in cryptography [9]. Since then,
the security of the Legendre PRF has been studied in several attack models.
In the very strong model where a quantum adversary is allowed to query the
PRF in superposition, a key can be recovered in quantum polynomial time [8].
If the adversary is only allowed to query the PRF classically, there is a mem-
oryless classical attack that requires computing O(p1/2 log p) Legendre symbols
and making O(p1/2 log p) queries to the PRF [20]. Finally, if the adversary is
restricted to querying only L Legendre symbols, the best known attack requires
computing O(p log2 p/L2) Legendre symbols [3].

Damg̊ard also considers a generalisation of the Legendre PRF, where instead
of using the quadratic residue symbol (a

p ) = a
p−1
2 mod p, the PRF uses the k-th

power residue symbol defined as (a
p )k = a

p−1
k mod p, for some k that divides

p− 1. We define the power residue PRF, analogous to the Legendre PRF, as the
keyed function Lk

K : Fp → Zk, where for an odd prime p ≡ 1 mod k, Lk
K(a) is

defined as

Lk
K(a) =

{
i if (a + K)/gi ≡ hk mod p for some h ∈ F

×
p

0 if (a + K) ≡ 0 mod p
,

where g is a fixed generator of F×
p . We see that the function Lk

0 is a homomor-
phism of groups from F

×
p to Zk.

Note that for k = 2, this notation coincides with the original Legendre PRF.
In this paper, we use the generic notation and we separate the k = 2 and k > 2
cases only in the experimental sections to highlight the advantages gained by
using k > 2. One advantage of the power residue PRF is that it yields log k
bits of output, instead of a single bit. The best known attack against the power
residue PRF in the setting where an attacker is allowed to query the PRF L
times requires computing O(p log2 p/(kL log2 k)) power residue symbols [3].

3 The (Relaxed) Power Residue PRF Relation

In this section, we define the Legendre and power residue PRF NP-
languages RLk , for k ≥ 2, which consist of the symbol strings of outputs of
the Lk PRF for a given set of inputs. We also define a relaxed version of these
languages RβLk , which consist of the strings that are very close (up to addition
by a scalar in Zk) to a word in RLk , where the Hamming distance dH is used
and β parameterizes the slack.

For properly chosen parameters, it follows from the Weil bound that the
relaxed version is as hard as the exact relation, but the relaxed relation will
lead to much more efficient signature schemes. To simplify notation, for a list
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I = (i1, · · · , iL) of L arbitrary elements of Zp, we denote a length-L Legendre/k-
th power residue PRF as:

F k
I : Fp → Z

L
k

K �→ (Lk
K(i1), . . . ,Lk

K(iL)).

Definition 1 (Legendre/k-th power residue PRF relation). For an odd
prime p, a positive integer k | p − 1 and a list I of L elements of Zp we define
the Legendre/k-th power residue PRF relation RLk with output length L as

RLk = {(F k
I (K),K) ∈ Z

L
k × Fp | K ∈ Fp} .

Definition 2 (β-approximate PRF relation). For β ∈ [0, 1], an odd prime
p, a positive integer k | p − 1 and a list I of L elements of Zp we define the
β-approximate PRF relation RβLk with output length L as

RβLk = {(s,K) ∈ Z
L
k × Fp | ∃a ∈ Zk : dH(s + (a, . . . , a), F k

I (K)) ≤ βL}

where dH(·, ·) denotes the Hamming distance.

It follows from the Weil bound for character sums that if β is sufficiently small
and L is sufficiently large, then the β-relaxed power residue relation is equally
hard as the exact power residue relation, simply because with overwhelming
probability over the choice of I = (i1, · · · , iL) every witness for the relaxed
relation is also a witness for the exact relation. The proof is given in Appendix A.

Theorem 1. Let B(n, q) denote the binomial distribution with n samples each
with success probability q. Take K ∈ Fp, and take s = F k

I (K). Then with prob-
ability at least 1 − kp · Pr

[
B(L, 1/k + 1/

√
p + 2/p) ≥ (1 − β)L

]
over the choice

of I, there exist only one witness for s ∈ RβLk , namely K, which is also a
witness for the exact relation RLk .

4 Identification Scheme

In this section, we establish a Picnic-style identification scheme from the
Legendre/k-th power residue PRF. We first sketch a scheme very close to the
original Picnic construction [7] and gradually add more optimizations, present-
ing each in turn. Even though the final goal is to construct a signature scheme,
we use the language of identification schemes in this section to relate the scheme
to existing constructions. We delay the security proof to the next section, where
we first apply the Fiat-Shamir transform [13] before we prove that the resulting
signature scheme is tightly secure in the ROM. The proof of security of the inter-
active identification scheme presented here can be derived from the one provided
in the next section.



LegRoast: Efficient Post-quantum Signatures from the Legendre PRF 135

Fig. 2. Picnic-stye identification scheme Fig. 3. Checking only B symbols

Starting Point. To begin, we take the Picnic2 identification scheme and replace
the LowMC block-cipher by the PRF F k

I . The key pair is then sk = K and
pk = F k

I (K) ∈ Z
L
k . From a high-level view, the protocol can be sketched as

in Fig. 2 where the prover runs an MPC-in-the-head proof with N parties on
a secret sharing of K, to prove to the verifier that he knows K such that
((K+i1

p ), . . . , (K+iL

p )) is equal to the public key. We also use the more efficient
method recently proposed by Baum and Nof [1] based on sacrificing rather than
the cut-and-choose technique.

Relaxing the PRF Relation. As a first optimization, rather than computing
all of the L residue symbols with the MPC protocol, we only check a fixed
number B of them. To do so, the verifier chooses random inputs I(1), . . . , I(B)

in I at which the Lk PRF is evaluated to check the witness. It is crucial that the
verifier sends his choice of I(j)s after the prover has committed to his sharing
of K, because if a malicious prover knows beforehand which symbols are going
to be checked, he can use a fake key K ′ such that (K′+I(j)

p ) = pkI(j) only for
j ∈ [B]. This probabilistic method of selecting which circuit will be executed
with the MPC-in-the-head technique is similar to the “sampling circuits on the
fly” technique of Baum and Nof [1].

This is now an identification scheme for the β-approximate Legendre PRF
relation; a prover that convinces the verifier with probability greater than (1 −
β)B+(1−(1−β)B)/N could be used to extract a β-approximate witness following
the formalism presented in [1, Section 4]. This protocol is sketched in Fig. 3.

Computing Residue Symbols in the Clear. Since computing residue sym-
bols is relatively expensive, we avoid doing it within the MPC protocol. We use
an idea similar to that of Grassi et al. to make this possible [15]. First, we let
the prover create sharings of B uniformly random values r(1), . . . , r(B) ∈ F

×
p and

commit to their residue symbols by sending s(j) = Lk
0(r

(j)) to the verifier. Then,
the MPC protocol only outputs o(j) = (K + I(j))r(j). Since K + I(j) is masked
with a uniformly random value with known residue symbol, o(j) does not leak
information about K (except for the residue symbol of K+I(j)). The verifier then
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computes Lk
0(o

(j)) himself in the clear, and verifies whether it equals pkI(j) +s(j).
The correctness of this check follows from the facts that Lk

0 : F×
p → Zk is a group

homomorphism.
Note that the prover can lie about the values of s(j) = Lk

0(r
(j)) that he sends

to the prover. This is not an issue because he has to commit to these values
before the choice of I(j) is revealed. This is the reason why we defined K ′ to be
an β-approximate witness for pk if F k

I (K ′) is close to pk = F k
I (K) up to addition

by a scalar. This identification protocol is sketched in Fig. 4.

Fig. 4. Computations in the clear. Fig. 5. The final scheme.

Verifying Instead of Computing Multiplications. Instead of using the
MPC protocol to compute the products o(j), the prover can just send these prod-
ucts directly to verifier. We then use the MPC-in-the-head protocol to instead
verify that o(j) = (K + I(j)) · r(j) for all j ∈ [B]. A big optimization here is that
rather than verifying these B equations separately, it is possible to just check a
random linear combination of these equations:

After the prover sends the o(j) values, the verifier chooses random coefficients
λ(1), . . . , λ(B) for the linear combination. Then, the MPC protocol is used to
compute the error term E defined as

E =
B∑

j=1

λ(j)
(
(K + I(j))r(j) − o(j)

)
= K ·

B∑
j=1

λ(j)r(j) +
B∑

j=1

λ(j)(I(j)r(j) − o(j)).

Clearly, if all the o(j) are correct, then E = 0. Otherwise, if one or more of the
o(j) are wrong, then E will be a uniformly random value. Therefore, checking
if E = 0 proves to the verifier that all the o(j) are correct, with a soundness
error of 1/p. Moreover, since the λ(j), o(j) and I(j) are public values, we see that
E can be computed with only a single nonlinear operation! This means we can
compute E extremely efficiently in MPC. The identification scheme with this
final optimization is sketched in Fig. 5.

We note that a single execution of the interactive identification scheme is
not enough to achieve negligible soundness error (e.g. the prover has probability
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1/N to cheat in the MPC verification protocol). To resolve this, M executions
must be run in parallel.

5 LegRoast and PorcRoast Signature Schemes

We now formalize the signature schemes LegRoast (with k = 2) and PorcRoast
(with k > 2) which are constructed from the identification scheme of Sect. 4 with
the Fiat-Shamir transform [13], by generating the challenges using three random
oracles H1,H2 and H3. The message is combined with a 2λ-bit salt and bound
to the proof by hashing it together with the messages of the prover.

Parameters. Our new signature schemes are parametrized by the following val-
ues. Let p be a prime number and let k ≥ 2 be an integer such that k | p−1. Let L
be an integer determining the length of the public key, I a pseudo-randomly
chosen list of L elements of Zp and let B ≤ L denote the number of k-th
power residue symbols in the public key that will be checked at random. Let N
denote the number of parties in the MPC verification protocol and let M denote
the number of parallel executions of the identification scheme. These values are
grouped under the term params.

Key Generation, Signing and Verifying. The KGen(1λ, params) algorithm sam-

ples sk = K
$←− Fp uniformly at random and computes the public key pk =

F k
I (K). The Sign(params, sk,m) algorithm, for message m ∈ {0, 1}∗ is presented

in Fig. 6. The Vf(params, pk,m, σ) algorithm is presented in Fig. 7.

Security. The EUF-CMA security [14] of the LegRoast and PorcRoast signature
schemes follows from a tight reduction from the problem of finding a witness for
the RβLk -relation, which is equally hard as a key recovery on the power residue
PRF for our parameters. The proof of Theorem 2 is included in Appendix B.

Theorem 2. In the classical random oracle model, the LegRoast and PorcRoast
signature schemes defined as above are EUF-CMA-secure under the assumption
that computing β-approximate witnesses for a given public key is hard.

6 Parameter Choices and Implementation

This section shows how to choose secure parameters for the LegRoast and
PorcRoast signature schemes, and what the resulting key and signature sizes
are. We also go over some of the implementation details and the performance of
our implementation.
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Fig. 6. Signature scheme from proof of knowledge of k-th power residue PRF pre-image.
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Fig. 7. Verifying algorithm for LegRoast and PorcRoast.

6.1 Parameter Choices

Choosing p, L and I. We choose p and L such that the problem of finding
a β-approximate witness for the PRF relation has the required security level.
To do this, we first choose p and L such that the problem of recovering the
exact key from L symbols of output is hard. For our proposed parameters we
choose L such that the public key size is 4 KB, (i.e. L = 32768/ log(k)). Different
trade-offs are possible (see Remark 1). Then, we set β such that

k · p · Pr[B(L, 1/k + 1/
√

(p) + 2/p) > (1 − β)l] ≤ 2−λ .

With this choice, Theorem 1 says that with overwhelming probability, finding a
β-approximate key is equivalent to finding the exact key. Section 2 gives a short
overview of attacks on the Legendre PRF for various attack models. However,
in the setting of attacking LegRoast and PorcRoast, the adversary is restricted
even more than in the weakest attacker model considered in the literature: an
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attacker learns only a few evaluations of the Legendre PRF on pseudorandom
inputs over which the attacker has no control. If the L inputs are chosen at
random, the best known attack is a brute force search which requires computing
O(p/k) power residue symbols, and the attack complexity becomes independent
of L. For Legroast, we propose to use a prime p of size roughly 2λ, where λ is the
required security level. We choose the Mersenne prime p = 2127 − 1 to speed up
the arithmetic. For PorcRoast, we use the same prime and k = 254 such that a
power residue symbol can efficiently be represented by a single byte. For k > 2,
computing a power residue symbol corresponds to a modular exponentiation,
which is much more expensive than an AES operation, so even though an attacker
has on average only to compute 2127/k ≈ 2119 power residue symbols, we claim
that this still provides approximately 128-bits of security. We stress that the
quantum polynomial-time key recovery attack on the Legendre PRF does not
apply on our scheme, because the adversary can not make queries to the instance
of the Legendre PRF (and certainly no quantum queries) [8].

Choosing B, N and M. Our security proof shows that, unless an attacker
can produce a β-approximate witness, his best strategy is to query H1 on many
inputs and then choose the query for which

Lk
0((Ke + I(j)e )r(j)e ) = s(j)e + pk

I
(j)
e

for all j ∈ [B]

holds for the most executions. Say this is the case for M ′ out of M executions.
He then makes one of the parties cheat in the MPC protocol in each of the
M − M ′ remaining executions and queries H3 in the hope of getting an out-
put {̄ie}e∈[M ] that asks him to open all the other non-cheating parties; i.e. the
attacker attempts to guess īe for each e. This succeeds with probability N−M+M ′

.
Therefore, to achieve λ bits of security, we take parameters B,N = 2n and

M such that

min
M ′∈{0,...,M}

(
Pr[B(M, (1 − β)B) ≥ M1]−1 + NM−M ′) ≥ 2λ , (1)

which says that for each value of M ′, the adversary is expected to do at least
2λ hash function evalutations for the attack to succeed. To choose parameters,
we fix N to a certain value and compute which values of B and M minimize
the signature size while satisfying Eq. (1). The choice of N controls a trade-off
between signing time and signature size. If N is large, the soundness error will
be small, which results in a smaller signature size, but the signer and the verifier
need to simulate an MPC protocol with a large number of parties, which is
slow. On the other hand, if N is small, then the signature size will be larger,
but signing and verifying will be faster. Some trade-offs achieving 128-bits of
security for LegRoast and PorcRoast are displayed in Table 1.

Remark 1. The parameter L controls a trade-off between public key size and
signature size. For example, we can decrease the public key size by a factor 8
(to 0.5 KB), at the cost of an increase in signature size by 21% (to 7.6 KB).
(L = 512, k = 254, β = 0.871, n = 256, B = 10,M = 20).
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Table 1. Parameter sets for LegRoast and PorcRoast for NIST security level I. For
all parameter sets we have p = 2127 − 1, a secret key size of 16 Bytes and a public
key size of 4 KB (L = 32768 and 4096 for LegRoast and PorcRoast respectively). The
verification time is similar to the signing time.

Parameters Signature size Signing time

N M B (KB) (ms)

LegRoast 16 54 9 16.0 2.8

k = 2 64 37 12 13.9 6.0

β = 0.449 256 26 16 12.2 15.7

PorcRoast 16 39 4 8.6 1.2

k = 254 64 27 5 7.2 2.8

β = 0.967 256 19 6 6.3 7.9

6.2 Implementation

In our implementation, we replace the random oracles and the Expand func-
tion by SHA-3 and SHAKE128. The signing algorithm is inherently constant
time, except for computing Legendre symbols, which when implemented with
the usual GCD strategy, leaks timing information on its argument. Therefore, in
our implementation, we chose to adopt the slower approach of computing Leg-
endre symbols as an exponentiation with fixed exponent (p − 1)/2, which is an
inherently constant time operation. Higher-power residue symbols are also cal-
culated as an exponentiation with fixed exponent (p− 1)/k. The signing-time of
our implementation, measured on an Intel i5-8400H CPU, running at 2.50 GHz,
is displayed in Table 1.

A Proof of Theorem 1

We will use the following version of the Weil bound for character sums [18].

Theorem 3. Let p be a prime and χ a non-trivial multiplicative character of F×
p

of order d > 1. If f ∈ Fp[X] has m distinct roots and is not a d-th power, then
∣∣∣∣∣∣
∑
x∈Fp

χ (f(x))

∣∣∣∣∣∣ ≤ (m − 1)
√

p .

The following lemma immediately follows:

Lemma 1. Let p be a prime and k | p − 1. For any K �= K ′ ∈ Fp and a ∈ Zk,
let IK,K′,a be the set of indices i such that Lk(K + i) = Lk(K ′ + i)+a. Then we
have

p

k
− √

p − 1 ≤ #IK,K′,a ≤ p

k
+

√
p + 2 .



142 W. Beullens and C. Delpech de Saint Guilhem

Proof. Let χ : F×
p → Zp be the restriction of Lk to F

×. Note that (unlike Lk) χ

is a group homomorphism. Define f(i) = (i + K)(i + K ′)k−1 and let φ(a) be the
number of i such that i + K and i + K ′ are non-zero and χ(f(i)) = a. Clearly
we have φ(a) ≤ #IK,K′,a ≤ φ(a) + 2. Let φ̂ : Ẑk → C be the Fourier transform
of φ. Then we have

φ̂(ρ) =
∑
a∈Zk

ρ(a)φ(a) =
∑
a∈Zk

ρ(a)
∑

i∈Fp,i �=K,i �=K′

{
1 if χ(f(i)) = a

0 otherwise

=
∑

i∈Fp,i �=K,i �=K′
ρ ◦ χ(f(i))

Observe that ρ◦χ is a multiplicative character of F×
p , and that ρ◦χ is trivial if

and only if ρ is trivial. Clearly φ̂(1) = p−2, and for non-trivial ρ, the Weil bound
says that |φ̂(ρ)| ≤ √

p. Therefore, if follows from the inverse Fourier transform
formula that

φ(a) =
1

|Zk|
∑
ρ∈Ẑk

ρ(a)φ̂(ρ) ≤ p − 2
k

+
k − 1

k

√
p ≤ p

k
+

√
p .

and similarly that p
k − √

p − 1 ≤ φ(a). ��

Now we can prove Theorem 1.

Proof. According to lemma 1, For any K ′ �= K and a ∈ Zk, for a uniformly
random set of inputs I, the distance dH(F k

I (K ′)+ (a, . . . , a), s) is distributed as
B(L, 1−α), for some α ∈ [1/k− 1√

p − 1
p , 1/k+ 1√

p + 2
p ]. Therefore, the probability

that for a tuple (K ′, a) we have dH(F k
I (K ′) + (a, . . . , a), s) ≤ βL is at most

Pr[B(L, 1/k +
1

√
p + 2/p

) > (1 − β)L] .

Since there exists only (p − 1)k possibile values for (K ′, a), the probability
that there exists a non-trivial witness for the β-relaxed relation is at most
Pr[B(L, 1/k + 1√

p+2/p ) > (1 − β)L](p − 1)k. ��

B Security Proof

To prove Theorem 2, we first reduce the EUF-KO security to the β-approximate
PRF relation (Lemma 2); we then reduce the EUF-CMA security to the EUF-
KO security (Lemma 3). For two real random variables A,B, we write A ≺ B if
for all x ∈ (−∞,+∞) we have Pr[A > x] ≤ Pr[B > x].

Lemma 2 (EUF-KO security). Let Hsd,H1,H2 and H3 be modeled as ran-
dom oracles and fix a constant β ∈ [0, 1]. If there exists a PPT adversary A
that makes qsd, q1, q2 and q3 queries to the respective oracles, then there exists a
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PPT B which, given pk = F k
L(K) for a random K ∈ Fp outputs a β-approximate

witness for pk with probability at least AdvEUF-KO
A (1λ) − e(qsd, q1, q2, q3), with

e(qsd, q1, q2, q3) =
MN(qsd + q1 + q2 + q3)2

22λ
+ Pr[X + Y + Z = M ] ,

where X = max(X1, . . . , Xq1), Y = max(Y1, . . . , Yq2) and Z = max(Z1, . . . , Zq3),
the Xi are i.i.d as B(M, (1 − β)B), the Yi are i.i.d. as B(M − X, 2

p ) and the Zi

are i.i.d. as B(M − X − Y, 1
N ).

Proof. The algorithm B receives a statement s = F k
L(K) and forwards it to A as

pk. Then, B simulates the random oracles Hsd,H1,H2 and H3 by maintaining
initially empty lists of queries Qsd,Q1,Q2,Q3. Moreover, B keeps initially empty
tables Ts, Ti and To for shares, inputs, and openings. If A queries one of the
random oracles on an input that it has queried before, B responds as before;
otherwise B does the following:

– Hsd: On new input (salt, sd), B samples x
$←− {0, 1}2λ. If x ∈ BadH, then B

aborts. Otherwise, B adds x to BadH, ((salt, sd), x) to Qsd and returns x.
– H1: On new input Q = (m, salt, σ1), with σ1 = ((Ce,i)i∈[N ], (s

(j)
e )j∈[B],ΔKe,

Δce)e∈[M ]), then B adds Ce,i to BadH for all e ∈ [M ] and i ∈ [N ]. For any
(e, i) ∈ [M ]× [N ] for which there exist sde,i such that ((salt, sde,i),Ce,i) ∈ Qsd

define

ke,i, ae,i, be,i, ce,i, r
(1)
e,i , · · · , r

(B)
e,i ← Expand(sde,i) for all j ∈ [N ]

and add Ts[Q, e, i] = (ke,i, ae,i, be,i, ce,i, r
(1)
e,i , . . . , r

(B)
e,i )j∈[N ]. If Ts[Q, e, i] is

defined for all i ∈ [N ] for some e ∈ [M ], then we define

(ke, ae, be, ce, r
(1)
e , . . . , r(B)

e ) ←
∑

i∈[N ]

(ke,i, aei
, be,i, ce,i, r

(1)
e,i , . . . , r

(B)
e,i )

(ke, ce) ← (ke + Δke, ce + Δce)

and add Ti[Q, e] = (ke,i, aei
, be,i, ce,i, r

(1)
e,i , . . . , r

(B)
e,i ). Finally, B samples x

$←−
{0, 1}2λ. If x ∈ BadH then abort. Otherwise, B adds (Q,x) to Q1 and x to
BadH and returns x.

– H2: On new input Q = (h1, σ2), where σ2 = (o(j)e )e∈[M ],j∈[B], B adds h1 to

BadH and samples x
$←− {0, 1}2λ. If x ∈ BadH then abort. Otherwise, B adds

(Q,x) to Q2 and x to BadH. If there exists (Q1, h1) ∈ Q1, then B does the
following: let (εe, λ

(1)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(x). For each e ∈ [M ] such

that Ti(Q1, e) is defined, compute

αe = ae + εeke, βe = be +
∑

j∈[B]

λ
(j)r(j)

e
e and

γe = −ce + αebe + βeae + εi

∑
k∈[B]

λ
(k)
i (o(j)e − I(j)e r(j)e )

and add To[Q2, e] = (αe, βe, γe). Finally B returns x.
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– H3: On new input Q = (h2, σ3), B adds h2 to BadH and samples x
$←− {0, 1}2λ.

If x ∈ BadH then B aborts. Otherwise, B adds (Q,x) to Q3, x to BadH and
returns x.

When A terminates, B goes through Ti and for each (Ke, . . . ) ∈ Ti, B checks
if Ke is a β-approximate witness. If it is, then B outputs Ke. If no entry in Ti

contains a witness, B outputs ⊥. Clearly, if A runs in time T , then B runs in
time T + O(qsd + q1 + q2 + q3).

In the rest of the proof, we show that if A wins the EUF-KO game with
probability ε, then B outputs a β-approximate witness with probability at least
ε − e(qsd, q1, q2, q3) as defined in the statement of Lemma 2.

Cheating in the First Phase. Let (Qbest1 , hbest1) ∈ Q1 be the “best” query-
response pair that A received from H1, by which we mean the pair that max-
imizes #G1((Q,h)) over all (Q,h) ∈ Q1, where G1(Q,h = {I

(j)
e }e∈[M ],j∈[B]) is

defined as the set of “good executions” e ∈ [M ] such that Ti(Q, e) is defined and

Lk((Ke + I(j)e )r(j)e ) = s(j)e + pk
I
(j)
e

for all j ∈ [B]. (2)

We show that, if B outputs ⊥, then the number of good indices is bounded. More
precisely, we prove that #G1(σbest1 , hbest1)|⊥ ≺ X, where X is as defined in the
statement of Lemma 2.

Indeed, for each distinct query to H1 of the form Q = (m, salt, σ1),
with σ1 = ((Ce,i)i∈[N ], (s

(j)
e )j∈[B],ΔKe,Δce)e∈[M ]) and for all e ∈ [M ], let

β
(j)
e (Q) = dH(F k

L(Ke) + (Lk(r(j)e ), . . . ,Lk(r(j)e )), s(j)i + pk) if Ti(Q, e) is defined
and β

(j)
e (Q) = 1 otherwise. The event ⊥ implies that none of the Ke in Ti is a

β-approximate witness, which means that β
(j)
e (Q) > β for all Q ∈ Q1, e ∈ [M ]

and j ∈ [B].
Since the response h = {I

(j)
e }e∈[M ],j∈[B] is uniform, the probability that

for a certain e, Eq. (2) holds is
∏

k∈[B](1 − β
(k)
i ) ≤ (1 − β)B . Therefore, we

have that #G1(Q,h)|⊥ ≺ XQ, where XQ ∼ B(M, (1 − β)B). Finally, since
G1(Qbest1 , hbest1) is the maximum over at most q1 values of G1(Q,h), it follows
that #G1(Qbest1 , hbest1)|⊥ ≺ X, with X as in the statement of Lemma 2.

Cheating in the Second Round. We now look at the best query-response pair
(Qbest2 , hbest2) that A received from H2. This is the pair for which #G2(Q2, h2)
is maximum, where G2(Q2 = (h1, (o

(j)
e )e∈[M ],j∈[B]), h2) is the set of “good” exe-

cutions defined as follows: if there exists no Q1, such that (Q1, h1) ∈ Q1, then
all indices are bad (because this query can not lead to a valid signature). Oth-
erwise, let Q1 = (m, salt, ((Ce,i)i∈[N ], (s

(j)
e )j∈[B],ΔKe,Δce)e∈[M ])). If there exist

(e, j) ∈ [M ] × [B] such that

Lk(o(j)e ) �= s(j)s + pk
I
(j)
e

, (3)
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then this query can also not result in a valid signature, so we define G2(Q2, h2) =
{}. Otherwise, we say G2(Q2, h2) is the set of executions e ∈ [M ] for which
To[Q2, e] = (αe, βe, γe) is defined and such that αeβe = γe.

Again, we prove that in the case that B outputs ⊥, the number of good
indices is bounded: #G2(Qbest2 , hbest2)|⊥ ≺ X + Y, where Y is defined as in the
statement of Lemma 2.

Note that for fixed ae, be, ce,Ke, r
(1)
e , . . . , r

(B)
e and o

(1)
e , . . . , o

(B)
e the function

αe(εe)βe(λ
(j)
e )−γe(εe, λ

(j)
e ) is a quadratic polynomial in εe, λ

(1)
e , . . . , λ

(B)
e . More-

over, this is the zero-polynomial if and only if ce = aebe and o
(j)
e = (Ke+I

(j)
e )r(j)e

for all j ∈ [B].
Let Q = (h1, {o

(j)
e }e∈[M ],j∈[B]) be a query to H2. If there exists no (Q1, h1) ∈

Q1 then G2(Q,h2) = {} with probability 1. Otherwise, either e �∈ G1(σ1, h1),
then either o

(j)
e = (Ke + I

(j)
e )r(j)e for all (e, j) ∈ [M ] × [B], in which case Eq. (3)

does not hold, so G2(Q,h2) = {} with probability 1, or o
(j)
e �= (Ke + I

(j)
e )r(j)e for

some j ∈ [B] in which case αeβe − γe is a non-zero quadratic polynomial in εe

and λ
(j)
e , so the Schwartz-Zippel lemma says that for a uniformly random choice

of h2 = {εe, λ
(j)
e }e∈[M ],j∈[B] ∈ F

M(1+B)
p the probability that e ∈ G2(Q2, h2) is at

most 2/p. Therefore, we have that #G2(σ2, h2)|#G1(σ1,h1)=M ′
1

≺ M1 +Y ′
Q, where

Y ′
q ∼ B(M − M ′

1, 2/p). Since for integers a ≤ b and p ∈ [0, 1] we have B(b, p) ≺
a+B(b−a, p), this implies that #G2(σ2, h2)|#G1(statebest,1)=M1 ≺ M1 +YQ, where
YQ ∼ B(M − M1, 2/p). Since #G2(statebest,2) is the maximum over at most q2
values of #G2(state) it follows that #G2(statebest,2)|M1=#G1(statebest,1) ≺ M1 + Y.
Finally, by conditioning on ⊥ and summing over all M1, we get

#G2(statebest,2)|⊥ ≺ #G1(statebest,1)|⊥ + Y ≺ X + Y.

Cheating in the Third Round. Finally, we can bound the probability that A wins
the EUF-KO game, conditioned on B outputting ⊥. Without loss of generality,
we can assume that A outputs a signature σ such that, if Q1, Q2 and Q3 are
the queries that the verifier makes to H1,H2 and H3 to verify σ, then A has
made these queries as well. (If this is not the case, then we can define A′ that
only outputs a signature after running the verification algorithm on A’s output.)
Now, for each query Q = (h2, ({αe, βe}e∈M , {αe,i, βe,i, γe,i}e∈[M ],i∈[N ])) that A
makes to H3, we study the probability that this leads A to win the EUF-KO
game. If there does not exist Q′ = (o(j)e )e∈[M ],j∈[B] such that (Q′, h2) ∈ Q2 then
this query cannot result in a win for A, because A would need to find such a Q′ at
a later point, and B would abort if this happens. Take e ∈ [M ]\G2(Q′, h2), then
either e �∈ G2(Q′, h2) because there exists (e′, j) ∈ [M ] × [B] such that �ko

(j)
e′ �=

s
(j)
e′ + pk

I
(j)
e′

, in which case, independent of h3, σ4, we have that Vf(σ) = 0. Or

otherwise e �∈ G2(Q′, h2) because αe, βe and γe are not defined or αeβe �= γe.
In this case, the query can only result in a win if exactly N − 1 of the parties
“behave honestly” in the MPC protocol. By this we mean that for exactly N −1
values of i ∈ [N ] we have that there exists sde,i such that (sde,i,Ce,i) ∈ Qsd and,
if we put Ke,i, ae,i, be,i, ce,i, {r

(j)
e,i }j∈[B] = Expand(sde,i), then
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αe,i = ae,i + εeKe,i, βe,i = be,i +
∑

k

λ(j)
e r

(j)
e,i ,

γe,i = −ce,i + αebe,i + βeae,i + εe

∑
j∈[B]

λ(j)
e (o(j)e − I(j)e r

(j)
e,i ).

Indeed, if there are less than N −1 honest parties, σ4 cannot reveal N −1 honest
views. In contrast if all the N parties act honestly, then we have γe �= αeβe, so the
signature verification will also fail. The state (σ1, h1, σ2, h2, σ3) can only result
in a win if h3 = {ie}e∈N is such that ie is the index of the dishonest party. Since
h3 ∈ [N ]M is chosen uniformly at random, the probability that this happens for
all the e �∈ G2(Q,h3) is

(
1
N

)M−#G2(Q
′,h2)

≤
(

1
N

)M−#G2(Qbest,2,hbest,2)

.

The probability that this happens for at least one of the at most q3 queries is

Pr[AWins|#G2(statebest,2) = M2] ≤ 1 −
(

1 −
(

1
N

)M−M2
)q3

.

Conditioning on B outputting ⊥ and summing over all values of M2 yields

Pr[AWins | ⊥] ≤ Pr[X + Y + Z = M ] .

To Conclude. We now show that if A wins the EUF-KO game with prob-
ability ε, then B outputs a β-approximate witness with probability ε −
e(qsd, q1, q2, q3). Indeed, B either aborts outputs ⊥ or outputs a β-approximate
witness. The reduction B only aborts if one of the random oracles outputs one
of the at most qsd + MNq1 + q2 + q3 bad values. Therefore, we have

Pr[ E aborts ] ≤ MN(qsd + q1 + q2 + q3)2

22λ
.

By the law of total probability we have

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ ⊥]
+ Pr[A wins ∧ B outputs witness]

≤ Pr[B aborts] + Pr[A wins |⊥] + Pr[B outputs witness]
≤ e(qsd, q1, q2, q3) + Pr[B outputs witness].

Lemma 3. Modeling the commitment scheme as a random oracle, if there is
an adversary A that wins the EUF-CMA security game against LegRoast with
advantage ε, then there exists an adversary B that, given oracle access to A,
and with a constant overhead factor, wins the EUF-KO security game against
LegRoast with probability at least ε− qs(qs+q3)

22λ − qsd
2λ , where qs, qsd and q3 are the

number of queries that A makes to the signing oracle, Hsd and H3 respectively.
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Proof. Let A be an adversary against the EUF-CMA security of LegRoast, we
construct an adversary B against its EUF-KO security. When B is run on input
pk, it starts A also on input pk. We first describe how B deals with random
oracle queries and signature queries, then argue that its signature simulations
are indistinguishable from real ones, and finally show that EUF-KO security
implies EUF-CMA security.

Simulating Random Oracles. For each random oracle B maintains a table of
input output pairs. When A queries one of the random oracles, B first checks
if that query has been made before. If this is the case, B responds to A with
the corresponding recorded output. If not, B returns a uniformly random output
and records the new input-output pair in the table.

Signing Oracle Simulation. When A queries the signing oracle, B simulates a
signature σ by sampling a random witness and cheating in the MPC verification
phase to hide the fact it has sampled the witness as random. It then programs the
last random oracle to always hide the party for which it has cheated. Formally,
B simulates the signing oracle as follows:

1. To simulate σ1, B follows Phase 1 as in the scheme with one difference: For
each e ∈ [M ], it samples ΔKe uniformly, effectively sampling Ke at random.
B aborts if it picked a salt that was used in one of the earlier simulated
signatures.

2. B simulates the random oracle to obtain h1 ← H1(m, salt, σ1).
3. To simulate σ2, B samples o

(j)
e ∈ F

∗
p for each j ∈ [B] and e ∈ [M ] in such a

way that Lk(o(j)e ) − s
(j)
e = pk

I
(j)
e

.
4. B simulates the random oracle to obtain h2 ← H2(h1, σ2).
5. To simulate σ3, B must cheat during the sacrificing protocol to ensure that

γe = αeβe for all executions. To do so, for each e ∈ [M ], B first samples
īe ∈ [N ] at random. Then it computes Phase 5 honestly except for γe,̄ie

; for
that value, it instead sets γe,̄ie

← αeβe −
∑

i�=īe
γe,i. Finally it sets σ3 as in

the scheme using the alternative γe,̄ie
value.

6. If (h2, σ3) has already been queried to H3, then B aborts. If not, B sets
h3 = (̄i1, . . . , īM ) with the values it sampled previously and then programs
its own random oracle H3 such that h3 ← H3(h2, σ3).

7. B follows the scheme to simulate σ4 and the final signature σ.

Finally, when A outputs a forgery for its EUF-CMA game, B forwards it as its
forgery for the EUF-KO game.

Simulation Indistinguishability. If B doesn’t abort, the simulation of the random
oracles is perfect. Moreover, if B doesn’t abort we show that A’s can only dis-
tinguish a real signing oracle from the simulated oracle with advantage qsd/2λ,
where qsd is the number of queries to Hsd.

The simulated signatures follow the exact same distribution as genuine sig-
natures, with the only exception that in a genuine signature the (Ce,ie

)e∈[m] are
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equal to Hsd(salt, e, ie, sde,ie)
for a value of sde,ie

that expands to a consistent view
of a party in the MPC protocol, whereas in the simulated case, sde,ie

expands to
the view of a cheating party. Since Hsd is modelled as a random oracle, each of
the qs · M values of Ce,ie

that A gets to see is just a random value, uncorrelated
with the rest of the view of A, unless A has queried Hsd on (salt, e, ie, sde,ie

).
Since the (salt, e, ie) is unique per commitment (B aborts if a salt is repeated)
and each seed has λ bits of min-entropy each query that A makes to Hsd has a
probability of at most 2−λ of distinguishing the simulated signature oracle form
a genuine signing oracle. Therefore, an adversary that makes qsd queries to Hsd

has a distinguishing advantage bounded by qsd/2λ.

EUF-KO Security Implies EUF-CMA Security. Finally, we establish B’s advan-
tage against the EUF-KO security game. There are two moments at which
B could abort: In phase 1 if a salt is repeated which happens with probabil-
ity bounded by q2s/22λ (recall that a salt consists of 2λ random bits) and in
phase 6, if B fails to program the oracle H3, which happens with probabil-
ity bounded by qsq3/22λ, since h2 has 2λ bits of min entropy. Therefore, we
have Pr [B aborts] ≤ qs(qs+q3)

22λ , where qs and q3 denotes the number of signing
queries and queries to H3 made by A respectively. Conditional on B not abort-
ing, replacing the genuine oracles for the simulated oracles decreases the winning
probability of A by at most qsd/2λ. Therefore, given that the winning conditions
for the EUF-KO and EUF-CMA games are identical, we have:

AdvEUF-KO
B (1λ) ≥ AdvEUF-CMA

A (1λ) − qs(qs + q3)
22λ

− qsd
2λ

.
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Abstract. Let A/Fp and A′/Fp be superspecial principally polarized
abelian varieties of dimension g > 1. For any prime � �= p, we give an
algorithm that finds a path φ : A → A′ in the (�, . . . , �)-isogeny graph

in ˜O(pg−1) group operations on a classical computer, and ˜O(
√

pg−1)
calls to the Grover oracle on a quantum computer. The idea is to find
paths from A and A′ to nodes that correspond to products of lower
dimensional abelian varieties, and to recurse down in dimension until an
elliptic path-finding algorithm (such as Delfs–Galbraith) can be invoked
to connect the paths in dimension g = 1. In the general case where A and
A′ are any two nodes in the graph, this algorithm presents an asymptotic
improvement over all of the algorithms in the current literature. In the
special case where A and A′ are a known and relatively small number of
steps away from each other (as is the case in higher dimensional analogues
of SIDH), it gives an asymptotic improvement over the quantum claw
finding algorithms and an asymptotic improvement over the classical van
Oorschot–Wiener algorithm.

1 Introduction

Isogenies of supersingular elliptic curves are now well-established in cryptogra-
phy, from the Charles–Goren–Lauter Hash Function [10] to Jao and De Feo’s
SIDH key exchange [27] and beyond [2,12,13,21]. While the security of isogeny-
based cryptosystems depend on the difficulty of a range of computational prob-
lems, the fundamental one is the isogeny problem: given supersingular elliptic
curves E1 and E2 over Fp2 , find a walk in the �-isogeny graph connecting them.

One intriguing aspect of isogeny-based cryptography is the transfer of elliptic-
curve techniques from classic discrete-log-based cryptography into the post-
quantum arena. In this spirit, it is natural to consider cryptosystems based
on isogeny graphs of higher-dimensional abelian varieties, mirroring the transi-
tion from elliptic (ECC) to hyperelliptic-curve cryptography (HECC). Compared
with elliptic supersingular isogeny graphs, the higher-dimensional graphs have
more vertices and higher degrees for a given p, which allows some interesting
tradeoffs (for example: in dimension g = 2, we get the same number of vertices
with a p of one-third the bitlength).
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For g = 2, Takashima [36] and Castryck, Decru, and Smith [7] have defined
CGL-style hash functions, while Costello [11] and Flynn and Ti [19] have already
proposed SIDH-like key exchanges. Generalizations to dimensions g > 2, using
isogeny algorithms such as those in [4], are easy to anticipate; for example, a
family of hash functions on isogeny graphs of superspecial abelian varieties with
real multiplication was hinted at in [9].

So far, when estimating security levels, these generalizations assume that
the higher-dimensional supersingular isogeny problem is basically as hard as the
elliptic supersingular isogeny problem in graphs of the same size. In this article,
we show that this assumption is false. The general supersingular isogeny problem
can be partially reduced to a series of lower-dimensional isogeny problems, and
thus recursively to a series of elliptic isogeny problems.

Theorem 1. There exists a classical algorithm which, given a prime � and
superspecial abelian varieties A1 and A2 of dimension g over Fp with p �= �, suc-
ceeds with probability ≥1/2g−1 in computing a composition of (�, . . . , �)-isogenies
from A1 to A2, running in expected time ˜O((pg−1/P )) on P processors as p → ∞
(with � fixed).

Given that these graphs have O(pg(g+1)/2) vertices, the expected runtime
for generic random-walk algorithms is ˜O(pg(g+1)/4/P ). Our algorithm therefore
represents a substantial speedup, with nontrivial consequences for cryptographic
parameter selection.1 We also see an improvement in quantum algorithms:

Theorem 2. There exists a quantum algorithm which, given a prime � and
superspecial abelian varieties A1 and A2 of dimension g over Fp with p �= �,
computes a composition of (�, . . . , �)-isogenies from A1 to A2 running in expected
time ˜O(

√

pg−1) as p → ∞ (with � fixed).

This reflects the general pattern seen in the passage from ECC to HECC:
the dimension grows, the base field shrinks—and the mathematical structures
become more complicated, which can ultimately reduce claimed security lev-
els. Just as index calculus attacks on discrete logarithms become more powerful
in higher genus, where useful structures appear in Jacobians [15,22,23,34], so
interesting structures in higher-dimensional isogeny graphs provide attacks that
become more powerful as the dimension grows. Here, the interesting structures
are (relatively large) subgraphs corresponding to increasing numbers of elliptic
factors in (polarized) abelian varieties. These subgraphs are relatively large, and
so random-walking into them is relatively easy. We can then glue together elliptic
isogenies, found with an elliptic path-finding algorithm, to form product isoge-
nies between products of elliptic curves, and thus to solve the original isogeny
problem. We will see that the path-finding problem in the superspecial graph
gets asymptotically easier as the dimension grows.

1 Our algorithms apply to the full superspecial graph; we do not claim any impact on
cryptosystems that run in small and special subgraphs, such as CSIDH [8].
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Notation and Conventions. Throughout, p denotes a prime ≥3, and � a prime
not equal to p. Typically, p is large, and � � log(p) is small enough that com-
puting (�, . . . , �)-isogenies of g-dimensional principally polarized abelian varieties
(PPAVs) is polynomial in log(p). Similarly, we work with PPAVs in dimensions
g � log p; in our asymptotics and complexities, g and � are fixed. We say a
function f(X) is in ˜O(g(X)) if f(X) = O(h(log X)g(X)) for some polynomial h.

2 The Elliptic Supersingular Isogeny Graph

An elliptic curve E/Fp is supersingular if E [p](Fp) = 0. We have a number of effi-
cient algorithms for testing supersingularity: see Sutherland [35] for discussion.

Supersingularity is isomorphism-invariant, and any supersingular E has j-
invariant j(E) in Fp2 ; and in fact the curve E can be defined over Fp2 . We let

S1(p) :=
{

j(E) : E/Fp2 is supersingular
} ⊂ Fp2

be the set of isomorphism classes of supersingular elliptic curves over Fp. It is
well-known that

#S1(p) =
⌊ p

12

⌋

+ εp (1)

where εp = 0 if p ≡ 1 (mod 12), 2 if p ≡ −1 (mod 12), and 1 otherwise.
Now fix a prime � �= p, and consider the directed multigraph Γ1(�; p) whose

vertex set is S1(p), and whose edges correspond to �-isogenies between curves
(again, up to isomorphism). The graph Γ1(�; p) is (�+1)-regular: there are (up to
isomorphism) �+ 1 distinct �-isogenies from a supersingular elliptic curve E/Fp2

to other elliptic curves, corresponding to the �+1 order-� subgroups of E [�](Fp) ∼=
(Z/�Z)2 that form their kernels. But since supersingularity is isogeny-invariant,
the codomain of each isogeny is again supersingular; that is, the � + 1 order-�
subgroups of E [�] are in bijection with the edges out of j(E) in Γ1(�; p).

Definition 1. A walk of length n in Γ1(�; p) is a sequence of edges j0 → j1 →
· · · → jn. A path in Γ1(�; p) is an acyclic (and, in particular, non-backtracking)
walk: that is, a walk j0 → j1 → · · · → jn such that ji = ji′ if and only if i = i′.

Pizer [32] proved that Γ1(�; p) is Ramanujan: in particular, Γ1(�; p) is a con-
nected expander graph, and its diameter is O(log p). We therefore expect the
end-points of short random walks from any given vertex j0 to quickly yield a
uniform distribution on S1(p). Indeed, if j0 is fixed and jn is the end-point of an
n-step random walk from j0 in Γ1(�; p), then [21, Theorem 1] shows that

∣

∣

∣

∣

Pr[jn = j] − 1
#S1(p)

∣

∣

∣

∣

≤
(

2
√

�

� + 1

)n

for all j ∈ S1(p) . (2)

The isogeny problem in Γ1(�; p) is, given j0 and j in S1(p), to find a path
(of any length) from j0 to j in Γ1(�; p). The difficulty of the isogeny problem
underpins the security of the Charles–Goren–Lauter hash function (see Sect. 3
below).
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The isogeny problem is supposed to be hard. Our best generic classical path-
finding algorithms look for collisions in random walks, and run in expected time
the square root of the graph size: in this case, ˜O(

√
p). In the special case of

supersingular isogeny graphs, we can make some practical improvements but
the asymptotic complexity remains the same: given j0 and j in F1(p; �), we can
compute a path j0 → j in ˜O(

√
p) classical operations (see [14]).

The best known quantum algorithm for path-finding [3] instead searches for
paths from j0 → j′

0 and from j → j′, where j′
0 and j′ are both in Fp. Of the O(p)

elements in S1(p), there are O(
√

p) elements contained in Fp; while a classical
search for elements this sparse would therefore run in time O(

√
p), Grover’s

quantum algorithm [24] completes the search in expected time O( 4
√

p). It remains
to find a path from j′

0 to j′. This could be computed classically in time ˜O( 4
√

p)
using the Delfs–Galbraith algorithm, but Biasse, Jao and Sankar [3] show that
a quantum computer can find paths between subfield curves in subexponential
time, yielding an overall algorithm that runs in expected time O( 4

√
p).

We can also consider the problem of finding paths of a fixed (and typically
short) length: for example, given e > 0 and j0 and j in S1(p) such that there
exists a path φ : j0 → · · · → j of length e, find φ. This problem arises in the
security analysis of SIDH, for example.

3 Cryptosystems in the Elliptic Supersingular Graph

The Charles–Goren–Lauter Hash Function (CGL). Supersingular isogenies
appeared in cryptography with the CGL hash function, which operates in
Γ1(2; p). Fix a base point j0 in S1(p), and one of the three edges in Γ1(2; p) lead-
ing into it: j−1 → j0, say. To hash an n-bit message m = (m0,m1, . . . ,mn−1),
we let m drive a non-backtracking walk j0 → · · · → jn on Γ1(2; p): for each
0 ≤ i < n, we compute the two roots α0 and α1 of Φ2(ji,X)/(ji−1−X) to deter-
mine the neighbours of ji that are not ji−1, numbering the roots with respect to
some ordering of Fp2 (here Φ2(Y,X) is the classical modular polynomial), and
set ji+1 = αmi

.
Once we have computed the entire walk j0 → · · · → jn, we can derive a

log2 p-bit hash value H(m) from the end-point jn; we call this step finalisation.
Charles, Goren, and Lauter suggest applying a linear function f : Fp2 → Fp

to map jn to H(m) = f(jn). For example, if Fp2 = Fp(ω) then we can map
jn = jn,0 + jn,1ω (with jn,0 and jn,1 in Fp) to H(m) = ajn,0 + bjn,1 for some
fixed random choice of a and b in Fp. Heuristically, for general f , if we suppose
S1(p) is distributed uniformly in Fp2 , then roughly one in twelve elements of Fp

appear as hash values, and each of those has only one expected preimage in S1(p).
Finding a preimage for a given hash value h in Fp amounts to finding a

path j0 → · · · → j such that f(j) = h: that is, solving the isogeny problem.
We note that inverting the finalisation seems hard: for linear f : F2

p → Fp, we
know of no efficient method which given h in Fp computes a supersingular j
such that f(j) = h. (Brute force search requires O(p) trials.) Finalisation thus
gives us some protection against meet-in-the-middle isogeny algorithms. Finding



The Supersingular Isogeny Problem in Genus 2 and Beyond 155

collisions and second preimages for H amounts to finding cycles in Γ1(2; p). For
well-chosen p and j0, this is roughly as hard as the isogeny problem [10, §5].

SIDH. Jao and De Feo’s SIDH key exchange [27] begins with a supersingular
curve E0/Fp2 , where p is in the form c·2a3b−1, with fixed torsion bases 〈P2, Q2〉 =
E0[2a] and 〈P3, Q3〉 = E0[3b] (which are rational because of the special form of
p). Alice computes a secret walk φA : E0 → · · · → EA of length a in Γ1(2; p),
publishing EA, φA(P3), and φA(Q3); similarly, Bob computes a secret walk φB :
E0 → · · · → EB of length b in Γ1(3; p), publishing EB , φB(P2), and φB(Q2). The
basis images allow Alice to compute φB(ker φA), and Bob φA(ker φB); Alice can
thus “repeat” her walk starting from EB , and Bob his walk from EA, to arrive
at curves representing the same point in S1(p), which is their shared secret.

Breaking Alice’s public key amounts to solving an isogeny problem in Γ1(2; p)
subject to the constraint that the walk have length a (which is particularly short).
The 3b-torsion basis may give some useful information here, though so far this is
only exploited in attacks on artificial variants of SIDH [31]. Similarly, breaking
Bob’s public key amounts to solving a length-b isogeny problem in Γ1(3; p).
Alternatively, we can compute these short paths by computing endomorphism
rings: [20, Theorem 4.1] states that if E and E ′ are in S1(p) and we have explicit
descriptions of End(E) and End(E ′), then we can efficiently compute the shortest
path from E to E ′ in Γ1(�; p) (see [17,20,29] for further details on this approach).

4 Abelian Varieties and Polarizations

An abelian variety is a smooth projective algebraic group variety. An isogeny of
abelian varieties is a surjective finite morphism φ : A → A′ such that φ(0A) =
0A′ . In dimension g = 1, these definitions coincide with those for elliptic curves.

The proper higher-dimensional generalization of an elliptic curve is a prin-
cipally polarized abelian variety (PPAV). A polarization of A is an isogeny
λ : A → ̂A, where ̂A ∼= Pic0(A) is the dual abelian variety; λ is principal if
it is an isomorphism. If A = E is an elliptic curve, then there is a canonical prin-
cipal polarization λ : P �→ [(P ) − (∞)], and every other principal polarization
is isomorphic to λ (via composition with a suitable translation and automor-
phism). The Jacobian JC of a curve C also has a canonical principal polarization
defined by the theta divisor, which essentially corresponds to an embedding of
C in JC , and thus connects JC with the divisor class group of C.

We need a notion of compatibility between isogenies and principal polariza-
tions. First, recall that every isogeny φ : A → A′ has a dual isogeny ̂φ : ̂A′ → ̂A.
Now, if (A, λ) and (A′, λ′) are PPAVs, then φ : A → A′ is an isogeny of PPAVs
if ̂φ ◦ λ′ ◦ φ = [d]λ for some integer d. We then have φ† ◦ φ = [d] on A (and
φ ◦φ† = [d] on A′), where φ† := λ−1 ◦ ̂φ ◦λ′ is the Rosati dual. Intuitively, φ will
be defined by homogeneous polynomials of degree d with respect to projective
coordinate systems on A and A′ corresponding to λ and λ′, respectively. There
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is a simple criterion on subgroups S ⊂ A[d] to determine when an isogeny with
kernel S is an isogeny of PPAVs: the subgroup should be Lagrangian.2

Definition 2. Let A/Fp be a PPAV and let m be an integer prime to p. A
Lagrangian subgroup of A[m] is a maximal m-Weil isotropic subgroup of A[m].

If � �= p is prime, then A[�n] ∼= (Z/�n
Z)2g for all n > 0. If S ⊂ A[�] is

Lagrangian, then S ∼= (Z/�Z)g. Any Lagrangian subgroup of A[�n] is isomorphic
to (Z/�Z)n1 × · · · × (Z/�Z)ng for some n1 ≥ · · · ≥ ng with

∑

i ni = gn (though
not every (n1, . . . , ng) with

∑

i ni = gn occurs in this way).
We now have almost everything we need to generalize supersingular isogeny

graphs from elliptic curves to higher dimension. The elliptic curves will be
replaced by PPAVs; �-isogenies will be replaced by isogenies with Lagrangian
kernels in the �-torsion—called (�, . . . , �)-isogenies—and the elliptic dual isogeny
will be replaced by the Rosati dual. It remains to define the right analogue of
supersingularity in higher dimension, and study the resulting graphs.

5 The Superspecial Isogeny Graph in Dimension g

We need an appropriate generalization of elliptic supersingularity to g > 1. As
explained in [7], it does not suffice to simply take the PPAVs A/Fp with A[p] = 0.

Definition 3. A PPAV A is supersingular if the Newton polygon of its Frobe-
nius endomorphism has all slopes equal to 1/2, and superspecial if Frobenius
acts as 0 on H1(A,OA). Superspecial implies supersingular; in dimension g = 1,
the definitions coincide.

All supersingular PPAVs are isogenous to a product of supersingular elliptic
curves. Superspecial abelian varieties are isomorphic to a product of supersin-
gular elliptic curves, though generally only as unpolarized abelian varieties. The
special case of Jacobians is particularly relevant for us when constructing exam-
ples: JC is superspecial if and only if the Hasse–Witt matrix of C vanishes.

It is argued in [7] that the world of superspecial (and not supersingular)
PPAVs is the correct setting for supersingular isogeny-based cryptography. We
will not repeat this argument here; but in any case, every higher-dimensional
“supersingular” cryptosystem proposed so far has in fact been superspecial.

In analogy with the elliptic supersingular graph, then, we define

Sg(p) :=
{A : A/Fp2 is a superspecial g-dimensional PPAV

}

/ ∼= .

Our first task is to estimate the size of Sg(p).

Lemma 1. We have #Sg(p) = O(pg(g+1)/2).

2 Isogenies with strictly smaller kernels exist—isogenies with cyclic kernel are treated
algorithmically in [16]—but these isogenies are not relevant to this investigation.
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Proof. See [18, §5]. This follows from the Hashimoto–Ibukiyama mass formula

∑

A∈Sg(p)

1
#Aut(A)

=
g

∏

i=1

B2i

4i
(1 + (−p)i) ,

where B2i is the 2i-th Bernoulli number. In particular, #Sg(p) is a polynomial
in p of degree

∑g
i=1 i = g(g + 1)/2. ��

Note that #Sg(p) grows quadratically in g (and exponentially in log p): we have
#S1(p) = O(p), #S2(p) = O(p3), #S3(p) = O(p6), and #S4(p) = O(p10).

For each prime � �= p, we let Γg(�; p) denote the (directed) graph on Sg(p)
whose edges are Fp-isomorphism classes of (�, · · · , �)-isogenies of PPAVs: that is,
isogenies whose kernels are Lagrangian subgroups of the �-torsion. Superspecial-
ity is invariant under (�, . . . , �)-isogeny, so to determine the degree of the vertices
of Γg(�; p) it suffices to enumerate the Lagrangian subgroups of a g-dimensional
PPAV. A simple counting argument yields Lemma 2.

Lemma 2. If A/Fp is a g-dimensional PPAV, then the number of Lagrangian
subgroups of A[�], and hence the number of edges leaving A in Γg(�; p), is

Ng(�) :=
g

∑

d=0

[

g

d

]

�

· �(
g−d+1

2 ) .

(The �-binomial coefficient
[

n
k

]

�
:= (n)�···(n−k+1)�

(k)�···(1)�
, where (i)� := �i−1

�−1 , counts
the k-dimensional subspaces of Fn

� .) In particular, Γg(�; p) is Ng(�)-regular; and
Ng(�) is a polynomial in � of degree g(g + 1)/2.

We do not yet have analogues of Pizer’s theorem to guarantee that Γg(�; p) is
Ramanujan when g > 1, though this is proven for superspecial abelian varieties
with real multiplication [26]. We therefore work on the following hypothesis:

Hypothesis 1. The graph Γg(�; p) is Ramanujan.

We need Hypothesis 1 in order to obtain the following analogue of Eq. 2 (a
standard random walk theorem, as in [25, §3]): if we fix a vertex A0 and consider
n-step random walks A0 → · · · → An, then

∣

∣

∣

∣

Pr[An
∼= A] − 1

#Sg(p)

∣

∣

∣

∣

≤
(

2
√

Ng(�) − 1
Ng(�)

)n

for all A ∈ Sg(p) . (3)

That is, random walks in Γg(�; p) converge exponentially quickly to the uniform
distribution: after O(log p) steps in Γg(�; p) we are uniformly distributed over
Sg(p). Given specific � and g, we can explicitly derive the constant hidden by
the big-O to bound the minimum n yielding a distribution within 1/#Sg(p) of
uniform.
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Remark 1. Existing proposals of higher-dimensional supersingular isogeny-based
cryptosystems all implicitly assume (special cases of) Hypothesis 1. For the
purposes of attacking their underlying hard problems, we are comfortable making
the same hypothesis. After all, if our algorithms are less effective because the
expansion properties of Γg(�; p) are less than ideal, then the cryptosystems built
on Γg(�; p) will fail to be effective by the same measure.

6 Superspecial Cryptosystems in Dimension g = 2

Before attacking the isogeny problem in Γg(�; p), we consider some of the cryp-
tosystems that have recently been defined in Γ2(�; p). This will also illustrate
some methods for computing in these graphs, and as well as special cases of the
general phenomena that can help us solve the isogeny problem more efficiently.
For the rest of this section, therefore, we restrict to dimension g = 2.

Every 2-dimensional PPAV is isomorphic (as a PPAV) to either the Jacobian
of a genus-2 curve, or to a product of two elliptic curves. We can therefore split
S2(p) naturally into two disjoint subsets: S2(p) = S2(p)J � S2(p)E , where

S2(p)J := {A ∈ S2(p) : A ∼= JC with g(C) = 2} and

S2(p)E := {A ∈ S2(p) : A ∼= E1 × E2 with E1, E2 ∈ S1(p)} .

Vertices in S2(p)J are “general”, while vertices in S2(p)E are “special”. We can
make the estimates implied by Lemma 1 more precise: if p > 5, then

#S2(p)J =
1

2880
p3 +

1
120

p2 and #S2(p)E =
1

288
p2 + O(p)

(see e.g. [7, Proposition 2]). In particular, #S2(p)E/#S2(p) = 10/p + o(1).

Takashima’s Hash Function. Takashima [36] was the first to generalize CGL to
g = 2. We start with a distinguished vertex A0 in S2(p), and a distinguished
incoming edge A−1 → A0 in Γ2(�; p). Each message m then drives a walk in
Γ2(�; p): at each vertex we have a choice of 14 forward isogenies (the 15th is the
dual of the previous, which is a prohibited backtracking step). The message m is
therefore coded in base 14. While traversing the graph, the vertices are handled
as concrete genus-2 curves representing the isomorphism classes of their Jaco-
bians. Lagrangian subgroups correspond to factorizations of the hyperelliptic
polynomials into a set of three quadratics, and the isogenies are computed using
Richelot’s formulæ (see [6, Chapters 9–10] and [33, Chapter 8]). We derive a hash
value From the final vertex An as the Igusa–Clebsch invariants of the Jacobian,
in F

3
p2 ; Takashima does not define a finalisation map (into F

3
p, for example).

Flynn and Ti observe in [19] that this hash function has a fatal weakness: it
is trivial to compute length-4 cycles starting from any vertex in Γ2(2; p), as in
Example 1. Every cycle produces infinitely many hash collisions.
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Example 1. Given some A0 in S2(p), choose a point P of order 4 on A0. There
exist Q and R in A0[2] such that e2([2]P,Q) = 1 and e2([2]P,R) = 1, but
e2(Q,R) �= 1. The Lagrangian subgroups K0 := 〈[2]P,Q〉 and K ′

0 := 〈[2]P,R〉
of A0[2] are kernels of (2, 2)-isogenies φ0 : A0 → A1

∼= A0/K0 and φ′
0 : A0 →

A′
1

∼= A0/K ′
0; and in general, A1 �∼= A′

1. Now K1 := φ0(K ′
0) and K ′

1 := φ′
0(K0)

are Lagrangian subgroups of A1[2]. Writing I1 = ker φ1
† and I ′

1 = ker (φ′
1)

†, we
see that K1 ∩ I1 = 〈φ1(R)〉 and K ′

1 ∩ I ′
1 = 〈φ1(Q)〉. We thus define another pair

of (2, 2)-isogenies, φ1 : A1 → A2
∼= A1/K1 and φ′

1 : A′
1 → A′

2
∼= A′

1/K ′
1. We

have ker(φ1 ◦φ0) = ker(φ′
1 ◦φ′

0), so A2
∼= A′

2. Now let ψ := (φ′
0)

† ◦ (φ′
1)

† ◦φ1 ◦φ0.
We have ψ ∼= [4]A0 , but ψ does not factor over [2]A0 (since A1 �∼= A′

1). Hence ψ
represents a nontrivial cycle of length 4 in the graph.

The ubiquity of these length-4 cycles does not mean that Γ2(2; p) is no use for
hashing: it just means that we must use a stronger rule than backtrack-avoidance
when selecting steps in a walk. The following hash function does just this.

The Castryck–Decru–Smith Hash Function (CDS). Another generalization of
CGL from Γ1(2; p) to Γ2(2; p), neatly avoiding the length-4 cycles of Example 1,
is defined in [7]. Again, we fix a vertex A0 and an isogeny φ−1 : A−1 → A0; we let
I0 ⊂ A0[2] be the kernel of the Rosati dual φ†

−1. Now, let m = (m0, . . . ,mn−1)
be a 3n-bit message, with each 0 ≤ mi < 8. The sequence (m0, . . . ,mn−1)
drives a path through Γ2(2; p) as follows: our starting point is A0, with its
distinguished subgroup I0 corresponding to the edge A−1 → A0. For each 0 ≤
i < n, we compute the set of eight Lagrangian subgroups {Si,0, . . . , Si,7} of Ai[2]
such that Si,j ∩ Ii = 0, numbering them according to some fixed ordering on
the encodings of Lagrangian subgroups. Then we compute φi : Ai → Ai+1

∼=
Ai/Si,mi

, and let Ii+1 := φi(Ai[2]) = kerφi
†. Once we have computed the entire

walk A0 → · · · → An, we can derive a 3 log2 p-bit hash value H(m) from the
isomorphism class of An (though such a finalisation is unspecified in [7]). The
subgroup intersection condition ensures that the composition of the isogenies in
the walk is a (2n, . . . , 2n)-isogeny, thus protecting us from the small cycles of
Example 1.

Putting this into practice reveals an ugly technicality. As in Takashima’s hash
function, we compute with vertices as genus-2 curves, encoded by their hyperel-
liptic polynomials, with (2, 2)-isogenies computed using Richelot’s formulæ. Walk
endpoints are mapped to Igusa–Clebsch invariants in F

3
p2 . But these curves, for-

mulæ, and invariants only exist for vertices in S2(p)J . We can handle vertices in
S2(p)E as pairs of elliptic curves, with pairs of j-invariants for endpoints, and
there are explicit formulæ to compute isogenies in to and out of S2(p)E (see
e.g. [7, §3]). Switching between representations and algorithms (to say nothing
of finalisation, where S2(p)E would have a smaller, easily distinguishable, and
easier-to-invert image) seems like needless fiddle when the probability of stepping
onto a vertex in S2(p)E is only O(1/p), which is negligible for cryptographic p.

In [7], this issue was swept under the rug by defining simpler algorithms which
efficiently walk in the subgraph of Γ2(2; p) supported on S2(p)J , and simply fail if
they walk into S2(p)E . This happens with probability O(1/p), which may seem
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acceptable—however, this also means that it is exponentially easier to find a
message where the hash fails than it is to find a preimage with a square-root
algorithm. The former requires O(p) work, the latter O(p3/2). In this, as we will
see, the simplified CDS hash function contains the seeds of its own destruction.

Genus-2 SIDH. Flynn and Ti [19] defined an SIDH analogue in dimension g = 2.
As in the hash functions above, Richelot isogenies are used for Alice’s steps in
Γ2(2; p), while explicit formulæ for (3, 3)-isogenies on Kummer surfaces are used
for Bob’s steps in Γ2(3; p). Walks may (improbably) run into S2(p)E , as with
the hash functions above; but the same work-arounds apply without affecting
security. (Further, if we generate a public key in S2(p)E , then we can discard it
and generate a new one in S2(p)J .) As with SIDH, breaking public keys amounts
to computing short solutions to the isogeny problem in Γ2(2; p) or Γ2(3; p),
though presumably endomorphism attacks generalizing [17] also exist.

7 Attacking the Isogeny Problem in Superspecial Graphs

We want to solve the isogeny problem in Γg(�; p). We can always do this using
random walks in O(

√

#Sg(p)) = O(pg(g+1)/4) classical steps.
Our idea is that Sg−1(p) × S1(p) maps into Sg(p) by mapping a pair of

PPAVs to their product equipped with the product polarization, and the image
of Sg−1(p) × S1(p) represents a large set of easily-identifiable “distinguished
vertices” in Γg(�; p). Indeed, since the map Sg−1(p)×S1(p) → Sg(p) is generically
finite, of degree independent of p, Lemma 1 implies that

#Sg(p)/#(image of Sg−1(p) × S1(p)) = O(pg−1) for g > 1 . (4)

We can efficiently detect such a step into a product PPAV in a manner analogous
to that of the failure of the CDS hash function: for example, by the breakdown
of a higher-dimensional analogue of Richelot’s formulæ such as [30].

We can walk into this subset, then recursively solve the path-finding problem
in the subgraphs Γg−1(�; p), . . . , Γ1(�; p) (each time walking from Γi(�; p) into
Γi−1(�; p)×Γ1(�; p)) before gluing the results together to obtain a path in Γg(�; p).

Lemma 3. Let α : A → A′ and β : B → B′ be walks in Γi(�; p) and Γj(�; p) of
lengths a and b, respectively. If a ≡ b (mod 2), then we can efficiently compute
a path of length max(a, b) from A × B to A′ × B′ in Γi+j(�; p).

Proof. Write α = α1 ◦ · · · ◦αa and β = β1 ◦ · · · ◦βb as compositions of (�, · · · , �)-
isogenies. WLOG, suppose a ≥ b. Set βb+1 = βb

†, βb+2 = βb, ..., βa−1 = βb
†,

βa = βb; then α × β : (α1 × β1) ◦ · · · ◦ (αa × βa) is a path from A × B to
A′ × B′. ��

Equations 3 and 4 show that a walk of length O(log p) lands in the image
of Sg−1(p) × S1(p) with probability O(1/pg−1), and after O(pg−1) such short
walks we are in Sg−1(p)×S1(p) with probability bounded away from zero. More
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Algorithm 1. Computing isogeny paths in Γg(�; p)
Input: A and A′ in Sg(p)
Output: A path φ : A → A′ in Γg(�; p)

1 Find a path ψ from A to some point B × E in Sg−1(p) × S1(p)
2 Find a path ψ′ from A′ to some point B′ × E ′ in Sg−1(p) × S1(p)
3 Find a path β : B → B′ in Γg−1(�; p) using Algorithm 1 recursively if

g − 1 > 1, or elliptic path-finding if g − 1 = 1
4 Find a path η : E → E ′ in Γ1(�; p) using elliptic path-finding
5 Let b = length(β) and e = length(η). If b �≡ e (mod 2), then fail and return ⊥

(or try again with another ψ and/or ψ′, β, or η)
6 Construct the product path π : B × E → B′ × E ′ defined by Lemma 3.

7 return the path φ := ψ′† ◦ π ◦ ψ from A to A′.

generally, we can walk into the image of Sg−i(p) × Si(p) for any 0 < i < g; but
the probability of this is O(1/pi(g−i)), which is maximised by i = 1 and g − 1.

Proof of Theorem 1. Algorithm 1 implements the approach above, and proves
Theorem 1. Step 1 computes ψ by taking O(pg−1) non-backtracking random
walks of length O(log(p)) which can be trivially parallelized, so with P proces-
sors we expect ˜O(pg−1/P ) steps before finding ψ. (If A is a fixed public base
point then we can assume ψ is already known). Likewise, Step 2 takes ˜O(pg−1/P )
steps to compute ψ′. After g − 1 recursive calls, we have reduced to the problem
of computing paths in Γ1(�; p) in Step 4, which can be done in time O(

√
p/P ).

Step 7 applies Lemma 3 to compute the final path in polynomial time. At each
level of the recursion, we have a 1/2 chance of having the same walk-length par-
ity; hence, Algorithm 1 succeeds with probability 1/2g−1. This could be improved
by computing more walks when the parities do not match, but 1/2g−1 suffices
to prove the theorem. The total runtime is ˜O(pg−1/P ) isogeny steps.

Proof of Theorem 2. Algorithm 1 can be run in a quantum computation
model as follows. First, recall from the proof of Theorem 1 that Steps 1 and 2
find product varieties by taking O(pg−1) walks of length O(log(p)). Here we
proceed following Biasse, Jao and Sankar [3, §4]. Let N be the number of walks
in O(pg−1) of length λ (in O(log(p))). To compute ψ, we define an injection

f : [1, . . . , N ] −→ {nodes of distance λ starting from A} ,

and a function Cf : [1, . . . , N ] → {0, 1} by Cf (x) = 1 if f(x) is in Sg−1(p) ×
S1(p), and 0 otherwise. If there is precisely one x with Cf (x) = 1, Grover’s
algorithm [24] will find it (with probability ≥1/2) in O(

√
N) iterations. If there

are an unknown t ≥ 1 such solutions, then Boyer–Brassard–Høyer–Tapp [5] finds
one in O(

√

N/t) iterations. Hence, if we take λ large enough to expect at least
one solution, then we will find it in O(

√

pg−1) Grover iterations. We compute
ψ′ (and any recursive invocations of Steps 1 and 2) similarly.

For the elliptic path finding in Steps 3 and 4, we can apply (classical) Pollard-
style pseudorandom walks which require ˜O(

√
p) memory and ˜O(

√
p) operations
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to find an �-isogeny path. Alternatively, we can reduce storage costs by applying
Grover’s algorithm to the full graph Γ1(�; p) to find an �-isogeny path in expected
time O(

√
p). Finally, Step 7 applies Lemma 3 to compute the final path.

Remark 2. We can use the same approach as Algorithm 1 to compute explicit
endomorphism rings of superspecial PPAVs. Suppose we want to compute
End(A) for some g-dimensional A in Sg(p). Following the first steps of Algo-
rithm 1, we compute a walk φ from A into Sg−1(p) × S1(p), classically or quan-
tumly, recursing until we end up at some E1 × · · · × Eg in S1(p)g. Now we apply
an elliptic endomorphism-ring-computing algorithm to each of the Ei; this is
equivalent to solving the isogeny problem in Γ1(�; p) (see [17, §5]), so its cost
is in ˜O(

√
p). The products of the generators for the End(Ei) form generators

for End(E1 × · · · × Eg), which we can then pull back through φ to compute a
finite-index subring of End(A) that is maximal away from �. The total cost is a
classical ˜O(pg−1/P ) (on P processors), or a quantum ˜O(

√

pg−1), plus the cost
of the pullback.

Remark 3. Algorithm 1 computes compositions of (�, . . . , �)-isogenies. If we relax
and allow arbitrary-degree isogenies, not just paths in Γg(�; p) for fixed �, then the
elliptic path-finding steps can use the classical Delfs–Galbraith [14] or quantum
Biasse–Jao–Sankar [3] algorithms. While this would not change the asymptotic
runtime of Algorithm 1 (under the reasonable assumption that the appropriate
analogue of vertices “defined over Fp” with commutative endomorphism rings
form a subset of size O(

√

#Sg(p))), both of these algorithms have low memory
requirements and are arguably more implementation-friendly than Pollard-style
pseudorandom walks [14, §4].

8 Cryptographic Implications

Table 1 compares Algorithm 1 with the best known attacks for dimensions g ≤ 6.
For general path-finding, the best known algorithms are classical Pollard-style
pseudorandom walks and quantum Grover search [5,24]. As noted in Remark 3,
higher-dimensional analogues of Delfs–Galbraith [14] or Biasse–Jao–Sankar [3]
might yield practical improvements, without changing the asymptotic runtime.

Table 1. Logarithms (base p) of asymptotic complexities of algorithms for solving the
isogeny problems in Γg(�; p) for 1 ≤ g ≤ 6. Further explanation in text.

Dimension g 1 2 3 4 5 6

Classical Algorithm 1 – 1 2 3 4 5

Pollard/Delfs–Galbraith [14] 0.5 1.5 3 5 7.5 10.5

Quantum Algorithm 1 – 0.5 1 1.5 2 2.5

Grover/Biasse–Jao–Sankar [3] 0.25 0.75 1.5 2.5 3.75 4.25
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The paths in Γg(�; p) constructed by Algorithm 1 are generally too long to be
private keys for SIDH analogues, which are paths of a fixed and typically shorter
length. Extrapolating from g = 1 [27] and g = 2 [19], we suppose that the secret
keyspace has size O(

√

#Sg(p)) = O(pg(g+1)/4) and the target isogeny has degree
in O(

√
p), corresponding to a path of length roughly log�(p)/2 in Γg(�; p). On

the surface, therefore, Algorithm 1 does not yield a direct attack on SIDH-style
protocols; or, at least, not a direct attack that succeeds with high probability.
(Indeed, to resist direct attacks from Algorithm 1, it would suffice to abort any
key generations passing through vertices in Sg−1(p) × S1(p).)

However, we can anticipate an attack via endomorphism rings, generaliz-
ing the attack described at the end of Sect. 3, using the algorithm outlined in
Remark 2. If we assume that what is polynomial-time for elliptic endomorphisms
remains so for (fixed) g > 1, then we can break g-dimensional SIDH keys by com-
puting shortest paths in Γg(�; p) with the same complexity as Algorithm 1: that
is, classical ˜O(pg−1/P ) and quantum ˜O(p(g−1)/2) for g > 1.

This conjectural cost compares very favourably against the best known clas-
sical and quantum attacks on g-dimensional SIDH. In the classical paradigm,
a meet-in-the-middle attack would run in ˜O(pg(g+1)/8), with similar storage
requirements. In practice the best attack is the golden-collision van Oorschot–
Wiener (vOW) algorithm [38] investigated in [1], which given storage w runs in
expected time ˜O(p3g(g+1)/16/(P

√
w)). For fixed w, the attack envisioned above

gives an asymptotic improvement over vOW for all g > 1. If an adversary has
access to a large amount of storage, then vOW may still be the best classi-
cal algorithm for g ≤ 5, particularly when smaller primes are used to target
lower security levels. (vOW becomes strictly worse for all g > 5, even if we
assume unbounded storage.) In the quantum paradigm, Tani’s algorithm [37]
would succeed in ˜O(pg(g+1)/12), meaning we get the same asymptotic complexi-
ties for dimensions 2 and 3, and an asymptotic improvement for all g > 3. More-
over, Jaques and Schanck [28] suggest a significant gap between the asymptotic
runtime of Tani’s algorithm and its actual efficacy in any meaningful model of
quantum computation. On the other hand, the bottleneck of the quantum attack
forecasted above is a relatively straightforward invocation of Grover search, and
the gap between its asymptotic and concrete complexities is likely to be much
closer.

Like the size of Sg(p), the exponents in the runtime complexities of all of the
algorithms above are quadratic in g. Indeed, this was the practical motivation for
instantiating isogeny-based cryptosystems in g > 1. In contrast, the exponents
for Algorithm 1 and our proposed SIDH attack are linear in g. This makes the
potential trade-offs for cryptosystems based on higher-dimensional supersingular
isogeny problems appear significantly less favourable, particularly as g grows and
the gap between the previous best attacks and Algorithm 1 widens.
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A A Proof-of-Concept Implementation

We include a naive Magma implementation of the product finding stage (i.e.
Steps 1–3) of Algorithm 1 in dimension g = 2 with � = 2. First, it generates
a challenge by walking from the known superspecial node corresponding to the
curve C : y2 = x5 + x over a given Fp2 to a random abelian surface in Γ2(2; p),
which becomes the target A. Then it starts computing random walks of length
slightly larger than log2(p), whose steps correspond to (2, 2)-isogenies. As each
step is taken, it checks whether we have landed on a product of two elliptic
curves (at which point it will terminate) before continuing.

Magma’s built-in functionality for (2, 2)-isogenies makes this rather straight-
forward. At a given node, the function RichelotIsogenousSurfaces computes
all 15 of its neighbours, so our random walks are simply a matter of generating
enough entropy to choose one of these neighbours at each of the O(log(p)) steps.
For the sake of replicability, we have used Magma’s inbuilt implementation of
SHA-1 to produce pseudo-random walks that are deterministically generated by
an input seed. SHA-1 produces 160-bit strings, which correspond to 40 integers
in [0, 1, . . . , 15]; this gives a straightforward way to take 40 pseudo-random steps
in Γ2(2; p), where no step is taken if the integer is 0, and otherwise the index is
used to choose one of the 15 neighbours.

The seed processor can be used to generate independent walks across mul-
tiple processors. We always used the seed “0” to generate the target surface, and
set processor to be the string “1” to kickstart a single process for very small
primes. For the second and third largest primes, we used the strings “1”, “2”,
. . . , “16” as seeds to 16 different deterministic processes. For the largest prime,
we seeded 128 different processes.

For the prime p = 127 = 27 − 1, the seed “0” walks us to the starting node
corresponding to C0/Fp2 : y2 = (41i + 63)x6 + · · · + (6i + 12)x + 70. The single
processor seeded with “1” found a product variety E1 × E2 on its second walk
after taking 53 steps in total, with E1/Fp2 : y2 = x3 + (93i + 43)x2 + (23i +
93)x + (2i + 31) and E2/Fp2 : y2 = x3 + (98i + 73)x2 + (30i + 61)x + (41i + 8).

For the prime p = 8191 = 213−1, the single processor seeded with “1” found
a product variety on its 175-th walk after taking 6554 steps in total.

For the prime p = 524287 = 219 − 1, all 16 processors were used. The
processor seeded with “2” was the first to find a product variety on its 311-th
walk after taking 11680 steps in total. Given that all processors walk at roughly
the same pace, at this stage we would have walked close to 16 · 11680 = 186880
steps.

For the 25-bit prime p = 17915903 = 21337 − 1, the processor seeded with
“13” found a product variety after taking 341 walks and a total of 12698 steps.
At this stage the 16 processors would have collectively taken around 203168
steps.

The largest experiment that we have conducted to date is with the prime
p = 2147483647 = 231 − 1, where 128 processors walked in parallel. Here the
processor seeded with “95” found a product variety after taking 10025 walks



The Supersingular Isogeny Problem in Genus 2 and Beyond 165

and a total of 375703 steps. At this stage the processors would have collectively
taken around 48089984 steps.

In all of the above cases we see that product varieties are found with around
p steps. The Magma script that follows can be used to verify the experiments3,
or to experiment with other primes.

//////////////////////////////////////////////////////////
clear;

processor:="1";

p:=2^13-1;
Fp:=GF(p);
Fp2<i>:=ExtensionField<Fp,x|x^2+1>;
_<x>:=PolynomialRing(Fp2);

//////////////////////////////////////////////////////////

Next_Walk := function(str)
H := SHA1(str);

steps := [ StringToInteger(x, 16): x in ElementToSequence(H) | x ne "0"];
return steps ,H;

end function;

//////////////////////////////////////////////////////////

Walk_To_Starting_Jacobian:=function(str)

steps,H:= Next_Walk(str);

C0:=HyperellipticCurve(x^5+x);
J0:=Jacobian(C0);
for i:=1 to #steps do

neighbours:=RichelotIsogenousSurfaces(J0);
if Type(neighbours[steps[i]]) ne SetCart then

J0:=neighbours[steps[i]];
end if;

end for;

return J0;

end function;

//////////////////////////////////////////////////////////

Walk_Until_Found:=function(seed,J0);

found:=false;
H:=seed;
found:=false;
walks_done:=0;
steps_done:=0;

while not found do

walks_done+:=1;
walks_done, "walks and",steps_done, "steps on core", processor, "for p=",p;
J:=J0;
steps,H:=Next_Walk(H);

for i:=1 to #steps do
steps_done+:=1;
J:=RichelotIsogenousSurfaces(J)[steps[i]];
if Type(J) eq SetCart then

found:=true;
index:=i;
break;

end if;
end for;

end while;

return steps,index,walks_done,steps_done,J;

end function;

//////////////////////////////////////////////////////////

3 Readers without access to Magma can make use of the free online calculator at
http://magma.maths.usyd.edu.au/calc/, omitting the “Write” functions at the end
that are used to print to local files.

http://magma.maths.usyd.edu.au/calc/
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file_name:="p" cat IntegerToString(p) cat "-" cat processor cat ".txt";
J0:=Walk_To_Starting_Jacobian("0");
steps,index,walks_done,steps_done,J:=Walk_Until_Found(processor,J0);

Write(file_name, "walks done =");
Write(file_name, walks_done);
Write(file_name, "steps_done =");
Write(file_name, steps_done);
Write(file_name, "steps=");
Write(file_name, steps);
Write(file_name, "index=");
Write(file_name, index);
Write(file_name, "Elliptic Product=");
Write(file_name, J);

//////////////////////////////////////////////////////////
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17. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen,
J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 329–
368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 11

18. Ekedahl, T.: On supersingular curves and Abelian varieties. Mathematica Scandi-
navica 60, 151–178 (1987)

19. Flynn, E.V., Ti, Y.B.: Genus two isogeny cryptography. In: Ding, J., Steinwandt,
R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 286–306. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25510-7 16

20. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part
I. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 3

21. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part I. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 1

22. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009)
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Abstract. We present the first actively secure variant of a distributed
signature scheme based on isogenies. The protocol produces signatures
from the recent CSI-FiSh signature scheme. Our scheme works for any
access structure, as we use a replicated secret sharing scheme to define the
underlying secret sharing; as such it is only practical when the number
of maximally unqualified sets is relatively small. This, however, includes
the important case of full threshold, and (n, t)-threshold schemes when
n is small.

1 Introduction

Threshold signature schemes have recently received more and more attention
due to applications in blockchain and other scenarios where high value signa-
tures are produced. Apart from early work on threshold RSA signatures [8,21]
and DSA/EC-DSA signatures [15,19], we have seen renewed interest in meth-
ods to produce EC-DSA signatures [4,11,13,14,16–18], and interest in threshold
schemes from standards bodies such as NIST [2].

In the post-quantum world there has obviously been less work on this prob-
lem. In [6] Cozzo and Smart discuss the possibilities for threshold-izing the
Round 2 candidate signature schemes in the NIST post-quantum ‘competition’.
The authors conclude that virtually all proposed signature schemes, with the pos-
sible exception of those based on the MQ-like problems, are hard to efficiently
turn into threshold variants. However, the NIST candidates do not include any
submission based on isogenies; mainly because isogeny based signature schemes
did not become efficient until after the NIST ‘competition’ started.

Isogeny based cryptography goes back to the work of Couveignes, Rostovtsev
and Stolbunov [5,20]. The first isogeny based signature scheme was created by
Stolbunov in his thesis [22]. The basic construction was a Fiat-Shamir transform
applied to a standard three-round isogeny-based identification scheme. The prob-
lem with Stolbunov’s scheme is that one required an efficient method to sample
in the class group, and that each class group member should have an efficiently
computable unique representation.
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To solve these problems De Feo and Galbraith used the Fiat-Shamir with
aborts method to produce a new signature scheme, based on Stolbunov’s, called
SeaSign [9]. The SeaSign scheme was further improved by Decru et al. [10].
However, the algorithm still required two minutes to sign a single message.

Recently, Beullens et al. [1] returned to Stolbunov’s original method and by
calculating the ideal class group of an imaginary quadratic number field with
large discriminant were able to instantiate the signature scheme efficiently. This
instantiation of Stolbunov’s scheme, called CSI-FiSh, requires only 390ms to
sign or verify a message, and has signature sizes of only 263 bytes. Thus with
CSI-FiSh isogeny based signatures are truly practical.

In [12] De Feo and Meyer consider the case of making CSI-FiSh into a
threshold scheme, by distributing the secret key using the Shamir secret sharing
scheme. Their resulting protocol is efficient, but only passively secure. The main
trick that De Feo and Meyer use is to overcome the difficulty that isogenies can
be composed, but do not form a group. As a result, performing the calculation of
the signature will be more challenging than in the classic setting of distributed
signatures based on discrete logarithms. Distributed signing protocols typically
have each signer producing a partial signature which is then combined non-
interactively into the final signature. Instead, in both the protocol of De Feo and
Meyer and our protocol, the signature is produced more in the fashion of a ring
signature, with each signer needing to accept and receive a message. A major
simplification in our presentation is that we use a Replicated Secret Sharing
Scheme. This means that, for a given qualified set, we can treat the resulting
sharing as a full threshold sharing.

Just as CSI-FiSh follows the Fiat-Shamir paradigm in defining a signature
scheme from isogenies, in much the same way as Schnorr signatures are cre-
ated from discrete logarithms, we can follow the same paradigm in creating an
actively secure threshold variant as is done in the standard case of actively secure
distributed Schnorr signatures. Each signer, in the qualified set being used to
sign, attaches a zero-knowledge proof to their partial signatures. This ensures
the signer has followed the protocol, and importantly for our simulation proof it
allows the simulator to extract the underlying secret witness. A similar strategy
is used for simulating the key generation.

As just indicated, we prove our protocol secure in a simulation paradigm, but
not in a the Universal Composability setting. This is because our protocol makes
extensive use of Σ-protocols and the simulator needs to rewind the adversary
in order to perform knowledge extraction from the special soundness of the
underlying Σ-protocols. Thus our protocol should only be considered ‘stand-
alone’ secure.

We estimate that our protocol will require just under five minutes to execute
for the important cases of two party signing, or threshold signing with (n, t) =
(3, 1). This cost is mainly due to the zero-knowledge proofs needed to provide
active security for our signing protocol.

Improvements to our work could be performed in a number of directions. On a
theoretical front a fully UC protocol and proof would be interesting. A method to
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produce active security, in the standalone setting, without recourse to our zero-
knowledge proofs would obviously have a big affect on performance. Extending
our method to create an actively secure variant of the Shamir based protocol
of De Feo and Meyer should be relatively easy. A change to our zero-knowledge
proof technique would be of great interest, although this seems particularly hard,
as any improvement to that would likely result in a major performance improve-
ment in the basic CSI-FiSh signature scheme as well.

2 Preliminaries

2.1 Notation

We assume that all involved parties are probabilistic polynomial time Turing
machines. Given a positive integer n, we denote by [n] the set {1, . . . , n}. We
let x ← X denote the uniformly random assignment to the variable x from
the set X, assuming a uniform distribution over X. We also write x ← y as
shorthand for x ← {y}. If D is a probability distribution over a set X, then we
let x ← D denote sampling from X with respect to the distribution D. If A is a
(probabilistic) algorithm then we denote by a ← A the assignment of the output
of A where the probability distribution is over the random tape of A.

2.2 Replicated Secret Sharing

Let P = {Pi}i=1,...,n be the set of parties and let Γ ⊂ 2P be a monotone family
for the relation of inclusion, that is if Q ∈ Γ and Q ⊂ Q′ then Q′ ∈ Γ . Similarly,
let Δ ⊂ 2P be a monotone family with respect to the relation of subsets, that is
if U ∈ Δ and U ′ ⊂ U then U ′ ∈ Δ. The pair (Δ,Γ ) is called a monotone access
structure if it holds that Δ ∩ Γ = ∅. We will only consider access structures
where Δ and Γ are complementary to each other. The sets inside Γ are called
qualified sets while the one in Δ are called unqualified sets. We denote by Γ−

the family of minimally qualified sets in Γ with respect to the inclusion relation,
that is

Γ− = {Q ∈ Γ : Q′ ∈ Γ,Q′ ⊂ Q ⇒ Q′ = Q} .

Similarly, we define the family of maximally unqualified sets Δ+ as

Δ+ = {U ∈ Γ : U ′ ∈ Δ,U ⊂ U ′ ⇒ U ′ = U} .

Let Γ be a general monotone access structure and let R be a ring. The
replicated scheme for Γ is defined as in Fig. 1. To define the replicated scheme
we first define a set B =

{
B ∈ 2P : P \ B ∈ Δ+

}
, then to share a secret s ∈ R

the dealer first additively shares s = sB1 + . . .+ sBt
for Bi ∈ B. To open a secret

is straightforward. For each qualified set Q we define a mapping ΨQ : B −→ P
which allows the parties in Q to uniquely treat their shares as a full threshold
sharing of the secret. In particular for each Q we require

s =
∑

Pi∈Q

⎛

⎝
∑

ΨQ(B)=Pi

sB

⎞

⎠ ,
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i.e. ΨQ partitions the shares sB for B ∈ B between the parties in Q. Such
replicated secret sharing schemes are clearly linear, and we will denote sharing
an element by this secret sharing scheme by 〈s〉.

For a set of adversarys A ∈ Δ we can divide the sets B ∈ B, and hence shares
sB , into three disjoint sets BA, BM and BH ; B = BA ∪ BM ∪ BH . The sets B in
BA correspond to shares sB that are held only by the adversary, those in BH are
those held only by honest parties, whist those in BM are held by a mixture of
honest and adversarial parties. For all secret sharing schemes we have BH �= ∅,
otherwise we would have A = P. In the case of full-threshold sharing we always
have BM = ∅.

Fig. 1. Replicated secret sharing over the ring R

2.3 Commitment Schemes

Our protocols require access to a commitment functionality FCommit. The com-
mitment functionality is a standard functionality allowing one party to first com-
mit, and then decommit, to a value towards another set of parties. We assume
that the opened commitment is only available to the receiving parties (i.e. it is
sent over a secure channel). The functionality is given in Fig. 2, and it is known
to be easily implemented in the random oracle model.

2.4 PRSSs

In our protocols we utilize the fact that, after a key distribution phase, parties
can generate non-interactively sharings in a replicated scheme; namely we can
define a so-called PRSS. In particular, we require the parties to engage in a pre-
processing phase in which they share keys for a Pseudo-Random Function (PRF)
in order to generate Pseudo-Random Secret Sharings (PRSSs) for the replicated
scheme 〈v〉. In particular, we make black-box use of the functionality given in
Fig. 3. PRSSs for arbitrary access structures can involve a set-up phase requiring
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Fig. 2. The functionality FCommit

the agreement of exponentially-many keys in general. The general protocol is
given in [7]. To set up the PRSS in the case of our replicated scheme we use the
method described in Fig. 4, where Fk(·) is a PRF with codomain equal to R.

Fig. 3. The functionality FRand

Theorem 2.1. Assuming F is a pseudo-random function, the protocol ΠRand

securely realises FRand in the FCommit-hybrid model.

Proof. The Init procedure is clearly secure assuming an secure commitment func-
tionality. As there is no interaction after Init, the protocol is clearly secure if it
is correct and passively secure. Correctness follows from basic algebra, and secu-
rity follows from the fact that F is assumed to be a PRF and from the fact that
there is at least one B not held by the adversary (by definition of the access
structure). �

2.5 Elliptic Curves and Isogenies

In what follows E denotes an elliptic curve over a finite field Fp where p is a large
prime. An elliptic curve is called supersingular if its number of rational points sat-
isfies the equation #E (Fp) ≡ 1 (mod p). An elliptic curve is called ordinary if this
does not happen. An isogeny between two elliptic curves E and E′ is a rational
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Fig. 4. Protocol ΠRand

map ϕ : E → E′ which is also a homomorphism with respect to the natural group
structure of E and E′. An isomorphism between two ellliptic curves is an injec-
tive isogeny. The j-invariant of an elliptic curve is an algebraic invariant under
isomorphism. As isogenies are group homomorphisms, any isogeny comes with a
subgroup of E, which is its kernel. On the other hand, any subgroup G ⊂ E

(
Fpk

)

yields a unique (up to automorphism) separable isogeny ϕ : E → E/G having G
as kernel. It can be shown that the quotient E is an elliptic curve and its equation
can be computed using standard formulae [23].

The set End (E) of all the isogenies of an elliptic curve E form a ring under
the composition operator. The isogenies that can be written with coefficients in
Fp forms a subring of End (E) and is denoted by EndFp

(E). For supersingular
elliptic curves this happens to be a proper subset. In particular, for supersingular
elliptic curves the ring End (E) is an order of a quarternion algebra defined over
Q, while EndFp

(E) is isomorphic to an order of the imaginary quadratic field
Q (

√−p). By abuse of notation we will identify EndFp
(E) with the isomorphic

order which we will denote by O. The quotient of the fractional invertible ideals
by the principal ideals in O, denoted by Cl (O) of O, is a group called class group
of O. There is a natural action of the class group on the class of elliptic curves



Sashimi: Cutting up CSI-FiSh Secret Keys 175

defined over Fp with order O. Given an ideal a ⊂ O one can define the subgroup
Sa = ∩α∈aKer(α). As this is a subgroup of E one gets an isogenous elliptic curve
E/Sa defined up to Fp-automorphism. We will denote the action of an element
a ⊂ O on an elliptic curve E by a 	 E. This action is free and transitive. This
action is believed to be hard to invert, even for a quantum computer. Specifically,
constructions based on the following problems are believed to be quantum secure:

Definition 2.1 (Group action inverse problem (GAIP) [9]). Given two
elliptic curves E and E′ over the same finite field and with End (E) = End (E′) =
O, find an ideal a ⊂ O such that E′ = a 	 E.

There is a obvious decisional version of this problem, which we refer to as the
decisional-GAIP, see [22].

The CSI-FiSh signature scheme relies on the hardness of random instance of a
multi-target version of GAIP, called MT-GAIP. In [9] it is shown that MT-GAIP
reduces to GAIP when the class group structure is known.

Definition 2.2 (MT-GAIP). Given k elliptic curves E1, . . . , Ek over the same
field, with End (E1) = · · · = End (Ek) = O, find an ideal a ⊂ O such that
Ei = a 	 Ej for some i, j ∈ {0, . . . , k} with i �= j.

2.6 Digital Signature Schemes

As is standard digital signature schemes are defined by

Definition 2.3. A digital signature scheme is given by a tuple of probabilistic
algorithms (KeyGen, Sign, Verify):

– KeyGen
(
1λ

)
is a randomized algorithm that takes as input the security param-

eter and returns the public key pk and the private key sk.
– Sign (sk, μ) is a randomized signing algorithm that takes as inputs the private

key and a message and returns a signature on the message.
– Verify (pk, (σ, μ)) is a deterministic verification algorithm that takes as inputs

the public key and a signature σ on a message μ and outputs a bit which is
equal to one if and only if the signature on μ is valid.

Correctness and security (EU-CMA) are defined in the usual way.

Definition 2.4. Let A be an adversary that is given the public key pk and oracle
access to the signing oracle Signsk. In its interaction with the oracle it can receive
signatures on messages it adaptively chooses. Let Q be the set of of messages
queried by A. A digital signature scheme Π = (KeyGen,Sign,Verify) is said to be
existentially unforgeable if there exists no such an adversary that can produce a
signature on a message m /∈ Q, except with negligible probability in λ.
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2.7 Distributed Signature Schemes

We assume the existence of secure point-to-point channels and synchronous chan-
nels, so parties receive data at the same time in a given round. For our adversarial
model, we assume a malicious adversary that might deviate arbitrarily from the
protocol. Given our access structure (Δ,Γ ), the adversary can statically corrupt
any non-qualified set. For a corrupted party, the adversary learns all the inter-
nal variables and controls both the input and the output ports of that party.
Informally, our security requirement is that such an adversary will learn nothing
about the underlying secret signing key, and that deviations from the protocol
will result in an abort signal being sent to the honest parties.

Formally we define the ideal functionality given in Fig. 5, and security is
defined by requiring that for every adversary there is a simulator such that the
adversary cannot tell if it is interacting in the real protocol, or if it is interacting
with a simulator which has access to the ideal functionality. The ideal function-
ality is designed for a signature scheme in which the secret key is a vector of T
elements in R, and the secret sharing of such keys is done via a replicated scheme.
Note that, the ideal functionality allows the adversary to alter the sharing pro-
vided by the ideal functionality to a different secret key; however the ideal func-
tionality then fixes this change to correspond to the public key initially generated.

Fig. 5. Distributed signature functionality: FDSign
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This cannot be detected by the adversary as the adversary does not see the public
key until after it has made the change. This is consistent with how the adversary
could attack an initial key distribution based on using a PRSS.

3 The CSI-FiSh Signature Scheme

In this section we recap on the basic CSI-FiSh signature scheme from [1]. The
scheme is defined in the isogeny graph of the public supersingular elliptic curve

E0(Fp) : y2 = x3 + x

where p is a prime of the form p = 4 · �1 · · · · · �n − 1, with �i being distinct small
odd primes. For the set of primes �1, . . . , �74, chosen in [3] for the CSIDH-512
parameter set, the authors of [1] determine that the associated class group of the
endomorphism ring is cyclic, generated by g, and has cardinality N = #Cl (O)
given by

N = 3 × 37 × 1407181 × 51593604295295867744293584889
× 31599414504681995853008278745587832204909.

For any ideal a ∈ Cl (O) we can write a = ga, where a ∈ Z/NZ, since
the group is cyclic. Therefore we can identify uniquely the ideal a with the
integer a. To simplify notation we write, for an elliptic curve E′ isogenous to E0,
a 	 E′ = [a]E′. With this notation we have [a]([b]E) = [a + b]E. For the elliptic
curve E0 it is also very easy to compute the quadratic twists. The quadratic
twist Et of the elliptic curve E = [a]E0 is isomorphic over Fp to the elliptic
curve [−a]E0.

The basic identification scheme on which CSI-FiSh is built on starts with a
public key being the action of a on the elliptic curve E0, that is E1 := a 	 E0 =
[a]E0. The prover starts by sampling a random element b ∈ Z/NZ, and sends
the resulting commitment [b]E0 to the verifier. This computation, according to
[1], takes around 40 ms to compute per value of b. The verifier then samples a
random challenge bit c ∈ {0, 1} and returns it to the prover. The prover then
responds with r = b modulo N if c = 0 and with r = b − a modulo N if c = 1.
The verifier then checks that [r]E0 = E if c = 0 or [r]E1 = E if c = 1. This can
then be turned into a signature scheme in the standard manner.

Having a binary challenge spaces gives an adversary a one in two chance
of producing an invalid proof. One way to fix this is to enlarge the challenge
space. This is done in [1] as follows, which improves soundness, but increases the
size of the public key. A positive integer S is chosen, with the secret key being
a vector of dimension S − 1, say (a1, . . . , aS−1) and with public key (E0, E1 =
[a1]E0, . . . , ES−1 = [aS−1]E0). The prover now must prove that it knows a secret
s ∈ Z/NZ such that Ej = [s]Ei for some pair of elliptic curves appearing in the
public key list. The prover again chooses a random mask b ∈ Z/NZ and commits
to it via E′ = [b]E0. The verifier now samples the challenge c uniformly from
the set {−S + 1, . . . , S − 1} and the prover responds with r = b − ac (mod N).
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Verification consists in checking that [r]Ec = E′, where we use the notation
E−c = Et

c, for negative values. This variant of CSI-FiSh achieves soundness
security 1

2·S−1 . Thus to obtain 2−sec soundness security overall we need to repeat
the basic protocol tS = sec/ log2(2 · S − 1) times, although one can reduce tS a
little bit by choosing a ‘slow’ hash function1.

When combined with the Fiat–Shamir heuristic this gives the signature
scheme presented in Fig. 6, where H : {0, 1}∗ −→ [−S + 1, . . . , S − 1]tS . This
signature scheme is EU-CMA secure under the MT-GAIP assumption, when H
is modelled as a random oracle.

3.1 Zero-Knowledge Proof

Our goal is to define a distributed signing protocol which is secure against mali-
cious adversaries. To guarantee that the parties behave correctly, they are asked
to commit to their secrets using the class group action and prove that what
they are committing to is of the correct form. Clearly, to prove knowledge of a
secret isogeny is sufficient to run an instance of the underlying basic CSI-FiSh
identification scheme described above. However, we require to prove something a
little more general, namely a witness s to the following relation, which we define

Fig. 6. The CSI-FiSh signature algorithm

1 For highest computational efficiency [1] selects, for sec = 128, the values S = 215

and tS = 7, using a hash function which is 216 times slower than SHA-3.
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for arbitrary j, but for which we only use when j = 1 and j = 2.

Lj :=
{ (

(E1, E
′
1, . . . , Ej , E

′
j), s

)
:

j∧

i=1

(E′
i = [s]Ei)

}

In other words, the prover wants to prove in zero-knowledge that it knows a
unique witness for j simultaneous instances of the GAIP. This can be done by
using standard techniques of Σ-protocols. We present the underlying protocol
in Fig. 7. There are essentially two variants, one when E1 = . . . = Ej = E0, and
one when this condition does not hold. The call the first case the Special case,
and the second case the the General case.

The following theorem shows that the basic interactive proof of knowledge
has soundness error 1/2 in the General case and 1/3 in the Special case. Thus
we need to repeat it sec (resp. sec/ log2 3) times to achieve a security level of
sec. In the random oracle this can be made non-interactive in the standard
manner using a hash function G with codomain {0, 1}tZK . Using a ‘slow’ hash
function for G, as in the case of CSI-FiSh, which is 2k times slower than a normal
hash function we can reduce the number of repetitions to tZK = sec − k (resp.
tZK = (sec − k)/ log2 3. When k = 16 and sec = 128 as in the fastest CSI-FiSh
parameters this gives us tGeneralZK = 112 for the General case and tSpecialZK = 70 for
the Special case. We denote the resulting non-interactive proof and verification
algorithms by ZK.P and ZK.V .

Fig. 7. The prover ZK.Pi((E1, E
′
1, . . . , Ej , E

′
j), s) and verifier ZK.Vi(E1, E

′
1, . . . , Ej ,

E′
j), π) functions for our zero-knowledge proof
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Theorem 3.1. The interactive proof in Fig. 7 is correct, has soundness error 1
2

in the General case and soundness error 1
3 in the Special case, and is computa-

tional zero-knowledge assuming decisional-GAIP.

Proof. We first show correctness. We given the proof in the general case, as the
special case follows similarly. Suppose that the prover behaves honestly; this
means that it knows a secret s such that E′

i = [s]Ei for all i. If c = 0 then
verification consists in checking whether [r]Ei = Êi for all i. Since [r]Ei = [b]Ei

and this is equal to Êi for all i, the verifier accepts. If c = 1 then verification
consists in checking whether [r]E′

i = Êi for all i. Since [r]E′
i = [b − s]E′

i =
[b − s] ([s]Ei) = [b]Ei and this is equal to Êi the verifier accepts. This proves
that the verifier always accepts an honestly generated proof.

To show soundness (again in the General case) we build an extractor using
the standard technique. As Ei and E′

i are isogenous we can write E′
i = [s]Ei,

for some unknown value s ∈ Z/NZ. After rewinding the prover, we obtain two
accepting proofs of the form

π =
(
(Ê1, . . . , Êj), c, r

)
and π′ =

(
(Ê1, . . . , Êj), c′, r′

)

where c �= c′, and hence r �= r′ (unless s = 0). Since the proofs accept we have,
for all i ∈ [1, . . . , j],

[r]Ei = Êi ∧ [r′]E′
i = Êi.

This implies that, for all i, we have

E′
i = [−r′]([r′]E′

i) = [−r′]([r]Ei) = [r − r′]Ei

which implies that s = r − r′ for all i. The extractor in the Special case is much
the same.

To simulate the proof, one samples c at random from {0, 1} for the General
case and from {−1, 0, 1} in the Special case. We also sample r at random from
Z/NZ. One then sets Êi = [r]Ei if c = 0, Êi = E′

i if c = 1 and Êi = [r]E′
i
t

if c = −1. In the case that the input to the proof is from the language Lj

then this simulation is perfect. If the input is not from the language Lj then
the commitments also look like they come from a uniform distribution, because
they are deterministic functions of the variable r which is uniform. However, the
distribution of Ê1, . . . , Êj is not correct. By the decisional version of the GAIP
problem it is computationally hard for an adversary to distinguish the tuples
(Ê1, . . . , Êj) and ([b]E1, . . . , [b]Ej), and thus the simulation is computationally
zero-knowledge.

4 A Threshold Implementation

In this section we show how to create an actively secure threshold implementation
of the CSI-FiSh signature scheme for any access structure, where we hold the
secret key using a replicated secret sharing scheme. Before doing so we present
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a useful sub-protocol for performing a full-threshold variant of the group action
computation at the heart of isogeny based cryptography. See Fig. 8 for the details;
we defer the relevant proof of security till later. It uses the abstract (standard)
commitment functionality FCommit given earlier. For later use we denote this
sub-protocol by GrpAction(E0, Q, [s]), which for our fixed elliptic curve produces
the group action [s]Q in an actively secure manner.

Fig. 8. Group action computation for a full threshold secret sharing

Note that GrpAction(E0, Q, [s]) requires two zero-knowledge proofs of two
isogenies to be computed per player. And each player needs to verify 2 · (|Q|−1)
zero-knowledge proofs. However, the latency is O(|Q|) due to the second loop.

If s is shared by our replicated scheme 〈s〉 we can use GrpAction(E,Q, [s]),
for a qualified set Q, to compute 〈s〉E0 as well. The resulting operation we will
denote by GrpAction(E0, Q, 〈s〉). The modifications needed are as follows: Recall
we have s =

∑
B∈B sB , and for a qualified set Q we can assign each sB to a given

player P via the function ΨQ(B). Thus we can represent 〈s〉 as a full threshold
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scheme over the players in Q, where potentially each player plays the part of
a set of players. Then we can execute the protocol as above, except that in
line 4 we perform an additional check in that if P ′ ∈ B then player P ′ checks
whether EP = [sP ]E0. This check is performed by all players in P, including
those not in Q. This copes with the situations where BM �= ∅, and we need to
check consistency of the sharing.

Note, there is a trival optimization of the protocol for GrpAction(E0, Q, 〈s〉)
which does not expand the number of players artificially to |B| but keeps it at
size |Q|. However, the above (less efficient) variant is what we will require for
our protocol.

4.1 The Distributed Key Generation and Signing Protocols

We can now define our distributed key generation and signing protocols. The
key generation protocol and the protocol to execute the signing operation in
a distributed manner are given in Fig. 9. The protocols are defined in the
(FRand,FCommit)-hybrid models.

To estimate the cost of signing we use the estimate of 40 ms from [1] to
compute a single isogency calculation [b]E for a random b ∈ Z/NZ. By counting
the number of such operations we can determine an approximate value for the
execution time of our distributed signing protocol. The main cost is in computing
E′ ← GrpAction(E0, Q, [b]) a total of tS times. We estimate the cost in terms of
the number of parties t = |Q| in the qualified set Q. Note, that one of the

Fig. 9. The distributed key generation and signing protocols ΠKeyGen, ΠSign
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zero-knowledge proofs executed in Step 6 is Special, whereas all others in this
step are General. Due to the sequential nature of the calculation this will have a
latency of approximately |Q| · (1 + tSpecialZK ) isogeny calculations for Step 3, |Q| ·
tSpecialZK isogeny calculations for Step 4, and

(
1 + 4 ·

(
(|Q| − 1) · tGeneralZK + tSpecialZK

))

isogeny calculations for Step 6, of Fig. 8. Thus the rough total execution time is
about

tS ·
(
|Q| · (1 + 2 · ZKSpecial + 4 · ZKGeneral) + 4 · ZKSpecial − 4 · ZKGeneral + 1

)

isogeny calculations.
Taking the specimen parameters of tGeneralZK = 112 and tSpecialZK = 70 and tS = 7,

and considering the case of a set Q with two members, this gives a latency of
about 7 · (2 · (1 + 2 · 70 + 4 · 112) + 4 · 70 − 4 · 112 + 1) · 0.040 = 283 seconds per
party. Which is just under five minutes per party.

4.2 Proofs of Security

To prove the distributed key generation and signing protocols secure we present
a simulation of the environment to the adversary. The simulator has access to a
signing functionality for some unknown secret key, via the functionality in Fig. 5.
For security to hold the adversary must not be able to distinguish between exe-
cuting in the real environment and executing with the simulation. Our simu-
lation requires rewinding of the adversary in order to extract the witnesses for
the associated zero-knowledge proofs. Thus our security proof does not provide
a UC-proof of the security of the protocol. Thus our protocol should only be
considered ‘stand-alone’ secure.

KeyGen Simulation: The simulator first calls the functionality FDSign, which
outputs a replicated secret sharing of the associated secret keys 〈ai〉 for the
adversary, i.e. the simulator learns the values a′

i,B for all B ∈ BA ∪ BM , but not
for those values in BH . The simulator now passes the values a′

i,B for B ∈ BA∪BM

to the adversary by simulating the FRand.PRSS() protocol.
For each i ∈ [1, . . . , S − 1] the adversary now engages in an execution of

GrpAction(E0, Q, 〈ai〉); note E0 is fixed across all public keys and hence known
to the simulator ahead of time. From the committed zero-knowledge proofs π1

P

the simulator is able to extract the value ai,B entered by the adversary in the
first round of proofs. Note, this value may be different from the values returned
by the PRSS, but that is allowed in our security model, as long as it does not
contradict a value corresponding to an element in BM (if there is a contradiction
we will be able to abort later when the real system will abort during the check
for this fact). The extracted values ai,B are now passed to the functionality,
which completes them to a valid set of shares of the secrets and returns the
corresponding public key E0, . . . , ES−1.

The simulator picks a single honest sharing B∗ ∈ BH and generates ai,B for
B ∈ BH \ {B∗} at random. Thus ai,B∗ will be the secret key values which are
unknown to the simulator. We let j denote the player index corresponding to the
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element B∗. We let the curve EPj
in Step 3 of Fig. 8 denote a random element

of the isogeny graph. We can now fake the associated zero-knowledge proof π1
Pj

using the simulator for the zero-knowledge proof the commitments can now be
opened.

Now look at Step 6 of Fig. 8. All steps for honest players can be simulated
exactly by following the real protocol, bar that for the party Pj which holds the
unknown share ai,B∗. The input to this party in execution i will be

Ej−1
i =

[
j−1∑

k=1

sPk

]

E0,

whilst the output needs to be

Ej
i =

⎡

⎣−
t∑

k=j+1

sPk

⎤

⎦Ei,

so as to create the correct output public key Ei. The value Ej
i can thus be

computed by the simulator in Step 6 of Fig. 8, and the associated zero-knowledge
proof can hence be simulated as well.

If the adversary deviates from the protocol in any way, bar changing the values
of ai,B for B ∈ BA in the first phase, this is caught be the zero-knowledge proofs
and the simulator will be able to abort. Thus the protocol, assuming no abort
occurs, will output the same public key as provided by the ideal functionality.

Sign Simulation: The signing simulation is roughly the same as the key gener-
ation simulation. For the qualified set Q, the adversarial inputs can be derived
from the initial commitments in GrpAction(E0, Q, [b]). We let j now be the player
for which ΨQ(B∗) = Pj . In our simulation of GrpAction(E0, Q, [b]) we can defined
bi for Pi ∈ BH \ {Pj} at random, leaving the value bj unknown and ‘fixed’ by
the implicit equation given by the signature (r, c) returned by the functionality
which gives us E′ = [b]E0 = [r]Ec.

The final part of the signature which needs simulating is the output of the
ri for the honest players in Q. For i �= j this is done exactly as one would in the
real protocol. For party j, we know what the adversary should output and hence
can define rj = r − ∑

i�=j ri.
If the adversary deviates from the protocol in the final step, and uses an invalid

value of ri. Then the adversary will learn the signature, but the honest players will
abort; which is exactly the behaviour required by the ideal functionality.
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Abstract. The key encapsulation method “NewHope” allows two par-
ties to agree on a secret key. The scheme includes a private and a public
key. While the public key is used to encipher a random shared secret, the
private key enables to decipher the ciphertext. NewHope is a candidate
in the NIST post-quantum project, whose aim is to standardize cryp-
tographic systems that are secure against attacks originating from both
quantum and classical computers. While NewHope relies on the theory
of quantum-resistant lattice problems, practical implementations have
shown vulnerabilities against side-channel attacks targeting the extrac-
tion of the private key. In this paper, we demonstrate a new attack on
the shared secret. The target consists of the C reference implementa-
tion as submitted to the NIST contest, being executed on a Cortex-M4
processor. Based on power measurement, the complete shared secret can
be extracted from data of one single trace only. Further, we analyze
the impact of different compiler directives. When the code is compiled
with optimization turned off, the shared secret can be read from an
oscilloscope display directly with the naked eye. When optimizations are
enabled, the attack requires some more sophisticated techniques, but the
attack still works on single power traces.

Keywords: Post-quantum cryptography · Side-channel attack ·
NewHope · Message encoding

1 Introduction

A key encapsulation mechanism (KEM) is a scheme including public and pri-
vate keys, where the public key is used to create a ciphertext (encapsulation)
containing a randomly chosen symmetric key. The private key is used to decrypt
the ciphertext. This allows two parties to share a secret key. Traditional KEMs
such as RSA [1] rely on the difficulty of factoring large integer numbers. This
problem is widely regarded to be infeasible for large numbers with classical com-
puters. The factoring problem can be solved in polynomial time with quantum
computers [2]. It is, however, not yet clear, whether quantum computer with
enough computation power to break current cryptographic schemes may ever be
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built [3]. However, the sole risk that such a machine may eventually be built
justifies the effort in finding alternatives to today’s cryptography [4].

In 2017, the National Institute of Standards and Technology (NIST) started
a standardization process [5] for post-quantum algorithms, i.e. cryptographic
algorithms able to withstand attacks that would benefit from the processing
power of quantum computers. Proposed algorithms in this process include dig-
ital signature schemes, key exchange mechanisms and asymmetric encryption.
In 2019, 26 of the primary 69 candidates were selected to move to the second
round [6]. A remaining KEM candidate is NewHope [7], which was submitted
by Thomas Pöppelmann et al. Compared to other key-establishment candidates
in the NIST process, NewHope has competitive performance in terms of band-
width (amount of bits needed to be transmitted between both parties) and clock
cycles (time required for computing).

The NewHope submission to NIST is based on NewHope-Simple [8], which
is a variant of the prior work NewHope-Usenix [9]. All these NewHope schemes
are based on the assumption that the ring-learning with errors (RLWE) problem is
hard. RLWE first came to prominence with the paper by Lyubashevsky et al. [10].
It is a speed-up of an earlier scheme, i.e. the learning with errors (LWE) problem,
which allows for a security reduction from the shortest vector problem (SVP) on
arbitrary lattices [11]. Cryptosystems based on LWE typically require key sizes in
the order of n2. In contrast, RLWE-based cryptosystems have significantly smaller
key sizes of almost linear size n [12]. Besides shrinking of the key size, the compu-
tation speeds up. For NewHope, the variables are polynomials of degree n. The
parameters are chosen in such a way that computations can be performed in the
domain of the number-theoretic transform (NTT). The price is being payed with a
reduction in security, because RLWE adds some algebraic structures into the lat-
tice that might be utilized by an attacker. However, it is reasonable to conjecture
that lattice problems on such lattices are still hard. There is currently no known
way to take advantage of that extra structure [12].

Whenever an algorithm is executed on any sort of processor, the device will
consume electrical power. Depending on the algorithm and input data, the con-
sumed power will fluctuate. This power variation might be used to attack the
algorithm running on the device. To apply such an attack, a time-resolved mea-
surement of the executed instructions is required. Information collected by such
measurements are often referred to as side channels and may reflect the timing
of the processed instructions [13], the power consumption [14], the electromag-
netic emission [15], or any other measurement carrying information about the
processed operations. One can then draw conclusions about this side channel.
Usually this information includes private data, but it may also contain other
information, for example how the algorithm is implemented. These kinds of
attacks are often referred to as passive side-channel attacks.

There exist some publications addressing side-channel attacks related to
NewHope. Some of them require only a single power trace measurement. Primas
et al. introduced an attack on the NTT computation [16], which relies on timing
information. However, the NewHope reference implementation submitted to
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the NIST process (we call it “refC” in this paper) executes the NTT in constant
time. Therefore, this attack will not work on refC. Another attack that requires
only a single power trace is introduced by Aysu et al. [17]. The attack targets the
polynomial multiplication implemented in schoolbook manner. The refC imple-
mentation speeds up the polynomial multiplication by making use of the NTT.
Instead of n multiplications per value, only one multiplication per value remains
during polynomial multiplication. This makes the attack, as described in [17],
infeasible for the refC implementation.

In this paper, we demonstrate that the refC implementation is vulnerable
to a simple power attack. It might be the first documented passive attack on
refC which requires only one power trace to be performed. Another difference to
previous attacks is the target. Instead of identifying the private key, our attack
addresses the message. In the case of KEM, the attack will leak the shared
secret. The side channel is measured during message encoding, i.e. when the
shared secret is translated from a bit string into its polynomial representation.

In the next Section, we recall the NewHope KEM and summarize existing
attacks. Section 3 consists of the attack description and demonstration including
power trace measurements. Finally, possible mitigations are discussed in Sect. 4.

2 Background

The main idea behind RLWE is based on the idea of small and big polynomial
rings of integers modulo q. In NewHope, the polynomials have n ∈ {512, 1204}
dimensions, and the modulus is q = 12289. Small polynomials have coefficients
in the range −8 ≤ c ≤ 8 (mod q) in every dimension. Big polynomials can have
equally distributed coefficients between 0 and q − 1. The polynomials can be
added, subtracted and multiplied. The effect of the polynomial ring on multipli-
cation is as follows: After (schoolbook) polynomial multiplication, the coefficients
of all dimensions i ≥ n are added to the coefficient in dimension i mod n. E.g.
for n = 2, the product (ax+b)◦(cx+d) will result in (ad+bc mod q)x+(ac+bd
mod q).

In the following demonstration of the RLWE principle, upper-case letters
represent big polynomials and lower-case letters represent small polynomials.
To generate a key pair, the server randomly samples A, s, and e. The server
calculates

B = As + e. (1)

Both big polynomials A and B form the public key, and s is the private key. The
client side randomly samples the message µ and the small polynomials t, e′ and
e′′. The message µ is encoded into the big polynomial V . The client calculates

U = At + e′ (2)

and
V ′ = Bt + e′′ + V. (3)
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U and V ′ are then sent to the server. The final calculation on the server side is

V ′ − Us = Bt + e′′ + V − Ats − e′s (4)
= Ats + et + e′′ + V − Ats − e′s (5)
= et + e′′ + V − e′s. (6)

Because V is the only remaining big polynomial, the server can decode µ, as
long as the other polynomials remain small enough.

2.1 NewHope-CPA

The passively secure NewHope version (CPA) implements RLWE as described
above. Beside RLWE, an important concept in NewHope includes the NTT.
It is somehow related to the FFT. The main advantage of the NTT is calcu-
lation speedup. A polynomial multiplication implemented in schoolbook man-
ner requires n2 single coefficient multiplications. In the NTT domain, the poly-
nomial multiplication requires n coefficient multiplications only. Further, the
domain transformation requires n log2(n) coefficient multiplications. Even for a
single polynomial multiplication, the way through the NTT domain results in a
speedup. NewHope forces all implementations to use the NTT, as parts of the
public key and ciphertext are defined in the NTT domain only.

Fig. 1. NewHope-CPA message encapsulation.
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Figure 1 shows the NewHope CPA message encapsulation. From an attacker
perspective with access to a device and the possibility to measure power traces,
the processing of several parts in the scheme are somehow affected by private
data. The following parts are potential targets for a passive side-channel attack:

– Random data generation
– SHAKE256
– Generation of s and e (e.g. PolyBitRev(Sample(seed, 0)))
– Polynomial multiplication and addition (e.g. Â ◦ ŝ + ê)
– Both NTT and NTT−1

– Message encoding and decoding.

2.2 Known Attacks

Some of the potential targets have already been exploited and corresponding
attacks were already published. Passive side-channel attacks that require only
single measurements are the most interesting from a practical view, because such
attacks work on ephemeral keys (a fresh NewHope key pair is generated for all
key encapsulations) and masking does not prevent these attacks.

[17] introduces a horizontal attack on the polynomial multiplication a ◦ s on
NewHope-Usenix and Frodo [18]. The target in [17] is the polynomial multipli-
cation implemented in a schoolbook manner: Each coefficient of s is multiplied
n times. The attack extracts the coefficients of s out of these n multiplications.
It is unclear, if the attack would work on refC with single measurement traces,
because in the NTT domain, only one multiplication per coefficient remains.

Another publication describes an attack on the NTT transformation [16].
In this attack, an NTT implementation is exploited that does not execute in
constant time. The NewHope refC implementation, however, does not have such
a timing leakage. Other related passive attacks on lattice-based key encapsulation
schemes include [19–21]. However, we are not aware of any publication that
directly targets the message encoding in any lattice-based scheme.

This fact reflects also in publications that cover countermeasures against pas-
sive attacks. [22] and [23] introduce masked decryption. The masked operations
are NTT−1, polynomial arithmetic operations, and message decoding. Further
masking includes also encryption on client side [24]. This scheme masks also
message encoding. The message m is split into two shares m = m′ ⊕ m′′, and
the encoding function is executed on both shares m′ and m′′.

An active attack that might be applicable on all RLWE schemes in CPA mode
uses several forged ciphertexts to reconstruct the private key [25–28]. Because
NewHope-CPA is prone to these active attacks, the CPA version is only eligible
for ephemeral keys. For all other applications, NewHope-CCA should be used.
NewHope-CCA is a superset of NewHope-CPA. The main difference is an
additional encryption step after the decryption on the server side. The server
calculates the ciphertext by itself and compares it to the ciphertext received
from the client side. A forged ciphertext from the client will then be detected.
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IND-CCA2 security is traded off with processing time (mainly on server side)
and a ciphertext whose size is slightly increased (by 3% or 1.4%, respectively,
depending on n).

3 Attack Description

The attack is performed during message encoding. If an active secure NewHope-
CCA instance is chosen, the attack works on both server and client side. Con-
cerning the NewHope-CPA instances, message encoding is called on client side
only.

The message encoding function translates a 256-bit message or an encapsu-
lated key into its polynomial representation. This encoded polynomial V has
a zero in every dimension i, if the corresponding message bit µi−k·256 is zero.
Otherwise, if the message bit µi−k·256 is one, the corresponding polynomial coef-
ficients are set to q/2 = 6144.

A straightforward implementation might use a for-loop over all message bits
containing an if-condition which sets the polynomial coefficients to either 0 or
q/2. Such an implementation would be susceptible to timing attacks. The refC
implements the message encoding in a way that the code inside the for-loop
always runs in constant time. Listing 1 shows the corresponding function from
refC.
1 // Name : poly frommsg
2 // Desc r ip t i on : Convert 32−byte message to polynomial
3 // Arguments : − poly ∗ r : po in t e r to output polynomial
4 // − const unsigned char ∗msg : input message
5

6 void poly frommsg ( poly ∗ r , const unsigned char ∗msg)
7 {
8 unsigned i n t i , j , mask ;
9 f o r ( i =0; i <32; i++)

10 {
11 f o r ( j =0; j <8; j++)
12 {
13 mask = −((msg [ i ] >> j )&1) ;
14 r−>c o e f f s [ 8∗ i+j+ 0 ] = mask & (NEWHOPEQ/2) ;
15 r−>c o e f f s [ 8∗ i+j +256] = mask & (NEWHOPEQ/2) ;
16 #i f (NEWHOPEN == 1024) // I f c l au s e d i s s o l v ed at compi le

time
17 r−>c o e f f s [ 8∗ i+j +512] = mask & (NEWHOPEQ/2) ;
18 r−>c o e f f s [ 8∗ i+j +768] = mask & (NEWHOPEQ/2) ;
19 #end i f
20 }
21 }
22 }

Listing 1. Message encoding in refC
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A mask, containing 0 or −1 (= 0xFFFF...), replaces the if-condition. The
mask calculation is shown in Listing 1 at line 13. The processed message bit is
leaked neither in a branch, nor in an address-index look-up nor in differences
in execution time. However, power consumption might differ between processing
a logical zero or logical one, especially because the mask either contains ones
or zeroes only. Chances that processed values can be detected by analyzing the
power consumption of the device are high.

A side-channel measurement can be used to differentiate between processed
ones and zeroes. If a single trace is sufficient to do so, the attack would be
applicable on ephemeral keys. In the case of CPA or message encryption, the
attack does not require any public data (i.e. monitoring of the insecure channel
is not required), as the attack directly leaks the shared secret.

Note that this type of attack not only works on message encoding of
NewHope. A check of NIST submissions indicates several candidates, especially
other lattice-based KEMs. Crystals-Kyber [29], for example, uses an almost iden-
tical approach to encode the message.

3.1 Experimental Analysis

In this section, we demonstrate a successful attack based on current mea-
surements on a Cortex M4 processor. We use the publicly available platform
CW308-STM32F4 from NewAE Technology to execute all our attacks. A 40 Gsps
WaveRunner 640Zi oscilloscope from LeCroy was used to record power traces.
The processor core runs at 59 MHz.

The STM32CubeIDE togetherwith an STprogrammer fromSTMicroelectron-
ics was used to compile and program the device. The underlying C compiler is gcc.
When the message encoding function according to Listing 1 is compiled, the result-
ing assembler code and thus the program execution differs depending on compiler
settings, in particular on the chosen optimization strategy. To cover various cases,
wepresent results for the casewhenoptimization is disabled (−O0), andwhenmax-
imum optimization is applied (−O3). All measurements are recorded as follows:

1. A test message is generated in which byte 1 is set to a test value. All other
bytes contain random data.

2. A loop, covering test values from 0 to 255, is executed. In this loop, the message
encoding function is called and the voltage at the shunt resistor is recorded.

3.2 No Optimization

Message encoding requires 109 clock cycles per bit (Listing 1, lines 13–18) when
the code is compiled with optimization turned off. The resulting assembly code
is shown in Appendix 1.

As mentioned before, the power consumption should depend on the processed
message bits. The question is, however, whether the differences in power con-
sumption are big enough to be exploited. To answer this question, all possible
values for message byte 1 have been recorded and plotted on top of each other.
To obtain a clear and sharp image, 100 traces per value have been averaged.
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Fig. 2. Measurement traces on top of each other. Every trace is 100 times averaged.
Code compiled with optimization disabled.
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Fig. 3. A single trace measurement where message byte 1 is set to the value 83 (binary
0101 0011). Code compiled with optimization disabled.

The plot in Fig. 2 shows the power traces during processing of message byte 1.
The traces are color-separated by the two possible values of bit 4. The fluctuation
of the amplitude is significantly higher when the value of the processed message
bit is one. The difference is so large that it is even possible to read the processed
message bit directly from the oscilloscope’s display. Hence, the attack can be
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classified as a simple power attack (SPA). Figure 3 shows a single power trace.
The message byte 83 can directly be read out.

3.3 Optimization Enabled

Message encoding requires 9 clock cycles per bit (Listing 1, lines 13–18) when
the code is compiled with maximum optimization setting O3. The assembly code
is provided in Appendix 2.

We use the same approach as before to estimate the differences in power
consumption depending on individual message bits. Figure 4 shows traces of
different test values on top of each other. The power traces still differ, but less
obvious than before, when optimization was turned off. A direct read-out of the
bit values might be hard to accomplish. Note that the traces plotted in Fig. 4
are 1000 times averaged in order to reduce the noise. In a single-trace setting,
the additional noise would make it even more difficult to read out the message
bits directly.
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Fig. 4. All measurement traces on top of each other. Every trace is 1000 times averaged.
Code compiled with optimization enabled (O3).

Because an SPA might not be applicable, a differential-power attack (DPA)
might work. The attack requires a two-stage process. Before the actual attack
can start, reference traces are required. These traces are the same power mea-
surements as within the attack, but with known message values. To obtain these
traces, an attacker has two possibilities: If the device under attack works as
server, the attack is only applicable to NewHope-CCA. The upside for the
attacker is that he can perform the attack as client. The attacker creates valid
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ciphertexts for which he can choose the messages. When the device under attack
performs the re-encryption step, the attacker obtains such reference traces. In
the reversed case, where the device under attack is the client and the attacker
is the server, the attacker is unable to choose the messages: The client executes
message encoding with random messages. However, since the attacker performs
as server, he knows the private key and can therefore calculate the messages in
use. In the following, the attacker can repeat these steps until he has obtained
enough reference traces.

For all 256 possible values that a message byte can take on, we record 1,000
reference traces and average them to reduce the impact of noise. After collecting
the reference traces, the actual attack is ready to begin. Our treat model assumes
that the message changes on every call. Therefore, we try to extract the message
byte values from a single power trace only. When an attack trace is available, the
trace is cut into 32 power traces, each containing the processing of one message
byte. These sliced traces are then compared to all 256 reference traces. The
known value of the reference trace which is most similar to the attack trace will
then be taken as the corresponding value for the message byte.

One method to calculate the similarity S between a reference trace Vref and
the attacked trace Vattack is the sum of squares

S =
nsamples−1∑

i=0

(Vref[i] − Vattack[i])2. (7)

Although the attack will work like this, the signal-to-noise ratio (SNR) may be
increased when the noise is filtered out. A single measurement trace contains
noise in all frequencies while the information about the processed value lies
somewhere below the clock frequency. In our experiment, the SNR is better, if
a bandpass filter is applied on both, Vref and Vattack, before S is calculated. We
used a bandpass filter at 1.5−10 MHz (with the core clock running at 59 MHz).
The frequencies were heuristically evaluated. Because the encoding of a single
message bit takes 9 clock cycles, a passband around 59 MHz/9 = 6.56 MHz is
reasonable.

Equation 7 is calculated 256 times (once per reference trace) to get an S per
possible message byte. The smallest S corresponds to the correct byte. To test
if the attack works with all possible messages, the attack has been performed
over all possible values. The result is illustrated in Fig. 5. The diagram can be
read as follows: On the x-axis are the reference traces, whereas on the y-axis
traces from the attack can be found. For instance, the horizontal line at y = 50
represents all similarities S from the attacked byte value 50 compared to the
reference traces. Blue represents high similarity or a small S, respectively. Since
S is the smallest at x = 50, the attack worked for this message value, because
the correct value could be identified. The diagonal blue line indicates that the
attack works for (almost) all message values.
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Fig. 5. Similarity between a single power trace compared to the reference traces. (Color
figure online)

In Fig. 5, an outlier can be identified. The attacked message value 138 is the
only one where the smallest S is not the correct guess. Generally, value 138
sticks out as indicated by the yellow horizontal line. The corresponding power
trace, when inspected in the time domain, shows a disturbance pulse with an
amplitude of ≈150 mV. The pulse has a duration of roughly 250 ns plus some
reflections during another 500 ns. The pulse disturbs side-channel information for
approximately four message bits. All our measurements contain some of these
pulses. They must be somehow related to our measurement setup, because the
frequency of these pulses decreases with the time our system is turned on. At
start-up, the pulse frequency is ≈50 kHz and falls down to ≈1 kHz within a
second. The origin of the pulses is not fully clear. Due to the observations, we
suspect the supply voltage regulator as the culprit.

3.4 Success Rate

When all measurements containing disturbing pulses are excluded, the attack
success rate gets very close to 100% (we did not find any measurement without
outlier and false message bit guess).
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When optimization is enabled, about 4% of the attacked message encodings
contain an outlier. Depending on timing, this results in one or two false message
byte guesses. The minimum similarity S of a faulty key byte guess is more than
1,000 times higher than S of a correct key byte guesses. Therefore, outliers
can easily be identified. In the case where a pulse provokes two false message-
byte guesses, the message value of the two suspected bytes can be determined
by a brute-force attack. The requirement to execute the brute-force attack is
knowledge of the public data, public key and ciphertext. The computational
effort is 216 = 65,536 message encryptions in the worst case. To sum up, the
attack has a success rate of ≥ 96% in our setup. When the public data is known,
most of the remaining 4% can be calculated with a brute-force attack. This
results in an overall success rate of >99%.

In case of optimization turned off, about 47% of the attacked message encod-
ings contain at least one outlier pulse. However, the effect of these pulses is
marginal. Even key guesses that contain such a pulse are mostly guessed correct.
Without any post-processing (brute-force of potentially false bits), the overall
success rate is 99.5%.

4 Countermeasures

An approach to make the attack more difficult is to decrease the number of bits
that change their value during encryption. This can be achieved by removing
the mask calculation. The coefficient in the encoded message can be calculated
by a multiplication of the message bit to q/2. Lines 13 and 14 from Listing 1 are
replaced by Listing 2.

13 tmp = (NEWHOPEQ/2) ∗ ( (msg [ i ] >> j )&1) ;
14 r−>c o e f f s [ 8∗ i+j+ 0 ] = tmp ;

Listing 2. Message encoding with multiplication

Compiled with optimization enabled, this results in assembly code (see
Appendix 3) in which only two bits are set at a time (in contrast to 32 bits
in the reference code). Nevertheless, the single power trace DPA from Sect. 3.3
is still applicable, though the SNR is approximately cut in half. Therefore, this
small change is not sufficient to prevent the attack. Note that even if a way to
hide the message bit to q/2 encoding was found, there would still be leakage
from storing (lines 4 to 7 in Appendix 2).

Oder et al. [24] introduced a masking scheme for encryption. Instead of using
one message, two different messages µ′ and µ′′ are encrypted. These messages
are later xored, or rather summed together in the Rq space, thus forming the
final message µ. However, this approach only makes the presented attack slightly
more difficult, as the message encoding must be attacked twice.
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A more promising countermeasure which is mentioned in [24] is the use of
the Fisher-Yates algorithm [30]. It generates a random list, different for every
encryption, which contains all values between 0 and 255. This list then deter-
mines the order in which the individual bits of the message are encoded. The
initial two for loops are further replaced with one for loop, counting from 0 to
255. In Listing 3, the updated mask calculation (line 13 from Listing 1) is shown.

13 mask = −((msg [ f yL i s t [ i ] >> 3 ] >> ( f yL i s t [ i ]&7) )&1)

Listing 3. Message encoding with Fisher-Yates shuffle

The proposed attack can still be performed. However, as the bits are encoded
in a random order, an attacker can only determine the total number of ones
and zeroes in a message, but not which value would correspond to which bit.
To accomplish this, both the message encoding as well as the shuffling must be
attacked to recover the message. Combining the shuffling algorithm together with
masking might provide adequate side-channel protection: An attacker would have
to attack the message encoding on two shares and twice the shuffling algorithm
to determine the message, all on a single side-channel trace.

In reference to existing side-channel attacks on lattice-based encryption
schemes [31], not only message encoding, but all linear processed parts of
NewHope that contain somehow sensitive data should be protected.

5 Conclusion

The NewHope reference C implementation execution time does not depend
on private data. However, our experiments show that constant time execution
does not prevent power attacks. The complete shared secret can be extracted
from data of one single trace only. Depending on the compiler directive, even
simple-power attacks are possible. Prior work about passive side-channel attacks
on lattice-based key encapsulations mechanisms usually have the private key as
target. We demonstrated that an implementation, which protects all parts of
the algorithm in which the private key is processed, is not secure. All parts
in the NewHope algorithms that process somehow private data, including the
message, must be protected in order to obtain a secured NewHope implemen-
tation.
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Appendix 1

1 ; mask = −((msg [ i ] >> j )&1) :
2 l d r r2 , [ r7 , #0] ; r2 = memory [ r7 ]
3 l d r r3 , [ r7 , #20] ; r3 = memory [ r7 + 20 ]
4 add r3 , r2 ; r3 = r2 + r3
5 ld rb r3 , [ r3 , #0] ; r3 = memory [ r3 ]
6 mov r2 , r3 ; r2 = r3
7 l d r r3 , [ r7 , #16] ; r3 = memory [ r3 + 16 ]
8 asr .w r3 , r2 , r3 ; r3 = r2 >> r3 : s h i f t r i g t h r2 by r3
9 and.w r3 , r3 , #1 ; r3 = r3 & 1

10 negs r3 , r3 ; r3 = (−1)∗ r3
11 s t r r3 , [ r7 , #12] ; memory( r7 + #12) = r3 ;
12 ; r−>c o e f f s [ 8∗ i+j+ 0 ] = mask & (NEWHOPEQ/2) :
13 l d r r3 , [ r7 , #12] ; r3 = memory [ r7 + 12) ]
14 uxth r3 , r3 ; r3 = zero−extend r3 [ 1 5 : 0 ] to 32

b i t s
15 l d r r2 , [ r7 , #20] ; r2 = memory [ r7 + 20 ]
16 l s l s r1 , r2 , #3 ; r1 = r2 << 3 : s h i f t l e f t by 3 b i t s
17 l d r r2 , [ r7 , #16] ; r2 = memory [ r7 + 16 ]
18 add r2 , r1 ; r2 = r2 + r1
19 and.w r3 , r3 , #6144 ; r3 = r3 & 6144
20 uxth r1 , r3 ; r1 = zero−extend r3 [ 1 5 : 0 ] to 32

b i t s
21 l d r r3 , [ r7 , #4] ; r3 = memory [ r7 + 4 ]
22 s t rh .w r1 , [ r3 , r2 , l s l #1] ; memory [ r3 + 2 ∗ r2 ] = r1
23 ; r−>c o e f f s [ 8∗ i+j +256] = mask & (NEWHOPEQ/2) :
24 l d r r3 , [ r7 , #12] ; r3 = memory [ r7 + 12) ]
25 uxth r3 , r3 ; r3 = zero−extend r3 [ 1 5 : 0 ] to 32

b i t s
26 l d r r2 , [ r7 , #20] ; r2 = memory [ r7 + 20 ]
27 l s l s r1 , r2 , #3 ; r1 = r2 << 3 : s h i f t l e f t by 3 b i t s
28 l d r r2 , [ r7 , #16] ; r2 = memory [ r7 + 16 ]
29 add r2 , r1 ; r2 = r2 + r1
30 add.w r2 , r2 , #256 ; r2 = r2 + 256
31 and.w r3 , r3 , #6144 ; r3 = r3 & 6144
32 uxth r1 , r3 ; r1 = zero−extend r3 [ 1 5 : 0 ] to 32

b i t s
33 l d r r3 , [ r7 , #4] ; r3 = memory [ r7 + 4 ]
34 s t rh .w r1 , [ r3 , r2 , l s l #1] ; memory [ r3 + 2 ∗ r2 ] = r1
35 ; l i n e 24 − 34 r epea t s twice ( immediate va lue at l i n e 30 i s

r ep laced by 512 and 768)

Listing 4. Assembly with optimization turned off (O0), original refC
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Appendix 2

1 ld rb r2 , [ r3 , #0] ; r2 = memory [ r3 ]
2 sb fx r2 , r2 , #0, #1 ; r2 = ex t r a c t b i t 0 (1 b i t ) o f r2

and s ign−extend i t to 32 b i t s ( i f b i t 0 ( r2 ) == 0 , then
r2 = 0 x0000 . . . , e l s e r2 = 0 x f f f f . . . )

3 and.w r2 , r2 , #6144 ; r2 = r2 & 6144
4 s t rh r2 , [ r0 , #0] ; memory [ r0 ] = r2
5 s t rh .w r2 , [ r0 , #512] ; memory [ r0 + 512 ] = r2
6 s t rh .w r2 , [ r0 , #1024] ; memory [ r0 + 1024 ] = r2
7 s t rh .w r2 , [ r0 , #1536] ; memory [ r0 + 1536 ] = r2

Listing 5. Assembly with maximal optimization O3, original refC

Appendix 3

1 ld rb r2 , [ r3 , #0] ; r2 = memory [ r3 ]
2 ubfx r4 , r2 , #0, #1 ; r4 = ex t r a c t b i t 0 (1 b i t ) o f r2

and zero−extend i t to 32 b i t s
3 l s l s r2 , r4 , #1 ; r2 = r4 << 1 : s h i f t l e f t by 1 b i t
4 add r2 , r4 ; r2 = r2 + r4
5 l s l s r2 , r2 , #11 ; r2 = r3 << 11 (now we have r2 =

6144 when b i t 0 was 1 , e l s e r2 remains 0)
6 s t rh r2 , [ r0 , #0] ; memory [ r0 ] = r2
7 s t rh .w r2 , [ r0 , #512] ; memory [ r0 + 512 ] = r2
8 s t rh .w r2 , [ r0 , #1024] ; memory [ r0 + 1024 ] = r2
9 s t rh .w r2 , [ r0 , #1536] ; memory [ r0 + 1536 ] = r2

Listing 6. Assembly with maximal optimization O3, mask construction replaced
by multiplication
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Abstract. The user of an imperfectly correct lattice-based public-key
encryption scheme leaks information about their secret key with each
decryption query that they answer—even if they answer all queries
successfully. Through a refinement of the D’Anvers–Guo–Johansson–
Nilsson–Vercauteren–Verbauwhede failure boosting attack, we show that
an adversary can use this information to improve his odds of finding a
decryption failure. We also propose a new definition of δ-correctness,
and we re-assess the correctness of several submissions to NIST’s post-
quantum standardization effort.

Keywords: Public-key cryptography · Lattice-based cryptography ·
Decryption failure

1 Introduction

Imperfectly correct lattice-based encryption schemes carry risks that perfectly
correct schemes do not. Namely, whenever the decryption procedure fails it indi-
cates “some correlation between the secret key and the encryption randomness”
that reveals “information about the secret key” [20]. This is widely acknowl-
edged. And yet, if one notes that successful decryption indicates a lack of cor-
relation in precisely the same way, the consequence is startling: the user of
an imperfectly correct lattice-based encryption scheme leaks information about
their secret key with each decryption query that they answer. In this work,
we show that an adversary can use information from successful decryptions to
improve his odds of causing a decryption failure.

First, let us head off some objections. One might object that “[non-failing
ciphertexts] will contain negligible information about the secret” [8]. For many
schemes, we agree. However, even if a single ciphertext provides negligible infor-
mation, an adversary might submit many non-failing ciphertexts.

One might also object that the risk of imperfect correctness can be mitigated
using existing analyses. Indeed, when the Fujisaki–Okamoto transformation [12]
is applied to a δ-correct passively secure encryption scheme, the result is an
actively secure scheme with a failure probability of no more than Cδ relative to
an adversary who generates C ciphertexts [17, Theorem 3.1]. If the designers of
an encryption scheme account for this factor of C loss of correctness, they can
c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 206–225, 2020.
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argue that decryption failures are not a risk. However, when designers rely on a
conservative analysis of correctness, they may choose sub-optimal parameters.

We have seen several attempts to plot lattice-based encryption schemes along
axes of size and security. These plots mask differences in correctness, even when
they accurately represent tradeoffs between size and security against known
attacks (c.f. [3]). We believe that an accurate and concrete assessment of cor-
rectness will enable a more fair comparison of the candidates.

Contributions. Our main contributions are: (1) a refinement of the D’Anvers–
Guo–Johansson–Nilsson–Vercauteren–Verbauwhede failure boosting attack [5];
and (2) a new definition of correctness that is tailored for de-randomized
encryption schemes. We also provide software1 to calculate the correctness of
FrodoKEM [20], Saber [6], Kyber [24], and (some parameter sets of) Round5 [13].
We partially validate our calculations with experiments on FrodoKEM.

Our Refinement of Failure Boosting. We focus on the Lindner–Peikert
encryption scheme [18], as it underlies all of the imperfectly correct lattice-
based public-key encryption schemes that have been submitted to NIST. The
correctness condition of these schemes can be stated as

− t ≤ 〈s, e〉 ≤ t (1)

where s is a vector related to the secret key, e is a vector related to the ciphertext
randomness, and t is a system parameter.

An instantiation of the Lindner–Peikert scheme is said to be δ-correct if the
probability that Eq. (1) is violated for a random honestly generated s and a
random honestly generated e is at most δ. The condition that e is honestly gen-
erated is reasonable when the scheme is de-randomized, e.g. when the Fujisaki–
Okamoto transformation is used. In this case, the adversary needs the help of a
random oracle to generate a valid ciphertext. The random oracle severely limits
the adversary’s ability to cause a decryption failure: if the adversary generates
C ciphertexts, then his probability of causing a decryption failure is no more
than Cδ, by a union bound.

The adversary’s success probability may be far lower than Cδ. A key observa-
tion is that if Eq. (1) is satisfied for some e, then it is likely to be satisfied for all
e′ that are close to e. One can quantify the overlap between queries and, in doing
so, show that a sequence of queries with small overlap are more likely to cause
a decryption failure than a sequence of queries with large overlap. An adversary
cannot hope to achieve a success probability of Cδ (on average) unless he sub-
mits sequences of queries with no overlap. We depict the overlap of a sequence
of queries in Fig. 1 and give a precise definition in Sect. 4.

In a failure boosting attack, the adversary improves his odds of triggering
a decryption failure by searching for values of e that are of large norm. More
precisely, the failure boosting adversary generates ciphertexts c(i), 1 ≤ i ≤ C,
1 https://jmschanck.info/code/20200203-decfail.tar.gz.

https://jmschanck.info/code/20200203-decfail.tar.gz
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with the help of the random oracle, and selects Q ≤ C ciphertexts to query.
Previous analyses of failure boosting [5,8,15] assume that the adversary decides
whether to query c(i) by looking only at c(i). In effect, previous analyses ignore
the overlap between queries. In contrast, we allow the adversary to minimize the
overlap between his queries.

ε1
ε2

ε3

ε5

ε6

ε4

θ7
ε7

Cap C(ε7, θ7)

Overlap between
C(ε5, θ5) and C(ε6, θ6)

s/‖s‖

Fig. 1. A user who successfully decrypts ciphertexts c(1), . . . , c(7) reveals that their
secret, s, does not lie in the blue region. The ciphertext randomness determines the
points εi := e(i)/‖e(i)‖2. The cap angle θi is determined by ‖e(i)‖2 and ‖s‖2. The prob-
ability that a further query, c(8), causes a decryption failure depends on the extent to
which the cap of angle θ8 about ε8 intersects the blue region. (Color figure online)

Our focus here is on finding one decryption failure. After observing a decryp-
tion failure, the adversary should switch to a different strategy such as the
recently proposed directional failure boosting of D’Anvers, Rossi, and Virdia [7].
We will not discuss the process of estimating the secret from a collection of
failures. For further background on failure boosting, and reaction attacks on
lattice-based schemes more generally, see [5,8,15].

Correctness Definition. We propose an alternative definition of δ-correctness
to the one by Hofheinz–Hövelmanns–Kiltz [17]. The correctness experiment
in [17] provides the adversary with the secret key. In contrast, our experiment
provides the adversary only with the public key and a decryption oracle, and
can therefore be run inside an IND-CCA experiment. More importantly, our def-
inition allows a more fine-grained analysis of the impact of adaptive decryption
queries on de-randomized encryption schemes. We give our formal definition in
Sect. 3.

2 Preliminaries

Notation. For a finite set X we write x ←$ X to say that x is sampled uniformly
from X . For a distribution χ on X , we write x ← χ to say that x is sampled accord-
ing to χ. We denote the joint distribution of x ← χ1 and y ← χ2 by χ1 × χ2.
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If χ1 and χ2 are distributions on an abelian group, and (x, y) ← χ1 × χ2, then we
denote the distribution of x + y by χ1 ∗ χ2 where (χ1 ∗ χ2)(z) =

∑
w∈X χ1(w)

χ2(z − w).

2.1 Definition of PKEs and KEMs

A public-key encryption scheme P = (Keygen,Encr, Decr) is defined over a finite
message space M, a ciphertext space C, a secret key space SK and a public key
space PK. In particular, Keygen is a randomized algorithm returning sk ∈ SK
and pk ∈ PK; Encr is a randomized, or de-randomized, algorithm that takes as
input a public key pk and a message msg ∈ M and outputs a ciphertext c ∈ C;
Decr is a deterministic algorithm that takes as input sk ∈ SK and c ∈ C and
returns either a message msg ∈ M or a special symbol ⊥ /∈ M indicating failure.

A key encapsulation mechanism (KEM) K = (Keygen,Encaps, Decaps) is
defined over a ciphertext space C, the secret key space SK, a public key space
PK, and the key space K. In particular, Keygen is a randomized algorithm that
returns pk ∈ PK and sk ∈ SK; Encaps is a randomized algorithm that takes as
input pk ∈ PK and outputs c ∈ C and k ∈ K; Decaps(sk, c) is a deterministic
algorithm that upon input sk ∈ SK and c ∈ C, returns κ ∈ K or a special symbol
⊥ /∈ K indicating that c is not a valid ciphertext.

Fujisaki–Okamoto Transform. The Fujisaki–Okamoto (FO) transform [9,11,
12] can be used to construct an adaptively secure KEM from passively secure
public-key encryption (PKE). Hofheinz, Hövelmanns, and Kiltz provide a decom-
position of the FO transform into a sequence of simpler transformations [17];
Bernstein and Persichetti provide a complementary analysis [4]. These works
emphasize that the FO transform performs three tasks:

– Derandomization: A probabilistic PKE is transformed into a deterministic
PKE by fixing the coins used in encryption to a hash of the message.

– Reencryption: A deterministic PKE is transformed into a rigid2 deterministic
PKE that returns an error symbol, ⊥, whenever the message obtained by
decrypting c does not reencrypt to c.

– Hashing: A rigid deterministic PKE is transformed into an IND-CCA KEM
that encrypts a random message and outputs a hash of this message as the
session key.

Hofheinz, Hövelmanns, and Kiltz handle the derandomization and reencryp-
tion with a single transformation called T. Suppose that P = (Keygen,Encr,Decr)
is a probabilistic PKE, that G : M → R and H : M × C → K are ran-
dom oracles, and that F : KF × C → K is a pseudorandom function fam-
ily. Then P1 = T[P, G] = (Keygen,Encr1,Decr) is a derandomized PKE with
Encr1(pk,msg) := Encr(pk,msg; G(msg)).

2 The term “rigid” is due to Bernstein and Persichetti. See [4, Section 6].
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Hofheinz, Hövelmanns, and Kiltz provide variants of the hashing step called
U �⊥ and U �⊥

msg. The U �⊥ transformation is defined in Fig. 2. The U �⊥
msg transforma-

tion is defined similarly but with the encapsulation key equal to H(msg) rather
than H(msg, c).

Fig. 2. The algorithms of the U �⊥[P1, H, F ] = (Keygen,Encaps,Decaps) KEM.

δ-correctness. Hofheinz, Hövelmanns, and Kiltz [17, Section 2.1] define δ-
correctness for a PKE as follows.

Definition 1 (δ-correctness for PKEs). A public-key encryption scheme P =
(Keygen,Encr,Decr) is δ-correct if

E
[

max
msg∈M

Pr[Decr(sk, c) 
= msg |c ← Encr(pk,msg)]
]

≤ δ, (2)

where the expectation is taken over (pk, sk) ← Keygen(). Equivalently, δ-
correctness means that for all (possibly unbounded) adversaries A, Pr[CORA

P ] ≤
δ, where the correctness game COR is defined in Fig. 3.

The definition is carefully crafted to obtain a security proof of the T
transform—the derandomization step during the Fujisaki–Okamoto transforma-
tion [9,11,12] (cf. Appendix 2.1). Moreover, Theorem 3.1 of [17] states (in part)
that if P is δ-correct, then T[P,G] is δ1-correct where δ1(qG) ≤ qG · δ and qG is
the number of queries that the adversary makes to G.

2.2 Lindner–Peikert Encryption Scheme

The Lindner–Peikert scheme [18] is a passively secure public-key encryption
scheme based on the learning with errors (LWE) problem [23]. It obtains smaller
keys and ciphertexts than earlier LWE encryption schemes [14,23] by using the
LWE hardness assumption twice in its security reduction.

Parameters. The system parameters are (R, q, k, χs, χe, χe′) where R is the base
ring, q is the integer modulus, k is the R-module rank, χs and χe are probability
distributions supported on Rk, and χe′ is a probability distribution supported on
R. The base ring must have the additive structure of Zm for some positive integer
m. TheZ-module rank, or dimension, of the system is n = km. We refer to χs as the
secret distribution, and to χe and χe′ as the error distributions. Another important
derived parameter is the error threshold t, cf. Sect. 4.
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Rings. Commonly used base rings are R = Z and R = Z[x]/(xm + 1) with m
a power of two. In the latter case, we view elements of R as vectors in R

m by
expressing them over the power basis {1, x, x2, · · · , xm−1}, i.e. we use the coeffi-
cient embedding. We identify the power basis with the standard basis of Rm. For
a ∈ R, we write ‖a‖1 =

∑
i

∣
∣〈xi, a〉∣∣, ‖a‖2 =

√〈a, a〉, and ‖a‖∞ = maxi

∣
∣〈xi, a〉∣∣.

For elements a = (a1, . . . , ak) and b = (b1, . . . , bk) of a rank k module over R we
write 〈a, b〉 = 〈a1, b1〉 + · · · + 〈ak, bk〉. We write r̄ for the adjoint of the “mul-
tiplication by r” map, i.e. 〈a, rb〉 = 〈r̄a, b〉. With R = Z we have r = r̄. With
R = Z[x]/(xm + 1) we have that r̄ is the image of r under x �→ −xm−1.

Message Encoding. The message space is a subset of R that is defined by maps
encode and decode. These maps must satisfy decode(encode(msg)) = msg for all
bit strings msg in the domain of encode. A typical choice for a plain LWE system
is encode : {0, 1} → Z and decode : Z → {0, 1} with encode(msg) = msg · q/2�
and decode(msg) = {0 if |msg mod q| ∈ [0, q/4); 1 otherwise}. We call this the
standard encoding. Observe that decode(encode(msg) + δ) = msg if |δ| < q/4,
so we say that the standard encoding has an error threshold of t = q/4. The
standard b-bit encoding is defined similarly: it divides [0, q/2) into 2b intervals
and has an error threshold of q/2b+1. Elements of {0, 1}b·msg can be encoded
into elements of R by extending the standard b-bit encoding component wise on
the power basis.

Algorithms. The key generation, encryption and decryption routines of the
passively secure encryption scheme are as follows.

– Keygen(): Sample a k×k matrix A with each coefficient chosen independently
from the uniform distribution on R/q. Sample k × 1 vectors s1 and s2 inde-
pendently from χs. Compute b = (s1 − As2) mod q. The public key is (A, b).
The secret key is (s1, s2).

– Encr (msg, (A, b)): Sample 1 × k vectors e1 and e2 independently from χe.
Sample e3 from χe′ . Compute the ciphertext (c1, c2) with

c1 = (e1A + e2) mod q, c2 = (e1b + e3 + encode(msg)) mod q.

– Decr ((c1, c2), (s1, s2)): To decrypt (c1, c2) using the secret key (s1, s2), let
v = (c1s2 + c2) mod q and output decode(v).

3 Correctness in an Adaptive Setting

The Hofheinz–Hövelmanns–Kiltz (HHK) definition of δ-correctness (Definition 1
in Sect. 2.1) involves an expectation over keys and ciphertexts. Care must be
taken when the key is fixed (as in an IND-CCA setting) or when the ciphertext
is determined by the message (as in a derandomized encryption scheme). For
derandomized schemes that use a random oracle G during encryption, HHK
define a notion of δ(qG)-correctness which is stated in terms of the number of
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queries qG that the adversary makes to G. They prove that a δ-correct scheme
that is derandomized using their T transformation has a correctness error of
δ(qG) ≤ qG · δ [17, Theorem 3.1].

The loss of correctness caused by derandomization is often ignored in prac-
tice. For example, the authors of the FrodoKEM NIST submission correctly
calculate the one-shot correctness (the probability of decryption failure for a
random key and random ciphertext) of their IND-CPA PKE [20, Section 2.2.7].
They note that the one-shot correctness is equal to the δ-correctness [20, Equa-
tion 2]. They then apply the T transformation and claim that the correctness of
the resulting IND-CCA PKE is equal to the one-shot correctness of the under-
lying IND-CPA PKE [20, Section 2.2.10]. This claim is not justified.

And yet, a full factor qG loss of correctness does not seem realistic. To address
this, we propose the following alternative to the δ(qG)-correctness. This definition
restricts the adversary’s time, t, and number of decryption queries, qd.

Definition 2 (δ(qd, t)-correctness for PKEs). Let P be a derandomized PKE
against a (classical or quantum) adversary A making at most qd (classical)
queries to its decryption oracle D and running in time t. We say, P is δ(qd, t)-
correct if

Pr[COR-adAPKE → 1] ≤ δ(qd, t),

where the correctness game COR-ad is defined in Fig. 3.

In contrast to the HHK correctness experiment (COR in Fig. 3), our cor-
rectness experiment (COR-ad in Fig. 3) does not provide the adversary with the
user’s secret key, and can be run as part of the IND-CCA security experiment3

In this case we call it COR-ad-CCA.
It is important to note that running COR-ad-CCA inside the IND-CCA exper-

iment does not change the power of the IND-CCA adversary; in particular, the
number of decryption queries q′

d in COR-ad-CCA is no more than the number of
decryption queries qd in IND-CCA. As such, one can obtain an upper bound on
the IND-CCA security of a scheme given the δ(qd, t)-correctness of a scheme and
an attack that violates IND-CCA security using decryption failures.

4 Correctness of the Lindner–Peikert Scheme

Suppose that (c1, c2) is an honest encryption of msg to a user with public key
(A, b) and secret key s = (s1, s2). Let (e1, e2, e3) be the noise that was used
to generate (c1, c2), and let e = (e1, e2). Decryption will be successful, i.e., the
decrypting party will recover msg exactly, as long as

‖e1s1 + e2s2 + e3‖∞ < t, (3)

3 A slight modification is necessary, as the IND-CCA decryption oracle gives special
treatment to the challenge ciphertext.
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where t is the error threshold. The exact one-shot probability of failure can be
calculated from Eq. 3 (our software does this). However, we will use a slightly
weaker condition to analyze the probability of failure in an adaptive setting.
First, an application of the triangle inequality gives

‖e1s1 + e2s2‖∞ < t − ‖e3‖∞. (4)

Then, by fixing some γ ≥ ‖e3‖∞ and using properties of the max-norm and
inner product that we discussed in Sect. 2.2, we have

‖e1s1 + e2s2‖∞ = max
0≤i<m

∣
∣〈s̄, xie〉∣∣ < t − γ. (5)

Fig. 3. COR and IND-CCA experiment for any PKE P;COR-ad-CCA experiment for a
(derandomized) PKE P.

A Geometric Interpretation. Let S be the unit sphere in R
d. We denote the

angular distance between points u and v in R
d by

θ(u, v) = arccos
( 〈u, v〉

‖u‖2 · ‖v‖2

)

, (6)

where arccos(x) ∈ [0, π]. The spherical cap of angle θ about u is

C(u, θ) = {v ∈ S : θ(u, v) ≤ θ}. (7)

Equation (5) tells us that each successful decryption reveals some geometric
information about s, as explained next. By restating the condition 〈s̄, e〉 < t − γ
(without the absolute value bars that appear in Eq. (5)) in terms of the angular
distance,

θ(s̄, e) = arccos
( 〈s̄, e〉

‖s‖2 · ‖e‖2

)

> arccos
(

t − γ

‖s‖2 · ‖e‖2

)

= θ∗, (8)

we see that 〈s̄, e〉 < t − γ implies that s̄/‖s‖2 does not lie in the cap of angle θ∗

about e/‖e‖2. The full condition, |〈s̄, e〉| < t − γ, also says that s̄/‖s‖2 does not
lie in the cap of angle θ∗ about −e/‖e‖2. An adversary can use this information
to improve his odds of triggering a decryption failure.
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A Heuristic Assumption. We measure the volume of subsets of S ⊂ R
d

using the (d − 1)-dimensional spherical probability measure, σ. This measure is
normalized such that σ(S) = 1. If u is a point on S and v is drawn uniformly
from S, then the probability that θ(u, v) ≤ θ is C(θ) = σ(C(u, θ)). It is important
to note that C(θ) does not depend on u. We assume the following heuristic in
our analysis.

Heuristic 1 (Spherical symmetry). For fixed s̄ and e ← χe × χe, the proba-
bility that θ(s̄, e) ≤ ϕ, for any 0 < ϕ < π/2, is C(ϕ). Equivalently, e/‖e‖2 “looks
like” a uniformly random point on S.

If Heuristic 1 holds true, the probability that e causes a decryption failure is
at least 2C(θ∗). It may even be as large as 2mC(θ∗), due to the maximization
over i in Eq. (5).

Remark 1. Previous analyses of failure boosting [5] have modeled the distribu-
tion of χe × χe with a spherically symmetric Gaussian distribution. In contrast,
our software uses the exact distribution of χe × χe. Our experiments in Sect. 6
indicate that the spherical symmetry assumption is reasonable for Frodo640.
Further experiments are needed for other schemes.

4.1 The Efficacy of a Query Set

Recall θ∗ of the previous section. We write θ∗
α(β; z) = arccos (z/αβ) with 0 ≤

θ∗
α(β; z) ≤ π

2 . We are primarily interested in the case α = ‖s‖2 and β = ‖e‖2. In
later sections we will take α to be an approximation to ‖s‖2. We write θ∗

α(e; z) in
place of the cumbersome notation θ∗

α(‖e‖2; z), and we suppress the dependence
on z when it is clear.

We refer to e = (e1, e2) as the “query”, rather than (c1, c2). We also ignore
both the absolute value bars and the maximization over i in Eq. (5). This way
queries are one-to-one with spherical caps, and each query can be thought of as
“exploring” some cap; by querying e the adversary learns whether or not s̄ lies
in C(θ∗

α(e)).
We define the efficacy of a set E of queries to be the fraction of the sphere

that the corresponding caps cover:

Effα(E) = σ

(
⋃

e∈E

C (e, θ∗
α(e))

)

. (9)

Under the spherical symmetry heuristic, the probability that an adversary causes
a decryption failure is proportional to the efficacy of his queries. An intelligent
adversary will maximize the efficacy of his queries while minimizing the number
of queries that he makes. Adversaries are constrained both by their computa-
tional power and by the need to collaborate with a random oracle.

In the notation of Definition 2, an instantiation of the Lindner–Peikert scheme
is δ(qd, t)-correct if

δ(qd, t) ≥ 2m Effα(E) (10)
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for all E of size |E| ≤ qd that an adversary can produce in time t. It is impor-
tant to note that some instantiations exchange more than one element of R; for
instance, FrodoKEM exchanges 64 elements of Z. For such instantiations the
right hand side of Eq. (10) should be 2�mEffα(E) where � is the number of coef-
ficients exchanged. Assuming spherical symmetry, the actual correctness error
can be anywhere between 2Effα(E) and 2�mEffα(E), as the failure events may
not be independent.

4.2 Approximating the Efficacy

The efficacy of a query set may be difficult to compute exactly. Using the principle
of inclusion-exclusion, we can write a k-th order approximation to Effα(E) as

Eff(k)
α (E) =

∑

F⊂E
0<|F |≤k

(−1)|F |+1 · σ

(
⋂

e∈F

C (e, θ∗
α(e))

)

. (11)

Maximizing the second-order approximation,

Eff(2)
α (E) =

∑

e∈E

C(θ∗
α(e)) −

∑

{e,e′}⊂E

σ (C(e, θ∗
α(e)) ∩ C(e′, θ∗

α(e′))) , (12)

already presents quite a challenge. We do not consider algorithms for approx-
imating the efficacy here, but we note that techniques from the near-neighbor
search literature, e.g. [2], may be useful for producing high-efficacy query sets.

4.3 The Efficacy of a Random Query Set

A first-order approximation to the efficacy of a random query set, normalized
by the query set size N , is

Qα(χ1, χ2) = lim
N→∞

1
N

E

[
Eff(1)

α (V )
]

(13)

where the expectation is taken over sets V of N elements drawn independently
from χ1 × χ2. Equation (13) can also be written as the expected size of a cap
with respect to the 2-norm distribution of v drawn from χ1 × χ2,

Qα(χ1, χ2) =
∑

j>0

Pr [‖v‖2 = j] · C (θ∗
α(j)) . (14)

5 Heuristic Analysis of NIST Candidates

In this section we calculate first-order approximations to the efficacy of random
query sets drawn from distributions that come from concrete instantiations of
the Lindner–Peikert encryption scheme. It is important to note that a first-order
approximation to the efficacy ignores the overlap between queries; it thereby
overestimates efficacy and underestimate correctness. Since we are ignoring the
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overlap, we expect our results to closely mirror those of D’Anvers, Guo, Johans-
son, Nilsson, Vercauteren, and Verbauwhede from [5]. The calculations that we
perform are quite different and serve as an independent check on their results.

We analyze Saber [6], the R5ND PKE 0d and R5N1 PKE 0d parameter sets
of Round5 [13], Frodo [20], and Kyber [24]; all of which are second round can-
didates in NIST’s post-quantum standardization effort.

5.1 Overview

We caution the reader that the following sketch of our analysis is only accurate
for Frodo. The treatment of the other schemes is described in Appendix A.

Let χ be a distribution on R. We write ‖χ‖2 and |〈1, χ〉|, respectively, for
the distribution of ‖r‖2 and |〈1, r〉| when r ← χ. The top u-th quantile of ‖χ‖2
is the largest β ∈ Z+ for which Prr←χ[‖r‖2 ≥ β] ≥ 1/u. We write χ(u) for the
distribution of r ← χ conditioned on the event that ‖r‖2 ≥ β. It is important to
note that χ(1) = χ.

We assume that the user has drawn a secret key s from χs(v)×χs(v), for some
v ≥ 1. A random user does so with probability 1/v2. Unless otherwise stated
we take v = 2, i.e., we assume that the user has a key of above-median length
in both components. We evaluate correctness using Qα(·, ·) which depends on
the γ of Eq. (5) through θ∗

α. We take α equal to the expected norm of s, and we
take γ equal to the top 100-th quantile4 of |〈1, χe′〉|. We account for the absolute
value bars in Eq. (5) but ignore the maximization over 0 ≤ i < m. By doing so,
we are estimating the per-coordinate failure rate: the probability of a failure in
the first coordinate of the coefficient embedding.

To first order, an adversary who samples (e1, e2) from χe(u) × χe(u) and
who discards all ciphertexts with |〈1, e3〉| < γ can expect a query set of size
1/(2Qα(χe(u), χe(u))) to include a query that causes a decryption failure (cf.
Eq. (10)). A classical adversary expects to make approximately 100u2 queries to
the random oracle per sample. A quantum adversary, using Grover’s algorithm,
expects to make approximately 10u superposition queries to the random oracle
per sample.

5.2 Comparison with One-Shot Failure Rate

Before presenting the results of our analysis, we recall that the one-shot fail-
ure probability is the probability that Eq. (3) is violated for (s1, s2) ← χs × χs,
(e1, e2) ← χe×χe, and e3 ← χe′ . Theorem 3.1 of [17] states that a de-randomized
scheme with a one-shot failure rate of δ is δ1 ≤ qG · δ correct against an adver-
sary who generates qG ciphertexts. Table 1 lists the one-shot failure probabilities
for Kyber512, R5ND1PKE0d, Frodo640, R5N11PKE0d, and LightSaber5. Each
4 The constant 100 is arbitrary. Our software can produce an optimized value if needed.
5 Note that our analysis should roughly coincide with the one-shot failure probability

when u = v = 1. We expect some discrepancy due to our treatment of e3 and the
fact that we fix an estimate, α, for the norm of the secret. In contrast, the one-shot
failure probabilities are averaged over all keys.
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parameter set is advertised as meeting NIST’s level 1 security category, so it is
reasonable to assume that generating, say, qG = 2128 ciphertexts has lower cost
than breaking the scheme. The corresponding values of δ1 are all larger than
2−60. We find this concerning, as Section 3.3 (resp. Section 4.4 against quantum
adversaries) of [17] states potentially large integer multiple of δ1 in the upper
bound on the adversary’s success probability in the IND-CCA game.

5.3 Comparison of NIST Candidates

The results of our analyses of Kyber512, R5ND1PKE0d, Frodo640,
R5N11PKE0d, and LightSaber are shown in Fig. 4. There are subtleties to each
analysis, but one can largely imagine that the lines on the left and right of Fig. 4
plot u �→ 1/(2Qα(χe(u), χe(u))) and u �→ 10u/(2Qα(χe(u), χe(u))) respectively.
We give more details in Appendix A.

An adversary who is not constrained in the number of queries that he can
submit will minimize cost. As can be seen from Fig. 4 and Table 1, after min-
imizing the cost of the attack, the number of queries in an effective query set
ranges from 2106.7 for LightSaber to 2152.1 for Kyber512. The attacks differ in
cost per query. Of course, an honest user will not answer so many queries.

Table 1. Adversary A sends random queries to random users. Adversaries B and C
target a fixed user that has a random, above-median norm, key. Adversary B sends
queries of above-median norm to the user. Adversary C sends queries with norm in the
top u-quantile for the value of u that minimizes his total quantum cost, i.e. he chooses
u based on the local minima in Fig. 4 (Plot b, d and f). Adversary D is restricted to
264 queries and 2128 quantum operations. Rows A, B, and C give the expected number
of queries that the adversary submits before causing a decryption failure. Row A is the
reciprocal of the one-shot failure probability for a single coordinate. Rows B and C are
values of 1/(2 Qα(·, ·)). Row D gives the value of δ(264, 2128) under the assumptions of
Sect. 5.3. The impact of m and � are suppressed throughout.

kyber512 frodo640 r5nd1pke r5n11pke lightsaber

A 2186.9 2144.8 2155.1 2126.9 2128.4

B 2187.1 2145.8 2152.5 2138.5 2123.3

C 2152.1 2124.7 2142.8 2133.9 2106.7

D 2−63.5 2−34.1 2−52.6 2−49.4 2−20.7

kyber768 frodo976 r5nd3pke r5n13pke saber

A 2173.2 2205.6 2131.0 2143.9 2144.2

B 2169.0 2209.0 2145.3 2144.0 2139.1

C 2141.0 2185.3 2137.3 2139.9 2123.7

D 2−58 2−87.6 2−51.8 2−57.8 2−38.3

kyber1024 frodo1344 r5nd5pke r5n15pke firesaber

A 2183.2 2258.7 2144.5 2127.3 2173.4

B 2178.1 2263.1 2141.6 2143.8 2170.3

C 2151.9 2238.1 2134.8 2140.2 2154.0

D 2−69.9 2−136.4 2−52.8 2−60.2 2−66.6



218 N. Bindel and J. M. Schanck

0 16 32 48 6480
96

112
128
144
160
176
192
208

log2(e quantile)

lo
g 2
(q
ue

ry
se
t
si
ze
)

Kyber512 R5ND1PKE0d Frodo640 R5N11PKE0d LightSaber

0 16 32 48 6480
96

112
128
144
160
176
192
208

log2(e quantile)

lo
g 2
(q
ua

nt
um

co
st

of
at
ta
ck
)(a) (b)

0 16 32 48 6496
112
128
144
160
176
192
208
224

log2(e quantile)

lo
g 2
(r
ea
ct
io
n
qu

er
ie
s)

Kyber768 R5ND3PKE0d Frodo976 R5N13PKE0d Saber

0 16 32 48 6496
112
128
144
160
176
192
208
224

log2(e quantile)

lo
g 2
(q
ua

nt
um

co
st
)

(c) (d)

0 16 32 48 64112
128
144
160
176
192
208
224
240
256
272

log2(e quantile)

lo
g 2
(r
ea
ct
io
n
qu

er
ie
s)

Kyber1024 R5ND5PKE0d Frodo1344 R5N15PKE0d FireSaber

0 16 32 48 64112
128
144
160
176
192
208
224
240
256
272

log2(e quantile)

lo
g 2
(q
ua

nt
um

co
st
)

(e) (f)

Fig. 4. The predicted size of a query set of unit efficacy (a, c, e) and the quantum cost
of producing such a query set (b, d, f). “Quantum cost” is based on Grover’s algorithm
and has units of “superposition queries to a random oracle”. Plots (a) and (b) are
NIST level 1 schemes. Plots (c) and (d) are NIST level 3 schemes. Plots (e) and (f) are
NIST level 5 schemes.
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NIST suggests that “[f]or the purpose of estimating security strengths, it
may be assumed that the attacker has access to the decryptions of no more than
264 chosen ciphertexts” [21]. An adversary with this constraint will spend more
time per query to improve the efficacy of a smaller query set.

An attacker who can perform a total of 2128 quantum operations will per-
form roughly 264 operations per query and submit 264 queries. Let us briefly
assume that our first-order approximation to the efficacy is accurate. Our
experiment in the following section provides some indication that the overlap
between random queries may be negligible, and supports this assumption. The
attaker may then be thought of as randomly sampling from a query set of size
1/(2Qα(χe(264), χe(264))), which is the right-most point in Fig. 4. Let us also
briefly assume that the elements of the adversary’s query set are equally likely to
cause a decryption failure. Under these assumptions, the δ(264, 2128)-correctness
of LightSaber is 264/284.7 = 2−20.7. This should be compared with the δ1 cor-
rectness of 2−0.4 that we alluded to in Sect. 5.2. The δ(264, 2128)-correctness of
the other schemes, under the same assumptions, is given in Table 1.

6 Experiments

Both the spherical symmetry heuristic and the accuracy of the first-order approx-
imation to the efficacy need to be examined further. As a first step, we have
performed experiments with a variant of Frodo640. Since the decryption failure
rate of Frodo640 is too small for us to observe experimentally, we have used
q = 213 rather than q = 215. We have kept the rest of the parameters the same.
This variant has a one-shot failure rate of 2−11.7.

In the notation of Sect. 5.1, we take α to be the expected value of ‖s‖2
when s is drawn from χs(v) × χs(v). The “Predicted” row in Table 2 gives
1/(2Qα(χ1(u), χ1(u))). The “Observed” row gives 1/f where f is the fraction
of failures that we observed.

Frodo640 replaces the k × 1 vectors s1, s2, e1 and e2 by k × 8 matrices. It
replaces the scalar e3 by an 8×8 matrix. The session key is split across 64 approx-
imately agreed upon scalars. In one run of the experiment, we generate 512 keys
and 64 key encapsulations per key. For each encapsulation, we draw 16 samples
from χs(v), 16 samples from χe(u), and 64 samples from χe′(100). We count the
total number of coordinates with errors, not the number of encapsulations that
fail. In other words f is the fraction of errors observed in 512 · 64 · 64 = 221

coordinates.
If 1/(2Qα(χ1(u), χ1(u))) is a good approximation to the size of an effective

query set, and each element of an effective query set is equally likely to cause
a failure, then we expect 1/f to tend to 1/(2Qα(χ1(u), χ1(u))) as we average
over many keys and encapsulations. As can be seen in Table 2, we observed a
fraction of failures such that f/(2Qα(χ1(u), χ1(u))) ≈ 2−0.4 in each case. This
provides some indication that our heuristics are reasonable for Frodo640. Further
experiments are needed for the other schemes.
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Table 2. Results of the experiment of Sect. 6. We did not run the experiment to
completion for the columns with ‖χe‖ = 220. The values reported in those columns are
averages over ≈ 218, rather than 221, coordinates.

‖χs‖ quantile 20 210 220

‖χe‖ quantile 20 210 220 20 210 220 20 210 220

Predicted 211.4 29.8 29.1 29.8 28.4 27.8 29.1 27.8 27.3

Observed 211.1 29.4 28.7 29.4 28.0 27.4 28.8 27.4 26.9

7 Conclusion and Future Work

We have presented a decryption failure attack on the Lindner–Peikert scheme
that exploits dependencies between failure events. In contrast with previous
attacks, our attack leverages information from adaptive queries. The adversary
improves his odds of causing a decryption failure by choosing his next query as a
function of his past queries—even those queries that were answered successfully.

Our results do not necessarily call for a re-parametrization of the schemes
that we have analyzed. However, like previous analyses of failure boosting, they
show that the one-shot failure probability is not a reliable indicator of the diffi-
culty of causing decryption failures. We hope that our work stimulates discussion
on what an acceptable δ(qd, t)-correctness is for various security levels.

Future Work. Both the spherical symmetry heuristic and the accuracy of the
first-order approximation need further confirmation, either experimentally or
theoretically. Beyond this, it is an interesting question to extend our approach
to schemes that use error-correction such as ThreeBears [16], NewHope [22],
LAC [19], and other parameter sets of Round5 [13]. In a more speculative direc-
tion, we wonder whether the information revealed by successful decryptions
might be useful in other attacks. Perhaps the knowledge that the secret key
does not lie in a particular direction can help an adversary prune an enumera-
tion tree.

The general message that successful queries can leak information about the
secret key may be applicable to other constructions as well. Drucker–Gueron–
Kostic [10] have already pointed out the risk of ignoring the factor qG loss of
tightness in de-randomizing the code-based scheme BIKE [1].
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A Details of Our Analysis for Each Scheme

A.1 Secret and Error Distributions

Definition 3 (Modulus switching function). The modulus switching func-
tion is defined by [[x]]rq = x r

q � mod r with x r
q � computed over R. It is also

extended component-wise to vectors and matrices.

Definition 4 (Compression artifact distribution). The compression arti-
fact distribution with parameters r and q is the distribution of y − [[z]]qr when y
is drawn uniformly from Z/q and z = [[y]]rq.

Definition 5 (Centered binomial distribution). The centered binomial dis-
tribution of parameter w assigns probability 1

22w

(
2w

x+w

)
to x ∈ Z.

Definition 6 (Fixed weight distribution). The fixed weight trinary distri-
bution of parameter w in dimension d is the uniform distribution on all 2w

(
d
w

)

vectors in Z
d that have exactly �w/2� coefficients equal to +1, exactly w/2�

coefficients equal to −1, and the remaining d − w coefficients equal to 0.

A.2 Compression and Learning with Rounding

Some variants of the Lindner–Peikert scheme have additional rounding parame-
ters r0, r1, and r2. They compress the public key to (A, [[b]]r0

q ) and the ciphertext
to ([[c1]]

r1
q , [[c2]]

r2
q ). Note that if ri = q then no compression occurs in the cor-

responding component. If b′ = [[b]]r0
q then there is some v1 ∈ Z/q such that

[[b′]]qr0
= (v1 − As2) mod q. Likewise, if c′

1 = [[c1]]
r1
q then there is some v2 ∈ Z/q

such that [[c′
1]]

q
r1

= (e1A + v2) mod q, and if c′
2 = [[c2]]

r1
q then there is some

v3 ∈ Z/q such that [[c′
2]]

q
r2

= (e1A + v3 + encode(msg)) mod q. Variants that use
well chosen rounding parameters can omit the s1, e2, and e3 terms in key gener-
ation and encryption; the compression artifacts v1, v2, and v3 take their place.
Such schemes are said to be based on the Learning With Rounding problem
(LWR). The difference between LWE and LWR is immaterial for our purposes;
we simply incorporate the compression artifact noise into the distributions of s1,
e2, and e3.

A.3 Frodo

Frodo is an instantiation of the Lindner–Peikert scheme with R = Z. The
FrodoKEM NIST submission [20] defines three parameter sets frodo640 (n =
670, q = 215, t = 212), frodo976 (n = 976, q = 216, t = 212), and frodo1344
(n = 1344, q = 216, t = 211). All three use the standard b-bit encoding, and
therefore have an error threshold of t = q/2b+1. Each parameter set takes
χs = χe = χ×n where χ is an approximation to a discrete Gaussian distri-
bution on Z. We refer to [20, Table 2] for the exact definition of χ. Our analysis
is as described in Sect. 5.1.
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A.4 Kyber (Second Round)

Kyber is an instantiation of the Lindner–Peikert scheme over R = Z[x]/(x256+1).
The second round NIST submission [24] includes three parameter sets kyber512
(m = 256, k = 2, n = 512, q = 3329, r0 = q, r1 = 210, r2 = 23), kyber768
(m = 256, k = 3, n = 768, q = 3329, r0 = q, r1 = 210, r2 = 24), and kyber1024
(m = 256, k = 4, n = 1024, q = 3329, r0 = q, r1 = 211, r2 = 25). All three use
the standard 1-bit encoding. All three parameter sets sample s1, s2, e1, and e2
from η×n

2 , where η2 is the centered binomial distribution of parameter 2.
We write ρr for the compression artifact distribution with parameters r and

q. We model e1 as being drawn from η×n
2 ; we model e2 as being drawn from

(η2 ∗ ρr1)
×n; and we model e3 as being drawn from (η2 ∗ ρr2)

×m. Due to the
difference in size between the coefficients of e1 and e2, it seems unlikely that the
spherical symmetry heuristic is reasonable. We adapt our analysis as follows.

Let χ1 × χ2 be the distribution from which the adversary draws e = (e1, e2).
We will assume that χ1 and χ2 (viewed as distributions on the coefficient embed-
ding of Rk) are invariant under permutations of the standard basis. Let z1 and
z2 be the expected values of ‖e1‖2 and ‖e2‖2 respectively. Let w =

√
z2/z1,

e∗ = (e1 · w, e2/w), s∗ = (s1/w, s2 · w), and observe that 〈s̄∗, e∗〉 = 〈s̄, e〉. We
apply the analysis of Sect. 5.1, but we take α to be the expected value of ‖s∗‖2
and we compute Qα with respect to the scaled distributions χ1 · w and χ2/w.
The expected values of ‖e1 · w‖2 and ‖e2/w‖2 are both

√
z1z2. By assumption

on χ1 and χ2, this implies that all 2n coefficients of e∗ have the same expected
size. While this does not imply that the distributions are spherically symmetric,
it does make the assumption of spherical symmetry more plausible.

A.5 Saber

Saber is a learning with rounding variant of the Lindner–Peikert scheme that
uses the base ring R = Z[x]/(x256+1). The submission proposes three parameter
sets lightsaber (m = 256, k = 2, q = 213, r0 = 210, r1 = 210, r2 = 23, w = 10),
saber (m = 256, k = 3, q = 213, r0 = 210, r1 = 210, r2 = 24, w = 8), and
firesaber (m = 256, k = 4, q = 213, r0 = 210, r1 = 210, r2 = 26). All
three parameter sets sample s2 and e1 from the centered binomial distribution
of parameter μ, η×n

μ , for the μ listed in [6, Table 1]. Recall that s1 = e2 = e3 = 0
for learning with rounding variants.

We write ρr for the compression artifact distribution with parameters q and r.
The correctness condition can be rewritten as an inner product between (v̄1, s̄2)
and (e1, v2), where v1 is drawn from ρr0 and v2 is drawn from ρr1 . The distri-
butions of v1 and s2 are invariant under taking adjoints. Note that r0 = r1 for
all of the proposed parameter sets. The coefficients of (e1, v2) are not identically
distributed, so the spherical symmetry assumption is suspect. However, the inner
product is unchanged if we write s̄ = (v̄1, v̄2) and e = (e1, s2). Moreover, unlike
the original vectors, the coefficients of s and e are identically distributed. There
is still a slight complication: the adversary has control over one component of
s and one component of e. If the adversary chooses particularly large values of
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e1 and v2, then the spherical symmetry assumption will again be violated. We
compensate for this by applying the same re-scaling trick from our analysis of
Kyber.

A.6 Round5 (R5N1∗PKE 0d)

Round5 is a collection of learning with rounding instantiations of the Lindner–
Peikert scheme. The R5N1 ∗ PKE 0d parameter sets of Round5 take R = Z.
The second round NIST submission includes three parameter sets [13, Table 13]
r5n11pke0d (n = 636, q = 212, b = 2, r0 = 29, r1 = 29, r3 = 26, w = 114),
r5n13pke0d (n = 876, q = 215, b = 3, r0 = 211, r1 = 211, r3 = 27, w = 446), and
r5n15pke0d (n = 1217, q = 215, b = 4, r0 = 212, r1 = 212, r3 = 29, w = 462). All
three use fixed weight w vectors for e1 and s2. Since there are no large values of
e1, the adversary will invest all of his effort in finding large values of v2, As with
Saber, we swap components between vectors and apply the re-scaling trick from
our analysis of Kyber. The only difference is that we compute Qα with respect
the honest distribution of e1 and the u2-th quantile of ‖v2‖.

A.7 Round5 (R5ND∗0d)

The R5ND ∗ 0d parameter sets of Round5 take R = Z[x]/(1+x+ · · ·+xm). The
specification includes three parameter sets [13, Table 11] r5nd1pke0d (m = 586,
q = 213, b = 1, r0 = 29, r1 = 29, r3 = 24, w = 182), r5nd3pke0d (m = 852,
q = 212, b = 1, r0 = 29, r1 = 29, r3 = 25, w = 212), and r5nd5pke0d (m = 1170,
q = 213, b = 1, r0 = 29, r1 = 29, r3 = 25, w = 222). We apply essentially the
same analysis as for R5N1 ∗ 0d. However, the choice of ring presents a slight
obstacle as the adjoint does not preserve spherical symmetry.

Multiplication by a fixed element of R, say a = a0 + a1x + a2x
2 + · · · +

am−1x
m−1, is a linear operation on the coefficient embedding. Specifically, it

corresponds to left multiplication by the m × m matrix [a]i,j = ai−j − a−(j+1)

where the index arithmetic is modulo m + 1 and am = 0. It follows that the
adjoint of multiplication by a is multiplication by ā where ā = a0 + (am −
am−1)x + (am−1 − am−2)x2 + · · · + (a1 − a0)xm−1. Note that the x0 and x1

coefficients are expected to be smaller than the rest. Since only two out of m
coefficients are affected, we simply ignore the issue. We re-write the correctness
condition as an inner product between (v1, v̄2) and (ē1, s2). Since e1 and v2 have
i.i.d. coefficients, we can easily compute the distributions of ē1 and v̄2.
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Abstract. While basic lattice-based primitives like encryption and dig-
ital signature schemes are already fairly short, more advanced privacy-
preserving protocols (e.g. group signatures) that are believed to be post-
quantum secure have outputs of at least several hundred kilobytes. In
this paper, we propose a framework for building privacy protocols with
significantly smaller parameter sizes whose secrecy is based on post-
quantum assumptions, but soundness additionally assumes that some
classical assumption, e.g., the discrete logarithm problem (DLP), is hard
to break within a short amount of time.

The main ingredients of our constructions are statistical zero-
knowledge proofs of knowledge for certain relations, whose soundness
rely on the hardness of solving the discrete logarithm problem for a fresh
DLP instance per proof. This notion has recently been described by the
term quantum annoyance. Using such proofs, while also enforcing that
they be completed in a fixed amount of time, we then show how to
construct privacy-preserving primitives such as (dynamic) group signa-
tures and DAA schemes, where soundness is based on the hardness of the
“timed” discrete logarithm problem and SIS. The outputs of our schemes
are significantly shorter (≈30X) than purely lattice-based schemes.

1 Introduction

Lattice cryptography is a particularly attractive post-quantum alternative to
classical cryptographic schemes based on factoring and discrete log. Its main
appeal is that one can build basic primitives, such as encryption and digi-
tal signature schemes, with relatively short outputs (1–3 KB) with the added
bonus of sometimes being faster than the classical analogues. When one looks at
more advanced privacy-preserving primitives such as group signatures, verifiable
encryption, etc., the situation is considerably less attractive. For example, while
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group signatures based on elliptic curve pairings are only 160 Bytes [34], the
smallest lattice-based group signatures, in which keys don’t grow linearly with
the number of group members, are approximately 600 KB [16].

Despite a considerable amount of research, it’s looking very unlikely that
even basic privacy-preserving primitives will be reduced to sizes of less than a
few hundred kilobytes. This is due to the general approach used in construct-
ing privacy-preserving schemes, such as group signatures, which lacks efficient
lattice-based building blocks. The authority gives out a secret key to a particular
user by signing the user’s identity. To authenticate himself, the user then pro-
duces a ZKPoK of the signature on his identity.1 Because creating an efficient
zero-knowledge proof generally requires algebraic structure in the underlying
statement, one generally uses standard-model (rather than one secure in the
random oracle model) digital signature schemes for the authority’s signature
rather than rely on schemes that use a hash function modeled as a random
oracle. And it is this requirement of a standard-model signature scheme that
is the main culprit in the large output sizes of privacy-preserving schemes con-
structed in the above manner.

In this work we propose a framework for a middle-ground solution which
addresses some of the main security problems posed by the eventual coming of
quantum computers. One of the biggest concerns today is that communication
in the pre-quantum world can be harvested and then eventually decrypted when
quantum computers are eventually built. The main result of this paper is a
framework for constructing compact privacy schemes where secrecy is either
information-theoretic or based on post-quantum assumptions, while soundness
is based on classical ones. Because only the soundness is classical, our schemes
are not susceptible to the aforementioned harvesting attacks, and are therefore
safe to use in the pre-quantum era.

If full-fledged quantum computers arrive and there are still no acceptably
compact fully quantum-safe privacy schemes, then one can still continue using
our schemes in certain situations. Firstly, they are quantum annoying (c.f. [22]),
in the sense that breaking soundness requires solving a fresh discrete logarithm
instance for each new forgery. This may be good enough in instances where the
forgery payoff is less than the cost to use a quantum computer for the attack. In
addition, we show that our schemes can be made to satisfy a stronger security
notion by relying on “timed” versions of classical assumptions in which the
prover must produce a response in a limited amount of time. This implies that a
successful cheating prover can be used to solve the underlying problem in a fixed
time interval, which may remain a difficult problem well into the post-quantum
era (see the discussions in e.g. [23,25,29]).

1.1 Our Techniques

Since the main culprit for inefficient lattice-based privacy schemes are standard-
model signatures, we propose avoiding them altogether, and instead construct a
1 If the user wants to sign a message, then he transforms the interactive authentication

protocol into a non-interactive one via the Fiat-Shamir framework and uses the
message to create the challenge.
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proof of knowledge of (possibly short) vectors x, y, s, when given public matri-
ces/vectors A,B,C, z over some polynomial ring, satisfying

[A B] ·
[

x

F̃ (y)

]
= z ∧ H(F (y)) = Cs. (1)

We then show that such proofs are enough for constructing privacy-preserving
primitives such as group signatures and DAA schemes. In some constructions,
F = F̃ will be (the same) one-way functions, while in others F will be a one-way
function while F̃ will just be the identity. The function H is a cryptographic
hash function.

The soundness of our proof is based on the assumed intractability of the dis-
crete logarithm problem. More precisely, the prover shows that he either knows
the (short) solution x, y, s satisfying the above relation (which means he knows a
solution to a lattice problem), or he is able to find ei ∈ Z satisfying

∏
gei

i = 1 for
random generators gi of some group.2 While the discrete logarithm problem is
not quantum secure, the only place in which it is used in our constructions is for
guaranteeing the soundness of the zero-knowledge proofs. The zero-knowledge
property itself is statistical and hence the privacy of the secrets is not affected
by the (quantum) power of the adversary.

By letting the generators gi be freshly chosen by the verifier (or some ran-
domness beacon) at the time the proof is started, the ZKP already becomes
“quantum annoying” as for each forgery the (quantum) adversary must solve a
new DLP instance. Moreover, if the running-time of the proof is restricted, i.e.
the verifier will not accept the proof if it takes more than Δ time, then one can
base the soundness of the proof on the “timed” discrete logarithm assumption,
in which the relation

∏
gei

i = 1 must be solved in a fixed amount of time. If this
amount of time is short, then this problem may remain hard even for quantum
computers.

Proof Approach. Our zero-knowledge proof of (1) builds on the works in [12,
13,17]. One of the contributions of [12,13] was showing an efficient proof of the
pre-image y satisfying H(y) = z, where H is an arbitrary circuit, based on the
hardness of discrete log. These works also showed how to prove linear relations
(in the exponent) of Pedersen commitments and applications to range proofs.
The work of [17] utilized these techniques to give faster proofs of knowledge of
a short vector x satisfying Ax = z for a public matrix A and vector z over the
polynomial ring Rq = Zq[X]/(Xd + 1).

When F = F̃ , we can rewrite (1) as

[A B] ·
[
x
r

]
= z ∧ F (y) = r ∧ H(r) = t ∧ Cs = t, (2)

and then proving (1) is equivalent to proving knowledge of x, y, s, r, t, with some
of these needing to have coefficients in a certain range, satisfying the above.
2 We will use multiplicative notation for discrete log.
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Similarly, if F̃ is the identity, then one can rewrite (1) as

[A B] ·
[
x
y

]
= z ∧ F (y) = r ∧ H(r) = t ∧ Cs = t, (3)

The first part of the conjunction in both (2) and (3) can be proven using
[17], while the last one is similar except the t is also secret. The other two parts
can be proven using the techniques from [12,13] applied to general circuits.

While the proofs in [13] are very compact, their main drawback is that the
proof and verification time grows (more than) linearly in the number of gates
in the circuit and proving the knowledge of a pre-image of a SHA-256 function
(mapping 512 to 256 bits) takes approximately 20 s. In contrast, our schemes will
require hash functions that map onto the space of a polynomial ring, which is
around ten thousand bits. The proofs in [13] are based on the discrete logarithm
assumption, which naturally lend themselves to proving statements over fields of
large prime order. Therefore, we would like to use a hash-function built around
arithmetic over such fields. MiMC [3] is a family of hash functions designed
with precisely this in mind and we analyze the number of multiplication gates
required for their evaluation.

Applications. We then show that proving (1) is enough for constructing schemes
like group signatures and DAA schemes. While we only provide a few exam-
ples of what privacy-preserving schemes can be built from (1), there should be
numerous other related schemes that can be constructed using this approach.
Intuitively, constructing privacy-preserving primitives can be done by obtaining
a signature on an identity from an issuer and proving knowledge of this signa-
ture in conjunction with supplementary information connected to the identity
(c.f. [14]). One can then view the right part of (1) as a GPV-type signature
scheme where the signature of the message (identity) F (y) is s, and then the left
side of the conjunction is a relation involving the message/identity y and some
supplementary data x. The intuitive reason for why one may want to use F (y)
instead of y as the message is that one may wish to sometimes expose F (y) but
never expose her secret y. Using the image of the secret F (y) as her identity,
and then proving relations about the pre-image, allows the user to ascertain her
knowledge of the secret without ever having to reveal it.

Our construction of a group signature scheme results in signatures of approx-
imately 20 KB based on the hardness of standard lattice problems (i.e. NTRU
and LWE) and the timed DL assumption. We also give a construction of a DAA
scheme in the full version of this paper, where the proofs are tweaked for the
setting where attestation are generated jointly by a resource-constrained TPM
and powerful host.

1.2 Related Work

In this paper, we demonstrate the feasibility of our framework by giving a con-
crete construction of a group signature scheme. Since the foundational work of
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[5], there have been many constructions of such schemes with security based on
various problems. The schemes based on the hardness of the discrete logarithm
problem are compact, but not quantum-safe, while those based on the hardness
of lattice problems are quantum-safe, but have large signatures and/or public
keys. We give a comparison to our scheme in Table 1.

Table 1. Output sizes (in KB) of discrete log, lattice-based, and our group signatures.
For pairing based schemes using CP5-663 pairing curve (128 bit security level, 256 bit
order curve). The public key size (and opening time) in [21] grows linearly with the
number of users. The size given in the table is for 1000 users.

Scheme Size (Security) Properties

gpk sign. Dynamic Non-frameability Quantum-safe

DS18 [18] 1.29 1.96 ✓ ✓ ✘

BBS04 [11] 1.05 0.43 ✘ ✓ ✘

dPLS [16] 120 580 ✘ ✘ ✓

ESSLL [21] 9000 48 ✓ ✘ ✓

This work 5.5 20 ✓ ✓ (✓)

1.3 Open Problems

The main result of our work is a framework for constructing privacy-preserving
primitives based on lattice assumptions and the timed discrete logarithm
problem. The advantage of this approach is that our protocols enjoy signifi-
cantly shorter outputs than purely lattice-based (or any purely quantum-safe)
schemes. The main drawback of our concrete instantiation of this framework,
which uses Bulletproofs along with the MiMC hash function, is that the proofs
require millions of group operations, which would take a substantial amount of
time for an honest prover.

The most interesting open question is thus to obtain faster solutions which
may involve constructing different hash functions along with compatible discrete-
log proof systems. There is currently related work, sponsored by the Ethereum
Foundation, to create a STARK-friendly hash function [1,7], with several propos-
als already offering significant improvements over MiMC (e.g. [2,4,26]). Research
into such hash functions is still in its infancy and there is reason to believe that
we could eventually have hash functions which are very amenable to Bullet-proof
style zero-knowledge proofs.

2 Preliminaries

In this section we introduce the building blocks needed for our privacy protocols.
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Lattices. For x, c ∈ R
d and σ ∈ R

+, we define the Gaussian function ρc,σ(x) =

exp
(

−‖x−c‖2

2σ2

)
, and for a lattice L, we define the distribution DL,c,σ(x) to be 0

whenever x /∈ L and DL,c,σ(x) = ρc,σ(x)∑

v∈L
ρc,σ(v)

. when x ∈ L. When we omit the L

from the above equation, it is assumed that the lattice is Zd (where d is evident
from context). Omitting the c implies that c = 0.

We will denote by Rq the polynomial ring Zq[X]/(Xd + 1) and define the
norm of elements in Rq as the norm of its coefficients. As an additive group, the
polynomial ring R = Z[X]/(Xd + 1) has an obvious mapping to Z

d and so we
can write v ← Dσ to signify sampling a random centered element from R.

For polynomials a, t ∈ R, we can define a 2d-dimensional shifted lattice3

L⊥
a,t = {(s1, s2) ∈ R2 : as1 + s2 = t mod q}

and we define the distribution D⊥
a,t,σ(x) to be 0 whenever x /∈ L⊥

a,t and

D⊥
a,t,σ(x) =

ρσ(x)∑
v∈L⊥

a,t

ρσ(v)
(4)

In general, given a random a, t ∈ Rq, it is hard (as hard as the Ring-SIS problem
[32,33]) to sample according to D⊥

a,t,σ for small σ. One can do such sampling,
however, when given a special trapdoor basis for the lattice L⊥

a,0. The smaller
the vectors in the trapdoor, the smaller the σ can be in the distribution. A
way to create a particularly small trapdoor can be done over NTRU lattices,
in particular when a = f/g for two polynomials f, g with small coefficients
[19,27,35]. In particular, one can create an a, together with a trapdoor matrix
Ta that allows one to sample (using a sampling algorithm from [20,24]) from
D⊥

a,t,σ, for any t ∈ Rq, for σ ≈ 1.5
√

q.

NTRU Signature. This trapdoor sampling algorithm almost directly leads to a
rather compact digital signature scheme, in the random oracle model, based on
the hardness of finding short vectors in NTRU lattices. The public key is a = f/g,
while the signing key is Ta. If we model the hash function HRq

as a random oracle,
then to sign a message m, the signer samples s1, s2 ← D⊥

a,HRq (m),σ and outputs
s1, s2 (or just s1 since s2 can be computed from s1 and m) as the signature. The
signature is valid if ‖s1‖, ‖s2‖ ≤ 1.1σ

√
d = 1.65

√
qd. In this paper, we will use

MiMC as the cryptographic hash function.

NTRU Encryption. The key generation procedure of the NTRU encryption
scheme [28] consists of creating two polynomials with small (−1/0/1) coeffi-
cients f, g ∈ Rq and outputting the public key as h = f/g and secret key g.
Encryption of a message m with 0/1 coefficients involves generating an r, e ∈ Rq

with small coefficients and outputting the ciphertext v = 2(hr + e) + m. To
decrypt v, one would compute m = (vg mod q)/g mod 2.
3 A shifted lattice is a lattice shifted by some vector v. Note that a shifted lattice does

not have the property that the sum of any two vectors is in the shifted lattice.
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Lattice-Based Zero-Knowledge Proofs. Our protocols will use a combination of
various lattice and discrete-log based zero-knowledge proofs from the literature.

In general, for a public A ∈ Rn×m
q and t ∈ Rn

q , the prover knows a secret s ∈
Rm

q with small coefficients such that As = t. Ideally, he would like to give a proof
of this s, but such proofs are rather costly in their communication complexity. In
some scenarios, however, the high cost may be acceptable. For example, joining a
group (or registering a TPM) only needs to be done once and there are generally
no strict restrictions on the time of communication complexity. An example of
a proof in which a vector s is taken from a set with ‖s‖∞ ≤ α and the prover
can produce a proof

π = ZKP{s : As = t, ‖s‖∞ ≤ α} (5)

is given in [30]. The proof is a variation of Stern’s proof of knowledge of a near
codeword [37] and each iteration of the scheme has soundness error 2/3. A more
efficient proof that has soundness error 1/2d was introduced by Benhamouda
et al. [8] where the prover uses his knowledge of s to prove the knowledge of a

vector s̄ satisfying As̄ = 2t where ‖s̄‖ > ‖s‖. In particular, given an s =

⎡
⎣ s1

. . .
sm

⎤
⎦

such that ‖si‖ ≤ α, it produces a zero-knowledge proof

π = ZKP{s̄ : As̄ = 2t, ‖s̄‖ ≤ 33αd1.5m
√

λ} (6)

In AppendixA we explicitly provide the prover and verifier algorithms for
this relation since they were only given for an interactive, asymptotic version
in [8].

Hash Functions with Efficient Proofs. For our privacy protocols we need a hash
function that allows for efficient zero-knowledge proofs that a hash was correctly
computed and that the prover knows a pre-image of the hash value. We will
use zero-knowledge proofs based on the DL assumption, which naturally lend
themselves to proving statements over fields of large prime order. Thus, we would
like to use a hash function built around arithmetic over such fields.

MiMC [3] is a family of hash functions designed with precisely this in mind.
MiMC hash functions are based on the sponge construction [10]. The construc-
tion works by cubing the input over the field, adding randomly chosen constant
values, and repeating the process many times. We give a more detailed overview
of the MiMC hash function and our parameter choices in AppendixB.

3 Timed Zero-Knowledge Proofs

In this section we describe our idea of quantum-annoying and timed zero-
knowledge proofs (ZKP), describe how they can be made non-interactive via
a beacon service, and realized using a combination of lattice/bulletproofs.
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More precisely, we consider ZKPs for generalized statements that prove an
exact relation as in (5), but follow the proof system recently introduced in [17].
The proof system uses a CRS made up of random group elements g1, . . . , gn, and
assuming the DL problem is hard, it allows to prove knowledge of a witness for
various NP statements. For example, the protocol of [17] actually proves is that
the prover knows a SIS solution s or a non-trivial discrete logarithm relation
between g1, . . . , gn. The advantage of this technique is that the proofs can be
very short, but the disadvantage is that the running time of the prover and
verifier is long (e.g. for typical parameters in [17] it was 10–20 s). Formally, the
proof in [17] gives a proof of a disjunction

π = ZKP{s, {ri} : DLR ({gi}, {ri}) = 1 ∨ As = t, ‖s‖∞ ≤ α}. (7)

where gi are public elements of some group G and A, t are as before.
Generalizing the proof system of [17], we obtain zero-knowledge proofs of

the following form in which the prover proves that they know a witness w for
relation Rq or for relation Rc: ZKP{(w) : (xc, w) ∈ Rc ∨ (xq, w) ∈ Rq}. In our
proof systems, a witness for Rc will always be a non-trivial DL relation, and Rq

will be the collection of statements and witnesses we are actually interested in.

Quantum Annoying and Timed Proofs. In this plain form, the soundness of
the above proof relies on the weaker of both relations, i.e., the DL assumption
even though it also proves a lattice relation. We can transform the proof into
a quantum annoying version [22] by simply letting the verifier freshly choose gi

when the proof starts. As gi are not longer long-term parameters, this forces the
adversary to solve a fresh DL instance for every proof it wants to forge.

By requiring the prover to produce a proof within a short amount of time, we
can further strengthen this approach such that the problem likely remains hard
even for quantum computers (or is at least prohibitively expensive to solve). That
is, the verifier only accepts a proof when the prover correctly responds within
some fixed short time Δ. The soundness of our ZKP then even holds against
a quantum adversary under the additional assumption that the DL problem is
hard to solve within a short amount of time. We will refer to such an assumption
as Δ-hardness. In AppendixC we provide a more formal treatment of such timed
ZKPs and discuss their relation to quantum annoyance.

Non-interactive Timed Proofs. Finally, in our privacy protocols we want to use
signature proofs of knowledge, i.e., non-interactive ZKPs that follow the Fiat-
Shamir paradigm and “sign” a message m by including m in the challenge hash
of the NIZK. To maintain the short-term validity aspect in this non-interactive
form, we will rely on a beacon and time-stamp service T .

This trusted entity T has a signing key pair (ssk , spk) and serves a dou-
ble purpose: First, it regularly publishes signed tuples (t, b, σ) with σ ←$

Sign(ssk , (t, b)) for a time t and random beacon b. We will use b to determinis-
tically generate fresh DL instances (g1, . . . , gn) ← G(b,m) where G is simply a
hash function that outputs group elements of some group C.
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The prover first obtains such a timed beacon (t, b, σ), derives fresh DL
instances and computes π = NIZK{w, {ri} : DLR ({gi}, {ri}) = 1 ∨ (xq, w) ∈
Rq}(m). It then sends h ← H(π) to T which will return t′, σ′ ←$ Sign(ssk , (t′, h)),
i.e., T time-stamps the hash h for time t′. The non-interactive timed proof out-
put by the prover consists of (π, t, t′, b, σ, σ′).

For the sake of brevity we use the following shorthand to refer to non-
interactive timed proofs of such a form and with running time Δ:

ZKPΔ
DLR{wq : (xq, wq) ∈ Rq}.

Finally, we stress that while soundness is quantum-annoying or timed, we
require the zero-knowledge property of the proof to hold statistically.

Building Timed ZKPs. To build our timed ZKPs needed for our group sig-
nature and DAA scheme, we use Bulletproofs [13] (instantiated with MiMC)
and the proof system from [17] in a mostly black-box manner. The algo-
rithms in our privacy protocols rely on complex relations made up of com-
binations of the DL, SIS and pre-image relations of the form Func(f) :=
{u ∈ {0, 1}m,v ∈ {0, 1}n : f(u) = v}. We describe how to realize such proofs
from the mentioned proofs systems, and the tweaks that should be made, in
AppendixD.

4 Group Signature Scheme

A dynamic group signature allows users to sign messages on behalf of a group
without revealing their individual identity. Group membership is managed by
an issuer I that lets users U dynamically join the group. The anonymity of a
user can be lifted through a dedicated opening authority O that can reveal the
identity of the signer behind a particular signature in a verifiable manner. More
precisely, a group signature ΠGS consists of the following algorithms:

GKg(1λ) → (gpk , isk , osk): On input the security parameter 1λ it outputs a
group public key gpk , and the secret keys isk , osk for the issuer and opener.

UKg(1λ) → (upk , usk): Outputs the private and public key of a user.
〈Join(gpk , upk , usk), Issue(isk , reg)〉 → (gsk , reg ′): A user can join the group
by running an interactive join protocol with the issuer. The user’s output is
his signing key gsk , and the issuer outputs an updated registration table reg ′.

Sign(gpk , gsk , μ) → Σ: On input a group public key gpk , a user’s secret signing
key gsk and a message μ outputs a signature Σ.

Verify(gpk , μ,Σ) → 1/0: Verifies a signature Σ against the group public key gpk .
Open(gpk , osk , reg , Σ, μ) → (upk , τ)/⊥: This algorithms uses the opener’s secret

key osk to recover the identity of the signer of Σ for message μ. It outputs a
claimed signer upk and proof τ , or ⊥ to indicate failure.

Judge(gpk , upk , Σ, μ, τ) → 1/0: This deterministic judge algorithm verifies the
proof τ , i.e., whether the user with public key upk is the signer of Σ.
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Table 2. Proposed parameters for our group signature

Ring Rq Zq[X]/(Xd + 1)

Ring modulus q 12289

Ring dimension d 1024

Standard deviation σ = 1.5
√

q

usk space N {0, 1}2λ

Encryption randomness R± {−1, 0, 1}d ⊂ Rq

upk space R+ {0, 1}d ⊂ Rq

Credential (gsk) space S s ∈ Zq[X]/(Xd + 1), s.t. ‖s‖ ≤ 1.5σ
√

d

Signature size |Σ| 19.86KB

The user secret keys will be uniformly random 2λ-bit strings from the set N .
We define a one-way function F : N → R+ which maps a user’s secret key ρ to
his public key upk ∈ R+. We will assume that inverting this function (for random
input ρ ∈ N ) is λ-hard. A part of the signature will be an encryption of the user
identity (and nonce), and we will use the Naor-Yung approach of encrypting the
same message under two different public NTRU keys (or where one of the public
keys is indistinguishable from random), and provide a zero-knowledge proof of
this fact.

Key Generation: The issuer’s key consists of a public a ∈ Rq together with a
secret trapdoor Ta that will allow him to sample s1, s2 ∼ D⊥

a,t,σ with σ = 1.5
√

q.
The reference for this algorithm as well as the construction of the trapdoor Ta

is discussed in Sect. 2. The opener’s public key will be h = f/g where f, g ← R±
and his secret opening key will be (f, g).

A user’s key is as described above, i.e. it sets usk = ρ chosen uniformly at
random from N , and will define upk = FR+(ρ) as his public key where F is a
λ-hard one-way function.

Algorithm 1. GKg(1λ)
Output: gpk := (a, h, h′), isk := Ta, osk := (f, g).
1: (a, Ta) ← NTRUTrapdoor.
2: f, g, f ′, g′ ← R±. If g, g′ is not invertible mod q or mod 2, re-sample it.
3: h := f/g, h′ := f ′/g′.

Join: When a user with keys usk = ρ, upk = FR+(ρ) wants to join the group,
it send upk to the issuer. This upk is the value to which all of his actions can
be traced to by the opener. The issuer then samples s1, s2 ← Da,t,σ, for t =
HRq

(FR+(ρ)) and sends s1, s2 to the group member. The member will use ρ and
the polynomials s1, s2 as his signing credentials. Observe that s1, s2 is the GPV
signature of the message FR+(ρ) when the GPV signature is instantiated with
the concrete hash function HRq

.
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Algorithm 2. 〈Join(gpk , upk , usk), Issue(isk , reg)〉
Input: usk = ρ, upk = FR+(ρ), gpk = (a, h, h′), isk = Ta, reg
Output: User: gsk = (s1, s2, ρ), Issuer: updated registr. table reg ′.
1: User: Send upk to the Issuer
2: Issuer: Check that upk /∈ reg . Sample s1, s2 ← D⊥

a,t,σ for t := HRq (upk). Send s1, s2
to the User, output reg ′ = reg ∪ {upk}.

3: User: If as1 + s2 = HRq (FR+(ρ)), output gsk = (s1, s2 ∈ S2, ρ).

Algorithm 3. Sign(gpk , gsk , μ):
Input: gsk = (s1, s2, ρ) s.t. as1 + s2 = HRq (ρ), gpk = (a, h, h′), μ
Output: Signature Σ := (u, u′, π)
1: e1, e2, e

′
1, e

′
2 ← R±

2: u := 2(he1 + e2) + FR+(ρ), u′ := 2(he′
1 + e′

2) + FR+(ρ)

3: π := ZKPΔ
DLR{(s1, s2, e1, e2, e

′
1, e

′
2, ρ) : as1 + s2 = HRq (FR+(ρ)) ∧ 2(he1 + e2) +

FR+(ρ) = u ∧ 2(h′e′
1 +e′

2)+FR+(ρ) = u′ ∧ s1, s2 ∈ S ∧ e1, e2, e
′
1, e

′
2 ∈ R± ∧ ρ ∈

N}(μ)
4: return Σ := (u, u′, π)

Sign: If a member with credentials (ρ, s1, s2), as above, wishes to sign μ, he
creates two NTRU encryptions of the message FR+(ρ) with respect to the public
keys h and h′ and gives a zero-knowledge proof that he knows the randomness
and the message underlying the ciphertexts, as well as the knowledge of ρ, s1, s2
satisfying as1 + s2 = HRq

(FR+(ρ)) and the fact that FR+(ρ) is the message in
the ciphertext. The μ is signed via its insertion in the random oracle during the
Fiat-Shamir transform.

The reason that we need two NTRU “encryptions” is to achieve CCA security
via the Naor-Yung transform. While the Naor-Yung approach is usually not the
most practical way of building CCA-secure schemes, it actually incurs little
overhead in our case because providing proofs of ciphertext correctness would
be necessary even if we were only aiming for CPA security. For CCA security,
we just need to prove two equations instead of one.

Verify: For verification, the Verifier simply checks the validity of the proof.

Open: The opener checks the proof in the signature and performs NTRU decryp-
tion of the ciphertext u using his secret key g. If the decrypted public key is con-
tained in the registration table, he gives a zero-knowledge proof that the opening
is correct. In particular, he proves that he knows the secret keys g, f that form
the public key h (i.e. f/g = h) and also that the multiplication gu = 2v + gm
where v is a polynomial with coefficients less than q/4 − d/2. If this is satisfied,
then decryption is indeed valid because gu mod q = 2v +gm in R, which follows
from the smallness of v and the fact that all the coefficients of gm are at most
d. Therefore decryption, which requires reducing the above modulo 2 guarantees
that gu mod q mod 2 = gm. Hence the correct decryption of u is m.
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Algorithm 4. Verify(gpk , Σ, μ):
Input: Σ = (u, u′, π), gpk = (a, h, h′), μ
Output: Output 1 iff the verification passes
1: return 1 iff π is valid wrt u, u′, gpk and μ.

Algorithm 5. Open(gpk , osk , reg , Σ, μ):
Input: Σ = (u, u′, π), message μ, gpk = (a, h, h′), osk = (f, g), registration table reg .
Output: Identity upk = m, and proof of valid decryption τ , or ⊥.
1: m := (gu mod q)/g mod 2.
2: return ⊥ if Verify(gpk , Σ, μ) �= 1 or m �∈ reg
3: τ := ZKPΔ

DLR{(f, g, v) : hg − f = 0 ∧ ug = 2v + gm ∧ f, g ∈ R± ∧ v ∈
R s.t. ‖v‖∞ < q/4 − d/2}

4: return (m, τ)

Judge: The Judge checks that the opener’s proofs are valid. If it is, he concludes
that the opener revealed the correct identity.

4.1 Security of the Group Signature Scheme

We now show that our dynamic group signature scheme is secure according to
the established notions by Bellare et al. [6], i.e., it satisfies anonymity, traceability
and non-frameability. The detailed proof of the following theorem is given in the
full version.

Theorem 1. Our group signature is fully anonymous, traceable and non-
frameable when the underlying NTRU encryption scheme is CPA secure, the
underlying GPV signature scheme is unforgeable, F is one-way, the proof sys-
tem ZKPΔ

DLR is special sound and zero-knowledge, and DLR is Δ-hard.

Hardness. We now briefly analyze the concrete security of the underlying lat-
tice schemes in our group signature scheme for the parameters given in Table 2.
This means we assess the complexity of some known lattice attacks on our instan-
tiations of the NTRU encryption scheme and the GPV signature scheme.

For NTRU we focus on the primal key recovery attack, see [9] for more details
and an overview of other attacks, in particular meet-in-the-middle and hybrid
attacks. Given h ∈ Rq, the problem is to find two short polynomials f, g ∈ Rq

such that gh = f in Rq. By lifting the equation to R, this gives a lattice of
dimension 2d and volume qd. Now one can hope that certain coefficients of g
are zero, say k many, 0 ≤ k < d, and search for a solution in the corresponding
sublattice of dimension 2d−k. This gives a speed-up despite the reduced success
probability. Furthermore, we can restrict the search to the sublattice correspond-
ing to only m ≤ d of the equations over Zd, leaving us with a lattice of dimension
d − k + m and volume qm. The general strategy then is to apply the BKZ basis
reduction algorithm to the basis of an optimally chosen sublattice with a large
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Algorithm 6. Judge(gpk , upk , Σ, μ, τ):
Input: Σ = (u, u′, π), μ, gpk = (a, h, h′), upk = m, and the opener’s proof τ
Output: Output 1 iff the user with upk is the signer of Σ
1: return 1 iff Verify(gpk , Σ, μ) = 1 and τ is valid wrt gpk , upk , u.

enough block size β so that our target solution will be found. When using John
Schanck’s estimation scripts [36], we find that for m = 889 we would require a
block size β = 712. Costing only one call to an SVP algorithm in dimensions 712
in the so-called Core-SVP methodology gives a time complexity of about 2208

when using the best known classical sieving algorithms and a complexity of 2188

when also considering quantum speed-ups.
For the GPV signature scheme we focus on the forgery attack. Here the

adversary needs to find a short solution s1, s2 ∈ Rq such that ‖si‖ ≤ 1.5σ
√

d
and as1 + s2 = t for a random t. This gives a lattice of dimension 2d + 1
and volume qd. But unlike in the case of NTRU we do not search for a par-
ticular very short solution. Any solution fulfilling the bound is fine and it is
clearly sufficient to search in a sublattice of dimension n ≤ 2d + 1. The BKZ
algorithm with blocksize β finds a solution of length δnqd/n where heuristically
δ = (β(πβ)1/β/(2πe))1/(2(β−1)). We find that we need δ < 1.00226 and hence
a block size of β ≥ 875. Finding a shortest vector in dimension 875 costs 2255

classically and 2232 quantumly.

4.2 Costs and Sizes

We want to analyze the sizes of the signatures Σ in our group signature scheme
and the cost of computing and verifying them in terms of numbers of elliptic
curve scalar multiplications. By far the largest element of a signature Σ is the
proof π. This proof essentially consists of two parts. In the first part the linear
equations for u, u′ and H(upk) are proven. The second part is concerned with
the nonlinear equations ‖si‖ ≤ 1.5σ

√
d, upk = F (ρ) and t = H(upk). For

the first part we use the proof system from [17] but we further split the proof
into two parts involving secret polynomials with coefficients in {−1, 0, 1} and
{−(q − 1)/2, . . . , (q − 1)/2}, respectively. Note that the l2-norm bound on s1, s2
is proven separately and hence it is sufficient for the linear proof of as1 + s2 =
H(upk) to only include the bound ‖si‖∞ ≤ (q − 1)/2. From the formulas in [17]
we find that the two linear proofs have combined size 75 group elements plus
6 elements in Zp. The non-linear proof has size 48 group elements and 5 field
elements. Since we use a 521-bit curve, for example NIST P-521, the three proofs
have a combined size of about 16.36 KB. The two NTRU encryptions consist of
two uniform elements in Rq with size 1.75 KB each. So in total a signature Σ
has size 19.86 KB. See AppendixD for more explicit details on how the proofs
are conducted.

For the number of exponentiations we find from the formulas in [17] and [13]
that the prover has to compute 2.047.271 scalar multiplications for the linear
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proofs and 11.620.232 scalar multiplications for the non-linear proof. So in total
the prover needs to compute 13.7 million scalar multiplications. The verifier has
to compute at total number of 4 million scalar multiplications.

Acknowledgements. This work was supported by the SNSF ERC starting transfer
grant FELICITY and the EU Horizon 2020 project FutureTPM (No. 779391).

A Lattice-Based ZKP for Relation 6

Below we provide the prover and verifier algorithms for relation 6 adapted
from [8].

If Rq = Zq[X]/(Xd +1), then we define the set M = {0,±xi 0 ≤ i < d}. The
size of M is 2d + 1. We also define a parameter λ which controls the soundness
error of the proof. The soundness error will be |M|−λ ≈ d−λ−1. For example, if
d = 2048, then to get the soundness error to be less than 2−128, we need to set
λ = 11.

Algorithm 7. Prover

Input: Secret s =

⎡
⎣

s1
. . .
sm

⎤
⎦ ∈ Rm

q s.t. ‖si‖ ≤ α and public A ∈ Rn×m
q , t = As ∈ Rn

q .

Output: π = (z ∈ Rλ
q , (c1, . . . , cλ) ∈ Mλ)

1: σ := 11α
√

mλ; for i = 1 to λ, yi ← Dσ, wi := Ayi

2: (c1, . . . , cλ) := HMλ(A, t,w1, . . . ,wλ); v :=

⎡
⎣

c1s
· · ·
cλs

⎤
⎦ ∈ Rmλ

q

3: z =

⎡
⎣
z1

· · ·
zλ

⎤
⎦ :=

⎡
⎣
y1

· · ·
yλ

⎤
⎦ + v ∈ Rmλ

q

4: with probability 1 − Dσ(z )
3Dv ,σ(z )

, goto 1

5: return z, (c1, . . . , cλ)

Algorithm 8. Verifier
Input: A ∈ Rn×m

q , t = As ∈ Rn
q , π = (z ∈ Rλ

q , (c1, . . . , cλ) ∈ Mλ)

Output: Output 1 iff π = ZKP{s̄ : As̄ = 2t, ‖s̄‖ ≤ 3σd1.5√m = 33αd1.5m
√

λ}

write

⎡
⎣
w1

. . .
wλ

⎤
⎦ :=

⎡
⎣
Az1 − c1t

. . .
Azλ − cλt

⎤
⎦

Accept iff (c1, . . . , cλ) = HMλ(A, t,w1, . . . ,wλ) and ‖zi‖ ≤ 1.5σ
√

dm

The proof in Algorithm7 uses Gaussian-based rejection sampling and can
be shown to be zero-knowledge, and requiring 3 iterations on average, using
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[31, Theorem 4.6]. If |M|λ > 2128, then a prover succeeding with probability
greater than ≈2−128 can be rewound to produce two solutions Azi = wi + cit
and Az′

i = wi + c′
it for distinct ci ∈ M. These can be combined to form the

solution

A(zi − z′
i)/(ci − c′

i) = t.

By [8, Lemma 3.1], we know that for ci �= c′
i ∈ M, the quotient 2/(ci − c′

i) is
a polynomial with coefficients in {−1, 0, 1} and therefore has 2-norm at most√

d. The parameters for the size of s̄ in (6) then follow from the parameters in
Algorithms 7 and 8.

B Hash Functions with Efficient Proofs

In our group signature and DAA scheme, we need to use a hash function that
allows for efficient zero-knowledge proofs that a hash was correctly computed
and that the prover knows a pre-image of the hash value. We will use zero-
knowledge proofs based on the discrete logarithm assumption, which naturally
lend themselves to proving statements over fields of large prime order. Therefore,
we would like to use a hash-function built around arithmetic over such fields.

The MiMC Hash Function Family. MiMC [3] is a family of hash functions
designed with precisely this in mind. MiMC hash functions are based on the
sponge construction [10]. The construction works by cubing the input over the
field, adding randomly chosen constant values, and repeating the process many
times.

For fixed input size, output size, and security level, the MiMC family includes
a range of hash functions with a trade-off between the size of the prime field
used and the number of multiplication gates in a circuit which verifies correct
computing of the hash function. Later, in our choices of zero-knowledge proof-
system, we will see that for every multiplication in the circuit, the prover must
perform some exponentiations over a cryptographic group. Therefore, in the
two cases below, we have carefully selected the parameters of the MiMC hash
functions in order to minimise the computational burden on the prover. To
specify an MiMC hash function, one must give the desired security level and the
‘rate’ of the round function, which determines the prime field to be used.

As part of our schemes, we will use a pre-image resistant function (later
referred to as FR+) to protect the user’s secret key. We instantiate this function
with an MiMC hash function with an input length of 256 bits and an output
length of 1,024 bits. The circuit used to prove knowledge of a hash pre-image
has 60,192 multiplication gates. We will also use a hash-function, modelled as
a random oracle, which maps the output of the previous function onto a ring
element from Zq[X]/(Xd + 1). In this case, we use an MiMC hash function with
an input length of 1,024 bits and an output length of 14,336 bits. For the new,
larger input and output sizes, the circuit used to prove knowledge of a hash
pre-image has 831,577 multiplication gates.
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In both cases, we use MiMC hash functions with capacity 512, and a 521-
bit prime. This choice of parameters comes from our requirement that the hash
function has 256 bits of classical security and therefore 128 bits of quantum
security against collision-finding attacks. For 256 bits of classical security, the
internal workings of the hash function force us to use a prime of at least 512
bits. Hence, we use a 521-bit prime so that we can use a standardised NIST
elliptic curve, for which we expect highly optimised implementations of curve
operations compared with unstandardised curves.

C Quantum Annoying and Timed ZKPs

The core observation behind our timed ZKPs is that while certain hard problems,
such as the discrete logarithm problem, can be solved in polynomial-time by
(sufficiently sized) quantum computers, it is likely that solving them won’t be
instantaneous or at least prohibitively expensive. Thus, forcing the adversary to
solve a fresh DLP instance for each proof might render the attack infeasible.

This property has recently been described as quantum annoyance [22] and
formalized through a two stage adversary. Roughly, in an offline pre-computation
phase the adversary is granted full quantum power, but gets restricted to be
classical when turning to an online phase.

We now apply this concept to zero-knowledge proofs, more precisely, we
consider ZKPs for generalized statements following the form of Eq. (7) of the
proof system recently introduced in [17]. The proof system uses a CRS made up
of random group elements g1, . . . , gn, and assuming the DL problem is hard, it
allows to prove knowledge of a witness for various NP statements. For example,
the protocol of [17] actually proves is that the prover knows a SIS solution s or a
non-trivial discrete logarithm relation between g1, . . . , gn. Generalizing this idea
we consider proofs of the form: ZKP{(w) : (xq, w) ∈ Rq ∨ (xc, w) ∈ Rc}, where
R denotes a NP relation and w is a witness for a statement x if (x,w) ∈ R.

In this plain form, the soundness of the proof relies on the weaker of both
relations, i.e., the DL assumption in the case of [17] even though it also proves
a lattice relation. We can transform the proof into a quantum annoying (and
later timed) version by simply letting the verifier freshly choose xc (i.e., gi in
our concrete scheme) when the proof starts.

Let x ←$ Gen(1λ,L) be a generator that produces a random instance x ∈ L
for security parameter 1λ and language L = {x | ∃w : (x,w) ∈ R}. We can
then formulate quantum-annoying soundness for an interactive proof protocol
(P,V) for statements (xq, w) ∈ Rq ∨ (xc, w) ∈ Rc as follows: For any efficient
adversary (A1,A2)—where A1 is quantum, and A2 is classical—running the
following game

1. sample random xq ←$ Gen(1λ,Lq)
2. st ←$ A1(xq)
3. sample random xc ←$ Gen(1λ,Lc)
4. where Pr [〈A2(st, xq, xc),V(xq, xc)〉 = 1] > ε
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there exist an efficient extractor E with rewindable black-box access to A2 that
outputs w s.t. (xq, w) ∈ Rq ∨ (xc, w) ∈ Rc with probability ≥ ε/poly(1λ).

Generally, the online adversary A2 can be seen as a resource-restricted adver-
sary that cannot break the classical problem. While quantum-annoyance models
the resource restriction by simply limiting A2 to be classical, we can also be
more generous and give A2 quantum power, yet restrict its running time.

That is, the verifier only accepts a proof when the prover correctly responds
within some fixed short time Δ. The soundness of our ZKP then even holds
against a full quantum adversary under the additional assumption that the prob-
lem Rc is hard to solve within a short amount of time. We will refer to such an
assumption as Δ-hardness.

Note that there are subtle constraints on how to choose the time Δ for a
concrete ZKP instantiation based on a Δ′-hard problem. For satisfying com-
pleteness, Δ must be chosen large enough, such that honest provers can still
complete the proof (for Lq) in time. For soundness, Δ depends on the loss in
the reduction, i.e., the running time of the extractor that will be used to break
the Δ′-hard problem needs to be taken into account. We leave a more formal
treatment of these relations as interesting future work.

D Zero-Knowledge Proofs for Group Signature
Algorithms

In this section, we explain how to give the zero-knowledge proofs for the group
signature algorithms of Sect. 4 in terms of the proof systems of [17] for SIS rela-
tions and [13] for more complicated relations with less special structure available.

Both proof systems rely on the discrete logarithm assumption.

Definition 1 (Discrete Log Relation). For all PPT adversaries A and for
all n ≥ 2 there exists a negligible function μ(λ) such that

P

[
C = G(1λ), g1, . . . , gn ← C;
a1, . . . , an ∈ Z ← A(G, g1, . . . , gn) : ∃ai �= 0 ∧

n∏
i=1

gai
i = 1

]
≤ μ(λ)

For n ≥ 2, this is equivalent to the discrete logarithm assumption.

Sign: A zero-knowledge proof of the following statement is computed:

ZKPΔ
DLR

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s1, s2,
e1, e2, e

′
1, e

′
2, ρ

:

as1 + s2 = HRq
(FR+(ρ))

∧ 2(he1 + e2) + FR+(ρ) = u
∧ 2(h′e′

1 + e′
2) + FR+(ρ) = u′

∧ s1, s2 ∈ S ∧ ρ ∈ N
∧ e1, e2, e

′
1, e

′
2 ∈ R±

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(μ)
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The conditions in this relation can be rewritten as follows, with appropriate
size bounds on different elements. Set k = FR±(ρ) and l = HRq

(k).

[
2h 2 0 0 1
0 0 2h′ 2 1

]
·

⎡
⎢⎢⎢⎢⎣

e1
e2
e′
1

e′
2

k

⎤
⎥⎥⎥⎥⎦ =

[
u
u′

]
∧

[
a 1 −1

]
·

⎡
⎣s1

s2
l

⎤
⎦ = 0

∧ k = FR±(ρ) ∧ l = HRq
(k)

We prove the necessary conditions as follows. We use the proof system of
[17] to give a zero knowledge proof for the first linear equation, which has an
infinity norm bound of 1 on e1, e2, e

′
1, e

′
2 and k. The size of this proof is roughly

76 group elements and 6 field elements for the parameters that we have chosen.
We also use the same proof system from [17] to give a zero-knowledge proof for
the second linear equation, with an infinity norm bound of q on s1, s2 and l.

The remaining conditions that we have to check are the conditions k =
FR±(ρ), l = HRq

(k), and the fact that the 2-norms of s1 and s2 are bounded
by 1.5σ

√
d. We use the proof system of [13] to achieve this. This proof system

works with general arithmetic circuits. The number of multiplication gates in
the circuit required to prove these conditions is the sum of the sizes of the
circuits for FR± and HRq

, plus roughly 2096 extra multiplications which are
used for checking that the norms of s1 and s2 are bounded correctly. The extra
multiplication gates compute the squares of the 2 norms of each of s1 and s2,
using 2048 multiplications, check that roughly 48 values are bits by checking that
when multiplying them with their complements, the result is zero, and then show
that the squares of the 2 norms are represented by the binary values, so that
the norms must be in the correct range. Since we have already used the proof
system [17] to check that the infinity norms of s1 and s2 are bounded, and we
work over a prime field with a much larger modulus than the base ring of s1
and s2, we need not worry about overflow when computing the squares of the
2 norms. We give zero-knowledge proofs of arithmetic circuit satisfiability and
prove all of these things using one single proof from [13]. This proof contributes
48 group elements and 5 finite field elements.

In order to use these proof systems, and be sure that certain secret values are
consistent across the different proofs, we need to make some adjustments. The
first tweak is to split some of the long commitments made in the protocols into
several parts, to allow values to be shared between the two proof systems. This
is described in the full version. Separate commitments to k and s1, s2, l allow
these values to be shared between the first two proofs for linear relations and
the third proof for non-linear relations.

The second tweak is to modify the protocol of [17] so that it works even if we
are proving that the entries of the secret vector lie in an interval whose width
is not a power of 2. This is easily achieved using techniques from [15]. The idea
is that a binary expansion of the form

∑
i xi2i uniquely expresses every integer

in a given interval whose width is a power of 2, but if we change the powers
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of two in the expression to other values, we can obtain (possibly non-unique)
binary expansions for other intervals which suffice for the purpose of giving range
proofs. This change has no impact on proof size.

Open: The following zero-knowledge proof is needed:

ZKPΔ
DLR

{
(f, g, v) :

hg − f = 0 ∧ ug = 2v + gm
∧ f, g ∈ R± ∧ v ∈ R s.t. ‖v‖∞ < q/4 − d/2

}

The conditions in this relation can be rewritten as follows, with appropriate size
bounds on different elements.

[
h 1 0
u 0 2

]
·

⎡
⎣ g

−f
−v

⎤
⎦ =

[
0
m

]

This relation is proved by using the proof system from [17] twice. The first
proof proves the linear relation from the first row of the matrix, which does
not include v. Therefore, the proof system can be used with norm bound 1.
The second proof proves the linear relation from the second row of the matrix,
which does include v, and therefore works with norm bound q/4 − d2. As with
the signing algorithm, we use the adjustments described to make sure that the
preimage values are consistent across the two proofs.
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Abstract. In this paper we give efficient statistical zero-knowledge
proofs (SNARKs) for Module/Ring LWE and Module/Ring SIS rela-
tions, providing the remaining ingredient for building efficient crypto-
graphic protocols from lattice-based hardness assumptions. We achieve
our results by exploiting the linear-algebraic nature of the statements
supported by the Aurora proof system (Ben-Sasson et al.), which allows
us to easily and efficiently encode the linear-algebraic statements that
arise in lattice schemes and to side-step the issue of “relaxed extrac-
tors”, meaning extractors that only recover a witness for a larger rela-
tion than the one for which completeness is guaranteed. We apply our
approach to the example use case of partially dynamic group signatures
and obtain a lattice-based group signature that protects users against
corrupted issuers, and that produces signatures smaller than the state
of the art, with signature sizes of less than 300 KB for the comparably
secure version of the scheme. To obtain our argument size estimates for
proof of knowledge of RLWE secret, we implemented the NIZK using
libiop.

Keywords: Zero-knowledge proofs · Group signatures · Lattice-based
cryptography · Post-quantum cryptography

1 Introduction

We present non-interactive zero knowledge (NIZK) proofs for Module/Ring-LWE
and Module/Ring-SIS relations, that have size of the order of 70 kB for 128 bits
of security. These proofs rely on Aurora, a SNARK designed by Ben-Sasson et al.
[5]. From it, our proofs inherit statistical zero-knowledge and soundness, post-
quantum security, exact extractability (that is, the extraction guarantee is for
the same relation as the protocol completeness), and transparent setup (no need
for a trusted authority to generate the system parameters). Such proofs support
c© Springer Nature Switzerland AG 2020
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algebraic circuits, and therefore can be combined with lattice based building
blocks. We show that it is possible to combine this protocol with (the ring
version of) Boyen’s signature [9], to prove knowledge of a signature on a publicly
known message, or knowledge of a valid pair message-signature, and an RLWE-
based encryption scheme [21], to prove knowledge of a valid decryption of a
given ciphertext. To showcase their efficiency we construct a (partially) dynamic
group signature [4], and we compare it with the most efficient NIZK-based group
signature to date [12] in Table 1. Differently from ours, the scheme by del Pino
et al. does not protect honest users from framing attempts by corrupted issuers
(the non-frameability property). Therefore, we compare it with two variants of
our scheme: GS, that does not guarantee non-frameability, and GS full, that also
has non-frameability. To compare the security levels of the schemes we consider
the Hermite Root Factors (denoted by δHRF ); a smaller delta implies higher
security guarantees. In both cases, the NIZK proof is of size less than 250 KB,
improving upon the state of the art. The group signature is proven secure in the
ROM under RSIS and RLWE. Security in the QROM follows also from [11]; to
achieve 128 bits of QROM security requires a three-fold increase in proof size.

Table 1. Comparison for around 90 bits of security.

Partially dynamic Anonymous Traceable Non-frameable Users δHRF Signature (MB)

[12] � � � 280 1.002 0.581

GS � � � 226 1.0007 0.3

GSfull � � � � 226 1.0007 1.44

We demonstrate the effectiveness of our NIZKs with an implementation. We
are able to produce a Ring-LWE proof in around 40 s on a laptop (cf. Sect. 3.7). In
comparison, the scheme of [12] produces proofs in under a second. Nonetheless,
we consider our NIZK and group signature a benchmark for evaluating efficiency
claims for (existing and future) NIZK proofs for lattice relations. In particular,
it shows what can be achieved using ‘generic’ tools.

1.1 Our Techniques

In their simplest form, lattice problems can be generically described as finding
a vector s ∈ Z

n
q with small coefficients (i.e., |si| ≤ β for all i) such that Ms =

u mod q for given matrix M ∈ Z
m×n
q and vector u ∈ Z

m
q , q being a prime.

The SNARK Aurora allows to prove knowledge of a witness for a given
instance of the Rank-1 Constraint Satisfaction (R1CS), i.e., of a vector z ∈ F

n+1

such that, given a vector v ∈ F
k and three matrices A,B,C ∈ F

m×(n+1), k < n,
the vector z extends v to satisfy Az ◦ Bz = Cz, where ◦ denotes the entry-
wise product. The entries of v are the unknowns of the problem, while the
equations they satisfy are called constraints (and are derived from the general
equation Az ◦ Bz = Cz). Hence, we say that the previous R1CS system has
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n unknowns and m constraints. Aurora provides proofs of length Oλ(log2 N),
where f = Oλ(log2 N) means f = O(λc log2 N) for some c > 0, and N is the total
number of nonzero entries of A,B,C. The conversion of an instance (s,M, u) of
the above problem to an instance of R1CS is quite natural. We set F := Zq so
that to prove that Ms = u mod q holds, it is enough to set A := [0m×1 M ],
B := [1m×1 0m×n], C := [u 0m×n], and z := [1 sT ]T , where 0m×n (resp. 1m×n)
is a matrix with m rows and n columns with all components equal to 0 (resp. 1),
and the parameter k of the R1CS problem is set to be k = n. The number
of constraints of this system is m, and the number of variables is n. To prove
that the secret vector s has also a small norm, we use binary decomposition.
In particular, to prove that a component sj of s is smaller than β = 2h, it
is enough to verify that its binary representation is at most h bits long, i.e.,
sj = cj

∑h−1
i=0 2ibi,j ,with cj ∈ {±1} and bi,j ∈ {0, 1} ∀i. This is equivalent to

proving that b0,j , . . . , bh−1,j , sj satisfy the following constraints:

bi,j(1 − bi,j) = 0 ∀i ∧
(

h−1∑

i=0

bi,j2i − sj

) (
h−1∑

i=0

bi,j2i + sj

)

= 0 .

These correspond to the R1CS instance (Aj , Bj , Cj) and witness zj , with

Aj :=

⎡

⎢
⎢
⎢
⎣

0
Ih

0
...

...
0 0
0 1 2 . . . 2h−1 −1

⎤

⎥
⎥
⎥
⎦

, Bj :=

⎡

⎢
⎢
⎢
⎣

1
−Ih

0
...

...
1 0
0 1 2 . . . 2h−1 1

⎤

⎥
⎥
⎥
⎦

, zj :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
b0,j

...
bh−1,j

sj

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

and Cj the all-zero matrix, where Ih is the identity matrix of dimension h. Thus
proving that s has a small norm adds n(h + 1) constraints and nh unknowns to
the proof (i.e., the coefficients of the bit decomposition of each component of s).
Hence, expanding A, B, C, z with all the Aj , Bj , Cj , zj (taking care not to
repeat entries in z) yields the full instance. This includes m+n(h+1) constraints,
and the nonzero entries of the matrices A, B, C are N = nm+2m+(5h+1)n,
and outputs proofs of length O(log2(n(m+5h+1)+2m)) (where we recall that h
is the logarithm of the bound on the norm of the solution to the lattice problem).
The R1CS formalism allows us to prove knowledge of a message-signature pair
in Boyen’s signature scheme [9] in a natural way (cf. Sect. 3.4).

1.2 Related Work

Both Libert et al. [17] and Baum et al. [3] introduce ZK proof to prove knowledge
of solutions of lattice problems that are linear in the length of the secret and in
log β respectively (where β is the bound of the norm of the secret vector). Our
scheme improves these in that the proof length depends polylogarithmically on
the length of the secret vector and log β. Moreover, we give concrete estimates
for parameters that guarantee 128 bits of security. The lattice-based SNARK



250 C. Boschini et al.

of [14] relies on the qDH assumption (among others), hence unlike our scheme
this is not post-quantum secure, and needs a trusted setup, which prevents to
use it to build group signatures with the non-frameability property. Regarding
group signature construction, a new construction was published by Katsumata
and Yamada [15], that builds group signatures without using NIZK proofs in
the standard model. Their construction is of a different form, and, in particular,
sidesteps the problem of building NIZKs for lattices, hence we can only compare
the signature lengths. Differently from ours, their signature sizes still depend
linearly on the number of users (while ours depend polylogarithmically on the
number of users) when security is based on standard LWE/SIS. They are able
to remove this dependency assuming subexponential hardness for SIS.

2 Preliminaries

We denote vectors and matrices with upper-case letters. Column vectors are
denoted as V =

[
v1 ; . . . ; vn

]
and row vectors as V =

[
v1 . . . vn

]
. Sampling and

element x from a distribution D are denoted as x $←−D. If x is sampled uniformly
over a set A, we write x $←− A. With x ← a we denote that x is assigned the value
a. When necessary, we denote the uniform distribution over a set S as U(S). We
denote by log the logarithm with base 2. We use the standard Landau notation
(i.e., O(·), ω(·), . . .) plus the notation Oλ(·), where f = Oλ(g) means that there
exists c > 0 such that f = O(λcg).

2.1 Preliminaries: Ideal Lattices

Let Z[X] be the ring of polynomials with integer coefficients, f ∈ Z[X] be
a monic, irreducible polynomial of degree n, and R be the quotient ring
R := Z[X]/ 〈f〉. Ring elements are represented with the standard set of rep-
resentatives {g mod f : g ∈ Z[X]}, corresponding to vectors in Z

n through the
standard group homomorphism h that sends a =

∑n−1
i=0 aix

i to the vector of its
coefficients (a0, . . . , an−1). Let Rq = Zq[X]/〈Xn + 1〉 for a prime q. Elements in
the ring are polynomials of degree at most n−1 with coefficients in [0, q−1] and
operations between them are done modulo q. For an element a =

∑n−1
i=0 aixi, the

norms are computed as ‖a‖1 =
∑

i |ai|, ‖a‖ =
√∑

i a2
i and ‖a‖∞ = max |ai|.

For a vector S = [s1, . . . , sm] ∈ Rm, the norm ‖S‖p is defined as maxm
i=1 ‖si‖p.

Let S1 be the subset of elements of Rq with coefficients in {0,±1}. BitD(a) is
an algorithm that on input elements ai ∈ Rq, outputs vectors �ai containing the
binary expansion of the coefficients of ai. Let deg(a) be the degree of the poly-
nomial a. Ideals in R and Rq corresponds to lattices in Z

n and Z
n
q respectively,

through the homomorphism h. A sample z from a discrete Gaussian DRq,u,σ

centered in u and with std. deviation σ, is generated as a sample from a discrete
Gaussian over Zn and then map it into Rq using the obvious embedding of coor-
dinates into coefficients of the polynomials. Similarly, we omit the 0 and write[
y1 . . . yk

]
$←−Dk

Rq,σ to mean that a vector y is generated according to D
Zkn,0,σ

and then gets interpreted as k polynomials yi. With an abuse of notation, we
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denote by D⊥
A,u,s the distribution of the vectors V ∈ Rm such that V ∼ Dm

R,0,s

conditioned on AV = u mod q.

Lemma 2.1 (cf. [2, Lemma 1.5], [19, Lemma 4.4]). Let m > 0. The following
bounds hold:

(1) Pr
S

$←− Dm
σ

(‖S‖ > 1.05σ
√

m) < (0.998)m

(2) Pr
S

$←− Dm
σ

(‖S‖∞ > 8σ) < m2−47

We recall two well-studied lattice problems over rings: RSIS and RLWE.

Definition 2.2 (RSISm,q,β problem [21]). The RSISm,q,β problem asks given
a vector A $←− R1×m

q to find a vector S ∈ Rm
q such that AS = 0 mod q and

‖S‖ ≤ β. The inhomogeneous version of RSIS asks to find S ∈ Rm
q such that

AS = u, and ‖S‖ ≤ β for given uniformly random A and u.

Definition 2.3. RLWEk,χ problem, normal form, cf. [22] The RLWEχ,s dis-
tribution (resp., the RLWEχ distribution in the normal form) outputs pairs
(a,b) ∈ Rq × Rq such that b = as + e for a uniformly random a from
Rq, s ∈ Rq and e sampled from distribution χ (resp., a $←− Rq, s, e $←−χ). The
RLWEk,χ decisional problem on ring Rq with distribution χ is to distinguish
whether k pairs (a1,b1), . . . , (ak,bk) were sampled from the RLWEχ distribu-
tion or from the uniform distribution over R2

q. The RLWEk,χ search problem on
ring Rq with distribution χ is given k pairs (a1,b1), . . . , (ak,bk) sampled from
the RLWEχ distribution, find s.

Module-RSIS and Module-RLWE [16] are a more general formulation of RSIS
and RLWE. Module-RSIS asks to find a short vector S ∈ Rm2

q such that AS = 0
given a matrix A $←−Rm1×m2

q (the inhomogeneous version is defined analogously).
The Module-RLWE distribution outputs pairs (A, 〈A,S〉+e) ∈ Rk

q ×Rq, where
the secret S and the error e are drawn from Rk

q and Rq respectively.

2.2 RLWE Encryption Scheme

Let n be a power of 2, p, and q be two primes such that q  p, and χ be an error
distribution. The RLWE encryption scheme (EParGen,EKeyGen,Enc,Dec) [22] to
encrypt a binary message μ ∈ S1 works as follows. On input the security param-
eter λ, the parameters generation EParGen outputs (n, p, q). The key generator
EKeyGen samples a $←−Rq, s $←− Rq and d ← χ, and sets b = as + d mod q.
The encryption key is epk = (a,b), the decryption key is esk = s. On input
a message μ, the encryption algorithm Enc generates the ciphertext (v,w) as
v = p(ar + e) mod q, w = p(br + f) + μ mod q, where e, f $←− χ and r $←−Rq.
Decryption amounts to computing (w − sv mod q) mod p. This encryption
scheme is IND-CPA secure under RLWE1,χ, and can be made IND-CCA2 secure
combining it with a non-malleable NIZK proof system following Naor-Yung
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construction [25]. In our instantiation we choose the error distribution χ to
be a Gaussian distribution with standard deviation sRLWE = ω(

√
log q) (cf.

Theorem 1 in [10]).
We remark that this encryption scheme encrypts plaintexts that are poly-

nomials of degree n with binary coefficients. In case it would be necessary to
encrypt a bit string �b = (b1, . . . , bk), we assume the encryption algorithm first
converts it to an element of S1 (or more than one, if k > n) by setting bi = 0
for k < i ≤ n and constructing the polynomial b =

∑n
i=1 bix

i−1 (the case k > n
is analogous).

2.3 Boyen’s Signature on Ideal Lattices

A digital signature scheme is composed by 4 PPT algorithms (SParGen,SKeyGen,
Sign,SVerify). Existential unforgeability against adaptive chosen-message attacks
(eu-acma) requires that the adversary should not be able to forge a signature
on some message μ∗ of her choice, even if she has access to a signing oracle. In
this section we describe the variant of Boyen’s signature [9] by Micciancio and
Peikert [23], adapted to have security based on hardness assumptions on ideal
lattices. Such variant has been claimed to be secure since long time, but, to the
best of our knowledge, this is the first time in which a security proof is given
explicitly (cf. the full version of this paper). In particular, we prove the signature
secure when defined over the (2n)-th cyclotomic ring.

Theorem 2.4 (Trapdoor generation, from [23]). Let Rq be a power of 2
cyclotomic ring and set parameters m = 2, k = �log q�, m̄ = m + k. There
exists an algorithm GenTrap that outputs a vector Ā ∈ R1×m̄

q and a trapdoor
R ∈ Rm×k

q with tag h ∈ Rq such that:

– Ā = [A|AR + hG], where G is the gadget matrix, G = [1 2 4 . . . 2k−1], and
A = [a|1] ∈ R1×2

q , a $←−Rq.
– R is distributed as a Gaussian D2×k

R,s for some s = αq, where α > 0 is a
RLWE error term, αq > ω(

√
log n) (cf [22, Theorem 2.22]).

– h is an invertible element in Rq.
– Ā is computationally pseudrandom (ignoring the component set to 1) under

(decisional) RLWED where D = DR,s.

Genise and Micciancio [13] give an optimal sampling algorithm for the pre-
vious trapdoor construction.

Theorem 2.5 (Gaussian sampler, adapted from [23] and [13]). Let Rq,
m, k, m̄ be as in Theorem 2.4, G be the gadget matrix G = [1 2 4 . . . 2k−1],
A ∈ R1×m

q and R ∈ R2×k
q be the output of GenTrap, and B a vector in R1×d

q

for some d ≥ 0. Then, there is an algorithm that can sample from the distribution
D⊥

[A | AR+G | B],u,s for any s = O(
√

n log q) · ω(
√

log n) for any u ∈ Rq in time
Õ(n log q) for the offline phase and Õ(n2) for the online phase.
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The original signature was proved existentially unforgeable against adap-
tive chosen-message attacks eu-acma under SIS. Micciancio and Peikert proved
their variant to be strongly unforgeable against static chosen-message attack
(su-scma) under SIS with a tighter reduction, and then made it strongly unforge-
able against adaptive chosen-message attacks su-acma using chameleon hash
functions [26]. For our purposes adaptive existential unforgeability is enough, so
our aim is to prove the scheme eu-acma under RSIS combining the techniques
used in the proofs of these two papers.

Parameters. spar ← SParGen(1λ)
Let f be the (2n)-th cyclotomic polynomial, f = xn + 1. Construct the poly-
nomial rings R = Z[X]/〈f〉 and Rq = Zq[X]/〈f〉. Let k = �log2 q�, m = 2,
and m̄ = m+k = 2+�log q� be the length of the public matrices, and 
 be the
length of the message. Let sssk =

√
log(n2) + 1 and sσ =

√
n log n ·

√
log n2

be the standard deviations of the distributions of the signing key and of the
signature respectively (their values are determined following Theorems 2.4
and 2.5 respectively).

Key Generation. (svk , ssk) ← SKeyGen(spar)
Run the algorithm GenTrap from Theorem 2.4 to get a vector [A | B] =
[A | AR + G] and a trapdoor R. The public key is composed by 
 + 1
random matrices A0, . . . ,A�

$←−R1×k
q , a random vector u $←− Rq and the vector

[A | B] ∈ R1×m̄
q . i.e., svk = (A,B,A0, . . . ,A�,u), and the (secret) signing

key is ssk = R. Remark that the probability distribution of R is D2×k
R,sssk

.
Signing. σ ← Sign(μ, ssk)

To sign a message μ = (μ1, . . . , μ�) ∈ {0, 1}�, the signer constructs a message-
dependent public vector Aμ = [A | B | A0+

∑�
i=1(−1)μiAi] and then it sam-

ples a short vector S ∈ Rm̄+k
q running the algorithm SampleD from Theorem

2.5 on input (Aμ,u,R). The algorithm outputs the signature σ = S. Remark
that the probability distribution of the signature S is D⊥

Aμ,u,sσ
.

Verification. {0, 1} ← SVerify(σ, μ, svk)
The verifier checks that the vector S has small norm, i.e., ‖S‖∞ ≤ 8sσ. Then,
he constructs Aμ = [A | B | A0 +

∑�
i=1(−1)μiAi] and checks that S satisfies

the verification equation, i.e., AμS = u mod q.

Correctness follows from Theorems 2.4 and 2.5 and from Lemma 2.1. We
prove the eu-acma security of the scheme under RSIS by proving that if there
exists a PPT adversary A that can break the signature scheme we can construct
an algorithm B that can solve RSIS exploiting A. The proof is obtained combining
the message guessing technique in the proof of Theorem 25 in [9] with the proof
of Theorem 6.1 in [23] and can be found in the full version.

Theorem 2.6 (eu-acma security). If there exists a PPT adversary A that can
break the eu-acma security of the signature scheme (SParGen,SKeyGen,Sign,
SVerify) in time tA with probability εA asking qA queries to the signing ora-
cle, then there exists a PPT algorithm B that can solve RSISm̄+1,q,β for a
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large enough β = 8sσ + (
 + 1)kn8sσ exploiting A in time tB ∼ tA with prob-
ability εB = εA · (1 − εRLWE) · 1

q

(
1 − qA

q

)
or a PPT algorithm that solves

RLWE(�+1)k,U(S1) with probability εA in time tA.

2.4 The Aurora Protocol

Aurora is a Interactive Oracle Proof for R1CS relations by Ben-Sasson et al. [5].

Definition 2.7 (R1CS relation). The relation RR1CS consists of the set of
all pairs ((F, k,m, n,A,B,C, v), w) where F is a finite field, k is the number of
inputs, n is the number of variables, m is the number of constraints, A,B,C are
matrices in F

m×(n+1), v ∈ F
k, and w ∈ F

n−k such that Az ◦ Bz = Cz where
z = (1, v, w) ∈ F

n+1 and ◦ denotes entry-wise (Hadamard) product.

The following theorem summarizes the properties of Aurora when compiled to
a SNARK via the transform by Ben-Sasson et al. (cf. Theorem 7.1 in [6]). In
the statement below, N := max(m,n); generally n and m will be of roughly the
same magnitude.

Theorem 2.8 (informal, cf. Theorem 1.2 in [5]). There exists a non-
interactive zero-knowledge argument for R1CS that is unconditionally secure in
the random oracle model with proof length O(λ2 log2 N) and one-time simula-
tion soundness error 2−λ against adversaries making at most 2λ queries to the
oracle. The prover runs in time Oλ(N log N) and the verifier in time Oλ(N).

Remark 2.9 (Simulation soundness). To use the above construction in the Naor–
Yung paradigm, as we later do, requires one-time simulation soundness (OTSS).
This is shown as follows; we assume some familiarity with [7]. Let π be a proof
output by the simulator for a statement x supplied by the adversary. First recall
that to achieve adaptive soundness and zero knowledge, the oracle queries of
the verifier and honest prover are prefixed with the statement x and a fresh
random string r ∈ {0, 1}λ. Since with high probability no efficient adversary can
find x′ �= x, q, q′ such that ρ(x‖r‖q) = ρ(x′‖r‖q′), if the adversary in the OTSS
game chooses an instance different from that of the simulated proof, the success
probability of the extractor is affected only by a negligible amount.

Now suppose that an adversary generates a different proof π′ �= π of the
same statement x. In the Aurora IOP, the query locations for the first oracle
are a uniformly random subset of [
] (where 
 is the oracle length, 
 = Ω(N))
of size Ω(λ). This is determined by the verifier’s final randomness, which in the
compiled NIZK depends on all of the Merkle tree roots; these are all included in
π. Moreover, these collectively depend on every symbol of π; hence no efficient
adversary can find a valid π′ �= π whose query set is the same as that of π. In
particular, the Merkle tree root corresponding to the first round has some query
in π′ which is not in π; since it is infeasible to find an accepting authentication
path for this query relative to the root provided by the simulator, the value of
this root must differ between π and π′. It follows that, with high probability, the
extractor only ‘programs’ queries which were not already programmed by the
simulator, and so one-time simulation soundness holds.
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3 NIZKs for Lattices from R1CS

We build the NIZKs from simple, reusable building blocks. When composing
these building blocks, it is often necessary to make explicit inputs private. Gen-
erally this involves no additional complication; if changes are needed to ensure
soundness, we will point them out. When we construct R1CS instances (cf.
Definition 2.7), we typically write down a list of variables and constraints, rather
than explicitly constructing the matrices.

3.1 Basic Operations

We describe how to express some basic lattice operations in Rq as arithmetic
operations over Fq

∼= Zq for prime q.

Representation of Ring Elements. We represent ring elements as vectors in
F

n
q w.r.t. some basis of Rq. Note that regardless of the choice of basis, addition in

Rq corresponds exactly to component-wise addition of vectors. An Rq-element
is denoted by a lowercase bold letter (e.g. a) and the corresponding vector in
F

n
q by an arrow (e.g. �a). A vector in Rm

q is denoted by an uppercase bold letter
(e.g. A) and the corresponding matrix in F

m×n
q , whose rows are the coefficients

of the elements of the vector, is denoted by an uppercase letter (e.g. A).

Bases. We will use two bases: the coefficient basis and the evaluation or number-
theoretic transform (NTT) basis. The NTT basis, which is the discrete Fourier
basis over Fq, allows polynomial multiplication to be expressed as pointwise
multiplication of vectors. Transforming from the coefficient basis to the NTT
basis is a linear transformation T ∈ F

n×n
q . The choice of basis depends on the

type of constraint we wish to check; generally we will represent inputs in the
coefficient basis. An issue with the NTT basis is that to multiply ring elements
a,b ∈ Rq naively requires us to compute the degree-2n polynomial ab ∈ Fq[X]
and then reduce modulo Xn+1. This would make multiplying ring elements quite
expensive. For our choice of Rq, however, so long as q has 2n-th roots of unity we
can employ the negative wrapped convolution [20], which is a linear transform T

such that if �a,�b,�c represent the coefficients of a,b, c ∈ Rq respectively, T�a◦T�b =
T�c if and only if c = ab in Rq. From here on, T is the negative wrapped
convolution.

Addition and Multiplication. Following the above discussions, addition is
(always) componentwise over Fq and multiplication is componentwise in the
NTT basis. Hence to check that a + b = c or a · b = c in Rq when a,b, c
are represented in the coefficient basis as �a, �b, �c, we use the constraint systems
�a + �b = �c or T�a◦T�b = T�c respectively. Each of these ‘constraints’ is a shorthand
for a set of n constraints, one for each dimension; i.e., ai + bi = ci for all i ∈ [n],
or 〈Ti,�a〉 ◦ 〈Ti,�b〉 = 〈Ti,�c〉 for all i ∈ [n] where Ti is the i-th row of T .

Decomposition. A simple but very important component of many primitives
is computing the subset-sum decomposition of a Zq-element a with respect to
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a list of Zq-elements (e1, . . . , e�); that is, finding b1, . . . , b� such that bi ∈ {0, 1}
and

∑�
i=1 biei = a. For example, when ei = 2i−1 for each i, this is the bit decom-

position of a. The following simple constraint system enforces that b1, . . . , b� is
the subset-sum decomposition of a ∈ Fq with respect to (e1, . . . , e�).

bi(1 − bi) = 0 ∀i ∈ {0, . . . , 
 − 1} ∧
�−1∑

i=0

biei − a = 0

For the case of ei = 2i−1 we will use the notation �b = BitDec(a) to represent
this constraint system. For a vector �a ∈ F

n
q and matrix B ∈ F

n×�
q we write

B = BitDec(�a) for the constraint system “Bj = BitDec(aj) ∀j ∈ [k]”, for Bj

the j-th row of B.

Proof of Shortness. Showing that a ∈ Zq is bounded by β < (p − 1)/2, i.e.
−β < a < β, can be achieved using its decomposition. It was observed in [18]
that taking e1 = �β/2�, e2 = �(β − b1)/2�, . . . , e� = 1 for 
 = �log β� yields a
set of integers whose subset sums are precisely {0, . . . , β − 1}. We then have
that |a| < β if and only if there exist b1, . . . , b� ∈ {0, 1}, c ∈ {−1, 1} such that
c
∑�

i=1 biei = a. The prover will supply b1, . . . , b� as part of the witness. This
introduces the following constraints:

bi(1 − bi) = 0 ∀i ∧ (
�∑

i=1

biei − a)(
k−1∑

i=0

biei + a) = 0

The number of new variables is k; the number of constraints is k + 1. When we
describe R1CS instances we will write the above constraint system as “|a| < β”.
For �a ∈ Z

n
q , we will write “‖�a‖∞ < β” for the constraint system “|ai| < β ∀i ∈

[n]”, i.e. n independent copies of the above constraint system, one for each entry
of �a.

3.2 Proof of Knowledge of RLWE Secret Key

We give a proof of knowledge for the relation R = {(c,d; t, e) ∈ R4
q : d =

ct+ e mod q ∧ ‖e‖∞ < β}. Let �c, �d,�t, �e ∈ F
n
q encode c,d, t, e in the coefficient

basis. The condition is encoded by the following constraint system:

T�c ◦ T�t = T �f ∧ �f + �e = �d ∧ ‖�e‖∞ ≤ β

where �f ∈ F
n
q should be the coefficient representation of ct. The number of

variables and constraints are bounded by n(log β+6). We write RLWEβ(�c, �d,�t, �e)
as shorthand for the above system of constraints. Note that we did not use
the fact that the verifier knows �c, �d; this will allow us to later use the same
constraint system when �c, �d are also secret. Hence, applying Theorem 2.8 yields
the following.
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Lemma 3.1. There is a NIZK proof (SNARK) for the relation R,
secure and extractable in the random oracle model, with proof length
O(λ2 log2

(
n log β

)
log q).

With our parameters as given in Sect. 5.4, the size of a NIZK for a single proof of
knowledge of an RLWE secret key is 72 kB (obtained from our implementation
Sect. 4 using libiop). Constraint systems for RSIS, Module-RSIS and Module-
RLWE can be derived similarly.

3.3 Proof of Knowledge of Plaintext

We give a proof of knowledge for the relation R = {(a,b,v,w; e, f , r, μ) ∈ R7
q ×

S1 : v = p(ar+e)∧w = p(br+ f)+μ∧‖e‖∞, ‖f‖∞ < β}. Recall that S1 ⊆ Rq

is the set of all polynomials of degree less than n whose coefficients are in {0, 1},
which is in natural bijection with the set {0, 1}n.

Let �a,�b,�v, �w,�e, �f, �r, �μ ∈ F
n
q be the coefficient representations of the corre-

sponding ring elements. The condition is encoded by the following constraint
system:
RLWEβ(�g,�a, �r,�e) ∧ RLWEβ(�h,�b, �r, �f) ∧ �w = p · �g ∧ �v = p · �h + �μ ∧ μi(μi − 1) = 0 ∀i.

The number of variables is n(2 log β+10); the number of constraints is n(2 log β+
15). This constraint system (repeated twice) is also used to build the NIZK
required for the Naor-Yung construction. We write “�v, �w = Encp(�a,�b, �r, �μ)” to
denote the above system of constraints; �e and �f will be fresh variables for each
instance of the system. Once again, we do not use the fact that the verifier knows
�a,�b,�v, �w, which will be useful later.

To encrypt tn bits, we simply encrypt t n-bit blocks separately. The constraint
system is then given by t copies of the above system. We will use the notation
V,W = Encp(�a,�b, �r, �μ) to represent this, where V,W are n × k matrices whose
rows are the encryptions of each n-bit block.

3.4 Proof of Valid Signature

An important component of the group signature scheme is proving knowledge
of a message μ ∈ {0, 1}� together with a Boyen signature on μ (see Sect. 2.3).
We first consider a simpler relation, where we prove knowledge of a signature
on a publicly-known message. In the Boyen signature scheme, this corresponds
to checking an inner product of ring elements, along with a proof of shortness
for the signature. This corresponds to checking the relation R = {(Aμ,u;S) ∈
(R1×k

q × Rq) × Rk
q : AμS = u ∧ ‖S‖∞ < β}. Let A,S ∈ F

k×n
q be the matrices

whose rows are the coefficients of the entries of Aμ,S, and let �u ∈ F
n
q be the

coefficient representation of u. We obtain the following constraint system:

TAi ◦ TSi = TFi ∀i ∈ [k] , ∧
k∑

i=1

Fi = �u , ∧ ‖Si‖∞ < β ∀i ∈ [k]

where F ∈ F
k×n
q , and Ai, Si, Fi are the i-th rows of the corresponding matrices.
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Now we turn to the more complex task of proving knowledge of a (secret)
message and a signature on that message. Here the verifier can no longer compute
Aμ by itself, and so the work must be done in the proof. In particular, we check
the following relation.

R =
{

([A | B],A,u;μ,S) ∈ R1×m
q ×

×(R1×k
q )�+1 × Rq × {0, 1}� × Rm+k

q
: AμS = u ∧ ‖S‖∞ < β

}

,

where A = (A0, . . . ,A�) and Aμ = [A | B | A0 +
∑�

i=1(−1)μiAi]. Let
M ∈ F

m×n be the matrix whose rows are the coefficients of the entries of
[A | B], and let A0, . . . , A� ∈ F

k×n be matrices whose rows are the coefficients
of the entries of A0, . . . ,A� respectively. Let μ′ = ((−1)μ1 , . . . , (−1)μ�) be the
string in {±1}� corresponding to the message μ. Clearly, the transform from
μ to μ′ is bijective. Let A′

i ∈ F
n×(�+1) be such that the j-th column of A′

i is
the i-th row of Aj (i.e., the coefficients of the i-th entry of Aj). Observe that
A′

i · (1, μ′) is the coefficient representation of the i-th entry of A0 +
∑�

j=1 μ′
jAj .

Given this, the following constraint system captures the relation we need:

TMi ◦ TSi = TFi ∀i ∈ [m] , ∧ (TA′
i)(1, μ) ◦ TSm+i = TFm+i ∀i ∈ [k]

k+m∑

i=1

Fi = �u , ∧ (1 + μi) · (1 − μi) = 0 ∀i ∈ [
] , ∧ ‖Si‖∞ < β ∀i ∈ [m + k]

with F ∈ F
(m+k)×n
q . We will denote the above constraint system by SVerifyβ(M,

A, �u, S, μ), with A = (A0, . . . , A�). The number of variables and constraints are
bounded by (4 + log β)(m + k)n + k(max(n, 
 + 1)).

3.5 Signature Generation

Here we specify the relation whose proof constitutes a signature for our group sig-
nature scheme; see Sect. 5.2 for details. We repeat its formal description below.

RS =

⎧
⎨

⎩

(
A,B,A,u, (a0,b0,a1,b1),

(V0,W0), (V1,W1); t, i, c,d, e,S
) s.t.

1 ← SVerify(S, (c,d, i),A,B,A0, . . . ,A�,u)
∧ d = ct + e ∧ ‖e‖ ≤ β′

∧ (V0,W0) ← Enc(i, c,d, (a0,b0))
∧ (V1,W1) ← Enc(i, c,d, (a1,b1))

⎫
⎬

⎭

We now describe the constraint system which represents this relation. The vari-
ables �c, �d,�e, i, A,B,A, �u, S,�a0,�a1,�b0,�b1, V0,W0, V1,W1 are the coefficient repre-
sentations of the corresponding variables in the relation. Using the notation
defined in the previous subsections, the constraint system is as follows.

C = BitDec(�c) ∧ D = BitDec(�d) ∧ �i = BitDec(i) ∧
SVerifyβ([A|B],A, �u, S, (C,D,�i)) ∧ RLWEβ′(�c, �d,�e) , ∧

V0,W0 = Encp(�a0,�b0, �r, (C,D,�i)) ∧ V1,W1 = Encp(�a1,�b1, �r, (C,D,�i))

The number of variables and constraints are bounded by (4 + log β)(m +
k)n + 2kn log q + 5n log β + 30n + 6. With our parameters this yields approxi-
mately 10 million variables and constraints. By applying the proof system of [5],
we obtain the following lemma
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Lemma 3.2. There is a NIZK proof (SNARK) for the relation RS, secure and
extractable in the random oracle model, with proof length O(log2

(
(m+k)n log β+

n2 log q
)
log q).

3.6 Proof of Valid Decryption

The relation R = {(v,w, μ,a,b; s, e) : (w − sv) mod p = μ ∧ b = as +
e ∧ ‖s‖∞, ‖e‖∞ ≤ β}, captures the statement that the prover knows the RLWE
secret key corresponding to a given public key, and that a given ciphertext
decrypts to a given message under this key. The constraint system is as follows.

RLWEβ(�a,�b, �s,�e) ∧ T �w − T�s ◦ T�v = T (�μ + p�h) ∧ ‖�h‖∞ < (q − 1)/2p

The final constraint ensures that �μ+p�h does not ‘wrap around’ modulo q. Since
�v, �w are public, the verifier can incorporate them into the constraint system. The
number of variables and constraints is bounded by n(log β + log(q/p) + 5).

3.7 Parameter Choices

In this section we discuss how the parameter choices in Sect. 5.4 relate to the
relations described in the above sections, and the resulting constraint system
sizes given by our implementation (Sect. 4). Throughout we let q be a prime
with log2 q ≈ 65, and Rq = Fq/〈Xn + 1〉 with n = 1024. We have log β = 10.

Proof of Knowledge of RLWE Secret Key. Our implementation yields a
constraint system with 16,383 variables and 15,361 constraints for the parameters
specified. The resulting proof is 72 kB in size, and is produced in roughly 40
seconds on a consumer laptop (MacBook Pro).

Proof of Knowledge of Plaintext. Our implementation yields a constraint
system with 32,769 variables and 29,696 constraints for the parameters specified.
The resulting proof is 87 kB in size, and is produced in roughly three minutes.

Proof of Valid Signature. Here k = m̄ = 67, m = 2m̄ = 134. Proving
knowledge of a message μ ∈ {0, 1}� and signature on μ yields at most 3×106+67

constraints, for 
 > n. Our message size is 
 = 2nk + log N , where N is the
number of users in the system; we obtain roughly 12 × 106 + 67 log N constraints.
Since the number of users will always be bounded by (say) 240, the number of
constraints is bounded by 12 million.

Our implementation yields a constraint system of 2,663,451 variables and
2,530,330 constraints. This is too large to produce a proof for on our Google
Cloud instance, but extrapolating from known proof sizes we expect this to be
at most 150 kB.

Signature Generation. Our implementation yields a constraint system with
10,196,994 variables and 10,460,226 constraints. This is too large to produce a
proof for, but extrapolating from known proof sizes we expect at most 250 kB.
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4 Implementation

The implementation was written in C++, primarily using the following libraries:

– libff (https://github.com/scipr-lab/libfff)
– libiop (https://github.com/scipr-lab/libiop)

libff is a C++ implementation of finite fields, and libiop includes a C++
implementation of the Aurora IOP and SNARK. The implementation took
advantage of the libiop-provided APIs to construct the R1CS encodings of the
various relations detailed in Sect. 3. Once these R1CS constraint systems were
constructed, libiop was used to construct the Aurora IOPs, which where then
compiled to zkSNARKs. Finally, the proof size of these SNARKs was measured
directly.

libiop does not currently provide primitives to organize very large con-
straint systems as in this paper. To prevent the constraint systems from getting
unwieldy, an additional class ring poly was created to represent ring elements
Sect. 3.1 as vectors of R1CS variables. This class also contains an implementation
of the negative wrapped convolution (along with its inverse), which was tested
by comparing with multiplication of polynomials in the ‘long-form’ method. In
addition, now polynomial multiplication using the negative wrapped convolution
could be represented as a basic constraint and be composed as part of a larger
constraint system. Similarly, bit decompositions and proofs of shortness were
also represented as basic constraints.

Mirroring the definition of the relations themselves, the implementations for
Lemmas 3.1, 3.2 were composed by referencing the relevant smaller relations.

Several small utilites were also created in order to compute the parameters
libff requires for the specific prime fields used in this paper, and to generate
other prime fields to test how proof sizes varied with number of bits of the
underlying prime field.

The constraint systems were compiled and run on a consumer-grade 2016
Macbook Pro, when running the prover and verifier could fit in memory. For the
larger constraint systems such as for Lemma 3.2, a Google Cloud large-memory
compute instance was used to finish constructing the proofs.

5 Group Signatures

We present a dynamic group signature GS = (GKg,UKg, Join, Iss,GSign,GVerify,
GOpen,GJudge) that supports N users and guarantees non-frameability in the
ROM under post-quantum assumptions. Being dynamic means that users can
join at any time during the lifespan of the group. Our construction follows
the framework by Bellare, Shi and Zhang [4] and is built from a lattice-
based hash-and-sign signature (SParGen,SKeyGen,Sign,SVerify) (cf. Sect. 2.3),
SNARKs (P,V), a post-quantum one-time signature scheme (OTSGen,OTSSign,
OTSVf) (e.g., Lamport’s signature scheme with key length 2λ bits) and a CCA2-
secure encryption scheme (EParGen,EKeyGen,Enc,Dec) (the RLWE encryption

https://github.com/scipr-lab/libfff
https://github.com/scipr-lab/libiop
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scheme [22] made CCA2-secure via the Naor-Yung paradigm [25], cf. Sect. 2.2).
Correctness of our construction trivially follows from the correctness of the build-
ing blocks. Security can be proved along the lines of the proofs in [4]. Proofs can
be found in the full version.

5.1 Key Generation and Joining Protocol

Let N be the maximum number of users supported by the scheme. We assume
there exists a publicly available list upk containing the personal (OTS) verifi-
cation keys of the users, i.e., upk[i] = vk i.

GKg: A trusted third party generates the parameters spar ← SParGen(1λ) and
epar ← EParGen(1λ). The error distribution of the RLWE encryption scheme
is a Gaussian distribution with standard deviation σRLWE = 2

√
log q. Then it

sets 
 = 2n�log q� + �log N�, and checks that q ≥ 4p
√

log q log n
√

64 log q + n.
If that’s not the case, it aborts and restarts the parameter generation. It gen-
erates the group manager’s secret signing key TA with corresponding public
key (A,B,A0, . . . ,A�,u) running the key generation algorithm SKeyGen of the
signature scheme. Finally, it generates the opener’s keys by first generating two
pairs of encryption and decryption keys of the encryption scheme, ((ai,bi), si) ←
EKeyGen(epar) for i = 0, 1, and then setting opk = (a0,b0,a1,b1) and osk = s0;
s1 is discarded. Recall that the RLWE error distribution χ is set to be a discrete
Gaussian with standard deviation sRLWE . By Lemma 2.1 an element e $←−χ has
norm bounded by BI = 8sRLWE .

UKg: The i-th user generates her OTS keys running (sk i, vk i) ← OTSGen(1λ).
The verification key vk i is added as the i-th entry to the public list upk. The
keys of the user are (usk i, upk i) = (sk i, vk i).

Join and Iss: The joining protocol is composed by a pair of algorithms (Join, Iss)
run by the user and the group manager respectively, as showed in Fig. 1.

– The user starts by running Join on input her key pair ((ci,di), ti). The algo-
rithm ends outputting (ci,di, σi, vk i) to M along with a proof Πi that the
user knows ti, ei, i.e., a proof that (ci,di) is a RLWE pair. The signature
is generated running OTSSign((ci,di), sk i), while the proof is generated run-
ning PI(ci,di; ti, ei) that is the prover algorithm of a SNARK (PI ,VI) for
the following relation:

RI = {(ci,di; ti, ei) ∈ R4
q : di = citi + ei mod q ∧ ‖ei‖∞ ≤ β′}

where β′ is an upper bound on the absolute value of the coefficients of ei

computed in the parameters generation phase.
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– M runs VI(ci,di,Πi) and OTSVf(σi, (ci,di), vk i). If any of them outputs
0, the group manager aborts. Otherwise, he signs (ci,di, i) using the signa-
ture scheme, i.e., he generates Si with small norm such that [A | B | A0 +
∑�

j=1(−1)μjAj ]Si = u mod q where μ = (μ1, . . . , μ�) is the binary expansion
of (ci,di, i). Then, M sends Si to Ui.

– the user verifies that Si is a valid signature on (ci,di, i). If this is the case,
she sends accept to the issuer, and sets her signing key to be (ti, ci,di, i,Si).
Otherwise, she aborts.

– on input accept, the issuer stores in the list l[i] = (ci,di, σi) and concludes
the protocol.

5.2 Signing Algorithm

The signature algorithm is shown in Fig. 2.
To produce a valid signature, a user has to prove that she has a valid cre-

dential. This means she has to prove that she has a signature by M on her user
public key and group identity (ci,di, i). Moreover, to allow the opener to output
a proof of honest opening, it is necessary that he can extract ci and di from
the signature. Hence, the user attaches to the NIZK proof also two encryptions
(V0,W0), (V1,W1) of the user’s identity i and of the RLWE sample (ci,di)

Ui (usk i = ti) M (TA)

ci
$←− Rq, ti

$←− Rq, e $←− χ
di = citi + ei mod q
Πi ← PI(ci,di; ti, ei)
σi ← OTSSign(BitD(ci,di), sk i)

ci,di,Πi,σi,vki−−−−−−−−−−−−−→
If 1 ← VI(ci,di, Πi)
and 1 ← OTSVf(σi, (ci,di), vk i) :

μ ← BitD(ci,di, i)
Si ← Sign(TA, μ)

Si←−−−−−
If 1 ← SVerify(Si, μ,A) :

accept−−−−−−−→
l[i] ← (ci,di, σi)

Output gsk i = (ci,di, ti, i,Si).

Fig. 1. Joining protocol.

GSign(gsk i, gpk , opk , μ)
Parse gsk i = (ci,di, ti, i,Si) and opk = (a0,b0,a1,b1)
For b = 0, 1 (Vi,Wi) ← Enc(BitD(ci,di, i), (ab,bb))
ΠS ← PS(μ; gpk , opk , (V0,W0), (V1,W1); ti, i, ci,di, ei,Si)
Return σ = (ΠS ,V0,W0,V1,W1) .

Fig. 2. Signing algorithm
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w.r.t the two RLWE encryption keys in the opener public key. Remark that
this does not compromise the user, as the opener never gets the user’s secret key
nor the user’s signing key. To guarantee that the user is not cheating by encrypt-
ing a fake credential or by encrypting different plaintexts in the two ciphertexts,
the user has to prove that the two ciphertexts encrypt the same (i, ci,di) on
which she proved she has a credential. The relation becomes:

RS =

⎧
⎪⎪⎨

⎪⎪⎩

(A,B,A0, . . . ,A�,u,
opk , (V0,W0),
(V1,W1);
ti, i, ci,di, ei,Si)

:

1 ← SVerify(Si,BitD(i, ci,di),A,B,A0, . . . ,A�,u)
∧ di = citi + ei ∧ ‖ei‖ ≤ β′

∧ (V0,W0) ← Enc(BitD(i, ci,di), (a0,b0))
∧ (V1,W1) ← Enc(BitD(i, ci,di), (a1,b1))

⎫
⎪⎪⎬

⎪⎪⎭

(1)

and (PS ,VS) is a non-interactive SNARK for RS (cf. Sect. 3.5). The user outputs
the signature σ = (V0,W0,V1,W1,ΠS).

5.3 Signature Verification, Opening, and the Judge Algorithm

To verify a signature σ on a message μ, the algorithm GVerify checks ΠS by out-
putting what VS(ΠS , μ,A,B,A0, . . . ,A�,u, opk , (V0,W0,V1,W1)) outputs.

The opener first runs GVerify on the signature. If GVerify returns 0 the opener
outputs (0, ε). Otherwise he decrypts the ciphertext (V0,W0) using his secret
key s0 to recover the identity i and public key (c′

i,d
′
i) of the signer using his secret

key s. Then, to prove that the user’s identity he extracted is valid, he recovers
the i-th entry of the list l[i] = (ci,di, σi) and checks that (c′

i,d
′
i) = (ci,di). If

that is true, he outputs l[i] along the (c′
i,d

′
i) he recovered from the signature.

Finally, the opener produces a proof that the opening procedure was performed
honestly using the decryption key osk corresponding to the opener’s public key
opk , i.e., he outputs a proof ΠO for the following relation:

RO =

⎧
⎨

⎩

(V0,W0, i, c′
i,d

′
i,

a0,b0; s0, e0)
: (W0 − s0V0) mod p =

⎛

⎝
î
ĉ′

i

d̂′
i

⎞

⎠ ∧ b0 = a0s0 + e0 mod q
‖s0‖∞, ‖e0‖∞ ≤ β′

⎫
⎬

⎭
, (2)

where î, ĉ′
i, d̂

′
i are the binary polynomials obtained from the binary expansions of

i, c′
i,d

′
i. If every check and the decryption go through, the output of the opener is

(i, τ) = (i, (c′
i,d

′
i, ci,di, σi,ΠO)). Otherwise, the opener outputs (i, τ) = (0, ε).

The Judge algorithm verifies the opener claims of having opened correctly a
signature. Hence, it has to verify ΠO and that the decrypted public key, the entry
in the list and the certified public key of the user coincides. It takes as input
(gpk , σ, μ, (i, τ)), i.e., the group public key, the signature σ = (ΠS , (V0,W0,V1,
W1)) and the respective message μ, and the output of the opener (i, τ) =
(i, (c′

i,d
′
i, ci,di, σi,ΠO)). It recovers the public key upk i of user i from the public

list, and outputs 1 if all of the following conditions hold:

– (i, τ) �= (0, ε)
– 1 ← GVerify(σ, μ, gpk)
– (c,d) = (c′,d′)
– 1 ← VO(ΠO,V0,W0, i, c′

i,d
′
i,a0,b0)

– 1 ← OTSVf(σi, (ci,di), vk i) .

Otherwise, the algorithm outputs 0.
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5.4 Correctness, Security and Parameters

Correctness follows from the correctness of the building blocks. Our group sig-
nature guarantees anonymity, traceability and non-frameability, meaning that it
protects also against a corrupted group manager trying to frame a honest user.
The proof of the following statements can be found in the full version of the
paper.

Theorem 5.1 (Anonymity). The group signature scheme GS is anonymous
in the Random Oracle Model under the zero-knowledge and simulation sound-
ness property of the NIZK proof system and under the IND-CPA security of the
encryption scheme.

Theorem 5.2 (Traceability). The group signature scheme GS satisfies trace-
ability in the Random Oracle Model if the signature scheme is eu-acma secure
and the proof system is a sound argument of knowledge.

Theorem 5.3 (Non-Frameability). The group signature scheme GS satisfies
non-frameability in the Random Oracle Model if the proof system is a zero-
knowledge argument of knowledge, the OTS is a OTS, and RLWE1,U(S1) is hard.

We compute parameters for λ ≥ 128 bits of security in the “paranoid” framework
of Alkim et al. [1], that in particular requires δ ≤ 1.00255. We intend “security”
here as the claim that the underlying hardness assumptions are hard to solve
for a quantum computer. We choose as ring the polynomial ring Rq defined
by n = 210 and a prime 264 < q < 265. Such choice of degree guarantees that
the set S1 contains more than 2256 elements, hence finding the user’s secret ti

through a brute-force attack is not possible. The number N of supported users
is 226. For technical reasons, Aurora requires that Fq has a large power-of-2
multiplicative subgroup, and so we choose q accordingly (most choices of q satisfy
this requirement). This implies that the unforgeability of the signature scheme
is based on a RSISd,β instance where d = 68 and β ≤ 246, and on a RLWEl,χ

instance with l < 225. To estimate their hardness, we use the root Hermite factor
δ (cf. [24]), and we obtained a δRSIS ≤ 1.00062 and δRLWE ≤ 1.00001.

We now compute the length of the keys and of a signature output by the
group signature. An element in Rq can be stored in nk ≤ 8.32 KB. The opener’s
secret key is composed by one ring element, hence it can be stored in 8.32 KB,
while the opener’s public key in 33.28 KB (as it is composed by 4 ring elements).

The group manager’s public key requires a bit of care. Indeed, the key
(A,B,A0, . . . ,A�,u) includes A = [a,1], B ∈ R1×m̄

q that are generated with
the trapdoor (cf. Sect. 2.3), 
 random vectors with m̄ = 67 components in Rq,
where 
 = 2nk + �log N�, and a random element u ∈ Rq. Storing these would
require nk · (1+m̄+m̄ ·
+1) = 210 ·65 · (1+67+67 ·218 +1) = 146 GB, and it is
clearly infeasible. Instead, the issuer can send a condensed (pseudorandom) rep-
resentation of the random elements A0, . . . ,A�,u, having considerably smaller
size. The size of the public key then becomes the size of such a representation
plus (m̄ + 1)nk ≤ 0.57 MB.
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The group manager’s secret key is the trapdoor TA, that has components
with coefficients smaller than 8sssk = 8

√
log(n2)+1 (cf Lemma 2.1 and Theorem

2.4). Hence the size of TA is 2kn log(8sssk ) ≤ 91 KB.
At the end of the joining phase the user obtains the credential (ci,di, ti, i,Si),

where the vector Si is composed by 2m̄+2 ring elements with coefficients smaller
than 8sσ = 8

√
n log n log n2 (cf. Sect. 2.3). Hence it has size 3nk+�log N�+(2m̄+

2)n log(8
√

n log n · log n2) ≤ 231 KB. The secret signing key of the OTS can be
discarded after the joining phase.

Finally, a signature is composed by the NIZK proof ΠS , and 4 vectors of
elements in the ring. The proof length is around 250 KB (estimate from [5]). The
vectors V0,W0,V1,W1 are the encryptions of two ring elements (ci,di) and
a number i < N . As the encryption algorithm converts them into polynomials
in S1 whose coefficients are the bits of their binary expansions, each vector
is composed by �(2nk + �log N�)/n� = 2k + ��log N�/n� elements in Rq, hence
(V0,W0,V1,W1) has size (2k+��log N�/n�)·nk ≤ (2·65+�26·2−10�)·210 ·65 =
131 · 1024 · 65 = 1.09 MB. Hence a signature is roughly 1.34 MB long.

To compare our scheme with previous ones (such as del Pino et al. [12] or
Boschini et al. [8]), we compute the length of the signature for the case in which
the group manager is always honest. For our group signature this essentially
means that it is enough that during issuance the user gets a signature by the
group manager on the user identity i. Hence, opening only requires the signature
to contain an encryption of the user’s identity i, whose bit decomposition can be
encoded as one element of S1. Therefore, the vectors V0,W0,V1,W1 actually
are just ring elements, hence the size of the signature is at most 250+4 ·210 ·65 ≤
300 KB (obviously, the size of the proof should shrink too, as the number of
variables is smaller, but we mean this number as a rough upper bound).
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Abstract. Commitment scheme, together with zero-knowledge proof, is
a fundamental tool for cryptographic design. Recently, Baum et al. pro-
posed a commitment scheme (BDLOP), which is by far the most efficient
lattice-based one and has been applied on several latest constructions of
zero-knowledge proofs. In this paper, we propose a more efficient zero-
knowledge proof of knowledge for BDLOP commitment opening with a
shorter proof. There are a few technical challenges, and we develop some
new techniques: First, we make an adaption of BDLOP commitment
by evaluating the opening with the singular value rather than �2 norm
in order to get compact parameters. Then, we try to use the bimodal
Gaussian technique to minimize the size of the proof. Finally, utilizing a
modulus-switch technique, we can retain the size of the commitment.

Keywords: Lattice-based commitment · Zero-knowledge proof of
knowledge · Bimodal Gaussian

1 Introduction

Commitment scheme [6] is a fundamental tool for the cryptographic protocols,
which allows a committer to commit to a receiver a message m and reveals
it later. A commitment is secure, if it is both hiding and binding. The for-
mer means that a commitment c reveals no information about the committed
message before the open phase, while the latter means that c should not be
opened to two different messages. In theory, the existence of commitment can be
based on the existence of one-way functions [15,22]. However, such a generic con-
struction is quite inefficient, and several commitment schemes [11,14,23] from
number theory assumptions offer the efficiency. There are numerous applications
for commitments, such as coin-flipping over telephone [6], contract signing [13],
electronic voting [9] and so on. When applied as a building block in a high-
level protocol, a commitment is usually combined with a zero-knowledge proof
of knowledge (of the opening) against malicious adversaries.
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1.1 Lattice-Based Commitment

Lattice-based cryptography has attracted much attention due to its quantum
resistance and rich functionalities. Several work has focused on the lattice-based
commitment with a zero-knowledge proof of knowledge (Σ-protocol). In 2008,
Kawachi et al. [17] presented a string commitment based on the short integer
solution (SIS) assumption, whose message space is restricted to short vectors.
Hereafter, Jain et al. [16] proposed a commitment scheme based on the learn-
ing parity with noise (LPN) assumption. Xie et al. [25] constructed a commit-
ment scheme based on the ring learning with errors (RLWE), together with
a Σ-protocol. However, both the zero-knowledge proofs of [16] and [25] have
knowledge error of 2

3 in one run and it needs many iterations for zero-knowledge
protocols to achieve a negligible knowledge error. Then, Benhamouda et al. [4]
improved the efficiency of Σ-protocol by reducing the knowledge error to 1

2n .
Furthermore, Benhamouda et al. [5] relaxed the requirements on a valid opening
of a commitment and proposed a commitment based on the RLWE assumption.

A Nontrivial Problem Remains. Recently, Baum et al. [3] constructed
a more efficient commitment (BDLOP commitment), based on the module-
SIS (MSIS) and module-LWE (MLWE) assumptions1, associated with a zero-
knowledge proof of knowledge of commitment opening, which is basically a Σ-
protocol of [18]. It adopted a Gaussian variant as the randomness and utilized
the rejection sampling in case of transcript leakage. BDLOP commitment has
been by far the most efficient known scheme and was applied in the latest con-
struction of the lattice-based exact zero-knowledge proofs [7,26]. Compression
technique [2] was also mentioned in [3] to achieve a smaller proof, which makes
the verifier check an approximate equality.

However, it seems uneasy to balance the proof size, abort probability
and security with concrete parameters, since compression technique [2] brings
another abort condition which affects the verification. A proof size reduction by
such compression technique may be at the cost of a large abort probability or a
lower security level, thus not easy to work. To remark, after a careful calculation
of the method stated in [3], we conclude that under the parameters of [3], the
proof size drops from 6.6 KB to 4.4 KB, but the non-abort probability is approx-
imately 3.7 × 10−4! Obviously, this is unacceptable. More detailed discussions
are given in Appendix A.

To summarize, BDLOP commitment is useful but it seems nontrivial to have
a more efficient lattice-based commitment (cf. BDLOP) with a shorter proof
size. In this paper, we investigate this problem.

1.2 Our Treatment

Inspired by a bimodal Gaussian technique [12] that brings a better approxima-
tion in the rejection sampling and smaller Gaussian parameters, thus a smaller

1 It degenerates to RSIS and RLWE when n = 1.
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signature size, it seems easy to obtain a shorter proof without sacrificing the non-
abort probability and security. However, this is actually not straightforward, and
we elaborate the reasons below.

One may think that if adapting the bimodal Gaussian technique to BDLOP
commitment and evaluating the opening with the singular value rather than �2
norm, it will be possible to minimize the proof size. However, such optimizations
cannot be applied to [3] directly, since bimodal Gaussian technique requires mod-
ulus 2q while the commitment needs modulus exactly to be q. A trivial solution
is to expand the commitment modulus to 2q, however, such approach inevitably
results in a larger commitment. Hence, in order to retain the commitment size,
we utilize a modulus-switch technique. Concretely, we make a pre-procession
procedure to lift the modulus of the public key and commitment when perform-
ing the protocol, while in the security proof, we transform the modulus from
2q to q by modulus reduction. When considering different security levels, our
protocol is more efficient than [3] under the concrete parameters.

2 Preliminary

In this section, we review some useful notations, definitions and facts.

Notations. Denote the real numbers by R and integers by Z. For any integer
q, identify Zq with the interval [− q

2 , q
2 )∩Z. Vectors are assumed to be in column

form. Denote column vectors with lower-case bold letters (e.g. x) and matrices
by boldface capital letters (e.g. A). Denote the matrix [A1|A2] as the matrix
concatenating matrices A1 and A2. If S is a set, U(S) denotes the uniform
distribution over S and s ← S denotes choosing s uniformly from S. A function
negl(n) : R≥0 → R≥0 is negligible if negl(n) < 1/poly(n) for n > n0 (n0 is a
constant). For a matrix R ∈ R

l×t, the largest singular value of R is defined as
s1(R) = max‖u‖2=1 ‖Ru‖2.
Lemma 1 (Rejection Sampling Lemma, Lemma 4.7 of [18]). Let
f, g be probability distributions with property that ∃M ∈ R

+, such that
Prz←f [Mg(z) ≥ f(z)] ≥ 1−ε, then the distribution of the output of the following
algorithm A:

1: z ← g

2: output z with probability min{ f(z)
Mg(z) , 1}

is within statistical distance ε
M of the distribution of the following algorithm F :

1: z ← f
2: output z with probability 1

M

Moreover, the probability that A outputs something is at least 1−ε
M .
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2.1 Ring, Lattices and Gaussians

Ring. We consider the ring R = Z[x]/(xN + 1) for N a power of 2 and
Rq = Zq[x]/(xN + 1) for some integer q. Each element of R written as a
lower-case bold letter has a polynomial representation of degree N − 1 with
coefficients in Z. There is a coefficient embedding φ : R → Z

N , mapping as
φ(a) = (a0, a1, · · · , aN−1)t ∈ Z

N with a = a0 + a1x + · · · + aN−1x
N−1 ∈ R.

We define the �p-norm of a as ‖a‖p = (
∑

i |ai|p) 1
p with p ∈ Z

+ and its �∞-
norm as ‖a‖∞ = maxi |ai| for a ∈ R. Besides, we can also view R as the
subring of anti-circulant matrices in Z

N×N by viewing the element a ∈ R
as rot(a) = [φ(a)| · · · |φ(axi−1)| · · · |φ(axN−1)]. For ∀x = [x1| · · · |xd] ∈ R1×d,
rot(x) = [rot(x1)| · · · |rot(xd)] ∈ Z

N×dN . More generally, we define the largest
singular value s1(x) for x ∈ Rl×d as s1(rot(x)). The following lemma shows, for
a particular prime q, all elements with small norms are invertible in Rq.

Lemma 2 ([19], Corollary 1.2). Let N ≥ d > 1 be powers of 2 and q =
2d + 1 mod 4d be a prime. Then xN + 1 factors into d irreducible polynomials
xN/d − rj mod q and any y ∈ Rq \ {0} that satisfies ‖y‖∞ < 1√

d
· q1/d or

‖y‖2 < q1/d is invertible in Rq. Particularly, we choose d = 2 in this paper.

Lattices. An n-dimension (full-rank) lattice Λ ⊆ R
n is a set of all integer linear

combinations of some set of independent basis vectors B = {b1, . . . ,bn} ⊆ R
n,

Λ = L(B) = {∑n
i=1 zibi|zi ∈ Z}. The dual lattice of Λ ⊆ R

n is defined as
Λ∗ = {x ∈ R

n|〈Λ,x〉 ⊆ Z}. For integers n ≥ 1, q ≥ 2 and A ∈ Z
n×m
q , an

m-dimensional lattice is defined as Λ⊥(A) = {x ∈ Z
m|Ax = 0 ∈ Z

n
q } ⊆ Z

m.

For any y in the subgroup of Z
n
q , we also define the coset Λ⊥

y (A) = {x ∈
Z

m|Ax = y mod q} = Λ⊥(A) + x̄, where x̄ ∈ Z
m is an arbitrary solution to

Ax̄ = y. For Λ = L(B), let B̃ denote the Gram-Schmidt orthogonalization of
B, and ‖B̃‖2 is the length of the longest vector in it.

Gaussian Measures. Let Λ be a lattice in Z
n. For any vector c ∈ R

n and
parameter σ > 0, the n-dimensional Gaussian function ρσ,c : R

n → (0, 1] is
defined as ρσ,c(x) := ( 1√

2πσ
)n exp(−‖x − c‖22/2σ2). The discrete Gaussian dis-

tribution over Λ with parameter σ and center c (abbreviated as DΛ,σ,c) is defined
as ∀y ∈ Λ,DΛ,σ,c(y) := ρσ,c(y)

ρσ,c(Λ) , where ρσ,c(Λ) =
∑

y∈Λ ρσ,c(y). When c = 0,
we write ρσ and DΛ,σ for short. Below we list some properties of the discrete
Gaussian distribution.

Lemma 3 (�2 norm, [18]). For any η1 > 0, Pr[‖z‖2 > η1σ
√

m| z ← DZm,σ] <

ηm
1 e

m
2 (1−η2

1). In this paper, we choose η1 = 2.

Lemma 4 (�∞ norm, [18]). For any τ > 0, Pr[|z| > τσ| z ← DZ,σ] ≤ 2e
−τ2
2 .
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2.2 Subgaussian and Random Matrices

For δ > 0, a random variable X over R is δ-subgaussian with parameter s > 0 if
for all t ∈ R, the (scaled) moment-generating function satisfies E[exp(2πtX)] ≤
exp(δ) · exp(πs2t2). Any B-bounded centered random variable X (i.e. E[X] = 0
and |X| ≤ B always) is 0-subgaussian with parameter B

√
2π. More generally,

a random matrix X is δ-subgaussian of parameter s if all its one-dimensional
marginals utXv for unit vectors u,v are δ-subgaussian of parameter s. The
concatenation of independent δi-subgaussian vectors with common parameter s,
is (

∑
δi)-subgaussian with parameter s.

Lemma 5 (Singular Value, [20,24]). Let X ∈ R
n×m be a δ-subgaussian

random matrix with parameter s. There exists a universal constant C > 0 such
that for any t ≥ 0, we have s1(X) ≤ C ·s·(√m+

√
n+t)2 except with probability

at most 2 exp(δ) exp(−πt2).

2.3 Hard Problems

The centered binomial distribution Sη [8] for some positive integer η is defined
as follows. Sample (a1, · · · , aη, b1, · · · , bη) ← {0, 1}2η and output

∑η
i=1(ai − bi).

If v is an element of R, denote v ← Sη as v ∈ R generated from a distribution
where each of its coefficients is generated according to Sη. A k × m matrix of
polynomials V ∈ Rk×m is generated according to the distribution Sk×m

η , if each
element in V is from Sη. Especially for m = 1, we write Sk

η for short. Below we
review the RLWE and RSIS problems.

Definition 1 (RLWE). The RLWE distribution over Rl
q × Rq is a distribution

of (a,b), where a ← Rl
q and b = ats + e with s ← Sl

η and e ← Sη. The search
RLWE problem consists in recovering s from polynomially many samples chosen
from the RLWE distribution. The decision RLWE problem is to distinguish
the RLWE distribution from the uniform distribution U(Rl

q × Rq). We write
RLWEN,l,q,η for short.

Definition 2 (Inhomogeneous RSIS). The inhomogeneous RSIS problem is
to find a short non-zero preimage x satisfying Ax = t mod q and ‖x‖2 ≤ B,
where A ← R1×l

q and t ← Rq. Especially, for t = 0, we denote such problem as
RSISN,l,q,B .

2.4 Commitment and Zero-Knowledge Proofs

A commitment scheme contains three algorithms: KeyGen, Com and Ver.

– The key generation algorithm KeyGen: Taking as input 1λ, it outputs a public
parameter PK containing a definition of the message space M.

2 We choose C = 1√
2π

empirically. Besides, for δ = 0 and t = 5, the above probability

is approximate 2−112.
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– The commitment algorithm Com: Taking as input the public parameter PK,
a message x ∈ M, it outputs a commitment/opening pair (c, r).

– The verification algorithm Ver: Taking as input the public parameter PK, a
message x ∈ M, a commitment c and an opening r, it outputs a bit b ∈ {0, 1}.

A commitment is correct if Pr[Ver(PK,m, c, r) = 1|PK ← KeyGen(1λ),m ∈
M, (c, r) ← Com(PK,m)] = 1 − negl(λ). There are two security notions for a
commitment—hiding and binding. A commitment scheme is hiding if for all PPT
algorithms A,

Pr
[
b′ = b

∣
∣
∣
PK ← KeyGen(1λ);x0, x1 ← A(PK); b ← {0, 1};

(c, r) ← Com(PK, xb); b′ ← A(c)

]
≤ 1

2
+ negl(λ),

where the probability is taken over the randomness of KeyGen, Com and A.
Similarly, a commitment scheme is binding if for all PPT algorithms A,

Pr
[ (x, x′, r, r′, c) ← A(PK), s.t. x �= x′

and Ver(PK, x, c, r) = Ver(PK, x′, c, r′) = 1

∣
∣
∣PK ← KeyGen(1λ)

]
≤ negl(λ),

where the probability is taken over the randomness of KeyGen and A.

Zero-Knowledge Proof and Σ-Protocol. A zero-knowledge proof of knowl-
edge is an interactive protocol between a prover P and a verifier V. The prover
holds some secret information and convinces the verifier to accept that he knows
the secret but without revealing any other information. It is well-known that
Σ-protocol is a proof of knowledge [10]. In this section, we adopt the definition
of Σ-protocol and tailor it to the setting of a commitment opening.

Definition 3. Let Π be a two-party protocol between P and V, where V is
a polynomial-time algorithm. Assume PK ← KeyGen(1λ), x ∈ M, (c, r) ←
Com(PK, x), and C is a challenge space. Then a protocol Π is a Σ-protocol
if it satisfies the following conditions:

– Three-Move Form: Π has the following form.
1. P sends V a commitment t.
2. V samples a random challenge d ← C and sends it to P.
3. P returns a response s to V.

– Completeness: If P on input (PK, c, x, r) and V on input (PK, c) follow the
protocol honestly, then V outputs 1 except with negligible probability.

– Special Soundness: Given a pair of accepting transcripts (t, d1, s1) and
(t, d2, s2) satisfying d1 �= d2, there exists a PPT algorithm E , which can
extract a valid opening (x′, r′) of c such that Ver(PK, x′, c, r′) = 1.

– Honest-Verifier Zero-Knowledge: There exists a PPT algorithm S whose out-
put distribution on input (PK, c) is indistinguishable from the transcript of
Π generated by the real protocol.
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3 Modifying BDLOP Commitment

In this section, we present an adaption of the BDLOP commitment [3] for com-
pact parameters. There are two adjustments. First, we extend the additional
element f3 in the opening to a wider range. Then, we apply the singular value
to evaluate the openings instead of �2 norm.

– KeyGen: Create the public key A1 ∈ R1×k
q and A2 ∈ Rl×k

q as A1 =

[1|A′
1] and A2 = [0l×1|Il|A′

2], where A′
1 ← R1×(k−1)

q , A′
2 ← Rl×(k−l−1)

q

and Il is an l × l identity matrix. It outputs PK = {A1,A2}.
– Com: The message space is Rl

q. Taking as input a message x ∈ Rl
q and a

randomness r ← Sk
β , where Sk

β is a centered binomial distribution for integer
β over Rk, it outputs (c, r) with

c :=
(

c1
c2

)

=
(

A1

A2

)

r +
(

0
x

)

. (1)

– Ver: A valid opening of a commitment c =
(

c1
c2

)

is a 3-tuple (x, r, f) with

x ← Rl
q, r =

⎛

⎝
r1
...
rk

⎞

⎠ ∈ Rk
q and f ∈ Sf , where Sf =

{
f ∈ R|f is invertible

in Rq and ‖f‖2 ≤ B2
f

}
with some constant B2

f . The verifier returns 1 if it
satisfies

f
(

c1
c2

)

=
(

A1

A2

)

r + f
(

0
x

)

,

and s1(r) ≤ σ1√
π
(
√

kN +
√

N + 5).

Since these adjustments don’t affect the commit phase, the hiding property is
exact as [3]. It suffices to present a security proof for the binding property.

Lemma 6 (hiding property). Assuming there is an algorithm A with advan-
tage ε in breaking the hiding property of the above commitment, there is an
algorithm A′ solving the RLWEN,k−l−1,q,β problem with advantage ε.

Lemma 7 (binding property). If there is an algorithm A breaking the
binding property of the above commitment with advantage ε, then there is
an algorithm A′ solving the RSISN,k,q,B problem with advantage ε, where
B = 2σ1√

π
(
√

kN +
√

N + 5) · B2
f .

3 Since there is no efficient zero-knowledge proofs that can prove knowledge of the
message and randomness in the commit phase, some additional element f is applied
for a relaxed opening, which makes the zero-knowledge proof can prove something
weaker. Such property is also used in [5] and [3].
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Proof (Lemma 7). Given A1 = [1|A′
1] with A′

1 ← R1×(k−1)
q as an instance of

RSISN,k,q,B, we construct an algorithm A′ to solve the RSISN,k,q,B as follows.
First, A′ generates a matrix A2 = [0l×1|Il|A′

2] with A′
2 ← Rl×(k−l−1)

q and sends
A1,A2 as the public key to an adversary A. If A attacks the binding property

successfully, he can return a commitment
(

c1
c2

)

and its two valid openings

(x, r, f) and (x′, r′, f ′) with x �= x′ satisfying

f
(

c1
c2

)

=
(

A1

A2

)

r + f
(

0
x

)

, (2)

f ′
(

c1
c2

)

=
(

A1

A2

)

r′ + f ′
(

0
x′

)

. (3)

where f , f ′ ∈ Sf and s1(r), s1(r′) ≤ σ1√
π
(
√

kN +
√

N + 5).
After multiplying Eq. (2) with f ′ and Eq. (3) with f and subtracting, we have

A1(f ′r − fr′) = 0, (4)

A2(f ′r − fr′) + ff ′(x − x′) = 0l. (5)

Since f , f ′ ∈ Sf and x �= x′, it implies that ff ′(x − x′) �= 0l and f ′r − fr′ �= 0k.
Notice that ‖fr′‖2 ≤ s1(r′)‖f‖2 ≤ σ1√

π
(
√

kN +
√

N + 5) · B2
f , so is f ′r. Then, we

have ‖f ′r − fr′‖2 ≤ 2σ1√
π
(
√

kN +
√

N + 5) · B2
f . Finally, A′ outputs f ′r − fr′ as a

valid solution of RSISN,k,q,B problem.

4 Short Zero-Knowledge Proof of Knowledge of Opening

In this section, we optimize the zero-knowledge proof of knowledge of BDLOP
commitment opening with a shorter proof by bimodal Gaussian technique [12],
which requires a modulus 2q while it is q in the commitment. Thus, we apply a
modulus-switch technique containing two phases—up phase and down phase.

– Up phase: Taking as input an arbitrary matrix A ∈ Rn×m
q , it outputs a

matrix A′ ∈ Rn×m
2q satisfying A′ = 2A.

– Down phase: Taking as input an arbitrary matrix B′ ∈ Rn×m
2q , it outputs a

matrix B ∈ Rn×m
q with B = B′ mod q.

4.1 Protocol

In order to handle the inconsistent modulus, there is a pre-processing procedure
in our protocol to lift the modulus from q to 2q. The challenge set C = {c ∈
R2q| c =

∑N−1
i=0 cix

i with ci ∈ {0, 1} and ‖c‖1 = κ}. Our interactive protocol Π
is Table 1.
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Table 1. Zero-knowledge proof of knowledge of commitment opening

Protocol Π

Public Key: A1 ∈ R1×k
q and A2 ∈ Rl×k

q

Prover’s Information: r =

⎛
⎝ r1

...
rk

⎞
⎠ ← Sk

β with β = 1

Commitment: c =
(
c1
c2

)
∈ Rq × Rl

q

Pre-Processing: Lift A1 and c1 to Ã1 = 2A1 and c̃1 = 2c1 respectively as in the up
phase. Output Ã1 ∈ R1×k

2q and c̃1 ∈ R2q.

Prover P Verifier V

Sample y1 ← DRk,σ1
,y2 ← DR,σ2 ;

Set Ā=[Ã1| q − c̃1] ∈ R1×(k+1)
2q ;

Compute t = Ā
(
y1

y2

)
∈ R2q.

t−−−−−−−−−→
Choose d ← C.

d←−−−−−−−−−
Choose b ← {0, 1};

Set s =
(
s1
s2

)
=

(
r
1

)
d;

z =
(
z1
z2

)
=

(
y1

y2

)
+ (−1)bs;

Abort with probability 1 −
min{ 1

M exp(− ‖s1‖2
2

2σ2
1

) exp(− ‖s2‖2
2

2σ2
2

) cosh(
〈z1,s1〉

σ2
1

+
〈z2,s2〉

σ2
2

)

, 1}.

z−−−−−−−−−→
Recover Ā=[Ã1| q − c̃1] ∈ R1×(k+1)

2q ;

Write z =
(
z1
z2

)
∈ Rk

q × Rq;

Accept iff Āz = t + qd mod 2q and
‖z1‖2 ≤ 2σ1

√
kN, ‖z2‖2 ≤

2σ2

√
N, and ‖z‖∞ < q

4
.

Theorem 1. Let prime q = 5 mod 8,
√

q > 4σ2

√
N , q

4 > max{τσ1, τσ2} with
some τ > 0. Set B2

f = 4σ2

√
N . Assuming RSISN,k,q,4σ1

√
kN problem is hard, the

protocol Π is a Σ-protocol and has the following properties.

– Completeness: When Π does not abort, the verifier accepts the prover with
overwhelming probability. Besides, the abort probability is approximately 1− 1

M
with M some positive real number.

– Special Soundness: Given a commitment c =
(

c1
c2

)

and two valid transcripts

(t,d, z), (t,d′, z′), where d �= d′, we can extract a valid opening (x, r, f) of
commitment c with s1(r) ≤ σ1√

π
(
√

kN +
√

N + 5) and f ∈ Sf .
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– Honest-Verifier Zero-Knowledge: There is a simulator S whose output dis-
tribution is indistinguishable from the non-aborting transcripts of Π with an
honest verifier.

Proof. Our proof consists of three parts. For the special soundness, we utilize
the modulus-switch technique from 2q to q as the down phase proceeds. The
details are given as follows.

Completeness: For any challenge d ∈ C, we have Āz = t+(−1)bqd due to c̃1 =

2c1 = 2A1r = Ã1r mod 2q and Ā
(

r
1

)

= q mod 2q. Thus, Āz = t + qd mod 2q

holds for any b ∈ {0, 1}. By rejection sampling, the final distributions of z1 and z2
are DRk,σ1 and DR,σ2 respectively, and the abort probability of the protocol Π is
approximately 1− 1

M . When Π is not abort, an honest prover can return a correct
answer given any challenge d. For an honest verifier, ‖z1‖2 ≤ 2σ1

√
kN and

‖z2‖2 ≤ 2σ2

√
N hold except with negligible probability by Lemma 3. Besides,

we can assume the coefficients of z1 and z2 are smaller than τσ1 and τσ2 due to
Lemma 4, thus it yields ‖z‖∞ < q

4 except with negligible probability.
Special Soundness: Given two valid transcripts (t,d, z) and (t,d′, z′), we

recover Ā = [Ã1| q − c̃1] ∈ R1×(k+1)
2q and obtain

Āz = t + qd mod 2q (6)

Āz′ = t + qd′ mod 2q (7)

From (6) and (7), it yields

Ā(z − z′) = q(d − d′) mod 2q. (8)

Since d �= d′ ∈ C, we have Ā(z − z′) �= 0 mod 2q, thus z − z′ �= 0k+1 mod 2q.

Notice ‖z‖∞, ‖z′‖∞ ≤ q
4 , it yields z �= z′. Write z − z′ =

(
z1 − z′

1

z2 − z′
2

)

with

z1 − z′
1 ∈ Rk and z2 − z′

2 ∈ R. According to (8), it implies Ā(z− z′) = 0 mod q,
i.e.

Ã1(z1 − z′
1) + (q − c̃1)(z2 − z′

2) = 0 mod q. (9)

Notice that c̃1 = 2c1 and Ã1 = 2A1. We can transform the operations in R2q

to that in Rq as the down phase and derive 2A1(z1 − z′
1) = 2c1(z′

2 − z2) mod q.
Since gcd(2, q) = 1, we have 2 is an invertible element of Rq and

A1(z1 − z′
1) = c1(z′

2 − z2) mod q. (10)

Now we claim that z′
2 − z2 �= 0. Otherwise, it implies z1 − z′

1 �= 0k due to
z �= z′ and A1(z1 − z′

1) = 0 mod q. Besides, ‖z1 − z′
1‖2 ≤ 4σ1

√
kN holds, and it

is a valid solution of RSISN,k,q,4σ1
√

kN problem, which contradicts to the RSIS
assumption. Therefore, we set f = z′

2 − z2, which satisfies ‖f‖2 ≤ 4σ2

√
N <

√
q

and f is invertible by Lemma 2.1, thus belonging to Sf .
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Finally, let r = z1 − z′
1 and x = c2 − f−1A2r mod q. Then, it is obvious

that
(

A1

A2

)

r + f
(

0
x

)

= f
(

c1
c2

)

holds. Notice that z1 and z′
1 are independent

Gaussian variants with parameter σ1. Then, it yields s1(r) ≤ σ1√
π
(
√

kN+
√

N+5)
due to Lemma 5 by viewing r = z1 − z′

1 as a Gaussian variant with parameter√
2σ1. Therefore, (x, r, f) is a valid opening of commitment c.
Honest-Verifier Zero-Knowledge: Notice that real transcripts will be non-

abort with probability 1− 1
M approximately. Thus, the simulator S should abort

with probability 1
M . For non-aborting transcripts, we define S as follows. It sam-

ples d ← C, z1 ← DRk,σ1 and z2 ← DR,σ2 . Set Ā = [Ã1| q − c̃1] ∈ R1×(k+1)
2q

and t = Āz − qd mod 2q with z =
(

z1
z2

)

. Then, S outputs (t,d, z). The dis-

tribution of (t,d, z) and the real transcripts are indistinguishable by rejection
sampling. Thus, the output distribution of S is indistinguishable from the real
non-aborting transcript. ��

4.2 Instantiation

We choose parameters according to the requirements of Lemmas 6 and 7
and Theorem 1, i.e. considering the hardness of RSIS

N,k,q,
2σ1√

π
(
√

kN+
√

N+5)·B2
f
,

RSISN,k,q,4σ1
√

kN , and RLWEN,k−l−1,q,1. Notice RSISN,k,q,4σ1
√

kN is harder than
RSIS

N,k,q,
2σ1√

π
(
√

kN+
√

N+5)·B2
f
, thus it suffices to evaluate the intractability of

RLWEN,k−l−1,q,1 and RSIS
N,k,q,

2σ1√
π
(
√

kN+
√

N+5)·B2
f
.

Since there is no better attacks of RLWE/RSIS known than plain LWE/SIS,
we analyze the security of RLWE and RSIS by using the attacks against LWE and
SIS. For simplicity, we use the Hermite factor approach to analyze the hardness of
these problems. Concretely, we evaluate the SIS problem with sublattice attack4

and utilize the software LWE-Estimator [1] presented by Albrecht, Player and
Scott to analyze the hardness of the LWE problem.

On the other hand, Gaussian parameters σ1 and σ2 make a crucial impact
on the proof size and abort probability. Since ‖dr‖2 ≤ s1(r)‖d‖2 and r ∈ Sk

1

is 1-bounded centered random variable in the commit phase, we have ‖dr‖2 ≤
(
√

kN +
√

N + 5)
√

κ by Lemma 5. We choose σ1 = 0.7maxd,r ‖dr‖2 and σ2 =
‖d‖2 =

√
κ. Then, the repetition M is approximate 4.6.

We propose concrete parameters for the non-interactive version of the proto-

col Π. In the non-interactive protocol, the proof consists of (d, z) with z =
(

z1
z2

)

a non-sphere Gaussian variant. Since coefficients of z1 and z2 are smaller than
τσ1 and τσ2, the proof size is approximately Nk log(τσ1)+N log(τσ2). Besides,
the size of commitment is N(l + 1) log q. Table 2 gives parameter sets under dif-
ferent security levels. The scheme with parameters from Set I, Set II and Set

4 In [21], one should only use d =
√

N log q
log δ

columns and zero out the others, which

results in a short vector with length as min{q, q
N
d δd} = min{q, q

2N
d }.
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III can achieve a weak security (≈100-bit security), medium security (≈128-bit
security) and high security (≈256-bit security) respectively. In comparison with
[3], our protocol can obtain a shorter proof at the same security level.

Table 2. Parameters for our protocol

Parameters Set I-Ours Set I-[3] Set II-Ours Set II-[3]∗ Set III-Ours Set III-[3]∗

N 1024 1024 1024 1024 2048 2048

q ≈232 ≈232 ≈232 ≈232 ≈232 ≈232

κ 44 36 44 36 36 32

k 3 3 4 4 4 4

l 1 1 1 1 1 1

σ1 430 ≈27000 469 ≈27000 592 ≈32000

σ2 7 – 7 – 6 –

B2
f 896 – 896 – 1087 –

τ 6 6 6 6 18 18

δRSIS ≈1.0034 ≈1.0035 ≈1.0034 ≈1.0035 ≈1.0019 ≈1.0020

δRLWE ≈1.0055 ≈1.0055 ≈1.0029 ≈1.0029 ≈1.0015 ≈1.0015

|com| 8.10KB 8.10KB 8.10KB 8.10KB 16KB 16KB

|proof| 4.93KB 6.60KB 6.34KB 8.65KB 15.07KB 19.13KB

We denote Set I-[3] as the parameters chosen in [3] and also select parameters for [3]
as Set II-[3]∗ and Set III-[3]∗ following the original strategy in [3] when considering
comparisons under a higher security level. We also denote root Hermite factor of
RSIS and RLWE as δRSIS and δRLWE. The sizes of commitment and proof are
denoted as |com| and |proof| respectively.
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ural Science Foundation of China (Nos. 61772520, 61632020, 61472416, 61802392,
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2017C01062, 2020C01078), Beijing Municipal Science and Technology Project (Grant
Nos. Z191100007119007, Z191100007119002).

A Discussion on Protocol of [3] with Compression
Technique

The proof z of zero-knowledge proof of opening in [3] contains two part: z(1)

corresponds to the proof that gets multiplied by the identity matrix of public
matrix A1 and z(2) corresponds to the proof that gets multiplied by A′

1. The
compression technique [2] is to discard z(1) totally and the verifier merely checks
an approximate equality, i.e. an equality of high-order part.
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For an inter x with x = �x�γ ·2γ +[x]γ , we denote �x�γ as the high-order bits
and [x]γ = x mod 2γ as the low-order γ bits. The challenge space is C′ = {d ∈
Rq|‖d‖∞ = 1, ‖d‖1 = κ}. The improved protocol Πcom of [3] with compression
technique [2] is given in Table 3, which satisfies the property of completeness,
special soundness and honest-verifier zero-knowledge. Since honest-verifier zero-
knowledge property is not affected and will hold as [3] has shown, we only discuss
the completeness and special soundness of Πcom.

Completeness: It is guaranteed by A′
1z−dc1 = t−dr1 and �t−dr1�γ = �t�γ

when [t − dr1]γ < γ
2 − maxd,r1 ‖dr1‖2 holds, which brings an additional abort

condition. Thus, adopting an wide-accepted assumption that the low-order bits
are uniformly distributed modulo γ, the non-abort probability is approximately
( 2(

γ
2 −maxd,r1 ‖dr1‖2)−1

γ )N , which means the larger γ is, the larger non-abort prob-
ability we can get.

Table 3. Improved zero-knowledge proof of knowledge in [3].

Protocol Πcom

Public Key: A1 = [1|A′
1] with A′

1 ← R1×(k−1)
q and A2 ∈ Rl×k

q

Prover’s Information: r =
(
r1
r2

)
∈ Sk

β with r1 ∈ Sβ , r2 ∈ Sk−1
β and β = 1

Commitment: c =
(
c1
c2

)
∈ Rq × Rl

q as in (1)

Prover P Verifier V

Sample y ← DRk−1,σ;
Compute t = A′

1y.
t−−−−−−−−−→

Choose d ← C′.
d←−−−−−−−−−

Compute z = y + dr2;
Abort if
[t − dr1]γ ≥ γ

2
− maxd,r1 ‖dr1‖2.

Otherwise, abort with probability
1 − min{ 1

M
exp(−2〈z,dr2〉+‖dr2‖2

2
2σ2 ), 1}.

z−−−−−−−−−→
Write z =

⎛
⎝ z1

· · ·
zk−1

⎞
⎠;

Accept iff
∀i, ‖zi‖2 ≤ 2σ

√
N and


A′
1z − dc1�γ = 
t�γ .
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Special Soundness: Given a commitment c and two valid transcripts (t,d, z),
(t,d′, z′), we can extract a valid opening of commitment c as follows.

�A′
1z − dc1�γ = �t�γ (11)

�A′
1z

′ − d′c1�γ = �t�γ (12)

Therefore, there exist two low-order term e, e′ with ‖e‖∞, ‖e′‖∞ ≤ γ
2 , such that

A′
1z − dc1 = �t�γ · 2γ + e (13)

A′
1z

′ − d′c1 = �t�γ · 2γ + e′ (14)

From Eqs. (13) and (14), we obtain

A′
1(z − z′) − (d − d′)c1 = e − e′, (15)

and it yields

A1

(
e − e′

z − z′

)

= (d − d′)c1 (16)

Notice that ‖e − e′‖∞ ≤ γ. Assuming γ ≤ 4σ, we have ‖e − e′‖2 ≤ 4σ
√

N .

Set f = d − d′, r =
(

e − e′

z − z′

)

and x = c2 − f−1A2r. Then (x, r, f) is a valid

opening5 of commitment c in [3].
Now we claim there is a trade-off between the reduced proof size, non-abort

probability and security for Πcom. When instantiating the protocol Πcom, we
have to consider the non-abort probability (2(

γ
2 −maxd,r1 ‖dr1‖2)−1

γ )N for com-
pleteness and condition γ ≤ 4σ for special soundness. An observation is that
the non-abort probability is 3.7 × 10−4 with σ ≈ 27000 and γ ≈ 108000 under
the parameter in [3] (Set I-[3] in Table 2). Thus, it is inevitable to expand σ
for a practical non-abort probability. If we choose the non-abort probability
(2(

γ
2 −maxd,r1 ‖dr1‖2)−1

γ )N ≈ 0.3, then Gaussian parameter σ should be 6.3× larger
than before, which may result in a weaker SIS problem. In fact, the root Her-
mite factor of SIS increases to 1.0047, though the proof size can be reduced to
5KB under the expanded σ. Thus, it seems such improvement with compression
technique is possible but at the cost of low non-abort probability or security.

5 In [3], a valid opening of commitment c =

(
c1
c2

)
is a 3-tuple (x, r, f) with r =

⎛
⎝

r1
· · ·
rk

⎞
⎠ ∈ Rk

q and f ∈ C̄′, where C̄′ is a set of differences C′ − C′ excluding 0. The

verifier checks that f

(
c1
c2

)
=

(
A1

A2

)
r+ f

(
0
x

)
, and that for all i, ‖ri‖2 ≤ 4σ

√
N .
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Abstract. The arbitrary-centered discrete Gaussian sampler is a funda-
mental subroutine in implementing lattice trapdoor sampling algorithms.
However, existing approaches typically rely on either a fast implemen-
tation of another discrete Gaussian sampler or pre-computations with
regards to some specific discrete Gaussian distributions with fixed centers
and standard deviations. These approaches may only support sampling
from standard deviations within a limited range, or cannot efficiently
sample from arbitrary standard deviations determined on-the-fly at run-
time.

In this paper, we propose a compact and scalable rejection sam-
pling algorithm by sampling from a continuous normal distribution
and performing rejection sampling on rounded samples. Our scheme
does not require pre-computations related to any specific discrete
Gaussian distributions. Our scheme can sample from both arbitrary
centers and arbitrary standard deviations determined on-the-fly at
run-time. In addition, we show that our scheme only requires a low num-
ber of trials close to 2 per sample on average, and our scheme maintains
good performance when scaling up the standard deviation. We also pro-
vide a concrete error analysis of our scheme based on the Rényi diver-
gence. We implement our sampler and analyse its performance in terms
of storage and speed compared to previous results. Our sampler’s run-
ning time is center-independent and is therefore applicable to implemen-
tation of convolution-style lattice trapdoor sampling and identity-based
encryption resistant against timing side-channel attacks.

Keywords: Lattice-based crypto · Discrete Gaussian sampling ·
Implementation · Efficiency

1 Introduction

The arbitrary-centered discrete Gaussian sampling algorithm is an important
subroutine in implementing lattice trapdoor samplers, which is a fundamental
tool employed by lattice-based cryptography applications such as digital signa-
ture [20] and identity-based encryption (IBE) [3,7]. However, previous works
c© Springer Nature Switzerland AG 2020
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focused more on optimising the lattice trapdoor sampling algorithms, but the
implementation details of the arbitrary-centered discrete Gaussian sampling
were not well addressed. Typically, arbitrary-centered discrete Gaussian sam-
pling approaches need to perform either rejection sampling [5,8,12,20,21] or pre-
computations related to some specific discrete Gaussian distributions [14,15,17].
However, both types of methods have issues in the implementation: rejection
sampling based methods are either slow due to the large number of trials per
sample on average (typically, about 8–10) [8], requiring high precision arithmetic
for cryptography applications [12], or relying on a fast implementation of another
discrete Gaussian sampler [5,20,21]. On the other hand, pre-computation based
methods consume at least few kilobytes (KB) of memory to store the tables and
have the following limitations: the pre-computation table size in [14,15] grows
significantly when scaling up the standard deviation and this approach cannot
support arbitrary standard deviations determined on-the-fly at run-time, while
it is unclear how to efficiently implement the offline phase in [17] if the full
algorithm needs to be executed during the run-time.

Recently the rounded Gaussian sampling (i.e. sampling from a continuous
normal distribution and rounding the samples) was adapted by lattice-based
digital signatures [11,25]. Compared with a previous discrete Gaussian sampling
algorithm [6], the rounded Gaussian sampler in [11] showed impressive perfor-
mance with regards to the running speed and can be implemented in constant-
time. The implementation in [11] is also notably simple (within less than 40 lines
of C++ source code). However, since it is unclear whether a rounded Gaussian
distribution can be directly adapted to implement a lattice trapdoor, another
interesting question is: can one employ the existing efficient (rounded) continuous
Gaussian distribution sampling techniques to implement an arbitrary-centered
discrete Gaussian sampler?

1.1 Contribution

In this paper, we introduce a novel arbitrary-centered discrete Gaussian sampling
algorithm over integers by generalising ideas from [4]. Our scheme samples from
a continuous normal distribution and performs rejection sampling on rounded
samples by adapting techniques from [11,25]. Compared to previous arbitrary-
centered discrete Gaussian sampling techniques, our scheme has the following
advantages:

– Our sampling algorithm does not require any pre-computations related to a
specific discrete Gaussian distribution or a specific standard deviation, and
both the center and the standard deviation can be arbitrary determined on-
the-fly at run-time.

– In addition, we show in Sect. 4 that our sampling method only requires a low
number of trials close to 2 per sample on average compared to about 8–10 on
average in the rejection sampling with regards to a uniform distribution, and
the rejection rate of our algorithm decreases when scaling up σ. Therefore, our
sampling algorithm is not limited to small σ and can be adapted to sample
from larger σ without affecting the efficiency.
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– Since sampling from a continuous normal distribution is a well-studied topic
[22] and the sampling algorithms are implemented in many existing software
libraries (including the C++11 STL) and hardware devices, one can easily
implement our scheme by employing existing tools.

– We provide a center-independent run-time implementation of our algorithm
without timing leakage of the center and it can be adapted to achieve timing
resistant implementation of convolution-style lattice trapdoor sampler [16,18]
and IBE [3].

2 Preliminaries

Let ρc,σ (x) = exp
(
− (x − c)2 /

(
2σ2

))
be the (continuous) Gaussian function

with center c and standard deviation σ. We denote the continuous Gaussian (nor-
mal) distribution with center c and standard deviation σ by N (

c, σ2
)
, which

has the probability density function ρc,σ(x)/
(
σ
√

2π
)
. We denote the discrete

Gaussian distribution on integer lattices with center c and standard deviation
σ by: Dc,σ (x) = ρc,σ (x) /S, where S = ρc,σ (Z) =

∑
k∈Z

ρc,σ (k) is the nor-
malisation factor. We omit the center in notations (i.e. ρσ(x) and Dσ(x)) if
the center is zero. In addition, we denote the uniform distribution on set S by
U(S). Sampling from a distribution P is denoted by x ←↩ P. We define �x�
as the nearest integer to x ∈ R. We denote Z

+ as the integer set {1, . . . ,∞}
and Z

− as the integer set {−∞, . . . ,−1}, respectively. Also, for a lattice Λ
and any ε ∈ R

+, we denote the smoothing parameter ηε(Λ) as the smallest
s ∈ R

+ such that ρ1/(s
√
2π) (Λ∗ \ {0}) ≤ ε, where Λ∗ is the dual lattice of Λ:

Λ∗ = {w ∈ R
n : ∀x ∈ Λ,x · w ∈ Z} [18]. An upper bound on ηε (Z) is given by

[18]: ηε(Z) ≤ √
ln(2 + 2/ε)/π.

Theorem 1 (Adapted from [18], Lemma 2.4). For any ε ∈ (0, 1) and
c ∈ R, if σ ≥ ηε (Z), then ρc,σ (Z) =

[
1−ε
1+ε , 1

]
·ρσ (Z), and ρσ (Z) is approximately∫ ∞

−∞ ρσ(x) dx = σ
√

2π.

Definition 1 (Relative Error). For two distributions P and Q such that
Supp(P) = Supp(Q), the relative error between P and Q is defined as:
Δ(P||Q) = maxx∈Supp(P)

|P(x)−Q(x)|
Q(x) .

Definition 2 (Rényi Divergence [2,19]). For two discrete distributions P
and Q such that Supp(P) ⊆ Supp(Q), the Rényi divergence (RD) of order α ∈
(1,+∞) is defined as: Rα(P||Q) =

(∑
x∈Supp(P)

P(x)α

Q(x)α−1

) 1
α−1

.

Theorem 2 (Relative Error Bound, Adapted from [19], Lemma 3 and
Eq. 4). For two distributions P and Q such that Supp(P) = Supp(Q), we

have: Rα(P||Q) ≤
(
1 + α(α−1)·(Δ(P||Q))2

2(1−Δ(P||Q))α+1

) 1
α−1

. The right-hand side is asymp-

totically equivalent to 1 + α · (Δ (P||Q))2 /2 as Δ(P||Q) → 0. In addition,
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if a cryptographic search problem using M independent samples from Q is
(λ + 1)-bit secure, then the same problem sampling from P will be λ-bit secure
if R2λ(P||Q) ≤ 1 + 1/(4M).

3 Previous Work

3.1 Rejection Sampling

The classic rejection sampling algorithm [8,23] can sample from an arbitrary-
centered discrete Gaussian distribution. To sample from Dc,σ, one can sample
x ←↩ U ([c − τσ, c + τσ] ∩ Z) and accept x with probability ρc,σ(x) as the output,
where τ is the tail-cut factor (typically, about 10–12). However, this method is
slow as the number of trials is 2τ/

√
2π on average (about 8–10 for typical τ).

Recently an algorithm sampling exactly from Dc,σ without floating-point arith-
metic was presented by [12], which also has a lower rejection rate compared to
the classic rejection sampling algorithm. However, this algorithm relies on high
precision integer arithmetic to satisfy the precision requirements in cryptography
applications.

To reduce the rejection rate, recent works performed rejection sampling
with regards to some distributions much closer to Dc,σ compared to a uni-
form distribution: The Falcon signature [20] and its constant-time variant [21]
adapted a rejection sampling method with regards to bimodal Gaussians: to
sample from Dc,σ where c ∈ [0, 1], one can choose some σ′ ≥ σ and sam-
ple x ←↩ D+

σ′ (i.e. the discrete Gaussian distribution Dσ′ restricted to the
domain Z

+ ∪ {0}). The algorithm computes x′ = b + (2b − 1) · x where
b ←↩ U ({0, 1}). The authors of [20,21] showed that x′ has a bimodal Gaus-
sian distribution close to the target distribution. The algorithm then accepts x′

with probability C(σ) · exp
(

x2

2σ′2 − (x′−c)2
2σ2

)
as the output, where the scaling

factor C(σ) = min(σ)/σ when sampling from multiple σ. This scheme has the
average acceptance rate C(σ) · ρc,σ (Z) / (2ρσ′ (Z+)), which is proportional to
min(σ)/σ′ [20,21]. However, if the application needs to sample from different σ,
the acceptance probability is high only when min(σ) and max(σ) are sufficiently
close. This is not an issue in the Falcon signature, since the parameters in Falcon
implies σ′ is very close to max(σ) and min(σ)/max(σ) ≈ 0.73 [21]. However, if
the gap between min(σ) and max(σ) is large, since σ′ ≥ max(σ), this algorithm
might have a low acceptance rate.1

A recent work [5] extended the binary sampling algorithm from the BLISS sig-
nature [6] to support non-zero arbitrary centers. For any center c ∈ R, sampling
from Dc,σ is equivalent to sampling from DcF ,σ + �c�, where cF = c−�c� ∈ [0, 1)
is the fractional part of c. In addition, for cF ∈ [1/2, 1), sampling from DcF ,σ is
equivalent to sampling from 1 − Dc′

F ,σ where c′
F = 1 − cF ∈ (0, 1/2]. A mod-

ified binary sampling scheme [5] can then be adapted to sample from Dc′
F ,σ

1 One may employ different implementations for different σ, similar to the implemen-
tation of Falcon.
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with any c′
F ∈ (0, 1/2], in which the average number of trials is upper-bounded

by: σ2

σ0σ−σ2
0

· ρσ0(Z+)
σ
√

π/2−1
, where σ0 =

√
1/ (2 ln 2) is a fixed parameter used by the

binary sampling algorithm [5,6] and σ = kσ0 for some k ∈ Z
+. This upper-bound

is about 1.47 for large σ [5].

3.2 TwinCDT

The authors of [14,15] suggested a variant of the Cumulative Distribution Table
(CDT) method [4] with multiple pre-computed tables. These algorithms will
have two phases: online and offline. To be more specific, for c ∈ [0, 1), during
the offline phase, the algorithm pre-computes multiple CDT of Di/n,σ, where
i ∈ {0, . . . , n − 1} and n ∈ Z

+ is sufficiently large. During the online phase, the
algorithm picks a sample generated from either D�n(c−�c	)	/n,σ or D
n(c−�c	)�/n,σ

as the output. Although the algorithm is very fast compared to other approaches,
however, σ is fixed during the offline computation and thus this algorithm cannot
support sampling from Dc,σ with both arbitrary c and σ determined on-the-fly at
run-time. Another issue is that the pre-computation table size grows significantly
when scaling up σ (see Table 2 in Sect. 5) and therefore the algorithm is not
scalable.

3.3 Convolution

A recursive convolution sampling scheme for Dc,σ was presented in [17] as follows:

suppose the center c has k fractional bits. Let σ0 = σ/
√∑k−1

i=0 2−2i. One can
sample xk ←↩ Dck,σ0 where ck = 2k−1 ·c, then use yk = 2−k+1 ·xk to round c to a
new center c′ = c−yk with k′ = k−1 fractional bits. Set c = c′ and k = k′ in the
next iteration until k = 0, and

∑k
i=1 yi will be a sample distributed as Dc,σ. The

authors of [17] separated this algorithm into an online phase and an offline phase,
where the offline phase will generate samples xi in batch and the online phase will
compute the linear combinations of xi for i ∈ {1, . . . , k}. The online phase is very
fast and can be implemented in constant-time. However, for implementations
where both sampling from Dci,σ0 and computing the linear combinations need
to be carried during the run-time, it is unclear how to efficiently implement the
Dci,σ0 sampling algorithm in constant-time (which is another discrete Gaussian
sampler supporting a small amount of centers ci). The offline batch sampler also
consumes significant amount of memory (see Table 2 in Sect. 5).

4 Proposed Algorithm

In the textbook [4], the author defined a variant of the discrete Gaussian dis-
tribution as Pr [X = z] = c · exp

(
− (|z| + 1/2)2 /

(
2σ2

))
, where z ∈ Z and

c is the normalisation constant, i.e. Pr [X = z] ∝ ρ−1/2,σ(z) for z ≥ 0 and
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Algorithm 1. Rejection sampler adapted from [4], pg. 117, ch. 3
Input: Standard deviation σ ∈ R

+.
Output: A sample z distributed as Pr [X = z] = c · exp

(− (|z| + 1/2)2 /
(
2σ2

))
.

1: function Sampler(σ)
2: Sample x ←↩ N (

0, σ2
)
.

3: Sample r ←↩ U ([0, 1)).
4: Let Y = (|�x�| + 1/2)2 − x2.
5: if r < exp

(−Y/
(
2σ2

))
then

6: Let z = �x�.
7: else
8: goto 2.
9: end if

10: return z.
11: end function

Pr [X = z] ∝ ρ1/2,σ(z) for z < 0. A rejection sampling algorithm (see Algo-
rithm 1) was provided by [4] with rejection probability less than (2/σ) · √

2/π
for such a distribution, which is fast for large σ (see Appendix B for the proof).

Here we generalise Algorithm 1 to sample from Dc,σ(z). By removing the
absolute value and replacing the fixed center −1/2 with a generic center c in
Algorithm 1, we observe that Y ′ = (�x� + c)2 − x2 ≥ 0 when (c ≥ 1/2, x ≥ 0) or
(c ≤ −1/2, x < 0). Therefore, we can replace Y with Y ′ and perform a similar
rejection sampling to Algorithm 1 when sampling from Dc,σ(z) for some c and
z = �x�. To extend Algorithm 1 to support all c ∈ R and z ∈ Z, we first compute
cI = �c� and cF = cI − c, where cF ∈ [−1/2, 1/2]. Then we can sample from
D−cF ,σ instead, since Dc,σ = D−cF ,σ + cI . To sample from D−cF ,σ for all cF ∈
[−1/2, 1/2], we shift the center of the underlying continuous normal distribution,
i.e. sampling y ←↩ N (±1, σ2

)
, and perform a rejection sampling over z = �y�

with acceptance rate exp
(−Y ′′/

(
2σ2

))
where Y ′′ = (�y� + cF )2 − (y ∓ 1)2 (we

also need to ensure Y ′′ ≥ 0 before performing this rejection sampling). The
sampling algorithm for D−cF ,σ is presented in Algorithm 2. Note that the output
of Algorithm 2 is restricted to the domain Z \ {0}. Therefore, the algorithm
needs to output 0 with probability D−cF ,σ(0). We present the full algorithm
in Algorithm 3. Since both Algorithm 2 and Algorithm 3 do not require pre-
computations related to σ, our scheme can support arbitrary standard deviations
determined on-the-fly at run-time in addition to arbitrary centers.

Theorem 3. The output z sampled by Algorithm 2 is distributed as
D−cF ,σ (Z \ {0}). The output of Algorithm 3 is distributed as Dc,σ(Z).

Proof. When b = 0, y is distributed as N (−1, σ2
)
. For step 11 in Algorithm 2,

we have Y1 = (�y� + cF )2−(y + 1)2 ≥ 0 for any cF ∈ [−1/2, 1/2] when y ≤ −1/2.
Therefore, the rejection condition exp

(−Y1/
(
2σ2

)) ∈ (0, 1]. Let z0 = �y�. We
have the output distribution:
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Algorithm 2. D−cF ,σ (Z \ {0}) sampler
Input: Center cF ∈ [−1/2, 1/2]. Standard deviation σ ∈ R

+.
Output: A sample z distributed as D−cF ,σ restricted to the domain Z \ {0}.
1: function RoundingSampler(cF , σ)
2: Sample x ←↩ N (0, 1).
3: Sample b ←↩ U ({0, 1}).
4: if b = 0 then
5: Let y = σ · x − 1.
6: if y > −1/2 then
7: goto 2.
8: end if
9: Sample r ←↩ U ([0, 1)).

10: Let Y1 = (�y� + cF )2 − (y + 1)2.
11: if r < exp

(−Y1/
(
2σ2

))
then

12: Let z = �y�.
13: else
14: goto 2.
15: end if
16: else
17: Let y = σ · x + 1.
18: if y < 1/2 then
19: goto 2.
20: end if
21: Sample r ←↩ U ([0, 1)).
22: Let Y2 = (�y� + cF )2 − (y − 1)2.
23: if r < exp

(−Y2/
(
2σ2

))
then

24: Let z = �y�.
25: else
26: goto 2.
27: end if
28: end if
29: return z.
30: end function

Pr [z = z0] ∝
∫ z0+1/2

z0−1/2

exp
(

− (y + 1)2

2σ2

)
· exp

(
− (z0 + cF )2 − (y + 1)2

2σ2

)
dy

=
∫ z0+1/2

z0−1/2

exp

(
− (z0 + cF )2

2σ2

)
dy = ρ−cF ,σ (z0) . (1)

In this case, the distribution of z = z0 is D−cF ,σ restricted to the domain Z
−

(due to the rejection of y to (−∞,−1/2]).
Similarly, when b = 1, y is distributed as N (

1, σ2
)
. For step 23 in Algorithm

2, we have Y2 = (�y� + cF )2 − (y − 1)2 ≥ 0 for any cF ∈ [−1/2, 1/2] when y ≥
1/2. Therefore, the rejection condition exp

(−Y2/
(
2σ2

)) ∈ (0, 1]. Let z0 = �y�.
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Algorithm 3. Dc,σ (Z) sampler
Input: Center c ∈ R. Standard deviation σ ∈ R

+. Normalisation factor S = ρc,σ (Z) ≈
σ
√

2π.
Output: A sample distributed as Dc,σ (Z).
1: function RoundingSamplerFull(c, σ)
2: Let cI = �c� and cF = cI − c.
3: Sample r ←↩ U ([0, 1)).
4: if r < exp

(−c2F /
(
2σ2

))
/S then

5: Let z′ = 0.
6: else
7: Let z′ = RoundingSampler (cF , σ).
8: end if
9: return z′ + cI .

10: end function

We have the output distribution:

Pr [z = z0] ∝
∫ z0+1/2

z0−1/2

exp
(

− (y − 1)2

2σ2

)
· exp

(
− (z0 + cF )2 − (y − 1)2

2σ2

)
dy

=
∫ z0+1/2

z0−1/2

exp

(
− (z0 + cF )2

2σ2

)
dy = ρ−cF ,σ (z0) . (2)

In this case, the distribution of z = z0 is D−cF ,σ restricted to the domain Z
+

(due to the rejection of y to [1/2,∞)). Therefore, the output z in Algorithm 2
is distributed as D−cF ,σ restricted to the domain Z \ {0}.

In Algorithm 3, the probability Pr [z′ = 0] = exp
(−c2F /

(
2σ2

))
/S =

D−cF ,σ(0). Therefore, variable z′ is distributed as D−cF ,σ(Z). Since c = cI − cF ,
we have the output z′ + cI distributed as Dc,σ(Z).

��
To prove the rejection rate of Algorithm 2, we need the following lemma:

Lemma 1. For any ε ∈ (0, 1) and c ∈ [−1/2, 1/2], if σ ≥ ηε (Z), then both
ρc,σ (Z−) and ρc,σ (Z+) have the lower bound: 1

2 · 1−ε
1+ε · ρσ (Z) − 1.

Proof. When c ∈ [−1/2, 1/2], for ρc,σ (Z−), we have:

ρc,σ (Z) = ρc,σ

(
Z
+)

+ ρc,σ

(
Z

− ∪ {0}) ≤ 2ρc,σ

(
Z

− ∪ {0})
= 2ρc,σ

(
Z

−)
+ 2ρc,σ (0) .

Therefore,

ρc,σ

(
Z

−) ≥ 1
2

· ρc,σ (Z) − ρc,σ (0)

≥ 1
2

· 1 − ε

1 + ε
· ρσ (Z) − ρc,σ (0) (By Theorem 1).
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We have ρσ (0) ≥ ρc,σ (0) for c ∈ [−1/2, 1/2]. Therefore,

ρc,σ

(
Z

−) ≥ 1
2

· 1 − ε

1 + ε
· ρσ (Z) − 1.

Similarly, when c ∈ [−1/2, 1/2], for ρc,σ (Z+), we have:

ρc,σ (Z) = ρc,σ

(
Z

−)
+ ρc,σ

(
Z
+ ∪ {0}) ≤ 2ρc,σ

(
Z
+ ∪ {0})

= 2ρc,σ

(
Z
+)

+ 2ρc,σ (0) .

Therefore, since c ∈ [−1/2, 1/2], we have:

ρc,σ

(
Z
+
) ≥ 1

2
· ρc,σ (Z) − ρc,σ (0)

≥ 1
2

· 1 − ε

1 + ε
· ρσ (Z) − ρc,σ (0) (By Theorem 1)

≥ 1
2

· 1 − ε

1 + ε
· ρσ (Z) − 1 (ρσ (0) ≥ ρc,σ (0) when c ∈ [−1/2, 1/2]).

��
Theorem 4. For σ ≥ ηε (Z), the expected number of trials M in Algorithm 2
has the upper bound: M ≤ 2 · 1+ε

1−ε · σ
√
2π

σ
√
2π−1−2· 1+ε

1−ε

. If σ is much greater than
(
1 + 2 · 1+ε

1−ε

)
/
√

2π, then M ≤ 2 · (1 + O(ε) + O (1/σ)).

Proof. By Theorem 3, when b = 0, we have the output probability density func-
tion f(y) = ρ−cF ,σ (�y�) /ρ−cF ,σ (Z−) and the input probability density function
g(y) = ρ−1,σ(y)/

(
σ
√

2π
)
. The expected number of trials can be written as:

M = max
f(y)
g(y)

= max

(
ρ−cF ,σ (�y�)

ρ−1,σ(y)
· σ

√
2π

ρ−cF ,σ (Z−)

)
.

We have:

ρ−cF ,σ (�y�)
ρ−1,σ(y)

=
exp

(
− (�y�+cF )2

2σ2

)

exp
(
− (y+1)2

2σ2

) = exp

(
− (�y� + cF )2 − (y + 1)2

2σ2

)
≤ 1.

Therefore,

M ≤ σ
√

2π

ρ−cF ,σ (Z−)
≤ 2 · 1 + ε

1 − ε
· σ

√
2π

ρσ (Z) − 2 · 1+ε
1−ε

≤ 2 · 1 + ε

1 − ε
· σ

√
2π

σ
√

2π − 1 − 2 · 1+ε
1−ε

,

where the second inequality follows from Lemma 1, and the third inequality
follows from ρσ (Z) = ρσ (Z− ∪ {0}) + ρσ (Z+ ∪ {0}) − 1 and the sum-integral
comparison: ρσ (Z− ∪ {0}) ≥ ∫ 0

−∞ ρσ(x) dx = σ
√

π/2 and ρσ (Z+ ∪ {0}) ≥∫ ∞
0

ρσ(x) dx = σ
√

π/2.



COSAC: COmpact and Scalable Arbitrary-Centered 293

Similarly, when b = 1, we have the output probability density function
f(y) = ρ−cF ,σ (�y�) /ρ−cF ,σ (Z+) and the input probability density function
g(y) = ρ1,σ(y)/

(
σ
√

2π
)
. The expected number of trials can be written as:

M = max
f(y)
g(y)

= max

(
ρ−cF ,σ (�y�)

ρ1,σ(y)
· σ

√
2π

ρ−cF ,σ (Z+)

)
.

We have:

ρ−cF ,σ (�y�)
ρ1,σ(y)

=
exp

(
− (�y�+cF )2

2σ2

)

exp
(
− (y−1)2

2σ2

) = exp

(
− (�y� + cF )2 − (y − 1)2

2σ2

)
≤ 1.

Therefore,

M ≤ σ
√

2π

ρ−cF ,σ (Z+)
≤ 2 · 1 + ε

1 − ε
· σ

√
2π

ρσ (Z) − 2 · 1+ε
1−ε

≤ 2 · 1 + ε

1 − ε
· σ

√
2π

σ
√

2π − 1 − 2 · 1+ε
1−ε

,

where the second inequality follows from Lemma 1, and the third inequality
follows from ρσ (Z) ≥ σ

√
2π − 1.

When σ is much greater than
(
1 + 2 · 1+ε

1−ε

)
/
√

2π, σ
√

2π is much greater than

1 + 2 · 1+ε
1−ε . Thus,

M ≤ 2 · 1 + ε

1 − ε
· σ

√
2π

σ
√

2π − 1 − 2 · 1+ε
1−ε

≤ 2 · (1 + O(ε) + O (1/σ)) .

��

4.1 Accuracy Analysis

We now analyse the relative error of Algorithm 2 here. Let the absolute error
of the continuous Gaussian sample x be ex: x′ = x + e, where x′ is the actual
sample, x is the ideal sample, and the error |e| ≤ ex. We denote the actual
distribution by Pactual and the ideal distribution by Pideal. Since the variable y
might be rounded to an incorrect integer due to the error from x when y is close
to the boundaries z0 ± 1/2 [11], we have:

Δ (Pactual||Pideal) = max
∣∣∣∣
Pactual

Pideal
− 1

∣∣∣∣

= max
z0

∣∣∣∣∣∣

∫ z0+1/2+σex

z0−1/2−σex
exp

(
− (z0+cF )2

2σ2

)
dy

ρ−cF ,σ (z0)
− 1

∣∣∣∣∣∣
(by (1), (2), and y = σx ± 1)

= max
z0

∣∣∣∣
(1 + 2σex) · ρ−cF ,σ (z0)

ρ−cF ,σ (z0)
− 1

∣∣∣∣ = 2σex.
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By Theorem 2, for λ-bit security, we need:

R2λ (Pactual||Pideal) ≤ 1 +
1

4M
=⇒ 1 + 2λ · (Δ (Pactual||Pideal))

2

2
≤ 1 +

1
4M

=⇒ ex ≤ 1
4σ

√
λM

.

Note that both Pactual and Pideal have the same normalisation factor, since
Pactual is obtained by the imperfect continuous Gaussian distribution with the
rounding error contributed to the interval of the integral [11].

5 Evaluation

Side-channel Resistance Our implementation is not fully constant-time because
the rejection rate may still reveal σ due to Theorem 4. However, since the rejec-
tion rate is independent of the center, our implementation can achieve fully
constant-time with respect to the secret if σ is public. The σ in convolution-
style lattice trapdoor samplers [16,18] is typically a public constant, but σ in
GPV-style sampler [10] depends on the secret. Note that the IBE implemen-
tation in [3] adapted a variant of [16], but it appears that the implementation
source code2 of [3] used a different distribution and the side-channel resistance
perspective is unclear. Our sampling algorithm can be applied in the IBE imple-
mentation of [3] to give a fully constant-time IBE implementation.

We perform benchmarks of Algorithm 3 with fixed σ and random arbitrary
centers. We employ the Box-Muller continuous Gaussian sampler [11,25] imple-
mented by using the VCL library [9], which provides ex ≤ 2−48 [11]. To compare
with [15], we select σ = {2, 4, 8, 16, 32}, and to compare with [17], we choose
σ = 215. In addition, we also compare with variants [5,26] of the binary sam-
pling algorithm [6] for additional σ =

{
217, 220

}
. From the error analysis in

Sect. 4.1, for given ex and λ, M ≤ 1
16λe2

xσ2 . For σ ∈ [
2, 220

]
and λ = 128, we

have M ≤ 245. We adapt techniques similar to [26] to avoid high precision arith-
metic (see Appendix A for details) and the scheme3 is implemented by using
the double precision i.e. δf = 52. We also compute the normalisation factor
S in double precision. We use the AES256 counter mode with hardware AES
instructions (AES-NI) to generate the randomness in our implementations. We
provide both the non-constant time reference implementation and the center-
independent run-time implementation. We take care of all the branches for the
center-independent run-time implementation by adapting constant-time selec-
tion techniques [1]. For the non-constant time reference implementation (the
“Ref.” column in Table 1), we use the exp(x) from the C library, which provides
about 50-bit precision [20], while for the center-independent run-time implemen-
tation (the “Center-independent” column in Table 1), we adapt the techniques
from [26] with about 45-bit precision. From the precision analysis in [19,26], the
2 https://github.com/lbibe/code.
3 Our implementation is available at https://github.com/raykzhao/gaussian ac.

https://github.com/lbibe/code
https://github.com/raykzhao/gaussian_ac
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Table 1. Number of samples per second for our scheme with fixed σ at 4.2 GHz (with
λ = 128).

σ Ref. (×106) Center-independent (×106)

2 10.33 ± 0.18 8.96 ± 0.16

4 11.57 ± 0.18 10.87 ± 0.15

8 11.95 ± 0.17 11.61 ± 0.13

16 12.14 ± 0.16 12.00 ± 0.12

32 12.19 ± 0.15 12.21 ± 0.11

215 11.70 ± 0.13 11.57 ± 0.09

217 11.20 ± 0.14 11.63 ± 0.10

220 11.17 ± 0.13 11.28 ± 0.09

above precisions (including the precision of S) are sufficient for λ = 128 and
M ≤ 245.

The benchmark is carried on as follows: we use g++ 9.1.1 to compile our
implementations with the compiling options -O3 -march=native enabled. The
benchmark is running on an Intel i7-7700K CPU at 4.2 GHz, with the Hyper-
threading and the Turbo Boost disabled. We generate 1024 samples (with a
random arbitrary center per sample) for 1000 times and measure the consumed
CPU cycles, with the exception that we fix c = 0 and compare our center-
independent run-time implementation with [26], since the scheme in [26] is essen-
tially a constant-time zero-centered discrete Gaussian sampler. Then we convert
the CPU cycles to the average number of samples per second for the comparison
purpose with previous works.

The benchmark results of our scheme are shown in Table 1 (in the format of
mean ± standard deviation). We also summarise the performance of previous
works in Table 2, and show the comparison with [26] in Table 3 when c = 0.
Since previous works [5,15,17] measured the number of generated samples per
second running on CPUs with different frequencies, we scale all the numbers
to be based on 4.2 GHz. In addition, since some previous works [15,17] require
pre-computations to implement the sampling schemes, we summarise the pre-
computation memory storage consumptions in Table 2. Because the TwinCDT
method [15] provided different tradeoffs between the running speed and the
pre-computation storage consumption, we show all 3 different sampling speeds
and the corresponding pre-computation storage consumptions for each σ from
[15]. Note that although our sampling scheme does not require pre-computations,
however, the exp(x) implementation typically consumes a small amount of mem-
ory to store the coefficients of the polynomial approximation. For example, the
polynomial approximation of the exp(x) in our center-independent run-time
implementation (adapted from [26]) has degree 10 with double precision coeffi-
cients, and therefore it consumes (10 + 1) · 8 = 88 bytes.
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Table 2. Summary of previous works for fixed σ at 4.2 GHz (with λ = 128).

σ Num. of samples (×106/sec) Pre-computation storage (KB)

2 [15] 51.01/62.45/76.43 1.4/4.6/46

4 [15] 45.50/56.44/69.09 1.9/6.3/63

8 [15] 37.70/53.31/63.51 3/10/100

16 [15] 31.29/37.63/52.29 5.2/17/172

32 [15] 34.38/39.76/42.60 9.5/32/318

215 [17] ≈ 12.35 (online)b, 1.78 (online+offline)a 25.4a

4–220 [5] ≈ 16.3 −c

aThe online+offline benchmark result is obtained and scaled from the variant imple-
mented by [5].
bThe result in [17] is based on the authors’ reference implementation, which is not
claimed to be optimal [24].
cThe base sampler and the Bernoulli sampler may require pre-computations depend-
ing on the implementation techniques.

Table 3. Number of samples per second compared with [26] for fixed σ and c = 0 at
4.2 GHz (with λ = 128).

σ Our Scheme (×106/sec) [26] (×106/sec)

2 9.44 19.87

4 11.10 19.04

8 12.08 19.04

16 12.63 18.62

32 12.93 18.80

215 12.67 18.36

217 12.67 18.90

220 13.04 18.70

From Table 1, our scheme has good performance for both small and large σ
(11.53 × 106 samples per second for the non-constant time reference implemen-
tation and 11.27 × 106 samples per second for the center-independent run-time
implementation on average). In particular, our scheme has better performance
for large σ since the number of trials becomes lower by Theorem 4. Note that
the amount of randomness required by the comparison steps in Appendix A will
significantly increase for very small or very large σ. Therefore, our implementa-
tion consumes different amount of randomness in comparison steps for each σ
based on Appendix A, and the performance for some larger σ is slightly slower
than smaller σ in Table 1 due to the increased amount of randomness required.
The overhead introduced by the center-independent run-time implementation
is at most 13.33% in our benchmarks. Note that the overhead of the center-
independent run-time implementation is smaller for large σ due to the lower
probability of outputting z′ = 0 in Algorithm 3.
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For σ ∈ [2, 32], although the TwinCDT method [15] is 2.5x–7.3x faster than
our non-constant time reference implementation, however, this method requires
a pre-computation with at least 1.4 KB memory consumption to store the CDT,
while our scheme only requires at most several hundred bytes if considering all
the polynomial approximation coefficients (including those functions used by the
Box-Muller continuous Gaussian sampler). When scaling up σ, the TwinCDT
method [15] also costs much larger amount of memory (the pre-computation
storage size increases by a factor of 6.7–6.9 when σ changes from 2 to 32), and
the performance becomes significantly worse (the number of samples per second
decreases by 32.6–44.3% when σ changes from 2 to 32). In contrary, the pre-
computation storage of our scheme is independent of σ and only relies on the
precision requirements. Our scheme is also scalable and maintains good perfor-
mance even for large σ = 215. In addition, for applications sampling from various
σ such as [7], one sampler subroutine implemented by using our scheme is able
to serve all σ since the implementation does not require any pre-computations
depending on σ, while the TwinCDT method [15] needs to pre-compute a dif-
ferent CDT for each σ.

Compared with [17] for σ = 215, if we measure both the online and offline
phase running speed in total, our center-independent run-time implementation
achieves better performance in terms of both timing (6.5x faster) and pre-
computation storage (the implementation in [17] requires about 42 KB to imple-
ment the Knuth-Yao [13] offline batch sampler).4 The online-phase only running
speed in [17] is slightly (1.07x) faster than our scheme. On the other hand,
our scheme requires no offline pre-computations related to a specific discrete
Gaussian distribution. In addition, our scheme can also be accelerated if we gen-
erate all the continuous Gaussian samples during the offline phase and only per-
form the rejection during the online phase. In this case, our center-independent
run-time implementation generates 13.73 × 106 samples per second during the
online phase, which is 1.11x faster than [17].

For the comparison with variants of the binary sampling algorithm, in
Table 2, our non-constant time reference implementation is about 28.2% slower
than [5] for σ ∈ [

4, 220
]

with arbitrary centers, and from Table 3, our center-
independent run-time implementation is 30.3%–52.5% slower than [26] when
c = 0 and σ ∈ [

2, 220
]
. However, the scheme in [26] does not support an arbi-

trary center, while the side-channel resistance perspective of [5] is unclear. We
expect that our implementation can achieve at most about 73.5% of the running
speed of [5,26] on average for large σ, since both binary sampling variants [5,26]
require less than 1.47 trials per sample on average, while the average number of
trials per sample is close to 2 in our scheme for large σ.

4 Here we compare the performance with our center-independent run-time implemen-
tation because the implementation in [17] is constant-time.
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6 Conclusion

In conclusion, we generalise the idea from [4] and present a compact and scalable
arbitrary-centered discrete Gaussian sampling scheme over integers. Our scheme
performs rejection sampling on rounded samples from a continuous normal distri-
bution, which does not rely on any discrete Gaussian sampling implementations.
We show that our scheme maintains good performance for σ ∈ [

2, 220
]

and needs
no pre-computations related to any specific σ, which is suitable to implement
applications that requires sampling from multiple different σ. In addition, we
provide concrete rejection rate and error analysis of our scheme.

The performance of our scheme heavily relies on the underlying contin-
uous Gaussian sampling algorithm. However, the Box-Muller sampler [11,25]
employed in our implementation does not have the fastest sampling speed com-
pared to other algorithms according to a survey [22]. The main reason behind
the choice of the continuous Gaussian sampler in our implementation is because
the Box-Muller sampler is very simple to implement in constant-time [11]. If the
side-channel perspective is not a concern, one may employ other more efficient
non-constant time algorithms from the survey [22] to achieve a faster implemen-
tation of our scheme.

Acknowledgments. Ron Steinfeld was supported in part by ARC Discovery Project
grant DP180102199.

A Precision Analysis

To avoid sampling a uniformly random real r with high absolute precisions at
rejection steps 11 and 23 in Algorithm 2, and step 4 in Algorithm 3, we adapt the
comparison approach similar to [26]. Assume an IEEE-754 floating-point value
f ∈ (0, 1) with (δf +1)-bit precision is represented by f =

(
1 + mantissa · 2−δf

)·
2exponent, where integer mantissa has δf bits and exponent ∈ Z

−. To check
r < f , one can sample rm ←↩ U ({0, 1}δf+1

)
, re ←↩ U ({0, 1}l

)
, and check rm <

mantissa+2δf and re < 2l+exponent+1 instead for some l such that l+exponent+
1 ≥ 0.

Here we analyse the precision requirement of re. We have the following the-
orem for the worst-case acceptance rate in Algorithm 2:

Theorem 5. Assume x ∈ [−τ, τ ] and y ∈ [−τσ − 1, τσ + 1]. In worst case, step
11 in Algorithm 2 has the acceptance rate:

p1 ≥ exp
(

− (−2τσ + cF − 3/2) (cF − 3/2)
2σ2

)
,

and step 23 in Algorithm 2 has the acceptance rate:

p2 ≥ exp
(

− (2τσ + cF + 3/2) (cF + 3/2)
2σ2

)
.
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Proof. For b = 0 and y ≤ −1/2, we have the acceptance rate p1 =
exp

(−Y1/
(
2σ2

))
at step 11 in Algorithm 2 where:

Y1 = (�y� + cF )2 − (y + 1)2

= (y + δ + cF )2 − (y + 1)2 (�y� = y + δ where δ ∈ [−1/2, 1/2])
= (2y + δ + cF + 1) (δ + cF − 1)
≤ (−2τσ + cF − 3/2) (cF − 3/2) . (when δ = −1/2 and y = −τσ − 1)

Similarly, for b = 1 and y ≥ 1/2, we have the acceptance rate p2 =
exp

(−Y2/
(
2σ2

))
at step 23 in Algorithm 2 where:

Y2 = (�y� + cF )2 − (y − 1)2

= (y + δ + cF )2 − (y − 1)2 (�y� = y + δ where δ ∈ [−1/2, 1/2])
= (2y + δ + cF − 1) (δ + cF + 1)
≤ (2τσ + cF + 3/2) (cF + 3/2) . (when δ = 1/2 and y = τσ + 1)

��
Let Δ ≤ 1/2 be the maximum relative error of the right hand side compu-

tations at rejection steps 11 and 23 in Algorithm 2, and step 4 in Algorithm 3.
For exp

(−Y1/
(
2σ2

))
at step 11 in Algorithm 2, we have:

exponent1 ≥
⌊
log2

(
(1 − Δ) · exp

(
− Y1

2σ2

))⌋

≥
⌊
−1 − (−2τσ + cF − 3/2) (cF − 3/2)

2σ2
· log2 e

⌋
(by Thm. 5 and Δ ≤ 1/2)

≥
⌊
−1 − 2τσ + 2

σ2
· log2 e

⌋
. (when cF = −1/2)

Similarly, for exp
(−Y2/

(
2σ2

))
at step 23 in Algorithm 2, we have:

exponent2 ≥
⌊
log2

(
(1 − Δ) · exp

(
− Y2

2σ2

))⌋

≥
⌊
−1 − (2τσ + cF + 3/2) (cF + 3/2)

2σ2
· log2 e

⌋
(by Thm. 5 and Δ ≤ 1/2)

≥
⌊
−1 − 2τσ + 2

σ2
· log2 e

⌋
. (when cF = 1/2)

For exp
(−c2F /

(
2σ2

))
/S at step 4 in Algorithm 3, we have:

exponent3 ≥
⌊
log2

(
(1 − Δ) · exp

(
− c2F

2σ2

)
/S

)⌋

≥
⌊
−1 − 1

8σ2
· log2 e − log2

(
σ
√

2π
)⌋

. (when cF = ±1/2 and Δ ≤ 1/2)
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Therefore, we have:

exponent ≥ min

{⌊
−1 − 2τσ + 2

σ2
· log2 e

⌋
,

⌊
−1 − 1

8σ2
· log2 e − log2

(
σ
√

2π
)⌋}

.

Since the probability Pr [−τ ≤ x ≤ τ ] = erf
(
τ/

√
2
)

for x ←↩ N (0, 1), to
ensure 1 − Pr [−τ ≤ x ≤ τ ] ≤ 2−λ, we need τ ≥ √

2 · erf−1
(
1 − 2−λ

)
. There-

fore, for λ = 128 and σ ∈ [
2, 220

]
, we have τ ≥ 13.11, exponent ≥ −23, and thus

l ≥ 22, i.e. re needs to have at least 22 bits.

B Proof of Algorithm 1

Since Algorithm 1 was an exercise in [4] without solutions, here we provide a
brief proof of Algorithm 1.

Normalisation Factor. By definition, we have the normalisation factor:

1
c

=
∑
k∈Z

exp

(
− (|k| + 1/2)2

2σ2

)

=
∑

k∈Z−
exp

(
− (k − 1/2)2

2σ2

)
+ exp

(
− 1

8σ2

)
+

∑
k∈Z+

exp

(
− (k + 1/2)2

2σ2

)

= ρ1/2,σ

(
Z

−)
+ ρ−1/2,σ

(
Z
+
)

+ exp
(

− 1
8σ2

)

≥ 1 − ε

1 + ε
· ρσ (Z) + exp

(
− 1

8σ2

)
− 2. (By Lemma 1)

Correctness. Let z0 = �x�. We have Y = (|z0| + 1/2)2 − x2 ≥ 0 for any x ∈ R.
Therefore, the rejection condition exp

(−Y/
(
2σ2

)) ∈ (0, 1]. We have the output
distribution:

Pr [z = z0] ∝
∫ z0+1/2

z0−1/2

exp
(

− x2

2σ2

)
· exp

(
− (|z0| + 1/2)2 − x2

2σ2

)
dx

=
∫ z0+1/2

z0−1/2

exp

(
− (|z0| + 1/2)2

2σ2

)
dx = exp

(
− (|z0| + 1/2)2

2σ2

)
.

Rejection Rate. By definition, we have the output probability density function
f(x) = c · exp

(
− (|�x�|+1/2)2

2σ2

)
and the input probability density function g(x) =

ρσ (x) /
(
σ
√

2π
)
. The expected number of trials can be written as:

M = max
f(x)
g(x)

= max

⎛
⎝exp

(
− (|�x�|+1/2)2

2σ2

)

ρσ (x)
· σ

√
2π

1/c

⎞
⎠ .
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We have:

exp
(
− (|�x�|+1/2)2

2σ2

)

ρσ (x)
=

exp
(
− (|�x�|+1/2)2

2σ2

)

exp
(− x2

2σ2

) = exp

(
− (|�x�| + 1/2)2 − x2

2σ2

)
≤ 1.

Therefore,

M ≤ σ
√

2π

1/c
≤ σ

√
2π

1−ε
1+ε · ρσ (Z) + exp

(− 1
8σ2

) − 2

≤ σ
√

2π
1−ε
1+ε · (

σ
√

2π − 1
)

+ exp
(− 1

8σ2

) − 2
,

where the second inequality follows from the inequality of 1/c and the third
inequality follows from the fact that ρσ (Z) ≥ σ

√
2π − 1. Thus, we have the

rejection probability:

1 − 1

M
≤

(
1 − 1−ε

1+ε

)
· σ

√
2π + 1−ε

1+ε
− exp

(
− 1

8σ2

)
+ 2

σ
√

2π
≈

3 − exp
(
− 1

8σ2

)
σ
√

2π
≤ 2

σ

√
2

π
,

when ε is small.
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Abstract. In 2013, Tao et al. introduced the ABC Simple Matrix
Scheme for Encryption, a multivariate public key encryption scheme. The
scheme boasts great efficiency in encryption and decryption, though it
suffers from very large public keys. It was quickly noted that the original
proposal, utilizing square matrices, suffered from a very bad decryption
failure rate. As a consequence, the designers later published updated
parameters, replacing the square matrices with rectangular matrices
and altering other parameters to avoid the cryptanalysis of the origi-
nal scheme presented in 2014 by Moody et al.

In this work we show that making the matrices rectangular, while
decreasing the decryption failure rate, actually, and ironically, dimin-
ishes security. We show that the combinatorial rank methods employed
in the original attack of Moody et al. can be enhanced by the same added
degrees of freedom that reduce the decryption failure rate. Moreover, and
quite interestingly, if the decryption failure rate is still reasonably high,
as exhibited by the proposed parameters, we are able to mount a reaction
attack to further enhance the combinatorial rank methods. To our knowl-
edge this is the first instance of a reaction attack creating a significant
advantage in this context.

Keywords: Multivariate cryptography · Simple Matrix · Encryption ·
MinRank

1 Introduction

Since the discovery by Shor in the 1990s, cf. [26], of polynomial-time quantum
algorithms for computing discrete logarithms and factoring integers the proverbial
clock has been ticking on our current public key infrastructure. In reaction to this
discovery and the continual advancement of quantum computing technologies, a
large community has emerged dedicated to the development and deployment of
cryptosystems that are immune to the exponential speedups quantum computers
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promise for our current standards. More recently, the National Institute of Stan-
dards and Technology (NIST) has begun directing a process to reveal which of
the many new options for post-quantum public key cryptography are suitable for
widespread use.

One family of candidate schemes relies on the known difficulty of solving large
systems of nonlinear equations. These multivariate public key cryptosystems
are inspired by computational problems that have been studied by algebraic
geometers for several decades. Still, even in the past two decades this field of
study has changed dramatically.

When multivariate public key cryptography was still early in its community
building phase, a great many schemes were proposed and subsequently attacked.
Notable examples of this phenomenon include C∗, HFE, STS, Oil-Vinegar, PMI
and SFLASH, see [6,8–10,14,19–22,25,32].

While multivariate cryptography has seen some lasting success with digital
signatures, see, for example, [2,4,5,12,23], multivariate encryption seems to be
particularly challenging. In the last several years there have been many new pro-
posals inspired by the notion that it may be easier to create a secure injective
multivariate function if the codomain is larger than the domain. Such schemes
include ZHFE, Extension Field Cancellation (EFC), SRP, HFERP, EFLASH
and the Simple Matrix Encryption Scheme, see [3,7,11,28–30,34]. Of these,
many have since endured attacks either outright breaking the scheme or affecting
parameters, see [1,15–17,24,27].

In this work we present a new attack on the rectangular variant of the Simple
Matrix Encryption Scheme, see [30]. This version of the Simple Matrix Encryp-
tion Scheme was designed to repair the problems that the original scheme, see
[29], had with decryption failures and to choose large enough fields to avoid the
attack of [15]. Our new attack is still a MinRank method, but one that exploits
the rectangular structure, showing that the new parameterization is actually less
secure than the square variant.

In an interesting twist, we also develop a reaction attack based on the decryp-
tion failures that the scheme is designed to minimize. This method further boosts
the performance of the MinRank step by a factor related to the field size. With
these attacks we break all of the published parameter sets at the most efficient
field size of 28, the only parameters for which performance data were offered.

The article is organized as follows. In Sect. 2, we present the Simple Matrix
Scheme. We next review the MinRank attack techniques using properties of
the differential that was used against the original square variant of the Simple
Matrix scheme. In the subsequent section, we present the improvement obtained
in attacking the rectangular variant. Next, in Sect. 5, we present the reaction
attack and discuss its affect on key recovery. We then present a thorough com-
plexity analysis including our experimental data verifying our claimed complex-
ity. Finally, we conclude noting the effect this attack has on the status of mul-
tivariate encryption.
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2 ABC Simple Matrix Scheme

The ABC Simple Matrix Encryption Scheme was introduced in [29] by Tao et al.
This schemewasdesignedwith anewguidingprinciple inmind:make the codomain
much larger than the domain. The motivation for this notion comes from the fact
that there is a much richer space of injective functions with a large codomain than
the space of bijective functions; thus, it may be easier to hide the types of properties
we use to efficiently invert nonlinear functions such as low rank or low degree in this
larger context. In this section we present the scheme and its functionality.

For clarity of exposition, we establish our notational standard. Throughout
this text bold font will indicate a matrix or vector, e.g. T or z, while regular
fonts indicate functions (possibly with outputs considered as matrices) or field
elements.

2.1 ABC Public Key Generation

Let F be a finite field with q elements. Let s be a positive integer and let n = s2.
Let F[x] be the polynomial ring over F in the variables x =

[
x1 · · · xn

]
.

The public key will be a system of m = 2n = 2s2 (for our purposes homoge-
neous) quadratic formulae in F[x]. The public key will ultimately be generated
by the standard isomorphism construction P = T ◦ F ◦ U where T and U are
invertible linear transformations of the appropriate dimensions, and F is a spe-
cially structured system of quadratic polynomials. The remainder of this section
is devoted to the construction of F . (In general the scheme can and does use
rectangular matrices, but for the ease of writing this note, we will assume that
the matrices are square for now.)

Define the matrix

A =

⎡

⎢
⎢
⎢
⎣

x1 · · · xs

xs+1 · · · x2s

...
. . .

...
xs2−s+1 · · · xs2

⎤

⎥
⎥
⎥
⎦

.

Further define the s × s matrices of F[x] linear forms B =
[
bij

]
and C =

[
cij

]
.

From these matrices one can construct the matrices E1 = AB and E2 = AC.
Then we construct a system of m polynomials by concatenating the vectoriza-
tions of these two products: F = V ec(E1)‖V ec(E2). The public key is then
P = T ◦ F ◦ U . (Note that we can eliminate U by replacing A with random
linear forms.)

In the rectangular version of this scheme we replace A by a similar r ×
s version (and we can make the matrices B and C of size s × u and s × v,
respectively) where the algebra still works the same.

2.2 Encryption and Decryption

Encryption is accomplished by evaluating the public key at a plaintext value
encoded as a vector x. One computes P (x) = y.
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Decryption is accomplished by inverting each of the components of the public
key. One first sets v = T−1(y). Then v can be split in half producing v1 and v2.
Each of these can be parsed as a matrix by inverting the vectorization operator
E1 = Mat(v1) and E2 = Mat(v2).

We note that we can consider this pair of matrices as values derived from
functions on either the inputs x or the outputs y. The legitimate user knows
both of these representations. We will abuse notation slightly and denote these
functions as E1(u), E1(v), E2(u) and E2(v), where v = F (u) (and we use
similar notation for functions of u representing the matrices A, B and C. Thus,
we have computed E1 = E1(v) and E2 = E2(v). These values must be equal to
Ei(u). For both values of i, the function involves a left product by the square
matrix A(u). We construct a matrix W of new variables wi for 0 < i ≤ s2.
We suppose that the correct assignment of values in A(u) produces a matrix
with a left inverse, so the correct assignment of variables wi produces a valid left
inverse. Then we have

WE1 = WE1(u) = WA(u)B(u) = B(u),

and similarly for E2. Since the legitimate user knows the linear forms bij and
cij , this setup provides a system of m = 2s2 equations in the s2 +s2 variables wi

and ui. Via Gaussian elimination, the wi variables can be eliminated and values
for ui can be recovered.

Once u is recovered, one applies the inverse of U to this quantity to recover
x, the plaintext.

3 Previous Cryptanalysis

In this section, we summarize the technique from [15] recovering a secret key
in the square case, that is when r = s, via MinRank informed by differential
invariant structure. For convenience, we present the relevant definitions we will
use in Sect. 4, possibly generalized to the rectangular setting.

The main object used in the attack from [15] is the discrete differential of
the public key.

Definition 1. Let F : Fn → F
m. The discrete differential of F is a bivariate

analogue of the discrete derivative; it is given by the normalized difference

DF (a,x) = F (a + x) − F (a) − F (x) + F (0).

DF is a vector-valued function since the output is in F
m. Since DF is bilinear, we

can think of each coordinate DFi as a matrix. We can then consider properties
of these matrices as linear operators. In particular, we can consider rank and
perform a MinRank attack.

Definition 2. The MinRank (q, n,m, r) Problem is the task of finding a linear
combination over Fq of m matrices, DQi, of size n × n such that the resulting
rank is at most r.
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Although there are many different techniques for solving MinRank, the most
relevant technique here is known as linear algebra search. One attempts to guess
� = �m

n � vectors that lie in the kernel of the same map. Since matrices with low
rank have more linearly independent vectors in their kernels, the distribution
of maps whose kernels contain these vectors is skewed toward lower rank maps.
Therefore, to solve MinRank, one guesses � vectors xi, sets up the linear system

m∑

i=1

τiDQixj = 0,

for j = 1, . . . , �, solves for τi and computes the rank of
∑m

i=1 τiDQi. If the rank
is at or below the target rank then the attack has succeeded. Otherwise another
set of vectors is chosen and the process continues.

In [15], the attack is formulated in the language of differential invariants.

Definition 3. A subspace differential invariant of a vector-valued map F is a
triple of vector spaces (X,V,W ) such that X ⊆ F

m, and V,W ⊆ F
n satisfying

(x · DF )V ⊆ W for all x ∈ X where dim(W ) ≤ dim(V ).

In other words, a subspace differential invariant is a subspace X of the span of
the DFi along with a subspace that is mapped linearly by every map in X into
another subspace of no larger dimension. The definition is supposed to capture
the idea of a subspace of the span of F acting like a linear map on a subspace
of the domain of F .

Differential invariants are related to low rank, but not equivalent. They are
useful at providing an algebraic condition on interlinked kernels, that is, when
there are very many maps in the span of F that have low rank and share a large
common subspace in their kernels, see [33]. In such a case, the invariant structure
provides a tiny and insignificant savings in some linear algebra steps after the
hard MinRank step of the attack is complete. The main value of the idea lies in
providing algebraic tools for determining whether an interlinked kernel structure
is present in a map.

Considering the Simple Matrix Scheme, there are maps in the span of the
public maps that correspond to products of the first row of A and linear combi-
nations of the columns of B and C. The differential of this type of map has the
following structure, where gray indicates possibly nonzero coefficients.

Dg =

This map is clearly of low rank, probably 2s, and illustrates a differential invari-
ant because a column vector with zeros in the top s entries is mapped by this
matrix to a vector with zeros in everything except the top s entries. Also, it
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is important to note that there is an entire u + v dimensional subspace of the
public key corresponding to the X in Definition 3 that produces differentials of
this shape which we call a band space. There is nothing special about the first
row. We could use anything in the rowspace of A and express our differential as
above in the appropriate basis. This motivates the following definition modified
from [15, Definition 4]:

Definition 4. Fix an arbitrary vector v in the rowspace of A, i.e. v =∑r
d=1 λdAd where Ad is the dth row of A. The u + v dimensional space of

quadratic forms Bv given by the span of the columns of vB and vC is called the
generalized band-space generated by v.

Thus, recovery of an equivalent private key is accomplished by discovering r
linearly independent band spaces in the span of the public key. Since these maps
all share the property that they are of rank 2s, the band spaces can be recovered
with a MinRank attack.

Due to the differential invariant structure, it is shown in [15] that there is a
significant speed-up in the standard linear algebra search variant of MinRank.
The attack proceeds by finding �m

n � vectors in the kernel of the same band space
map.

A series of statements about such maps are proven in [15] in the square case
revealing the complexity of the MinRank step of the attack.

Definition 5. Let u1, . . . , urs be the components of Ux and fix an arbitrary
vector v in the rowspace of A, i.e. v =

∑r
d=1 λdAd where Ad is the dth row of

A. An rs-dimensional vector, x is in the band kernel generated by v, denoted
Bv if and only if

∑r
d=1 λduds+k = 0 for k = 1, . . . , s.

As shown in [15] membership in the band kernel requires that s linear forms
vanish; the probability of this occurrence is q−s. They then show that given two
maps in the same band kernel, the probability that they are in the kernel of
the same band space map is q−1. Therefore the complexity of searching for a
second vector given one vector in a band kernel is qs+1. Since A is singular with
probability approximately q−1 for sufficiently large q, the total probability of
randomly selecting two vectors that are simultaneously in the kernel of the same
band space map is q−s−2.

While in [15] it was noted that there are some dependencies in the linear
systems resulting in the need to search through a nontrivial space in the case that
the characteristic is 2 or 3, it was discovered in [17] that we can add constraints
to the system reducing the dimension and eliminating the search. Therefore the
complexity of searching for a band space map is the same for all fields. The
techniques in [17] can also be adapted to require only 2 band space maps for key
recovery, the second of which can be found more cheaply by reusing one of the
vectors used to find the first band space map. Since we have to compute the rank
of an n × n matrix for each guess, the complexity of the attack is O(nωqs+2)
including the linear algebra overhead.
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4 Combinatorial Key Recovery, the Rectangular Case

The change from square instances of the Simple Matrix scheme to rectangular
instances was proposed in [30] as a way of improving efficiency by having smaller
fields while maintaining a low decryption failure rate. Still requiring a left inverse
of A, the proposal requires that r > s. Notice, however, that this implies that
there is a nontrivial left kernel of A(x) for any vector x!

Specifically, notice that since there are more rows than columns in A for the
new parameters, there is always a linear combination of the rows producing the
zero vector for any input. Thus, there is no search through plaintexts to find a
vector in some band kernel.

In fact, the situation is worse. Note that any plaintext x is guaranteed to
produce an A for which there are r − s linearly independent combinations of
row vectors producing zero. Therefore x is in very many distinct band spaces.
This fact reduces the complexity of finding a second vector in the band kernel
considerably, as we now show.

4.1 The Probability of Choosing a Second Band Kernel Vector

A vector u = (u1, u2, . . . , urs) belongs to a band kernel Bv if there is a nonzero
vector v ∈ F

r such that for i = 1, . . . , s

v · ui = 0, where ui = (ui, ur+i, . . . , u((r−1)s+i).

That is, each subvector ui belongs to the orthogonal space 〈v〉⊥.
Since the space 〈v〉⊥ has dimension r − 1, membership of each subvector in

this space can be modeled as the satisfaction of one linear relation; therefore,
there are a total of s linear constraints on u defining membership in the Bv.
Thus, for any uniformly chosen vector u ∈ F

rs we have

Pr (u ∈ Bv) = q−s.

Now consider a vector w ∈ F
r linearly independent with v. The dimension of

the orthogonal space (w ⊕ v)⊥ is r − 2. Thus by the same reasoning as above,

Pr (u ∈ Bw ∩ Bv) = q−2s.

In the case r = s+1, we are assured that a plaintext x gives us u ∈ Bv, where
u = Ux. Therefore membership of a second vector in the same band kernel occurs
with probability q−s, and the complexity of finding the second vector is qs.

In the case that r > s + 1, for each plaintext x we are guaranteed that there
are r − s linearly independent vectors v1, . . . ,vr−s such that u ∈ Bvi

. Therefore
u belongs to

� =
qr−s − 1

q − 1
= qr−s−1 + qr−s−2 + · · · + q + 1
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distinct band kernels. Let them be Bv1 ,Bv2 , . . . ,Bv�
. Here it might be the case

that Bvi
∩ Bvj

�= Bvs
∩ Bvk

, but all the intersections have the same dimension
rs − 2s. So, the probability u, chosen at random, belongs to one of them is
roughly

Pr

(

u ∈
�⋃

k=1

Bvk

)

≈ (
∑r−s−1

i=0 qi)qrs−s − (∑r−s−1
i=0 qi

2

)
qrs−2s

qrs

≈ qr−2s−1 − q2(r−2s−1)

≈ qr−2s−1.

Thus, the complexity of finding a second band kernel vector is roughly q2s+1−r.

4.2 The Effect of u + v > 2s

A further effect of the rectangular augmentation of the Simple Matrix Scheme is
that it requires the number of columns of the matrices B and C to be increased
for efficiency. We therefore find that all of the proposed parameters with q < 232

have u + v ≥ 2s + 4.

Theorem 1. If x1 and x2 fall within the band kernel Bv, then they are both
in the kernel of some generalized band-space differential DQ =

∑
Qi∈Bv

τiDQi

with probability approximately q−1 if u + v = 2s and probability 1 if u + v > 2s.
Further, if u + v > 2s then there exists, with probability 1, some (u + v − 2s)-
dimensional subspace of Bv, all elements of which have both vectors in their
kernel.

Proof. There are two cases: (i) u + v = 2s and (ii) u + v > 2s. The first case
follows exactly from [15, Theorem 2]. The second case is new, so we focus on
this second case in what follows. This will be quite similar to the original proof,
but we include the full details for the reader.

A DQ meeting the above condition exists iff there is a nontrivial solution to
the following system of equations

∑

Qi∈Bv

τiDQix1
T = 0

∑

Qi∈Bv

τiDQix2
T = 0.

(1)

Expressed in a basis where the first s basis vectors are chosen to be outside
the band kernel, and the remaining n − s basis vectors are chosen from within
the band kernel, the band-space differentials take the form:

DQi =

⎡

⎢
⎢
⎣

Si Ri

RT
i 0

⎤

⎥
⎥
⎦ , (2)
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where Ri is a random s×n−s matrix and Si is a random symmetric s×s matrix.
Likewise x1 and x2 take the form (0| xk ). Thus removing the redundant degrees
of freedom we have the system of 2s equations in u + v variables:

u+v∑

i=1

τiRix1
T = 0

u+v∑

i=1

τiRix2
T = 0.

(3)

This has a nontrivial solution precisely when the following matrix has a
nontrivial right kernel:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

| | |
R1x1

T R2x1
T · · · Ru+vx1

T

| | |
| | |

R1x2
T R2x2

T · · · Ru+vx2
T

| | |

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

By the assumption that u+v > 2s, this matrix has more columns than rows,
and therefore must have a nontrivial right kernel with probability 1. Moreover,
with probability 1, this right kernel has dimension at least u + v − 2s. There-
fore, any differential produced by taking the direct product of (Q1, ..., Qu+v),
where Q1, ..., Qu+v are the generators of Bv, and a right kernel vector of the
aforementioned matrix will have both x1 and x2 in its kernel.

4.3 Controlling the Ratio m
n

.

The new parameters presented in [30] added another feature to Simple Matrix:
the ability to decouple the number of variables n from the size rs of the matrix
A. The authors want to ensure that the number of equations is not significantly
more than twice the number of variables so that the first fall degree of the system
is not diminished.

In all but the case of q = 28, the authors of [30] propose parameters with
m = 2n. In the case of q = 28, however, the relationship is more complicated. All
parameters in this case are functions of s. Specifically, r = s + 3, u = v = s + 4,
n = s(s + 8) and m = 2(s + 3)(s + 4). Therefore m − 2n = 24 − 2s.

For small s, this change poses a challenge to the linear algebra search Min-
Rank method. The reason is that choosing merely two kernel vectors results in
a system that is underdetermined, and since the size of the field is still fairly
large q = 28, it is very costly to search through the solution space. On the other
hand, if we increase the number of kernel vectors we guess to three, we have an
additional factor of qs in our complexity estimate.

Luckily, there is an easy way to handle this issue. We simply ignore some of
the public differentials. Consider the effect of removing a of the public equations
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on the MinRank attack. If a ≥ m−2n, then we need to only consider �m−a
n � = 2

kernel vectors. Since the expected dimension of the intersection of any band
space, which is of dimension u + v, and the span of the m − a remaining public
maps is (u+v)+(m−a)−m = u+v−a, we can apply Theorem 1 with u+v−a
in place of u + v. We have now shown the following:

Corollary 1. Consider the public key P with a equations removed. Let B̂v be the
intersection of the band space Bv and the remaining public maps. If x1,x2 ∈ Bv,
then there exists a band-space differential DQ =

∑
Qi∈B̂v

τiDQi whose kernel
contains both x1 and x2 with probability approximately q−1 if u+v −a = 2s and
probability 1 if u + v − a > 2s. Further, if u + v − a > 2s then there exists, with
probability 1, some (u + v − a − 2s)-dimensional subspace of B̂v, all elements of
which have both vectors in their kernel.

Considering the parameters from [30], we see that the largest value of a
required to produce a fully determined MinRank system with two kernel vectors
is in the case that s = 8 producing a = m−2n = 24−2s = 8. In this same set of
parameters u = v = s + 4 so that u + v = 2s + 8. Therefore, Corollary 1 applies.

5 Improvements from a Reaction Attack

As noted in [30], the original proposal of the square version of Simple Matrix,
cf. [29], did not properly address decryption failures. To maintain performance
and avoid the attack from [15], the rectangular scheme was introduced with many
possible field sizes. Still, the proposed parameters only made decryption failures
less common but not essentially impossible. The smallest decryption failure rate
for parameters in [30] is 2−64 and the only parameters with sufficiently good
performance to advertise had decryption failure rates of 2−32.

These augmentations addressed decryption failures out of precaution, but
had no claim of how such failures could be used to undermine the scheme. In
this section we develop an enhancement of our combinatorial key recovery from
the previous section utilizing these decryption failures. To our knowledge, this is
the first example of a key recovery reaction attack against a multivariate scheme
in this context.

5.1 Decryption Failures in the Simple Matrix Scheme

As described in Sect. 2.2, the decryption algorithm of Simple Matrix assumes
that the matrix A(u) has a left inverse. This property is exactly the same assump-
tion in the more general case of rectangular matrices as well. The failure of A(u)
to be full rank makes the decryption algorithm fail, producing decryption fail-
ures. One could imagine guessing which rows of WA could be made into elemen-
tary basis vectors trying to recover linear relations on the values of u to recover
a quadratic system in fewer variables which may produce an unique preimage,
but this is costly in performance and still allows an adversary to detect when
A(u) is not of full rank.
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If we consider A to be rectangular, say r × s, then we need the number of
rows r to be greater than or equal to s. Then we may still have a left inverse W,
an s × r matrix satisfying WA = Is. The probability of the existence of at least
one such W is the same as the probability that the rows of A span F

s. Thus

Pr(Rank(A) < s) = 1 −
r∏

i=r−s+1

(1 − q−i) ≈ qs−r−1.

Notice that decryption failure reveals precise information about the internal
state of the decryption algorithm. Specifically, the quantity A(u) where u = U(x)
is not of full rank. Even for very large q, one requires a disparity in the values
r and s to make the decryption failure rate very low. Even for the parameters
proposed having the smallest decryption failure rate, q = 232 and r = s + 1, the
probability of decryption failure is 2−64 and 264 decryption queries on average
are needed to detect a decryption failure.

5.2 The Reaction Attack

Consider, for a moment, the square case of the Simple Matrix Scheme, that is,
when r = s. In the search process, you try to find two vectors x1 and x2 that
are simultaneously in the kernel of the same linear combination of the public
differentials. For the search to succeed in finding a band map you need three
events to simultaneously occur: (P1) xi to be in the band kernel of a band space;
(P2) x3−i to be in the band kernel of the same band space; and, (P3) for them
to both be in the kernel of the same band space map.

The probability of these events occurring simultaneously is then

Pr(P1 ∧ P2 ∧ P3) = Pr(P1)Pr(P2|P1)Pr(P3|P1 ∧ P2) = q−1 · q−s · q−1 = q−s−2.

So, it takes qs+2 guesses in expectation to succeed in finding two such vectors
and thereby recover a band space.

Notice that decryption failure occurs when the matrix A is singular, which
is exactly the condition for membership in some band kernel. Thus, the first
vector lying in a band kernel need not be found by search. If you already have
access to a decryption failure producing plaintext, then the first condition is
satisfied saving a factor of q in complexity at the cost of q decryption queries.
So this component of q is now, in some sense, additive instead of multiplicative
in the complexity analysis of the attack. Therefore, if the decryption failure rate
is sufficiently low, a reaction attack can be employed.

We find that decryption failures provide a similar advantage in the rect-
angular case as well. When r > s, a decryption failure x assures the exis-
tence of r − s + 1 linearly independent vectors v1, . . . , vr−s+1 ∈ F

r such that
u ∈ Bv1 ∩ · · · ∩ Bvr−s+1 , where u = Ux. Thus we know for sure there are

� =
qr−s+1 − 1

q − 1
= qr−s + qr−s−1 + · · · + q + 1
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distinct band kernel spaces in which u belongs. Let them be Bv1 ,Bv2 , . . . ,Bv�
.

Here it might be the case that Bvi
∩ Bvj

�= Bvs
∩ Bvk

, but all the intersection
have the same dimension rs − 2s. So, the probability that u, chosen at random,
belongs to one of them is roughly

Pr

(

u ∈
�⋃

k=1

Bvk

)

≈ (
∑r−s

i=0 qi)qrs−s − (∑r−s
i=0 qi

2

)
qrs−2s

qrs

≈ qr−2s − q2(r−2s)

≈ qr−2s.

6 Complexity

Noting that there is statistically no difference between using the input transfor-
mation U and choosing A to consist of random linear forms, we note that full
key extraction including the input and output transformations proceeds as in
[17]. Since this last part occurs after the recovery of the band spaces, it is of
additive complexity. Therefore the complexity of the attack is equivalent to the
MinRank step plus some additive overhead.

Recovering a band space then requires q2s+1−r iterations of solving a linear
system of size n and rank calculations on a matrix of size n. (Note that in this
case, finding the second map from the same band space is cheaper by a factor
of q.) Thus the complexity of the combinatorial key recovery is O(nωq2s+1−r),
where ω is the linear algebra constant. We note that in practice that assuming ω
takes a value of approximately 2.8 results in a big-oh constant of less than one.

In the case of the reaction attack, recovering two maps from a band space
requires only 2q2s−r iterations of system solving and rank calculations. There-
fore, for the reaction attack, the complexity is O(nωq2s−r). The actual complex-
ity in field operations for completing the attacks are listed in Table 3.

Using SAGE1 [31], we performed some minrank computations on small scale
variants of the ABC scheme. The computations were done on a computer with a
64 bit quad-core Intel i7 processor, with clock cycle 2.8 GHz. We were interested
in verifying our complexity estimates on the most costly step in the attack, the
MinRank instance, rather than the full attack on the scheme. Given as input the
finite field size q, and the scheme parameter s, we computed the average number
of vectors x required to be sampled in order to recover a matrix of rank 2s. For
our first experiment we set our parameters to u = v = s + 1, r = s + 2, and
n = ru = (s + 1)(s + 2). Our results are provided in Table 1.

For higher values of q and s the computations took too long to produce
sufficiently many data points and obtain meaningful results with SAGE. Our
analysis predicted the number of vectors needed would be on the order of
Exp=(q − 1)qs−3. Table 1 shows the comparison between our experiments and
the expected value. We only used a small number of trials, particularly for the
higher values of s listed for each q.
1 Any mention of commercial products does not indicate endorsement by NIST.
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We also ran another experiment exhibiting the behavior of the attack when
2n > m. We used u = v = s + 1, r = s + 2, and n = ru − 1 = s2 + 3s + 1.
We then threw away two of the equations generated. Our analysis predicted the
number of trials required to be roughly (q −1)qs−2. The resulting data are given
in Table 2. The expected number of trials was Exp=(q − 1)qs−2.

Table 1. Average number of vectors needed for the rank to fall to 2s. This experiment
used u = v = s + 1, r = s + 2, and n = ru = (s + 1)(s + 2).

s = 3 Exp s = 4 Exp s = 5 Exp s = 6 Exp s = 7 Exp

q = 2 1.8 1 3.0 2 4.7 4 6.6 8 15.8 16

q = 3 2.5 2 6.6 6 19.1 18 53.1 54 173 162

q = 4 3.1 3 11.9 12 47.6 48 189.0 192

q = 5 4.3 4 20.6 20 99.4 100 520.8 500

q = 7 6.5 6 40.6 42 281.4 284 1873 1988

q = 8 8 7 62.8 56 444.2 448

q = 11 9.8 10 113.6 110 1318.8 1210

q = 13 11.7 12 157.7 156 2026.7 2028

Table 2. Average number of vectors needed for the rank to fall to 2s. This experiment
used u = v = s + 1, r = s + 2, and n = ru − 1 = s2 + 3s + 1, and did not use two of
the equations generated.

s = 3 Exp s = 4 Exp s = 5 Exp s = 6 Exp

q = 2 1.9 2 4.4 4 7 8 14.5 16

q = 3 5.9 6 16.3 18 47 54 138.9 162

q = 5 17.9 20 86.2 100 500.3 500 2137.3 2500

q = 7 36.6 35 277.7 245 2092.3 1715

q = 11 100.4 110 1175 1210

q = 13 148.3 156 1855.4 2028

Table 3. Complexity of our Combinatorial MinRank and Reaction attacks against
q = 28 parameters of the ABC Simple Matrix Encryption Scheme.

Scheme Sec. Level a Comb. Att. Comp React. Att. Comp

ABC(28, 11, 8, 12, 12, 264, 128) 80 8 275.6 267.6

ABC(28, 12, 9, 13, 13, 312, 153) 90 6 276.3 268.3

ABC(28, 13, 10, 14, 14, 364, 180) 100 4 285.0 277.0
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7 Conclusion

The rectangular version of the Simple Matrix Encryption Scheme is needed to
avoid a high decryption failure rate and known attacks. From the analysis made
in this paper, we conclude that the security of this version is actually worse than
that of the square version. Furthermore, we showed that decryption failures are
actually still exploitable in a concrete reaction attack that clearly undermines
the security claims of the scheme.

It is interesting to consider the historical difficulty of achieving secure multi-
variate public key encryption. Even using the relatively new approach of defining
public keys with vastly larger codomains—a change which on the surface would
seem to allow much greater freedom in selecting secure injective functions—we
observe that essentially none of the recent such proposals have attained their
claimed level of security after scrutiny. Perhaps there is a fundamental bar-
rier ensuring that any efficiently invertible function must have some exploitable
property, such as low rank, preventing the advantage of privileged information of
the legitimate user from dramatically separating the complexity of that efficient
inversion from the adversary’s task. It seems that multivariate encryption is an
area still in need of significant development.
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Abstract. At SAC 2019, Szepieniec and Preneel proposed a new vari-
ant of the Unbalanced Oil and Vinegar signature scheme (UOV) called
block-anti-circulant UOV (BAC-UOV). In this scheme, the matrices rep-
resenting the quadratic parts of the public key are designed to be block-
anti-circulant matrices, which drastically reduces its public key size com-
pared to UOV that originally has a relatively large public key size.

In this paper, we show that this block-anti-circulant property enables
us to do a special linear transformation on variables in the public key
polynomials. By executing the UOV attack on quadratic terms in partial
variables of the resulting polynomial system, we obtain a polynomial sys-
tem with less quadratic terms, which can be algebraically solved faster
than the plain direct attack. Our proposed attack reduces the bit com-
plexity of breaking BAC-UOV by about 20% compared with the previ-
ously known attacks. For example, the complexity of our proposed attack
on 147-bit BAC-UOV parameter (claimed security level II in NIST PQC
project by its authors) can be reduced only to 119 bits.

Keywords: Post-quantum cryptography · Multivariate cryptography ·
Unbalanced Oil and Vinegar · Circulant matrix

1 Introduction

Multivariate quadratic polynomials problem over a finite field (MQ-problem) is
known to be NP-complete [14] and considered having no advantage of solving
using quantum computers. Multivariate public key cryptography, whose security
is based on the difficulty of solving this MQ-problem, is considered as one of
the candidates for the post-quantum cryptography.

The Unbalanced Oil and Vinegar signature scheme (UOV) [16], as one of
the multivariate signature schemes, has withstood various attacks and remained
secure for twenty years, which is why it has been highly thought of and consid-
ered as one of the securest multivariate signature schemes. Additionally, to avoid
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-44223-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44223-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-44223-1_18


324 H. Furue et al.

the drawback of having a huge public key size, a multi-layered UOV, called Rain-
bow [9], is proposed and has entered the second round of NIST post-quantum
standardization project [18].

Even though UOV generates small signatures, its downside of using very
large public keys challenges its practical use. Hence, a great deal of research has
endeavored to shorten the public key size of UOV. As an example, the Lifted
Unbalanced Oil and Vinegar (LUOV) [5], proposed as one of the variants of
UOV, uses polynomials over a small field as its public key, whereas the signature
space and message space are defined over an extension field. LUOV was also
submitted to NIST post-quantum standardization project [18], and entered the
second round of screening. However, Ding et al. [11] recently proposed a new
attack on LUOV, that renders a modification on the secure parameters of LUOV.

In order to shorten the public key size, Petzoldt [20] proposed a variant of
UOV by introducing a circulant structure into the matrices associated to the
public key. Namely, the variant is constructed so that a part of the Macaulay
matrix, whose each row consists of the coefficients of each polynomial in the
public key, is designed to be a circulant matrix. Here, a circulant matrix is
a matrix whose each row vector is rotated one element to the right relative
to the preceding row vector (see Subsect. 3.1 for the details). Such a circulant
structure can be used to reduce the public key size since a circulant matrix can
be recovered from its first row vector. In [19], Peng and Tang proposed another
variant of UOV by introducing the circulant structure in generating a signature.
This scheme [19] has a very short secret key and can generate signatures very
efficiently since the inverse matrix of a circulant matrix can be calculated faster
than that of a random matrix. However, Hashimoto [15] has shown that this
scheme is not secure against the UOV attack [17].

At SAC 2019, Szepieniec and Preneel [21] proposed a new variant of UOV
called block-anti-circulant UOV (BAC-UOV). In this scheme, the matrices rep-
resenting the quadratic part of polynomials of the public key are block-anti-
circulant matrices (block matrices whose every block is an anti-circulant matrix
where each row vector is rotated one element to the left relative to the preceding
row vector). See Subsect. 3.1 for block-anti-circulant matrices. By using this con-
struction, they succeed in reducing the public key size, because every block of a
block-anti-circulant matrix can be represented by using its first row. Addition-
ally, by combining the block-anti-circulant construction with other compression
techniques such as the field lifting used in LUOV [5], the public key size of BAC-
UOV decreases by about 30–40% compared with LUOV, and the signature size
of BAC-UOV also slightly decreases compared with LUOV.

Our Contribution. In this paper, we propose a new attack against the BAC-
UOV scheme, that is composed of three steps.

First, we utilize the property of an anti-circulant matrix that the sum of the
elements of one row is the same as those of other rows. By using this property,
we can transform a block-anti-circulant matrix into the following form:
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N
︷ ︸︸ ︷

(�−1)N
︷ ︸︸ ︷

A 0

0 B
,

(1)

where A and B are an N × N matrix and an (� − 1)N × (� − 1)N matrix,
respectively. The matrices associated with the quadratic forms of the public key
polynomials can all be transformed into the form of (1) by multiplying a special
invertible matrix shown in Subsect. 4.1 on the right and its transpose on the left.
Second, we execute the UOV attack [17] on the upper-left N × N submatrices
of the obtained matrices, which only requires very little complexity, and we can
change those submatrices into the form of the matrix representing the quadratic
parts of the central map of UOV. By this operation, we can reduce the number
of variables that appear in the quadratic terms of the public key polynomials.
Finally, we execute the direct attack on the transformed polynomial system.

From our analysis, the complexity of our attack decreases by about 20%
compared with the best existing attack on UOV. As a result, we consider that
the secure parameters of BAC-UOV need to be modified.

Our paper is organized as follows. In Sect. 2, we explain the UOV scheme
and two existing attacks on UOV, which are the direct attack and the UOV
attack. Section 3 explains about BAC-UOV. In Sect. 4, we give the details of our
proposed attack and estimate its complexity. We conclude the paper in Sect. 5.

2 Unbalanced Oil and Vinegar Signature Scheme

In this section, we first explain the MQ-problem and general signature schemes
that are based on the MQ-problem. Next, we give the structure of the Unbal-
anced Oil and Vinegar signature scheme (UOV) [16]. Subsequently, we describe
two attacks on UOV, which are the direct attack and the UOV attack [17], since
our attack in this paper is proposed by using these two attacks.

2.1 Multivariate Signature Scheme

Let Fq be a finite field with q elements and n and m be two positive
integers. Given a system of quadratic polynomials P = (p1(x1, . . . , xn), . . . ,
pm(x1, . . . , xn)) in n variables over Fq and y ∈ F

m
q , the problem of finding x ∈ F

n
q

such that P(x) = y is called the MQ-problem and denoted by MQ(q, n,m).
Garey and Johnson [14] showed that the MQ-problem is NP-complete when
n ≈ m. Besides, quantum algorithms for solving this problem in polynomial
time has not been proposed. Therefore, MQ-problem is considered to have the
potential to resist quantum computer attacks.
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Now, we briefly explain the structure of general multivariate signature
schemes. First, we generate an easily invertible map F = (f1, . . . , fo) : F

n
q → F

m
q ,

called a central map, such that each fi is a quadratic polynomial. This F is con-
structed to be easily invertible. Next, randomly chose two invertible affine maps
T and S in order to hide the structure F . Then the public key P is given as a
polynomial map as follows:

P = T ◦ F ◦ S. (2)

The secret key consists of T , F and S. The signature generation is done as
follows: Let m ∈ F

m
q be a message to be signed. Compute m1 = T −1(m) and

find a solution m2 to the equation F(x) = m1. Then s = S−1(m2) ∈ F
n
q is the

message m. The verification process is done by confirming whether P(s) = m
or not.

2.2 Description of UOV

Let v, o be two positive integers and n = v + o and we assume that v > o. For n
variables x1, . . . , xn over Fq, we call x1, . . . , xv vinegar variables and xv+1, . . . , xn

oil variables.
Now we construct a central map F = (f1, . . . , fo) such that each fi is a

quadratic polynomial of the following form

fi(x1, . . . , xn) =
v

∑

j=1

n
∑

k=1

αi,j,kxjxk +
n

∑

j=1

βi,jxj + γi . (3)

Here αi,j,k, βi,k and γk are chosen randomly from Fq. Then, the public key map
P is constructed by P = F ◦S since T of (2) does not affect to hide the structure
of (3). The secret key consists of F and S.

Subsequently, we explain the way of inverting the central map F . When we
solve F(x1, . . . , xn) = (m1, . . . ,mo) for (x1, . . . , xn) ∈ F

n
q , where (m1, . . . ,mo) ∈

F
o
q, we firstly choose random values a1, . . . , av in Fq. Then we find a solution

b1, . . . , bo for the equation F(a1, . . . , av, xv+1, . . . , xn) = (m1, . . . ,mo), since this
is a linear system of o equations in o variables xv+1, . . . , xn. If there is no solution
to the equation, we choose new random values a′

1, . . . , a
′
v and repeat the previous

procedure. By using this way, we can execute the signing process explained in
Subsect. 2.1.

Let n × n matrices Fi and Pi (i = 1, . . . , o) be the matrices representing the
quadratic parts of fi and pi (i = 1, . . . , o) respectively, and an n×n matrix S be
the matrix representing S. Then, Fi are of the form

(

∗v×v ∗v×o

∗o×v 0o×o

)

, (4)

because of (3) and we have Pi = S�FiS from the definition.
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2.3 Direct Attack

Given a quadratic polynomial system P = (p1, . . . , pm) in n variables over Fq

and m ∈ F
m
q , the direct attack algebraically solves the system P(x) = m. When

n > m, the polynomial system is called underdetermined. There usually exist
many solutions for underdetermined systems, and n−m variables can be specified
with random values when only one or a few solutions are needed.

One of the best-known approaches for algebraically solving the MQ-problem
is the hybrid approach [4], which randomly guesses k (k = 0, . . . , n) variables
before computing a Gröbner basis [6], and the guessing terminates when the cor-
rect values are chosen. Some of the well-known algorithm for computing Gröbner
bases include F4 [12], F5 [13], and XL [7]. The complexity of this approach by a
quantum adversary is estimated to be

min
k

{

O

(

qk/2

(

n − k + 2
2

)(

dreg + n − k

n − k

)2
)}

, (5)

where dreg is the degree of regularity, which is the highest polynomial degree
appeared during a Gröbner basis computation for the components of the highest
degree (quadratic) of these polynomials. When n ≤ m (so-called overdetermined
system), for a certain class of polynomial systems called semi-regular systems
[1–3], their dreg can be estimated by the degree of the first non-positive term in
the following series [3]:

(

1 − z2
)m

(1 − z)n .

Empirically, a random polynomial system with very high probability is a semi-
regular system, and hence the aforementioned formula can be used to estimate
its degree of regularity.

2.4 UOV Attack

While the direct attack algebraically finds a signature s from the equation
P(x) = m, the UOV attack [17] finds a linear map S ′ : F

n
q → F

n
q such that

every component of F ′ := P ◦ S ′−1 has the form of (3). Such an S ′ is called an
equivalent key.

In the UOV attack, we find the subspace S−1(O) of F
n
q , where O is the oil

subspace defined as follows:

O := {(0, . . . , 0, α1, . . . , αo)� | αi ∈ Fq}.

This subspace S−1(O) can induce an equivalent key by using the fact that for
y, z ∈ S−1(O), y�Piz = 0 (i = 1, . . . , o). Let L be an invertible n × n matrix
whose right o columns are basis vectors of S−1(O). Then the linear map L
corresponding to L is an equivalent key. To obtain S−1(O), in the UOV attack,



328 H. Furue et al.

we choose two invertible matrices Wi,Wj from the set of linear combinations of
P1, . . . , Po defined in Subsect. 2.2. Then, we can probabilistically recover a part
of the subspace S−1(O) by computing the invariant subspace of W−1

i Wj . The
complexity of this attack by a quantum adversary is estimated to be O(q

v−o
2 ) [16].

3 Block-Anti-Circulant UOV

In this section, we first recall the definition of block-anti-circulant matrices. Next,
we describe the construction of block-anti-circulant UOV (BAC-UOV) [21]. Also,
we explain the way of using the Chinese remainder theorem when attacking
BAC-UOV analyzed in [21], and the parameter sets.

3.1 Circulant Matrix

A circulant matrix is a matrix whose each row vector is rotated one element
to the right relative to the preceding row vector. On the other hand, an anti-
circulant matrix is a matrix whose each row vector is rotated one element to
the left relative to the preceding row vector. A circulant matrix X and an anti-
circulant matrix Y with size � are of the following form:

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 a1 . . . a�−2 a�−1

a�−1 a0 . . . a�−3 a�−2

...
...

. . .
...

...
a2 a3 . . . a0 a1

a1 a2 . . . a�−1 a0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 a1 . . . a�−2 a�−1

a1 a2 . . . a�−1 a0

...
...

. . .
...

...
a�−2 a�−1 . . . a�−4 a�−3

a�−1 a0 . . . a�−3 a�−2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (6)

In addition, a matrix is called a block-circulant matrix or a block-anti-
circulant matrix with block size � if every square block is an � × � circulant
matrix or anti-circulant matrix (see the Appendix for examples with � = 4). For
a block-circulant matrix A and a block-anti-circulant matrix B, the products
AB and BA become block-anti-circulant matrices.

3.2 Description of BAC-UOV

Let V,O, � be three positive integers. We set v = V �, o = O� and N = V + O.
A central quadratic map F = (f1, . . . , fo) and an affine map S are used as a

private key for BAC-UOV. The matrices F1, . . . , Fo representing the quadratic
part of f1, . . . , fo are set to be block-anti-circulant matrices with block size � and
the matrix S representing the affine map S is set to be a block-circulant matrix
with block size �. A public key P = (p1, . . . , po) is generated by computing
F ◦ S, and the matrices P1, . . . Po representing quadratic parts of p1, . . . , po are
block-anti-circulant matrices satisfying Pi = S�FiS for i = 1, . . . , o.

Due to the block-anti-circulant construction, these matrices Pi, Fi and S
can be represented by using only the first row of every block. Therefore, these
matrices can be represented by using only N2� elements as opposed to the highly
redundant n2 = N2�2 elements associated with an explicit representation. This
makes the size of the public key shorter compared to the original UOV.
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3.3 BAC-UOV with Chinese Remainder Theorem

In [21], they consider an attack using the Chinese Remainder Theorem (CRT)
in the security analysis of BAC-UOV.

An �×� circulant matrix X in (6) can be represented by an element of the quo-
tient ring Fq[x]/〈x�−1〉, such as fX(x) := a0+a1x+ · · ·+a�−1x

�−1. Then we can
say that for two circulant matrices A,B, we have fAB(x) = fA(x)fB(x), which
means we can compute the multiplication of circulant matrices in Fq[x]/〈x� −1〉.
Also for anti-circulant matrices, we can make use of the quotient ring because
the left or right multiplication by the 90◦ rotation matrix changes a circulant
matrix into an anti-circulant matrix. In addition, arithmetic in the quotient
ring can be accelerated using CRT and the decomposition Fq[x]/〈x� − 1〉 ∼=
Fq[x]/〈f0(x)〉 ⊕ · · · ⊕ Fq[x]/〈ft(x)〉, where

∏t
i=0 fi(x) = x� − 1.

This technique can be used for the UOV attack [17] and the UOV reconcilia-
tion attack [10] because these attacks are executed on the matrices representing
the public key. When we estimate the complexity of these attacks, we consider
only the largest component ring in the direct sum, which is associated with the
irreducible factor of x� − 1 that has the largest degree. Therefore, in [21] they
choose the block size � such that 1+x+ · · ·+x�−1 is irreducible. This technique
actually changes the complexity of UOV attack into O(q

�−1
�

v−o
2 ) from O(q

v−o
2 ).

3.4 Security Parameters for BAC-UOV

Besides the direct attack in Subsect. 2.3, we also consider a technique for reducing
the number of equations in the system MQ(q, n,m) for n > m proposed by
Thomae and Wolf [22]. In this technique, we assume that the characteristic of
the finite field Fq is 2, that is, q is a power of 2. For the n × n matrices Pi

representing the quadratic parts of pi, the technique chooses a new matrix S′

such that S′�PiS
′ (i = 1, . . . , α) become diagonal for their first m variables where

α = � n
m − 1. Then we can reduce (α + (n − m)) variables and α equations from

the system MQ(q, n,m). Therefore, the system is changed from MQ(q, n,m)
into MQ(q,m − α,m − α). See [22] for more details.

Thomae and Wolf’s technique [22] can be fully applied only for systems that
are over fields of even characteristics. However, Thomae and Wolf show that a
part of the technique can be applied to odd characteristic case and empirically
makes the direct attack faster on systems over finite fields of odd characteristic.
Therefore, from a security perspective, it is not extreme that we consider the
technique [22] can be applied to odd characteristic case. In fact, the authors of
BAC-UOV [21] adopted this thought, which is confirmed via the code to measure
the complexity of the direct attack (see https://github.com/aszepieniec/bacuov
for the author’s code). Note that even if we can not use this technique for BAC-
UOV, our attack is still valid (see Remark 2 for more details).

Table 1 shows the parameter sets of BAC-UOV for the security level II, IV
and V in NIST PQC project, proposed in [21]. These parameter sets are deter-
mined by considering existing attacks with CRT explained in Subsect. 3.3 and
the technique proposed by Thomae and Wolf [22]. Besides, in terms of signature

https://github.com/aszepieniec/bacuov
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Table 1. A signature and a public key of BAC-UOV (r denotes the degree of field
lifting, * shows that the attack uses the technique of CRT)

Security
level

Parameters
(q, V, O, �, r)

|pk| |sig| Direct
attack (bit)

*UOV
attack (bit)

*Reconciliation
attack (bit)

NIST II (3, 56, 8, 7, 12) 3.45 kB 1.31 kB 147 228 149

NIST IV (3, 84, 11, 7, 16) 8.69 kB 2.60 kB 210 346 212

NIST V (3, 104, 14, 7, 16) 17.6 kB 2.42 kB 266 427 257

and public key size, they use several compression techniques such as Petzoldt’s
compression technique [20], field lifting [5] and irredundant S [8]. As a result,
BAC-UOV makes the signature and public key shorter comparing with LUOV.
Though Ding et al. [11] proposed an attack on LUOV, an estimation of Ding et
al.’s attack is not applied yet to the parameter sets listed in Table 1, since this
attack is proposed after these parameter sets are determined.

4 Our Proposed Attack

In this section, we propose a new attack on the block-anti-circulant UOV [21].
In this attack, after we change the block-anti-circulant matrices obtained from
the public key into block-diagonal matrices, we apply the UOV attack [16] and
the direct attack. We also estimate the complexity of our attack in this section.

4.1 Linear Transformations on the Public Key

First, we consider the case of q | �, where q is the order of the finite field and � is
the block size. Then, we can easily transform an n×n block-anti-circulant matrix
into a matrix of form (4) by using the vector with � consecutive same elements
such as (0, . . . , 0

︸ ︷︷ ︸

α�

, 1, . . . , 1
︸ ︷︷ ︸

�

, 0, . . . , 0
︸ ︷︷ ︸

β�

) (0 ≤ α ≤ n/� − 1, α + β = n/� − 1). This is

because for an � × � anti-circulant matrix Y , we have (1, . . . , 1)Y (1, . . . , 1)� = 0
since q | �. By using this property, we can easily obtain an equivalent key. In
fact, a parameter set with q | � is not chosen in [21].

Next, we consider the case of q � �. We define an � × � matrix L� such that
(L�)1i = (L�)j1 = 1 (1 ≤ i, j ≤ �), (L�)ii = −1 (2 ≤ i ≤ �) and the other elements
equal to 0, namely,

�
︷ ︸︸ ︷

L� := �

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

⎛

⎜

⎜

⎜

⎝

1 1 . . . 1
1 −1
...

. . .
1 −1

⎞

⎟

⎟

⎟

⎠

.
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This matrix is invertible since q � �. Then, for an � × � anti-circulant matrix Y ,
we have:

L�Y L� =
(

∗ 01×(�−1)

0(�−1)×1 ∗(�−1)×(�−1)

)

. (7)

This is because for the first column of L�, we have Y (1, . . . , 1)� = α(1, . . . , 1)�

with some α ∈ Fq and the other columns of L� are orthogonal to (1, . . . , 1)�.
Let L

(N)
� be an n×n (n = N�) block diagonal matrix such that every diagonal

submatrix is L�:

�×N
︷ ︸︸ ︷

L
(N)
� =

⎛

⎜

⎝

L�

. . .
L�

⎞

⎟

⎠ .

Then, for an n × n block-anti-circulant matrix Z with block size �, we have
L
(N)
� ZL

(N)
� becomes a block matrix whose every block is in the form of (7):

L
(N)
� ZL

(N)
� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∗ 01×(�−1) . . .
∗ 01×(�−1)

0(�−1)×1 ∗(�−1)×(�−1) 0(�−1)×1 ∗(�−1)×(�−1)

...
. . .

...
∗ 01×(�−1) . . .

∗ 01×(�−1)

0(�−1)×1 ∗(�−1)×(�−1) 0(�−1)×1 ∗(�−1)×(�−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

There exists a matrix L′ such that

L′�L
(N)
� ZL

(N)
� L′ =

⎛

⎝

∗N×N 0N×(�−1)N

0(�−1)N×N ∗(�−1)N×(�−1)N

⎞

⎠ . (8)

Such an L′ is given as a permutation matrix.
Set L := L

(N)
� L′. We execute the transformation using L on the matri-

ces Pi (i = 1, . . . , o) representing the quadratic parts of the public key. Then
L�PiL (i = 1, . . . , o) become the special matrix of form (8).

4.2 The UOV Attack on the Transformed Public Key

We use the UOV attack [17] on L�PiL (i = 1, . . . , o).
Now we consider the matrices obtained by the UOV attack on L�PiL for i =

1, . . . , o. The matrix L�PiL can be represented by (L−1SL)�(L�FiL)(L−1SL).
Then this L�FiL is in the form of the following:

⎛

⎜

⎜

⎜

⎜

⎝

∗V ×V ∗V ×O 0N×(�−1)N∗O×V 0O×O

0(�−1)N×N
∗(�−1)V ×(�−1)V ∗(�−1)V ×(�−1)O

∗(�−1)O×(�−1)V 0(�−1)O×(�−1)O

⎞

⎟

⎟

⎟

⎟

⎠

, (9)
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and L−1SL is in the form of (8). Therefore, the matrices obtained by using the
UOV attack on L�PiL is in the form of (9).

By this fact, the complexity of the UOV attack on the N ×N and (�−1)N ×
(�−1)N submatrices is O(q

�−1
�

v−o
2 ). However, this complexity is the same as the

complexity of the UOV attack with CRT in Subsect. 3.3. Therefore, this method
does not affect the security of BAC-UOV.

However, we can execute the UOV attack only on the upper-left N × N

submatrices of L�PiL (i = 1, . . . , o) with a small complexity O(q
1
�

v−o
2 ). Then

after executing this attack, we can obtain o matrices that are in the following
form: ⎛

⎜

⎜

⎝

∗V ×V ∗V ×O 0N×(�−1)N∗O×V 0O×O

0(�−1)N×N ∗(�−1)N×(�−1)N

⎞

⎟

⎟

⎠
. (10)

4.3 Completing Our Attack with Direct Attack

We execute the direct attack in Subsect. 2.3 on the polynomial system repre-
sented by the matrices of form (10). The basic idea of this subsection is to
obtain quadratic polynomials represented by the following matrix:

⎛

⎝

0O×O 0O×(�−1)N

0(�−1)N×O ∗(�−1)N×(�−1)N

⎞

⎠ , (11)

by fixing the first V variables to random values in polynomial system repre-
sented by the matrices of form (10). Then we can reduce the number of variables
appeared in quadratic terms of the polynomials. Therefore this attack can be
executed in a smaller complexity.

The first O variables in the system represented by (11) does not appear in
quadratic terms, but they appear in linear terms. By applying Gaussian elimina-
tion on the O variables, we obtain O equations with (O+(�−1)N) variables and
((� − 1)O) equations with only other ((� − 1)N) variables. Then, we execute the
direct attack on the system with ((� − 1)N) variables and ((� − 1)O) equations.
After that, we obtain a solution for the first O variables by using the remaining
O equations and the obtained answer by executing the direct attack.

In addition, we use the reducing technique proposed by [22] for the system
with ((� − 1)N) variables and ((� − 1)O) equations as stated in Subsect. 3.4.
Let α := � (�−1)N

(�−1)O  − 1 = �V
O , then we can reduce α equations. We can also

choose first V values in (10) such that the coefficients of xV +1 equal to 0 in
all o equations when V ≥ o = O × � (in [21] they use such a condition when
q = 3). Finally, we can solve a quadratic system with ((� − 1)O − α) variables
and ((� − 1)O − α + 1) equations.
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Table 2. Comparison existing attacks and our proposed attack on BAC-UOV

Security
level

Parameters
(q, V, O, �, r)

Security
parameter in [21]

Our proposed
attack

NIST II (3, 56, 8, 7, 12) 2147 2119

NIST IV (3, 84, 11, 7, 16) 2210 2171

NIST V (3, 104, 14, 7, 16) 2257 2219

4.4 Complexity Analysis

Now, we estimate the complexity of our attack on BAC-UOV with the level
II parameter, (q, V,O, �, r) = (3, 56, 8, 7, 12), which is determined so that the
complexity of every existing attack is larger than 146 bits in Table 1. Then, the
matrices Pi (i = 1, . . . , 56) representing quadratic parts of the public key of BAC-
UOV are 448 × 448 block-anti-circulant matrices with block size � = 7. First,
we execute the linear transformation explained in Subsect. 4.1 on P1, . . . , P56

which is changed to the form of (8). This step costs polynomial time. Second,
the UOV attack on the upper-left 64 × 64 submatrices is executed with 38-
bit complexity (estimated by q

v−o
2 ), which is much smaller than the security

parameter of 146 bits. Then, P1, . . . , P56 are changed to the form of (10) in
Subsect. 4.2. Finally, we can change the solving MQ-problem into
MQ(312, 41, 42) from MQ(312, 49, 49) by the discussion in Subsect. 4.3. The
complexity of the direct attack on MQ(312, 41, 42) is estimated to be 119 bits
by the formula (5), while the complexity of the direct attack on MQ(312, 49, 49)
is 147 bits.

Table 2 compares the complexity of the best existing attack and our proposed
attack by a quantum adversary for each parameter set. The security level of
BAC-UOV decreases from 210 bits to 171 bits for the level IV parameter and
decreases from 257 bits to 219 bits for the level V parameter. Table 2 shows that
our proposed attack reduces the security level by about 20% compared with the
previously known attacks for each parameter set.

Remark 1. BAC-UOV was proposed before Ding et al. [11] presented a new
attack on LUOV using field lifting at Second PQC Standardization Confer-
ence 2019. Therefore, the parameter sets in Table 1 do not consider Ding et
al.’s attack.

We stress that BAC-UOV also utilizes the technique of the field lifting used
in LUOV. Therefore, Ding et al’s attack on LUOV is also applicable to BAC-
UOV, and results in a lower bit complexity required for breaking BAC-UOV. In
terms of our proposed attack, it is possible to apply both our attack and Ding et
al.’s attack on BAC-UOV. It means that our attack can further reduce the bit
complexity required for breaking BAC-UOV using Ding et al.’s attack together.

Remark 2. As explained in Subsect. 3.4, we estimate the complexity of our pro-
posed attack coupling with the technique proposed by Thomae and Wolf [22].



334 H. Furue et al.

However, in this remark, we discuss the complexity of our attack and existing
attacks without using Thomae and Wolf’s technique. When we do not utilize
Thomae and Wolf’s technique for the direct attack, the complexity of the direct
attack becomes larger than that of the reconciliation attack for each parame-
ter set. Therefore, without using Thomae and Wolf’s technique, the best exist-
ing attack is the reconciliation attack. On the other hand, the complexities of
our proposed attack without using Thomae and Wolf’s technique are 137 bits,
188 bits and 237 bits for the security level II, IV and V, respectively. From the
complexity of the reconciliation attack in Table 1, we remark that our proposed
attack reduces the bit complexity of breaking BAC-UOV by about 10% even if
we can not use Thomae and Wolf’s technique.

5 Conclusion

In this paper, we proposed a new attack on BAC-UOV, which is a variant of UOV
using the structure of block-anti-circulant matrices. This attack first changes
matrices representing the public key into block-diagonal matrices, then applies
the UOV attack on the smaller block submatrices. The resulting matrices cor-
respond to a polynomial system with quadratic terms in less variables, which
can be solved algebraically with less complexity than simply applying the direct
attack on the public key polynomials of BAC-UOV. As a result, our proposed
attack reduces the bit complexity of breaking BAC-UOV by about 20% com-
pared with the previously known attacks. By this analysis, we conclude that
the originally proposed secure parameters for BAC-UOV fail in achieving the
claimed security levels. Note that since our proposed attack relies on the prop-
erty of an anti-circulant matrix, it does not affect the security of the original
UOV and Rainbow.

The compression technique of using block-anti-circulant can also be applied
to Rainbow (BAC-Rainbow), and our proposed attack is expected to be appli-
cable on BAC-Rainbow as well, but we leave how our attack affects the security
of BAC-Rainbow as future work.

Acknowledgments. This work was supported by JST CREST Grant Number
JPMJCR14D6, JSPS KAKENHI Grant Number 19K20266, and 18J20866.

Appendix: Toy Example

We show a toy example of the proposed attack on BAC-UOV (q = 3, V = 3, O =
2, � = 4).
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1. Generating a BAC-UOV Public Key

- Private Key Generation
The matrix representing the linear map S : F

20
3 → F

20
3 is generated as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 2 1 1 2 0 2 1 1
0 1 0 0 0 0 0 0 0 0 0 0 2 2 1 1 1 0 2 1
0 0 1 0 0 0 0 0 0 0 0 0 1 2 2 1 1 1 0 2
0 0 0 1 0 0 0 0 0 0 0 0 1 1 2 2 2 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 2 1 2 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 2 1 2
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 2 0 2 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 2 0 2
0 0 0 0 0 0 0 0 1 0 0 0 2 0 2 1 0 2 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 2 0 2 0 0 2 0
0 0 0 0 0 0 0 0 0 0 1 0 2 1 2 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 2 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the matrices associated to the quadratic form of the central map F =
(f1, . . . , f8) : F

20
3 → F

8
3 are generated to be

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 2 2 1 2 2 0 2 0 2 2 1 1 0 1 0 0 1 2
2 2 2 0 2 2 0 1 0 2 2 2 1 0 1 1 0 1 2 0
2 2 0 2 2 0 1 2 2 2 2 0 0 1 1 1 1 2 0 0
2 0 2 2 0 1 2 2 2 2 0 2 1 1 1 0 2 0 0 1
1 2 2 0 0 2 1 1 1 0 0 1 0 2 0 0 1 1 0 1
2 2 0 1 2 1 1 0 0 0 1 1 2 0 0 0 1 0 1 1
2 0 1 2 1 1 0 2 0 1 1 0 0 0 0 2 0 1 1 1
0 1 2 2 1 0 2 1 1 1 0 0 0 0 2 0 1 1 1 0
2 0 2 2 1 0 0 1 0 1 2 1 0 0 1 2 0 1 1 1
0 2 2 2 0 0 1 1 1 2 1 0 0 1 2 0 1 1 1 0
2 2 2 0 0 1 1 0 2 1 0 1 1 2 0 0 1 1 0 1
2 2 0 2 1 1 0 0 1 0 1 2 2 0 0 1 1 0 1 1
1 1 0 1 0 2 0 0 0 0 1 2 0 0 0 0 0 0 0 0
1 0 1 1 2 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 2 1 2 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 2 0 2 0 0 1 0 0 0 0 0 0 0 0
0 0 1 2 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 1 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 2 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 2 2 0 0 0 2 0 1 0 1 1 2 1 0 1 1 0 1
0 2 2 2 0 0 2 0 1 0 1 0 2 1 0 1 1 0 1 1
2 2 2 0 0 2 0 0 0 1 0 1 1 0 1 2 0 1 1 1
2 2 0 2 2 0 0 0 1 0 1 0 0 1 2 1 1 1 1 0
0 0 0 2 2 0 0 2 2 0 1 0 1 0 0 2 0 1 0 0
0 0 2 0 0 0 2 2 0 1 0 2 0 0 2 1 1 0 0 0
0 2 0 0 0 2 2 0 1 0 2 0 0 2 1 0 0 0 0 1
2 0 0 0 2 2 0 0 0 2 0 1 2 1 0 0 0 0 1 0
0 1 0 1 2 0 1 0 2 1 0 0 0 0 1 0 1 2 0 0
1 0 1 0 0 1 0 2 1 0 0 2 0 1 0 0 2 0 0 1
0 1 0 1 1 0 2 0 0 0 2 1 1 0 0 0 0 0 1 2
1 0 1 0 0 2 0 1 0 2 1 0 0 0 0 1 0 1 2 0
1 2 1 0 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0
2 1 0 1 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 2 0 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 2 1 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 1 2 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 1 0 0 1 2 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0 1 2 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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- Public Key Generation
From S and F , we can obtain a public key P = (p1, . . . , p8) : F

20
3 → F

8
3 for

BAC-UOV, and the matrices associated to their quadratic forms are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 2 2 1 2 2 0 2 0 2 2 1 0 2 1 0 1 0 0
2 2 2 0 2 2 0 1 0 2 2 2 0 2 1 1 1 0 0 0
2 2 0 2 2 0 1 2 2 2 2 0 2 1 1 0 0 0 0 1
2 0 2 2 0 1 2 2 2 2 0 2 1 1 0 2 0 0 1 0
1 2 2 0 0 2 1 1 1 0 0 1 0 2 0 0 1 1 0 0
2 2 0 1 2 1 1 0 0 0 1 1 2 0 0 0 1 0 0 1
2 0 1 2 1 1 0 2 0 1 1 0 0 0 0 2 0 0 1 1
0 1 2 2 1 0 2 1 1 1 0 0 0 0 2 0 0 1 1 0
2 0 2 2 1 0 0 1 0 1 2 1 2 1 2 1 2 0 0 1
0 2 2 2 0 0 1 1 1 2 1 0 1 2 1 2 0 0 1 2
2 2 2 0 0 1 1 0 2 1 0 1 2 1 2 1 0 1 2 0
2 2 0 2 1 1 0 0 1 0 1 2 1 2 1 2 1 2 0 0
1 0 2 1 0 2 0 0 2 1 2 1 0 0 1 1 1 0 2 2
0 2 1 1 2 0 0 0 1 2 1 2 0 1 1 0 0 2 2 1
2 1 1 0 0 0 0 2 2 1 2 1 1 1 0 0 2 2 1 0
1 1 0 2 0 0 2 0 1 2 1 2 1 0 0 1 2 1 0 2
0 1 0 0 1 1 0 0 2 0 0 1 1 0 2 2 0 0 0 2
1 0 0 0 1 0 0 1 0 0 1 2 0 2 2 1 0 0 2 0
0 0 0 1 0 0 1 1 0 1 2 0 2 2 1 0 0 2 0 0
0 0 1 0 0 1 1 0 1 2 0 0 2 1 0 2 2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, · · · ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 2 2 0 0 0 2 0 1 0 1 0 1 0 2 2 1 0 2
0 2 2 2 0 0 2 0 1 0 1 0 1 0 2 0 1 0 2 2
2 2 2 0 0 2 0 0 0 1 0 1 0 2 0 1 0 2 2 1
2 2 0 2 2 0 0 0 1 0 1 0 2 0 1 0 2 2 1 0
0 0 0 2 2 0 0 2 2 0 1 0 2 1 0 2 1 1 0 0
0 0 2 0 0 0 2 2 0 1 0 2 1 0 2 2 1 0 0 1
0 2 0 0 0 2 2 0 1 0 2 0 0 2 2 1 0 0 1 1
2 0 0 0 2 2 0 0 0 2 0 1 2 2 1 0 0 1 1 0
0 1 0 1 2 0 1 0 2 1 0 0 0 1 1 2 1 0 2 2
1 0 1 0 0 1 0 2 1 0 0 2 1 1 2 0 0 2 2 1
0 1 0 1 1 0 2 0 0 0 2 1 1 2 0 1 2 2 1 0
1 0 1 0 0 2 0 1 0 2 1 0 2 0 1 1 2 1 0 2
0 1 0 2 2 1 0 2 0 1 1 2 2 2 2 2 0 0 0 2
1 0 2 0 1 0 2 2 1 1 2 0 2 2 2 2 0 0 2 0
0 2 0 1 0 2 2 1 1 2 0 1 2 2 2 2 0 2 0 0
2 0 1 0 2 2 1 0 2 0 1 1 2 2 2 2 2 0 0 0
2 1 0 2 1 1 0 0 1 0 2 2 0 0 0 2 2 0 0 1
1 0 2 2 1 0 0 1 0 2 2 1 0 0 2 0 0 0 1 2
0 2 2 1 0 0 1 1 2 2 1 0 0 2 0 0 0 1 2 0
2 2 1 0 0 1 1 0 2 1 0 2 2 0 0 0 1 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

2. Our Proposed Attack

We first apply a linear transformation represented by L
(5)
4 and a permutation

on the public key P = (p1, . . . , pn), which is explained in Subsect. 4.1. L
(5)
4 and

the matrices representing the permutation, respectively, are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then we construct a linear transformation L by composing these two transforma-
tions. The matrices associated to the quadratic forms of the resulting polynomial
system P ◦ L = (p′

1, . . . , p
′
8) : F

20
3 → F

8
3 are in the form of (8):
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 2 2 0 0 1 2 2 0 0 1 1 2 2
0 0 0 0 0 1 2 1 0 1 1 2 0 1 0 1 1 2 0 1
0 0 0 0 0 2 1 1 0 1 0 2 1 0 1 1 1 2 1 0
0 0 0 0 0 2 0 0 0 1 0 1 2 1 2 1 1 2 0 1
0 0 0 0 0 0 1 1 1 1 0 2 2 0 1 0 2 0 2 2
0 0 0 0 0 0 1 0 0 0 2 1 0 2 1 2 0 1 2 1
0 0 0 0 0 1 2 2 1 2 1 0 1 1 2 0 2 2 0 0
0 0 0 0 0 2 0 1 2 2 0 1 2 1 0 0 0 0 1 1
0 0 0 0 0 2 1 0 1 0 2 1 1 0 2 0 2 0 1 0
0 0 0 0 0 0 0 1 2 1 1 2 0 2 1 0 2 0 1 0
0 0 0 0 0 0 1 1 1 0 2 0 0 0 0 1 1 1 1 0
0 0 0 0 0 1 1 1 1 2 0 2 0 2 2 1 2 0 0 2
0 0 0 0 0 1 2 2 2 0 1 2 0 0 0 1 0 0 2 1
0 0 0 0 0 2 0 1 0 2 2 0 1 1 1 1 0 2 0 1
0 0 0 0 0 2 1 0 1 2 1 0 1 0 0 0 2 1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 2 0 2 1 1 0 1 1 1 0 0 0 1
0 0 0 0 0 2 0 1 2 0 1 0 0 0 1 0 2 0 1 1
0 0 0 0 0 2 1 0 1 1 2 1 0 1 0 2 2 1 1 1
0 0 0 0 0 0 2 1 2 1 2 0 1 1 0 0 1 2 0 1
0 0 0 0 0 2 0 1 1 1 0 1 2 1 0 1 1 0 2 2
0 0 0 0 0 1 1 2 2 0 1 1 1 0 1 1 1 1 2 1
0 0 0 0 0 1 0 1 0 1 1 0 1 0 2 0 0 0 1 0
0 0 0 0 0 0 0 0 1 2 1 1 1 0 0 1 1 1 1 0
0 0 0 0 0 1 0 1 1 1 0 0 0 2 0 1 0 0 0 2
0 0 0 0 0 1 1 0 0 0 1 2 0 0 0 0 0 0 2 1
0 0 0 0 0 1 0 2 0 1 1 0 1 1 0 0 0 2 0 1
0 0 0 0 0 0 2 2 1 1 1 0 1 0 0 0 0 1 1 2
0 0 0 0 0 0 0 1 2 0 1 0 1 0 0 2 1 2 0 0
0 0 0 0 0 0 1 1 0 2 2 1 1 0 2 0 1 0 1 1
0 0 0 0 0 1 1 1 1 2 1 0 0 2 1 1 2 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then by just applying the UOV attack on the smaller upper left submatrices of
those above matrices like Sect. 4.2, we obtain a linear transformation L′ : F

20
3 →

F
20
3 , whose linear representation is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and with this transformation, we obtain a new polynomial system P ◦ L ◦ L′ =
(p′′

1 , . . . , p′′
8), where its matrices associated to its quadratic terms are given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 2 2 0 0 1 2 2 0 0 1 1 2 2
0 0 0 0 0 1 2 1 0 1 1 2 0 1 0 1 1 2 0 1
0 0 0 0 0 2 1 1 0 1 0 2 1 0 1 1 1 2 1 0
0 0 0 0 0 2 0 0 0 1 0 1 2 1 2 1 1 2 0 1
0 0 0 0 0 0 1 1 1 1 0 2 2 0 1 0 2 0 2 2
0 0 0 0 0 0 1 0 0 0 2 1 0 2 1 2 0 1 2 1
0 0 0 0 0 1 2 2 1 2 1 0 1 1 2 0 2 2 0 0
0 0 0 0 0 2 0 1 2 2 0 1 2 1 0 0 0 0 1 1
0 0 0 0 0 2 1 0 1 0 2 1 1 0 2 0 2 0 1 0
0 0 0 0 0 0 0 1 2 1 1 2 0 2 1 0 2 0 1 0
0 0 0 0 0 0 1 1 1 0 2 0 0 0 0 1 1 1 1 0
0 0 0 0 0 1 1 1 1 2 0 2 0 2 2 1 2 0 0 2
0 0 0 0 0 1 2 2 2 0 1 2 0 0 0 1 0 0 2 1
0 0 0 0 0 2 0 1 0 2 2 0 1 1 1 1 0 2 0 1
0 0 0 0 0 2 1 0 1 2 1 0 1 0 0 0 2 1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 2 0 2 1 1 0 1 1 1 0 0 0 1
0 0 0 0 0 2 0 1 2 0 1 0 0 0 1 0 2 0 1 1
0 0 0 0 0 2 1 0 1 1 2 1 0 1 0 2 2 1 1 1
0 0 0 0 0 0 2 1 2 1 2 0 1 1 0 0 1 2 0 1
0 0 0 0 0 2 0 1 1 1 0 1 2 1 0 1 1 0 2 2
0 0 0 0 0 1 1 2 2 0 1 1 1 0 1 1 1 1 2 1
0 0 0 0 0 1 0 1 0 1 1 0 1 0 2 0 0 0 1 0
0 0 0 0 0 0 0 0 1 2 1 1 1 0 0 1 1 1 1 0
0 0 0 0 0 1 0 1 1 1 0 0 0 2 0 1 0 0 0 2
0 0 0 0 0 1 1 0 0 0 1 2 0 0 0 0 0 0 2 1
0 0 0 0 0 1 0 2 0 1 1 0 1 1 0 0 0 2 0 1
0 0 0 0 0 0 2 2 1 1 1 0 1 0 0 0 0 1 1 2
0 0 0 0 0 0 0 1 2 0 1 0 1 0 0 2 1 2 0 0
0 0 0 0 0 0 1 1 0 2 2 1 1 0 2 0 1 0 1 1
0 0 0 0 0 1 1 1 1 2 1 0 0 2 1 1 2 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which are in the form of (10).
Then, in the polynomial system P ◦ L ◦ L′(x1, . . . , x20), by fixing x1, x2, x3

randomly, x4, x5 disappear from the quadratic parts. This reduces the complexity
of the direct attack.
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Abstract. Most of the public key encryption (PKE) schemes based
on multivariate quadratic polynomials rely on Hidden Field Equation
(HFE) paradigm. However, most of HFE based schemes have been bro-
ken in only several years just after their introduction. In this paper, we
propose an alternative paradigm for constructing PKE based on mul-
tivariate quadratic polynomials. At the heart of our proposal is a new
family of computational problems based on the generalization of Iso-
morphism of Polynomials with Two Secrets (IP2S) problem. The main
computational problem in the new family is proven as hard as the original
IP2S problem and is more robust, in the sense that we can associate it
with circulant matrices as solutions without degrading its computational
hardness too much, in contrast to the original IP2S problem which imme-
diately becomes easy as soon as it is associated with circulant matrices.
By associating it to circulant matrices, we obtain a Diffie-Hellman like
structure which allows us to have an El-Gamal like PKE scheme.

Keywords: Multivariate quadratic polynomials · Isomorphism of
polynomials · Public-key encryption

1 Introduction

The public key encryption (PKE) schemes based on the family of multivariate
quadratic polynomials (MQ) are mostly relying on Hidden Field Equation (HFE)
structure introduced by Patarin [10]. However, the weakness of HFE structure
has been well exploited in the literatures [2,5,9] and most of the PKE schemes
based on MQ have been broken within several years after they were just intro-
duced.

Beside HFE, Patarin et al. [10,11] also introduced several other families of
MQ based computational problems. One of them is the problem of Isomor-
phism of Polynomials with Two Secrets (IP2S) or Quadratic Maps Linear Equiv-
alence (QMLE), which is defined as follows: given two collections of multivariate
quadratic polynomials of n variables f , g, find invertible linear maps S, T such
that g = T ◦ f ◦S holds if there are any. So far up to this moment, for more than
c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 340–359, 2020.
https://doi.org/10.1007/978-3-030-44223-1_19
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two decades since its introduction, in the case when f is homogeneous, i.e., f
contains only terms with total degree of two, the best complexity to solve IP2S
is O(2n/2), which is derived by Bouillaguet et al. [3]. Since IP2S is devoid of
any algebraic structure which is exploitable by quantum algorithms known so
far, IP2S has been considered as a candidate for post-quantum cryptography,
especially in the scope of authentication and digital signatures [13,14].

Motivation and Challenge. In the early stage of our research, we discover
that the IP2S problem associated with circulant matrices as the solutions can
provide us with a Diffie-Hellman (DH) like algebraic structure. We illustrate this
in the following Fig. 1.

Fig. 1. DH like structure using IP2S with circulant matrices.

It is easy to see that such structure can be used for constructing El-Gamal like
PKE scheme. However, we discover that one can efficiently solve IP2S problem
in practice when it is associated with circulant matrices as the solutions.

As an illustration, let f ,g be collections of m quadratic polynomials with n
variables satisfying g = T ◦ f ◦ S, where S and T are invertible linear maps.
Let (f ,g) be a problem instance of IP2S problem. Note that here S and T can
be represented as an n-square matrix and an m-square matrix respectively. In
the original case where there is no other condition on S and T , it is easy to see
that the number of unknowns is (n2 + m2). However, in the case that S and
T are circulant matrices, S and T are representable by only n and m values
respectively and thus the number of unknowns becomes only (n + m). On the
other hand, Faugère et al. [6] and Plût et al. [12] have shown that from the
relation g = T ◦ f ◦ S, we can construct a system of equations consisting of
around mn(n + 1)/2 independent quadratic polynomials with high probability.
In [4], Courtois et al. have shown that if � � ερ2 holds for some constant ε > 0
where � is the number of independent quadratic polynomials and ρ is the number
of unknowns, then by using their proposed relinearization algorithm, one can
find the unknowns with polynomial complexity, i.e., approximately ρO(1/

√
ε).

Thus, following this, for IP2S with S and T as circulant matrices, we have the
inequations below which hold for some ε > 0 and m � 1.
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mn(n + 1)
2

� ε(m + n)2 ⇔ n2
(m

2
− ε

)
� εm2 +

(
ε − 1

4

)
2mn. (1)

It is common to set m � n in practice for IP2S [3,6,11]. And it is easy to see
that Eq. (1) holds for ε = 1/4 and m ∈ [1, n]. Thus, based on [4], we can say that
solving IP2S for the case that S and T are circulant matrices is easy in practice.
Therefore, we need to find another way of using IP2S to obtain DH like algebraic
structure such that we do not degrade the complexity of the underlying problem.

Overview of Our Strategy. The main cause of the degradation of the com-
plexity of IP2S with circulant matrices shown above is the lack number of
unknowns. In order to overcome this, we try to find a way to modify IP2S
problem such that we can increase the number of unknowns. We start from our
(failed) first idea which is described as follows. Let us have k instances of IP2S
problem with circulant matrices as follows: gi = Ti ◦ fi ◦ Si for i ∈ [1, k] where
fi,gi are collections of m quadratic polynomials with n variables, Si and Ti are
n-square circulant matrices and m-square circulant matrices respectively. Now
let us have a new computational problem which requires us to find the solu-
tions of k instances of IP2S problem simultaneously. According to [6,12], we
may have a total of around mn(n+1)

2 ×k independent quadratic polynomials and
(m + n) × k unknowns. Thus, we obtain the inequation which is analogous to
Eq. (1) as follows:

mn(n + 1)
2

× k � ε((m + n) × k)2 = ε(m + n)2k2

⇔ n2
(m

2
− (εk)

)
� (εk)m2 +

(
(εk) − 1

4

)
2mn. (2)

It is easy to see that in order to guarantee that Eq. (2) holds for any m � n,
ε = 1/4 is not sufficient if k > 1. If we set ε = 1

4k , then this new computational
problem using algorithm in [4] is approximately (m + n)2

√
k. And if we let k =

O(n), then clearly that the complexity of the algorithm become exponential.
Hence, based on this, at first glance, one may argue that the new computational
problem is harder than the original IP2S with circulant matrices.

However, we should note here that the above argument is actually false! The
reason is that in practice, we can find the solutions of k instances of IP2S prob-
lems with circulant matrices simultaneously by solving each instance separately
one by one! Hence, the actual complexity of solving the new computational
problem is actually only k(m + n)2. The lesson we got here is that unless we
can prevent anyone to solve the problems separately, although we increase the
number of the instances, it will not leverage the complexity significantly.

In order to prevent anyone to solve the problems separately, in our next idea,
we define a new computational problem such that instead of giving {gi}k

i=1, we
give g as input, where g =

∑k
i=1 gi =

∑k
i=1 Ti ◦ fi ◦ Si. Using this equation (on

g) as input, we prevent anyone to solve the instances separately and also reduces
the number of quadratic polynomials simultaneously. However, this modification
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makes us lose the DH like structure! Roughly said, the most formidable hurdle
here is that since each fi represents quadratic polynomials, it is hard to repre-
sent

∑k
i=1 Ti ◦ fi ◦ Si using only simple matrix multiplications and additions.

Fortunately, we discover a method to regain DH like structure by constructing
(k − 1) additional equations in a specific way as additional inputs to the com-
putational problem. We construct the equations for the inputs in a specific way
such that not only that we regain DH like structure, but also we control the total
number of quadratic polynomials such that one can only obtain approximately
mn(n + 1)/2 from each equation and thus approximately mn(n + 1)/2 × k from
the whole system.

Main Results. Based on the idea explained above, we define a generaliza-
tion of IP2S problem which gives us more freedom in controlling the number of
unknowns and based on it, we propose a new computational problem which we
call as the Blockwise Isomorphism of Polynomials (BIP) problem. We prove that
BIP problem is at least as hard as IP2S problem by showing that any instance
of IP2S problem is equivalent to a specific instance of BIP problem.

The most important feature of the BIP problem is that we can associate it
with circulant matrices as the solutions without degrading its complexity too
much, while still preserving the original property of IP2S when associated with
circulant matrices, i.e., DH like algebraic structure. Based on computational
problems derived from BIP problem associated with circulant matrices, we pro-
pose a new public key encryption scheme with similar structure to the El-Gamal
encryption.

In this paper, we also list several candidates of secure parameters for 128-bit
and 256-bit security to guarantee the hardness of the BIP problem associated
with circulant matrices in practice. The parameters are calculated by relying on
rough complexity estimations of: (1) a heuristic theoretical algorithm to solve
the BIP problem derived from the attack algorithm for solving IP2S proposed by
Bouillaguet [3], and (2) a Gröbner Bases attack on solving BIP problem associ-
ated with circulant matrices which treats the problem instance as the equations
and the solutions (circulant matrices) as the unknowns.

Limitation and Open Problems. In this paper, we have provided a theoreti-
cal result that the BIP problem is as hard as the original IP2S problem. However,
the theoretical hardness of BIP problem when we limit the solutions to only cir-
culant matrices remains as an open problem. Since we generally take a safety side
in deriving the security parameters, the recommended security parameters listed
in this paper are still quite large compared to other post-quantum encryption
schemes based on HFE, lattice, or isogeny. Whether one can propose a smaller
parameters with a more rigorous argument is an interesting open problem. Also,
we have not managed to perform analysis on the hardness of BPI problem and
our proposed public key encryption scheme against equivalent keys attack in the
same manner as the work by Wolf and Preneel in [17]. We leave this as an open
problem.
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Related Works. The complexity of solving IP2S depends very much on the
type of polynomial f . For the case when f is inhomogeneous, i.e., f contains
terms with total degree less than two, it has been shown by Faugère and Perret
in [6] that the complexity is polynomial. However, for the case when f is homoge-
neous, i.e., f contains only terms with total degree of two, the best complexity is
O(2n/2) [3]. Since IP2S with homogeneous f is supposed to preserve the hardness
against quantum adversaries, IP2S with homogeneous f has been used in several
post-quantum cryptographic protocols such as public key identification scheme
[13] and signature scheme [14]. Independently, Wang et al. [16] proposed a sim-
ilar paradigm of constructing PKE scheme using a DH like algebraic structure
derived from associating circulant matrices to another computational problem
related to IP2S, i.e. Morphism of Polynomials problem [11]. However, it suffers
from the same degradation of complexity as our first attempt of creating DH
like structure using IP2S and circulant matrices shown in the subsection “Moti-
vation and Challenge” above, i.e., the total number of unknown is only (m+n),
while one can obtain a system of equations with around mn(n + 1)/2 indepen-
dent quadratic polynomials. Chen et al. [8] proposed an attack algorithm which
exploits the vulnerability and shown that they can efficiently break the compu-
tational problems proposed in [16] in practice even when using the parameters
recommended in [16].

2 Preliminaries

Notations Related to Multivariate Polynomials and Matrices. Let q ∈ N be
a prime number. Unless noted otherwise, any algebraic element mentioned in
this paper is an element in the field Fq and any algebraic structure defined
in this paper is defined over Fq. A quadratic polynomial f ∈ Fq[χ1, . . . , χn]
is called homogeneous if the simplest form of f can be written as follows:
f(χ1, . . . , χn) =

∑
i,j∈[1,n],i�j αi,jχiχj . An alternative notation for n-square

matrix A is (ai,j)i,j∈[1,n], where ai,j is the element of matrix in i-th row and
j-th column. Let Mn denote the set of all n-square matrices and GLn denote
the set of all invertible n-square matrices. Also, we let 0n denote the n-square
zero matrix.

We put the complexity related notations on AppendixA.

Definition 1 (Multivariate Quadratic Polynomials (MQ) Family).
A Multivariate Quadratic Polynomials (MQ) family, denoted by notation
MQ(n,m), is a family of sets of functions defined as follows.

MQ(n,m) :=
{

(f1(χ), . . . , fm(χ))
∣∣∣∣
fk(χ) =

∑
i,j αk,i,jχiχj +

∑
i βk,iχi + γk

αk,i,j , βk,i, γk ∈ Fq for k ∈ [1,m]

}
,

where χ = (χ1, . . . , χn), χi ∈ Fq for i ∈ [1, n]. Any f = (f1, . . . , fm) ∈ MQ(n,m)
is said to be homogeneous if all f1, . . . , fm are homogeneous.
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Remark 1. For simplicity, we call any f ∈ MQ(n,m) as an MQ function. Unless
noted otherwise, any quadratic polynomial considered in this paper is homoge-
neous and we assume that any MQ function in this paper is homogeneous.

The following problem is introduced by Patarin et al. in [11].

Definition 2 (Isomorphism of Polynomials with Two Secrets (IP2S)
Problem). The problem of Isomorphism Polynomials of Two Secrets (IP2S) is
parameterized with n,m ∈ N and defined as follows: given f ,g ∈ MQ(n,m),
find invertible linear maps S ∈ GLn and T = (ti,j)i,j∈[1,m] ∈ GLm such that the
following holds.

g = T ◦ f ◦ S. (3)

In other words, for all i ∈ [1,m], the following holds.

gi =
∑

j∈[1,m]

ti,jfj ◦ S, (4)

where f = (f1, . . . , fm) and g = (g1, . . . , gm).

Definition 3 (Isomorphism of Polynomials). Any two MQ functions f ,g ∈
MQ(n,m) are said to be isomorphic if there are invertible linear maps S ∈ GLn

and T = (ti,j)i,j∈[1,m] ∈ GLm such that the following holds.

g = T ◦ f ◦ S. (5)

3 Generalization of Isomorphism of Polynomials

In this section, we introduce the generalization of IP2S problem into computa-
tional problems associated to matrices with blockwise structure as the solutions.

3.1 Basic Idea

Let us revisit Eq. (4) in Definition 2. One can clearly see that although we have
m quadratic polynomials inside f , i.e., f1, . . . , fm, all of them are associated to
only one matrix S in all definitions of g1, . . . , gm. Our intuition is that, if we can
associate f1, . . . , fm with not only one matrix, but several different matrices, we
might be able to obtain a more general computational problem with a greater
freedom on adjusting the complexity.

3.2 Blockwise Isomorphism of Polynomials

Definition 4. Let GL(n, k) denote all n×k-square matrices with the same prop-
erties and structures as the following matrix V ∈ (GLn ∪ {0n})k×k:

V =

⎡
⎢⎢⎢⎣

V[1] V[2] · · · V[k]

V[k] V[1] · · · V[k−1]

...
. . . . . .

...
V[2] · · · V[k] V[1]

⎤
⎥⎥⎥⎦ ,
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where for i ∈ [1, k], V[i] is an n-square invertible or zero matrix, i.e., V[i] ∈
GLn ∪ {0n}.
Definition 5 (Blockwise Isomorphism of Polynomials). Consider two MQ
functions f ,g ∈ MQ(n,m × k) and let denote f[j] = (f1+(j−1)m, f2+(j−1)m,
. . . , fjm) and g[τ ] = (g1+(τ−1)m, . . . , gτm) for any j, τ ∈ [1, k]. We say that f
and g are k-blockwise isomorphic if there exist T ∈ GL(m, k) and S ∈ GL(n, k)
such that the following for all τ ∈ [1, k]:

g[τ ] =
∑

j∈[1,k]

T[(k−τ+j) mod k+1] ◦ f[j] ◦ S[(k−τ+j) mod k+1]. (6)

As an illustration, for k = 3, we can write Eq. (6) can be written as follows.
⎡
⎣

g[1]

g[2]

g[3]

⎤
⎦ =

⎡
⎣

T[1] ◦ f[1] ◦ S[1] + T[2] ◦ f[2] ◦ S[2] + T[3] ◦ f[3] ◦ S[3]

T[3] ◦ f[1] ◦ S[3] + T[1] ◦ f[2] ◦ S[1] + T[2] ◦ f[3] ◦ S[2]

T[2] ◦ f[1] ◦ S[2] + T[3] ◦ f[2] ◦ S[3] + T[1] ◦ f[3] ◦ S[1]

⎤
⎦ ,

where f[1] = (f1, . . . , fm), g[1] = (g1, . . . , gm), f[2] = (fm+1, . . . , f2m), g[2] =
(gm+1, . . . , g2m), f[3] = (f2m+1, . . . , f3m), g[3] = (g2m+1, . . . , g3m).

Definition 6 (Blockwise Isomorphism of Polynomials (BIP) Problem).
The problem of Blockwise Isomorphism of Polynomials is parameterized with
n,m, k ∈ N and associated with S ⊆ GL(n, k), T ⊆ GL(m, k), and defined as
follows: given f ,g ∈ MQ(n,m×k), find S ∈ S and T ∈ T such that the following
holds for all τ ∈ [1, k]:

g[τ ] =
∑

j∈[1,k]

T[(k−τ+j) mod k+1] ◦ f[j] ◦ S[(k−τ+j) mod k+1], (7)

where f[j] = (f1+(j−1)m, f2+(j−1)m, . . . , fjm) and g[τ ] = (g1+(τ−1)m, . . . , gτm).

The following theorem says that our new BIP problem is as hard as the
original IP2S problem. The full proof is shown in AppendixB.

Theorem 1. BIP problem parameterized with n,m, k ∈ N and associated with
S := GL(n, k) and T := GL(m, k) is at least as hard as IP2S problem parame-
terized with n,m.

3.3 Blockwise Isomorphism of Polynomials with Circulant Matrices

Here, we will show that BIP with circulant matrices allows us to have a Diffie-
Hellman (DH) like algebraic structure. For convenience and readability, we intro-
duce new notations and an operator.

Definition 7. A circulant n-square matrix A= (ai,j)i,j∈[1,n] is an n-square
matrix which has property that a1,j = ai,j+i−1 mod n holds for i, j ∈ [1, n]. Let
Circn denote the set of all circulant n-square matrices. Let CGL(n, k) denote all
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n × k-square matrices with the same properties and structures as the following
matrix C ∈ ((Circn ∩ GLn) ∪ {0n})k×k :

C =

⎡
⎢⎢⎢⎣

C[1] C[2] · · · C[k]

C[k] C[1] · · · C[k−1]

...
. . . . . .

...
C[2] · · · C[k] C[1]

⎤
⎥⎥⎥⎦ ,

where for i ∈ [1, k], C[i] is an n-square invertible circulant or zero matrix, i.e.,
C[i] ∈ (Circn ∩ GLn) ∪ {0n}.
Definition 8. Let T ∈ CGL(m, k) and S ∈ CGL(n, k). We define the following.


(T, S) :=

⎡
⎢⎢⎢⎢⎣

(T[1], S[1]) · · · · · · (T[k], S[k])

(T[k], S[k])
. . . · · · (T[k−1], S[k−1])

...
. . .

...
(T[2], S[2]) · · · (T[k], S[k]) (T[1], S[1])

⎤
⎥⎥⎥⎥⎦

.

Also, we define the set Ψ[n,m,k] as follows.

Ψ[n,m,k] :=
{

(T, S)

∣∣T ∈ CGL(m, k), S ∈ CGL(n, k)
}

.

For any ψ ∈ Ψ[n,m,k], ψi,j denotes the element at i-th row and j-th column
in matrix ψ.

In AppendixD, we show a special property satisfied by any ψ ∈ Ψ[n,m,k] derived
from its circulant structure.

Definition 9 (Operators ∗ and �). Let u ∈ MQ(n,m) and μ := (A,B),
where A ∈ GLm ∪ {0m} and B ∈ GLn ∪ {0n}. We define the operator ∗ as
follows.

μ ∗ u := A ◦ u ◦ B.

Let f ∈ MQ(n,m×k) and ψ ∈ Ψ[n,m,k]. We define the operator � as follows.

ψ � f :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑k
j=1 ψ1,j ∗ f[j]

...∑k
j=1 ψi,j ∗ f[j]

...∑k
j=1 ψk,j ∗ f[j]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The following lemma states that we can obtain a Diffie-Hellman (DH) like
algebraic structure from blockwise isomorphism of polynomials with circulant
matrices.
Lemma 1 (DH like Structure). Let f ∈ MQ(n,m × k) and ψ,ϕ ∈ Ψ[n,m,k].
Then, the following holds.

ϕ � (ψ � f) = ψ � (ϕ � f).

The proof of Lemma 1 is given in AppendixE.
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3.4 Computational Problems from Blockwise Isomorphism of
Polynomials with Circulant Matrices

Below, we represent the new computational problems based on blockwise iso-
morphism of polynomials with circulant matrices.

Definition 10 (BIP with Circulant Matrices (BIPC)). The problem
of Blockwise Isomorphism of Polynomials with Circulant Matrices (BIPC) is
parameterized with n,m, k ∈ N and defined as follows: given f ,g ∈ MQ(n,m ×
k), find Υ ∈ Ψ[n,m,k] such that the following holds:

g = Υ � f .

Next, based on Definition 10, we derive the following computational problem
in the similar spirit as Computational Diffie-Hellman problem. We will use the
hardness of this problem to prove the security of PKE scheme in later section.

Definition 11 (Computational Diffie-Hellman for BIPC). The problem
of Computational Diffie Hellman for BIPC (CDH-BIPC) is parameterized with
n,m, k ∈ N and defined as follows: given f (1), f (2),g(1) ∈ MQ(n,m × k) such
that the following holds for some Υ ∈ Ψ[n,m,k]:

g(1) = Υ � f (1),

find g(2) ∈ MQ(n,m × k) such that the following holds:

g(2) = Υ � f (2).

4 El-Gamal Like Public Key Encryption Scheme Based
on Blockwise Circulant Matrices

In this section, we will show a construction of an El-Gamal like public key
encryption scheme based on the DH like algebraic structure shown in Lemma 1.

4.1 Description of the Scheme

We describe our proposed scheme as follows.

– Public parameters: �, n,m, k ∈ N, an encoding function e : {0, 1}� →
MQ(n,m × k) and a decoding function d : MQ(n,m × k) → {0, 1}� such
that for any ν ∈ {0, 1}�: ν = d(e(ν)) holds and for any x ∈ MQ(n,m × k):
e(d(x)) = x holds.

– Secret Key: Υ ∈ Ψ[n,m,k].
– Public Key: g, f ∈ MQ(n,m × k) such that g = Υ � f .
– Encryption: to encrypt a message plaintext ν ∈ {0, 1}�, one chooses a random

ψ ∈ Ψ[n,m,k] and computes:

c0 ← ψ � f , c1 ← e(ν) + ψ � g.

The ciphertext is c = (c0, c1).
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– Decryption: to decrypt a ciphertext c = (c0, c1), given the secret key Υ ∈
Ψ[n,m,k], one computes:

ν ← d(c1 − Υ � c0).

The decryption result is ν.

Theorem 2 (Correctness). The decryption process of above encryption pro-
duces the correct plaintext when the ciphertext is correctly constructed.

Proof. If the ciphertext c = (c0, c1) is correctly constructed, the followings hold
for some ψ ∈ Ψ[n,m,k]:

c0 = ψ � f , c1 = e(ν) + ψ � g, (8)

where ν is the plaintext. Then, in the decryption process, we obtain the following
equations.

c1 − Υ � c0 = e(ν) + ψ � g − Υ � (ψ � f) = e(ν) + ψ � (Υ � f) − Υ � (ψ � f)
(a)
= e(ν) + ψ � (Υ � f) − ψ � (Υ � f) = e(ν).

The transformation to (a) is performed based on the property shown in
Lemma 1. Hence, d(c1 − Υ � c0) = d(e(ν)) = ν holds. This ends the proof.

In AppendixC, we prove that the PKE scheme described above is secure
against one-way under chosen plaintext attack (OW-CPA) by assuming that
CDH-BIPC is hard.

4.2 Extension to Security Against Chosen Ciphertext Attacks

In practice, it is much preferable that a public key encryption scheme satisfies at
least IND-CCA (indistinguishability under chosen ciphertext attacks) security.
One can transform our proposed encryption scheme into the one with IND-
CCA security using a variant of Fujisaki-Okamoto transformation developed by
Hoefheinz et al. [7].

5 Complexity of Breaking BIP with Circulant Matrices

For simplicity, here we assume the binary field case, i.e., q = 2. We estimate the
hardness of BIP with circulant matrices (BIPC) based on two attacks: (1) the
attack on IP2S problem with homogeneous instances proposed by Bouillaguet
et al. [3], and (2) algebraic attack by solving a system of multivariate quadratic
equations with the elements of the solutions matrices of BIP as the unknowns,
where the equations are formed by the terms of MQ functions in the problem
instances.
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5.1 Evaluation Based on the Attack by Bouillaguet et al. [3]

Overview. The core of the attack in [3] is an algorithm for solving IP2S problem
which we summarize as follows.

(1) Given the instance (f ,g) of IP2S, we find a pair of vectors α, β ∈ F
n×1
q

such that S̃−1α = β holds when g = T̃ ◦ f ◦ S̃ holds, where T̃ , S̃ are the
solutions of IP2S. In [3], Bouillaguet et al. shows how to obtain such α, β by
combining a graph-theoretic method and a special hashing using canonical
labeling of graph. In brief, Bouillaguet et al. construct a hash function H such
that if H(α) = H(β), then S̃−1α = β holds with very high probability. The
complexity of evaluating H once is ≈ n5. And in order to get collision with
sufficiently high probability, based on birthday paradox, Bouillaguet et al.
construct two hash tables, each with size of 2n/2. Hence, the total complexity
of finding α, β such that S̃−1α = β holds is ≈ 2 × n5 × 2n/2 = O(n52n/2).

(2) Let define f ′(χ) := f(χ + α), g′(χ) := g(χ + β) using α, β found in step (1).
Thus, the followings holds.

T̃ ◦ f ′ ◦ S̃(χ) = T̃ ◦ f ′(S̃(χ)) = T̃ ◦ f(S̃(χ) + α) = T̃ ◦ f(S̃χ + S̃β))

= T̃ ◦ f(S̃(χ + β)) = T̃ ◦ f ◦ S̃(χ + β) = g(χ + β) = g′.

One can see that the IP2S problem with the original instance (f ,g) and the
one with another instance (f ′,g′) have the same solution. However, although
the original f is homogeneous, f ′ is inhomogeneous (no longer homogeneous)
and thus we can solve it easily using the procedure in [6]. More precisely,
we can input (f ′,g′) into the algorithm proposed in [6] which solves IP2S
problem with inhomogeneous instances in polynomial time. At the heart
of the algorithm are the monomials with degree one in the inhomogeneous
problem instance (f ′,g′) which form linear equations that reduce the compu-
tational complexity of solving the system of m×n2/2 multivariate quadratic
equations with n2 + m2 unknowns which is generated by T̃−1 ◦ g′ = f ′ ◦ S̃.

Now, let f ,g ∈ MQ(n,m × k) be the problem instance of BIPC. Without
loss of generality, let us focus on g[1]. Assuming that the problem has solutions,
the following holds for some T ∈ CGL(m, k) and S ∈ CGL(n, k):

g[1] =
∑

j∈[1,k]

T[j] ◦ f[j] ◦ S[j] (9)

Without loss of generality, assume that we successfully find α1, α2, . . . , αk, β such
that S[j]β = αj for j ∈ [1, k]. Let define f ′

[j](χ) := f[j](χ + αj) for j ∈ [1, k] and
g′(χ) := g[1](χ + β). Thus, it is easy to see that the following holds.

g′ =
∑

j∈[1,k]

T[j] ◦ f ′
[j] ◦ S[j]. (10)

This means that if we can find αj , β such that S−1
[j] αj = β for any of j ∈ [1, k],

we can transform the problem instance into another problem instance consisting
of inhomogeneous MQ functions which have the same solutions.
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In [3], it is shown that we can see the problem of finding α, β such that
S̃−1α = β is similar to finding a single collision for a special hash function asso-
ciated with S̃−1. Here, in a rough way, we see the problem of finding α1, . . . , αk, β

such that S−1
[j] αj = β for all j ∈ [1, k] as similar to finding simultaneous k colli-

sions of k special hash functions associated with S−1
[j] , for j ∈ [1, k].

It is stated in [3] that the complexity of finding a single collision for such
special hash function is ≈ 2 × n52n/2, where the constant “2” is the number of
necessary hash tables, n5 is the complexity of computing one hash value and
2n/2 is the necessary size of each hash table to apply the birthday paradox.
Using a similar analogy, we estimate that if we want to find k collisions, we will
need k hash tables, and we also estimate that based on Suzuki et al. [15], the
necessary size of each hash table to apply the birthday paradox for k collisions
is ≈ k/e × 2nk/(k+1), where e is the mathematical constant representing the
base of natural logarithm, i.e., e ≈ 2.71828. Thus, we estimate that the total
complexity of finding simultaneous k collisions for the special hash function is
≈ k × n5 × k/e × 2nk/(k+1) � k2/2 × n52nk/(k+1).

Finally, in order to derive a conservative estimation of the security parame-
ters, we take an optimistic approach (from adversary point of view) by assuming
that the following holds.

Assumption 1. There exists an efficient method to “move” the T part from
the right hand side to the left hand side of Eq. (10). such that we can use the
procedure in [6] to find T and S efficiently.

5.2 Evaluation Based on Gröbner Bases Attack [1]

Next, we will analyze the complexity of solving BIPC problem with algebraic
attacks using Gröbner bases. Similarly, in order to derive a conservative estima-
tion of the security parameters, we take an optimistic approach (from adversary
point of view) by assuming that the following holds.

Assumption 2. There exists an efficient method to “move” the T part from the
right hand side to the left hand side of Eq. (7).

Thus, we can treat the solving of BIPC problem as solving a system of
multivariate quadratic polynomials. The number of unknowns is (n+m)×k and
the number of equations is at most n2/2×mk. Let v be the number of unknowns
and w be the number of equations. According to [1], if w/v2 tends to 0, the
asymptotic complexity of solving this system is approximately 2v2/(8w)×log(w/v).

Here w/v2 = 1/2 × n2mk/((n + m)k)2 < m/(2k) and let assume that m/k
tends to 0 asymptotically, i.e., k is much larger than m. Thus, we can compute
v2/(8w) × log(w/v) > (nk)2/(8/2 × n2mk) × log(nm) = k log(nm)/(4m). And
we obtain the complexity of solving BIPC using algebraic attacks using Gröbner
bases as ≈ 2k log(nm)/(4m).
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5.3 Conservative Recommended Parameters

By combining the estimated complexity of the attacks shown in previous sub-
sections, we recommend the following parameters to guarantee the hardness of
BIPC problem for 128-bit and 256-bit security.

Table 1. Recommended security parameters (1 B = 8 bits)

Bit security n m k Size of problem instances
(f ,g) (= n2mk)

Size of solutions
(S, T ) (= (n+m)k)

128 84 2 140 1, 975, 680 bits (246, 960 B) 12, 040 bits (1, 505 B)

256 206 2 236 20, 029, 792 bits (2, 503, 724 B) 49, 088 bits (6, 136 B)

Note that the size of problem instances and the size of solutions are the size
of public keys and the size of secret keys in the proposed public key encryption
scheme respectively.

5.4 Alternative Parameters

Note that parameters recommended above are based on the assumption that
Assumptions 1 and 2 hold such that the adversary can solve BIPC using the
similar method as solving a particular system of multivariate quadratic polyno-
mials. Here we assume that Assumption 1 does not hold and only Assumption 2
holds, so that the adversary can only solve BIPC directly using Gröbner bases as
described in Sect. 5.2. We derive security parameters for this scenario as follows.

Table 2. Alternative security parameters (1 B = 8 bits)

Bit security n m k Size of problem instances
(f ,g) (= n2mk)

Size of solutions
(S, T ) (= (n + m)k)

128 16 2 205 104, 960 bits (13, 120 B) 3, 690 bits (462 B)

256 16 2 410 209, 920 bits (26, 240 B) 7, 380 bits (923 B)

5.5 Aggressive Variants with Smaller Parameters

The size of problem instance of BIPC is basically the size of the public key and
the ciphertext of the encryption scheme based on BIPC. The parameters shown
in Table 1 might be too large for practical uses. Here we propose two variants of
BIPC, where the sizes of the instances are much smaller compared to the ones
proposed in previous subsection (Table 1).

Variant 1 (extremely aggressive): f ∈ MQ(n,m × k) is such that f[1] =
f[2] = · · · = f[k] holds. Automatically g[1] = g[2] = · · · = g[k] holds. Thus, we
only need to define f[1] and g[1] (Table 3).
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Table 3. Security parameters for variant 1 (1 B = 8 bits)

Bit security n m k Size of problem instances
(f ,g) (= n2m)

Size of solutions
(S, T ) (= (n + m)k)

128 84 2 140 14, 112 bits (1, 764 B) 12, 040 bits (1, 505 B)

256 206 2 236 84, 872 bits (10, 609 B) 49, 088 bits (6, 136 B)

Variant 2 (moderately aggressive): f ∈ MQ(n,m × k) is such that f[1] =
f[2j′−1], f[2] = · · · = f[2j′] hold for j′ ∈ [1, k/2] when k is even, or f[1] =
f[2j′+1], f[2] = · · · = f[2j′] hold for j′ ∈ [1, �k/2] when k is odd. Automatically
g[1] = g[2j′−1],g[2] = · · · = g[2j′] hold for j′ ∈ [1, k/2] when k is even, or
g[1] = g[2j′+1],g[2] = · · · = g[2j′] hold for j′ ∈ [1, �k/2] when k is odd. Thus,
we only need to define f[1], f[2] and g[1],g[2] (Table 4).

Table 4. Security parameters for variant 2 (1 B = 8 bits)

Bit security n m k Size of problem instances
(f ,g) (= n2m × 2)

Size of solutions
(S, T ) (= (n + m)k)

128 84 2 140 28, 224 bits (3, 528 B) 12, 040 bits (1, 505 B)

256 206 2 236 169, 744 bits (21, 218 B) 49, 088 bits (6, 136 B)

Above aggressive parameters are derived from the conservative parameters
shown in Table 1. One can easily derive the aggressive parameters in a similar
way from the alternative parameters shown in Table 2.

Note 1. Since the number of equations to hold is significantly decreasing in the
aggressive variants, intuitively the aggressive variants are more susceptible to
equivalent keys attacks. We leave the complexity analysis of BIPC against equiv-
alent keys attacks as an open problem.

Acknowledgement. We would like to express our gratitude to the anonymous review-
ers for the constructive comments and advices which have contributed in improving
this paper. This work is supported by JSPS Kiban (B) 18H01438 and JPSPS Kiban(C)
18K11292.

A General Notations Related to Complexity

Let λ ∈ N be the general security parameter in this paper. Unless noted other-
wise, any algorithm in this paper is probabilistic with running time polynomial
in λ. The notation a ← b denotes the assignment of value b into variable a. We
say that a function f(λ) is negligible if for every η > 0 there exists a λη such
that f(λ) < 1/λη for all λ > λη. An algorithm is said to solve a computational
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task efficiently if the probability that it solves the task within time polynomial
in λ is not negligible. A task or a computational problem is said to be hard if
there exists no algorithm solves the task/problem efficiently.

B Proof of Theorem1

Let us be given f ,g ∈ MQ(n,m) as the instance of IP2S problem defined in
Definition 2. Since the lemma holds trivially when f = 0 (zero polynomials) or
g = 0, we are left to prove the case when f �= 0 and g �= 0. Hence, from hereafter
we assume that f �= 0 and g �= 0. Next, we construct f ,g ∈ MQ(n,m × k) as
follows. Let f[1] = f , g[1] = g, and f[τ ],g[τ ] = 0 for all τ ∈ [2, k]. In order to
complete the proof, we show that the following claim holds.

Claim. (f ,g) is an instance of IP2S with solutions if and only if (f ,g) is an
instance of BIP with solutions.

In order to prove the above claim, first, we prove the “if” part. If the pair
(f ,g) is an instance of BIP with solution, then, there exist S ∈ GL(n, k), T ∈
GL(m, k) such that the following holds.

g[1] = T[1] ◦ f[1] ◦ S[1], (11)
∀τ ∈ [2, k] :
0 = T[(k−τ+1) mod k+1] ◦ f[1] ◦ S[(k−τ+1) mod k+1]. (12)

It is clear that neither T[1] nor S[1] is a zero matrix since by the assumption, nei-
ther g[1] nor f[1] is a zero polynomial. Therefore, T[1] and S[1] must be invertible
matrices, i.e., T[1] ∈ GLm, S[1] ∈ GLn. Hence, T[1] and S[1] are the solutions for
IP2S problem with instance (f ,g).

Next, we prove the “only if” part. Now, we assume that (f ,g) is an instance
of IP2S with solutions, but (f ,g) is an instance of BIP without any solution. Let
T ∈ GLm and S ∈ GLn be the solutions of (f ,g) such that g = T ◦ f ◦ S holds.
Now remind that f[1] = f , g[1] = g, and f[τ ],g[τ ] = 0 for τ ∈ [2, k] hold by our
setting and it is easy to see that we can construct S ∈ GL(n, k), T ∈ GL(m, k)
such that Eqs. (11) and (12) hold by setting T[1] = T , S[1] = S, and T[τ ] = 0m,
S[τ ] = 0n for all τ ∈ [2, k]. This means that (f ,g) is an instance of BIP with
solutions and contradicts our assumption. Hence, we have proven the “only if “
part of the claim.

Finally, it should be noted that if (f ,g) is an IP2S problem instance with
solution, then we can always extract the solution by using an algorithm B which
solves BIP and setting the input to B as (f ,g) where f[1] = f , g[1] = g, and
f[τ ],g[τ ] = 0 for all τ ∈ [2, k] as shown above. One can easily see that this
statement holds based on the proof of the “if” part of the claim above. This
ends the proof of Theorem 1. ��
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C Security Against Chosen Plaintext Attacks

Here we show that the public key encryption scheme described in Sect. 4.1 is
secure against one way under chosen plaintext attack (OW-CPA).

Definition 12. (One Wayness against Chosen Plaintext Attack (OW-
CPA)). Let PKE be a public-key encryption scheme. Consider the following one
way against chosen plaintext attack (OW-CPA) game, played between a chal-
lenger B and an adversary A:

1. B generates a public key/secret key pair, and gives the public key to A.
2. A makes encryption queries, which each is the message ν to encryption oracle

Enc provided by B. For each encryption query, B perform the encryption step
using the public key and sends back a valid ciphertext c to A.

3. B sends a ciphertext c′ to A, and A outputs ν′.

The adversary A is said to win if ν′ is a valid decryption of c′. PKE is said to
be OW-CPA secure if there is no A which wins the above game efficiently.

Theorem 3. If there exists an adversary A wins OW-CPA game in the pub-
lic key encryption scheme described in Sect. 4.1 efficiently, then there exists an
algorithm B which solves CDH-BIPC efficiently.

Proof. We construct the algorithm B using oracle access to A. The procedure of
B is as follows.

(1) Given input f (1), f (2),g(1) ∈ MQ[k](n,m) as the instance of CDH-BIPC, B
input g(1), f (1) as the public key into A. Since (f (1), f (2),g(1)) is an instance
of CDH-BIPC, g(1) = Υ � f (1) holds for some Υ ∈ Ψ[n,m,k], and thus
(g(1), f (1)) is a valid public key pair.

(2) B easily simulates the encryption oracle Enc using g(1), f (1) as the public
key by executing the encryption procedure shown in Sect. 4.1.

(3) B sets c′
0 = f (2) and selects randomly c′

1 from MQ[k](n,m).
(4) B sends (c′

0, c
′
1) to A and A outputs ν′.

By assumption A will output a valid decryption. Hence, we have c′
1 = e(ν′) +

Υ �c′
0 = e(ν′)+Υ � f (2). Finally, B sets g(2) := c′

1 − e(ν′) = Υ � f (2) and output
g(2) as the solution of CDH-BIPC problem with instance (f (1), f (2),g(1)). This
ends the proof of Theorem3.

D Special Property of Ψ[n,m,k]

Since any ψ ∈ Ψ[n,m,k] can be seen as a matrix with circulant structure, it is
easy to see that the following property holds.
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Property 1. Let ψ ∈ Ψ[n,m,k]. Let define as follows.

ψ0,0 := ψk,k,

ψi,0 := ψi,k for any i ∈ [1, k],
ψ0,j := ψk,j for any j ∈ [1, k].

Then, the followings hold for any τ ∈ [1, k].

ψτ,j = ψi,(i+j−τ) mod k for any i, j ∈ [1, k], (13)

where a mod k is always set to non-negative value for any a ∈ Z.1

E Proof of Lemma1

In this section, we will prove Lemma 1. First, as preparation, we introduce the
following lemma.

Lemma 2. Let u,w ∈ MQ(n,m) and μ1, μ2 ∈ ((Circm ∩ GLm) ∪ {0m})
× ((Circn ∩ GLn) ∪ {0n}). And let define μ1 := (A1, B1) and μ2 := (A2, B2).
Then, the following properties hold.

– Distributive property:

μ1 ∗ (u + w) = μ1 ∗ u + μ1 ∗ w. (14)

– Commutative property:

μ2 ∗ (μ1 ∗ u) = μ1 ∗ (μ2 ∗ u) . (15)

We put the proof of Lemma2 in AppendixF.
In order to prove Lemma 1, it is sufficient for us to prove that the following

holds for any τ ∈ [1, k].

(ϕ � (ψ � f))[τ ] = (ψ � (ϕ � f))[τ ] (16)

Since here we need to use Property 1 shown in AppendixD, let us define the
followings.

ψ0,0 := ψk,k, ϕ0,0 := ϕk,k, (17)
ψi,0 := ψi,k, ϕi,0 := ϕi,k for any i ∈ [1, k], (18)
ψ0,j := ψk,j , ϕ0,j := ϕk,j for any j ∈ [1, k]. (19)

1 For any a � 0, a mod k = a−α×k, where α is the largest integer such that α×k � a
holds, and for any a < 0, a mod k = α× k + a, where α is the smallest integer such
that α × k + a > 0.
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Now, let us expand the Eq. (16).

(ϕ �(ψ � f))[τ ]

=
k∑

i=1

ϕτ,i ∗
⎛
⎝

τ∑
j=1

ψi,j ∗ f[j]

⎞
⎠

(a)
=

k∑
i=1

k∑
j=1

ϕτ,i ∗ (
ψi,j ∗ f[j]

)

(b)
=

k∑
i=1

k∑
j=1

ψi,j ∗ (
ϕτ,i ∗ f[j]

)

(c)
=

k∑
i=1

k∑
j=1

ψτ,(τ+j−i) mod k ∗ (
ϕτ,i ∗ f[j]

)

(d)
=

k∑
i=1

k∑
j=1

ψτ,(τ+j−i) mod k ∗ (
ϕ(τ+j−i) mod k,((τ+j−i)+i−τ) mod k ∗ f[j]

)

=
k∑

i=1

k∑
j=1

ψτ,(τ+j−i) mod k ∗ (
ϕ(τ+j−i) mod k,j mod k ∗ f[j]

)

=
k∑

i=1

k∑
j=1

ψτ,(τ+j−i) mod k ∗ (
ϕ(τ+j−i) mod k,j ∗ f[j]

)

=
k∑

j=1

k∑
i=1

ψτ,(τ+j−i) mod k ∗ (
ϕ(τ+j−i) mod k,j ∗ f[j]

)
, (20)

where:

– Step (a) is due to the distributive property in Lemma2,
– Step (b) is due to the commutative property in Lemma2,
– Step (c) is due to the Property 1 applied to ψi,j ,
– Step (d) is due to the Property 1 applied to ϕτ,i,

and by defining i′ := (τ + j − i) mod k, we obtain as follows:

Eq. (20) =
k∑

j=1

k−1∑
i′=0

ψτ,i′ ∗ (
ϕi′,j ∗ f[j]

)

(e)
=

k∑
j=1

k∑
i′=1

ψτ,i′ ∗ (
ϕi′,j ∗ f[j]

)

=
k∑

i′=1

k∑
j=1

ψτ,i′ ∗ (
ϕi′,j ∗ f[j]

)
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(f)
=

k∑
i′=1

ψτ,i′ ∗
k∑

j=1

(
ϕi′,j ∗ f[j]

)

= (ψ � (ϕ � f))[τ ] , (21)

where:

– Step (e) is due to the definitions in Eqs. (17), (18) and (19),
– Step (f) is due to the distributive property in Lemma2.

This ends the proof of Lemma 1. ��

F Proof of Lemma2

First let us prove Eq. (14).

μ1 ∗ (u + w) = A1 ◦ (u + w) ◦ B1 = A1 ◦ (u ◦ B1 + w ◦ B1)
= A1 ◦ u ◦ B1 + A1 ◦ w ◦ B1 = μ1 ∗ u + μ1 ∗ w.

Next, let us prove Eq. (15). Recall that since μ1, μ2 ∈ ((Circm ∩ GLm) ∪
{0m}) × ((Circn ∩ GLn) ∪ {0n}), the following matrices are circulant matrices:
A1, A2, B1, B2. Thus, the followings hold: A1A2 = A2A1 and B1B2 = B2B1.
Hence, we obtain as follows.

μ2 ∗ (μ1 ∗ u) = A2 ◦ (A1 ◦ u ◦ B1) ◦ B2 = (A2A1) ◦ u ◦ (B1B2)
= (A1A2) ◦ u ◦ (B2B1) = A1 ◦ (A2 ◦ u ◦ B2) ◦ B1 = μ1 ∗ (μ2 ∗ u) .

This ends the proof of Lemma 2.
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Abstract. Recently, an article by Felke appeared in Cryptography and
Communications discussing the security of biquadratic C∗ and a further
generalization, k-ary C∗. The article derives lower bounds for the com-
plexity of an algebraic attack, directly inverting the public key, under
an assumption that the first-fall degree is a good approximation of the
solving degree, an assumption that the paper notes requires “greater jus-
tification and clarification.”

In this work, we provide a practical attack breaking all k-ary C∗

schemes. The attack is based on differential techniques and requires noth-
ing but the ability to evaluate the public key and solve linear systems.
In particular, the attack breaks the parameters provided in CryptoChal-
lenge 11 by constructing and solving linear systems of moderate size in
a few minutes.

Keywords: Multivariate cryptography · k-ary C∗ · Differential attack

1 Introduction

Massively multivariate public key cryptography was first introduced outside of
Japan in the EuroCrypt’88 paper by Matsumoto and Imai, see [1], that pre-
sented what has become known as the C∗ cryptosystem. After Shor discovered
polynomial-time factoring and discrete logarithm quantum algorithms, see [2],
schemes based on different problems, and in particular on NP-hard problems
such as that of solving multivariate nonlinear systems, became much more inter-
esting to cryptographers. Now with the ongoing post-quantum standardization
effort by the National Institute of Standards and Technology (NIST), see [3],
such multivariate schemes are now being considered for practical widespread
use.

In [4], Patarin broke the original C∗ scheme with an attack based on lineariza-
tion equations. At around this time, in the late’90s, there was an explosion of
research in multivariate cryptography. Numerous schemes were introduced and
cryptanalyzed, see, for example, [5–11].

In 2005, Dobbertin et al. present a cryptographic challenge based on the idea
of C∗. The scheme is called a biquadratic C∗ and has a massive public key of
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quartic polynomials. Like C∗, biquadratic C∗ is derived from a power function,
but with an exponent of Hamming weight four in its q-ary expansion, where q is
the size of the public finite field. Naturally, this construction can be generalized
to a k-ary C∗ in which the q-ary expansion of the exponent of the private power
function has Hamming weight k.

This more general k-ary C∗ is analyzed by Felke in [12], where he derives
lower bounds for the first-fall degree of the public key under direct attacks via
Gröbner bases. Although we should note that in the practical setting that the
first-fall degree is dependent on both the polynomial system and the Gröbner
basis algorithm (consider for example a user’s freedom to choose a selection
function in F4), Felke’s result relates to the algebraic first fall degree and thus
implies a lower bound in the complexity of solving such a system with any
Gröbner basis algorithm. As noted in [12], the complexity estimates of the direct
attack on k-ary C∗ derived therein depend on an assumption that the first-fall
degree is equal to the solving degree, an assumption which is not always true.

In this work, we provide an efficient cryptanalysis of k-ary C∗ and some
modest generalizations. This attack is based on a property of the differential of
a power function that the author derived over ten years ago, see [13]. The attack
reduces the task of deriving a decryption key to that of solving systems of linear
equations. In particular, for the CryptoChallenge 11, see [14], one evaluation of
the public key, the calculation of the differential of two public equations and the
solution of two linear systems of size 627 and 625, respectively, are sufficient to
completely break the scheme. The complexity for an optimized implementation
for these parameters is roughly 238 operations over GF(16). We implemented
the attack using crude and simple symbolic algebra techniques and, after a few
minutes of sloppily gathering coefficients, solved the linear system and broke
the proposed parameters in an instant. In the most general case, the complexity
of the optimized attack is O

(
n2

(
n
k

)2). Using the full formula for this estimate

produces an upper bound of 268 operations over GF (16) even for the “secure”
biquadratic scheme proposed in [12].

These newer high degree versions of the C∗ scheme proposed in [12] echo
several other attempts in recent years proposing schemes with cubic public keys,
using cubic polynomials for inversion or offering evidence for security based on
the analysis of cubic polynomials, see, for example, [15,16]. What we are learning,
however, is that there is no enhancement in security achieved by going to a higher
degree, see [17,18]. Thus, of independent interest is our theoretical framework for
analyzing our attack on k-ary C∗ which together with [19] indicate that the same
constructions we use for measuring security in the quadratic setting generalize
to higher degrees.

This article is organized as follows. In Sect. 2, we introduce the k-ary version
of C∗. We then briefly review the cryptanalytic history of C∗ and its principal
variants. Next, in Sect. 4, we motivate our approach in higher degrees by develop-
ing an original cryptanalysis of C∗. In the following section, we derive a practical
attack on k-ary C∗ breaking the scheme in a few minutes. In Sect. 6, we derive
the complexity of the attack and conclude that all proposed parameter sets are
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broken. Due to space restrictions, the theoretical constructions characterizing all
maps having these differential properties are relegated to AppendicesB and C.

2 k-ary C∗

Let Fq be a finite field with q elements. Consider K, a degree n extension of Fq.
Fix an Fq-vector space isomorphism φ : F

n
q → K. Then for any univariate map

f : K → K we can construct the vector-valued map F : F
n
q → F

n
q defined by

F = φ−1 ◦ f ◦φ. Since any multivariate function on a finite field is a polynomial,
each coordinate of F is a polynomial in its n inputs.

To hide the structure of an efficiently invertible univariate map it is neces-
sary to randomize the input and output bases of the representation of K as a
commutative Fq-algebra. Thus the public key P is related to the private map
F by an isomorphism (T,U) where T and U are Fq-affine maps of dimension n.
Thus the entire construction is given by Fig. 1.

F
n
q F

n
q F

n
q F

n
q

K K

U F T

φ

f

φ−1

P

Fig. 1. The structure of big field public key cryptosystems.

As defined in [14], a k-ary C∗ map is an univariate function f : K → K of
the form f(x) = xe, where the q-ary expansion of e is binary having Hamming
weight k and e is coprime with |K∗|. Notice that

xe = xqa1+···+qak =
k∏

i=1

xqai
,

and since the Frobenius automorphisms are Fq-linear, F = φ−1 ◦ f ◦ φ is of
Fq-degree k.

3 Previous Cryptanalyses of C∗ and Variants

In [4], Patarin breaks the original C∗ scheme by deriving the so-called lineariza-
tion equations. He noticed that given a C∗ map of the form f(x) = xqθ+1, we
obtain the bilinear relation uf(u)qθ

= uq2θ

f(u). That is, if we let v = f(u),



Practical Cryptanalysis of k-ary C∗ 363

then we obtain a bilinear relation between u and v. Since u and v are related
to the plaintext and ciphertext of the public key system via the maps U and
T , respectively, we have a bilinear relation between plaintext and ciphertext. A
simple analysis shows that even in the most fortuitous case, the adversary can
reduce the dimension of the possible preimage space by a factor of three, thus
rendering C∗ too inefficient for practical use.

As a method of repairing the scheme, it was suggested in [8] to remove some
of the public equations. The technique avoids the linearization equations attack
since the bilinear relation between plaintext and ciphertext pairs for C∗ is explic-
itly given by

φ(Ux)φ(T−1y)qθ

= φ(Ux)q2θ

φ(T−1y).

This idea eventually evolved in to the SFLASH digital signature scheme of [9].
In [20], an attack that completely breaks SFLASH is presented. The attack

uses the discrete differential of the public key. Given a function G : A → A, on
some additive group A, the discrete differential is defined by

DG(a, x) = G(a + x) − G(a) − G(x) + G(0).

The attack proceeds by way of a symmetric relation satisfied by a C∗ monomial
map f(x) = xqθ+1. Specifically,

Df(σa, x) + Df(a, σx) = (σqθ

+ σ)Df(a, x).

This property is inherited by the public key P = Π ◦ T ◦ F ◦ U in the form:

D [Π ◦ P ] (Nσa,x) + D [Π ◦ P ] (a,Nσx) = Π ◦ Λσ ◦ DP (a,x), (1)

where Nσ = U−1MσU, Mσ is a left multiplication representation of σ ∈ K, Π
is the projection onto the first n − a coordinates, and Λσ is linear depending
on σ. (Here and throughout Roman typeface denotes a function or field element
while bold typeface denotes a– possibly corresponding– vector or matrix.)

For any validly formed Nσ, Eq. 1 guarantees that the left-hand side is a lin-
ear combination of the differential coordinate forms without equations removed.
Thus, Eq. (1) provides a criterion for finding such an Nσ. Specifically, if we insist
that a few coordinates of the left-hand side of Eq. (1) are in the span of the known
differential coordinate forms, then it is likely that Nσ is a multiplication. In this
way, one can recover such a multiplication. Once found, P ◦ Nσ provides new
linearly independent equations that can be added to the original public key to
recreate a compatible C∗ public key. At this point, Patarin’s original lineariza-
tion equations attack can be used to break the scheme.

4 A Different Cryptanalysis of C∗

The attack of [20] inspires a new idea for attacking the original C∗ directly. The
idea is to interpret the map recovered via the differential symmetry technique
as a multiplication map under a different basis, one parameterized by U . Using



364 D. Smith-Tone

this map one may recover a representation of K as an Fq-algebra. Then one uses
this information along with the public key to recover another representation of
K as an Fq-algebra, this time parameterized by T . Then one can view the public
key as a power function between these two representations. Once the function is
known, a single input-output pair can be used to construct an efficient inverse
function.

4.1 Alternate Decryption Key Recovery

Suppose that we have a nontrivial solution Nσ of Eq. 1. Then necessarily,

P ◦ Nσ = T ◦ F ◦ Mσ ◦ U

= T ◦ Mf(σ) ◦ F ◦ U

=
(
T ◦ Mf(σ) ◦ T−1

) ◦ T ◦ F ◦ U

= Zf(σ) ◦ P.

Thus P translates right composition of multiplications in the basis U−1 into left
composition of multiplications in the basis T .

Given such a matrix Nσ, we compute Zf(σ), and by guessing f (since there are
fewer than n possibilities), we may recover the corresponding pair (Nf(σ),Zf(σ)).
Naturally, if we have guessed f , then we can raise Zf(σ) to the appropriate power
to similarly recover Zσ. Either way, with probability ϕ(qn−1)

qn−q , where ϕ is the Euler
totient function, σ is a generator of K

∗ and thus f(σ) is also a generator. So we
may form a basis for the two representations of K as Fq-algebras by computing
{I,Nσ,N2

σ, . . . ,Nn−1
σ } and {I,Zσ,Z2

σ, . . . ,Zn−1
σ }.

Now, given a single input output pair y0 = P (x0), we can decrypt any
message y = P (x) by first finding the appropriate multiplication Zτ such that
Zτy0 = y. Given the representation of Zτ over its basis,

Zτ =
n−1∑
i=0

λiZi
σ,

we construct

Nτ =
n−1∑
i=0

λiNi
σ.

Then, by construction, we have that

y = Zτy0 = Zτ ◦ P (x0)

= T ◦ Mτ ◦ T−1 ◦ T ◦ F ◦ U(x0)
= T ◦ Mτ ◦ F ◦ U(x0)
= T ◦ F ◦ Mf−1(τ) ◦ U(x0)

= T ◦ F ◦ U ◦ U−1 ◦ Mf−1(τ) ◦ U(x0)

= P ◦ Nf−1(τ)(x0).
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Thus P−1(y) = x = Nf−1(τ)x0. To find Nf−1(τ), we simply find he = 1 modulo
|K∗|, and compute Nh

τ = Nf−1(τ).
Thus, the key step in breaking C∗ in this manner is a solution of Eq. (1) in

the case that Π is the identity map. We generically have no extraneous solutions
as long as 3θ �= n as proven in [21].

This method provides a distinct cryptanalysis of C∗ involving only solving
linear systems. The technique is quite efficient, and provides a new signing key
that is different from the original signing key and the one derived with the
linearization equations attack.

These computational techniques are described in more detail in Algorithm 1
in AppendixA. One should note that the random selection in step 6 is selecting
from exactly an n-dimensional Fq-vector space of solutions corresponding to
the “multiplication maps” of the form Nσ as proven in [21]. This step can be
modified to assure that a nontrivial solution is obtained.

4.2 Full Key Decomposition

One may extend the attack further to recover a private key of the form (T ′, U ′)—
recall that f was already guessed. We consider the decomposition in stages.
First, we derive linear maps (T̂ , Û) such that T̂−1 ◦ P ◦ Û−1 is multiplicative.
Once obtained, a single input/output pair for this map is computed and used
to anchor this multiplicative function to f and ultimately to derive equivalent
maps (T ′, U ′).

Having recovered the maps Nσ and Zf(σ), we consider the relations

Nσ = U−1MσU and Zf(σ) = TMf(σ)T−1.

Clearly, the minimal polynomial min(Nσ) = min(Mσ) which is the same as the
minimal polynomial of σ or any of its conjugates. In particular, under the action
of K

∗
� GalFq

(K) ↪→ GLn(Fq) by conjugation, the orbit of Mσ is

{Mτ : φ(σ) = τ for some φ ∈ GalFq
(K)}.

Thus the stabilizer corresponds to the subgroup isomorphic to K
∗.

We directly solve the linear system

ÛNσ = MτÛ,

in the unknown coefficients of Û for some τ a root of min(Nσ). Since the action
of K

∗
�GalFq

(K) on the image of K in GLn(Fq) is transitive and since the choice
of τ in general fixes the automorphism, there are usually n degrees of freedom
in Û. We similarly solve the linear system

Zf(σ)T̂ = T̂Mf(τ),

with the same τ as the first step, again with n degrees of freedom, usually.
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Next, we construct the augmented key P̂ = T̂−1 ◦ P ◦ Û−1. Notice that

P̂ ◦ Mτ = T̂−1 ◦ T ◦ F ◦ U ◦ Û−1 ◦ Mτ

= T̂−1 ◦ T ◦ F ◦ Mσ ◦ U ◦ Û−1

= T̂−1 ◦ T ◦ Mf(σ) ◦ F ◦ U ◦ Û−1

= Mf(τ) ◦ T̂−1 ◦ T ◦ F ◦ U ◦ Û−1,

where σ is a conjugate of τ . Thus P̂ is an isomorphic copy of the public key that
is multiplicative.

Finally, we fix an arbitrary input/output pair y′ = P̂ (x′). We can now
directly compute a decomposition of the public key as T ′ = T̂ ◦ My′ , U ′ =
M−1

x′ ◦ Û , and of course f which was guessed before. Note that if y = P (x), then
T̂−1y can be viewed as the output of P̂ with input Û(x). So we may use the
same trick from Subsect. 4.1 to find a preimage of T̂−1y under P̂ . Specifically,
this involves dividing by y′ = φ(y′) (multiplying on the left by M−1

y′ ), inverting
F and multiplying by x′ (that is, Mx′). At this point we have obtained Ûx, so
inversion is completed by the application of Û−1. More explicitly, observe that

(
T̂ ◦ My′

)
◦ T̂−1 ◦ T ◦ F ◦ U ◦ Û−1 ◦

(
M−1

x′ ◦ Û
)

=
(
T̂ ◦ My′

)
◦ T̂−1 ◦ T ◦ F ◦ M

x′−1 ◦ U ◦
(
Û−1 ◦ Û

)

=
(
T̂ ◦ My′

)
◦ T̂−1 ◦ T ◦ M

f(x′)
−1 ◦ F ◦ U

= T̂ ◦ (
My′ ◦ Mf(x′)−1

) ◦ T̂−1 ◦ T ◦ F ◦ U

=
(
T̂ ◦ T̂−1

)
◦ T ◦ F ◦ U

= T ◦ F ◦ U.

5 Cryptanalysis of k-ary C∗

We now prove for any k that k-ary C∗ has a differential symmetry. Moreover,
multiplication maps are the only maps inducing symmetry in this way, assuring
that once the symmetric equations are solved that a multiplication map has been
found. We then use this fact to construct an attack analogous to that of Sect. 4.

We first define the rth discrete differential.

Definition 1. Let A be an additive group. The rth discrete differential of a map
F : A → A is defined as

DrF (x0, . . . , xr) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F if r = 0
Dr−1F (x0 + x1, x2, . . . , xr)

−Dr−1F (x0, x2, . . . , xr) otherwise.
−Dr−1F (x1, x2, . . . , xr)
+Dr−1F (0, x2, . . . , xr)
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We note explicitly that since the discrete differential operator D is symmet-
ric, when given a symmetric multivariate function G(a, . . . , b), we have that
DaG(x, a, . . . , b) = DbG(a, . . . , b, x) and is symmetric; that is, the same function
is obtained when taking the differential with respect to any variable. Thus all
higher order differentials are the same regardless of the sequence of variables
with respect to which the differentials are taken and the rth differential is well-
defined.

Theorem 1. Let f : K → K be the k-ary C∗ map f(x) = xqi1+···+qik . Then f
satisfies the differential symmetry

k∑
j=1

Dk−1f(σδj,1x1, . . . , σ
δj,kxk) = (

k∑
j=1

σqij )Dk−1f(x1, . . . , xk), (2)

where δr,s is the Kronecker delta function.

Proof. By calculation, Dk−1f(x1, . . . , xk) is Fq-multilinear and so every mono-
mial summand is of the form

xα = xqα1

1 xqα2

2 · · · xqαk

k ,

for some α, a permutation of (i1, . . . , ik). Each summand of the left hand side
of Eq. (2) contains exactly one term of the form σqai

xα and the contribution
of each differential is distinct. Thus, the sum of the xα terms of the left hand
side of Eq. (2) is (

∑k
j=1 σqij )xα for every α. Summing over all possible α and

factoring out (
∑k

j=1 σqij ), we obtain the result.

Thus, k-ary C∗ monomial maps satisfy the same multiplicative symmetry
that C∗ monomial maps exhibit. The key here seems to be that these maps
are multiplicative, and the multiplicative symmetry is the manifestation of that
property in the differential. By an argument analogous to that in [21], it can
be shown that if L induces a differential symmetry with a k-ary C∗ map, then
φ(Lx) = σ(φ(x)) for some σ ∈ K. See AppendixB for details.

Now we may implement an attack of the exact same manner as that of Sect. 4.
The main difference is that we must compute a higher order differential and guess
an encryption exponent of a different form. For all of the details, see Algorithm2
in AppendixA.

6 Complexity

Even a direct symbolic approach to implementing the attack of Sect. 5 is suffi-
cient to break the parameters of CryptoChallenge11 from [14]. Specifically, using
symbolic algebra, we broke the biquadratic C∗ with parameters q = 16, n = 25
and e = 1 + q + q3 + q12 with a straightforward Magma1 implementation with
symbolic algebra, in 593.25 s using 3.9 GB of memory, see [22].
1 Any mention of commercial products does not indicate endorsement by NIST.
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The implementation is not at all optimized, as it is not necessary to make
a complex implementation to break the full-sized parameters. The implementa-
tion uses symbolic algebra over a polynomial ring over a polynomial ring over
a polynomial ring over F! We did, however, incorporate some of the trivial to
implement optimization techniques we now present. An optimized implemen-
tation will make use of the fact that the symmetry relations derived to effect
the attack are linear in the coefficients of the public key; thus, with some engi-
neering, the entire attack can be reduced to a few operations on some matrices
of moderate size. We describe this technique in more detail at the end of the
section.

First, the linear system

k∑
i=1

Dk−1P (Nδi,1
σ x1, . . . ,N

δi,k
σ xk) = ΛσDk−1P (x1, . . . ,xk), (3)

where δi,j is the Kronecker delta, is massively redundant. The system is dra-
matically overdefined typically even when one coordinate of the left-hand side is
used.

Each monomial x1,i1 · · · xk,ik
with the ij pairwise distinct in each coordinate

of Dk−1P produces an equation. Thus the entire linear system in Eq. (3) is n
(
n
k

)
equations in the 2n2 unknown coordinates of Nσ and Λσ.

Since we are only interested in solving for Nσ, we can reduce this system
dramatically by considering fewer coordinates of the left-hand side. The resulting
system will use a corresponding number of rows of the matrix Λσ, so fewer
variables are required as well. We may choose r coordinates to recover r

(
n
k

)
equations in n2 + rn unknowns. Clearly, the system is fully determined with
3 coordinates when k = 2 and n ≥ 9 or with even a single coordinate when
k > 3 and n > 10, for example. In particular, the large values of k make the
system more overdetermined when even a single coordinate on the left hand side
is considered.

We can improve the complexity even further by not considering all of the
coordinates of Dk−1P on the right-hand side of Eq. (3). As in the attack on
SFLASH of [20], we may consider an analysis of the number of linear maps
whose symmetric action on the first r coordinates of the differential map it into
the span of the first s coordinates of Dk−1P .

Fix an arbitrary matrix M and consider the expression

M̃i =
k∑

j=1

Dk−1Pi(Mδj,1x1, . . . ,Mδj,kxk), for i ∈ {1, . . . , r},

which can be viewed as an r-tuple of symmetric k-tensors. The span of all such
symmetric k-tensors S, under the heuristic that Pi is random, q and n are suf-
ficiently large and k > 2, has dimension rn2, that is, r times the dimension of
Mn×n(Fq). The first s coordinates of Dk−1P generate an s-dimensional space
Vs of k-tensors. We note explicitly that since each multiplication of the form Nσ
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produces k-tensors that are guaranteed to be in Vn that Vn, and therefore Vs is
contained in S.

Membership of each coordinate of M̃ in Vs requires the satisfaction of n2 − s

linear equations. Thus the membership of all coordinates of M̃ in Vs requires
the satisfaction of r(n2 − s) linear equations. This analysis thus suggests that it
is unlikely for all coordinates of M̃ to be in Vs for random M as soon as r > 1.

On the other hand, if M is already a multiplication map of the form Nσ

then M̃ is already guaranteed to be in Vn. Moreover, the condition that each of
the first r coordinates of M̃ is in Vs is satisfied explicitly under the appropriate
change of basis by the preimage of Span(1, α−1, . . . , α1−s) under the linear map
x �→ xqa1 + xqa2 + · · · + xqak if r ≤ s. In particular, if r = s we obtain an
s-dimensional space of multiplications.

Considering the above analysis, we expect for k > 2 and n sufficiently large
that choosing the first two coordinates of the left-hand side of Eq. (3) to be
in the span of the first two coordinates of the right-hand side provides enough
relations to produce a 2-dimensional subspace consisting entirely of maps of
the form of Nσ. Our experiments confirm that this approach works. Table 1
provides performance numbers for this attack using r = s = 2 for biquadratic
C∗ instances.

Table 1. The performance of a simple Magma implementation of the above attack
against biquadratic C∗ over GF(16) using r = 2 coordinates of the left-hand side and
the span of s = 2 coordinates of the right-hand side of Eq. (3). The last column is the
performance in breaking CryptoChallenge11 from [14].

n 9 11 13 15 25

(s) 0.9 2.88 8.04 21.3 593.25

(MB) 22.6 46.71 85.99 287.63 3883.34

We note a couple of properties of this attack. Since the symmetric relations
of Eq. 3 are linear in the highest degree terms of the public key, there exists a
massive binary matrix that produces the symmetric relations from the public
coefficients. In the symbolic implementation above, almost all of the time was
spent recovering these linear equations, with all of the overhead of the polynomial
rings with hundreds of variables, before they were nearly instantly solved.

To make the attack more efficient, one can note that the differential symmet-
ric equations are linear functions of the coefficients of the public key. Thus one
may construct a linear function to derive the relations directly from the public
key coefficients. We derive this function in the k = 2 case. The general case is
similar and quite tedious to build.
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Note that

DPl(Ma,x) + DPl(a,Mx)

=
∑

i<j

cijl

[
n∑

k=1

mikakxj +
n∑

k=1

mjkaixk +
n∑

k=1

mjkakxi +
n∑

k=1

mikajxk

]

=

n∑

k=1

n∑

j=2

∑

i<j

cijlmikakxj +

n∑

k=1

n−1∑

i=1

∑

i<j

cijlmjkaixk

+
n∑

k=1

n−1∑

i=1

∑

i<j

cijlmjkakxi +
n∑

k=1

n∑

j=2

∑

i<j

mikajxk.

Collecting coefficients of arxs we obtain

[arxs] =
∑
i<s

cislmir +
∑
r<i

crilmis +
∑
s<i

csilmir +
∑
i<r

cirlmis.

We form a matrix Al whose rows are indexed by (r, s) with r < s and whose
columns are indexed by (u, v) with 1 ≤ u, v ≤ n.

Al,(r,s),(u,v) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cusl if u < s and v = r

curl if u < r and v = s

crul if r < u and v = s

csul if s < u and v = r

0 otherwise.

From this expression, we may derive as many as n matrices of size
(
n
2

) × n2
(
n
2

)
which can be multiplied on the left by the vector of cross term coefficients of
each public formula to produce row vectors of Al. Each row of Al now represents
the coefficients of mij occurring in the left-hand side of coordinate l of Eq. (3).
In a similar way we can construct additional matrices generating the right-hand
side of the relations from the public coefficients and horizontally join the result
to Al. Elements in the nullspace of this matrix then correspond to matrices M
satisfying Eq. (3).

Considering the more general case of k-ary C∗, for k > 2, we may limit
the number of matrices above to 2 for each of the left and right-hand sides.
Then deriving the symmetry relations requires linear algebra on matrices of size
n2

(
n
k

)
, and solving the system requires finding a kernel vector for a matrix of

size 2n2
(
n
k

) × (n2 + 4). Note that a nontrivial kernel vector exists when the rank
of this matrix is bounded by n2 + 3, and in this case we can find a vector with
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high probability by only considering O (
n2

)
rows. Thus the complexity for the

entire recovery of the multiplication map is

2n2

(
n

k

)2

+ O (
n2

)
(n2 + 4) = O

(
n2

(
n

k

)2
)

,

ignoring sparse optimizations. For CryptoChallenge11, this quantity is upper
bounded by 238, which is far superior to the symbolic implementation described
and executed above. For the “secure” variant of biquadratic C∗ recently proposed
in [12], the formula above provides an upper bound of 268, far less than the
claimed security bound of 80 bits.

7 Conclusion

Although C∗ has been the foundation of one of the main approaches to multi-
variate public key cryptography in the last decades, it has also been a source
of failure for many constructions based too directly on it, see, for example, [23].
The k-ary generalization of C∗ falls into this category as well. While the differ-
ential relations are more cumbersome to derive in the k-tensor space than for
the original C∗, the extent of the symmetry inherent to the central map makes
it easy to derive the polynomially sized overdetermined linear system required
to break the scheme.

Some of the major accomplishments of multivariate cryptography in the
twenty-first century are derivations of proofs that certain modifications of
schemes preclude certain classes of attacks. For C∗ variants, one may provably
prevent an attack recovering a differential symmetry on the public key by using
nontrivial projections on both the input variables and the output polynomials,
see [21,24]. It is an interesting theoretical question as to whether the same result
can be derived in the k-ary case. Clearly, the attack presented here can be used
to recover a full rank scheme from a minus modified one and break it similarly
to SFLASH. While the projection modifier removes this symmetry, it is an open
question as to whether a projected k-ary C∗− scheme can be secure.
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A Algorithms

Algorithm 1: Decrypt∗ C∗

Input : public key P , ciphertext y = P (x)
Output: plaintext x such that P (x) = y

1 x0
$←− F

n
q ;

2 y0 ←− P (x0);
3 DP (a, x) ←− P (a + x) − P (a) − P (x) + P (0);
4 Nσ ←−Matrix([[r1, . . . , rn], . . . , [rn2−n+1, . . . , rn2 ]]);
5 Λσ ←−Matrix([[s1, . . . , sn], . . . , [sn2−n+1, . . . , sn2 ]]);

6 v
$←−LinearSolve(DP (Nσa, x) + DP (a,Nσx) = ΛσDP (a, x));

7 Nσ ←−Eval(Nσ,[v[i] : i ∈ [1..n2]]);
8 Zf(σ) ←−Matrix([[r1, . . . , rn], . . . , [rn2−n+1, . . . , rn2 ]]);
9 w ←−LinearSolve(Zf(σ) ◦ P = P ◦ Nσ);

10 Zf(σ) ←−Eval(Zf(σ),w);
11 for e in [1 + q1, . . . , 1 + qn−1] st (e, qn − 1) = 1 do
12 h ←−InverseMod(e,qn − 1);
13 Zσ ←− Zh

f(σ);
14 λ ←−LinearSolve(

∑n
i=1 λiZ

i−1
σ y0 = y);

15 Nτ ←− ∑n
i=1 λiN

i−1
σ ;

16 Nf−1(τ) ←− Nh
τ ;

17 xcand ←− Nf−1(τ)x0;
18 if y == P (xcand) then
19 return xcand

20 end
21 end

Algorithm 2: Decrypt∗ k-ary C∗

Input : public key P , ciphertext y = P (x)
Output: plaintext x such that P (x) = y

1 x0
$←− F

n
q ;

2 y0 ←− P (x0);
3 Dk−1P (a, x) ←−Differential(P,k-1);
4 Nσ ←−Matrix([[r1, . . . , rn], . . . , [rn2−n+1, . . . , rn2 ]]);
5 Λσ ←−Matrix([[s1, . . . , sn], . . . , [sn2−n+1, . . . , sn2 ]]);

6 v
$←−LinearSolve(

∑k
j=1 Dk−1P (N δj,1

σ x1, . . . , N
δj,k
σ xk) =

ΛσDk−1P (a, x));
7 Nσ ←−Eval(Nσ,[v[i] : i ∈ [1..n2]]);
8 Zf(σ) ←−Matrix([[r1, . . . , rn], . . . , [rn2−n+1, . . . , rn2 ]]);
9 w ←−LinearSolve(Zf(σ) ◦ P = P ◦ Nσ);

10 Zf(σ) ←−Eval(Zf(σ),w);
11 for e of binary q-weight k st (e, qn − 1) = 1 do
12 h ←−InverseMod(e,qn − 1);
13 Zσ ←− Zh

f(σ);
14 λ ←−LinearSolve(

∑n
i=1 λiZ

i−1
σ y0 = y);

15 Nτ ←− ∑n
i=1 λiN

i−1
σ ;

16 Nf−1(τ) ←− Nh
τ ;

17 xcand ←− Nf−1(τ)x0;
18 if y == P (xcand) then
19 return xcand

20 end
21 end
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B The Multiplicative Symmetry

We first derive a modest generalization of [24, Theorem 1].

Lemma 1. Let K be an extension of F, f : K
r → K be a polynomial, and

g : K
r → K be a monomial summand of f . If f is F-multilinear, then g is

F-multilinear.

Proof. Since the discrete differential operator D is linear, we may take the dif-
ferential with respect to an arbitrary variable, xd, and obtain

0 = Dxd
f =

∑
i

Dxd
gi =

∑
i

ci

αi,d−1∑
j=1

(
αi,d

j

)
ajx

αi,1
1 · · · xαi,d−j

d · · · xαi,r
r ,

where the binomial coefficients are computed modulo char(K). Since necessarily
the multidegree of each gi is unique, the multidegree of every summand is unique.
Therefore, we find that Dxd

gi = 0 for all i. Therefore, since all ci are nonzero and
the monomials xα, α = (α1, . . . , αr), are linearly independent in K[a, x1 . . . , xr],
we have that for all d and i that char(K) divides αi,d. Thus by the binomial
theorem, every summand gi of f is F-additive.

Since f is F-multilinear, f(x1, . . . , axd, . . . , xr) = af(x1, . . . , xr) for all d, for
all a ∈ F and for all x. Again, by the independence of the monomials xα, the
monomial summand gi must satisfy gi(x1, . . . , axd, . . . , xr) = agi(x1, . . . , xr),
and thus gi is F-linear. As a bonus, considering the exponent of a in this expres-
sion shows that αi,d is a multiple of q, the order of F, for all i and d.

The usefulness of this result lies in its corollary.

Corollary 1. Let f : K → K be a polynomial, and let g : K → K be a monomial
summand of f . If Dnf is multilinear, then Dng is multilinear.

For simplicity of notation and consistency with previous work, see [24], we
call the polynomial in σ on the right hand side of Eq. 2 the separation polynomial.

Lemma 2. Let g : K → K be a monomial function. Then g has the multiplica-
tive symmetry. Furthermore, two monomial functions g1 and g2 share the same
separation polynomial if and only if g1 = cg2 for some constant c.

Proof. Note that the proof of Theorem1 applies to any monomial. Further notice
that the separation polynomial is of the form

p(σ) =
r∑

i=1

σqαi
,

where g(x) = cxα = cxα1
1 · · · xαr

r . Clearly the sum of the exponents in p is
the multidegree of g, and thus any two monomials g1 and g2 sharing the same
separation polynomial have the same multidegree, and g1 = cg2.
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Now we can classify all field maps with the general multiplicative symmetry.

Theorem 2. A function f : K → K has the multiplicative symmetry if and only
if it has a unique summand of maximum q-weight.

Proof. (⇐) Suppose that f has a unique summand, g, of maximum q-weight k.
Given any other monomial summand, h, we have the q-weight condition:

wt(x, h) wt(x,Dh) · · · 0

wt(x, g) wt(x,Dg) · · · wt(x,Dk−1g) = 1 wt(x,Dkg) = 0

D D D

D D D D

> > >

where wt(x, j) is the q-weight of x in j. Thus Dk−1f = Dk−1g, and f has the
multiplicative symmetry with the same separation polynomial as g.

(⇒) Suppose, by way of contradiction, that f has the multiplicative symme-
try and has r distinct monomial summands, gm, of maximum q-weight k. Then
we have

Dkf =
r∑

m=1

Dkgm. (4)

By Lemma 2, each monomial summand has a unique separation polynomial, pgm
.

Let pf represent the separation polynomial of f . Since f has the multiplicative
symmetry, we have:

k∑
i=0

Dkf(σδ0ix0, . . . , σ
δkixk) = pf (σ)Dkf(x0, . . . , xk)

= pf (σ)
r∑

m=1

Dkgm(x0, . . . , xk).

(5)

On the other hand,

k∑
i=0

Dkf(σδ0ix0, . . . , σ
δkixk) =

r∑
m=1

k∑
i=0

gm(σδ0ix0, . . . , σ
δkixk)

=
r∑

m=1

pgm
(σ)Dkgm(x0, . . . , xk).

(6)

Taking the difference of (5) and (6), we obtain:
r∑

m=1

(pf − pgm
)(σ)Dkgm(x0, . . . , xk) = 0, (7)

for all (σ, x0, . . . , xk) ∈ K
k+2. From Lemma 2, we know that each Dkgm is a

complete symmetric multilinear function, therefore we can rewrite:
r∑

m=1

cm(pf − pgm
)(σ)

∑
α

xqα0

0 · · · xqαk

k = 0. (8)
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Again, since the monomials xα are linearly independent in K [x0, . . . , xk], for any
arbitrary fixed σ ∈ K, we obtain:

cm(pf − pgm
)(σ) = 0, (9)

for all 1 ≤ m ≤ r. Since cm �= 0 for each m, and σ is arbitrary, we have that
pf = pgm

for all m. Since the gm are distinct, by Lemma 2, r is zero or one.
Thus, f has a unique monomial summand of maximum weight.

Again, it seems that the multiplicative symmetry is the differential mani-
festation of the fact that f , restricted to its highest weight terms is, up to a
constant factor, multiplicative.

C The Effect of Projection

Projection proved to be effective, in the quadratic case, in eliminating the sym-
metry which weakened C∗−. We can still prove an analogue of that result in this
more general setting.

Theorem 3. Let M be an Fq-affine transformation and let f : K → K have the
multiplicative symmetry. The composition f ◦M has the multiplicative symmetry
if and only if M is a translation of a linear monomial map, i.e. M(x) = cxqi

+d
for some i < n.

Proof. As in [24, Theorem 3], it suffices to consider linear maps. In addition, since
all monomials, except that of weight k, disappear in Dk−1f along with the fact
that Dk−1(cf) = cDk−1f , it suffices to analyze the case when f(x) = x

∑k−1
i=0 qαi .

In particular, we can even insist that α0 = 0, since M composed with the factor
xqα0 remains a monomial function of the same weight.

(⇐) Suppose M is a linear monomial map, M(x) = cMxqi

for some i < n.
Now, f ◦ M(x) is still a monomial of the same weight, since the composition
simply changes the exponents of q in the power of x. Thus, as a consequence of
Theorem 2, f ◦ M has the multiplicative symmetry.

(⇒) Let f̂ = f ◦M . Since every Fq-linear transformation, M , can be written
M =

∑n−1
i=0 cix

qi

, we have the following:

f̂(x) = f ◦ M(x)

= f ◦
n−1∑
i=0

cix
qi

=

(
n−1∑
i=0

cix
qi

)∑k−1
j=0 qαj

=
∑

i0,...,ik−1<n

ci0c
qα1

i1−α1
· · · cqαk−1

ik−1−αk−1
x

∑k−1
j=0 qij

.

(10)
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Assuming that f̂ has the multiplicative symmetry, since all terms have the
same weight, only one of the above coefficients is nonzero. Suppose, by way of
contradiction, that M has at least two nonzero coefficients, ck1 �= ck2 .

Setting i0 = k1, and ij = k1 +αj , we can see that the coefficient on the right

side of (10) is c
∑k−1

i=0 qαi

k1
, and therefore this term is nonzero.

On the other hand, we can set i0 = k2 and ij = k1 +αj , and we have another
nonzero term. Since, f̂ has only one nonzero term in the expression, these two
nonzero terms must have x occurring with the same power, and we therefore
have k1 +

∑k−1
j=1 qk1+αj = k2 +

∑k−1
j=1 qk1+αj . Hence, k1 = k2, a contradiction,

and M must be an univariate linear monomial map.

Projection, therefore, removes the multiplicative symmetry from any field
map.

D Toy Example

To illustrate the attack, we present a key recovery for a small instance of 4-ary
C∗. We simplify the exposition by considering a homogeneous key.

Let q = 16 and let a be a generator of F
∗
q . We select the degree n = 9

irreducible g(x) = x9 +ax8 +a2x7 +x6 +a12x5 +a7x4 +a10x3 +a14x2 +a2x+a8

and construct K = Fq[x]/ 〈g(x)〉. Let b ∈ K be a fixed root of this irreducible
polynomial.

We choose the exponent q3 + q2 + q + 1 and compute the multiplicative
inverse h = 18.324.145.204 modulo |K∗|. We then fix the 4-ary C∗ monomial
map f(x) = xq3+q2+q+1. We further randomly select two invertible Fq-linear
maps U and T given by the matrices

U =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a13 a5 a8 a10 a6 1 a13 a10

a5 1 1 a5 a6 0 a5 a10 1
a12 a8 a6 a11 a7 a a7 a8 a11

a14 a7 a2 1 a a8 0 a a5

a a5 a4 a10 a9 a13 a14 a12 a12

a11 a3 a11 a4 a6 a7 a7 a3 a7

a11 a5 a11 a12 a12 a11 a6 a11 a2

a a a7 a14 a6 a3 a3 a13 a6

a10 a a13 a9 a4 a7 a13 a14 a11

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a12 1 a13 a a8 a12 a4 a10 a14

0 1 a8 a13 a12 a4 a11 a7 a6

a11 a6 a13 a14 a6 a5 a4 a14 a8

a9 a13 0 a a3 a7 a3 a14 a5

a12 a12 a8 a11 a3 a6 a3 a10 a11

a4 a11 a a11 a10 a a12 a13 a9

a10 a13 a3 a a4 a14 1 a11 0
a9 a11 1 a3 a12 a4 a14 a10 a8

a9 a a14 a3 0 a12 a3 a8 a6

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The composition T ◦ φ−1 ◦ f ◦ φ ◦ U then produces a quartic public key of 9
equations in 9 variables.

D.1 Key Recovery

The recovery of an equivalent private key proceeds in three steps. First, we
use the differential to recover a linear operator corresponding to a masked mul-
tiplication by an extension field element. We then use this map to recover a
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vector-valued function equivalent to f . Finally, we recover linear input and out-
put transformations such that the composition of all of these maps is equal to
the public key.

We construct the polynomial ring Fq[T ] with T = {t1, . . . , tn2} and collect
the variables into the matrix Nσ. Then we solve the linear system

4∑
i=1

D3P (Nδi,1
σ x1, . . . ,Nδi,4

σ x4) = ΛNσ
D3P (x1, . . . ,x4)

for Nσ by imposing the constraints that the first two coordinates of the left hand
side are in the span of D3P (x1, . . . ,x4). There is a two dimensional subspace of
solutions from which we choose the random solution

Nσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a14 a9 a10 a6 a7 a8 a13 a10 a12

a10 a a7 a3 a2 a2 a14 a4 a11

a14 a12 a12 a a12 a5 a a6 1
a12 a3 a10 a4 a12 a6 0 a4 a7

a3 a14 a10 0 a a5 a13 0 a4

a9 a8 a10 a12 a6 a2 a14 a11 a3

a6 a11 a3 a7 a2 a14 a9 0 a5

a8 0 a6 a7 a13 0 a10 a10 a11

a9 a10 a7 1 a14 1 a2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From this matrix we solve the equation Zf(σ) ◦P = P ◦Nσ linearly for Zf(σ),
recovering in matrix form

Zf(σ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a8 a 0 a a11 0 0 a a14

a4 a7 a7 a14 a13 0 a11 0 a14

a7 a11 a8 a13 a2 a a12 1 a
a a12 a13 a8 a2 a10 a 0 a9

a3 a4 a14 a6 a6 a6 a13 a6 a5

a3 a11 a11 a14 a6 a9 a2 a10 a11

a13 a4 a13 a10 a7 a14 a11 1 0
0 0 1 0 a6 a13 a2 a8 a12

a6 0 a3 1 a10 a11 a8 a6 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We next recover a random root of the minimal polynomial of Nσ,

τ = ab8 + b7 + a12b6 + a7b5 + a3b4 + a3b3 + b2 + a2b + a8,

and solve the linear systems

ÛNσ = MτÛ and Zf(σ)T̂ = T̂Mf(τ),
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where Mτ and Mf(τ) are the left multiplication matrices for τ and f(τ), respec-
tively. We recover the two matrices

Û =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a7 0 a5 a3 a8 a6 a14 a12 a10

1 a10 a3 a a11 a3 a6 a12 a10

a10 a11 a5 a11 a8 a13 1 a4 a3

a12 a5 a4 a7 a4 a5 a6 a a11

a5 a11 a13 a5 a4 a8 a a13 a
0 a8 a12 a12 a a13 a6 a5 1
a14 a9 a10 a7 a6 a3 a7 a8 a
a3 a11 a11 a13 a3 a10 a10 a13 a11

1 a3 a9 a13 a4 1 a3 a14 a9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, T̂ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a12 0 a2 a10 a6 a6 a10 0 a14

a6 a12 a2 a14 1 0 a8 a6 a
a14 a8 a13 a4 a5 a9 a13 a a7

a3 0 a10 a11 0 a2 a11 a14 a6

1 a a7 0 a5 a5 a2 a3 a7

a a14 a2 a11 a5 a2 1 1 a10

a a10 a7 a13 a14 0 a6 a3 1
a13 a12 a a3 a11 a9 a12 0 a5

a10 a4 a6 a8 a10 a5 a10 a4 a11

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We construct F̂ = T̂−1 ◦P ◦ Û−1, which is not only isomorphic to F but also
multiplicative. Finally, we randomly select x′ =

[
a2 a8 a2 a10 a14 a6 a2 1 a

]
, set

y′ = F̂ (x′), and compute U′ = Mx′ −1Û and T′ = T̂My′ recovering

U′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a12 a9 a3 a4 a2 a11 a9 a11 a11

a a12 a9 a11 a10 a5 a7 a7 a2

a7 a13 a11 a a4 1 a10 a10 a2

a10 a10 a3 a9 a10 a5 a a3 a7

a5 a4 a3 0 a4 a a11 a a13

a13 a8 a2 a5 a6 1 a a13 a10

1 a11 a7 a11 a10 a6 a a9 a11

a7 a9 a9 1 a3 a9 a2 a14 a
a13 a a10 a7 a2 a4 a5 a3 a12

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,T′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a5 a14 0 a10 a10 a2 a9 0 0
a a10 a13 a10 a6 a11 a9 a a12

a2 a3 1 a14 a13 a3 a4 a6 a7

a14 a6 a8 a14 a4 a8 a14 a4 a13

a10 0 a12 a5 0 a13 a5 a7 a2

0 a10 a2 a9 a7 a6 a11 0 a7

a11 a13 a11 a10 0 a8 a a4 1
a11 0 a6 1 a9 a13 a6 a4 a
a10 a14 a5 a5 1 a6 a3 a5 a10

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The public key now satisfies P = T ′ ◦ F̂ ◦ U ′.
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Abstract. Extension Field Cancellation (EFC) is a multivariate-based
primitive for encryption proposed by Szepieniec, Ding and Preneel in
2016. They claim to provide 80 bits of security for all the proposed vari-
ants and parameters. In this paper, we develop a rigorous security analy-
sis and show that none of the proposed variants archive the claimed secu-
rity levels. While the Joux-Vitse algorithm can perform message recovery
on the variants EFC−

p (2, 83, 10) and EFC−
pt2

(2, 83, 8) in less than 280 bit
operations, we offer a new key recovery technique based on MinRank
that can break the last proposed variant EFC−

p (3, 59, 6) with complexity
273. We also introduce a new technique based on a spectral decomposition
with respect to a subfield to recover the first half of the isomorphism of
polynomials in EFC−

p (q, n, a), when a = 0, 1. This technique is of inde-
pendent interest.

Keywords: Multivariate cryptography · EFC · Discrete differential ·
MinRank

1 Introduction

In the last few years we have seen more focus in cryptography shift towards the
development and analysis of post-quantum cryptosystems. Such systems do not
rely on the common constructions involving factoring and computing discrete
logarithms that are rendered insecure by Shor’s algorithm, see [33]. This shift in
focus is due to a combination of factors including the ongoing standardization
efforts of the European Telecommunications Standards Institute (ETSI) and the
National Institute of Standards and Technology (NIST) as well as an increase
in attention and investment from large industry players.

Several subdisciplines have emerged in the field of post-quantum cryptog-
raphy that seem particularly suited to various security applications. The most
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developed of these areas include code-based, lattice-base, and multivariate cryp-
tography as well as isogeny-based key exchange and hash-based signatures. Each
of these arenas has strengths and weaknesses in terms of theory and performance.

One of these areas, multivariate cryptography, seems particularly well-suited
for digital signatures. There are several schemes with a fairly long and fairly sta-
ble history, see, for example, [6,8,9,22,30]. In contrast, multivariate encryption
schemes have a much shorter life expectancy. Several of the earlier schemes were
broken with practical attacks, including, for example, cryptosystems such as C∗,
HFE, STS and PMI, see [10,15,17,28,41].

In the last five years or so a new methodology has begun to be used for
constructing multivariate encryption schemes. While the earlier cryptosystems
tried to use maps that were nearly permutations, in the sense that it is diffi-
cult to find collisions or an element in the codomain that is not in the range,
this newer class of cryptosystem attempts to created efficiently invertible maps
merely under the condition that they are statistically injective. Since there is
much more freedom in accomplishing this task by making the codomain much
larger than the domain, the hope is that we can find a family of such functions
providing security and efficiency.

Several schemes have been proposed following this paradigm including the
Simple Matrix Encryption Scheme, ZHFE, SRP, HFERP, EFLASH and Exten-
sion Field Cancellation (EFC), see [7,12,20,35–37,42]. Unfortunately a few of
these have fallen victim to attacks that either break the scheme or make it require
reparameterization, see [1,5,24–26,31]. Thus we are left to wonder whether mul-
tivariate schemes are suitable for encryption.

In this article we strike another blow to multivariate encryption. We show
that none of the parameters proposed for EFC in [35] are secure.

While the claims of 80-bit security for the characteristic 2 parameters of EFC
were dubious even considering known techniques at the time, we now have solid
evidence that the Joux-Vitse algorithm, see [21], can break the characteristic 2
parameters of EFC in well less than 280 bit operations, cf. [27, Section 5.2].

Our main contribution is the development of a new Minrank attack on the
EFC encryption scheme. While the characteristic 2 parameters broken by Joux-
Vitse have sufficiently high rank, we are able to break the odd characteristic
parameters convincingly. This advancement is due to a careful derivation of
the Q-rank of the public key (the minimum rank as a quadratic form over the
extension field in the span of the public key) as well as in large part to the
advancement in techniques recently accomplished in [39]. We are able to show
that the rank of the public key is 2�a+1

2 � and, in conjunction with new techniques
for solving Minrank, that the complexity of the Minrank attack on EFC is much
smaller than expected.

In addition, we introduce a new cryptanalysis technique of independent inter-
est. We call this technique subfield spectral decomposition because it uses the
spectral decomposition of an operator derived from the public key, which is lin-
ear over an extension field, to apply a function linear over the subfield to the
operator revealing its special structure. The technique seems useful in deriving
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maps over an extension field of a particular shape in contexts where there is not
enough information to derive them linearly.

The paper is organized as follows. In Sect. 2, we establish notation and intro-
duce EFC. In the following section we introduce the Minrank problem, a model-
ing of the problem and the concept of superdetermined instances. In Sect. 4, we
present a new rank analysis showing that EFC has low rank. We next present
our complete key recovery technique. Then, in Sect. 6, we derive a complexity
estimate for our attack, showing that EFC does not achieve its claimed security
levels. Finally we conclude, reflecting on the status of multivariate encryption.

2 Preliminaries

Let Fq be a field with q elements, Fn and F
n×n
q the sets of row vectors and of

square matrices over Fq of size n, respectively. Throughout the article E denotes
a degree n extension field of Fq, and ϕ : F

n
q → E the natural vector space

isomorphism.
Suppose g(x) ∈ Fq[x] is the irreducible polynomial of degree n such that

E ∼= Fq(x)/〈g(x)〉. Given a root b ∈ E of g(x), the following matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
b bq · · · bqn−1

b2 b2q · · · b2qn−1

...
. . .

...
bn−1 b(n−1)q · · · b(n−1)qn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

is invertible, and can be used to compute and to invert the map ϕ. Given A ∈ E

we have ϕ−1 (A) =
(
A,Aq, . . . , Aqn−1

)
M−1, and for any a = (a1, a2, . . . , an) ∈

F
n
q we have ϕ(a) = a1 + a2b + · · · + anbn−1, which is the first coordinate of the

vector aM.

2.1 The Basic EFC Encryption Scheme

In this section we describe the basic version of the Extension Field Cancellation
encryption scheme of [35].

Suppose A ∈ F
n×n
q is a random matrix and x = (x1, x2, . . . , xn) are variables

over Fq. Let α : F
n
q → E be the linear map given by α(x) = ϕ(xA), and

αm ∈ F
n×n
q be the matrix representing the map a 	→ ϕ−1 (α(x)ϕ(a)) in the

standard basis.
The central map in basic EFC is given by the following function

F : Fn
q → F

2n
q : x 	→ (x · αm(x),x · βm(x)) ,

where similarly βm is the Fq-linear map representing multiplication by β(x), and
β(x) = ϕ(xB) for a given matrix B ∈ F

n×n
q .
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Given an image (d1,d2) of F , we can find a preimage x0 by solving for x the
following system of n linear equations

d1βm(x) − d2αm(x) = 0. (1)

Hence the complexity of decryption is at most O
(
n2.8

)
Fq operations.

The public key in the basic version of EFC is a sequence of 2n quadratic
polynomials in n variables given by

P (x) = T ◦ F ◦ U(x),

where T : F2n
q → F

2n
q , U : Fn

q → F
n
q are invertible affine maps. The private key

is the tuple of matrices over Fq given by (αm(x), βm(x), T, U).
As described in the original paper, the basic EFC is insecure. We can effi-

ciently perform several attacks, such as a linearization attack [29], a Minrank
attack [23] and a direct algebraic attack. Thus some modifications are applied
to the basic version to boost the security of EFC while keeping good levels of
efficiency. For space reasons, we discuss these modifications in Appendix A.

3 Minrank

In this section we introduce the well-known Minrank problem. We define a par-
ticular kind of Minrank instance typically arising in multivariate cryptography.
A particular feature of these instances is that the given matrices are restricted
to be over the base field Fq, while the solution coefficients are allowed to be in
the extension field E.

Definition 1 (Minrank Problem). Given an integer r and a set of m square
matrices M1,M2, . . . ,Mm ∈ F

n×n
q . Find a nonzero vector (x1, x2, . . . , xm) ∈ E

m

satisfying

Rank

(
m∑

i=1

xiMi

)
≤ r.

The hardness of this problem has a direct implication in the security of many
multivariate and code-based schemes [2,5,18,19,23,38]. Nowdays the most effi-
cient models to solve the Minrank problem are known as: minors modeling
[16], linear algebra search [3,19], and KS modeling [23]. Here we introduce only
KS modeling because it provides the best complexity against Minrank problem
instances arising in this context, see [39].

3.1 KS Modeling

The KS model was introduced by Kipnis and Shamir in [23]. The technique
exploits the fact that a low rank matrix must have a high dimensional right
kernel. We may generically apply the following assumption: there is a Minrank
solution (a1, a2, . . . , am) ∈ E

m such that the column space of the resulting linear
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combination is generated by its r rightmost columns. Thus such a solution can
be found by solving the following system of bilinear equations

(
m∑

i=1

xiMi

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0

. . .
0 0 · · · 1
k1 kr+1 · · · kr(κ−1)+1

k2 kr+2 · · · kr(κ−1)+1)

. . .
kr k2r · · · krκ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (2)

where κ = n − r. The ki variables are called kernel variables and xi variables
are called linear variables. We refer to the two matrices on the left hand side of
Eq. (2) as the target matrix and the kernel matrix, respectively.

3.2 Superdetermined Instances

A square Minrank instance with m matrices of size n × n and target rank r is
called superdetemined if m < n · r. The complexity of solving superdetermined
instances is studied by Verbel et al. in [39]. There it is shown that one may use
fewer variables in the KS modeling and solve it using an XL-like algorithm that
only multiplies by kernel variables. When the instances are chosen uniformly at
random, only m

n − r < κ < n− r column vectors of the kernel matrix are required
to expect non-spurious solutions. Furthermore, everytime κ ≥ dKS + 1, the first
fall degree of such systems is bounded by dKS + 2, where

dKS = min
{

d | n

(
r

d

)
> m

(
r

d + 1

)}
.

Here we use the first fall degree as our estimation of the solving degree, which
is the maximum degree required in the Gröbner basis computation. We expect
that as long as the system is overdetermined and generic enough, the solving
degree is in general no more than one more than the first degree fall, see [39].

Hence, to solve superdetermined instances of the Minrank problem, we need
only solve a sparse linear system involving a matrix over Fq of size

O

(
m

(
rκ + dKS

dKS + 1

))
× O

(
m

(
rκ + dKS

dKS + 1

))
,

with at most m(r+1) nonzero entries in each row. Sparse systems of linear equa-
tions of the form xA = b, where A ∈ F

ra×ca
q and b ∈ F

ra
q , can be solved by using

Wiedemann’s algorithm [40]. Provided that a solution exists, this algorithm finds
a solution by performing an expected number of O (n0(ω + n1 log2 n1) log n1)
multiplications in Fq, where ω is the number of nonzero entries in A, where
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n0 = min{ra, ca} and where n1 = max{ra, ca}, see [40, Section IV]. Conse-
quently, the complexity of solving superdetermined Minrank instances is given
by

O

(
m3(r + 1)

(
rκ + dKS

dKS + 1

)2
)

,

where κ ≥ min
{

m
n − r , dKS + 1

}
is the number of vectors involved in the KS

modeling; see [39] for more details.

4 Rank Analysis

In this section, we derive the rank of the public key of the basic EFC scheme as
well as the modified versions EFC− and EFC−

p .

4.1 Rank of Basic EFC

Recall that the core function in basic EFC is the concatenation of two maps
xαm(x) and xβm(x), where αm(x) and βm(x) are both matrices F

n×n
q repre-

senting the multiplication by α(x) and β(x), respectively.
First, note that the map α(x) = ϕ(xA) can be written as

∑n−1
j=0 ajX

qj

, where

X = ϕ(x) and aj ∈ E for j = 0, 1, . . . , n − 1. Similarly, β(x) =
∑n−1

j=0 bjX
qj

.
Thus the public key in the basic version of EFC is the sequence of polynomials
given by the following composition

P (x) = T ◦ ϕ−1
2 ◦ (F1,F2) ◦ ϕ ◦ U(x),

where F1(X) =
∑n−1

j=0 ajX
qj+1 and F2(X) =

∑n−1
j=0 bjX

qj+1 are functions in E,
where ϕ−1

2 (X0,X1) =
(
ϕ−1(X0), ϕ−1(X1)

)
, and where ϕ, T and U are as before.

Over a field E of odd characteristic, the map F1 is represented by the rank 2
symmetric matrix F1 ∈ E

n×n such that F1[1, 1] = a0, and for j = 1, . . . , n − 1,
we have F1[j + 1, 1] = F1[1, j + 1] = aj/2. Similarly, the map F2 is represented
by a rank 2 symmetric matrix F2 ∈ E

n×n. (In the characteristic 2 case, we use
the symmetric representation, F1[1, 1] = 0 and F1[j + 1, 1] = F1[1, j + 1] = aj

for j ∈ {1, . . . , n − 1}, as first suggested in [23].)
For i = 1, 2 and j = 0, . . . , n − 1, the j-th Frobenius power of Fi is the

polynomial Fqj

i . Analogous to the previous discussion, in any characteristic, the
map Fqj

i can be represented by a rank 2 symmetric matrix in E
n×n. We denote

the matrix representing the Frobenius power Fqj

i by F∗j
i .1

1 In block form (P1, . . . ,P2n) = (G1, . . . ,Gn,G
′
1, . . . ,G

′
n)

[([
I2 ⊗ M−1

]
T

) ⊗ In
]
,

where ⊗ denotes the Kronecker product; i.e., Pi =
∑n

k=1 (skGk + tkG
′
k) for

i = 1, . . . , 2n, where (s1, . . . , sn, t1, . . . , tn)� is the i-th column of
[
I2 ⊗ M−1

]
T.
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For simplicity suppose that both T and U are homogeneous linear maps and
let T and U denote the matrices representing T and U , respectively. Reasoning
as in the proof of [5, Theorem 1], we have

(P1, . . . ,P2n) =
(
G1, . . . ,Gn,G′

1, . . . ,G
′
n

) [
I2 ⊗ M−1

]
T, (3)

where Gj+1 = WF∗j
1 W�, G′

j+1 = WF∗j
2 W� for j = 0, . . . , n − 1 and W =

UM. Thus for any column (r1, r2, . . . , r2n)� of T−1 [I2 ⊗ M] we have

Rank

(
2n∑
i=1

riPi

)
≤ 2. (4)

That is, for each basic EFC public key, there is a linear combination of the
matrices in the public key having rank less than or equal to 2.

4.2 Rank Analysis for EFC−
p

In this section we show the existence of at least one rank 2
⌈

a+1
2

⌉
matrix in

the span of any set of symmetric matrices representing the polynomials in a
EFC−

p (q, n, a) public key. We first show this holds for any EFC−(q, n, a) public
key, and then we show this holds even if we add the projection modifier.

An EFC−(q, n, a) public key Pa = (p1, p2, . . . , p2n−a) is the output of the
minus modifier applied to the basic EFC public key P = (p1, p2, . . . , p2n). By
Eq. (3) we have

(P1, . . . ,P2n) =
(
G1, . . . ,Gn,G′

1, . . . ,G
′
n

)
Ra, (5)

where Gj+1 = WF∗j
1 W� and G′

j+1 = WF∗j
2 W� for j = 0, . . . , n− 1, Ra is the

submatrix of
[
I2 ⊗ M−1

]
T formed by its first 2n − a columns.

Let a2 = �a
2 � and let a1 = a − a2. If the (2n − a) × (2n − a) submatrix

R′ of Ra consisting of rows n − a1 + 1 through n and 2n − a2 + 1 through 2n
is invertible, then there is a sequence of column operations E1, E2, . . . , E� such
that when applied to Ra we obtain a matrix of the form

R̃a =

⎛
⎜⎜⎝

C
In−a1 0(n−a1)×(n−a2)

D
0(n−a2)×(n−a1) In−a2

⎞
⎟⎟⎠ ,

where 0e×t denotes a zero matrix of size e × t and C,D are matrices over E of
size a1 × (2n − a) and a2 × (2n − a), respectively.

The matrix R′ is derived from the product of the (2n−a)×2n submatrix M′

of
[
I2 ⊗ M−1

]
consisting of rows n − a1 + 1 through n and 2n − a2 + 1 through

2n with the submatrix T′ consisting of the first 2n − a columns of T. Thus R′

is invertible if the right kernel of M′ intersects the column space of T′ trivially.
Random subspaces of E2n of dimension a and 2n−a intersect trivially with high
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probability; given the extra constraint that there is a basis for the column space
of T′ whose components lie in Fq, we thus conclude that R′ is invertible with
probability close to 1.

Let E1,E2, . . . ,E� be the matrices representing the column operations needed
to convert Ra into R̃a. If E = E1 · E2 · · ·E�, then by Eq. (5) we have

(P1,P2, . . . ,P2n−a)E =
(
G1, . . . ,Gn,G′

1, . . . ,G
′
n

)
R̃a.

If (γ1, γ2, . . . , γ2n−a)� denotes the first column in E, then the following equation
holds

2n−a∑
i=1

γiPi = W

(
a1∑

i=1

c1iF
∗(i−1)
1 + F∗a1

1 +
a2∑

i=1

d1iF
∗(i−1)
2

)
W�. (6)

And denoting by (ρ1, ρ2, . . . , ρ2n−a)� the (n − a1 + 1)-th column in E, we have

2n−a∑
i=1

ρiPi = W

(
a1∑

i=1

ckiF
∗(i−1)
1 +

a2∑
i=1

dkiF
∗(i−1)
2 + F∗a2

2

)
W�, (7)

where k = n − a1 + 1.
Notice that the matrix from Eq. (6) has rank at most 2(a1 + 1) and matrix

from Eq. (7) has rank at most 2(a2 + 1). Thus, when the number of removed
equations a is even, both matrices have rank a + 2. On the other hand, if a is
odd, matrix in Eq. (6) has rank 2�a

2 � and matrix in Eq. (7) has rank 2�a
2 � + 2.

It is clear that the projection modifier does not affect the shape of the basic
EFC central maps F1 and F2. Thus, projection has no effect on the previous
analysis. At this point we have proven the following two theorems. In both
theorems we assume q is odd.

Theorem 1. Suppose P1,P2, . . . ,P2n−a are symmetric matrices representing
the public quadratic forms of EFC−

p (q, n, a). Then there exists a nonzero vector
(s1, s2, . . . , s2n−a) ∈ E

2n−a such that

Rank

(
2n−a∑
i=1

siPi

)
≤ 2

⌈
a + 1

2

⌉
. (8)

Theorem 2. Provided that the parameter a in EFC−
p (q, n, a) is even, for any

sequence (P1,P2, . . . ,P2n−a) of symmetric matrices representing the public
quadratic forms of EFC−

p (q, n, a), there exist at least two linearly independent
vectors (s1, s2, . . . , s2n−a),

(
s′
1, s

′
2, . . . , s

′
2n−a

) ∈ E
2n−a satisfying Eq. (8).

5 Full Key Recovery Attack

In this section we demonstrate a full key recovery attack on the EFC−
p encryption

scheme. Similar to previous Minrank attacks [5,23,32,38], given an EFC−
p public

key P , we aim to recover an equivalent key (T ′,F ′
1,F ′

2, U
′) satisfying

P (x) = T ′ ◦ ϕ−1
2 ◦ (F ′

1,F ′
2) ◦ ϕ ◦ U ′(x).
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Thoughout the following we abuse language stating that we are recovering the
maps (T,F1,F2, U).

5.1 Recovering First Half of T

By Theorem 1, given an EFC−
p public key P , the Minrank problem involving

the 2n − a public matrices and target rank 2�a+1
2 � has at least one solution.

To recover the first half of T , we solve this Minrank problem and we obtain a
solution vector s ∈ E

2n−a. We expand this vector to a vector t ∈ E
2n by right

concatenation of a randomly chosen elements from E. A matrix representing the
first part of our hidden linear map T is then given by T1M−1, where T1 ∈ E

2n×n

is the matrix with columns t(0), . . . , t(n−1), respectively, where t(i) is the vector
t with all its coordinates raised to the power qi.

5.2 Recovering U

The step of recovering U varies depending whether r > 2 or r = 2. In the former
case we use a standard technique for such a purpose [2,5,32]. For the latter case
we use the new subfield spectral decomposition technique, see Sect. 5.3.

For r > 2, after finding a Minrank solution s = (s1, s2. . . . , s2n−a) ∈ E
2n−a

we can build a rank r matrix L1 given by

L1 =
2n−a∑
i=1

siPi,

where P1,P2, . . . ,P2n−a are the symmetric matrices representing the polyno-
mials in the EFC−

p public key P . This matrix has the form of Eq. (6) with
probability almost 1. Thus, the first r

2 columns w = w(0),w(1), . . . ,w( r
2 ) of the

matrix W belong to the image of L1. Consequently, by the symmetry of L1, for
i = 1, 2, . . . , r

2 − 1 we have w(i)K = 0, where K is the right kernel matrix of L1.
In other words, w is a solution of the system of linear equations wKqn−i

= 0 for
any i = 0, 1, . . . r

2 . That system of linear equations has r
2 (n − r) equations and

n variables. As long as r > 2 and n is large enough, by solving such a system of
linear equations, we can recover w, and thus recover W and U .

5.3 Spectral Decomposition

In the case that the target rank in a Minrank instance is r = 2, i.e. when a = 0
or a = 1, the system of linear equations defining the first column of the matrix
W is underdefined. In this scenario, we have to consider additional algebraic
relations to recover an appropriate basis.

To this end, we develop a technique we call subfield spectral decomposition.
The spectral decomposition of a linear operator is a very useful tool from the
roots of functional calculus, providing a canonical way of generating from the
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operator new operators with desired properties. In our context, we want to trans-
form a linear operator L into another operator F′

1 having a special structure,
with the added restriction that F′

1 is an Fq-linear function of L. Since any Fq-
linear map on E

n can be represented as a matrix of the form W = UM, the
task of constructing such a F′

1 is equivalent to finding the first column of W.
Given our rank 2 symmetric matrix L, we must show that the first column

vector, w, of W =
[
w(0)� w(1)� · · · w(n−1)�] is in the span of the nonzero

eigenvectors of L. First, note that we expect any Minrank solution to be of the
form, L = WFW�, where F is a symmetric matrix having the shape

F :=

⎡
⎢⎢⎢⎣

a0 a1 . . . an−1

a1 0 . . . 0
...

...
. . .

...
an−1 0 · · · 0

⎤
⎥⎥⎥⎦ .

Consider the product

WF =
[∑n−1

i=0 aiw(i)� a1w(0)� a2w(0)� · · · an−1w(0)�] .
For a v ∈ E

n, the product vL corresponds to taking v times the above matrix
and then times W�. First we compute v times the above matrix.

vWF =
[∑n−1

i=0 aivw(i)� a1vw(0)� a2vw(0)� · · · an−1vw(0)�] .

=
[∑n−1

i=0 ai

〈
v,w(i)

〉
a1

〈
v,w(0)

〉
a2

〈
v,w(0)

〉 · · · an−1

〈
v,w(0)

〉]

=
[∑n−1

i=0 ai

〈
v,w(i)

〉
0 0 · · · 0

]
+
〈
v,w(0)

〉 [
0 a1 a2 · · · an−1

]
.

Next, we take this vector and multiply on the right by W� to recover vL. The
entire product produces

vL =

(
n−1∑
i=0

ai

〈
v,w(i)

〉)
w(0) +

〈
v,w(0)

〉 n−1∑
i=1

aiw(i). (9)

Consider the case that v is an eigenvector of L. In this case, the right hand
side of Eq. (9) is equal to λvv for some λv in E. Thus if λv �= 0,

v = λ−1
v (

n−1∑
i=0

ai

〈
v,w(i)

〉
)w(0) + λ−1

v

〈
v,w(0)

〉 n−1∑
i=1

aiw(i).

It is clear that any such v is in the span of the two vectors w(0) and
∑n−1

i=1 aiw(i).
Therefore if we have two linearly independent eigenvectors of L corresponding
to nonzero eigenvalues, we recover two necessarily linearly independent linear
combinations of these two vectors, and therefore there is a linear combination of
the two eigenvectors producing w = w(0).

Next, take Eq. (9) and multiply on the right by v�. We obtain

vLv� =

(
n−1∑
i=0

ai

〈
v,w(i)

〉)〈
v,w(0)

〉
+
〈
v,w(0)

〉 n−1∑
i=1

ai

〈
v,w(i)

〉
. (10)
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Equation (10) implies two additional facts. First, we learn that
〈
v,w(0)

〉
is a

factor of every coefficient of vLv�; thus any vector v that is not in the kernel
of L and is orthogonal to w(0) is a non-trivial solution of the equation

vLv� = 0 (11)

in any characteristic as long as a0 �= 0. (In the characteristic 2 case, if a0 = 0
every vector v is a trivial solution.) Moreover, since the rank of L is two, there
is a 1-dimensional solution space of such vectors v. Second, we note that such
solutions, being orthogonal to w(0), satisfy vL = aw, where

a =
n−1∑
i=1

ai

〈
v,w(i)

〉
,

by Eq. (9). Therefore, once such a vector v is found, we can recover equivalent
matrices for W and U. Thus, to recover the map U we solve Eq. (11) using the
spectral decomposition of some matrix congruent over Fq to L.

We are attempting to find a vector w with which we can build an Fq-linear
map, so we do not rely on the spectral decomposition of L over an algebraic
closure of E; instead, we require that the eigenvalues of L lie in E. If L does
not have two distinct nonzero eigenvalues in E, we keep choosing random matri-
ces in S ∈ F

n×n
q until S�LS has two distinct eigenvalues. The map L has such

eigenvalues when its minimal polynomial splits in E. Under the heuristic that
the minimal polynomials of Fq-congruent symmetric matrices are random sub-
ject to the singularity constraint, L has two distinct nonzero eigenvalues with
probability roughly 1

r! . We have verified this estimate for small r experimentally.
Assume that L has two distinct nonzero eigenvalues λ1, λ2. Let v1 and v2 be

the eigenvectors corresponding to λ1 and λ2, respectively. We find a solution to
Eq. (11) by computing

0 = (xv1 + v2)L (xv1 + v2)
�

= (xv1 + v2) (λ1v�
1 v1 + λ2v�

2 v2) (xv1 + v2)
�

= λ1x
2‖v1‖4 + λ2‖v2‖4.

Solutions of the above univariate equation are given by

x = ±
(−λ2

λ1

) 1
2 ‖v2‖2

‖v1‖2 . (12)

Finally, we construct w = (xv1 + v2)L, recover W and an equivalent U.

5.4 Recovering Second Half of T:

After recovering the hidden map U , compute

W−1P(W−1)� =
(
W−1P1(W−1)�, . . . ,W−1P2n−a(W−1)�)
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with W = UM. A second linearly independent solution of the Minrank problem
can be found by solving the following system of linear equations:

Suba2×a2

(
2n−a∑
i=1

xiPi

)
= 0(n−a2)×(n−a2),

where for A ∈ E
n×n, the notation Subi,j(A) denotes the lower right submatrix

of A of size (n − i) × (n − j) starting in the coordinate (i + 1, j + 1).
After solving the aforementioned linear system, we recover the second half of

T as in Subsect. 5.1. We then compute a second low rank map F′
2.

5.5 Recovering Central Maps

At this point we have recovered maps U ′, T ′,F ′
1,F ′

2 such that

P = T ′ ◦ ϕ−1
2 ◦ (F ′

1,F ′
2) ◦ ϕ ◦ U ′.

By Eqs. (6) and (7), the central polynomials F ′
1,F ′

2 have the following form:

F ′
1 =

a1∑
i=1

c1iFqi−1

1 + Fqa1

1 +
a2∑

i=1

d1iFqi−1

2 , (13)

F ′
2 =

a1∑
i=1

c2iFqi−1

1 +
a2∑

i=1

d2iFqi−1

2 + Fqa2

2 , (14)

where F1,F2 are the original central polynomials. Thus, there are 2n variables
defining F1 and F2

F1 =

⎛
⎜⎜⎜⎝

x1 x2 · · · xn

x2 0 · · · 0
...

. . .
...

xn 0 · · · 0

⎞
⎟⎟⎟⎠ , F2 =

⎛
⎜⎜⎜⎝

xn+1 xn+2 · · · x2n

xn+2 0 · · · 0
...

. . .
...

x2n 0 · · · 0

⎞
⎟⎟⎟⎠ .

In addition, x1,1, . . . , x1,a1 , x2,1, . . . , x2,a1 , y1,1, . . . , y1,a2 , y2,1, . . . , y2,a2 form an
additional 2a1 + 2a2 variables defining F ′

1 and F ′
2. Thus, we obtain

F′
1 = F∗a1

1 +
a1∑

i=1

x1,iF
∗(i−1)
1 +

a2∑
j=1

y1,jF
∗(j−1)
2

F′
2 = F∗a2

2 +
a1∑

i=1

x2,iF
∗(i−1)
1 +

a2∑
j=1

y2,jF
∗(j−1)
2 .

Each entry of the matrices F′
1,F

′
2 produces an equation in 2n+ a1 + a2 vari-

ables where 2n of the variables are raised either to the power qa2 or qa1 and
a = a1 + a2 of the variables occur linearly. (Since F′

1 and F′
2 are symmetric
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matrices these systems contain n(n+1)
2 equations each.) These systems of equa-

tions are bilinear when expressed over Fq and are easily solvable. Experimentally,
we have found such systems to be efficiently solvable even over E for full sized
parameters due to their structure.

By solving these systems we can recover polynomials F̃1 and F̃2 and recover
linear maps φ1,1(X) =

∑a1
i=1 c̃1iX

qi−1
+ Xqa1 , φ2,1(X) =

∑a1
i=1 c̃2iX

qi−1
,

φ1,2(Y ) =
∑a2

j=1 d̃1jY
qj−1

+ Y qa2 , and φ2,2(Y ) =
∑a2

j=1 d̃2jY
qj−1

such that
(F ′

1

F ′
2

)
=
(

φ1,1 φ1,2

φ2,1 φ1,2

)(F̃1

F̃2

)
.

6 Key Recovery Complexity

As described in Sect. 5 we can perform a key recovery attack on EFC−
p by way

of a Minrank calculation with some additional overhead. This section describes
the complexity of such an attack for the proposed parameters.

There are two steps in the key recovery attack in which nonlinear systems are
solved. The first such system is the Minrank instance itself; the second system
occurs in the recovery of the central polynomials of the form (13) and (14).
Experimentally, we have verified that the latter system is quite easy to solve,
requiring only a few seconds of calculation for the proposed parameters even
when expressed over E. Therefore, the complexity of the full key recovery is
dominated by the complexity of solving one instance of the Minrank problem.
As described in Sect. 5, once the Minrank problem has been solved, a second
solution can be found efficiently via the solution of a system of linear equations.

The Minrank instance involves 2n − a matrices of size n × n over Fq. The
solution vectors are in E

2n−a and the target rank is 2�a+1
2 �. If a ≥ 2, the target

rank is always greater than 2. Thus all Minrank instances coming from EFC
public keys are superdetermined (See Sect. 3.2).

For the set of parameters q = 3, n = 59 and a = 6 in the modified version
EFC−

p we obtain from Eq. (8) a target rank of 8, and compute dKS = 5, see [39,
Section 5]. We may choose κ = 6 deriving a complexity of about 273.

We ran proof-of-concept experiments of the key recovery using the Magma
Computer Algebra System2 see [4]. Running our non-optimized code we perform
a complete key recovery on an EFC−(3, 10, 3) instance. The running time was
widely dominated by the first Minrank part, taking 212810 seconds to complete
and having a solving degree of 5, as predicted.

Using our complexity estimation to compute a set of parameters achieving
128-bit security, we find that the most efficient scheme with q = 3 requires a = 12
and n = 149, resulting in a scheme approximately 12000 times slower than the
original parameters.

2 Any mention of commercial products does not indicate endorsement by NIST.
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7 Conclusion

Again, we find ourselves learning of new attacks that affect our understanding
of security for multivariate encryption schemes. It is striking to note that with
the exception of schemes proposed within the last two years, as of the writing of
this article, none of the prominent multivariate encryption schemes listed in the
introduction have succeeded in attaining the claimed security level.

Also interesting is the fact that yet another scheme has fallen victim to
Minrank methods. On one hand, it is alarming that so fundamental a compu-
tational problem on which so much of post-quantum cryptography is built is
seeing such rapid improvement. Minrank is becoming a mass-murderer of cryp-
tographic schemes. On the other hand, perhaps it is reassuring that in more
recent years there are fewer schemes failing against ad hoc attacks. Perhaps we
are developing to the point in multivariate cryptography that we are avoiding
the numerous pitfalls of developing an efficient, secure scheme, as long as we are
careful about rank.

Acknowledgements. The author Javier Verbel is supported by “Fondo Nacional
de Financiamiento para la Ciencia, la Tecnoloǵıa y la Innovación Francisco José de
Caldas”, Colciencias (Colombia). Some of the experiments were conducted on the Gauss
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continua a través del apoyo a planes de mejoramiento de los programas curriculares”.

The authors would also like to thank the program committee and reviewers for
their many valuable comments contributing to the quality of this manuscript.

A Modifiers

To protect against linearization equations, Minrank, and direct algebraic attacks
the basic EFC scheme is modified. Here we present these modifiers.

A.1 Minus Modifier

This modifier can be seen as a function parameterized by an integer a. It takes
as input a sequence of polynomials (p1(x), p2(x), . . . , p�(x)) and outputs the
sequence (p1(x), p2(x), . . . , p�−a(x). It is well known that this modification either
avoids or increases the complexity some of the aforementioned attacks [11,13,
32,38]. As usual, the minus modification of EFC is denoted by EFC−.

The efficiency of EFC is strongly affected by this modifier. In particular,
Eq. (1) cannot be directly used for decryption for the modified scheme. Instead,
we need to guess the vector in F

a
q which corresponds to the output of the missed

polynomials (p�−a+1(x0), p�−a+2(x0) . . . , p�(x0)). The expected complexity of
decryption becomes O

(
qan2.8

)
multiplications over Fq.
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A.2 Projection Modifier

There is another style of attack that can undermine the minus modifier. These
are the well known differential attacks [14,34]. To avoid these attacks, a kind of
projection is applied inside of the central maps F1, F2. More precisely, instead
of choosing completely at random matrices A, B, those are chosen randomly
under the constraint of having rank n − 1. The designers also insist for n to be
a prime number, and that the kernels of A B have not nontrivial intersection.
The symbol EFCp is used to denote a projected scheme.

A.3 Frobenius Tail Modifier

This modifier works over characteristic 2 of 3. In the characteristic two case, the
central map is defined from E to E

2 as follows

X 	→
(

α(X)X + β(X)3

β(X)X + α(X)3

)
,

where α(X) and β(X) are Fq-linear maps. (The construction for characteristic 3
is similar using the square instead of the cube.) For decryption details see [35].
Schemes employing this modifier are denoted EFCt2 or EFCt3 .

B Toy Example

To illustrate the attack, we present the recovery of an equivalent private key for
an instance of EFC over a small odd prime field.

B.1 Key Generation

Let q = 3, d = n = 7, and a = 1. Let K = Fq[x]/
〈
x7 − x2 + 1

〉
= Fq(b), where b

is a root of this irreducible polynomial.
We randomly select two Fq-linear maps α(X) and β(X) and construct

F1(X) = X · α(X) and F2(X) = X · β(X). Explicitly, as quadratic forms on
E, we have:

F1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1267 b398 b1100 b1036 b1905 b521 b1334

b398 0 0 0 0 0 0
b1100 0 0 0 0 0 0
b1036 0 0 0 0 0 0
b1905 0 0 0 0 0 0
b521 0 0 0 0 0 0
b1334 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1818 b842 b1991 b1157 b380 b596 b895

b842 0 0 0 0 0 0
b1991 0 0 0 0 0 0
b1157 0 0 0 0 0 0
b380 0 0 0 0 0 0
b596 0 0 0 0 0 0
b895 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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We further select two invertible Fq-linear transformations T and U :

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 1 2 0 2 2 1 0 2 2 0 1 2
1 1 1 0 1 1 1 1 2 1 0 0 2 1
2 0 0 1 1 1 2 2 0 1 1 1 1 0
0 2 0 2 2 1 0 2 0 2 1 1 2 2
1 1 0 1 0 1 1 2 1 1 2 0 1 0
1 1 2 0 0 2 1 0 1 0 1 0 0 1
0 2 0 1 1 0 0 2 0 1 1 1 1 0
1 1 2 1 0 1 0 0 2 2 0 1 0 1
0 1 1 0 0 1 0 1 0 1 0 0 0 0
1 2 1 0 2 2 0 0 0 1 1 1 2 2
1 0 1 0 1 2 0 2 0 1 0 1 1 2
0 2 2 2 0 1 2 1 0 2 0 0 0 1
0 0 1 2 0 1 0 0 1 2 1 1 1 2
1 2 1 2 0 2 1 2 2 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0 1 0 1 0
0 0 1 0 2 1 2
2 0 2 2 2 0 0
1 0 1 0 1 1 1
1 0 0 0 2 1 0
1 0 0 0 0 0 2
0 1 2 1 1 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We then fix Π : F2n
q → F

2n−1
q , the projection onto the first 2n−1 coordinates.

The public key, P = Π◦T ◦ϕ−1
2 ◦(F1 F2)�◦ϕ◦U is then computed as a collection

of quadratic forms, Pi for i = 0, . . . , 12, following Eq. (3).

B.2 Recovering an Equivalent Key

The first step in key recovery is solving a Minrank instance on the public key
with target rank 2. As proven in Theorem 1, a solution to the Minrank instance
exists with high probability. There are n = 7 solutions; specifically, the solutions
are the Frobenius powers of the coordinates of

s =
(
1 b873 b1492 b1983 b899 b359 b1463 b2062 b1982 b689 b422 b665 b1371

)
.

The matrix L1 =
∑12

i=0 siPi has rank 2 as required. We concatenate a random
value to s to produce a vector t1 ∈ E

2n and to give it the correct dimension to
represent an Fq-linear transformation from K

2 → K. The linear transformation
producing this low rank matrix from the public key is then given by:

T1 =
[
t�
1 t(q)�1 · · · t(qn−1)�

1

]
.

We next compute the spectral decomposition QDQ� of L1. As noted in
Sect. 5.3, over Fq there is a degree of freedom in choosing w in the column space

of Q with the property that W =
[
w wq · · · wqn−1

]
produces W−1L1W−�

of the appropriate shape. We obtain w =
[
b1199 b586 b358 b2144 b553 b199 b400

]
,

revealing the input transformation:
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U′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 2 2 1
0 2 1 0 1 1 0
0 1 0 0 2 2 1
2 1 1 1 0 2 0
1 2 0 1 2 1 2
2 2 0 1 1 0 0
2 2 0 2 0 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and producing the first recovered central map:

F′
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1182 b1997 b274 b994 b1902 b253 b652

b1997 0 0 0 0 0 0
b274 0 0 0 0 0 0
b994 0 0 0 0 0 0
b1902 0 0 0 0 0 0
b253 0 0 0 0 0 0
b652 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Transforming the public key P ′ = P ◦ U ′−1, we recover a linear combination
of the public matrices over K of the form of a central map composed with a
projection. We find that the nonlinear equations defining this relationship are
already in the ideal generated by the linear equations, so this step requires only
the solution of a linear system. Appending an additional random coefficient to
this linear combination, we obtain:

t2 =
(
b569 b1471 b31 b1373 b613 b1670 b698 b1749 b1445 b400 b239 b1441 b1598 b1127

)
.

and build T2 =
[
t�
2 t(q)�2 · · · t(qn−1)�

2

]
, from which, in conjunction with T1, we

recover an equivalent output transformation:

T′−1 =
[
T1M−1 T2M−1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 2 2 2 2 2 1
0 1 2 2 0 0 2 1 0 2 1 1 2 1
1 1 1 0 1 1 2 0 0 1 1 1 2 1
2 2 2 0 0 2 0 2 0 2 1 2 1 1
1 0 0 2 1 1 1 2 2 1 0 0 0 1
2 0 2 0 0 2 2 1 2 2 0 2 0 0
2 2 2 2 0 1 1 0 1 1 1 1 2 0
1 2 1 0 2 0 1 2 2 0 2 2 1 0
2 1 0 0 2 0 1 0 0 1 0 1 2 0
0 2 1 2 1 2 2 2 2 0 2 0 2 2
1 0 0 2 1 0 2 2 1 0 0 1 2 2
1 2 2 0 0 0 2 2 2 0 0 0 2 0
1 1 2 1 1 1 0 0 1 0 2 2 2 2
2 0 2 1 0 2 0 1 2 0 1 2 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Furthermore, the recovered map:

L2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b863 b260 b889 b2123 b265 b1375 b375

b260 b1730 b1077 b1808 b1138 b2122 b1080

b889 b1077 0 0 0 0 0
b2123 b1808 0 0 0 0 0
b265 b1138 0 0 0 0 0
b1375 b2122 0 0 0 0 0
b375 b1080 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is decomposed into the composition of the central map:

F′
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b863 b1374 b889 b2123 b265 b1375 b375

b1374 0 0 0 0 0 0
b889 0 0 0 0 0 0
b2123 0 0 0 0 0 0
b265 0 0 0 0 0 0
b1375 0 0 0 0 0 0
b375 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the projection
Π ′(X) = X + b1327Xq.

We then find that the public key satisfies P = Π ◦ T ′ ◦ [Id Π ′] ◦ [F ′
1 F ′

2]
� ◦ U ′,

where Π is the minus modifier.
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Abstract. The MQ problem, an NP-complete problem, is related to
the security of Multivariate Public Key Cryptography (MPKC). Its vari-
ant, the constrained MQ problem, was first considered in constructing
secure multivariate encryption schemes using the pq-method proposed
at ProvSec2018. In this paper, we propose an encryption scheme named
PERN, whose key space completely includes that of the pq-method. The
decryption of PERN uses methods of solving nonlinear equations over
the real numbers, which is different from the decryption of the exist-
ing encryption schemes in MPKC. The construction of PERN is fairly
flexible, which enables us to construct a multivariate encryption scheme,
whose public key consists of multivariate polynomials of degree 2, 3 or
higher degrees while constraining its public key to a reasonable size.

Keywords: Multivariate Public Key Cryptosystems · Constrained
MQ problem · MQ problem · Nonlinear equations · Post-quantum
cryptography

1 Introduction

Multivariate Public Key Cryptography (MPKC) [8], which is a candidate for
post-quantum cryptography, uses multivariate polynomial systems as its pub-
lic key, and in most cases, its security is based on the difficulty of solving a
set of multivariate polynomials. This problem of solving a set of multivariate
polynomials is called the MP problem as follows.

MP problem: For a prime number q and positive integers m,n, let
F(x) be a polynomial system of m polynomials over a finite field Fq in n
variables x = (x1, . . . , xn). Then, find x0 ∈ F

n
q such that F(x0) = 0.

The constrained MP problem is derived from the MP problem.

Constrained MP problem: For a prime number q and positive integers
m,n,L, let F(x) be a polynomial system of m polynomials over Fq in n
variables x = (x1, . . . , xn). Then, find x0 = (x0,1, . . . , x0,n) ∈ Z

n such that
F(x0) = 0 and −L

2 < x0,i ≤ L
2 (i = 1, . . . , n).
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When only quadratic polynomials are used in the (constrained) MP problem,
the problem is called the (constrained) MQ problem. At ProvSec2018, Yasuda
[37] introduced the constrained MQ problem for the first time, and proposed a
method called the pq-method for constructing multivariate encryption schemes
whose security is mainly based on the difficulty of solving the constrained MQ
problem. The constrained MP problem is also related to the SIS problem. In
fact, the SSNE Problem [30] derived from the SIS problem is very similar to the
constrained MP problem.

As MPKC encryption schemes, Simple Matrix Scheme [31], EFC [29], and
HFERP [16] are known. A detailed cryptanalysis for HFERP is not yet done
since it was recently proposed. For Simple Matrix Scheme and EFC, critical
attacks have not been reported, but they require using very large parameters,
which sacrifices the performance of encryption and decryption. Because of such
circumstances, developing new encryption schemes in MPKC becomes an impor-
tant problem.

One reason that accounts for the difficulty of designing a secure MPKC
encryption scheme is the difficulty of constructing trapdoor one-way functions
given by injective polynomial maps. However, by adding a restriction on the
definition range of a polynomial map, the map can easily become injective. Con-
sequently, it is easy to construct an injective trapdoor one-way function with a
constrained polynomial map, and this function can be used to construct MPKC
encryption schemes whose security is based on the difficulty of solving the con-
strained MP problem.

Most of the MPKC encryption schemes uses a bipolar structure. The key
generation of a multivariate encryption scheme with the bipolar structure is
described as follows.

1. Choose an injective multivariate polynomial map G(x) : F
n
q → F

m
q whose

inverse can be computed efficiently.
2. Choose randomly affine isomorphisms S, T on F

n
q ,Fm

q , respectively.
3. Compute F (x) = T ◦ G(x) ◦ S : Fn

q → F
m
q .

F (x) is used as a public key, and the secret key consists of G(x), T and S. G(x)
is called the central map of this scheme. Encryption and decryption processes
are described as follows.

Encryption: For a plaintext m ∈ F
n
q , compute c = F (m). c is a ciphertext.

Decryption: For a ciphertext c ∈ F
m
q , compute (1) b1 = T−1(c), (2) b2 =

G−1(b1), (3) m′ = S−1(b2) in this order. m′ coincides with the plaintext m.

The security of the schemes using the bipolar structure is based on the dif-
ficulty of solving the (usual) MP problem. If we want to change this security
assumption to the constrained MP problem, the map G(x) : Fn

q → F
m
q should

be changed to a constrained polynomial map G(x) : I → F
m
q where I is a

proper subset of F
n
q and m should be chosen from I. Here, G(x) is sufficient

to be injective on I. Note that the definition range of F (x) is S−1(I). The pq-
method also uses the bipolar structure. (However, S is restricted as I = S−1(I).)
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The construction of G(x) in the pq-method is as follows. First, we construct
a central map G0(x) of an (previously proposed) encryption scheme (e.g. the
Matsumoto-Imai scheme [22]) over Fp, where p is enough smaller than q. G0(x)
is then lifted into a polynomial map Φ(x) with integer coefficients. Next, pre-
pare a certain polynomial map ΨR(x) with integer coefficients, G(x) is defined
by G(x) = Φ(x) + ΨR(x). (ΨR(x) is a polynomial map appended to enhance
security) In the decryption algorithm of the pq-method, the computation of
b2 = G−1(b1) is done as follows: From b1 = G(b2) = Φ(b2) + ΨR(b2), the
part ΨR(b2) can be eliminated due to its special design in the pq-method. After
that, b2 can be obtained by inverting G0(x). We can say that the pq-method
is a modifier that changes encryption schemes in MPKC over Fp to encryption
schemes over Fq. However, the pq-method requires a constraint on the domain
of G(x). Due to this constraint, G(x) can become injective. By the existence of
the constraint, the security of the pq-method is related to the constrained MQ
problem.

In this paper, we propose a new multivariate encryption scheme called PERN
(Polynomial Equations over the Real Numbers), whose security is mainly based
on the difficulty of solving the constrained MP problem. PERN resembles the
pq-method, but PERN does not use a central map of a previously proposed
encryption scheme for the construction of G(x). As a Φ(x), we can choose any
polynomial map with small integer coefficients. This implies that the key space of
PERN completely includes that of the pq-method. In the decryption of PERN, we
need to solve a system of 2n equations in n variables with integer coefficients. To
solve such a system, we use techniques of solving a system of nonlinear equations
over the real numbers, and the fact that its solution has integer components.
Since these techniques of solving a system of nonlinear equations over the real
numbers are applicable to polynomial systems of any degree, Φ(x) (and ΨR(x))
can be chosen with any degree in principle. For the first time, techniques for
solving the system of nonlinear equations over the real numbers are used for the
decryption in MPKC (Table 1).

Table 1. Different solvers used in the decryption of MPKCs

Tool Representative schemes

Power operator C∗ [22], Square [6]

Linear equation solver over Fq Rainbow [9], ABC [31]

Univariate equation solver over Fq HFE [26], Gui [27]

Multivariate equation solver over Fq Multi-HFE [4]

Nonlinear equation solver over R Proposed scheme

In the proposed scheme, the affine isomorphism S is fixed to be an iden-
tity map. Therefore, the set of monomials appearing in G(x) and F (x) can
be adjusted freely. This means that the key length can also be adjusted freely.
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Hence, we do not need to restrict the degree of polynomials to 2 or 3 due to
the key length considerations as in the previous MPKC schemes. As another
advantage of the proposed scheme, the complexity of the Gröbner basis attack
can be maximized. However, if the number of monomials appearing in G(x) and
F (x) is too few, the complexity of the Gröbner basis attack decreases and the
attack against the inhomogeneous SIS problem works effectively on the proposed
scheme. Moreover, it may increase the number of equivalent keys. Therefore, the
proposed scheme should take a large number of monomials.

2 Trapdoor Functions by Multivariate Polynomials
with Integer Coefficients

For a positive integer l, we denote the least non-negative remainder of an integer
a by a mod l, and the least absolute remainder of a by liftl(a). For a ∈ Z/lZ,
a mod l and liftl(a) are defined similarly. Il is defined by Il = (−l/2, l/2] ∩ Z,
then a mod l ∈ [0, l − 1] and liftl(a) ∈ Il.

Let x1, . . . , xn be n independent variables and x = (x1, . . . , xn). Let

Φ(x) = (φ1(x), . . . , φn(x)) ∈ Z[x]n, Ψ(x) = (ψ1(x), . . . , ψn(x)) ∈ Z[x]n

be two polynomial systems with integer coefficients of which absolute values are
small. Let L be an odd positive number, and MΦ,MΨ be positive integers such
that

MΦ ≥ max
i=1,...,n

{|φi(d̃)| ∣
∣ d̃ ∈ I n

L

}
, MΨ ≥ max

i=1,...,n

{|ψi(d̃)| ∣
∣ d̃ ∈ I n

L

}
. (1)

For example, if φ abs
i (x) (i = 1, . . . , n) are polynomials whose coefficients are

given by the absolute value of the corresponding coefficients of φi(x), then

MΦ = max
i=1,...,n

{
φ abs

i

(
L − 1

2

)}

satisfies (1). This is similar for MΨ .
Taking a (large) prime number q, we choose positive integers r1, . . . , rn (< q)

such that

2MΦ < min
k=1,...,2MΨ

{|liftq(rik)|} (i = 1, . . . , n) (2)

and define Λi = {liftq(rik) | k = 0,±1,±2, . . . ,±MΨ}. The existence of such ri

relies on q being sufficiently large. In fact, q > 4MΦMΨ is necessary. Moreover,
ri > 2MΦ is also needed.

From (2), for i = 1, . . . , n, we have

|liftq(λ − λ′)| > 2MΦ (∀λ, λ′ ∈ Λi (λ 	= λ′)). (3)

In fact, for λ = rik, λ′ = rik
′ ∈ Λi, from |k − k′| < 2MΨ ,

|liftq(λ − λ′)| = |liftq(ri(k − k′))| = |liftq(ri|k − k′|)| > 2MΦ.
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We define polynomial systems,

ΨR(x) = (r1ψ1(x), . . . , rnψn(x)) ∈ Z[x]n.

G(x) = (g1(x), . . . , gn(x)) = (Φ(x) + ΨR(x)) mod q ∈ Fq[x]n.

Then, G(x) can be regarded as a map G : Z
n → F

n
q . Regarding the relation

between Φ, Ψ and G, we have the following lemma.

Lemma 1. For d̃ ∈ I n
L , let c = (c1, . . . , cn) = G(d̃) ∈ F

n
q . Then, for i =

1, . . . , n, there is a unique λi ∈ Λi such that |liftq(ci − λi)| < MΦ. Moreover,
when we write ãi = liftq(ci − λi), b̃i = liftq(λi/ri mod q) (i = 1, . . . , n),

Φ(d̃) = (ã1, . . . , ãn), Ψ(d̃) = (b̃1, . . . , b̃n).

From this lemma, we know for any c = (c1, . . . , cn) ∈ G(I n
L )(⊂ F

n
q ), the

following holds:

d̃ ∈ I n
L is a solution of G(x) = c.

⇔ d̃ is a solution of the system of (constrained) nonlinear equations with integer
coefficients, Φ(x) = (ã1, . . . , ãn), Ψ(x) = (b̃1, . . . , b̃n) appeared in Lemma 1.

From the above, an algorithm for computing G−1(c) ∈ I n
L is obtained as

follows.

1. For all i = 1, . . . , n, find b̃i ∈ {0,±1,±2, . . . ,±MΨ} such that |liftq(ci − rib̃i)|
< MΦ, and set ãi = liftq(ci − rib̃i) ∈ Z.

2. Solve the system of constrained nonlinear equations with integer coefficients,

Φ(x) = (ã1, . . . , ãn), Ψ(x) = (b̃1, . . . , b̃n),

and output a solution d̃ ∈ I n
L .

3 Encryption Scheme PERN

3.1 Key Generation, Encryption and Decryption

Let E be a finite subset of (Z≥0)n. For e = (e1, . . . , en) ∈ E, xe denotes the
monomial xe1

1 · · · xen
n . We define

Z[x]E := Span
Z
{xe | e ∈ E}(⊂ Z[x]),

Fq[x]E := Span
Fq

{xe | e ∈ E}(⊂ Fq[x]).

Φ(x), Ψ(x) appeared in the previous section are chosen as Φ(x), Ψ(x) ∈ (Z[x]E)n.
Then, we construct G(x) in the same way as shown in the previous section.

The new encryption scheme, PERN makes use of G(x) as a trapdoor function.
Choose a random affine isomorphism T on F

n
q , then F (x) = T ◦ G(x) is the public

key of PERN.
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– Key Generation Algorithm

Let L,LG be odd positive integers, n a positive integer, and E a finite subset
of (Z≥0)n.
1. Randomly choose multivariate polynomial systems Φ(x), Ψ(x) = (ψ1(x),

. . . , ψn(x)) ∈ (Z[x]E)n whose all coefficients belong to ILG
.

2. Compute MΦ,MΨ satisfying (1), and choose an odd prime number q such
that q > 4MΦMΨ .

3. Choose positive integers (MΦ <) r1, . . . , rn (< q) such that

2MΦ < min k=1,...,2MΨ
{|liftq(rik)|} (i = 1, . . . , n).

If such r1, . . . , rn can not be found, go back to Step 2 and reselect q.
4. Compute ΨR(x) = (r1ψ1(x), . . . , rnψn(x)) ∈ (Z[x]E)n, and

G(x) = (g1(x), . . . , gn(x)) = (Φ(x) + ΨR(x)) mod q ∈ (Fq[x]E)n.

5. Choose an affine isomorphism T on F
n
q .

6. Compute F (x) = T ◦ G(x) ∈ (Fq[x]E)n.
The secret key is Φ(x), Ψ(x), {r1, . . . , rn}, T , and the public key is F (x).

– Encryption Algorithm

Let m ∈ I n
L be a plaintext.

1. Compute c = F (m) ∈ F
n
q .

Then, c is the ciphertext corresponding to m.

– Decryption Algorithm

Let c ∈ F
n
q be a ciphertext.

1. Compute c′ = (c′
1, . . . , c

′
n) = T−1(c).

2. For all i = 1, . . . , n, find b̃i ∈ {0,±1,±2, . . . ,±MΨ} satisfying |liftq(c′
i −

rib̃i)| < MΦ and compute ãi = liftq(c′
i − rib̃i) ∈ Z.

3. Solve the nonlinear equation system with a box constraint I n
L ,

Φ(x) = (ã1, . . . , ãn), Ψ(x) = (b̃1, . . . , b̃n).

The solution is denoted by m′ ∈ I n
L .

Then, m′ coincides with the plaintext m.

4 Solving Constrained Nonlinear System with Integer
Coefficients

In this section, we consider methods for solving the constrained nonlinear equa-
tion system with integer coefficients,

Φ(x) = (ã1, . . . , ãn), Ψ(x) = (b̃1, . . . , b̃n) (4)
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appeared in Step 3 of the decryption algorithm. We define H(x) : Rn → R
2n by

H(x) = (h1(x), h2(x), . . . , h2n(x)) = (Φ(x) − (ã1, . . . , ãn)) ‖ (Ψ(x) − (b̃1, . . . , b̃n)),

then the Eq. (4) is equivalent to the equation H(x) = 0.
From the structure of the proposed scheme, we know the plaintext m is a

solution of H(x) = 0.
Let us discuss whether there are other solutions of H(x) = 0 in the definition

range R
n or not. Since the coefficients of Φ(x), Ψ(x) are chosen randomly, and

by Bézout’s theorem, there is a subset S of {1, 2, . . . , 2n} of cardinality n such
that the number of the rational points of the variety defined by the ideal IS =
(hk(x) | k ∈ S) ⊂ R[x] is less than or equal to

∏
k∈S deg hk(x) (Bézout’s bound).

m is one of such rational points, and the chances of existing other rational points
satisfying hk(x) = 0 for k ∈ {1, 2, . . . , 2n}\S are really low. In fact, in our actual
experiments of 1000 trials with different parameters presented in Table 4, we had
always only obtained one rational point. Therefore, we can assume that

the system H(x) = 0has only one solution inR
n.

As explained above, if we obtain a solution of the system H(x) = 0 of
unconstrained nonlinear equations with real coefficients, it coincides with the
plaintext m. Moreover, from the fact that m has integer components, if we
obtain an approximate solution whose component-wise errors from m are within
less than 0.5, its component-wise rounding to integers becomes the exact solution
of the system.

To compute an approximate solution of H(x) = 0, we define

θ(x) =
1
2
‖H(x)‖ 2

2 =
1
2
(h2

1(x) + h2
2(x) + · · · + h2

2n(x)),

and consider the least square problem, i.e. to solve the optimization problem
of θ(x). The line search method is known as a method to solve optimization
problems. The line search method uses a point sequence x1,x2, . . . (∈ R

n) with
a cluster point. xk+1 is given by the previous term xk as

xk+1 = xk + tkdk,

where dk(∈ R
n) is called a search direction, and tk(∈ R) is called a step size. dk

is chosen to be a decent direction, i.e. dk satisfies

(∇θ(xk)dT
k ) = H(xk)JH(xk)dT

k < 0.

Here, JH(xk) is the Jacobi matrix
(

∂
∂xj

hi(x)
)

(∈ R
2n×n) of H(x). tk ∈ (0, 1) is

chosen to satisfy the Armijo condition: for an α ∈ (0, 1),

θ(xk + tkdk) − θ(xk) ≤ αtkH(xk)JH(xk)dT
k .
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Then, the sequence {xk} is globally convergent to a cluster point x∗, and x∗

becomes a stationary point, i.e. it satisfies

∇θ(x∗) = H(x∗)JH(x∗) = 0. (5)

We may assume that the rank of JH(x∗) is n, hence the dimension of ker JH(x∗)
is n. (5) implies that H(x∗) ∈ ker JH(x∗), but does not mean H(x∗) = 0
generally. Accordingly, by reselect a sequence {xk} over and over again until
H(x∗) = 0 is satisfied, we eventually obtain a (approximate) solution of
H(x) = 0.

Several methods for selecting a search direction have been proposed, and
the difference of those methods results in different properties of convergence
and efficiency of solving. In this paper, the following 4 line search methods are
considered.

1. Steepest decent method
2. Levenberg-Marquardt method
3. Quasi-Newton method
4. Newton method (for optimization problems)

In the steepest decent method, the search direction is chosen by dk = −∇θ(xk),
and in the Levenberg-Marquardt Method,

dk = −∇θ(xk)(JH(xk)TJH(xk) + wkIn)−1.

Here, w1, w2, . . . are a sequence of non-negative real numbers converging to 0,
and have the effect of making JH(xk)TJH(xk) + wkIn a positive definite sym-
metric matrix. Now, because JH(xk) is a (2n, n)-matrix, we can assume that
JH(xk)TJH(xk) is always a positive definite symmetric matrix, therefore we can
take wk = 0. In the quasi-Newton method, a sequence {Bk} of matrices are used,

dk = −∇θ(xk)Bk.

Bk+1 is defined by the BFGS update,

Bk+1 = Bk − sTkykBk + (ykBk)Tsk

(sk,yk)
+

(
1 +

(yk, Bkyk)
(sk,yk)

)
sTksk

(sk,yk)
.

Here, sk = xk+1 − xk, yk = ∇θ(xk+1) − ∇θ(xk), and ( ·, · ) denotes the usual
inner form. B1 is defined by (JH(x1)TJH(x1))−1. In the Newton method (for
optimization problems), we take dk = −∇θ(xk)(∇2θ(xk))−1 where ∇2θ(x) is
the Hessian matrix of θ(x).

For the steepest decent method, the Levenberg-Marquardt method and quasi-
Newton method, it is known that dk is a decent direction. For the Newton
method, generally, dk is not a decent direction, but we have checked that it
is a decent direction in our experiment. Table 2 compares the performance of
4 line search methods. H(x) consists of quadratic polynomials and all solu-
tions are contained in [−5, 5] ∩ Z = I11. We experimented 1,000 times for



410 T. Yasuda et al.

n = 30, 40, 50 with each method. In the table, “time” represents the average
time (unit: milli seconds) of solving, “
 seq” represents the average number of
sequences up to reaching the solution m, and “
 terms” represents the aver-
age number of the terms up to reaching a stationary point x∗ for a sequence.
Table 2 shows remarkable feature of each method, and overall, the most effi-
cient solving algorithm is the Levenberg-Marquardt method, so that we adopted
the Levenberg-Marquardt method in the decryption of the proposed scheme.
The algorithm of the Levenberg-Marquardt method is as follows. ‖ · ‖∞ repre-
sents the maximum of the absolute values of the components of a vector, and
(2-6) judges whether a sequence gets close enough to a stationary point or not.
round(x0) represents the component-wise rounding x0 to integers.

Table 2. Comparison of algorithms for solving H(x) = 0

Method n = 30 n = 40 n = 50

Time (ms) � seq � terms Time (ms) � seq � terms Time (ms) � seq � terms

SD 170.07 1.75 80.70 426.95 1.72 84.92 1202.48 1.79 91.51

L-M 4.12 2.03 14.15 10.87 2.16 15.83 25.36 2.12 17.58

Q-N 23.01 2.09 48.70 75.25 1.99 60.27 232.19 2.13 68.10

Newton 553.28 126.76 6.41 2005.96 198.57 6.93 6068.22 248.05 7.39

Levenberg-Marquardt Method

[Input] H(x), an odd number L ∈ Z>0, α, β, γ ∈ (0, 1).
[Output] A (constrained) solution of H(x) = 0 with integer components.

1. Choose x0 ∈ [−(L−1)/2, (L−1)/2]n in the range of real numbers randomly.
2. Repeat (2-1)–(2-6):

2-1. Compute e = −H(x0)JH(x0).
2-2. Compute S = JH(x0)TJH(x0).
2-3. Solve the linear equation xS = e, its solution is denoted by d0.
2-4. Compute the minimal non-negative integer l satisfying the following

condition, and set t0 = βl:

θ(x0 + βld0) − θ(x0) ≤ −αβledT
0 .

2-5. x0 ← x0 + t0d0.
2-6. If ‖t0d0‖∞ < γ then finish the loop, and move to 3.

3. x̃0 ← round(x0).
4. If H(x̃0) = 0 then output x̃0, otherwise go back to 1.

The algorithms of the steepest decent method, quasi-Newton method and New-
ton method are described in the appendix.

Remark 1. The 4 methods explained as above have the only difference of taking
the search direction dk, and other parts is common. In these methods, for any
xk, H(xk + d) is approximated by quadratic polynomials

mxk
(d) = H(x0) + d∇H(xk) +

1
2
dAkdT (Ak ∈ R

n×n),
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dk is chosen by the solution d of the (unconstrained) optimization problem of
mxk

(d). For the steepest decent method, Ak = In is taken, for the Levenberg-
Marquardt method, Ak = JH(x0)TJH(x0), for the quasi-Newton method, Ak =
B−1

k , for Newton method, Ak = ∇2θ(xk) are taken, respectively.

5 Security Analysis of the Proposed Scheme

The security of the proposed scheme is mainly based on the difficulty of solving
the constrained MP problem.

Constrained MP problem: For positive integers m,n,L, let F(x) be
a polynomial system which consists of m polynomials over Fq in variables
x = (x1, . . . , xn). Then, find x0 ∈ I n

L such that F(x0) = 0.

In this section, fixing a ciphertext c ∈ F
n
q , we consider a polynomial system

F(x) = F (x)−c for a public key F (x) constructed by the proposed scheme. With
this F(x), by solving the constrained MP problem, the plaintext corresponding
to c is obtained.

5.1 Constrained MP Problem

For F(x) = (f̂1(x), . . . , f̂n(x)), each component f̂i(x) has s = 
E monomials.
(If E does not include the constant term, s = 
E + 1.) Determining an order of
these monomials, a vector ai ∈ Z

s is defined as the vector of coefficients lifted to
integers from the coefficients of f̂i(x). The q-ary lattice generated by a1, . . . ,an

is denoted by A. We assume that by solving the Shortest Independent Vector
Problem (SIVP) for A, n linearly independent short vectors b1, . . . ,bn ∈ Z

s

in A are obtained. The polynomial over Z corresponding to the vector bi is
denoted by ĥi(x), and let H(x) = (ĥ1(x), . . . , ĥn(x)). Then, the problem solving
the equation F(x) = 0 is reduced to the problem solving the equation H(x) ≡
0 mod q. Here, let us assume that for a solution x0 of the constrained MP
problem,

|ĥi(x0)| <
q − 1

2
(i = 1, . . . , n) (6)

is satisfied. Beware that x0 is not only a solution of H(x) ≡ 0 mod q, but also
a solution of the equation over Z, H(x) = 0. Therefore, x0 can be obtained by
solving the equation over Z. Solving the equation H(x) = 0 is efficiently carried
out by combining techniques to solve approximately nonlinear equations over the
real numbers with the fact that x0 has integer components. The approximate
solution of H(x) = 0 can be obtained by, for example, the solving method of
the (constrained) optimization problem (least square problem) of the function
‖H(x)‖ 2

2 where ‖ · ‖2 is the usual Euclid norm [5,25].
First, let us consider the possibility that H(x) satisfies (6) for a general

constrained MP problem. Since vol(A) = qs−n, by the Gaussian heuristic [24],
it is expected that
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‖bi‖2 ≈
√

s

2πe
q1− n

s (i = 1, . . . , n).

Here, e is Napier’s constant. Simply, assuming that
√

s
2πe components of bi are

close to q, the probability satisfying (6) is negligible if s is sufficiently large.
Next, consider the case of the constrained MP problem obtained by the

proposed scheme. Φ(x), Ψ(x) have small coefficients, but, the distribution of
r1, . . . , rn is close to the uniformly distribution on [2MΦ, q − 2MΦ − 1]. There-
fore, taking account of the definition of G(x), any coefficient of components of
G(x) behaves as chosen randomly in [MΦ, q−MΦ −1]. Since MΦ is small enough
compared to q, similarly for general constrained MP problem, the probability
satisfying (6) must be negligible. The above argument implies that the part
ΨR(x) is indispensable in the definition of G(x).

5.2 Attack Against Inhomogeneous SIS Problem

For e ∈ E, ve denotes the row vector enumerating the coefficients with respect
to xe of components of F (x) = (f1(x), . . . , fn(x)). Taking an order on E, a
matrix A ∈ F

n×�E
q is defined by the matrix enumerating the column vector

ve (e ∈ E). Then, for a solution x0 ∈ I n
L of the constrained MP problem,

w0 = (xe
0)e∈E ∈ Z

�E is a solution of the linear equation,

Aw = c, (7)

and w0 has a considerably smaller Euclid norm among solutions of the linear
equation. This means that w0 is a solution of the inhomogeneous SIS problem
obtained from (7). Therefore, we can consider the attack as follows: First, we
gather solutions of the inhomogeneous SIS problem obtained from (7). Next, we
search w0 in the set of the solutions. The inhomogeneous SIS problem is changed
to the SVP for a lattice B of dimension 
E + 1 (or 
E), where the co-volume of
B, vol(B) = qn.

Theorem 1 ([15]). For an m-dimensional lattice L, we define

NL(r) = 
{v ∈ L | ‖v‖2 ≤ r}.

If m ≥ 5, then we have

NL(r) =
Vm

vol(L)
rm + O(rm−2).

Here, Vm is the volume of the unit sphere of Rm.

From this theorem, the number of elements of B whose Euclid norm is almost
same as r is close to

d

dr

(
Vm

vol(L)
rm

)
· 1 =

m Vm

vol(L)
rm−1.
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Going back to our setting, the number of elements of B whose Euclid norm is
almost same as ‖w0‖2 is about

b Vb ‖w0‖b−1
2

qn
=

π
b
2 b ‖w0‖b−1

2

Γ( b
2

+ 1) qn
≈

(
2πe

b

) b
2 b ‖w0‖b−1

2√
bπ qn

(b = dimB = �E + 1 or �E).

Since the solution of the constrained MP problem is unique, the complexity of the
attack is the same as this value. Moreover, if a large scale quantum computer
is available, the complexity is the 1/2-th power of this value by the Grover’s
algorithm.

5.3 Key Recovery Attack

Once the linear transformation part of the affine transformation T is known,
G(x) is also known from the public key, and r1, . . . , rn, Φ(x), Ψ(x) can be com-
puted easily from G(x), thus, the secret information which is necessary for
decryption is obtained entirely. Therefore, let us consider an attack discover-
ing the linear transformation part T1 of T .

An adversary who knows rj for some j can compute the j-th row vector of
T−1
1 by the following procedure.

1. Choose an integer t such that n < t ≤ 
E, and choose a (ordered) subset M
of E with cardinality t.

2. For F (x) = (f1(x), . . . , fn(x)) and i = 1, . . . , n, compute a vector ai ∈ Z
t of

coefficients lifted to integers from coefficients of fi(x) with respect to M . The
q-ary lattice of Zt generated by a1, . . . ,an is denoted by A.

3. Choose b = (b1, . . . , bs) ∈ I t
LG

randomly.
4. Compute the vector a in A closest to rjb. If ‖rjb − a‖∞ < L/2 is satisfied,

output the coefficient vector (c1, . . . , cn) of the linear combination a = c1a1+
· · · + cnan, and terminate. Otherwise, go back to Step 3.

Since b satisfying the inequality in Step 4 exists uniquely, even if the cost
for searching the closest vector is estimated as 1, the complexity of the above
algorithm becomes O(L t

G), which in particular, is larger than O(Ln
G).

Moreover, the above attack can exchange the roll of Φ(x) and Ψ(x). Namely,
if the above algorithm is changed by ri → 1/ri, it works as an attack. The
complexity of this attack is also O(L t

G)(> O(Ln
G)). If the Grover’s algorithm is

available, the complexity is O(L
t
2

G )(> O(L
n
2

G )).

5.4 Exhaustive Search

For a ciphertext c, the complexity of finding the solution of F (x) = c by the
exhaustive search is O(Ln). In the case of using the Grover’s algorithm, the
complexity is O(L

n
2 ).
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5.5 Algebraic Attack

The algebraic attack uses algebraic equation solver like XL [36] and Gröbner
basis technique [12,13] for solving the usual MP problem. The complexity of the
algebraic attack is estimated by the complexity of the hybrid approach [1] of
computing a Gröbner basis and exhaustive search. In the process of exhaustive
search in [1], all elements in a finite field are substituted for several variables,
but, in the proposed scheme, the finite field must be changed into IL. A solution
x0 of F = (f̂1(x), . . . , f̂n(x)) = 0 in I n

L is also a zero point of

ĝj(x) =
∏

− L−1
2 ≤a≤ L−1

2

(xj − a) (j = 1, 2, . . . , n). (8)

Therefore, the ideal we should consider is

I = 〈f̂1(x), . . . , f̂n(x), ĝ1(x), . . . , ĝn(x)〉.

For k = 0, 1, . . . , n, we randomly choose (vn−k+1, vn−k+2, . . . , vn) ∈ Ip
k.

We denote the polynomial system in n − k variables obtained by substitut-
ing (xn−k+1, . . . , xn) = (vn−k+1, . . . , vn) for F(x) by Fk(x(k)). Here, x(k) =
(x1, . . . , xn−k). Note that F0(x(0)) is the same as F(x).

For Fk(x(k)) = (f̂1(x(k)), . . . , f̂n(x(k))), the homogeneous part of f̂i(x(k)) of
the maximal degree (i = 1, . . . , n) is denoted by f̂h

i (x(k)), and the homogeneous
ideal J (k) of Fq[x(k)] is defined by

J (k) = 〈f̂h
1 (x(k)), . . . , f̂h

n (x(k))〉.

For d ≥ 0, let Fq[x(k)]d denote the subspace of Fq[x(k)] consisting of homogeneous
polynomials of degree d, and J

(k)
d = J (k) ∩ Fq[x(k)]d. The Hilbert series of the

quotient ring Fq[x(k)]/J (k) is defined by

HSFq[x(k)]/J(k)(t) =
∞∑

d=0

dimFq
(Fq[x(k)]d/J

(k)
d ) td ∈ Z[[t]].

If the Krull-dimension of J (k) is zero, HSFq[x(k)]/J(k)(t) becomes a poly-
nomial. Then, the degree of regularity, dreg(k) is defined by dreg(k) =
deg(HSFq [x(k)]/J(k)(t)) + 1. For any S(t) ∈ Z[[t]], the power series obtained
by truncating S(t) at its first non positive coefficient is denoted by [S(t)]+ ∈
Z>0[[t]]. If

HSFq[x(k)]/J(k)(t) =
[
(1 − tL)n−k

∏n
i=1(1 − tdi)

(1 − t)n−k

]

+

(9)

is satisfied, it is said that Fk(x(k)) is semi-regular. Here, di is the total degree
of f̂i(x).
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Remark 2. Taking the result in [35] into consideration, for most of random sys-
tems, the right hand side of (9) may seem to be equal to

[
(1 − tL)n−k · ∏n

i=1(1 − tdi)
(1 − t)n−k · (1 − tdiL)n

]

+

,

but, actually, the part (1 − tdiL)n is not needed. This is because, different from
the case of the usual MP problem considered in [35], in the constrained MP
problem, fi(x)L − fi(x) = 0 (i = 1, 2, . . . , n) (or this analogue) does not hold.

The complexity of the Gröbner basis computation for J (k) is described by

O
((

n − k + dreg(k) − 1
dreg(k)

)ω)
. (10)

Here, 2 ≤ ω ≤ 3 is the linear algebra constant of solving a linear system. From
(10), the complexity of the hybrid attack is described as follows [1]:

min
0≤k≤n

O
(

Lk

(
n − k + dreg(k) − 1

dreg(k)

)ω)
. (11)

If the Grover’s algorithm is used for searching elements for substitution, the
complexity is changed to

min
0≤k≤n

O
(

L
k
2

(
n − k + dreg(k) − 1

dreg(k)

)ω)
. (12)

From randomness of the coefficients of Φ(x), Ψ(x), and taking Fröberg con-
jecture [14] into consideration, it is expected that J (k) is semi-regular. In fact,
for n = 3, 4, . . . , 15, we confirmed that J (k) is semi-regular experimentally. Our
experiment used Magma. Based on the experiment result, we assume that any
Fk(x(k)) is semi-regular (in particular, for estimation of security parameters).

Remark 3. In the case of that Fk(x(k)) is semi-regular, the degree of regularity
can be computed by using (9). Moreover, in this case, it is expected that the
first fall degree dFF(k) [10] coincides with the degree of regularity. In general,
the complexity of the Gröbner basis computation for J (k) is also expressed by

O
((

n − k + dFF(k) − 1
dFF(k)

)ω)
. (13)

If dreg(k) = dFF(k), the complexity (13) is equal to the complexity (10). There-
fore, in the estimation of security parameters, we use the complexity (11), (12)
with ω = 2.

Remark 4. In the security analysis of the pq-method in [37], the algebraic attack
does not consider the polynomial (8) as one of generators of an ideal, but, this
polynomial should be considered.



416 T. Yasuda et al.

6 Security Parameters and Implementation

As a set of monomials E used to design the proposed scheme, we take E = E≤2 =
{e ∈ (Z≥0)n | deg e ≤ 2}. Here, deg (e1, . . . , en) =

∑n
i=1 ei, i.e. E≤2 corresponds

to the whole monomials of degree less than or equal to 2. Table 3 shows the secu-
rity parameters of (n,L, LG) estimated based on the security analysis in Sect. 5.
Secure parameters are estimated considering attacks on classical computers and
quantum computers.

Table 3. Security parameter (n, L, LG)

Security level Classical attack only Quantum attack

128 bits (65, 7, 5) (80, 15, 11)

192 bits (100, 7, 5) (122, 15, 9)

256 bits (135, 7, 5) (166, 15, 9)

Tables 4 and 5 show performance result of PERN with an implementation
using Intel Core i7-6700, 3.4 GHz. Our implementation used C++ programming
language with g++ compiler. |q|2 represents the average of the bit length of q.
Key gen., enc. and dec. represent the average time of key generation, encryption
and decryption (unit: milli seconds). And SK and PK represent the secret key
length and public key length (unit: kilobytes). ‖w0‖2 represents the minimal
integer of ‖w0‖2 appeared in the analysis in Sect. 5.2 to maintain the corre-
sponding security level. Moreover, in Table 5, ‖w0‖2 is estimated considering
the Grover’s algorithm.

Table 4. Performance of PERN with parameters for classical attacks)

(n,L, LG) Level |q|2 Key gen. (ms) Enc. (ms) Dec. (ms) SK (kB) PK (kB) ‖w0‖2
(65, 7, 5) 128 31.58 44.62 0.24 56.03 125 575 23

(100, 7, 5) 192 34.01 225.01 1.01 285.01 429 2,189 29

(135, 7, 5) 256 35.71 843.73 3.51 914.06 1,026 5,659 35

6.1 Implementation for Higher Degrees

For non-negative integers a, b, we define Ea,b = {a ei + b ej ∈ (Z≥0)n | 1 ≤ i, j ≤
n} where ei is the i-th fundamental vector. We implemented the PERN with
E′ = E2,1 � E≤2 and E′′ = E3,1 � E≤2 as E. The case of E′ uses cubic poly-
nomials, and the case of E′′ uses quartic polynomials. For the fixed parameter
(n,L, LG), it is expected that the PERN with E′ or E′′ is more secure than the
PERN with E≤2, but whether this is true or not is a future study issue, a per-
formance comparison of PERN for E = 2, E′, E′′ under (n,L, LG) = (65, 7, 5) is
shown in Table 6.
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Table 5. Performance of PERN (with parameters for quantum attacks)

(n,L, LG) Level |q|2 Key gen. (ms) Enc. (ms) Dec. (ms) SK (kB) PK (kB) ‖w0‖2
(80, 15, 11) 128 39.99 477.53 0.71 185.18 298 1,328 30

(122, 15, 9) 192 41.79 1499.66 1.87 828.81 1,009 4,884 35

(166, 15, 9) 256 43.55 4369.40 6.47 2526.77 2,481 12,807 43

Table 6. Comparison of PERN for E≤2, E′, E′′ ((n, L, LG) = (65, 7, 5))

E Level |q|2 Key gen. (ms) Enc. (ms) Dec. (ms) SK(kB) PK(kB)

E≤2 128 31.58 44.62 0.24 56.03 125 575

E′ - 37.27 237.29 0.54 302.83 128 665

E′′ - 41.33 404.61 0.76 529.17 130 737

7 Conclusion

We proposed an encryption scheme called PERN whose security was mainly
based on the constrained MP problem. The proposed scheme is flexible to use
multivariate polynomials of any degree in its public key. And this public key
polynomial system is semi-regular, which indicates the proposed scheme is strong
against the algebraic attack.

For inverting the central polynomial map during the decryption process of the
proposed scheme, methods for solving nonlinear equations over the real numbers
are used, which is used for the first time in MPKC. In this paper, the line search
method is used as a solving method for nonlinear equations. However, for solving
unconstrained nonlinear equations, there are several solving techniques such as
the trust region method [7,11,19–21,34,38]. Moreover, the solving method for
constrained nonlinear equations can be related to the decryption of the proposed
scheme, and in particular, for the case of the box constraint as I n

L , there are
many research results [2,3,17,18,23,28,32,33]. We, therefore, would like to work
on efficient algorithms for solving nonlinear equations from now on to improve
the decryption efficiency of the proposed scheme.

Acknowledgement. This work was supported by JSPS Grant-in-Aid for Scientific
Research(C) with KAKENHI Grant Number JP17K00197, JSPS Grand-in-Aid for
JSPS Fellows with KAKENHI Grant Number JP18J20866 and JST CREST Grant
Number JPMJCR14D6.



418 T. Yasuda et al.

A Solving Algorithms of Nonlinear Equations Except For
the Levenberg-Marquardt Method

Steepest Decent Method

[Input] H(x), an odd number L ∈ Z>0, α, β, γ ∈ (0, 1).
[Output] A (constrained) solution of H(x) = 0 with integer components.

1. Choose x0 ∈ [−(L−1)/2, (L−1)/2]n in the range of real numbers randomly.
2. Repeat (2-1)–(2-4):

2-1. Compute d0 = −H(x0)JH(x0).
2-2. Compute the minimal non-negative integer l satisfying the following

condition, and set t0 = βl.

θ(x0 + βld0) − θ(x0) ≤ −αβl‖d0‖ 2
2 .

2-3. x0 ← x0 + t0d0.
2-4. If ‖t0d0‖∞ < γ then finish the loop, and move to 3.

3. x̃0 ← round(x0).
4. If H(x̃0) = 0 then output x̃0, otherwise go back to 1.

Quasi-Newton Method

[Input] H(x), an odd number L ∈ Z>0, α, β, γ ∈ (0, 1).
[Output] A (constrained) solution of H(x) = 0 with integer components.

1. Choose x0 ∈ [−(L−1)/2, (L−1)/2]n in the range of real numbers randomly.
2. Compute e1 = −H(x0)JH(x0).
3. Compute B = (JH(x0)TJH(x0))−1.
4. Repeat (4-1)–(4-8):

4-1. Compute d0 = e1 B.
4-2. Compute the minimal non-negative integer l satisfying the following

condition, and set t0 = βl.

θ(x0 + βld0) − θ(x0) ≤ −αβle1dT
0 .

4-3. s0 = t0d0, x0 ← x0 + s0.
4-4. If ‖s0‖∞ < γ then finish the loop, and move to 5.
4-5. e2 ← e1.
4-6. Compute e1 = −H(x0)JH(x0).
4-7. y0 = e1 − e2.
4-8. B ← B − sT0 ·y0B +(y0B)T· s0

(s0,y0)
+

(
1 + (y0,By0)

(s0,y0)

)
sT0 · s0
(s0,y0)

.
5. x̃0 ← round(x0).
6. If H(x̃0) = 0 then output x̃0, otherwise go back to 1.

Newton Method

[Input] H(x), an odd number L ∈ Z>0, α, β, γ ∈ (0, 1).
[Output] A (constrained) solution of H(x) = 0 with integer components.
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1. Choose x0 ∈ [−(L−1)/2, (L−1)/2]n in the range of real numbers randomly.
2. Repeat (2-1)–(2-6):

2-1. Compute e = −H(x0)JH(x0).
2-2. Compute the Hessian matrix S = ∇2θ(x0).
2-3. Solve the linear equation xS = e in the range of real numbers, its

solution is denoted by d0.
2-4. Compute the minimal non-negative integer l satisfying the following

condition, and set t0 = βl.

θ(x0 + βld0) − θ(x0) ≤ −αβledT
0 .

2-5. x0 ← x0 + t0d0.
2-6. If ‖t0d0‖∞ < γ then finish the loop, and move to 3.

3. x̃0 ← round(x0).
4. If H(x̃0) = 0 then output x̃0, otherwise go back to 1.

References

1. Bettale, L., Faugère, J.-C., Perret, L.: Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)

2. Bellavia, S., Macconi, M., Morini, B.: An affine scaling trust-region approach to
bound-constrained nonlinear systems. Appl. Numer. Math. 44, 257–280 (2003)

3. Bellavia, S., Morini, B.: An interior global method for nonlinear systems with
simple bounds. Optim. Methods Softw. 20, 1–22 (2005)

4. Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of multivariate and odd-
characteristic HFE variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 27

5. Bertsekas, D.P.: Nonlinear Programming, 3rd edn. Athena Scientific, Nashua
(2016)

6. Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.: Square, a new multivariate
encryption scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–
264. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7 17

7. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

8. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems,
Advances in Information Security, vol. 25. Springer, Heidelberg (2006). https://
doi.org/10.1007/978-0-387-36946-4

9. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

10. Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 557–576. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17373-8 32

11. Fan, J.Y., Pan, Y.X.: On the quadratic convergence of the Levenberg-Marquardt
method without nonsingularity assumption. Computing 74, 23–39 (2005)

12. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J.
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Abstract. We present improved quantum circuits for elliptic curve
scalar multiplication, the most costly component in Shor’s algorithm
to compute discrete logarithms in elliptic curve groups. We optimize
low-level components such as reversible integer and modular arithmetic
through windowing techniques and more adaptive placement of uncom-
puting steps, and improve over previous quantum circuits for modular
inversion by reformulating the binary Euclidean algorithm. Overall, we
obtain an affine Weierstrass point addition circuit that has lower depth
and uses fewer T gates than previous circuits. While previous work
mostly focuses on minimizing the total number of qubits, we present
various trade-offs between different cost metrics including the number of
qubits, circuit depth and T -gate count. Finally, we provide a full imple-
mentation of point addition in the Q# quantum programming language
that allows unit tests and automatic quantum resource estimation for all
components.

Keywords: Quantum cryptanalysis · Elliptic curve cryptography ·
Discrete logarithm problem · Shor’s algorithm · Resource estimates

1 Introduction

Shor’s algorithm [26,27] solves the discrete logarithm problem for finite abelian
groups with only polynomial cost. When run on a large-scale, fault-tolerant
quantum computer, its variant for elliptic-curve groups could efficiently break
elliptic curve cryptography with parameters that are widely used and far out of
reach of current classical adversaries.

Barring the efficient classical post-processing of the measured data, Shor’s
quantum algorithm consists of three steps: first, a superposition of exponents is
created, then those exponents control the evaluation of a group exponentiation,
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and finally a quantum Fourier transform is applied to the exponent register,
which is then measured. The group operations in the exponentiation must be
computed in superposition and this is by far the most expensive step of the
algorithm. Thus, the precise cost of Shor’s algorithm depends on a detailed
resource estimation for implementing the group operation on a quantum com-
puter. For solving the elliptic curve discrete logarithm problem (ECDLP), the
relevant operation is the repeated controlled addition of classical elliptic curve
points to an accumulator point in a quantum register.

The first detailed discussion of the elliptic curve case was given by Proos
and Zalka in [23]. Based on this work, Roetteler et al. [24] (hereinafter referred
to as RNSL) presented explicit quantum circuits for point addition and all its
components and automatically derive their resource estimates from a concrete
implementation. Both papers focus on minimizing the number of qubits required
to run the algorithm, since its polynomial runtime implies that it will run fast
once an adversary has enough qubits to do so. They count the required number
of logical qubits. For example, RNSL estimate that Shor’s algorithm needs 2330
logical qubits to attack a 256-bit elliptic curve. Under plausible assumptions
about physical error rates, this could translate into 6.77 · 107 physical qubits
[11]. But the number of logical qubits is not the only important cost metric, and
one might prioritize others such as circuit depth, the total number of gates, or
the total number of likely expensive gates such as the Toffoli gate or the T gate.

Our goal in this work is not only to improve the circuits proposed by
RNSL [24], but also to explore different trade-offs favoring different cost metrics.
To this end, we provide resource estimates for point addition circuits optimized
for depth, T gate count, and width, respectively. We also report on initial exper-
iments with automatic optimization for T -depth and T gate count. By using the
automatic compilation techniques presented in [18], we find low T -depth and low
T -count circuits for a modular multiplication component and show significant
improvements compared to their manually designed counterparts, however, at a
very high cost to the number of qubits.

Beyond alternative choices for low-level arithmetic components, we also
improve the higher-level structure of RNSL’s circuit. While many components
stay the same, the most dramatic improvements come from windowing tech-
niques similar to those proposed by Gidney and Eker̊a in [14] and a better mem-
ory management via pebbling. For example, instead of copying out the result in
an out-of-place circuit that uses Bennett’s method for embedding an irreversible
function in a reversible computation, the result can be used for the next opera-
tion before it is uncomputed. This technique does not treat modular operations
merely as black boxes, but can adaptively reduce the cost of the higher-level
circuit they are used in. Along with a reformulation of the binary extended
Euclidean algorithm, it significantly reduces costs for the modular inversion
circuit.

One of our main contributions is a modular, testable library1 of functions
for elliptic curve arithmetic in the Q# programming language for quantum

1 Our code will be released under an open source license.
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computing [28]. These incorporate different possible choices for subroutines like
addition and modular multiplication. Besides enabling unit testing for all compo-
nents, the Q# development environment allows automated resource estimation.

We strictly improve RNSL’s estimates under all metrics. For example, for
solving the ECDLP on a 256-bit elliptic curve, we reduce the number of qubits
from 2338 to 2124, improve the T -count by a factor of 119 and the T -depth by
a factor of 54. Under a different trade-off optimizing for depth, our circuit costs
233 T gates with T -depth of 225 and 2871 qubits. Compared to RNSL, this is a
factor 6000 reduction in T -depth with only a 22% increase in width.

Extrapolating analogous values, breaking RSA-3072 would cost 234 T gates
and 9287 logical qubits [14]. This suggests that, at similar classical security levels,
elliptic curve cryptography is less secure than RSA against a quantum attack.

2 Preliminaries

This section only gives a very brief discussion of the basic concepts used in this
work. For a more detailed introduction to quantum computing, we refer to [22],
for Shor’s algorithm see [26] and [27] and for its ECDLP variant [23] and [24].

Quantum Computing. A quantum computer acts on quantum states by
applying quantum gates to its qubits. A quantum state is denoted by |x〉 for
some label x. We work entirely with computational basis states, so x is always
a bit string. As the fundamental gate set we use the Clifford+T gate set and
assume that the T gate is by far the most expensive, including measurements.
This is a plausible assumption because, in a quantum computer using a surface
code for error correction, T gates consume special states which require many
qubits and many surface code cycles to produce, and surface codes require fre-
quent measurements for all gates [10]. A quantum algorithm is described by a
sequence of gates in the form of a quantum circuit. We use standard quantum
circuit diagrams. For circuit design and testing, we use circuits built from NOT,
CNOT and Toffoli gates as those can be simulated efficiently at scale on clas-
sical inputs [24]. However, for cost estimation, we use decompositions over the
Clifford+T gate set, such as the ones introduced in [1,12,25].

Shor’s Algorithm for the ECDLP. Let an instance of the ECDLP be given
by two Fp-rational points P,Q ∈ E(Fp) on an elliptic curve E over a finite field
of large characteristic p such that ord(P ) = r, Q ∈ 〈P 〉. The problem is to find
the unique integer m ∈ {1, . . . , r} such that Q = mP . Shor’s algorithm applies a
Hadamard transform to two registers with n + 1 qubits initialized to |0〉 to cre-
ate the state 1

2n+1

∑2n+1−1
k,�=0 |k〉 |�〉. Next, the state 1

2n+1

∑2n+1−1
k,�=0 |k〉 |�〉 |kP + �Q〉

is computed using the elliptic curve group law. A quantum Fourier transform
QFT2n+1 on n+1 qubits is applied to both |k〉 and |�〉 and the 2(n+1) qubits in
|k〉 |�〉 are measured. Classical post-processing then yields the discrete logarithm
m. We assume that the algorithm is modified using the semiclassical Fourier
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transform method [15], which means that a small number of qubits can be re-
used to act as the 2n+2 qubits for |k〉 |�〉. RNSL use only one qubit for this [24],
but we use more than one to allow windowed arithmetic (see Sect. 5.1). The most
cost-intensive part is the double-scalar multiplication to compute |kP + �Q〉.

Functions as Quantum Circuits. The elliptic curve group law is built from
various classical functions that operate on bit strings of varying lengths n. For
any function f , we use Uf to denote a quantum circuit that computes f .

We often want Uf to compute f in-place, meaning it has the action Uf :
|x〉 �→ |f(x)〉 on inputs x ∈ {0, 1}n. If Uf is built out of Clifford+T gates, each
gate is easy to invert; thus, an in-place circuit Uf automatically yields an in-
place circuit U†

f that computes f−1. As quantum circuits need to be reversible,
an in-place circuit is not always possible, e.g. if f is not injective.

When an in-place circuit is not possible, Uf needs to implement f out-of-place
as |x〉 |0〉n �→ |x〉 |f(x)〉. Some circuits might require a number m of auxiliary
qubits, such that Uf : |x〉 |0〉n |0〉m �→ |x〉 |f(x)〉 |g(x)〉, where g is some function
of the input. The auxiliary qubits are entangled with the other registers, and g
must be uncomputed before the end of the computation to restore them to their
original state. In our circuit diagrams, white triangles indicate such outputs.

If it is too costly to compute g(x) from x and f(x), one can use a method due
to Bennett [4] to clean any auxiliary qubits. By adding another n-qubit register,
the output f(x) is “copied” to that register using CNOT gates. Then, the inverse
U†

f is applied. This trick roughly doubles the cost to reversibly compute f .
In a sequence of out-of-place circuits, uncomputing early steps prevents us

from uncomputing later steps. To make the full algorithm work, we either need
to keep intermediate steps at the cost of an increasing number of qubits or
recompute them repeatedly at the cost of additional gates. This is an instance
of a general problem known as a pebbling game.

Controlled Circuits. As larger circuits are composed from smaller ones, the
smaller circuit often needs to be controlled with a single qubit. We can “promote”
each Clifford+T gate in the smaller circuit into a controlled variant, which is
expensive, e.g., for CNOT and Toffoli gates. Thus, we want to optimize which
gates we control. For example, a circuit using Bennett’s trick can be controlled
by changing only the middle CNOT gates into Toffoli gates. For other circuits,
we design controlled versions as needed.

3 Components

Design Strategies. A full cost estimate of Shor’s algorithm requires estimates
at all layers of the architecture, including error correction, layout, and possibly
architecture design. We focus only on the logical layer, and provide circuits that
operate on abstracted logical qubits. From this level we cannot decide which
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design choices will be optimal. A shallower circuit with more logical qubits would
have smaller error correction overhead and could have fewer physical qubits.

Thus, we provide different approaches and tradeoffs. We measure the T -
depth, T -count, depth including all gates, and total number of qubits used
(“width”). We focus on three strategies, favouring depth, T -count, or width.
We could instead make different choices for each sub-circuit of Shor’s algorithm,
resulting in a large parameter space for potential optimization. Since we wrote
Q# functions for all circuits, future work could combine different choices for
each step.

Toffoli and AND Gates. As RNSL explain in the introduction of [24], cir-
cuits expressed as Toffoli gate networks can be implemented exactly over the
Clifford+T gate set and can be classically simulated and tested. Therefore, we
designed our circuits using the same approach. Toffoli gates are the only source
of T -gates in such a circuit. In many instances, we know that the output qubit
is in the |0〉 state and we can use a dedicated AND circuit with a lower T -count
instead. We use an AND gate design which combines Jones’ and Selinger’s AND
gates [16,25]. It uses 4 T gates, while a Toffoli gate uses 7, and the inverse
AND† uses no T gates while Toffoli† uses 7. AND gates use 1 auxiliary qubit
for T -depth 1; Toffoli gates can use 4 auxiliary qubits for T-depth 1 or none for
T -depth 3, see [1].

Integer Addition. The adder of lowest known T -count is Gidney’s modification
of the Cuccaro et al. adder [8] (hereinafter called the CDKMG adder), which uses
only 4n T gates to add two n-bit numbers, but uses n auxiliary qubits [12]. The
adder of lowest known T -depth is the carry lookahead adder of Draper et al. [9]
(hereinafter the DKRS adder), with logarithmic depth but 2n − O(n) auxiliary
qubits. The adder of lowest width is due to Takahashi et al. [29] (hereinafter the
TTK adder), which computes in-place using no auxiliary qubits. RNSL used the
TTK adder. The DKRS adder uses 10n Toffoli gates, but of these, 4n can be
replaced with an AND or AND† gate.

We provide new methods for controlling the addition circuits. The DKRS
adder uses a circuit to propagate carries, which is uncomputed. These gates
do not need to be controlled. The remaining gates which must be promoted to
controlled versions are all CNOT gates, leading to only a slight increase in the
T-count. To control the CDKMG adder, we promote two CNOT gates per bit
to Toffoli gates, as Fig. 2a shows, and we change the final CNOT for the carry
qubit to a Toffoli gate. Unfortunately, for both addition circuits, the new Toffoli
gates cannot be replaced with AND gates.

Constant Addition. When tackling an ECDLP instance, the prime modulus
is a classically known integer, and we need a circuit to add it to integers encoded
in quantum registers. The simplest method allocates a new quantum register,
inputs the integer into the quantum register, runs any quantum addition circuit,



430 T. Häner et al.

then uncomputes the integer from the quantum register to free the qubits. This
simple method is easy to control. Only copying the integer into the quantum
register is controlled, and then an uncontrolled addition is used, as shown in
Fig. 1a. Copying an integer uses only X gates, so a controlled copy operation only
uses CNOT gates, giving the same T -cost as uncontrolled quantum addition. We
use this strategy with the CDKMG and TTK adders.

An alternative is to “curry” the quantum addition circuit. In the DKRS
adder, the qubits of one of the two inputs are only used as controls for CNOT
and Toffoli gates. We can replace these with X and CNOT gates which are
conditionally applied according to the bits of the classical integer. A controlled
classical addition with this method needs to control the entire curried circuit
(Fig. 1b), but we found that this is the most efficient approach with the DKRS
adder.

|0〉
|x〉

|ctrl〉

n

n

c
+

c |0〉
|x + c〉

(a) Copying the classical constant
c is controlled, followed by uncon-
trolled addition.

|x〉
|ctrl〉

n +c |x + c〉

(b) The addition circuit is curried
for the constant c, then the full cir-
cuit is controlled.

Fig. 1. Two methods for controlling addition by a constant c.

Comparing Integers. An addition circuit immediately gives a comparator by
the one’s complement trick. For integers x and y represented in binary, if we let
x′ denote the one’s complement (all bits flipped), then (x′ +y)′ = x−y. If y > x,
then x − y < 0 and the leading bit of (x′ + y)′ will be 1. Thus, to construct a
comparator, we simply flip all bits in x, compute the first half of an addition
circuit, copy out the carry, then uncompute the addition circuit. With a control,
we only need to control the final copy of the carry bit. We use this technique for
comparators based on the previous adders. DKRS provide a comparator which
we did not use for ease of implementation.

Fan-Out and Fan-In of Control Qubits. When a single qubit controls mul-
tiple parallel gates, they must be performed sequentially. To avoid this increase
in depth, we opt to allocate extra qubits and fan-out the control [21] to these
qubits using CNOTs. Then these qubits can control all the gates in parallel
before we clear them again. For n simultaneous controlled gates, this requires n
auxiliary qubits and at most 4n CNOT gates in depth �lg n�, but no T gates.
Our low-width optimization does not do this.

The fanned-out auxiliary control qubits could be retained to control many
gates, depending on the application. Because the Q# language allocates qubits
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in a stack, this is often difficult. A function that allocates clean auxiliary qubits
must restore them to the |0〉 state before returning. Because of this difficulty
and the low gate cost of fan-out, we do not make such optimizations.

To control a single gate with the logical AND of n qubits requires a fan-in of
control qubits. For low width, we use Barrenco et al.’s method [3], as RNSL did.
This performs a multi-AND in-place but with 8n Toffoli gates and linear depth.
If we instead allocate n − 1 auxiliary qubits and “compress” the controls with a
tree of AND gates, it requires only n − 1 AND gates and AND-depth �lg n�.

4 Modular Arithmetic

Because modular reduction is irreversible, we cannot design an in-place circuit
which maps x to x mod N without auxiliary qubits to represent the quotient
	x/N
. Any algorithm for modular arithmetic that uses many modular reduc-
tions thus creates significant qubit overhead. Instead, we design bespoke circuits
for each operation. Primarily, we follow RNSL [24]. We find that working in
Montgomery representation [20] has the lowest costs. For an odd modulus p
with n = �lg p�, the Montgomery representation of an integer x is x2n mod p.

We use the modular addition circuit from RNSL. Addition in Montgomery
representation is the same as in standard representation. For controlled modular
addition, we only need to control two operations (Fig. 2b). This automatically
gives us modular addition by a constant, by replacing the quantum-quantum
addition and comparison circuits by their quantum-classical counterparts.

ctrl
ck

xk

yk

ck+1 · · · ck+1

ck

xk

(x + y)k

(a) Addition block from [12], with controls.

|x〉
|y〉
|0〉

|ctrl〉

n

n + −p
+p >

(b) Controlled modular addition.

Fig. 2. Efficient controlled addition.

4.1 Multiplication and Squaring

RNSL provide two circuits each for multiplication and squaring. We use the
one that operates on n-bit integers in Montgomery form with 2n additions and
n halvings, and justify this choice in Appendix A.1. This circuit is a direct
translation of classical Montgomery multiplication.

Windowed Arithmetic. Windowed multiplication, such as [13], is not directly
possible in our setting because we multiply two quantum integers, but we can
adapt some of these techniques to our setting. When computing x · y, the Mont-
gomery multiplier uses the ith bit of |x〉 to control an addition of |y〉 to the
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output register. It then copies the lowest bit of the output to an auxiliary regis-
ter |m〉 and uses this bit to control addition of the modulus p. This ensures that
the sum is even, and so we rotate the register to divide by 2.

When using a window of size k, the integer x is split into k-bit words
x(1), . . . , x(n/k), analogous to classical interleaved radix-2k Montgomery multi-
plication. The k-bit value x(i) is multiplied with y, adding the (n + k)-bit result
to the output register. To add a suitable multiple of p to the output to set the
k least significant bits to 0, these k bits are copied to an auxiliary register mi.
The multiple tmi

p such that tmi
p + mi ≡ 0 mod 2k can be looked up from a

classically pre-computed table T , where T [mi] = tmi
p for tmi

≡ p−1mi mod 2k.
We use the bits in mi as an address for a sequential quantum look-up [2],

writing the resulting (n + k)-bit integer tmi
p into an auxiliary register. Then an

uncontrolled addition of tmi
p into the output register clears the bottom k bits,

so we can cyclically rotate by k bits. Figure 3 illustrates this process.

|x0〉
|x1〉

...

|xk〉
|y〉
|0〉
|0〉

...

|0〉
...

|0〉
|0〉

...

|0〉
|0〉
|0〉

n

k

n+k

+

+

+

+

· · ·
· · ·

· · ·
· · ·
· · ·
· · ·

· · ·

· · ·
· · ·

· · ·
· · ·
· · ·

+

+

cpy Inmi

T [mi] +

+

Inmi

T [mi]

/2k

|x0〉
|x1〉
...

|xk〉
|y〉
|(xy)0〉
|(xy)1〉
...

|(xy)k〉
...

|(xy)n〉
|0〉
...

|0〉
|mi〉
|0〉

Fig. 3. Circuit for a single window of windowed add-and-halve multiplication. The cpy

gate copies k bits with k CNOT gates. The gate Inmi performs a quantum table look-
up of T [mi], where T is the table described in the text. The circuit in this figure is
repeated �n/k� times, with a final modular correction step, to perform a single modular
multiplication.

Pebbling. Given integers x, y, and z, one method to compute xy + z in place
is to first compute xy in an auxiliary register, then to add it to the register con-
taining z, and finally to uncompute xy. This works for any generic multiplication
circuit, but at the cost of two multiplications.

The circuit we use requires the Bennett method, and we replace its CNOT
step with an addition. This is just a pebbling technique [5]; we are keeping
the auxiliary qubits until we have finished the next computation (an addition)
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before uncomputing them. The cost of this multiply-then-add is just the sum
of the costs of a multiplication and an addition, rather than twice the cost of a
multiplication and an addition.

In particular, RNSL treat their squaring circuit as a black box in the full
elliptic curve addition circuit. The computed square is only needed for one sub-
traction before it must be uncomputed; therefore we can use this multiply-then-
add trick. Figure 4 shows how this saves almost half the gate cost and depth of
the squaring, as well as saving an auxiliary register.

|x1〉
|ctrl〉

|t0 = 0〉
|λ〉

|t1 = 0〉
|t2 = 0〉

n

n

n

n

n

squA squ−1
A

-

-

squA squ−1
A

(a) Original circuit [24] with squ circuit
expanded, squA produces dirty auxil-
iary qubits in |t1〉.

|x1〉
|ctrl〉

|t0 = 0〉
|λ〉

|t1 = 0〉

n

n

n

n

squA

-

-

squ−1
A

(b) More efficient version.

Fig. 4. Improvement to the squaring circuit from [24] in the context of elliptic curve
point addition.

Automatic Optimization. The multiply-then-add operation is a very costly
component in the point addition circuit. We explore what is possible when reduc-
ing its T -depth and T -gate count. Appendix D shows the results for a compilation
using the method from [18] after automatic optimization [30] of a logic network
generated from the operation. We achieve extremely low T -depth and T -count,
but the number of logical qubits increases significantly. We leave further explo-
ration of such techniques for future work.

4.2 Modular Inversion

Modular inversion uses variants of the extended Euclidean algorithm (EEA). The
EEA repeatedly divides integers. For two n-bit integers, we might expect each
division requires O(n2) operations and, in the worst case, we need O(n) divisions.
In practice the complexity is smaller, because the complexity of the divisions
becomes smaller in the course of the algorithm. Unfortunately, to exploit this
fact, the circuit must be dynamic: The number of divisions and the circuit for
each division depend on the inputs. We cannot build such a quantum circuit,
since we cannot observe the input (it may be in superposition).

We considered several approaches, but found that RNSL’s circuit is the best.
Appendix A.2 details our reasoning. However, we found several improvements
to it. Their circuit models an algorithm of Kaliski [17], which applies a round
operation (Fig. 6a) for up to 2n iterations. Conditional logic selects one of four
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different cases that can occur in each round. As a quantum circuit, this requires
applying all four possible rounds, each with a different control. Figure 6b shows
our alternative formulation based on swaps.

Figure 5a shows the round operation of RNSL’s quantum circuit implemen-
tation of Kaliski’s algorithm. This circuit repeats the controlled additions, dou-
blings, and halvings, with different registers playing the role of input or output.
Our method (Fig. 5b) performs each of these operations once, using controlled
swaps to arrange inputs and outputs for the respective case. The lower auxiliary
bit and |mi〉 uniquely specify the round and we use these bits to control a swap.
A controlled n-bit swap is approximately the same cost as a controlled n-bit
cyclic shift.

|carry = 0〉
|ui〉
|vi〉
|ri〉
|si〉

|b = 0〉
|a = 0〉

|mi = 0〉

n

n

n+1

n+1

- + /2

×2

/2

×2

-

+

/2

×2

-

+

/2

×2

|0〉
|ui+1〉
|vi+1〉
|ri+1〉
|ri+1〉
|0〉
|0〉
|mi〉

(a) Round operation from [24].

|carry = 0〉
|ui〉
|vi〉
|ri〉
|si〉

|b = 0〉
|a = 0〉

|mi = 0〉

n

n

n+1

n+1

> > −

+

/2

×2

|0〉
|ui+1〉
|vi+1〉
|ri+1〉
|ri+1〉
|0〉
|0〉
|mi〉

(b) Improved round operation.

Fig. 5. Improvement to the round operation in the binary extended Euclidean algo-
rithm from [24] addressing the different cases by controlled swaps.

Correcting Pseudo-Inverses in Parallel. Classically, the Kaliski algorithm
uses only k rounds, with n ≤ k ≤ 2n for n-bit integers. RNSL’s quantum circuit
executes 2n rounds, controlled in such a way that only k actually modify the
input. This produces an auxiliary qubit counter with a value of 2n − k and a
pseudo-inverse output of x−12−n+k mod p for an input x. We want to output the
Montgomery inverse x−12n mod p, which requires correcting the pseudo-inverse.

Instead of a separate doubling circuit like the one RNSL use, we add a dou-
bling operation to each division round. After copying out the pseudo-inverse,
during the subsequent uncomputation we use the same control that the round
operation uses: in each of the 2n rounds, either we double the output register
or perform a division round. These can be done in parallel, which improves the
depth without increasing the total gate count. The result is that we compute
2n − k doublings, exactly what is needed to correct the pseudo-inverse.

Modular Division. In elliptic curve point addition, the inversion is only neces-
sary to compute a division. To divide an integer x by y modulo a prime p, RNSL
first invert y in an auxiliary register, perform the multiplication by the result,
then invert y again to uncompute the auxiliary qubits as shown in Fig. 7a.

Because the inversion uses Bennett’s method, we pebble in the same way as
the multiply-then-add circuit. To save qubits, we notice that after the inversion,
three registers contain known values of 0, 1, and the modulus p. We can clear
these auxiliary qubits with at most 3n parallel X gates, then re-use them for
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(a) Kaliski’s algorithm

1: if u odd and v even then
2: v ← v/2
3: r ← 2r
4: else if u even and v odd then
5: u ← u/2
6: s ← 2s
7: else if u odd and v odd and

u > v then
8: u ← (u − v)/2
9: r ← r + s

10: s ← 2s
11: else if u odd and v odd and

v ≥ u then
12: v ← (v − u)/2
13: s ← r + s
14: r ← 2r
15: end if

(b) Equivalent formulation

1: bswap ← false

2: if u even and v odd, or u and
v both odd and u > v then

3: swap u and v
4: swap r and s
5: bswap ← true

6: end if
7: if u odd and v odd then
8: v ← v − u
9: s ← r + s

10: end if
11: v ← v/2
12: r ← 2r
13: if bswap then
14: swap u and v
15: swap r and s
16: end if

Fig. 6. Kaliski’s algorithm, and an equivalent formulation based on swaps.

modular multiplication. Denoting the inverse and multiplication operations with
auxiliary qubits by invA and mulA, respectively, Fig. 7b depicts a full modular
division. The pseudo-inverse correction is compatible with modular division.

5 Elliptic Curves

Elliptic curve arithmetic has been heavily optimized for classical computers,
but because Shor’s algorithm requires unique representations of points and in-
place point addition, few of these optimizations apply. We find affine Weierstrass
coordinates to be the most efficient method; Appendix A.4 explains this choice
in more detail.

Affine Weierstrass coordinates are one of the conceptually simplest methods,
and RNSL use them for their circuit. We assume the elliptic curve equation
has the form E : y2 = x3 + ax + b with a, b ∈ Fp and we represent points
by pairs (x, y) that satisfy this equation. Combining RNSL’s circuit with the
optimizations from this paper, we obtain a circuit with a total cost of 2 divisions,
2 multiplications, 1 squaring, and 9 additions.

The simple formulas with affine coordinates are naturally in-place. The gen-
eral concept is the same as in [24]. The original x and y coordinates are replaced
by multiplying and adding to them, and once we have, we can use the new
coordinates to uncompute the slope. This also means that the circuit produces
incorrect outputs if P or Q is the point at infinity or if P = ±Q, because in these
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tic curve point addition from
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(b) More efficient modular division. 0� depicts initializ-
ing an auxiliary qubit to zero, and �0 depicts removing
an auxiliary qubit known to be zero. The doubling of
the output λ in the last step corrects the pseudo-inverse
output.

Fig. 7. Improvement to the modular division circuit from [24] by clearing and re-using
auxiliary qubits before the full uncomputation.

cases the slope does not exist. Proos and Zalka [23] and RNSL [24] both argue
that these exceptional cases only slightly distort the desired quantum state in
Shor’s algorithm and their influence is negligible.

5.1 Windowed Arithmetic

Shor’s algorithm uses 2n qubits as control qubits, half of which control circuits
that add P , 2P , 4P , etc.; the other half control addition of Q, 2Q, etc. The
points are added to a single quantum register which we call the accumulator.
This process requires 2n point additions. We instead use a windowed approach,
analogous to ubiquitous classical pre-computation techniques and similar to the
techniques used for RSA in [14]. Other classical pre-computation strategies are
less effective, as Appendix A.5 discusses.

For windowed scalar multiplication, we use the index as an address
for a sequential quantum look-up, which loads a superposition of points
O, P, 2P, 3P, . . . , (2� − 1)P into an auxiliary register which we call the cache.
For elliptic curves, this requires us to switch from a circuit adding a classical
point to a circuit adding two quantum points, but this has little effect on the
cost. The depth and T -count of the look-up are exponential in the window size
�, but we save � point additions.

Signed Addition. We can save a factor of 2 in windowing by using one qubit
to control the sign of P = (x, y) and only using � − 1 for the look-up (Fig. 8).
Since −P = (x,−y), the extra qubit only needs to control a cheap modular
negation. This changes the indexing slightly. Our original windowed circuit took
an address register |b〉 and an input register |R〉, and produced |b〉 |[b]P + R〉.
Using the top bit b�−1 of b = b�−12�−1 + b′ as a sign and looking up b′P if
b�−1 = 1 and (2�−1 − b′)P and negating it if b�−1 = 0, we can implement the
operation
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∑

b∈{0,1}�

|b〉 |R〉 �→
∑

b∈{0,1}�

|b〉 ∣
∣[b − 2�−1]P + R

〉
. (1)

Thus, we get an offset in each round, but since the offset is constant, it has no
effect on the final phase estimation.
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Fig. 8. Signed windowed elliptic curve addition, with � address qubits. Ini is the index-
ing half of the look-up gate, which writes the classical data shown into the output
registers. The width of the circuits is proportional to the number of auxiliary qubits
used.

6 Results

We present quantum resource estimates for Shor’s algorithm based on our cost
estimates for windowed elliptic curve point addition. We optimized for three
different cost metrics: either minimizing circuit width (the total number of logical
qubits), the total number of T gates in the circuit, or total circuit depth. Window
sizes above 18 were too large to simulate, so we extrapolated from the costs for
smaller lookup tables. With Q#, we calculated the cost of a point addition on
the three NIST curves [31] P256, P384 and P521, using 8-bit look-ups, then
subtracted the cost of six 8-bit look-ups and added the cost of six �-bit look-ups
to get the cost of point addition with an �-bit window. We multiplied this cost
by the number of windows dividing 2n to get the full cost of Shor’s algorithm
for ECDLP. From this we selected optimal window sizes. We can use n instead
of n + 1 because the order of each NIST curve is less than its modulus [31].

Table 1 shows our results together with those of RNSL [24] for comparison.
Their circuits use fewer than 2 Toffoli gates per time step on average, so we
assume that with 8 extra qubits (c.f. Sect. 3) they can use Toffoli gates of T-
depth 1. Our optimization for the number of qubits is shown in the row labeled
Low W. Since RNSL optimize for the same metric, those results allow a direct
comparison. We were able to improve on RNSL’s circuit in all metrics. For P256,
we reduce the number of logical qubits from 2338 to 2124, while reducing the
T -depth and T -count by factors of 54 and 119, respectively.
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Additionally, we report more significant improvements over RNSL’s work in
depth and T -count when optimizing for those. For 521-bit moduli, the improve-
ment is a factor of 13,792 in depth for an increase of 22% in qubits, or a 463
factor reduction in T -gates for a 12% increase in qubits.

Table 1. Resource estimates for Shor’s full algorithm to compute the ECDLP. RNSL
results are taken from [24]. Rows labeled Low W/Low T/ Low D show estimates for
circuits minimizing width, T gate count and total depth, respectively.

Circuit Window
size

Gates Depth Width

Cliffords Measure T Total T All gates Qubits

256-bit modulus

RNSL – – – 1.60 · 239 – 1.69 · 236 – 2338

Low W 19 1.32 · 234 1.76 · 226 1.72 · 232 1.45 · 235 1.98 · 230 1.89 · 232 2124

Low T 19 1.75 · 233 1.95 · 227 1.08 · 231 1.80 · 234 1.44 · 229 1.85 · 231 2619

Low D 15 1.04 · 234 1.61 · 228 1.34 · 232 1.40 · 234 1.12 · 224 1.40 · 227 2871

384-bit modulus

RNSL – – – 1.44 · 241 – 1.51 · 238 – 3492

Low W 21 1.46 · 236 1.23 · 229 1.51 · 234 1.57 · 237 1.68 · 232 1.77 · 234 3151

Low T 19 1.05 · 235 1.28 · 229 1.74 · 232 1.10 · 236 1.21 · 231 1.31 · 233 3901

Low D 15 1.73 · 235 1.34 · 230 1.13 · 234 1.17 · 236 1.23 · 225 1.48 · 228 4278

521-bit modulus

RNSL – – – 1.81 · 242 – 1.91 · 239 – 4727

Low W 22 1.85 · 237 1.59 · 230 1.82 · 235 1.98 · 238 1.99 · 233 1.09 · 236 4258

Low T 20 1.45 · 235 1.49 · 230 1.00 · 234 1.57 · 236 1.40 · 232 1.54 · 234 5273

Low D 15 1.10 · 237 1.70 · 231 1.43 · 235 1.48 · 237 1.13 · 226 1.27 · 229 5789

Acknowledgements. We thank Dan Bernstein, Martin Eker̊a, Iggy van Hoof, and
Tanja Lange for helpful suggestions about elliptic curve arithmetic. We thank Martin
Albrecht for lending computing power to run resource estimates.

A Alternative Approaches

A.1 Modular Multiplication

RNSL provide two circuits for modular multiplication. The first is the one pro-
posed by Proos and Zalka [23], which uses a double-and-add approach, where
doubling and addition are both modular operations modulo p. The other is
reversible Montgomery multiplication, which uses an add-and-halve approach
and works in Montgomery form. The primary motivation for considering Mont-
gomery multiplication instead of the straightforward double-and-add method is
that modular reduction is achieved by suitable additions to clear lower order bits
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and divisions by 2 (i.e. bit rotations) as part of the whole circuit, not delegated
to the addition and halving circuits. This results in simpler operations per bit.

However, Montgomery multiplication has the downside that it entangles with
a register of auxiliary qubits which must be cleared. In our case, at every point
in an elliptic curve point addition, we have enough spare auxiliary qubits for
this. Overall, it is cheaper, even with the Bennett method, and especially with
the multiply-then-add technique of Sect. 4.1.

A.2 Modular Inversion

Proos and Zalka [23] (PZ) gave an approach to modular inversion based on
precise control of a bit-shift division operation, with asymptotic complexity of
O(n2). There are O(n) iterations of a round. Each round implements conditional
logic by computing state qubits, then using those state qubits to control some
operations on the integer registers.

RNSL use a similar round-based construction, which implements a reversible
binary extended Euclidean algorithm. As with multiplication, the primary dif-
ference between the PZ division and the RNSL division is that PZ’s is based on
doubling and integer long division, while RNSL’s is based on halving and binary
operations. The PZ inversion leaves only O(lg n) auxiliary qubits, while RNSL
creates 2n + O(lg n) auxiliary qubits, but PZ has a higher depth and gate cost.

Naively, the PZ approach uses 5n qubits, though they show that, with fidelity
loss on the order of O(n−3) per round, they require only 2n + 8

√
n + O(log n)

qubits. The RNSL approach uses 6n qubits. We choose to use the RNSL algo-
rithm. It is exactly correct, so it can be used for higher depth algorithms, and
the total T-cost and depth are less than half of the PZ approach.

A.3 Recursive GCD Algorithms

There are several sub-quadratic GCD algorithms (such as [7]). These work by
defining a series of 2 × 2 matrices Tn such that TnTn−1 · · · T1(u, v)T will map
integers u and v to the nth step of the Euclidean algorithm. These can be
computed and multiplied together recursively.

Adapted to quantum circuits, these approaches require quantum matrix mul-
tiplication. We could find no efficient method to do this in-place, meaning that
each recursive call would require a new set of auxiliary qubits to store the matrix
output. This would quickly overwhelm our qubit budget. The base case of [7] is
nearly identical to our approach for a single round.

One of the primary advantages of [7] is that the recursive process allows much
of the arithmetic to be done with small integers which fit into the registers of
classical CPUs. All the qubits in our model of a quantum computer are identical,
so it has no caching or register issues. If quantum technologies arise with different
kinds of qubits (perhaps a “memory” with higher coherence times but lower gate
fidelity), then recursive GCD algorithms should be revisited. It is also possible
that the specific structure of the matrices in this approach permit an easy, in-
place multiplication circuit. We leave this to future work.
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A.4 Alternate Curve Representations

Projective Coordinates. Projective coordinates use equivalence classes
(X : Y : Z) of triples (X,Y,Z) to represent an elliptic curve point, where
(X1, Y1, Z1) ∼ (X2, Y2, Z2) iff there is some non-zero constant c such that
X1 = cX2, Y1 = cY2, and Z2 = cZ2. These can be used with many different
families of curves. Projective coordinates lend themselves to efficient, inversion-
free arithmetic, which is appealing for classical computers.

Projective coordinates do not give a unique representation of each point,
which Shor’s algorithm requires to ensure history independence and thus proper
interference of states in superposition. Dividing by the Z coordinate produces a
unique representation but requires an expensive division. It is an open problem
to provide a unique projective representation with division-free arithmetic.

Another issue is that the classical elliptic curve formulas, naively adapted to
quantum circuits, operate out-of-place. An out-of-place addition circuit is easy
to adapt into an in-place addition circuit. If we can construct a circuit U+Q to
add a point Q, we can construct a circuit U−Q, and we can construct an in-place
point addition by writing P + Q into another register, then subtracting Q from
P + Q to clear the input. This doubles the cost of point addition.

This technique requires a unique representation. If (P + Q) − Q does not
have the same representation as P , we cannot cancel them out. Thus, for any
current algorithm to compute addition with projective coordinates with cost C,
we can transform it to a quantum-suitable in-place version with cost 2C + 2D,
where D is the cost of division. The division creates a unique representation.

According to the Explicit Formulas Database [6], the lowest-cost addition
uses 6 squares and/or multiplications. With the required reductions, the total
cost is 12 squares/multiplications and 2 divisions, much higher than affine Weier-
strass coordinates. Thus, we choose not to use projective coordinates in this
work.

A.5 Precomputation

Precomputed tables of certain powers of the base element can speed up expo-
nentiations. The “comb” method is a standard technique used for elliptic curve
scalar multiplication. To multiply a point P by a scalar k, we divide k into
k1 + 2k2 + · · · + 2�k� for some �, with the property that kj contains bits of k in
positions congruent to j modulo � (each kj looks like a comb of bits). We then pre-
compute a table of all multiples of P by scalars of the form b0 + b12� + b222� . . . ,
with bi ∈ {0, 1}. By the definition of kj , each kjP is a precomputed point in this
table for all j. Thus, we can compute kP by using kj to look up elements of the
table, adding them to a running total, and doubling the running total.

The advantage of the comb technique is that it saves precomputation. We
only precompute one table and use it for the entire computation. Unfortunately
for the quantum case, precomputation is essentially free because it is entirely
classical, but look-ups are expensive. The comb technique does not reduce the
number of table look-ups, since we must do a separate look-up for each index kj .
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Further, efficient in-place point doubling is unlikely, since it implies efficient
in-place point halving. Thus, doubling points in the comb would require some
pebbling technique which would likely add significant depth or width costs.

B Modular Division and Addition

For elliptic curve addition, we only need to divide integers and copy the result
to a blank output, but other applications may wish to construct a circuit that,
given registers containing x, y, and z, will compute yx−1 + z.

We might simply invert, multiply, and then add the output of the mul-
tiplication instead of copying. However, doubling the output to correct the
pseudo-inverse while uncomputing will also multiply z by a factor of 22n−k.
To correct for this, we can repeatedly halve z during the forward computa-
tion of the modular inverse. This means that while we compute the modu-
lar inverse, we control a modular halving of the register containing z by the
counter, which will halve z exactly 2n − k times. Then we multiply the pseudo-
inverse by y and add the result to the register with z, producing the state∣
∣x−122n−k mod p

〉 |y2n mod p〉 ∣
∣z22n−k + x−1y22n−k mod p

〉
. From here, if we

perform controlled modular doublings of the register containing z as we uncom-
pute the inversion circuit, this will correct both z and the pseudo-inverse of x,
producing the desired output.

C Analysis of Windowed Arithmetic

A quantum look-up to N elements requires 4N T-gates [2]. To optimize window
costs, we balance this cost against the operations we save.

Multiplication. Section 4.1 describes a single windowed multiplication round.
For n-bit integers with window size k, repeating this round �n/k� times performs
the full multiplication. Since the quantum look-up will cost 4 ·2k T gates [2] and
uncontrolled n + k-bit addition costs O(n + k) T gates, we expect the optimal
window size to be approximately k = O(lg n). The total multiplication cost is
still O(n2) because we only window addition by p, not addition of the quantum
register y. Compared to un-windowed add-and-halve multiplication, windowing
should save a factor of roughly 1

2 + O( 1
lg n ). Similar reasoning suggests savings

of 1
2 + O( 1

lg lg n ) in depth.
Numerical estimates show a window size of k ≈ 0.7 lg n + 0.5 optimizes T -

count, and 1.97 lg lg n−1.11 optimizes T -depth. At the scale we estimate, this is
only noticeable in the leading coefficient of the cost. We found a 22% reduction
in T -depth at 384 bits, for example.

Windowing adds a significant cost of roughly n + k auxiliary qubits, but
the full elliptic curve point addition circuit has enough unused auxiliary qubits
during any multiplication that this does not make a difference.
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Point Addition. Windowing requires 2 extra registers as the cache to load the
precomputed points. We use the components of the second point three times
during point addition. We could perform the look-up once and keep the values,
increasing total circuit width by two registers. Alternatively, we can fit the look-
ups within the existing space. At every point where x2 or y2 are added, the
circuit has spare auxiliary qubits available. Thus, we can perform the look-up,
add the point to the quantum register, then uncompute the quantum look-up to
free the qubits for the expensive modular division. This requires us six look-ups
(including uncomputing) rather than just two, but uses no extra registers.

With a window size of �, including sign bit, each look-up costs 4 ·2�−1 T gates
and T -depth. The windowing saves us � − 1 point additions. If point addition
costs A T gates, we would expect � ≈ lg(A/24) to be the optimal value, leading
to a factor � reduction in T-gate cost.

D Automatic Compilation for Aggressive T-Count and
T-Depth Reduction

In this section, we motivate automatic compilation methods to drastically reduce
the T -count and the T -depth if we allow a significant increase in circuit width.

The modular multiplication followed by an addition is one of the most
costly operations in the overall algorithm. It is implemented as a unitary
U : |x〉|y〉|z〉|0〉 �→ |x〉|y〉|(xy + z) mod p〉|0〉 that adds the result of the mul-
tiplication of two numbers x and y onto a third number z, all in Montgomery
form with bit-width n and modulus p. We apply the following procedure to
automatically obtain a quantum circuit for this operation:

1. We generate logic networks over the gate basis {AND,XOR, INV}, called
Xor-And-inverter Graphs (XAGs), for the functions xy mod p, (x+y) mod p,
and (x − y) mod p, where x and y are integers in Montgomery form.

2. We apply the logic optimization method described in [30] to minimize the
number of AND gates in the XAGs.

3. The optimized XAGs are then translated into out-of-place quantum circuits
using the method in [18], which requires 4 T gates for each AND gate in the
XAG. Optimizing these circuits for depth requires roughly 2 qubits for each
AND gate in the XAG, by using the AND gate construction from Sect. 3.

|x〉
|y〉
|0〉
|z〉

n

n

n

n

×

|0〉

|xy〉

n

+ −†

|0〉
|xy〉

|xy + z〉 ×†

|x〉
|y〉

|0〉
|xy + z〉

Fig. 9. Quantum circuit that implements xy+z mod p, using out-of-place constructions
for modular multiplication, modular addition, and modular subtraction.
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4. The automatically generated unitaries are composed as described in Fig. 9,
which uses a technique similar to that described in AppendixA.4 to turn the
out-of-place addition and subtraction into an in-place addition.

Table 2. Comparison of resource costs between a manual and automatic construction
to implement |xy + z mod p〉.

Bit-width Manual construction Automatic construction

T -count T -depth Width T -count T -depth Width

256 8,176,739 50,253 2,319 1,576,296 1,542 394,588

384 18,322,671 76,125 3,470 3,550,552 2,310 888,408

521 33,751,240 137,183 4,702 6,535,384 3,132 1,634,890

Table 2 lists the resource costs in terms of T -count, T -depth, and circuit
width, for both the manual construction and the automatic construction. Several
factors of reduction in T -count and T -depth are possible, while the increase in
the number of qubits is significant. However, such a design point can be of
high interest, in particular when combined with automatic quantum memory
strategies, e.g., pebbling [19], that can find intermediate trade-off points that lie
in between the manual and automatic construction.

References

1. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 32(6), 818–830 (2013)

2. Babbush, R., et al.: Encoding electronic spectra in quantum circuits with linear T
complexity. Phys. Rev. X 8(4), 041015 (2018). arXiv: quant-ph/1805.03662

3. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A
52(5), 3457–3467 (1995). arXiv: quant-ph/9503016

4. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

5. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

6. Bernstein, D.J., Lange, T.: (2007). https://www.hyperelliptic.org/EFD
7. Bernstein, D.J., Yang, B.-Y.: Fast constant-time GCD computation and modular

inversion. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(3), 340–398 (2019)
8. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-

carry addition circuit (2004). arXiv:quant-ph/0410184
9. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum

carry-lookahead adder, June 2004. arXiv: quant-ph/0406142
10. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:

towards practical large-scale quantum computation. Phys. Rev. A 86, 032324
(2012)

http://arxiv.org/abs/quant-ph/1805.03662
http://arxiv.org/abs/quant-ph/9503016
https://www.hyperelliptic.org/EFD
http://arxiv.org/abs/quant-ph/0410184
http://arxiv.org/abs/quant-ph/0406142
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Abstract. Let a1, . . . an, t be a solvable subset sum instance, i.e. there
exists a subset of the ai that sums to t. Such a subset can be found
with Grover search in time 2

n
2 , the square root of the search space,

using only O(n) qubits. The only quantum algorithms that beat Grover’s
square root bound – such as the Left-Right-Split algorithm of Brassard,
Hoyer, Tapp – either use an exponential amount of qubits or an exponen-
tial amount of expensive classical memory with quantum random access
(QRAM). We propose the first subset sum quantum algorithms that
breaks the square root Grover bound with linear many qubits and with-
out QRAM. Building on the representation technique and the quantum
collision finding algorithm from Chailloux, Naya-Plasencia and Schrot-
tenloher (CNS), we obtain a quantum algorithm with time 20.48n.

Using the Schroeppel-Shamir list construction technique, we further
improve downto run time 20.43n. The price that we have to pay for
beating the square root bound is that as opposed to Grover search
our algorithms require classical memory, but no QRAM, i.e. we get a
time/memory/qubit tradeoff. Thus, our algorithms have to be compared
to purely classical time/memory subset sum trade-offs such as those of
Howgrave-Graham and Joux. Our quantum algorithms improve on these
purely classical algorithms for all memory complexities M < 20.2n. As
an example, for memory 20.1n we obtain run time 20.47n as opposed to
20.63n for the best classical algorithm.

Keywords: Quantum algorithms · Amplitude amplification ·
Representation technique · Subset sum · Collision finding

1 Introduction

Although there is remarkable progress in the development of quantum computing
devices, in the medium-term we will implement our quantum algorithms with
a very limited number of qubits. Thus, it is of great importance both from a
theoretical and practical perspective to develop algorithms that run with small
quantum memory consumption, say polynomial or even linear.
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A prominent candidate for sharpening our algorithmic tools is the random
subset sum problem, which lies at the heart of many post-quantum hardness
assumptions such as SIS [Reg09]. Random subset sum instances consist of ran-
domly chosen a1, . . . , an ∈ Z2n , and a t that is the sum of a subset of ai’s
modulo 2n.

Classically, random subset sum instances can be solved with polynomial
memory using collision finding and the representation technique [HGJ10] in
time 20.65n [BCJ11,EM19], and without memory restrictions in time and
space 20.29n [BCJ11]. There exist various time/memory tradeoffs in between
[HGJ10,BCJ11,DDKS12,DEM19].

Quantumly, random subset sum can be solved with O(n) qubits in time
2n/2 using Grover search [Gro96]. The Left-Right-Split algorithm of Brassard,
Hoyer and Tapp [BHT98,BJLM13] solves subset sum in time 2n/3 using O(n)
many qubits, but also using 2n/3 classical memory with quantum random access
(QRAM). However, QRAM is believed to be expensive to realize in prac-
tice [GR04]. The currently best time bound of 20.23n for subset sum is achieved
by using a quantum random walk technique on the Becker-Coron-Joux algo-
rithm [HM18]. However, this quantum walk algorithm also requires 20.23n many
qubits, and therefore is practically completely unattainable.

In this paper, we want to focus on subset sum algorithms with a linear amount
of qubits and without using QRAM. Our central research question is whether
we can beat the Grover square root bound 2n/2 in our setting. Notice that
our setting is motivated by the research direction initiated by Chailloux, Naya-
Plasencia and Schrottenloher [CNPS17]. The authors of [CNPS17] developed a
hash collision algorithm (called CNS) for hash functions {0, 1}∗ → {0, 1}n with
run time 22/5n using 21/5n classical memory (without QRAM) and O(n) qubits.

Our Contribution. Since the best classical polynomial memory algorithms for
subset sum also use collision finding, we take CNS quantum collision finding
as our starting point. Combining CNS with the representation technique, we
achieve a first quantum subset sum algorithm with run time 20.48n and classical
memory 20.24n. While this already breaks Grover’s bound using only O(n) many
qubits, our first algorithm is still a bit unsatisfactory. Namely, there exist purely
classical subset sum algorithms that with the same memory 20.24n achieve run
time only 20.39n, without using any qubits. Thus, our first algorithm does not
improve on the known classical subset sum landscape.

Based on our first CNS adaption, we develop a second subset sum quantum
algorithm using Schroeppel-Shamir list construction [SS81]. With O(n) qubits,
our new construction achieves a time/memory tradeoff with

time T =
20.5n

M0.25
for any classical memory M ≤ 20.28n.

The resulting tradeoff line is depicted in Fig. 1 as 2nd algorithm. Notice that for
maximal memory 20.28n we go downto 20.43n. As desired, our algorithm achieves
Grover complexity 2n/2 when we use no memory. Moreover for any additional
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memory, we go below the Grover bound, see the red area in Fig. 1. In comparison
to purely classical time-memory tradeoffs, we improve for any memory M ≤ 2n/5,
see the shaded area in Fig. 1. Thus, our relatively moderate O(n) qubit memory
provides speedups in a relatively large parameter space.

Fig. 1. Comparison of our results and the previous best classical trade-offs for subset
sum. (Color figure online)

We further optimize our second algorithm, resulting in the slightly improved
convex curve denoted in Fig. 1 by 2nd algorithm opt.

Our paper is organized as follows. In Sect. 2 we recall the CNS quantum
collision finding algorithm [CNPS17]. We develop our first subset sum algorithm
based on collision finding in Sect. 3. The second subset sum algorithm, that
achieves a linear time-memory tradeoff, is described in Sect. 4. In Sect. 4.1 we
further optimize our second quantum subset sum algorithm.

2 Quantum Collision Finding

Let us briefly define some preliminaries and recall the CNS collision finding
algorithm [CNPS17].

We consider random subset sum instances defined as follows.

Definition 1 (Random Subset Sum). Let a be chosen uniformly at random
from (Z2n)n. For a random e ∈ {0, 1}n with Hamming weight wt(e) = n

2 we
define t = 〈a, e〉 =

∑n
i=1 aiei mod 2n. Then (a, t) ∈ (Z2n)n+1 is called a random

subset sum instance and any e′ ∈ {0, 1}n with 〈a, e′〉 = t is called a solution.

By Definition 1, every random subset sum instance has at least one solution
and with high probability at most poly(n) many solutions. For ease of nota-
tion we assume, that we have a unique solution e, which is the worst-case for
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our algorithms. Any (x1, . . . ,xk) ∈ {−1, 0, 1}n with e =
∑k

i=1 xi is called a
representation of e.

By H(·) we denote the binary entropy function H(α) := −α log α − (1 −
α) log(1 − α) for α ∈ [0, 1], where 0 · log 0 := 0. We use Stirling’s formula to
approximate binomial coefficients by the entropy function, as

(
n

m

)

= Θ̃
(
2H(m

n )n
)

,

where the soft-Oh notion suppresses polynomial factors. We also round upwards
for ease of notation, e.g. we have n2n/3 = Õ(2n/3) ≤ 20.34n for sufficiently large
n.

Let A be an algorithm that implements f : F
n
2 → F

m
2 within runtime tf .

Then the quantum unitary Of on n+m and additional ancilla qubits defined as

Of (|x〉 |y〉) := |x〉 |y ⊕ f(x)〉
can be implemented in runtime Tf = O(tf ).

Set-Membership Oracle [CNPS17]: Let |φ〉 =
∑

i |xi〉 be a quantum super-
position, where each xi ∈ F

n
2 has non-zero amplitude. Let L ⊆ F

n
2 define a list.

Notice that by definition, L does not contain an element twice.
We want to know which of the vectors xi of |φ〉 are in L. To this end, define

the characteristic function

fL : Fn
2 → F2, x 	→

{
1 if x ∈ L

0 else
.

Then the quantum set-membership oracle for L with operator

OfL
(|φ〉 |0〉) :=

∑

i

|xi〉 |fL(xi)〉 (1)

can be computed in time TfL
= O(n · |L|) with 2n + 1 qubits.

Amplitude Amplification [BHMT02]: Let A be a quantum algorithm that
works with no measurements and produces a uniformly distributed superposition
|φ〉 =

∑
x∈X |x〉 for some set X ⊆ F

n
2 in runtime TA. Let f : F

n
2 → F2 be a

function with quantum unitary Of on n + 1 and additional ancilla qubits that
has runtime Tf .

Let us define the set Xf := {x ∈ X | f(x) = 1}. Thus a random x ∈ X
evaluates to f(x) = 1 with probability p = |Xf |

|X | . Then there exists a quantum
algorithm, called amplitude amplification, that outputs an element x ∈ X with
f(x) = 1 by sending O(

√
p−1) many queries to A,A−1, Of and O−1

f and finally
measures.

We call A the setup and f the oracle function of amplitude amplification and
set TSetup = TA. The total runtime of amplitude amplification is given by

T = Õ
(
(TSetup + Tf ) ·

√
p−1

)
. (2)
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Amplitude amplification is a generalization of Grover search [Gro96]. Notice that
in the Grover setting we have X = F

n
2 and A consists of a Hadamard operation

on each qubit, which can be done efficiently in time TSetup = O(1).

Remark 1. For the setup A we may use Grover search without final measure-
ment. If we use as Grover oracle the characteristic function g(x) = 1 ⇔ x ∈
X ⊆ F

n
2 of X , we achieve the desired uniform superposition |φ〉 =

∑
x∈X |x〉. A

random x ∈ F
n
2 evaluates to g(x) = 1 with probability p = |X |

|Fn
2 | . This implies

TSetup = Õ
(
Tg ·

√
p−1

)
.

CNS Quantum Collision Finding [CNPS17]. Let us slightly adapt CNS
quantum collision finding to our needs. Instead of finding a collision for a random
function h : Fn

2 → F
n
2 we use two random functions hi : Si → F

n
2 for i = 1, 2 with

arbitrary domains S1, S2 satisfying |S1| ≤ 2n. We denote the set of collisions
between h1 and h2 by

C = {(xc,xq) ∈ S1 × S2 | h1(xc) = h2(xq)} with |C| = R.

Let (xc,xq) ∈ C. We call xc the classical half and xq the quantum half of a
collision, since we store xc classically and compute xq in quantum superposition.

Correctness. The CNS algorithm (see Algorithm 0) finds a collision (xc,xq) ∈ C
with only O(n) qubits in a two step process, see also Fig. 2. First one constructs
a classically stored list L that contains candidates for the classical half xc of
a collision. The second step is an amplitude amplification that quantumly enu-
merates in superposition potential quantum halves xq of a collision. We find
matching halves by using the quantum set-membership oracle for L.

Fig. 2. Main idea of CNS quantum collision finding (Algorithm 0).
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Algorithm 0: Quantum Collision Finding

Input : hi : Si → F
n
2 for i = 1, 2

Output : (xc,xq) ∈ S1 × S2 with h1(xc) = h2(xq)
Parameters: Optimize r, �.
1. Let Shi

r := {x ∈ Si | hi(x) = 0 mod 2r} for i = 1, 2.
Construct, element-wise via Grover search, a sorted (by second entry) list

L = {(xc, h1(xc)) ∈ Sh1
r × F

n
2 } with |L| = 2�.

2. Perform amplitude amplification with the following Setup and Oracle.

(i) Setup: Construct

|φr〉 :=
1√

|Sh2
r |

∑

xq∈S
h2
r

|xq, h2(xq)〉 |0〉 .

(ii) Oracle: Set-Membership-Oracle Ofh
L

Ofh
L
(|φr〉) =

1√
|Sh2

r |

∑

xq∈S
h2
r

|xq, h2(xq)〉 |fh
L(xq)〉 .

Amplitude amplification eventually outputs some |(xq, h2(xq))〉 |1〉.
3. For the quantum half xq search for the classic half xc ∈ L with

h1(xc) = h2(xq).

In more detail, we construct a sorted (by second entry) list

L = {(xc, h1(xc)) | h1(xc) = 0 mod 2r} ⊆ S1 × F
n
2 ,

where each element of L is constructed via Grover search. Since we fix r bits in
L, on expectation |S1|

2r elements of S1 fulfill restriction h1(xc) = 0 mod 2r, and
h1(xc) can take at most 2n−r different values. Since elements in L are different
and |S1| ≤ 2n, we obtain the restriction

log L = � ≤ min{log |S1| − r, n − r} = log |S1| − r.

Furthermore we want to guarantee that on expectation L contains at least one
element xc that can be completed to a collision (xc,xq). In other words, we need
an xc ∈ L such that there exists an xq with (xc,xq) ∈ C, |C| = R. A random
xc ∈ S1 can be completed to a collision with probability R

|S1| . Thus, L should

contain at least |S1|
R many elements, leading to the condition

log |S1| − log R ≤ � ≤ log |S1| − r. (3)

From (3) we obtain

0 ≤ r ≤ log R. (4)
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For amplitude amplification we define the oracle function

fh
L(xq) :=

{
1 if ∃(xc, h1(xc)) ∈ L with h1(xc) = h2(xq)
0 else

.

Then the set-membership oracle for L, defined for a single xq, becomes

Ofh
L
(|xq, h2(xq)〉 |0〉) := |xq, h2(xq)〉 |fh

L(xq)〉 .

Runtime. Let |L| = 2�. By the randomness of h1, every xc ∈ S1 satisfies the
restriction h1(xc) = 0 mod 2r with probability p = 2−r. Thus the runtime of
the first step is

T1 = Θ̃
(
|L| ·

√
p−1

)
= Θ̃

(
2� · 2

r
2
)
. (5)

In the second step of Algorithm 0 we create a superposition over the set Sh2
r :=

{xq ∈ S2 | h2(xq) = 0 mod 2r}, as described in Remark 1. By the randomness
of h2, every xq ∈ S satisfies the restriction h2(xq) = 0 mod 2r with probability
p = 2−r. Hence the setup runtime of amplitude amplification is

TSetup = Õ
(√

p−1
)

= Õ (
2

r
2
)
.

As described before, the quantum set-membership oracle for L requires time

Tfh
L

= Õ(|L|) = Õ(2�).

Recall that a random element xc ∈ S1 can be completed to a collision (xc,xq)
with probability R

|S1| . Notice that this probability is unchanged if we choose a
random xc ∈ Sh1

r as in Algorithm 0. Therefore, we expect in total |L| · R
|S1| many

collisions between L and the set Sh2
r constructed in superposition. Thus, every

xq ∈ Sh2
r evaluates to fh

L(xq) = 1 with probability

p =
|L|R

|Sh2
r ||S1|

=
|L|R2r

|S1||S2| .

Using (2), we obtain for the second step (amplitude amplification) runtime

T2 = Õ
((

TSetup + Tfh
L

)
·
√

p−1
)

= Õ
(

(
2

r
2 + 2�

) ·
√

|S1||S2|
|L|R2r

)

= Õ
(

(
2− �

2 + 2
�−r
2

) |S1| 1
2 |S2| 1

2

|R| 1
2

)

. (6)

Since L is sorted, the third step of Algorithm 0 runs in time O(�). In total, we
obtain runtime

T = Õ (max{T1, T2}) . (7)
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3 Subset Sum via Quantum Collision Finding

Let e be a unique solution for a random subset sum instance from Definition 1.
Let (xc,xq) ∈ {−1, 0, 1}n be a representation of e, i.e. e = xc + xq. Then
〈a, e〉 = t which implies

〈a,xc〉 = t − 〈a,xq〉. (8)

Let Si ⊆ {−1, 0, 1}n for i = 1, 2. We define two functions Σi : Si → Z2n , i = 1, 2,
with

Σ1 : x 	→ 〈a,x〉 and Σ2 : x 	→ t − 〈a,x〉. (9)

Then every representation (xc,xq) of e is a collision of Σ1, Σ2, i.e. Σ1(xc) =
Σ2(xq). However, the converse is not true.

Let (xc,xq) ∈ {−1, 0, 1}2n be a collision of Σ1, Σ2. Then by construction
(xc,xq) fulfills Eq. (8) and therefore satisfies the subset sum identity 〈a,xc +
xq〉 = t. However, in general we have xc +xq ∈ {−2, . . . , 2}n. Therefore, (xc,xq)
is a representation of the unique solution e iff xc + xq ∈ {0, 1}n.

Definition 2. Let (xc,xq) ∈ {0, 1,−1}2n be a collision of Σ1, Σ2. We call
(xc,xq) consistent iff xc + xq ∈ {0, 1}n.

Hence solving subset sum is equivalent to finding a consistent collision (xc,xq).
Moreover, the representations of e are exactly the consistent collisions of Σ1, Σ2.
Remark 2 follows.

Remark 2. The number R of representations of the solution e is equal to the
number of consistent collisions of Σ1, Σ2.

Remark 3. Notice that our hash function Σ1 is linear, i.e.

Σ1(x + y) = 〈a,x + y〉 = 〈a,x〉 + 〈a,y〉 = Σ1(x) + Σ1(y).

We use this linearity for our improved algorithm in Sect. 4.

It remains to define good representations (xc,xq) of e. Let us start for didactical
reasons with a natural, unique representation of e that fails to beat Grover’s
square root bound.

Unique Representation. Let us define

S1 = {0, 1}n/2 × 0n/2 and S2 = 0n/2 × {0, 1}n/2.

Then every e has a unique representation in S1 × S2. This implies that Σ1, Σ2

have a single collision, i.e. R = 1. Condition (3) implies

� ≥ log |S1| − log R =
n

2
.

From Eq. (5) we have T1 = Ω(2
n
2 ), which implies that we cannot beat Grover’s

bound.
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More Representations. Let 0 ≤ α ≤ 1/4. For i = 1, 2 we define

Si = {x ∈ {−1, 0, 1}n | x contains
(

1
4

+ α

)

n many 1’s and αn many (−1)’s}
(10)

with size

|S1| = |S2| =
(

n

( 14 + α)n, αn

)

.

By the choice of S1, S2 every 1-entry of the solution e can be represented as 1+0
and 0 + 1 and every 0-entry can be represented as 0 + 0, 1 + (−1) and (−1) + 1.
Thus the number of representations is

R =
(n

2
n
4

)( n
2

αn, αn

)

.

Quantum Collision Finding for Subset Sum. Let us adapt the CNS quan-
tum collision finding (Algorithm 0) to our subset sum setting, resulting in
Algorithm 1.

Algorithm 1: Quantum Subset Sum Collision Finding

Input : (a, t) ∈ (Z2n)n+1

Output : e ∈ {0, 1}n

Parameters: Optimize r, �, α as r = 0.4784n, � = 0.2392n, α = 0.0175.
1. Let SΣi

r := {x ∈ Si | Σi(x) = 0 mod 2r} for i = 1, 2.
Construct, element-wise via Grover search, a sorted (by second entry) list

L = {(xc, Σ1(xc)) ∈ SΣ1
r × Z2n} with |L| = 2�.

2. Perform amplitude amplification with the following Setup and Oracle.

(i) Setup: Construct

|φr〉 :=
1√

|SΣ2
r |

∑

xq∈S
Σ2
r

|xq, Σ2(xq)〉 |0〉 .

(ii) Oracle: Set-Membership-Oracle OfΣ
L

OfΣ
L

(|φr〉) =
1√

|SΣ2
r |

∑

xq∈S
Σ2
r

|xq, Σ2(xq)〉 |fΣ
L (xq)〉 .

Amplitude amplification eventually outputs some |(xq, Σ2(xq))〉 |1〉.
3. For the quantum half xq search for the classic half xc ∈ L with

Σ1(xc) = Σ2(xq) and xc + xq ∈ {0, 1}n.



454 A. Helm and A. May

We instantiate the hash functions by Σ1, Σ2 from Eq. (9), where S1, S2 are
defined via (10).

In addition, we have to slightly modify the quantum set-membership oracle,
because we have to check for consistency of collisions (Definition 2). Let us define
the oracle function

fΣ
L (xq) :=

{
1 if ∃(xc, Σ1(xc)) ∈ L with Σ1(xc) = Σ2(xq) ∧ xc + xq ∈ {0, 1}n

0 else
.

Then our quantum set-membership oracle for L, defined for a single xq, becomes

OfΣ
L

(|xq, Σ2(xq)〉 |0〉) := |xq, Σ2(xq)〉 |fΣ
L (xq)〉 . (11)

The set-membership oracle can be realized in time TfΣ
L

= Õ(|L|).
Theorem 1. Algorithm 1 solves random subset sum instances (a, t) ∈ (Z2n)n+1

in expected time T = 20.4785n using O(n) qubits and memory M = 20.2392n.

Proof. Our parameter choice α = 0.0175 ≤ 1
4 determines the values of |S1|, |S2|

and R as

|S1| = |S2| =
(

n

( 14 + α)n, αn

)

= Õ(20.9569n),

R =
(n

2
n
4

)( n
2

αn, αn

)

= Õ(20.7177n).

Moreover, we easily check that our optimized parameter choice α = 0.0175,
r = 0.4784n and � = 0.2392n fulfills restrictions (3) and (4):

log |S1| − log R = 0.2392n ≤ � ≤ 0.4785n = log |S1| − r,

0 ≤ r ≤ 0.7177n = log R.

Using Eqs. (5) and (6), we obtain runtimes

T1 = O (
2� · 2

r
2
)

= Õ(20.4784n),

T2 = Õ
(

|S1| 1
2 |S2| 1

2

|R| 1
2

2− �
2 +

|S1| 1
2 |S2| 1

2

|R| 1
2

2
�−r
2

)

= Õ(20.47845n + 20.47845n).

Thus, by Eq. (7) Algorithm 1 has total runtime

T = Õ (max{T1, T2}) = Õ(20.47845n) ≤ 20.4785n.

The memory complexity is determined by the size of L as

M = Õ(|L|) = Õ(2�) = Õ(20.2392n) ≤ 20.2392n.

The application of Grover search and amplitude amplification both require only
O(n) many qubits. ��

While Theorem 1 beats Grover’s bound using only O(n) qubits and no
QRAM, it does not improve over purely classical time/memory tradeoffs, see
Fig. 1.
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4 Using a Classical Algorithm for List Construction

While Algorithm 1 is a direct adaptation of CNS quantum collision finding, it
ignores special properties of the subset sum setting. E.g. in step 1 of Algorithm 1
we are building a classical list L, where r bits of the hash function evaluation
Σ1(x) are fixed to zero. Each list element is constructed one by one using Grover
search, resulting in total runtime |L| · 2r/2 for step 1.

However, quantum algorithms like Grover Search are not optimal in finding
many solutions to a problem, and Grover search does not take advantage of
the linearity of hash function Σ1 (see Remark 3). We improve the step 1 list
construction by using the classical Schroeppel-Shamir algorithm [SS81]. We also
tried other more advanced classical list constructions for L such as BCJ [BCJ11],
but could not further improve over Schroeppel-Shamir.

To make optimal use of the representation technique, we also have to redefine
our search spaces.

Tunable Representations. Let 0 ≤ c ≤ 1. We define the following sets

T (c) :=
{

x ∈ {−1, 0, 1}cn

∣
∣
∣
∣
x contains (1/4 + α) cn many 1’s

and αcn many (−1)’s

}

,

B(c) :=
{

x ∈ {0, 1}cn

∣
∣
∣
∣ x contains

1
2
cn many 1’s

}

.

Let 0 ≤ c1 ≤ 1. We set our search spaces as

S1 = T (c1) × 0(1−c1)n,

S2 = T (c1) × B(1 − c1).

Therefore, we obtain in S1, S2 an overlapping part of length c1n, and an addi-
tional length (1 − c1)n search space for the quantum part, see also Fig. 3. In the
additional search space xq has relative weight 1/2. In the overlapping part both
xc,xq have relatively (to the length c1n) (1/4 + α) many 1-entries and α many
(−1)-entries.

Fig. 3. Visualization of search spaces S1, S2.
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Thus S1 and S2 have sizes

|S1| =|T (c1)| =
(

c1n

( 14 + α)c1n, αc1n

)

,

|S2| =|T (c1)| · |B(1 − c1)| =
(

c1n

( 14 + α)c1n, αc1n

)(
(1 − c1)n
1
2 (1 − c1)n

)

,

and the number of representations is

R =
(1

2c1n
1
4c1n

)( 1
2c1n

αc1n, αc1n

)

.

Constructing L via Schroeppel-Shamir. Our hash functions Σ1, Σ2 from
(9) remain unchanged. We have to compute

L = {(xc, Σ1(xc)) ∈ S1 × Z2n | Σ1(xc) = 0 mod 2r}.

We expect that L has size |S1|
2r . By Definition 1 of our random subset sum

instances, it is not hard to show that by a Chernoff bound with overwhelming
probability |L| deviates from its expectation by at most a logarithmic factor.
Hence, in the following we set |L| = Θ̃( |S1|

2r ).
L can be computed with the Schroeppel-Shamir algorithm in time

T1 = Õ
(
max

{
|S1| 1

2 , |L|
})

= Õ
(

max
{

|S1| 1
2 ,

|S1|
2r

})

(12)

using classical memory M = Õ(max
{

|S1| 1
4 , |S1|

2r

}
).

Our modifications result in Algorithm 2.

Theorem 2. Algorithm 2 solves random subset sum instances (a, t) ∈ (Z2n)n+1

by using only O(n) qubits in expected runtime

T = Õ
(

20.5n

M0.2532

)

for any classical memory M ≤ 20.2852n.

Proof. Our parameter choice α = 0.0042 ≤ 1
4 determines the values of |S1|, |S2|

and R as a function of 0 ≤ c1 ≤ 1 as

|S1| =
(

c1n

( 14 + α)c1n, αc1n

)

= Õ(20.8556c1n),

|S2| =
(

(1 − c1)n
1
2 (1 − c1)n

)(
c1n

( 14 + α)c1n, αc1n

)

= Õ(2(1−0.1444c1)n),

R =
( 1

2c1n
1
4c1n

)( 1
2c1n

αc1n, αc1n

)

= Õ(20.5704c1n).

From Eq. (12) and r = log R, Schroeppel-Shamir runs in time

T1 = Õ
(

max
{

|S1| 1
2 ,

|S1|
2r

})

≤ max
{
20.4278c1n, 20.2852c1n

}
= 20.4278c1n,
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Algorithm 2: Quantum Subset Sum Collision Finding II

Input : (a, t) ∈ (Z2n)n+1

Output : e ∈ {0, 1}n

Parameters: Optimize r, α as r = log R, α = 0.0042 and 0 ≤ c1 ≤ 1.
1. Let SΣi

r := {x ∈ Si | Σi(x) = 0 mod 2r} for i = 1, 2.
Construct, via Schroeppel-Shamir algorithm, a sorted (by second entry) list

L = {(xc, Σ1(xc)) ∈ SΣ1
r × Z2n} with |L| = 2�.

2. Perform amplitude amplification with the following Setup and Oracle.

(i) Setup: Construct

|φr〉 :=
1√

|SΣ2
r |

∑

xq∈S
Σ2
r

|xq, Σ2(xq)〉 |0〉 .

(ii) Oracle: Set-Membership-Oracle OfΣ
L

OfΣ
L

(|φr〉) =
1√

|SΣ2
r |

∑

xq∈S
Σ2
r

|xq, Σ2(xq)〉 |fΣ
L (xq)〉 .

Amplitude amplification eventually outputs some |(xq, Σ2(xq))〉 |1〉.
3. For the quantum half xq search for the classic half xc ∈ L with

Σ1(xc) = Σ2(xq) and xc + xq ∈ {0, 1}n.

using classical memory

M = Õ
(

max
{

|S1| 1
4 ,

|S1|
2r

})

≤ max
{
20.2139c1n, 20.2852c1n

}
= 20.2852c1n. (13)

Algorithm 2’s amplitude amplification operates on O(n) qubits without classical
memory.

Using Eq. (6) and � = log |S1| − r, amplitude amplification runs in expected
time

T2 = Õ
(

(
2− �

2 + 2
�−r
2

) |S1| 1
2 |S2| 1

2

|R| 1
2

)

= Õ
(

|S2| 1
2 +

|S1||S2| 1
2

R
3
2

)

= Õ
(
2(0.5−0.0722c1)n + 2(0.5−0.0722c1)n

)
= Õ

(
2(0.5−0.0722c1)n

)
.

Thus by (7) the total expected runtime is

T = Õ (max {T1, T2}) = Õ
(
max

{
20.4278c1n, 2(0.5−0.0722c1)n

})

= Õ
(
2(0.5−0.0722c1)n

)
.
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Using 2−c1n ≤ M− 1
0.2852 from Eq. 13, we achieve the desired trade-off

T = Õ
(

20.5n

M0.2532

)

for M ≤ 20.2852n.

��
Theorem 2 provides a time-memory-tradeoff between runtime and classical

memory while using only O(n) qubits. Note that any classical memory consump-
tion helps us to beat Grover’s square root bound. We compare to purely classical
time/memory tradeoffs in Fig. 4. Notice that our quantum algorithm beats any
classical algorithm in the memory regime M ≤ 2n/5.

Fig. 4. Comparison of our small qubit algorithm with purely classical time/memory
tradeoffs.

4.1 Optimization of Algorithm 2

We further improve on the analysis of Algorithm 2 by elaborating on the repre-
sentations, the algorithm itself remains unchanged.

More Tunable Representations. Let 0 ≤ z ≤ 1/2 and c, d ∈ [0, 1] with
c + d ≥ 1. We define the following sets

T (c, d, z) :=
{

x ∈ {−1, 0, 1}(c+d−1)n

∣
∣
∣
∣
x contains (z + α) (c + d − 1)n many 1’s

and α(c + d − 1)n many (−1)’s

}

,

B(c) =
{

x ∈ {0, 1}cn

∣
∣
∣
∣x contains

1
2
cn many 1’s

}

.

We set our search spaces as

S1 = B(1 − c2) × T (c1, c2, z) × 0(1−c1)n,

S2 = 0(1−c2)n × T (c1, c2,
1
2

− z) × B(1 − c1).



The Power of Few Qubits and Collisions 459

Fig. 5. Visualization of search spaces S1, S2.

In Algorithm 2 the parameter 0 ≤ z ≤ 1/2 controls the relative weight in the
overlapping part, see Fig. 5. The sizes of the search spaces are

|S1| = |B(1 − c2)| · |T (c1, c2, z)|
=

(
(1 − c2)n
1
2 (1 − c2)n

)(
(c1 + c2 − 1)n

(z + α)(c1 + c2 − 1)n, α(c1 + c2 − 1)n

)

,

|S2| = |B(1 − c1)| · |T (c1, c2,
1
2

− z)|

=
(

(1 − c1)n
1
2 (1 − c1)n

)(
(c1 + c2 − 1)n

( 12 − z + α)(c1 + c2 − 1)n, α(c1 + c2 − 1)n

)

,

with the number of representations

R =
(1

2 (c1 + c2 − 1)n
z(c1 + c2 − 1)n

)( 1
2 (c1 + c2 − 1)n

α(c1 + c2 − 1)n, α(c1 + c2 − 1)n

)

.

Optimization of c1, c2, α and z yields a slight improvement over Theorem 2, as
illustrated in Table 1 and Fig. 4.

Table 1. Results of optimization.

log2(M)/n 0.00 0.05 0.10 0.15 0.20 0.25 0.285

Optimization log2(T )/n 0.500 0.483 0.469 0.456 0.446 0.436 0.428

Theorem 2 0.500 0.487 0.475 0.462 0.449 0.437 0.428
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Abstract. In this work, we derive a method for constructing quantum
distinguishers for GFNs (Generalized Feistel-like schemes with invertible
inner functions and XORs), where for simplicity 4 branches are con-
sidered. The construction technique is demonstrated on Type-3 GFN,
where some other cyclically inequivalent GFNs are considered as exam-
ples. Introducing the property of separability, we observe that finding
a suitable partition of input blocks implies that some branches can be
represented as a sum of functions with almost disjoint variables, which
simplifies the application of Simon’s algorithm. However, higher number
of rounds in most of the cases have branches which do not satisfy the pre-
vious property, and in order to derive a quantum distinguisher for these
branches, we employ Simon’s and Grover’s algorithm in combination
with a suitable system of equations given in terms of input blocks and
inner functions involved in the round function. As a result, we are able
to construct a 5-round quantum distinguisher for Type-3 GFNs using
only a quantum encryption oracle with query complexity 2N/4 · O(N/4),
where N size of the input block.

Keywords: Simon’s algorithm · Grover’s algorithm · Generalized
Feistel network · Quantum cryptanalysis

1 Introduction

The interest in post-quantum cryptanalysis of block ciphers has significantly
increased in the last decade after Kuwakado and Morii [17] proposed a polyno-
mial time quantum distinguisher for 3-round Feistel Network based on Simon’s
algorithm [25]. The current state of quantum cryptanalysis of block ciphers
encompasses several approaches which range from quantifying the known clas-
sical attacks, to applying the quantum algorithms which result in significant
reduction of attack complexities, such as Simon’s and Grover’s [11] algorithms.
In various settings, these two algorithms have been utilized in many recent
works [3–6,8–10,12,14–17,19,21,23,24,27]. In general, the overall attention of
researchers has been further motivated by total/partial breaks of several ciphers
(or proofs that certain schemes provide much less security than expected) such
c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 461–480, 2020.
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as Even-Mansour [18], AEZ cipher [3], LED cipher [27], FX construction [6,19],
and certain authenticated encryption schemes [16].

The previous works demonstrate that Simon’s and Grover’s algorithm can
be utilized for key-recovery attacks and construction of quantum distinguishers.
The main idea is to construct a function, f , which has a hidden shift, that can
be recovered using Simon’s algorithm. The shift can then either reveal the secret
key or be used to distinguish the cipher from a random permutation. A problem
that may arise is that f may have unwanted collisions, however, Kaplan et al. [16]
showed this can be solved by performing sufficient measurements.

An interesting application of combining Simon’s and Grover’s algorithm has
been shown in [19] on the FX construction, where G. Leander and A. May showed
that key-whitening method does not provide the same increase of the key space as
in the classical environment. The combination of these two algorithms has been
used in the context of amplitude amplification technique derived by Brassard
et al. [7]. The work [19] initialized the series of papers [6,8–10,15] which have
been combining Simon’s and Grover’s algorithm in a similar way, resulting in
quantum distinguishers and key recovery attacks.

In this paper, we derive a method for constructing quantum distinguishers
based on Simon’s/Grover’s algorithm for Generalized Feistel networks. Recently,
iterated classical Feistel schemes in combination with advanced slide attacks have
been analysed in [8]. A distinguisher for 5-round Feistel networks is provided in
[10], which is then turned into a key-recovery attack with the Simon/Grover
combination. Moving to more general schemes, Dong et al. [9] provides a poly-
nomial time quantum distinguisher for Type-1 GFN with d branches on 2d − 1
rounds. In the same work, the authors provide a (2d+1)-round polynomial time
quantum distinguisher for 2d-branch Type-2 GFN. Ito and Iwata [15] improved
the Type-1 distinguisher to cover 3d − 3 rounds.

We notice that the previous distinguishers are based on finding a suitable
partition of the input block, such that, some branch can be written as a sum
of functions with almost disjoint variables. Here, ‘almost’ means that one of the
functions contain one specific variable that is not involved in other functions,
and ‘disjoint’ refers to its suitable placement in the context of Simon’s algorithm.
We call this property separability and refer to Definition 1 for the details. The
construction of f , that we use in our work, is based on the concatenation of
two suitable functions whose values are obtained by querying the encryption
oracle in superposition and truncating the output. Therefore, the attacks belong
to the so-called Q2 attack model. According to Hosoyamada and Sasaki [13,
Section 5.2] truncation is possible in the quantum world, i.e., it has been shown
that computing a truncated function can be done as efficiently as computing the
complete function.

However, the propagation of separability, which we consider in strong and
weak settings, is limited throughout the cipher. In order to demonstrate our
approach, we analyze the Type-3 GFN [28], which has not been addressed in
previous works. We notice that one can consider a specific set of terms which
is actually present in almost the whole cipher, which gives rise to a system
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of equations given in terms of input blocks and inner functions employed in the
definition of underlying GFN. The solvability of this system, in combination with
Simon’s and Grover’s algorithm, then implies suitable parameters upon which
the distinguisher is constructed. For instance, we show that for 5-round Type-3
GFN one needs 2n · O(n) query complexity and 2n + 2(2n + 1)(n + 1 +

√
n + 1)

qubits, in order to extract suitable parameters required for a distinguisher. Here,
n is the branch size of a given GFN, since for simplicity we fix the number of
branches to be 4 for all GFNs that we consider.

In general, we note that a successful construction of a distinguisher (by our
method) highly depends on the solvability of the observed system of equations,
along with the employed technique for constructing the Simon’s function f .
Recall that in our work the concatenation method is used, but other methods
can be utilized as well. Further consideration of the presented methods on other
GFNs in terms of the design and security, is left as an open problem.

This paper is organized as follows. In Sect. 2 we provide an overview of
Simon’s and Grover’s algorithm (along with the basic notation). In Sect. 3 we
demonstrate the presence of the separability property in 3-round Feistel cipher,
Type-1 and Type-2 GFNs, which we formalize by considering three different
types, namely (semi-) strong and weak separability. In the same section we ana-
lyze the Type-3 GFN (precisely, the 4-th branch of 5-th round). In Sect. 4 we
employ Simon’s and Grover’s algorithm to derive necessary parameters that will
enable us to construct a quantum distinguisher. Some concluding remarks are
given in Sect. 5.

2 Preliminaries

The vector space F
n
2 is the space of all n-tuples x = (x1, . . . , xn), where xi ∈ F2.

For x = (x1, . . . , xn) and y = (y1, . . . , yn) in F
n
2 , the usual scalar (or dot) product

over F2 is defined as x ·y = x1y1⊕· · ·⊕xnyn, where by ‘⊕’ we denote the modulo
2 computation in F

n
2 . A qubit is a superposition of the classical basis states, |0〉

and |1〉, i.e. μ |0〉 + ν |1〉 (μ, ν ∈ C) with |μ|2 + |ν|2 = 1, which represents the
normalization condition. A quantum register is a collection of n qubits, and
formally we denote it as |x〉 = |c1〉⊗ . . .⊗ |cn〉, where ci ∈ F2 (and thus x ∈ F

n
2 ).

The process of measuring a quantum state, say |ϑ〉 (which is a superposition
of classical states |x〉, x ∈ F

n
2 ) is a non-reversible physical process in which we

collapse the state |ϑ〉 into a classical state.
Since all computations in the quantum circuit are done in the Hilbert space,

it is necessary that any operator (and every single gate) implemented in the
quantum environment is invertible. To implement a function f : Fn

2 → F
τ
2 quan-

tumly, one uses an ancilla register (i.e., a register with auxiliary qubits), say y,
as

|x〉

|y〉
Uf

|x〉

|y ⊕ f(x)〉
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Here, Uf denotes the quantum oracle (as unitary operator) that provides the
values of the function f . If |y〉 is the all-zero register of size τ , then the oracle
Uf actually provides the mapping |x〉 → |f(x)〉, where the output |x〉 after the
evaluation of Uf is simply neglected.

In relation to quantum algorithms described later on, we will use the
Hadamard transform H⊗n, n ≥ 1 (also known as the Sylvester-Hadamard
matrix), which is defined recursively as

H⊗1 = 2−1/2

(
1 1
1 −1

)
; H⊗n = 2−1/2

(
H⊗(n−1) H⊗(n−1)

H⊗(n−1) −H⊗(n−1)

)
.

Throughout the article, by |0〉 we will denote the all-zero quantum register whose
size will be clear from the context. Throughout the work we will use the following
notation related to GFNs.

Notations

xr−1
j the input of j-th branch in r-th round, r ≥ 1, j ≥ 1.

x0
j = xj the input to j-th branch (first round). At some places xj denote

input variables to a function, which is clear from the context.
F r

i = F r
i (kr, ·) the inner function (in the round function) at r-th round of a

GFN, which involves the secret round key kr.
Fi = F 1

i the inner functions in the first round. Only in relation (5), F j denotes
a single inner function (in the round function) which involves a secret round
key.
RF

(t)
r the function which denotes the t-th branch at r-th round of a GFN.

2.1 A Brief Overview of Simon’s and Grover’s Algorithm

Simon’s algorithm [25] solves the following problem in polynomial time.

Simon’s Problem: Given a function f : Fn
2 → F

τ
2 (τ ≥ 1) and the promise

that there exists a vector s ∈ F
n
2 such that for all (x, y) ∈ F

n
2 × F

n
2 it holds that

f(x) = f(y) ⇔ x ⊕ y ∈ {0, s}, (1)

the goal is to find s.
The property (1) means that for an arbitrary vector x ∈ F

n
2 the value f(x)

will repeat only when the input x is shifted by s (the case when y = x is
trivial). The value s is called the shift or the period. Classically, one can find s
in time complexity O(2n/2). However, with the following quantum algorithm it
is possible to solve this problem with quantum complexity O(n).
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Simon’s Algorithm [25]:

(1) Prepare the state 2−n/2
∑

x∈F
n
2

|x〉 |0〉, where the second all-zero register is
of size τ (x ∈ F

n
2 ).

(2) Apply the operator Uf which implements the function f : Fn
2 → F

τ
2 in order

to obtain the state 2−n/2
∑

x∈F
n
2

|x〉 |f(x)〉 .

(3) Measuring the second register (the one with values of f), the previous state
is collapsed to |Ωa|−1/2

∑
x∈Ωa

|x〉, where Ωa = {x ∈ F
n
2 : f(x) = a}, for

some a ∈ Im(f).
(4) Apply the Hadamard transform H⊗n to the state |Ωa|−1/2

∑
x∈Ωa

|x〉 in
order to obtain |ϕ〉 = |Ωa|−1/22−n/2

∑
y∈F

n
2

∑
x∈Ωa

(−1)x·y |y〉 .

(5) Measure the state |ϕ〉:
(i) If f does not have any period, the output of the measurement are random

values y ∈ F
n
2 .

(ii) If f has a period s, the output of measurement are vectors y which
are strictly orthogonal to s, since the amplitudes of y are given by
2−(n+1)/2

∑
x∈Ωa

(−1)x·y = 2−(n+1)/2[(−1)x′·y + (−1)(x
′⊕s)·y], where we

use the assumption that Ωa = {x′, x′⊕s} (x′ ∈ F
n
2 , f(x′) = f(x′⊕s) = a),

for any a ∈ F
n
2 .

(6) If f has a period, repeat the previous steps until one collects n − 1 linearly
independent vectors yi. Then, solve the homogeneous system of equations
yi · s = 0 (for collected values yi) in order to extract the unique period s.

Throughout the paper, a Simon’s function f will be constructed using the well-
known concatenation technique which is given as follows.

Proposition 1. Let the function f : F2 × F
n
2 → F

n
2 be defined as

f(b, x) =
{

g(x), b = 0
h(x), b = 1 , (2)

where g, h : Fn
2 → F

n
2 . Then:

(i) If s is a period of both g and h, then f(b, x ⊕ s) = f(b, x) holds for all
(b, x) ∈ F2 × F

n
2 , i.e., f has period (0, s) ∈ F2 × F

n
2 .

(ii) If h(x ⊕ s) = g(x) holds for all x ∈ F
n
2 , then f has period (1, s) ∈ F2 × F

n
2 .

Remark 1. Note that using the same computation as in the proof of Lemma
1 in [17], one can show that if g(x) and h(x) = g(x ⊕ s) are permutations in
Proposition 1-(ii), then the period (1, s) of f is unique.

Example 1. [17] analyses the distinguishability of 3-round Feistel cipher (Fig. 1),
and in Sect. III-A the function f : F2 × F

n
2 → F

n
2 is defined by

f(b, x) =
{

F2(x ⊕ F1(α)) ⊕ (α ⊕ β), b = 0
F2(x ⊕ F1(β)) ⊕ (α ⊕ β), b = 1 , (3)

where α, β ∈ F
n
2 are different fixed vectors, where the restrictions of the function

f(b, x) are utilizing the second branch y1 = x0 ⊕ F2(x1 ⊕ F1(x0)).
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x0 x1

F1

F2

F3

y0 y1

Fig. 1. The 3-round Feistel network with keyed inner functions Fi.

Denoting by g(x) = f(0, x) and h(x) = f(1, x), it is easily verified that
h(x ⊕ (F1(α) ⊕ F1(β))) = g(x), and thus f has the shift (1, s) = (1, F1(α) ⊕
F1(β)) ∈ F2 × F

n
2 , and thus this construction corresponds to the case (ii) of

Proposition 1.

Remark 2. Note that several works use the idea of Proposition 1 to construct the
Simon’s function f , e.g. [8,16,27]. On the other hand, there are constructions
which are not based on the concatenation method, such as the analysis of the
Even-Mansour and LRW ciphers in [16].

Another quantum algorithm that will be used in our work is Grover’s algo-
rithm [11] which finds a target vector in a given set of vectors, without assuming
any structure on the set. Formally, the following problem is considered.

Grover’s Problem: Let X denote the search set whose elements are repre-
sented on 
log2 |X|� qubits, such that the superposition

∑
x∈X |x〉 is computable

in O(1). Given oracle access to a function B : X → F2, called the classifier, find
x ∈ X such that B(x) = 1.

If there are 2u preimages of 1, then the procedure of the Grover’s algorithm is
based on applying approximately

√|X|/2u times the operator Q (which queries
UB as a subroutine), in order to amplify the target amplitudes towards the
preimages of 1. If B has a value 1 only at one vector x, then Grover’s algorithm
runs in time O(

√|X|).
Our method of constructing a quantum distinguisher for GFNs will be based

on the combination of Simon’s and Grover’s algorithm (similarly to [9,10,19])
in framework of the following result derived by Brassard et al. [7].

Theorem 1. [7] Let A be any quantum algorithm on q qubits that uses no mea-
surement. Let B : Fq

2 → F2 be a function that classifies outcomes of A as good or
bad. Let p > 0 be the initial success probability that a measurement of A |0〉 is
good. Set t = 
 π

4θ �, where is defined via sin2(θ) = p. Moreover, define the unitary
operator Q = −AS0A−1SB, where the operator SB changes the sign of the good
state
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|x〉 →
{− |x〉 , if B(x) = 1

|x〉 , if B(x) = 0 ,

while S0 changes the sign of the amplitude only for the zero state |0〉. Then after
the computation of QtA |0〉, a measurement yields good with probability at least
max{p, 1 − p}.

3 Analysis of GFNs

In this section, we present a new approach for constructing distinquishers for
GFNs. In Sect. 3.1 we illustrate the main idea behind the quantum distinguish-
ers constructed for Type-1 and Type-2 GFNs. Introducing the property of sep-
arability, which is the main focus of our approach, in Sect. 3.2 we analyze the
Type-3 scheme with 4 branches. Later on in Sect. 4 we present our approach in
full detail.

3.1 On Quantum Distinquishers for Type-1 and Type-2 GFN

Recall that quantum distinquishers for classical 3-round Feistel network were
presented in [17], and for Type-1/Type-2 GFNs have been constructed in [9,
15] (see also [8,10,14]). In this section we discuss the main idea behind the
distinguishers on these schemes.

Let us consider the classical 3-round Feistel network (Fig. 1), denoted by
FN3(x0, x1) = (y0, y1), where y0 and y1 are given by

{
y0 = x1 ⊕ F1(x0) ⊕ F3(x0 ⊕ F2(x1 ⊕ F1(x0))),
y1 = x0 ⊕ F2(x1 ⊕ F1(x0)).

(4)

As shown in [17], by fixing the input x0 two times, first by α and then by β, then
using the right branch of FN3 one can construct a function f : F2 × F

n
2 → F

n
2

as in (3), and consequently verify that f(b, x) = f(b ⊕ 1, x ⊕ s) holds, where
s = F1(α) ⊕ F1(β). Moreover, they showed that (1, s) is the only non-trivial
period of f . Since this is highly unlikely to hold for a random permutation
(FN3 is proved to be indistinguishable from a random permutation in classical
environment under exponential number of queries), this automatically provides
a quantum distinguisher which is based on Simon’s algorithm.

Similarly, for d-branch Type-1 GFN (CAST256-like scheme), whose r-th
round function is given by Fig. 2, where xr−1

j is j-th branch in the input for
r-th round, one can construct the function f : F2 × F

n
2 → F

n
2 [9] by

f : (b, x) → αb ⊕ x2d−1
1 = F d(h(αb) ⊕ x), (5)

where (x2d−1
0 , . . . , x2d−1

d−1 ) = Ek(αb, x) and

h(αb) = F d−1(F d−2(. . . (F 2(F 1(αb) ⊕ x0
1) ⊕ x0

2) . . . ⊕ x0
d−3) ⊕ x0

d−2),

with blocks x0
0, . . . , x

0
d−2 taken to be constants and x0

d−1 = x. It is not difficult
to see that the period of the function f is given by (1, s) = (1, h(α0) ⊕ h(α1)) ∈
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F2 × F
n
2 , which provides the quantum distinguisher for 2d − 1 rounds based

on Simon’s algorithm. In a similar way, in [9] the distinguisher of Type-2 GFN
(RC6/CLEFIA-like scheme) for 2d + 1 rounds has been provided for 2d branches.

xr−1
0 xr−1

1 xr−1
2

. . . xr
d−1

F r

xr
0 xr

1 xr
2

. . . xr
d−1

Fig. 2. The round function of Type-1 GFN with d branches involving keyed function
F r.

An improvement of the distinguisher (5) has been given in [15], where the
same idea of fixing suitable inputs results in a periodic function f has been
applied to (3d − 3) and (d2 − d + 1)-round Type-1 GFN.

In general, our main observation on previously mentioned distinguishers is
that the construction of the Simon’s function f is based on the property that
we call separability, which is defined as follows.

Definition 1. Let RF
(t)
r : (x0, . . . , xd−1) ∈ F

dn
2 → F

n
2 denotes the t-th

branch at round r of a given GFN. In addition, assume that the input plain-
text (x0, . . . , xd−1) can be written with disjoint variables as (x0, . . . , xd−1) =
(x, y, z) ∈ F

e1
2 × F

e2
2 × F

e3
2 (e1 + e2 + e3 = dn, e1 ≥ 1). Then:

(i) The GFN satisfies the strong separability property if RF
(t)
r (x0, . . . , xd−1)

can be represented as

RF (t)
r (x0, . . . , xd−1) = RF (t)

r (x, y, z) = λ(y, z) ⊕ G(x ⊕ H(y, z)),

where λ is a known function (i.e., implementable by adversary1).
(ii) The GFN satisfies the semi-strong separability property if

RF (t)
r (x0, . . . , xd−1) = RF (t)

r (x, y, z) = y ⊕ λ(z) ⊕ G(x ⊕ H(y), z),

where λ is not available (to be implemented or queried).
(iii) The GFN satisfies the weak separability property if RF

(t)
r (x, y, z) =

λ(y, z) ⊕ G(x ⊕ H(y, z), y, z) and λ eventually is not available (e.g. due
to involvement of secret keys, or non-existence of the oracle to provide its
values).

In all three cases, G,H : F
n
2 → F

n
2 are some vectorial functions such that G

depends on the whole term ‘x ⊕ H(·)’ (i.e., x is appearing only in the term
‘x ⊕ H(·)’ and nowhere else outside of this term), the function H(·) depends on
variables y and/or z only (depending on the case), but not on x.
1 Or due to existence of an oracle to provide its values, and being available to be

queried by any inputs.
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Remark 3. Note that in general, we are not necessarily limited to only three
disjoint variables x, y, z, but more can be employed. It just appears that the
separability of many GFNs schemes is captured by Definition 1 which uses three
disjoint variables.

To provide more clarification, we remark the following points:

– In the case of FN3 (construction (3)), we notice that the variable x = x1 is
appearing only in the term ‘x1⊕F1(x0)’ and nowhere else outside of this term.
Here we consider that (x0, x1) = (y, x) and H(y) = F1(y). Considering y1 in
relation (4), we see that FN3 satisfies the strong separability, since y = x0 is
appearing in H(y) and also outside of it as a summand (where G = F2 and
λ is the identity mapping in variable y only).

– In (5) we have that the input block x0
d = x is appearing only in the term

‘x ⊕ h(x0
1, . . . , x

0
d−1) = x ⊕ H(y)’, i.e., it is not involved in the definition of

the function H, nor in any other term outside of this one.

In general, if a given GFN satisfies the strong or semi-strong separability prop-
erty, then one can always construct a Simon’s function directly by querying the
quantum encryption oracle with suitable constant/variable input blocks x, y, z
and applying Proposition 1-(ii). We have the following results.

Proposition 2. Let RF
(t)
r : (x0, . . . , xd−1) ∈ F

dn
2 → F

n
2 (xi ∈ F

n
2 ) denotes the

output of the t-th branch at round r of a given GFN, which satisfies the semi-
strong separability, that is RF

(t)
r (x0, . . . , xd−1) = RF

(t)
r (x, y, z) = y ⊕ λ(z) ⊕

G(x ⊕ H(y), z), for some functions G,H, λ : Fn
2 → F

n
2 (λ is not available to the

adversary). Then the Simon’s function f : F2 × F
n
2 defined by

f(b, x) =

{
α1 ⊕ RF

(t)
r (x, α0, β) b = 0

α0 ⊕ RF
(t)
r (x, α1, β) b = 1

,

has the period (1, s) = (1,H(α0) ⊕ H(α1)), were αb and β are fixed and known.

Proposition 3. Let RF
(t)
r : (x0, . . . , xd−1) ∈ F

dn
2 → F

n
2 (xi ∈ F

n
2 ) denotes

the output of the t-th branch at round r of a given GFN, which satisfies the
strong separability, that is RF

(t)
r (x0, . . . , xd−1) = RF

(t)
r (x, y, z) = λ(y, z)⊕G(x⊕

H(y, z)), for some functions G,H, λ : Fn
2 → F

n
2 (λ is available to the adversary).

Then the Simon’s function f : F2 × F
n
2 defined by

f(b, x) =

{
λ(α1, β) ⊕ RF

(t)
r (x, α0, β) b = 0

λ(α0, β) ⊕ RF
(t)
r (x, α1, β) b = 1

,

has the period (1, s) = (1,H(α0, β) ⊕ H(α1, β)), were αb and β are fixed and
known.

Recall that RF
(t)
r (αb, x) are obtained by querying and truncating the encryp-

tion oracle UGFN , and thus we assume that f can be implemented. Note that in the
context of [6] and the asymmetric-query approach (related to Q2 attack model),
we are not able to reduce the query complexity, since our function f is using the
quantum encryption oracle UGFN for both restrictions of the function f(b, x).
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Remark 4. Proposition 3 shows that semi-strong separability is in fact strong
separability (regardless of whether λ is known or not in the representation of
RF

(t)
r ). Essentially, this is due to the fact that the functions H and λ are disjoint

variable functions, i.e., they do not depend on same variables.

In the next subsection we analyze the Type-3 GFN and present the main idea
of our approach (which is further described in details in Sect. 4) that applies to
certain rounds which satisfy the weak separability property.

3.2 On Separability of the Type-3 GFN

In general, one can notice that for all GFNs provided on [2, Figure 3] (and other
schemes that one can find, for instance in [1,22]) the weak separability property
is appearing after several initial rounds only, and thus makes the application of
Simon’s algorithm very difficult. In what follows, we consider 4 rounds of the
so-called Type-3 scheme which satisfies the weak separability property, and we
demonstrate a new approach that potentially allows us to analyze a somewhat
increased number of rounds (at some branches).

Recall that the Type-3 GFN is given by Fig. 3, where the round function of
Type-3 GFN (shortly RF ) is defined as

RF : (x0, . . . , x3) → (x1 ⊕ F r
1 (x0), x2 ⊕ F r

2 (x1), x3 ⊕ F r
3 (x2), x0), (6)

where xi ∈ F
n
2 and F r

i : Fn
2 → F

n
2 .

xr−1
0 xr−1

1 xr−1
2 xr−1

3

F r
1 F r

2 F r
3

xr
0 xr

1 xr
2 xr

3

Fig. 3. The round function of Type-3 GFN.

Notice that, if we consider the 4-th branch of 4-round Type-3 (shortly GFN3),
which is given by

RF
(4)
4 (x0, . . . , x3) = x3 ⊕ F 3

1 (x2 ⊕ F 2
1 (x1 ⊕ F1(x0)) ⊕ F2(x1)) ⊕ F 2

2 (x2 ⊕ F2(x1)) ⊕ F3(x2)
︸ ︷︷ ︸

Does not involve x3

,

then it actually satisfies the strong separability. This observation allows that
we fix blocks (x0, x1, x2) to be constants, say to take two arbitrary (different)
values α0 = (α(0)

0 , α
(0)
1 , α

(0)
2 ), α1 = (α(1)

0 , α
(1)
1 , α

(1)
2 ) ∈ F

3n
2 , and set x3 = x.

This way (having an encryption oracle), we can construct the functions g0(x) =
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RF
(4)
4 (α0, x) and g1(x) = RF

(4)
4 (α1, x) and consequently the function f : F2 ×

F
n
2 → F

n
2 defined by

f(b, x) =
{

g0(x), b = 0
g1(x), b = 1 , (7)

is a periodic function in vector (1, s) = (1,H(α0) ⊕ H(α1)), where
H(x0, x2, x3) = x3 ⊕ RF

(4)
4 (x0, . . . , x3). Note that the periodicity follows from

Proposition 1-(ii), since g0(x ⊕ s) = g1(x) holds for all x ∈ F
n
2 . Thus we obtain

a quantum distinguisher for 4 rounds of GFN3 with polynomial-time complex-
ity, due to the possibility of applying Simon’s algorithm directly. In general, at
some other branches of RF4 one can apply the same idea by utilizing some other
suitable inputs.

Remark 5. Note that in the case of Type-3 GFN with d-branches, we have that
the branch RF

(d)
d (x0, . . . , xd−1) can be written as RF

(d)
d (x0, . . . , xd−1) = xd−1 ⊕

G(x0, . . . , xd−2), for some function G given in terms of inner functions F r
i , where

i, r ∈ {1, . . . , d−1}. This means that RF
(d)
d satisfies the strong separability, and

thus one can construct Simon’s function f similarly as in (7) providing the attack
complexity O(n).

Attacking More Rounds: If we consider the GFN3 with many rounds (say
≥ 5), then we are facing the weak separability property. Let us consider the
5-round (4-th branch), which is given by

RF
(4)
5 (x0, . . . , x3) = x0 ⊕ F 2

3 (x3 ⊕ F3(x2)) ⊕ F 3
2 [x3 ⊕ F3(x2) ⊕ F 2

2 (x2 ⊕ F2(x1))]

⊕F 4
1 [x3 ⊕ F3(x2) ⊕ F 3

1 (x2 ⊕ F2(x1) ⊕ F 2
1 (x1 ⊕ F1(x0))) (8)

⊕F 2
2 (x2 ⊕ F2(x1))].

Note that other branches of the 5-th round are even more complex. In this case
we do not have the separability of input blocks xi, since all of them appear at
many places. However, the main idea is to notice a “term” which has a potential
to be periodic, as for instance “x3 ⊕ F3(x2)”. The choice of this term is motivated
by the fact that input block x3 in round function RF is not input of any inner
function F r

i .
Let us fix x3 = x to be a variable, and let (x0, x1, x2) = (α(0), α(1), α(2)) be

a constant vector from F
3n
2 . Now, if in the place of x2 we consider two values,

say α
(2)
0 and α

(2)
1 , then in the form of RF

(4)
5 (α(0), α(1), α

(2)
0 , x) the value α

(2)
0 will

appear in the term “x ⊕ F3(α
(2)
0 )”, and it will appear at other places as well.

Considering the fixed inputs, we have

RF
(4)
5 (α0, x) = α(0) ⊕ F 2

3 (x ⊕ F3(α
(2)
0 )) ⊕ F 3

2 [x ⊕ F3(α
(2)
0 ) ⊕ F 2

2 (α
(2)
0 ⊕ F2(α

(1)))]

⊕F 4
1 [x ⊕ F3(α

(2)
0 ) ⊕ F 3

1 (α
(2)
0 ⊕ F2(α

(1)) ⊕ F 2
1 (α(1) ⊕ F1(α

(0))))

⊕F 2
2 (α

(2)
0 ⊕ F2(α

(1)))].
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where α0 = (α(0), α(1), α
(2)
0 ). In general, the function RF

(4)
5 (α0,x) can be written

in terms of some function G : Fn
2 → F

n
2 as

g00(x) = RF
(4)
5 (α0,x) = G(x ⊕ F3(α

(2)
0 ), α(0), α(1), α

(2)
0 ),

which is shortly denoted by g00(x) with respect to variable x, where the index
‘00’ stands for the index of α

(2)
0 that is appearing inside F3(·) and outside of it.

Remark 6. Note that we here do not consider that any part of RF
(4)
5 represents a

function λ, since it does not make much difference in the case of weak separability
(considering also the definition of the round function RF given by (6)).

At this step, we cannot point out some value s ∈ F
n
2 which will enable us to

construct a periodic function by concatenating two functions (and thus applying
Proposition 1), since the variable α

(2)
b (b = 0, 1) is appearing at other places

outside ‘x ⊕ F3(α
(2)
b )’ as well. Since one may consider s = F3(α

(2)
0 ) ⊕ F3(α

(2)
1 )

(which is not known due to the secret key k3), we have that

g00(x ⊕ s) = RF
(4)
5 (α0,x ⊕ s) = G(x ⊕ F3(α

(2)
1 ), α(0), α(1), α

(2)
0 ).

In order to construct a periodic function f , it is convenient to query the func-
tion RF

(4)
5 (x0, x1, x2, x3) with suitable inputs such that the obtained function

matches the function g10(x) = g00(x ⊕ s).
Considering the function RF

(4)
5 (x0, x1, x2, x3) (relation (8)), we notice that

the terms x3 ⊕ F3(x2), x2 ⊕ F2(x1), and x1 ⊕ F1(x0) are related such that they
have maximally one common variable. Namely, x3⊕F3(x2) and x2⊕F2(x1) have
x2 in common, x2 ⊕ F2(x1) and x1 ⊕ F1(x0) have x1 in common. Since in our
functions g00(x) and g10(x) we are fixing the term x3 ⊕ F3(x2) = x ⊕ F3(α

(2)
b )

(b = 0, 1), if we then query the encryption oracle with parameters (β, γ, α
(2)
1 , x),

where α
(2)
1 is an arbitrary fixed value, we have

RF
(4)
5 (β, γ, α

(2)
1 , x) = G(x ⊕ F3(α

(2)
1 ), β, γ, α

(2)
1 )

Due to the structure of the function RF
(4)
5 in (8) it is not difficult to see that if

for fixed vectors α(1) and α
(2)
1 it holds that

{
α
(2)
1 ⊕ F2(γ) = α

(2)
0 ⊕ F2(α(1))

γ ⊕ F1(β) = α(1) ⊕ F1(α(0))
, (9)

then

(α(0) ⊕ β) ⊕ RF
(4)
5 (β, γ, α

(2)
1 , x) = G(x ⊕ F3(α

(2)
1 ), α(0), α(1), α

(2)
0 )

= g10(x). (10)

In (10), G(x ⊕ F3(α
(2)
1 ), α(0), α(1), α

(2)
0 ) is denoted by g10, since we have α

(2)
1

inside F3(·), and α
(2)
0 outside of the term x ⊕ F3(α

(2)
1 ). Once we find the vectors
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β and γ for which (9) holds, the Simon’s function f is constructed as

f(b, x) =
{

g00(x), b = 0
g10(x) = g00(x ⊕ s), b = 1.

, (11)

which has the period (1, s) = (1, F3(α
(2)
0 ) ⊕ F3(α

(2)
1 )), extractable with Simon’s

algorithm in time O(n).
Assuming that F1 and F2 are invertible mappings, from (9) we have that

{
γ = F−1

2 (α(2)
0 ⊕ α

(2)
1 ⊕ F2(α(1)))

β = F−1
1 (α(1) ⊕ F1(α(0)) ⊕ γ)

, (12)

which means that system (9) has a unique solution pair (β, γ), where β depends
on γ.

Remark 7. It is important to note that the assumption on invertibility of Fi

implies that the period (1, s) of f given by (11), is unique (Remark 1). More
importantly, for fixed α(0), α(1), α

(2)
b (b = 0, 1), the solution pair (β, γ) actually

guarantees that the construction of f given by (11) has a non-zero period.

From the aspect of periodicity of f , which is imposed by solving the system
(9), we note that (9) may have more solution pairs (β, γ), since all these pairs
are involved in the function g10 and considered to be a valid pairs as long as it
holds that g10(x) = g00(x ⊕ s) for all x ∈ F

n
2 . Hence, the solution (12) ensures

the periodicity of f , but does not describe all solution pairs (β, γ) that impose
the periodicity of f .

Since oracles for F1 and F2 may not be available (due to unknown keys
k1, k2), we are unable to compute γ and β directly. Now, our approach (further
analysed in Sect. 4) is based on combining the Simon’s and Grover’s algorithm
[19] (see also [9,10]).

Remark 8. For the Type-3 GFN with d-branches, the branch RF
(d)
d+1(x0, . . . ,

xd−1) can be written as RF
(d)
d+1(x0, . . . , xd−1) = x0 ⊕ G(xd−1 ⊕

Fd−1(xd−2), x0, . . . , xd−2), for some function G given in terms of inner func-
tions F r

i , where i ∈ {1, . . . , d − 1} and r ∈ {1, . . . , d}. Since RF
(d)
d+1 satisfies

the weak separability, by choosing suitable inputs xi (as constants or variables)
one can apply the Simon-Grover algorithm presented in Sect. 4 (similarly as for
RF

(4)
5 ). In this case, the underlying system of equations is larger and its solvabil-

ity can be deduced by using the same arguments as for (9). Note that the attack
complexity, with respect to the combination of Simon’s and Grover’s algorithm,
would depend on how many constant and variables xi have been chosen.

4 Combining Simon’s and Grover’s Algorithm

The exhaustive search for pairs (β, γ) that provide the periodicity of f , given
by (11), is highly inefficient (for larger n). In this section we combine Simon’s
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and Grover’s algorithm in order to find such pairs, where the main focus is the
strong scenario which assumes the randomness of inner functions F r

i (denoted
as CASE I). We also discuss the weakened scenario (denoted as CASE II) in
which there may exist many (β, γ) which result in periodicity of f in s which
are not necessarily of the form s = F3(α

(2)
0 ) ⊕ F3(α

(2)
1 ). In terms of the Simon-

Grover algorithm this scenario has even smaller complexity, since in this case
the underlying classifier B has larger preimage set (good inputs) of the output
value 1 (as described in Sect. 2.1, in the part related to Grover’s algorithm).

Recall that as a part of Grover’s algorithm, we will have to define the classifier
B. For this purpose we will use the function f : F2n+(n+1)

2 → F
n
2 , which is defined

as

f(β, γ, b, x) =

{
g00(x) = RF

(4)
5 (α(0), α(1), α

(2)
0 , x), b = 0

g10(x) = (α(0) ⊕ β) ⊕ RF
(4)
5 (β, γ, α

(2)
1 , x), b = 1

, (13)

where the values of g00(x) we directly take from the truncated encryption oracle
UGFN3 , in which the keys involved in F r

i are known to the oracle. On the other
hand, the values of g10(x) also use UGFN3 , with additional inputs γ and β, where
vectors α(0), α(1), α

(2)
b (b = 0, 1) are known and fixed in advance.

Now, let us define the function ξ : (Fn
2 )2 × (Fn+1

2 )� → F
�n
2 by

ξ : (β, γ, y1, . . . , y�) → f(β, γ, y1)|| . . . ||f(β, γ, y�),

where the parameter  (≈ O(n)) implements the parallelized application of
Simon’s algorithm [19]. Denoting by Uξ the quantum oracle defined by

Uξ : (β, γ, y1, . . . , y�,0, . . . ,0) → |β, γ, y1, . . . , y�, ξ(β, γ, y1, . . . , y�)〉 ,

where 0 is the all-zero quantum state of length n, then we define:

The Quantum Algorithm A:

(1) Prepare the initial all-zero state |0〉 of size (2n + (n + 1) + n).
(2) Apply the Hadamard transform H⊗(2n+�(n+1)) (on the first υ = 2n+(n+1)

qubits) and the operator Uξ in order to obtain the state

2−υ/2
∑

β,γ∈F
n
2 ,

y1,...,y�∈F
n+1
2

|β, γ〉 |y1〉 · · · |y1〉 |ξ(β, γ, y1, . . . , y�)〉 .

(3) Apply the Hadamard transform to states |y1〉 · · · |y�〉, to get the state

|ϕ〉 = 2− υ+(n+1)�
2

∑

β,γ∈F
n
2 ,

u1,...,u�∈F
n+1
2 , y1,...,y�∈F

n+1
2

|β, γ〉 (−1)u1·y1 |u1〉 · · · (−1)u�·y� |u�〉 |ξ(β, γ, y1, . . . , y�)〉 .

At this moment, we are not doing any measurement on |ϕ〉, since we need to
apply Grover’s algorithm in addition. Now, we define:
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The Classifier B : (β, γ, u1, . . . , u�) ∈ F
2n+�(n+1)
2 → F2

(1) If dimension of the linear span of u1, . . . , u� ∈ F
n+1
2 is not equal to n, i.e.,

dim(〈u1, . . . , u�〉) �= n, then we set B(β, γ, u1, . . . , u�) = 0. Otherwise, use
[19, Lemma 2] to compute a candidate period s′ ∈ F

n+1
2 .

(2) Then, check whether f(β, γ, y) = f(β, γ, y ⊕ s′) holds for some amount
of (randomly) provided y. If all equalities hold, then the output of B is 1,
otherwise 0.

Remark 9. Notice that the definition of the classifier B actually implements the
idea of Simon’s algorithm, by finding a test period s′ in the first step, and testing
it then in the second step.

Thus, we say that a state (β, γ, u1, . . . , u�) is good if and only if
B(β, γ, u1, . . . , u�) = 1, that is, when both tests (1) and (2) are satisfied. The
classifier B partitions the state |ϕ〉 into a good and bad spaces |ϕ0〉 and |ϕ1〉
respectively, as |ϕ〉 = |ϕ0〉 + |ϕ1〉. Here |ϕ0〉 and |ϕ1〉 denote the projection onto
the good and bad subspace respectively. In order to discuss the probability p
of obtaining a good state (after measuring the state |ϕ〉), we distinguish the
following cases:

CASE I: Let us assume that F r
i behave as pseudo-random permutations. Then

with very high probability we are expecting that not many pairs (β, γ), differ-
ent than those given by (12), are implying the periodicity of the function f .
This expectation is partly supported in a weak setting presented in Appendix -
Table 1, in which we set that F r

i (x) = S(x ⊕ kr
i ), x ∈ F

n
2 , where S is the S-box

used in TWINE [26] (n = 4) and SMS4 [20] (n = 8). Even in these weak set-
tings, the experiments indicate that periodicity of f in s = F3(α

(2)
0 )⊕F3(α

(2)
1 ) is

mainly related to existence of two pairs (β, γ). Formally, we have the following
result which is quite similar to [19, Lemma 5], where a short proof is provided
for self-completeness.

Lemma 1. Let σ = (β′, γ′, u1, . . . , u�) be an observed state. If a candidate pair
(β′, γ′) is given by (β′, γ′) = (β, γ), where (β, γ) is given by (12), then B(σ) = 1
holds with probability at least 1

5 . On contrary, assume that probability of (β, γ)
to be a wrong pair, that is when (β′, γ′) �= (β, γ) is not given by (12), is upper
bounded by 2−z with z > 2n − 4 (based on the pseudorandomness of F r

i ). If the
output of B is equal to 1, then (β′, γ′) = (β, γ) holds probability > 1 − 1

2z−2n+4 .

Proof. Using the same arguments as in the first part of the proof of [19, Lemma
5], one obtains that p0 = Pr[B(σ) = 1|β′ = β, γ′ = γ] ≥ 1

5 . Regarding the second
part, let σ = (β′, γ′, y1, . . . , y�) be an input for which it holds that B(σ) = 1.
Assume that probability of the pair (β′, γ′) to be a wrong one (that is (β′, γ′) �=
(β, γ)) is upper bounded by q = 2−z, where z > 2n − 4. Here by a wrong pair
we mean that at least one of the keys β′, γ′ ∈ F

n
2 is not correct. By law of total

probability, it is not difficult to see that Pr[B(σ) = 1] ≤ 2−2n · p0 + 2−n−z+1 +
2−z, which consequently (using the first part of the proof) gives that

Pr[β′ = β, γ′ = γ|B(σ) = 1] ≥ 1 − 22n−z+4 − 22(2n−z+4)

1 − 22(2n−z+4)
.



476 S. Hodžić et al.

Note that the previous two inequalities are obtained using the same computa-
tional steps as in [19, Lemma 5]. Assuming that ν = z − 2n + 4 > 0 (i.e., z >

2n − 4), we have that 2−ν − 2−2ν

1− 2−2ν < 1
2ν , which consequently (by −ν = 2n− z −4)

gives Pr[β′ = β, γ′ = γ|B(σ) = 1] ≥ 1 − 22n−z−4−22(2n−z−4)

1−22(2n−z−4) > 1 − 1
2z−2n+4 .

Consequently, by law of total probability the value p (without loss of gener-
ality) is estimated as

p = Pr[|β′, γ′, u1, . . . , u�〉 is good]
≈ Pr[(β′, γ′) = (β, γ)] · Pr[B(β′, γ′, u1, . . . , u�) = 1|(β′, γ′) = (β, γ)] ≈ 2−2n,

where (β, γ) are given by (12). Let us consider the second part of definition of
B, where we observe ρ randomly taken vectors y ∈ F

n
2 and s′ = (c, s) ∈ F2 × F

n
2

as some candidate period. If c = 0 and y = (0, x), then testing the equality
f(β, γ, y) = f(β, γ, y ⊕ s′) is equivalent to g00(x) = g00(x ⊕ s), which is highly
unlikely if we assume that F r

i are random permutations (or if we assume that
RF

(t)
r behaves as a random permutation for considered number of rounds). Let

us consider the case when g00(x) = g10(x ⊕ s), where g00(x) are values coming
from UGFN3 (involving all correct keys) and g10 takes the candidate values β, γ
as inputs (by design (13)). Then it is reasonable to assume that the probability
of satisfying g00(x) = g10(x ⊕ s) (for many random inputs x) with respect to
β, γ is equal to 2−ε, for sufficiently large ε.

Consequently, the probability of guessing a right pair (β, γ), for which all ρ
equalities g00(x) = g10(x ⊕ s) hold, is given by 2−ρ·ε, and thus the value z from
Lemma 1 is taken to be z = ρ · ε. Thus, we simply observe ρ = 
 2n − 4

ε � vectors
y in order to ensure a high probability of having correct β, γ, if we observe an
input σ = (β, γ, y1, . . . , y�) for which B(σ) = 1. For instance, if ε = 2 (which
is very low considering our assumptions), then ρ = 
n − 2�, which is always
possible.

Hence, B defines a unitary operator SB that changes the signs of states as

SB : σ = |β, γ, u1, . . . , u�〉 →
{− |β, γ, u1, . . . , u�〉 , B(σ) = 1

|β, γ, u1, . . . , u�〉 , B(σ) = 0 .

The application of Grover’s algorithm is realized by applying the operator Q =
−AS0A−1SB consecutively t times to the state |ϕ〉 = A |0〉. Thus, measuring the
state QtA |0〉 we obtain a good state with probability pgood, which is estimated
as follows.

By Theorem 1, we have sin2(θ) = p = 〈ϕ1|ϕ1〉 which implies θ ≈
arcsin(

√
p) ≈ 2−n. Therefore, the number of iterations (by Theorem1) given

by t = 
 π
4θ � = 
 π

4·2−n � ≈ 2n is sufficient to result in angle π/2 between the
resulting state QtA |0〉 and the bad subspace. Consequently, the success proba-
bility pgood = 1 − 2−n is very close to 1 for somewhat larger n.

CASE II: The experiments considered in weak settings given in Appendix -
Sect. A.1 indicate that it may be the case that for various periods s ∈ F

n
2 there
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may exist pairs (β, γ) (used as inputs in g10) which imply the periodicity of f . By
testing the periodicity for all vectors s ∈ F

n
2 , for the TWINE S-box on average

we find 3 vectors s for which there exist two pairs of (β, γ) such that f (given by
(11)) is periodic. In rare cases, for certain key sets taken randomly for 5 rounds,
we may have that for almost all s ∈ F

4
2 (TWINE S-box is of size 4) one finds at

least two pairs of (β, γ) giving the periodicity of f .
If the underlying GFN has this property (at observed branch), i.e., that

there exist different periods s which are ensured with more pairs (β, γ), then the
classifier B has the initial probability p much larger than 2−2n, and consequently,
the final query complexity is significantly less than 2n ·O(n). In this context, it is
important to emphasize that a good outcome (β, γ, u1, . . . , u�) is useful as long as
its values β, γ which imply the periodicity of f (where clearly the corresponding
period can be computed from vectors u1, . . . , u�). Also, the probability pgood

of obtaining this outcome is still satisfying, since the space ϕ1 is larger. Note
that by [7, Theorem 3], one can still run the Grover’s algorithm even when the
value p is not known in advance, where due to existence of many periods and
corresponding pairs (β, γ), our algorithm will not run forever, but it will be
significantly faster than 2n · O(n).

To Summarize: Considering the strong scenario (when F r
i are pseudorandom

permutations), the overall procedure of obtaining a pair (β, γ) ∈ F
2n
2 for RF

(4)
5 :

F
4n
2 → F

n
2 requires 2n + (2n + 1) = 2n + 2(2n + 1)(n + 1 +

√
n + 1) qubits

and approximatively 2n · O(n) quantum queries, where the value  = 2(n +
1 +

√
n + 1) is chosen according to [19, Lemma 4] (for vectors yi ∈ F

n+1
2 in

the algorithm A). In addition, a good outcome provides also a set of vectors
y1, . . . , y� which we can use to find a period s = F3(α

(2)
0 )⊕F3(α

(2)
1 ) with very high

probability, as discussed earlier. In the weak scenario (when different periods are
possible with many (β, γ) pairs), the query complexity tends to be lower, which
clearly depends on the observed GFN.

5 Conclusions

For the classical environment, many works have been devoted to improve the
diffusion properties of GFN, since they depend on inner round functions. How-
ever, in the quantum environment the cryptanalytic methods are taking different
direction, in which the quantum algorithms (such as Simon’s, Grover’s, and oth-
ers) are playing an important role (for which in many cases the inner functions
are not important that much). The method presented in this work focuses on two
elements, namely a suitable construction of a Simon’s function and collection of
a specific equations in terms of inner functions (with suitably fixed inputs). We
show that the solvability of the system of collected equations may imply a con-
struction of a quantum distinguisher for (almost) any number of rounds if the
considered system has solutions. Unfortunately, our method (being generic) does
not run in polynomial time, but in exchange indicates on which specific inner
round functions the security may rely. As an interesting research direction, we
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leave our method for further investigation in the context of: other (cyclically
inequivalent) GFNs used in some well-known block ciphers, GFNs with non-
binary group operations, unbalanced GFN, design criterions, combination with
other attacks, and so on.

Acknowledgment. S. Hodžic and L. R. Knudsen are supported by a grant from
the Independent Research Fund Denmark for Technology and Production, grant no.
8022-00348A.

A Appendix

A.1 Experimental Results Related to System (9)

In Table 1 we consider the number of pairs (β, γ) which are implying the peri-
odicity of f exactly in s = F3(α

(2)
0 ) ⊕ F3(α

(2)
1 ), where f is given by (11) as

f(b, x) =

{
g00(x) = RF

(4)
5 (α(0), α(1), α

(2)
0 , x), b = 0,

g10(x) = (α(0) ⊕ β) ⊕ RF
(4)
5 (β, γ, α

(2)
1 , x), b = 1.

(14)

We take that F r
i are defined by F r

i (x) = S(x ⊕ kr
i ), x ∈ F

n
2 , with S being the S-

box used in TWINE [26] (n = 4) and SMS4 [20] (n = 8). Since we are considering
only 5 rounds, the keys supplied to inner functions F r

i are taken to be arbitrary,
and thus we are considering in total 5 × 3 = 15 random keys (effectively it is
needed 4 × 3, since RF

(1)
4 = RF

(4)
5 ). In addition, with respect to these random

sets of keys, we are also taking random quadruples (α(0), α(1), α
(2)
0 , α

(2)
0 ).

Table 1. The number of pairs (β, γ) that imply a periodic function f given by (14).

S-box Number of random

quadruples

(α(0), α(1), α
(2)
0 , α

(2)
0 )

Number of key sets

for the first 5 rounds

Number of pairs (β, γ)

which imply

periodicity of f in s

TWINE cipher (n = 4) 10 10 2

SMS4 cipher (n = 8) 10 10 2

We notice that for different random key sets, one may obtain the same pairs
of (β, γ), or eventually the first/second values are equal. Unfortunately, we did
not find why in almost all cases one obtains exactly 2 different pairs of (β, γ). In
rare cases, for the TWINE S-box, for certain instances of keys and quadruples
(α(0), α(1), α

(2)
0 , α

(2)
0 ) there exist 16 pairs (β, γ) which imply periodicity of f .

However, recall that this is a weak setting of the inner functions F r
i considered

only on 5 rounds (if one would relate these to the presence of weak keys).
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Abstract. Hybrid Authenticated Key Exchange (AKE) protocols com-
bine keying material from different sources (post-quantum, classical, and
quantum key distribution (QKD)) to build protocols that are resilient
to catastrophic failures of the different components. These failures may
be due to advances in quantum computing, implementation vulnerabili-
ties, or our evolving understanding of the quantum (and even classical)
security of supposedly quantum-secure primitives. This hybrid approach
is a prime candidate for initial deployment of post-quantum-secure cryp-
tographic primitives because it hedges against undiscovered weaknesses.
We propose a general framework HAKE for analysing the security of
such hybrid AKE protocols. HAKE extends the classical Bellare-Rogaway
model for AKE security to encompass forward security, post-compromise
security, fine-grained compromise of different cryptographic components,
and more. We use the framework to provide a security analysis of a new
hybrid AKE protocol named Muckle. This protocol operates in one round
trip and leverages the pre-established symmetric keys that are inherent
to current QKD designs to provide message authentication, avoiding the
need to use expensive post-quantum signature schemes. We provide an
implementation of our Muckle protocol, instantiating our generic con-
struction with classical and post-quantum Diffie-Hellman-based algo-
rithmic choices. Finally, we report on benchmarking exercises against
our implementation, examining its performance in terms of clock cycles,
elapsed wall-time, and additional latency in both LAN and WAN set-
tings.

Keywords: Authenticated key exchange · Hybrid key exchange ·
Provable security · Protocol analysis · Quantum key distribution ·
Post-compromise security

1 Introduction

NIST’s Post Quantum Cryptography (PQC) process has triggered significant
effort into the design of new post-quantum public key algorithms that can even-
tually be used to replace existing algorithms in protocols such as IPsec and
c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 483–502, 2020.
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TLS. Indeed, NIST’s 2017 call received 69 complete submissions in various cate-
gories. However, much less attention has been paid on how to securely integrate
these new algorithms into applications, and to assessing the impact they will
have on the performance of real-world network protocols. A key issue is that the
new algorithms are relatively immature, and our understanding of their secu-
rity is still evolving. NIST lacked confidence in 13 of the original submissions
[22]; meanwhile Albrecht et al. [4] highlight how poor our current understand-
ing is of how to assess the cost of lattice attacks. During the cryptographic
interregnum, sensitive data is still at risk from attackers who are willing to
record and store network traffic for later cryptanalysis. One response to this
uncertainty is to quickly roll out post-quantum secure algorithms in protocols
like TLS. For example, in 2016 Google carried out an experiment in which
they deployed the NewHope lattice-based scheme [5] in Chrome and in Google
servers [13], and in 2019 Cloudflare and Google jointly carried out similar exper-
iments [20]. These tests adopted hybrid approaches, combining post-quantum
schemes with forward-secure key exchange mechanisms, namely Elliptic Curve
Diffie Hellman Ephemeral (ECDHE). Adopting a hybrid approach hedges against
security vulnerabilities in the post-quantum algorithm (fundamental as well as
implementation-related) whilst providing security against quantum adversaries.
While discussions have started [27], at this point no formal standardisation has
begun integrating post-quantum algorithms into secure Internet protocols, a few
unadopted IETF drafts notwithstanding [25,29]. Standardisation will inevitably
be needed, and we anticipate that a hybrid approach will be used. But first the
community needs to research (a) how to build and analyse hybrid protocols, and
(b) how to assure the security of their post-quantum components. The former is
the main focus of this work, while the latter falls under the aegis of the NIST
PQC process.

Quantum Key Distribution (QKD) is often promoted as an alternate solution
to the threat posed by large-scale quantum computers, and has some attractive
features: when well-implemented, it can offer unconditional security, it is also
increasingly well-integrated with standard optical communications and electron-
ics systems, with small package sizes and high raw bit rates, cf. [26]. However,
the achievable bit rate does not yet practically allow the use of QKD keying
material in a one-time-pad encryption system, so while the keying material may
be unconditionally secure, no practical overall secure communications system
relying on QKD is (to date). Moreover, QKD is fundamentally range limited (in
the absence of quantum repeaters) and so cannot offer true end-to-end security
in wide-area networks. Furthermore the technology is still quite immature, and
vulnerable to various implementation attacks (“quantum hacking”), cf. [18,28].
Even the physical basis of QKD has been questioned [10,30]. Despite this, QKD
may still usefully augment existing technologies in point-to-point applications,
such as intra or inter data-centre communications or in metropolitan networks.
Given this context, we should consider the possibility of incorporating QKD-
based keying material into our hybrid protocol designs, resulting in three sources
of keying material to combine: classically-secure (e.g. ECDHE), post-quantum
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secure (e.g. NewHope, SIDH, or another NIST candidate), and QKD-based.
Having established this context, we can now begin to describe our contributions.

1.1 Our Contributions

The HAKE Security Framework: We introduce a flexible framework for cap-
turing and analysing Hybrid Authenticated Key Exchange (AKE) protocols that
combine a wide variety of symmetric and asymmetric primitives. The HAKE
framework is the result of heavily modifying the classic Bellare-Rogaway [7]
model for AKE, incorporating security notions such as perfect forward secrecy
and post-compromise security (referring to the ability of a key exchange protocol
to recover security in the event of a catastrophic compromise of all its secrets)
and smoothly caters for different strengths of adversary (quantum or even classi-
cal). It features a particularly simple and novel abstraction of QKD protocols to
allow them to be modelled in a standard computational setting: pairs of parties
are given private access to a shared source of secret random bits.

The Muckle AKE Protocol: To exercise the HAKE framework, we also present
the Muckle AKE protocol,1 its security analysis, details of a working software
implementation of Muckle, and benchmarking results. Muckle securely combines
keying material obtained from a quantum key distribution (QKD) protocol with
that from a post-quantum-secure key encapsulation mechanism (KEM) and a
classically-secure KEM. Muckle is a one-round (1-RTT) protocol which exploits
the presence of a QKD component to simplify the authentication of protocol
messages. Specifically, QKD protocols typically assume the presence of an initial
or pre-shared key (PSK) between the pair of communicating parties. This is
used to bootstrap an authenticated channel for exchanging basis measurement
information.2 Muckle’s design assumes the presence of a second PSK (since the
cost of establishing two such keys is not any greater in practice than the cost
of establishing just one), and uses it as the basis for authenticating its protocol
messages via MACs. Muckle evolves this key and associated state, using outputs
from the various KEM primitives as well as the QKD itself.

Benchmarking Muckle: We instantiate and implement Muckle in ‘C’ (which
we denote C-Muckle) and benchmarked it in different network settings, selecting
specific schemes in order to fix a concrete design. We profile the cost of the
underlying C-Muckle functions in terms of the median execution wall-time and
clock cycle counts. We also contrast the wall-time profiling of C-Muckle functions
when it runs over a LAN with the same profiling when it is run between London
and Paris (approximately 500 km, somewhat more than the current maximum
range of single-hop QKD systems). These experiments are done without a real
QKD system, which is simulated via access to a file of keying material.

1 The name Muckle derives from the traditional English phrase “Many a mickle makes
a muckle”: many small things can add up to make a big thing.

2 As a side-note, this is why QKD in this normal form does not solve the key distri-
bution problem, but only the key expansion problem.
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Security Analysis of Muckle: Finally, we demonstrate that Muckle achieves
AKE security as defined by our HAKE framework. This allows us to make secu-
rity statements about Muckle in the presence of quantum adversaries (assuming
post-quantum variants of standard cryptographic assumptions), or under the
catastrophic failure of all but one of its distinct components. The latter includes
scenarios where, for example, all public key cryptography evaporates (and only
Muckle’s QKD component remains secure). It also includes the situation where
the QKD component turns out to be badly engineered and therefore insecure
and where the classical component becomes vulnerable to a quantum computer,
but where its post-quantum counterpart remains secure.

1.2 Related Work

While the analysis of “fully classical” hybrid schemes have appeared in the past
(for instance, work on combining multiple public-key encryption schemes [31]),
little work has been done on combining post-quantum and classical cryptographic
primitives. Bindel et al. [12] examine a variety of hybrid digital signature schemes
in quantum and post-quantum settings. They also formalise the notion of separa-
bility, which captures the ability of an attacker to separate the hybrid scheme into
its individual cryptographic components. Bindel et al. [11] is most closely related
to our work, considering hybrid key exchange in a similar setting to our own, but
is focussed on quantum-secure KEM combiners. Their setting and security model
are less general than ours in some regards (our HAKE framework can accommo-
date KEMs, theirs is limited to KEMs), but considers a hierarchy of attackers
depending on quantum-computing capability and quantum access to the pro-
tocol participants. In addition, their compromise paradigm is less fine-grained,
considering only the compromise of long-term and session keys. Complementing
our approach, Mosca et al. [23] analyse the security of the QKD protocol BB84
[8], using an AKE security model in the tradition of Bellare-Rogaway to formalise
the protocol in their notation. They prove the security of BB84 in this security
model, and their notions of keys output by the QKD protocol match our assump-
tions. The concept of breakdown resilience was introduced by Brendel et al. [14];
this concept considers the effect on overall protocol security of failures of indi-
vidual cryptographic components. They also extend Bellare-Rogaway security
models by providing an interface for an attacker to break individual crypto-
graphic components, similar to our approach of providing specific key exposure
oracles. There have been a couple of recent IETF drafts [25,29] describing hybrid
approaches for TLS 1.3, but without any accompanying formal security analysis
as far as we are aware.

2 The Muckle Protocol

Here we introduce the Muckle hybrid key exchange protocol; see Fig. 1 for an
overview. At a high-level, Muckle simultaneously executes post-quantum and
classical key encapsulation primitives, and draws key material from a QKD pro-
tocol, represented abstractly in the protocol as a shared array of bits into which
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Initiator Responder

CLASS. KEX (cpkA, cskA)
$← KEM.KeyGen()

QRA KEX (qpkA, qskA)
$← QKEM.KeyGen()

m0 ← headerA, qpkA, cpkA

AUTH mkeyA ← PRF(PRF(PSK , SecState), labelA)
AUTH τ0 ← MAC(mkeyA, m0) τ0

?= MAC(mkeyA, m0) VERIFY
m0, τ0

(cpkB, k) $← KEM.Encaps(cpkA) CLASS. KEX
(qpkB, qsk) $← QKEM.Encaps(qpkA) QRA KEX

m1 ← headerB, qpkB, cpkB

mkeyB ← PRF(PRF(PSK , SecState), labelB) AUTH

VERIFY τ1
?= MAC(mkeyB, m1) τ1 ← MAC(mkeyB, m1) AUTH

m1, τ1

ck ← PRF(k, labelck) CLASS. KEX
qk ← PRF(qsk, labelqk) QRA KEX

CLASS. KEX k ← KEM.Decaps(cskA, cpkB), ck ← PRF(k, labelck)
QRA KEX qsk ← QKEM.Decaps(qskA, qpkB)
QRA KEX qk ← PRF(qsk, labelqk)

QRA KDF k0 ← PRF(qk, m0‖m1) QRA KDF
CLASS. KDF k1 ← PRF(ck, k0) CLASS. KDF

QKM KDF k2 ← PRF(qkm[index-qkm], k1) QKM KDF
PCS KDF k3 ← PRF(SecState, k2) PCS KDF

SecState′, skA, skB ← PRF(k3, m0‖m1‖ctr)
ctr ← ctr + 1

Fig. 1. A single stage of the Muckle protocol.

the two parties can index. The three distinct types of key material are used as
inputs to a sequence of key derivation steps that we refer to as the Muckle key
schedule. The design of the Muckle key schedule allows us to prove that the
session keys produced by Muckle are resilient to vulnerabilities in the underly-
ing QKD or key exchange primitives. Muckle is a multi-stage protocol, where the
initiator and responder repeatedly run the single stage shown in Fig. 1, updating
the session keys skA, skB and the secret, shared state SecState of the protocol
at each stage. We highlight the key features of Muckle below:

– One round trip (1-RTT) to establish post-quantum-secure session keys.
– Multi-stage design and the inclusion of an updating secret state (SecState)

allows Muckle to achieve post-compromise security, i.e. recover security after
full compromise attacks (under certain restrictions, see Sect. 4).

– Hybrid key exchange approach allows Muckle to be secure against classical
adversaries even if the QKD and post-quantum components fail.

– Use of symmetric cryptography (of an appropriate key-length) allows Muckle
to achieve post-quantum authentication without the use of computationally-
expensive and bandwidth-intensive post-quantum signatures.

– Modular design allows implementers to easily replace underlying key exchange
primitives if vulnerabilities are discovered.

– Key confirmation and full message transcript agreement of previous stages
are provided in successive stages via the computation of authentication keys.
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We expand on these below, and explain the different components of Muckle.

Message Structure: There are four elements to a Muckle message: a header
(referred to in Fig. 1 as headerA and headerB), containing message identifiers,
cryptographic primitive identifiers and party identifiers; a classical ephemeral
key encapsulation, (which we instantiate with elliptic-curve-based Diffie-Hellman
(ECDH) in C-Muckle); a post-quantum ephemeral key encapsulation, (which
we instantiate with Supersingular Isogeny-based Diffie-Hellman (SIDH) in
C-Muckle); and a MAC tag computed over the message.

QKD: Muckle assumes that a QKD scheme is running between pairs of com-
municating parties. QKD schemes make use of classically-authenticated com-
munication channels, and such channels are (in practice) built using symmet-
ric keys (though they could use other cryptographic techniques, such as digital
signatures). Thus, Muckle assumes the presence of pre-shared symmetric keys
(PSKs) between pairs of communicating parties. Likewise, this makes it possi-
ble to assume the existence of pre-established party identifiers in the protocol.
Theses two value allow us to achieve post-quantum-secure authentication of the
Muckle messages without incurring the significant computational or communica-
tion overhead that would be associated with a post-quantum signature scheme.

In our description of Muckle, we abstract the QKD protocol by modelling
its output as an array of independent, uniformly-random bits (denoted qsk[·]
in Fig. 1) that is available to both parties in the protocol, otherwise treating
the QKD component as a black box. Thus, we assume that the QKD system
is implemented perfectly. This significantly simplifies our security analysis task,
since it avoids the need for us to integrate existing QKD security models with our
HAKE security framework. However, this is an idealisation that we plan to relax
in future work, see Sect. 6 for more discussion. The pre-shared key is denoted
PSK in Fig. 1, and is 256 bits in size. The party identifiers are 32-byte strings
(they do not appear explicitly in Fig. 1, but instead are implicit in labelA and
labelB).

Authentication: MAC tag computations use freshly-generated keys (mkeyA,
mkeyB) for each new stage. Specifically, mkeyA ← PRF(PRF(PSK , SecState),
labelA), and mkeyB ← PRF(PRF(PSK , SecState), labelB). Note that SecState
is updated with each new stage, and thus mkeyA and mkeyB are similarly fresh.

Key Schedule: The key schedule is run after the initiator and responder have
sent and received their respective messages. The straightforward iterative design
simplifies the analysis of the protocol. Each step takes as input some key material
and a chaining key, and outputs a new chaining key used in the next iteration,
seen in the KDF steps at the bottom of Fig. 1. We also include a counter ctr
(a 256-bit integer) in the final PRF computation; ctr is incremented after each
stage.

State Update: The secret state SecState is updated at the end of a Muckle
stage (initialised as a constant, public value in the first stage), when the session
keys are computed. Specifically, SecState, skA, skB ← PRF(k3,m0‖m1‖ctr), tak-
ing as input the final chain key k3 from the key schedule, and the concatenation of
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the message transcript and counter: m0‖m1‖ctr. Thus, consecutive Muckle stages
provide implicit key confirmation (since in order to derive the same SecState,
protocol participants must also derive the same session keys skA, skB) of previ-
ous stages, as well as full message transcript agreement of previous stages.

Post-Compromise Security (PCS): At a high-level, PCS is the ability of a
key exchange protocol to recover security when an attacker has compromised all
secrets of a session, if the attacker becomes passive in a later protocol execution.
Our Muckle design achieves PCS by virtue of the inclusion of the secret state
SecState in the MAC computations and in the derivation of the session keys.

3 Instantiation and Implementation of Muckle

This section describes our reference implementation of Muckle in ‘C’, which
we denote C-Muckle [2]. C-Muckle follows the same governing design principles
as Muckle, favouring simplicity and verifiability. As a result, we optimise for
readability and reproducibility and sacrifice features such as fully performance-
optimised code. C-Muckle targets 128-bit post-quantum security. To instantiate
C-Muckle, we have made the following choice of parameters and cryptographic
algorithms: For the classically-secure KEM, we use elliptic-curve Diffie-Hellman
key exchange using the elliptic curve curve25519 [9], and for the post-quantum-
secure KEM, we chose supersingular isogeny Diffie-Hellman key exchange using
field arithmetic over the prime p503, construction and parameters by Costello
et al. [16]. The pseudo-random function is instantiated by the key derivation
scheme HDKF [19] using 256-bit keys, and similarly the message authentica-
tion code is instantiated by HMAC [6] using 256-bit keys. For details about the
C-Muckle message format, refer to the full version.

Dependencies: To provide support for the chosen cryptographic components
C-Muckle relies upon two libraries: mbedtls [1] version 2.13.0 and PQCrypto-SIDH
[3] version 3. The former is used to support the ECDHE, PRF, and MAC cryp-
tographic components as well as random number generation, while the latter is
used to support SIDH.

QKD Bits: Currently, our software implementation of C-Muckle does not engage
with real QKD devices. The process of obtaining the bits produced by a QKD
protocol is therefore emulated. We provide two distinct methods for doing this.
The first method is to store a static array of bits in the source code. During
an execution, bits are read from the array depending on an index. The second
method reads from a file, with bits similarly read from the file depending on
an index. In both cases the bits should be uniformly random. The method of
emulation can be changed during compile-time. Currently, C-Muckle defaults
to using the static array method. These methods are solely implemented for
experimental use and should not be used in any production system. C-Muckle is
designed to allow easy switching to a method that provides true access to QKD
key material.
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3.1 Performance Study

Here we profile and discuss the performance of C-Muckle. Our experiments aim
at conveying the cryptographic costs associated with the different components
of Muckle, as well as the total cost of executing a complete run of the protocol.
To achieve this, we benchmark different parts of C-Muckle as well as the core
cryptographic API calls made to external libraries.

Methodology: We measure the performance of C-Muckle using two metrics:
clock cycles and wall-time. For each metric, a single stage execution of C-Muckle
is measured and recorded. The cost of lower layer functions responsible for
performing cryptographic operations is also measured and separately recorded.
Below we list these functions and describe the cryptographic operation they each
perform:

muckle ecdh gen(): Generates an ECDHE public key pair.
muckle ecdh compute(): Computes the ECDHE secret.
muckle sidh gen(): Generates the SIDH public key pair.
muckle sidh compute(): Computes the SIDH shared secret.
muckle read qkd keys(): Reads the QKD keying material using a method

described above.
muckle derive keys(): Derives the secret state and session keys according to the

key schedule defined in Sect. 2.

Note that the functions above perform more than just cryptographic operations.
Additional operations include initialisation, copying between buffers, and gen-
eral glue-code. We further discuss the overhead relative to the cryptographic
operations for a subset of these functions.

Our experiments were performed between two Amazon Web Service (AWS)
dedicated m5.large EC2 instances in two different availability zones (AZs) in the
London Region. Each instance runs lLinux 4.14 with an Intel Xeon Platinum
8175M 2.5 GHz CPU. We chose this relatively short distance between the initia-
tor and responder to remain faithful to the practical restrictions on the deploy-
ment of Muckle. The QKD is an inherent part of the protocol, and deployment
of a QKD network currently has a maximum distance of approximately 100 km
between nodes. For both metrics, the median over 100 samples is reported and
each process is pinned to a single CPU.

To contrast running C-Muckle over this short distance with a more typical
real-world setting, we performed the same experiment between two m5.large
EC2 instances in two different regions, London and Paris, but only measuring
the wall-time.

Wall-Time Complete Execution: The complete execution time for a Muckle
protocol run between two AZs is approximately 12.9 ms. In comparison, the com-
plete execution time between two regions is 26 ms. The measurement scope is
the execution of one entire stage of Muckle, including networking, initialising
contexts, running clean up functions and executing general glue-code. By con-
trast, the round-trip-times for simple pings between two AZs and two regions
were 0.745 ms and 8.224 ms.
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Fig. 2. Results of the wall-time measurement experiment between two AWS EC2
instances in two different regions (London and Paris). The top 6 categories for each
chart are functions that correspond to C-Muckle functions described earlier. The net-
work category includes time taken to initialise of the socket, as well as sending and
receiving messages. The percentage for the Other category is computed by subtract-
ing the median wall-time for the top 6 functions and the median time for networking
from the entire median wall-time of the participant. (Left) C-Muckle initiator. (Right)
C-Muckle responder.

Wall-Time Function Profiling: Figure 3 in Appendix A provides a more gran-
ular view of the cost for specific functions in C-Muckle between two AZs. For
the initiator, approximately 7.22 ms is spent on various cryptographic function
calls, with more than 68% of the 7.22 ms spent performing SIDH-related opera-
tions. The same behaviour can be observed for the responder. The relative cost
of cryptographic operations in C-Muckle is therefore more than 65% when it is
run over the short distances between AZs.

Clock Cycle Function Profiling: Table 1 contains an overview of the mea-
sured number of clock cycles for various functions. Each cell contains two func-
tions: the first in each cell is the C-Muckle function described above, while the
second is the function from the library dependencies,3 used to implement the
cryptographic operations in the C-Muckle function, i.e. during the execution of
e.g. muckle ecdh gen() the function mbedtls ecdh gen public() from the mbedtls
library will be called. The table highlights the absolute overhead of the cryp-
tographic operations as implemented in C-Muckle compared to the core crypto-
graphic operation supported via one of the two library dependencies. We have
excluded the functions muckle read qkd keys() and muckle derive keys() because
their cost is negligible relative to the total cost of the execution flow in C-Muckle.

The overhead in cryptographic C-Muckle functions relative to the correspond-
ing external library functions is less than 15,000 clock cycles with one spike at
77,000 clock cycles. The overhead is predominately from copying buffers, ini-
tialisation and retrieving parameters. The “compute” functions also involve key
derivation steps.

3 Either mbedtls or PQCrypto-SIDH.
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Table 1. (Left column) The first function in each cell is a C-Muckle function described
in the text. The second in each cell is the function from the library dependency, used
to implement the C-Muckle function. The functions prefixed with mbedtls are from the
mbedtls library, otherwise they are from the PQCrypto-SIDH library. (Right column)
The median number of clock cycles over 100 samples.

Function Clock cycles

muckle ecdh gen() 2,769,893

mbedtls ecdh gen public() 2,768,317

muckle ecdh compute() 2,875,367

mbedtls ecdh calc secret() 2,846,614

initiator muckle sidh gen() 6,852,319

EphemeralKeyGeneration A SIDHp503() 6,775,268

initiator muckle sidh compute() 5,630,939

EphemeralSecretAgreement A SIDHp503() 5,613,257

responder muckle sidh gen() 7,531,586

EphemeralKeyGeneration B SIDHp503() 7,526,757

responder muckle sidh compute() 6,399,884

EphemeralSecretAgreement B SIDHp503() 6,391,934

The number of clock cycles for the ECDHE mbedtls functions using the ellip-
tic curve curve25519, are far from state-of-the-art. For example, Bernstein [9]
reports a total of 832,457 clock cycles for both key generation and secret key
computation. It should therefore be possible to significantly improve the ECDHE
performance in C-Muckle using a different library to mbedtls. However, we have
found the mbedtls library to be easier to work with than other available libraries
(like OpenSSL).

4 Hybrid Security Framework

Here we introduce our multi-stage hybrid authenticated key exchange (AKE)
security framework HAKE for the analysis of our new protocol. HAKE follows
the tradition of standard Bellare-Rogaway-based AKE models, and cleanly cap-
tures adversaries of differing strength (quantum and classical) via a fine-grained
key compromise interface. Specifically, we model quantum adversaries by allow-
ing them to corrupt non-post-quantum key exchange mechanisms (for instance,
discrete logarithm-based key exchange algorithms). We highlight that our HAKE
framework is flexible, and extends beyond Muckle, as HAKE captures (for exam-
ple) the use of long-term asymmetric secrets, which are not used within Muckle.
This allows HAKE to capture a variety of hybrid schemes, and is not simply
to restricted to the use case of Muckle. We explain the HAKE framework in
Sect. 4.2, and describe the corruption abilities of the adversary in Sect. 4.3. We
then describe cleanness and partnering definitions in Sects. 4.4 and 4.5.
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4.1 Secret Key Generation

HAKE addresses secret key generation (the output of a “KeyGen” algorithm) of
individual key exchange components explicitly, and categorises them into long-
term (i.e. generated once and used in every execution of the protocol), and
ephemeral (i.e. generated on a per-stage basis) secret generation. We further
divide these into the following sub-categories:

Post-quantum Asymmetric Secret Generation: The generation of a
public-key pair for post-quantum code-based signature schemes is an example
of a long-term variant. We denote the algorithm that generates these secrets as
LQKeyGen. An algorithm that generates SIDH public-key pairs is an example of
an ephemeral variant, which we denote as EQKeyGen.

Classical Asymmetric Secrets: An algorithm that generates long-term RSA
public-key pairs for signatures (that do not offer post-quantum security), for
example, would be denoted via LCKeyGen. Similarly, the generation of ECDHE
public-key pairs would be done via ECKeyGen.

Symmetric Secrets: Long-term preshared secret keys are generated via
LSKeyGen, while (for instance), we consider that the ephemeral keying material
generated by a quantum key distribution protocol to be captured as a ephemeral
symmetric secret generation algorithm, which we denote ESKeyGen.

4.2 Execution Environment

Consider an experiment ExpHAKE,clean,A
Π,nP ,nS ,nT

(λ) played between a challenger C and
an adversary A. C maintains a set of nP parties P1, . . . , PnP

(representing users
interacting with each other in protocol executions), each capable of running
up to (potentially parallel) nS sessions of a probabilistic key-exchange protocol
Π. Each session can consist of up to nT consecutive stages, each an execu-
tion of the key-exchange protocol Π, represented as a tuple of algorithms Π =
(f,EQKeyGen,ECKeyGen,ESKeyGen, LQKeyGen, LCKeyGen, LSKeyGen). We use
πs

i to refer to both the identifier of the s-th instance of the Π being run by party
Pi and the collection of per-session variables maintained for the s-th instance of
Π run by Pi, and f is a algorithm capturing the honest execution of the protocol
Π by protocol participants. We describe generically these algorithms below:

Π.f(λ,pki, ski,pskidi,pski, π,m) $→ (m′, π′) is a (potentially) probabilistic
algorithm that takes a security parameter λ, the set of long-term asymmetric
key pairs pki, ski of the party Pi, a collection of per-session variables π and an
arbitrary bit string m ∈ {0, 1}∗∪{∅}. f outputs a response m′ ∈ {0, 1}∗∪{∅} and
an updated per-session state π′, behaving as an honest protocol implementation.

We describe a set of algorithms Π.XYKeyGen(λ) $→ (pk, sk), where X ∈
{E, L} and Y ∈ {C,Q}. Π.XYKeyGen is a probabilistic post-quantum ephemeral
(if XY = EQ), post-quantum long-term (if XY = LQ), classic ephemeral (if XY =
EC), or classic long-term (if XY = LC) asymmetric keygen algorithm, taking a
security parameter λ and outputting a public-key/secret-key pair (pk, sk).
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We describe a set of algorithms Π.ZSKeyGen(λ) $→ (psk, pskid), where Z ∈
{E, L}. Π.ZSKeyGen is a probabilistic ephemeral (if Z = E), or long-term (if
Z = L) symmetric key generation algorithm taking as input a security parameter
λ and outputting some symmetric keying material and (potentially) a keying
material identifier (psk, pskid), (or (qkm, qkmid), respectively).

C runs Π.LQKeyGen(λ), Π.LCKeyGen(λ) and Π.LSKeyGen(λ) nP times to
generate asymmetric post-quantum and classical key pairs (which we denote with
pki, ski) for each party Pi ∈ {P1, . . . , PnP

} as well as a symmetric keys and iden-
tifier (psk,pskid) and delivers all public-keys pki, pskid for i ∈ {1, . . . , nP }
to A. The challenger C then randomly samples a bit b

$← {0, 1} and interacts
with the adversary via the queries listed in Sect. 4.3, also maintaining a set of
corruption registers, containing a list of ephemeral and long-term secrets that
have been compromised by A via Reveal, Corrupt and Compromise queries. Even-
tually, A terminates and outputs a guess d of the challenger bit b. The adversary
wins the HAKE key-indistinguishability experiment if d = b, and additionally if
the test session π satisfies a cleanness predicate clean, which we discuss in more
detail in Sect. 4.5. We give an algorithmic description of this experiment in the
full version. Each session maintains a set of per-session variables:

ρ ∈ {init, resp}: The role of the party in the current session. Note that parties
can be directed to act as init or resp in concurrent or subsequent sessions.

pid ∈ {1, . . . , nP , �}: The intended communication partner, represented with � if
unspecified. Note that the identity of the partner session may be set during
the protocol execution, in which case pid can be updated once.

stid ∈ [nT ]: The current (or most recently completed) stage of the session.
α ∈ {active, accept, reject,⊥}: The status of the session, initialised with ⊥.
mi[stid] ∈ {0, 1}∗ ∪ {⊥}, where i ∈ {s, r}: An array of the concatenation of

messages sent (if i = s) or received (if i = r) by the session in each stage.
Initialised by ⊥ and indexed by the stage identifier stid.

k[stid] ∈ {0, 1}∗ ∪ {⊥}: An array of the session keys from each stage, or ⊥ if no
session key has yet been computed. Indexed by the stage identifier stid

exk[stid] ∈ {0, 1}∗ ∪ {⊥}, where x ∈ {q, c, s}: An array of the post-quantum
ephemeral asymmetric (if x = q), classic ephemeral asymmetric (if x = c),
or ephemeral symmetric (if x = s) secret keys used by the session in each
stage. Initialised by ⊥ and indexed by the stage identifier stid.

pss[stid] ∈ {0, 1}∗ ∪ {⊥}: Any per-stage secret state that is established during
protocol execution for use in the following stage. Sessions use pss[stid − 1]
during the protocol execution of stage stid. Indexed by stid.

st[stid] ∈ {0, 1}∗: Any additional state used by the session in each stage.

4.3 Adversarial Interaction

Our HAKE framework considers a traditional AKE adversary, in complete control
of the communication network, able to modify, inject, delete or delay messages.
They are able to compromise several layers of secrets: (a) long-term private keys,
allowing our model to capture forward-secrecy notions and quantum adversaries.
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(b) ephemeral private keys, modelling the leakage of secrets due to the use of
bad randomness generators, or potentially bad cryptographic primitives or quan-
tum adversaries. (c) preshared symmetric keys, modelling the leakage of shared
secrets, potentially due to the misuse of the preshared secret by the partner,
or the forced later revelation of these keys due to the compromise of partner
devices. (d) ephemeral keying material, modelling attacks on the quantum key
distribution. For instance, capturing things such as photon splitting attacks. (e)
session keys, modelling the leakage of keys by their use in bad cryptographic
algorithms. The adversary interacts with the challenger C via the queries below:

Create(i, j, role) → {(s),⊥}: Allows the adversary A to initialise a new session
owned by party Pi, where the role of the new session is role, and intended
communication partner party Pj . Note that if A has already initialised the
intended partner session, A must give the session index r (indicating the
intended partner session πr

j ) in order to synchronise ephemeral symmetric
keys. If a session πs

i has already been created, C returns ⊥. Otherwise, C
returns (s) to A.

Send(i, s,m) → {m′,⊥}: Allows A to send messages to sessions for protocol exe-
cution and receive the output. If the session πs

i .α 	= active, then C returns
⊥ to A. Otherwise, C computes Π.f(λ,pki, ski,pskidi,pski, π

s
i ,m) →

(m′, πs
i
′), sets πs

i ← πs
i
′, updates transcripts πs

i .mr, πs
i .ms and returns m′

to A.
Reveal(i, s, t): Allows A access to the session keys computed by a session. C

checks if πs
i .α[t] = accept and if so, returns πs

i .k[t] to A. In addition, the
challenger checks if there exists another session πr

j that matches with πs
i ,

and also sets SKr
j [t] ← corrupt. Otherwise, C returns ⊥ to A.

Test(i, s, t) → {kb,⊥}: Allows A access to a real-or-random session key kb used in
determining the success of A in the key-indistinguishability game. If a session
πs

i exists such that πs
i .α = accept, then the challenger C samples a key

k0
$← D where D is the distribution of the session key, and sets k1 ← πs

i .k[t].
C then returns kb (where b is the random bit sampled during set-up) to A.
Otherwise C returns ⊥ to A.

CorruptXK({i, j}) → {ki,⊥}: Allows A access to the secret preshared key pskj
i =

pski
j (if X = S), the secret post-quantum long-term key qski (if X = Q) or

the secret classical long-term key cski (if X = C), generated for the party
Pi (and Pj , in the preshared case) prior to protocol execution. If the secret
long-term key has already been corrupted previously, then C returns ⊥ to A.

CompromiseYK(i, s, t) → {esk[t],⊥}: Allows A access to the secret ephemeral
post-quantum key πs

i .eqk[t] (if Y = Q), the secret ephemeral classical key
πs

i .eck[t] (if Y = C), or the secret ephemeral symmetric key πs
i .esk[t] (if

Y = S) generated for the session πs
i prior to protocol execution in stage t.

Note that if there exists another session πr
j such that πs

i .esk[t] = πr
j .esk[t],

then that session’s ephemeral symmetric key is also considered corrupted. If
πs

i .esk[t] has already been corrupted previously, then C returns ⊥ to A.
CompromiseSS(i, s, t) → {pss[t],⊥}: Allows the adversary access to the

secret per-session state πs
i .pss[t] generated by a session πs

i during
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protocol execution. For use in the next stage of the session’s protocol exe-
cution. Note that if there exists another session πr

j such that πs
i .pss[t] =

πr
j .pss[t′], then that session’s per-stage secret state is also considered cor-

rupted. If πs
i .pss[t] has already been corrupted previously, then C returns ⊥

to A.

4.4 Partnering Definition

To evaluate the secrets that A can reveal without trivially breaking the security
of the protocol, key-exchange models must first define how sessions are partnered.
Otherwise, A would simply run a protocol between two sessions, faithfully deliv-
ering all messages, Test the first session to receive the real-or-random key, and
Reveal the other session’s key. If the keys are equal, then the Test key is real,
and otherwise the session key has been sampled randomly.

In our work, we use both the matching definition matching sessions defined
in the original eCK model [21], and origin sessions, introduced by Cremers and
Feltz [17]. On a high level, πs

i is an origin session of πr
j if πs

i has received the
messages that πr

j sent without modification, even if the reply that πs
i sent back

has not been received by πr
j . If all messages sent and received by πs

i and πr
j are

identical, then the sessions match.

4.5 Cleanness Predicates

We now define the exact combinations of secrets that an adversary A is allowed to
compromise without trivially breaking a hybrid key exchange protocol. However,
we note that the cleanness predicate defined below is specific to Muckle, and
the threat model that Muckle intends to defend against. Other predicates, both
stronger and weaker, can be constructed.

We wish to capture security against a quantum-equipped adversary, so a suc-
cessful adversary is allowed to compromise the long-term and ephemeral classical
asymmetric secrets without penalty. Since Muckle itself does not use public-key
cryptography to authenticate its messages, we allow A to compromise the long-
term asymmetric secrets (however, the challenger C will respond to CorruptCK
and CorruptQK queries with ⊥).

Since we wish to capture perfect forward secrecy, we allow a successful adver-
sary to have issued a Test query to a session πs

i owned by a party Pi (with no
origin session) that has had its long-term symmetric key compromised previ-
ously, as long as the session was completed before the CorruptSK(i, j) query was
issued (and πs

i .pid = j). In addition, our construction should be post-compromise
secure (as explored by Cohn-Gordon et al. [15]), so our cleanness predicate allows
an adversary to have compromised all ephemeral secrets associated with a par-
ticular stage as long as there exists some stage previous that has not had all its
ephemeral secrets compromised and the adversary has been passive in all stages
between the “Test” stage and the previous “clean” stage.

Coming full circle then, a “clean” stage intuitively is one where the adversary
has not compromised all of: (a) the ephemeral classic secrets of the Test session
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and its matching partner in the tested stage (b) the ephemeral post-quantum
secrets of the Test session and its matching partner in the tested stage (c) the
previous per-stage secrets shared by the Test session and its matching session
in the tested stage, and (d) the quantum keying material/ephemeral symmetric
secrets shared by the Test session and its matching session in the tested stage.

It may also be desirable to determine the security guarantees that Muckle
provides in the event of a new vulnerability discovered in the underlying post-
quantum asymmetric key-exchange primitive, or a side-channel attack being
discovered in the hardware of the QKD system. In order to capture this sce-
nario, we provide a second cleanness predicate that captures non-quantum-
equipped adversaries, which we denote cleancHAKE. It is more-or-less identical
to cleanqHAKE, but the adversary is allowed to compromise the ephemeral secrets
(either symmetric or post-quantum) if they do not additionally compromise clas-
sic ephemeral secrets derived during the protocol execution. Now, we formalise
the advantage of a QPT algorithm A in winning the HAKE key indistinguisha-
bility experiment in the following way:

Definition 1 (HAKE Key Indistinguishability). Let Π be a key-exchange
protocol, and nP , nS, nT ∈ N. For a particular given predicate clean, and a QPT
algorithm A, we define the advantage of A in the HAKE key-indistinguishability
game to be AdvHAKE,clean,A

Π,nP ,nS ,nT
(λ) = 2·

∣
∣
∣Pr

[

ExpHAKE,clean,A
Π,nP ,nSnT

(λ) = 1
]

− 1
2

∣
∣
∣. We say that

Π is post-quantum HAKE-secure if, for all A, AdvHAKE,clean,A
Π,nP ,nS ,nT

(λ) is negligible in
the security parameter λ.

5 Security Analysis

This section is dedicated to presenting our main result Theorem 1. Due to space
constraints, the full proof and advantage bound can be found in the full version.
For our proof, we require post-quantum analogues of various security assump-
tions. These are mostly identical to classical prf, dual-prf ind-cpa and eufcma
assumptions, but require security against all quantum probabilistic polynomial-
time algorithms. It is also desirable to assess security of Muckle with respect
to classic probabilistic polynomial-time adversaries, and thus we also prove
that Muckle is HAKE-secure with cleanness predicate cleancHAKE. Recall that
cleancHAKE used here is a generalisation of cleanqHAKE, allowing us to estab-
lish key indistinguishability security in the scenario where the classical cryp-
tographic component of Muckle remains secure and uncompromised, even if the
post-quantum and QKD components both become insecure.

Theorem 1. The Muckle key exchange protocol is HAKE-secure with clean-
ness predicate cleanqHAKE (capturing perfect forward secrecy and post-compromise
security) under the qprf, eufqcma, dual-qprf, and qind-cpa assumptions of PRF,
MAC, PRF and KEM, respectively. That is, for any QPT algorithm A against
the HAKE key-indistinguishability game AdvHAKE,cleanqHAKE,A

Muckle,nP ,nS ,nT
(λ) is negligible in the

security parameter λ.
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Proof (Sketch). We begin by dividing the proof into three separate cases where
the query Test(i, s, t) has been issued: 1. The session πs

i (where πs
i .ρ = init)

has no origin session in stage t. 2. The session πs
i (where πs

i .ρ = resp) has no
origin session in stage t. 3. The session πs

i in stage t has a matching session.
We bound the probability of each case, and show that under certain assump-

tions, the advantage of A winning the key-indistinguishability game is negligible.

Cases 1 and 2: Test Session Without Origin Session. We show that A
has negligible change in causing πs

i to reach an accept state without an ori-
gin session. By the cleanness predicate, if πs

i accepts without an origin ses-
sion, then A cannot have exposed the preshared symmetric key between πs

i

and its intended partner, before that point. We first replace the computa-
tion of mkeyB with a uniformly random value m̃keyB in stage t of πs

i . Since
mkeyB = PRF(PSK,SecState) (where PSK = pskj

i is itself uniformly ran-
dom and independent), this is a sound replacement. Any A that can distinguish
this change can be turned into an algorithm that breaks the post-quantum PRF
assumption. Next, we define an abort event that triggers if πs

i verifies a MAC
tag in stage t successfully. We show that if πs

i .α[t] ← accept without a match-
ing session, that means that a MAC tag τ was produced that verified correctly,
but there existed no matching session that produced τ . Any adversary capable
of triggering this abort event can thus break the eufcma security of the MAC
scheme.

Case 3: Test Session with Matching Session. Here, we show that if A
that has issued a Test(i, s, t) query to a clean session πs

i in stage t, then A
has negligible advantage in guessing the test bit b. In what follows, we split
our analysis of Case 3 into the following sub-cases, each corresponding to a
condition necessary for the cleanness predicate to be upheld by πs

i in stage t:
3.1 CompromiseQK(i, s, t), CompromiseQK(j, r, t) have not been issued, where
πr

j matches πs
i in stage t; 3.2 CompromiseSK(i, s, t), CompromiseSK(j, r, t) have

not been issued, where πr
j matches πs

i in stage t; 3.3 CompromiseQK(i, s, t′),
CompromiseQK(j, r, t′) have not been issued, where πr

j matches πs
i in stages

u such that t′ ≤ u < t and no CompromiseSS(i, s, u), CompromiseSS(j, r, u)
queries have been issued; 3.4 CompromiseSK(i, s, t′), CompromiseSK(j, r, t′) have
not been issued, where πr

j matches πs
i in stages u such that t′ ≤ u < t and no

CompromiseSS(i, s, u), CompromiseSS(j, r, u) queries have been issued.
It is clear to see that the advantage of A in Case 3 is bound by the sum of

the advantage of A in all subcases. Due to space restrictions, we only detail the
proof sketch of Subcase 3.1. The other subcases follow similar proof strategies.

3.1: CompromiseQK(i, s, t), CompromiseQK(j, r, t) have not been issued,
where πr

j matches πs
i in stage t. We begin by guessing the parties, sessions

and stage such that A issues Test(i, s, t) and πs
i matches πr

j (aborting if our
guess was incorrect). After, we replace the secret QKEM value qsk with the uni-
formly random and independent value q̃sk, by interacting with a ind-cpa QKEM
challenger and replacing the qpkA, qpkB values sent in m0 and m1 respectively
with challenge values from the ind-cpa challenger. By the definition of this case,



Many a Mickle Makes a Muckle 499

we know that the QKEM values exchanged in m0 and m1 were not modified
between the sessions. Next, we replace the quantum key qk and the first chain-
ing key k0 (in the test session and its matching partner) with uniformly ran-
dom values q̃k, k̃0 from the same distribution. Since qk = PRF(q̃sk, labelqk)
and k0 ← PRF(q̃k,m0‖m1) where q̃sk, q̃k are uniformly random and indepen-
dent, these are sound replacements. Any algorithm A that can distinguish these
changes can be used to break the post-quantum PRF assumption.

In the next steps, we iteratively replace the second, third and fourth chaining
keys k1 ← PRF(ck, k̃0), k2 = PRF(qkm, k̃1), and k3 = PRF(SecState, k̃2), with
uniformly random values k̃1, k̃2, k̃3 from the same distribution. Unlike previous
steps, we require a post-quantum dual-prf assumption here, but otherwise these
changes proceed identically to the replacement of qsk and qk. Any algorithm
A that can distinguish these changes can be used to break the post-quantum
dual-prf assumption.

In this final step, we replace the secret state and session keys SecState, skA,
skB ← PRF(k̃3,m0‖m1‖ctr) with uniformly random and independent values

˜SecState, s̃kA, s̃kB . As before, any algorithm A that can distinguish this change
can be used to break the post-quantum PRF assumption.

Since s̃kA, s̃kB are now uniformly random and independent values indepen-
dent of the protocol flow regardless of the value of the test bit b, A has no
advantage in guessing the test bit.

6 Future Work

Our paper opens up many avenues for future work. First, we have strongly
abstracted the QKD component in our framework, treating is as an inexhaustible
supply of shared, random bits. Yet there is a fine tradition of developing security
proofs for QKD systems based purely on physical models. It is a significant chal-
lenge to integrate such approaches in our framework. The work of [24] provides
one route forward using Universal Composability. In future QKD systems, the
bit-rate of key agreement will exceed that which can be achieved by classical com-
munication, at least over short ranges. This suggests adapting Muckle to allow
rapid key refreshing from QKD keying material and slower refreshing from other
sources. Our analysis framework could be extended to support such “differential
refreshing”. But this approach also raises implementation challenges, particu-
larly around key synchronisation, which would need to be carefully addressed in
order to avoid DoS and other attacks.
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A Wall-Time Function Profiling in Two Availability
Zones

Fig. 3. Results of the wall-time measurement experiment between two AWS EC2
instances in two different availability zones located in the same region (London). Specifi-
cally, the chart captures the relative median wall-time spent executing various functions
in the C-Muckle execution flow. The top 6 categories for each chart are functions that
correspond to C-Muckle functions described in the text. The network category includes
time taken to intialise of the socket, as well as sending and receiving messages. The
percentage for the Other category is computed by subtracting the median wall-time
for the top 6 functions and the median time for networking from the entire median
wall-time of the participant. (Left) C-Muckle initiator. (Right) C-Muckle responder.
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Abstract. In a highly influential paper from fifteen years ago [10],
Canetti, Goldreich, and Halevi showed a fundamental separation between
the Random Oracle Model (ROM) and the standard model. They con-
structed a signature scheme which can be proven secure in the ROM, but
is insecure when instantiated with any hash function (and thus insecure
in the standard model). In 2011, Boneh et al. defined the notion of the
Quantum Random Oracle Model (QROM), where queries to the ran-
dom oracle may be made in quantum superposition. Because the QROM
generalizes the ROM, a proof of security in the QROM is stronger than
one in the ROM. This leaves open the possibility that security in the
QROM could imply security in the standard model. In this work, we
show that this is not the case, and that security in the QROM cannot
imply standard-model security. We do this by showing that the origi-
nal schemes that show a separation between the standard model and
the ROM are also secure in the QROM. We consider two schemes that
establish such a separation, one with length-restricted messages, and
one without, and show both to be secure in the QROM. Our results
give further understanding to the landscape of proofs in the ROM ver-
sus the QROM or standard model, and point towards the QROM and
ROM being much closer to each other than either is to standard model
security.

1 Introduction

In this note, we show that there exist digital signature schemes that can
be proven secure against any poly-time quantum adversaries in the quantum
random-oracle model [7], but they can be broken by a classical poly-time adver-
sary when the random oracle is instantiated by any poly-time computable hash
function family. This extends to the quantum setting the impossibility of instan-
tiating a classical random oracle [3,9,10,17,24,26].

Given the classical result (e.g., [10]) that there exists a secure signature
scheme in the random oracle model but insecure under any efficient instanti-
ation, the first doubt to clear up is probably why it does not immediately follow
c© Springer Nature Switzerland AG 2020
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that a quantum random oracle cannot be instantiated as well. The reason is
that the signature scheme in the classical result may as well get broken in the
quantum random oracle model. In other words, all one needs to do is to prove
quantum security of these classical constructions in the quantum random oracle
model. This is exactly what this work does: we show that three examples in the
classical setting [9,10,24] can be proven secure in the quantum random oracle
model, and hence they demonstrate that the quantum random oracle model is
unsound in general.

We dive into an overview of the proofs right away, so that those who are
familiar with this subject can quickly digest the gist and walk away satisfied (or
disappointed). If you are a more patient reader, you can come back here after
enjoying the (more conventional) introduction.

Let us first review the classical examples [9,10,24] to be analyzed in the
quantum random oracle model, and we present them under a unified framework
which we hope will be easy to grasp. They all start with a secure signature
scheme Σ and a function F , and Σ is “punctured” so that the signing algorithm
would simply reveal the signing key when the function F is “non-random” (e.g.,
instantiated by a concrete hash function). To break it, an adversary just needs to
convince the signing algorithm that F is indeed non-random. Therefore, it boils
down to designing a proof system where a prover (adversary in the signature
setting) proves “non-randomness” of a given function to a verifier (signing algo-
rithm); whereas if the function is indeed random, no prover can fool the verifier
to accept. The natural approach to such a proof system is based off the intuition
that it is difficult to predict the output of a random oracle on an unknown input.
The three classical examples nurture this intuition in two variations: predicting
on a single input or multiple inputs.

1. The basic idea in [10] is to have the prover provide an input where the out-
put is predictable and can be efficiently verified by the verifier. For starters,
suppose we want to rule out a specific hash function H, then the prover
can pick an arbitrary x and the verifier just checks if F (x) = H(x). The
verifier always accepts when F is instantiated by H, but accepts only with
negligible probability if F is random. This immediately implies that for any
function family, in particular the family of poly-time computable functions
H = {Hλ = {Hs}s∈{0,1}λ}1, we can construct a signature scheme following
the idea above, where a (random) member in H is chosen as implementa-
tion of F , and the signing algorithm reveals the signing key whenever the
“non-randomness” verification passes. Note that, nonetheless, the construc-
tion depends on the function family, which is weaker than the goal of estab-
lishing a signature scheme that is secure in the random oracle model, but
insecure however when implement it from function family H.
Diagonalization comes in handy to reverse the quantifiers. The prover will
provide a description s of a function Hs, which purportedly describes the

1 We assume a canonical encoding of functions into binary strings, under which s is
the description of a function. Complexity is measured under security parameter λ.
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function F . Then the verifier runs Hs on s and checks if it matches F (s).
Clearly, when F is implemented by a member Hs ∈ H, the description s
is public (i.e., part of the verification key), and it is trivial for the prover
to convince the verifier. Nonetheless, if F is a random oracle O, the event
O(s) = Hs(s) occurs only with negligible probability for any s that a prover
might provide.
A technicality arises though due to the time complexity for computing Hs(s)
for all H. Loosely speaking, we need a universal machine for the family H
that on a description s computes Hs(·). Such a machine exists, but would
require slightly super-polynomial time, which makes the verifier (i.e., sign-
ing algorithm) inefficient. This final piece of the puzzle is filled by CS-proofs
introduced by Micali [25]. A CS-proof allows verifying the computation of a
machine M , where the verifier spends significantly less time that the time to
run M directly. This naturally applies to the problem here. Instead of run-
ning the universal machine to check Hs(s) = F (s) by the verifier, the prover
generates a CS-proof on the input 〈M, s〉F (relative to F ) certifying the state-
ment M(s) := Hs(s) = F (s), which the verifier can check in poly-time. When
F = O is a random oracle, 〈M, s〉O (relative to O) is almost always a false
statement, and the soundness of the CS-proof ensures that verifier will reject
with high probability. Micali proved in general the soundness of CS-proofs in
the random oracle model (to avoid confusion, in CS-proofs think of an random
oracle independent of F ).

2. Another strategy for proving “non-randomness”, as employed in Maurer
et al. [24] and Canetti et al. [9], is to predict on multiple inputs. This offers
a direct information-theoretical analysis without relying on CS-proofs.
In essence, a prover provides a machine π that allegedly predicts the output
of F on sufficiently many inputs, and the verifier can run π and compare
with the answers from F . This is easy for the prover when F is instanti-
ated by F where the description s is given. On the other hand, by tuning
the parameters, a counting argument would show that the randomness in a
random oracle is overwhelming for any single machine (even inefficient ones!)
to predict. Specifically, the “predicting” machine π needs to match with F
on q = 2|π| + λ inputs (i.e., the number of correct predictions has to be sig-
nificantly more than the length of the description of the machine). Suppose
that F is a random oracle O ← {f : {0, 1}∗ → {0, 1}} that outputs one
bit (for the sake of simplicity), then for any π the probability that it will
match O on q inputs is at most 2−(2|π|+λ). A union bound on all machines
of length n shows that pn, the probability that some length-n machine is
a good predictor, is at most 2n · 2−(2n+λ) = 2−n−k. Another union bound
shows that regardless of their length, no machine can be a good predictor,
since p :=

∑∞
n=1 pn = 2−λ

∑
n 2−n ≤ 2−λ−1 is negligible.

3. Both examples above suffer from an artifact. Namely the signature schemes
need to be able to sign long messages or otherwise maintain states of prior
signatures. This is rectified in [9], where a stateless scheme that signs only
messages of polylogarithmic length is proven secure in the random oracle
model but insecure under any instantiation.
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At the core of this construction is an interactive counterpart of the non-
interactive proof system in part 2 above. It can be viewed as a memory del-
egation protocol, where a verifier with limited (e.g., poly-logarithmic) mem-
ory wants to check if the machine provided by the prover is a good predic-
tor. Roughly speaking, it will execute the machine step by step and use the
prover to bookkeep intermediate configurations of the machine. However, the
configurations may be too long for the verifier to store and transit to the
prover. Instead, the verifier employs a Merkle tree and only communicates an
authentication path of the configuration with the prover. In particular, the
verifier will memorize only a secret authentication key in between subsequent
rounds. The security of the “punctured” signature scheme reduces to essen-
tially a stronger unforgeability of a valid authentication path in a Merkle tree
with respect to a random oracle, which is proven classically.

Proving Security of Separation Examples in QRO. Once the constructions and
classical analysis are laid out, proving their security in the quantum random
oracle model becomes more or less mechanic, given the techniques developed for
QRO so far [1,2,15,30,31].

1Q. (Example in [10] with CS-proofs.) Following the classical proof, we first show
that the quantum security reduces to one of three cases: (1) hardness of a
Grover-type search problem, which ensures that an adversary cannot feed
the CS-proof a true statement in the case of a random oracle; (2) security
of the original signature scheme; and (3) soundness of CS-proofs against
quantum adversaries. A precise query lower bound for the search problem
follows by standard techniques. And thanks to a recent work [11], CS-proofs
are proven sound against quantum adversaries.

2Q. (Example in [9,24] based on information-theoretical analysis.) It is easy
to verify that the information-theoretical argument sketched above holds
regardless of the kind of adversaries, and as a result the “punctured” sig-
nature scheme remains secure in the quantum random oracle model (and
against quantum adversaries).

3Q. (Example in [9] that only needs to sign short messages.) Our proof follows
the classical one, where we first carefully verify and lift the reduction to the
(stronger) unforgeability of Merkle tree against quantum adversaries, and
then prove this property in the quantum random oracle model.
Specifically, we can model the unforgeability game as follows. Think of
two correlated random oracles O : {0, 1}∗ → {0, 1}�(λ) and O′ := O(ak, ·)
where ak is a random authentication key kept secret. Given quantum access
to O and classical access to O′, the adversary needs to come up with
an authentication path (〈σ1, . . . , σd〉, 〈(v1,0, v1,1), . . . , (vd,0, vd,1)〉, t) where
σi ∈ {0, 1}, t = O′(d,O(0, v1,0, v1,1)) and vi,σi

= O(i, vi+1,0, vi+1,1) for
every i = 1, . . . , d − 1. We prove that this is infeasible by reductions from a
randomized decisional search problem and collision finding in random func-
tions [8,20,32].
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Background and Motivation. The random oracle model, since its introduction [4],
has proven a popular methodology for designing cryptographic schemes2. Basi-
cally a construction is first described and analyzed in an idealized setting where
a random function is available as a black-box. To implement it in the real-
world, one substitutes a cryptographic hash function for the random oracle.
This methodology often leads to much more efficient schemes than alternatives.
Examples include digital signatures by the Fiat-Shamir transform [16], hybrid
public-key encryption following Fujisaki-Okamoto-type transforms [5], as well
as succinct non-interactive zero-knowledge arguments that rise with the trend-
ing technology of blockchain and cryptocurrencies [28]. Its popularity is also
attributed to the fact that one can often prove security in the random oracle
model which is otherwise much more challenging or simply unknown.

It is, however, exactly the latter advantage that stirred considerable debate.
What does a security proof in the random oracle model mean? To be pragmatic,
a random-oracle proof at least serves as a sanity check that rules out inherent
design flaws. Indeed, in practice most constructions that are instantiated from
ones proven secure in the random oracle model have stood up extensive crypt-
analysis. More formal pursuit, however, arrives at an irritating message. There
are separation examples which show secure constructions in the random oracle
model, but will be trivially broken whatever “nice” functions we use to instan-
tiate the random oracle. Namely, the methodology is unsound in general. This
does not mean all schemes following this approach are insecure. In fact, some
random-oracle scheme can be instantiated under strong but reasonable assump-
tions and achieve desirable security in the real-world [22]. To say the least, a
question mark lingers on schemes developed under this methodology.

Quantum computing adds another layer of complication to the issue here
(and the overall landscape of cryptography). Because of the threats to widely
deployed cryptosystems [29], a growing effort is undertaken to design and tran-
sition to so called post-quantum cryptography – a new set of cryptosystems that
hopefully resist quantum attacks. In particular, the random oracle model has
been re-examined in the presence of quantum adversaries. Since eventually a
scheme (designed in RO) will be realized via a cryptographic function, whose
specification is known in public, a quantum adversary can in principle construct a
coherent quantum circuit that evaluates the hash function in quantum superposi-
tion. Consequently, when analyzing the scheme in the idealized setting, it seems
necessary to grant quantum superposition queries to the random oracle by a
quantum adversary. This brings about the quantum random oracle model [7].
The rationale is, very informally, good cryptographic functions are lacking struc-
tures for a quantum computer to exploit (aside from generic speedup due to
quantum search), and hence realizing a scheme proven secure relative to a quan-
tum random oracle this way is a fine practice.

Formally analyzing security in the quantum random oracle model turns
out to be challenging. Many classical proof techniques, such as simulating and

2 According to Google Scholar, [4] has a citation count at 5089 (November 2019), which
would be ranked top 20 at a (dated) list of most cited computer science papers [12].
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programming a random oracle on-the-fly or recording the queries, seem to fail due
to unique features of quantum information. Thanks to a lot of continued effort,
in recent years, researchers managed to develop various techniques for reasoning
about the quantum random oracle model, and restored the security of many
important constructions against quantum adversaries [2,13,15,19,20,30,32,33].
In fact, quantum random oracle model is becoming a booming research topic.
To get an idea, as of writing, there are 166 citations in total of [7] and about
90 since 2018, of which about 60 came out since 2019. Also out of the 9 sig-
nature scheme submissions that made the second round of the post-quantum
cryptography standardization at NIST [27], 5 of them involve the quantum ran-
dom oracle. This just adds more at stake regarding “what does it mean that a
scheme is proven secure in the quantum random oracle model?”

How to Interpret This Result? Our work show that in general, security in the
quantum random oracle model could be vacuous in a real-world implementa-
tion. There seems a dilemma, probably more puzzling than the classical situa-
tion. On the one hand, since a quantum adversary is given more power (e.g.,
quantum computation and superposition access), security in the quantum ran-
dom oracle provides more justification that the construction is solid. And this
indeed explains the difficulty in establishing security in the quantum random
oracle. Hence it might occur that security in QRO would be sufficiently strong
to imply security in the plain model and rule out separations. Our work nonethe-
less shows otherwise, and it reveals the other side of the dilemma. Any bit of
success in restoring proof techniques in the quantum random oracle model just
casts another bit of shadow on this methodology, since the seemingly stronger
quantum security does not promise the security of real-world implementations,
not even their security against classical adversaries only.

On the other hand, many cryptosystems that have been proven secure in the
random oracle model have fared well in retrospect [23]. The use of the random
oracle model to get a proof can allow for schemes that are simpler and more
efficient than those in the standard model. While proofs in the quantum ran-
dom oracle model appear more difficult, every year new techniques, more general
and user-friendly, are developed to establish quantum random oracle model secu-
rity [13,18,20,33]. This has lead researchers to question what guarantees security
in the quantum random oracle provides versus the classical random oracle model.
In this line, our results can be taken as further justification that the difference
between these models does not appear to be a large one. If one hopes to show
that security in the classical and quantum oracle model provide a similar set of
assurances, then it seems natural that the same instantiability problems exist in
the classical random oracle model as well as the quantum counterpart.

2 Background

2.1 The (Quantum Random) Oracle Model and Notation

The random oracle model, originally devised in [4], replaces a cryptographic
hash function with an entirely random oracle. The reduction algorithm is often
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allowed to manage this oracle, and can perform operations like looking up the
queries that the adversary makes to it, or programming the oracle on inputs of
interest. Using the random oracle model can often greatly simplify a proof or
even enable a proof where otherwise not known or possible.

The intuitive idea behind the soundness of the random oracle methodology
is that an adversary interacting with a scheme is unlikely to take advantage of
the structure of the hash function. For most cryptographic schemes, even the
adversary is likely to treat the hash function as a ‘black box’, and so by treating
it as such, we can derive proofs for schemes that otherwise may not exist.

However, as pointed out in an influential paper by Boneh et al. [7], the ran-
dom oracle model makes a fundamentally classical assumption about how an
adversary interacts with the hash function (or random oracle). If we are con-
cerned about an adversary who has access to a quantum computer, than we can
assume that such an adversary is capable of instantiating the hash function on
a quantum computer and making queries to it in superposition. Such behaviour
is excluded by the random oracle model, and so when considering a quantum
adversary, a more cautious approach for proofs is to consider the quantum ran-
dom oracle model.

In the quantum random oracle model, the reduction algorithm still manages
the oracle, but now the adversary must be allowed to make a superposition
query to this oracle. For an oracle O : D → R, the reduction provides access to
a unitary UO which performs the action

UO :
∑

x∈D,y∈R
αx,y|x〉|y〉 �→

∑

x∈D,y∈R
αx,y|x〉|y ⊕ O(x)〉,

where the input must be a valid quantum state, i.e., the sum of the square
amplitudes of the αx,y’s must be 1.

For clarity, we will denote a random oracle as O, while actual instantiations of
random oracles (e.g., typically hash functions) are denoted H. When describing
a scheme where a function may replaced with a random oracle in the proof, or
with a hash function in the real world, we will denote this function with F . The
security parameter of a scheme is denoted by λ, while the output length of a
hash function is denoted n. While we separate these two values for generality
and expressiveness, throughout this work it is the case that λ = n.

2.2 Computationally Sound Proofs

Computationally sound proofs, introduced by Micali in 2000 [25], allow
extremely efficient verification of a problem L with the help of a prover. In our
context, CS-proofs are useful for showing the validity of a computation without
having to run the computation. Imagine a description of an arbitrary function
f , which may take super-polynomial time to run on an input x, but will result
in f(x) = y. A CS-proof system allows us to generate a proof π that f(x) = y.
Even though f may take a super-polynomial amount of time to run, the CS-
Proof verification system allows a verifier, on input of f , x, y, and π to verify
that f(x) = y in only poly-logarithmic time.
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For concreteness in our work, a CS-proof system consists of two algorithms:
CSProve and CSVerify. Both algorithms implicitly take a security parameter λ.
CSProve also takes in a function f and an input x, and returns a value y and
a proof π. The CSVerify function takes in a function f , an input x, an output
y, and a proof π. It returns either accept or reject, based on the validity of
the proof. Crucially, the CSVerify function runs in time poly-log in the security
parameter λ, and not in relation to the time it takes f to run.

The correctness property states that for an honestly generated proof π, the
CSVerify function will always accept. The soundness property ensures that if
f(x) 
= y, then it is computationally infeasible to find a proof π that will cause
CSVerify(f, x, y, π) to return accept. The soundness of CS-proofs was originally
shown in the random oracle model. Very recently, Chiesa et al. [11], proved the
soundness of CS-proofs in the quantum random oracle model, which we will rely
on in this work.

3 Instantiating Quantum Random Oracles

In this section we define three signature schemes, Σ1, Σ2, and Σ3, such that:

– Σ1 is secure in the quantum random oracle model, but insecure if that random
oracle is instantiated with some specific hash function H.

– Σ2 is secure in the QROM, but insecure when the random oracle is instanti-
ated with any of a pre-defined set of hash functions {H1, . . . , Hm}.

– Σ3 is secure in the QROM, but insecure if the random oracle is ever instan-
tiated with any polynomial-time function.

These signature schemes lift the results in [10] to the quantum random oracle
model. In all cases, the only assumption we require is that we have a signature
scheme Σ0 = (KeyGen0,Sign0,Vrfy0) which is existentially unforgeable in the
quantum random oracle model. Examples of schemes proven secure in the quan-
tum random oracle model with no additional assumptions include the stateful
LMS signatures [14] and the stateless SPHINCS+ framework [6] (both hash-
based signatures). If one is willing to accept a computational assumption such
as ring-LWE, many other signature schemes, including several of those under
consideration in the NIST standardization process serve as examples [21].

3.1 Warm Up—Schemes Σ1 and Σ2

The first step in considering the instantiation of a random oracle is to consider
instantiation with a single hash function, H. Then we can define the scheme Σ1

as follows. Clearly this scheme satisfies the correctness property, as Σ0 does.
This scheme is eu-acma secure in the (quantum) random oracle model, where

F is replaced with an oracle O. This is intuitively because in this case, the
security reduces to that of Σ0 unless an adversary is able to find a msg such
that O(msg) = H(msg) (which occurs for every possible input with uniform and
independent probability 1/2n).
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Signature scheme Σ1

– KeyGen1(1
λ): Generate (pk, sk) ← KeyGen0(1

λ), and return.
– Sign1(sk,msg):

• Compute σ0 = Sign0(sk,msg).
• Check to see if F (msg) = H(msg). If so, return σ1 = σ0||sk.
• Otherwise, return σ1 = σ0||0.

– Vrfy1(pk,msg, σ1):
• Parse σ1 as σ0||x.
• Run Vrfy0(pk,msg, σ0).

Furthermore, this scheme is insecure if it is instantiated with H replacing
the random oracle. Then the adversary is able to trivially break security, as the
condition H(msg) = H(msg) is always satisfied and σ1 = σ0||sk will be returned
for any message.

The next step is considering a finite collection of m hash functions, say H =
{H1,H2 . . . ,Hm}.

Then we can define Σ2 similarly to Σ1, but change the condition to first
check if msg ∈ {1, . . . , m} (in some encoding of the integers 1 through m) and if
so, further check if F (msg) = Hmsg(msg).

The analysis in the (quantum) random oracle model is again fairly straight-
forward. For any random oracle O, the probability that O(i) matches Hi(i) for
any of i = 1 to m is at most m · 1

2n . When m is small (e.g., polynomially sized
in λ), this is small enough that it is likely to not be possible that an adver-
sary can make a query that provides them with sk. Even for a large m, each
i ∈ {1, . . . , m} will have the property that O and Hi match with probability
1/2n, and so an adversary must perform an unstructured search to find such
an i. Hence an adversary’s ability to break Σ2 in the (quantum) random oracle
model reduces to their ability to break Σ0.

However, as before, if F is actually replaced by any one of the Hi’s, an
adversary can easily break the scheme by querying i to the signing oracle.

3.2 Signature Scheme Σ3

Schemes Σ1 and Σ2 are only to gain an intuition for the full result, Σ3, which is
a signature scheme that is secure in the quantum random oracle model, but inse-
cure when the oracle is instantiated with any polynomial-time function as the
hash function. Following the strategy for Σ2, we would like to fix some enumera-
tion of all algorithms that one may use as a hash function, say H = {H1,H2, . . . },
with Hi : {0, 1}∗ → {0, 1}n. Then as before, we would modify an eu-acma secure
scheme Σ0 to introduce a check in the signing algorithm to interpret msg as
a non-negative integer, and check if F (msg) = Hmsg(msg). However, there are
several issues that must be resolved to make this fully rigorous. Such a set of
functions cannot simply be defined and used in the signature scheme, as the
signature scheme requires that on input i, hash function Hi is actually run.
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To fix this, we start with an enumeration of all algorithms, A =
{
A1, A2,

A3, . . .
}
. We make no assumptions about this enumeration except that we can

efficiently swap between the index i and some standard description of Ai. Chang-
ing between Ai and i should not be seen as a computational task to carry out,
but rather a reinterpretation of the same data. Algorithms are encoded, using
some standard encoding depending on the computational model, into bit strings,
which can then easily be interpreted as an integer. To think of a construction that
achieves this, it is helpful to think of quantum circuits. If we are working with l
registers, then we can interpret the index i as a value in {0, 1}∗ which specifies
which gates are applied to which registers in what order. From a description of a
quantum circuit, it is easy to convert this into a binary string, and then an index,
and vice versa. To be reversible and match the format of a hash function, we
can then consider all circuits that perform the mapping |x〉|y〉 �→ |x〉|y ⊕ Ai(x)〉.

Note that not all of these algorithms necessarily run in polynomial-time in the
security parameter. It is of course impossible to tell which algorithms will even
terminate. We would like to assume that when a random oracle is instantiated,
the function it is instantiated with will run in polynomial time in the security
parameter. As well, these algorithms do not necessarily have the correct output
length of n bits.

To fix this, we modify each algorithm in the following way: For each algo-
rithm, stop after taking nlog n steps, and pad or truncate the output (in an
arbitrary way) so that each algorithm always outputs n bits. The value nlog n

is chosen so it bounds all polynomial-time algorithms. We enumerate our modi-
fied algorithms H = {H1,H2, . . . }. Notice that any algorithm that is polynomial
time, and outputs n bit binary strings is unmodified. So, any function that would
be used as a hash function is not affected by this.

We can then make a first attempt at defining Σ3. Given an eu-acma (in
the quantum random oracle model) signature scheme Σ0 and an enumeration of
hash functions H as described above, we define Σ3 as follows.

Signature Scheme Σ3, first attempt

– KeyGen3: The key generation algorithm remains the same as in the original
scheme Σ. Run KeyGen0(1

λ) and return (pk, sk).
– Sign3: On input of a message msg, and the secret key sk, do the following:

• Compute σ0 ← Sign0(sk,msg).
• Interpret msg as a non-negative integer. Compute Hmsg(msg).
• Check to see if F (msg) = Hmsg(msg).
• If so, return signature σ3 = σ0||sk. Otherwise, return σ3 = σ0||0lsk .

– Vrfy3: On input of a message msg, a signature σ3 and a public key pk, we parse
σ3 as σ0||x, where x is a (possibly all zero) string of length lsk. Then compute
and return Vrfy0(pk,msg, σ0).

There is a very noticeable problem in this scheme. We bounded the run
time of the Hi’s by nlog n, in order to make sure that we could leave every
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polynomial-time algorithm unaffected. However, any algorithm Ai that runs in ≥
nlog n steps will be modified to run in nlog n steps. If a message msg is signed which
corresponds to such an algorithm, the signer will have to evaluate Hmsg(msg).
This means that the signing algorithm does not run in polynomial time in the
security parameter, and so it does not fit a valid definition of a signing algorithm.

To resolve this issue, CS-proofs are employed.
Rather than directly checking to see if F (msg) = Hmsg(msg), we can instead

accept a CS-proof π that F (msg) = Hmsg(msg). This scheme is still trivial to
break when F is instantiated, but we are now guaranteed that the signing algo-
rithm always runs in polynomial time, no matter what is queried.

Signature Scheme Σ3, correct with CS-proofs

– KeyGen3: The key generation algorithm remains the same as in the original
scheme Σ0. Run KeyGen0(1

λ) and return (pk, sk).
– Sign3: On input of a message msg, and the secret key sk, do the following:

• Compute σ0 ← Sign0(sk,msg).
• Using some standard parsing rule, parse msg as i||π, an index i and a string

π.
• Run CSVerify to check if π is a CS-proof that Hi(i) = F (i).
• If so, return signature σ3 = σ0||sk. Otherwise, return σ3 = σ0||0lsk .

– Vrfy3: On input of a message msg, a signature σ3 and a public key pk, we parse
σ3 as σ0||x, where x is a (possibly trivial) string of length lsk. Then compute
and return Vrfy0(pk,msg, σ0).

This allows us to state the main theorem of our paper.

Theorem 1 (Security of Σ3). Let g : {0, 1}∗ → {0, 1} be a random function
such that for each x, Pr[g(x) = 1] = 1

2n and all outputs of the function are
independent.

Let Q be a quantum adversary capable of breaking the existential-
unforgeability of Σ3 with probability p in the quantum random oracle model. Then
there exists a reduction algorithm R that, in slightly super-polynomial time, is
capable of either breaking Σ0, breaking the computational soundness of the CS-
proof system, or finding an x ∈ {0, 1}∗ such that g(x) = 1.

3.3 Proof of Theorem 1

To prove that Σ3 is secure in the quantum random oracle model, we reduce its
security to the adversary’s ability to do one of three things:

– Break signature scheme Σ0 in the quantum random oracle model in slightly
super-polynomial time.

– Find a marked item with respect to a random oracle g.
– Break the computational soundness of a CS-proof in the quantum random

oracle model.
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The reduction algorithm has two main components: How it answers random
oracle queries and how it answers signature queries.

For handling a random oracle, we will need to construct a pseudo-random
function f that takes in two parameters: x and y. This function must satisfy
that f(x, y) is a uniform random element from the set {0, 1}n \ {y}. Such a
function can be quickly constructed on a quantum accessible circuit by using
2q-wise independent hash functions.

Then consider the following oracle:

O(i) =
{

Hi(i) if g(i) = 1
f(i,Hi(i)) otherwise (1)

By creating the proper quantum-accessible circuits, we can create such a
circuit that implements such an oracle in super-polynomial time. We will give
the adversary Q access to this oracle.

We also need to show that the adversary cannot distinguish between this
oracle and a truly random oracle. In fact, we can show something stronger than
this, that this is in fact a truly random oracle. To see this, take any y ∈ {0, 1}n,
and any i ∈ {0, 1}∗ and consider Pr[O(i) = y].

Pr[O(i) = y]
= Pr[g(i) = 1] Pr[O(i) = y|g(i) = 1] + Pr[g(i) = 0] Pr[O(i) = y|g(i) = 0]

=
1
2n

Pr[O(i) = y|g(i) = 1] +
2n − 1

2n
Pr[O(i) = y|g(i) = 0].

Then note that

Pr[O(i) = y|g(i) = 1] =
{

1 if y = Hi(i)
0 otherwise

Pr[O(i) = y|g(i) = 0] =
{

0 if y = Hi(i)
1

2n−1 otherwise

In either case, putting these values into the equation gives that Pr[O(i) =
y] = 1

2n . Furthermore, we can see that as long as g and Hi are each 2q-wise
independent, the overall hash function is 2q-wise independent, and so we have
that this gives us an oracle that is indistinguishable from a truly random one,
even by a quantum adversary.

We next describe how the reduction algorithm R handles the signature
queries. On input of a query msg, our reduction does the following:

– Parse msg as i||π, an index i and a string π.
– Run the CS-verification procedure, with π as the potential proof that Hi(i) =

O(i). If it accepts, check if Hi(i) = O(i)
• If it is, then by construction, g(i) = 1 and we have successfully found

such an i, and may stop.
• If it isn’t, then we have a CS-proof of a false fact, and may stop.

– If it did not accept, then query the challenger for a signature on msg under
the scheme Sign0 and return the signature σ0||0lsk to Q.
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If we never stop on any signature query, then eventually the adversary would
submit a forgery (msg∗, σ∗

3), where msg∗ was never submitted to the signing ora-
cle. We may then parse σ∗

3 as σ∗
0 ||x. If this forgery is accepted by the verification

procedure Vrfy3, then msg∗, σ∗
0 will form a forgery with respect to Σ0.

4 Signing Short Messages

In this section we describe the scheme that appears in [9] and argue that the
proof of security that appears in that work translates to the quantum random
oracle model. This scheme has the same restrictions as the one that appears in
the previous section—we want a scheme that is secure in the quantum random
oracle model, but insecure when the scheme is instantiated with any polynomial-
time function. At a high level, this is accomplished in the same way as before. The
signing algorithm will interpret all submitted messages as a potential description
of a hash function, and check to see if this hash function matches the random
oracle in such a way that proves that the random oracle is in fact, the hash
function. The main distinction is that the signing algorithm will only accept
messages of length poly-logarithmic in the security parameter. This means that
the usage of CS-proofs is no longer a possibility. To overcome this, the authors
of [9] devised a proof system for an NP-language in which the verifier need only
accept multiple, short messages.

This proof system can then be turned into a signature scheme, and the adver-
sary (who acts as the prover) will submit a proof that the random oracle is not
random by making multiple signing queries. At first glance, it may seem that it
is not hard to construct a proof system that can take multiple short messages—
all we need to do is to take a proof system that requires one, large message and
send that message in multiple rounds. However, such a strategy would require
the verifier to be stateful. The verifier would need to “save” the messages that
the prover sends them to be verified against future messages. When translated to
the context of a signature scheme, this makes the signer stateful as well. To rule
out stateless signature schemes as well, the verifier in the proof system devised
in [9] needed to both accept only short messages and be stateless.

In this section we show that this proof system remains secure in the quan-
tum random oracle model. To do this, we first restate the proof system as it
appears in [9], and then discuss how it is used in a signature scheme similar to
Sect. 3. Finally, we show how the security of the system remains unchanged in
the quantum random oracle model.

4.1 A Stateless Interactive Proof System with Short Messages

As mentioned, the proof system introduced in [9] is an interactive proof system
with the following goals:

– It must only require short messages, so that the signing algorithm only needs
to accept short messages.
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– It must be stateless so that the signing algorithm also is.
– It must be unconditionally secure in the (quantum) random oracle model,

again so that the signature scheme may be as well.

At a high level, these goals are accomplished with the following strategy: the
proof that the verifier needs to process is modelled as a Turing machine. The
initial state to this Turing machine is “fed” to the verifier, one block at a time.
Each time a block of the initial state is fed to the verifier, they authenticate the
current configuration, and send an updated tag to the prover. This authentica-
tion tag is submitted to the verifier as part of each subsequent update.

Remember however, that the verifier is completely stateless. While we may
describe this process as the verifier learning the configuration of the Turing
machine, what is really happening is that the verifier is incrementally authenti-
cating each part of the configuration, without ever knowing the whole state.

Once the initial state is “loaded” the prover then proceeds by having the
verifier execute the Turing machine, one step at a time. The prover needs to
tell the verifier the parts of the machine that they need to know, as well as
the authentication tags for those parts. The verifier can then execute one step,
update the authentication tags, and send these back to the prover so that they
may repeat the process. Since the authentication tags are small (more on this
later) and the prover only needs to communicate the parts of the Turing machine
that are necessary to execute one step, the communication in each round is small.
Because the authentication tags cannot be forged, the only way for the prover
to get the Turing machine to be in an accepting state (authenticated by the
verifier) is to have to walk the verifier through each step of the computation,
having them authenticate the process along the way.

We now expand on this sketch, starting by describing the machine that the
verifier will be executing to establish that the oracle is non-random.

Non-randomness machine MO(1k, π)

– Input π is interpreted as a description of a Turing machine. Let n = |π|.
– For i ∈ {1, . . . , 2n + k} :

• yi = O(i).
• zi = π(i).
• If the first bit of yi and zi disagree, return reject.

– Return accept.

The configuration is described in four tapes—the security parameter tape sp,
the oracle query tape q, the oracle reply tape r, and the worktape w initially
containing π. The security of M when O is a random oracle is shown in [9].

Lemma 1 ([9], Proposition 2). If the oracle O is chosen uniformly, the prob-
ability that there exists a description of a Turing machine π such that MO(1k, π)
returns accept is less than 2−k.
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Note that this lemma refers to the existence of a Turing machine π. This
property holds just as well when O is quantum-accessible. Also note again that
if O is not a random oracle, and is described by the Turing machine τ , then we
can simply set π = τ and have that Mτ (1k, π) → accept with certainty.

To iteratively load and run the machine M , we need a mechanism for the
verifier to authenticate the current state of the machine, which is described by
the four work tapes (sp, q, r, w), the heads of the tapes h1, . . . , h4, and the finite
control F . These eight values describe entirely the state of the machine M . Using
some standard encoding method, they may be encoded as a binary string. It is
this string, denoted c that the verifier will be authenticating.

Say the oracle O returns values in {0, 1}n. Then we will pad the string c to
one of length n ·2d, where d is the smallest positive integer such that n ·2d ≥ |c|.
This allows us to construct a Merkle tree out of the string c, with the leaf nodes
consisting of bit strings of length n, and the tree having height d. The Merkle
tree is constructed out of the oracle O by setting, for level i of the tree, the value
of each node to be O(i, left, right), where left and right are the values (in {0, 1}n)
of the two nodes in the tree directly below.

Note, in particular, that domain separation is used to separate the different
levels, but not for the calculations within a level. This is done to speed up the
process of creating a Merkle tree when the configuration c is homogeneous. For
the parts of the work tapes that entirely blank (as they will be in the initial
configuration), when converted into a binary string, and then a Merkle tree,
their will be many repeated leaf values, which means that the entire tree can be
constructed in time polynomial in the security parameter, k.

The verifier will possess an authentication key ak, which is used to authen-
ticate the root of the Merkle tree as in a MAC scheme. The authentication tag
for the tree is computed as O(d, ak, root). The loading and execution machine
then proceeds as follows (Full details of this process are described in [9]).

1. The prover sends a message indicating that they wish to initialize the process.
In response, the verifier loads up a blank configuration c in which the tapes
are all empty, the heads are at a starting position, and the finite control is
empty. They compute the root of the Merkle tree where this blank configura-
tion forms the leaf nodes, and authenticate the root of the tree, sending the
authentication tag back to the prover.

2. The prover loads the initial state of the machine M leaf-node-by-leaf-node.
For any leaf node i they wish to update, they send a message to the verifier
with the position they want to update, the Merkle tree verification path for
that leaf node, the new value they want that position to take on, and the
authentication tag for the most recent root node. The verifier uses the Merkle
tree verification path to reconstruct the root node, which it verifies with the
authentication tag and its key ak. Once checked, the verifier produces an
authentication tag for the tree with the desired update, by swapping out the
leaf node value, computing the new resulting root node (again, by using the
Merkle tree verification path) and constructing a tag for the root node.
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3. When the initial state of M has been loaded, the prover can then get the
verifier to begin executing M . To execute a step of M , the prover must send
any leaf nodes involved in one step of the computation (e.g., the leaf node
the header is pointed to, the values of the headers) and the Merkle tree
verification paths for those leaves, as well as the authentication tag. The
verifier computes one step of the Turing machine, recomputes the root node
for the new state, and sends the authentication tag for the new state to the
prover. If the machine reaches the accepting state, then the verifier accepts
the state as valid.

We now proceed to prove a lifting of Proposition 4 in [9] to the quantum
random oracle model.

Lemma 2. Let ak be chosen uniformly at random in {0, 1}n, then for any prover
P it holds that

Pr
O,ak

[
V O(1k, ak) → accept

] ≤ O(q3/2n) (2)

Where q is the number of (quantum) oracle queries made by P.

Proof. As noted in Lemma 1, the probability over the randomness in O that
there exists an accepting machine π is less than 2−k. Assuming there does not
exist such a machine, a dishonest prover must somehow manage to trick the
verifier into reaching an accepting state. Because an accepting machine cannot
be loaded into the configuration, it must be the case that some machine which
should not accept was instead loaded, and the execution of this machine is then
tampered with by the prover. To tamper with the execution of the machine, the
adversary must, at some point, provide the verifier with a leaf node that was not
in the configuration that was just authenticated.

In order to load in a falsified leaf node, the adversary must still submit a cor-
rect authentication tag. There are two cases: either the associated authentication
tag was provided by the verifier, or it was not.

First we consider the case where the authentication tag was provided by the
verifier. We consider the first time the adversary submits a leaf node that cor-
responds to an invalid machine configuration. We know that the authentication
tag matches a previously issued one, but the corresponding leaf node was not
part of how the previous authentication tag was generated. There are two pos-
sibilities for how this may happen. It may be the case that (i) at some point
along the verification path we have values left, left′, right, right′ and i such that
O(i, left, right) = O(i, left′, right′). Of course, at most one of the left and right
values can be equal. The other possibility is that (ii) the root values of the result-
ing Merkle trees are different, but we have a collision in the authentication tag:
O(d, ak, root) = O(d, ak, root′).

Because an adversary who is able to break the soundness of the proof system
must provide enough classical information to be able to construct a collision in
the quantum random oracle O, we can bound the success probability simply by
the probability of being able to find such a collision. This can be asymptotically
bounded by a O(q3/2n) term.
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The second case happens when the authentication tag for the invalid machine
configuration was never previously issued. This means that the adversary was
able to submit a tag t, a value d, and a Merkle tree path that leads to a value
root such that t = O(d, ak, root) when the value t was never before returned by
the verifier.

Intuitively, this is a structureless search problem on the part of the adversary:
in order to provide a valid authentication tag, they must perform an unstructured
search to find the ak value that causes authentication tags to accept. To formally
show this, we provide a reduction from an adversary who can create a new
authentication tag to one that can distinguish between to functions, g0 and g1,
both mapping {0, 1}n to {0, 1}. The function g0 simply returns 0 for all inputs
x, whereas for g1 there is precisely one random input on which g1 will return 1.

We are given quantum access to one of the two functions, gb, and asked to
determine b. To do this, we first construct two independent quantum-accessible
random oracles O0 and O1. We then construct the oracle O as follows:

O(d, x, y) =
{O0(d, x, y) if gb(x) = 0

O1(d, y) if gb(x) = 1. (3)

Note that since there is at most one x for which gb(x) = 1, O is itself a random
oracle, for anyone who does not have direct access to O0 and O1.

When the verifier needs to produce an authentication tag on an input
(d, root), this can simply be done by computing t = O1(d, root). Then note
that these tags will be valid authentication tags with respect to some authenti-
cation key only when b = 1, in which case the valid authentication tag will be
the value x such that g(x) = 1.

When b = 1, the authentication tags that are issued by the verifier will be
correctly correlated with the oracle O, but when b = 0, the tags will be entirely
uncorrelated with O. In this case, the adversary’s ability to produce a forgery is
bounded by a simple random guess, which corresponds to a probability of 1/2n.
This is because in this case the oracle O can tell the adversary no information
about correct authentication tags. To try and guess an authentication tag for
a configuration (d, root∗) would mean trying to guess the value of O1(d, root∗)
without ever having queried it (and having made no quantum queries to it).
Any non-negligible difference in the success probability of the adversary P can
be used in order to determine which function we are dealing with, and thus leads
to a determination of the unknown bit b.

The probability of determining such a bit in q queries to g is bounded above
by O(q2/2n) from known result [20]. Note that each quantum query P makes
to O corresponds to exactly one quantum query to gb. Because the other case is
bounded by a O(q3/2n) term, we can drop this term entirely.
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Signature Scheme Σ4

– KeyGen4: Because the verifier in the interactive proof system requires an authen-

tication key, we sample one as ak
$←− {0, 1}n. Obtain (pk0, sk0) ← KeyGen0(1

λ)
and return (pk4, sk4) = (pk0, (sk0, ak)).

– Sign4: On input of a message msg, and the secret key sk4 = (sk0, ak), do the
following:

• Compute σ0 ← Sign0(sk,msg).
• Using some standard parsing rule, parse msg as an input to the verifier V.
• Run V(ak;msg), obtaining output t, and whether the machine M reached

the authenticating state.
• If so, return signature σ4 = σ0||sk0. Otherwise, return σ3 = σ0||t.

– Vrfy4: On input of a message msg, a signature σ4 and a public key pk4 = pk0,
we parse σ4 as σ0||x, where x is some string. Then compute and return
Vrfy0(pk0,msg, σ0).

4.2 Signature Scheme Σ4

With the interactive, stateless, short messaged proof system fleshed out, we can
now discuss the signature scheme Σ4, built out of this proof system.

Theorem 2 (Security of Σ4). Let Q be a quantum adversary capable of break-
ing the existential-unforgeability of Σ4 with probability p in the quantum ran-
dom oracle model, with q queries to the quantum random oracle O. Then there
exists a reduction algorithm R that, with probability (over R and O) at least
p − O(q3/2n) is capable of either breaking Σ0 or finding an x, x′ ∈ {0, 1}∗ such
that O(x) = O(x′).

Proof. It is easy to see that

Pr[Q wins eu-acma ∧ �π : MO(1λ, π) → accept] ≥ p − 2−λ,

where the probability is taken over the randomness in the oracle O and the
randomness of the adversary, as well as whatever randomness is needed in the
signature scheme Σ0.

There are then two cases: either the adversary submits a signing query that
causes the proof system to move into an accepting state, or they do not. If they
do, then since we know there is not a π such that MO(1λ, π), the only way for
an adversary to do this is to have found a collision in O, which can be found by
looking at the (classical) signing queries made by the adversary. We can bound
the probability this happens by a O(q/2λ) term. Assuming that the adversary
does not submit such a message, then whatever forgery is submitted by the
adversary will work as a valid forgery to the signature scheme Σ0.
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Abstract. One oft-endeavored security property for cryptographic hash
functions is collision resistance: it should be computationally infeasible
to find distinct inputs x, x′ such that H(x) = H(x′), where H is the
hash function. Unruh (EUROCRYPT 2016) proposed collapseability as
its quantum equivalent. The Merkle-Damg̊ard and sponge hashing modes
have recently been proven to be collapseable under the assumption that
the underlying primitive is collapseable. These modes are inherently
sequential. In this work, we investigate collapseability of tree hashing.
We first consider fixed length tree hashing modes, and derive conditions
under which their collapseability can be reduced to the collapseability of
the underlying compression function. Then, we extend the result to two
methods for achieving variable length hashing: tree hashing with domain
separation between message and chaining value, and tree hashing with
length encoding at the end of the tree. The proofs are performed using
the collapseability composability framework of Fehr (TCC 2018), that
allows us to discard of deeply technical quantum details and to focus on
proper composition of the tree hashes from their compression function.

Keywords: Collapseability · Collision resistance · Tree hashing ·
Composition

1 Introduction

Hash functions are functions that map arbitrarily long strings, or at least very
long strings, to a digest of fixed length. Their introduction dates back to the sem-
inal work of Diffie and Hellman [7] in the context of digital signatures. Nowadays,
hash function outgrew their original role: they find thousands of applications in
cryptography. These applications all require certain security properties of the
hash function. One of these properties is collision resistance: it should be com-
putationally infeasible for an attacker to find two distinct messages with the
same hash digest. The notion appeared first in Merkle’s PhD thesis [9], and is
the leading security property when it comes to breaking hash functions. Well-
known hash functions MD5 [11] and SHA-1 [12], and many others, are consid-
ered insecure mainly because practical collision attacks were mounted on these
(cf. Stevens et al. [15] for MD5 and Stevens et al. [14] for SHA-1). However, find-
ing collisions appears not to be a purely academic exercise: in 2012 the Flame

c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 524–538, 2020.
https://doi.org/10.1007/978-3-030-44223-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44223-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-44223-1_28


Collapseability of Tree Hashes 525

virus exploited collisions in MD5 to act as a properly signed Windows Software
Update security patch [13].

When we move to the quantum setting, the classical notion of collision resis-
tance is not strong enough. Unruh [17, Theorem 19] (Theorem 22 in the full
version) showed that there is a hash function that is collision resistant and thus
can safely be used in a classical commitment scheme, but is not secure when the
commitment scheme is used in a quantum setting. We can therefore conclude
that, even if a hash function is (classically) collision resistant, it behaves unex-
pectedly when used in a quantum environment. We need a stronger model in
favor of collision resistance.

1.1 Collapseability

Unruh [17] presented collapseability as a quantum equivalent of collision resis-
tance of hash functions. Informally, for cryptographic hash functions, col-
lapseability requires an adversary that outputs a hash value together with a
superposition of corresponding preimages is not able to tell if the superposi-
tion gets measured or not. We revisit collapseability in Sect. 3, and particularly
outline the idea as to why this would be the quantum equivalent of collision
resistance in Sect. 3.3.

The model of collapseability has gained traction. In a follow-up work,
Unruh [16] proved that the Merkle-Damg̊ard hashing mode [6,10] is collapsing
if the compression function is. Later, Czajkowski et al. [5] proved collapseability
of the sponge construction [1] if the underlying one-way function is (their work
combined independent works of Unruh [18] and Czajkowski et al. [4]). These
proofs are, however, quite tedious and technically involved. They require the
reader to possess a large amount of quantum knowledge.

In [8], Fehr introduced an alternative framework for collapseability. His def-
inition is more algebraic in nature, whereas that of Unruh is more algorithmic.
This allowed Fehr to reason about composability of collapseable functions in a
neat and compact way. In more detail, Fehr showed that collapseability is closed
under certain compositions, all with very concise proofs. These composability
properties make it possible to reason about collapseability from a purely clas-
sical view, without requiring quantum knowledge. He applied the approach to
the Merkle-Damg̊ard and sponge hash construction, proving that they are col-
lapsing if the underlying compression function is. Therewith, he confirmed the
correctness of the earlier results in his new framework.

1.2 Our Contribution

We consider collapseability of tree hashing. We will make full use of Fehr’s frame-
work [8] in order to argue what conditions a tree hashing mode must meet in
order to be collapseable.

First, in Sect. 4 we consider the basic problem of tree hashing for fixed length
messages. For messages of a certain fixed length n, we recursively define a tree
hash function TH n. It is defined based on a split function split(n) ∈ {1, . . . , n−1}
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that prescribes how the final digest is derived from two tree hashes TH split(n)

and TH n−split(n) applied to the first split(n) and last n−split(n) message blocks.
Then, in Sect. 5, we detail how the result can be extended to variable length

hashing using domain separation. In this case, it is assumed that processing of
message blocks and chaining values is properly domain-separated in the way the
mode calls its compression function. One way in doing so is by appending a 0 to
message blocks and a 1 to chaining values. Intuitively, this makes it impossible to
replace the chaining value of a subtree with a message block with the same value.
We prove that the resulting variable length tree hash function is collapsing. This
is done by extending trees with ‘empty’ blocks in such a way that we can reduce
collapseability of the variable length mode to that of the fixed length mode.

Finally, in Sect. 6, we consider a second way to turn the fixed length construc-
tion into a variable length hashing mode: length encoding. Here, we allow any
tree hashing mode, but the block length of the message will be included by using
a final compression function call. This approach makes the final compression
functions disjoint for different message lengths, and using previous techniques
and the composition results of Fehr, we likewise manage to prove collapseability.

All three collapseability results come with a security bound that expresses
the adversarial advantage relative to the collapseability of the underlying com-
pression function, as well as with a complexity analysis of the resulting modes.

1.3 Related Work

One might likewise consider quantum indifferentiability of tree hashing in the
framework of Zhandry [19]. We remark, however, that in the classical setting
indifferentiability implies collision resistance, but not conversely, and for some
applications the weaker property of collision resistance is sufficient. A similar
remark applies to the quantum setting, i.e., collapseability is sufficient in many
applications such as the simple commitment schemes given by Unruh [17]. In
such settings, it is senseless to rely on a stronger property with a more complex
security proof and a, likely, weaker security bound.

2 Preliminaries

We will use the following compositions of functions.

– For g : X → Y and h : W → Z, the concurrent composition g‖h : X × W →
Y × Z is given by (x,w) �→ (g(x), h(w)).

– For g : X → Y and h : Y → Z, the nested (or sequential) composition
h ◦ g : X → Z is given by x �→ h(g(x)).

– For g : X → Y and h : X → Z, the parallel composition (g, h) : X → Y × Z
is given by x �→ (g(x), h(x)).

– For g : X → Y and h : W → Z, the disjoint union g � h : X ∪ W → Y ∪ Z
maps x ∈ X to g(x) and w ∈ W to h(w). Furthermore, f and g are required
to have disjoint domains and images, so X ∩ W = Y ∩ Z = ∅.

Furthermore, we write Sn = 1 + 2 + · · · + n = n(n + 1)/2 for the sum of positive
integers up to n.
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2.1 Qubits and Measurements

Classical computers work with classical bits. These bits can be either a 0 or
a 1, but not a combination of both. However, quantum computers work with
quantum bits (qubits). These qubits can be just a 0 or 1, but can also be in a
state which is a combination of both. A qubit that has a single value is denoted
by |0〉 or |1〉 (pronounced ‘ket 0’ and ‘ket 1’), for 0 and 1 respectively. However,
a qubit can also be a linear combination of both, denoted as α |0〉 + β |1〉 for
some α, β ∈ C such that |α|2 + |β|2 = 1. This is called a superposition. A
superposition can also be written in a single ket. For example, we could define
the state |φ〉 = α |0〉 + β |1〉. If a qubit is in a superposition, computations on it
are applied to all values at the same time. However, we cannot directly measure
the coefficients in the states. We have to do a measurement, which destroys the
superposition.

Given a qubit |φ〉 = α |0〉 + β |1〉, we can measure it in the standard compu-
tational basis {|0〉 , |1〉}. Then one of the following happens:

– |φ〉 collapses to the state |0〉 with probability |α|2. We get the result ‘0’.
– |φ〉 collapses to the state |1〉 with probability |β|2. We get the result ‘1’.

Since |α|2 + |β|2 = 1, exactly one of these happens with probability 1.
In addition to single qubit states, there are also states of multiple qubits. In

general a quantum state of dimension n has the form
∑

i∈{0,1}n

αi |i〉 ,

where αi ∈ C and
∑

i |αi|2 = 1. For example, we can have the 2-dimensional
state

1√
2

(|00〉 + |11〉) .

Measurements happen in a similar way to single qubits. When measured in the
standard computational basis { |i〉 | i ∈ {0, 1}n }, a state |φ〉 =

∑
i αi |i〉 collapses

to the state |i〉 with probability |αi|2. We get the result ‘i’.
We can also measure in other bases. This can be any orthonormal basis. The

measurements happen in the same way as before, but we have to rewrite our
state in the new basis. For example, a popular basis is {|+〉 , |−〉} given by

|±〉 =
1√
2

(|0〉 ± |1〉) .

If we want to measure |0〉 in it, we have to rewrite it as

|0〉 =
1
2

(|0〉 + |1〉) +
1
2

(|0〉 − |1〉) =
1√
2

|+〉 +
1√
2

|−〉 .

This means that the measurement results in either |+〉 or |−〉, both with prob-
ability 1/2.
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3 Collapseability

Unruh [17] introduced collapseability as the quantum version of classical collision
resistance. His definition uses an ‘algorithmic’ view on collapseability. Later,
Fehr [8] introduced a new formalism of collapseability. His new definition uses
a more ‘algebraic’ view, which allows for simpler proofs of some composition
results. We will mostly use Fehr’s formalism to classically prove that certain
tree hash functions are collapsing.

Although most proofs become easier with the more ‘algebraic’ definition, we
present the more ‘algorithmic’ one given in [17] as it is easier to understand.

Definition 1. Given a (hash) function H, we play the following game. An
adversary A generates a quantum state |φ〉 =

∑
x∈X αx |x〉 such that H(x) = c

for all x ∈ X for some c. Then, one of the following happens:

1. The state |φ〉 gets measured in the computational basis.
2. The state |φ〉 is left untouched.

The adversary A does not know which one happened, but it tries to determine
it. It returns a bit b, indicating which case it thinks has happened. Its advantage
is given by

cAdv[H](A) =
∣∣P[b = 1 : Case (1)] − P[b = 1 : Case (2)]

∣∣.

In the remaining of this section, we first look at the query complexity of functions
in Sect. 3.1. This allows us to give a definition of collapseability that maximizes
over adversaries. Then we look at the composability of collapseability in Sect. 3.2.
These lemmas allow us to reason classically about the collapsing advantage.
Finally, in Sect. 3.3 we explain why collapseability is a stronger notion than
collision resistance.

3.1 Complexity

In order to limit the resources of the adversary, we adopt the notion of complexity
from Fehr [8]. Given a function f , we assign it a complexity c(f), which is a
non-negative integer. We usually normalize the complexity of the compression
function as 1. We also assume that this abstract notion satisfies some natural
properties. Simple functions like constants, copying, deleting, the identity, etc.,
have zero complexity. Furthermore, we assume that the complexity function
behaves well under compositions, so that

c(f‖g) � c(f) + c(g),
c(g ◦ f) � c(f) + c(g),
c(f � g) � c(f) + c(g).

The final inequality is not mentioned in [8]. However, we will need it in
our proofs, and it seems natural to assume. If we were to apply the functions
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just classically, it seems enough to bound c(f � g) by max(c(f), c(g)), as every
application computes either f or g, but not both. However, since we work with
qubits, we also have to account for superpositions. If a qubit is in a superposition
consisting of inputs from both domains, we have to compute both functions. This
means that its complexity can be c(f) + c(g).

Given the notion of complexity, we can define the advantage we get when we
limit the resources of the adversaries.

Definition 2. The collapsing advantage of H with complexity q is given by

cAdv[H](q) = max
A∈A(q)

cAdv[H](A),

where A(q) are all adversaries with query complexity q.

We also say that a function H is ε-collapsing if cAdv[H](q) � ε(q).

3.2 Composability of Collapseability

The main advantage of the formalism introduced by Fehr is that some compos-
ability results have very concise proofs. The following lemmas are taken from
Fehr [8].

Lemma 1 (Concurrent composition). The concurrent composition g‖h sat-
isfies

cAdv[g‖h] � cAdv[g] + cAdv[h].

Lemma 2 (Nested composition). The nested (or sequential) composition h◦g
satisfies

cAdv[h ◦ g](q) � cAdv[g](q + c(g)) + cAdv[h](q + c(g)).

Lemma 3 (Parallel composition). The parallel composition (g, h) satisfies

cAdv[(g, h)] � min(cAdv[g], cAdv[h]).

Lemma 4 (Disjoint union). The disjoint union g � h satisfies

cAdv[g � h] � cAdv[g] + cAdv[h].

3.3 Collapseability Implies Collision Resistance

We show that collapseability is a stronger notion than collision resistance. Our
reasoning is similar to the one of Unruh [17, Lemma 22] (Lemma 25 in the
full version), but simplified to only require the basic knowledge of qubits and
measurements given in Sect. 2.1.

Suppose one can obtain distinct x, x′ with H(x) = H(x′). We show how such
a collision can be used to break the collapseability of H. As the state in the
collapsing game, we choose

|φ〉 =
1√
2

(|x〉 + |x′〉) .
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Now |φ〉 may or may not get measured in the computational basis. If it gets
measured, it either collapses to |x〉 or to |x′〉, both with probability 1/2. If it
does not get measured, it stays the same.

In order for adversary A to differentiate between the two cases, we measure
|φ〉 in a modified basis. Almost all basis elements stay the same, but we replace
|x〉 and |x′〉 with

|+x,x′〉 =
1√
2

(|x〉 + |x′〉) and |−x,x′〉 =
1√
2

(|x〉 − |x′〉) .

This is still an orthonormal basis. If |φ〉 is not measured, it is equal to |+x,x′〉,
hence the result of the measurement is |+x,x′〉 with probability 1.

However, if |φ〉 is measured, it is either |x〉 or |x′〉. We rewrite these in the
new basis as

|x〉 =
1
2

(|x〉 + |x′〉) +
1
2

(|x〉 − |x′〉) =
1√
2

|+x,x′〉 +
1√
2

|−x,x′〉 ,

|x′〉 =
1
2

(|x〉 + |x′〉) − 1
2

(|x〉 − |x′〉) =
1√
2

|+x,x′〉 − 1√
2

|−x,x′〉 .

This means that both |x〉 and |x′〉 get measured as either |+x,x′〉 or |−x,x′〉, both
with probability 1/2.

The adversary thus operates as follows. If it finds |+x,x′〉, it concludes that
|φ〉 was not measured, and if it finds |−x,x′〉, it concludes that |φ〉 was measured.
Since it gets the case without measurement always right, and it basically guesses
in the case with measurement, its advantage is 1/2. Hence H is not collapsing.

4 Fixed Length Tree Hashing

Fehr [8] showed that some simple hash constructions like Merkle-Damg̊ard can
be proven to be collapsing by only using the composition lemmas of Sect. 3.2.
This means that the reasoning in the proofs is just classical, as the hash con-
structions are broken down as the composition of smaller functions for which the
composition lemmas apply. The main technicality moved from actually proving
collapseability to describing hash functions as clever compositions of collapseable
functions. In this work we investigate tree hashes.

We start with tree hashes of fixed length that can only take a fixed number
of blocks and for which the structure is the same for all inputs.

Let f : {0, 1}c ×{0, 1}c → {0, 1}c be a compression function. We define a tree
hashing mode by its splitting points, that is a function split : N�2 → N. Given a
message x1, . . . , xn the parts x1, . . . , xsplit(n) and xsplit(n)+1, . . . , xn are hashed
separately and compressed with f . No part can be empty, so 1 � split(n) � n−1
for all n. An example is displayed in Fig. 1 with a splitting function such that

split(5) = 3,
split(3) = 2,
split(2) = 1.

(1)
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Note that it is irrelevant for this particular tree what value split(n) takes for
n /∈ {2, 3, 5}.

m1 m2

m3 m4 m5

split(2) = 1

split(3) = 2 split(2) = 1

split(5) = 3

Fig. 1. Tree hash with the split function of (1). The circles with messages mi represent
the message blocks, while the other circles represent calls to the compression function
f and their resulting chaining value. The final digest is the result of the compression
call of the root.

Likewise, we can express the Merkle-Damg̊ard mode as a tree hash with
split(n) = n − 1. The example mode of Sakura [2, Section 5.4], which balances
the tree very well, can be expressed with split(n) the largest power of 2 smaller
than n.

We now define the general tree hashing mode that we will consider in this
work.

Definition 3. Given a compression function f : {0, 1}c × {0, 1}c → {0, 1}c

and a function split : N�2 → N, we recursively define the tree hashes TH n :
({0, 1}c)n → {0, 1}c for n ∈ N�1 as

TH 1(x1) = x1,

TH n(x1, . . . , xn) = f(TH k(x1, . . . , xk),TH n−k(xk+1, . . . , xn)),

where k = split(n). Note that we can express this definition equivalently using
the composition functions defined in Sect. 3.2 as follows:

TH 1 = id,

TH n = f ◦ (TH k‖TH n−k).

The function TH n calls the compression function n − 1 times. As we normalize
the complexity of f as c(f) = 1, we would expect the complexity of TH n to be
n − 1. This is indeed the case.

Lemma 5. If f has complexity c(f) = 1, then c(TH n) � n − 1 for all n.
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Proof. We use strong induction to n. Since we assume the identity has 0 com-
plexity, we get

c(TH 1) = c(id) = 0.

For n > 1 we have TH n = f ◦ (TH k‖TH n−k), which means, using the compo-
sition properties of the complexity function (See Sect. 3.1), that

c(TH n) = c(f ◦ (TH k‖TH n−k))
� c(f) + c(TH k) + c(TH n−k)
� 1 + (k − 1) + (n − k − 1) = n − 1. ��

We now look at the collapseability of TH n. As it only accepts a fixed number
of blocks, we find that it is collapsing regardless of the split function used.

Proposition 1. If f has complexity c(f) = 1 and is ε-collapsing, then TH n is
collapsing for all n with advantage

cAdv[TH n](q) � (n − 1) · ε(q + Sn−2).

Proof. We use strong induction to n. Since the identity has an advantage of 0,
we get

cAdv[TH 1](q) = 0.

For n > 1 we have TH n = f ◦ (TH k‖TH n−k), which means, using nested
composition and the fact c(THm) = m − 1 (Lemma 5), that

cAdv[TH n](q) � cAdv[f ] (q + c (TH k‖TH n−k))
+ cAdv[TH k‖TH n−k] (q + c (TH k‖TH n−k))
� ε(q + n − 2) + cAdv[TH k‖TH n−k](q + n − 2).

Using concurrent composition and the induction hypothesis, we find that

cAdv[TH k‖TH n−k](q + n − 2) � cAdv[TH k](q + n − 2)
+ cAdv[TH n−k](q + n − 2)
� (k − 1) · ε(q + n − 2 + Sk−2)
+ (n − k − 1) · ε(q + n − 2 + Sn−k−2).

Since k and n − k are strictly smaller than n, we have that n − 2 + Sk−2 and
n − 2 + Sn−k−2 are less or equal to Sn−2, which means that

cAdv[TH k‖TH n−k](q + n − 2) � (k − 1) · ε(q + Sn−2)
+ (n − k − 1) · ε(q + Sn−2)
= (n − 2) · ε(q + Sn−2).

Putting these together, and using that n − 2 � Sn−2, we get that

cAdv[TH n](q) � ε(q + n − 2) + (n − 2) · ε(q + Sn−2)
� (n − 1) · ε(q + Sn−2). ��
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5 Variable Length Using Domain Separation

We have seen that any binary tree hash of fixed length is collapsing. However, a
hash function has to be able to hash inputs of varying lengths. We cannot just
use the tree hash corresponding to the input we got, as this leads to collisions.
For example, suppose that we have a big tree hash. We can replace two leaves,
that get compressed together to a chaining value CV , by just a single leaf with
CV as the message. This is a collision, as the resulting digests of both trees are
the same.

One solution to this problem is using domain separation between the message
blocks and the chaining values. For example, all message blocks can end with a
0, while the chaining values all end with a 1. We see that this requirement arises
naturally when we apply a similar idea as Fehr [8]. He proves Merkle-Damg̊ard
secure by limiting the block size of the input to some L. Every smaller message
is expanded to a message of size L by prepending ‘empty’ blocks ⊥. Then the
compression function is modified to also take these ‘empty’ blocks as input and
ignore them. We use a similar strategy where we embed a smaller tree in a larger
tree and fill the extra leaves with these ‘empty’ blocks.

To do so, we define the mapping Extend[U ](T ) which takes an unlabeled
binary tree U and a labeled binary tree T , such that T is a subtree of U . This
means that every node in T has to be a node in U as well, and not a leaf. Then
Extend[U ](T ) outputs a labeled binary tree with the same structure as U , but
with labels based on T . Every leaf of T with value m is mapped to its part in
U , with the label m on the leftmost leaf, and the label ⊥ on all the other leaves.
An example is displayed in Fig. 2.

m1

m2 m3

m4

(a) Labeled tree T (b) Unlabeled tree U

m1 ⊥ m2 m3 m4 ⊥

⊥

(c) Extend[U ](T )

Fig. 2. Extending a tree. The tree T has to be a subtree of U .

More formally, assume that the tree hashing mode uses domain separation:
input blocks can be differentiated from the chaining values. This means that
we can identify two disjoint sets M ⊆ {0, 1}c and C = {0, 1}c \ M that cover
all message block values and chaining values, respectively. Next, we define three
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different types of tree hashing modes, with different types of output: a message
block in M , a chaining value in C or either one in {0, 1}c. These functions are
defined as THM

n : Mn → M , THC
n : Cn → C, and THX

n : Xn → {0, 1}c, where
the domains are recursively defined as

Mn = M × {⊥}n−1,

C1 = ∅,

Cn = Xk × Xn−k,

Xn = Mn � Cn,

where k = split(n). Given these domains, we now define the three types of tree
hashing modes themselves.

Definition 4. Given a compression function f : {0, 1}c × {0, 1}c → C and a
function split : N�2 → N, we recursively define the tree hashes THM

n : Mn → M ,
THC

n : Cn → C and THX
n : Xn → {0, 1}c as

THM
n (m,⊥, . . . ,⊥) = m,

THC
n (x1, . . . , xn) = f(THX

k (x1, . . . , xk),THX
n−k(xk+1, . . . , xn)),

THX
n = THM

n � THC
n ,

where k = split(n).

Using these functions, we finally define the variable input length function
TH�L

dom : M�L → {0, 1}c which hashes variable length trees up to length L. Let
U , with a size of K blocks, be the smallest tree of which all trees up to length L
are a subtree of. TH�L

dom maps an input m1, . . . ,mn, to THX
K(x1, . . . , xK), where

x1, . . . , xK is the tree Extend[U ](Tn), where Tn is the tree of size n with labels of
m1, . . . ,mn. This means that xi is equal to either some mj or ⊥. We can apply
this mapping non-ambiguously as every tree up to length L is a subtree of U .

For example, in the Merkle-Damg̊ard construction every tree of size n is a
subtree of the tree of size n′ if n � n′. This means that U is just the normal tree
of size L, hence K = L. This is displayed in Fig. 3 for L = 4. Note that this is
not the case in general. For example in the construction in Sakura, if L is equal
to 2� +1, then the right branch only contains one leaf, which means that it does
not contain the tree for 2�, which is a full binary tree with a right branch of size
2�−1. However, we can still choose the next power of two as a tree that contains
the necessary trees, hence K � 2L. This is displayed in Fig. 4 for L = 5.

We are ready to prove the collapseability of TH�L
dom.

Theorem 1. If f has complexity c(f) = 1 and is ε-collapsing, then TH�L
dom is

collapsing for any L with advantage

cAdv[TH�L
dom](q) � (K − 1) · ε(q + SK−2),

where K is the size of the smallest tree of which all the trees up to length L are
a subtree of. Furthermore, we have that L � K � SL.
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m1 m2

m1 ⊥

⊥

(a) Tree T2 (solid) and
Extend[U ](T2) (dashed).

m1

m3

m1 ⊥

m2

(b) Tree T3 (solid) and
Extend[U ](T3) (dashed).

m4

m1 m2

m3

(c) Tree T4, equal to U .

Fig. 3. Hashing variable sized hashes with the Merkle-Damg̊ard mode. U , displayed in
Fig. 3c, is the smallest tree structure of which all trees up to length 4 are a subtree of.
This tree happens to be the same as the normal Merkle-Damg̊ard construction with
n = 4.

m1

m2

m3 m4

m1 ⊥ m2 ⊥

(a) Tree T4 (solid) and
Extend[U ](T4) (dashed).

m5 ⊥

m1 m2 m3 m4

m5

(b) Tree T5 (solid) and
Extend[U ](T5) (dashed).

(c) Tree U , not equal to
any previous tree.

Fig. 4. Hashing variable sized hashes with the example mode of Sakura. The trees up to
length 3 are not shown. Tree U , displayed in Fig. 4c, is the smallest tree structure of
which all trees up to length 5 are a subtree of. This tree is different from all the
constructions up to length 5.

Proof. As the first step, an input m1, . . . ,mn is mapped to the extended input
x1, . . . , xK , on which the tree hash THX

K is applied. This mapping is injective,
hence 0-collapsing, hence we have to show that

cAdv[THX
K ](q) � (K − 1) · ε(q + SK−2).

As THM
n is injective, it is 0-collapsing, hence we see that cAdv[THX

n ] =
cAdv[THC

n ] by disjoint union. Furthermore, THC
n is defined in almost the same

way as TH n in Definition 3. The only difference is that the recursive call is to
THX

k instead of itself. However, as the advantage of THX
k is the same as that
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of THC
k we can still apply the same proof as in Proposition 1, which gives the

desired result.
Furthermore, we look at the value of K, which is the size of the smallest tree

U of which all the trees up to length L are a subtree of. First, the tree of size L
has to be a subtree of U , which means that its size is at least L, hence L � K.
Second, every tree of size n adds at most n leaves to U for all n up to L. This
means that its size is at most 1 + 2 + · · · + L = SL, hence K � SL. ��

6 Variable Length Using Length Encoding

We have seen that we can make a variable length tree hash collapsing by using
domain separation between the message blocks and the chaining values. However,
this method adds some overhead and might not work well with the alignment of
the message blocks, as at least a bit has to be added to every block. Another way
to allow a variable length input is by using length encoding. Here, the length of
the message is used in a final compression call. We define the hash with length
encoding TH�L

len : ({0, 1}c)�L → {0, 1}c, which hashes variable length trees up to
length L, as

TH�L
len (x1, . . . , xn) = f(n,TH n(x1, . . . , xn)),

where n is the number n encoded as a binary number in {0, 1}c, which limits L
to be at most 2c.

This method requires less overhead than domain separation, as the length of
the message is added just once. We find that any tree hash with length encoding
in a final compression call is collapseable, by applying the composition lemmas
on some smaller functions.

Theorem 2. If f has complexity c(f) = 1 and is ε-collapsing, then TH�L
len is

collapsing for any L with advantage

cAdv[TH�L
len ](q) � (SL−1 + 1) · ε(q + (L − 1)2).

Proof. Instead of looking at TH�L
len directly, we build it as the composition

of smaller functions. First we define for every n ∈ N the function LTH n :
({0, 1}c)n → {0, 1}c × {0, 1}c as

LTH n(x1, . . . , xn) = (n,TH n(x1, . . . , xn)).

Note that we can also write this as LTH n = (cn,TH n), where cn = x �→ n is
the constant function with value n. By parallel composition we get that

cAdv[LTH n](q) = cAdv[TH n](q) � (n − 1) · ε(q + Sn−2).

Let LTH�L : ({0, 1}c)�L → {0, 1}c × {0, 1}c be

LTH�L =
L⊔

n=1

LTH n.
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Note that the images are disjoint as LTH n stores n in the output, which is
different for every n, as long as L < 2c. By disjoint union we get that

cAdv[LTH�L](q) �
L∑

n=1

cAdv[LTH n](q)

�
L∑

n=1

(n − 1) · ε(q + Sn−2)

� SL−1 · ε(q + SL−2).

For its complexity we have that

c(LTH�L) �
L∑

n=1

c(LTH n)

=
L∑

n=1

c(TH n)

�
L∑

n=1

(n − 1)

= SL−1.

Finally we have that TH�L
len = f ◦LTH�L. Using the facts that SL−1 � (L−1)2

and SL−1 + SL−2 = (L − 1)2 we get

cAdv[TH�L
len ](q) � cAdv[f ](q + c(LTH�L)) + cAdv[LTH�L](q + c(LTH�L))

� ε(q + SL−1) + SL−1 · ε(q + SL−1 + SL−2)

� ε(q + (L − 1)2) + SL−1 · ε(q + (L − 1)2)

= (SL−1 + 1) · ε(q + (L − 1)2). ��
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Abstract. The security proofs of post-quantum cryptographic schemes
often consider only classical adversaries. Therefore, whether such schemes
are really post-quantum secure remains unknown until the proofs take
quantum adversaries into account. Switching to a quantum adversary
might require to adapt the security notion. In particular, post-quantum
security proofs for schemes which use random oracles have to be in the
quantum random oracle model (QROM), while classical security proofs
are in the random oracle model (ROM). We remedy this state of affairs
by introducing a framework to obtain post-quantum security of public
key encryption schemes which use random oracles. We define a class of
encryption schemes, called oracle-simple, and identify game hops which
are used to prove such schemes secure in the ROM. For these game hops,
we state both simple and sufficient conditions to validate that a proof also
holds in the QROM. The strength of our framework lies in its simplicity,
its generality, and its applicability. We demonstrate this by applying it to
the code-based encryption scheme ROLLO-II (Round 2 NIST candidate)
and the lattice-based encryption scheme LARA (FC 2019). Thereby we
prove that both schemes are post-quantum secure, which had not been
shown before.

Keywords: QROM · Game-based proofs · Code-based cryptography ·
Lattice-based cryptography

1 Introduction

Relying on quantum-hard mathematical assumptions is not sufficient to develop
cryptographic schemes that withstand attackers with quantum computing power.
To truly provide security against quantum adversaries, their quantum computing
power has to be considered in the security proof as well. At least three models
regarding the quantum computing power of the adversary and the schemes’
users are distinguished [13]: classical security, post-quantum security, and quan-
tum security. In classical security proofs no one has quantum computing power.
In post-quantum security proofs, by contrast, the adversary has quantum com-
puting power and can thereby deploy quantum computation in its attacks, e.g.,
by evaluating hash functions in superposition. The users of the cryptographic
scheme, however, remain classical. In a world where every party has quantum
c© Springer Nature Switzerland AG 2020
J. Ding and J.-P. Tillich (Eds.): PQCrypto 2020, LNCS 12100, pp. 539–558, 2020.
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computing power, quantum security is needed. In this model, for instance, a
quantum adversary is able to query a decryption oracle in superposition.

Post-quantum security of schemes is mandatory to be deployed in a world
with large quantum computers. Hence, if only classical proofs exist, it has to be
evaluated if these translate to a quantum adversary, i.e., whether the classical
security can be lifted to post-quantum security. This is not always the case [9,24].
For cryptographic schemes which are proven secure in the random oracle model
(ROM), this entails that they have to be proven secure in the quantum random
oracle model (QROM) [9]. In this model, the adversary can query the random
oracle in superposition. This requires different proof techniques to cope with the
additional power of the adversary.

A popular technique to prove security of a cryptographic scheme is to organise
the proof as a sequence of games [7,23]. In a game-based proof, the advantage of
an adversary A in a game G0 can be bound by its advantage to distinguish the
real game G0 from an ideal game Gk in which the adversary has no advantage.
To this end, several intermediate games G1, . . . ,Gk−1 are constructed between
G0 and Gk so that the change between successive games is small. This makes
the advantage to distinguish each pair of consecutive games, i.e., each game hop,
easier to analyse and allows to upper bound the overall advantage of A by the
sum of these advantages. To lift a classical game-based proof to post-quantum
security, an adversary with quantum computing power has to be considered and
the classical games have to be replaced by their corresponding post-quantum
versions.

In this work, we study under which conditions security proofs of public
key encryption (PKE) schemes can be lifted from the ROM in the QROM.
The security notion we are considering is indistinguishability under chosen-
plaintext attacks (IND-CPA), a basic security notion for PKE schemes. Intu-
itively, an encryption scheme is IND-CPA-secure if an adversary can not distin-
guish between the encryption of two adversarial chosen messages. More precisely,
we study how classical IND-CPA security proofs in the ROM can be lifted to
post-quantum IND-CPA (pq-IND-CPA), where the adversary can query the ran-
dom oracle in superposition (QROM) [13].

1.1 Our Contribution

The contribution of this work is a method to prove IND-CPA-secure encryption
schemes pq-IND-CPA-secure. We define a class of public key encryption schemes,
called oracle-simple, and develop a framework to lift the security of such schemes
from the ROM to the QROM. To this end, we define two different types of
game hops and state simple, easily checkable conditions such that the classical
proof can be lifted against quantum adversaries. Each PKE scheme which can
be proven IND-CPA-secure in this framework thereby is automatically post-
quantum secure. Due to its simplicity we expect the framework to be helpful
when designing post-quantum secure encryption schemes. Another important
aspect is that our framework is generic and not restricted to a certain family of
post-quantum cryptography, e.g., lattice-based cryptography.
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We demonstrate the value of our framework by applying it to two public key
encryption schemes, which until this work were not known to be post-quantum
secure: (1) the code-based encryption scheme ROLLO-II [20] and (2) the lattice-
based encryption scheme LARA [4].

Two more schemes which can be proven post-quantum secure using our
framework are the code-based encryption scheme BigQuake [5] and the lattice-
based encryption scheme LIMA [1]1, both Round 1 NIST candidates. Apply-
ing our framework to these schemes is very much akin to the application to
ROLLO-II and LARA, which is why we omit it. To the best of our knowledge,
our framework covers all random-oracle-based encryption schemes submitted to
NIST [1,4,5,20] and, in particular, we are not aware of any random-oracle-based
encryption scheme which is not covered by it.

To obtain classical security against chosen-ciphertext attacks (CCA), all these
schemes rely on generic transformations like the FO-transformation [12]. The
pq-IND-CPA security of the schemes is the final requirement for applying the
post-quantum variants of this transformation [15,25], i.e., to gain CCA security
against quantum adversaries. More recent results of post-quantum secure FO-
transformations [17,22] achieve tighter bounds for CCA security at the cost of
an additional property called disjoint simulatability. Intuitively, this means that
there exists a simulator, knowing merely the public key, that can generate fake
ciphertexts that are indistinguishable from real ciphertexts of random messages.
Showing this property for the concrete schemes ROLLO-II and LARA is beyond
the scope of this work.

1.2 Related Work

Song [24] provides a general framework to lift security reductions. However, the
main limitation is that the applicability is restricted to the scenario in which
the classical security notion holds true even for quantum adversaries, e.g., in
the standard model. This restrains the usage of the framework for any proofs in
the ROM, since post-quantum security proofs have to be in the QROM. If the
security notion changes towards a quantum adversary, applying the framework
requires to come up with a quantum proof. That is, one has to transform a
quantum adversary in the QROM into a quantum adversary in the ROM.

For signature schemes, there exist results to obtain post-quantum security in
the QROM. Along with the introduction of the QROM, Boneh et al. [9] present
the concept of history-free reductions for signature schemes proven secure in the
ROM. They show that history-free reductions provide post-quantum security for
signature schemes in the QROM. Since the known ROM proofs for Fiat-Shamir
signatures are not history-free, several works study their post-quantum security
and identify specific properties of Fiat-Shamir signatures such that schemes with
these properties are post-quantum secure in the QROM, e.g., [10,11,18,19,27].

1 We note that the IND-CPA security of LIMA can also be proven in the standard
model. This makes its pq-IND-CPA security somewhat trivial, as it avoids the main
challenge, that is, the switch from the ROM to the QROM.
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Others, for instance Alkim et al. [2] for the signature scheme qTESLA, prove
post-quantum security directly. Hence, the question whether or not classical
security proofs for signature schemes can be lifted to post-quantum security is
discussed both with and without random oracles.

For encryption schemes, however, no broad analysis of liftable security proofs
in the QROM exists. Zhandry [28] shows that quantum random oracles can be
simulated using q-wise independent functions, thereby removing the additional
assumption required in the proofs by Boneh et al. [9]. In addition, Zhandry
shows how the classical random oracle technique of challenge injection can be
restored in the quantum setting using so-called semi-constant distributions. With
these results several cryptographic schemes, including identity-based encryption
schemes, are proven secure against quantum adversaries. Unruh [26] develops the
one-way to hiding (O2H) lemma, another proof technique in the QROM. The
O2H lemma is used, for instance, by Targhi and Unruh [25] to prove a slight
modification of the FO transformation [12] indistinguishable against chosen-
ciphertext attacks in the QROM. Tighter bounds for the O2H lemma have been
proposed by Ambainis et al. [3] and Bindel et al. [8] at the cost of a more
restricted applicability.

1.3 Organization of the Paper

The rest of this paper is organized as follows. In Sect. 2, we provide the notation
and the necessary background on both the quantum random oracle model and
security proofs. In Sect. 3, we present our framework and show under which
conditions a classical security proof in the ROM can be lifted to the QROM.
Finally, we apply our framework to the code-based scheme ROLLO-II and the
lattice-based scheme LARA in Sect. 4 and thereby reveal that their IND-CPA
security proofs remain valid towards a quantum adversary.

2 Preliminaries

2.1 Notation

For a non-negative integer n we denote the set {1, . . . , n} by [n]. The domain and
co-domain of a function f are denoted by Dom(f) and CoDom(f), respectively.
A function f is called negligible if f(n) < 1/nc for any c > 0 and sufficiently
large n. For a set S, we write s ←$ S to denote that a value which is sampled
uniformly at random from S is assigned to s. By |S| we describe the number
of elements in S. We write Az = (Mz,Dz) to denote an IND-CPA adversary
Az which consists of two algorithms Mz, the message generator which outputs
two messages, and Dz, the distinguisher, which outputs a bit. The subscript z
indicates whether the adversary is classical (z = c) or quantum (z = q). We omit
it in the case it is not relevant. It is assumed that Mz and Dz share state.

We suppose the reader to be familiar with the fundamental basics of quantum
computation, e.g., the ket notation |·〉 and measurements. For a more thorough
discussion of the topic, we refer to [21].
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2.2 The Quantum Random Oracle Model

The random oracle model (ROM), formalized by Bellare and Rogaway [6], is a
commonly used model to prove cryptographic schemes secure. In the ROM, all
parties have access to a random oracle H which, upon being queried on a value
x, returns a random value y . Every further query of x , for instance by another
party, is answered using the same y as before. When a scheme is proven secure
in the ROM, one idealises components like hash functions by a random oracle.
Given that the code of a hash function is publicly available, one has to assume
that a quantum adversary implements hash functions on its quantum computer,
thereby being able to evaluate it in superposition. This assumption gives rise
to the quantum random oracle model (QROM), which has been advocated by
Boneh et al. [9]. In the QROM, parties which have quantum computing power
are allowed to query the random oracle in superposition. In more detail, for a
random oracle H, the QROM allows these parties access to the quantum random
oracle |H〉, where |H〉 : |x , y〉 �→ |x , y ⊕ H(x )〉. To prove a scheme post-quantum
secure, the proof should always be in the QROM, as a proof in the ROM would
imply the unrealistic expectation that the adversary refrains from implementing
a hash function on its quantum computer. We use superscripts to denote oracle
access, e.g., AH and A|H〉 for the ROM and QROM, respectively.

In our proofs we also consider reprogrammed random oracles. For a random
oracle H, we denote the random oracle which is reprogrammed on input x to y
by Hx→y , i.e.,

Hx→y(a) =

{
y , if a = x
H(a) , else

.

Below we recall some results we use in our framework. We start with the one-
way to hiding (O2H) lemma by Unruh [26], albeit using the reformulation by
Ambainis et al. [3] adapted to our case.

Lemma 1 (One-way to hiding (O2H) [3]). Let G, H : X → Y be random
functions, let z be a random bitstring, and let S ⊂ X be a random set such
that ∀x /∈ S, G(x) = H(x). (G,H,S, z) may have arbitrary joint distribution.
Furthermore, let A|H〉

q be a quantum oracle algorithm which queries |H〉 at most
q times. Define an oracle algorithm B|H〉

q as follows: Pick i ←$ [q ]. Run A|H〉
q (z)

until just before its i-th query to |H〉. Measure the query in the computational
basis, and output the measurement outcome. Let

Pleft := Pr[A|H〉
q (z) ⇒ 1]

Pright := Pr[A|G〉
q (z) ⇒ 1]

Pguess := Pr[x ∈ S |B|H〉
q (z) ⇒ x] .

Then it holds that

|Pleft − Pright| ≤ 2q
√

Pguess .

The same result holds with B|G〉
q (z) instead of B|H〉

q (z) in the definition of Pguess.
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Bindel et al. [8] developed another variant of the O2H lemma, called double-
sided O2H, which is based on the compressed oracle framework by Zhandry [29].
It leads to a tighter bound, namely by dropping the factor q . This comes at the
cost of requiring two additional properties. First, the simulator Bq has to be able
to simulate both random oracles and, second, the random oracles have to agree
on all but one input. To apply the lemma in this work, we only need to show
that the two aforementioned properties are satisfied. For a concrete description
of the algorithm Bq, we refer to [8].

Lemma 2 (Double-sided O2H (adapted from [8])). Let G, H : X → Y be
random functions, let z be a random bitstring, and let x0 ∈ X be a random value
such that ∀x �= x0, G(x) = H(x). (G,H, x0, z) may have arbitrary joint distri-
bution. Let A|H〉

q be a quantum oracle algorithm. There exists another quantum
oracle algorithm B|G〉,|H〉

q (z) which returns either x0 or a failure symbol ⊥. Bq

runs in about the same amount of time as Aq, but when Aq queries |H〉, Bq

queries both |G〉 and |H〉. Let

Pleft := Pr[A|H〉
q (z) ⇒ 1]

Pright := Pr[A|G〉
q (z) ⇒ 1]

Pextract := Pr[x = x0 | B|H〉,|G〉
q (z) ⇒ x] .

Then it holds that

|Pleft − Pright| ≤ 2
√

Pextract .

We will use the O2H lemma in the following way. Suppose we have two games
G0 and G1 which are identical except for the random oracles that the adversary
has access to. Namely, in G0 it has access to |H〉 while in G1 it has access to
|H′〉. The advantage of the adversary in distinguishing the games is bound by
its advantage in distinguishing the random oracles |H〉 and |H′〉, which, in turn,
can be bound by the O2H lemma.

Next we state a lemma which bounds the probability of a quantum algorithm
in finding marked items in a function. On a high level, a quantum adversary is
given superposition access to a function F which maps a randomly chosen input
to 1 (the marked item) while all other inputs are mapped to 0. The goal of the
adversary is to find the input that is mapped to 1.

Lemma 3 (adapted from [16]). Let x0 ←$ X and F : X → {0, 1}, such that

F(x) =

{
1 , if x = x0

0 , else
.

Then for any quantum adversary Aq, making at most q (superposition) queries
to F , it holds that

Pr[F(x) = 1 | A|F〉
q () ⇒ x] ≤ 8(q + 1)2

|X | .
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2.3 Security Proofs

We use game-based proofs following [7,23], where an adversary plays a game
which eventually outputs a bit indicating whether the adversary has won the
game or not. Let G0, G1 be games and A be an adversary. We write GA

0 ⇒ v
to indicate that the game G0 outputs v when interacting with A. The game
advantage between the games G0 and G1 is defined as:

Adv
(
GA
0 ,GA

1

)
:= Pr[GA

0 ⇒ true] − Pr[GA
1 ⇒ true].

Whether a game G is in the ROM or the QROM is implicitly defined by the
adversary playing the game. That is, GAc is in the ROM while GAq is in the
QROM.

A public key encryption (PKE) scheme E = (KGen, Enc, Dec) is a triple of
algorithms KGen, Enc, and Dec. KGen outputs a key pair (pk, sk). The input to Enc
is a public key pk and a message m, the output is a ciphertext c. The algorithm
Dec, on input a secret key sk and a ciphertext c, outputs a message m. We are
interested in PKE schemes which use random oracles. Thus we write EncH and
DecH to denote that both Enc and Dec have oracle access to H.2

A basic security notion for encryption schemes is indistinguishability under
chosen plaintext attacks (IND-CPA) which asks an adversary to distinguish
between the encryption of two adversarial chosen messages. Below we formally
define the corresponding post-quantum security notion pq-IND-CPA for public
key encryption schemes which use random oracles. Note that only the random
oracle access changes towards the post-quantum security. Both the inputs and
outputs of the adversary (i.e., public key, messages, ciphertexts, and output bit)
remain classical in both cases.

Definition 4. Let E = (KGen, EncH, DecH) be a PKE scheme and let the game
pq-IND-CPA be defined as in Fig. 1. Then for any adversary A its pq-IND-CPA
advantages is defined as:

Advpq-IND-CPA
E (A) := 2Pr

[
pq-IND-CPAA ⇒ true

]
− 1.

We say that E = (KGen, EncH, DecH) is pq-IND-CPA-secure if Advpq-IND-CPA
E (A)

is negligible. Classical security is defined analogously using game IND-CPA.

The hardness of a problem P is defined by a game between a challenger and
an adversary. In a decisional problem, an adversary obtains a problem instance
depending on some secret bit b ∈ {0, 1} chosen by the challenger, and is asked
to determine b. In a search problem, an adversary obtains a problem instance
depending on some secret s chosen by the challenger, and is asked to find s.
2 We do not allow the key generation algorithm access to the random oracle as we are

not aware of any scheme which requires it. Besides, proving the resulting game hop
would be trivial as in case KGen has access to the random oracle, the adversary gets
access to the random oracle only after receiving the public key. Hence, the reduction
can trivially reprogram the random oracle unnoticeable for the adversary.
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Fig. 1. Classical (IND-CPA) and post-quantum (pq-IND-CPA) security games for a
public key encryption scheme E = (KGen, EncH, DecH) against a classical adversary
Ac = (Mc,Dc) and a quantum adversary Aq = (Mq,Dq), respectively, where M
(message generator) and D (distinguisher) implicitly share state.

Against quantum adversaries, the games remain the same, i.e., the challenge and
the solution remain classical, but the adversary can use local quantum computing
power. Similar to the definition above, we write AdvP(A) for the advantage of
an adversary A in solving problem P. For a decisional problem, it is understood
to be the advantage in solving the problem over guessing. There are also works
which analyse problems in the fully quantum setting, where the challenge is
quantum (cf. [14]).

3 The pq-IND-CPA Framework

Within this section we develop our framework to lift classical security proofs
in the post-quantum setting. To this end, we first define a class of encryption
schemes in Sect. 3.1 and identify two types of game hops for this class of encryp-
tion schemes in Sect. 3.2. In Sect. 3.3, we show under which conditions the clas-
sical proofs for these game hops hold true against quantum adversaries in the
QROM.

3.1 Requirements for PKE Schemes

We start by defining so-called oracle-simple public key encryption schemes.
These are encryption schemes where the encryption algorithm invokes the ran-
dom oracle exactly once on an input independent of the message and the public
key.3 Below we formally define such schemes.

Definition 5. Let E = (KGen, EncH, DecH) be a public key encryption scheme.
If there exists an algorithm Enc-Sub and a deterministic function f which maps
3 This property is required to get a meaningful bound from applying the one-way to

hiding lemma. Since we are not aware of any PKE scheme which does not satisfy
this requirement, we do not consider it a restriction.
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from some set R to Dom(H) such that EncH can be written as in Fig. 2, i.e.,
it first invokes the random oracle on f(r) for a random r ∈ R to obtain y
and then computes the ciphertext using Enc-Sub(pk,m, r , y), then we call E an
oracle-simple (public key) encryption scheme with function f.

Fig. 2. Algorithm Enc of an oracle-simple encryption scheme using f and Enc-Sub.

Based on this definition, we can rewrite the IND-CPA and pq-IND-CPA secu-
rity games for oracle-simple encryption schemes yielding the security games dis-
played in Fig. 3.

Since our framework is based on oracle-simple encryption schemes, its gen-
erality depends on the generality of this class of encryption schemes. Analysing
all encryption schemes submitted as Round 1 NIST candidates which use ran-
dom oracles [1,4,5,20], reveals that all of them are indeed oracle-simple schemes.
Note that this analysis is based on the underlying encryption scheme as all can-
didates use random oracles when applying generic transformations to achieve
CCA security. Thus, we see this as a style of notation which greatly simplifies
the presentation of our proofs, rather than a restriction of its generality.

3.2 Identification of Game Hops

Within this section we define two different types of game hops which are used
to prove security of oracle-simple encryption schemes. Due to the structure of
oracle-simple encryption schemes, we can distinguish between game hops for
which lifting is rather trivial since they are independent of the random oracle,
and game hops which are not independent of the random oracle. We start by
defining a Type-I game hop which is independent of the random oracle.

Definition 6. Let Gi and Gi+1 be two IND-CPA games (cf. Fig. 3) for an oracle-
simple public key encryption scheme E = (KGen, EncH, DecH). We call the game
hop between Gi and Gi+1 a Type-I game hop if the games only differ in using
different algorithms KGen to generate the key pair or different algorithms Enc-Sub
to generate the ciphertext.

Next, we define a Type-II game hop which affects the usage of the random
oracle while encrypting one of the challenge messages by the adversary.
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Fig. 3. Security games IND-CPA and pq-IND-CPA for an oracle-simple public key
encryption scheme E = (KGen, EncH, DecH) with function f.

Definition 7. Let Gi and Gi+1 be two IND-CPA games (cf. Fig. 3) for an oracle-
simple public key encryption scheme E = (KGen, EncH, DecH). We call the game
hop between Gi and Gi+1 a Type-II game hop if their only difference is that
game Gi obtains y by invoking H on x while game Gi+1 samples y uniformly at
random from CoDom(H).

Having discussed the generality of the class of encryption schemes, the next
natural question asks for the generality of the defined game hops. A Type-II game
hop is a standard game hop to make the challenge independent of the random
oracle, thereby rendering it obsolete for the adversary. As for Type-I game hops,
we observe the following. To bound the game advantage, one transforms an
adversary that distinguishes the games into an adversary (the reduction) that
solves some problem. To achieve this, the game hop has to be connected with the
problem instance. Thus the reduction has to feed the problem instance to the
adversary. Considering IND-CPA security, its options are fairly limited. Either it
feeds it via the inputs to the adversary, that is the public key pk or the ciphertext
c, or as a response from the random oracle. The former case is the one we cover
with a Type-I game hop. The latter case is not covered, as none of the schemes,
that we are aware of, requires such a game hop. Nevertheless, we emphasise
that our framework can be easily extended by another type of game hop, if
needed. The post-quantum analogue of such a challenge injection in a random
oracle response can be achieved using Zhandry’s semi-constant distributions [28],
where a challenge is injected in a subset of inputs which gives a significant chance
that the adversary uses the injected challenge while the probability of detecting
the challenge injection remains small enough.
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3.3 Lifting Security

Within this section we state the conditions under which a classical security proof
holds true in the post-quantum setting. We present one lemma to lift Type-I
game hops and two lemmas for lifting Type-II game hops, one being a special
case of the other.

The lemma below states that classical reductions from a decisional problem
to the game advantage of a Type-I game hop hold true in the post-quantum
setting.

Lemma 8. Let Gi and Gi+1 be games such that the game hop between these is a
Type-I game hop. Suppose there exists a decisional problem P which is reduced
to the game advantage between the games. Then, for any quantum adversary Aq,
there exists a quantum adversary Bq against P such that

Adv
(
G

Aq

i ,G
Aq

i+1

)
≤ AdvP(Bq).

Proof. The difference between the games is independent from the random oracle.
Hence the same proof holds against quantum adversaries, albeit the adversary
Bq has to simulate a quantum random oracle for the adversary Aq. This can be
done using a 2qH-wise independent function, where qH is the number of random
oracle queries by Aq [28]. ��

Alternatively, Lemma 8 can be formally proven using the framework by
Song [24]. Due to the complex notation used in [24], however, this leads to a
rather long and tedious proof.

The following lemma states conditions under which the classical proof for a
Type-II game hop holds true against quantum adversaries. Recall that we con-
sider oracle-simple encryption schemes with function f. For an arbitrary function
f, we can not argue about the distribution of the value that is queried to the
random oracle. This prevents us to use known results like finding marked items
in a function, as we do when proving a special case of the lemma.

Lemma 9. Let Gi and Gi+1 be games such that the game hop between these is
a Type-II game hop. Suppose there exists a search problem P which is reduced
to the probability that an adversary queries the random oracle on x . Then, for
any quantum adversary Aq, making qH queries to |H〉, there exists a quantum
adversary Cq against P such that

Adv
(
G

Aq

i ,G
Aq

i+1

)
≤ 2qH

√
AdvP(Cq) .

Proof. We observe that the games Gi and Gi+1 are perfectly indistinguishable
given that A has no knowledge about the random oracle output on x , that is,
H(x ). Hence the game advantage can be bound by the knowledge of A about
H(x ). For the classical proof in the ROM, this is fairly easy as the only way
for the adversary to obtain knowledge about H(x ) is to query x . For the post-
quantum proof in the QROM, the issue is that, for example, superposition access
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allows the adversary to trivially get (some) knowledge about H(x ) by making
an equal superposition query over all possible inputs. If the distribution of x
is uniform, this issue can be tackled using existing results on finding marked
items in a random function. For oracle-simple encryption schemes, however, the
distribution of x depends on the function f. Hence, for an arbitrary function f,
we can not argue using the distribution of x .

We tackle this issue as follows. First, we show that the game advantage is
bound by the distinguishing advantage between two random oracles, see Eq. (1).
This enables us to apply the O2H lemma as the second step, see Eq. (2). In the
final step, we bound the resulting term from the O2H lemma using the hardness
of P, see Eq. (3).

Recall that the games differ in how the value y (input to Enc-Sub) is gener-
ated. In Gi it is the output of the random oracle on input x while it is sampled
uniformly at random from CoDom(H) in Gi+1. By the random oracle paradigm,
the value y is distributed identically in both games, as is the ciphertext c. Based
on this, we conclude that the only inconsistency lies in the random oracle.
Namely, querying the random oracle on x yields the same y which is fed as
input to Enc-Sub in Gi, while it yields a random value independent of the inputs
to Enc-Sub in Gi+1. This allows us to see Gi+1 as Gi, that is y ← H(x ), with
the exception that the random oracle H, which A has access to, is replaced with
Hx→$. Based on this thought, it is easy to see that the game advantage is bound
by the chance that A can distinguish between the two random oracles H and
Hx→$. The same argument holds for a quantum adversary Aq except that access
to the corresponding quantum random oracles |H〉 and |Hx→$〉 is granted. For
ease of notation, we henceforth assume that the random oracle is reprogrammed
to ⊥ instead of a random value. Then it holds that

Adv
(
G

Aq

i ,G
Aq

i+1

)
≤

∣∣∣Pr[A|H〉
q ⇒ 1] − Pr[A|Hx→⊥〉

q ⇒ 1]
∣∣∣ . (1)

Applying the O2H lemma (cf. Lemma1) yields that there exists a quantum
algorithm Bq such that∣∣∣Pr[A|H〉

q ⇒ 1] − Pr[A|Hx→⊥〉
q ⇒ 1]

∣∣∣ ≤ 2qH
√

Pr[B|H〉
q ⇒ x ] . (2)

It remains to bound the probability that Bq outputs x . At this point we use the
classical security proof, that is, the problem P is reduced to the probability of
querying x . It holds that the solution for P is x or can be derived from it, thus
Bq can be transformed into an adversary Cq against P. The mere difference is
that this adversary Cq is quantum, as Bq is quantum. Hence, we conclude with

2q
√

Pr[B|H〉
q ⇒ x ] ≤ 2qH

√
AdvP(Cq) . (3)

This proves the claim. ��
Finally we prove a special case for Type-II game hops. Here the function

f, induced by the oracle-simple encryption scheme, is the identity function.4

4 In fact, we could relax the requirement to f being bijective, however, we are not
aware of a scheme where f is bijective and not the identity.
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In this case we can bound the game advantage using well known results about
finding marked items in a function given superposition access to the function.
This works because the random oracle is invoked on an input chosen uniformly
at random while generating the challenge ciphertext.

Lemma 10. Let Gi and Gi+1 be games such that the game hop between these
is a Type-II game hop. Suppose the function f, specified by the oracle-simple
encryption scheme, is the identity function. Then, for any quantum adversary
Aq, making qH queries to |H〉, it holds that

Adv
(
G

Aq

i ,G
Aq

i+1

)
≤ 6(qH + 1)√|Dom(H)| .

Proof. Given that f is the identity function, it holds that x is sampled uniformly
at random from Dom(H). This allows us to bound the game advantage by the
advantage of an adversary in finding marked items, for which bounds are known.
Instead of the plain O2H lemma (cf. Lemma 1), we make use of the double-sided
O2H lemma (cf. Lemma 2) to obtain a tighter bound.

Using the same argument from the proof of Lemma9, we bound the game
advantage by bounding the probability of detecting reprogramming of the ran-
dom oracle, again, for ease of notation, assuming that the random oracle is
reprogrammed to ⊥. Thus it holds that

Adv
(
G

Aq

i ,G
Aq

i+1

)
≤

∣∣∣Pr[A|H〉
q ⇒ 1] − Pr[A|Hx→⊥〉

q ⇒ 1]
∣∣∣ .

In order to apply the double-sided O2H lemma, two conditions have to be ful-
filled. First, the random oracles must agree on all but one input and, second,
the simulator Bq has to be able to simulate both random oracles. The former is
fulfilled as the random oracles only differ on input x . The latter is a bit more
subtle. The reason is that Bq has to simulate |Hx→⊥〉 for an x unknown to Bq, as
knowledge of x would trivially allow to find the marked item. We show that this
does not pose a hindrance. Let Bq be an algorithm that has access to a function
F : Dom(H) → {0, 1}, such that F(x ) = 1 and F(a) = 0 for all a �= x . Consider
the mapping G : Dom(H) × {0, 1} → CoDom(H) ∪ {⊥} such that

G(x, b) =

{
⊥ , if b = 1
H(x) , else

.

To simulate the quantum random oracle |H〉, Bq simply fixes the last input bit of
G to be 0. To simulate the quantum random oracle |Hx→⊥〉, Bq first invokes the
function F on the input and sets the last input bit of G to the output of F . For
the marked item of F , G will return ⊥ as the last input bit is 1, while G returns
the output of the random oracle for all non-marked items. This is illustrated in
Fig. 4, where we assume that the domain and co-domain of the random oracle
can be represented using n and k qubits, respectively.
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Fig. 4. Simulation of |Hx→⊥〉 using F and G.

If the adversary Aq can detect the reprogramming, then the simulator Bq

can find the marked item in the function F . Hence we conclude with

Adv
(
G

Aq

i ,G
Aq

i+1

)
≤

∣∣∣Pr[A|H〉
q ⇒ 1] − Pr[A|Hx→⊥〉

q ⇒ 1]
∣∣∣

(Lemma 2)

≤ 2
√

Pr[B|H〉,|Hx→⊥〉
q ⇒ x ]

(Lemma 3)

≤ 2

√
8(qH + 1)2

|Dom(H)|

≤ 6(qH + 1)√|Dom(H)|
which proves the claim. ��

Now we are ready to state our main result, namely the conditions under
which our framework lifts the classical security proof of an oracle-simple public
key encryption scheme in the post-quantum setting.

Theorem 11. Let E = (KGen, EncH, DecH) be an oracle-simple PKE scheme
with function f according to Definition 5. Suppose there exists a classical security
proof using a sequence of games G0, . . . ,Gk, where G0 is the IND-CPA game
instantiated with E and Gk is constructed such that AdvGk(Ac) = 0. Let i be
such that the game hop between Gi−1 and Gi is a Type-II game hop. If

1. for any j ∈ [k]\{i}, the game hop between Gj−1 and Gj is a Type-I game
hop such that a quantum hard (decisional) problem Pj is reduced to the game
advantage between Gj−1 and Gj and

2. either some quantum hard (search) problem Pi is reduced to the probability of
querying x or the function f is the identity function,

then E is pq-IND-CPA-secure.

Proof. The proof follows pretty much from the previous lemmas. For the Type-I
game hops, i.e., between Gj−1 and Gj for j ∈ [k]\{i}, we can apply Lemma 8
and conclude that the game advantage is bound by the post-quantum hardness
of Pj . Since Pj is a quantum hard problem, this is negligible. For the Type-II
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game hop, i.e., between Gi−1 and Gi, we can apply either Lemma 9, using again
that Pi is hard for quantum adversaries, or using Lemma10 if the function f is
the identity function. As the game advantage of all game hops is negligible, we
conclude that the advantage of any quantum adversary Aq in game pq-IND-CPA
against E = (KGen, EncH, DecH) is also negligible. Hence, the oracle-simple public
key encryption scheme E is pq-IND-CPA-secure. ��

4 Post-Quantum Security of PKE Schemes

We use our framework to lift the classical security of two public key encryption
schemes to post-quantum security. In Sect. 4.1 we lift the security for the code-
based public key encryption scheme ROLLO-II [20]. The post-quantum security
of the lattice-based public key encryption scheme LARA [4] is proven in Sect. 4.2.

4.1 Code-Based Public Key Encryption Scheme ROLLO-II

We start by introducing the notation used in the public key encryption scheme
ROLLO-II [20]. The scheme can be written as an oracle-simple encryption
scheme with function f, where f maps vectors to their support. The pseudocode
is given in Fig. 5.

Throughout, p is a prime and q is some power of p. For an integer k, the
finite field that contains qk elements is Fqk and the corresponding vector space
of dimension n is given by F

n
qk . The set of vectors of length n with rank weight w

over the set Fqk is denoted by Sn
w(Fqk), where the rank weight of a vector is the

rank of a specific matrix associated with that vector (see [20] for more details).
Below we define the support of a word.

Definition 12. Let x = (x1, . . . , xn) ∈ F
n
qk . The support E of x, denoted

Supp(x), is the Fq-subspace of Fqk generated by the x, i.e., E = 〈x1, . . . , xn〉Fq
.

Multiplications are considered to be polynomial multiplications, where vec-
tors and polynomials are transformed into one another by taking the vector
entries as coefficients and vice versa. In the scheme, d and r are integers while
P is an irreducible polynomial over Fqk .

The Ideal-LRPC codes indistinguishability problem, where LRPC stands for
low rank parity check, asks to distinguish whether a vector h is sampled uniformly
at random or computed as x−1y mod P, for vectors x, y of small dimension. In
the ideal rank support recovery (Ideal-RSR) problem, one is given a vector h,
a polynomial P, and a syndrome σ, and asked to find a support E containing
vectors e1, e2 such that e1 + e2h = σ mod P.

The theorem below shows that the code-based encryption scheme ROLLO-II
is pq-IND-CPA-secure.

Theorem 13. Assuming the post-quantum hardness of the Ideal-LRPC prob-
lem and the Ideal-RSR problem, the code-based encryption scheme ROLLO-II,
described in Fig. 5, is pq-IND-CPA-secure.
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Fig. 5. Encryption scheme ROLLO-II written as oracle-simple encryption scheme.
Decryption is omitted as it is irrelevant for the IND-CPA security of the scheme.

Proof. The classical IND-CPA security proof of ROLLO-II, given in [20], uses
games G0, . . . ,G3. Except for the first game G0, we only state the change to its
predecessor.

Game G0: This is the IND-CPA game instantiated with ROLLO-II.
Game G1: In this game the vector h is sampled randomly.
Game G2: The value y is sampled randomly, independent of H.
Game G3: The value c2 is sampled randomly.

The game hop between G1 and G2 is a Type-II game hop, while all other game
hops are Type-I game hops. The classical proof reduces the Ideal-LRPC problem
to the game advantage between G0 and G1 (Type-I) and the Ideal-RSR problem
to the probability of querying the random oracle on E = Supp(e1, e2) and thereby
also to the game advantage between G1 and G2 (Type-II). The game hop between
G2 and G3 (Type-I) is bound by the problem of distinguishing between a one-time
pad encryption and a random ciphertext. Since all these problems are assumed
to be hard even for quantum adversaries, Theorem11 proves the claim. ��

4.2 Lattice-Based Public Key Encryption Scheme LARA

We start by introducing the notation used in the public key encryption scheme
LARA [4]. The scheme, written as an oracle-simple encryption scheme, is given
in Fig. 6. Throughout this section, q is an integer and n is a power of 2. The
polynomial ring Zq[X]/〈Xn + 1〉 is denoted by Rq. The decisional learning with
errors (DLWE) problem asks to distinguish whether a polynomial z is sampled
uniformly at random or generated as z ← as + e, where a is given and s and e
are small polynomials which are kept secret.

We refer to [4] for the parameters s, w, p, and rsec, as applying our framework
is independent of those. LARA uses the discrete Gaussian distribution which is
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denoted by Dx,σ, where x and σ are the support and standard deviation, respec-
tively. Multiplications are considered to be polynomial multiplications. Vectors
and polynomials are transformed into one another by setting the coefficients to
the vector entries and vice versa. The scheme uses an encoding function Encode
which maps messages to polynomials.

Fig. 6. Encryption scheme LARA written as an oracle-simple encryption scheme.
Decryption is omitted as it is irrelevant for the IND-CPA security of the scheme.

The following theorem states that the lattice-based encryption scheme LARA
is pq-IND-CPA-secure.

Theorem 14. Assuming the post-quantum hardness of the DLWE problem, the
lattice-based encryption scheme LARA, described in Fig. 6, is pq-IND-CPA-
secure.

Proof. The classical IND-CPA security proof of LARA, given in [4], uses games
G0, . . . ,G4. Except for game G0, we only state the change to its predecessor.

GameG0: This is the IND-CPA game instantiated with LARA.
GameG1: In this game the polynomial a3 is sampled randomly.
GameG2: The vectors v1,v2,v3,d are sampled randomly, independent of H.
GameG3: The polynomials ei are sampled according to the distribution DZn,s.
GameG4: The polynomials bi are sampled randomly.

The game hop between G1 and G2 is a Type-II game hop, while all other game
hops are Type-I game hops. The classical proof reduces the DLWE problem
(with a different number of samples) to the game advantage between the Type-I
game hops. We further observe that the function f is the identity function for
LARA. Thus, we can apply Theorem 11 which proves the claim. ��
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