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Preface

PQCrypto 2020, the 11th International Conference on Post-Quantum Cryptography,
was held in Paris, France, during April 15-17, 2020. The aim of the PQCrypto con-
ference series is to serve as a forum for researchers to present results and exchange
ideas on cryptography in an era with large-scale quantum computers. Following the
same model as its predecessors, PQCrypto 2020 adopted a two-stage submission
process in which authors registered their paper one week before the final submission
deadline. The conference received 91 submissions with authors from 25 countries.
Each paper (that had not been withdrawn by the authors) was reviewed in private by at
least three Program Committee members. The private review phase was followed by an
intensive discussion phase, conducted online. At the end of this process, the Program
Committee selected 29 papers for inclusion in the technical program and publication in
these proceedings. The accepted papers cover a broad spectrum of research within the
conference’s scope, including code-, hash-, isogeny-, and lattice-based cryptography,
multivariate cryptography, and quantum cryptanalysis. Along with the 29 contributed
technical presentations, the program featured outstanding invited talks and a presen-
tation on NIST’s post-quantum cryptography standardization. Organizing and running
this year’s edition of the PQCrypto conference series was a team effort and we are
indebted to everyone who helped make PQCrypto 2020 a success. In particular, we
would like thank all members of the Program Committee and the external reviewers
who were vital in compiling the technical program. Evaluating and discussing the
submissions was a labor-intensive task and we truly appreciate the work that went into
this. In the name of the community, let us say that we are all indebted to Antoine Joux
from Sorbonne University and Nicolas Sendrier from Inria for organizing this meeting.

February 2020 Jintai Ding
Jean-Pierre Tillich
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Abstract. We address the problem of decoding Gabidulin codes beyond
their unique error-correction radius. The complexity of this problem is
of importance to assess the security of some rank-metric code-based
cryptosystems. We propose an approach that introduces row or column
erasures to decrease the rank of the error in order to use any proper
polynomial-time Gabidulin code error-erasure decoding algorithm. The
expected work factor of this new randomized decoding approach is a
polynomial term times q"“"*k)7“’<"+m)“"QJ”““‘{QHnTJrk*g)’wk}7 where n
is the code length, ¢ the size of the base field, m the extension degree of
the field, k the code dimension, w the number of errors, and & := w— 2k,

2
It improves upon generic rank-metric decoders by an exponential factor.

Keywords: Gabidulin codes - Decoding - Rank metric - Code-based
cryptography

1 Introduction

Code-based cryptography relies on the hardness of certain coding-theoretic prob-
lems, e.g., decoding a random code up to its unique decoding radius or, as con-
sidered in this paper, decoding more errors than the unique decoding radius and

The work of J. Renner and A. Wachter-Zeh was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 801434).

Sven Puchinger has received funding from the European Union’s Horizon 2020 research
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(COFUNDf{ellowsDTU).
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beyond the capabilities of all known polynomial-time decoding algorithms. Rank-
metric schemes that rely on the latter problem have the promising potential to
achieve key sizes that are linear in the security parameter and are for instance
the (modified) Faure-Loidreau system [9,33] or the RAMESSES system [21].

In the Hamming metric as well as in the rank metric, it is well-known that the
problem of decoding beyond the unique decoding radius, in particular Mazimum-
Likelihood (ML) decoding, is a difficult problem concerning the complexity. In
Hamming metric, many works have analyzed how hard it actually is, cf. [6,27],
and it was finally shown for general linear codes that ML decoding is NP-hard
by Vardy in [29]. For the rank metric, some complexity results were obtained
more recently in [15], emphasizing the difficulty of ML decoding. This potential
hardness was also corroborated by the existing practical complexities of the
generic rank metric decoding algorithms [14].

For specific well-known families of codes such as Reed—-Solomon (RS) codes
in the Hamming metric, (ML or list) decoding can be done efficiently up to a
certain radius. Given a received word, an ML decoder returns the (or one if
there is more than one) closest codeword to the received word whereas a list
decoder returns all codewords up to a fixed radius. The existence of an efficient
list decoder up to a certain radius therefore implies an efficient ML decoder up to
the same radius. Vice versa, this is however not necessarily true, but we cannot
apply a list decoder to solve the ML decoding problem efficiently.

In particular, for an RS code of length n and dimension k, the following is
known, depending on the Hamming weight w of the error:

~ If w < |25%], the (ML and list) decoding result is unique and can be found

in quasi-linear time,

— If w <n—+/n(k—1), ie., the weight of the error is less than the Johnson
bound, list decoding and therefore also ML decoding can be done efficiently
by Guruswami-Sudan’s list decoding algorithm [16],

— The renewed interest in RS codes after the design of the Guruswami—Sudan
list decoder [16] motivated new studies of the theoretical complexity of ML
and list decoding of RS codes. In [17] it was shown that ML decoding of RS
codes is indeed NP-hard when w > d — 2, even with some pre-processing.

— Between the Johnson radius and d — 2, it has been shown in [5] that the
number of codewords in radius w around the received word might become a
number that grows super-polynomially in n which makes list decoding of RS
codes a hard problem.

Gabidulin codes [7,10,24] can be seen as the rank-metric analog of RS codes.
ML decoding of Gabidulin codes is in the focus of this paper which is much
less investigated than for RS codes (see the following discussion). However, both
problems (ML decoding of RS and Gabidulin codes) are of cryptographic interest.
The security of the Augot—Finiasz public-key cryptosystem from [3] relied on the
hardness of ML decoding of RS codes but was broken by a structural attack.
More recently, some public-key cryptosystems based their security partly upon
the difficulty of solving the problem Dec-Gab (Decisional-Gabidulin defined in
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the following) and Search-Gab (Search-Gabidulin), i.e., decoding Gabidulin codes
beyond the unique decoding radius or derived instances of this problem [9,21,33].

Dec-Gab has not been well investigated so far. Therefore, we are interested
in designing efficient algorithms to solve Dec-Gab which in turn assesses the
security of several public-key cryptosystems. We deal with analyzing the problem
of decoding Gabidulin codes beyond the unique radius where a Gabidulin code
of length n and dimension k is denoted by Gabi(g) and g = (90,91, --,In—1)
denotes the vector of linearly independent code locators.

Problem 1 (Dec-Gab)

— Instance: Gaby(g) C Fym, 7 € Fym and an integer w > 0.
- Query: Is there a codeword ¢ € Gaby(g), such that tk(r —c) < w?

It is trivial that Dec-Gab(Gaby(g), r, w) can be solved in deterministic poly-

nomial time whenever:

—w < L%J? with applying a deterministic polynomial-time decoding algo-
rithm for Gabidulin codes to 7.

— w > n — k: In this case the answer is always yes since this just tantamounts
to finding a solution to an overdetermined full rank linear system (Gabidulin
codes are Mazimum Rank Distance codes).

However, between L%*kj and n — k, the situation for Dec-Gab is less clear

than for RS codes (which was analyzed above).

For instance, concerning RS codes, the results from [17] and [5] state that
there is a point in the interval H"Q;kJ ,n — k] where the situation is not solvable
in polynomial-time unless the polynomial hierarchy collapses. For RS codes, we
can refine the interval to [n—+/n(k — 1), n—k], because of the Guruswami-Sudan
polynomial-time list decoder up to Johnson bound [16].

On the contrary, for Gabidulin codes, there is no such a refinement. In [31],
it was shown that for all Gabidulin codes, the list size grows exponentially in
n when w > n — y/n(k —1). Further, [22] showed that the size of the list is
exponential for some Gabidulin codes as soon as w = L"T*kJ + 1. This result
was recently generalized in [28] to other classes of Gabidulin codes (e.g., twisted
Gabidulin codes) and, more importantly, it showed that any Gabidulin code
of dimension at least two can have an exponentially-growing list size for w >
2] +1.

To solve the decisional problem Dec-Gab we do not know a better approach
than trying to solve the associated search problem, which is usually done for all
decoding-based problems.

Problem 2 (Search-Gab)

~ Instance: Gaby(g) C Fym, 7 € Fiw and an integer w > 0.
— Objective: Search for a codeword ¢ € Gaby(g), such that tk(r — ¢) < w.
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Since Dec-Gab and Search-Gab form the security core of some rank-metric
based cryptosystems, it is necessary to evaluate the effective complexity of solv-
ing these problems to be able to parameterize the systems in terms of security.

In particular, the problems Dec-Gab and Search-Gab are related to the NIST
submission RQC [1], the (modified) Faure-Loidreau (FL) cryptosystem [9,33],
and RAMESSES [21].

A part of the security of the newly proposed RAMESSES system [21] directly
relies on the hardness of Search-Gab as solving Search-Gab for the public key
directly reveals an alternative private key.

The (modified) FL cryptosystem [9,33] is based on the hardness of decoding
Gabidulin codes beyond their unique decoding radius. Both, the security of the
public key as well as the security of the ciphertext are based on this assumption.
The public key can be seen as a corrupted word of an interleaved Gabidulin
code whose decoders enabled a structural attack on the original system [13]. In
the modified FL system [33], only public keys for which all known interleaved
decoders fail are chosen, therefore making the structural attack from [13] impos-
sible. As shown in [19], the component codewords of the public key as well as
the ciphertext are a Gabidulin codeword that is corrupted by an error of large
weight. Therefore, solving Search-Gab has to be considered when determining
the security level of the system.

The NIST submission RQC is based on a similar problem. Here, the cipher-
text is also the sum of a Gabidulin codeword and an error of weight larger than
the unique decoding radius. The error in this setting has a special structure.
However, our problem cannot be applied directly to assess the security level of
RQC since the error weight is much larger than in the FL. and RAMESSES
systems and solving Search-Gab for the RQC setting would return a codeword
that is close to the error and therefore not the one that was encoded from the
plaintext. It is not clear how to modify our algorithm to be applicable to RQC
since we would have to be able to find exactly the encoded codeword and not just
any codeword. We are not aware of how this can be done but want to emphasize
that the underlying problem of RQC is very similar to Problem 2.

In this paper, we propose a randomized approach to solve Search-Gab and
analyze its work factor. The new algorithm consists of repeatedly guessing a
subspace that should have a large intersection with the error row and/or column
space. Then the guessed space is used as erasures in an Gabidulin error-erasure
decoder, e.g., [26,32]. The algorithm terminates when the intersection of the
guessed space and the error row and/or column space is large enough such that
the decoder outputs a codeword that is close enough to the received word 7.

This paper is structured as follows. In Sect. 2, we introduce the used notation
and define Gabidulin codes as well as the channel model. In Sect. 3, we recall
known algorithms to solve Search-Gab and state their work factors. We propose
and analyze the new algorithm to solve Problem 2 in Sect. 4. Further, numerical
examples and simulation results are given in Sect.5. Open questions are stated
in Sect. 6.
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2 Preliminaries

2.1 Notation

Let g be a power of a prime and let IF; denote the finite field of order g and Fym
its extension field of order ¢™. This definition includes the important cases for
cryptographic applications ¢ = 2 or ¢ = 2" for a small positive integer r. It is
well-known that any element of F, can be seen as an element of Fym and that
Fgm is an m-dimensional vector space over IFy.

We use ;"™ to denote the set of all m x n matrices over F; and Fy.. = F;ﬁ,”
for the set of all row vectors of length n over Fym. Rows and columns of m X n-
matrices are indexed by 1,...,m and 1,...,n, where A, ; is the element in the
i-th row and j-th column of the matrix A. In the following of the paper, we will
always consider that n < m. This is the necessary and sufficient condition to
design Gabidulin codes.

For a vector a € Fym, we define its (F,-)rank by rk(a) := dimg, (a1, ..., an)F,,
where (a1, ..., an)F, is the F -vector space spanned by the entries a; € Fym of a.
Note that this rank equals the rank of the matrix representation of a, where the
i-th entry of a is column-wise expanded into a vector in Fy* w.r.t. a basis of Fym
over F,.

The Grassmannian G(V, k) of a vector space V is the set of all k-dimensional
subspaces of V.

A linear code over Fym of length n and dimension & is a k-dimensional sub-
space of Fy,, and denoted by [n, k]gm.

2.2 Gabidulin Codes and Channel Model

Gabidulin codes are a special class of rank-metric codes and can be defined by
a generator matrix as follows.

Definition 1 (Gabidulin Code [10]). A linear Gabi(g) code over Fym of
length n < m and dimension k is defined by its k X n generator matriz

a1 g ... (gn
g 9 - 94 X
Gcab = | . c. | eFT,
k—1 l;—l k—1
91 95 g8
where g1, 92, - -.,9n € Fgm are linearly independent over F.

The codes are maximum rank distance (MRD) codes, i.e., they attain the maxi-
mal possible minimum distance d = n—k+1 for a given length n and dimension
k [10].

Let r € Fym be a codeword of a Gabidulin code of length n < m and
dimension & that is corrupted by an error of rank weight w, i.e.,

r =mGga, + €,
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where m € Flgm, Ggap € F%" is a generator matrix of an [n, k], Gabidulin

code and e € Fy,, with rk(e) = w > "7_’“ Each error e of rank weight w can be
decomposed into
e=aB,

where a € F, and B € F;7*". The subspace (a1, ..., aw)r, is called the column

space of the error and the subspace spanned by the rows of B, i.e. R, (B), is
called the row space of the error.
We define the excess of the error weight w over the unique decoding radius as

n—=k

Ei=w— 5

Note that 2£ is always an integer, but £ does not necessarily need to be one.
The error e can be further decomposed into

€e = ach + aRBR + G,EBE7 (1)

where ac € F)., B¢ € F)*" ar € F/.., Br € Fox", ap € Iﬁgm and By, € ]FZX".

Assuming neither ag nor By are known, the term agBg is called full rank
errors. Further, if ac is unknown but B¢ is known, the product ac B¢ is called
column erasures and assuming agr is known but By is unknown, the vector
arBgr is called row erasures, see [26,32]. There exist efficient algorithms for
Gabidulin codes [11,23,25,32] that can correct 6 := p + 7 erasures (sum of row
and column erasures) and ¢ errors if

%+ <n—k 2)

3 Solving Problem 2 Using Known Algorithms

3.1 Generic Decoding
Problem 3 (Search-RSD)

~ Instance: Linear code C C Fym, v € Fyo and an integer w > 0.
— Objective: Search for a codeword ¢ € C, such that tk(r — ¢) < w.

A generic rank syndrome decoding (RSD) algorithm is an algorithm solv-
ing Problem 3. There are potentially many solutions to Problem 3 but for our
consideration it is sufficient to find only one of them.

Given a target vector r to Problem 3, the probability that ¢ € C is such that
rk(r — ¢) < w is given by

7

Yiso [H?LB (@™ — ¢ )} m q

_ < _
Cférc[rk(r c) < w) T

There are two standard approaches for solving Problem 3. The first method
is combinatorial decoding which consists of enumerating vector spaces. If there
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is only one solution to the problem, the complexity of decoding an error of rank
w in an [n, k]gm code is equal to

WComb = P("v k)qw[(qul)m/n‘\ 7m’

where P(n, k) is a cubic polynomial [2]. In the security evaluations, this polyno-
mial is often neglected and only the exponential term is taken into account. Note
that in the case where m > n there might be a better combinatorial bound [14].
Since we do not address this setting, we do not consider this case.

For the evaluation of the post-quantum security, Grover’s algorithm has to
be taken into account which reduces the complexity of enumeration by a factor
of 0.5 in the exponent. Thus, the estimated complexity is

WrQ.Comb = P(n, k)05 Ik+1m/n]—m),

Since this is an enumerative approach, the work factors for solving the problem
with input 7 have to be divided by N' = max(|C] - Preec[rtk(r — ¢) < w], 1),
corresponding to the estimated number of candidates.

The second approach is algebraic decoding. It consists of expressing the prob-
lem in the form of a multivariate polynomial system and computing a Grébner
basis to solve it. A very recent result [4] estimates rather precisely the cost of
the attack and gives generally much better estimations than the combinatorial
approach. In case there is a unique solution to the system, then the work factor
of the algorithm is

fo([lemmmt]"y e (E Y < (1)
Waig = O([W}“) otherwise,

where 1 = 2.807 is the linear algebra constant. For algebraic decoding, it is
neither known how to improve the complexity by using the fact that there are
multiple solutions, nor it is known how to speed up the algorithm in the quantum
world.

Problem 2 is a special instance of Problem 3, where the linear code is a
Gabidulin code. In the following, we will show how to reduce the complexity of
solving Problem 2 by using that fact.

3.2 Key Equation Based Decoding

In [10], a decoding algorithm of Gabidulin codes is presented that is based on
solving a linear system of n — k — w equations and w unknowns (called the key
equation [10, Lemma 4]). If w > | 25E |, there are w — (n — k — w) = 2¢ solutions
to this linear system of equations [30, Lemma 4], which include all ¢ € Gabg(g)
such that rk(r — ¢) < w. Brute-force search through all solutions of the key
equation solution space for a valid solution to Problem 2 has a work factor of
n2qm%
N )

where checking one solution of the key equation solution space is in O(n?).

Wiey =
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4 A New Algorithm Solving Problem 2

In the considered problem, rk(e) = w > ”T_k and we do not have any knowledge
about the row space or the column space of the error, i.e., § =0 and ¢t > ”7_’“,
meaning that the known decoders are not able to decode r efficiently.

The idea of the proposed algorithm is to guess parts of the row space and/or
the column space of the error and use a basis for the guessed spaces to solve
the corresponding error and column/row erasures (see (1)). This approach is a
generalization of the algorithm presented in [19], where only criss-cross erasures
are used to decode certain error patterns beyond the unique decoding radius.

The proposed algorithm is given in Algorithm 1. The function Dec(r, agr, B¢)
denotes a row/column error-erasure decoder for the Gabidulin code Gaby(g) that
returns a codeword ¢ (if rk(r — ¢) <t + p+ ) or ) (decoding failure) and ¢ is
the total number of guessed dimensions (sum of guessed dimensions of the row
space and the column space).

Algorithm 1. Column-Erasure-Aided Randomized Decoder
Input: Received word r € Fgm,
Gabidulin error/erasure decoder Dec(,,-),
Dimension of guessed row space 9,
Error weight w,
Maximum number of iterations Nyaz
Output: & € Fym : rk(r — &) < w or 0 (failure)
foreach i € [1, N do
us G(Fy,9) // guess d-dimensional subspace of Fy
B¢ « full-rank matrix whose row space equals U
¢ «— Dec(r,0,B¢) // error and row erasure decoding
if ¢ # 0 then
if rk(r — ¢) < w then
L | return e

N O R Wy R

return 0 (failure)

®

In the following, we derive the work factor of the proposed algorithm. By
€, we denote the dimension of the intersection of our guess and the true error
subspaces. As stated above, if

2(w—¢€)+6 <n—k, (3)
any Gabidulin error-erasure decoder is able to correct the error, e.g., [26,32].

Lemma 1. Let U be a fized u-dimensional Fq-linear subspace of Fye. Let V
be chosen uniformly at random from G(F,,v). Then, the probability that the
intersection of U and V has dimension at least w is
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yomin{uo} [5“} [U] qu=i)(v=1i)
—! q ! q

Nl

< 16(m1n{u,v} +1-— w)q(j*_u)(é—u_j*)7

Pridim@U NV) > w] =

where j* := min{v — w, 3({ + v —u)}.
Proof. See Appendix A.

In the following, we analyze guessing only the row space of the error, i.e.,
6= and p=0.
Lemma 2. Let ' = mGgap + €' € Fp.., where tk(e') = j, € = a'B’ with
a e Iﬁ‘gm, B c IFZX” and neither parts of the error row space nor column space
are known, i.e., v = p =0 and t = j. For § € [2§,n — k], the probability that
an error-erasure decoder using a random §-dimensional guess of the error row
space outputs mGgqap 1S

min{5,5} P
[n - J] H U960
> s—il| i
q q

i=[j— 3R 44

Ppks,j = -
6
q

< 16ng~[3+i— "= DFE-131)

if 27 +0>n—k and Py, =1 else.

Proof. First, consider the case where 25 + 6 > n — k and define ¢ :

=J-
Let the rows of Bg € IF‘gX” be a basis of the random guess. From (3) follows
that if

n—k>2j—2c+d=n—k+2 -2+, (4)

where € is the dimension of the intersection of the IF,-row spaces of B¢ and B’ an
error and erasure decoder is able to decode efficiently. Since € < §, equation (4)
gives a lower bound on the dimension ¢ of the subspace that we have to estimate:

28/ <2e—-06<6<n—k. (5)

From (4) follows further that the estimated space doesn’t have to be a subspace of
the row space of the error. In fact, it is sufficient that the dimension of the inter-
section of the estimated column space and the true column space has dimension
e>¢ —1—% This condition is equivalent to the condition that the subspace distance
(see [20]) between U and V satisfies ds (U, V) := dim(U)+dim(V)—2 dim(UNV) >
j-2¢.
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From Lemma 1 follows that the probability that the randomly guessed space
intersects in enough dimensions such that an error-erasure decoder can decode
to one particular codeword in distance j to r is

min{6,j} | —J| |J| (i—i)5—i)
Limrered] [d—iL qu

n
i,
<16(min{j, 6} +1- (¢ + g)) g~ (TN -4

<16ng~ (+EDEFE-13D).

For the case 25 + d < n — k, it is well known that that an error erasure decoder
always outputs mGgaap- O

Lemma 2 gives the probability that the error-erasure decoder outputs exactly
the codeword mGgap. Depending on the application, it might not be necessary
to find exactly mGgap but any codeword ¢ € Gaby(g) such that rk(r — ¢) < w,
which corresponds to Problem 2. In the following lemma, we derive an upper
bound on the success probability of solving Problem 2 using the proposed algo-
rithm.

Lemma 3. Let v be a uniformly distributed random element of ¥y. Then, for
d € [26,n — k] the probability that an error-erasure decoder using a random o-
dimensional guess of the error row space outputs ¢ € Gaby(g) such that rk(r —
¢) <w is at most

N A P < Gdngm et et ([ D13
j=0

where A; = = gm(k—n) HJ 1 %

Proof. Let C be the set of codewords that have rank distance at most w from
the received word, i.e.,

C:={ceGabp(g) : tk(r —e) <w} ={&1,...,en}.

Further, let X; be the event that the error-erasure decoder outputs ¢; for i =

N and A; = {i : tk(r — &) = j}. Observe that P, s, = Pr[X;] for
i € Aj, where Pr[X,] is the probability that the error-erasure decoder outputs
¢; and P, 1 5 ; is defined as in Lemma 2. Then we can write

w

U X] < ZPI“ Z ‘»Aj|Pn,k,5,j-

7=0

Pr[success] =
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Let A; be the average cardinality of the set A;, we have that

j—1 . .
A — qm(k—n) H (qm — qz)(qn — qZ) < 4qm(k:—n)+j(n+m)—j2
! ¢ —q - '
=0
Since A, is exponentially larger than A,,_; for i > 0, one can approximate

Prlsuccess] = AwPp ks
< 6dngmE—mwintm)—w = ([g+u—2z2) (232 =[5 g

Based on Lemma 3, we can derive a lower bound on the average work factor
of Algorithm 1.

Theorem 1. Let v be a uniformly distributed random element of Fym. Then,
Algorithm 1 requires on average at least

2
n
Wgrp = min _
s€[2¢,n—k] ;1;:0 Aan,k@j

= mi
se[26,n—k] | | n=h=3 il m g e w
m(k—n g —q q —q m(k—n
I I
j=0 =0 j=n=k=d

j—1 m n min{'-‘s,'} B .
1 (@™ — )" — " ’ n—J| [i] o-ne-0
' 7 — ¢ _[Z s—if, i),

=li-"575+3]
operations over Fym to output ¢ € Gabi(g), such that rk(r — ¢) < w, where A;
and Py s are defined as in Lemma 3.

Proof. Lemma 3 gives the probability that an error-erasure decoder using a §
dimensional guess of the row space finds ¢ € Gaby(g) such that rk(r — ¢) < w.
This means that one has to estimate on average at least

, 1
min ——
5€[26,n—k] { > im0 AiPaks. }

row spaces in order to output ¢ € Gab(g). Since the complexity of error-erasure
decoding is in O(n?), we get a work factor of

n2
Wip = min {— o L
6€[28,n—k] Z}U:O Aan,k,5,j O
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Notice that the upper bound on the probability given in Lemma 3 is a convex
function in ¢ and maximized for either 2¢ or n — k. Thus, we get the following
lower bound on the work factor.

Corollary 1. Let v be a uniformly distributed random element of Fym. Then,
Algorithm 1 requires on average at least

WRD > ﬂ . qm(nfk)7w(n+m)+w2+min{2§("7+k75),wk}
64

operations over Fym.

Remark 1. We obtain a rough upper bound of on the expected work factor,

WRD < n2qm(n7k)7w(n+m)+w2+min{2§(%k75),wk}’

by the same arguments as in Lemmas 2, 3, and Theorem 1, using

— lower bounds on the Gaussian binomial coeflicient in [20, Lemma 4],
— taking the maximal terms in the sums and
— taking the maximal probability of events instead of union-bound arguments.

If r € Fjm is defined as in Sect. 2.2, where neither parts of the error row space
nor column space are known, i.e., v = p = 0 and t = w, the vector r can be seen
as a uniformly distributed random element of Fy.... Thus, Theorem 1 gives an
estimation of the work factor of the proposed algorithm to solve Problem 2. To
verify this assumption, we conducted simulations which show that the estimation

is very accurate, see Sect. 5.

Remark 2. In Theorem 1, we give a lower bound on the work factor of the pro-
posed algorithm. One observes that especially for small parameters, this bound
is not tight which is mainly caused by the approximations of the Gaussian bino-
mials. For larger values, the relative difference to the true work factor becomes
smaller.

Another idea is to guess only the column space or the row and column space
jointly. Guessing the column space is never advantageous over guessing the row
space for Gabidulin codes since we always have n < m. Hence, replacing n
by m in the formulas of Lemma 2 and in the expression of the probability P;
inside the proof of Theorem 1 will only increase the resulting work factor. For
joint guessing, some examples indicate that it is not advantageous, either. See
Appendix B for more details.

5 Examples and Simulation Results

We validated the bounds on the work factor of the proposed algorithm in Sect. 4
by simulations. The simulations were performed with the row/column error-
erasure decoder from [32] that can correct t rank errors, p row erasures and =y
column erasures up to 2¢t+p+7y < d—1. Alternatively, the decoders in [12,26] may
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be considered. One can also observe that the derived lower bounds on the work
factor give a good estimate of the actual runtime of the algorithm denoted by
Wogim. The results in Table 1 show further, that for parameters proposed in [21,
33], the new algorithm solves Problem 2 (Search-Gab) with a significantly lower
computational complexity than the approaches based on the known algorithms.

Therefore, for the RAMESSES system, our algorithm determines the work
factor of recovering the private key for all sets of parameters given in [21]. For
the modified Faure—Loidreau system, our algorithm provides the most efficient
key recovery attack for one set of parameters, shown in Line 5 of Table 1. Notice
however that there is a message attack (called Algebraic Attack in [33]) which
has smaller complexity.

Table 1. Comparison of different work factors for several parameter sets including
simulation results for one specific parameter set.

Wsim: work factor of the new randomized decoder (simulations).

Wrp: work factor of the new randomized decoder (theoretical lower bound).

Wecoms /N work factor of the combinatorial RSD algorithm.

Waig: work factor of the algebraic RSD algorithm.

Wk ey: work factor of the naive key equation based decoding.

g m|n |k |w & & Iterations | Success| Wsim | WrD % Waig | Wkey
212424166 |2|4|6844700 |4488 | 219-74 | 21965 | 938.99 | 9126.01 | 543.40
2646413211936/ - _ _ 9257.20 | 9571.21 | 5460.01 | 9371.21
218080 40 231316/ - _ _ 2401.85 2897.93 2576.15 2492.64
2196 |96 48 271316 - o o 2578.38 21263.51 2694.93 2589.17
282182148/ 20!3/6- _ _ 9290.92 | 9838.54 | 9504.70 | 9410.92

6 Open Problems

There is a list decoding algorithm for Gabidulin codes based on Grobner bases
that allows to correct errors beyond the unique decoding radius [18]. However,
there is no upper bound on the list size and the complexity of the decoding
algorithm. In future work, the algorithm from [18] should be adapted to solve
Problem 2 which could allow for estimating the complexity of the resulting algo-
rithm.

A  Proof of Lemma 1

The number of g-vector spaces of dimension v, which intersections with ¢/ have
dimension at least w, is equal to

muiqfv} F _ u] |:u] q(ufi)(v*i) _ Uz_f [E — u:| [ U :| qj(uvarj)
v—1 i ki v—7 ’
q q q q

i=w j=max{0,v—u}
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see [8]. Since the total number of v-dimensional subspaces of a ¢-dimensional

space is equal to [ﬂ , the probability
q

v—1 2

i)

vV—w [ —Uu U T
Zj=lnax{0,’u—u} { j ] L} _ ]] qj( +3)
q q

[l

Using the upper bound on the Gaussian coefficient derived in [20, Lemma 4], it
follows that

Z;n:iz{u,v} [6 - “} [“} qu=D (=)
Pr[dim(U NV) > w] = o o

Pr[dimU NV) > w] < 16 Z g Umu=DFv(u—vt)—v(t—0)
j=max{0,v—u}

—16 Y i)

j=max{0,v—u}

< 16 (minfu, v} + 1 — w)gl —E-u=3"),

where j* := min{v —w, (¢ + v —u)}. The latter inequality follows from the fact
that the term (j — v)(¢ — u — j) is a concave function in j and is maximum for
j=3(+v—u). O

B Guessing Jointly the Column and Row Space
of the Error

We analyze the success probability of decoding to a specific codeword (i.e., the
analog of Lemma 2) for guessing jointly the row and the column space of the
error.

Lemma 4. Let r € Fj.. be defined as in Sect. 2.2, where neither parts of the
error row space mor column space are known, i.e., v = p =0 and t = w. The
probability that an error-erasure decoder using a random

- d.-dimensional guess of the error row space and a
- d.-dimensional guess of the error column space,

where 0, + §. =: § € [26,n — k], outputs mGqap, is upper-bounded by
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min{é, w}

3 ) [ n—w } [w} (0w Gr =) {m - w] {W] (0w Fewe)
&r — Wy Wy e — We We
q q q

i=[¢+4] 0Swr we<i '
n m
Or| |6c
q q

Wy we=i

Proof. The statement follows by the same arguments as Lemma 2, where we com-
puted the probability that the row space of a random vector space of dimension §
intersects with the w-dimensional row space of the error in ¢ dimensions (where i
must be sufficiently large to apply the error erasure decoder successfully). Here, we
want that a random guess of §,- and J.-dimensional vector spaces intersect with
the row and column space of the error in exactly w, and w. dimensions, respec-
tively. We sum up over all choices of w, and w, that sum up to an ¢ that is suffi-
ciently large to successfully apply the error erasure decoder. This is an optimistic
argument since guessing correctly w, dimensions of the row and w. dimensions of
the column space of the error might not reduce the rank of the error by w, + w..
However, this gives an upper bound on the success probability. a

Example 1 shows that guessing row and column space jointly is not advan-
tageous for some specific parameters.

Ezxample 1. Consider the example ¢ =2, m =n =24, k = 16, w = 6. Guessing
only the row space of the error with § = 4 succeeds with probability 1.66 - 1022
and joint guessing with §,, = 6. = 2 succeeds with probability 1.93-10~22. Hence,
it is advantageous to guess only the row space (or due to m = n only the column
space). For a larger example with m = n = 64, k = 16, and w = 19, the two
probabilities are almost the same, ~ 5.27 - 10782 (for § = 32 and §, = §. = 16).
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Abstract. McEliece-like code-based key exchange mechanisms using
QC-MDPC codes can reach IND-CPA security under hardness assump-
tions from coding theory, namely quasi-cyclic syndrome decoding and
quasi-cyclic codeword finding. To reach higher security requirements, like
IND-CCA security, it is necessary in addition to prove that the decod-
ing failure rate (DFR) is negligible, for some decoding algorithm and
a proper choice of parameters. Getting a formal proof of a low DFR
is a difficult task. Instead, we propose to ensure this low DFR under
some additional security assumption on the decoder. This assumption
relates to the asymptotic behavior of the decoder and is supported by
several other works. We define a new decoder, Backflip, which features
a low DFR. We evaluate the Backflip decoder by simulation and extrap-
olate its DFR under the decoder security assumption. We also measure
the accuracy of our simulation data, in the form of confidence intervals,
using standard techniques from communication systems.

1 Introduction

Moderate Density Parity Check (MDPC) codes were introduced for cryptogra-
phy! in [17]. They are related to Low Density Parity Check (LDPC) codes, but
instead of admitting a sparse parity check matrix (with rows of small constant
weight) they admit a somewhat sparse parity check matrix, typically with rows
of Hamming weight O(y/n) and length n. Together with a quasi-cyclic structure
they allow the design of a McEliece-like public-key encryption scheme [16] with
reasonable key size and a security that provably reduces to generic hard prob-
lems over quasi-cyclic codes, namely the hardness of decoding and the hardness
of finding low weight codewords.

Because of these features, QC-MDPC have attracted a lot of interest from
the cryptographic community. In particular, the BIKE suite of key exchange
mechanisms has been selected to the second round of the NIST call for stan-
dardization of quantum safe cryptographic primitives?. The second round BIKE

! MDPC were previously defined, in a different context, by Ouzan and Be’ery in 2009,
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document [1] mentions the Backflip decoder, a new variant of bit flipping decod-
ing, as well as claims about its DFR. The low DFR is an essential feature to
achieve IND-CCA security, and incidentally to resist to the GJS key recovery
attack [11] which exploits decoding failures.

The Backflip algorithm and its DFR claims were never fully described in
an academic work. We provide here the rationale and a precise description of
Backflip as well as a justification and a description of the simulation methodology
and assumptions that were used for estimating the DFR.

The decoding of MDPC codes can be achieved, as for LDPC codes, with
iterative decoders [10] and in particular with the (hard decision) bit flipping
algorithm. The Backflip algorithm will introduce soft information (i.e. reliabil-
ity information) by flipping coordinates for a limited time which depends on the
confidence we have in each flipping decision. This confidence is measured from
quantities that were already computed in bit flipping decoders and are thus avail-
able at no extra cost. This way, the new decoder will use soft decision decoding,
as in [2,14] for instance, while keeping the very simple logic and arithmetic which
makes it suited to hardware and embedded device implementations [13].

No theoretical argument is known to guaranty a low DFR for the Backflip
decoder. We will resort to simulation. However proving a very low DFR (e.g.
27128) cannot be achieved by simulation alone. Instead, we will use simulation
data to extrapolate the DFR in a region of parameters where it is too small to
be estimated by simulation. This extrapolation technique for the DFR is valid
under an additional assumption on the asymptotic behavior of the decoder.

The paper is organized as follows. The Sect.2 will state and comment the
security assumption related to decoding. The Sect. 3 will describe the Backflip
algorithm and explain its rationale. The Sect. 4 will explain, under the decoder
security assumption, how to obtain DFR estimates with accurate simulation
data.

Notation. For any binary vector v, we denote v; its i-th coordinate and |v| its
Hamming weight. Moreover, we will identify v with its support, that is ¢ € v if
and only if v; = 1. Given two binary vectors u and v of same length, we will
denote uN v the set of all indices that belong to both u and v, or equivalently
their component-wise product as vectors.

1.1 Previous Works

A binary Quasi-Cyclic Moderate Density Parity Check (QC-MDPC) code, is a
quasi-cyclic code which admits a parity check matrix of density proportional to
1/4/n where n is the code length. A QC-MDPC code can efficiently correct an
error of Hamming weight ¢ proportional to y/n thanks to bit flipping decoding
(Algorithm 1). A (2r, 7, w,t)-QC-MDPC-McEliece is an instance of the McEliece
scheme [16] using an QC-MDPC code of index 2 correcting ¢ errors. Such a code
admits a parity check matrix consisting of two sparse circulant blocks of size
r x r and row weight w/2 proportional to \/n.
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We denote R = Fy[z]/(x" — 1). The ring R is isomorphic to r x r circulant
matrices. The scheme is fully described by the knowledge of the error weight ¢
and of two polynomials hg, b1 of R of Hamming weight w/2. Its security relates
to the following hard problems.

Problem 1. (2,1)-QC Syndrome Decoding
Instance: s, h in R, an integer ¢t > 0.
Property: There exists ep, e; in R such that |eg| + |e1| <t and eg + e1h = s.

Problem 2. (2,1)-QC Codeword Finding
Instance: A in R, an integer w > 0.
Property: There exists hg, hy in R such that |hg| + |h1]| = w and hy + hoh = 0.

In the rest of Sect. 1.1 we will consider an instance of a (2r, r, w, t)-QC-MDPC-
McEliece scheme. The code length is n = 2r, its dimension is k = r, and we will
denote d = w/2.

Security Assumptions. The security of QC-MDPC-McEliece for QC codes of
index 2 (and rate 1/2) relies on two assumptions.

Assumption 1. Problem 1 is hard on average over s,h in R.
Assumption 2. Problem 2 is hard on average over h in R.

The above assumptions are enough to guaranty the one-wayness of the underly-
ing encryption primitive. With the ad-hoc conversion they will also be enough to
prove that the related Key Encapsulation Mechanism (KEM) is IND-CPA (see
[1]). To go further and design and prove an IND-CCA KEM, a further assump-
tion on the decoding failure rate (DFR) is required. This will be examined later
in the paper.

Tightness and Best Known Attacks. The security proofs for QC-MDPC
code-based schemes are tight in the following sense: the proofs require the deci-
sional versions of Problem 1 and 2 to be hard on average for the size (r,t) and
(r,w) while the best known attacks only require to solve the search version of
either Problem 1 or 2 for the same size (r,t) or (r,w). Note that there is a search
to decision reduction for Syndrome Decoding [9] but it has not been transferred
so far to the quasi-cyclic case. The best solvers for Problem 1 and 2 use Infor-
mation Set Decoding (ISD). As explained in [17], it is possible to make use of
the quasi-cyclicity together with the multitarget variant of ISD [20] to slightly
improve the decoding. If WF(n, k,t) is the expected cost of the best ISD solver

for the decoding ¢ errors in a binary linear [n, k] code, the cost of the best solver

for Problem 1 and Problem 2 is upper bounded respectively by %:M) and
w When ¢ < r, which is the case here, it was shown in [4] that asymptot-
ically the complexity exponent of all variants of ISD was equivalent to the com-

plexity exponent of Prange algorithm [18], that is WF (n, k, t) = 2t1082 75 (1+e()),
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In particular, the value WF(2r,r,t) = 2t(1+0(1)) does not depend, for its first
order term, on the block size r.

QC-MDPC-McEliece Practical Security. The security of an instance of the
(2r,7r, w, t)-QC-MDPC-McEliece scheme reduces to Problem 1 with parameters

(r,t) and Problem 2 with parameters (r, w). We give in Table 1 the security expo-
WEF(2r,r,t) d WF(2r,r,w)
NG an r

nents for the message and key securities, respectively
when the workfactor is computed for the BJMM variant of ISD [3] using the
methodology described in [12]. We remark that, as expected, the security expo-
nent grows very slowly with the block size r. The parameters of Table 1 are those
of the NIST proposal BIKE [1]. For each security level, the first and second rows
correspond respectively to the IND-CPA and IND-CCA variants.

Table 1. Security exponent of (2r,r, w,t)-QC-MDPC-McEliece (BIKE parameters)

(r,w,t) Problem 2 | Problem 1
Key security | Message security
BIKE level 1 |(10163,142,134) | 129.5 128.6
(11779,142,134) | 129.8 128.9
BIKE level 3| (19853,206,199) | 191.6 192.1
(24821,206,199)  192.4 193.0
BIKE level 5| (32749,274,264) | 258.0 255.9
(40597, 274,264) | 258.8 256.9

Bit Flipping Decoding. All decoders for QC-MDPC codes derive from the
bit flipping decoder given in Algorithm 1 in its syndrome decoding variant. In
Algorithm 1, the counter |[s" Nh;| is the number of unsatisfied equations involving
j. Positions with high counter values are flipped. If s’ = s —eH' for some (e, s’),
with H, s’ and e sparse enough, then the algorithm return e with high probability.

Algorithm 1. Bit Flipping Algorithm, (Noisy-)Syndrome Decoding Variant

Require: H € Fz("_k)xn, s € Fr7F integer u > 0 //u > 0 for noisy syndrome
Ensure: ‘s — e'HT‘ < u or time > max_time
e « 0 ; time « 1
while |S — e'HT| > u and time < max_time do
time « time + 1
s —s—eH'
T « threshold(context)
for j € {0,...,n—1} do
if |[s"Nhj| > T then //h; the j-th column of H
e; —1-— e;

return e’
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The variant presented allows noisy syndrome with « > 0 (as needed for BIKE-3),
else if u = 0, it defines the usual QC-MDPC decoding (used by BIKE-1/2).

Threshold Selection. Selecting the proper threshold is an essential step of the
bit flipping algorithm. In the current state of the art [5,21] the optimal threshold
is given as a function of the syndrome weight and of the error weight. We consider
an execution of Algorithm 1. At any time, let e denote the (remaining) error
vector, the syndrome is s’ = eH" = s — ¢/HT. The optimal threshold is defined
as in Fig. 1 with the call threshold(|eH'|, |e|). Note that the syndrome weight
S = |eH"| = |s — ¢/HT| is always known by the the decoder while the error
weight ¢’ = |e| is only known at the first iteration, since |e| = ¢ by design. Later
on the exact error weight is unknown and a value for ¢ has to be chosen somehow.
One possibility is to guess it by using the fact that the expected value of S is
a function of ¢', E(S) = 7Y paet+1(t'). Though this identity is only exact at the
first iteration, it provides a good enough estimate of ¢’ as a function of S. Finally,
even though the procedure for computing the threshold seems involved, it is not
the case in practice. For a given set of parameters, the threshold is a function
of S which can be precomputed and is usually well approximated by an affine
function.

T = threshold(S,t') is the smallest integer T such that
d\ T d—T t/ d TI'T(]_ _ 7T1)d7T i < 1
(n— t/) (T)Tfo (1 —mo) < { ) (T) 1 o
where
oo SEXGSE) o (w=1)S = X(S,1)
1= td ,» M0 — (nft/)d
and
ST (0= D)pu(t) -
X(S, t’) _ _ todd , with pé(t,) _ g77:/,4 .
> pelt) )
£ odd

Fig. 1. Threshold function

Attacks on the Decoder. The bit flipping algorithm is iterative and proba-
bilistic. In particular, it has a small but positive Decoding Failure Rate (DFR).
This is not an issue if the scheme uses ephemeral keys (e.g. TLS using BIKE
specification) but creates a threat when static keys are used. It was shown in
[11] how to exploit the decoding failures to recover the secret key. This stresses
the importance of reducing the DFR to a negligible value. This is mandatory
to reach CCA security and requires an evolution of the decoder, an increase of
the parameters, an accurate estimate of the DFR, and arguments to support the
accuracy of this estimate.
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The GJS technique was later extended [8] to efficiently recover the secret key
if the adversary has access to the number of effective decoding iterations. The
latter attack stresses the need of a constant-time implementation when static
keys are used. Allowing constant-time implementation may in turn require an
evolution of the decoder and of the system parameters.

1.2 Related Works

The Backflip decoding algorithm and claims about its DFR were given in [1].
The purpose of this work is to detail and support those claims. A simplified bit
flipping variant, the step-by-step decoder, is modelled with a Markov chain in
[21], the model has a DFR which decreases provably exponentially with the block
size. The asymptotic analysis of [22] of QC-MPDC also predicts an exponential
decrease in the range of interest for cryptography, but the analysis is made in
a specific setting and cannot be directly applied to practical BIKE decoder and
parameters. Another recent work [7] explores another decoder variant for BIKE
to reach simultaneously a low DFR and a constant-time implementation.

2 An Additional Security Assumption

Preliminary: Tangent Eztrapolation. When observing the plot of the logarithm
of the simulated DFR versus the block size r (the other parameters w and t are
fixed), one observes that it is always concave. It seems rather natural to assume
that it will remain so and to extrapolate the DFR accordingly. The strategy
will then consist in making a simulation for the largest possible r to accurately
measure the tangent of the lowest possible point of the curve. For instance in
Fig.2, suppose the low curve (blue) is giving the log,(DFR) and we are able to
make accurate simulation as long as the DFR is above 272% (black dots). Taking
the tangent at the last point gives us the red line from which we derive an upper
bound 7/ for a block size with a DFR below 2728 as well as an upper bound
27° for the DFR for a given block size r.

9251

—128

log,(DFR)

Fig. 2. DFR tangent extrapolation (Color figure online)
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2.1 Target Parameters

We will consider here three levels of security named according to the NIST
postquantum security nomenclature. For each security level A below, we denote
r{* the block size of the IND-CPA variants of BIKE (1 and 2).

Level 1: (w,t) = (142,134) for A = 128 bits of classical security, r{™ = 10163
Level 3: (w,t) = (206,199) for A = 192 bits of classical security, r{™ = 19853
Level 5: (w,t) = (274,264) for A = 256 bits of classical security, r{™* = 32749

As mentioned previously, the security of the (2r,r, w,t)-QC-MDPC-McEliece
scheme only marginally depends of the block size r. To reach IND-CCA security
the block size must be increased slightly, at most 25% [1]. To allow constant-
time implementation, the current state-of-art [7] suggests an extra 10%. We
thus expect that for any security level A the values of interest for the block size
r lie in the interval [r{™*, 2r{"4].

2.2 The Decoder Security Assumption

By decoder, say we denote it D, we mean a family of decoding algorithms which
can be applied to QC-MDPC codes corresponding to various security levels A,
including the three levels above, and to any block size r{™ /2 < r < 2r{".
For a given security level A, corresponding to a value of (w,t), we will denote
DFRp »(r) the decoding failure rate when the decoder D is applied to an instance
of (2r,r, w,t)-QC-MDPC-McEliece.

Assumption 3. For a given decoder D, and a given security level \, the func-
tion r — log(DFRp (1)) is decreasing and is concave if DFRp »(r) > 277

2.3 Validity of the Concavity Assumption

Error Floors for QC-MDPC. The mapping r — log(DFRp »(r)) cannot be
concave in the whole range r € [0,00). As explained in appendix, there is an
additive term Py(r) in DFRp x(r), coming from the code weight distribution,
whose logarithm is asymptotically equivalent to C'y — (w/2 — 1) log, r. This term
will dominate when r grows but only for very large values of . We have

A =128, log, Py (r{™) = —396.8, and log, P (r) = 535.0 — 70log,
A =192, log, Py (r§™*) = —618.5, and logy Px(r) ~ 837.8 — 102log, r
A = 256, log, Py (r§™*) = —868.7, and log, Py(r) ~ 1171.2 — 136 log, 7

and this will not affect the DFR for values of r relevant for Assumption 3.

Theoretical Models for the Decoder. In [21] A Markovian model is given for
a simple variant of bit flipping, the step-by-step decoder. This decoder corrects
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less errors than other bit flipping variants, however it uses the same ingredients:
computing counters and flipping the corresponding positions if they are above
some threshold. The model can be computed for arbitrary large values of r
and we observe that in the range of interest for r the log(DFR) is first strictly
concave and eventually decreases linearly with r. This observation is consistent
with Assumption 3. Note that the model does not capture the contribution of
the weight distribution to the DFR.

Another work explores the asymptotic behavior of QC-MDPC decoding [22].
The asymptotic formula it provides for the DFR cannot be used directly because
the setting is different (w and ¢ vary with r), and also the conditions under which
it can be proven are not relevant for decoders and parameters of practical interest.
However the indication provided by the formula is consistent, the dominant term
in the exponent decreases linearly with r.

To conclude this section, the Assumption 3 is and remains an assumption
in the current state-of-the-art. We point out though that, for all variants of bit
flipping decoding, every related theoretical and simulation results are consistent
with it.

3 Backflip: A New Decoder for QC-MDPC Codes Using
Reliability

Design Rationale: Positions with higher counters in Algorithm 1 have higher
probabilities to be erroneous. Positions are flipped when the counter is above a
threshold, how much above doesn’t matter and a part of the reliability informa-
tion is lost. Better performance are achieved with soft-decision decoders such as
the belief propagation algorithm for LDPC codes. These decoders work by prop-
agating probabilities back and forth between variable nodes and check nodes in
the Tanner graph until the confidence on all values is high enough. Their logic
and arithmetic are more complex though. See [2,14] for examples of soft-decision
MDPC decoding. The idea of Backflip is to use the reliability information while
keeping the simplicity of the bit flipping decoder.

Among the flip decisions, most are good (an error is removed) and some are
bad (an error is added). Bad decisions tend to induce more bad decisions and
may lead to a failure. To exploit the reliability information a decoder could lessen
the impact of the least reliable decisions and strengthen the impact of the most
reliable ones. We propose Backflip, a new bit flipping algorithm which uses time
to leverage the reliability information given by the counters on each flip. Every
flip gets a (finite) time-to-live (an iteration count). When its time is over, the
flip is canceled. Positions with a higher counter stay flipped for a longer time
than positions with a counter just above the threshold. The design of Backflip
is based on the following principles:

— the most reliable decisions will have more influence in the decoding process,
— all bad decisions will be cancelled at some point,
— conservative threshold selection hinders bad decisions in cascade.
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In addition, it is readily seen that, compared to Algorithm 1, the Algorithm 2
only requires a few more operations to manage a delay table D. Moreover, as for
the threshold, the ttl is very well approximated by an affine function for any
fixed set of parameters and its computation has a negligible cost in practice.

Algorithm 2. Backflipping Algorithm

Require: H € IFQ("_k)X", s € F2F integer u > 0 //u > 0 for noisy syndrome

Ensure: ‘s — e'HT| < u or time > max_time
e «—0;time«1;D+«0 //Dj = time-of-death of j
while |s — ¢'H"| > v and time < max_time do  //here max_time is 100, 10 or 11
for j such that D; = time do €} — 0 //Undo flips at time-of-death

time < time + 1
s —s—eH'
T + threshold(]s|,t — |¢|)
for j € {0,...,n—1} do
if |[s'Nh;| > T then //h; the j-th column of H
e —1—¢}; Dj « time + tt1(|s' Nhy| — T

return e’

Threshold Selection Rule threshold(S,t'). As the time-to-live of a flip is
always finite, a bad flip will always be canceled eventually. However, it is neces-
sary to avoid adding more bad flips during the period during which it remains
flipped. To achieve this, thresholds from Fig.1 are used with S = |s/| and
t/ = ¢t — |¢/|. This is the best case estimate for the error weight, it supposes
that every flip removed an error. When many errors were added, the correspond-
ing threshold is higher than for the usual bit flipping algorithm, this will slow
down the decoding process, leaving time to cancel the bad decisions while mak-
ing only very reliable new flips. In the typical case, most flip decisions were good,
the threshold is close to optimal, and the decoding converges quickly.

Time-to-Live Rule tt1(§). Empirically, it appears that the time-to-live should
be increasing with the difference § between the position’s counter and the itera-
tion threshold. It should also be finite because otherwise outlier counter values
could lead to adding errors that are harder to detect: correct positions with a
high counter will become errors with a low counter once flipped, their counter
will have to change drastically before it is corrected by an algorithm relying solely
on a threshold. The tt1 function depends on the code parameters (especially w
and t) as well as the maximum number of iterations of the decoder. In practice,
a saturating affine function in § can be used.

tt1(d) = max(1l, min(max_ttl, [« d + 3])) .

To determine a suitable function, w, ¢, and the number of iterations are fixed.
The block size r is chosen so that a sufficiently precise measure of the DFR can
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be made with a reasonable number of samples (=10%). A nonlinear optimization
method (such as Nelder-Mead’s) is then used to find values for o and S that
minimize the DFR.

Table 2. ttl function parameters

Iteration count | A | (w,t) (o, B) max_ttl
100 128 (142,134) | (0.45,1.1) |5

192 | (206,199) | (0.36,1.41) 5

256 | (274,264) | (0.45,1) |5
10,11 128 (142,134) | (1,1) 5

192 | (206,199) | (1,1) 5

256 | (274,264) | (1,1) 5

Complexity and Constant Time Implementation. Backflip was primar-
ily designed to work with a maximum of 100 iterations. Reducing this num-
ber to 10 is possible and requires an adjustment to the ttl function. How-
ever it increases significantly the estimated DFR (see Sect.4). Nevertheless, in
both cases, the average number of iterations is much smaller, between 2.03 for
(r,w,t) = (24821,206,199) and 4.38 for (r,w,t) = (32749, 274, 264).

The interest of reducing max_time is to allow constant time implementation.
The Backflip iteration can be implemented in constant time [7], but to mask the
effective number of iterations and keep the DFR claims, the algorithm has to
execute exactly max_time iterations.

4 Estimating the DFR from Simulation

Under Assumption 3 for a decoder D and a security level A\, we may extrapolate
the DFR by accurately estimating the tangent of the function r — log,(DFR(r))
for some value of r. We obtain an estimate of the tangent by taking the line
joining the values for two points 71 < ry. Note that, except for a possible lack of
accuracy (discussed below), this will provide upper bounds for the extrapolated
DFRs. Results are presented in Table3, we denote rp ) the smallest r such
that DFRp x(r) < 2=*. We denote r$PA and r{°* the blocks sizes in BIKE
for CPA and CCA security. Known asymptotic analysis [21,22] indicate that
the log, (DFR) is ultimately decreasing linearly, but this linear regime probably
starts much beyond the simulated region. Thus it is best to choose r1, 7y as large
as possible, but not too large else we would decrease the accuracy.

Finally note that a significant computational effort was needed to compute
the data of Table4, a total of several years of CPU time (on a single core).
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Table 3. DFR estimation for Backflip limited to max_time iterations.

CPA

CCA CCA) T)\ CPA)

fiter A |rp T2 logy(p1) |loga(p2) | TD, A |75 logy (7§ logy (7§
100 |128| 9200| 9350|—21.4 |—27.7 11717 11779|—130.7 10163 | —62.2
192|18200|18300| —23.0 |—25.6 |24665|24821|—196.1 19853 | —66.2
256 30250 | 30400 | —23.3 —26.2 4241840597 —221.2 32749 | —71.1
10 12810000 |10050 | —22.7 |—24.6 |12816|11779| —89.2 10163 | —28.8
192{19550(19650 | —23.5 | —25.7 | 26939 |24821 | —143.7 19853 | —30.4
256 (32250 | 32450 | —22.9 —26.6 |44638|40597 | —180.0 32749 | —-32.3
11 128|10000|10050 | —25.1 |—=27.1 |12573|11779| —96.3 10163 | —31.6
1921955019650 | —25.9 —28.6 25580 (24821 | —171.1 19853 | —34.2
256 3225032450 | —25.1 —29.5 42706 40597 | —209.4 32749 | —36.1

Accurary of Simulated DFRs. The decoding failure is a Bernoulli trial of proba-
bility p. If we observe F' failures out of N trials our estimate is p = F/N. The
normal distribution gives a good approximation of this distribution in which the
standard deviation for F is 1/p(1 — p)N. For p < 1 (the case of interest) we

have )PP%P) < e = 2/\/pN with probability 1 —a ~ 0.68,0.95,0.997 for z = 1,2, 3

respectively. We observe that the precision decreases as z/ V'F where F is the
number of failures observed and z will be determined by the confidence we wish
to achieve. Note that for the same confidence, |logp —logp| < e. In our case,
we use Clopper—Pearson intervals [6] which are exact (they use the correct bino-
mial distribution and not an approximation). Those intervals are not symmetric,
the confidence interval is e~ below and et above the measured values. In the
simulation for max_time = 10 we let the decoder run up to 50 iterations and
store the number of effective iterations. We are thus able to measure the DFR
for 11 iterations of Backflip. We observe in Table 3 a significant improvement
in the DFR, but a lower confidence (Table4) because the block sizes were cho-
sen for 10 iterations. Nevertheless, this suggests that increasing max_time could

Table 4. Raw simulation data with confidence intervals (v = 0.01)

Fiter | A 1 Fy Ny logy p1|e™ et 9 F> | N2 log, p2 | € 5
100 | 128| 92001253 |3.4510° | —21.4 |0.1070.104| 9350102 |2.3010%° | —27.7 |0.390|0.361
19218200 499 [4.1310°|—23.0 [0.1710.165|18300, 90 |4.5710° | —25.6 |0.416|0.383
25630250 | 282 |2.9610° | —23.3 |0.229/0.21930400| 80 [6.1410° |—25.3 |0.443|0.407
10 128100001074 |7.2910° | —22.7 0.1150.113|10050 282 |6.9910° | —24.6 |0.229|0.219
19219550 440 |5.0810° | —23.5 [0.1820.176 19650 81 |4.5510° | —25.7 |0.440|0.404
25632250 | 513 [3.9110°|—22.9 |0.168|0.163|32450| 37 |3.8310° |—26.6 |0.673|0.591
11 12810000 200 |7.2910° | —25.1 |0.274|0.259|10050 | 48 [6.9910° | —27.1 |0.584|0.522
19219550 83 |5.0810° | —25.9 |0.435(0.399|19650| 11 [4.5510° |—28.6 |1.348|1.054
256 32250| 109 3.9110° —25.1 |0.376|0.350 32450 5 13.8310° | —29.5 |2.214|1.501
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provide interesting trade-offs between complexity and DFR for constant time
implementations.

Additional Comments. In [21], the BIKE round 1 algorithm was estimated to
have a DFR around 2747 for (r,w,t) = (32749,274,264). A significant improve-
ment is made with Backflip as its DFR is estimated around 2~ 7!'! for the same
parameters, with a smaller complexity on average.

Finally, note that the suggested parameters for the CCA variant of BIKE
Level 5 (A = 256) have not been correctly estimated. The extrapolated block
size to reach a DFR of 27256 is 42418 rather than 40597 in [1]. This is due to the
imprecision of the measures at the time. To mitigate this issue, it is very likely
that the tangent we are using is pessimistic and that the actual DFR is much
lower than the extrapolated value given here.

5 Conclusion

We have given in this paper the description and the rationale of the Backflip
decoder of BIKE [1]. We also explain how the DFR claims were obtained by
extrapolating simulation data. To justify the extrapolation technique we intro-
duce a new security assumption, related to the decoder, under which the DFR
claims are valid. The assumption is supported by other works analyzing the
asymptotic behavior of the bit flipping decoding for QC-MDPC codes. Under
this additional assumption, it is possible to prove that the BIKE KEMs, derived
from QC-MDPC codes, are IND-CCA. Doing this requires extensive simulations
in order to obtain accurate simulation data.

Backflip with 100 iterations would hardly produce efficient constant time
implementations. Reducing the number of iterations to 10 increases the DFR
and would require larger block size to reach a low enough DFR for IND-CCA
security. This was remarked in another independent work [7] which considers
another variant of the bit flipping algorithm, closer to the round 1 BIKE decoder,
and which is more efficient when the number of iterations is bounded to a small
number. The methodology we develop here is valid for other variants of bit
flipping and can be used to justify the conclusions of [7]: we may produce efficient
constant time variants of BIKE with provably low DFR (under Assumption 3)
but it requires a small increase of the block size, in the order of 5% to 10%.

Finally, there is one extra feature of the tangent extrapolation technique.
With a larger amount a computational effort for the simulation, it should be
possible, under the same assumptions, to get the same security guaranty (e.g.
IND-CCA) for a smaller block size.

A Error Floors for QC-MDPC

The DFR study we are making here differs from what is done for communication
systems where the code is fixed and the signal to noise ratio increases (i.e. the
bit error probability decreases). We expect to observe the same kind of DFR
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behavior here for QC-MDPC when we fix (w,t) and let r grow. Some classes of
error correcting codes, namely turbo-codes and LDPC codes to which MDPC
codes are akin, suffer from a phenomenon known as error floor. The log(DFR)
curve is first concave and quickly decreasing (the waterfall). Then at some point
the concavity changes and the DFR decreases much more slowly, this is known as
the error floor [15,19]. This could contradict the Assumption 3, but fortunately
error floors usually occur very low in DFR curves. The error floors are due to
the existence of low weight codewords, in the case of turbo codes, or, for LDPC
codes, to the existence of specific error configurations known as near-codewords.
An (u,v)-near-codeword is an error pattern of relatively small weight u with a
syndrome of small weight v (the syndrome is computed with the sparse parity
check matrix). Intuitively, it can be seen as a cluster of errors which are less
visible because, together, they only invalidate a few parity equations. If the
initial error pattern contains a near-codeword the decoder is more prone to fail.
If many near-codewords exist it may cause an error floor.

Error Floors From Near-Codewords. To affect decoding in a (27, r, w, t)-QC-
MDPC-McEliece scheme, an (u,v)-near-codewords (see definition above) must
be such that u is smaller than ¢, and v significantly smaller than the typical
syndrome weight. The probability that such a near-codeword exists when the
QC-MDPC is chosen at random is extremely small. A very small number of QC-
MDPC codes may admit such words, but if they do there will be few of them.
Moreover, the decoding of the few error patterns containing near-codewords will
not automatically fail, the DFR will just increase a bit, with little impact on the
average DFR. Unless there is an algebraic structure which is not immediately
apparent, we do not expect near-codewords to have an impact on QC-MDPC
DFR.

Error Floors from Low Weight Codewords. Regardless of the algorithm,
the decoding of a noisy codeword will almost certainly fail if the noisy codeword
comes closer to a codeword c; different from the original one cy. For a given
error e of weight ¢, and two codewords ¢y and c; at distance w from one another,
the decoding will fail if |cg + e — ¢1| < |e|, which happens with probability

= D05
sz-zzw/z o (1)

An index 2 QC-MDPC code with block size r and parity check matrix row weight
w will generally have exactly r codewords of weight w. If H = (Hy | H;) is the
sparse parity check matrix, with two circulant blocks Hg, Hy, then G = (H] |
H]) is a generator matrix of the code. With overwhelming probability, the r rows
of that generator matrix are the only minimal weight codewords. Let us denote
Py (r) = rP, the failure probability due to those codewords. A simple analysis
shows that log, Py(r) ~y—oo Cx — (w/2 — 1)log, r where Cy only depends of
w and t. We have DFRp »(r) > Py(r) for any decoder, this term will dominate
when 7 grows and thus the logarithm of the DFR is not concave in the whole
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range r € [0, co[. However the change of slope only happens for very large values
of r. We have

A =128, log, Pr(r{™)

A =192, log, Pr(r{™)
A = 256, logy Py (r$7*)

—396.8, and log, Py (r) =~ 535.0 — 70log,
—618.5, and log, Py(r) ~ 837.8 — 102log, r
—868.7, and log, Py\(r) = 1171.2 — 136 log, r

and this will not affect the DFR for values of r relevant for Assumption 3. Finally
note that the sum of two (or more) rows of G may also contribute to the DFR.
However, it is easily observed that the contribution of those codewords is even
smaller.

Additional Comment. The error floor issue is new for QC-MDPC codes. As
far as this work is concerned, we assume through Assumption 3 that the error
floor occurs below the required 27*, validating the DFR estimation method. We
give above some arguments to support the assumption. We agree, as suggested
by one of the reviewers, that the matter needs to be more thoroughly studied,
but this goes beyond the scope of the present work.
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Abstract. QC-MDPC code-based KEMs rely on decoders that have a
small or even negligible Decoding Failure Rate (DFR). These decoders
should be efficient and implementable in constant-time. One example for
a QC-MDPC KEM is the Round-2 candidate of the NIST PQC standard-
ization project, “BIKE”. We have recently shown that the Black-Gray
decoder achieves the required properties. In this paper, we define sev-
eral new variants of the Black-Gray decoder. One of them, called Black-
Gray-Flip, needs only 7 steps to achieve a smaller DFR than Black-Gray
with 9 steps, for the same block size. On current AVX512 platforms, our
BIKE-1 (Level-1) constant-time decapsulation is 1.9x faster than the
previous decapsulation with Black-Gray. We also report an additional
1.25x decapsulating speedup using the new AVX512-VBMI2 and vector-
PCLMULQDQ instructions available on “Ice-Lake” micro-architecture.

Keywords: BIKE - QC-MDPC codes - Constant-time
implementation + QC-MDPC decoders

1 Introduction

The Key Encapsulation Mechanism (KEM) called Bit Flipping Key Encapsula-
tion (BIKE) [2] is based on Quasi-Cyclic Moderate-Density Parity-Check (QC-
MDPC) codes, and is one of the Round-2 candidates of the NIST PQC Stan-
dardization Project [15]. The submission includes several variants of the KEM
and we focus here on BIKE-1-CCA Level-1 and Level-3.

The common QC-MDPC decoding algorithms are derived from the Bit-
Flipping algorithm [12] and come in two main variants.

— “Step-by-Step”: it recalculates the threshold every time that a bit is flipped.
This is an enhancement of the “in-place” decoder described in [11].

— “Simple-Parallel”: a parallel algorithm similar to that of [12]. It first calculates
some thresholds for flipping bits and then flips the bits in all of the relevant
positions, in parallel.

© Springer Nature Switzerland AG 2020
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BIKE uses a decoder for the decapsulation phase. The specific decoding algo-
rithm is a choice shaped by the target DFR, security, and performance. The
IND-CCA version of BIKE Round-2 [2] is specified with the “BackFlip” decoder,
which is derived from Simple-Parallel. The IND-CPA version is specified with
the “One-Round” decoder, which combines the Simple-Parallel and the Step-By-
Step decoders. In the “additional implementation” [7] we chose to use the “Black-
Gray” decoder (BG) [5,8], with the thresholds defined in [2]. This decoder (with
different thresholds) appears in the BIKE pre-Round-1 submission “CAKE” and
is due to N. Sendrier and R. Misoczki.

This paper explores a new family of decoders that combine the BG and the
Bit-Flipping algorithms in different ways. Some combinations achieve the same
or even better DFR compared to BG with the same block size, and at the same
time also have better performance.

For better security we replace the mock-bits technique of the additional
implementation [5] with a constant-time implementation that applies rotation
and bit-slice-adder as proposed in [3] (and vectorized in [13]), and enhance it with
further optimizations. We also report the first measurements of BIKE-1 on the
new Intel “Ice-Lake” micro-architecture, leveraging the new AVX512-VBMI2,
vector-AESENC and vector-PCLMULQDQ instructions [1] (see also [4,10]).

The paper is organized as follows. Section 2 defines notation and offers some
background. The Bit-Flipping and the BG algorithms are given in Sect.3. In
Sect. 4 we define new decoders (BGF, B and BGB) and report our DFR per block
size studies in Sect. 5. We discuss our new constant-time QC-MDPC implemen-
tation in Sect. 6. Section 7 reports the resulting performance. Section 8 concludes
the paper.

2 Preliminaries and Notation

Let Fo be the finite field of characteristic 2. Let R be the polynomial ring
Fy[X]/ (X" —1). For every element v € R its Hamming weight is denoted by
wt(v), its bits length by |v|, and its support (i. e., the positions of its set bits) by
supp(v). Polynomials in R are viewed, interchangeably, also as square circulant
matrices in F5*". For a matrix H € F5y*", let H; denote its i-th column written
as a row vector. We denote a failure by the symbol 1. Uniform random sam-

pling from a set W is denoted by w & W. For an algorithm A, we denote its
output by out = A() if A is deterministic, and by out <+ A() otherwise. Here-
after, we use the notation x.ye—z to denote the number (z 4 ) - 107% (e.g.,
1.2e—3=1.2-1073.

BIKE-1 IND-CCA. BIKE-1 (IND-CCA) flows are shown in Table 1. The com-
putations are executed over R, and the block size r is a parameter. The weights
of the secret key h = (hg, h1,00,01) and the errors vector e = (eg, e1), are w
and t, respectively, the public key, ciphertext, and shared secret are f = (fo, f1),
¢ = (ep,c1), and k, respectively. H, K denote hash functions (as in [2]). Cur-
rently, the parameters of BIKE-1 IND-CCA for NIST Level-1 are: r = 11,779,
|f| = |c| = 23,558, |k| =256, w =142, d = w/2 =71 and t = 134.
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Table 1. BIKE-1-CCA

Key generation | @ ho, hi & R of odd weight wt(ho) = wt(h1) = w/2
® 00,01 & R

°g & R of odd weight (so wt(g) ~ r/2)

® (fo, f1) = (gha, gho)

Encapsulation | e m ER

e (eo,e1) = H(mfo, mf1) where wt(eg) + wt(e1) =t
e (co,c1) = (mfo+eo,mf1+e1)

o k =K(mfo,mf1,co,c1)

Decapsulation | e Compute the syndrome s = coho + c1h1

o (e,,el) < decode(s, ho, h1)

o If wt ((ep, e})) # t or decoding failed then k& = K(o0, 01, ¢)

o clse k = K(co + €5, c1 + €, co,c1)

3 The Bit-Flipping and the Black-Gray Decoders

Algorithm 1 describes the Bit-Flipping decoder [12]. The computeThreshold
step computes the relevant threshold according to the syndrome, the errors vec-
tor, or the Unsatisfied Parity-Check (UPC) values. The original definition of [12]
takes the maximal UPC as its threshold.

Algorithm 1. e=Bit-Flipping(c, H)

Input: H € F;*" (parity-check matrix), ¢ € Fy (ciphertext), X (Maximal number
of iterations), u (Maximal syndrome weight)

Output: e € F5 (errors vector)

Exception: A “decoding failure” returns L

1: procedure BIT-FLIPPING(c, H)

2: s = Hc", e =0, upc[n-1:0] = 0"

3: for itr =0...X do

4: th = computeThreshold(s,e)

5: foriin0...n—1do

6: upclt] = H; - s

7 if upcli] > th then efi| = eli] ® 1 > Flip an error bit

8: s=H(c" +eT) > Update the syndrome
9: if (wt(s) = u) then return e

10: else return L

Algorithm 2 describes the BG decoder. It is implemented in BIKE additional
code package [7]. Every iteration of BG involves three main steps. Step I calls
BitFlipIter to perform one Bit-Flipping iteration and sets the black and
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gray arrays. Steps II and III call BitFlipMaskedIter. Here, another Bit-
Flipping iteration is executed, but the errors vector e is updated according to
the black/gray masks, respectively.

In Step I the decoder uses some threshold (th) to decide whether or not a
certain bit is an error bit. The probability that the bit is indeed an error bit
increases as a function of the gap (upc[i] - th). The algorithm records bits with
a small gap in the black/gray masks so that the subsequent Step II and Step
IIT can use the masks in order to gain more confidence in the flipped bits. In
this paper § = 4.

Algorithm 2. e=BG(c, H)

Input: H € F}*" (parity-check matrix), ¢ € Fy (ciphertext), Xps (maximal
number of iterations)
Output: e € F5 (errors vector)
Exception: A “decoding failure” returns L
procedure BITFLIPITER(s, e, th, H)
blackin —1:0] = grayln—1:0] =0"
foriin0...n—1do
upcli] = H; - s
if upc[i] > th then
elil =eli] @1 > Flip an error bit
black[i] =1 > Update the Black set
else if upc; >=th — 6 then
grayfi] =1 > Update the Gray set
s=H(cT +¢7) > Update the syndrome
return (s, e, black, gray)

2O X T s wy

—_

12: procedure BITFLIPMASKEDITER(s, e, mask, th, H)
13: foriin0...n—1do

14: upcli] = H; - s

15: if upc[i] > th then

16: eli] = e[i] ® mask[i] > Flip an error bit

17: s=H(cT +¢7) > Update the syndrome
18: return (s,e)

19: procedure BLACK-GRAY(c, H)
20 s=Hcl,e[n—1:00=0",6=4
21: foritrinl... Xgg do

22: th = computeThreshold(s)

23: (s, e, black, gray) = BitFliplter(s, e, th, H) > Step I
24: (s, e) = BitFlipMaskedlIter(s, e, black, ((d +1)/2), H) > Step II
25: (s, e) = BitFlipMaskedlter(s, e, gray, ((d + 1)/2), H) > Step III
26: if (wt(s) # 0) then

27: return L

28: else

29: return e
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4 New Decoders with Different Shades of Gray

In cases where Algorithm 2 can safely run without a constant-time implemen-
tation, Step II and Step III are fast. The reason is that the UPC values are
calculated only for indices in supp(black)/supp(gray), and the number of these
indices is at most the number of bits that were flipped in Step I (certainly less
than n). By contrast, if constant-time and constant memory-access are required,
the implementation needs to access all of the n positions uniformly. In such case
the performance of Step II and Step III is similar to the performance of Step I.
Thus, the overall decoding time of the BG decoder with Xp¢ iterations, where
each iteration is executing steps I, II, and III, is proportional to 3 - Xp¢.

The decoders that are based on Bit-Flipping are not perfect - they can
erroneously flip a bit that is not an error bit. The probability to erroneously
flip a “non-error” bit is an increasing function of wt(e)/n and also depends on
the threshold (note that wt(e) is changing during the execution). Step II and
Step III of BG are designed to fix some erroneously flipped bits and therefore
decrease wt(e) compared to wt(e) after one iteration of Simple-Parallel (without
the black/gray masks). Apparently, when wt(e)/n becomes sufficiently small
the black/gray technique is no longer needed because erroneous flips have low
probabilities. This observation leads us to propose several new variations of the
BG decoder (see Appendix A for their pseudo-code).

1. A Black decoder (B): every iteration consists of only Steps I, II (i.e., there is
no gray mask).

2. A Black-Gray-Flip decoder (BGF): it starts with one BG iteration and con-
tinues with several Bit-Flipping iterations.

3. A Black-Gray-Black decoder (BGB): it starts with one BG iteration and
continues with several B-iterations.

Ezample 1 (Counting the number of steps). Consider BG with 3 iterations. Here,
every iteration involves 3 steps (I, II, and IIT). The total number of practically
identical steps is 9. Consider, BGF with 3 iterations. Here, the first iteration
involves 3 steps (I, II, and IIT) and the rest of the iterations involve only one
step. The total number of practically identical stepsis 3+ 1+ 1 =25.

5 DFR Evaluations for Different Decoders

In this section we evaluate and compare the B, BG, BGB, and BGF decoders
under two criteria.

1. The DFR for a given number of iterations and a given value of r.
2. The value of r that is required to achieve a target DFR with a given number
of iterations.

In order to approximate the DFR we use the extrapolation method [16], and
apply two forms of extrapolation: “best linear fit” [8] and “two large r’s fit” (as
in [8][Appendix C]). We point out that the extrapolation method relies on the



40 N. Drucker et al.

assumption that the dependence of the DFR on the block size r is a concave
function in the relevant range of r. Table 2 summarizes our results. It shows the
r-value required for achieving a DFR of 2723(~ 107%), 2764 and 27128, It also
shows the approximated DFR for » = 11,779 (which is the value used for BIKE-
1 Level-1 CCA). Appendix B provides the full information on the experiments
and the extrapolation analysis.

Table 2. The DFR achieved by different decoders. Two extrapolation methods are
shown: “best linear fit” (as in [8]), “two large r’s fit” (as in [8][Appendix C]). The
second column shows the number of iterations for each decoder. The third column
shows the total number of (time-wise identical) executed steps.

Best linear fit Two large r’s fit
Decoder | #I|#S|DFR = [2764 27128 |DFR at |[DFR = [27%4 |27128 |DFR at
223 11,779 |2-23 11,779
BG 3 | 910,253 |11,213 12,739 288 10,253 |11,171/12,619|2790
4 |12 /10,163 |11,003 12,347 (27100 110,163 |10,909 12,107 | 2110
5 |15 10,133 [10,909|12,107 2—'11 10,133 |10,853|11,987 |2~ 116
BGB 4 | 9 /10,253 |11,093 12,491 |2-95 10,253 | 11,083 /12,491 | 296
5 |11 10,163 |10,973|12,227 27105 10,163 |11,027 12,413 |2-99
6 |13 10,133 |10,973|12,269|2- 104 10,133 | 10,949 12,197 |2~ 107
BGF 5 10,301 |11,171|12,539|2792 10,301 |11,131/12,491 |29
6 10,253 |11,027|12,277|2-192  |10,253 |10,973|12,197 2107
7 10,181 |10,949|12,149 |2—108 10,181 |10,949|12,107 2~ 112
B 4 10,259 | 11,699 13,901 |2-67 10,301 |11,813|14,221|2763
5 |10 10,133 |11,437|13,229|2-7 10,133 |11,437|13,451 276
6 |12 10,067 |11,213|13,037|2—84 10,067 |11,437 13,397 2778

Interpreting the Results of Table 2. The conclusions from Table 2 indicate
that it is possible to trade BG with 3 iterations for BGF with 6 iterations. This
achieves a better DFR and also a % = 1.125x speedup. Moreover, if the required
DFR is at most 2754, it suffices to use BGF with only 5 iterations (and get
the same DFR as BG with 3 iterations). This achieves a factor of 2 = 1.28x

7
speedup. The situation is similar for BG with 4 iterations compared to BGB with
5 iterations: this achieves a % = 1.09x speedup. If a DFR of 27128 is required it

is possible to trade BG with 4 iterations for BGF with 7 iterations and achieve a
% = 1.33x speedup. Another interesting trade off is available if we are willing to
slightly increase the value of r. Compare BG with 4 iterations (i. e., 12 steps) and
BGF with 6 iterations (i.e., 8 steps). For a DFR of 2754 we have rpg = 11,003
and rggp = 11,027. A very small relative increase in the block size, namely

(reer —rBa)/rBc = 0.0022, gives a 1@2 = 1.5x speedup.

Ezample 2 (BGF versus BG with & iterations). Fig.1 shows a qualitative com-
parison (the precise details are provided in Appendix B). The left panel indicates
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that BGF has a better DFR than BG for the same number of (9) steps when
r > 9,970. Similarly, The right panel shows the same phenomenon even with
a smaller number of BGF steps (7) when r > 10,726 (with the best linear fit
method) and r > 10,734 (with the two large r’s method) that correspond to a
DFR of 2743 and 274, respectively. Both panels show that that crossover point
appears for values of r below the range that is relevant for BIKE.

ole ® BG 9 steps ofe & ° ® BG 9 steps
é A BGF 9 steps A BGF 7 steps
- - BGin fit - - BG lin fit
- —BG 2pt it — BG 2pt it
- - BGF lin fit -5 - - BGF lin fit
— BGF 2pt fit — BGF 2pt fit
£ 4 E
g g
K T
-6
8 -15
-10 . . . \§ ; )
9400 9600 9800 10000 10200 10400 9500 10000 10500 11000

Fig. 1. DFR comparison of BG with 3 iterations (9 steps) to BGF with: (Left panel)
7 iterations (9 steps); (Right panel) 5 iterations (7 steps). See the text for details.

6 Constant-Time Implementation of the Decoders

The mock-bits technique was introduced in [5] for side-channel protection in
order to obfuscate the (secret) supp(ho), supp(h1). Let M; denote the mock-bits
used for obfuscating supp(h;) and let M; = M; U supp(h;). For example, the
implementation of BIKE-1 Level-1 used |M;| = 62 mock-bits and thus |M;| =

133. The probability to correctly guess the secret 71 bits of h; if the whole set

|M;]| is given is (1;’13) !~ 97128 This technique was designed for ephemeral keys

but may leak information on the private key if it is used multiple times (i.e.,
if most of [M;| can be trapped). By knowing that supp(h;) C M;, an adversary
can learn that all the other (r — [M;|) bits of h; are zero. Subsequently, it can
generate the following system of linear equations (ho,h1)™ - (fo, f1) = 0, set
the relevant variables to zero and solve it. To avoid this, |M;| needs to be at
least /2 (probably more) so the system is sufficiently undetermined. However,
using more than M; mock-bits makes this method impractical (it was used as
an optimization to begin with).

Therefore, to allow multiple usages of the private key we modify our imple-
mentation and use some of the optimizations suggested in [3] that were later vec-
torized in [13]'. Specifically, we leverage the (array) rotation technique (which
was also used in [14] for FPGAs). Here, the syndrome is rotated, d times, by
supp(h;). The rotated syndrome is then accumulated in the upc array, using a
bit-slice technique that implements a Carry Save Adder (CSA).

! The paper [13] does not point to publicly available code.
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6.1 Optimizing the Rotation of an Array

Consider the rotation of the syndrome s (of r bits) by e.g., 1,100 positions.
It starts with “Barrel shifting” by the word size of the underlying architecture
(e.g., for AVX512 the words size is 512-bits), here twice (1,024 positions). It
then continues with internal shifting here by 76 positions. Reference [13] shows
a code snippet (for the core functionality) for rotating by a number of positions
that is less than the word size. Figure 2 presents our optimized and simplified
snippet for the same functionality using the mm512 permutex2var_epi64d
instruction instead of the BLENDV and the VPALIGND.

__m512i previous, current, a0, al, idx, idx1l, num_full_qw, one; 1
uint64_t count64 = bitscount & 0x3f; 2
3

num_full_qw = _mm512_setl_epi8(bitscount >> 6); 4
one = _mm512_setl_epi64(1); 5
previous = _mm512_setzero_si512(); 6
idx = _mm512_setr_epi64(0x0, Ox1, 0x2, 0x3, Ox4, 0x5, 0x6, O0x7); 7
idx = _mm512_add_epi64 (idx, num_full_qw); 8
idx1 = _mm512_add_epi64 (idx, ome); 9
10

for(int i = R_ZMM; i >= 0; i--) 11
{ 12
current = _mm512_loadu_si512(in[i]); 13
a0 = _mmb512_permutex2var_epi64 (current, idx, previous); 14
al = _mm512_permutex2var_epi64 (current, idxl, previous); 15
a0 = _mmb512_srli_epi64 (a0, count64); 16
al = _mm512_slli_epi64(al, 64 - count64); 17
_mm512_storeu_si512(out[i], _mm512_or_si512(a0, al)); 18
previous = current; 19

¥ 20

Fig. 2. Right rotate of 512-bit R_ZMM registers using AVX512 instructions.

The latest Intel micro-architecture “Ice-Lake” introduces a new instruction
VPSHRDVQ as part of the new AvVX512-VBMI2 set. This instruction receives two
512-bit (zMM) registers (a, b) together with another 512-bit index register (¢) and
outputs in dst the following results:

For j = 0 to 7 1
i = jx64 2
dst [i+63:i] := concat(b[i+63:i], al[i+63:i]) >> (c[i+63:i] & 63) 3

Figure 3 shows how VPSHRDVQ can be used in order to replace the three
instructions in lines 16-18 of Fig. 2.

Remark 1. Reference [13] remarks on using tables for some syndrome rotations
but mentions that it does not yield significant speedup (and in some cases even
shows a performance penalty). This is due to two bottlenecks in a constant-time
implementation: (a) extensive memory access; (b) pressure on the execution port
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that the shift operations are using. In our case, the bottleneck is (a) so using
tables to reduce the number of shifts is not a remedy. For completeness, we
describe a new table method that can be implemented using Ice-Lake CPUs.
The new VPERMI2B (mm512_permutex2var_epi8) instruction [1] allows to
permute two ZMMs at a granularity of bytes, and therefore to perform the rota-
tion in lines 16-18 of Fig. 2 at a granularity of 8 bits (instead of 64). To use tables
for caching: (a) initialize a table with ¢ = 0,...,7 right-shifts of the syndrome
(only 8 rows); (b) modify lines 14-15 to use VPERMI2B; (c) load (in constant-time)
the relevant row before calling the Barrel-shifter. As a result, lines 16-18 can be
removed to avoid all the shift operations. As explained above, this technique does
not improve the performance of the rotation.

__m512i count64 = _mm512_setl_epi64(bitscount & 0x3f);

for(int i = R_ZMM; i >= 0; i--)
{
data = _mm512_loadu_si512(&in->qwl8 * il);
a0 = _mmb512_permutex2var_epi64 (current, idx, previous);
al = _mm512_permutex2var_epi64 (current, idxl, previous);
a0 = _mm512_shrdv_epi64 (a0, al, count64);
_mm512_storeu_si512 (&out->qw([8 * il, al);
previous = current;

= O 00O U W

=]

Fig. 3. Right rotate of 512-bit R_ZMM registers using AVX512-VBMI2 instructions. The
initialization in Fig.2 (lines 1-10) is omitted.

6.2 Using Vector-PCLMULQDQ and vector-AESENC

The Ice-Lake processors support the new vectorized PCLMULQDQ and AESENC
instructions [1]. We used the multiplication code presented in [9][Figure 2], and
the CTR DRBG code of [6,10], in order to improve our BIKE implementation.
We also used larger caching of random values (1,024 bytes instead of 16) to fully
leverage the DRBG. The results are given in Sect. 7.

7 Performance Studies

We start with describing our experimentation platforms and measurements
methodology. The experiments were carried out on two platforms, (Intel® Turbo
Boost Technology was turned off on both):

~ EC2 Server: An AWS EC2 m5.metal instance with the 6"
Intel®Core™™ Generation (Micro architecture Codename “Sky Lake” [SKL])
Xeon®Platinum 8175M CPU 2.50 GHz. This platform has 384 GB RAM, 32K
L1d and L1i cache, IMiB L2 cache, and 32MiB L3 cache.

— Ice-Lake: Dell XPS 13 7390 2-in-1 with the 10** Intel®Core”™ Generation
(Micro architecture Codename “Ice Lake” [ICL]) Intel®Core™ i7-1065G7
CPU 1.30 GHz. This platform has 16 GB RAM, 48K L1d and 32K L1i cache,
512K L2 cache, and 8MiB L3 cache.
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The Code. The code is written in C and x86-64 assembly. The implementations
use the (vector) PCLMULQDQ, AES-NI, AVX2, AVX512 and AVX512-VBMI2
instructions when available. The code was compiled with gce (version 8.3.0) in
64-bit mode, using the “O3” Optimization level with the “-funroll-all-loops” flag,
and run on a Linux (Ubuntu 18.04.2 LTS) OS.

Measurements Methodology. The performance measurements reported here-
after are measured in processor cycles (per single core), where lower count is
better. All the results were obtained using the same measurement methodology,
as follows. Each measured function was isolated, run 25 times (warm-up), fol-
lowed by 100 iterations that were clocked (using the RDTSC instruction) and
averaged. To minimize the effect of background tasks running on the system,
every experiment was repeated 10 times, and the minimum result was recorded.

7.1 Decoding and Decapsulation: Performance Studies

Performance of BG. Table3 shows the performance of our implementation
which uses the rotation and bit-slice-adder techniques of [3,13], and compares the
results to the additional implementation of BIKE [7]. The results show a speedup
of 3.75x—6.03x for the portable (C code) of the decoder, 1.1x speedup for the
AVX512 implementations but a 0.66x slowdown for the AVX2 implementation.
The AVX512 implementation leverages the masked store and load operations
that do not exist in the AVX2 architecture. Note that key generation is faster
because generation of mock-bits is no longer needed.

Table4 compares our implementations with different instruction sets
(AVX512F, AVX512-VBMI2, vector-PCLMULQDQ, and vector-AES). The results
for BIKE-1 Level-1 show speedups of 1.47x, 1.28%, and 1.26x for key genera-
tion, encapsulation, and decapsulation, respectively. Even better speedups are
shown for BIKE-1 Level-3 of 1.58x, 1.39x%, and 1.24 X, respectively.

Consider the 6th column and the BIKE-1 Level-1 results. The ~ 94K (93, 521)
cycles of the key generation consists of 13K, 13K, 1K, 1K, 5.5K, 26K, 26K
cycles for generating hg, h1,00,01,9, fo, f1, respectively (and some additional
overheads). Compared to the 3rd column of this table (with only AVX512F
implementation): 13.6K, 13.6K, 2K, 2K, 6K, 46K, 46K, respectively. Indeed,
as reported in [9], the use of vector-PCLMULQDQ contributes a 2x speedup to
the polynomial multiplication. Note that the vector-AES does not contribute
much, because the bottleneck in generating hg, hy is the constant-time rejection
sampling check (if a bit is set) and not the AES calculations.

Table 5 compares our right-rotation method to the snippet shown in [13]. To
accurately measure these “short” functionalities, we ported them into separate
compilation units and compiled them separately using the “-¢” flag. In addition,
the number of repetitions was increased to 10,000. This small change improves
the rotation significantly (by 2.3x) and contributes ~ 2% to the overall decoding
performance.
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8 Discussion

Our study shows an unexpected shades-of-gray combination decoders:
BGF offers the most favorable DFR-efficiency trade off. Indeed (see Table 2), it
is possible to trade BG, which was our leading option so far, for another decoder
and have the same or even better DFR for the same block size. The advantage

Table 3. The EC2 server performance of BIKE-1 Level-1 when using the BG decoder
with 3 iterations. The cycles (in columns 4, 5) are counted in millions.

Implementation Level | Op Additional This Speedup
Implementa- | paper
tion [7]
C-portable stand-alone | Level-1 | Keygen | 1.67 1.37 1.22
Decaps | 60 15.99 |3.75
Level-3 | Keygen | 4.75 4.03 |1.18
Decaps | 242.72 64.09 |3.79
C-portable + OpenSSL | Level-1 | Keygen | 0.86 0.56 1.54
Decaps | 52.38 8.68 6.03
Level-3 | Keygen | 2.71 1.98 1.37
Decaps | 218.42 39.82 5.48
AVX2 Level-1 | Keygen | 0.27 0.15 1.81
Decaps | 3.03 3.62 0.84
Level-3 | Keygen | 0.62 0.38 1.64
Decaps | 10.46 15.84 |0.66
AVX512 Level-1 | Keygen | 0.26 0.15 | 1.79
Decaps | 2.59 1.83 1.42
Level-3 | Keygen | 0.57 0.37 1.57
Decaps | 8.97 8.14 1.10

Table 4. BIKE-1 Level-1 using the BG decoder with 3 iterations. Performance on
Ice-Lake using various instruction sets.

Level |Op AVX512F | AVX512F Speedup |AVX512F Speedup
AVX512-VBMI2 AVX512-VBMI2
VPCLMULQDQ VPCLMULQDQ, VAES
Level-1|Keygen 137,095 |95,068 1.44 93,521 1.47
Encaps 192,123 150,860 1.27 150,612 1.28
Decaps | 2,192,433 1,711,127 1.28 1,737,912 1.26
Level-3 | Keygen | 375,604 |240,350 1.56 238,198 1.58
Encaps 432,577 310,908 1.39 310,533 1.39
Decaps |9,019,103 | 7,201,222 1.25 7,277,357 1.24
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Table 5. Rotation performance, comparison of our impl. and the snippet of [13].

Level | |R| Platform |Snippet |Fig.2 | Fig.3 | AVX512  AVX512-VBMI
of [13] Speedup | Speedup

L1 11,779 | EC2 server | 128 105 |- 1.21 -

L1 11,779 | Ice-Lake 149 120 6397 |1.24 2.33

L3 24,821 | EC2 server | 250 205 | — 1.22 —

L3 24,821 | Ice-Lake 296 236 121.7211.25 2.43

L5 40,597 | EC2 server | 404 329 |- 1.23 -

L5 40,597 | Ice-Lake 475 382 194.46 | 1.24 2.44

is either in performance (e.g., BGF with 6 iterations is % = 1.5x faster than
BG with 4 iterations) or in implementation simplicity (e. g., the B decoder that

does not involve gray steps).

A Comment on the Backflip Decoder. In [8] we compared Backflip with
BG and showed that it requires a few more steps to achieve the same DFR, (in the
relevant range of 7). We note that a Backflip iteration is practically equivalent to
Step I of BG plus the Time-To-Live (TTL) handling. It is possible to improve the
constant-time TTL handling with the bit-slicing techniques and reduce this gap.
However, this would not change the DFR-efficiency properties reported here.

Further Optimizations. The performance of BIKE’s constant-time implemen-
tation is dominated by three primitives: (a) polynomial multiplication (it remains
a significant portion of the computations even after using the vector-PCLMULQDQ
instructions); (b) polynomial rotation (that requires extensive memory access);
(c) the rejection sampling (approximately 25% of the key generation). This paper
showed how some of the new Ice-Lake features can already be used for perfor-
mance improvement. Further optimizations are an interesting challenge.

Parameter Choice Recommendations for BIKE. BIKE-1 Level-1 (IND-
CCA) [2] uses r = 11,779 with a target DFR of 27128 and uses the Backflip
decoder. Our paper [8] shows some problems with this decoder and therefore
recommends to use BG instead. It also shows that even if DFR = 27!2® there
is still a gap to be addressed, in order to claim IND-CCA security (roughly
speaking - a bound on the number of weak keys). We set aside this gap for now
and consider a non-weak key. If we limit the number of usages of this key to Q
and choose r such that @Q - DFR < 27# (for some target margin p), then the
probability that an adversary with at most () queries sees a decoding failure is
at most 27#. We suggest that KEMs should use ephemeral keys (i.e., Q@ = 1)
for forward secrecy, and this usage does not mandate IND-CCA security (IND-
CPA suffices). Here, from the practical view-point, we only need to target a
sufficiently small DFR such that decapsulation failures would be a significant
operability impediment. However, an important property that is desired, even
with ephemeral keys, is some guarantee that an inadvertent 1 < a times key
reuse (where « is presumably not too large) would not crash the security. This
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suggests the option for selecting r so that - DFR < 27#. For example, taking
pu =32 and a = 23? (an extremely large number of “inadvertent” reuses), we
can target a DFR of 2754, Using BGF with 5 iterations, we can use r = 11,171,
which is smaller than 11,779 that is currently used for BIKE.

Acknowledgments. We thank Ray Perlner from NIST for pointing out that the
mock-bits technique is not sufficient for security when using static keys, which drove
us to change our BIKE implementation. This research was partly supported by: The
Israel Science Foundation (grant No. 3380/19); The BIU Center for Research in Applied
Cryptography and Cyber Security, and the Center for Cyber Law and Policy at the
University of Haifa, both in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office.

A Pseudo-Code for B, BG, BGB, BGF

A description of the B, BG, BGB, BGF decoders is given in Sect. 4. Algorithm
3 provides a formal definition of them.

Algorithm 3. e=decoder(D, ¢, H)

Input: D (decoder type one of {B, BG, BGB, BGF}), H € F;*" (parity-check
matrix), ¢ € F§ (ciphertext), X (maximal number of iterations)

Output: e € F5 (errors vector)

Exception: A “decoding failure” returns L

1: procedure DECODER(D, ¢, H)

2: s=Hc' eln—1:01=0"6=3

3: for itrin1...X do

4: th = computeThreshold(s)

5: (s, e, black, gray) = BitFliplter(s, e, th, H) > Step I
6: if (D € {B,BG,BGB}) or (D = BGF and it = 1) then

7: (s,e) = BitFlipMaskedIter(s, e, black, ((d +1)/2), H) 1> Step II
8: if (D € {BG, BGB, BGF} and itr = 1) then

9: (s,e) = BitFlipMaskedlIter(s, e, gray, ((d +1)/2),H) > Step III
10: if (wt(s) # 0) then
11: return 1
12: else
13: return e

B Additional Information on the Experiments
and Results

The following values of r were used by the best linear fit extrapolation method:

— BIKE-1 Level-1: 9349, 9547, 9749, 9803, 9859, 9883, 9901, 9907, 9923, 9941,
9949, 10037, 10067, 10069, 10091, 10093, 10099, 10133, 10139.
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For Level-1 studies the number of tests for every value of r is 3.84M for r €
[9349,9901] and 384M for (larger) r € [9907,10139]. For the line through two
large points extrapolation method (see [8][Appendix C] and Level-1, we chose:
r = 10141 running 384M tests, and r = 10259 running ~ 7.3 (technically 7.296)
billion tests (Table6).
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Abstract. Gaussian sampling over the integers is a crucial tool in
lattice-based cryptography, but has proven over the recent years to be
surprisingly challenging to perform in a generic, efficient and provable
secure manner. In this work, we present a modular framework for gen-
erating discrete Gaussians with arbitrary center and standard deviation.
Our framework is extremely simple, and it is precisely this simplicity
that allowed us to make it easy to implement, provably secure, portable,
efficient, and provably resistant against timing attacks. Our sampler is
a good candidate for any trapdoor sampling and it is actually the one
that has been recently implemented in the Falcon signature scheme. Our
second contribution aims at systematizing the detection of implementa-
tion errors in Gaussian samplers. We provide a statistical testing suite
for discrete Gaussians called SAGA (Statistically Acceptable GAussian).
In a nutshell, our two contributions take a step towards trustable and
robust Gaussian sampling real-world implementations.

Keywords: Lattice based cryptography - Gaussian sampling -
Isochrony - Statistical verification tools

1 Introduction

Gaussian sampling over the integers is a central building block of lattice-based
cryptography, in theory as well as in practice. It is also notoriously difficult
to perform efficiently and securely, as illustrated by numerous side-channel
attacks exploiting BLISS’ Gaussian sampler [9,21,49,56]. For this reason, some
schemes limit or proscribe the use of Gaussians [6,36]. However, in some sit-
uations, Gaussians are unavoidable. The most prominent example is trapdoor
sampling [26,40,48]: performing it with other distributions is an open question,
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except in limited cases [37] which entail a growth O(y/n) to O(n) of the out-
put, resulting in dwindling security levels. Given the countless applications of
trapdoor sampling (full-domain hash signatures [26,53], identity-based encryp-
tion (or IBE) [18,26], hierarchical IBE [1,11], etc.), it is important to come up
with Gaussian samplers over the integers which are not only efficient, but also
provably secure, resistant to timing attacks, and in general easy to deploy.

Our first contribution is to propose a Gaussian sampler over the integers with
all the properties which are expected of a sampler for widespread deployment.
It is simple and modular, making analysis and subsequent improvements easy.
It is efficient and portable, making it amenable to a variety of scenarios. Finally,
we formally prove its security and resistance against timing attacks. We detail
below different aspects of our sampler:

— Simplicity and Modularity. At a high level, our framework only requires
two ingredients (a base sampler and a rejection sampler) and combines them
in a simple and black-box way. Not only does it make the description of our
sampler modular (as one can replace any of the ingredients), this simplicity
and modularity also infuses all aspects of its analysis.

— Genericity. Our sampler is fully generic as it works with arbitrary center p
and standard deviation o. In addition, it does not incur hidden precompu-
tation costs: given a fixed base sampler of parameter op,x, our framework
allows to sample from Dy , , for any 7(Z") < 0 < Omax. In comparison, [42]
implicity requires a different base sampler for each different value of o; this
limits its applicability for use cases such as Falcon [53], which has up to 2048
different o’s, all computed at key generation.

— Efficiency and Portability. Our sampler is instantiated with competitive
parameters which make it very efficient in time and memory usage. For
Omax = 1.8205 and SHAKE256 used as PRNG, our sampler uses only 512
bytes of memory and achieved 1,848,428 samples per second on an Intel i7-
6500U clocked at 2.5 GHz. Moreover, our sampler can be instantiated in a
way that uses only integer operations, making it highly portable.

— Provable Security. A security analysis based on the statistical distance
would either provide very weak security guarantees or require to increase
the running time by an order of magnitude. We instead rely on the Rényi
divergence, a tool which in the recent years has allowed dramatic efficiency
gains for lattice-based schemes [3,52]. We carefully selected our parameters
as to make them as amenable to a Rényi divergence-based analysis.

— Isochrony. We formally show that our sampler is isochronous: its running
time is independent of the inputs o, and of the output z. Isochrony is
weaker than being constant-time, but it nevertheless suffices to argue secu-
rity against timing attacks. Interestingly, our proof of isochrony relies on
techniques and notions that are common in lattice-based cryptography: the
smoothing parameter, the Rényi divergence, etc. In particular, the isochrony
of our sampler is implied by parameters dictated by the current state of the
art for black-box security of lattice-based schemes.
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One second contribution stems from a simple observation: implementations of
otherwise perfectly secure schemes have failed in spectacular ways by introduc-
ing weaknesses, a common one being randomness failure: this is epitomized by
nonce reuses in ECDSA, leading to jailbreaking Sony PS3 consoles! and exposing
Bitcoin wallets [8]. The post-quantum community is aware of this point of failure
but does not seem to have converged on a systematic way to mitigate it [46]. Ran-
domness failures have been manually discovered and fixed in implementations of
Dilithium [45], Falcon [47,51] and other schemes; the case of Falcon is particu-
larly relevant to us because the sampler implemented was the one described in
this document!

Our second contribution is a first step at systematically detecting such fail-
ures: we propose a statistical test suite called SAGA for validating discrete Gaus-
sians. This test suite can check univariate samples; we therefore use it to validate
our own implementation of our sampler. In addition, our test suite can check mul-
tivariate Gaussians as well; this enables validation at a higher level: if the base
sampler over the integers is validated, but the output of the high-level scheme
does not behave like a multivariate Gaussian even though the theory predicts it
should, then this is indicative of an implementation mistake somewhere else in
the implementation (or, at the worst case, that the theory is deficient). We illus-
trate that with a simple example of a (purportedly) deficient implementation of
Falcon [53], however it can be used for any other scheme sampling multivariate
discrete Gaussians, including but not limited to [5,12,18,25,40]. The test suite
is publicly available at: https://github.com/PQShield/SAGA.

2 Related Works

In the recent years, there has been a surge of works related to Gaussian sampling
over the integers. Building on convolution techniques from [42,50] proposed an
arbitrary-center Gaussian sampler base, as well as a statistical tool (the max-log
distance) to analyse it. [3,39,52] revisited classical techniques with the Rényi
divergence. Polynomial-based methods were further studied by [4,52,60]. The
use of rounded Gaussians was proposed in [31]. Knuth-Yao’s DDG trees have
been considered in [20,32].? Lazy floating-point precision was studied in [16,19].
We note that techniques dating back to von Neumann [57] allow to generate
(continuous) Gaussians elegantly using finite automata [2,24,33]. While these
have been considered in the context of lattice-based cryptography [15,17] they
are also notoriously hard to make isochronous. Finally, [58] studied previously
cited techniques with the goal of minimizing their relative error.

! https://media.ccc.de/v/27¢3-4087-en-console_hacking_2010.

2 We note that one could use [32] to speed up our base sampler; however this results in
a huge code size (more than 50kB). Since the running time of the base sampler was
not a bottleneck for the usecase we considered, we instead relied on a straightforward,
slightly less efficient CDT-based method.
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3 Preliminaries

3.1 Gaussians

For o, € R with ¢ > 0, we call Gaussian function of parameters o, and

denote by p,,, the function defined over R as p, ,(z) = exp (— %;@2). Note
that when p = 0 we omit it in index notation, e.g. p,(z) = po,0(z). The param-
eter o (resp. u) is often called the standard deviation (resp. center) of the Gaus-
sian. In addition, for any countable set S C R we abusively denote by pe. ,.(.5)
the sum } g po,u(2). When > g po ,.(2) is finite, we denote by Ds ., and
call Gaussian distribution of parameters o, 1 the distribution over S defined by
Ds.o,u(2) = po,u(2)/pe,u(S). Here too, when = 0 we omit it in index nota-
tion, e.g. Dg 4 u(2) = Dg o (z). We use the notation B, to denote the Bernoulli
distribution of parameter p.

3.2 Renyi Divergence

We recall the definition of the Rényi divergence, which we will use massively in
our security proofs.

Definition 1 (Rényi Divergence). Let P, Q be two distributions such that
Supp(P) C Supp(Q). For a € (1,+00), we define the Rényi divergence of order
a by

R.(P,Q) = Z M

x€Supp(P)

In addition, we define the Rényi divergence of order 400 by

P(x)

Ro(P,Q) = .
(P.Q) xeSu%;((P) Q(x)

The Rényi divergence is not a distance; for example, it is neither symmetric
nor does it verify the triangle inequality, which makes it less convenient than the
statistical distance. On the other hand, it does verify cryptographically useful
properties, including a few listed below.

Lemma 1 ([3]). For two distributions P,Q and two families of distributions
(Pi)i, (Qi)i, the Rényi divergence verifies these properties:

— Data processing inequality. For any function f, R.(f(P),f(Q)) <
R.(P,Q).
— Multiplicativity. R,(I[, Pi,11; Qi) = [ I, Ra(Pi, Qi)-
— Probability preservation. For any event E C Supp(Q) and a € (1,+00),
Q(E) = P(E)™ /Ra(P, Q) (1)
Q(E) = P(E)/Rx(P, Q). (2)
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The following lemma shows that a bound of § on the relative error between
two distributions implies a bound O(ad?) on the log of the Rényi divergence (as
opposed to a bound O(J) on the statistical distance).

Lemma 2 (Lemma 3 of [52]). Let P, Q be two distributions of same support
2. Suppose that the relative error between P and Q is bounded: 36 > 0 such that

% - 1’ < § over §2. Then, for a € (1,+00):

ala — 1)42 = ad?
§—0

== 14+ =
2(1 _ 5)a+1 +

3.3 Smoothing Parameter

For € > 0, the smoothing parameter 7n.(A) of a lattice A is the smallest value

o > 0 such that p 1F(/1*\{O}) < €, where A* denotes the dual of A. In the
o2

literature, some definitions of the smoothing parameter scale our definition by a

factor v/2m. It is shown in [41] that n(Z™) < nt(Z™), where:

nH(Z") = i\/; log (Zn (1 + 1)) 3)

3.4 Isochronous Algorithms

We now give a semi-formal definition of isochronous algorithms.

Definition 2. Let A be a (probabilistic or deterministic) algorithm with set of
input variables I, set of output variables O, and let S C T U O be the set of
sensitive variables. We say that A is perfectly isochronous with respect to S if
its running time is independent of any variable in S.

In addition, we say that A statistically isochronous with respect to S if there
exists a distribution D independent of all the variables in S, such that the running
time of A is statistically close (for a clearly identified divergence) to D.

We note that we can define a notion of computationally isochronous algo-
rithm. For such an algorithm, it is computationally it hard to recover the sensi-
tive variables even given the distribution of the running time of the algorithm.
We can even come up with a contrived example of such an algorithm: let .A()
select in an isochronous manner an x uniformly in a space of min-entropy > A,
compute y = H(z) and wait a time y before outputting x. One can show that
recovering = given the running time of A is hard if H is a one-way function.

4 The Sampler

In this section, we describe our new sampler with arbitrary standard devia-
tion and center. The main assumption of our setting is to consider that all
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Algorithm 1. SamplerZ(o, 1) Algorithm 2. AcceptSample(o, z)

Require: p € [0, 1], 0 < Omax Require: omin <0 < Omax, T <0

Ensure: z ~ Dz ., Ensure: b ~ Bopis -exp(x)

1: while True do 1: p:= Uri‘% . ApproxExp(x)

2: zo < BaseSampler() Lazy Bernoulli sampling

3: b < {0,1} uniformly 2:9:=1

4: z=(2b—1)-20+b 3: do

5 o= 20228 - Gow? 4 Q=i 288

6 if AcceptSample(o,z) then 5 u [0, 2. — 1] uniformly

7 return 6: vi=|p-i| & Oxff
7: while u = v
8: return (u < v)

the standard deviations are bounded and that the center is in [0,1]. In other
words, denoting the upper bound and lower bound on the standard deviation as
Omax > Omin > 0, we present an algorithm that samples the distribution Dz, ,
for any p € [0,1] and opmin < 0 < Tmax-

Our sampling algorithm is called SamplerZ and is described in Algorithm 1.
We denote by BaseSampler an algorithm that samples an element with the fixed
half Gaussian distribution Dy+ , . The first step consists in using BaseSampler.
The obtained zy sample is then transformed into z = (2b — 1) - 29 + b where b
is a bit drawn uniformly in {0,1}. Let us denote by BG,,_,. the distribution of
z. The distribution of z is a discrete bimodal half-Gaussian of centers 0 and 1.
More formally,

_ 1 [ Dgpi g, (—2) if2z<0
BGo,.(2) = 5 {DZWW(Z —1)ifz > 1. (4)

Then, to recover the desired distribution Dz, for the inputs (o, u), one
might want to apply the classical rejection sampling technique applied to lattice
based schemes [35] and accept z with probability

2 _a2\ .
Daou(s)  foxo (s — 5555 ) itz <o
BG,,,..(2) exp % - %) ifz>1
N S Gl 0
202 .« 202 '

The element inside the exp is computed in step 5. Next, we also introduce
an algorithm denoted AcceptSample. The latter performs the rejection sampling
(Algorithm 2): using ApproxExp an algorithm that returns exp(:), it returns a
Bernoulli sample with the according probability. Actually, for isochrony matters,
detailed in Sect. 6, the latter acceptance probability is rescaled by a factor Zmir.
As z follows the BG,,,, distribution, after the rejection sampling, the final

distribution of SamplerZ(o, i1) is then proportional to #=i . Dz , , which is, after
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Table 1. Number of calls to SamplerZ, BaseSampler and ApproxExp

Notation | Value for Falcon
Calls to sign (as per NIST) | Qs < 264
Calls to SamplerZ Qsamplz Qs-2-n<27
Calls to BaseSampler Qbs Niter - Qsampiz < 27°
Calls to ApproxExp Qexp Qs <27°

normalization exactly equal to Dz, ,. Thus, with this construction, one can
derive the following proposition.

Proposition 1 (Correctness). Assume that all the uniform distributions are
perfect and that BaseSampler = Dy+ , . and ApproxExp = exp, then the con-
struction of SamplerZ (in Algorithms 1 and 2) is such that SamplerZ(o,n) =
Dzop.

In practical implementations, one cannot achieve perfect distributions. Only
achieving BaseSampler ~ Dy+ ,  and ApproxExp ~ exp is possible. Section 6
proves that, under certain conditions on BaseSampler and ApproxExp and on the
number of sampling queries, the final distribution remains indistinguishable from
Dz 6.4

5 Proof of Security

Table 1 gives the notations for the number of calls to SamplerZ, BaseSampler
and ApproxExp and the considered values when the sampler is instanciated for
Falcon. Due to the rejection sampling in step 6, there will be a (potentially

infinite) number of iterations of the while loop. We will show later in Lemma 3,
Umin'm

2 Pomax (ZT)’
We note Njier a heuristic considered maximum number of iterations. By a central

limit argument, Njter will only be marginally higher than the expected number of
iterations. To instantiate the values Qexp = Qbs = Niter - Qsampiz for the example

that the number of iterations follows a geometric law of parameter ~

of Falcon, we take N, = 2. In fact, 2‘;7‘/(2;1) < 2 for Falcon’s parameters.
The following Theorem estimates the security of SamplerZ, it is independant

of the chosen values for the number of calls.

Theorem 1 (Security of SamplerZ). Let Aipgar, (Tesp. Arear) be the security
parameter of an implementation using the perfect distribution Dz ., (resp. the
real distribution SamplerZ). If both following conditions are respected, at most
two bits of security are lost. In other words, AN == Aipgar, — ARpar < 2.

< 2" M 5 (Cond. (1))
2- (2 : )\REAL + 1) : Qexp

ApproxExp(x) — exp(z)
exp(z)

Vo <0,

Roapen+1 (BaseSampler, D+ 5 ) <1+ (Cond. (2))

o 4'Qbs
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The proof of this Theorem is given in the full version of our paper [30].

To get concrete numerical values, we assume that 256 bits are claimed on the
original scheme, thus 254 bits of security are claimed for the real implementation.
Then for an implementation of Falcon, the numerical values are

2. AREAL 5 ~ 2_43 and 1 ~ 2—78.
2. (2 : )\REAL + 1) : Qexp 4- Qbs

5.1 Instanciating the ApproxExp

To achieve condition (1) with ApproxExp, we use a polynomial approximation of
the exponential on [—1n(2),0]. In fact, one can reduce the parameter z modulo
In(2) such that + = —r — sIn(2). Compute the exponential remains to compute
exp(z) = 27%exp(—r). Noting that s > 64 happen very rarely, thus s can be
saturated at 63 to avoid overflow without loss in precision.

We use the polynomial approximation tool provided in GALACTICS [4].
This tool generates polynomial approximations that allow a computation in fixed
precision with chosen size of coefficients and degree. As an example, for 32-bit
coefficients and a degree 10, we obtain a polynomial Py, (z) = Zgo a;-x', with:

o ag=1; o ag = 3054141714 - 241,
°ap = ;;_1 o ay = 3489252544 - 2~44;
o az = ; _ L 9—AT.
o a3 = 2863311530 - 2-34; ° ag = 3473028713 - 27
o ay = 2863311481 - 2736; o ag = 2952269371 - 27
o a5 = 2290647631 - 2738, o ajp = 3466184740 - 2754,

For any = € [—1In(2),0], Py verifies %};‘M < 2747 which is suffi-

cient to verify condition (1) for Falcon implementation.

Flexibility on the Implementation of the Polynomial. Depending on the
platform and the requirement for the signature, one can adapt the polynomial
to fit their constraints. For example, if one wants to minimize the number of
multiplications, implementing the polynomial with Horner’s form is the best
option. The polynomial is written in the following form:

Pya(x) = ap+z(ar +x(az+z(as+x(as+z(as+z(as+z(a7+z(as+x(as+xa010)))))))))-
Evaluating Pya is then done serially as follows:
Yy < awo

Yy ag+yXx

y—a+yXxXx
yap+yXxXx
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Some architectures with small register sizes may be faster if the size of the
coefficients of the polynomial is minimized, thus GALACTICS tool can be used
to generate a polynomial with smaller coefficients. For example, we propose an

l%f)] with 25 bits coefficients.

alternative polynomial approximation on [0,

P=1+z+2'2% + 699051 - 2722 - 2® + 699299 - 272* . z* + 605552 - 2720 - 2°
To recover the polynomial approximation on [0,1n(2)], we compute P(&)%.

Some architectures enjoy some level of parallelism, in which case it is desirable
to minimise the depth of the circuit computing the polynomial®. Writing Py in
Estrin’s form [22] is helpful in this regard.

X2 — XXX
X4 “— X2 X X2
Pgal(x) — (X4 ><X4) X ((a8+a9 XX)+X2 ><a10)
+ (((a0o+ a1 X x) +x2 X (a2 +asz X x)) +xa X ((aa +as X x) + x2 X (as + ar X x)))

5.2 Instanciating the BaseSampler

To achieve condition (2) with BaseSampler, we rely on a cumulative distribution
table (CDT). We precompute a table of the cumulative distribution function
of Dy+ 5. Wwith a certain precision; then, to produce a sample, we generate
a random value in [0, 1] with the same precision, and return the index of the
last entry in the table that is greater than that value. In variable time, the
sampling can be done rather efficiently with a binary search, but a constant-
time implementation has essentially no choice but to read the entire table each
time and carry out each comparison. This process is summed up in Algorithm 3.
The parameters w and 6 are respectively the number of elements of the CDT and
the precision of its coefficients. Let a = 2 - Agga, + 1. To derive the parameters
w and # we use a simple script that, given o, and 6 as inputs:

1. Computes the smallest tailcut w such that the Renyi divergence R, between
the ideal distribution Dy+ . and its restriction to {0,...,w} (noted
D] o) Verifies Ro (Do Dzt o) < 14 1/(4Qbs);

2. Rounds the probability density table (PDT) of Dyy),,,.. With 8 bits of abso-
lute precision. This rounding is done “cleverly” by truncating all the PDT
values except the largest:

o for z > 1, the value Dy, (2) is truncated: PDT(z) = 27°
[2°Dpu) 0 (2)

o in order to have a probability distribution, PDT(0) = 1 — > o,
PDT(z). B

3. Derives the CDT from the PDT and computes the final
Rq(SampleCDT,,_ 19 =72 Dz+ 010 )-

3 We are thankful to Thomas Pornin for bringing up this fact.
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Algorithm 3. SampleCDT: full-table access CDT
z+—0
u < [0, 1) uniformly with 6 bits of absolute precision
for 0 <i<wdo
b+— (CDT[w] > u) > b=1if it is true and 0 otherwise
z—2z+b
return z

Taking opax = 1.8205 and 0 = 72 as inputs, we found w = 19.

o PDT(0) = 2772 x 1697680241746640300030 o PDT(10) = 2772 x 476288472308334
o PDT(1) = 2772 x 1459943456642912959616 o PDT(11) = 2772 x 20042553305308
oPDT(2) = 2772 x 928488355018011056515 o PDT(12) = 272 x 623729532807

o PDT(3) = 2772 X 436693944817054414619 o PDT(13) = 272 x 14354889437

o PDT(4) = 2772 x 151893140790369201013 a2

o PDT(5) = 2772 x 39071441848292237840 o PDT(14) = 2772 x 244322621

0 PDT(6) = 272 x 7432604049020375675 o PDT(15) = 27" x 3075302

0 PDT(7) = 272 x 1045641569992574730 o PDT(16) = 277% x 28626

0 PDT(8) = 272 x 108788995549429682 o PDT(17) = 277% x 197

o PDT(9) = 2772 x 8370422445201343 o PDT(18) =27 x 1

Our experiment showed that for any a > 509, R,(SampleCDT,,_q 7o,
Dyt go) < 142780 <14 ﬁ, which validates condition (2) for Falcon
implementation.

6 Analysis of Resistance Against Timing Attacks

In this section, we show that Algorithm 1 is impervious against timing attacks.
We formally prove that it is isochronous with respect to o, u and the output z (in
the sense of Definition 2). We first prove a technical lemma which shows that the
number of iterations in the while loop of Algorithm 1 is (almost) independent
of o, i, z.

Lemma 3. Let € € (0,1), p € [0,1] and let omin, 0,00 be standard deviations

such that n7(Z") = omin < 0 < 09. Let p = 2‘;““7"(521). The number of itera-

‘Pomax

tions of the while loop in SamplerZ(c, 1) follows a geometric law of parameter

1 2—80
Ptrue(‘LM) Ep' 171+ u

The proof of Lemma 3 can be found in the full version of our paper [30].
Next, we show that Algorithm 1 is perfectly isochronous with respect to z
and statistically isochronous (for the Rényi divergence) with respect to o, p.

Theorem 2. Let € € (0,1), u € R, let omin, 0,00 be standard deviations such

that nT(Z") = omin < 0 < 09, and let p = % be a constant in (0,1).
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Suppose that the elementary operations {4+, —, X, /} over integer and floating-
point numbers are isochronous. The running time of Algorithm 1 follows a dis-
tribution T, ,, such that:

ae® max(1, 1;%)2

a62
n?(1—p) t+o (TLQ)

for some distribution T independent of its inputs o, u and its output z.

Ro(ToulT) S 1+

Finally, we leverage Theorem 2 to prove that the running time of
SamplerZ(o, ;1) does not help an adversary to break a cryptographic scheme.
We consider that the adversary has access to some function g(SamplerZ(o, y))
as well as the running time of SamplerZ (o, 1): this is intended to capture the
fact that in practice the output of SamplerZ(o, 1) is not given directly to the
adversary, but processed by some function before. For example, in the signature
scheme Falcon, samples are processed by algorithms depending on the signer’s
private key. On the other hand, we consider that the adversary has powerful
timing attack capabilities by allowing him to learn the exact runtime of each
call to SamplerZ(o, u).

Corollary 1. Consider an adversary A making Qs queries to g(SamplerZ(o, 1))
for some randomized function g, and solving a search problem with success prob-
ability 27> for some X > 1. With the notations of Theorem 2, suppose that
max(1, 1%’)2 <n(l—p) ande< ﬁ Learning the running time of each call
to SamplerZ(c, 1) does not increase the success probability of A by more than a
constant factor.

The proof of Corollary 1 can be found in the full version of our paper [30]. A
nice thing about Corollary 1 is that the conditions required to make it effective
are already met in practice since they are also required for black-box security of
cryptographic schemes. For example, it is systematic to set o > nF(Z").

Impact of the Scaling Factor. The scaling factor “min < gmx is crucial in
making our sampler isochronous, as it decorrelates the running time 7}, ,, from o.
However, it also impacts the T, ,,, as one can easily show that T, , is proportional
to the scaling factor. It is therefore desirable to make it as small as possible. The
maximal value of the scaling factor is actually dependent on the cryptographic
scheme in which our sampler is used. In the full version of our paper [30], we
show that for the case of the signature scheme Falcon, % <1.1772 ~ 0.73 and
the impact of the scaling factor is limited. Moreover, one can easily show that

for Peikert’s sampler [48], the scaling factor is equal to 1 and has no impact.

7 “Err on the Side of Gaussian”

This section focuses on ensuring correct and verified implementations of our pro-
posed isochronous Gaussian sampler. The motivation for this section is to min-
imize implementation bugs, such as implementation issues with Falcon [47,51]
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or the famous Heartbleed (CVE-2014-0160) or ROCA vulnerabilities [44] (CVE-
2017-15361). We propose a test suite named SAGA (Statistically Acceptable
GAussians) in order to verify correct univariate or multivariate Gaussian vari-
ables. At the very least, SAGA can act as a “sanity check” for implementers and
practitioners. Furthermore, SAGA is designed to run in a generic fashion, agnos-
tic to the technique used, by only requiring as input a list of univariate (i.e.,
outputs of SamplerZ) or multivariate (i.e. a set of signatures) Gaussian samples.
Although we evaluate SAGA by applying it to Falcon, SAGA is applicable to any
lattice-based cryptographic scheme requiring Gaussian sampling, such as other
GPV-based signatures [5,12], FrodoKEM [43], identity-based encryption [10,18],
and in fully homomorphic encryption [54].

7.1 Univariate Tests

The statistical tests we implement here are inspired by a previous test suite pro-
posal called GLITCH [29]. We use standard statistical tools to validate a Gaussian
sampler is operating with the correct mean, standard deviation, skewness, and
kurtosis, and finally we check whether it passes a chi-square normality test.
Skewness and kurtosis are descriptors of a normal distribution that respectively
measure the symmetry and peakedness of a distribution. To view the full sta-
tistical analysis of these tests we created a Python class, UnivariateSamples,
which take as initialization arguments the expected mean (mu), expected stan-
dard deviation (sigma), and the list of observed univariate Gaussian samples
(data). An example of how this works, as well as its output, is shown in the full
version of our paper [30].

7.2 Multivariate Tests

This section details multivariate normality tests. The motivation for these tests
is to detect situations where the base Gaussian sampler over the integers is
correctly implemented, yet the high-level scheme (e.g. a signature scheme) uses
it incorrectly way and ends up with a defective multivariate Gaussian.

Multivariate Normality. There are a number of statistical tests which eval-
uate the normality of multivariate distributions. We found that multivariate
normality tests predominantly used in other fields [13,28,38] suffer with size
and scaling issues. That is, the large sample sizes we expect to use and the poor
power properties of these tests will make a type II error highly likely*. In fact, we
implemented the Mardia [38] and Henze-Zirkler [28] tests and found, although
they worked for small sample sizes, they diverged to produce false negatives for
sample sizes > 50 even in small dimensions n = 64.

However, the Doornik-Hansen test [14] minimises these issues by using trans-
formed versions of the skewness and kurtosis of the multivariate data, increasing

4 Type I and type II errors are, respectively, rejection of a true null hypothesis and
the non-rejection of a false null hypothesis.
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the test’s power. We also note that it is much faster (essentially linear in the
sample size) than [28,38] (essentially quadratic in the sample size). As with
the univariate tests, we created a Python class, denoted MultivariateSamples,
which outputs four results; two based on the covariance matrix, and two based
on the data’s normality. An example of how this works, as well as its output, is
shown in the full version of our paper [30].

A Glitch in the (Covariance) Matrix. Our second multivariate test asks the
following question: how could someone implement correctly the base sampler, yet
subsequently fail to use it properly? There is no universal answer to that, and
one usually has to rely on context, experience and common sense to establish
the most likely way this could happen.

For example, in Falcon, univariate samples are linearly combined according
to node values of a balanced binary tree computed at key generation (the Falcon
tree). If there is an implementation mistake in the procedure computing the
tree (during key generation) or when combining the samples (during signing),
this effectively results in nodes of the Falcon tree being incorrect or omitted.
Such mistakes have a very recognizable effect on the empiric covariance matrix
of Falcon signatures: they make them look like block Toeplitz matrices (Fig. 1a)
instead of (scaled) identity matrices in the nominal case (Fig. 1b).

We devised a test which discriminates block Toeplitz covariance matrices
against the ones expected from spherical Gaussians. The key idea is rather sim-
ple: when adding O(n) coefficients over a (block-)subdiagonal of the empiric
covariance matrix, the absolute value of the sum will grow in O(y/n) if the
empiric covariance matrix converges to a scaled identity matrix, and in O(n) if
it is block Toeplitz. We use this difference in growth to detect defective Gaus-
sians. While we do not provide a formal proof of our test, in practice it detects
reasonably well Gaussians induced by defective Falcon trees. We see proving
our test and providing analogues for other GPV-based schemes as interesting
questions.

Supplementary Tests. In the case where normality has been rejected, SAGA
also provides a number of extra tests to aid in finding the issues. More details
for this can be found in the full version of our paper [30].

8 Application and Limitations

Our sampler has been implemented by Pornin as part of the new isochronous
implementation of Falcon [51]. This implementation can use floating-point hard-
ware or AVX2 instructions when available, but also includes floating-point
emulation code that uses only usual integer operations. On ARM Cortex M4
CPUs, which can only support single-precision floating-point instructions, this
implementation provides assembly implementations for the core double-precision
floating-point operations more than twice faster than the generic emulation. As
a result, our sampler can be efficiently implemented on embedded platforms as
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(a) Nominal case (b) Defective Gaussian

Fig. 1. Empiric covariance matrices of Falcon signatures. Figure la corresponds to a
correct implementation of Falcon. Figure 1b corresponds to an implementation where
there is a mistake when constructing the Falcon tree.

Table 2. Number of samples per second at 2.5 GHz for our sampler and [59].

Algorithm Number of samples
This work?® 1.84 x 10 /sec
This work (AVX2)® | 7.74 x 10° /sec
[59] (AVX2)© 5.43 x 10 /sec

¢[51] standard double-precision floating-
point (IEEE 754) with SHAKE256.

®[51] AVX2 implementation with eight
ChaCha20 instances in parallel (AVX2).
°[59] constant-time implementation with
hardware AES256 (AES-NI).

limited as Cortex M4 CPUs, while some other samplers (e.g. [32] due to a huge
code size) are not compact enough to fit embedded platforms.

We perform benchmarks of this sampler implementation on a single Intel
Core i7-6500U CPU core clocked at 2.5 GHz. In Table 2 we present the running
times of our isochronous sampler. To compare with [59], we scale the numbers
to be based on 2.5 GHz. Note that for our sampler the number of samples per
second is on average for 1.2915 < ¢ < 1.8502 while for [59] o = 2 is fixed.

In Table3 we present the running times of the Falcon isochronous imple-
mentation [51] that contains our sampler and compare it with a second non-
isochronous implementation nearly identical excepting the base sampler which
is a faster lazy CDT sampler, and the rejection sampling which is not scaled by
a constant. Compared to the non-isochronous implementation, the isochronous
one is about 22% slower, but remains very competitive speed-wise.
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Table 3. Falcon signature generation time at 2.5 GHz.

Degree | Non-isochronous (using AVX2) | isochronous (using AVX2)
512 1 210.88 ws (153.64 us) 257.33 us (180.04 ws)
1024 | 418.76 us (311.33 ps) 515.28 us (361.39 ws)

Cache-Timing Protection. Following this implementation of the proposed
sampler also ensures cache-timing protection [23], as the design should® bypass
conditional branches by using a consistant access pattern (using linear searching
of the table) and have isochronous runtime. This has been shown to be sufficient
in implementations of Gaussian samplers in Frodo [7,43].

Adapting to Other Schemes. A natural question is how our algorithms could
be adapted for other schemes than Falcon, for example [5,12,18,25,40]. An obvi-
ous bottleneck seems to be the size of the CDT used in SampleCDT, which is
linear in the standard deviation. For larger standard deviations, where linear
searching becomes impractical, convolutions can be used to reduce o, and thus
the runtime of the search algorithm [34,50]. It would also be interesting to see if
the DDG tree-based method of [32] has better scalability than our CDT-based
method, in which case we would recommend it for larger standard deviations.
On the other hand, once the base sampler is implemented, we do not see any
obvious obstacle for implementing our whole framework. For example, [12] or
using Peikert’s sampler [48] (in Falcon) entail a small constant number of stan-
dard deviations, therefore the rejection step would be very efficient once a base
sampler for each standard deviation is implemented.

Advantages and Limitations. Our sampler has an acceptance rate ~ m
making it especially suitable when o3, and onax are close. In particular, our
sampler is, so far, the fastest isochronous sampler for the parameters in Falcon.
However, the larger the gap between o, and onax, the lower the acceptance
rate. In addition, our sampler uses a cummulative distribution table (CDT)
which is accessed in an isochronous way. This table grows when o, grows,
while making both running time and memory usage larger. When o, is large
or far from op,;p, there exist faster isochronous samplers based on convolution [42]

and rejection sampling [59]° techniques.
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Abstract. Post-quantum cryptographic primitives have a range of trade-
offs compared to traditional public key algorithms, either having slower
computation or larger public keys and ciphertexts/signatures, or both.
While the performance of these algorithms in isolation is easy to mea-
sure and has been a focus of optimization techniques, performance in
realistic network conditions has been less studied. Google and Cloudflare
have reported results from running experiments with post-quantum key
exchange algorithms in the Transport Layer Security (TLS) protocol with
real users’ network traffic. Such experiments are highly realistic, but can-
not be replicated without access to Internet-scale infrastructure, and do
not allow for isolating the effect of individual network characteristics.

In this work, we develop and make use of a framework for running such
experiments in TLS cheaply by emulating network conditions using the
networking features of the Linux kernel. Our testbed allows us to inde-
pendently control variables such as link latency and packet loss rate, and
then examine the performance impact of various post-quantum-primitives
on TLS connection establishment, specifically hybrid elliptic curve/post-
quantum key exchange and post-quantum digital signatures, based on
implementations from the Open Quantum Safe project. Among our key
results, we observe that packet loss rates above 3-5% start to have a sig-
nificant impact on post-quantum algorithms that fragment across many
packets, such as those based on unstructured lattices. The results from this
emulation framework are also complemented by results on the latency of
loading entire web pages over TLS in real network conditions, which show
that network latency hides most of the impact from algorithms with slower
computations (such as supersingular isogenies).

Keywords: Post-quantum key exchange - Post-quantum
authentication - Transport Layer Security (TLS) - Network
performance - Emulation

1 Introduction

Compared to traditional public key algorithms, post-quantum key encapsu-
lation mechanisms (KEMs) and digital signature schemes have a range of
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trade-offs, either having slower computation, or larger public keys and cipher-
texts/signatures, or both. Measuring the performance of these algorithms in
isolation is easy; doing so accurately in the broader context of Internet proto-
cols such as the Transport Layer Security (TLS) protocol, and under realistic
network traffic conditions, is more difficult.

Alongside the development and standardization of post-quantum algorithms
in the NIST Post-Quantum Cryptography Standardization project, there have
been various efforts to begin preparing the TLS ecosystem for post-quantum
cryptography. We can see at least three major lines of work: (draft) specifica-
tions of how post-quantum algorithms could be integrated into existing proto-
col formats and message flows [9,17,33,34,37,41]; prototype implementations
demonstrating such integrations can be done [6-8,15,19,20,30,31] and whether
they would meet existing constraints in protocols and software [10]; and per-
formance evaluations in either basic laboratory network settings [6,7] or more
realistic network settings [8,15,19,21,22]. This paper focuses on the last of these
issues, trying to understand how post-quantum cryptography’s slower computa-
tion and larger communication sizes impact the performance of TLS.

A line of work starting with initial experiments by Google [8,21], with follow-
up collaborations between Google, Cloudflare, and others [19,22], has involved
Internet companies running experiments to measure the performance of real con-
nections using post-quantum key exchange (combined with traditional elliptic
curve Diffie-Hellman, resulting in so-called “hybrid” key exchange), by modi-
fying client browsers and edge servers to support select hybrid key exchange
schemes in TLS 1.3. Such experiments are highly realistic, but cannot be repli-
cated without access to commensurate infrastructure, and do not allow for iso-
lating the effect of individual network characteristics: it is neither possible to
precisely quantify the effect of just a change in (say) packet loss on a network
route on the latency of TLS connection establishment, nor is it possible to (say)
increase just the packet loss on a route and analyze the resulting effects.

Contributions. In this paper, we develop an experimental framework for mea-
suring the performance of the TLS protocol under a variety of network condi-
tions. Our framework is inspired by the NetMirage [40] and Mininet [23] network
emulation software, and uses the Linux kernel’s networking stack to precisely and
independently tune characteristics such as link latency and packet loss rate. This
allows for emulation of client—server network experiments on a single machine.

Using this framework, we analyze the impact that post-quantum cryptog-
raphy has on TLS 1.3 handshake completion time (i.e., until application data
can be sent), specifically in the context of hybrid post-quantum key exchange
using structured and unstructured lattices and supersingular isogenies; and post-
quantum authentication using structured lattices and symmetric-based signa-
tures. Our emulated experiments are run at 4 different latencies (emulating
round-trip times between real-world data centres), and at packet loss rates rang-
ing from 0-20%.

Some of our key observations from the network emulation experiments mea-
suring TLS handshake completion time are as follows. For the median connection,
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handshake completion time is significantly impacted by substantially slower algo-
rithms (for example, supersingular isogenies (SIKE p434) has a significant per-
formance floor compared to the faster structured and unstructured lattice algo-
rithms), although this effect disappears at the 95th percentile. For algorithms
with larger messages that result in fragmentation across multiple packets, per-
formance degrades as packet loss rate increases: for example, median connection
time for unstructured lattice key exchange (Frodo-640-AES) matches structured
lattice performance at 5-10% packet loss, then begins to degrade; at the 95th per-
centile, this effect is less pronounced until around 15% packet loss. We see sim-
ilar trends for post-quantum digital signatures, although with degraded perfor-
mance for larger schemes starting around 3-5% packet loss since a TLS connection
includes multiple public keys and signatures in certificates.

We also carry out experiments across real networks, measuring page load
time over TLS using geographically scattered virtual machines communication
over the Internet. From these, we observe that, as page size or network latency
increases, the overhead of slower TLS connection establishment diminishes as a
proportion of the overall page load time.

Our key exchange results complement those of Google, Cloudflare, and oth-
ers [19,22]: they provide a holistic look at how post-quantum key exchange algo-
rithms perform for users on real network connections of whatever characteristic
the users happened to have, whereas our results show the independent effect of
each network characteristic, and our techniques can be applied without access
to commensurate Internet-scale client and edge server infrastructure.

Closely related to our post-quantum signature experiments are the recent
works [15,36] on the performance of post-quantum signatures in TLS 1.3. They
measure how handshake time varies with server distance (measured in num-
ber of hops) and how handshake time and failure rate varies with throughput.
Our experiments complement theirs by measuring the impact of other network
characteristics: connection latency and packet loss rates.

Organization. In Sect. 2, we describe how we integrated post-quantum algo-
rithms into TLS. Section3 describes the network emulation framework, and
Sect.4 describes the setup for our two experiments (emulated; and over the
real Internet, data-centre-to-data-centre). Section 5 presents and discusses results
from the two experiments. Section 6 concludes. Additional data appears in the
appendix. Code and complete result data for all the experiments can be found
at our GitHub repository: https://github.com/xvzcf/pg-tls-benchmark.

2 Post-quantum Cryptography in TLS

There have been a variety of proposed specifications, implementations, and
experiments involving post-quantum cryptography in TLS 1.2 and TLS 1.3.

In the context of TLS 1.2, Schanck, Whyte, and Zhang [34] and Campagna
and Crockett [9] submitted Internet-Drafts to the Internet Engineering Task
Force (IETF) with proposals for adding post-quantum and hybrid key exchange
to TLS 1.2; implementations of these drafts (or ad hoc specifications) in TLS
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1.2 include experiments by Google [8] and Amazon [1], in research papers [6,7],
as well as the Open Quantum Safe project’s OQS-OpenSSL 1.0.2 [30, 38].

For hybrid and post-quantum key exchange in TLS 1.3, there have been
Internet-Drafts by Kiefer and Kwiatowski [17], Whyte et al. [41], Schanck and
Stebila [33], and Stebila et al. [37]. Experimental demonstrations include earlier
experiments by Google [20,22], more recent experiments by a team involving
Cloudflare, Google, and others [19], as well as the Open Quantum Safe project’s
0OQS-OpenSSL 1.1.1 [10,31], a fork of OpenSSL 1.1.1. There has also been some
work on experiments involving post-quantum and hybrid authentication in TLS
1.3, including OQS-OpenSSL 1.1.1 [31] and experiments based on it [15,36].

The experiments in this paper are based on the implementation of hybrid key
exchange and post-quantum authentication in TLS 1.3 in OQS-OpenSSL 1.1.1.
We now describe the mechanisms used in this particular instantiation of post-
quantum cryptography in TLS 1.3. For a broader discussion of design choices
and issues in engineering post-quantum cryptography in TLS 1.3, see [37].

2.1 Hybrid Key Exchange in TLS 1.3

Our experiments focused on hybrid key exchange, based on the perspective that
early adopters of post-quantum cryptography may want post-quantum long-term
forward secrecy while still using ECDH key exchange either because of a lack of
confidence in newer post-quantum assumptions, or due to regulatory compliance.

The primary way to negotiate an ephemeral key in TLS 1.3 [32] is to use
elliptic-curve Diffie-Hellman (ECDH). To do so, a client, in its ClientHello mes-
sage, can send a supported_groups extension that names its supported elliptic
curve groups; the client can then also provide corresponding keyshares, which
are the public cryptographic values used to initiate key exchange. By defining
new “groups’ for each post-quantum and hybrid method, this framework can
also be used in a straightforward manner to support the use of post-quantum
key-exchange algorithms. Mapping these on to key encapsulation mechanisms,
the client uses a KEM ephemeral public key as its keyshare, and the server
encapsulates against the public key and sends the corresponding ciphertext as
its keyshare. Despite performing ephemeral key exchange, we only use the IND-
CCA versions of the post-quantum KEMs'.

In the instantiation of hybrid methods in OQS-OpenSSL 1.1.1, the number
of algorithms combined are restricted to two at a time, and a “group” identifier
is assigned to each such pair; as a result, combinations are negotiated together,
rather than individually. Moreover, in such a hybrid method, the public keys
and ciphertexts for the hybrid scheme are simply concatenations of the ellip-
tic curve and post-quantum algorithms’ values in the keyshare provided by the

! It may be possible that IND-CPA KEMs suffice for ephemeral key exchange, but
this is an open question. Proofs of Diffie-Hellman key exchange in TLS 1.2 [13,18]
showed that security against active attacks is required; existing proofs of TLS 1.3 [11]
also use an “active” Diffie-Hellman assumption, but whether an active assumption
is necessary has not yet been resolved.
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ClientHello and ServerHello messages. For computing the shared secret, indi-
vidual shared secrets are concatenated and used in place of the ECDH shared
secret in the TLS 1.3 key schedule. As OpenSSL does not have a generic KEM
or key exchange API in its 1ibcrypto component, the modified OpenSSL imple-
mentation primarily involves changes in OpenSSL’s ssl directory, and calls into
OpenSSL’s 1libcrypto for the ECDH algorithms and into the Open Quantum
Safe project’s 1ibogs for the post-quantum KEMs.

2.2 Post-quantum Authentication in TLS 1.3

Our experiments focused on post-quantum-only authentication, rather than
hybrid authentication. We made this choice because, with respect to authen-
ticating connection establishment, the argument for a hybrid mode is less clear:
authentication only needs to be secure at the time a connection is established
(rather than for the lifetime of the data as with confidentiality). Moreover, in
TLS 1.3 there is no need for a server to have a hybrid certificate that can be
used with both post-quantum-aware and non-post-quantum aware clients, as
algorithm negotiation will be complete before the server needs to send its cer-
tificate.

In TLS 1.3, public key authentication is done via signatures, and public keys
are usually conveyed via X.509 certificates. There are two relevant negotiation
mechanisms in TLS 1.3: the signature_algorithms_cert extension which is used
to negotiate which algorithms are supported for signatures in certificates; and the
signature_algorithms extension for which algorithms are supported in the pro-
tocol itself. Both of these extensions are a list of algorithm identifiers [32].

In the instantiation in OQS-OpenSSL 1.1.1, new algorithm identifiers are
added for each post-quantum signature algorithm to be used, and the algo-
rithms themselves are added to OpenSSL’s generic “envelope public key” object
(EVP_PKEY) in libcrypto, which then percolate upwards to the X.509 certifi-
cate generation and management and TLS authentication, with relatively few
changes required at these higher levels.

3 The Network Emulation Framework

To carry out experiments with full control over network characteristics, we rely
on features available in Linux to implement a network emulation framework.

The Linux kernel provides the ability to create network namespaces [3], which
are independent, isolated copies of the kernel’s network stack; each namespace
has its own routes, network addresses, firewall rules, ports, and network devices.
Network namespaces can thus emulate separate network participants on a single
system.

Two namespaces can be linked using pairs of virtual ethernet (veth) devices
[4]: veth devices are always created in interconnected pairs, and packets trans-
mitted on one device are immediately received on the other device in the pair.
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Table 1. Key exchange algorithm communication size and runtime

Algorithm Public key (bytes) | Ciphertext (bytes) | Key gen. (ms) | Encaps. (ms) | Decaps. (ms)
ECDH NIST P-256 64 64 0.072 0.072 0.072
SIKE p434 330 346 13.763 22.120 23.734
Kyber512-90s 800 736 0.007 0.009 0.006
FrodoKEM-640-AES 9,616 9,720 1.929 1.048 1.064

Table 2. Signature scheme communication size and runtime

Algorithm Public key (bytes) | Signature (bytes) | Sign (ms) | Verify (ms)
ECDSA NIST P-256 64 64 0.031 0.096
Dilithium?2 1,184 2,044 0.050 0.036
qTESLA-P-I 14,880 2,592 1.055 0.312
Picnic-L1-FS 33 34,036 3.429 2.584

Outgoing traffic on these virtual devices can be controlled by the network emula-
tion (netem) kernel module [24], which offers the ability to instruct the kernel to
apply, among other characteristics, a delay, an independent or correlated packet
loss probability, and a rate-limit to all outgoing packets from the device.

To give the link a minimum round trip time of x ms, netem can be used to
instruct the kernel to apply on both veth devices a delay of  ms to each outgoing
packet. Similarly, to give the link a desired packet loss rate y%, netem can
instruct the kernel to drop on both devices outgoing packets with (independent
or correlated) probability y%. While netem can be used to specify other traffic
characteristics, such as network jitter or packet duplication, we consider varying
the round-trip time and packet loss probability to be sufficient to model a wide
variety of network conditions. If the round-trip time on a link connecting a server
and client conveys the geographical distance between them, then, for example,
a low packet loss can model a high-quality and/or wired ethernet connection.
Moderate to high packet losses can model low-quality connections or congested
networks, such as when the server experiences heavy traffic, or when a client
connects to a website using a heavily loaded WiFi network.

Tools such as NetMirage [40] and Mininet [23] offer the ability to emu-
late larger, more sophisticated, and more realistic networks where, for exam-
ple, namespaces can serve as autonomous systems (AS) that group clients, and
packets can be routed within an AS or between two ASes. We carried out our
experiments over a single link (client-server topology) with direct control over
network characteristics using netem to enable us to isolate the effect of individ-
ual network characteristics on the performance of post-quantum cryptography
in TLS 1.3.

4 Experimental Setup

In this section we describe the two experimental setups employed — the emulated
network experiment, and the Internet data-centre-to-data-centre experiment.
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Table 3. Key exchange and signature algorithms used in our experiments

Notation ‘ Hybrid ‘ Family ‘ Variant ‘ Implementation

Key exchange

ecdh-p256 X Elliptic-curve NIST P-256 OpenSSL optimized
ecdh-p256-sike-p434 v Supersingular isogeny | SIKE p434 [14] Assembly optimized
ecdh-p256-kyber512_90s v Module LWE Kyber 90s level 1 [35] AVX2 optimized
ecdh-p256-frodo640aes v Plain LWE Frodo-640-AES [27] C with AES-NI
Signatures

ecdsa-p256 X Elliptic curve NIST P-256 OpenSSL optimized
dilithium2 X Module LWE /SIS Dilithium?2 [25] AVX2 optimized
qtesla-p-i X Ring LWE/SIS qTESLA provable 1 [5] | AVX2 optimized
picnic-11-fs X Symmetric Picnic-L1-FS [42] AVX2 optimized

4.1 Cryptographic Scenarios

We consider the two cryptographic scenarios in TLS 1.3: hybrid key exchange and
post-quantum authentication. Table 3 shows the four key exchange algorithms
and four signature algorithms used in our experiments?. Their integration into
TLS 1.3 was as described in Sect.2. We used libogs for the implementations
of the post-quantum algorithms; 1ibogs takes its implementations directly from
teams’ submissions to NIST or via the PQClean project [16]. Tables1 and 2
show public key/ciphertext/signature size and raw performance on the machine
used in our network emulation experiments.

For the key exchange scenario, the rest of the algorithms in the TLS con-
nection were as follows: server-to-client authentication was performed using an
ECDSA certificate over the NIST P-256 curve using the SHA-384 hash function.
For the signature scenario, key exchange was using ecdh-p256-kyber512_90s;
the hash function used was SHA-384. In both cases, application data was pro-
tected using AES-256 in Galois/counter mode, and the certificate chain was root
— server, all of which were using the same algorithms.

4.2 Emulated Network Experiment Setup

The goal of the emulated network experiments was to measure the time elapsed
until completion of the TLS handshake under various network conditions.
Following the procedure in Sect. 3, we created two network namespaces and
connected them using a veth pair, one namespace representing a client, and the
other a server. In the client namespace, we ran a modified version of OpenSSL’s

2 Qur Internet data-centre-to-data-centre experiment actually included all Level
1 algorithms supported by libogs (additionally bikelllcpa, newhopebl2cca,
ntru_hps2048509, lightsaber, and picnic2l1fs) and additionally hybrid authentica-
tion with RSA-3072. The network emulation experiments take much longer to run
than the Internet experiments, so we did not have time to collect corresponding net-
work emulation results. For parity, in this paper we only present the results obtained
using the same algorithms as in the network emulation experiment. The additional
data collected can be found on our GitHub repository.
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s_time program, which measures TLS performance by making, in a given time
period, as many synchronous (TCP) connections as it could to a remote host
using TLS; our modified version (which we’ve called s_timer), for a given num-
ber of repetitions, synchronously establishes a TLS connection using a given
post-quantum algorithm, closes the connection as soon as the handshake is com-
plete, and records only the time taken to complete the handshake. In the server
namespace, we ran the nginx [28] web server, built against OQS-OpenSSL 1.1.1
so that it is post-quantum aware.

We chose 4 round-trip times to model the geographical distance to servers
at different locations: the values were chosen to be similar to the round-trip
times in the Internet data-centre network experiment (see Sect.4.3), but are
not exactly the same, partly because netem internally converts a given latency
to an integral number of kernel packet scheduler “ticks”, which results in a
slight (and negligible) accuracy loss. For each round-trip time, the packet loss
probability was varied from 0% to 20% (the probability applies to each packet
independently). For context, telemetry collected by Mozilla on dropped packets
in Firefox (nightly 71) in September and October 2019, indicate that, on desktop
computers, packet loss rates above 5% are rare: for example, in the distribution
of WEBRTC_AUDIO_QUALITY_OUTBOUND_PACKETLOSS_RATE, 67% of the 35.5 million
samples collected had packet loss less than 0.1%, 89% had packet loss less than
1%, 95% had packet loss less than 4.3%, and 97% had packet loss less than
20% [26].

Finally, for each combination of round-trip time and packet loss rate, and for
each algorithm under test, 40 independent s_timer “client” processes were run,
each making repeated synchronous connections to 21 nginx worker processes,
each of which was instructed to handle 1024 connections®.

The experiments were run on a Linux (Ubuntu 18.04) Azure D64s v3 virtual
machine, which has 64 vCPUs (2.60 GHz Intel Xeon Platinum 8171M, bursting
to 3.7 GHz) and 256 GiB of RAM, in order to give each process its “own” core
so as to minimize noise from CPU process scheduling and make the client and
server processes as independent of each other as possible.

4.3 Internet Data-Centre-To-Data-Centre Experiment Setup

The emulated network experiment concerned itself only with handshake times. In
practice, the latency of establishing TLS might not be noticeable when compared
to the latency of retrieving application data over the connection. Accordingly, we
conducted a set of experiments that involved a client cloud VM requesting web
pages of different sizes from various server VMs over the Internet, and measured
the total time to receive the complete file.

We set up one client VM and four server VMs in various cloud data centres
using Azure, ranging from the server being close to the client to the server being
on the other side of the planet. Table 4 shows the data centre locations and gives
the round-trip times between the client and server.

3 nginx worker processes handle connections using an asynchronous, event-driven app-
roach.
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Table 4. Client and server locations and network characteristics observed for the
Internet data-centre-to-data-centre experiments; packet loss rates were observed to be

0%

Virtual machine Azure region Round-trip time
Client East US 2 (Virginia) -
Server — near East US (Virginia) 6.193 ms
Server — medium | Central US (Iowa) 30.906 ms
Server — far North Europe (Ireland) 70.335 ms
Server — worst-case | Australia East (New South Wales) 198.707 ms

It should be noted that the RTT times between any two VMs depend on
the state of the network between them, which is highly variable; our values in
Table 4 are one snapshot. Given that these are data-centre-to-data-centre links,
the packet loss on these links is practically zero. The VMs were all Linux (Ubuntu
18.04) Azure D8s virtual machines, which each have 8 vCPUs (either 2.4 GHz
Intel Xeon E5-2673 v3 (Haswell) or 2.3 GHz Intel Xeon E5-2673 v4 (Broad-
well), depending on provisioning, bursting to 3.5 GHz) and 32 GiB of RAM. The
Apache Benchmark (ab) tool [2] was installed on the client VM to measure con-
nection time; it was modified to use TLS 1.3 via OQS-OpenSSL 1.1.1 and verify
the server certificate.

We installed nginx (compiled against OQS-OpenSSL 1.1.1) on all server VMs,
and we configured it to listen on multiple ports (each one offering a certificate
with one of the signature algorithms under test) and to serve HT'ML pages of var-
ious sizes (1kB, 10kB, 100kB, 1000 kB). (The http archive [12] reports that the
median desktop and mobile page weight is close to 1950 kB and 1750 kB respec-
tively. Experiments with files as large as 2000 kB took an inordinate amount of
time, and all the relevant trends can also be seen at the 1000 kB page size.)

All C code in both experiments was built using the GCC compiler.

5 Results and Discussion

5.1 Emulated Network Experiment Results

Key Exchange. Figurel shows handshake completion times at the 50th
(median) and 95th percentile for different round trip times for the four key
exchange mechanisms under test. For each key exchange scenario, we collected
4500 samples?. Most of the charts we show report observations at the 50th and
95th percentile comparing across all algorithms under test. Figures 5 and 6 show

4 The slight downward slope for the first few packet loss rates in the median results for
ecdh-p256-sike-p434 is an artifact of the experiment setup used: at low packet loss
rates, the setup results in many connection requests arriving simultaneously, causing
a slight denial-of-service-like effect while the server queues some calculations.
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observations at a more granular range of percentiles for each key exchange mech-
anism and round-trip time; the full data set is available at https://github.com/
xvzcf/pg-tls-benchmark.

At the median, over high quality network links (packet loss rates <1%),
we observe that public key and ciphertext size have little impact on handshake
completion time, and the predominant factor is cryptographic computation time:
ECDH, Kyber512-90s, and Frodo-640-AES have raw cryptographic processing
times less than 2ms resulting in comparable handshake completion times; the
slower computation of SIKE p434, where the full cryptographic sequence takes
approximately 60 ms, results in a higher latency floor.

As packet loss rates increase, especially above 5%, key exchange mecha-
nisms with larger public keys / ciphertexts, by inducing more packets, bring
about longer completion times. For example, at the 31.2ms RTT, we observe
that median Frodo-640-AES completion time starts falling behind. This is to
be expected since the maximum transmission unit (MTU) of an ethernet con-
nection is 1500 bytes whereas Frodo-640-AES public key and ciphertext sizes
are 9616 bytes and 9720 bytes respectively, resulting in fragmentation across
multiple packets. Using the packet analyzer tcpdump, we determined that 16
IP packets must be sent by the client to establish a TLS connection using
ecdh-p256-frodo640aes. If the packet loss loss probability is p = 5%, the prob-
ability of at least one packet getting dropped is already 1 — (1 — p)'6 ~ 58%, so
the median ecdh-p256-frodo640aes has required a retransmission. In contrast,
only 5 IP packets are required to establish a TLS connection with ecdh-p256
and ecdh-p256-sike-p434, and 6 packets for ecdh-p256-kyber512_90s, which
explains why SIKE p434’s small public-key and ciphertext sizes do not offset its
computational demand.

At the 95th percentile, we see the impact of raw cryptographic processing
times nearly eliminated. Up to 10% packet loss, the performance of the 4 key
exchange algorithms are quite close. Past 15% packet loss, the much larger num-
ber of packets causes ecdh-p256-frodo640aes completion times to spike.

At the 5.6 ms and 31.2ms RTTs, the median ecdh-p256-kyber512_90s con-
nection briefly outperforms the median ecdh-p256 connection at packet loss
rates above 15%. This is noise due to the high variability inherent in our mea-
surement process.

Digital Signatures. Figure2 shows handshake completion times at the 50th
(median) and 95th percentile for different round trip times for the four key
exchange mechanisms under test. For each point, we collected 6000 samples. As
with the key-exchange results, some noise is still present, especially at the 95th
percentile.

The trends here are similar to key exchange, with respect to impact of com-
putation costs and number of packets: at the median, dilithium2 imposes the
least slowdown of all post-quantum signature schemes, and is commensurate
with ecdsa-p256 at low latencies and packet loss rates. qtesla-p-i results in a
higher latency floor. picnic-11-fs, which produces 34,036-byte signatures, also
degrades rapidly as the link latency and packet loss probability increases.
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Fig. 1. Network emulation experiment, key exchange scenario: handshake com-
pletion time (median & 95th percentile) vs. packet loss, at different round trip times
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Fig.2. Network emulation experiment, signature scenario: Handshake com-
pletion time (median & 95th percentile) vs. packet loss at different round trip times
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5.2 Internet Data-Centre-To-Data-Centre Experiment Results

For each post-quantum scenario, we collected data points by running the ab tool
for 3 min, resulting in between 100 and 1000 samples for each scenario.

Key Exchange. Figure3 (left) shows the results for median page download
times from our four data centres. Figure 4 in the appendix shows results for the
95th percentile; behaviour at the 95th percentile is not too different from median
behaviour, likely due to the extremely low packet loss rate on our connections.

For small-RTT connections and small web pages, the TLS handshake con-
stitutes a significant portion of the overall connection time; faster algorithms
perform better. As page size and RTT time increase, the handshake becomes
less significant. For example, for the near server (US East, 6.2ms RTT), in com-
paring ecdh-p256 with ecdh-p256-sikep434, we observe that, at the median,
ecdh-p256 is 3.12 times faster than ecdh-p256-sikep434 for 1kB web pages.
However this ratio decreases as page sizes increase to 100 or 1000kB, and as
round trip time increases; for example decreasing to 1.07x and 1.03x for the
worst-case server (Australia, 198.7ms RTT) at 1 and 1000 KB.

Digital Signatures. Fig. 3 (right) shows the results for median round-trip times
to the four data centres; Fig.4 in the appendix shows results for the 95th
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Fig. 3. Internet data-centre-to-data-centre experiment: median retrieval time
for various web page sizes from 4 data centres; key exchange (left), signatures (right)
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percentile. Just like with the emulated experiment, we observe similar trends
between the signature and the key encapsulation mechanisms tests. While the
TLS handshake represents a significant portion of the connection establishment
time, over increasingly long distances or with increasingly larger payloads, the
proportion of time spent on handshake cryptographic processing diminishes.

We do observe some variability in the comparisons between signature algo-
rithms in the Internet experiment in Fig. 3 (especially at 100 and 1000 kB, and for
the more distant data centres) that we believe may be due to real-world network
conditions changing when running different batches sequentially. This effect,
expected to a degree due to the nature of internet routing, might be reduced by
interweaving batches and collecting a larger number of samples, which we would
like to try in future experimental runs.

6 Conclusion and Future Work

Our experimental results show under which conditions various characteristics of
post-quantum algorithms affect performance. In general, on fast, reliable network
links, TLS handshake completion time of the median connection is dominated by
the cost of public key cryptography, whereas the 95th percentile completion time
is not substantially affected. On unreliable network links with packet loss rates of
3-5% or higher, communication sizes come to govern handshake completion time.
As application data sizes grow, the relative cost of TLS handshake establishment
diminishes compared to application data transmission.

With respect to the effect of communication sizes, it is clear that the maxi-
mum transmission unit (MTU) size imposed by the link layer significantly affects
the TLS establishment performance of a scheme. Large MTUs may be able to
improve TLS establishment performance for post-quantum primitives with large
messages. Some ethernet devices provide (non-standard) support for “jumbo
frames”, which are frames sized anywhere from 1500 to 9000 bytes [39]. Since
the feature is non-standard, it is not suitable for use in Internet-facing appli-
cations, which cannot make assumptions about the link-layer MTUs of other
servers/intermediaries, but may help in local or private networks where every
link can be accounted for.

Future work obviously includes extending these experiments to cover more
algorithms and more security levels; we intend to continue our experiments and
will post future results to our repository at https://github.com/xvzcf/pq-tls-
benchmark. It would be interesting to extend the emulation results to bigger
networks that aim to emulate multiple network conditions simultaneously using
NetMirage or Mininet. On the topic of post-quantum authentication, our exper-
iments focused on a certificate chain where the root CA and endpoint used the
same algorithms (resulting in transmission of one public key and two signatures);
it would be interesting to experiment with different chain sizes, and with multi-
algorithm chains, perhaps optimized for overall public key + signature size. It
would also be possible to measure throughput of a server under load from many
clients. Finally, our emulation framework could be applied to investigate other
protocols, such as SSH, IPsec, Wireguard, and others.
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Fig. 5. Network emulation experiment, key exchange scenario: handshake com-
pletion time versus packet loss rate at various percentiles, part 1
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Abstract. Multivariate Cryptography is one of the main candidates
for securing communication in a post-quantum world. One of the most
promising schemes from this area is the Rainbow signature scheme. While
this scheme provides very fast signature generation and verification, the
key generation process of Rainbow is relatively slow. In this paper, we
propose an algorithm which speeds up the key generation process of the
standard Rainbow signature scheme by up to two orders of magnitude,
such eliminating one of the few drawbacks of this scheme. Furthermore,
we present an improved key generation algorithm for the CyclicRainbow
signature scheme. This algorithm allows to generate a key pair for Cyclic
Rainbow in essentially the same time as a key pair for standard Rain-
bow, thus making CyclicRainbow a practical alternative to the standard
scheme. Our algorithms are implemented in the Rainbow proposal for
the second round of the NIST standardization process for post-quantum
cryptosystems.

Keywords: Multivariate cryptography + Rainbow - CyclicRainbow -
Efficient key generation - NIST standardization process for
post-quantum cryptosystems

1 Introduction

In our modern digital world, cryptographic techniques are an indispensable
building block to guarantee the security of our communication systems. Besides
encryption, the second important cryptographic primitive are digital signature
schemes, which guarantee the authenticity and integrity of signed data such as
emails and software updates. The currently used schemes for this purpose are
the factoring based RSA cryptosystem [16] and the discrete logarithm based
Digital Signature Algorithm (DSA) [11]. However, due to Shor’s algorithm [17],
the mathematical problems underlying the security of these schemes can be
efficiently solved on a large scale quantum computer. In order to preserve the
security of communication in an era where quantum computer exist, we therefore
need cryptographic schemes which are resistant against such attacks. Especially
in the area of digital signature schemes, multivariate cryptography is one of
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the most promising candidates for this. Multivariate digital signature schemes
mainly come in two flavours. On the one hand, we have the BigField schemes
such as HFEv- or the NIST candidate GeMSS [3]. On the other hand, there are
the SingleField schemes such as UOV and Rainbow. In this paper, we concentrate
on these schemes.

UOV and Rainbow. The research in this field was initiated in 1997 by Patarin
with his (balanced) Oil and Vinegar signature scheme [12], which was itself
inspired by his Linearization Equations attack against the Matsumoto-Imai cryp-
tosystem. After this original proposal was broken by a linear algebra attack by
Kipnis and Shamir [9], it was recommended in [8] to choose v > o (Unbalanced
Oil and Vinegar (UOV)). In order to increase the efficiency of this scheme, Ding
and Schmidt proposed in [6] the Rainbow signature scheme, which can be seen
as a multilayer version of UOV. In the following years, Petzoldt et al. proposed
in a series of papers [13-15] a number of improvements to this scheme. Com-
pared to the standard Rainbow scheme, their CyclicRainbow signature scheme
offers a much smaller public key as well as a faster verification process. How-
ever, since existing key generation algorithms for the scheme were very slow, the
CyclicRainbow scheme was far from being practical.

Together with (some of) these improvements, Rainbow was accepted as a
second round candidate for the NIST standardization process of post-quantum
public key cryptosystems [10]. While the signature generation and verification
processes of Rainbow are very fast, the key generation process of the scheme
was, in the first round proposal, relatively slow.

In this paper we propose two new algorithms for the key generation of the
standard and the CyclicRainbow signature schemes. For the standard scheme,
our algorithm outperforms existing algorithms (such as that of the first round
submission) by up to two orders of magnitude, such eliminating one of the few
drawbacks of the scheme. For the CyclicRainbow scheme, our new algorithm
is less than 10% slower than that of the standard scheme, such making Cyclic
Rainbow a practical alternative to the standard scheme. Furthermore, we show
how our techniques could be used to reduce the private key size of the Cyclic
Rainbow scheme as well. Our algorithms are inspired by the work of Beullens et
al. to create the LUOV signature scheme [2].

The rest of this paper is organized as follows. In Sect. 2, we give a short intro-
duction into the field of multivariate cryptography and present the Rainbow sig-
nature scheme of [6]. Section 3 describes our improved key generation algorithm
for the standard Rainbow scheme, while Sect.4 deals with the CyclicRainbow
signature scheme of [14]. Section 5 shows the results of our implementation and
Sect. 6 sketches a technique to reduce the private key size of CyclicRainbow.
Finally, Sect. 7 concludes this paper.
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2 Multivariate Public Key Cryptography

The public key of a multivariate public key cryptosystem (MPKC) is a system
P of m quadratic polynomials in n variables over a finite field F (see Eq. (1)).

p(l)(xla"' Z pz] 'rlx] + Zpl xl—’—p
1,7=1
PP (x1,.. . x,) = Z p” xlx] + Zpl T; —|—p
4,j=1
p(m)(l‘l,..., szj Ty +sz xl+p0 " (1)
1,j=1

The security of MPKC’s is based on the

MQ-Problem: Given a system of m quadratic equations p")(x),...,p(") (x)
in n variables as shown in Eq. (1), find a vector X = (Z1,...,Z,) such that
pM(x) =...=p™ (%) = 0 holds.

The MQ-Problem (for m ~ n) has been proven to be NP-hard, even for
polynomials over GF(2) [7] and is believed to be hard on average (for both
classical and quantum computers).

In order to create a public key cryptosystem on the basis of the MQ-Problem,
one starts with an easily invertible quadratic map F : F* — F™ (central map).
To hide the structure of F in the public key, one composes it with two affine
(or linear) invertible maps S and 7. The public key of the cryptosystem is the
composed quadratic map P = S o F o7 which is (hopefully) difficult to invert.
The private key consists of S, F and 7 and therefore allows to invert P.

In this paper we concentrate on multivariate signature schemes. For such a
scheme we have n > m, which ensures that every message has a signature. The
standard process for signature generation and verification works as shown in
Fig. 1.

Signature Generation

d i»he]Fmi_> xeFmL yeF"I» z € "

P

Signature Verification

Fig. 1. Workflow of multivariate signature schemes
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Signature Generation: In order to generate a signature for a document

d € {0,1}*, we use a hash function H : {0,1}* — F™ to compute the hash value
h = H(d) € F™. Then we compute x = S~'(h), y = F~!(x) and z = T (y).
The signature of the document d is z € F". Here, F~!(x) means finding one (of
possibly many) pre-image of x under the central map F.

Signature Verification: To check the authenticity of a document d, one simply
computes h’ = P(z) and the hash value h = H(d) of the document. If h’ = h
holds, the signature is accepted, otherwise it is rejected.

2.1 The Rainbow Signature Scheme

In [6], Ding and Schmidt proposed a signature scheme called Rainbow, which is
based on the idea of (unbalanced) Oil and Vinegar [§].

Let F be a finite field and V be the set {1,...,n}. Let vy, ..., vyp1,u > 1
be integers such that 0 < v; < vy < ... < vy < vur1 = n and define the
sets of integers V; = {1,...,v;} for i = 1,...,u. We set 0; = v;41 — v; and
O; ={v;+1,...,0;41} (i =1,...,u). The number of elements in V; is v; and we
have |O;| = 0;. For k = v1+1,...,n we define multivariate quadratic polynomials
in the n variables z1,...,z, by

P = > ol wia; + > B wix; + > 1z +0®, (2)

1,J€VL, i<j i€0y, JEV, i€VUO;

where [ is the only integer such that k € O;.

The map F(x) = (f1+)(x),..., f("(x)) can be inverted as follows. First,
we choose z1, ..., x,, at random and substitute these values into the polynomials
frtD o f) ) Thus we get a system of o; linear equations (given by the
polynomials f*) (k € O;)) in the 0; unknowns ., y1,...,,,, which can be
solved by Gaussian elimination. The so computed values of z; (i € Op) are
plugged into the polynomials f*)(x) (k > v3) and a system of o, linear equations
(given by the polynomials f*) (k € O)) in the oy unknowns z; (i € O3) is
obtained. By repeating this process we can compute the values of all the variables
v (i=1,...,n).

In order to hide the structure of F in the public key, we combine it with two
invertible affine maps § : F"* — F™ and 7 : F* — F”. The public key P of the
scheme is given as the composed map P = S o F o 7. The private key consists
of §, F and 7 and therefore allows to invert the public key.

! It may happen, that one of the linear systems does not have a solution. If so, one
has to choose other values for the Vinegar variables z1,...z,, and try again.
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3 Efficient Key Generation of Rainbow

In the following we restrict to Rainbow schemes with two layers. Note that this is
the standard design of Rainbow and also corresponds to the parameter proposals
used in the NIST submission. Thus, the scheme is determined by the parameters
v1,01 and oo and we have m = o1 + 09 equations and n = vy + m variables. We
furthermore restrict to homogeneous maps S, F and 7. Note that, due to this
choice, the public key P is a homogeneous quadratic map from F” to F™.

We choose the matrices S and T representing the linear maps S and 7 to be
of the form

001><'U1 I01><01 T (3)

01 X02

1 2
I S/ I’u1><U1 T1§12<01 T’U(12<02
S = ( 01X01 ~o1 X0z , T = )

0o
2 X 01 092 X 02
002)(711 002><01 02 X 02

Note that, for every Rainbow public key P, there exists a corresponding private
key (S,F,T) with S and T being of form (3) [18]. So, the above restriction does
not weaken the security of our scheme.

For our special choice of S and T we have det(S) = det(T) = 1 and (for
fields of characteristic 2)

s ¢ 170 7 . 7@ L 7@
S—l — <001><01 01 ><02> _ S, T—l _ 0 I T(3) . (4)
02 X071 092 X092 0 0 I

For abbreviation, we set 74 := 71 . 7G) 4 7(2),
We introduce an intermediate map Q = F o 7. Note that we can write the
components of the two maps F and Q as quadratic forms

@ (x) =xT. FO . x (5)
q(i)(X) =xT.QW. . x (6)

with upper triangular matrices F(9 and QY. Note that, due to the relation
Q=FoT, we get

QW =T1T.FO.T (i=v,41,...,n). (7)
Note further that, due to the special form of the Rainbow central map, the
matrices F(9) look as shown in Fig. 2. The matrices Q) (i=wv1+1,...,n) are
divided into submatrices ng), e Qg) analogously.

In order to generate a Rainbow key pair, we choose the non zero elements of
the matrices S, T and F(1+1) . F(®) uniformly at random from the field F
and perform the following three steps.
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F QW
U1 V2 n U1 V2 n U1 V2 n

e e O o o

U1 . N S N S ocacnnono0d V1
©  F O QP

- 0\ 0 N -
Q)

n n
te€{v+1,...,02} t€{v2+1,...,n} i€{vi+1,...,n}

Fig. 2. Matrices F(*) (left) and QW (right) representing the polynomials of the Rain-
bow central and intermediate maps. The only non-zero elements are contained in the
gray spaces.

First Step: Compute the Matrices Q(i) of the First Layer

In the first step, we compute from the matrices F(*1+1) . F®2) the matrices
QW+t . Q@) Since the only non zero elements of the matrices F(*) (i =
v1+1,...,v2) are contained in the submatrices Fl(z) and F2(1)7 we obtain from

QW =1T.F0O.T

Q) =1,
= (P + () - Ty 4 YD,
QY = (" + (PN - To + F{" - T,
Q) =ura - B+l BY), (8)
QY =1l (F" + (F{)T) - To+ 1 - F{" - 5 + (F{)" - 1,
O —ur@r! FY T+ T B Ty).

Here, UT(A) transforms a matrix A into an equivalent upper triangular matrix
(i.e. a;j = ai; + aj; for i < j, a;; =0 for i > j).

Step 2: Compute the Matrices Q(i) of the Second Layer

In the second step, we compute from the matrices F(*2+1) . F(") the matrices
QW*1 ... Q™. Since the only non zero elements of the matrices F(*) (i =
va+1,...,n) are contained in the submatrices Fl(i), FQ(i), Fgfi), Féi) and F6(i), we
obtain from QW =77 . F® . T
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Q= F,
Q) =+ (F)") T+ Y,
Q) = (R + (F")") - Lot BV - Ty Y,
QY =vur! - FO T+ 1 - FY + FY), (9)
¢ =1 (P () T+ T BT
+ T8 B+ () T+ (B + (F5)") - Ts + B,
QV =vr(ry F - Tho+18 FP T+ 18 B T+ 1 FY 1) - FY).

Here, again, UT(A) transforms the matrix A into an equivalent upper triangular
matrix.

Step 3: Compute the Public Key

In the third step, we compute from the matrices Q) (i =v1+1,...,n) the
public key P of the scheme. To do this, we first transform the matrices Q) into
a Macaulay matrix M Q. For i = vi + 1,...,v2, we copy the w non-zero
entries of the matrix Q) into the (i — v;)-th row of the matrix MQ; (from left
to right and top to bottom). Similarly, we copy the elements of the matrices QW
of the second layer into the matrix M(Q)-. After this, we compute the Macaulay

matrix M P of the public key as MP =S - MQ or

MP,=MQ;+ 5" MQ,
MP;, = MQ2 (10)
By following this strategy, the monomials in the Macaulay matrix M P will be

ordered according to the lexicographical order. The whole process of computing
the matrices M P; and M P, from QD ... Q™ is illustrated by Fig. 3.

() Q% : QL eq. (10)

M M Py
QR0 |::> |::>
6
O MQ> M P

()

Fig. 3. Computing the public key

Algorithm 1 shows our key generation algorithm for the standard Rainbow
scheme in compact form.
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4 Key Generation of CyclicRainbow

4.1 The CyclicRainbow Signature Scheme

In [14], Petzoldt et al. proposed the CyclicRainbow signature scheme, which
reduces the public key size of the standard Rainbow signature scheme by up to

70%. The idea of the scheme is illustrated in Fig.4. We set Dy = w +

vi01, Dy = w + 1909 and D3 = % As in the previous chapter, we

restrict to Rainbow schemes with two layers, homogeneous maps S, F and 7
and assume that the matrices S and T representing the linear maps S and 7
are of the form (3).

Instead of computing the public key out of the private key, we generate major
parts of the public key by a PRNG (using a public seed s,) and compute the
central map from the public key. In particular, we generate the elements of the
three matrices By, Bs and Bs as well as the matrices representing the linear maps
S and 7 (using a private seed sgr). From this, we can compute the matrices
Fy, F5 and F3 (i.e. the non-zero parts of the central map F) by solving systems
of linear equations. Finally, we compute from F the missing parts of the public
key P (i.e. the matrices Cy, Cs and Cj).

Note that the monomials in the Macaulay matrices of F, Q and P are
ordered according to a special monomial order. In this order, we first have a
block containing the D; quadratic monomials x;x; 1<i<wv,i<j< ).
After that, we have a second block containing the quadratic monomials z;z;
1<i<wv,mw+l<ji<norv+1<i<uw, i<j<mn) The third
block contains the remaining D3 — Dy quadratic monomials. Inside the blocks,
the monomials are ordered according to the lexicographical order. Similar to the
matrices M P and MF of Fig. 4, we divide the Macaulay matrix of the map Q
into 6 submatrices, which we denote by MQ; ; (i € {1,2}, j € {1,2,3}).

In the original proposal [14], the matrices By, By and Bs where chosen as
cyclic matrices (hence the name of the scheme). Besides the significant reduc-
tion of the public key size, this choice enabled the authors to design a special
technique of evaluating the public polynomials, which lead to a speed up of the
verification process of up to 60% [15]. However, in order to simplify the secu-
rity analysis of the scheme, the NIST propsal follows the above strategy using a
PRNG. Furthermore, it seems that the above mentioned speed up of the verifi-
cation procees is hard to realize when using vector instructions to speed up the
evaluation of the public polynomials.

The key generation process of CyclicRainbow proposed in [14] required the
inversion of a large D3 x D3 matrix and therefore was very inefficient, which
prevented the CyclicRainbow scheme from being used in practice. Our new key
generation algorithm for the CyclicRainbow scheme as presented in the next
section is essentially as fast as the key generation process for the standard Rain-
bow scheme and therefore solves this problem.



100 A. Petzoldt
Dl D2 D3 Dl D2 D3 Dl D2 D3
B MFy: 0 0 Bii: C1 i O
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Fig. 4. Key generation of the CyclicRainbow signature scheme. The dark gray parts
are chosen by the user, while the light gray parts are computed from them.

4.2 Efficient Key Generation of CyclicRainbow

We generate the entries of the matrices S and T representing the linear maps
S and 7 of form (3) and the three matrices By, By and Bs of Fig.4 using the
PRNG (using the seeds sgr and s, respectively). Our algorithm performs the
key generation process of CyclicRainbow as illustrated in Fig. 4 following four
steps.

Step 1: Compute the Matrices MQ, ;, MQ,; and MQ, ,

Due to the special form of the matrix S, the relation P = S o Q yields

M@y, =B1+ 5" - By,

MQ21 = By,
MQ22 = Bs.

(11)

Step 2: Compute the Central Polynomials of the First Rainbow Layer
For this, we represent the first 0; components of the maps Q and F as upper
triangular matrices Q9 and F(®) respectively (see Fig. 2).

@

@)
& |

eq. (12)

-

(i) i
R EP

eq. (13)

>

(@ o Qi

(9

(%)
6

0

(%)

Fig. 5. Computing the central polynomials of the first layer

We insert the D; elements of the i-th row of M Q)1 ; into the dark gray parts of

the matrices QY’) and Qéi) (from left to right and top to bottom; see Fig. 5 (left)).
The corresponding matrices F(9) representing the i-th central polynomial look
as shown in Fig.5 (middle). Note that the only non-zero elements are located
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in the submatrices Fl(i) and FQ(i) . Due to the special form of the map 7 of our
scheme, the relation F() = (T-1HT . Q® . 71 yields

Fl(z) _ ng),

B =@+ @) T+ QY. (12)
All the other elements of the matrices F() (i € {1,...,01}) are zero. So, after

having determined the elements of F’ :l(i) and F2(i), we can use the inverse relation

QY =TT .FO.T to compute the light gray parts of the matrices Q). We find

O = (FD 4 (FINYT) . Ty + Fy - T,

Q) =vr(r A" -1+ 1l ),

Q¢ =1l (F + (F) - T+ 17 - B T+ () T,
W—vr@l - FO .1+ 7L F . Ty). (13)

Q

O

(see Fig. 5 (right)). Here, UT(A) again denotes the transformation of the matrix
A into an equivalent upper triangular matrix.

Step 3: Compute the Central Polynomials of the Second Rainbow
Layer

For this, we insert the D; elements of the i-th row of M ()3 ; into the dark gray
parts of the matrices ngw) and Qngvz) (from left to right and top to bottom).
The Dy — D; elements of the i-th row of the matrix M ()22 are inserted into

the dark gray parts of the matrices Qz(f), Qéi) and Qéi) (again from left to right

and top to bottom; i.e. we fill the matrix Qéi) first). Therefore, the matrices QW
(i € {va+1,...,n}) look as shown in Fig.6 (left).

@ Qi QP eq. (14) @ ¢ g . p® eq. (15) (O QWi QW
O Q) Q E> O ®  F® E> O () 9
0 @

Fig. 6. Computing the central polynomials of the second layer
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Due to the special form of the matrix 7' and the relation F) = (T-1)T.Q().
T we can compute the non-zero parts of the matrices F®) (i = vy 4+ 1,...,n)
as

F =q",
A = QP + @) - Ty +Qf,
B =@V + (@) - 1w+ QY - T3 + QY
FO =ur(rf - -1+ 17 QY + QYY)
FO =18 (@ + @) Tu+ 7T - Q% - Ty
+ 17 QY + (@™ Ty + (@Y + (@) - Ty + QY. (14)

After this, we can use the inverse relation QW =TT .F® . T to compute the
matrices Qél) (i=wve+1,...,n). We get

O =vur@l -FO T+ 18 - FO T+ 1L - FO T+ 7L FO + T - FY). (15)

Step 4: Compute the Remaining Parts of the Public Key

For this last step, we transform the matrices Q) (i = vy +1,...,n) back into
a Macaulay matrix M @). This is done as shown in Fig.7. For i = vy,...,n, we
perform the following 4 steps

— First, we write the D; elements of the submatrix (ng) | \QS)) into the (i —wv1)-
th row of the matrix M@ (from left to right and top to bottom).

— The following v; 09 columns of the (i — vy )-th row of the matrix M@ are filled
with the elements of the matrix Qz(;). Again, these are read from left to right
and top to bottom.

— We continue with the elements of the submatrix (Q{"]|Q{").

— The last D3 — Do columns of the (i — v1)-th row are filled with the entries of

the matrix Qg) (again from left to right and top to bottom).

D) : Qéz) ‘ Q;(;Z)

@ | 0 |:> MQ
0

()

Fig. 7. Building the matrix M@ of CyclicRainbow

The matrix M@ is divided into submatrices as described in Sect. 4.1.
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Finally, we compute the matrix M P by MP =S - M@ or, with the special
form of our matrix S,

Ci=MQi2+ 5 MQso,
Co=MQ13+ 5 MQ2s,
C3 = MQ23. (16)

Note that the coefficients in M P are ordered according to the special monomial
order defined in Sect.4.1.
Algorithm 2 presents this key generation algorithm in compact form.

5 Results

Table 1 shows the running time of our key generation algorithms for the standard
and the CyclicRainbow signature schemes. The numbers in brackets denote the
corresponding timings of the algorithm used in the first round submission to the
NIST Standardization Process.

Table 1. Running times of our key generation algorithms on an Intel Xeon @ 3.6 GHz
(Skylake) using AVX2 vector instructions. The numbers in brackets give the running
times of the first round submission of Rainbow.

NIST security category 1/11 1II/1v V/VI

Parameter set (GF(16),32,32,32) | (GF(256),68,36,36) | (GF(256),92,48,48)
Standard Cyeclic |Standard Cyclic |Standard Cyclic

Mcycles 8.29 (1,081)|9.28 |94.8 (1,430) 110 126 (4,633) |137

Time (ms) 2.30 (328) |2.58 [26.3 (433) |30.5 34.9 (1,404) |38.0

Memory (MB) 3.5 (3.5) 3.5 4.6 (4.6) 4.6 7.0 (7.0) 7.0

As the table shows, our algorithm for the standard scheme is up to 100 times
faster than the algorithm used in the first round submission. The algorithm for
the cyclic scheme is only about 10% slower than that for the standard scheme,
thus making CyclicRainbow to be a practical alternative to the standard scheme.

6 Reducing the Private Key Size of CyclicRainbow

The simple structure of the equations shown in the previous sections makes it
possible to store parts of the central map F of CyclicRainbow in the form of a
random seed, too. In particular, we can generate (parts of) the central map F on
demand during the signature generation process using the seed s,, the PRNG
and (a subset of the) Egs. (11), (12) and (14). In the following we show that this
leads to a tradeoff between the size of the private key and the running time of
the signature generation process of CyclicRainbow.
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Algorithm 1. Key Generation Algorithm for the standard Rainbow Signature
Scheme
Input: matrices S, T of form (3), Rainbow central map F
(given as matrices F® (i=wv1+1,...,n); see Figure 2)
Output: Rainbow public key P (consisting of the matrices M P1 and M P)
1: for i =v1 + 1 to v2 do

2 Compute the matrices Qg”, <2i) g”, éi), (@ and Qf;) using equation (8).

3: end for

4: for i = v, + 1 ton do

5: Compute the matrices Q@, ;”, Qé”, Qéi), Qéi) and Qéi) using equation (9).

6: end for

7. for i =v1 +1 ton do

8 Insert the elements of the matrix Q¥ into the (i — v)-th row of the matrix
MQ@ (as described in the text)

9: end for

10: Compute the Rainbow public key using equation (10).

11: return M P;, M Ps.

As a first step, we see from Egs. (11) and (14) directly, that the entries of the
matrices Pl(i) and Fl(i) (t =vy+1,...,n) are identical (i = vy + 1,...,n). This
allows us to generate this part of the central map using the PRNG and the seed
sp. By doing so, we can reduce the size of the private key by up to 9% nearly
without slowing down the signature generation process of our scheme.

The matrices Fl(l) corresponding to the polynomials of the first layer can be
computed by generating the matrices By and By from the seed s, and applying
the first equation of (11). By doing so, we can reduce the size of the private key
by another 9%. However, we have to compute a large matrix product each time
we create a signature, which will slow down the signature generation process of
the CyclicRainbow scheme significantly.

As a second example, we can compute the whole second layer of the central
map F by generating the matrices Bs and Bs from the seed sp and using Eq. (14)
to compute the matrices Fl(i), in), F?Ei)7 Fél) and Féi) (t =wv2+1,...,n). For the
parameters recommended in the NIST submission, this reduces the private key
size of CyclicRainbow by 65-71%, but delegates a large number of computations
to the signature generation process.

Finally, by using the complete equation set, we can generate the whole private
key on demand from the seed sp. However, in order to recover the central map
F as needed to generate a signature, we have to perform the computation of
Egs. (11), (12) and (14) during the signature generation process, which slows
down this process drastically.

Since the speed of the signature generation process is one of the main selling
points of Rainbow, generating the whole private key from the seed s, seems, in
general, not to be promising. On the other hand, on memory constraint devices,
using the above mentioned tradeoff might lead to interesting results. However,
since it is not completely clear yet how these techniques will influence the running
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time of the signature generation process of Rainbow, more research is needed to
find an optimal tradeoff between the size of the private key and the speed of the
signature generation algorithm.

Algorithm 2. Our Key Generation Algorithm for the CyclicRainbow Signature
Scheme
Input: Random seeds s, and ss7.
Output: Rainbow central map F, matrices C1, C2 and Cs5 (see Figure 4).
1: Use a PRNG to generate from sgr matrices S and T of form (3).

2: Use the PRNG to generate from s, the matrices B1, B2 and Bs of Figure 4.

3: Compute the matrices MQ1,1, MQ2,1 and M Q2 2 using equation (11).

4: for i =v1 +1 to v2 do

5: Insert the coefficients of the (i — v1)-th row of the matrix M Q1,1 into the
submatrices QY) and Q(;).

6:  Set iV = Q" and Fy” = (Q\” + (Q{")") - Tu + QY.

T Compute the matrices :(;')7 éi), Qéi) and Qé“ using equation (13).

8: end for

9: fori=v2+1tondo

10: Insert the coeflicients of the (i — v2)-th row of the matrix M Q2,1 into the

submatrices QY) and Qy).

11: Insert the coefficients of the (i — v2)-th row of the matrix M Q2,2 into the
submatrices Qéi), Qgi) and Qg>.

12: Compute the matrices Fl(i), FQ(i), Féi), F5(i) and Fe(i) using equation (14).

13: Compute the matrix Qéw using equation (15).

14: end for

15: fori=v; +1 ton do

16: Insert the elements of the matrix Q) into the (i — v;)-th row of the matrix
MQ@ (as described in the text)

17: end for

18: Compute the matrices C1, C2 and C3 by equation (16).

19: return F Y FM ¢y Oy, Cs.

7 Conclusion

In this paper we proposed new efficient algorithms for the key generation of the
standard and the CyclicRainbow signature schemes. With regard to the standard
scheme, our algorithm speeds up the running time of the key generation process
by up to two orders of magnitude (compared to the timings of the first round
submission to the NIST post-quantum standardization process). Using our algo-
rithm for CyclicRainbow, the key generation process of this scheme is only about
10% slower than that of standard Rainbow, which makes CyclicRainbow to be
a practical alternative to the standard scheme. Furthermore we show how our
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techniques can also be used to reduce the size of the private key of CyclicRain-
bow, leading to a tradeoff between private key size and signature generation
time. However, since it is not yet clear how these techniques influence the speed
of the signature generation process, more research in this direction is required.

Acknowledgments. We want to thank Ming-Shing Chen and Bo-Yin Yang for imple-
menting of our algorithms.
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Abstract. For primes p = 3 mod 4, we show that setting up CSIDH
on the surface, i.e., using supersingular elliptic curves with endomor-
phism ring Z[(1 + +/—p)/2], amounts to just a few sign switches in the
underlying arithmetic. If p = 7 mod 8 then horizontal 2-isogenies can be
used to help compute the class group action. The formulas we derive
for these 2-isogenies are very efficient (they basically amount to a sin-
gle exponentiation in F,) and allow for a noticeable speed-up, e.g., our
resulting CSURF-512 protocol runs about 5.68% faster than CSIDH-
512. This improvement is completely orthogonal to all previous speed-
ups, constant-time measures and construction of cryptographic prim-
itives that have appeared in the literature so far. At the same time,
moving to the surface gets rid of the redundant factor Zs of the acting
ideal-class group, which is present in the case of CSIDH and offers no
extra security.

Keywords: Isogeny-based cryptography - Hard homogeneous spaces -
CSIDH - Montgomery curves

1 Introduction

A hard homogeneous space [10] is an efficiently computable free and transitive
action * : G x § — § of a finite commutative group G on a set S, for which
the parallelization problem is hard: given sg, s1,s2 € S, it should be infeasible
to find g1 92 * sg, where g1, g2 € G are such that s; = g1 * sp and sy = g2 * Sg.
This generalizes the notion of a cyclic group C' in which the Diffie-Hellman
problem is hard, as can be seen by considering the set S of generators of C,
acted upon by G' = (Zj¢|)* through exponentiation. The main appeal of hard
homogeneous spaces lies in their potential for post-quantum cryptography: while
exponentiation-based Diffie-Hellman succumbs to Shor’s polynomial-time quan-
tum algorithm [22], in this more general setting the best attack available is
Kuperberg’s subexponential-time algorithm for finding hidden shifts [16]. This
line of research has led to a number of efficient post-quantum cryptographic
primitives, such as non-interactive key exchange [7] and digital signatures [4],
which stand out in terms of bandwidth requirements, and verifiable delay func-
tions [11].

Unfortunately, we only know of one source of candidate hard homogeneous
spaces that are not based on exponentiation. They descend from CM theory,

© Springer Nature Switzerland AG 2020
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which yields a family of isogeny-wise actions by ideal-class groups on sets of
elliptic curves over finite fields, whose use in cryptography was proposed inde-
pendently by Couveignes [10] and Rostovtsev—Stolbunov [20,23,24]. The current
paper revisits CSIDH [7], which is an incarnation of this idea, using supersingu-
lar elliptic curves rather than ordinary elliptic curves (as originally suggested),
thereby speeding up the resulting protocols by several orders of magnitude.
Concretely, we focus on the following design choice of CSIDH: as put forward
in [7], it works over a large finite prime field F), with p = 3 mod 8, and it acts
by G = Cl(Z[/—p]) on the set S of F,-isomorphism classes of elliptic curves
with endomorphism ring Z[\/—p] — such curves are said to live on the floor.
The motivation for this choice comes from [7, Prop. 8], which identifies S with

S;‘ ={a€eF,]| y? = 2% + az? + z is supersingular I3

i.e., every curve on the floor has a unique representative in Montgomery form
and, conversely, every supersingular Montgomery curve over F,, has endomor-
phism ring Z[/—p]. This convenient fact allows for compact and easily verifiable
public keys. Furthermore 0 € S; makes for a natural choice of sg.

Contributions
The main contributions of this paper are as follows.

(a) One of our main observations is that for p = 7 mod 8, a very similar state-
ment applies to the surface, consisting of Fp-isomorphism classes of elliptic
curves with endomorphism ring Z[(1 + v/—p)/2]. Concretely, we show that
this set can be identified with

S, ={A€F,| y? = 2% + Ax? — x is supersingular }, (1)

which again contains 0 as a convenient instance of sg. The tweaked Mont-
gomery form y? = x2 + Az? — 2 does not seem to have been studied before.
From the viewpoint of efficient arithmetic, it is equivalent with the standard
Montgomery form: we will show that the required adaptations to the Mont-
gomery ladder and to Vélu’s isogeny formulae (in the version of Renes [19])
just amount to a few sign flips, with the exception of 2-isogenies, which
require a separate treatment. Therefore, the protocols built from the action
of CL(Z[(1+ /=p)/2]) on S, are near-copies of those built from CSIDH.!

(b) If p =7 mod 8 then the prime 2 splits in Q(y/—p), which allows for the use
of horizontal 2-isogenies. We show that computing 2-isogenies is an order
of magnitude faster than computing /¢-isogenies for odd ¢. The cost of a
2-isogeny is dominated by a single exponentiation over F,, leading to a
noticeable speed-up (e.g., our CSURF-512 protocol below performs about
5.68% faster than CSIDH-512). We stress that this improvement is totally
orthogonal to all previous speed-ups, constant-time measures (see e.g. [9,15])
and cryptographic applications (see e.g. [4,7,11]) that have appeared in the
literature so far.

! Moreover, if p = 3 mod 4 then 23 + Az? — z is automatically square-free, allowing
for a marginally simpler key validation. But this deserves a footnote, at most.
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We note along the way that, by working on the surface, we naturally get rid
of the factor Zs that is present in C4(Z[\/—p]) when p = 3 mod 8. Because of
the interplay between floor and surface, this factor does not give extra security
(see Remark 2). Furthermore, it provides a possible hindrance for isogeny-based
threshold schemes: when using more than two parties one must map the prob-
lem into C4(Z[\/—p])?, which comes at a small cost if the group structure is
unknown [12].

Apart from these benefits, given the limited pool of hard homogeneous spaces
available, having the complete supersingular picture at our disposal adds freedom
to the parameter selection and leads to a better understanding of the interplay
between floor and surface. This being said, primes p = 1 mod 4 are omitted from
our discussion, the main reason being Lemma 1 below: for such p, supersingular
elliptic curves over F,, never admit a model of the form y* = 2® + Az? £ 2. This
complicates comparison with [7]. It is possible that other elliptic curve models
can fill this gap, but we leave that for future research.
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thesis [1], which was the direct inspiration for this research. We thank Luca De
Feo for pointing out the relevance to isogeny-based threshold schemes [12], and
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part by the Research Council KU Leuven grants C14/18/067 and STG/17/019
and by CyberSecurity Research Flanders with reference number VR20192203.

2 Background, and Formulation of Our Main Theorem

Consider a prime number p > 3 and a supersingular elliptic curve E/F,. Its
Frobenius endomorphism 7p satisfies 7g o mg = —p, hence Z[/—p] can be
viewed as a subring of the ring End,(E) of F,-rational endomorphisms of E. If
p = 1 mod 4 then this leaves us with one option for End,(E), namely Z[/—p]
itself. If p = 3 mod 4, which is our main case of interest, then we are left with
two options for End,(E), namely Z[,/—p] and Z[(1 + /—p)/2].

For each such option O, we let £0¢,(O) denote the set of F,-isomorphism
classes of elliptic curves E/F,, for which End,(E) = O. If p = 3 mod 4 then
El,(Z[\/—p]) is called the floor, whereas E€4,(Z](1 + \/—p)/2]) is called the
surface; this terminology stems from the structure of the 2-isogeny graph of
supersingular elliptic curves over F,,, see Delfs—Galbraith [13].

Remark 1. If p = 3 mod 4 then it is easy to decide whether a given supersingular
elliptic curve E/F,, is located on the floor or on the surface: in the former case
|[E(Fp)[2]] = 2 while in the latter case |E(F,)[2]] = 4. If p = 3 mod 8 then
the 3 outgoing 2-isogenies from a curve on the surface all go down, that is,
the codomain curves all live on the floor. If p = 7 mod 8 then only one of the
codomain curves is located on the floor.
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Recall that S, denotes the set of all coefficients A € F, such that £, : y? =
2% + Az? —  is a supersingular elliptic curve. The elements of S, will be called
Montgomery~ coefficients and the corresponding elliptic curves Montgomery~
curves. As we will see below, such curves are always located on the surface.
Mutatis mutandis, the set S contains the Montgomery™ coefficients a € F), \
{2} such that the Montgomery™ curve E : y? = 23+ ax?+ 2 is supersingular.
If p = 3 mod 8 then such curves are necessarily located on the floor. However,
this is not true if p = 7 mod 8, in which case we will occasionally write S; o to
denote the subset of ST corresponding to curves with endomorphism ring O.

p
To every E € £0¢,(0O) and every a C O we can associate the subgroup

Ela) = ({{PeEB|é(P)=x} C E,
¢ca

where, of course, ¢ should be viewed as an endomorphism of E through the
isomorphism End,(F) = O identifying 7 with /—p. We then have:

Theorem 1. The map p : C£(O) x E6L,(O) — £40,(O) sending ([a], E) to ax
E := E/FEla] is a well-defined free and transitive group action.

Proof. See [21, Thm. 4.5] and its proof. O

Here C¢(O) denotes the ideal-class group of O, and [a] denotes the class of an
invertible ideal a C O.

The assumption underlying CSIDH is that this is a hard homogeneous space,
as soon as p is large enough. From a constructive point of view, the following
version of Theorem 1, obtained by incorporating [7, Prop. 8] and Vélu’s isogeny
formulas (in the version of [19, Prop. 1]), forms its backbone.

Theorem 2. Ifp = 3 mod 8 then the map p* : CL(Z[\/=p]) x S;f — S, sending
([a],a) to

Wxa=|a-3 3 <x(P)—x(1p)> I =)

PeE}a] PeE][a]
P#o0 P#oco

is a well-defined free and transitive group action. Here we assume (0,0) ¢ E;[a].

The assumption (0,0) ¢ E[a] is not a restriction since C4(Z[,/=p]) is generated
by ideals of odd norm, and by design CSIDH acts by such ideals only.?

Our main theoretical tool is the following variant of Theorem 2, on which
our CSURF-512 protocol from Sect. 6 relies:

2 It has been pointed out, e.g. in [8,17], that allowing for the action of (4,/—p — 1)
could lead to a minor improvement. See also Remark 2.
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Theorem 3. If p =3 mod 4 then the maps

CUZ[/=p]) x S, — S, if p=3 mod 8,
P {Cﬂ(Z[(l—i—H)/QD x S, — S, if p="Tmod 8

sending ([a], A) to

hS]

1
[a«xA:=[A-3 > (x(P)—f—x(P)) - I =P
PeE; [a] PeE, [a]
P#oc0 P#o0o
are well-defined free and transitive group actions. Here, we assume that the ideal
a representing [a] has odd norm.

We again note that the class group is generated by ideals of odd norm. However,
if p =7 mod 8 then C4(Z[(1 + /—p)/2]) also admits invertible ideals of norm 2,
which can be used to speed up the evaluation of p~ significantly. These require
a separate treatment, which is outlined in Sect. 4.

Apart from a striking analogy with Theorem 2, the reader might notice that
Theorem 3 is in seeming conflict with Theorem 1 when p = 3 mod 8. Indeed,
since the curves E, always have endomorphism ring Z[(1 + \/—p)/2], it seems
that p~ is acting by the wrong class group! However, in Sect. 3 we will see that
every curve on the surface has three representants in S, and at the same time
|CL(Z[\/—p])| = 3|CLZ[(1+ +/—p)/2]|- It turns out that, somewhat surprisingly,
Vélu’s formulas consistently link both factors 3 to each other.

We note that Theorem 2 can be extended to cover p = 7 mod 8 as well, by
merely adding a subscript Z[/=—p] to S; . But for such p there is also a surface
version of Theorem 2, which is more subtle and will be discussed in Sect. 5.

Further Notation and Terminology

The identity element of an elliptic curve E will be denoted by oo and context
will make it clear to which curve it belongs. An important convention is that
if p = 3 mod 4, then for a a square in F,, we denote by 1/a the unique square root
which is again a square; this can be computed as aP*1)/4, Finally, for B € Zg
we write [—B; B] for the set of integers [-B, B] N Z.

3 Properties of Montgomery~ Curves

3.1 Montgomery~ Arithmetic: Just a Few Sign Flips

One of the advantages of Montgomery™ curves is that arithmetic on them can
be done very efficiently. Fortunately, this can easily be adjusted to work for
Montgomery ™ curves. E.g., the formulas for point doubling and differential addi-
tion, for use in the Montgomery ladder, take the following form.

Proposition 1. Let E} : y* = 23 + Az? — x be an elliptic curve over a field K
of characteristic different from two, with P,Q) € E (K).
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1. If P =00 or x(P)3 + Ax(P)? — x(P) = 0, then 2P = cc. Else

(x(P)? + 1)*

*CP) = 100Py + As(PY —2(P))’

2. If{P,Q,P+Q,P —Q}N{oo} =0, then

(z(P)z(Q) +1)?
(x(P) —2(Q))*

Proof. This is almost a copy of the corresponding proofs in [2]. O

2(P+Q)z(P - Q) =

Likewise, computing odd degree isogenies between Montgomery™ curves just
amounts to a few sign changes with respect to the formulas from [19, Prop. 1],
leading to the following statement (we will treat 2-isogenies separately in Sect. 4).

Proposition 2. Let E} : y* = 2 + Az? — x be an elliptic curve over a field of
characteristic not two. Let G C E (K) be a finite subgroup such that |G| is odd,
and let ¢ be a separable isogeny such that ker(¢) = G. Then there exists a curve
Eg: y? = x3 + Bx? — 2 such that, up to composition with an isomorphism,

9o:E, — Ly
(a?,y) = (f(x)acoyf/($>)7

where +1
xrxr
fw=e J[ 70—
TeG\{oo} T
Writing
1
im II or o= ¥ (ere).
TeG\{oo} TeG\{oo}

we also have that B = (A — 30), ¢2 = .

Proof. Let i,0 € K be such that 2 = —1 and 2 = 4, and let £ = |G|. We will
construct the isogeny ¢ as the concatenation ¢3 o ¢ o @1 as illustrated in the
following diagram,

E; — Ep

b of

+ P2 +
a Eb

where ¢9 : Ef — Elf is the isogeny from [19, Prop. 1], and the elliptic curves
are given by the Montgomery™ forms Ef : y? = 23 + a2? + x and E; cy? =
%+ bx? + x.
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The isogenies ¢; and ¢3 are in fact isomorphisms (over an extension field)
given by
¢1:Ey — EF
(2, y) — (—iz, 0y)
and
¢s: B — Ep
(z,y) = (iz, —ify).

It is easy to verify that a = —iA and B = ib. The rest of the proof is just a
straightforward calculation. With the formulas from [19] we can compute the
coefficient b as 7(a — 35) = (—i)‘m(A — 30) where

T = T = H —ixr = (—i)é_lﬁ7
Tep1(G)\{0} TeG\{o0}
F= > or— 1) = > —in TR
o T T o T i(ET o ‘o
Te¢1(G)\{oo} TeG\{oo}

Similarly if we define

Feu (me — 1)
r — T
Te¢1(G)\{oo}
then with ¢y = (—i)*~ 7, we have
(¢p20¢1)(x,y) = ( —iz), coby f'(—i ))
—txxr — 1 - 5,
= ——— |, éobyf'(—iw)
—ixr — xp
T€¢>1(G \{oo}
xxr —1 o,
= —mj—zx) , Cofy f'(—iz)
TeG\{ } T
= ( it f (), Gobyf' (—i ))
( ), cofy(— )e L (x ))
If we assume £ = 1 mod 4 then (—i)*~! = 1 such that ¢ is just a square root

of m. Composing this with ¢3(z, y) (iz, —ify) we get that

d)(xvy) = (f(f'?)foyf/(x)),

as well as B = w(A — 30). In this case we let ¢ = ¢p.
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If £ = 3 mod 4 then ¢? = —r and the isogeny may not be defined over K.
Post-composing it with the isomorphism 7 : (x,y) — (—z,iy) fixes this if needed.
In this case we find

¢(£C, y) = (f(x)v _iébyf,(x))y
and again B = 7(A — 30). Defining ¢y = —icy finishes the proof. O
As usual, it is better to use projective coordinates to avoid costly field inver-

sions, i.e., to represent the z-coordinate of a projective point P = (X : Y : Z)
as z(P) = X/Z; the required adaptations are straightforward.

3.2 Locating Supersingular Montgomery® Curves

We now switch to curves over finite prime fields F,,. The lemma below shows that
supersingular Montgomery~ curves over F,, are always located on the surface.

Lemma 1. Let p > 3 be a prime number and let A € F}, be such that E : y? =
23 4+ Ax? — x is supersingular. Then p = 3 mod 4, and there is no P € E,(F,)
such that 2P = (0,0); in particular, End,(E,) = Z[(1 + /—p)/2].

Proof. Let P be a point doubling to (0,0); note that, necessarily, both coordi-
nates are non-zero. The tangent line at P has slope
3z(P)? +2Ax(P) — 1
2y(P)

But, since the line should pass through (0, 0), a simpler expression for this slope
is y(P)/x(P). Equating both expressions leads to z(P)? + 1 = 0. Now:

— If p = 1 mod 4 then we conclude z(P) = +i € F,, and hence y(P)? = —A F 2i.
If both expressions on the right-hand side are non-squares then their product
A% + 4 is a square, but then z*® + Az? — x factors completely over F,. We
conclude that in any case 4 | |E (F,)| = p + 1, which is a contradiction.

— If p = 3 mod 4 then this shows that such a point P cannot be F,-rational.
But then E, (Fp)[2°] = Z/(2°) x Z/(2) for some e > 1, since |E, (F,)| =
p+ 1 = 0mod 4. Thus there are 3 outgoing F-rational 2-isogenies, hence in
view of [13, Thm. 2.7] our curve must be located on the surface. O

The conclusion p = 3 mod 4 also applies to supersingular Montgomery™ curves,
since it is known [2] that these always carry an Fp-rational point of order 4.

So, from now on, let us assume that p = 3 mod 4. Then the above lemma
settles the ‘if” part of Proposition 4 below, which can be viewed as the surface
version of the following statement:

Proposition 3. Let p > 3 be a prime number such that p = 3 mod 4 and let
E be a supersingular elliptic curve over F,. If End,(E) = Z[\/—p] then there
exists a coefficient a € F, \ {£2} for which E is F,-isomorphic to the curve
Ef :y?* =2 + ax® + x. Furthermore,
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— this coefficient is always unique,
— if p = 3 mod 8 then the converse implication holds as well.

Proof. If p = 3 mod 8 then this is [7, Prop. 8]. If p = 7 mod 8 then the relevant
part of the proof of [7, Prop. 8] still applies. O

Proposition 4. Let p > 3 be a prime number such that p =3 mod 4 and let E
be a supersingular elliptic curve over F,. Then End,(E) = Z[(1 + /=p)/2] if
and only if there exists a coefficient A € F,, for which E is Fp-isomorphic to the
curve B : y? = a3 + Ax® — x. Furthermore,

— if p =3 mod 8 then there exist exactly three such coefficients,
— if p= "7 mod 8 then this coefficient is unique.

We will prove this proposition by means of the following convenient tool,
connecting floor and surface:

Lemma 2. Let p > 3 be a prime number such that p = 3 mod 4. Then

T S;,z[\/?p] — S, ra —2a/V/4—a?
1s a well-defined bijection.

Proof. For a,b € F,, with a®> —4b # 0 let us write E,; for the elliptic curve
y? = 23 + ax? + bz, which admits the well-known 2-isogeny

y(P)? __b :
Ea,b - E72a a2—4b - P (z(P)2 ’ y(P)(l z(P)? )) itp 7& (070)7 o (2)
’ o) if P € {(0,0),00}.

If a € S;:z[ 5 then we find that Ej = F, 1 is 2-isogenous to the curve

vV —
E72a,a274 : y2 = {,C3 - 2a$2 + (612 — 4):17,

which is necessarily supersingular. Since E; lives on the floor we see that a? — 4
is not a square in F,, hence 4 — a? is a square and letting § = V4 — a2, the

substitution = « dz, y — 6°/%y transforms the above equation into y? = x° —

2a/v4 — a?z* — x. We conclude that 7 is indeed well-defined.
Conversely, if A € S then we find that £y = E4 1 is 2-isogenous to
E_ o a244: y? =3 — 2427 + (A? +4)z.

Since Ej lives on the surface by Lemma 1, we have that A? + 4 is a square
in F,,. Letting 6 = v A? 4+ 4, the same substitution transforms our equation
into y? = 2% — 24/ A% + 422 + x. Tt is easily checked that this curve has no
F,-rational points of order 2 besides (0,0), hence the map

S, — S;:Z[\/jp] A —2A/\/ A%+ 4 (3)

is also well-defined. An easy calculation shows that it is an inverse of 7. O
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Proof of Proposition 4. By Proposition 3 each Fp-isomorphism class of elliptic
curves on the floor is represented by a unique Montgomery™ curve. Since such
curves have a unique Fj-rational point of order 2, the proof of Lemma 2 shows
that Fp-rational 2-isogenies give a 1-to-1 correspondence between E04,(Z[\/—p])
and S, . But on the level of F-isomorphism classes, by [13, Thm. 2.7] this cor-
respondence is 3-to-1 if p = 3 mod 8 and 1-to-1 if p = 7 mod 8. a

If p = 7mod 8 then Proposition 3 leaves open whether or not there exist
a € S such that E} is located on the surface. To answer this, we rely on the
following lemma.

Lemma 3. If p = 7mod 8 then every E € ELL(Z[(1 + /=p)/2]) comes with
three distinguished points of order 2:

— P~, the x-coordinates of whose halves are not defined over Fp,
- Pf‘, whose halves are not defined over Fy,, but their x-coordinates are,
— P, whose halves are defined over F,,.

Proof. From the structure of E(F,)[2°°] one sees that there is indeed a unique
point P; of order 2 whose halves are F-rational. If we position P; at (0,0) we
find a model 3% = 2% + ax? + bz, where necessarily b is a square, as can be seen
by mimicking the proof of Lemma 1. When translating the other points of order
2 to the origin we get similar equations, of which the coeflicients at z become
§(6 £ a)/2 with 6 = v/a? — 4b. The product of these coefficients equals —bd?,
hence we conclude that one coefficient is a non-square and one coefficient is a
square. So, again as in the proof of Lemma 1, we see that the former translated
point equals P~, while the latter translated point equals P;'. O

Corollary 1. If p = Tmod 8 then each E € £, (Z[(1 + +/—p)/2]) admits
exactly 2 coefficients a € Fy, \ {£2} for which E is Fp-isomorphic to the curve
Efy? =2% +ax? + 2.

Proof. By Proposition 4, such curves admit a unique Montgomery™ model. Note
that, for this model, P~ is positioned at (0,0). The two Montgomery™ models
are obtained by translating P;” or P;" to (0,0) and scaling down the resulting
b-coefficient (which is a square) to 1, by means of a coordinate change. a

Table 1 summarizes how and with what frequency Montgomery® curves show
up as representatives of F-isomorphism classes of supersingular elliptic curves.
Figures1 and 2 give an accompanying visual representation.

4 2-Isogenies Between Montgomery~ Curves

In this section we assume that p = 7 mod 8 and we consider the maximal order
Z[(1+ /=p)/2], in which (2) = (2, (v/=p — 1)/2)(2, (v/=p + 1)/2). We describe
a fast method for computing the repeated action of one of the factors as a chain
of 2-isogenies. This relies on the following remarkably precise statement (recall
our convention on square roots!):
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Table 1. The ratio of the number of Montgomery=+ coefficients to the number of
F,-isomorphism classes of supersingular elliptic curves.

(1950l : (€, (O)]) | (IS, | = 1€66,(O)))

p =3 mod 8 O:Z[H‘Z/TP] 0 (3:1)
O =17Z[y ) (1:1) 0

p=T7mod 8 O:Z[@} (2:1) (1:1)
O =17Z[y ) (1:1) 0

p=1mod4 0 0

——e  &Uy(Z[V=p))

LI Y

Fig. 1. The supersingular isogeny graph over F, with p = 3 mod 8. The black dots
represent supersingular elliptic curves up to F,-isomorphism. The yellow lines represent
the , which are necessarily between the surface and the floor. The purple lines
represent the /-isogenies for some fixed ¢ such that (¢, 7—1) generates C£(Z[/—p]). This
implies that the f-isogenies on the floor create one big cycle which we need to depict as
spiraling around three times. Indeed, the action of (¢, m—1) on the surface should result
in the same F-isomorphism class as first computing a vertical 2-isogeny taking us to the
floor, then performing the action of (¢, 7—1), and finally computing a vertical 2-isogeny
back to the surface. The red dots and lines represent the Montgomery™ coefficients,
which are 1-to-1 with the isomorphism classes on the floor. This correspondence forms
the basis for the original CSIDH setting described in [7]. The blue dots and lines
represent the Montgomery ™ coefficients, which are 3-to-1 with the isomorphism classes
on the surface. (Color figure online)
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Fig. 2. The supersingular isogeny graph over F, with p = 7 mod 8. The black dots
represent supersingular elliptic curves up to Fj-isomorphism. The yellow lines represent
the , where we assumed that (2, (y/—p—1)/2) generates the class group. The
red dots and lines represent the Montgomery™ coefficients, which are 2-to-1 with the
isomorphism classes on the surface and 1-to-1 with the isomorphism classes on the floor.
The blue dots and lines represent the Montgomery™ coefficients, which are 1-to-1 with
the isomorphism classes on the surface. Unlike in Fig. 2, no f-isogenies for odd ¢ are
depicted here since it is more natural to draw the cycle of 2-isogenies on the surface.
(Color figure online)

Lemma 4 (Addendum to Lemma 3). Assume p =7 mod 8 and consider an
elliptic curve E : y? = 23 + az® + bx € E00,(Z[(1 + /=p)/2]). Let § = Va? — 4b
and Ty = ((—a +0)/2,0), Ty = ((—a — 0)/2,0). Then:

1. if (0,0) = P~ then Ty = Py and T1 = P},
2. if (0,0) = P;" then Ty = Py and Ty = P~
3. if (0,0) = Py then Ty = P~ and Ty = P;'.

Proof. The change of coordinates z «— x + (—a + §)/2 yields

ny(er a2+5) (x+6) =2+ 7a;35502+6(7a2+5)x (4)

and positions T3 at the origin. As in the proof of Lemma 1 we see that 17 = P1+
or T} = P5" if and only if the coefficient §(—a + §)/2 is a square, i.e., if and only
if —a + ¢ is a square.

In particular, for case 2 it suffices to show that —a + § is a square. To this
end, note that the 2-isogeny from the proof of Lemma 2 takes our input curve
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E:y? = 2%+ ax® + bz to y? = 2% — 2a2? + 622, while mapping P, to (0,0).
But then an F-rational half of P, is mapped to an F,-rational half of (0,0),
which is necessarily of the form (£4, /262(—a £ J)). We conclude that at least
one of —a + § or —a — § is a square, but then both elements are squares since
their product equals the square 4b.

Similarly, for case & it suffices to prove that —a + § is not a square. We can
consider the same 2-isogeny, which now maps P, to (0,0). Using that any point
Q € E(F,2 \ F,) doubling to P;" satisfies 75(Q) = —@Q, which is different from
both @ and Q + (0,0), we conclude that the image of P;" cannot be F,-halvable.
From this the desired conclusion follows.

Finally, to settle case I, consider the curve (4), whose point (0,0) is either
P;" or Py. Also note that the first non-trivial factor in (4) corresponds to P~.
But using the identity

—a+30 2_46(—a+6)_ a+6\°
2 2 - 2 ’

we can rewrite (4) as

_ —a+395 + a+d _ —a+35 _ a+d
y2 = z— 2 2 T — 2 2 .
2 2

Using 2 and the fact that (a + J)/2 is a square, we see that if (0,0) = P;", then
the first non-trivial factor of (4) would instead correspond to P, . We conclude
that (0,0) = P, from which the lemma follows. O

This will be combined with the following fact:
Lemma 5. Assume that p =7 mod 8 and let E € E00,(Z[(1+ /—p)/2]). Then

E[(Q,\/j’;_lﬂ:@ﬂ and EKz,\/jZH)]:wlﬂ.

Proof. Asin the proof of Lemma 2 one checks that P~ takes us down to the floor,
so it suffices to prove the first equality. Let Q € E(F,) be such that 2Q = P;"
and let ¢ denote the endomorphism ZZ=1, then ¢(P5) = ¢(2Q) = 26(Q) =
7E(Q) — Q = oo, from which the statement follows. O

The formulas to compute 2-isogenies between Montgomery™ curves seem
easiest if we perform almost all of them on isomorphic Montgomery™ curves. We
formulate the procedure in the form of an algorithm.

Sketch of the Proof of Algorithm 1. Note that quadratic twisting swaps the roles
of Pf‘ and P2+ , so with Lemma 5 in mind, we can simply flip the sign of A
at the start and the end of the algorithm and focus on P,. Line 4 constitutes
a translation x « 2 + (—a + §)/2, which by Lemma 4 positions T} = P5"
at the origin, followed by the 2-isogeny from (2) and a rescaling to obtain a
Montgomery™ curve.
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Algorithm 1. Computing the action of (2,(y/=p —1)/2)° on A € S, with
p =7 mod 8

1: if e =0 then return A

2: else

3: A —sign(e) - A

4: A — 2A73\/AT+4

A4+/A244
for i from 2 to e do
A—23+AWA2—-4-A))
A A+34/A2—-4
\/2\/A274(A+ A274)

8: return sign(e) - A

Line 6 is immediate from [19, Proposition 2], where it should be noted that,
due to our choice of canonical square root, ac(PzJr ) is always a square so that we
do not need to consider possible twists. Line 7 is just a translation followed by
a rescaling to put everything back in Montgomery™ form. O

5 ‘New’ Hard Homogeneous Spaces

For each non-zero entry of Table 1 we obtain a specialization of Theorem 1. For
instance, Theorem 2 corresponds to the entry covering Montgomery™ curves,
primes p = 3 mod 8 and endomorphism ring O = Z[/—p]. The main goal of
this section is to prove Theorem 3, which takes care of two further entries,
namely those corresponding to Montgomery™ curves, primes p = 3,7 mod 8 and
endomorphism ring O = Z[(1 + /=p)/2]:

Proof of Theorem 3. If p = 7 mod 8 then this follows immediately from Theo-
rem 1, along with Proposition 2 and the fact that each Fp-isomorphism class on
the surface is represented by exactly one Montgomery ™ curve.

If p = 3 mod 8 then consider the bijection 7 from Lemma 2, and let p™ be
the group action from Theorem 2. We then define

CUZ[V=p)) x Sy — 8« ([a], A) = 7(p™ ([a], 771 (4))),

which is clearly a well-defined free and transitive group action, simply because 7
is a bijection. So it suffices to show that this matches with p~. For this, consider
a Montgomery~ coefficient A and an invertible ideal a C Z[,/—p] having odd
norm, along with the subgroup of E; spanned by E [a] and (0,0). We quotient
out this subgroup in the following two ways:

— We first quotient out by E7; [a], using the formulas from Proposition 2, yielding
a Montgomery ™~ curve E 5. Let us abusingly denote the corresponding isogeny
by p~, and note that it maps (0,0) to (0,0). So we can continue by applying
the 2-isogeny from (2), in order to arrive at the Montgomery™ curve Ej,l( B)
on the floor.
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— Conversely, we apply the 2-isogeny from (2), taking us to the Montgomery™
curve Ej_l(A). Note that this maps E[a] to Ej_l(A) [a], which we quotient
out in turn, by means of the formulas from [19, Prop. 1]. By the same abuse of
notation, we denote the latter isogeny by p™. Because every curve on the floor
is represented by a unique Montgomery™ coefficient, this necessarily takes us
to E:l( B

Thus we obtain the diagram

E;, —"— Ej

Jon [oo

+
+ P +
i = B
with 04 and 6p denoting the above 2-isogenies, where our reasoning in fact
shows that [+1]ofp o p™ = p* 060 4. This implies that [+2] o p~™ =0 o pT 0f4.
Multiplication by £2 does not change the curve E5, so we are done. a

Remark 2. Here are two examples of how the surface can help in understanding
the floor. We assume p = 3 mod 8.

— Let a,a’ € S} be given and let [a] € C{(Z[/=p]) be an unknown ideal class
such that a’ = [a] xa (action by p* on the floor). By the foregoing proof this
is equivalent with 7(a’) = [a] x 7(a) (action by p~ on the surface), which on
the level of F),-isomorphism classes implies that

E = laxE ),
where a is the ideal of Z[(1++/=p)/2] generated by a. Clearly, in order to find
[a] it suffices to find [a], and then simply try the 3 corresponding possibilities
for a. This confirms that the factor 3 in |C£(Z[\/=p])| offers little extra security
to CSIDH.

— If we want a fast evaluation of the action of [(4,/—p — 1)] € C4(Z[\/—p]) on
S}‘,Ir , this can be done by composing two 2-isogenies, thereby passing through
the surface using 7 and 77!. We leave it as an exercise to verify that this
leads to the simple formula [(4,/=p — 1)] @ = 2(a — 6)/(a + 2), which was
first derived in [17, §4.2].

This leaves us with the two entries corresponding to Montgomery™ curves
and primes p = 7 mod 8. This behaves less uniformly since some curves live on
the surface and some live on the floor, and in any case these entries seem of
lesser cryptographic interest.

If p = 7mod 8 then |CL(Z][\/—p])| = |CLZ[(1 + \/—p)/2])|. Hence in view
of Table 1 there are exactly 3 times as many supersingular Montgomery™ coeffi-
cients a € F,\ {£2} as there are Fp-isomorphism classes of supersingular elliptic
curves:
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— Under the map a — E, one third of these are in a 1-to-1 correspondence
with £00,(Z[/—p]). In particular, Theorem 2 remains valid for p = 7 mod 8,
provided that we replace S+ with S;'

=
— According to the proof of Corollary 1, the other two thirds split into

{aES 0,0) ¢ 2EF(F,) }

S (14521 2[(1+v=p)/2 | (

and

={a€s; (0,0) € 2B, (F,) },

[(HF)/Q 1+F/2]|

and both sets are in a 1-to-1 correspondence with E00,(Z[(1 + /—p)/2]).
Since the instantiated versions of Vélu’s formulae map (0,0) to (0,0), in
the statement of Theorem 2 we are equally allowed to replace Z[/—p] with
+ : C

Z[(1+/=p)/2] and S with Sp (14,2, for any choice of i =1,2.
Remark 3. The latter setting again allows for horizontal 2-isogenies, therefore it
should give rise to very similar timings as those reported upon in Sect.6. One
minor drawback is that Alice and Bob should agree on the value of 7 and validate
each other’s public keys as such; moreover 0 can no longer be used as a starting
coefficient.

Remark 4. Alternatively, it is natural to view

+ +
Spaiarv=p/ar A So a0y

as two orbits under the free but non-transitive action

N +
CUZIA+V=D)) X S} 2114 )20 — Spziev)/2)

described by the same formulae. Using that the quadratic twisting map E} —
ET, jumps back and forth between the two orbits, along with the fact that
[a] x B* = ([a] 7! % E)* (see e.g. [8, Lem. 5]), the two orbits can be glued together
into a single orbit under an action by the dihedral group Dih C4(Z[(14+/—p)/2]).

6 Implementation

We assume that the reader is familiar with how CSIDH is being set up in prac-
tice [7]. In this section we use Theorem 3 and Algorithm 1 to design a variant of
CSIDH acting on S, rather than Sf. Recall from [7] that CSIDH-512 uses the
prime
p=4- (3-...-373) - 587 — 1~ 210008
—_————
73 first odd primes

and then samples exponents from the range [—5;5]™* to represent an element in
the class group and let it act on 0 € S;‘ , for a conjectured 128 bits of classical
security. Concretely, the exponent vector (ey,...,e74) in this case represents
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the class group element (3,\/—p — 1)¢t --- (587, /—p — 1)¢7+. For the sake of
comparison, we propose CSURF-512 which works over F,, where

p=2%-3. (3-...-380) — 1~ 2512880
N————’

74 consecutive primes,
skip 347 and 359

This prime will speed up the computation of a class group action in multiple
ways. First of all, the largest isogeny we need to compute is of degree 389 instead
of 587. Secondly, p+1 carries an extra factor 3 that can help with sampling points
of order 3 to compute 3-isogenies. Indeed, finding an ¢-torsion point typically
amounts to sampling a random point P and multiplying it by (p+1)/¢, which has
a 1/¢ chance of failure (i. e. we end up in 00). For CSURF-512 we can multiply
a random point P by both (p 4+ 1)/9 and (p + 1)/3 to try and find a point of
order 3, improving our chance of failure to only 1/9.

The biggest speed-up however stems from the fact that p = 7 mod 8, so we
now have 2 as a 75th prime to use. Furthermore 2-isogenies are very fast due
to their simple and explicit formulae, see Algorithm 1, so we can sample the
exponent for 2 from a much larger interval. In practice we evaluate these 2-
isogenies first, without pushing through points, and then proceed with the other
primes as in CSIDH.

We implemented both CSIDH-512 and CSURF-512 in Magma [6] to compare
their performance. With the exception of 2-isogenies, both implementations are
totally similar, making use of the (projective) Montgomery ladder, the pushing
through of points, etc., the only differences being the sign switches discussed
in Sect. 3.1. However, we did not implement any of the constant-time measures
since these are orthogonal to the speed-up we described. Based on experiments,
a near-optimal set to sample exponent vectors from seems to be

I = [—137;137] x [—4;4] x [—5; 5% x [—4; 4],

which results in 275 - 928 . 1146 ~ 2255995 (istinct secret vectors. As in CSIDH-
512, we heuristically expect that these vectors represent the elements in the
class group quasi-uniformly, by mimicking the reasoning from [7, §7.1]. Note
that for 3-, 5- and 7-isogenies we sample from a smaller interval, since the ease of
computing the isogeny is outweighed by the high failure probability of finding the
needed torsion points. Sampling from this specific set of exponent vectors gives
CSURF-512 a speed-up of about 5.68% compared to CSIDH-512; this estimate
is based on an experiment generating 25000 public keys in both settings. Our
source code can be found at https://github.com/TDecru/CSURF.

As a final remark, we note that the advantage of working on the surface
is expected to diminish when the underlying prime p becomes larger, since the
relative contribution of 2-isogenies will decrease. This is especially relevant given
the ongoing discussion about the conjectured quantum security of the protocol,
see for example [3,5,18]. However, if p = 7 mod 8 then the surface will always
outperform the floor to some extent. This means that setting up these larger
instantiations of the CSIDH protocol should preferably be done on the surface,
in any case.
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Abstract. We introduce an efficient post-quantum signature scheme
that relies on the one-wayness of the Legendre PRF. This “LEGen-
dRe One-wAyness SignaTure” (LegRoast) builds upon the MPC-in-the-
head technique to construct an efficient zero-knowledge proof, which is
then turned into a signature scheme with the Fiat-Shamir transform.
Unlike many other Fiat-Shamir signatures, the security of LegRoast can
be proven without using the forking lemma, and this leads to a tight
(classical) ROM proof. We also introduce a generalization that relies on
the one-wayness of higher-power residue characters; the “POwer Residue
ChaRacter One-wAyness SignaTure” (PorcRoast).

LegRoast outperforms existing MPC-in-the-head-based signatures
(most notably Picnic/Picnic2) in terms of signature size and speed. More-
over, PorcRoast outperforms LegRoast by a factor of 2 in both signature
size and signing time. For example, one of our parameter sets targeting
NIST security level I results in a signature size of 7.2 KB and a sign-
ing time of 2.8ms. This makes PorcRoast the most efficient signature
scheme based on symmetric primitives in terms of signature size and
signing time.

Keywords: Post-quantum signatures - Legendre PRF -
MPC-in-the-head

1 Introduction

In 1994, Shor discovered a quantum algorithm for factoring integers and solv-
ing discrete logarithms in polynomial time [26]. This implies that an adversary
with access to a sufficiently powerful quantum computer can break nearly all
public-key cryptography that is deployed today. Therefore, it is important to
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look for alternative public-key cryptography algorithms that can resist attacks
from quantum adversaries. Recently, the US National Institute of Standards and
Technology (NIST) has initiated a process to solicit, evaluate, and standardize
one or more quantum-resistant public-key cryptographic algorithms [22]. One of
the 9 signature schemes that advanced to the second round of the NIST project is
Picnic [7,19,27], a signature scheme whose security only relies on symmetric-key
primitives.

Indeed, a key pair for Picnic consists of a random secret key sk and the cor-
responding public key pk = F'(sk), where F' is a one-way function which can be
computed with a low number of non-linear binary gates [7]. To sign a message
m the signer then produces a non-interactive zero-knowledge proof of knowledge
of sk such that F(sk) = pk in a way that binds the message m to the proof.
These zero-knowledge proofs (whose security relies additionally only on a secure
commitment scheme) are constructed using the MPC-in-the-head paradigm [17].
This results in a signature scheme whose signatures are 33 KB large for 128 bits
of security. Later, Katz et al. developed Picnic2 [19], which reduces the signa-
ture size to only 14 KB by moving from a 3-party MPC protocol in the honest
majority setting to an n-party protocol with preprocessing secure in the dishon-
est majority setting. However, this increased number of parties slows down the
signing and verification algorithms. Picnic and Picnic2 are round 2 candidates
in the NIST project [27]. To study the effect of selecting a different function
F, Delpech de Saint Guilhem et al. constructed the BBQ scheme using MPC
protocols for arithmetic secret sharing to base the signatures on the security of
the AES algorithm instead of the less scrutinized block cipher LowMC [24].

Contributions. In this work we propose to use the Legendre PRF [9], denoted
by Lk(-), as one-way function, instead of LowMC or AES. The Legendre PRF
is a promising alternative since it can be computed very efficiently in the MPC
setting [15]. However, a major limitation of the Legendre PRF is that it only
produces one bit of output, which means that the public key should consist
of many PRF evaluations Lk (i1),...,Lxk(i1), at some fixed arbitrary list Z =
(i1,--- ,ir) of L elements of F, to uniquely determine the secret key K. Hence,
the zero-knowledge proof needs to prove knowledge of a value K’ such that
L/ (i) = Lk (i) for all i € T simultaneously, which results in prohibitively large
signatures. Luckily, we can relax the relation to overcome this problem. Instead
of proving that the signer knows a K’ such that L/ (i) = Lk (i) for all i € Z, we
let a prover prove knowledge of a K’ such that this holds for a large fraction of
the ¢ in Z. We show that the relaxed statement allows for a much more efficient
zero-knowledge proof. This allows us to establish LegRoast, an MPC-in-the-head
based scheme with a signature size of 12.2 KB and with much faster signing and
verification algorithms than the Picnic2 and BBQ schemes. To further improve
the efficiency of LegRoast, we propose to use higher-power residuosity symbols
instead of just the quadratic one (i.e. the Legendre symbol) in a second scheme
called PorcRoast. This results in signatures that are only 6.3 KB large and in
signing and verification times that are twice faster than LegRoast.
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A comparison between the signature size and signing time of LegRoast and
PorcRoast versus existing signatures based on symmetric primitives (Picnic [27]
and SPHINCS+ [16]) is shown in Fig. 1. Even though LegRoast and PorcRoast
do not have an AVX optimized implementation yet, we see that LegRoast has
faster signing times than both Picnic and SPHINCS+, and that PorcRoast is
even faster than LegRoast. We conclude that PorcRoast is the most efficient post-
quantum signature scheme based on symmetric primitives in terms of signature
size and signing time.

However, note that there are several other branches of post-quantum signa-
tures, such as lattice-based (e.g. Dilithium and Falcon [12,21,23]), Multivariate
signatures (e.g., Rainbow, LUOV, MQDSS, MUDFISH [2,5,6,10,11,25]) and
isogeny-based signatures (e.g. CSI-FISH [4]), some of which result in more effi-
cient signature schemes.

Roadmap. After some preliminaries in Sect.2, we introduce a relaxed PRF
relation in Sect. 3. We then sketch an identification scheme in Sect.4 which we
formalize as a signature scheme in Sect. 5. We finally discuss parameter choices
and implementation results in Sect. 6.

—8— PorcRoast (Not AVX optimized)
—€— LegRoast (Not AVX oprimized)
—— SPHINCS+s/f (AVX optimized, AES-NI)
—e— Picnicl/2 (AVX optimized)
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Fig. 1. Signature sizes and timings of post-quantum signature schemes based only on
symmetric primitives.

2 Preliminaries - The Legendre and Power Residue PRF's

For an odd prime p the Legendre PRF is conjectured to be a pseudorandom
function family, indexed by a key K € Z,, such that Lx takes as input an
element a € ), and outputs the bit

= [ (552) o
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where (%) € {—1,0,1} denotes the quadratic residuosity symbol of a mod p. We
note that the function Lx above is defined such that Lo(a - b) = Lo(a) + Lo(b)
for all a,b € F5. (Note also that Lx(a) = Lo(K +a).)

The seemingly random properties of quadratic residues have been the subject
of study for number theorists at least since the early twentieth century, which is
why Damgard proposed to use this construction in cryptography [9]. Since then,
the security of the Legendre PRF has been studied in several attack models.
In the very strong model where a quantum adversary is allowed to query the
PRF in superposition, a key can be recovered in quantum polynomial time [8].
If the adversary is only allowed to query the PRF classically, there is a mem-
oryless classical attack that requires computing O(pl/ 2log p) Legendre symbols
and making O(p'/?logp) queries to the PRF [20]. Finally, if the adversary is
restricted to querying only L Legendre symbols, the best known attack requires
computing O(plog? p/L?) Legendre symbols [3].

Damgard also considers a generalisation of the Legendre PRF, where instead
of using the quadratic residue symbol (%) = a"7 mod p, the PRF uses the k-th
power residue symbol defined as (%)k = o"F mod p, for some k that divides
p— 1. We define the power residue PRF, analogous to the Legendre PRF, as the
keyed function L% : F, — Zj, where for an odd prime p = 1 mod k, £¥ (a) is
defined as

)

Lk (a) = i if (a+ K)/g" = h* mod p for some h € FX
* 0 if(a+K)=0modp

where g is a fixed generator of F,;. We see that the function LE is a homomor-
phism of groups from F; to Zj.

Note that for k = 2, this notation coincides with the original Legendre PRF.
In this paper, we use the generic notation and we separate the k =2 and k£ > 2
cases only in the experimental sections to highlight the advantages gained by
using £ > 2. One advantage of the power residue PRF is that it yields logk
bits of output, instead of a single bit. The best known attack against the power
residue PRF in the setting where an attacker is allowed to query the PRF L
times requires computing O(plog? p/(kLlog® k)) power residue symbols [3].

3 The (Relaxed) Power Residue PRF Relation

In this section, we define the Legendre and power residue PRF NP-
languages R, », for kK > 2, which consist of the symbol strings of outputs of
the £F PRF for a given set of inputs. We also define a relaxed version of these
languages Rg.r, which consist of the strings that are very close (up to addition
by a scalar in Zj) to a word in R », where the Hamming distance dy is used
and (§ parameterizes the slack.

For properly chosen parameters, it follows from the Weil bound that the
relaxed version is as hard as the exact relation, but the relaxed relation will
lead to much more efficient signature schemes. To simplify notation, for a list
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Z = (i1,--- ,ip) of L arbitrary elements of Z,,, we denote a length-L Legendre/k-
th power residue PRF as:

F¥:.F, — 7t
K — (Lhe(ir), -, Lhe(in)).

Definition 1 (Legendre/k-th power residue PRF relation). For an odd
prime p, a positive integer k | p — 1 and a list T of L elements of Z, we define
the Legendre/k-th power residue PRF relation Ryx with output length L as

Rew = {(FYK),K)€ZE xF, | K €F,}.

Definition 2 ((-approximate PRF relation). For 8 € [0,1], an odd prime
p, @ positive integer k | p— 1 and a list T of L elements of Z, we define the
B-approzimate PRF relation Rgex with output length L as

Ry ={(s,K) € Zf xFy | 3a € Zy : du(s + (a,...,a), Ff(K)) < L}
where dg (-, -) denotes the Hamming distance.

It follows from the Weil bound for character sums that if 3 is sufficiently small
and L is sufficiently large, then the (-relaxed power residue relation is equally
hard as the exact power residue relation, simply because with overwhelming
probability over the choice of Z = (41,---,i5) every witness for the relaxed
relation is also a witness for the exact relation. The proof is given in Appendix A.

Theorem 1. Let B(n,q) denote the binomial distribution with n samples each
with success probability q. Take K € [Fp, and take s = Ff(K) Then with prob-
ability at least 1 — kp - Pr [B(L,1/k+1/\/p+2/p) = (1 — B)L] over the choice
of Z, there ewist only one witness for s € Rgrr, namely K, which is also a
witness for the exact relation Rk .

4 Identification Scheme

In this section, we establish a Picnic-style identification scheme from the
Legendre/k-th power residue PRF. We first sketch a scheme very close to the
original Picnic construction [7] and gradually add more optimizations, present-
ing each in turn. Even though the final goal is to construct a signature scheme,
we use the language of identification schemes in this section to relate the scheme
to existing constructions. We delay the security proof to the next section, where
we first apply the Fiat-Shamir transform [13] before we prove that the resulting
signature scheme is tightly secure in the ROM. The proof of security of the inter-
active identification scheme presented here can be derived from the one provided
in the next section.
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Secret Public Secret Public
P K P:K N B
— MPC- —1 MPC- V: {I(J)}jzl
in-the- in-the- }|—
head head
£k (i ch 1@
( KU’))je[L] ( xl ))je[BJ
Fig. 2. Picnic-stye identification scheme Fig. 3. Checking only B symbols

Starting Point. To begin, we take the Picnic2 identification scheme and replace
the LowMC block-cipher by the PRF Ff The key pair is then sk = K and
pk = F¥(K) € ZF. From a high-level view, the protocol can be sketched as
in Fig.2 where the prover runs an MPC-in-the-head proof with N parties on
a secret sharing of K, to prove to the verifier that he knows K such that
((K;gi1 )yeens (K;giL )) is equal to the public key. We also use the more efficient
method recently proposed by Baum and Nof [1] based on sacrificing rather than
the cut-and-choose technique.

Relaxing the PRF Relation. As a first optimization, rather than computing
all of the L residue symbols with the MPC protocol, we only check a fixed
number B of them. To do so, the verifier chooses random inputs IV, ... 1(F)
in Z at which the £¥ PRF is evaluated to check the witness. It is crucial that the
verifier sends his choice of I()s after the prover has committed to his sharing
of K, because if a malicious prover knows beforehand which symbols are going
to be checked, he can use a fake key K’ such that (K'JFTI(J)) = pk;() only for
j € [B]. This probabilistic method of selecting which circuit will be executed
with the MPC-in-the-head technique is similar to the “sampling circuits on the
fly” technique of Baum and Nof [1].

This is now an identification scheme for the [-approximate Legendre PRF
relation; a prover that convinces the verifier with probability greater than (1 —
B)B+(1—(1—8)P)/N could be used to extract a 3-approximate witness following
the formalism presented in [1, Section 4]. This protocol is sketched in Fig. 3.

Computing Residue Symbols in the Clear. Since computing residue sym-
bols is relatively expensive, we avoid doing it within the MPC protocol. We use
an idea similar to that of Grassi et al. to make this possible [15]. First, we let
the prover create sharings of B uniformly random values ("), ... r(B) ¢ F)* and
commit to their residue symbols by sending s) = £E () to the verifier. Then,
the MPC protocol only outputs 0ol) = (K + I0))r(), Since K 4 IY) is masked
with a uniformly random value with known residue symbol, o) does not leak
information about K (except for the residue symbol of K +10)). The verifier then
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computes L (01)) himself in the clear, and verifies whether it equals pk; ¢, +5sU).
The correctness of this check follows from the facts that £§ : F) — Zj is a group
homomorphism.

Note that the prover can lie about the values of s/) = £(r()) that he sends
to the prover. This is not an issue because he has to commit to these values
before the choice of 114 is revealed. This is the reason why we defined K’ to be
an B-approximate witness for pk if F¥(K') is close to pk = FE(K) up to addition
by a scalar. This identification protocol is sketched in Fig. 4.

Secret Public .
) : Secret Public
Pk {r} 8 :
_ j
V. {I(J)}{/S:I P:K, {7‘(])};3:1
MPC- VIO,
in-the- MPC- [ [ G5B
head in-the- P {O(”}J:l
head ;
ea V. {/\(J)};le
A
K + 1)) |—)
(( * 4 )JE[B] E
Fig. 4. Computations in the clear. Fig. 5. The final scheme.

Verifying Instead of Computing Multiplications. Instead of using the
MPC protocol to compute the products 0ol7), the prover can just send these prod-
ucts directly to verifier. We then use the MPC-in-the-head protocol to instead
verify that o) = (K 4+ I0)) .70 for all j € [B]. A big optimization here is that
rather than verifying these B equations separately, it is possible to just check a
random linear combination of these equations:

After the prover sends the 0\?) values, the verifier chooses random coefficients
AD AP for the linear combination. Then, the MPC protocol is used to
compute the error term F defined as

E— ZA(J) ( K+I<g>)ru>_0a>) Z (J)+Z)\(J) [Dp) o),

Jj=1 Jj=1 Jj=1

s}

Clearly, if all the oU) are correct, then E = 0. Otherwise, if one or more of the
09 are wrong, then E will be a uniformly random value. Therefore, checking
if E = 0 proves to the verifier that all the 0l9) are correct, with a soundness
error of 1/p. Moreover, since the A9), 0() and I¥) are public values, we see that
E can be computed with only a single nonlinear operation! This means we can
compute E extremely efficiently in MPC. The identification scheme with this
final optimization is sketched in Fig. 5.

We note that a single execution of the interactive identification scheme is
not enough to achieve negligible soundness error (e.g. the prover has probability
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1/N to cheat in the MPC verification protocol). To resolve this, M executions
must be run in parallel.

5 LegRoast and PorcRoast Signature Schemes

We now formalize the signature schemes LegRoast (with & = 2) and PorcRoast
(with k& > 2) which are constructed from the identification scheme of Sect. 4 with
the Fiat-Shamir transform [13], by generating the challenges using three random
oracles Hy, Hs and Hs. The message is combined with a 2A-bit salt and bound
to the proof by hashing it together with the messages of the prover.

Parameters. Our new signature schemes are parametrized by the following val-
ues. Let p be a prime number and let & > 2 be an integer such that &k | p—1. Let L
be an integer determining the length of the public key, 7 a pseudo-randomly
chosen list of L elements of Z, and let B < L denote the number of k-th
power residue symbols in the public key that will be checked at random. Let N
denote the number of parties in the MPC verification protocol and let M denote
the number of parallel executions of the identification scheme. These values are
grouped under the term params.

Key Generation, Signing and Verifying. The KGen(1*, params) algorithm sam-

ples sk = K & F, uniformly at random and computes the public key pk =
F¥(K). The Sign(params, sk, m) algorithm, for message m € {0, 1}* is presented
in Fig. 6. The Vf(params, pk,m, o) algorithm is presented in Fig. 7.

Security. The EUF-CMA security [14] of the LegRoast and PorcRoast signature
schemes follows from a tight reduction from the problem of finding a witness for
the Rggr-relation, which is equally hard as a key recovery on the power residue
PRF for our parameters. The proof of Theorem 2 is included in Appendix B.

Theorem 2. In the classical random oracle model, the LegRoast and PorcRoast
signature schemes defined as above are EUF-CMA-secure under the assumption
that computing B-approrimate witnesses for a given public key is hard.

6 Parameter Choices and Implementation

This section shows how to choose secure parameters for the LegRoast and
PorcRoast signature schemes, and what the resulting key and signature sizes
are. We also go over some of the implementation details and the performance of
our implementation.
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Sign(params, sk,m) :
Phase 1: Commitment to sharings of K, randomness and triples
1: Pick a random salt: salt < {0,1}**.

2: for e from 1 to M do

3: Sample a root seed: sd. & {0,1}*.

Build binary tree from sd. with leaves sde 1,...,sde .
for i from 1 to N do
Sample shares: K ;, ré}i), ce ré]f), Ge,is be,i, Ce,i <— Expand(sde,i).

Commit to seed: C. ; < Hsd (salt €,1,5de ;).
Compute witness offset: AK, + K — Zf\;l Ke .
9: Adjust first share: K. 1 < Ke1 + AK..
10: Compute triple: a. Zfil Ge,iy be Zivzl be,; and ce < ae - be.
11: Compute triple offset: Ace < c. — Zf\il Ce,i-
12: Adjust first share: ce,1 < ce,1 + Ace.
13: for j from 1 to B do
14: Compute residuosity symbol: s « £k (re ) where r PO 83
15: Set o1 < ((Ce,i)ie[N]7 (Sgﬂ)je[g], AK., Ace)ee[]\/[].
Phase 2: Challenge on public key symbols

1: Compute challenge hash: hi < Hi (m,salt,o1).

2: Expand hash: (I )eE[M], ] < Expand(h1), where 19 e1.
Phase 3: Computation of output values

1: for e from 1 to M and for j from 1 to B do

2: Compute output value: om — (K + Iéj)) . rgj).

3: Set o2 + (0¢ (¢ ),...,Oe ))eeM
Phase 4: Challenge for sacrificing-based verification

1: Compute challenge hash: ha < Ha (h1,02).

2: Expand hash (e, )\21), A )\gB))ee[M] + Expand(hz2), where e, /\é") € Zp.
Phase 5: Commitment to views of sacrificing protocol

1: for e from 1 to M do
2: for i from 1 to N do
3 Compute shares: e,; < Ge,i + €cKei and Pei < be,i + Zle )\gj)rgg.
4: Compute values: a. <+ Zfil Qe,i and e Ziv:l Be,i-
5: for ¢ from 1 to N do
6 Compute product shares: z.; < ZB f)\.g”rgi)[éj).
7 1fz—1thenzmez“+ZB A9l
8 Compute check value shares: e, ; <— aebw + Bele,i — Ceyi + €cZe,i-
9: Set 03 < (e, Be, (e iy Beis Ve,i)ie[N])ee[M]-
Phase 6: Challenge on sacrificing protocol

1: Compute challenge hash hs < Hs (h2, 03).

2: Expand hash (ic)ce[ar) < Expand(hs), where i, € [N].
Phase 7: Opening the views of sacrificing protocol

1: for e from 1 to M do

2: seedse + {log,(IN) nodes in tree needed to compute sde ; for i € [N]\ i}.
3: Output: o = (salt, h17h37(AKe,Ace,oe b EB) e, Be,seedse, C. 7 )ee[n)-

Fig. 6. Signature scheme from proof of knowledge of k-th power residue PRF pre-image.
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Vf(params, pk,m, o):
1: Parse o = (salt, h1, hs, (AK., Ace, o<61>, R o(eB>, e, Be,seedse, C. 5, )eeln))-
2: Compute ho < Hz(hl, (Oéﬂ)ee[]\/[]’je[]g]). A
3: Expand challenge hash 1: (Lgl), R IéB))ee[M] < Expand(h1), where 19 e 1.
4: Expand challenge hash 2: (e, /\(61), R /\(EB))EE[M] <+ Expand(h2).
5: Expand challenge hash 3: (ic)cepm) < Expand(hs).
6: for e from 1 to M do
7 Use seeds. to compute sd. ; for i € [N]\ ie.
8: for i from 1 to 4. — 1 and from i. + 1 to N do
9: Sample shares: Ko, 7”((:1')7 e ,rg), Ge,isDe,iy Ce,i < Expand(sde,;).
10: if i = 1 then
11: Adjust shares: K. ; < Kc; + AK. and ce,; < ce,i + Ace.
12: Recompute commitments: C7 ; <— H(salt, e, 4, sdc ;)
13: Recompute shares: o ; < Ge,i +€cKe s and B ; < be,i + Zle /\éj)rgi).
14: Recompute product shares: z; Zle —A£j>ré{2 19,
15: if i £ 1 then
B L
16: Zeyi & Zei+ 2.7:1 N2 2N
17: Recompute check value shares: 7:,1' — Qebeyi + Bele,i — Ce,i + €cZeyi-
18: Compute missing shares: o ; < ae—>_, ; oc;and B ; < Be—>2, ;B
19: Compute missing check value share: v} ; = aefle — Zi# Vei-
20: for j from 1 to B do ' _
21: Recompute residuosity symbols: s ck (o(e])) — pkl(j).
22: Check 1: hy = Hy(m,salt, (Ci)ien, (s977)e8), AKe, Ace)eein)
23: Check 2: hs = Hs(h2, (e, Be, (ocZ,i, ﬂ:,iv'}/z,i)ie[N])ee[M])
24: Output accept if both checks pass.

Fig. 7. Verifying algorithm for LegRoast and PorcRoast.

6.1 Parameter Choices

Choosing p, L and Z. We choose p and L such that the problem of finding
a (-approximate witness for the PRF relation has the required security level.
To do this, we first choose p and L such that the problem of recovering the
exact key from L symbols of output is hard. For our proposed parameters we
choose L such that the public key size is 4 KB, (i.e. L = 32768/ log(k)). Different
trade-offs are possible (see Remark 1). Then, we set [ such that

k-p-Pr[B(L,1/k+1/y/(p) +2/p) > (1 - B)] <27*.

With this choice, Theorem 1 says that with overwhelming probability, finding a
(B-approximate key is equivalent to finding the exact key. Section 2 gives a short
overview of attacks on the Legendre PRF for various attack models. However,
in the setting of attacking LegRoast and PorcRoast, the adversary is restricted
even more than in the weakest attacker model considered in the literature: an
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attacker learns only a few evaluations of the Legendre PRF on pseudorandom
inputs over which the attacker has no control. If the L inputs are chosen at
random, the best known attack is a brute force search which requires computing
O(p/k) power residue symbols, and the attack complexity becomes independent
of L. For Legroast, we propose to use a prime p of size roughly 2*, where X is the
required security level. We choose the Mersenne prime p = 227 — 1 to speed up
the arithmetic. For PorcRoast, we use the same prime and k = 254 such that a
power residue symbol can efficiently be represented by a single byte. For k > 2,
computing a power residue symbol corresponds to a modular exponentiation,
which is much more expensive than an AES operation, so even though an attacker
has on average only to compute 227 /k ~ 219 power residue symbols, we claim
that this still provides approximately 128-bits of security. We stress that the
quantum polynomial-time key recovery attack on the Legendre PRF does not
apply on our scheme, because the adversary can not make queries to the instance
of the Legendre PRF (and certainly no quantum queries) [8].

Choosing B, N and M. Our security proof shows that, unless an attacker
can produce a [-approximate witness, his best strategy is to query H; on many
inputs and then choose the query for which

LE(Ke +I19)r) = s 4 pk,() for all j € [B]

holds for the most executions. Say this is the case for M’ out of M executions.
He then makes one of the parties cheat in the MPC protocol in each of the
M — M’ remaining executions and queries Hsz in the hope of getting an out-
put {Ee}ee[M] that asks him to open all the other non-cheating parties; i.e. the
attacker attempts to guess i, for each e. This succeeds with probability N ~M+M .
Therefore, to achieve A bits of security, we take parameters B, N = 2™ and
M such that
i (PUBOML (1= 9)%) > M) 4 NV 20 ()
which says that for each value of M’, the adversary is expected to do at least
2* hash function evalutations for the attack to succeed. To choose parameters,
we fix NV to a certain value and compute which values of B and M minimize
the signature size while satisfying Eq. (1). The choice of N controls a trade-off
between signing time and signature size. If IV is large, the soundness error will
be small, which results in a smaller signature size, but the signer and the verifier
need to simulate an MPC protocol with a large number of parties, which is
slow. On the other hand, if N is small, then the signature size will be larger,
but signing and verifying will be faster. Some trade-offs achieving 128-bits of
security for LegRoast and PorcRoast are displayed in Table 1.

Remark 1. The parameter L controls a trade-off between public key size and
signature size. For example, we can decrease the public key size by a factor 8
(to 0.5 KB), at the cost of an increase in signature size by 21% (to 7.6 KB).
(L =512,k =254, = 0.871,n = 256, B = 10, M = 20).
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Table 1. Parameter sets for LegRoast and PorcRoast for NIST security level 1. For
all parameter sets we have p = 2'27 — 1, a secret key size of 16 Bytes and a public
key size of 4 KB (L = 32768 and 4096 for LegRoast and PorcRoast respectively). The
verification time is similar to the signing time.

Parameters | Signature size | Signing time
N |M|B | (KB) (ms)
LegRoast 16 /54| 9|16.0 2.8
k=2 643712 13.9 6.0
6 =0.449 |256|26|16|12.2 15.7
PorcRoast| 1639 | 4| 8.6 1.2
k =254 64 (27| 5| 7.2 2.8
B8=0967 256 19| 6| 6.3 7.9

6.2 Implementation

In our implementation, we replace the random oracles and the Expand func-
tion by SHA-3 and SHAKE128. The signing algorithm is inherently constant
time, except for computing Legendre symbols, which when implemented with
the usual GCD strategy, leaks timing information on its argument. Therefore, in
our implementation, we chose to adopt the slower approach of computing Leg-
endre symbols as an exponentiation with fixed exponent (p — 1)/2, which is an
inherently constant time operation. Higher-power residue symbols are also cal-
culated as an exponentiation with fixed exponent (p —1)/k. The signing-time of
our implementation, measured on an Intel i5-8400H CPU, running at 2.50 GHz,
is displayed in Table 1.

A  Proof of Theorem 1

We will use the following version of the Weil bound for character sums [18].

Theorem 3. Letp be a prime and X a non-trivial multiplicative character of F(
of order d > 1. If f € F,[X] has m distinct roots and is not a d-th power, then

Yo x(f@)| < (m=1)yp.

z€lF,
The following lemma immediately follows:

Lemma 1. Let p be a prime and k|p — 1. For any K # K' € F,, and a € Z,
let Ic i1 o be the set of indices i such that LF(K +i) = LF(K' +1i) +a. Then we
have

%—\/ﬁ—lg#IK,K/,ag§+ﬁ+2.
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Proof. Let x : F)\ — Z, be the restriction of LF to F*. Note that (unlike £*) x
is a group homomorphism. Define f(i) = (i + K)(i+ K’)*~! and let ¢(a) be the
number of ¢ such that ¢ + K and i + K’ are non-zero and x(f(¢)) = a. Clearly
we have ¢(a) < #Ix k.0 < ¢(a) + 2. Let ¢ : Zj, — C be the Fourier transform
of ¢. Then we have

o)=Y gl = Y pla) Y {1if><<f<z;>>=a

a€Zy, a€Zy 1€, i#Ki#AK' 0 otherwise

= > pox(f(i)

i€F,, i K, it K/

Observe that poy is a multiplicative character of IF¢, and that pox is trivial if
and only if p is trivial. Clearly g&(l) = p—2, and for non-trivial p, the Weil bound

says that |(p)| < /P- Therefore, if follows from the inverse Fourier transform
formula that

1 ~
¢(G)Zmzp(a)¢( p) < T+—f +\f
PELk
and similarly that £ —/p — 1 < ¢(a). O

Now we can prove Theorem 1.

Proof. According to lemma 1, For any K’ # K and a € Zj, for a uniformly
random set of inputs Z, the distance dy (F¥(K')+ (a,...,a),s) is distributed as
B(L,1—a), for some a € [1/k— % - %, 1/k+ % + %] Therefore, the probability

that for a tuple (K',a) we have dy (F¥(K') + (a,...,a),s) < BL is at most

Pr[B(L, 1/k + ) > (1—pB)L].

1
VP +2/p
Since there exists only (p — 1)k possibile values for (K’,a), the probability

that there exists a non-trivial witness for the [-relaxed relation is at most

Pr[B(L,1/k + —i57) > (1= B)L)(p — Dk O

B  Security Proof

To prove Theorem 2, we first reduce the EUF-KO security to the g-approximate
PRF relation (Lemma 2); we then reduce the EUF-CMA security to the EUF-
KO security (Lemma 3). For two real random variables A, B, we write A < B if
for all # € (—o0, +00) we have Pr[A > z] < Pr[B > z].

Lemma 2 (EUF-KO security). Let Hed, H1,H2 and Hs be modeled as ran-
dom oracles and fix a constant § € [0,1]. If there exists a PPT adversary A
that makes qs4,q1,q2 and q3 queries to the respective oracles, then there exists a
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PPT B which, given pk = F}f (K) for a random K € F,, outputs a B-approzimate

witness for pk with probability at least AdvﬁUF‘KO(l’\) — e(qsd, 91, G2, q3), with
MN(qsq +q1 + g2 + q3)?
e(gsds q1, 92, 93) = (4 ;]21/\ 42+ ds) +PrX+Y+Z7Z=M],

where X = max(Xq,..., Xy ), Y =max(Y1,...,Y,,) and Z = max(Zs,...,Zg,),
the X; are i.i.d as B(M, (1 — 3)B), the Y; are i.i.d. as B(M — X, %) and the Z;
are i.i.d. as B(M — X — Y, +).

Proof. The algorithm B receives a statement s = F¥(K) and forwards it to A as
pk. Then, B simulates the random oracles Hsq, H1, Ho and Hg by maintaining
initially empty lists of queries Qgq, Q1, Q2, Q3. Moreover, B keeps initially empty
tables 75, 7; and 7, for shares, inputs, and openings. If A queries one of the
random oracles on an input that it has queried before, B responds as before;
otherwise B does the following:

— Hsq: On new input (salt,sd), B samples x & {0,1}?*. If = € Bady, then B
aborts. Otherwise, B adds z to Bady, ((salt,sd), z) to Qs and returns .

~ Hi: On new input Q = (m,salt,01), with o1 = ((Ce.s)ie[ny, (sg]))je[B],AKe,
Ace)eepn)), then B adds C.; to Bady for all e € [M] and i € [N]. For any
(e,7) € [M] x [N] for which there exist sd. ; such that ((salt,sd.;),Cc ;) € Qsd
define

k@,i,ae,i,bm,ceyi,r(l) B Expand(sd. ;) for all j € [N]

e, ) et

and add 75[Q, e, ] (km,ae,i,be7i,ce7i,ri}2,...,rgf))je[N]. If 75]Q, e, ] is

defined for all ¢ € [N] for some e € [M], then we define

(ke, e, be, co, V1 B)) — Z (ke iy e, bewhce,i,r;li), e rif))

i€[N]
(ke, ce) «— (ke + Ake, ce + Ace)

and add T;[Q,e] = (ke,i,aei,be’i,cemré’li), ... ,rif)). Finally, B samples x &
{0,1}?*. If z € Bady then abort. Otherwise, B adds (Q,z) to Q; and z to
Bady and returns x. )

— Hz: On new input @ = (hy,02), where oy = (ogj))ee[M],je[B], B adds h; to
Bady and samples z & {0,1}?*. If # € Bady then abort. Otherwise, B adds
(Q,x) to Qg and = to Bady. If there exists (Q1,h1) € Q1, then B does the
following: let (Ee7>\£1), . .7)\£B))GE[M] — Expand(z). For each e € [M] such
that 7;(Q1,e) is defined, compute

Qe = e + €cke, Be = be + Z
JjE[B

)

)\.(gj) and

]

Ye = —Ce + aebe + ﬁeae + € Z )‘gk) (Ogj) - Iéj)réj))
ke[B]

and add 7,[Qs, €] = (ae, B¢, Ve)- Finally B returns x.
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— Hs: On new input @ = (hg,03), B adds hs to Bady and samples x & {0,1}2*.
If € Bady then B aborts. Otherwise, B adds (Q, z) to Qs, x to Bady and
returns x.

When A terminates, B goes through 7; and for each (Ke,...) € 7;, B checks
if K, is a f-approximate witness. If it is, then B outputs K. If no entry in 7;
contains a witness, B outputs L. Clearly, if A runs in time 7', then B runs in
time T 4+ O(gsa + q1 + g2 + q3)-

In the rest of the proof, we show that if A wins the EUF-KO game with
probability €, then B outputs a G-approximate witness with probability at least
€ — e(qsd, 41,42, q3) as defined in the statement of Lemma 2.

Cheating in the First Phase. Let (Quest;,best;) € Q1 be the “best” query-
response pair that A received from H;, by which we mean the pair that max-

imizes #G1((Q,h)) over all (Q,h) € Q1, where Gy(Q,h = {I }cian jerm) is
defined as the set of “good executions” e € [M] such that 7;(Q, e) is defined and

LYKo+ I9)rD)) = s 4 pk,) for all j € [B]. (2)

We show that, if B outputs L, then the number of good indices is bounded. More
precisely, we prove that #G1(Opest; , Pbest; )| < X, where X is as defined in the
statement of Lemma, 2.

Indeed, for each distinct query to H; of the form @ = (m,salt,0),

with o1 = ((Ce)ien)s (5918 AKe, Ace)eciar) and for all e € [M], let
B9NQ) = du(FF(K.) + (L¥(rI), ..., L9, s9) 4 pk) if Ti(Q, €) is defined
and Béj)(Q) = 1 otherwise. The event L implies that none of the K, in 7; is a
(-approximate witness, which means that Béj)(Q) > [ for all Q € Qy,e € [M]
and j € [B].

Since the response h = {Iéj)}ee[M]Je[B] is uniform, the probability that
for a certain e, Eq. (2) holds is J[,¢ (1 — ﬁgk)) < (1 — B)B. Therefore, we
have that #G1(Q,h)|1L < Xg, where Xg ~ B(M, (1 — 8)P). Finally, since
G1(Qbpest, s Pbest; ) is the maximum over at most ¢; values of G1(Q, h), it follows
that #G1(Qbest; , fbest; )| L < X, with X as in the statement of Lemma 2.

Cheating in the Second Round. We now look at the best query-response pair
(Qbest, > Mbest, ) that A received from Ho. This is the pair for which #Ga(Q2, ha)
is maximum, where G(Q2 = (h1, (oéj))ee[Mm[B]), hg) is the set of “good” exe-
cutions defined as follows: if there exists no @1, such that (Q1,h1) € Q1, then
all indices are bad (because this query can not lead to a valid signature). Oth-

erwise, let Q1 = (m, salt, ((Ce,¢)ic[n]s (séj))je[3]7AK€7 Ace)eerm))- If there exist
(e,7) € [M] x [B] such that

LF0D) # s + pk ), (3)
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then this query can also not result in a valid signature, so we define Go(Q2, hs) =
{}. Otherwise, we say Ga(Q2,h2) is the set of executions e € [M] for which
To[Q2,¢] = (e, Be,7e) is defined and such that a.0. = 7e.

Again, we prove that in the case that B outputs L, the number of good
indices is bounded: #Ga(Qpestys Pbest,)| L < X + Y, where YV is defined as in the
statement of Lemma 2.

Note that for fixed ae, b, ce, Ke, r(l) . rgB and 0(1) (B) the function
aelee)fe ()\(J ) — Ve (€e, )\(])) is a quadratic polynomial in €., /\(1) AP More-
over, this is the zero-polynomial if and only if ¢, = a.b. and 0(] ) = (K. —I—Iéj ))réj )
for all j € [B].

Let Q = (hq, {og)}ee[M]’je[B]) be a query to Hs. If there exists no (Q1,h1) €
Q; then G2(Q, h2) = {} with probability 1. Otherwise, either e ¢ Gy(o1, h1),
then either o) = (K, + I9)r{ for all (e, j) € [M] x [B], in which case Eq. (3)

does not hold, so G2(Q, he) = {} with probability 1, or ot # (K. +I(J))r£]) for
some j € [B] in which case a.3. — 7. is a non-zero quadratic polynomial in €,
and )\2] ), so the Schwartz-Zippel lemma says that for a uniformly random choice
of ho = {ee; A} ecranierny € Fo ') the probability that e € Go(Qsa, ho) is at
most 2/p. Therefore, we have that #G2(02, ha)46, (01,h1)=m; < M1 +Y(), where
Y, ~ B(M — Mj,2/p). Since for integers a < b and p € [0, 1] we have B(b,p) <
a+B(b—a,p), this implies that #Ga (02, h2)|46, (statepess.1 ) =111 < M1+ Y, where
Yo ~ B(M — M;,2/p). Since #Go(statepest2) is the maximum over at most go
values of #Gy(state) it follows that #Ga(statepest,2)|ar,—#6G, (statepesr.,) < M1 + Y-
Finally, by conditioning on 1 and summing over all M;, we get

#Go(statepest,2)| 1 < #Gi(statepest,1)|L +Y < X + Y.

Cheating in the Third Round. Finally, we can bound the probability that 4 wins
the EUF-KO game, conditioned on B outputting L. Without loss of generality,
we can assume that 4 outputs a signature o such that, if Q1,Q2 and Q3 are
the queries that the verifier makes to Hy, Hs and Hs3 to verify o, then A has
made these queries as well. (If this is not the case, then we can define A’ that
only outputs a signature after running the verification algorithm on A’s output.)
Now, for each query Q = (hz, ({O‘eaﬂe}eeMv {O‘e,ivﬂe,iaVe,i}ee[M],iE[N])) that A
makes to Hs, we study the probability that this leads A to win the EUF-KO
game. If there does not exist Q' = (ogj))ee[M],je[B] such that (Q’, he) € Qs then
this query cannot result in a win for A, because A would need to find such a Q' at
a later point, and B would abort if this happens. Take e € [M]\ G2(Q’, h2), then

either e & Go(Q', ha) because there exists (e’,j) € [M] x [B] such that (%o ]) #

( )y pklm, in which case, independent of hg, o4, we have that Vf(o) = 0 Or

0therw1se e € Ga(Q', ha) because a., . and v, are not defined or aef. # Y.
In this case, the query can only result in a win if exactly N — 1 of the parties
“behave honestly” in the MPC protocol. By this we mean that for exactly N —1
values of i € [N] we have that there exists sd. ; such that (sd;, Ce ;) € Qsd and,

if we put Ke i, Ge,i; be iy Ce i {ng-)}je[B] = Expand(sd. ;), then
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Qe i = Qe + €eKe,i7 ﬁe,i = be,i + Z /\gj)rgi)v
k

Ye,i = —Ce,i + aebe,i + ﬂeae,i + € Z )‘gj) (Ot(ej) - Iéj)rgl))
Jj€[B]

Indeed, if there are less than N — 1 honest parties, o4 cannot reveal N — 1 honest
views. In contrast if all the N parties act honestly, then we have v, # a3, so the
signature verification will also fail. The state (o1, h1, 02, ha,03) can only result
in a win if h3 = {ic}een is such that i, is the index of the dishonest party. Since
hs € [N]M is chosen uniformly at random, the probability that this happens for
all the e € G2(Q, h3) is

1 Mﬁ#GZ(QthZ) 1 M*#G2(Qbest,2,hbest,2)
<= .
& =G

The probability that this happens for at least one of the at most g3 queries is

1\ MMz 9
Pr[.AWins\#Gg(statebest’g) = Mg] <1- <1 - (N> > .

Conditioning on B outputting | and summing over all values of M, yields

PriAWins| L] <Pr[X+Y +Z = M].

To Conclude. We now show that if A wins the EUF-KO game with prob-
ability €, then B outputs a [-approximate witness with probability € —
e(qsd; 91, 92, g3)- Indeed, B either aborts outputs L or outputs a S-approximate
witness. The reduction B only aborts if one of the random oracles outputs one
of the at most gsq + M Nq1 + ¢2 + g3 bad values. Therefore, we have

MN(qsd + q1 + g2 + (]3)2

Pr[& aborts | < 520

By the law of total probability we have

Pr[A wins] = Pr[A wins A B aborts] + Pr[A wins A L]

+ Pr[A wins A B outputs witness]
< Pr[B aborts] + Pr[A wins | L] + Pr[B outputs witness]
< e(gsd, 41, 92, g3) + Pr[B outputs witness].

Lemma 3. Modeling the commitment scheme as a random oracle, if there is
an adversary A that wins the EUF-CMA security game against LegRoast with
advantage €, then there exists an adversary B that, given oracle access to A,
and with a constant overhead factor, wins the EUF-KO security game against
LegRoast with probability at least €— qs%%qu) — &, where qs,qsq and g3 are the
number of queries that A makes to the signing oracle, Hsq and Hs respectively.
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Proof. Let A be an adversary against the EUF-CMA security of LegRoast, we
construct an adversary B against its EUF-KO security. When B is run on input
pk, it starts A also on input pk. We first describe how B deals with random
oracle queries and signature queries, then argue that its signature simulations
are indistinguishable from real ones, and finally show that EUF-KO security
implies EUF-CMA security.

Simulating Random Oracles. For each random oracle B maintains a table of
input output pairs. When A queries one of the random oracles, B first checks
if that query has been made before. If this is the case, B responds to A with
the corresponding recorded output. If not, B returns a uniformly random output
and records the new input-output pair in the table.

Signing Oracle Simulation. When A queries the signing oracle, B simulates a
signature o by sampling a random witness and cheating in the MPC verification
phase to hide the fact it has sampled the witness as random. It then programs the
last random oracle to always hide the party for which it has cheated. Formally,
B simulates the signing oracle as follows:

1. To simulate o1, B follows Phase 1 as in the scheme with one difference: For
each e € [M], it samples AK, uniformly, effectively sampling K, at random.
B aborts if it picked a salt that was used in one of the earlier simulated
signatures.

2. B simulates the random oracle to obtain h; «— Hj(m,salt,o1).

3. To simulate o, B samples o) € Iy for each j € [B] and e € [M] in such a
way that [,k(oéj)) - sgj) = pk;0)-

4. B simulates the random orauclee to obtain hy «— Ha(h1,02).

5. To simulate o3, B must cheat during the sacrificing protocol to ensure that
Ye = a.f for all executions. To do so, for each e € [M], B first samples
i € [N] at random. Then it computes Phase 5 honestly except for Ye,i.; for
that value, it instead sets v, ; < aefe — > 7. Vesi- Finally it sets o3 as in
the scheme using the alternative v, ; value.

6. If (ho,o3) has already been queried to Hs, then B aborts. If not, B sets
hs = (i1,...,ip) with the values it sampled previously and then programs
its own random oracle Hs such that hs «— Hs(ha,03).

7. B follows the scheme to simulate o4 and the final signature o.

Finally, when A outputs a forgery for its EUF-CMA game, B forwards it as its
forgery for the EUF-KO game.

Stmulation Indistinguishability. If B doesn’t abort, the simulation of the random
oracles is perfect. Moreover, if B doesn’t abort we show that A’s can only dis-
tinguish a real signing oracle from the simulated oracle with advantage gsq/2*,
where ¢sq is the number of queries to Heq.

The simulated signatures follow the exact same distribution as genuine sig-
natures, with the only exception that in a genuine signature the (Ce,;e)ee[m] are
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equal to Hgqy(salt, e, i, sd, ; ) for a value of sd e that expands to a consistent view
of a party in the MPC protocol whereas in the simulated case, sd_ ; expands to
the view of a cheating party. Since Hgy is modelled as a random oracle, each of
the ¢ - M values of Ce’;e that A gets to see is just a random value, uncorrelated
with the rest of the view of A, unless A has queried Hsq on (salt, e, e, sd.7.)-
Since the (salt, e, i.) is unique per commitment (B aborts if a salt is repeated)
and each seed has A bits of min-entropy each query that A makes to Hgq has a
probability of at most 27 of distinguishing the simulated signature oracle form
a genuine signing oracle. Therefore, an adversary that makes gs4 queries to Hgg
has a distinguishing advantage bounded by gsq/2*.

EUF-KO Security Implies EUF-CMA Security. Finally, we establish B’s advan-
tage against the EUF-KO security game. There are two moments at which
B could abort: In phase 1 if a salt is repeated which happens with probabil-
ity bounded by ¢2/2?* (recall that a salt consists of 2\ random bits) and in
phase 6, if B fails to program the oracle Hj3, which happens with probabil-
ity bounded by g.q3/2%*, since hy has 2X bits of min entropy. Therefore, we

have Pr[B aborts] < %, where ¢s; and g3 denotes the number of signing
queries and queries to Hz made by A respectively. Conditional on B not abort-
ing, replacing the genuine oracles for the simulated oracles decreases the winning
probability of A by at most gsq/2*. Therefore, given that the winning conditions
for the EUF-KO and EUF-CMA games are identical, we have:

AdvEUFKO(10) > AqyEUF-CMA(1A) qS(qu—; q3) gs; _
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Abstract. Let A/F, and A’/F, be superspecial principally polarized
abelian varieties of dimension g > 1. For any prime ¢ # p, we give an
algorithm that finds a path ¢: A — A’ in the (¢, ..., {)-isogeny graph
in 6(pg_1) group operations on a classical computer, and 6(\/;)9—1)
calls to the Grover oracle on a quantum computer. The idea is to find
paths from A and A’ to nodes that correspond to products of lower
dimensional abelian varieties, and to recurse down in dimension until an
elliptic path-finding algorithm (such as Delfs—Galbraith) can be invoked
to connect the paths in dimension g = 1. In the general case where A and
A’ are any two nodes in the graph, this algorithm presents an asymptotic
improvement over all of the algorithms in the current literature. In the
special case where A and A’ are a known and relatively small number of
steps away from each other (as is the case in higher dimensional analogues
of SIDH), it gives an asymptotic improvement over the quantum claw
finding algorithms and an asymptotic improvement over the classical van
Oorschot—Wiener algorithm.

1 Introduction

Isogenies of supersingular elliptic curves are now well-established in cryptogra-
phy, from the Charles—Goren—Lauter Hash Function [10] to Jao and De Feo’s
SIDH key exchange [27] and beyond [2,12,13,21]. While the security of isogeny-
based cryptosystems depend on the difficulty of a range of computational prob-
lems, the fundamental one is the isogeny problem: given supersingular elliptic
curves &1 and & over Fp2, find a walk in the /-isogeny graph connecting them.

One intriguing aspect of isogeny-based cryptography is the transfer of elliptic-
curve techniques from classic discrete-log-based cryptography into the post-
quantum arena. In this spirit, it is natural to consider cryptosystems based
on isogeny graphs of higher-dimensional abelian varieties, mirroring the transi-
tion from elliptic (ECC) to hyperelliptic-curve cryptography (HECC). Compared
with elliptic supersingular isogeny graphs, the higher-dimensional graphs have
more vertices and higher degrees for a given p, which allows some interesting
tradeoffs (for example: in dimension g = 2, we get the same number of vertices
with a p of one-third the bitlength).

© Springer Nature Switzerland AG 2020
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For g = 2, Takashima [36] and Castryck, Decru, and Smith [7] have defined
CGL-style hash functions, while Costello [11] and Flynn and Ti [19] have already
proposed SIDH-like key exchanges. Generalizations to dimensions g > 2, using
isogeny algorithms such as those in [4], are easy to anticipate; for example, a
family of hash functions on isogeny graphs of superspecial abelian varieties with
real multiplication was hinted at in [9].

So far, when estimating security levels, these generalizations assume that
the higher-dimensional supersingular isogeny problem is basically as hard as the
elliptic supersingular isogeny problem in graphs of the same size. In this article,
we show that this assumption is false. The general supersingular isogeny problem
can be partially reduced to a series of lower-dimensional isogeny problems, and
thus recursively to a series of elliptic isogeny problems.

Theorem 1. There exists a classical algorithm which, given a prime £ and
superspecial abelian varieties A1 and As of dimension g over E, with p # £, suc-
ceeds with probability >1/29~1 in computing a composition of (¢,. .., {)-isogenies
from Ay to Aa, running in expected time 6((p971/P)) on P processors asp — oo
(with £ fized).

Given that these graphs have O(p?9t1/2) vertices, the expected runtime
for generic random-walk algorithms is O(p?(#+1)/4/P). Our algorithm therefore
represents a substantial speedup, with nontrivial consequences for cryptographic
parameter selection.! We also see an improvement in quantum algorithms:

Theorem 2. There exists a quantum algorithm which, given a prime £ and
superspecial abelian varieties Ay and Az of dimension g over F, with p # ¢,
computes a composition of (¢, ..., ¢)-isogenies from Ay to As running in expected

time O(\/p9=1) as p — oo (with  fized).

This reflects the general pattern seen in the passage from ECC to HECC:
the dimension grows, the base field shrinks—and the mathematical structures
become more complicated, which can ultimately reduce claimed security lev-
els. Just as index calculus attacks on discrete logarithms become more powerful
in higher genus, where useful structures appear in Jacobians [15,22,23,34], so
interesting structures in higher-dimensional isogeny graphs provide attacks that
become more powerful as the dimension grows. Here, the interesting structures
are (relatively large) subgraphs corresponding to increasing numbers of elliptic
factors in (polarized) abelian varieties. These subgraphs are relatively large, and
so random-walking into them is relatively easy. We can then glue together elliptic
isogenies, found with an elliptic path-finding algorithm, to form product isoge-
nies between products of elliptic curves, and thus to solve the original isogeny
problem. We will see that the path-finding problem in the superspecial graph
gets asymptotically easier as the dimension grows.

1 Our algorithms apply to the full superspecial graph; we do not claim any impact on
cryptosystems that run in small and special subgraphs, such as CSIDH [8].
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Notation and Conventions. Throughout, p denotes a prime >3, and ¢ a prime
not equal to p. Typically, p is large, and ¢ < log(p) is small enough that com-
puting (¢, ..., £)-isogenies of g-dimensional principally polarized abelian varieties
(PPAVs) is polynomial in log(p). Similarly, we work with PPAVs in dimensions
g < logp; in our asymptotics and complexities, g and ¢ are fixed. We say a
function f(X) isin O(g(X)) if f(X) = O(h(log X)g(X)) for some polynomial h.

2 The Elliptic Supersingular Isogeny Graph

An elliptic curve € /F,, is supersingular if E[p](F,) = 0. We have a number of effi-

cient algorithms for testing supersingularity: see Sutherland [35] for discussion.
Supersingularity is isomorphism-invariant, and any supersingular £ has j-

invariant j(€) in Fp2; and in fact the curve £ can be defined over Fj2. We let

Si(p) := {j(&) : E/F 2 is supersingular} C F 2

be the set of isomorphism classes of supersingular elliptic curves over Fp. It is
well-known that

#51(p) = | 1] + (1)

where €, =0if p =1 (mod 12), 2 if p = —1 (mod 12), and 1 otherwise.

Now fix a prime £ # p, and consider the directed multigraph Iy (¢; p) whose
vertex set is S1(p), and whose edges correspond to f-isogenies between curves
(again, up to isomorphism). The graph I'1 (¢; p) is (/4 1)-regular: there are (up to
isomorphism) £+ 1 distinct /-isogenies from a supersingular elliptic curve £/F 2
to other elliptic curves, corresponding to the £+1 order-¢ subgroups of £[¢](F,) =
(Z/¢Z)* that form their kernels. But since supersingularity is isogeny-invariant,
the codomain of each isogeny is again supersingular; that is, the £ + 1 order-¢
subgroups of £[¢] are in bijection with the edges out of j(&) in I (¢;p).

Definition 1. A walk of length n in I'1(¢;p) is a sequence of edges jo — j1 —
- — jn. A path in Iy (¢; p) is an acyclic (and, in particular, non-backtracking)
walk: that is, a walk jo — j1 — -+ — Jn such that j; = 7, if and only if i = 1'.

Pizer [32] proved that I (¢; p) is Ramanujan: in particular, I'1(¢; p) is a con-
nected expander graph, and its diameter is O(logp). We therefore expect the
end-points of short random walks from any given vertex jo to quickly yield a
uniform distribution on S;(p). Indeed, if jy is fixed and j,, is the end-point of an
n-step random walk from jo in I (¢; p), then [21, Theorem 1] shows that

1 ’< 2/l
#51(p)| ~ \ £+1

Prj, =j] — ) for all j € S1(p). (2)
The isogeny problem in I'(¢;p) is, given jo and j in S;(p), to find a path
(of any length) from jy to j in I7(¢;p). The difficulty of the isogeny problem

underpins the security of the Charles—Goren—Lauter hash function (see Sect. 3
below).
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The isogeny problem is supposed to be hard. Our best generic classical path-
finding algorithms look for collisions in random walks, and run in expected time
the square root of the graph size: in this case, O(,/p). In the special case of
supersingular isogeny graphs, we can make some practical improvements but
the asymptotic complexity remains the same: given jy and j in Fj(p;{), we can
compute a path jo — j in 6(\/15) classical operations (see [14]).

The best known quantum algorithm for path-finding [3] instead searches for
paths from jo — jj and from j — j’, where jj and j’ are both in F,,. Of the O(p)
elements in S1(p), there are O(,/p) elements contained in Fp; while a classical
search for elements this sparse would therefore run in time O(,/p), Grover’s
quantum algorithm [24] completes the search in expected time O(¥/p). It remains

to find a path from jj to j'. This could be computed classically in time O(/p)
using the Delfs—Galbraith algorithm, but Biasse, Jao and Sankar [3] show that
a quantum computer can find paths between subfield curves in subexponential
time, yielding an overall algorithm that runs in expected time O(/p).

We can also consider the problem of finding paths of a fixed (and typically
short) length: for example, given e > 0 and jo and j in S;(p) such that there
exists a path ¢ : jo — --- — j of length e, find ¢. This problem arises in the
security analysis of SIDH, for example.

3 Cryptosystems in the Elliptic Supersingular Graph

The Charles—Goren—Lauter Hash Function (CGL). Supersingular isogenies
appeared in cryptography with the CGL hash function, which operates in
I (2; p). Fix a base point jo in S1(p), and one of the three edges in I'1 (2; p) lead-
ing into it: j_1 — Jjo, say. To hash an n-bit message m = (mg,m1,...,mp_1),
we let m drive a non-backtracking walk jo — --- — j, on I1(2;p): for each
0 < i < n, we compute the two roots ag and oy of @2(j;, X)/(ji—1 — X) to deter-
mine the neighbours of j; that are not j;_1, numbering the roots with respect to
some ordering of F 2 (here @5(Y, X) is the classical modular polynomial), and
set Jiy1 = Q.

Once we have computed the entire walk jo — --- — j,, we can derive a
log, p-bit hash value H(m) from the end-point j,; we call this step finalisation.
Charles, Goren, and Lauter suggest applying a linear function f : Fp. — F,
to map j, to H(m) = f(jn). For example, if F,» = F,(w) then we can map
Jn = Jn,0 + Jnaw (with jn o and j,1 in Fp) to H(m) = ajn,o0 + bjn,1 for some
fixed random choice of @ and b in F,,. Heuristically, for general f, if we suppose
S1(p) is distributed uniformly in F2, then roughly one in twelve elements of I,
appear as hash values, and each of those has only one expected preimage in S (p).

Finding a preimage for a given hash value h in F, amounts to finding a
path jo — --- — j such that f(j) = h: that is, solving the isogeny problem.
We note that inverting the finalisation seems hard: for linear f : IE‘?, — I, we
know of no efficient method which given h in F, computes a supersingular j
such that f(j) = h. (Brute force search requires O(p) trials.) Finalisation thus
gives us some protection against meet-in-the-middle isogeny algorithms. Finding
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collisions and second preimages for H amounts to finding cycles in I(2; p). For
well-chosen p and jg, this is roughly as hard as the isogeny problem [10, §5].

SIDH. Jao and De Feo’s SIDH key exchange [27] begins with a supersingular
curve & /F 2, where p is in the form ¢-223°—1, with fixed torsion bases (Ps, Q2) =
&o[2%] and (P53, Q3) = &[3°] (which are rational because of the special form of
p). Alice computes a secret walk ¢4 : &g — -+ — €4 of length a in I7(2;p),
publishing £4, ¢a(Ps), and ¢4 (Q3); similarly, Bob computes a secret walk ¢p :
&y — -+ — Ep of length b in I'(3; p), publishing g, ¢p(P2), and ¢5(Q2). The
basis images allow Alice to compute ¢p(ker ¢4), and Bob ¢4 (ker ¢); Alice can
thus “repeat” her walk starting from £g, and Bob his walk from €4, to arrive
at curves representing the same point in S (p), which is their shared secret.
Breaking Alice’s public key amounts to solving an isogeny problem in 7 (2;p)
subject to the constraint that the walk have length a (which is particularly short).
The 3°-torsion basis may give some useful information here, though so far this is
only exploited in attacks on artificial variants of SIDH [31]. Similarly, breaking
Bob’s public key amounts to solving a length-b isogeny problem in I(3;p).
Alternatively, we can compute these short paths by computing endomorphism
rings: [20, Theorem 4.1] states that if £ and £’ are in S (p) and we have explicit
descriptions of End(€) and End(€’), then we can efficiently compute the shortest
path from & to £ in Iy (¢; p) (see [17,20,29] for further details on this approach).

4 Abelian Varieties and Polarizations

An abelian variety is a smooth projective algebraic group variety. An isogeny of
abelian varieties is a surjective finite morphism ¢ : A — A’ such that ¢(04) =
0.4/. In dimension g = 1, these definitions coincide with those for elliptic curves.

The proper higher-dimensional generalization of an elliptic curve is a prin-
cipally polarized abelian variety (PPAV). A polarization of A is an isogeny
A A— ./Z, where A = Pic’(A) is the dual abelian variety; X\ is principal if
it is an isomorphism. If 4 = £ is an elliptic curve, then there is a canonical prin-
cipal polarization A : P — [(P) — (00)], and every other principal polarization
is isomorphic to A (via composition with a suitable translation and automor-
phism). The Jacobian J¢ of a curve C also has a canonical principal polarization
defined by the theta divisor, which essentially corresponds to an embedding of
C in J¢, and thus connects J¢ with the divisor class group of C.

We need a notion of compatibility between isogenies and principal polariza-
tions. First, recall that every isogeny ¢ : A — A’ has a dual isogeny ¢ : A’ — A.
Now, if (A, \) and (A’, X’) are PPAVs, then ¢ : A — A’ is an isogeny of PPAVs
if o Nog = [d]\ for some integer d. We then have ¢f o ¢ = [d] on A (and
po¢t =[d] on A'), where ¢T := AL opo N is the Rosati dual. Intuitively, ¢ will
be defined by homogeneous polynomials of degree d with respect to projective
coordinate systems on A and A’ corresponding to A and )\, respectively. There
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is a simple criterion on subgroups S C A[d] to determine when an isogeny with
kernel S is an isogeny of PPAVs: the subgroup should be Lagrangian.?

Definition 2. Let A/F, be a PPAV and let m be an integer prime to p. A
Lagrangian subgroup of A[m]| is a mazimal m-Weil isotropic subgroup of Alm].

If ¢ # p is prime, then A[("] = (Z/"Z)?9 for all n > 0. If S C A[{] is
Lagrangian, then S = (Z/¢Z)9. Any Lagrangian subgroup of A[¢"] is isomorphic
to (Z/LZ)™ x --- x (Z/LZ)"s for some ny > --- > ng with ). n; = gn (though
not every (ni,...,ng) with ) . n, = gn occurs in this way).

We now have almost everything we need to generalize supersingular isogeny
graphs from elliptic curves to higher dimension. The elliptic curves will be
replaced by PPAVs; f-isogenies will be replaced by isogenies with Lagrangian
kernels in the ¢-torsion—called (¢, ..., £)-isogenies—and the elliptic dual isogeny
will be replaced by the Rosati dual. It remains to define the right analogue of
supersingularity in higher dimension, and study the resulting graphs.

5 The Superspecial Isogeny Graph in Dimension g

We need an appropriate generalization of elliptic supersingularity to g > 1. As
explained in [7], it does not suffice to simply take the PPAVs A/IF,, with A[p] = 0.

Definition 3. A PPAV A is supersingular if the Newton polygon of its Frobe-
nius endomorphism has all slopes equal to 1/2, and superspecial if Frobenius
acts as 0 on H'(A, O4). Superspecial implies supersingular; in dimension g = 1,
the definitions coincide.

All supersingular PPAVs are isogenous to a product of supersingular elliptic
curves. Superspecial abelian varieties are isomorphic to a product of supersin-
gular elliptic curves, though generally only as unpolarized abelian varieties. The
special case of Jacobians is particularly relevant for us when constructing exam-
ples: Je is superspecial if and only if the Hasse-Witt matrix of C vanishes.

It is argued in [7] that the world of superspecial (and not supersingular)
PPAVs is the correct setting for supersingular isogeny-based cryptography. We
will not repeat this argument here; but in any case, every higher-dimensional
“supersingular” cryptosystem proposed so far has in fact been superspecial.

In analogy with the elliptic supersingular graph, then, we define

Sy(p) :== {A: A/F,2 is a superspecial g-dimensional PPAV} / = .

Our first task is to estimate the size of Sy(p).

Lemma 1. We have #S,(p) = O(p\9+1)/2).

2 Isogenies with strictly smaller kernels exist—isogenies with cyclic kernel are treated
algorithmically in [16]—but these isogenies are not relevant to this investigation.
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Proof. See [18, §5]. This follows from the Hashimoto-Ibukiyama mass formula

Z #Alit(A) = | ijl (1+ (_P)i) )

AeSy(p) i=1

where By; is the 2i-th Bernoulli number. In particular, #5S,(p) is a polynomial
in p of degree Y 7_,i=g(g+1)/2. O

Note that #S,(p) grows quadratically in g (and exponentially in log p): we have
#51(p) = O(p), #52(p) = O(p*), #S3(p) = O(p°), and #5S4(p) = O(p'").

For each prime ¢ # p, we let I'y(¢;p) denote the (directed) graph on S,(p)
whose edges are Fp—isomorphism classes of (¢, -, £)-isogenies of PPAVs: that is,
isogenies whose kernels are Lagrangian subgroups of the /-torsion. Superspecial-
ity is invariant under (4, ..., £)-isogeny, so to determine the degree of the vertices
of I'y(¢;p) it suffices to enumerate the Lagrangian subgroups of a g-dimensional
PPAV. A simple counting argument yields Lemma 2.

Lemma 2. If A/F, is a g-dimensional PPAV, then the number of Lagrangian
subgroups of A[l], and hence the number of edges leaving A in Iy(¢;p), is

N0 =3 [ZL e,

d=0

(The £-binomial coefficient [Z]e = W, where (i)g := %, counts
the k-dimensional subspaces of F}.) In particular, I'q(¢;p) is Ng(¢)-regular; and

Ny(0) is a polynomial in £ of degree g(g + 1)/2.

We do not yet have analogues of Pizer’s theorem to guarantee that I, (¢;p) is
Ramanujan when g > 1, though this is proven for superspecial abelian varieties
with real multiplication [26]. We therefore work on the following hypothesis:

Hypothesis 1. The graph I,(¢;p) is Ramanujan.

We need Hypothesis 1 in order to obtain the following analogue of Eq.2 (a
standard random walk theorem, as in [25, §3]): if we fix a vertex .4, and consider
n-step random walks Ay — - -+ — A,,, then

Pr[An%A]—#Si(p)’< <2V]ZVVZ((?)_1> for all A€ Sy(p).  (3)

That is, random walks in I';(¢; p) converge exponentially quickly to the uniform
distribution: after O(logp) steps in I'y(¢;p) we are uniformly distributed over
Sg(p). Given specific £ and g, we can explicitly derive the constant hidden by
the big-O to bound the minimum n yielding a distribution within 1/#S¢(p) of
uniform.
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Remark 1. Existing proposals of higher-dimensional supersingular isogeny-based
cryptosystems all implicitly assume (special cases of) Hypothesis 1. For the
purposes of attacking their underlying hard problems, we are comfortable making
the same hypothesis. After all, if our algorithms are less effective because the
expansion properties of I';(¢;p) are less than ideal, then the cryptosystems built
on I',(¢;p) will fail to be effective by the same measure.

6 Superspecial Cryptosystems in Dimension g = 2

Before attacking the isogeny problem in I'y(¢;p), we consider some of the cryp-
tosystems that have recently been defined in I'»(¢;p). This will also illustrate
some methods for computing in these graphs, and as well as special cases of the
general phenomena that can help us solve the isogeny problem more efficiently.
For the rest of this section, therefore, we restrict to dimension g = 2.

Every 2-dimensional PPAV is isomorphic (as a PPAV) to either the Jacobian
of a genus-2 curve, or to a product of two elliptic curves. We can therefore split
So(p) naturally into two disjoint subsets: So(p) = Sa(p)? U Sa(p)F, where

Sa(p)” :={A € Sa(p) : A= Je with g(C) =2} and
So(p)F = {A € Sy(p): A= E x & with £,E € Si(p)} .

Vertices in So(p)” are “general”, while vertices in Sa(p)F are “special”. We can
make the estimates implied by Lemma 1 more precise: if p > 5, then

1

1 1
#52(p)J = %pg + mI?Q and #Sz(p)E = @]f + O(p)

(see e.g. [7, Proposition 2]). In particular, #S(p)Z /#S2(p) = 10/p + o(1).

Takashima’s Hash Function. Takashima [36] was the first to generalize CGL to
g = 2. We start with a distinguished vertex Ay in Sa2(p), and a distinguished
incoming edge A_1 — Ap in I3(¢;p). Each message m then drives a walk in
I';(¢4;p): at each vertex we have a choice of 14 forward isogenies (the 15th is the
dual of the previous, which is a prohibited backtracking step). The message m is
therefore coded in base 14. While traversing the graph, the vertices are handled
as concrete genus-2 curves representing the isomorphism classes of their Jaco-
bians. Lagrangian subgroups correspond to factorizations of the hyperelliptic
polynomials into a set of three quadratics, and the isogenies are computed using
Richelot’s formulee (see [6, Chapters 9-10] and [33, Chapter 8]). We derive a hash
value From the final vertex A,, as the Igusa—Clebsch invariants of the Jacobian,
in Fzz; Takashima does not define a finalisation map (into Ff,, for example).

Flynn and Ti observe in [19] that this hash function has a fatal weakness: it
is trivial to compute length-4 cycles starting from any vertex in I»(2;p), as in
Example 1. Every cycle produces infinitely many hash collisions.
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Ezample 1. Given some Ag in S5(p), choose a point P of order 4 on Ag. There
exist @ and R in Ap[2] such that ex([2]P,Q) = 1 and e2([2]P,R) = 1, but
e2(Q, R) # 1. The Lagrangian subgroups Ky := ([2]P,Q) and K|, := ([2]P, R)
of Ap[2] are kernels of (2,2)-isogenies ¢g : Ag — A1 = Ag/Ky and ¢f : Ay —
A} = Ap/K}; and in general, A; % A}. Now K; := ¢o(K}) and K/ := ¢} (Ko)
are Lagrangian subgroups of A;[2]. Writing I; = ker ¢;' and I} = ker (d)’l)T, we
see that K1 NI = (¢1(R)) and K] NI{ = (¢1(Q)). We thus define another pair
of (2,2)-isogenies, ¢1 : A1 — Ay = A;/K; and ¢} : A} — A, = A/K{. We
have ker(¢; 0 ¢o) = ker(¢) 0 ¢)), s0 Az = Aj. Now let ¢ := (¢}) o (¢})" 061 0 .
We have 1) & [4] 4,, but ¢ does not factor over [2] 4, (since A; % A}). Hence
represents a nontrivial cycle of length 4 in the graph.

The ubiquity of these length-4 cycles does not mean that I'3(2; p) is no use for
hashing: it just means that we must use a stronger rule than backtrack-avoidance
when selecting steps in a walk. The following hash function does just this.

The Castryck—Decru—Smith Hash Function (CDS). Another generalization of
CGL from I'1(2;p) to Ix(2;p), neatly avoiding the length-4 cycles of Example 1,
is defined in [7]. Again, we fix a vertex Ay and an isogeny ¢_1 : A_1 — Ag; we let
Iy C Ap[2] be the kernel of the Rosati dual ngJLl. Now, let m = (mo,...,Mp_1)
be a 3n-bit message, with each 0 < m; < 8. The sequence (mq,...,Mp_1)
drives a path through I(2;p) as follows: our starting point is A, with its
distinguished subgroup Iy corresponding to the edge A_; — Ag. For each 0 <
i < n, we compute the set of eight Lagrangian subgroups {S; 0, ..., S; 7} of A;[2]
such that S; ; N I; = 0, numbering them according to some fixed ordering on
the encodings of Lagrangian subgroups. Then we compute ¢; : A; — A;11 =
Ai/Sim,;, and let I; 11 == ¢;(A;[2]) = ker #;. Once we have computed the entire
walk Ag — -+ — A,, we can derive a 3log, p-bit hash value H(m) from the
isomorphism class of A,, (though such a finalisation is unspecified in [7]). The
subgroup intersection condition ensures that the composition of the isogenies in
the walk is a (27,...,2")-isogeny, thus protecting us from the small cycles of
Example 1.

Putting this into practice reveals an ugly technicality. As in Takashima’s hash
function, we compute with vertices as genus-2 curves, encoded by their hyperel-
liptic polynomials, with (2, 2)-isogenies computed using Richelot’s formulae. Walk
endpoints are mapped to Igusa—Clebsch invariants in IFSQ. But these curves, for-
mulze, and invariants only exist for vertices in Sa(p)?. We can handle vertices in
So(p)¥ as pairs of elliptic curves, with pairs of j-invariants for endpoints, and
there are explicit formulae to compute isogenies in to and out of Sy(p)¥ (see
e.g. [7, §3]). Switching between representations and algorithms (to say nothing
of finalisation, where So(p)¥ would have a smaller, easily distinguishable, and
easier-to-invert image) seems like needless fiddle when the probability of stepping
onto a vertex in Sy (p)¥ is only O(1/p), which is negligible for cryptographic p.

In [7], this issue was swept under the rug by defining simpler algorithms which
efficiently walk in the subgraph of I';(2; p) supported on So(p)”, and simply fail if
they walk into Sa(p)¥. This happens with probability O(1/p), which may seem
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acceptable—however, this also means that it is exponentially easier to find a
message where the hash fails than it is to find a preimage with a square-root
algorithm. The former requires O(p) work, the latter O(p?/?). In this, as we will
see, the simplified CDS hash function contains the seeds of its own destruction.

Genus-2 SIDH. Flynn and Ti [19] defined an SIDH analogue in dimension g = 2.
As in the hash functions above, Richelot isogenies are used for Alice’s steps in
I'5(2;p), while explicit formulee for (3, 3)-isogenies on Kummer surfaces are used
for Bob’s steps in I(3;p). Walks may (improbably) run into Sy(p)¥, as with
the hash functions above; but the same work-arounds apply without affecting
security. (Further, if we generate a public key in Sz(p)¥, then we can discard it
and generate a new one in Sa(p)”.) As with SIDH, breaking public keys amounts
to computing short solutions to the isogeny problem in I%(2;p) or I5(3;p),
though presumably endomorphism attacks generalizing [17] also exist.

7 Attacking the Isogeny Problem in Superspecial Graphs

We want to solve the isogeny problem in I',(¢;p). We can always do this using
random walks in O(\/#S,(p)) = O(p?9+1/4) classical steps.

Our idea is that S,;_1(p) x Si(p) maps into S,(p) by mapping a pair of
PPAVs to their product equipped with the product polarization, and the image
of Sq_1(p) x Si(p) represents a large set of easily-identifiable “distinguished
vertices” in I'y(4; p). Indeed, since the map Sgy—1(p) x S1(p) — S4(p) is generically
finite, of degree independent of p, Lemma 1 implies that

#5,(p)/#(image of Sy_1(p) x S1(p)) =0@!"") forg>1.  (4)

We can efficiently detect such a step into a product PPAV in a manner analogous
to that of the failure of the CDS hash function: for example, by the breakdown
of a higher-dimensional analogue of Richelot’s formula such as [30].

We can walk into this subset, then recursively solve the path-finding problem
in the subgraphs I'y_1(4;p),...,I1(¢;p) (each time walking from I5(¢;p) into
Ii_1(¢; p) x Iy (¢; p)) before gluing the results together to obtain a path in I'y(¢; p).

Lemma 3. Let «: A — A’ and B : B — B’ be walks in I;(¢;p) and I;(¢;p) of
lengths a and b, respectively. If a = b (mod 2), then we can efficiently compute
a path of length max(a,b) from A x B to A" x B’ in I'ty;(¢;p).

Proof. Write « = @y 0---0q, and 8 = 31 0---0 [, as compositions of (¢,--- ,¢)-
isogenies. WLOG, suppose a > b. Set Bp11 = ﬂbT, Bbr2 = Bby vy Ba—1 = ﬁbT,
Ba = Pp; then a x 8 : (a1 X B1) 0+ 0 (g X B,) is a path from A x B to
A’ x B O

Equations 3 and 4 show that a walk of length O(logp) lands in the image
of Sy—1(p) x Si(p) with probability O(1/p?~!), and after O(p9~') such short
walks we are in S;_1(p) x S1(p) with probability bounded away from zero. More
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Algorithm 1. Computing isogeny paths in I;(¢; p)

Input: A and A’ in S,(p)
Output: A path ¢: A — A" in I,(¢;p)
1 Find a path 9 from A to some point B x € in Sg_1(p) X S1(p)
2 Find a path 1’ from A" to some point B’ x £ in Sg_1(p) x S1(p)
3 Find a path 3: B — B’ in I'y_1({; p) using Algorithm 1 recursively if
g—1>1, or elliptic path-finding if g —1 =1
4 Find a path n: & — & in I'1(¢; p) using elliptic path-finding
5 Let b = length(8) and e = length(n). If b #Z ¢ (mod 2), then fail and return L
(or try again with another v and/or ', 3, or n)
6 Construct the product path 7 : B x £ — B’ x £ defined by Lemma 3.

7 return the path ¢ := ¢/ o 7o from A to A’.

generally, we can walk into the image of S;_;(p) x S;(p) for any 0 < i < g; but
the probability of this is O(1/p*9=%), which is maximised by i = 1 and g — 1.

Proof of Theorem 1. Algorithm 1 implements the approach above, and proves
Theorem 1. Step 1 computes v by taking O(p?~!) non-backtracking random
walks of length O(log(p)) which can be trivially parallelized, so with P proces-
sors we expect 5(p5_1/P) steps before finding ¢. (If A is a fixed public base
point then we can assume 9 is already known). Likewise, Step 2 takes 6(p9 —1/P)
steps to compute v’. After g — 1 recursive calls, we have reduced to the problem
of computing paths in I'(¢4; p) in Step 4, which can be done in time O(,/p/P).
Step 7 applies Lemma 3 to compute the final path in polynomial time. At each
level of the recursion, we have a 1/2 chance of having the same walk-length par-
ity; hence, Algorithm 1 succeeds with probability 1/29~1. This could be improved
by computing more walks when the parities do not match, but 1/29-! suffices
to prove the theorem. The total runtime is O(p?~—1/P) isogeny steps.

Proof of Theorem 2. Algorithm 1 can be run in a quantum computation
model as follows. First, recall from the proof of Theorem 1 that Steps 1 and 2
find product varieties by taking O(p?~!) walks of length O(log(p)). Here we
proceed following Biasse, Jao and Sankar [3, §4]. Let N be the number of walks
in O(p?~1) of length A (in O(log(p))). To compute 1, we define an injection

f:[1,...,N] — {nodes of distance A starting from A},

and a function Cy: [1,...,N] — {0,1} by Cy(z) = 1 if f(z) is in Sy_1(p) X
Si(p), and 0 otherwise. If there is precisely one x with Cy(z) = 1, Grover’s
algorithm [24] will find it (with probability >1/2) in O(v/N) iterations. If there
are an unknown ¢ > 1 such solutions, then Boyer—Brassard-Hgyer—Tapp [5] finds
one in O(4/N/t) iterations. Hence, if we take A large enough to expect at least
one solution, then we will find it in O(y/p9~1) Grover iterations. We compute
¢’ (and any recursive invocations of Steps 1 and 2) similarly.

For the elliptic path finding in Steps 3 and 4, we can apply (classical) Pollard-
style pseudorandom walks which require O( /P) memory and 5(\/]3) operations
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to find an f-isogeny path. Alternatively, we can reduce storage costs by applying
Grover’s algorithm to the full graph I'1 (¢; p) to find an ¢-isogeny path in expected
time O(,/p). Finally, Step 7 applies Lemma 3 to compute the final path.

Remark 2. We can use the same approach as Algorithm 1 to compute explicit
endomorphism rings of superspecial PPAVs. Suppose we want to compute
End(A) for some g-dimensional A in Sy(p). Following the first steps of Algo-
rithm 1, we compute a walk ¢ from A into Sy—1(p) x Si(p), classically or quan-
tumly, recursing until we end up at some & X --- x &; in S1(p)?. Now we apply
an elliptic endomorphism-ring-computing algorithm to each of the &;; this is
equivalent to solving the isogeny problem in I (¢;p) (see [17, §5]), so its cost
is in 6(\/13) The products of the generators for the End(&;) form generators
for End(&; x --- x &), which we can then pull back through ¢ to compute a
finite-index subring of End(A) that is maximal away from ¢. The total cost is a
classical O(p?~!/P) (on P processors), or a quantum O(1/p9=1), plus the cost
of the pullback.

Remark 3. Algorithm 1 computes compositions of (¢, ..., ¢)-isogenies. If we relax
and allow arbitrary-degree isogenies, not just paths in I';(¢; p) for fixed ¢, then the
elliptic path-finding steps can use the classical Delfs-Galbraith [14] or quantum
Biasse-Jao—Sankar [3] algorithms. While this would not change the asymptotic
runtime of Algorithm 1 (under the reasonable assumption that the appropriate
analogue of vertices “defined over F,” with commutative endomorphism rings
form a subset of size O(y/#54(p))), both of these algorithms have low memory
requirements and are arguably more implementation-friendly than Pollard-style
pseudorandom walks [14, §4].

8 Cryptographic Implications

Table 1 compares Algorithm 1 with the best known attacks for dimensions g < 6.
For general path-finding, the best known algorithms are classical Pollard-style
pseudorandom walks and quantum Grover search [5,24]. As noted in Remark 3,
higher-dimensional analogues of Delfs—Galbraith [14] or Biasse-Jao—Sankar [3]
might yield practical improvements, without changing the asymptotic runtime.

Table 1. Logarithms (base p) of asymptotic complexities of algorithms for solving the
isogeny problems in I'y(¢;p) for 1 < g < 6. Further explanation in text.

Dimension g 1 2 3 |4 |5 6
Classical | Algorithm 1 - 1 2 |3 |4 5

Pollard/Delfs—Galbraith [14] (0.5 (1.5 |3 |5 |7.5 |10.5
Quantum | Algorithm 1 - 05 |1 |1.5|2 2.5

Grover/Biasse-Jao—Sankar [3] | 0.25|0.75 | 1.5 | 2.5 | 3.75 | 4.25
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The paths in I';(¢; p) constructed by Algorithm 1 are generally too long to be
private keys for SIDH analogues, which are paths of a fixed and typically shorter
length. Extrapolating from g = 1 [27] and g = 2 [19], we suppose that the secret
keyspace has size O(1/#S4(p)) = O(p?9t1)/4) and the target isogeny has degree
in O(y/p), corresponding to a path of length roughly log,(p)/2 in I'4(¢;p). On
the surface, therefore, Algorithm 1 does not yield a direct attack on SIDH-style
protocols; or, at least, not a direct attack that succeeds with high probability.
(Indeed, to resist direct attacks from Algorithm 1, it would suffice to abort any
key generations passing through vertices in Sy_1(p) x S1(p).)

However, we can anticipate an attack via endomorphism rings, generaliz-
ing the attack described at the end of Sect. 3, using the algorithm outlined in
Remark 2. If we assume that what is polynomial-time for elliptic endomorphisms
remains so for (fixed) g > 1, then we can break g-dimensional SIDH keys by com-
puting shortest paths in I';(¢; p) with the same complexity as Algorithm 1: that
is, classical O(p9~1/P) and quantum O(p©¥=1/2) for g > 1.

This conjectural cost compares very favourably against the best known clas-
sical and quantum attacks on g-dimensional SIDH. In the classical paradigm,
a meet-in-the-middle attack would run in O(p99+1/8)  with similar storage
requirements. In practice the best attack is the golden-collision van Oorschot—
Wiener (vOW) algorithm [38] investigated in [1], which given storage w runs in
expected time O(pP9(9+1)/16 /(P /15)). For fixed w, the attack envisioned above
gives an asymptotic improvement over vOW for all g > 1. If an adversary has
access to a large amount of storage, then vOW may still be the best classi-
cal algorithm for g < 5, particularly when smaller primes are used to target
lower security levels. (vOW becomes strictly worse for all g > 5, even if we
assume unbounded storage.) In the quantum paradigm, Tani’s algorithm [37]
would succeed in 6(p9(9+1)/ 12y 'meaning we get the same asymptotic complexi-
ties for dimensions 2 and 3, and an asymptotic improvement for all g > 3. More-
over, Jaques and Schanck [28] suggest a significant gap between the asymptotic
runtime of Tani’s algorithm and its actual efficacy in any meaningful model of
quantum computation. On the other hand, the bottleneck of the quantum attack
forecasted above is a relatively straightforward invocation of Grover search, and
the gap between its asymptotic and concrete complexities is likely to be much
closer.

Like the size of S4(p), the exponents in the runtime complexities of all of the
algorithms above are quadratic in ¢g. Indeed, this was the practical motivation for
instantiating isogeny-based cryptosystems in g > 1. In contrast, the exponents
for Algorithm 1 and our proposed SIDH attack are linear in g. This makes the
potential trade-offs for cryptosystems based on higher-dimensional supersingular
isogeny problems appear significantly less favourable, particularly as g grows and
the gap between the previous best attacks and Algorithm 1 widens.
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A A Proof-of-Concept Implementation

We include a naive Magma implementation of the product finding stage (i.e.
Steps 1-3) of Algorithm 1 in dimension g = 2 with £ = 2. First, it generates
a challenge by walking from the known superspecial node corresponding to the
curve C: y* = 2% 4+ z over a given F,2 to a random abelian surface in I(2;p),
which becomes the target A. Then it starts computing random walks of length
slightly larger than log,(p), whose steps correspond to (2,2)-isogenies. As each
step is taken, it checks whether we have landed on a product of two elliptic
curves (at which point it will terminate) before continuing.

Magma’s built-in functionality for (2, 2)-isogenies makes this rather straight-
forward. At a given node, the function RichelotIsogenousSurfaces computes
all 15 of its neighbours, so our random walks are simply a matter of generating
enough entropy to choose one of these neighbours at each of the O(log(p)) steps.
For the sake of replicability, we have used Magma’s inbuilt implementation of
SHA-1 to produce pseudo-random walks that are deterministically generated by
an input seed. SHA-1 produces 160-bit strings, which correspond to 40 integers
in [0,1,...,15]; this gives a straightforward way to take 40 pseudo-random steps
in I'3(2;p), where no step is taken if the integer is 0, and otherwise the index is
used to choose one of the 15 neighbours.

The seed processor can be used to generate independent walks across mul-
tiple processors. We always used the seed “0” to generate the target surface, and
set processor to be the string “1” to kickstart a single process for very small
primes. For the second and third largest primes, we used the strings “17, “2”,
..., “16” as seeds to 16 different deterministic processes. For the largest prime,
we seeded 128 different processes.

For the prime p = 127 = 27 — 1, the seed “0” walks us to the starting node
corresponding to Cp/Fp2: y? = (41i + 63)2% + - - - + (6i + 12)x + 70. The single
processor seeded with “1” found a product variety E; x E5 on its second walk
after taking 53 steps in total, with By /F,2: y? = 23 + (93i + 43)z? + (23i +
93)x + (2i + 31) and Es/Fp2: y* = 2® + (98i + 73)z? + (30i + 61)z + (41 + 8).

For the prime p = 8191 = 2!3 —1, the single processor seeded with “1” found
a product variety on its 175-th walk after taking 6554 steps in total.

For the prime p = 524287 = 2!9 — 1, all 16 processors were used. The
processor seeded with “2” was the first to find a product variety on its 311-th
walk after taking 11680 steps in total. Given that all processors walk at roughly
the same pace, at this stage we would have walked close to 16 - 11680 = 186880
steps.

For the 25-bit prime p = 17915903 = 21337 — 1, the processor seeded with
“13” found a product variety after taking 341 walks and a total of 12698 steps.
At this stage the 16 processors would have collectively taken around 203168
steps.

The largest experiment that we have conducted to date is with the prime
p = 2147483647 = 23! — 1, where 128 processors walked in parallel. Here the
processor seeded with “95” found a product variety after taking 10025 walks
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and a total of 375703 steps. At this stage the processors would have collectively
taken around 48089984 steps.

In all of the above cases we see that product varieties are found with around
p steps. The Magma script that follows can be used to verify the experiments®,
or to experiment with other primes.

LI11111717711171171711711711711111111111111171111111111117

clear;

processor:

p:=2713-1;

Fp:=GF (p);
Fp2<i>:=ExtensionField<Fp,x|x"2+1>;
_<x>:=PolynomialRing (Fp2) ;

LI111111107711177171171711111711111111111111111111111111117

Next_Walk := function(str)
H := SHA1(str);
steps := [ StringTolnteger(x, 16): x in ElementToSequence(H) | x ne "0"];
return steps ,H;
end function;

JI11117717171717717171717117171717111171711117171711117177
Walk_To_Starting_Jacobian:=function(str)
steps,H:= Next_Walk(str);

CO:=HyperellipticCurve(x~5+x);

J0:=Jacobian(C0);

for i:=1 to #steps do
neighbours:=RichelotIsogenousSurfaces(JO);
if Type(neighbours([steps[i]]) ne SetCart then

JO0:=neighbours [steps[il];

end if;

end for;

return JO;
end function;
J111171171711117117171171111711111117111117111111171111117
Walk_Until_Found:=function(seed,JO);

found:=false;

H:=seed;

found:=false;

walks_done
steps_done:

while not found do

walks_done+:=1;

walks_done, "walks and",steps_done, "steps on core", processor, "for p=",p;
J:=J0;

steps,H:=Next_Walk(H);

for i:=1 to #steps do
steps_done+:=1;
J:=RichelotIsogenousSurfaces(J) [steps[il];
if Type(J) eq SetCart then

end while;
return steps,index,walks_done,steps_done,J;
end function;

I111171171711117117171171111711117117111111111111171111117

3 Readers without access to Magma can make use of the free online calculator at
http://magma.maths.usyd.edu.au/calc/, omitting the “Write” functions at the end
that are used to print to local files.
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file_name:="p" cat IntegerToString(p) cat "-" cat processor cat ".txt";
JO:=Walk_To_Starting_Jacobian("0");

steps, index,walks_done,steps_done,J:=Walk_Until_Found(processor,J0);
Write(file_name, "walks done =");

Write(file_name, walks_done);

Write(file_name, "steps_done =");

Write(file_name, steps_done);

Write(file_name, "steps=");

Write(file_name, steps);

Write(file_name, "index=");

Write(file_name, index);

Write(file_name, "Elliptic Product=");

Write(file_name, J);

II11111117711177171711711111111111111111111111111111111117
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Abstract. We present the first actively secure variant of a distributed
signature scheme based on isogenies. The protocol produces signatures
from the recent CSI-FiSh signature scheme. Our scheme works for any
access structure, as we use a replicated secret sharing scheme to define the
underlying secret sharing; as such it is only practical when the number
of maximally unqualified sets is relatively small. This, however, includes
the important case of full threshold, and (n,t)-threshold schemes when
n is small.

1 Introduction

Threshold signature schemes have recently received more and more attention
due to applications in blockchain and other scenarios where high value signa-
tures are produced. Apart from early work on threshold RSA signatures [8,21]
and DSA/EC-DSA signatures [15,19], we have seen renewed interest in meth-
ods to produce EC-DSA signatures [4,11,13,14,16-18], and interest in threshold
schemes from standards bodies such as NIST [2].

In the post-quantum world there has obviously been less work on this prob-
lem. In [6] Cozzo and Smart discuss the possibilities for threshold-izing the
Round 2 candidate signature schemes in the NIST post-quantum ‘competition’.
The authors conclude that virtually all proposed signature schemes, with the pos-
sible exception of those based on the MQ-like problems, are hard to efficiently
turn into threshold variants. However, the NIST candidates do not include any
submission based on isogenies; mainly because isogeny based signature schemes
did not become efficient until after the NIST ‘competition’ started.

Isogeny based cryptography goes back to the work of Couveignes, Rostovtsev
and Stolbunov [5,20]. The first isogeny based signature scheme was created by
Stolbunov in his thesis [22]. The basic construction was a Fiat-Shamir transform
applied to a standard three-round isogeny-based identification scheme. The prob-
lem with Stolbunov’s scheme is that one required an efficient method to sample
in the class group, and that each class group member should have an efficiently
computable unique representation.
© Springer Nature Switzerland AG 2020
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To solve these problems De Feo and Galbraith used the Fiat-Shamir with
aborts method to produce a new signature scheme, based on Stolbunov’s, called
SeaSign [9]. The SeaSign scheme was further improved by Decru et al. [10].
However, the algorithm still required two minutes to sign a single message.

Recently, Beullens et al. [1] returned to Stolbunov’s original method and by
calculating the ideal class group of an imaginary quadratic number field with
large discriminant were able to instantiate the signature scheme efficiently. This
instantiation of Stolbunov’s scheme, called CSI-FiSh, requires only 390ms to
sign or verify a message, and has signature sizes of only 263 bytes. Thus with
CSI-FiSh isogeny based signatures are truly practical.

In [12] De Feo and Meyer consider the case of making CSI-FiSh into a
threshold scheme, by distributing the secret key using the Shamir secret sharing
scheme. Their resulting protocol is efficient, but only passively secure. The main
trick that De Feo and Meyer use is to overcome the difficulty that isogenies can
be composed, but do not form a group. As a result, performing the calculation of
the signature will be more challenging than in the classic setting of distributed
signatures based on discrete logarithms. Distributed signing protocols typically
have each signer producing a partial signature which is then combined non-
interactively into the final signature. Instead, in both the protocol of De Feo and
Meyer and our protocol, the signature is produced more in the fashion of a ring
signature, with each signer needing to accept and receive a message. A major
simplification in our presentation is that we use a Replicated Secret Sharing
Scheme. This means that, for a given qualified set, we can treat the resulting
sharing as a full threshold sharing.

Just as CSI-FiSh follows the Fiat-Shamir paradigm in defining a signature
scheme from isogenies, in much the same way as Schnorr signatures are cre-
ated from discrete logarithms, we can follow the same paradigm in creating an
actively secure threshold variant as is done in the standard case of actively secure
distributed Schnorr signatures. Each signer, in the qualified set being used to
sign, attaches a zero-knowledge proof to their partial signatures. This ensures
the signer has followed the protocol, and importantly for our simulation proof it
allows the simulator to extract the underlying secret witness. A similar strategy
is used for simulating the key generation.

As just indicated, we prove our protocol secure in a simulation paradigm, but
not in a the Universal Composability setting. This is because our protocol makes
extensive use of X-protocols and the simulator needs to rewind the adversary
in order to perform knowledge extraction from the special soundness of the
underlying X-protocols. Thus our protocol should only be considered ‘stand-
alone’ secure.

We estimate that our protocol will require just under five minutes to execute
for the important cases of two party signing, or threshold signing with (n,t) =
(3,1). This cost is mainly due to the zero-knowledge proofs needed to provide
active security for our signing protocol.

Improvements to our work could be performed in a number of directions. On a
theoretical front a fully UC protocol and proof would be interesting. A method to
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produce active security, in the standalone setting, without recourse to our zero-
knowledge proofs would obviously have a big affect on performance. Extending
our method to create an actively secure variant of the Shamir based protocol
of De Feo and Meyer should be relatively easy. A change to our zero-knowledge
proof technique would be of great interest, although this seems particularly hard,
as any improvement to that would likely result in a major performance improve-
ment in the basic CSI-FiSh signature scheme as well.

2 Preliminaries

2.1 Notation

We assume that all involved parties are probabilistic polynomial time Turing
machines. Given a positive integer n, we denote by [n] the set {1,...,n}. We
let + «— X denote the uniformly random assignment to the variable x from
the set X, assuming a uniform distribution over X. We also write x « y as
shorthand for z «— {y}. If D is a probability distribution over a set X, then we
let < D denote sampling from X with respect to the distribution D. If A is a
(probabilistic) algorithm then we denote by a < A the assignment of the output
of A where the probability distribution is over the random tape of A.

2.2 Replicated Secret Sharing

Let P = {P;},_; , be the set of parties and let I" C 27 be a monotone family
for the relation of inclusion, that is if Q € I" and Q C @’ then ' € I'. Similarly,
let A C 27 be a monotone family with respect to the relation of subsets, that is
if U € Aand U' C U then U’ € A. The pair (A, I) is called a monotone access
structure if it holds that AN I = (. We will only consider access structures
where A and I are complementary to each other. The sets inside I" are called
qualified sets while the one in A are called unqualified sets. We denote by I'~
the family of minimally qualified sets in I" with respect to the inclusion relation,
that is

I ={Qel:QerQ cQ=0Q =q}.

Similarly, we define the family of maximally unqualified sets AT as
At={Uecl:UecAUCU =U =U}.

Let I'" be a general monotone access structure and let R be a ring. The
replicated scheme for I is defined as in Fig. 1. To define the replicated scheme
we first define a set B = {B €27 : P\ B € AT}, then to share a secret s € R
the dealer first additively shares s = sp, +...+sp, for B; € B. To open a secret
is straightforward. For each qualified set () we define a mapping ¥g : B — P
which allows the parties in @ to uniquely treat their shares as a full threshold
sharing of the secret. In particular for each @ we require

s:Z ZSB,

P,eQ \Yq(B)=F;
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i.e. Yo partitions the shares sp for B € B between the parties in Q. Such
replicated secret sharing schemes are clearly linear, and we will denote sharing
an element by this secret sharing scheme by (s).

For a set of adversarys A € A we can divide the sets B € B, and hence shares
sp, into three disjoint sets Ba, By and By; B = B4 U By, UBg. The sets B in
B4 correspond to shares sp that are held only by the adversary, those in By are
those held only by honest parties, whist those in By are held by a mizture of
honest and adversarial parties. For all secret sharing schemes we have By # 0,
otherwise we would have A = P. In the case of full-threshold sharing we always
have By = 0.

Replicated Secret Sharing over the ring R

Input: For party to share a secret input s € R, it performs
- Sample sp « R for B € B subject to ZBEB sp=3Ss
- For each B € B and each P; € B give sp to party P;.
Open: For a qualified set of parties (Q to open a secret s
- For each B € B if P; € Q and P; ¢ B then all parties P; € B send sp to
party P;
- Each party computes s = ZBGB SB.
ToFullThreshold: For a qualified set of parties @
- For P; € Q define zp, ZWQ(B>:P1 SB.

Fig. 1. Replicated secret sharing over the ring R

2.3 Commitment Schemes

Our protocols require access to a commitment functionality Fcommit- The com-
mitment functionality is a standard functionality allowing one party to first com-
mit, and then decommit, to a value towards another set of parties. We assume
that the opened commitment is only available to the receiving parties (i.e. it is
sent over a secure channel). The functionality is given in Fig. 2, and it is known
to be easily implemented in the random oracle model.

2.4 PRSSs

In our protocols we utilize the fact that, after a key distribution phase, parties
can generate non-interactively sharings in a replicated scheme; namely we can
define a so-called PRSS. In particular, we require the parties to engage in a pre-
processing phase in which they share keys for a Pseudo-Random Function (PRF)
in order to generate Pseudo-Random Secret Sharings (PRSSs) for the replicated
scheme (v). In particular, we make black-box use of the functionality given in
Fig. 3. PRSSs for arbitrary access structures can involve a set-up phase requiring
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The Functionality Fcommit

Init: On input of (Init, P;, B) from all players, this initializes a commitment func-
tionality from player P; to the players in B. We write this as .Fé;ﬁmit, if Bisa
singleton set B = {j} then we write &7 - and if B = P\ {i} then we write
]:CP;lmmit‘

Commit: On input of (Commit,id,data) from player P; and (Commit,id, L) from
all players in B the functionality stores (id, L).

Open: On input of (Commit,id) from all players in B U {i} the functionality re-
trieves the entry (id, data) and returns data to all parties in B.

Fig. 2. The functionality Fcommit

the agreement of exponentially-many keys in general. The general protocol is
given in [7]. To set up the PRSS in the case of our replicated scheme we use the
method described in Fig.4, where Fy(-) is a PRF with codomain equal to R.

The Functionality FRrand

Init: The functionality accepts Init or abort from all parties and the adversary. If
any party inputs abort, the functionality sends the message abort to all parties.

PRSS: On input PRSS(cnt) from all parties, if the counter value is the same
for all parties and has not been used before, the functionality samples a set
{rB}Ben + R and for each B € B sends rp to all i € B.

Fig. 3. The functionality Frand

Theorem 2.1. Assuming F is a pseudo-random function, the protocol Ilrang
securely realises Frand 1 the Fcommit-hybrid model.

Proof. The Init procedure is clearly secure assuming an secure commitment func-
tionality. As there is no interaction after Init, the protocol is clearly secure if it
is correct and passively secure. Correctness follows from basic algebra, and secu-
rity follows from the fact that F' is assumed to be a PRF and from the fact that
there is at least one B not held by the adversary (by definition of the access
structure). O

2.5 Elliptic Curves and Isogenies

In what follows £ denotes an elliptic curve over a finite field IF, where p is a large
prime. An elliptic curve is called supersingular if its number of rational points sat-
isfies the equation #E (F,) = 1 (mod p). An elliptic curve is called ordinary if this
does not happen. An isogeny between two elliptic curves E and E’ is a rational
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Protocol ITrand

Init: The parties initialise by doing the following:

1. For each i € P, for each j € P\ {i}, party i samples r; ; + {0,1}*.
2. Each pair of parties initialises an instance of Fcommit; call it F&Jh .

3. For each ¢ € P, for each j € P\ {i}, the parties call F¢J . where ¢ submits
input (Commit, id; ;, ki ;) and j gives (Commit, id; ;, L).

4. For each i € P, for each j € P\ {i}, the parties execute Fe/ . with input
(Open,id; ;) and abort if Fcommit returns abort.

5. For each B € B, each party i € B samples kp,; < {0,1}*.

6. Each set of parties B € B initialises an instance of Fcommit; call it fé;ﬁmit,

7. For each B € B, for each i € B, the parties call fé;ﬁmit where ¢ submits input
(Commit,idp,i, kB,s) and all j € B\ {i} give (Commit,idp,;, L).

8. For each B € B and for each i,j € P with ¢,j € B, the parties ¢ and j call
FEB . with input (Open,idp ;) and abort if F& . returns abort.

9. Each party i sets kp < @jepkB,; for each B containing i.

10. Finally, each party i sets cnt <— 0, and cntg < O for all B € 5 where ¢ € B.

PRSS: For each B € B containing i, party ¢ computes
B FKB (cntB)

and increments cntp.

Fig. 4. Protocol IIrand

map ¢ : E — E’ which is also a homomorphism with respect to the natural group
structure of F and E’. An isomorphism between two ellliptic curves is an injec-
tive isogeny. The j-invariant of an elliptic curve is an algebraic invariant under
isomorphism. As isogenies are group homomorphisms, any isogeny comes with a
subgroup of E, which is its kernel. On the other hand, any subgroup G C E (Fpk)
yields a unique (up to automorphism) separable isogeny ¢ : F — E/G having G
as kernel. It can be shown that the quotient F is an elliptic curve and its equation
can be computed using standard formulae [23].

The set End (E) of all the isogenies of an elliptic curve E form a ring under
the composition operator. The isogenies that can be written with coefficients in
[F, forms a subring of End (£) and is denoted by Endp, (E). For supersingular
elliptic curves this happens to be a proper subset. In particular, for supersingular
elliptic curves the ring End (E) is an order of a quarternion algebra defined over
Q, while Endg, (F) is isomorphic to an order of the imaginary quadratic field
Q (v/=p). By abuse of notation we will identify Endp, (E) with the isomorphic
order which we will denote by O. The quotient of the fractional invertible ideals
by the principal ideals in O, denoted by Cl (O) of O, is a group called class group
of O. There is a natural action of the class group on the class of elliptic curves
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defined over IF,, with order O. Given an ideal a C O one can define the subgroup
Sa = NaeaKer(a). As this is a subgroup of E one gets an isogenous elliptic curve
E /S, defined up to Fp-automorphism. We will denote the action of an element
a C O on an elliptic curve E by a* E. This action is free and transitive. This
action is believed to be hard to invert, even for a quantum computer. Specifically,
constructions based on the following problems are believed to be quantum secure:

Definition 2.1 (Group action inverse problem (GAIP) [9]). Given two
elliptic curves E and E' over the same finite field and with End (E) = End (E') =
O, find an ideal a C O such that E' = ax E.

There is a obvious decisional version of this problem, which we refer to as the
decisional-GAIP, see [22].

The CSI-FiSh signature scheme relies on the hardness of random instance of a
multi-target version of GAIP, called MT-GAIP. In [9] it is shown that MT-GAIP
reduces to GAIP when the class group structure is known.

Definition 2.2 (MT-GAIP). Given k elliptic curves E1, ..., Ey, over the same
field, with End (Ey) = --- = End(Ex) = O, find an ideal a C O such that
E;, =ax*E; for somei,j€{0,...,k} withi#j.

2.6 Digital Signature Schemes
As is standard digital signature schemes are defined by

Definition 2.3. A digital signature scheme is given by a tuple of probabilistic
algorithms (KeyGen, Sign, Verify):

— KeyGen (1>‘) s a randomized algorithm that takes as input the security param-
eter and returns the public key pk and the private key sk.

— Sign (sk, ) is a randomized signing algorithm that takes as inputs the private
key and a message and returns a signature on the message.

— Verify (pk, (o, 1)) is a deterministic verification algorithm that takes as inputs
the public key and a signature o on a message p and outputs a bit which is
equal to one if and only if the signature on p is valid.

Correctness and security (EU-CMA) are defined in the usual way.

Definition 2.4. Let A be an adversary that is given the public key pk and oracle
access to the signing oracle Signg,. In its interaction with the oracle it can receive
signatures on messages it adaptively chooses. Let Q be the set of of messages
queried by A. A digital signature scheme IT = (KeyGen, Sign, Verify) is said to be
existentially unforgeable if there exists no such an adversary that can produce a
signature on a message m ¢ Q, except with negligible probability in .
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2.7 Distributed Signature Schemes

We assume the existence of secure point-to-point channels and synchronous chan-
nels, so parties receive data at the same time in a given round. For our adversarial
model, we assume a malicious adversary that might deviate arbitrarily from the
protocol. Given our access structure (A, I'), the adversary can statically corrupt
any non-qualified set. For a corrupted party, the adversary learns all the inter-
nal variables and controls both the input and the output ports of that party.
Informally, our security requirement is that such an adversary will learn nothing
about the underlying secret signing key, and that deviations from the protocol
will result in an abort signal being sent to the honest parties.

Formally we define the ideal functionality given in Fig.5, and security is
defined by requiring that for every adversary there is a simulator such that the
adversary cannot tell if it is interacting in the real protocol, or if it is interacting
with a simulator which has access to the ideal functionality. The ideal function-
ality is designed for a signature scheme in which the secret key is a vector of T’
elements in R, and the secret sharing of such keys is done via a replicated scheme.
Note that, the ideal functionality allows the adversary to alter the sharing pro-
vided by the ideal functionality to a different secret key; however the ideal func-
tionality then fixes this change to correspond to the public key initially generated.

Distributed Signature Functionality: Fpsign
We let A denote the set of parties controlled by the adversary.

KeyGen: This proceeds as follows:
1. The functionality generates a public/private key pair; let the private key
(say) be sk € RT and let the public key be pk.
2. The functionality shares sk via the replicated scheme as (sk;)’, with sk; =
ZBeB S;,B'
The values sg’B are sent to player P; for P; € B for every B € Ba U By.
The adversary enters shares s; p for all share components in Ba.
The functionality now defines s; g = sﬁ p for all share components in Bjys.
The functionality completes the sharing so that it still shares sk; by fixing
the shares in By appropriately.
The value pk is output to the adversary.
8. The adversary returns with either abort or deliver. If deliver the functionality
returns pk to the honest parties, otherwise it aborts.
Sign: On input of a message m the functionality proceeds as follows:
1. The functionality adversary waits for an input from the adversary.
2. If the input is not abort then the functionality generates a signature o on
the message m.
3. The signature is returned to the adversary, and the functionality again
waits for inpit. If the input is again not abort then the functionality returns
o to the honest players.

o Gk o

~

Fig. 5. Distributed signature functionality: Fpsign
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This cannot be detected by the adversary as the adversary does not see the public
key until after it has made the change. This is consistent with how the adversary
could attack an initial key distribution based on using a PRSS.

3 The CSI-FiSh Signature Scheme

In this section we recap on the basic CSI-FiSh signature scheme from [1]. The
scheme is defined in the isogeny graph of the public supersingular elliptic curve

Ey(F,) :y? =2*+ 2

where p is a prime of the formp=4-41----- £, — 1, with ¢; being distinct small
odd primes. For the set of primes ¢1,..., 74, chosen in [3] for the CSIDH-512
parameter set, the authors of [1] determine that the associated class group of the
endomorphism ring is cyclic, generated by g, and has cardinality N = #Cl (O)
given by

N =3 x 37 x 1407181 x 51593604295295867744293584889
x 31599414504681995853008278745587832204909.

For any ideal a € CI(O) we can write a = g%, where a € Z/NZ, since
the group is cyclic. Therefore we can identify uniquely the ideal a with the
integer a. To simplify notation we write, for an elliptic curve E’ isogenous to Ej,
ax E' = [a] E'. With this notation we have [a]([b]E) = [a + b]E. For the elliptic
curve Fj it is also very easy to compute the quadratic twists. The quadratic
twist E* of the elliptic curve E = [a]Ey is isomorphic over F, to the elliptic
curve [—a]Ey.

The basic identification scheme on which CSI-FiSh is built on starts with a
public key being the action of a on the elliptic curve Fy, that is E := a*x Ey =
[a]Ep. The prover starts by sampling a random element b € Z/NZ, and sends
the resulting commitment [b]Ey to the verifier. This computation, according to
[1], takes around 40 ms to compute per value of b. The verifier then samples a
random challenge bit ¢ € {0,1} and returns it to the prover. The prover then
responds with » = b modulo N if ¢ = 0 and with » = b — a modulo N if ¢ = 1.
The verifier then checks that [r]Ey = E if c= 0 or [r]E; = E if ¢ = 1. This can
then be turned into a signature scheme in the standard manner.

Having a binary challenge spaces gives an adversary a one in two chance
of producing an invalid proof. One way to fix this is to enlarge the challenge
space. This is done in [1] as follows, which improves soundness, but increases the
size of the public key. A positive integer S is chosen, with the secret key being
a vector of dimension S — 1, say (a1,...,as—1) and with public key (Eg, F1 =
[a1]Eo, ..., Fs—1 = [as—1]Ep). The prover now must prove that it knows a secret
s € Z/NZ such that E; = [s]E; for some pair of elliptic curves appearing in the
public key list. The prover again chooses a random mask b € Z/NZ and commits
to it via B/ = [b]Ey. The verifier now samples the challenge ¢ uniformly from
the set {—S+1,...,5 — 1} and the prover responds with r = b — a, (mod N).
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Verification consists in checking that [r]E. = E’, where we use the notation
E_. = E!, for negative values. This variant of CSI-FiSh achieves soundness
security 23%1 Thus to obtain 27°¢¢ soundness security overall we need to repeat
the basic protocol ts = sec/logy(2 - S — 1) times, although one can reduce ts a
little bit by choosing a ‘slow’ hash function'.

When combined with the Fiat—Shamir heuristic this gives the signature
scheme presented in Fig.6, where H : {0,1}* — [-S +1,...,5 — 1]’s. This
signature scheme is EU-CMA secure under the MT-GAIP assumption, when H
is modelled as a random oracle.

3.1 Zero-Knowledge Proof

Our goal is to define a distributed signing protocol which is secure against mali-
cious adversaries. To guarantee that the parties behave correctly, they are asked
to commit to their secrets using the class group action and prove that what
they are committing to is of the correct form. Clearly, to prove knowledge of a
secret isogeny is sufficient to run an instance of the underlying basic CSI-FiSh
identification scheme described above. However, we require to prove something a
little more general, namely a witness s to the following relation, which we define

The CSI-FiSh Signature Algorithm

KeyGen: Key generation proceeds as follows:
1. Forte[l,...,5 —1] do
(a) a; < Z/NZ.
(b) E; [ai]Eo.
2. sk «+ ((Ll, ey asfl).
3. pk (E(), Fi,..., Es,1).
Sign(m, sk): To sign a message m, the signer performs
1. Forte=1,...,ts
(a) b; < Z/NZ.
2. (c1y..0ycig) — H(EL ... ||Egg|lm).
3. Fori=1,...,ts
(a) 7 < b; —sign(c;) - aje,| (mod N).
4. Output {(ri, c;)}5 ..
Verify({(r:,¢;)}/5,, m,pk): To verify a signature {(r,¢)}*, on a message m one

performs
1. Fori=1,...,ts execute E; < [r;]E.,.
2. (¢4 clg) — H(EL... | Bl lm).
3. If ((e1, ..., c5) = (€1, . . ., ¢t ) then output one, else output zero.

Fig. 6. The CSI-FiSh signature algorithm

! For highest computational efficiency [1] selects, for sec = 128, the values S = 2'°
and ts = 7, using a hash function which is 2'¢ times slower than SHA-3.
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for arbitrary j, but for which we only use when j =1 and j = 2.

L ::{ ((El,Eg,...,Ej,E§), s) : /j\(Egz [s]E;) }

i=1

In other words, the prover wants to prove in zero-knowledge that it knows a
unique witness for j simultaneous instances of the GAIP. This can be done by
using standard techniques of X-protocols. We present the underlying protocol
in Fig. 7. There are essentially two variants, one when Ey = ... = E; = Ep, and
one when this condition does not hold. The call the first case the Special case,
and the second case the the General case.

The following theorem shows that the basic interactive proof of knowledge
has soundness error 1/2 in the General case and 1/3 in the Special case. Thus
we need to repeat it sec (resp. sec/log, 3) times to achieve a security level of
sec. In the random oracle this can be made non-interactive in the standard
manner using a hash function G with codomain {0, 1}*2. Using a ‘slow’ hash
function for G, as in the case of CSI-FiSh, which is 2 times slower than a normal
hash function we can reduce the number of repetitions to tzx = sec — k (resp.
tzk = (sec — k)/logy 3. When k = 16 and sec = 128 as in the fastest CSI-FiSh
parameters this gives us tS"°! = 112 for the General case and 55 = 70 for
the Special case. We denote the resulting non-interactive proof and verification
algorithms by ZK.P and ZK.V.

The prover ZK.P;((Ev, E1, ..., Ej, E}), s) and verifier
ZK.Vi(E1, E1, ..., Ej;, E}), ) functions for our zero-knowledge proof

ZK.Pi((E1, E1, ..., E;, EY)): The first stage of the prover executes:
1. b+ Z/NZ.
2. Fori=1,...,j do E; « [b|E;.
3. Output (E1,..., Ej).
ZKVi((Bv, EfL B, ... By, B}, Ey), s): The first stage of the verifier is simply:
1. If By # Ep for any k € {1,...,j} then select ¢ € {0,1} and output it.
2. Else select ¢ € {—1,0,1} and output it.
ZK.Py((Ev, Ey Er, ... E;, Ej, E;), ¢, s): The second stage of the prover executes:
1. 7+ b—c-smod N, and outputs 7.
ZK.Va((E1, BY, Eu, ..., E;, E}, Ej), ¢,r): This algorithm gives the verifiers final cal-
culation:

1. If ¢ = —1 return \J_, ([T]E;t = Ez)
2. If ¢ =0 return /\g:1 ([T]EL = Ez>
3. If c = 1 return \/_, ([r]E{ =E )

Fig. 7. The prover ZK.Pi((E1, E1,...,E;, E}),s) and verifier ZK.V;(E1, E1, ..., Ej,
E}), ) functions for our zero-knowledge proof

.
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Theorem 3.1. The interactive proof in Fig. 7 is correct, has soundness error %
in the General case and soundness error % in the Special case, and is computa-
tional zero-knowledge assuming decisional-GAIP.

Proof. We first show correctness. We given the proof in the general case, as the
special case follows similarly. Suppose that the prover behaves honestly; this
means that it knows a secret s such that E] = [s]E; for all i. If ¢ = 0 then
verification consists in checking whether [r]E; = E; for all i. Since [r]E; = [b] E;
and this is equal to E; for all 4, the verifier accepts. If ¢ = 1 then verification
consists in checking whether [r]E] = E; for all i. Since [r]E] = [b — s]E] =
[b— s] ([s]E;) = [b]E; and this is equal to E; the verifier accepts. This proves
that the verifier always accepts an honestly generated proof.

To show soundness (again in the General case) we build an extractor using
the standard technique. As E; and E] are isogenous we can write E| = [s]E;
for some unknown value s € Z/NZ. After rewinding the prover, we obtain two
accepting proofs of the form

™= ((El,...,Ej),c,r) and 7' = ((El,...,Ej),c’,r’)

where ¢ # ¢/, and hence r # 1’ (unless s = 0). Since the proofs accept we have,
forallie[1,...,7], R R

This implies that, for all 7, we have

E; = [-r'[(["']E]) = [-r'|([r]E)) = [r — '] E;
which implies that s = r — v’ for all 4. The extractor in the Special case is much
the same.

To simulate the proof, one samples ¢ at random from {0,1} for the General
case and from {—1,0,1} in the Special case. We also sample r at random from
Z/NZ. One then sets E; = [r]E; if ¢ =0, E;, = El'ifc =1 and E; = [r|E
if ¢ = —1. In the case that the input to the proof is from the language L;
then this simulation is perfect. If the input is not from the language LL; then
the commitments also look like they come from a uniform distribution, because
they are deterministic functions of the variable r which is uniform. However, the
distribution of E’l, ey Ej is not correct. By the decisional version of the GAIP
problem it is computationally hard for an adversary to distinguish the tuples
(El, e ,E‘j) and ([b]E4, ..., [b]E;), and thus the simulation is computationally
zero-knowledge.

4 A Threshold Implementation

In this section we show how to create an actively secure threshold implementation
of the CSI-FiSh signature scheme for any access structure, where we hold the
secret key using a replicated secret sharing scheme. Before doing so we present
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a useful sub-protocol for performing a full-threshold variant of the group action
computation at the heart of isogeny based cryptography. See Fig. 8 for the details;
we defer the relevant proof of security till later. It uses the abstract (standard)
commitment functionality Fcommit given earlier. For later use we denote this
sub-protocol by GrpAction(FEy, @, [s]), which for our fixed elliptic curve produces
the group action [s]@ in an actively secure manner.

Group Action Computation for a Full Threshold Secret Sharing

Input: The fixed elliptic curve FEp, a set of parties @), a secret shared element
s € Z/NZ held via a full threshold sharing, i.e. P € @ holds sp such that

s = ZPGQ sp.
Output: [s]Eo

1. Define an ordering the players in Q = {Pi,..., P:}.
2. Each party P; initialises an instance of Fcommit; call it }'gfmmit.
3. Forj=1,...,t
- Epj — [Spj]Eo.
- mp, < ZK.P((Eo, Ep;), sp;)-
- The parties call ]—“gfmmit where P; submits input (Commit,idp,, (Ep;, w}oj))
and all other parties input (Commit,idp,, 1)
4. Forj=1,...,t
- The parties execute ffcfmmit with input (Open,idp;) and abort if _Fézjmmit
returns abort.
- For all P; # P; party P; executes ZK.V((Eo, Ep,), 7p,) and aborts if the
verification algorithm fails.
5. EO < Eo.
6. For j=1,...,tdo
- Party P; computes E? < [sp,]E7~".
- 7 < ZK.P((Eo, Ep;, B’ E7), sp;).
- Broadcast (Ej,w%j) to all players.
- All players execute ZK.V ((Eo, Ep;, E'-L BT, 77%31,) and abort if the verifi-
cation algorithm fails.
7. Return E°.

Fig. 8. Group action computation for a full threshold secret sharing

Note that GrpAction(Fy, @, [s]) requires two zero-knowledge proofs of two
isogenies to be computed per player. And each player needs to verify 2 (|Q|—1)
zero-knowledge proofs. However, the latency is O(|Q|) due to the second loop.

If s is shared by our replicated scheme (s) we can use GrpAction(FE, Q, [s]),
for a qualified set @, to compute (s)Fy as well. The resulting operation we will
denote by GrpAction(Ey, @, (s)). The modifications needed are as follows: Recall
we have s = ) ;s sp, and for a qualified set () we can assign each sp to a given
player P via the function Wg(B). Thus we can represent (s) as a full threshold
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scheme over the players in @), where potentially each player plays the part of
a set of players. Then we can execute the protocol as above, except that in
line 4 we perform an additional check in that if P’ € B then player P’ checks
whether Ep = [sp|Ey. This check is performed by all players in P, including
those not in Q. This copes with the situations where By; # (), and we need to
check consistency of the sharing.

Note, there is a trival optimization of the protocol for GrpAction(Ey, @, (s))
which does not expand the number of players artificially to |B| but keeps it at
size |Q|. However, the above (less efficient) variant is what we will require for
our protocol.

4.1 The Distributed Key Generation and Signing Protocols

We can now define our distributed key generation and signing protocols. The
key generation protocol and the protocol to execute the signing operation in
a distributed manner are given in Fig.9. The protocols are defined in the
(Frand, Fcommit)-hybrid models.

To estimate the cost of signing we use the estimate of 40ms from [1] to
compute a single isogency calculation [b]E for a random b € Z/NZ. By counting
the number of such operations we can determine an approximate value for the
execution time of our distributed signing protocol. The main cost is in computing
E’ — GrpAction(Ey, @, [b]) a total of ¢s times. We estimate the cost in terms of
the number of parties t = |Q] in the qualified set Q. Note, that one of the

The Distributed Key Generation and Signing Protocols IIkeyGen, IIsign

KeyGen: To generate a distributed key we execute:
1. Call Frang.Init().
2. Forie[l,...,5—1] do
(a) <az) — fRand.PRSS().
(b) E; « GrpAction(Ey, @Q, (a;)) for some qualified set Q. If this protocol
aborts, then abort.
3. Output {ai),...,{as—1) and E,...,Es_1.
Sign(m, (s)): For a set of qualified parties ) to sign a message m they execute:
1. Write Q = {Pl,. . .,Pt} CcP.
2. Fori=1,...,1s
(a) Party P; generates b; j <— Z/NZ, so as to form a full threshold sharing
[b;] over the t parties.
(b) The parties execute E; < GrpAction(Eo, Q, [bi]).
3. The parties locally compute (c1,...,cig) < H(EL||...||Ej|lm).
4. Fori=1,...,ts party P; computes 7; ; bi,jfsign(ci)-ZWQ(B):Pj A|c;|,B-
5. The parties broadcast their values r; ; and locally compute r; < Z;Zl Tij-
6. Output {(r,ci)}s .

Fig. 9. The distributed key generation and signing protocols ITkeyGen, IIsign
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zero-knowledge proofs executed in Step 6 is Special, whereas all others in this
step are General. Due to the sequential nature of the calculation this will have a
latency of approximately |Q| - (1 + tSpec'al) isogeny calculations for Step 3, |Q| -

529! isogeny calculations for Step 4, and (1 +4- <(|Q| — 1) - tSgneral 4 tSpec'al>)

isogeny calculations for Step 6, of Fig. 8. Thus the rough total executlon time is
about

tS . <|Q‘ . (1 +2. ZKSpeciaI +4. ZKGeneral) +4. ZKSpeciaI _4. ZKGeneraI + 1)

isogeny calculations.

Taking the specimen parameters of tSg"" = 112 and tSpec'al 70 and ts = 7,
and considering the case of a set ) Wlth two members, thlS gives a latency of
about 7-(2-(1+2-70+4-112)+4-70 -4 112—|—1)-0.040 = 283 seconds per
party. Which is just under five minutes per party.

4.2 Proofs of Security

To prove the distributed key generation and signing protocols secure we present
a simulation of the environment to the adversary. The simulator has access to a
signing functionality for some unknown secret key, via the functionality in Fig. 5.
For security to hold the adversary must not be able to distinguish between exe-
cuting in the real environment and executing with the simulation. Our simu-
lation requires rewinding of the adversary in order to extract the witnesses for
the associated zero-knowledge proofs. Thus our security proof does not provide
a UC-proof of the security of the protocol. Thus our protocol should only be
considered ‘stand-alone’ secure.

KeyGen Simulation: The simulator first calls the functionality Fpsign, which
outputs a replicated secret sharing of the associated secret keys (a;) for the
adversary, i.e. the simulator learns the values ag) g for all B € B4 U By, but not
for those values in By . The simulator now passes the values a;  for B € BAUBy
to the adversary by simulating the Frand.PRSS() protocol.

For each i € [1,...,S — 1] the adversary now engages in an execution of
GrpAction(Ep, @, {(a;)); note Ey is fixed across all public keys and hence known
to the simulator ahead of time. From the committed zero-knowledge proofs 7}
the simulator is able to extract the value a; g entered by the adversary in the
first round of proofs. Note, this value may be different from the values returned
by the PRSS, but that is allowed in our security model, as long as it does not
contradict a value corresponding to an element in By, (if there is a contradiction
we will be able to abort later when the real system will abort during the check
for this fact). The extracted values a; p are now passed to the functionality,
which completes them to a valid set of shares of the secrets and returns the
corresponding public key FEy,..., Fg_1.

The simulator picks a single honest sharing B* € By and generates a; g for
B € By \ {B*} at random. Thus a; g+ will be the secret key values which are
unknown to the simulator. We let j denote the player index corresponding to the
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element B*. We let the curve Ep,; in Step 3 of Fig.8 denote a random element
of the isogeny graph. We can now fake the associated zero-knowledge proof 7r]13j
using the simulator for the zero-knowledge proof the commitments can now be
opened.

Now look at Step 6 of Fig.8. All steps for honest players can be simulated
exactly by following the real protocol, bar that for the party P; which holds the
unknown share a; p.. The input to this party in execution ¢ will be

J—1

Jj—1 _ § '
Ei = Spk

k=1

whilst the output needs to be

E07

t

Elj: — Z Spk Ez

k=j+1

S0 as to create the correct output public key E;. The value Ef can thus be
computed by the simulator in Step 6 of Fig. 8, and the associated zero-knowledge
proof can hence be simulated as well.

If the adversary deviates from the protocol in any way, bar changing the values
of a;, g for B € B, in the first phase, this is caught be the zero-knowledge proofs
and the simulator will be able to abort. Thus the protocol, assuming no abort
occurs, will output the same public key as provided by the ideal functionality.

Sign Simulation: The signing simulation is roughly the same as the key gener-
ation simulation. For the qualified set @), the adversarial inputs can be derived
from the initial commitments in GrpAction(Ey, @, [b]). We let j now be the player
for which ¥ (Bx*) = P;. In our simulation of GrpAction(Ey, @, [b]) we can defined
b; for P; € By \ {P;} at random, leaving the value b; unknown and ‘fixed’ by
the implicit equation given by the signature (r,¢) returned by the functionality
which gives us E' = [b]Ey = [r]E..

The final part of the signature which needs simulating is the output of the
r; for the honest players in . For i # j this is done exactly as one would in the
real protocol. For party j, we know what the adversary should output and hence
can define rj =r— 37, ..

If the adversary deviates from the protocol in the final step, and uses an invalid
value of r;. Then the adversary will learn the signature, but the honest players will
abort; which is exactly the behaviour required by the ideal functionality.
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Abstract. The key encapsulation method “NEWHOPE” allows two par-
ties to agree on a secret key. The scheme includes a private and a public
key. While the public key is used to encipher a random shared secret, the
private key enables to decipher the ciphertext. NEWHOPE is a candidate
in the NIST post-quantum project, whose aim is to standardize cryp-
tographic systems that are secure against attacks originating from both
quantum and classical computers. While NEWHOPE relies on the theory
of quantum-resistant lattice problems, practical implementations have
shown vulnerabilities against side-channel attacks targeting the extrac-
tion of the private key. In this paper, we demonstrate a new attack on
the shared secret. The target consists of the C reference implementa-
tion as submitted to the NIST contest, being executed on a Cortex-M4
processor. Based on power measurement, the complete shared secret can
be extracted from data of one single trace only. Further, we analyze
the impact of different compiler directives. When the code is compiled
with optimization turned off, the shared secret can be read from an
oscilloscope display directly with the naked eye. When optimizations are
enabled, the attack requires some more sophisticated techniques, but the
attack still works on single power traces.

Keywords: Post-quantum cryptography - Side-channel attack -
NEWHOPE - Message encoding

1 Introduction

A key encapsulation mechanism (KEM) is a scheme including public and pri-
vate keys, where the public key is used to create a ciphertext (encapsulation)
containing a randomly chosen symmetric key. The private key is used to decrypt
the ciphertext. This allows two parties to share a secret key. Traditional KEMs
such as RSA [1] rely on the difficulty of factoring large integer numbers. This
problem is widely regarded to be infeasible for large numbers with classical com-
puters. The factoring problem can be solved in polynomial time with quantum
computers [2]. It is, however, not yet clear, whether quantum computer with
enough computation power to break current cryptographic schemes may ever be
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built [3]. However, the sole risk that such a machine may eventually be built
justifies the effort in finding alternatives to today’s cryptography [4].

In 2017, the National Institute of Standards and Technology (NIST) started
a standardization process [5] for post-quantum algorithms, i.e. cryptographic
algorithms able to withstand attacks that would benefit from the processing
power of quantum computers. Proposed algorithms in this process include dig-
ital signature schemes, key exchange mechanisms and asymmetric encryption.
In 2019, 26 of the primary 69 candidates were selected to move to the second
round [6]. A remaining KEM candidate is NEWHOPE (7], which was submitted
by Thomas Péppelmann et al. Compared to other key-establishment candidates
in the NIST process, NEWHOPE has competitive performance in terms of band-
width (amount of bits needed to be transmitted between both parties) and clock
cycles (time required for computing).

The NEWHOPE submission to NIST is based on NEWHOPE-Simple [8], which
is a variant of the prior work NEWHOPE-Usenix [9]. All these NEWHOPE schemes
are based on the assumption that the ring-learning with errors (RLWE) problem is
hard. RLWE first came to prominence with the paper by Lyubashevsky et al. [10].
Tt is a speed-up of an earlier scheme, i.e. the learning with errors (LWE) problem,
which allows for a security reduction from the shortest vector problem (SVP) on
arbitrary lattices [11]. Cryptosystems based on LWE typically require key sizes in
the order of n2. In contrast, RLWE-based cryptosystems have significantly smaller
key sizes of almost linear size n [12]. Besides shrinking of the key size, the compu-
tation speeds up. For NEWHOPE, the variables are polynomials of degree n. The
parameters are chosen in such a way that computations can be performed in the
domain of the number-theoretic transform (NTT). The price is being payed with a
reduction in security, because RLWE adds some algebraic structures into the lat-
tice that might be utilized by an attacker. However, it is reasonable to conjecture
that lattice problems on such lattices are still hard. There is currently no known
way to take advantage of that extra structure [12].

Whenever an algorithm is executed on any sort of processor, the device will
consume electrical power. Depending on the algorithm and input data, the con-
sumed power will fluctuate. This power variation might be used to attack the
algorithm running on the device. To apply such an attack, a time-resolved mea-
surement of the executed instructions is required. Information collected by such
measurements are often referred to as side channels and may reflect the timing
of the processed instructions [13], the power consumption [14], the electromag-
netic emission [15], or any other measurement carrying information about the
processed operations. One can then draw conclusions about this side channel.
Usually this information includes private data, but it may also contain other
information, for example how the algorithm is implemented. These kinds of
attacks are often referred to as passive side-channel attacks.

There exist some publications addressing side-channel attacks related to
NEWHOPE. Some of them require only a single power trace measurement. Primas
et al. introduced an attack on the NTT computation [16], which relies on timing
information. However, the NEWHOPE reference implementation submitted to
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the NIST process (we call it “refC” in this paper) executes the NTT in constant
time. Therefore, this attack will not work on refC. Another attack that requires
only a single power trace is introduced by Aysu et al. [17]. The attack targets the
polynomial multiplication implemented in schoolbook manner. The refC imple-
mentation speeds up the polynomial multiplication by making use of the NTT.
Instead of n multiplications per value, only one multiplication per value remains
during polynomial multiplication. This makes the attack, as described in [17],
infeasible for the refC implementation.

In this paper, we demonstrate that the refC implementation is vulnerable
to a simple power attack. It might be the first documented passive attack on
refC which requires only one power trace to be performed. Another difference to
previous attacks is the target. Instead of identifying the private key, our attack
addresses the message. In the case of KEM, the attack will leak the shared
secret. The side channel is measured during message encoding, i.e. when the
shared secret is translated from a bit string into its polynomial representation.

In the next Section, we recall the NEWHOPE KEM and summarize existing
attacks. Section 3 consists of the attack description and demonstration including
power trace measurements. Finally, possible mitigations are discussed in Sect. 4.

2 Background

The main idea behind RLWE is based on the idea of small and big polynomial
rings of integers modulo ¢. In NEWHOPE, the polynomials have n € {512,1204}
dimensions, and the modulus is ¢ = 12289. Small polynomials have coefficients
in the range —8 < ¢ < 8 (mod ¢) in every dimension. Big polynomials can have
equally distributed coefficients between 0 and ¢ — 1. The polynomials can be
added, subtracted and multiplied. The effect of the polynomial ring on multipli-
cation is as follows: After (schoolbook) polynomial multiplication, the coefficients
of all dimensions ¢ > n are added to the coefficient in dimension ¢ mod n. E.g.
for n = 2, the product (ax+b)o(cx+d) will result in (ad+bc mod ¢)x+ (ac+bd
mod q).

In the following demonstration of the RLWE principle, upper-case letters
represent big polynomials and lower-case letters represent small polynomials.
To generate a key pair, the server randomly samples A, s, and e. The server
calculates

B=As+e. (1)

Both big polynomials A and B form the public key, and s is the private key. The
client side randomly samples the message p and the small polynomials ¢, ¢/ and
e”. The message p is encoded into the big polynomial V. The client calculates

U=At+¢ (2)

and
Vi =Bt+e' +V. (3)



192 D. Amiet et al.

U and V' are then sent to the server. The final calculation on the server side is

V' —Us=Bt+e +V — Ats —¢'s (4)
= Ats+et+e’' +V — Ats —¢€'s (5)
=et+e' +V—¢s. (6)

Because V is the only remaining big polynomial, the server can decode p, as
long as the other polynomials remain small enough.

2.1 NewHope-CPA

The passively secure NEWHOPE version (CPA) implements RLWE as described
above. Beside RLWE, an important concept in NEWHOPE includes the NTT.
It is somehow related to the FFT. The main advantage of the NTT is calcu-
lation speedup. A polynomial multiplication implemented in schoolbook man-
ner requires n? single coefficient multiplications. In the NTT domain, the poly-
nomial multiplication requires n coefficient multiplications only. Further, the
domain transformation requires nlogy(n) coefficient multiplications. Even for a
single polynomial multiplication, the way through the NTT domain results in a
speedup. NEWHOPE forces all implementations to use the NTT, as parts of the
public key and ciphertext are defined in the NTT domain only.

Server: Key Generation
Input: random data rand
z + SHAKE256(64, rand)
publicseed < z[0 : 31]
noise < z[32 : 63]

A  GenA(publicseed) Client: Message Encryption
s < PolyBitRev(Sample(noise, 0)) Input: pk, message p, random data coin
§ < NTT(s) (B, publicseed) <+ DecodePk(pk)
e + PolyBitRev(Sample(noise, 1)) A « GenA(publicseed)
€< NTT(e) s' « PolyBitRev(Sample(coin, 0))
B+ Aos+eé A pk €' + PolyBitRev(Sample(coin, 1))
pk < EncodePK(B, publicseed) — €’ «+ Sample(coin, 2))
sk < EncodePolynomial(3) t « NTT(s")
lSk U+ Aoi+NTT(e)

S .M D . V < Encode(u)
Ierw.er. (;:sage ecryption g Ve NTT (Bof) +e" +V
nput: ct, s +— H ¢ Compress(V")

(U, H) < DecodeC(ct) s

N . ct + EncodeC(U, H)

$ < DecodePolynomia(sk)

V' < Decompress(H) X

p < Decode(V'— NTT (U o))

Fig. 1. NEWHOPE-CPA message encapsulation.
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Figure 1 shows the NEWHOPE CPA message encapsulation. From an attacker
perspective with access to a device and the possibility to measure power traces,
the processing of several parts in the scheme are somehow affected by private
data. The following parts are potential targets for a passive side-channel attack:

— Random data generation

SHAKE256

— Generation of s and e (e.g. PolyBitRev(Sample(seed, 0)))
— Polynomial multiplication and addition (e.g. A o § + é)

— Both NTT and NTT—!

— Message encoding and decoding.

2.2 Known Attacks

Some of the potential targets have already been exploited and corresponding
attacks were already published. Passive side-channel attacks that require only
single measurements are the most interesting from a practical view, because such
attacks work on ephemeral keys (a fresh NEWHOPE key pair is generated for all
key encapsulations) and masking does not prevent these attacks.

[17] introduces a horizontal attack on the polynomial multiplication a o s on
NEWHOPE-Usenix and Frodo [18]. The target in [17] is the polynomial multipli-
cation implemented in a schoolbook manner: Each coefficient of s is multiplied
n times. The attack extracts the coefficients of s out of these n multiplications.
It is unclear, if the attack would work on refC with single measurement traces,
because in the NTT domain, only one multiplication per coefficient remains.

Another publication describes an attack on the NTT transformation [16].
In this attack, an NTT implementation is exploited that does not execute in
constant time. The NEWHOPE refC implementation, however, does not have such
a timing leakage. Other related passive attacks on lattice-based key encapsulation
schemes include [19-21]. However, we are not aware of any publication that
directly targets the message encoding in any lattice-based scheme.

This fact reflects also in publications that cover countermeasures against pas-
sive attacks. [22] and [23] introduce masked decryption. The masked operations
are NTT™!, polynomial arithmetic operations, and message decoding. Further
masking includes also encryption on client side [24]. This scheme masks also
message encoding. The message m is split into two shares m = m’ & m”, and
the encoding function is executed on both shares m’ and m”.

An active attack that might be applicable on all RLWE schemes in CPA mode
uses several forged ciphertexts to reconstruct the private key [25-28]. Because
NEwWHOPE-CPA is prone to these active attacks, the CPA version is only eligible
for ephemeral keys. For all other applications, NEWHOPE-CCA should be used.
NEWHOPE-CCA is a superset of NEWHOPE-CPA. The main difference is an
additional encryption step after the decryption on the server side. The server
calculates the ciphertext by itself and compares it to the ciphertext received
from the client side. A forged ciphertext from the client will then be detected.
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IND-CCA2 security is traded off with processing time (mainly on server side)
and a ciphertext whose size is slightly increased (by 3% or 1.4%, respectively,
depending on n).

3 Attack Description

The attack is performed during message encoding. If an active secure NEWHOPE-
CCA instance is chosen, the attack works on both server and client side. Con-
cerning the NEWHOPE-CPA instances, message encoding is called on client side
only.

The message encoding function translates a 256-bit message or an encapsu-
lated key into its polynomial representation. This encoded polynomial V' has
a zero in every dimension i, if the corresponding message bit p;_g.256 is zero.
Otherwise, if the message bit p;_r.256 is one, the corresponding polynomial coef-
ficients are set to ¢/2 = 6144.

A straightforward implementation might use a for-loop over all message bits
containing an if-condition which sets the polynomial coefficients to either 0 or
¢/2. Such an implementation would be susceptible to timing attacks. The refC
implements the message encoding in a way that the code inside the for-loop
always runs in constant time. Listing 1 shows the corresponding function from

refC.

1 // Name: poly_frommsg

> // Description: Convert 32—byte message to polynomial

5 // Arguments: — poly *r: pointer to output polynomial

t // — const unsigned char *msg: input message

¢ void poly_frommsg(poly =r, const unsigned char *xmsg)

-

8 unsigned int i,j,mask;

9 for (1=0;1 <32;i++)

o [

1 for (j=0;j <8;j++)

12 {

13 mask = —((msg[i] >> j)&1);

14 r—>coeffs [8xi+j+ 0] = mask & (NEWHOPEQ/2);

15 r—>coeffs [8*i+j+256] = mask & (NEWHOPEQ/2);

16 #if (NEWHOPEN = 1024)//1f clause dissolved at compile
time

17 r—>coeffs [8*i+j+512] = mask & (NEWHOPEQ/2);

18 r—>coeffs [8%x14+j+768] = mask & (NEWHOPEQ/2);

19 #endif

20 }

21 }

22 }

Listing 1. Message encoding in refC
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A mask, containing 0 or —1 (= 0xFFFF...), replaces the if-condition. The
mask calculation is shown in Listing 1 at line 13. The processed message bit is
leaked neither in a branch, nor in an address-index look-up nor in differences
in execution time. However, power consumption might differ between processing
a logical zero or logical one, especially because the mask either contains ones
or zeroes only. Chances that processed values can be detected by analyzing the
power consumption of the device are high.

A side-channel measurement can be used to differentiate between processed
ones and zeroes. If a single trace is sufficient to do so, the attack would be
applicable on ephemeral keys. In the case of CPA or message encryption, the
attack does not require any public data (i.e. monitoring of the insecure channel
is not required), as the attack directly leaks the shared secret.

Note that this type of attack not only works on message encoding of
NewHope. A check of NIST submissions indicates several candidates, especially
other lattice-based KEMs. Crystals-Kyber [29], for example, uses an almost iden-
tical approach to encode the message.

3.1 Experimental Analysis

In this section, we demonstrate a successful attack based on current mea-
surements on a Cortex M4 processor. We use the publicly available platform
CW308-STM32F4 from NewAE Technology to execute all our attacks. A 40 Gsps
WaveRunner 640Zi oscilloscope from LeCroy was used to record power traces.
The processor core runs at 59 MHz.

The STM32CubelDE together with an ST programmer from STMicroelectron-
ics was used to compile and program the device. The underlying C compiler is gcc.
When the message encoding function according to Listing 1 is compiled, the result-
ing assembler code and thus the program execution differs depending on compiler
settings, in particular on the chosen optimization strategy. To cover various cases,
we present results for the case when optimization is disabled (—00), and when max-
imum optimization is applied (—03). All measurements are recorded as follows:

1. A test message is generated in which byte 1 is set to a test value. All other
bytes contain random data.

2. A loop, covering test values from 0 to 255, is executed. In this loop, the message
encoding function is called and the voltage at the shunt resistor is recorded.

3.2 No Optimization

Message encoding requires 109 clock cycles per bit (Listing 1, lines 13-18) when
the code is compiled with optimization turned off. The resulting assembly code
is shown in Appendix 1.

As mentioned before, the power consumption should depend on the processed
message bits. The question is, however, whether the differences in power con-
sumption are big enough to be exploited. To answer this question, all possible
values for message byte 1 have been recorded and plotted on top of each other.
To obtain a clear and sharp image, 100 traces per value have been averaged.



196 D. Amiet et al.

1.32

131 —Bit4 =0 | |

| ‘u"‘ J‘/* ‘W ‘\ lm ‘M ‘M ‘

it

Time [us]

Fig. 2. Measurement traces on top of each other. Every trace is 100 times averaged.
Code compiled with optimization disabled.
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Fig. 3. A single trace measurement where message byte 1 is set to the value 83 (binary
0101 0011). Code compiled with optimization disabled.

The plot in Fig. 2 shows the power traces during processing of message byte 1.
The traces are color-separated by the two possible values of bit 4. The fluctuation
of the amplitude is significantly higher when the value of the processed message
bit is one. The difference is so large that it is even possible to read the processed
message bit directly from the oscilloscope’s display. Hence, the attack can be
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classified as a simple power attack (SPA). Figure3 shows a single power trace.
The message byte 83 can directly be read out.

3.3 Optimization Enabled

Message encoding requires 9 clock cycles per bit (Listing 1, lines 13-18) when
the code is compiled with maximum optimization setting O3. The assembly code
is provided in Appendix 2.

We use the same approach as before to estimate the differences in power
consumption depending on individual message bits. Figure4 shows traces of
different test values on top of each other. The power traces still differ, but less
obvious than before, when optimization was turned off. A direct read-out of the
bit values might be hard to accomplish. Note that the traces plotted in Fig.4
are 1000 times averaged in order to reduce the noise. In a single-trace setting,
the additional noise would make it even more difficult to read out the message
bits directly.

1.3 T T T T T T I I
—Bit4=1
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1.28 |- \ \ |
|/ A | ‘
/ ) i ) Iy A |
| “ \l‘”" ) i\
£ 1.26 oy
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Fig. 4. All measurement traces on top of each other. Every trace is 1000 times averaged.
Code compiled with optimization enabled (O3).

Because an SPA might not be applicable, a differential-power attack (DPA)
might work. The attack requires a two-stage process. Before the actual attack
can start, reference traces are required. These traces are the same power mea-
surements as within the attack, but with known message values. To obtain these
traces, an attacker has two possibilities: If the device under attack works as
server, the attack is only applicable to NEWHOPE-CCA. The upside for the
attacker is that he can perform the attack as client. The attacker creates valid
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ciphertexts for which he can choose the messages. When the device under attack
performs the re-encryption step, the attacker obtains such reference traces. In
the reversed case, where the device under attack is the client and the attacker
is the server, the attacker is unable to choose the messages: The client executes
message encoding with random messages. However, since the attacker performs
as server, he knows the private key and can therefore calculate the messages in
use. In the following, the attacker can repeat these steps until he has obtained
enough reference traces.

For all 256 possible values that a message byte can take on, we record 1,000
reference traces and average them to reduce the impact of noise. After collecting
the reference traces, the actual attack is ready to begin. Our treat model assumes
that the message changes on every call. Therefore, we try to extract the message
byte values from a single power trace only. When an attack trace is available, the
trace is cut into 32 power traces, each containing the processing of one message
byte. These sliced traces are then compared to all 256 reference traces. The
known value of the reference trace which is most similar to the attack trace will
then be taken as the corresponding value for the message byte.

One method to calculate the similarity S between a reference trace Vi and
the attacked trace Vigtack i the sum of squares

Msamples -1

S = Z (‘/refm - Vattack [Z])Z (7)

=0

Although the attack will work like this, the signal-to-noise ratio (SNR) may be
increased when the noise is filtered out. A single measurement trace contains
noise in all frequencies while the information about the processed value lies
somewhere below the clock frequency. In our experiment, the SNR is better, if
a bandpass filter is applied on both, Vier and Vyitack, before S is calculated. We
used a bandpass filter at 1.5—10 MHz (with the core clock running at 59 MHz).
The frequencies were heuristically evaluated. Because the encoding of a single
message bit takes 9 clock cycles, a passband around 59 MHz/9 = 6.56 MHz is
reasonable.

Equation 7 is calculated 256 times (once per reference trace) to get an .S per
possible message byte. The smallest S corresponds to the correct byte. To test
if the attack works with all possible messages, the attack has been performed
over all possible values. The result is illustrated in Fig.5. The diagram can be
read as follows: On the x-axis are the reference traces, whereas on the y-axis
traces from the attack can be found. For instance, the horizontal line at y = 50
represents all similarities S from the attacked byte value 50 compared to the
reference traces. Blue represents high similarity or a small S, respectively. Since
S is the smallest at © = 50, the attack worked for this message value, because
the correct value could be identified. The diagonal blue line indicates that the
attack works for (almost) all message values.
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Fig. 5. Similarity between a single power trace compared to the reference traces. (Color
figure online)

In Fig.5, an outlier can be identified. The attacked message value 138 is the
only one where the smallest S is not the correct guess. Generally, value 138
sticks out as indicated by the yellow horizontal line. The corresponding power
trace, when inspected in the time domain, shows a disturbance pulse with an
amplitude of ~150mV. The pulse has a duration of roughly 250 ns plus some
reflections during another 500 ns. The pulse disturbs side-channel information for
approximately four message bits. All our measurements contain some of these
pulses. They must be somehow related to our measurement setup, because the
frequency of these pulses decreases with the time our system is turned on. At
start-up, the pulse frequency is ~50kHz and falls down to =~1kHz within a
second. The origin of the pulses is not fully clear. Due to the observations, we
suspect the supply voltage regulator as the culprit.

3.4 Success Rate

When all measurements containing disturbing pulses are excluded, the attack
success rate gets very close to 100% (we did not find any measurement without
outlier and false message bit guess).
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When optimization is enabled, about 4% of the attacked message encodings
contain an outlier. Depending on timing, this results in one or two false message
byte guesses. The minimum similarity S of a faulty key byte guess is more than
1,000 times higher than S of a correct key byte guesses. Therefore, outliers
can easily be identified. In the case where a pulse provokes two false message-
byte guesses, the message value of the two suspected bytes can be determined
by a brute-force attack. The requirement to execute the brute-force attack is
knowledge of the public data, public key and ciphertext. The computational
effort is 2'6 =65,536 message encryptions in the worst case. To sum up, the
attack has a success rate of >96% in our setup. When the public data is known,
most of the remaining 4% can be calculated with a brute-force attack. This
results in an overall success rate of >99%.

In case of optimization turned off, about 47% of the attacked message encod-
ings contain at least one outlier pulse. However, the effect of these pulses is
marginal. Even key guesses that contain such a pulse are mostly guessed correct.
Without any post-processing (brute-force of potentially false bits), the overall
success rate is 99.5%.

4 Countermeasures

An approach to make the attack more difficult is to decrease the number of bits
that change their value during encryption. This can be achieved by removing
the mask calculation. The coefficient in the encoded message can be calculated
by a multiplication of the message bit to ¢/2. Lines 13 and 14 from Listing 1 are
replaced by Listing 2.

13 tmp = (NEWHOPEQ/2) * ((msgli] >> j)&1);
11 r—=>coeffs [8xi+j+ 0] = tmp;

Listing 2. Message encoding with multiplication

Compiled with optimization enabled, this results in assembly code (see
Appendix 3) in which only two bits are set at a time (in contrast to 32 bits
in the reference code). Nevertheless, the single power trace DPA from Sect. 3.3
is still applicable, though the SNR is approximately cut in half. Therefore, this
small change is not sufficient to prevent the attack. Note that even if a way to
hide the message bit to ¢/2 encoding was found, there would still be leakage
from storing (lines 4 to 7 in Appendix 2).

Oder et al. [24] introduced a masking scheme for encryption. Instead of using
one message, two different messages p/ and p” are encrypted. These messages
are later xored, or rather summed together in the R, space, thus forming the
final message u. However, this approach only makes the presented attack slightly
more difficult, as the message encoding must be attacked twice.
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A more promising countermeasure which is mentioned in [24] is the use of
the Fisher-Yates algorithm [30]. It generates a random list, different for every
encryption, which contains all values between 0 and 255. This list then deter-
mines the order in which the individual bits of the message are encoded. The
initial two for loops are further replaced with one for loop, counting from 0 to
255. In Listing 3, the updated mask calculation (line 13 from Listing 1) is shown.

15 mask = —((msg[fyList[i] >> 3] >> (fyList[i]&7))&1)
Listing 3. Message encoding with Fisher-Yates shuffle

The proposed attack can still be performed. However, as the bits are encoded
in a random order, an attacker can only determine the total number of ones
and zeroes in a message, but not which value would correspond to which bit.
To accomplish this, both the message encoding as well as the shuffling must be
attacked to recover the message. Combining the shuffling algorithm together with
masking might provide adequate side-channel protection: An attacker would have
to attack the message encoding on two shares and twice the shuffling algorithm
to determine the message, all on a single side-channel trace.

In reference to existing side-channel attacks on lattice-based encryption
schemes [31], not only message encoding, but all linear processed parts of
NEWHOPE that contain somehow sensitive data should be protected.

5 Conclusion

The NEWHOPE reference C implementation execution time does not depend
on private data. However, our experiments show that constant time execution
does not prevent power attacks. The complete shared secret can be extracted
from data of one single trace only. Depending on the compiler directive, even
simple-power attacks are possible. Prior work about passive side-channel attacks
on lattice-based key encapsulations mechanisms usually have the private key as
target. We demonstrated that an implementation, which protects all parts of
the algorithm in which the private key is processed, is not secure. All parts
in the NEWHOPE algorithms that process somehow private data, including the
message, must be protected in order to obtain a secured NEWHOPE implemen-
tation.

Acknowledgment. We thank the anonymous reviewers for their accurate reviews
and valuable comments. This work was supported by Innosuisse, the federal agency
responsible for encouraging science-based innovation in Switzerland.
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Appendix 1

1 ; mask = —((msg[i] >>
ldr r2, [r7, #0]
ldr r3, [r7, #20]
add r3, r2
ldrb r3, [r3, #0]
mov r2, r3
ldr r3, [r7, #16]
asr.w r3, r2, r3
and.w r3, r3, #1
negs r3, r3
str r3, [r7, #12]
; r—>coeffs [8xi+j+
ldr r3, [r7, #12]
uxth r3, r3

bits
ldr r2, [r7, #20]
Isls rl, r2, #3
ldr r2, [r7, #16]
add r2, rl
and.w 13, r3, #6144
uxth rl, r3

bits
Idr r3, [r7, #4]
strh.w rl, [r3, r2,
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0]

j)&l):
;T2
; r3
o iPa)
I3
;T2
o P8
)
;13
o iPa)

memory [ 7]

memory [r7 + 20]

r2 + r3
memory [r3]

r3

memory [r3 + 16]

r2 >> r3:
r3 & 1
(=1)xr3

shift

rigth

; memory(r7 + #12) = r3;

;o r3d
o %)

;T2
;orl
;T2
;T2
I3
;orl

;13
Isl #1]

Idr r3, [r7, #12] ; r3 =
uxth r3, r3 ; T3 =
bits
Idr r2, [r7, #20] ; r2 =
Isls rl, r2, #3 ; rl =
ldr r2, [r7, #16] ; r2 =
add r2, rl s 7 =
add.w r2, r2, #2566 ; r2 =
and.w r3, r3, #6144 ; r3 =
uxth rl, r3 ;o rl =
bits
ldr r3, [r7, #4] ; 13 =
strh.w rl, [r3, r2, Isl #1
; line 24 — 34 repeats twice

replaced by 512 and 768)

= mask & (NEWHOPEQ/2):

memory [r7 + 12)]
zero—extend r3[15:0]

memory [r7 + 20]

r2 << 3:

shift

memory [r7 + 16]

r2 + rl
r3 & 6144

r2 by r3

to 32

left by 3 bits

zero—extend 1r3[15:0]

memory [r7 + 4]
; memory [r3 + 2 % r2]
; r—>coeffs [8xi14+j+256] = mask & (NEWHOPEQ/2):
memory [r7 + 12)]
zero—extend r3[15:0]

memory [r7 + 20]

r2 << 3:

shift

memory [r7 + 16]

r2 + rl
r2 + 256
r3 & 6144

to 32

rl

to 32

left by 3 bits

zero—extend r3[15:0]

memory [r7 + 4]
; memory [r3 + 2 * r2]
(immediate value at line 30 is

to 32

rl

Listing 4. Assembly with optimization turned off (O0), original refC
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Appendix 2

1

2

ldrb r2, [r3, #0] ; r2 = memory[r3]

sbfx r2, r2, #0, #1 ; r2 = extract bit 0 (1 bit) of r2
and sign—extend it to 32 bits (if bit 0 (r2) = 0, then
r2 = 0x0000..., else r2 = Oxffff...)

and.w r2, r2, #6144 ; T2 = 12 & 6144

strh r2, [r0, #0] ; memory[r0] = r2

strh.w 12, [r0, #512] ; memory[r0 + 512] =

[
strh.w 12, [r0, #1024] ; memory[r0 + 1024] = r2
stth.w 12, [r0, #1536] ; memory[r0 + 1536] = r2

Listing 5. Assembly with maximal optimization O3, original refC

Appendix 3

ldrb r2, [r3, #0] ; r2 = memory [r3]

ubfx rd, r2, #0, #1 ; rd4d = extract bit 0 (1 bit) of r2

and zero—extend it to 32 bits

Isls r2, rd, #l1 ; 12 = 14 << 1: shift left by 1 bit
add r2, r4 ;12 =12 + 14
Isls r2, r2, #11 ; 12 = 13 << 11 (now we have r2 =
6144 when bit 0 was 1, else r2 remains 0)
strh r2, [r0, #0] ; memory [r0] =
strh.w 12, [r0, #512] ; memory[r0 + 512]
[

strth.w 12, [r0, #1024] ; memory[r0 + 1024] = r2
strh.w 12, [r0, #1536] ; memory[r0 + 1536] = r2

Listing 6. Assembly with maximal optimization O3, mask construction replaced
by multiplication
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Abstract. The user of an imperfectly correct lattice-based public-key
encryption scheme leaks information about their secret key with each
decryption query that they answer—even if they answer all queries
successfully. Through a refinement of the D’Anvers—Guo—Johansson—
Nilsson—Vercauteren—Verbauwhede failure boosting attack, we show that
an adversary can use this information to improve his odds of finding a
decryption failure. We also propose a new definition of J-correctness,
and we re-assess the correctness of several submissions to NIST’s post-
quantum standardization effort.

Keywords: Public-key cryptography - Lattice-based cryptography -
Decryption failure

1 Introduction

Imperfectly correct lattice-based encryption schemes carry risks that perfectly
correct schemes do not. Namely, whenever the decryption procedure fails it indi-
cates “some correlation between the secret key and the encryption randomness”
that reveals “information about the secret key” [20]. This is widely acknowl-
edged. And yet, if one notes that successful decryption indicates a lack of cor-
relation in precisely the same way, the consequence is startling: the user of
an imperfectly correct lattice-based encryption scheme leaks information about
their secret key with each decryption query that they answer. In this work,
we show that an adversary can use information from successful decryptions to
improve his odds of causing a decryption failure.

First, let us head off some objections. One might object that “[non-failing
ciphertexts] will contain negligible information about the secret” [8]. For many
schemes, we agree. However, even if a single ciphertext provides negligible infor-
mation, an adversary might submit many non-failing ciphertexts.

One might also object that the risk of imperfect correctness can be mitigated
using existing analyses. Indeed, when the Fujisaki-Okamoto transformation [12]
is applied to a d-correct passively secure encryption scheme, the result is an
actively secure scheme with a failure probability of no more than C§ relative to
an adversary who generates C ciphertexts [17, Theorem 3.1]. If the designers of
an encryption scheme account for this factor of C loss of correctness, they can
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argue that decryption failures are not a risk. However, when designers rely on a
conservative analysis of correctness, they may choose sub-optimal parameters.

We have seen several attempts to plot lattice-based encryption schemes along
axes of size and security. These plots mask differences in correctness, even when
they accurately represent tradeoffs between size and security against known
attacks (c.f. [3]). We believe that an accurate and concrete assessment of cor-
rectness will enable a more fair comparison of the candidates.

Contributions. Our main contributions are: (1) a refinement of the D’ Anvers—
Guo—Johansson—Nilsson—Vercauteren—Verbauwhede failure boosting attack [5];
and (2) a new definition of correctness that is tailored for de-randomized
encryption schemes. We also provide software! to calculate the correctness of
FrodoKEM [20], Saber [6], Kyber [24], and (some parameter sets of ) Round5 [13].
We partially validate our calculations with experiments on FrodoKEM.

Our Refinement of Failure Boosting. We focus on the Lindner—Peikert
encryption scheme [18], as it underlies all of the imperfectly correct lattice-
based public-key encryption schemes that have been submitted to NIST. The
correctness condition of these schemes can be stated as

—t<{(s,e) <t (1)

where s is a vector related to the secret key, e is a vector related to the ciphertext
randomness, and ¢ is a system parameter.

An instantiation of the Lindner—Peikert scheme is said to be d-correct if the
probability that Eq. (1) is violated for a random honestly generated s and a
random honestly generated e is at most §. The condition that e is honestly gen-
erated is reasonable when the scheme is de-randomized, e.g. when the Fujisaki-
Okamoto transformation is used. In this case, the adversary needs the help of a
random oracle to generate a valid ciphertext. The random oracle severely limits
the adversary’s ability to cause a decryption failure: if the adversary generates
C' ciphertexts, then his probability of causing a decryption failure is no more
than C¢, by a union bound.

The adversary’s success probability may be far lower than C¢. A key observa-
tion is that if Eq. (1) is satisfied for some e, then it is likely to be satisfied for all
¢’ that are close to e. One can quantify the overlap between queries and, in doing
so, show that a sequence of queries with small overlap are more likely to cause
a decryption failure than a sequence of queries with large overlap. An adversary
cannot hope to achieve a success probability of C§ (on average) unless he sub-
mits sequences of queries with no overlap. We depict the overlap of a sequence
of queries in Fig. 1 and give a precise definition in Sect. 4.

In a failure boosting attack, the adversary improves his odds of triggering
a decryption failure by searching for values of e that are of large norm. More
precisely, the failure boosting adversary generates ciphertexts ¢(¥, 1 < i < C,

! https://jmschanck.info/code/20200203- decfail.tar.gz.
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with the help of the random oracle, and selects Q < C' ciphertexts to query.
Previous analyses of failure boosting [5,8,15] assume that the adversary decides
whether to query ¢¥ by looking only at ¢(¥). In effect, previous analyses ignore
the overlap between queries. In contrast, we allow the adversary to minimize the
overlap between his queries.

Overlap between
C(€5, 65) and C(Eg, 66)

Fig. 1. A user who successfully decrypts ciphertexts c<1), ..., ¢ reveals that their
secret, s, does not lie in the blue region. The ciphertext randomness determines the
points €; := e /||e||2. The cap angle 6; is determined by [le”||2 and ||s||2. The prob-
ability that a further query, ¢®, causes a decryption failure depends on the extent to
which the cap of angle 0s about es intersects the blue region. (Color figure online)

Our focus here is on finding one decryption failure. After observing a decryp-
tion failure, the adversary should switch to a different strategy such as the
recently proposed directional failure boosting of D’Anvers, Rossi, and Virdia [7].
We will not discuss the process of estimating the secret from a collection of
failures. For further background on failure boosting, and reaction attacks on
lattice-based schemes more generally, see [5,8,15].

Correctness Definition. We propose an alternative definition of d-correctness
to the one by Hofheinz-Hovelmanns—Kiltz [17]. The correctness experiment
in [17] provides the adversary with the secret key. In contrast, our experiment
provides the adversary only with the public key and a decryption oracle, and
can therefore be run inside an IND-CCA experiment. More importantly, our def-
inition allows a more fine-grained analysis of the impact of adaptive decryption
queries on de-randomized encryption schemes. We give our formal definition in
Sect. 3.

2 Preliminaries

Notation. For a finite set X we write x «—g X to say that z is sampled uniformly
from X'. For a distribution y on X', we write x <« x to say that z is sampled accord-
ing to x. We denote the joint distribution of x <« x; and y < x2 by x1 X Xa.
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If x1 and x2 are distributions on an abelian group, and (z,y) < x1 X X2, then we
denote the distribution of z 4 y by x1 * x2 where (x1 * x2)(2) = >_,cx X1(W)
X2(z — w).

2.1 Definition of PKEs and KEMs

A public-key encryption scheme P = (Keygen, Encr, Decr) is defined over a finite
message space M, a ciphertext space C, a secret key space SK and a public key
space PIC. In particular, Keygen is a randomized algorithm returning sk € SK
and pk € PK; Encr is a randomized, or de-randomized, algorithm that takes as
input a public key pk and a message msg € M and outputs a ciphertext ¢ € C;
Decr is a deterministic algorithm that takes as input sk € S and ¢ € C and
returns either a message msg € M or a special symbol | ¢ M indicating failure.

A key encapsulation mechanism (KEM) K = (Keygen, Encaps, Decaps) is
defined over a ciphertext space C, the secret key space SK, a public key space
PKC, and the key space K. In particular, Keygen is a randomized algorithm that
returns pk € PK and sk € SK; Encaps is a randomized algorithm that takes as
input pk € PK and outputs ¢ € C and k € K; Decaps(sk, ¢) is a deterministic
algorithm that upon input sk € SK and ¢ € C, returns x € K or a special symbol
1 ¢ K indicating that ¢ is not a valid ciphertext.

Fujisaki-Okamoto Transform. The Fujisaki-Okamoto (FO) transform [9,11,
12] can be used to construct an adaptively secure KEM from passively secure
public-key encryption (PKE). Hofheinz, Hévelmanns, and Kiltz provide a decom-
position of the FO transform into a sequence of simpler transformations [17];
Bernstein and Persichetti provide a complementary analysis [4]. These works
emphasize that the FO transform performs three tasks:

— Derandomization: A probabilistic PKE is transformed into a deterministic
PKE by fixing the coins used in encryption to a hash of the message.

— Reencryption: A deterministic PKE is transformed into a rigid? deterministic
PKE that returns an error symbol, 1, whenever the message obtained by
decrypting ¢ does not reencrypt to c.

— Hashing: A rigid deterministic PKE is transformed into an IND-CCA KEM
that encrypts a random message and outputs a hash of this message as the
session key.

Hofheinz, Hovelmanns, and Kiltz handle the derandomization and reencryp-
tion with a single transformation called T. Suppose that P = (Keygen, Encr, Decr)
is a probabilistic PKE, that G : M — R and H : M x C — K are ran-
dom oracles, and that F' : Kp x C — K is a pseudorandom function fam-
ily. Then P; = T[P,G] = (Keygen, Encry,Decr) is a derandomized PKE with
Encr; (pk, msg) := Encr(pk, msg; G(msg)).

2 The term “rigid” is due to Bernstein and Persichetti. See [4, Section 6].
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Hofheinz, Hovelmanns, and Kiltz provide variants of the hashing step called
U# and U;ﬁsg. The U# transformation is defined in Fig. 2. The U;Ifsg transforma-
tion is defined similarly but with the encapsulation key equal to H(msg) rather

than H(msg, ).

Keygen(): Encaps(pk): Decaps ((ski, sk2), ¢):

1 (pk,ski) «+ Keygen() 1 msg g M 1 msg < Decri(sky, c)
2 sk s Kp 2 ¢ < Encri(pk, msg) 2 ifmsg= 1:

3 sk < (ski,sks) 3 K «+ H(msg,c) 3 return F(skz, ¢)

4 return (pk, sk) 4 return (K,c) 4  return H(msg,c)

Fig. 2. The algorithms of the U* [Py, H, F] = (Keygen, Encaps, Decaps) KEM.

d-correctness. Hofheinz, Hovelmanns, and Kiltz [17, Section2.1] define 4-
correctness for a PKE as follows.

Definition 1 (d-correctness for PKEs). A public-key encryption scheme P =
(Keygen, Encr, Decr) is §-correct if

E max Pr[Decr(sk, ¢) # msg |c < Encr(pk, msg)]| <4, (2)
msg
where the expectation is taken over (pk,sk) «— Keygen(). Equivalently, 0-
correctness means that for all (possibly unbounded) adversaries A, Pr[COR“Fﬂ <
0, where the correctness game COR is defined in Fig. 3.

The definition is carefully crafted to obtain a security proof of the T
transform—the derandomization step during the Fujisaki-Okamoto transforma-
tion [9,11,12] (cf. Appendix 2.1). Moreover, Theorem 3.1 of [17] states (in part)
that if P is d-correct, then T[P,G] is d;-correct where d1(qg) < g¢ - ¢ and ¢g is
the number of queries that the adversary makes to G.

2.2 Lindner—Peikert Encryption Scheme

The Lindner—Peikert scheme [18] is a passively secure public-key encryption
scheme based on the learning with errors (LWE) problem [23]. It obtains smaller
keys and ciphertexts than earlier LWE encryption schemes [14,23] by using the
LWE hardness assumption twice in its security reduction.

Parameters. The system parameters are (R, ¢, k, Xs, Xe, Xe’) Where R is the base
ring, q is the integer modulus, k is the R-module rank, xs and x. are probability
distributions supported on R*, and . is a probability distribution supported on
R. The base ring must have the additive structure of Z™ for some positive integer
m. The Z-module rank, or dimension, of the system is n = km. We refer to y, as the
secret distribution, and to x. and Y. as the error distributions. Another important
derived parameter is the error threshold ¢, cf. Sect. 4.
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Rings. Commonly used base rings are R = Z and R = Z[z]/(z™ + 1) with m
a power of two. In the latter case, we view elements of R as vectors in R™ by
expressing them over the power basis {1, 2,22, --- , 2™~ !}, i.e. we use the coeffi-
cient embedding. We identify the power basis with the standard basis of R™. For
a € R, we write |lally =3, |(z',a)|, [la]l2 = \/(a, a), and ||a||oc = max; |(z",a)|.
For elements a = (a1, ...,ax) and b = (by,...,b) of a rank k module over R we
write {a,b) = {(a1,b1) + -+ + {(ax,bx). We write 7 for the adjoint of the “mul-
tiplication by r” map, i.e. (a,rb) = (Fa,b). With R = Z we have r = 7. With
R = Z[z]/(z™ + 1) we have that  is the image of r under x — —z™~ 1.

Message Encoding. The message space is a subset of R that is defined by maps
encode and decode. These maps must satisfy decode(encode(msg)) = msg for all
bit strings msg in the domain of encode. A typical choice for a plain LWE system
is encode : {0,1} — Z and decode : Z — {0, 1} with encode(msg) = msg - |¢/2]
and decode(msg) = {0 if |msg mod ¢| € [0,¢/4); 1 otherwise}. We call this the
standard encoding. Observe that decode(encode(msg) + 6) = msg if |§]| < ¢/4,
so we say that the standard encoding has an error threshold of ¢ = ¢/4. The
standard b-bit encoding is defined similarly: it divides [0,¢/2) into 2° intervals
and has an error threshold of ¢/2°*!. Elements of {0,1}"™8 can be encoded
into elements of R by extending the standard b-bit encoding component wise on
the power basis.

Algorithms. The key generation, encryption and decryption routines of the
passively secure encryption scheme are as follows.

— Keygen(): Sample a k x k matrix A with each coefficient chosen independently
from the uniform distribution on R/q. Sample k x 1 vectors s; and sg inde-
pendently from x;. Compute b = (s; — Asz) mod ¢. The public key is (A4, b).
The secret key is (s1, $2).

— Encr (msg, (A, b)): Sample 1 x k vectors e; and ey independently from yxe.
Sample e from x... Compute the ciphertext (c1,cq) with

c1 = (e1A+ez) mod g, c2 = (e1b+ ez~ encode(msg)) mod gq.

— Decr ((c1,¢2), (s1,52)): To decrypt (c1,c2) using the secret key (s1,s2), let
v = (182 + ¢2) mod ¢ and output decode(v).

3 Correctness in an Adaptive Setting

The Hotheinz-Hovelmanns—Kiltz (HHK) definition of §-correctness (Definition 1
in Sect.2.1) involves an expectation over keys and ciphertexts. Care must be
taken when the key is fixed (as in an IND-CCA setting) or when the ciphertext
is determined by the message (as in a derandomized encryption scheme). For
derandomized schemes that use a random oracle G during encryption, HHK
define a notion of §(g¢g)-correctness which is stated in terms of the number of
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queries gg that the adversary makes to G. They prove that a §-correct scheme
that is derandomized using their T transformation has a correctness error of
d(¢c) < qg -6 [17, Theorem 3.1].

The loss of correctness caused by derandomization is often ignored in prac-
tice. For example, the authors of the FrodoKEM NIST submission correctly
calculate the one-shot correctness (the probability of decryption failure for a
random key and random ciphertext) of their IND-CPA PKE [20, Section 2.2.7].
They note that the one-shot correctness is equal to the d-correctness [20, Equa-
tion 2]. They then apply the T transformation and claim that the correctness of
the resulting IND-CCA PKE is equal to the one-shot correctness of the under-
lying IND-CPA PKE [20, Section 2.2.10]. This claim is not justified.

And yet, a full factor g¢ loss of correctness does not seem realistic. To address
this, we propose the following alternative to the §(g¢ )-correctness. This definition
restricts the adversary’s time, ¢, and number of decryption queries, ¢g.

Definition 2 (§(qq,t)-correctness for PKEs). Let P be a derandomized PKE
against a (classical or quantum) adversary A making at most qq (classical)
queries to its decryption oracle D and running in time t. We say, P is d(qq,t)-
correct if

Pr[COR-adéKE - 1] < 6(qd7t)7

where the correctness game COR-ad is defined in Fig. 3.

In contrast to the HHK correctness experiment (COR in Fig.3), our cor-
rectness experiment (COR-ad in Fig. 3) does not provide the adversary with the
user’s secret key, and can be run as part of the IND-CCA security experiment?
In this case we call it COR-ad-CCA.

It is important to note that running COR-ad-CCA inside the IND-CCA exper-
iment does not change the power of the IND-CCA adversary; in particular, the
number of decryption queries ¢/, in COR-ad-CCA is no more than the number of
decryption queries gq in IND-CCA. As such, one can obtain an upper bound on
the IND-CCA security of a scheme given the 6(gq, t)-correctness of a scheme and
an attack that violates IND-CCA security using decryption failures.

4 Correctness of the Lindner—Peikert Scheme

Suppose that (c1,c2) is an honest encryption of msg to a user with public key
(A,b) and secret key s = (s1,82). Let (e, ea,e3) be the noise that was used
to generate (c1,c2), and let e = (e1, e3). Decryption will be successful, i.e., the
decrypting party will recover msg exactly, as long as

llers1 + easa + e3lloo < 1, (3)

3 A slight modification is necessary, as the IND-CCA decryption oracle gives special
treatment to the challenge ciphertext.
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where ¢ is the error threshold. The exact one-shot probability of failure can be
calculated from Eq.3 (our software does this). However, we will use a slightly
weaker condition to analyze the probability of failure in an adaptive setting.
First, an application of the triangle inequality gives

lers1 + easalloo <t — [|e3]|co- (4)

Then, by fixing some v > ||es||oo and using properties of the max-norm and
inner product that we discussed in Sect. 2.2, we have

le1s1 + e252]l00 = max |(5,2%e)| <t —1. (5)
0<i<m
ExptSOR(A): ExptSOR-CA (A ¢ qq, Lg, H): ExptiP-CA((A;, Ay)):
1 (pk,sk) «+ Keygen() 1 (pk,sk) + Keygen() HE N
2 msg + A(sk, pk) 2 msg + A®D(pk,c) qa + 0
3 ¢ <+ Encr(pk, msg) 3 ¢+ Encr(pk, msg) Lq={}
4 return [Dec(sk,c) # msg] 4 return [Decr(sk, c) # msg]

(pk, sk) < Keygen()
msgg, msg; < A’ (pk)
b <& f0,1}

¢* < Encr(pk, msgy)
b AP (pk, )
return [b = b’]

Decryption oracle D(c):

qq < qa + 1

if(c=c")ir«+L, Lg=LqU(c,7)
else: r + Decr(sk,c), Lqg = Lq U (¢, 1)
return r

WO NOY U hwWN—

HAwnNn—

Fig. 3. COR and IND-CCA experiment for any PKE P;COR-ad-CCA experiment for a
(derandomized) PKE P.

A Geometric Interpretation. Let S be the unit sphere in R%. We denote the
angular distance between points v and v in R¢ by

0(u, v) = arccos <<““>> , (6)

l[ullz - [lvll2
where arccos(z) € [0, w]. The spherical cap of angle § about u is
C(u,0) ={veS:0u,v) <6} (7)

Equation (5) tells us that each successful decryption reveals some geometric
information about s, as explained next. By restating the condition (s,e) <t —~
(without the absolute value bars that appear in Eq. (5)) in terms of the angular
distance,

0(s.¢) = arccos( (5,€) ) > arccos (M> s (8)

lIsll2 - [lell2 Isll2 - [lell2

we see that (5, e) <t —~ implies that 5/||s||2 does not lie in the cap of angle 6*
about e/|le]|2. The full condition, |(3,e)| < ¢ —~, also says that §/||s||2 does not
lie in the cap of angle 6* about —e/||e||2. An adversary can use this information
to improve his odds of triggering a decryption failure.
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A Heuristic Assumption. We measure the volume of subsets of S C R?
using the (d — 1)-dimensional spherical probability measure, o. This measure is
normalized such that ¢(S) = 1. If w is a point on S and v is drawn uniformly
from S, then the probability that §(u,v) < 0 is C(0) = o(C(u, #)). It is important
to note that C(#) does not depend on u. We assume the following heuristic in
our analysis.

Heuristic 1 (Spherical symmetry). For fized 5 and e < X X Xe, the proba-
bility that 6(5,e) < @, for any 0 < ¢ < /2, is C(p). Equivalently, e/|ell2 “looks
like” a uniformly random point on S.

If Heuristic 1 holds true, the probability that e causes a decryption failure is
at least 2C'(6*). It may even be as large as 2mC(6*), due to the maximization
over 7 in Eq. (5).

Remark 1. Previous analyses of failure boosting [5] have modeled the distribu-
tion of x. X xe With a spherically symmetric Gaussian distribution. In contrast,
our software uses the exact distribution of y. X xe. Our experiments in Sect. 6
indicate that the spherical symmetry assumption is reasonable for Frodo640.
Further experiments are needed for other schemes.

4.1 The Efficacy of a Query Set

Recall 6* of the previous section. We write 6%(5; z) = arccos (z/af3) with 0 <
0% (3;z) < 5. We are primarily interested in the case o = ||s||2 and 8 = ||e]|2. In
later sections we will take « to be an approximation to | s||2. We write 8% (e; 2) in
place of the cumbersome notation 6% (||e||2; z), and we suppress the dependence
on z when it is clear.

We refer to e = (e, ea) as the “query”, rather than (c1,cz). We also ignore
both the absolute value bars and the maximization over ¢ in Eq. (5). This way
queries are one-to-one with spherical caps, and each query can be thought of as
“exploring” some cap; by querying e the adversary learns whether or not s lies
in C(0%(e)).

We define the efficacy of a set E of queries to be the fraction of the sphere
that the corresponding caps cover:

Eff (Ucee* ) (9)

eckE

Under the spherical symmetry heuristic, the probability that an adversary causes
a decryption failure is proportional to the efficacy of his queries. An intelligent
adversary will maximize the efficacy of his queries while minimizing the number
of queries that he makes. Adversaries are constrained both by their computa-
tional power and by the need to collaborate with a random oracle.
In the notation of Definition 2, an instantiation of the Lindner—Peikert scheme
is 0(qq, t)-correct if
5(qq,t) > 2mEff o (E) (10)
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for all E of size |E| < ¢4 that an adversary can produce in time ¢. It is impor-
tant to note that some instantiations exchange more than one element of R; for
instance, FrodoKEM exchanges 64 elements of Z. For such instantiations the
right hand side of Eq. (10) should be 2¢m Eff,(E) where ¢ is the number of coef-
ficients exchanged. Assuming spherical symmetry, the actual correctness error
can be anywhere between 2 Eff,(E) and 2¢m Eff ,(E), as the failure events may
not be independent.

4.2 Approximating the Efficacy

The efficacy of a query set may be difficult to compute exactly. Using the principle
of inclusion-exclusion, we can write a k-th order approximation to Eff,(F) as

EEP(E) = > (-t <ﬂcee* ) (11)

FCE ecF
0<|F|<k

Maximizing the second-order approximation,

B (E) = S C@Le) — Y o(Cle.0i(e)NC(e,05()),  (12)

eEE {e,e’}CE

already presents quite a challenge. We do not consider algorithms for approx-
imating the efficacy here, but we note that techniques from the near-neighbor
search literature, e.g. [2], may be useful for producing high-efficacy query sets.

4.3 The Efficacy of a Random Query Set

A first-order approximation to the efficacy of a random query set, normalized
by the query set size N, is

Qulx1x2) = Jim LE [EAD(V)] (13

where the expectation is taken over sets V' of N elements drawn independently
from 1 X x2. Equation (13) can also be written as the expected size of a cap
with respect to the 2-norm distribution of v drawn from y; X xa2,

o(X15x2) = Y Pr(llv]2 = j]- C(65(5)) - (14)

7>0

5 Heuristic Analysis of NIST Candidates

In this section we calculate first-order approximations to the efficacy of random
query sets drawn from distributions that come from concrete instantiations of
the Lindner—Peikert encryption scheme. It is important to note that a first-order
approximation to the efficacy ignores the overlap between queries; it thereby
overestimates efficacy and underestimate correctness. Since we are ignoring the
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overlap, we expect our results to closely mirror those of D’Anvers, Guo, Johans-
son, Nilsson, Vercauteren, and Verbauwhede from [5]. The calculations that we
perform are quite different and serve as an independent check on their results.

We analyze Saber [6], the REND_PKE_0d and R5N1_PKE_0d parameter sets
of Round5 [13], Frodo [20], and Kyber [24]; all of which are second round can-
didates in NIST’s post-quantum standardization effort.

5.1 Overview

We caution the reader that the following sketch of our analysis is only accurate
for Frodo. The treatment of the other schemes is described in Appendix A.

Let x be a distribution on R. We write ||x||2 and [(1, x)|, respectively, for
the distribution of ||r||2 and |[(1, )| when r < x. The top u-th quantile of ||x||2
is the largest 8 € Z4 for which Pr,,[||r]l2 > B8] > 1/u. We write x(u) for the
distribution of r < x conditioned on the event that ||r||2 > (. It is important to
note that x(1) = x.

We assume that the user has drawn a secret key s from x4 (v) x xs(v), for some
v > 1. A random user does so with probability 1/v2. Unless otherwise stated
we take v = 2, i.e., we assume that the user has a key of above-median length
in both components. We evaluate correctness using Q,(+,-) which depends on
the v of Eq. (5) through 0%. We take «a equal to the expected norm of s, and we
take 7 equal to the top 100-th quantile* of [(1, x./)|. We account for the absolute
value bars in Eq. (5) but ignore the maximization over 0 < i < m. By doing so,
we are estimating the per-coordinate failure rate: the probability of a failure in
the first coordinate of the coefficient embedding.

To first order, an adversary who samples (e1,e2) from xe(u) X xe(u) and
who discards all ciphertexts with |(1,e3)] < + can expect a query set of size
1/(2Q,(xe(u), xe(w))) to include a query that causes a decryption failure (cf.
Eq. (10)). A classical adversary expects to make approximately 100u? queries to
the random oracle per sample. A quantum adversary, using Grover’s algorithm,
expects to make approximately 10u superposition queries to the random oracle
per sample.

5.2 Comparison with One-Shot Failure Rate

Before presenting the results of our analysis, we recall that the one-shot fail-
ure probability is the probability that Eq. (3) is violated for (s1,82) < Xs X Xs,
(e1,€2) < XeXXe, and ez < X.. Theorem 3.1 of [17] states that a de-randomized
scheme with a one-shot failure rate of § is §; < qg - § correct against an adver-
sary who generates qg ciphertexts. Table 1 lists the one-shot failure probabilities
for Kyber512, RSND1PKEOd, Frodo640, R5N11PKEOd, and LightSaber®. Each

4 The constant 100 is arbitrary. Our software can produce an optimized value if needed.

5 Note that our analysis should roughly coincide with the one-shot failure probability
when u = v = 1. We expect some discrepancy due to our treatment of e; and the
fact that we fix an estimate, «, for the norm of the secret. In contrast, the one-shot
failure probabilities are averaged over all keys.
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parameter set is advertised as meeting NIST’s level 1 security category, so it is
reasonable to assume that generating, say, qg = 2'2® ciphertexts has lower cost
than breaking the scheme. The corresponding values of §; are all larger than
2760 We find this concerning, as Section 3.3 (resp. Section 4.4 against quantum
adversaries) of [17] states potentially large integer multiple of §; in the upper
bound on the adversary’s success probability in the IND-CCA game.

5.3 Comparison of NIST Candidates

The results of our analyses of Kyber512, R5SNDIPKEOd, Frodo640,
R5N11PKEOd, and LightSaber are shown in Fig. 4. There are subtleties to each
analysis, but one can largely imagine that the lines on the left and right of Fig. 4
plot u— 1/(2Qg (xe(u), xe(v))) and u — 10u/(2 Q,, (Xe(u), xe(u))) respectively.
We give more details in Appendix A.

An adversary who is not constrained in the number of queries that he can
submit will minimize cost. As can be seen from Fig.4 and Table1, after min-
imizing the cost of the attack, the number of queries in an effective query set
ranges from 2'%67 for LightSaber to 212! for Kyber512. The attacks differ in
cost per query. Of course, an honest user will not answer so many queries.

Table 1. Adversary A sends random queries to random users. Adversaries B and C
target a fixed user that has a random, above-median norm, key. Adversary B sends
queries of above-median norm to the user. Adversary C sends queries with norm in the
top u-quantile for the value of u that minimizes his total quantum cost, i.e. he chooses
u based on the local minima in Fig.4 (Plot b, d and f). Adversary D is restricted to
204 queries and 2'?® quantum operations. Rows A, B, and C give the expected number
of queries that the adversary submits before causing a decryption failure. Row A is the
reciprocal of the one-shot failure probability for a single coordinate. Rows 5 and C are
values of 1/(2Q,(-,-)). Row D gives the value of §(25*,2'%®) under the assumptions of
Sect. 5.3. The impact of m and ¢ are suppressed throughout.

kyber512 | frodo640 |rb5ndipke rb5nlipke | lightsaber

A | 01869 9l44.8 9155.1 9126.9 9l128.4

B | 21871 9145.8 9152.5 9138.5 9123.3

c | g152.1 9124.7 9142.8 9133.9 9106.7

D | 9635 9—34.1 9—52.6 9—49.4 9—20.7
kyber768 | frodo976 |rbnd3pke rbnl3pke  saber

A | 21732 9205.6 9131.0 9143.9 gl44.2

B | 2169.0 9209.0 9145.3 9144.0 9139.1

Cc | 91410 9185.3 9137.3 9139.9 9123.7

D|lo-58 9—87.6 9—51.8 9—57.8 9—38.3
kyber1024 | frodo1344 | r5nd5pke | r5n1b5pke | firesaber

A | 01832 9258.7 9l44.5 9127.3 9l73.4

B | 21781 9263.1 9141.6 9143.8 9170.3

Cc | 91519 9238.1 9134.8 9140.2 9154.0

D | 9699 9—136.4 9—52.8 9—60.2 9—66.6
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Fig. 4. The predicted size of a query set of unit efficacy (a, c, ) and the quantum cost
of producing such a query set (b, d, f). “Quantum cost” is based on Grover’s algorithm
and has units of “superposition queries to a random oracle”. Plots (a) and (b) are
NIST level 1 schemes. Plots (c) and (d) are NIST level 3 schemes. Plots (e) and (f) are
NIST level 5 schemes.
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NIST suggests that “[fJor the purpose of estimating security strengths, it
may be assumed that the attacker has access to the decryptions of no more than
264 chosen ciphertexts” [21]. An adversary with this constraint will spend more
time per query to improve the efficacy of a smaller query set.

An attacker who can perform a total of 2?8 quantum operations will per-
form roughly 264 operations per query and submit 264 queries. Let us briefly
assume that our first-order approximation to the efficacy is accurate. Our
experiment in the following section provides some indication that the overlap
between random queries may be negligible, and supports this assumption. The
attaker may then be thought of as randomly sampling from a query set of size
1/(2Q, (xe(2%), xc(2%))), which is the right-most point in Fig. 4. Let us also
briefly assume that the elements of the adversary’s query set are equally likely to
cause a decryption failure. Under these assumptions, the §(264,2128)-correctness
of LightSaber is 264/2847 = 27207 This should be compared with the &; cor-
rectness of 2704 that we alluded to in Sect.5.2. The §(2%4,212%)-correctness of
the other schemes, under the same assumptions, is given in Table 1.

6 Experiments

Both the spherical symmetry heuristic and the accuracy of the first-order approx-
imation to the efficacy need to be examined further. As a first step, we have
performed experiments with a variant of Frodo640. Since the decryption failure
rate of Frodo640 is too small for us to observe experimentally, we have used
g = 2'3 rather than ¢ = 2'°. We have kept the rest of the parameters the same.
This variant has a one-shot failure rate of 27117,

In the notation of Sect.5.1, we take a to be the expected value of | s||2
when s is drawn from xs(v) X xs(v). The “Predicted” row in Table2 gives
1/(2Q,(x1(u), x1(u))). The “Observed” row gives 1/f where f is the fraction
of failures that we observed.

Frodo640 replaces the k x 1 vectors s, s2, €1 and es by k x 8 matrices. It
replaces the scalar eg by an 8 x8 matrix. The session key is split across 64 approx-
imately agreed upon scalars. In one run of the experiment, we generate 512 keys
and 64 key encapsulations per key. For each encapsulation, we draw 16 samples
from xs(v), 16 samples from x.(u), and 64 samples from y.s(100). We count the
total number of coordinates with errors, not the number of encapsulations that
fail. In other words f is the fraction of errors observed in 512 - 64 - 64 = 22!
coordinates.

If 1/(2Q,(x1(u), x1(w))) is a good approximation to the size of an effective
query set, and each element of an effective query set is equally likely to cause
a failure, then we expect 1/f to tend to 1/(2Q, (x1(w), x1(u))) as we average
over many keys and encapsulations. As can be seen in Table2, we observed a
fraction of failures such that f/(2Q, (x1(u), x1(u))) ~ 27%% in each case. This
provides some indication that our heuristics are reasonable for Frodo640. Further
experiments are needed for the other schemes.
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Table 2. Results of the experiment of Sect.6. We did not run the experiment to
completion for the columns with ||x.| = 22°. The values reported in those columns are
averages over &~ 218 rather than 22!, coordinates.

lxs]l quantile 20 210 220

xel quantile 20 |20 220 |20 |10 1920 190 910 | 920
Predicted 2114 29.8 29.1 29A8 28.4 2748 29.1 278 27.3
Observed 211.1 29,4 28.7 29.4 28.0 2744 28.8 27.4 26.9

7 Conclusion and Future Work

We have presented a decryption failure attack on the Lindner—Peikert scheme
that exploits dependencies between failure events. In contrast with previous
attacks, our attack leverages information from adaptive queries. The adversary
improves his odds of causing a decryption failure by choosing his next query as a
function of his past queries—even those queries that were answered successfully.

Our results do not necessarily call for a re-parametrization of the schemes
that we have analyzed. However, like previous analyses of failure boosting, they
show that the one-shot failure probability is not a reliable indicator of the diffi-
culty of causing decryption failures. We hope that our work stimulates discussion
on what an acceptable §(qq, t)-correctness is for various security levels.

Future Work. Both the spherical symmetry heuristic and the accuracy of the
first-order approximation need further confirmation, either experimentally or
theoretically. Beyond this, it is an interesting question to extend our approach
to schemes that use error-correction such as ThreeBears [16], NewHope [22],
LAC [19], and other parameter sets of Round5 [13]. In a more speculative direc-
tion, we wonder whether the information revealed by successful decryptions
might be useful in other attacks. Perhaps the knowledge that the secret key
does not lie in a particular direction can help an adversary prune an enumera-
tion tree.

The general message that successful queries can leak information about the
secret key may be applicable to other constructions as well. Drucker—-Gueron—
Kostic [10] have already pointed out the risk of ignoring the factor gg loss of
tightness in de-randomizing the code-based scheme BIKE [1].

Acknowledgements. Special thanks to Kathrin Hévelmanns for insights on the cor-
rectness definition for PKEs, Jan-Pieter D’Anvers for helpful discussions and for pro-
viding us with a copy of [7], and Steve Weiss for computer systems support. NB is
supported by NSERC Discovery Accelerator Supplement grant RGPIN-2016-05146.
This work was supported by IQC. IQC is supported in part by the Government of
Canada and the Province of Ontario.
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A Details of Our Analysis for Each Scheme

Al Secret and Error Distributions

Definition 3 (Modulus switching function). The modulus switching func-
tion is defined by [z], = lz¢] mod r with ] computed over R. It is also
extended component-wise to vectors and matrices.

Definition 4 (Compression artifact distribution). The compression arti-
fact distribution with parameters r and q is the distribution of y — [2]% when y

is drawn uniformly from Z/q and z = [[y]];

Definition 5 (Centered binomial distribution). The centered binomial dis-

tribution of parameter w assigns probability 2%1‘ (w%i“w) tozr €Z.

Definition 6 (Fixed weight distribution). The fized weight trinary distri-
bution of parameter w in dimension d is the uniform distribution on all 2“’(d)
vectors in Z% that have ezactly [w/2] coefficients equal to +1, evactly |w/2]
coefficients equal to —1, and the remaining d — w coefficients equal to 0.

A.2 Compression and Learning with Rounding

Some variants of the Lindner—Peikert scheme have additional rounding parame-
ters ro, r1, and ro. They compress the public key to (A, [[b}];”) and the ciphertext
to ([e1]} s [e2];?)- Note that if r; = ¢ then no compression occurs in the cor-
responding component. If ' = [[b]];O then there is some v; € Z/q such that
[0']}, = (v1 — Asg) mod ¢. Likewise, if ¢} = [c1]! then there is some vy € Z/q
such that [¢i]] = (e1A + v2) mod g, and if ¢; = [eo]}" then there is some
v3 € Z/q such that [c5]7 = (e1A 4 v3 + encode(msg)) mod ¢. Variants that use
well chosen rounding parameters can omit the s1, es, and es terms in key gener-
ation and encryption; the compression artifacts vy, vo, and vs take their place.
Such schemes are said to be based on the Learning With Rounding problem
(LWR). The difference between LWE and LWR is immaterial for our purposes;
we simply incorporate the compression artifact noise into the distributions of s,
es, and ez.

A.3 Frodo

Frodo is an instantiation of the Lindner—Peikert scheme with R = Z. The
FrodoKEM NIST submission [20] defines three parameter sets frodo640 (n =
670, ¢ = 2%, t = 212), frodo976 (n = 976, ¢ = 26, t = 212), and frodo1344
(n = 1344, ¢ = 26 ¢ = 2!1). All three use the standard b-bit encoding, and
therefore have an error threshold of ¢t = ¢/2°*!. Each parameter set takes
Xs = Xe = X" where y is an approximation to a discrete Gaussian distri-
bution on Z. We refer to [20, Table 2] for the exact definition of x. Our analysis
is as described in Sect.5.1.
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A.4 Kyber (Second Round)

Kyber is an instantiation of the Lindner—Peikert scheme over R = Z[z]/(22°¢+1).
The second round NIST submission [24] includes three parameter sets kyber512
(m = 256, k = 2, n = 512, ¢ = 3329, 1o = q, r1 = 2'0, ro = 23), kyber768
(m =256, k =3, n="T68, ¢g=23329, rg = q, 11 = 20, ry = 2%), and kyber1024
(m =256, k =4, n = 1024, ¢ = 3329, 1o = q, r1 = 21, ro = 25). All three use
the standard 1-bit encoding. All three parameter sets sample s1, s, €1, and e
from 1", where 75 is the centered binomial distribution of parameter 2.

We write p,. for the compression artifact distribution with parameters r» and
q. We model e; as being drawn from 7;"; we model ey as being drawn from
(n2 % pr,)*"; and we model ez as being drawn from (92 * p,,) ™. Due to the
difference in size between the coeflicients of e; and es, it seems unlikely that the
spherical symmetry heuristic is reasonable. We adapt our analysis as follows.

Let x1 X x2 be the distribution from which the adversary draws e = (e, e2).
We will assume that x; and y» (viewed as distributions on the coefficient embed-
ding of R¥) are invariant under permutations of the standard basis. Let z; and
z2 be the expected values of |le1]|2 and ||eza||2 respectively. Let w = /za/z21,
e* = (e1 - w,ex/w), s* = (s1/w, sz - w), and observe that (s*,e*) = (5,¢e). We
apply the analysis of Sect. 5.1, but we take a to be the expected value of ||s*||2
and we compute Q, with respect to the scaled distributions x; - w and xa/w.
The expected values of [le; - wl|2 and |lez/w]|2 are both /z12;. By assumption
on x1 and x2, this implies that all 2n coefficients of e* have the same expected
size. While this does not imply that the distributions are spherically symmetric,
it does make the assumption of spherical symmetry more plausible.

A5 Saber

Saber is a learning with rounding variant of the Lindner—Peikert scheme that
uses the base ring R = Z[z] /(2?5 +1). The submission proposes three parameter
sets lightsaber (m = 256, k = 2, ¢ = 213, rg = 210 7y =210 1y =23 w = 10),
saber (m = 256, k = 3, ¢ = 213, rg = 219 1 = 210y = 21 w = 8), and
firesaber (m = 256, k = 4, ¢ = 213, rg = 210 r; = 210 p, = 26). All
three parameter sets sample so and e; from the centered binomial distribution
of parameter u, 1", for the p listed in [6, Table 1]. Recall that sy = ez =e3 =0
for learning with rounding variants.

We write p, for the compression artifact distribution with parameters ¢ and r.
The correctness condition can be rewritten as an inner product between (v, $3)
and (e1,v2), where vy is drawn from p,, and v is drawn from p,,. The distri-
butions of v; and s are invariant under taking adjoints. Note that rqg = ry for
all of the proposed parameter sets. The coefficients of (e1,v2) are not identically
distributed, so the spherical symmetry assumption is suspect. However, the inner
product is unchanged if we write 5 = (v1,72) and e = (e, $2). Moreover, unlike
the original vectors, the coefficients of s and e are identically distributed. There
is still a slight complication: the adversary has control over one component of
s and one component of e. If the adversary chooses particularly large values of
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e1 and vs, then the spherical symmetry assumption will again be violated. We
compensate for this by applying the same re-scaling trick from our analysis of
Kyber.

A.6 Round5 (R5N1+PKE_0d)

Round5 is a collection of learning with rounding instantiations of the Lindner—
Peikert scheme. The R5N1_x_PKE_0d parameter sets of Round5 take R = Z.
The second round NIST submission includes three parameter sets [13, Table 13]
r5nlipke0d (n = 636, ¢ = 22, b =2, rg = 29, ry = 29 r3 = 26, w = 114),
r5n13pke0d (n = 876, ¢ = 21°, b =3, o = 21, 7y = 21 3 = 27 w = 446), and
r5n15pke0d (n = 1217, ¢ = 215, b =4, 79 = 212, r; = 212 r3 = 29 w = 462). All
three use fixed weight w vectors for e; and s5. Since there are no large values of
e1, the adversary will invest all of his effort in finding large values of v9, As with
Saber, we swap components between vectors and apply the re-scaling trick from
our analysis of Kyber. The only difference is that we compute Q, with respect
the honest distribution of e; and the u?-th quantile of ||vs]|.

A.7 Round5 (R5ND=x*0d)

The R5ND_x_0d parameter sets of Round5 take R = Z[x]/(1+x+---+2™). The
specification includes three parameter sets [13, Table 11] r5ndipke0d (m = 586,
q=2%b=1,r9 =2 r =2° ry = 2% w = 182), r5nd3pke0d (m = 852,
q=22b=1,19=2% 1 =2° r3 = 2% w = 212), and r5nd5pke0d (m = 1170,
q=2Bb=17r0=2%r =2 r3 =25 w = 222). We apply essentially the
same analysis as for R5N1_x_0d. However, the choice of ring presents a slight
obstacle as the adjoint does not preserve spherical symmetry.

Multiplication by a fixed element of R, say a = ag + a1z + asz? + - +
Qpm_12™7 1, is a linear operation on the coefficient embedding. Specifically, it
corresponds to left multiplication by the m x m matrix [a]m. = Qi—j — G_(j4+1)
where the index arithmetic is modulo m + 1 and a,, = 0. It follows that the
adjoint of multiplication by a is multiplication by @ where @ = ag + (am, —
Am—1)T + (@1 — Qp_2)2% + -+ + (a1 — ag)z™ . Note that the 2° and z?
coefficients are expected to be smaller than the rest. Since only two out of m
coefficients are affected, we simply ignore the issue. We re-write the correctness
condition as an inner product between (vq,03) and (€7, s2). Since e; and vs have
i.i.d. coefficients, we can easily compute the distributions of €; and v5.
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Abstract. While basic lattice-based primitives like encryption and dig-
ital signature schemes are already fairly short, more advanced privacy-
preserving protocols (e.g. group signatures) that are believed to be post-
quantum secure have outputs of at least several hundred kilobytes. In
this paper, we propose a framework for building privacy protocols with
significantly smaller parameter sizes whose secrecy is based on post-
quantum assumptions, but soundness additionally assumes that some
classical assumption, e.g., the discrete logarithm problem (DLP), is hard
to break within a short amount of time.

The main ingredients of our constructions are statistical zero-
knowledge proofs of knowledge for certain relations, whose soundness
rely on the hardness of solving the discrete logarithm problem for a fresh
DLP instance per proof. This notion has recently been described by the
term quantum annoyance. Using such proofs, while also enforcing that
they be completed in a fixed amount of time, we then show how to
construct privacy-preserving primitives such as (dynamic) group signa-
tures and DAA schemes, where soundness is based on the hardness of the
“timed” discrete logarithm problem and SIS. The outputs of our schemes
are significantly shorter (=30X) than purely lattice-based schemes.

1 Introduction

Lattice cryptography is a particularly attractive post-quantum alternative to
classical cryptographic schemes based on factoring and discrete log. Its main
appeal is that one can build basic primitives, such as encryption and digi-
tal signature schemes, with relatively short outputs (1-3 KB) with the added
bonus of sometimes being faster than the classical analogues. When one looks at
more advanced privacy-preserving primitives such as group signatures, verifiable
encryption, etc., the situation is considerably less attractive. For example, while
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group signatures based on elliptic curve pairings are only 160 Bytes [34], the
smallest lattice-based group signatures, in which keys don’t grow linearly with
the number of group members, are approximately 600 KB [16].

Despite a considerable amount of research, it’s looking very unlikely that
even basic privacy-preserving primitives will be reduced to sizes of less than a
few hundred kilobytes. This is due to the general approach used in construct-
ing privacy-preserving schemes, such as group signatures, which lacks efficient
lattice-based building blocks. The authority gives out a secret key to a particular
user by signing the user’s identity. To authenticate himself, the user then pro-
duces a ZKPoK of the signature on his identity.! Because creating an efficient
zero-knowledge proof generally requires algebraic structure in the underlying
statement, one generally uses standard-model (rather than one secure in the
random oracle model) digital signature schemes for the authority’s signature
rather than rely on schemes that use a hash function modeled as a random
oracle. And it is this requirement of a standard-model signature scheme that
is the main culprit in the large output sizes of privacy-preserving schemes con-
structed in the above manner.

In this work we propose a framework for a middle-ground solution which
addresses some of the main security problems posed by the eventual coming of
quantum computers. One of the biggest concerns today is that communication
in the pre-quantum world can be harvested and then eventually decrypted when
quantum computers are eventually built. The main result of this paper is a
framework for constructing compact privacy schemes where secrecy is either
information-theoretic or based on post-quantum assumptions, while soundness
is based on classical ones. Because only the soundness is classical, our schemes
are not susceptible to the aforementioned harvesting attacks, and are therefore
safe to use in the pre-quantum era.

If full-fledged quantum computers arrive and there are still no acceptably
compact fully quantum-safe privacy schemes, then one can still continue using
our schemes in certain situations. Firstly, they are quantum annoying (c.f. [22]),
in the sense that breaking soundness requires solving a fresh discrete logarithm
instance for each new forgery. This may be good enough in instances where the
forgery payoff is less than the cost to use a quantum computer for the attack. In
addition, we show that our schemes can be made to satisfy a stronger security
notion by relying on “timed” versions of classical assumptions in which the
prover must produce a response in a limited amount of time. This implies that a
successful cheating prover can be used to solve the underlying problem in a fixed
time interval, which may remain a difficult problem well into the post-quantum
era (see the discussions in e.g. [23,25,29]).

1.1 Our Techniques

Since the main culprit for inefficient lattice-based privacy schemes are standard-
model signatures, we propose avoiding them altogether, and instead construct a

L If the user wants to sign a message, then he transforms the interactive authentication
protocol into a non-interactive one via the Fiat-Shamir framework and uses the
message to create the challenge.
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proof of knowledge of (possibly short) vectors x,y, s, when given public matri-
ces/vectors A, B, C, z over some polynomial ring, satisfying

[A B [ny)} =2 AH(F(y)) = Cs. (1)

We then show that such proofs are enough for constructing privacy-preserving
primitives such as group signatures and DAA schemes. In some constructions,
F = F will be (the same) one-way functions, while in others F' will be a one-way
function while F will just be the identity. The function H is a cryptographic
hash function.

The soundness of our proof is based on the assumed intractability of the dis-
crete logarithm problem. More precisely, the prover shows that he either knows
the (short) solution x, y, s satisfying the above relation (which means he knows a
solution to a lattice problem), or he is able to find e; € Z satisfying [ g;" = 1 for
random generators g; of some group.? While the discrete logarithm problem is
not quantum secure, the only place in which it is used in our constructions is for
guaranteeing the soundness of the zero-knowledge proofs. The zero-knowledge
property itself is statistical and hence the privacy of the secrets is not affected
by the (quantum) power of the adversary.

By letting the generators g; be freshly chosen by the verifier (or some ran-
domness beacon) at the time the proof is started, the ZKP already becomes
“quantum annoying” as for each forgery the (quantum) adversary must solve a
new DLP instance. Moreover, if the running-time of the proof is restricted, i.e.
the verifier will not accept the proof if it takes more than A time, then one can
base the soundness of the proof on the “timed” discrete logarithm assumption,
in which the relation [] g;* = 1 must be solved in a fixed amount of time. If this
amount of time is short, then this problem may remain hard even for quantum
computers.

Proof Approach. Our zero-knowledge proof of (1) builds on the works in [12,
13,17]. One of the contributions of [12,13] was showing an efficient proof of the
pre-image y satisfying H(y) = z, where H is an arbitrary circuit, based on the
hardness of discrete log. These works also showed how to prove linear relations
(in the exponent) of Pedersen commitments and applications to range proofs.
The work of [17] utilized these techniques to give faster proofs of knowledge of
a short vector = satisfying Ax = z for a public matrix A and vector z over the
polynomial ring R, = Z,[X]/(X? +1).

When F = F, we can rewrite (1) as

[AB}.m:zAF(y):MH(r):mcs:t, (2)

and then proving (1) is equivalent to proving knowledge of x,y, s, r, t, with some
of these needing to have coefficients in a certain range, satisfying the above.

2 We will use multiplicative notation for discrete log.
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Similarly, if F is the identity, then one can rewrite (1) as
[AB}-B}:,z/\F(y):r/\H(r):t/\Cs:t7 (3)

The first part of the conjunction in both (2) and (3) can be proven using
[17], while the last one is similar except the ¢ is also secret. The other two parts
can be proven using the techniques from [12,13] applied to general circuits.

While the proofs in [13] are very compact, their main drawback is that the
proof and verification time grows (more than) linearly in the number of gates
in the circuit and proving the knowledge of a pre-image of a SHA-256 function
(mapping 512 to 256 bits) takes approximately 20 s. In contrast, our schemes will
require hash functions that map onto the space of a polynomial ring, which is
around ten thousand bits. The proofs in [13] are based on the discrete logarithm
assumption, which naturally lend themselves to proving statements over fields of
large prime order. Therefore, we would like to use a hash-function built around
arithmetic over such fields. MiMC [3] is a family of hash functions designed
with precisely this in mind and we analyze the number of multiplication gates
required for their evaluation.

Applications. We then show that proving (1) is enough for constructing schemes
like group signatures and DAA schemes. While we only provide a few exam-
ples of what privacy-preserving schemes can be built from (1), there should be
numerous other related schemes that can be constructed using this approach.
Intuitively, constructing privacy-preserving primitives can be done by obtaining
a signature on an identity from an issuer and proving knowledge of this signa-
ture in conjunction with supplementary information connected to the identity
(c.f. [14]). One can then view the right part of (1) as a GPV-type signature
scheme where the signature of the message (identity) F'(y) is s, and then the left
side of the conjunction is a relation involving the message/identity y and some
supplementary data x. The intuitive reason for why one may want to use F(y)
instead of y as the message is that one may wish to sometimes expose F'(y) but
never expose her secret y. Using the image of the secret F(y) as her identity,
and then proving relations about the pre-image, allows the user to ascertain her
knowledge of the secret without ever having to reveal it.

Our construction of a group signature scheme results in signatures of approx-
imately 20 KB based on the hardness of standard lattice problems (i.e. NTRU
and LWE) and the timed DL assumption. We also give a construction of a DAA
scheme in the full version of this paper, where the proofs are tweaked for the
setting where attestation are generated jointly by a resource-constrained TPM
and powerful host.

1.2 Related Work

In this paper, we demonstrate the feasibility of our framework by giving a con-
crete construction of a group signature scheme. Since the foundational work of
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[5], there have been many constructions of such schemes with security based on
various problems. The schemes based on the hardness of the discrete logarithm
problem are compact, but not quantum-safe, while those based on the hardness
of lattice problems are quantum-safe, but have large signatures and/or public
keys. We give a comparison to our scheme in Table 1.

Table 1. Output sizes (in KB) of discrete log, lattice-based, and our group signatures.
For pairing based schemes using CP5-663 pairing curve (128 bit security level, 256 bit
order curve). The public key size (and opening time) in [21] grows linearly with the
number of users. The size given in the table is for 1000 users.

Scheme SI1ZE (SECURITY) PROPERTIES

gpk | sign. | Dynamic | Non-frameability | Quantum-safe
DS18 [18] |1.29 1.96 v v X

BBS04 [11] |1.05 |0.43 | X v b 4
dPLS [16] |120 580 | X X v
ESSLL [21] | 9000 |48 | v x v
This work |5.5 |20 |V v )

1.3 Open Problems

The main result of our work is a framework for constructing privacy-preserving
primitives based on lattice assumptions and the timed discrete logarithm
problem. The advantage of this approach is that our protocols enjoy signifi-
cantly shorter outputs than purely lattice-based (or any purely quantum-safe)
schemes. The main drawback of our concrete instantiation of this framework,
which uses Bulletproofs along with the MiMC hash function, is that the proofs
require millions of group operations, which would take a substantial amount of
time for an honest prover.

The most interesting open question is thus to obtain faster solutions which
may involve constructing different hash functions along with compatible discrete-
log proof systems. There is currently related work, sponsored by the Ethereum
Foundation, to create a STARK-friendly hash function [1,7], with several propos-
als already offering significant improvements over MiMC (e.g. [2,4,26]). Research
into such hash functions is still in its infancy and there is reason to believe that
we could eventually have hash functions which are very amenable to Bullet-proof
style zero-knowledge proofs.

2 Preliminaries

In this section we introduce the building blocks needed for our privacy protocols.



Compact Privacy Protocols 231

Lattices. For z,c € R and o € RT, we define the Gaussian function p,. ,(z) =

—llz—c|?

exp (T) and for a lattice £, we define the distribution Df . ,(z) to be 0

whenever z ¢ £ and Dg ., (z) = %. when z € £. When we omit the £
veL 7

from the above equation, it is assumed that the lattice is Z¢ (where d is evident
from context). Omitting the ¢ implies that ¢ = 0.

We will denote by R, the polynomial ring Z,[X]/(X? + 1) and define the
norm of elements in R, as the norm of its coefficients. As an additive group, the
polynomial ring R = Z[X]/(X? 4 1) has an obvious mapping to Z? and so we
can write v « D, to signify sampling a random centered element from R.

For polynomials a,t € R, we can define a 2d-dimensional shifted lattice®

ﬁit = {(s1,52) € R* : as1+ sy =t mod ¢}

and we define the distribution DY, ,(z) to be 0 whenever x ¢ L, and

DL

a,t,o

o Po (33)
RS SRR C) W

vels,

In general, given a random a,t € R, it is hard (as hard as the Ring-SIS problem
[32,33]) to sample according to Dy, , for small 0. One can do such sampling,
however, when given a special trapdoor basis for the lattice Eio The smaller
the vectors in the trapdoor, the smaller the ¢ can be in the distribution. A
way to create a particularly small trapdoor can be done over NTRU lattices,
in particular when a = f/g for two polynomials f,g with small coefficients
[19,27,35]. In particular, one can create an a, together with a trapdoor matrix
T, that allows one to sample (using a sampling algorithm from [20,24]) from

Dj,tp, for any t € Ry, for 0 =~ 1.5,/q.

NTRU Signature. This trapdoor sampling algorithm almost directly leads to a
rather compact digital signature scheme, in the random oracle model, based on
the hardness of finding short vectors in NTRU lattices. The public key isa = f/g,
while the signing key is T, If we model the hash function Hg, as a random oracle,
then to sign a message m, the signer samples s1, So «— Dj;HRq (m),0 and outputs

81, 82 (or just s1 since sy can be computed from s; and m) as the signature. The
signature is valid if ||s]|, ||s2]| < 1.10V/d = 1.65+/qd. In this paper, we will use
MiMC as the cryptographic hash function.

NTRU Encryption. The key generation procedure of the NTRU encryption
scheme [28] consists of creating two polynomials with small (—1/0/1) coeffi-
cients f,g € R, and outputting the public key as h = f/g and secret key g.
Encryption of a message m with 0/1 coeflicients involves generating an r,e € R,
with small coefficients and outputting the ciphertext v = 2(hr + e) + m. To
decrypt v, one would compute m = (vg mod ¢)/g mod 2.

3 A shifted lattice is a lattice shifted by some vector v. Note that a shifted lattice does
not have the property that the sum of any two vectors is in the shifted lattice.
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Lattice-Based Zero-Knowledge Proofs. Our protocols will use a combination of
various lattice and discrete-log based zero-knowledge proofs from the literature.

In general, for a public A € Ry*™ and t € Ry, the prover knows a secret s €
Ry with small coefficients such that As = t. Ideally, he would like to give a proof
of this s, but such proofs are rather costly in their communication complexity. In
some scenarios, however, the high cost may be acceptable. For example, joining a
group (or registering a TPM) only needs to be done once and there are generally
no strict restrictions on the time of communication complexity. An example of
a proof in which a vector s is taken from a set with ||s||oc < « and the prover
can produce a proof

m=2ZKP{s : As=1t,|s|lec <a} (5)

is given in [30]. The proof is a variation of Stern’s proof of knowledge of a near
codeword [37] and each iteration of the scheme has soundness error 2/3. A more
efficient proof that has soundness error 1/2d was introduced by Benhamouda
et al. [8] where the prover uses his knowledge of s to prove the knowledge of a

S1
vector § satisfying As = 2t where ||s|| > ||s||. In particular, given an s =
Sm
such that ||s;]] < «, it produces a zero-knowledge proof
T =ZKP{s : As =2t |3| < 33ad" mV\} (6)

In Appendix A we explicitly provide the prover and verifier algorithms for
this relation since they were only given for an interactive, asymptotic version
in [8].

Hash Functions with Efficient Proofs. For our privacy protocols we need a hash
function that allows for efficient zero-knowledge proofs that a hash was correctly
computed and that the prover knows a pre-image of the hash value. We will
use zero-knowledge proofs based on the DL assumption, which naturally lend
themselves to proving statements over fields of large prime order. Thus, we would
like to use a hash function built around arithmetic over such fields.

MiMC [3] is a family of hash functions designed with precisely this in mind.
MiMC hash functions are based on the sponge construction [10]. The construc-
tion works by cubing the input over the field, adding randomly chosen constant
values, and repeating the process many times. We give a more detailed overview
of the MiMC hash function and our parameter choices in Appendix B.

3 Timed Zero-Knowledge Proofs

In this section we describe our idea of quantum-annoying and timed zero-
knowledge proofs (ZKP), describe how they can be made non-interactive via
a beacon service, and realized using a combination of lattice/bulletproofs.
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More precisely, we consider ZKPs for generalized statements that prove an
exact relation as in (5), but follow the proof system recently introduced in [17].
The proof system uses a CRS made up of random group elements g1, ..., g,, and
assuming the DL problem is hard, it allows to prove knowledge of a witness for
various NP statements. For example, the protocol of [17] actually proves is that
the prover knows a SIS solution s or a non-trivial discrete logarithm relation
between g¢1,...,¢g,. The advantage of this technique is that the proofs can be
very short, but the disadvantage is that the running time of the prover and
verifier is long (e.g. for typical parameters in [17] it was 10-20s). Formally, the
proof in [17] gives a proof of a disjunction

m=ZKP{s,{r;} : DLR({g:},{ri}) =1V As=t, ||s]|c < a}. (7)

where g; are public elements of some group G and A,t are as before.
Generalizing the proof system of [17], we obtain zero-knowledge proofs of
the following form in which the prover proves that they know a witness w for
relation R, or for relation R.: ZKP{(w) : (z¢,w) € Re V (24, w) € Ry}. In our
proof systems, a witness for R, will always be a non-trivial DL relation, and R,
will be the collection of statements and witnesses we are actually interested in.

Quantum Annoying and Timed Proofs. In this plain form, the soundness of
the above proof relies on the weaker of both relations, i.e., the DL assumption
even though it also proves a lattice relation. We can transform the proof into
a quantum annoying version [22] by simply letting the verifier freshly choose g;
when the proof starts. As g; are not longer long-term parameters, this forces the
adversary to solve a fresh DL instance for every proof it wants to forge.

By requiring the prover to produce a proof within a short amount of time, we
can further strengthen this approach such that the problem likely remains hard
even for quantum computers (or is at least prohibitively expensive to solve). That
is, the verifier only accepts a proof when the prover correctly responds within
some fixed short time A. The soundness of our ZKP then even holds against
a quantum adversary under the additional assumption that the DL problem is
hard to solve within a short amount of time. We will refer to such an assumption
as A-hardness. In Appendix C we provide a more formal treatment of such timed
ZKPs and discuss their relation to quantum annoyance.

Non-interactive Timed Proofs. Finally, in our privacy protocols we want to use
signature proofs of knowledge, i.e., non-interactive ZKPs that follow the Fiat-
Shamir paradigm and “sign” a message m by including m in the challenge hash
of the NIZK. To maintain the short-term validity aspect in this non-interactive
form, we will rely on a beacon and time-stamp service 7.

This trusted entity 7 has a signing key pair (ssk, spk) and serves a dou-
ble purpose: First, it regularly publishes signed tuples (t,b,0) with o <
Sign(ssk, (t,b)) for a time ¢ and random beacon b. We will use b to determinis-
tically generate fresh DL instances (g1,...,gn) < G(b,m) where G is simply a
hash function that outputs group elements of some group C.
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The prover first obtains such a timed beacon (t,b,0), derives fresh DL
instances and computes 7 = NIZK{w, {r;} : DLR({g:;},{r:}) = 1V (zq,w) €
Rg}(m). It then sends h «— H(7) to 7 which will return ¢/, o’ < Sign(ssk, (t', b)),
i.e., 7 time-stamps the hash & for time #’. The non-interactive timed proof out-
put by the prover consists of (m,t,t',b,0,0").

For the sake of brevity we use the following shorthand to refer to non-
interactive timed proofs of such a form and with running time A:

A
ZKPDLR{wq : (l’q,wq) € Rq}'

Finally, we stress that while soundness is quantum-annoying or timed, we
require the zero-knowledge property of the proof to hold statistically.

Building Timed ZKPs. To build our timed ZKPs needed for our group sig-
nature and DAA scheme, we use Bulletproofs [13] (instantiated with MiMC)
and the proof system from [17] in a mostly black-box manner. The algo-
rithms in our privacy protocols rely on complex relations made up of com-
binations of the DL, SIS and pre-image relations of the form Func(f) :=
{ue{0,1}",ve{0,1}": f(u) = v}. We describe how to realize such proofs
from the mentioned proofs systems, and the tweaks that should be made, in
Appendix D.

4 Group Signature Scheme

A dynamic group signature allows users to sign messages on behalf of a group
without revealing their individual identity. Group membership is managed by
an issuer Z that lets users U dynamically join the group. The anonymity of a
user can be lifted through a dedicated opening authority O that can reveal the
identity of the signer behind a particular signature in a verifiable manner. More
precisely, a group signature IIgg consists of the following algorithms:

GKg(1*) — (gpk,isk, osk): On input the security parameter 1* it outputs a
group public key gpk, and the secret keys isk, osk for the issuer and opener.

UKg(1*) — (upk, usk): Outputs the private and public key of a user.
(Join(gpk, upk, usk), Issue(isk, reg)) — (gsk,reg’): A user can join the group
by running an interactive join protocol with the issuer. The user’s output is
his signing key gsk, and the issuer outputs an updated registration table reg’.

Sign(gpk, gsk, ) — X': On input a group public key gpk, a user’s secret signing
key gsk and a message y outputs a signature .

Verify(gpk, 1, X) — 1/0: Verifies a signature X' against the group public key gpk.

Open(gpk, osk, reg, X, ) — (upk,7)/L: This algorithms uses the opener’s secret
key osk to recover the identity of the signer of X for message p. It outputs a
claimed signer upk and proof 7, or L to indicate failure.

Judge(gpk, upk, X, u, 7) — 1/0: This deterministic judge algorithm verifies the
proof 7, i.e., whether the user with public key upk is the signer of X.
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Table 2. Proposed parameters for our group signature

Ring R, Zo[X]/ (X4 + 1)

Ring modulus q 12289

Ring dimension d 1024

Standard deviation o=15/q

usk space N {0,1}**

Encryption randomness | R4 {-1,0,1}¢ C R,

upk space Ry {0,1}¢ C R,

Credential (gsk) space |S 5 € Zg[X]/(X? +1), s.t. ||s]| < 1.50Vd
Signature size |2 19.86 KB

The user secret keys will be uniformly random 2\-bit strings from the set N.
We define a one-way function F' : N' — R, which maps a user’s secret key p to
his public key upk € R,. We will assume that inverting this function (for random
input p € N) is A\-hard. A part of the signature will be an encryption of the user
identity (and nonce), and we will use the Naor-Yung approach of encrypting the
same message under two different public NTRU keys (or where one of the public
keys is indistinguishable from random), and provide a zero-knowledge proof of
this fact.

Key Generation: The issuer’s key consists of a public a € R, together with a
secret trapdoor T, that will allow him to sample s7, s5 ~ Dj)t’a with o = 1.5,/q.
The reference for this algorithm as well as the construction of the trapdoor T,
is discussed in Sect. 2. The opener’s public key will be h = f/g where f,g «— R4
and his secret opening key will be (f, g).

A user’s key is as described above, i.e. it sets usk = p chosen uniformly at
random from N, and will define upk = Fg, (p) as his public key where F is a

A-hard one-way function.

Algorithm 1. GKg(1*)

Output: gpk := (a,h,h'), isk := T,, osk := (f,g).

1: (a,Ta) < NTRUTrapdoor.

2: f,9,f,9 « Ri.If g,¢ is not invertible mod ¢ or mod 2, re-sample it.
3 h:=f/g, b :=f'/g"

Join: When a user with keys usk = p, upk = Fr, (p) wants to join the group,
it send upk to the issuer. This upk is the value to which all of his actions can
be traced to by the opener. The issuer then samples 51,59 < Dg o, for ¢t =
Hpg,(Fr, (p)) and sends s1, 53 to the group member. The member will use p and
the polynomials s1, so as his signing credentials. Observe that s1, sg is the GPV
signature of the message Fr, (p) when the GPV signature is instantiated with
the concrete hash function Hg,.
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Algorithm 2. (Join(gpk, upk, usk), Issue(isk, reg))

Input: usk = p, upk = Fr_(p), gpk = (a,h, h'), isk = Ta, reg
Output: User: gsk = (s1, s2,p), Issuer: updated registr. table reg’.
1: User: Send upk to the Issuer
2: Issuer: Check that upk ¢ reg. Sample s1, 2 «— Dal’w, for t := Hr, (upk). Send s1, 52
to the User, output reg’ = reg U {upk}.
3: User: If asi + s2 = Hr, (Fr, (p)), output gsk = (s1,s2 € S, p).

Algorithm 3. Sign(gpk, gsk, p):

Input: gsk = (s1,s2,p) s.t. as1 + s2 = Hr,(p), gpk = (a,h, 1), p
Output: Signature X := (u, v, )
1: e1,e2,¢e), e «— Ry
2: u:=2(he1 +e2) + Fr, (p), v’ :=2(hel +e3) + Fr, (p)
3= ZKPDALR{(sth,el,eg,e'he'g,p) cas1 + s2 = Hr,(Fr,(p)) N 2(her + e2) +
Fr,(p)=u A 2(hel+es)+Fr (p) =u' A s1,52 €S A er,ez,el,e5 € Ry A pe
NYw)

4: return X := (u,u’,m)

Sign: If a member with credentials (p, s1, $2), as above, wishes to sign u, he
creates two NTRU encryptions of the message F, (p) with respect to the public
keys h and h' and gives a zero-knowledge proof that he knows the randomness
and the message underlying the ciphertexts, as well as the knowledge of p, s1, s2
satisfying as; + sy = Hp, (Fr, (p)) and the fact that Fg, (p) is the message in
the ciphertext. The p is signed via its insertion in the random oracle during the
Fiat-Shamir transform.

The reason that we need two NTRU “encryptions” is to achieve CCA security
via the Naor-Yung transform. While the Naor-Yung approach is usually not the
most practical way of building CCA-secure schemes, it actually incurs little
overhead in our case because providing proofs of ciphertext correctness would
be necessary even if we were only aiming for CPA security. For CCA security,
we just need to prove two equations instead of one.

Verify: For verification, the Verifier simply checks the validity of the proof.

Open: The opener checks the proof in the signature and performs NTRU decryp-
tion of the ciphertext u using his secret key g. If the decrypted public key is con-
tained in the registration table, he gives a zero-knowledge proof that the opening
is correct. In particular, he proves that he knows the secret keys g, f that form
the public key h (i.e. f/g = h) and also that the multiplication gu = 2v + gm
where v is a polynomial with coefficients less than ¢/4 — d/2. If this is satisfied,
then decryption is indeed valid because gu mod g = 2v+ gm in R, which follows
from the smallness of v and the fact that all the coefficients of gm are at most
d. Therefore decryption, which requires reducing the above modulo 2 guarantees
that gu mod ¢ mod 2 = gm. Hence the correct decryption of u is m.
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Algorithm 4. Verify(gpk, X, p):

Input: ¥ = (u,u',7), gpk = (a,h, 1), pt
Output: Output 1 iff the verification passes
1: return 1 iff 7 is valid wrt u,v’, gpk and pu.

Algorithm 5. Open(gpk, osk, reg, X, p):

Input: X = (u,u’, ), message p, gpk = (a,h,h’), osk = (f, g), registration table reg.
Output: Identity upk = m, and proof of valid decryption 7, or L.
1: m := (gu mod ¢)/g mod 2.
2: return L if Verify(gpk, X, u) # 1 or m ¢ reg
3: 7 = ZKPAR{(f,9,v) :hg—f =0 A ug=2v+gm A f,g € R+ AN vE
R st ||v|leo < q/4—d/2}
4: return (m,T)

Judge: The Judge checks that the opener’s proofs are valid. If it is, he concludes
that the opener revealed the correct identity.

4.1 Security of the Group Signature Scheme

We now show that our dynamic group signature scheme is secure according to
the established notions by Bellare et al. [6], i.e., it satisfies anonymity, traceability
and non-frameability. The detailed proof of the following theorem is given in the
full version.

Theorem 1. Our group signature is fully anonymous, traceable and mnon-
frameable when the underlying NTRU encryption scheme is CPA secure, the
underlying GPV signature scheme is unforgeable, F is one-way, the proof sys-
tem ZKP3\ g is special sound and zero-knowledge, and DLR is A-hard.

Hardness. We now briefly analyze the concrete security of the underlying lat-
tice schemes in our group signature scheme for the parameters given in Table 2.
This means we assess the complexity of some known lattice attacks on our instan-
tiations of the NTRU encryption scheme and the GPV signature scheme.

For NTRU we focus on the primal key recovery attack, see [9] for more details
and an overview of other attacks, in particular meet-in-the-middle and hybrid
attacks. Given h € Ry, the problem is to find two short polynomials f,g € R,
such that gh = f in R,. By lifting the equation to R, this gives a lattice of
dimension 2d and volume ¢?. Now one can hope that certain coefficients of g
are zero, say k many, 0 < k < d, and search for a solution in the corresponding
sublattice of dimension 2d — k. This gives a speed-up despite the reduced success
probability. Furthermore, we can restrict the search to the sublattice correspond-
ing to only m < d of the equations over Z?, leaving us with a lattice of dimension
d — k + m and volume ¢". The general strategy then is to apply the BKZ basis
reduction algorithm to the basis of an optimally chosen sublattice with a large
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Algorithm 6. Judge(gpk, upk, X, p, 7):
Input: ¥ = (u,u’,7),p, gpk = (a, h, k'), upk = m, and the opener’s proof T
Output: Output 1 iff the user with upk is the signer of X

1: return 1 iff Verify(gpk, X, n) =1 and 7 is valid wrt gpk, upk, u.

enough block size [ so that our target solution will be found. When using John
Schanck’s estimation scripts [36], we find that for m = 889 we would require a
block size 8 = 712. Costing only one call to an SVP algorithm in dimensions 712
in the so-called Core-SVP methodology gives a time complexity of about 2208
when using the best known classical sieving algorithms and a complexity of 2188
when also considering quantum speed-ups.

For the GPV signature scheme we focus on the forgery attack. Here the
adversary needs to find a short solution sj,ss € R, such that ||s;|] < 1.50V/d
and as; + so = t for a random ¢. This gives a lattice of dimension 2d + 1
and volume ¢?. But unlike in the case of NTRU we do not search for a par-
ticular very short solution. Any solution fulfilling the bound is fine and it is
clearly sufficient to search in a sublattice of dimension n < 2d 4+ 1. The BKZ
algorithm with blocksize § finds a solution of length 6"¢%™ where heuristically
§ = (B(mB)MP/(2me))t/B=1) We find that we need § < 1.00226 and hence
a block size of 8 > 875. Finding a shortest vector in dimension 875 costs 2255
classically and 223? quantumly.

4.2 Costs and Sizes

We want to analyze the sizes of the signatures X' in our group signature scheme
and the cost of computing and verifying them in terms of numbers of elliptic
curve scalar multiplications. By far the largest element of a signature X' is the
proof 7. This proof essentially consists of two parts. In the first part the linear
equations for u, v’ and H(upk) are proven. The second part is concerned with
the nonlinear equations ||s;| < 1.50vd, upk = F(p) and t = H(upk). For
the first part we use the proof system from [17] but we further split the proof
into two parts involving secret polynomials with coefficients in {—1,0,1} and
{=(¢g—1)/2,...,(¢g—1)/2}, respectively. Note that the 12-norm bound on s1, s2
is proven separately and hence it is sufficient for the linear proof of as; + so =
H (upk) to only include the bound ||s;||, < (¢ —1)/2. From the formulas in [17]
we find that the two linear proofs have combined size 75 group elements plus
6 elements in Z,. The non-linear proof has size 48 group elements and 5 field
elements. Since we use a 521-bit curve, for example NIST P-521, the three proofs
have a combined size of about 16.36 KB. The two NTRU encryptions consist of
two uniform elements in R, with size 1.75 KB each. So in total a signature X
has size 19.86 KB. See Appendix D for more explicit details on how the proofs
are conducted.

For the number of exponentiations we find from the formulas in [17] and [13]
that the prover has to compute 2.047.271 scalar multiplications for the linear
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proofs and 11.620.232 scalar multiplications for the non-linear proof. So in total
the prover needs to compute 13.7 million scalar multiplications. The verifier has
to compute at total number of 4 million scalar multiplications.

Acknowledgements. This work was supported by the SNSF ERC starting transfer
grant FELICITY and the EU Horizon 2020 project FutureTPM (No. 779391).

A Lattice-Based ZKP for Relation 6

Below we provide the prover and verifier algorithms for relation6 adapted
from [8].

If R, = Z,[X]/(X?+1), then we define the set M = {0, +2° 0 < i < d}. The
size of M is 2d + 1. We also define a parameter A which controls the soundness
error of the proof. The soundness error will be [M|~* ~ d=*~1. For example, if
d = 2048, then to get the soundness error to be less than 27128, we need to set
A=11.

Algorithm 7. Prover

S1
Input: Secret s = |...| € Ry s.t. ||s¢|| < @ and public A € R;*™,t = As € R.
Sm
Output: 7= (2 € R}, (c1,...,cx) € M*)
1: 0 :=1lavmX; fori=1to A\, y, < Do, w; := Ay,
C18
2: (c1,..500) = Hyn (A t,wi, ..., wy);vi= |- | € RP

C)\S
zZ1 Yy
iz=|--| =1 —|—'v€R;"’\
ZX Yx

4: with probability 1 — 351)"3)2), goto 1

5: return z,(c1,...,cx)

Algorithm 8. Verifier
Input: A€ R}*™ t=As€ R}, 7= (2 € R}, (c1,...,cx) € M)
Output: Output 1 iff 7 = ZKP{5 : A5 = 2t,||5| < 30d"°v/m = 33ad* *mv/A}
w1 AZl — Clt
write | ... | =
w )\ AZ>\ — C>\t
Accept iff (c1,...,¢0) = Hypn (A t,wi, ..., wy) and ||z < 1.50Vdm

The proof in Algorithm 7 uses Gaussian-based rejection sampling and can
be shown to be zero-knowledge, and requiring 3 iterations on average, using
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[31, Theorem 4.6]. If |M|* > 2128 then a prover succeeding with probability
greater than ~271?® can be rewound to produce two solutions Az; = w; + c;t
and Az, = w; + ¢}t for distinct ¢; € M. These can be combined to form the
solution

A(Zi — Z;)/(Ci — C;) =1t.

By [8, Lemma 3.1], we know that for ¢; # ¢, € M, the quotient 2/(c; — ¢}) is
a polynomial with coefficients in {—1,0,1} and therefore has ¢y-norm at most
Vd. The parameters for the size of  in (6) then follow from the parameters in
Algorithms 7 and 8.

B Hash Functions with Efficient Proofs

In our group signature and DAA scheme, we need to use a hash function that
allows for efficient zero-knowledge proofs that a hash was correctly computed
and that the prover knows a pre-image of the hash value. We will use zero-
knowledge proofs based on the discrete logarithm assumption, which naturally
lend themselves to proving statements over fields of large prime order. Therefore,
we would like to use a hash-function built around arithmetic over such fields.

The MiMC Hash Function Family. MIMC [3] is a family of hash functions
designed with precisely this in mind. MiMC hash functions are based on the
sponge construction [10]. The construction works by cubing the input over the
field, adding randomly chosen constant values, and repeating the process many
times.

For fixed input size, output size, and security level, the MiMC family includes
a range of hash functions with a trade-off between the size of the prime field
used and the number of multiplication gates in a circuit which verifies correct
computing of the hash function. Later, in our choices of zero-knowledge proof-
system, we will see that for every multiplication in the circuit, the prover must
perform some exponentiations over a cryptographic group. Therefore, in the
two cases below, we have carefully selected the parameters of the MiMC hash
functions in order to minimise the computational burden on the prover. To
specify an MiMC hash function, one must give the desired security level and the
‘rate’ of the round function, which determines the prime field to be used.

As part of our schemes, we will use a pre-image resistant function (later
referred to as Fr, ) to protect the user’s secret key. We instantiate this function
with an MiMC hash function with an input length of 256 bits and an output
length of 1,024 bits. The circuit used to prove knowledge of a hash pre-image
has 60,192 multiplication gates. We will also use a hash-function, modelled as
a random oracle, which maps the output of the previous function onto a ring
element from Z,[X]/(X?+1). In this case, we use an MiMC hash function with
an input length of 1,024 bits and an output length of 14,336 bits. For the new,
larger input and output sizes, the circuit used to prove knowledge of a hash
pre-image has 831,577 multiplication gates.



Compact Privacy Protocols 241

In both cases, we use MiMC hash functions with capacity 512, and a 521-
bit prime. This choice of parameters comes from our requirement that the hash
function has 256 bits of classical security and therefore 128 bits of quantum
security against collision-finding attacks. For 256 bits of classical security, the
internal workings of the hash function force us to use a prime of at least 512
bits. Hence, we use a 521-bit prime so that we can use a standardised NIST
elliptic curve, for which we expect highly optimised implementations of curve
operations compared with unstandardised curves.

C Quantum Annoying and Timed ZKPs

The core observation behind our timed ZKPs is that while certain hard problems,
such as the discrete logarithm problem, can be solved in polynomial-time by
(sufficiently sized) quantum computers, it is likely that solving them won’t be
instantaneous or at least prohibitively expensive. Thus, forcing the adversary to
solve a fresh DLP instance for each proof might render the attack infeasible.

This property has recently been described as quantum annoyance [22] and
formalized through a two stage adversary. Roughly, in an offline pre-computation
phase the adversary is granted full quantum power, but gets restricted to be
classical when turning to an online phase.

We now apply this concept to zero-knowledge proofs, more precisely, we
consider ZKPs for generalized statements following the form of Eq. (7) of the
proof system recently introduced in [17]. The proof system uses a CRS made up
of random group elements g1, ..., g,, and assuming the DL problem is hard, it
allows to prove knowledge of a witness for various NP statements. For example,
the protocol of [17] actually proves is that the prover knows a SIS solution s or a
non-trivial discrete logarithm relation between ¢y, ..., g,. Generalizing this idea
we consider proofs of the form: ZKP{(w) : (z4,w) € Ry V (2., w) € R.}, where
R denotes a NP relation and w is a witness for a statement z if (z,w) € R.

In this plain form, the soundness of the proof relies on the weaker of both
relations, i.e., the DL assumption in the case of [17] even though it also proves
a lattice relation. We can transform the proof into a quantum annoying (and
later timed) version by simply letting the verifier freshly choose x. (i.e., g; in
our concrete scheme) when the proof starts.

Let = <+ Gen(1*, L) be a generator that produces a random instance x € £
for security parameter 1* and language £ = {z | Jw : (z,w) € R}. We can
then formulate quantum-annoying soundness for an interactive proof protocol
(P, V) for statements (z4,w) € Ry V (2., w) € R, as follows: For any efficient
adversary (Aj, As)—where A; is quantum, and As is classical—running the
following game

sample random z, <= Gen(1*, £,)

st <& A (Zl}q)

sample random z. - Gen(1*, L..)

where Pr[(Aa(st, zq, ), V(Tg, 2c)) = 1] > €

= W=
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there exist an efficient extractor £ with rewindable black-box access to As that
outputs w s.t. (z4,w) € Ry V (ze, w) € R, with probability > ¢/poly(1*).

Generally, the online adversary A5 can be seen as a resource-restricted adver-
sary that cannot break the classical problem. While quantum-annoyance models
the resource restriction by simply limiting As to be classical, we can also be
more generous and give A quantum power, yet restrict its running time.

That is, the verifier only accepts a proof when the prover correctly responds
within some fixed short time A. The soundness of our ZKP then even holds
against a full quantum adversary under the additional assumption that the prob-
lem R, is hard to solve within a short amount of time. We will refer to such an
assumption as A-hardness.

Note that there are subtle constraints on how to choose the time A for a
concrete ZKP instantiation based on a A’-hard problem. For satisfying com-
pleteness, A must be chosen large enough, such that honest provers can still
complete the proof (for £,) in time. For soundness, A depends on the loss in
the reduction, i.e., the running time of the extractor that will be used to break
the A’-hard problem needs to be taken into account. We leave a more formal
treatment of these relations as interesting future work.

D  Zero-Knowledge Proofs for Group Signature
Algorithms

In this section, we explain how to give the zero-knowledge proofs for the group

signature algorithms of Sect. 4 in terms of the proof systems of [17] for SIS rela-

tions and [13] for more complicated relations with less special structure available.
Both proof systems rely on the discrete logarithm assumption.

Definition 1 (Discrete Log Relation). For all PPT adversaries A and for
all n > 2 there exists a negligible function p(\) such that

C= g( ) gla"'agnHC

=11 <
Aty yan €2 — AG, g1, qn) HaﬁéOAHg 1| < p(N)

i=1

For n > 2, this is equivalent to the discrete logarithm assumption.

Sign: A zero-knowledge proof of the following statement is computed:

as1+ s2 = Hp, (Fr, (p))

A 2(her +e2) + Fr, (p) = u

c A 2(hey +ehy) + Fr o (p) =u
P /\81,8268/\,06./\/

A e1,es,€l,eh € Ry

51, 52,
/
61562761362a

ZKPDLR (M)
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The conditions in this relation can be rewritten as follows, with appropriate
size bounds on different elements. Set k = Fr, (p) and | = Hg,_ (k).

€1
() S1
22 0 01 u
{0 02h/21]' ‘1 :MA[M—H' 812 =0
2
k

A\ kJ:FRi(p) A lZHRq(kJ)

We prove the necessary conditions as follows. We use the proof system of
[17] to give a zero knowledge proof for the first linear equation, which has an
infinity norm bound of 1 on ey, e, €], e, and k. The size of this proof is roughly
76 group elements and 6 field elements for the parameters that we have chosen.
We also use the same proof system from [17] to give a zero-knowledge proof for
the second linear equation, with an infinity norm bound of ¢ on s1, s and [.

The remaining conditions that we have to check are the conditions k =
Fr,(p), | = Hg,(k), and the fact that the f,-norms of s; and sy are bounded

by 1.50v/d. We use the proof system of [13] to achieve this. This proof system
works with general arithmetic circuits. The number of multiplication gates in
the circuit required to prove these conditions is the sum of the sizes of the
circuits for Fr, and Hpg,, plus roughly 2096 extra multiplications which are
used for checking that the norms of s; and so are bounded correctly. The extra
multiplication gates compute the squares of the /5 norms of each of s; and so,
using 2048 multiplications, check that roughly 48 values are bits by checking that
when multiplying them with their complements, the result is zero, and then show
that the squares of the f5 norms are represented by the binary values, so that
the norms must be in the correct range. Since we have already used the proof
system [17] to check that the infinity norms of s; and ss are bounded, and we
work over a prime field with a much larger modulus than the base ring of s;
and sz, we need not worry about overflow when computing the squares of the
{5 norms. We give zero-knowledge proofs of arithmetic circuit satisfiability and
prove all of these things using one single proof from [13]. This proof contributes
48 group elements and 5 finite field elements.

In order to use these proof systems, and be sure that certain secret values are
consistent across the different proofs, we need to make some adjustments. The
first tweak is to split some of the long commitments made in the protocols into
several parts, to allow values to be shared between the two proof systems. This
is described in the full version. Separate commitments to k and sp,s2,[ allow
these values to be shared between the first two proofs for linear relations and
the third proof for non-linear relations.

The second tweak is to modify the protocol of [17] so that it works even if we
are proving that the entries of the secret vector lie in an interval whose width
is not a power of 2. This is easily achieved using techniques from [15]. The idea
is that a binary expansion of the form ), x;2° uniquely expresses every integer
in a given interval whose width is a power of 2, but if we change the powers
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of two in the expression to other values, we can obtain (possibly non-unique)
binary expansions for other intervals which suffice for the purpose of giving range
proofs. This change has no impact on proof size.

Open: The following zero-knowledge proof is needed:

A hg—f=0 AN ug=2v+gm
ZKPDLR{(f’g’U) " A f,gERL N vERSE |v|leo < q/d—d/2

The conditions in this relation can be rewritten as follows, with appropriate size
bounds on different elements.

e 7] - [

This relation is proved by using the proof system from [17] twice. The first
proof proves the linear relation from the first row of the matrix, which does
not include v. Therefore, the proof system can be used with norm bound 1.
The second proof proves the linear relation from the second row of the matrix,
which does include v, and therefore works with norm bound ¢/4 — do. As with
the signing algorithm, we use the adjustments described to make sure that the
preimage values are consistent across the two proofs.
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Abstract. In this paper we give efficient statistical zero-knowledge
proofs (SNARKs) for Module/Ring LWE and Module/Ring SIS rela-
tions, providing the remaining ingredient for building efficient crypto-
graphic protocols from lattice-based hardness assumptions. We achieve
our results by exploiting the linear-algebraic nature of the statements
supported by the Aurora proof system (Ben-Sasson et al.), which allows
us to easily and efficiently encode the linear-algebraic statements that
arise in lattice schemes and to side-step the issue of “relaxed extrac-
tors”, meaning extractors that only recover a witness for a larger rela-
tion than the one for which completeness is guaranteed. We apply our
approach to the example use case of partially dynamic group signatures
and obtain a lattice-based group signature that protects users against
corrupted issuers, and that produces signatures smaller than the state
of the art, with signature sizes of less than 300 KB for the comparably
secure version of the scheme. To obtain our argument size estimates for
proof of knowledge of RLWE secret, we implemented the NIZK using
libiop.

Keywords: Zero-knowledge proofs + Group signatures - Lattice-based
cryptography - Post-quantum cryptography

1 Introduction

We present non-interactive zero knowledge (NIZK) proofs for Module/Ring-LWE
and Module/Ring-SIS relations, that have size of the order of 70 kB for 128 bits
of security. These proofs rely on Aurora, a SNARK designed by Ben-Sasson et al.
[5]. From it, our proofs inherit statistical zero-knowledge and soundness, post-
quantum security, exact extractability (that is, the extraction guarantee is for
the same relation as the protocol completeness), and transparent setup (no need
for a trusted authority to generate the system parameters). Such proofs support
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algebraic circuits, and therefore can be combined with lattice based building
blocks. We show that it is possible to combine this protocol with (the ring
version of) Boyen’s signature [9], to prove knowledge of a signature on a publicly
known message, or knowledge of a valid pair message-signature, and an RLWE-
based encryption scheme [21], to prove knowledge of a valid decryption of a
given ciphertext. To showcase their efficiency we construct a (partially) dynamic
group signature [4], and we compare it with the most efficient NIZK-based group
signature to date [12] in Table 1. Differently from ours, the scheme by del Pino
et al. does not protect honest users from framing attempts by corrupted issuers
(the non-frameability property). Therefore, we compare it with two variants of
our scheme: GS, that does not guarantee non-frameability, and GSr,), that also
has non-frameability. To compare the security levels of the schemes we consider
the Hermite Root Factors (denoted by dgrr); a smaller delta implies higher
security guarantees. In both cases, the NIZK proof is of size less than 250 KB,
improving upon the state of the art. The group signature is proven secure in the
ROM under RSIS and RLWE. Security in the QROM follows also from [11]; to
achieve 128 bits of QROM security requires a three-fold increase in proof size.

Table 1. Comparison for around 90 bits of security.

Partially dynamic| Anonymous | Traceable | Non-frameable | Users | d g rr | Signature (MB)
2] |v v v 280 11.002 | 0.581
Gs |v v v 226 11.0007| 0.3
GStun | v v v v 226 11.0007 | 1.44

We demonstrate the effectiveness of our NIZKs with an implementation. We
are able to produce a Ring-LWE proof in around 40's on a laptop (cf. Sect. 3.7). In
comparison, the scheme of [12] produces proofs in under a second. Nonetheless,
we consider our NIZK and group signature a benchmark for evaluating efficiency
claims for (existing and future) NIZK proofs for lattice relations. In particular,
it shows what can be achieved using ‘generic’ tools.

1.1 Our Techniques

In their simplest form, lattice problems can be generically described as finding
a vector s € Zy with small coefficients (i.e., [s;| < 3 for all 7) such that Ms =
u mod ¢ for given matrix M € Z7**™ and vector u € Z;", q being a prime.

The SNARK Aurora allows to prove knowledge of a witness for a given
instance of the Rank-1 Constraint Satisfaction (R1CS), i.e., of a vector z € F*!
such that, given a vector v € F¥ and three matrices A, B,C € F"*("+D) k< p,
the vector z extends v to satisfy Az o Bz = Cz, where o denotes the entry-
wise product. The entries of v are the unknowns of the problem, while the
equations they satisfy are called constraints (and are derived from the general
equation Az o Bz = Cz). Hence, we say that the previous R1CS system has
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n unknowns and m constraints. Aurora provides proofs of length O (log2 N),
where f = Oy (log? N) means f = O(\log?® N) for some ¢ > 0, and N is the total
number of nonzero entries of A, B, C'. The conversion of an instance (s, M,u) of
the above problem to an instance of R1CS is quite natural. We set F := Z, so
that to prove that M's = u mod ¢ holds, it is enough to set A := [0,,x1 M],
B = [Linx1 Omxnl, C = [t Opxn], and 2z := [1 sT]T, where Opyxpn (Tesp. Lyxn)
is a matrix with m rows and n columns with all components equal to 0 (resp. 1),
and the parameter k of the R1CS problem is set to be & = n. The number
of constraints of this system is m, and the number of variables is n. To prove
that the secret vector s has also a small norm, we use binary decomposition.
In particular, to prove that a component s; of s is smaller than 3 = 2" it
is enough to verify that its binary representation is at most h bits long, i.e.,
s = ¢; S0 2ib; 5 ,with ¢; € {£1} and b;; € {0,1} Vi. This is equivalent to
proving that bg j,...,bn—1,s; satisfy the following constraints:

h—1 h—1
bi’j(l — b@j) =0 Vi A (Z b@j?i — Sj) (Z bi’j2i + Sj> =0.
=0 i=0

These correspond to the R1CS instance (A;, Bj,C;) and witness z;, with

0 0 1 0 bl.
: I : : —In : 0
A= |- . , Bj:=|" o, oz = : ,
J 0 0 J 1 0 J ; . |
012...2h1 1 012...2+11 o
J

and Cj; the all-zero matrix, where I}, is the identity matrix of dimension h. Thus
proving that s has a small norm adds n(h + 1) constraints and nh unknowns to
the proof (i.e., the coefficients of the bit decomposition of each component of s).
Hence, expanding A, B, C, z with all the A;, B;, Cj,z; (taking care not to
repeat entries in z) yields the full instance. This includes m+n(h+1) constraints,
and the nonzero entries of the matrices A, B, C are N = nm+2m+ (5h+ 1)n,
and outputs proofs of length O(log?(n(m+5h+1)+2m)) (where we recall that h
is the logarithm of the bound on the norm of the solution to the lattice problem).
The R1CS formalism allows us to prove knowledge of a message-signature pair
in Boyen’s signature scheme [9] in a natural way (cf. Sect. 3.4).

1.2 Related Work

Both Libert et al. [17] and Baum et al. [3] introduce ZK proof to prove knowledge
of solutions of lattice problems that are linear in the length of the secret and in
log 3 respectively (where [ is the bound of the norm of the secret vector). Our
scheme improves these in that the proof length depends polylogarithmically on
the length of the secret vector and log 3. Moreover, we give concrete estimates
for parameters that guarantee 128 bits of security. The lattice-based SNARK
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of [14] relies on the gDH assumption (among others), hence unlike our scheme
this is not post-quantum secure, and needs a trusted setup, which prevents to
use it to build group signatures with the non-frameability property. Regarding
group signature construction, a new construction was published by Katsumata
and Yamada [15], that builds group signatures without using NIZK proofs in
the standard model. Their construction is of a different form, and, in particular,
sidesteps the problem of building NIZKs for lattices, hence we can only compare
the signature lengths. Differently from ours, their signature sizes still depend
linearly on the number of users (while ours depend polylogarithmically on the
number of users) when security is based on standard LWE/SIS. They are able
to remove this dependency assuming subexponential hardness for SIS.

2 Preliminaries

We denote vectors and matrices with upper-case letters. Column vectors are
denoted as V = [vl HI- vn] and row vectors as V = [vl ... vn]. Sampling and
element z from a distribution D are denoted as x <& D. If z is sampled uniformly
over a set A, we write z <& A. With z < a we denote that x is assigned the value
a. When necessary, we denote the uniform distribution over a set S as U(S). We
denote by log the logarithm with base 2. We use the standard Landau notation
(i.e., O(+), w(-),...) plus the notation Oy(-), where f = Oy(g) means that there
exists ¢ > 0 such that f = O(A%).

2.1 Preliminaries: Ideal Lattices

Let Z[X] be the ring of polynomials with integer coefficients, f € Z[X] be
a monic, irreducible polynomial of degree n, and R be the quotient ring
R := Z[X]/ (f). Ring elements are represented with the standard set of rep-
resentatives {g mod f : g € Z[X]}, corresponding to vectors in Z" through the
standard group homomorphism A that sends a = Z;L:_Ol a;z' to the vector of its
coefficients (ag, ..., an—1). Let Ry = Z4[X]/(X"™ + 1) for a prime ¢. Elements in
the ring are polynomials of degree at most n— 1 with coefficients in [0, ¢ — 1] and

operations between them are done modulo g. For an element a = Z;:Ol a;x*, the

norms are computed as [lall; = >, |as|, [|a]] = /), a7 and ||af« = max |a,|.
For a vector S = [s1,...,8,,] € R™, the norm ||S||, is defined as max[", ||s;||,-
Let Si be the subset of elements of R, with coefficients in {0,+1}. BitD(a) is
an algorithm that on input elements a; € R,, outputs vectors a@; containing the
binary expansion of the coefficients of a;. Let deg(a) be the degree of the poly-
nomial a. Ideals in R and R, corresponds to lattices in Z" and Zj respectively,
through the homomorphism h. A sample z from a discrete Gaussian Dy ., ,
centered in u and with std. deviation o, is generated as a sample from a discrete
Gaussian over Z" and then map it into R, using the obvious embedding of coor-
dinates into coefficients of the polynomials. Similarly, we omit the 0 and write
[yl .. yk] &D%q’g to mean that a vector y is generated according to Dzkn,o,o—
and then gets interpreted as k polynomials y;. With an abuse of notation, we
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denote by Di’u’s the distribution of the vectors V. € R™ such that V ~ Dg g .
conditioned on AV = u mod gq.

Lemma 2.1 (cf. [2, Lemma 1.5], [19, Lemma 4.4]). Let m > 0. The following
bounds hold:

(1) Pry s . (IS] > 1.050/m) < (0.998)™
(2) Pry s (ISllse > 80) < m2~7

We recall two well-studied lattice problems over rings: RSIS and RLWE.

& pm

Definition 2.2 (RSIS,, s problem [21]). The RSIS,, 43 problem asks given
a vector A&Réxm to find a vector S € Ry such that AS = 0 mod q and
[S|| < B. The inhomogeneous version of RSIS asks to find S € Ry* such that
AS =u, and ||S|| < 8 for given uniformly random A and u.

Definition 2.3. RLWEy , problem, normal form, cf. [22] The RLWE, ¢ dis-
tribution (resp., the RLWE, distribution in the normal form) outputs pairs
(a,b) € Ry x Ry such that b = as + e for a uniformly random a from
Ry. s € Ry and e sampled from distribution x (resp., a& Ry, s,e < x). The
RLWEj, , decisional problem on ring R, with distribution x 1is to distinguish
whether k pairs (a1, b1),. .., (ak, bg) were sampled from the RLWE, distribu-
tion or from the uniform distribution over R(QI The RLWEy, , search problem on
ring Rq with distribution x is given k pairs (ai1,b1),..., (ax, br) sampled from
the RLWE,, distribution, find s.

Module-RSIS and Module-RLWE [16] are a more general formulation of RSIS
and RLWE. Module-RSIS asks to find a short vector S € Ry such that AS =0

given a matriz A & Ry ™2 (the inhomogeneous version is defined analogously).
The Module-RLWE distribution outputs pairs (A, (A,S) +e) € RY x Ry, where
the secret S and the error e are drawn from R’; and R4 respectively.

2.2 RLWE Encryption Scheme

Let n be a power of 2, p, and ¢ be two primes such that ¢ > p, and x be an error
distribution. The RLWE encryption scheme (EParGen, EKeyGen, Enc, Dec) [22] to
encrypt a binary message p € S; works as follows. On input the security param-
eter A, the parameters generation EParGen outputs (n,p,q). The key generator
EKeyGen samples a~R,, s R, and d « x, and sets b = as + d mod g¢.
The encryption key is epk = (a,b), the decryption key is esk = s. On input
a message , the encryption algorithm Enc generates the ciphertext (v, w) as
v = p(ar + e) mod ¢, w = p(br + f) + g mod ¢, where e,f & x and r £ R,.
Decryption amounts to computing (w — sv mod ¢) mod p. This encryption
scheme is IND-CPA secure under RLWE; ,, and can be made IND-CCAZ2 secure
combining it with a non-malleable NIZK proof system following Naor-Yung
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construction [25]. In our instantiation we choose the error distribution x to
be a Gaussian distribution with standard deviation sprwe = w(v/loggq) (cf.
Theorem 1 in [10]).

We remark that this encryption scheme encrypts plaintexts that are poly-
nomials of degree n with binary coefficients. In case it would be necessary to
encrypt a bit string b= (b1,...,bx), we assume the encryption algorithm first
converts it to an element of S; (or more than one, if ¥ > n) by setting b; = 0
for k < i < n and constructing the polynomial b = >""" | b;z*~* (the case k > n
is analogous).

2.3 Boyen’s Signature on Ideal Lattices

A digital signature scheme is composed by 4 PPT algorithms (SParGen, SKeyGen,
Sign, SVerify). Existential unforgeability against adaptive chosen-message attacks
(eu-acma) requires that the adversary should not be able to forge a signature
on some message p* of her choice, even if she has access to a signing oracle. In
this section we describe the variant of Boyen’s signature [9] by Micciancio and
Peikert [23], adapted to have security based on hardness assumptions on ideal
lattices. Such variant has been claimed to be secure since long time, but, to the
best of our knowledge, this is the first time in which a security proof is given
explicitly (cf. the full version of this paper). In particular, we prove the signature
secure when defined over the (2n)-th cyclotomic ring.

Theorem 2.4 (Trapdoor generation, from [23]). Let R, be a power of 2
cyclotomic ring and set parameters m = 2, k = [logq]|, m = m + k. There
exists an algorithm GenTrap that outputs a vector A € Réxm and a trapdoor
R e R;”Xk with tag h € Ry such that:

-~ A =[A|AR + hG], where G is the gadget matrix, G = [124 ... 2871 and
A =lal] e R}** alR,.

- R is distributed as a Gaussian D?{ff for some s = aq, where @ > 0 s a
RLWE error term, aq > w(y/logn) (cf [22, Theorem 2.22]).

— h is an invertible element in R,.

- A is computationally pseudrandom (ignoring the component set to 1) under
(decisional) RLWEp where D = Dy, .

Genise and Micciancio [13] give an optimal sampling algorithm for the pre-
vious trapdoor construction.

Theorem 2.5 (Gaussian sampler, adapted from [23] and [13]). Let R,,
m, k, m be as in Theorem 2./, G be the gadget matrix G = [124 ... 2k~1],
A € R}Ixm and R € Rng be the output of GenTrap, and B a vector in RéXd
for some d > 0. Then, there is an algorithm that can sample from the distribution
D[JA | AR4G | Bu,s JOT any s = O(v/nlogq) - w(v/1ogn) for any u € Ry in time
O(n log q) for the offline phase and O(n2) for the online phase.
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The original signature was proved existentially unforgeable against adap-
tive chosen-message attacks eu-acma under SIS. Micciancio and Peikert proved
their variant to be strongly unforgeable against static chosen-message attack
(su-scma) under SIS with a tighter reduction, and then made it strongly unforge-
able against adaptive chosen-message attacks su-acma using chameleon hash
functions [26]. For our purposes adaptive existential unforgeability is enough, so
our aim is to prove the scheme eu-acma under RSIS combining the techniques
used in the proofs of these two papers.

Parameters. spar < SParGen(1?)
Let f be the (2n)-th cyclotomic polynomial, f = x™ + 1. Construct the poly-
nomial rings R = Z[X]/(f) and R, = Z¢[X]/(f). Let k = [log, ¢q], m = 2,
and m = m+k = 2+ [log q] be the length of the public matrices, and £ be the
length of the message. Let s = v/log(n?) + 1 and s, = v/nlogn - /logn?
be the standard deviations of the distributions of the signing key and of the
signature respectively (their values are determined following Theorems 2.4
and 2.5 respectively).
Key Generation. (svk, ssk) « SKeyGen(spar)
Run the algorithm GenTrap from Theorem 2.4 to get a vector [A | B] =
[A | AR + G] and a trapdoor R. The public key is composed by ¢ + 1
random matrices Ag, ..., Ay & R}JX”“, a random vector u <& R4 and the vector
[A | B] € Réxm. ie., svk = (A,B,Ay,...,A,u), and the (secret) signing
key is ssk = R. Remark that the probability distribution of R is D%X;“k
Signing. o «— Sign(y, ssk)
To sign a message pt = (p1, ..., me) € {0, 1}, the signer constructs a message-
dependent public vector A, = [A | B | A0+Zf:1(—1)‘”Ai] and then it sam-
ples a short vector S € Rg”‘k running the algorithm SampleD from Theorem
2.5 on input (A, u,R). The algorithm outputs the signature o = S. Remark
that the probability distribution of the signature S is Dy . -
Verification. {0, 1} « SVerify(o, u, svk)
The verifier checks that the vector S has small norm, i.e., ||S||cc < 8s,. Then,
he constructs A, = [A | B | Ag +Zf:1(—1)‘” A;] and checks that S satisfies
the verification equation, i.e., A,S = u mod q.

Correctness follows from Theorems 2.4 and 2.5 and from Lemma 2.1. We
prove the eu-acma security of the scheme under RSIS by proving that if there
exists a PPT adversary A that can break the signature scheme we can construct
an algorithm B that can solve RSIS exploiting A. The proof is obtained combining
the message guessing technique in the proof of Theorem 25 in [9] with the proof
of Theorem 6.1 in [23] and can be found in the full version.

Theorem 2.6 (eu-acma security). If there exists a PPT adversary A that can
break the eu-acma security of the signature scheme (SParGen,SKeyGen, Sign,
SVerify) in time ta with probability ep asking qa queries to the signing ora-
cle, then there exists a PPT algorithm B that can solve RSISp 11,43 for a
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large enough = 8s, + (¢ + 1)kn8s, exploiting A in time tg ~ ta with prob-

ability eg = ea - (1 — erLwE) - % ( — %A) or a PPT algorithm that solves

RLIWE 4 1)ku(s,) with probability ep in time ta.

2.4 The Aurora Protocol
Aurora is a Interactive Oracle Proof for R1CS relations by Ben-Sasson et al. [5].

Definition 2.7 (R1CS relation). The relation Rrics consists of the set of
all pairs ((F, k,m,n, A, B,C,v),w) where F is a finite field, k is the number of
inputs, n is the number of variables, m is the number of constraints, A, B,C are
matrices in T+ € F* and w € F*% such that Az o Bz = Cz where
z = (1,v,w) € F*"*! and o denotes entry-wise (Hadamard) product.

The following theorem summarizes the properties of Aurora when compiled to
a SNARK via the transform by Ben-Sasson et al. (cf. Theorem 7.1 in [6]). In
the statement below, N := max(m,n); generally n and m will be of roughly the
same magnitude.

Theorem 2.8 (informal, cf. Theorem 1.2 in [5]). There exists a non-
interactive zero-knowledge argument for R1CS that is unconditionally secure in
the random oracle model with proof length O(A*log® N) and one-time simula-
tion soundness error 2= against adversaries making at most 2* queries to the
oracle. The prover runs in time Ox(Nlog N) and the verifier in time Ox(N).

Remark 2.9 (Simulation soundness). To use the above construction in the Naor—
Yung paradigm, as we later do, requires one-time simulation soundness (OTSS).
This is shown as follows; we assume some familiarity with [7]. Let 7 be a proof
output by the simulator for a statement x supplied by the adversary. First recall
that to achieve adaptive soundness and zero knowledge, the oracle queries of
the verifier and honest prover are prefixed with the statement x and a fresh
random string r € {0, 1}*. Since with high probability no efficient adversary can
find 2’ # x,q, ¢ such that p(x|r|q) = p(2'||r||¢"), if the adversary in the OTSS
game chooses an instance different from that of the simulated proof, the success
probability of the extractor is affected only by a negligible amount.

Now suppose that an adversary generates a different proof n’ # 7 of the
same statement z. In the Aurora IOP, the query locations for the first oracle
are a uniformly random subset of [¢] (where £ is the oracle length, ¢ = 2(N))
of size £2()\). This is determined by the verifier’s final randomness, which in the
compiled NIZK depends on all of the Merkle tree roots; these are all included in
7. Moreover, these collectively depend on every symbol of 7; hence no efficient
adversary can find a valid 7’ # 7 whose query set is the same as that of 7. In
particular, the Merkle tree root corresponding to the first round has some query
in 7" which is not in 7; since it is infeasible to find an accepting authentication
path for this query relative to the root provided by the simulator, the value of
this root must differ between 7 and 7’. It follows that, with high probability, the
extractor only ‘programs’ queries which were not already programmed by the
simulator, and so one-time simulation soundness holds.
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3 NIZKs for Lattices from R1CS

We build the NIZKs from simple, reusable building blocks. When composing
these building blocks, it is often necessary to make explicit inputs private. Gen-
erally this involves no additional complication; if changes are needed to ensure
soundness, we will point them out. When we construct R1CS instances (cf.
Definition 2.7), we typically write down a list of variables and constraints, rather
than explicitly constructing the matrices.

3.1 Basic Operations

We describe how to express some basic lattice operations in R, as arithmetic
operations over F, = Z, for prime q.

Representation of Ring Elements. We represent ring elements as vectors in
[y w.r.t. some basis of R,. Note that regardless of the choice of basis, addition in
R4 corresponds exactly to component-wise addition of vectors. An R,-element
is denoted by a lowercase bold letter (e.g. a) and the corresponding vector in
[Fy by an arrow (e.g. @). A vector in R} is denoted by an uppercase bold letter
(e.g. A) and the corresponding matrix in Fy**", whose rows are the coefficients
of the elements of the vector, is denoted by an uppercase letter (e.g. A).

Bases. We will use two bases: the coefficient basis and the evaluation or number-
theoretic transform (NTT) basis. The NTT basis, which is the discrete Fourier
basis over [y, allows polynomial multiplication to be expressed as pointwise
multiplication of vectors. Transforming from the coefficient basis to the NTT
basis is a linear transformation 7" € Fy*". The choice of basis depends on the
type of constraint we wish to check; generally we will represent inputs in the
coefficient basis. An issue with the NTT basis is that to multiply ring elements
a,b € R, naively requires us to compute the degree-2n polynomial ab € F,[X]
and then reduce modulo X”+1. This would make multiplying ring elements quite
expensive. For our choice of R, however, so long as g has 2n-th roots of unity we
can employ the negative wrapped convolution [20], which is a linear transform 7'
such that if d, 5, C'represent the coeflicients of a, b, c € R, respectively, T'do Th =
Tc if and only if ¢ = ab in R4. From here on, T is the negative wrapped
convolution.

Addition and Multiplication. Following the above discussions, addition is
(always) componentwise over F, and multiplication is componentwise in the
NTT basis. Hence to check that a4+ b = cor a-b = ¢ in R; when a,b,c
are represented in the coefficient basis as d, g, ¢, we use the constraint systems
G+b=_cor TaoTh=T¢ respectively. Each of these ‘constraints’ is a shorthand
for a set of n constraints, one for each dimension; i.e., a; +b; = ¢; for all i € [n],
or (T, @) o (Ty,b) = (T}, for all i € [n] where T} is the i-th row of T.

Decomposition. A simple but very important component of many primitives
is computing the subset-sum decomposition of a Zg-element a with respect to
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a list of Z,-elements (e, ..., e.); that is, finding by, ...,b, such that b; € {0,1}
and Zle bie; = a. For example, when e; = 2¢~! for each 4, this is the bit decom-

position of a. The following simple constraint system enforces that by, ..., by is
the subset-sum decomposition of a € F, with respect to (e1,...,es).
-1
bi(l—bi):O ViE{O,...,E—l} A Zbiei—a:O
i=0

For the case of ¢; = 21 we will use the notation b = BitDec(a) to represent
this constraint system. For a vector @ € F? and matrix B € F?*¢ we write
B = BitDec(d) for the constraint system “B; = BitDec(a;) Vj € [k]”, for B,
the j-th row of B.

Proof of Shortness. Showing that a € Z, is bounded by 8 < (p — 1)/2, i.e.
—08 < a < (8, can be achieved using its decomposition. It was observed in [18]
that taking e; = [3/2],e2 = [(8 —b1)/2],...,e¢ = 1 for £ = [log (] yields a
set of integers whose subset sums are precisely {0,...,53 — 1}. We then have
that |a| < @ if and only if there exist b1,...,b; € {0,1},¢ € {—1,1} such that
CZle b;e; = a. The prover will supply b1,...,by as part of the witness. This
introduces the following constraints:

4 k-1
bl(]. - bz) =0 Wi A (Z biei - a)(z biei + CL) =0
=1 =0

The number of new variables is k; the number of constraints is k£ + 1. When we
describe R1CS instances we will write the above constraint system as “|a| < 3.
For @ € Zy, we will write “||@]|o. < 37 for the constraint system “|a;| < Vi€
[n]”, i.e. n independent copies of the above constraint system, one for each entry
of .

3.2 Proof of Knowledge of RLWE Secret Key

We give a proof of knowledge for the relation R = {(c,d;t,e) € Ré :d =

ct+emod g A |le]e < S} Let ¢ J;f, € € Fy encode c,d, t, e in the coefficient
basis. The condition is encoded by the following constraint system:

TeoTt=Tf A f+é=d A |&e<8

where f € [y should be the coefficient representation of ct. The number of

variables and constraints are bounded by n(log 5+ 6). We write RLWE3(¢, d,z, €)
as shorthand for the above system of constraints. Note that we did not use
the fact that the verifier knows E',J: this will allow us to later use the same
constraint system when ¢, d are also secret. Hence, applying Theorem 2.8 yields
the following.
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Lemma 3.1. There is a NIZK proof (SNARK) for the relation R,
secure and extractable in the random oracle model, with proof length

O(N?log® (n log 6) logq).

With our parameters as given in Sect. 5.4, the size of a NIZK for a single proof of
knowledge of an RLWE secret key is 72 kB (obtained from our implementation
Sect. 4 using libiop). Constraint systems for RSIS, Module-RSIS and Module-
RLWE can be derived similarly.

3.3 Proof of Knowledge of Plaintext

We give a proof of knowledge for the relation R = {(a,b,v,w;e,f,r,u) € ’RZ X
S1: v=plar+e)Aw = p(br+1£)+ pAlle], [fllc < B} Recall that S C R,
is the set of all polynomials of degree less than n whose coefficients are in {0, 1},
which is in natural bijection with the set {0,1}™.

Let &, 57 U, W, é',f,f’,[[ € F} be the coefficient representations of the corre-
sponding ring elements. The condition is encoded by the following constraint
system: L .

RLWE(F,d@,7,¢) A RIWEg(h,b,