

 Practical AI for Cybersecurity

http://taylorandfrancis.com/

Practical AI for Cybersecurity

Ravi Das

 First edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-​2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

© 2021 Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, LLC

The right of Ravi Das to be identified as author of this work has been asserted by them in accordance with
sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

Reasonable efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication and
apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or
contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-​750-​
8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only
for identification and explanation without intent to infringe.

Library of Congress Cataloging-​in-​Publication Data
A catalog record has been requested for this book

ISBN: 978-​0-​367-​70859-​7 (hbk)
ISBN: 978-​0-​367-​43715-​2 (pbk)
ISBN: 978-​1-​003-​00523-​0 (ebk)

http://www.copyright.com

 This is book is dedicated to my Lord and Savior, Jesus Christ. It is also dedicated
in loving memory to Dr. Gopal Das and Mrs. Kunda Das, and also to my family
in Australia, Mr. Kunal Hinduja and his wife, Mrs. Sony Hinduja, and their two

wonderful children.

http://taylorandfrancis.com/

vii

Contents

Acknowledgments... xv
Notes on Contributors.. xvii

1	 Artificial Intelligence..1
The Chronological Evolution of Cybersecurity..3
An Introduction to Artificial Intelligence..7
The Sub-​Fields of Artificial Intelligence...9

Machine Learning..9
Neural Networks..10
Computer Vision...11

A Brief Overview of This Book..12
The History of Artificial Intelligence...13

The Origin Story..16
The Golden Age for Artificial Intelligence..17
The Evolution of Expert Systems..19

The Importance of Data in Artificial Intelligence...21
The Fundamentals of Data Basics...22
The Types of Data that are Available...23
Big Data..25
Understanding Preparation of Data..26
Other Relevant Data Concepts that are Important to Artificial

Intelligence...30
Resources..31

2	 Machine Learning..33
The High Level Overview..34

The Machine Learning Process...35
Data Order...36
Picking the Algorithm...36
Training the Model...37
Model Evaluation..37
Fine Tune the Model...37

viii  |  Contents

The Machine Learning Algorithm Classifications...............................37
The Machine Learning Algorithms...39
Key Statistical Concepts...42

The Deep Dive into the Theoretical Aspects of Machine Learning...............43
Understanding Probability...43
The Bayesian Theorem...44
The Probability Distributions for Machine Learning..........................45
The Normal Distribution...45
Supervised Learning...46
The Decision Tree..49
The Problem of Overfitting the Decision Tree....................................52
The Random Forest..53
Bagging..53
The Naïve Bayes Method...54
The KNN Algorithm...56
Unsupervised Learning...58
Generative Models...59
Data Compression...59
Association...60
The Density Estimation...61
The Kernel Density Function...62
Latent Variables..62
Gaussian Mixture Models..62

The Perceptron..62
Training a Perceptron...64
The Boolean Functions..66
The Multiple Layer Perceptrons..67
The Multi-​Layer Perceptron (MLP): A Statistical Approximator............68
The Backpropagation Algorithm..69
The Nonlinear Regression..69

The Statistical Class Descriptions in Machine Learning...............................70
Two Class Statistical Discrimination..70
Multiclass Distribution..70
Multilabel Discrimination..71

Overtraining...71
How a Machine Learning System can Train from Hidden, Statistical

Representation...72
Autoencoders..74
The Word2vec Architecture...75
Application of Machine Learning to Endpoint Protection...........................76

Feature Selection and Feature Engineering for Detecting Malware.....79
Common Vulnerabilities and Exposures (CVE).................................80
Text Strings..80

Contents  |  ix

Byte Sequences...81
Opcodes...81
API, System Calls, and DLLs...81
Entropy..81
Feature Selection Process for Malware Detection................................82
Feature Selection Process for Malware Classification..........................82
Training Data...83
Tuning of Malware Classification Models Using a Receiver

Operating Characteristic Curve...83
Detecting Malware after Detonation..85
Summary...86

Applications of Machine Learning Using Python..86
The Use of Python Programming in the Healthcare Sector.................87
How Machine Learning is Used with a Chatbot.................................87
The Strategic Advantages of Machine Learning In Chatbots...............88

An Overall Summary of Machine Learning and Chatbots...........................90
The Building of the Chatbot—​A Diabetes Testing Portal............................90
The Initialization Module..92
The Graphical User Interface (GUI) Module...92

The Splash Screen Module...93
The Patient Greeting Module...93
The Diabetes Corpus Module..94
The Chatbot Module...95
The Sentiment Analysis Module...98

The Building of the Chatbot—​Predicting Stock Price Movements............100
The S&P 500 Price Acquisition Module..100
Loading Up the Data from the API..101
The Prediction of the Next Day Stock Price Based upon

Today’s Closing Price Module...102
The Financial Data Optimization (Clean-​Up) Module.....................103
The Plotting of SP500 Financial Data for the Previous

Year + One Month..103
The Plotting of SP500 Financial Data for One Month.....................104
Calculating the Moving Average of an SP500 Stock.........................104
Calculating the Moving Average of an SP500 Stock for just a

One Month Time Span...104
The Creation of the NextDayOpen Column for SP500

Financial Price Prediction..104
Checking for any Statistical Correlations that Exist in the

NextDayOpen Column for SP500 Financial Price
Prediction..105

The Creation of the Linear Regression Model to Predict
Future SP500 Price Data...105

x  |  Contents

Sources..107
Application Sources...107

3	 The High Level Overview into Neural Networks..................................109
The High Level Overview into Neural Networks.......................................110

The Neuron...110
The Fundamentals of the Artificial Neural Network (ANN).............111

The Theoretical Aspects of Neural Networks...114
The Adaline..114
The Training of the Adaline..115
The Steepest Descent Training..116
The Madaline...116
An Example of the Madaline: Character Recognition.......................118
The Backpropagation...119
Modified Backpropagation (BP) Algorithms....................................120
The Momentum Technique..121
The Smoothing Method...121
A Backpropagation Case Study: Character Recognition...................121
A Backpropagation Case Study: Calculating the Monthly

High and Low Temperatures...122
The Hopfield Networks...125

The Establishment, or the Setting of the Weights in the
Hopfield Neural Network...126

Calculating the Level of Specific Network Stability in the
Hopfield Neural Network...127

How the Hopfield Neural Network Can Be Implemented...............129
The Continuous Hopfield Models..130
A Case Study Using the Hopfield Neural Network:

Molecular Cell Detection..131
Counter Propagation...133

The Kohonen Self-​Organizing Map Layer..133
The Grossberg Layer..134
How the Kohonen Input Layers are Preprocessed.............................135
How the Statistical Weights are Initialized in the

Kohonen Layer...135
The Interpolative Mode Layer..136
The Training of the Grossberg Layers...136
The Combined Counter Propagation Network................................136
A Counter Propagation Case Study: Character Recognition.............137

The Adaptive Resonance Theory..137
The Comparison Layer...138
The Recognition Layer...138
The Gain and Reset Elements..139

Contents  |  xi

The Establishment of the ART Neural Network...............................140
The Training of the ART Neural Network..140
The Network Operations of the ART Neural Network.....................141
The Properties of the ART Neural Network.....................................142
Further Comments on Both ART 1 & ART 2 Neural

Networks..143
An ART 1 Case Study: Making Use of Speech Recognition.............143

The Cognitron and the Neocognitron...145
The Network Operations of the Excitory and Inhibitory

Neurons..146
For the Inhibitory Neuron Inputs..147
The Initial Training of the Excitory Neurons....................................147
Lateral Inhibition...148
The Neocognitron..148

Recurrent Backpropagation Networks...149
Fully Recurrent Networks..149
Continuously Recurrent Backpropagation Networks........................150

Deep Learning Neural Networks...150
The Two Types of Deep Learning Neural Networks..........................153

The LAMSTAR Neural Networks...154
The Structural Elements of LAMSTAR Neural Networks................155
The Mathematical Algorithms That Are Used for Establishing

the Statistical Weights for the Inputs and the Links
in the SOM Modules in the ANN System............................155

An Overview of the Processor in LAMSTAR Neural
Networks..157

The Training Iterations versus the Operational Iterations..................157
The Issue of Missing Data in the LAMSTAR Neural Network.........158
The Decision-​Making Process of the LAMSTAR Neural

Network..158
The Data Analysis Functionality in the LAMSTAR Neural

Network..158
Deep Learning Neural Networks—​The Autoencoder................................161

The Applications of Neural Networks..162
The Major Cloud Providers for Neural Networks......................................163
The Neural Network Components of the Amazon Web Services &

Microsoft Azure...164
The Amazon Web Services (AWS)..164

The Amazon SageMaker..165
From the Standpoint of Data Preparation.............................165
From the Standpoint of Algorithm Selection,

Optimization, and Training....................................165

xii  |  Contents

From the Standpoint of AI Mathematical Algorithm and
Optimizing...166

From the Standpoint of Algorithm Deployment...................167
From the Standpoint of Integration and Invocation..............167

The Amazon Comprehend...168
Amazon Rekognition...169
Amazon Translate...169
Amazon Transcribe...171
Amazon Textract..171

Microsoft Azure..171
The Azure Machine Learning Studio Interactive Workspace.............172
The Azure Machine Learning Service...173
The Azure Cognitive Services...174

The Google Cloud Platform..174
The Google Cloud AI Building Blocks...175

Building an Application That Can Create Various Income Classes............177
Building an Application That Can Predict Housing Prices.........................179
Building an Application That Can Predict Vehicle Traffic Patterns

in Large Cities..180
Building an Application That Can Predict E-​Commerce Buying

Patterns..181
Building an Application That Can Recommend Top Movie Picks.............182
Building a Sentiment Analyzer Application...184
Application of Neural Networks to Predictive Maintenance......................185

Normal Behavior Model Using Autoencoders..................................186
Wind Turbine Example..187

Resources..192
4	 Typical Applications for Computer Vision...193

Typical Applications for Computer Vision..194
A Historical Review into Computer Vision...195
The Creation of Static and Dynamic Images in Computer

Vision (Image Creation)...199
The Geometric Constructs—​2-​Dimensional Facets..........................199
The Geometric Constructs—​3-​Dimensional Facets..........................200
The Geometric Constructs—​2-​Dimensional Transformations..........202
The Geometric Constructs—​3-​Dimensional Transformations..........204
The Geometric Constructs—​3-​Dimensional Rotations....................205
Ascertaining Which 3-​Dimensional Technique Is the

Most Optimized to Use for the ANN System........................206
How to Implement 3-​Dimensional Images onto a Geometric Plane..........206

The 3-​Dimensional Perspective Technique.......................................207
The Mechanics of the Camera...208

Determining the Focal Length of the Camera..................................209

Contents  |  xiii

Determining the Mathematical Matrix of the Camera.....................210
Determining the Projective Depth of the Camera............................211
How a 3-​Dimensional Image Can Be Transformed between

Two or More Cameras..212
How a 3-​Dimensional Image Can Be Projected into an

Object-​Centered Format...212
How to Take into Account the Distortions in the Lens of the

Camera..213
How to Create Photometric, 3-​Dimensional Images.................................215

The Lighting Variable...215
The Effects of Light Reflectance and Shading...................................216

The Importance of Optics...220
The Effects of Chromatic Aberration...221

The Properties of Vignetting..222
The Properties of the Digital Camera..223

Shutter Speed...224
Sampling Pitch...224
Fill Factor...224
Size of the Central Processing Unit (CPU).......................................225
Analog Gain...225
Sensor Noise..225
The ADC Resolution...225
The Digital Post-​Processing..226

The Sampling of the 2-​Dimensional or 3-​Dimensional Images..................226
The Importance of Color in the 2-​Dimensional or 3-​Dimensional

Image...227
The CIE, RGB, and XYZ Theorem..228
The Importance of the L*a*b Color Regime for 2-​Dimensional

and 3-​Dimensional Images..228
The Importance of Color-​Based Cameras in Computer Vision..................229

The Use of the Color Filter Arrays..229
The Importance of Color Balance..230
The Role of Gamma in the RGB Color Regime...............................230
The Role of the Other Color Regimes in 2-​Dimensional

and 3-​Dimensional Images..231
The Role of Compression in 2-​Dimensional and 3-​Dimensional

Images..232
Image Processing Techniques...233
The Importance of the Point Operators...234

The Importance of Color Transformations.......................................235
The Impacts of Image Matting...236
The Impacts of the Equalization of the Histogram...........................236
Making Use of the Local-​Based Histogram Equalization..................237

xiv  |  Contents

The Concepts of Linear Filtering...238
The Importance of Padding in the 2-​Dimensional or

3-​Dimensional Image..239
The Effects of Separable Filtering...240
What the Band Pass and Steerable Filters Are...................................241
The Importance of the Integral Image Filters....................................242
A Breakdown of the Recursive Filtering Technique...........................242

The Remaining Operating Techniques That Can Be Used by the
ANN System..243
An Overview of the Median Filtering Technique..............................243
A Review of the Bilateral Filtering Technique...................................244
The Iterated Adaptive Smoothing/​Anisotropic Diffusion

Filtering Technique...245
The Importance of the Morphology Technique................................245
The Impacts of the Distance Transformation Technique...................247
The Effects of the Connected Components......................................248
The Fourier Transformation Techniques...248
The Importance of the Fourier Transformation-​Based Pairs..............252
The Importance of the 2-​Dimensional Fourier

Transformations..253
The Impacts of the Weiner Filtering Technique................................254
The Functionalities of the Discrete Cosine Transform......................255

The Concepts of Pyramids..256
The Importance of Interpolation..257
The Importance of Decimation..258
The Importance of Multi-​Level Representations...............................259
The Essentials of Wavelets..260

The Importance of Geometric-​Based Transformations...............................263
The Impacts of Parametric Transformations.....................................264

Resources..265

5	 Conclusion...267

Index...271

xv

Acknowledgments

I would like to thank John Wyzalek, my editor, for his help and guidance in the
preparation of this book. Many special thanks go out to Randy Groves, for his
contributions to this book as well.

http://taylorandfrancis.com/

newgenprepdf

xvii

Notes on Contributors

Ravi Das is a business development specialist for The AST Cybersecurity Group,
Inc., a leading Cybersecurity content firm located in the Greater Chicago area. Ravi
holds a Master of Science degree in Agribusiness Economics (Thesis in International
Trade), and a Master of Business Administration degree in Management Information
Systems.

He has authored six books, with two more upcoming ones on COVID-​19 and its
impacts on Cybersecurity and Cybersecurity Risk and its impact on Cybersecurity
Insurance Policies.

Randy Groves is the SVP of Engineering at SparkCognition, the world-​leader in
industrial artificial intelligence solutions. Before SparkCognition, he was the chief
technology officer of Teradici Corporation where he was responsible for defining the
overall technology strategy and technology partnerships which led to the adoption of
the industry-​leading, PCoIP protocol for VMware Virtual Desktop Infrastructure,
Amazon WorkSpaces Desktop-​as-​a-​Service, and Teradici Cloud Access Software.
He also served as vice president of Engineering at LifeSize Communications, Inc.
(acquired by Logitech) and led the team that released the first high-​definition video
conferencing products into the mainstream video conferencing market. Before
joining LifeSize, he served as the chief technology officer of Dell Inc.’s product
group responsible for the architecture and technology direction for all of Dell’s
product offerings. Prior to that, he served as general manager of Dell Enterprise
Systems Group and led the worldwide development and marketing of Dell’s server,
storage and systems management software products. He also spent 21 years with
IBM where he held many product development roles for IBM’s Intel-​ and RISC-​
based servers, as well as roles in corporate strategy and RISC microprocessor devel-
opment and architecture.

He is the author of numerous technical papers, disclosures and patents, as
well as the recipient of several corporate and industry awards. He holds a Masters
of Electrical Engineering from the University of Texas at Austin, a Masters in
Management of Technology from Massachusetts Institute of Technology, and a
Bachelors of Electrical Engineering and Business from Kansas State University.

http://taylorandfrancis.com/

1

Chapter 1

Artificial Intelligence

There is no doubt that the world today is a lot different than it was fifty or even thirty
years ago, from the standpoint of technology. Just imagine when we landed the first
man on the moon back in 1969. All of the computers that were used at NASA were
all mainframe computers, developed primarily by IBM and other related computer
companies. These computers were very large and massive—​in fact, they could even
occupy an entire room.

Even the computers that were used on the Saturn V rocket and in the Command
and Lunar Excursion Modules were also of the mainframe type. Back then, even
having just 5 MB of RAM memory in a small computer was a big thing. By today’s
standards, the iPhone is lightyears away from this kind of computing technology,
and in just this one device, we perhaps have enough computing power to send the
same Saturn V rocket to the moon and back at least 100 times.

But just think about it, all that was needed back then was just this size of
memory. The concepts of the Cloud, virtualization, etc. were barely even heard of.
The computers that were designed back then, for example, had just one specific pur-
pose: to process the input and output instructions (also known as “I/​O”) so that the
spacecrafts could have a safe journey to the moon, land on it, and return safely back
to Earth once again.

Because of these limited needs (though considered to be rather gargantuan
at the time), all that was needed was just that small amount of memory. But by
today’s standards, given all of the applications that we have today, we need at
least 1,000 times that much just to run the simplest of Cloud-​based applications.
But also back then, there was one concept that was not even heard of quite
yet: Cybersecurity.

In fact, even the term of “Cyber” was not even heard of. Most of the security issues
back then revolved around physical security. Take, for example, NASA again. The

2  |  Artificial Intelligence

main concern was only letting the authorized and legitimate employees into Mission
Control. Who would have thought that back then there was even the slightest pos-
sibility that a Cyberattacker could literally take over control of the computers and
even potentially steer the Saturn V rocket away from its planned trajectory.

But today, given all of the recent advancements in technology, this doomsday
scenario is now a reality. For example, a Cyberattacker could very easily gain access
to the electronic gadgetry that is associated with a modern jetliner, automobile, or
even ship. By getting access to this from a covert backdoor, the Cyberattacker could
potentially take over the controls of any these modes of vessels and literally take it to
a destination that it was not intended to.

So as a result, the concept of Cybersecurity has now come front and center, espe-
cially given the crisis that the world has been in with the Coronavirus, or COVID-​
19. But when we think of this term, really, what does it mean exactly? When one
thinks of it, many thoughts and images come to mind. For instance, the thoughts
of servers, workstations, and wireless devices (which include those of notebooks,
tablets, and Smartphones such as that of the Android-​ and iOS devices) come
into view.

Also, one may even think of the Internet and all of the hundreds of thousands
of miles of cabling that have been deployed so that we can access the websites of
our choice in just a mere second or so. But keep in mind that this just one aspect of
Cybersecurity. Another critical aspect that often gets forgotten about is that of the
physical security that is involved. As described previously with our NASA example,
this involves primarily protecting the physical premises of a business or corporation.
This includes protecting both the exterior and interior premises. For instance, this
could not only be gaining primary access to premises itself, but also the interior
sections as well, such as the server rooms and places where the confidential corporate
information and data are held at. It is very important to keep in mind that all of this,
both physical and digital, is at grave risk from being attacked.

No one individual or business entity is free from this, all parties are at risk from
being hit by a Cyberattack. The key thing is how to mitigate that risk from spreading
even further once you have discovered that you indeed have become a victim. So,
now that we have addressed what the scope of Cybersecurity really is, how is it spe-
cifically defined?

It can be defined as follows:

Also referred to as information security, cybersecurity refers to the prac-
tice of ensuring the integrity, confidentiality, and availability (ICA) of
information. Cybersecurity is comprised of an evolving set of tools,
risk management approaches, technologies, training, and best practices
designed to protect networks, devices, programs, and data from attacks
or unauthorized access.

(Forcepoint, n.d.)

Artificial Intelligence  |  3

Granted that this a very broad definition of it, in an effort to narrow it down
some more, Cybersecurity involves the following components:

	{ Network security (protecting the entire network and subnets of a business);
	{ Application security (protecting mission critical applications, especially those

that are Web-​based);
	{ Endpoint security (protecting the origination and destination points of a net-

work connection);
	{ Data security (protecting the mission critical datasets, especially those that

relate to the Personal Identifiable Information (PII))
	{ Identity management (making sure that only legitimate individuals can gain

logical and/​or physical access);
	{ Database and infrastructure security (protecting those servers that house

the PII);
	{ Cloud security (protecting the Infrastructure as a Service (IaaS), Software as a

Service (SaaS), and the Platform as a Service (PaaS) components of a Cloud-​
based platform);

	{ Mobile security (protecting all aspects of wireless devices and Smartphones,
both from the hardware and operating system and mobile standpoints);

	{ Disaster recovery/​business continuity planning (coming up with the appro-
priate plans so that a business can bring mission critical applications up to
operational level and so that they can keep continuing that in the wake of a
security breach);

	{ End-​user education (keeping both employees and individuals trained as to
how they can mitigate the risk of becoming the net victim).

Now that we have explored the importance, definition, and the components of
Cybersecurity, it is now important to take a look at the evolution of it, which is
illustrated in the next section.

The Chronological Evolution of Cybersecurity
Just as much as technology has quickly evolved and developed, so too has the world
of Cybersecurity. As mentioned, about 50 years, during the height of the Apollo
space program, the term “Cyber” probably was barely even conceived of. But in
today’s times, and especially in this decade, that particular term now is almost a part
of our everyday lives.

In this section, we now provide an outline of just how Cybersecurity actually
evolved.

4  |  Artificial Intelligence

The Morris Worm (1988):

*This was created by Robert Morris, a grad student at Cornell.

*It brought down 10% of the 70,000 computers that were connected to the
Internet on a worldwide basis.

*It caused at least $96 Million in total damages.

*This actually served as the prototype for the Distributed Denial of Service (DDoS)
a�acks that we see today.

The Melissa Virus (March 1999):

*This was named a�er a Florida based stripper, and it infected .DOC files which
were transmi�ed to the address books in Microso� Outlook.

*This virus caused Microso�, Lockheed Mar�n, and Intel to shut down the en�re
opera�ons for a substan�al period of �me.

*This caused $80 Million in damages, and infected well over 1,000,000 computers
on a global basis.

*The inventor of the virus, David L. Smith, spent some 20 months in prison.

The United States Department The United Statespartment of Defnse (DoD)
(August 1999):

*Jonathan James, a 15 year old hacker, broke into the IT/Network Infrastructure
at the Defense Threat Reduc�on Agency.

*He was the first juvenile to be to be a converted a major Cybercrime.

*NASA had to close down their en�re base of opera�ons for at least three weeks.

*Not only were passwords stolen, but this Cybera�acker also stole so�ware
applica�ons worth at least $1.7 Million which supported the Interna�onal Space
Sta�on.

Artificial Intelligence  |  5

Mafiaboy (February 2002):

*Another juvenile hacker, Michael Calce (aka “Mafiaboy”), launched a special
threat variant known as “Project Rivolta”.

*This was a series of Denial of Service (DoS) a�acks that brought down the
websites of major United States corpora�ons.

*Examples of this include Yahoo, eBay, CNN, E-Trade, and Amazon based servers.

*This prompted the White House to have their first ever Cybersecurity summit.

*The financial damage exceeded well over $1.2 Billion.

Target (November 2013):

*This was deemed to be one of the largest retail Cybera�acks in recent history,
and it hit right during the 2013 Holiday Season.

*Because of this Cybera�acks, the net profits of Target dropped as much as 46%.

*Over 40 Million credit card numbers were stolen.

*The malware installed into the Point of Sale (PoS) terminals at all of the Target
stores.

*This was sold on the Dark Web for a huge profit.

*This served as the model for subsequent retail based Cybera�acks.

Sony Pictures (November 2014):

*The Social Security and credit card numbers were leaked to the public.

*Confiden�al payroll informa�on and data were also released.

*This Cybera�ack prompted the Co Chair of Sony pictures, Amy Pascal, to step
down from her posi�on.

Anthem (January 2015):

*This was deemed to be the largest Cybera�ack to hit a major health
organiza�on.

*The Personal Iden�fiable Informa�on (PII) of over 80,000,000 members were
stolen which included Social Security numbers, Email addresses, and
employment informa�on.

6  |  Artificial Intelligence

The First Ransomworm (2017):

*The Wanna Cry was deemed to be the first of the Ransomware threat variants,
and it targeted computers which ran the Windows OS.

*The only way that the vic�m could get their computer to work again is if they
paid a ransom to the Cybera�acker, in the form of a Virtual Currency. One such
example of this is the Bitcoin.

*In just one day, the Wanna Cry threat variant infected well over 230,000
computers in over 50 countries.

*A newer version of the threat variant was the “NotPetya”. This infected well
over 12,500 computers on a global basis. The impacted industries included
energy firms, banks, and government agencies.

The Largest Credit Card Cybera�ack (2017):

*The credit card agency, known as Equifax, total failed to install the latest
so�ware patches and upgrades to their Apache Struts Server.

*The Cybera�ackers were able to gain access over 210,000 consumer credit
cards, which impacted over 143 Million Americans.

Facebook, MyHeritage, Mario� Hotels, and Bri�sh Airways (2018):

*Facebook was hit with a major Cybera�ack with the analy�cs firm Cambridge
Analy�ca. The Personal Iden�fiable Informa�on (PII) that was stolen resulted
in impac�ng over 87 Million users.

*With MyHeritage, over 92 Million users were impacted. Luckily, no credit card
or banking informa�on was stolen, DNA tests, or passwords.

*With Marrio� Hotels, over 500 Million users were impacted. Although this
breach occurred in 2018, it the underlying Malware was actually deployed in
2014, and was handed down a whopping $123 Million fine.

*With Bri�sh Airways, over 500,000 credit card transac�ons were affected. The
stolen Personal Iden�fiable Informa�on (PII) included names, Email addresses,
telephone numbers, addresses, and credit card numbers. The company faced a
gargantuan $230 Million fine as imposed by the GDPR, or 1.5% of its total
revenue.

Artificial Intelligence  |  7

The Singapore Health Sector (2019):

*The Singapore’s Health Sciences Authority (HSA) outsourced some of their
func�onality to a third party vendor known as the Secur Solu�ons Group. The
Personal Iden�fiable Informa�on (PII) of 808,000 donors were revealed online,
and items that were hijacked include the names, ID card numbers, gender, dates
of the last three dona�ons, and in some instances, blood type, height, and weight
of the donors.

*Singapore’s Ministry of Health’s Na�onal Public Health Unit was impacted when
the HIV status of 14,200 people were revealed online.

So as you can see, this is a chronological timeline of all of the major Cybersecurity
events that have led us up to the point where we are today. Even in the world of
Cybersecurity, there have also been major technological advancements that have
been made in order to thwart the Cyberattacker and to keep up with the ever-​
changing dynamics of the Cyber Threat Landscape.

One such area in this regard is known as “Artificial Intelligence,” or “AI” for
short. This is further reviewed in the next section, and is the primary focal point of
this entire book.

An Introduction to Artificial Intelligence
The concept of Artificial Intelligence is not a new one; rather it goes back a long
time—​even to the 1960s. While there were some applications for it being developed
at the time, it has not really picked up the huge momentum that it has now until
recently, especially as it relates to Cybersecurity. In fact, interest in AI did not even
pique in this industry until late 2019. As of now, along with the other techno jargon
that is out there, AI is amongst one of the biggest buzzwords today.

But it is not just in Cybersecurity in and of itself that AI is getting all of the
interest in. There are many others as well, especially as it relates to the manufacturing
and supply chain as well as even the logistics industries. You may be wondering at
this point, just what is so special about Artificial Intelligence? Well, the key thing is
that this is a field that can help bring task automation to a much more optimal and
efficient level than any human ever could.

For example, in the aforementioned industries (except for Cybersecurity),
various robotic processes can be developed from AI tools in order to speed up certain
processes. This includes doing those repetitive tasks in the automobile production
line, or even in the warehouses of the supply chain and logistics industries. This is
an area known as “Robotic Process Automation,” or “RPA” for short, and will be
examined in more detail later in this book.

8  |  Artificial Intelligence

But as it relates to Cybersecurity, one of the main areas where Artificial Intelligence
is playing a key role is in task automation, as just discussed. For example, both
Penetration Testing and Threat Hunting are very time consuming, laborious, and
mentally grueling tasks. There are a lot of smaller steps in both of these processes
that have to take place, and once again, many of them are repetitive. This is where
the tools of AI can come into play.

As a result, the team members on both the Penetration Testing and Threat
Hunting sides are thus freed up to focus on much more important tasks, which
include finding both the hidden and unhidden holes and weaknesses in their client’s
IT and Network Infrastructure and providing the appropriate courses of action that
need to be taken in order to cover up these gaps and weaknesses.

Another great area in Cybersecurity where Artificial Intelligence tools are being
used is that of filtering for false positives. For example, the IT security teams of
many businesses and corporations, large or small, are being totally flooded with
warnings and alerts as a result of the many security tools they make use of, especially
when it comes to Firewalls, Network Intrusion Devices, and Routers. At the pre-
sent time, they have to manually filter through each one so that they can be triaged
appropriately.

But because of the time it takes to this, many of the real alerts and warnings
that come through often remain unnoticed, thus increasing that business entities’
Cyberrisk by at least 1,000 times. But by using the tools as they relate to Artificial
Intelligence, all of these so-​called false positive are filtered out, thus leaving only the
real and legitimate ones that have to be examined and triaged. As a result of this,
the IT security teams can react to these particular threats in a much quicker fashion,
and most importantly, maintain that proactive mindset in order to thwart off these
threat variants.

It should also be noted that many businesses and corporations are now starting
to realize that having too many security tools to beef up their respective lines of
defenses is not good at all—​in fact, it only increases the attack surface for the
Cyberattacker. So now, many of these business entities are starting to see the value
of implementing various risk analysis tools to see where all of these security tech-
nologies can be strategically placed.

So rather than taking the mindset that more is better, it is now shifting that quality
of deployment is much more crucial and important. So rather than deploying ten
Firewalls, it is far more strategic to deploy perhaps just three where they are needed
the most. Also, by taking this kind of mindset, the business or corporation will
achieve a far greater Return On Investment (ROI), which means that the CIO and/​
or CISO, will be in a much better position to get more for their security budgets.

But, you may even be asking at this point, just what exactly is Artificial
Intelligence? A formal definition of it is here:

Artificial intelligence (AI) makes it possible for machines to learn from
experience, adjust to new inputs and perform human-​like tasks. Most

Artificial Intelligence  |  9

AI examples that you hear about today—​from chess-​playing computers
to self-​driving cars—​rely heavily on deep learning and natural lan-
guage processing. Using these technologies, computers can be trained
to accomplish specific tasks by processing large amounts of data and
recognizing patterns in the data.

(SAS(a), n.d.)

As one can see from the above definition, the main objective of Artificial
Intelligence is to have the ability to learn and project into the future by learning
from past behaviors. In this regard, past behavior typically means making use of
large datasets that arise and stem from various data feeds that are fed into the various
AI technologies that are being used, learning those trends, and having the ability to
perform the task at hand and look into the future.

In this regard, another great boon that Artificial Intelligence brings to
Cybersecurity is its ability to predict into the future, and assess what the newer
potential threat variants could look like as well. We will be examining the sheer
importance of data for Artificial Intelligence later in this chapter. But at this point,
it is very important to keep in mind that Artificial Intelligence is just the main field,
and there are many other sub-​fields that fall just below it; the most common ones
are as follows:

	{ Machine Learning;
	{ Neural Networks;
	{ Computer Vision.

A formal definition for each of the above is provided in the next section.

The Sub-​Fields of Artificial Intelligence
Machine Learning

The first sub-​field we will take a brief look into is what is known as “Machine
Learning,” or “ML” for short. A specific definition for it is as follows:

Machine-​learning algorithms use statistics to find patterns in massive
amounts of data. And data, here, encompasses a lot of things—​numbers,
words, images, clicks, what have you. If it can be digitally stored, it can
be fed into a machine-​learning algorithm.

Machine learning is the process that powers many of the services we
use today—​recommendation systems like those on Netflix, YouTube,
and Spotify; search engines like Google and Baidu; social-​media feeds

10  |  Artificial Intelligence

like Facebook and Twitter; voice assistants like Siri and Alexa. The list
goes on.

(MIT Technology Review, n.d.)

The sub-​field of Machine Learning is actually very expansive, diverse, and even
quite complex. But to put it in very broad terms, as the above definition describes,
it uses much more statistical techniques rather than mathematical ones in order to
mine and comb through huge amounts of datasets to find those unhidden trends.
This can then be fed into the Artificial Intelligence tool, for example, to predict the
future Cyber Threat Landscape. But it also has many other applications, as exempli-
fied by the second part of the definition.

Neural Networks

The second sub-​field next to be examined is that of the Neural Networks (also
known as NNs). A specific definition for it is as follows:

Neural networks are a set of algorithms, modeled loosely after the human
brain, that are designed to recognize patterns. They interpret sensory
data through a kind of machine perception, labeling or clustering raw
input. The patterns they recognize are numerical, contained in vectors,
into which all real-​world data, be it images, sound, text or time series,
must be translated.

Neural networks help us cluster and classify. You can think of them
as a clustering and classification layer on top of the data you store and
manage. They help to group unlabeled data according to similarities
among the example inputs, and they classify data when they have a
labeled dataset to train on. (Neural networks can also extract features
that are fed to other algorithms for clustering and classification; so you
can think of deep neural networks as components of larger machine-​
learning applications involving algorithms for reinforcement learning,
classification and regression).

(Pathmind, n.d.)

In a manner similar to that of Machine Learning, Neural Networks are also
designed to look at massive datasets in order to recognize both hidden and unhidden
patterns. But the primary difference here is that with Neural Networks, they are
designed to try to replicate the thinking process of the human brain, by closely
examining neuronic activity of the brains.

The human brain consists of hundreds of millions of neurons, and it is
hypothesized that they are the catalyst for the rationale behind the decision-​making
process that occurs within the brain. Another key difference is that Neural Networks
can also be used to organize, filter through, and present those datasets that are the

Artificial Intelligence  |  11

most relevant. Back to our previous example of filtering for false positives, this is a
prime example of where Neural Networks are used. The concept of the neuron will
be later examined in more detail in this book.

Computer Vision

The third sub-​field to be examined is that of Computer Vision. A specific definition
for it is as follows:

Computer vision is the process of using machines to understand and ana-
lyze imagery (both photos and videos). While these types of algorithms
have been around in various forms since the 1960s, recent advances
in Machine Learning, as well as leaps forward in data storage, com-
puting capabilities, and cheap high-​quality input devices have driven
major improvements in how well our software can explore this kind of
content.

Computer vision is the broad parent name for any computations
involving visual content—​that means images, videos, icons, and any-
thing else with pixels involved. But within this parent idea, there are a
few specific tasks that are core building blocks:

In object classification, you train a model on a dataset of specific
objects, and the model classifies new objects as belonging to one or more
of your training categories.

For object identification, your model will recognize a specific
instance of an object—​for example, parsing two faces in an image and
tagging one as Tom Cruise and one as Katie Holmes.

(Algorithmia, n.d.)

As one can see from the above definition, Computer Vision is used primarily for
examining visual types and kinds of datasets, analyzing them, and feeding them into
the Artificial Intelligence tool. As it relates to Cybersecurity, this is most pertinent
when it comes to protecting the physical assets of a business or a corporation, not
so much the digital ones.

For example, CCTV cameras are used to help confirm the identity of those
individuals (like the employees) that are either trying to gain primary entrance
access or secondary access inside the business or corporation. Facial Recognition
is very often used here, to track and filter for any sort of malicious or anomalous
behavior.

This is often viewed as a second tier to the CCTV camera, but in addition to
this, a Computer Vision tool can also be deployed with the Facial Recognition
technology in order to provide for much more robust samples to be collected,
and to be able to react to a security breach in a much quicker and more efficient
manner.

12  |  Artificial Intelligence

These are the main areas that will covered in this book, and an overview is
provided into the next section.

A Brief Overview of This Book
As mentioned, and as one can even tell from the title of this first chapter, the entire
premise for this book is built around Artificial Intelligence. True, there are many
books out there that are focused on this subject matter, but many of them are very
theoretical in nature, and perhaps do not offer as much value to businesses and
corporations. Rather, they are geared much more for the academic and government
markets, such as for research scientists, university professors, defense contractors,
and the like. Not many of them have actually dealt with the application side of
Artificial Intelligence. This is what separates this book, quite literally, from the
others that are out there.

For example, there is a theoretical component to each chapter. This is neces-
sary because in order to understand the application side of Artificial Intelligence,
one needs to have a firm background in the theory of it as well. This actually
encompasses about the first half of each chapter. But the second half of each chapter
will be devoted to the practical side of Artificial Intelligence—​which is namely the
applications.

What is unique about this book is that the applications that are discussed and
reviewed are those that have actually been or are in the process of being deployed
in various types and kinds of Cybersecurity applications. These are written by the
Subject Matter Experts (SMEs) themselves. To the best of our knowledge, there is
no other book that does this. As you go through these chapters, you will find it very
enriching to read about these particular applications.

Finally, the very last chapter is devoted to the best practices for Artificial
Intelligence. In other words, not only have we covered both the theoretical and
application angles, but we also offer a Best Practices guide (or, if you will, a checklist)
in both the creation and deployment of Artificial Intelligence applications.

Therefore, this book can really serve two types of audiences: 1) the academic
and government sector as discussed before; and, 2) the CIO’s, CISO’s, IT Security
Managers, and even the Project Managers that want to deploy Artificial Intelligence
applications.

Therefore, the structure and layout of this book is as follows:

Chapter 1: An Introduction to Artificial Intelligence
Chapter 2: An Overview into Machine Learning
Chapter 3: The Importance of Neural Networks
Chapter 4: Examining a Growing Sub-​Specialty of Artificial Intelligence—​

Computer Vision
Chapter 5: Final Conclusions

Artificial Intelligence  |  13

To start the theoretical component of this first chapter, we first provide an examin-
ation into Artificial Intelligence and how it came to be such an important compo-
nent of Cybersecurity today. Secondly, this is followed by looking at the importance
of data—​after all, as it has been reviewed earlier, this is the fuel that literally drives
the engines of the Artificial Intelligence applications.

The History of Artificial Intelligence
To start off with, probably the first well-​known figure in the field of Artificial Intelligence
is that of Alan Turing. He was a deemed to be a pioneer in the field of computer
science, and in fact, is very often referred to as the “Father of Artificial Intelligence.”
Way back in 1936, he wrote a major scientific paper entitled “On Computable
Numbers.” In this famous piece of work, he actually lays down the concepts for what
a computer is and what its primary purposes are to be. It is important to keep in mind
that computers hardly existed during this time frame, and in fact the first “breed” of
computers would not come out until much later in the next decade.

The basic idea for what his idea of a computer is was based upon the premise that it
has to be intelligent in some sort of manner or fashion. But at this point in time, it was
very difficult to come up with an actual measure of what “intelligence” really is. Thus,
he came up with the concept that became ultimately known as the “Turing Test.”

In this scenario, there is a game with three players involved in it. One of the
participants is a human being, and another is a computer. The third participant is
the moderator, or evaluator. In this scenario, the moderator would ask a series of
open-​ended questions to both of them, in an effort to determine which of the two
participants is actually a human being. If a determination could not be made by
asking these open-​ended questions, it would then be assumed that the computer
would be deemed as the “intelligent” entity.

The Turing Test is illustrated below:

Human Par�cipant Computer Par�cipant

Evaluator

Ques�ons
Being Asked Ques�ons

Being Asked

14  |  Artificial Intelligence

In this model, it is not necessary that the computer actually has to know something
specific, possess a large amount of information and data, or even be correct in its
answers to the open-​ended questions. But rather, there should be solid indications
that the computer can, in some way or another, communicate with the Evaluator on
its own, without any human intervention involved.

Believe it or not, the Turing Test has certainly stood the test of time by still being
difficult to crack, even in this new decade of the twenty-​first century. For example,
there have been many contests and competitions to see if computers can hold up
to the Turing Test, and some of the most noteworthy ones have been the “Loebner
Prize” and the “Turing Test Competition.”

A turning point occurred in a competition held in May 2018 at the I/​O
Conference that was held by Google. The CEO of Google at the time, Sundar
Pichai, gave a direct demonstration of one of their newest applications, which was
known as the “Google Assistant.” This application was used to place a direct call to
a local hairdresser in order to establish and set up an appointment. Somebody did
pick up on the other line, but this scenario failed the Turing Test.

Why? Because the question that was asked was a closed-​ended one and not an
open-​ended question.

The next major breakthrough to come after the Turing Test came with the
creation and development of a scientific paper entitled the “Minds, Brains, and
Programs.” This was written by the scientist known as John Searle, and was
published in 1980. In this research paper, he formulated another model which
closely paralleled the Turing Test, which became known as the “Chinese Room
Argument.”

Here is the basic premise of it: Suppose there is an individual named “Tracey.”
She does not know or even comprehend or understand the Chinese language, but
she has two manuals in hand with step-​by-​step rules in how to interpret and com-
municate in the Chinese language. Just outside of this room is another individual by
the name of “Suzanne.” Suzanne does understand the Chinese language, and gives
help to Tracey by helping her to decipher the many characters.

After a period of time, Suzanne will then get a reasonably accurate translation
from Tracey. As such, it is plausible to think that Suzanne assumes safely that Tracey
can understand, to varying degrees, the Chinese language.

The thrust of this argument is that if Tracey cannot understand the Chinese
language by implementing the proper rules for understanding the Chinese lan-
guage despite all of the aids she has (the two manuals and Suzanne, just outside
of the room), then a computer cannot learn by this methodology because no
single computer has any more knowledge than what any other man or woman
possesses.

The paper John Searle wrote also laid down the two types of Artificial Intelligence
that could potentially exist:

Artificial Intelligence  |  15

	1)	Strong AI:
This is when a computer truly understands and is fully cognizant of what is
transpiring around it. This could even involve the computer having some sort
of emotions and creativity attached to it. This area of Artificial Intelligence is
also technically known as “Artificial General Intelligence,” or “AGI” for short.

	2)	Weak AI:
This is a form of Artificial Intelligence that is deemed to be not so strong in
nature, and is given a very narrowed focus or set of tasks to work on. The
prime examples of this include the Virtual Personal Assistants (VPAs) of Siri
and Alexa (which belong to Apple and Amazon, respectively).

The advent of the Turing Test also led to the other development of some other note-
worthy models, which include the following:

	1)	The Kurzweil-​Kapor Test:
This model was created and developed by Ray Kurzweil and Mitch Kapor.
In this test, it was required that a computer carry out some sort of conversa-
tion with three judges. If two of them deem the conversational to be “intel-
ligent” in nature, then the computer was also deemed to be intelligent. But
the exact permutations of what actually defines an “intelligent conversation”
were not given.

	2)	The Coffee Test:
This model was developed by Apple founder Steve Wozniak, and it is actually
quite simple: A robot must be able to enter into a home, find where the kit-
chen is located, and make/​brew a cup of coffee.

The next major breakthrough to come in Artificial Intelligence was a scientific
paper entitled “A Logical Calculus of the Ideas Immanent In Nervous Activity.”
This was co-​written by Warren McCulloch and Walter Pitts in 1943. The major
premise of this paper was that logical deductions could explain the powers of
the human brain. This paper was subsequently published in the Bulletin of
Mathematical Biophysics.

In this paper, McCulloch and Pitts posit that the core functions of the human
brain, in particular the neurons and synaptic activities that take place, can be fully
explained by mathematical logical operators (for example, And, Not, etc.).

In an effort to build off this, Norbert Wiener created and published a scien-
tific book entitled Cybernetics: Or Control and Communication In The Animal and
The Machine. This particular book covered such topics as Newtonian Mechanics,
Statistics, Thermodynamics, etc. This book introduced a new type of theory called
“Chaos Theory.” He also equated the human brain to that of a computer in that it
should be able to play a game of chess, and it should be able to learn at even higher
planes as it played more games.

16  |  Artificial Intelligence

The next major period of time for Artificial Intelligence was known as “The
Origin Story,” and it is reviewed in more detail in the next sub section.

The Origin Story

The next major stepping stone in the world of Artificial Intelligence came when
an individual by the name of John McCarthy organized and hosted a ten-​week
research program at Dartmouth University. It was entitled the “Study of Artificial
Intelligence,” and this was the first time that this term had ever been used. The exact
nature of this project is as follows:

The study is to proceed on the basis of the conjecture that every aspect
of learning or any other feature of intelligence can in principle be so pre-
cisely described that a machine can be made to simulate it. An attempt
will thus be made to find out how to make machines use language, form
abstractions and concepts, solve kinds of problems now reserved for
humans, and improve themselves. We think that a significant advance
can be made in one or more of these problems if a carefully selected
group of scientists work on it together for a summer.

(Taulli, 2019)

During this particular retreat, a computer program called the “Logic Theorist” was
demonstrated, which was actually developed at the RAND Corporation. The focus
of this was to solve complex mathematical theorems from the publication known as
the “Principia Mathematica.” In order to create this programming language, an IBM
701 mainframe computer was used, which used primarily machine language for the
processing of information and data.

But in order to further optimize the speed of the “Logic Theorist,” a new pro-
cessing language was used, and this became known as the “Information Processing
Language,” or “IPL” for short. But the IBM 701 mainframe did not have enough
memory or processing power for the IPL, so this led to the creation of yet another
development: Dynamic Memory Allocation. As a result, the “Logic Theorist” has
been deemed to be the first Artificial Intelligence programming language to ever be
created.

After this, John McCarthy went onto create other aspects for Artificial
Intelligence in the 1950s. Some of these included the following:

	{ The LISP Programming Language:
–	 This made the use of nonnumerical data possible (such as qualitative data

points);
–	 The development of programming functionalities such as Recursion,

Dynamic Typing, and Garbage Collection were created and deployed;

Artificial Intelligence  |  17

	{ Time sharing mainframe computers:
These were created, which was actually the forerunner to the first Internet,
called the “APRANET”;

	{ The Computer Controlled Car:
This was a scientific paper he published that described how a person could
literally type directions using a keyboard and a specialized television camera
would then help to navigate the vehicle in question. In a way, this was a primi-
tive version of the GPS systems that are available today.

From this point onwards, the era for Artificial Intelligence became known as the
“Golden Age for AI,” with key developments taking place. This is reviewed in more
detail in the next subsection.

The Golden Age for Artificial Intelligence

During this time period, much of the innovation that took place for Artificial
Intelligence came from the academic sector. The primary funding source for all
AI-​based projects came from the Advanced Research Projects Agency, also known
as “ARPA” for short. Some of the key developments that took place are as follows:

	1)	The Symbolic Automatic INTegrator:
Also known as “SAINT,” this program was developed by James Slagle, a
researcher at MIT, in 1961. This was created to help solve complex calculus
problems and equations. Other types of computer programs were created
from this, which were known as “SIN” and “MACSYMA,” which solved
much more advanced mathematical problems with particular usage of linear
algebra and differential equations. SAINT was actually deemed to be what
became known as the first “Expert System.”

	2)	ANALOGY:
This was yet another computer program that was developed by an MIT pro-
fessor known as Thomas Evans in 1963. It was specifically designed to solve
analogy-​based problems that are presented in IQ tests.

	3)	STUDENT:
This type of computer program was developed by another researcher at MIT,
Daniel Bobrow, in 1964. This was the first to use what is known as “Natural
Language Processing,” and is a topic that will be reviewed in more detail later
in this book.

	4)	ELIZA:
This is also another Artificial Intelligence program which was developed in
1965 by Joseph Weizenbaum, a professor at MIT. This was actually the pre-
cursor to the Chatbot, which is in heavy demand today. In this particular
application, an end user could type in various questions, and the computer

18  |  Artificial Intelligence

in turn would provide some sort of response. The application here was for
psychology—​the program acted much like a virtual psychoanalyst.

	5)	Computer Vision:
In 1966, an MIT researcher, Marvin Minsky led the way to what is known
as Computer Vision, which is a subsequent chapter in this book. He linked a
basic camera to a computer and wrote a special program to describe in some
detail what it saw. It detected basic visual patterns.

	6)	Mac Hack:
This was also another Artificial Intelligence program that was developed
Richard Greenblatt, another professor at MIT, in 1968.

	7)	Hearsay I:
This was considered to be one of the most advanced Artificial Intelligence
programs during this time. It was developed by Raj Reddy in 1968, and was
used to create the first prototype of Speech Recognition Systems.

During this Golden Age Period, there were two major theories of Artificial
Intelligence that also came about and they are as follows:

	{ The need for symbolic systems: This would make heavy usage of computer
logic, such as “If-​Then-​Else” statements.

	{ The need for Artificial Intelligence Systems to behave more like the human
brain: This was the first known attempt to map the neurons in the brain and
their corresponding activities. This theory was developed by Frank Rosenblatt,
but he renamed the neurons as “perceptrons.”

Back in 1957, Rosenblatt created the first Artificial Intelligence program to do this,
and it was called the “Mark I Perceptron.” The computer that ran this particular
program was fitted two cameras to differentiate two separate images, whose scale was
20 by 20 pixels. This program would also make use of random statistical weightings
to go through this step-​by-​step, iterative process:

	1)	Create and insert an input, but come up with an output that was
perceptron-​based.

	2)	The input and the output should match, and if they do not, then the following
steps should be taken:
–	 If the output (the perceptron) was “I” (instead of being 0), the statistical

weight for “I” should be decreased.
–	 In the reverse of the above, if the output (the perceptron) was “0” (instead

of being I), the statistical weight for “I” should be increased by an equal
manner.

	3)	The first two steps should be repeated in a continued, iterative process until
“I” = 0, or vice versa.

Artificial Intelligence  |  19

This program also served as the protégé for Neural Networks (which is also a subse-
quent chapter in this book), but as successful as it was deemed to be, it had also had
its fair share of criticisms. One of the major flaws of it that was pointed out was that
it had one layer of processing.

The next major phase to happen in Artificial Intelligence was the development of
Expert Systems, which is reviewed in more detail in the next subsection.

The Evolution of Expert Systems

During this era, there were many other events that took place in the field of Artificial
Intelligence. One of these was the development of the back propagation technique.
This is a technique which is widely used in statistical weights for the inputs that
go into a Neural Network system. As mentioned earlier, there is a chapter in this
book that is devoted to this topic, both from the theoretical and the application
standpoints.

Another key development was the creation of what is known as the “Recurrent
Neural Network,” or “RNN” for short. This technique permits the connections
in the Artificial Intelligence system to move seamlessly through both the input
and the output layers. Another key catalyst was the evolution of the Personal
Computer and their minicomputer counterparts, which in turn led to the devel-
opment of what are known as “Expert Systems,” which made heavy usage of
symbolic logic.

The following diagram illustrates the key components of what is involved in an
Expert System:

User
Interface

End User

Inference
Engine

Knowledge
Base

Expert

20  |  Artificial Intelligence

In this regard, one of the best examples of an Expert System was that of the “eXpert
CONfigurer,” also known as the “XCON” for short. This was developed by John
McDermott at the Carnegie Mellon University. The main purpose of this was to
further optimize the choice of computer components, and it had about 2,500 rules
(both mathematical and statistical) that were incorporated into it. In a way, this was
the forerunner to the Virtual Personal Assistants (VPAs) of Siri and Cortana, which
allow you to make choices.

The development of the XCON further proliferated the growth of Expert
Systems. Another successful implementation of an Expert System was the devel-
opment of the “Deep Blue” by IBM in 1996. In fact, its most successful applica-
tion came when it played a game of chess against Grandmaster Garry Kasparov. In
this regard, Deep Blue could process well over 200 million positions in just one
second.

But despite all of this, there were a number of serious shortcomings with Expert
Systems, which are as follows:

	{ They could not be applied to other applications; in other words, they
could only be used for just one primary purpose, and thus, they had a very
narrow focus.

	{ As the Expert Systems became larger, it became much more difficult and
complicated to not only manage them but to keep feeding them because these
were all mainframe-​based technologies. As a result, this led to more errors
occurring in the outputs.

	{ The testing of these Expert Systems proved to be a much more laborious and
time-​consuming process than first expected.

	{ Unlike the Artificial Intelligence tools of today, Expert Systems could not learn
on their own over a certain period of time. Instead, their core logic models
had to be updated manually, which led to much more expense and labor.

Finally, the 1980s saw the evolution of yet another new era in Artificial Intelligence,
known as “Deep Learning.” It can be specifically defined as follows:

Deep learning is a type of machine learning that trains a computer to per-
form human-​like tasks, such as recognizing speech, identifying images,
or making predictions. Instead of organizing data to run through prede-
fined equations, deep learning sets up basic parameters about the data
and trains the computer to learn on its own by recognizing patterns
using many layers of processing.

(SAS(b), n.d.)

In simpler terms, this kind of system does not need already established mathematical
or statistical algorithms in order to learn from the data that is fed into it. All it needs

Artificial Intelligence  |  21

are certain permutations and from there, it can literally learn on its own—​and even
make projections into the future.

There were also two major developments at this time with regards to Deep
Learning:

	{ In 1980, Kunihiko Fukushima developed an Artificial Intelligence called the
“Neocognitron.” This was the precursor to the birth of what are known as
“Convolutional Neural Networks,” or “CNNs” for short. This was based upon
the processes that are found in the visual cortex of various kinds of animals.

	{ In 1982, John Hopfield developed another Artificial Intelligence system called
“Hopfield Networks.” This laid down the groundwork for what are known as
“Recurrent Neural Networks,” or “RNNs” for short.

Both CNNs and RNNs will be covered in the chapter on Neural Networks.
The next section of this book will now deal with data and datasets, which are

essentially the fuel that drives Artificial Intelligence algorithms and applications of
all types and kinds.

The Importance of Data in Artificial Intelligence
So far in this chapter, we have examined in great detail what Artificial Intelligence
is and what its subcomponents are, as well as provided a very strong foundation in
terms of the theoretical and practical applications of it, which has led to the power-
house that it is today in Cybersecurity. In this part of the chapter, we now focus
upon the key ingredient that drives the engines of Artificial Intelligence today—​the
data that is fed into it, and the feeds from where it comes.

We all have obviously have heard of the term “data” before. This is something
that has been taught to us ever since we started elementary school. But what really is
data? What is the scientific definition for it? It can be defined as follows:

In computing, data is information that has been translated into a
form that is efficient for movement or processing. Relative to today’s
computers and transmission media, data is information converted into
binary digital form.

(TechTarget, n.d.)

So, as this can be applied to Artificial Intelligence, the underlying tool will
take all of the data that is fed into it (both numerical and non-​numerical), convert
it into a format that it can understand and process, and from there provide the
required output. In a sense, it is just like garbage in/​garbage out, but on a much
more sophisticated level.

22  |  Artificial Intelligence

This section will cover the aspect of data and what it means for Artificial
Intelligence from the following perspectives:

	{ The fundamentals of data basics;
	{ The types of data that are available;
	{ Big Data;
	{ Understanding preparation of data;
	{ Other relevant data concepts that are important to Artificial Intelligence.

The Fundamentals of Data Basics

Let’s face it, everywhere we go, we are exposed to data to some degree or another.
Given the advent of the Smartphone, digitalization, wireless technology, social media,
the Internet of Things (IoT), etc. we are being exposed to it every day in ways that we
are not even cognizant of. For example, when we type in a text message or reply to an
email, that is actually considered to be data, though more of a qualitative kind. Even
videos that you can access on YouTube or podcasts can be considered data as well.

It is important to keep in mind that data does not have to be just the numerical
kind. If you think about it, anything that generates content, whether it is written, in
the form audio or video, or even visuals, are all considered to be data. But in the word
of Information Technology, and even to that of a lesser extent in Artificial Intelligence,
data is much more precisely defined, and more often than not symbolically represented,
especially when the source code compiles the datasets that it has been given.

In this regard, the data that is most often used by computers are those of the
binary digits. It can possess the value of either 0 or 1, and in fact, this is the smallest
piece of data that a computer will process. The computers of today can process at
least 1,000 times data sizes more than that, primarily because of the large amounts
of memory that they have and their very powerful processing capabilities.

In this regard, the binary digit is very often referred to merely as a “Bit.” Any data
sizes larger than this are referred to as a “Byte.” This is illustrated in the table below:

Unit Value

Megabyte 1,000 Kilobytes

Gigabyte 1,000 Megabytes

Terabyte 1,000 Gigabytes

Petabyte 1,000 Terabytes

Exabyte 1,000 Petabytes

Zettabyte 1,000 Exabytes

Yottabyte 1,000 Zetabytes

Artificial Intelligence  |  23

 The Types of Data that are Available

In general, there are four types of data that can be used by an Artificial Intelligence
system. They are as follows:

	1)	Structured Data:
These are datasets that have some type or kind of preformatting to them.
In other words, the dataset can reside in a fixed field within a record or
file from within the database that is being used. Examples of this typically
include values such as names, dates, addresses, credit card numbers, stock
prices, etc. Probably some of the best examples of structured data are those
of Excel files, and data that is stored in an SQL database. Typically, this
type of data accounts for only 20 percent of the datasets that are consumed
by an Artificial Intelligence application or tool. This is also referred to as
“Quantitative Data.”

	2)	Unstructured Data:
These are the datasets that have no specific, predefined formatting to them. In
other words, there is no way that they will fit nicely into an Excel spreadsheet
or even an SQL database. In other words, this is all of the data out there that
has boundaries that are not clearly defined. It is important to keep in mind
that although it may not have the external presence of an organized dataset,
it does have some sort of internal organization and/​or formatting to it. This is
also referred to as “Qualitative Data,” and the typical examples of this include
the following:
	{ Text files: Word processing, spreadsheets, presentations, email, logs.
	{ Email: Email has some internal structure thanks to its metadata, and we

sometimes refer to it as semi-​structured. However, its message field is
unstructured and traditional analytics tools cannot parse it.

	{ Social Media: Data from Facebook, Twitter, LinkedIn.
	{ Website: YouTube, Instagram, photo sharing sites.
	{ Mobile data: Text messages, locations.
	{ Communications: Chat, IM, phone recordings, collaboration software.
	{ Media: MP3, digital photos, audio and video files.
	{ Business applications: MS Office documents, productivity applications

(Geeks for Geeks(b), n.d.).
These kinds of datasets account for about 70 percent of the data that is

consumed by an Artificial Intelligence tool.
	3)	Semi-​Structured Data:

As its name implies, there is no rigid format into how this data is typically
organized, but either externally or internally, there is some kind of organ-
ization to it. It can be further modified so that it can fit into the columns
and fields of a database, but very often, this will require some sort of human
intervention in order to make sure that it is processed in a proper way. Some

24  |  Artificial Intelligence

of the typical examples of these kinds of datasets include the “Extensible
Markup Language,” also known as “XML” for short. Just like HTML, XML
is considered to be a markup language that consists of various rules in order
to identify and/​or confirm certain elements in a document. Another example
of Semi-​Structured Data is that of the “JavaScript Object Notation,” also
known as “JSO” for short. This is a way in which information can be trans-
ferred from a Web application to any number of Application Protocol
Interfaces (also known as “APIs” for short), and from there, to the server
upon which the source code of the web application resides upon. This pro-
cess can also happen in the reverse process as well. These kinds of datasets
account for about 10 percent of the data that is consumed by an Artificial
Intelligence tool.

	4)	Time Series Data:
As its name also implies, these kinds of datasets consist of data points that
have some sort of time value attached to them. At times, this can also be
referred to as “Journey” data, because during a trip, there are data points that
can be access throughout the time from leaving the point of origination to
finally arriving at the point of destination. Some typical examples of this
include the price range of a certain stock or commodity as it is traded on an
intraday period, the first time that a prospect visits the website of a merchant
and the various web pages they click on or materials that they download until
they log off the website, etc.

Now that we have defined what the four most common datasets are, you may even
be wondering at this point, just what are some examples of them? They include the
following:

For Structured Datasets:

	{ SQL Databases;
	{ Spreadsheets such as Excel;
	{ OLTP Systems;
	{ Online forms;
	{ Sensors such as GPS or RFID tags;
	{ Network and Web server logs;
	{ Medical devices (Geeks for Geeks(a), n.d.).

For Unstructured Sets:

	{ Social media;
	{ Location & Geo Data;
	{ Machined Generator & Sensor-​based;
	{ Digital streams;
	{ Text documents;

Artificial Intelligence  |  25

	{ Logs;
–	 Transactions
–	 Micro-​blogging

For Semi-​Structured Datasets:

	{ Emails;
	{ XML and other markup languages;
	{ Binary Executables;
	{ TCP/​IP packets;
	{ Zipped Files;
	{ Integration of data from different sources;
	{ Web pages (Oracle, n.d.).

For Time Series Datasets:

	{ Statista;
	{ Data-​Planet Statistical Datasets;
	{ Euromonitor Passport;
	{ OECD Statistics;
	{ United Nations Statistical Databases;
	{ World Bank Data;
	{ U.S. Census Bureau: International Data Base;
	{ Bloomberg;
	{ Capital IQ;
	{ Datastream;
	{ Global Financial Data;
	{ International Financial Statistics Online;
	{ MarketLine Advantage;
	{ Morningstar Direct.

As it was mentioned earlier, it is the Unstructured Datasets that account for a
majority of the datasets that are fed into an Artificial Intelligence application, and
there is a beauty about them. They are so powerful that they can take just about any
kind or type of dataset that is presented to them, literally digest it into a format it
can understand, process it, and provide the output or outputs that are required. In
other words, there are no limiting factors with regards to this, and as a result, they
can give just about any kind of prediction or answer that is asked of them.

Big Data

As also previously reviewed, the size and the number of datasets are growing at an
exponential clip on a daily basis, given all of the technological advancements that are

26  |  Artificial Intelligence

currently taking place. There is a specific term for this, and it is called “Big Data.”
The technical definition of it is as follows:

Big data is larger, more complex data sets, especially from new data
sources. These data sets are so voluminous that traditional data pro-
cessing software just can’t manage them. But these massive volumes of
data can be used to address business problems that wouldn’t have been
able to be tackled before.

(Datamation, n.d.)

In a way, this can also be likened to another concept known as “Data Warehousing.”
There are three main characteristics that are associated with “Big Data,” and they

are as follows:

	1)	Volume:
This refers to sheer size and scale of the datasets. Very often, they will be in the
form of Unstructured Data. The dataset size can go as high as into the Terabytes.

	2)	Variety:
This describes the diversity of all of the datasets that reside in the Big Data. This
includes the Structured Data, the Unstructured Data, the Semi-​Structured
Data, and the Time Series Data. This also describes the sources where all of
these datasets come from.

	3)	Velocity:
This refers to the rapid speed at which the datasets in the Big Data are actually
being created.

	4)	Value:
This refers to just how useful the Big Data is. In other words, if it is fed into
an Artificial Intelligence system, how close will it come to giving the desired
or expected output?

	5)	Variability:
This describes how fast the datasets in the Big Data will change over a certain
period of time. For example, Structured Data, Time Series Data, and Semi-​
Structured Data will not change that much, but Unstructured Data will. This
is simply due its dynamic nature at hand.

	6)	Visualization:
This is how visual aids are used in the datasets that are in the Big Data. For
example, these could graphs, dashboards, etc.

Understanding Preparation of Data

As it has been mentioned before, it is data that drives the Artificial Intelligence
application to do what it does. In other words, data is like the fuel these applications
need to run. Although the applications are quite robust in providing the output that

Artificial Intelligence  |  27

is asked of them, this is still viewed as a “Garbage In and Garbage Out” process.
Meaning, the quality of outputs that you are going to get is only going to be as good
as the data that is put into the application.

Therefore, you must take great effort to make sure that the datasets that you are
feeding into your Artificial Intelligence systems are very robust and that they will
meet the needs you are expecting in terms of what you want the desired outputs to
be. The first step in this process is known as “Data Understanding”:

	1)	Data Understanding:
In this regard, you need to carefully assess where the sources of your data
and their respective feeds are coming from. Depending upon what your exact
circumstances and needs are, they will typically come from the following
sources:
	{ In-​House Data:

As the name implies, these are the data points that are actually coming into
your business or corporation. For example, it could be data that originates
from your corporate intranet, or even your external website, as customers
and prospects download materials from your site or even fill out the con-
tact form. Also, it could be the case that you may have datasets already in
your organization that you can use.

	{ Open Source Data:
These are the kinds of data that are freely available from the Internet,
especially when you are using Google to find various data sources. For
example, the Federal Government is a great resource for this, as well
as many private enterprises (obviously, you will have to pay for this
as a subscription, but initially, they will more than likely offer a free
trial at first to test drive their respective datasets. This would be a great
opportunity to see if what they are offering will be compatible with
your Artificial Intelligence system, and if it will potentially yield the
desired outputs. These kinds of datasets will very likely use a specialized
Application Protocol Interface (API) in order to download the data.
Other than the advantage of being free, another key advantage of using
Open Source Data is that it already comes in a formatted manner that
can be uploaded and fed into your Artificial Intelligence system.

	{ Third Party Data:
These are the kind of datasets that are available exclusively from an outside
vendor. Examples of these can be seen in the last subsection of this chapter.
The primary advantage of obtaining data from these sources is that you can
be guaranteed, to a certain degree, that it has been validated. But the dis-
advantage of this is that they can be quite expensive, and if you ever need
to update your datasets, you will have to go back to the same vendor and
pay yet another premium price for it.

28  |  Artificial Intelligence

According to recent research, about 70 percent of the Artificial Intelligence
systems that are in use today make use of In House Data, 20 percent of them use
Open Source Data, and the remaining 10 percent comes from outside vendors.
In order to fully understand the robustness of the datasets you are about to pro-
cure, the following must first be answered:

	{ Are the datasets complete for your needs and requirements? Is there any
missing data?

	{ How was the data originally collected?
	{ How was the data initially processed?
	{ Have there been any significant changes made to it that you need to be

aware of?
	{ Are there any Quality Control (QC) issues with the datasets?

	2)	The Preparation of the Data:
This part is often referred to as “Data Cleansing,” and it requires the following
actions that you must take before you can feed the data into your Artificial
Intelligence system:
	{ Deduplication:

It is absolutely imperative to make sure that your data does not contain
duplicate sets. If this is the case, and it goes unnoticed, it could greatly
affect and skew the outputs that are produced.

	{ Outliers:
These are the data points that lie to the extremes of the rest of the datasets.
Perhaps they could be useful for some purpose, but you need to make sure
first that they are needed for your particular application. If not, then they
must be removed.

	{ Consistency:
In this situation, you must make sure that all of the variables have clear
definitions to them, and that you know what they mean. There should be
no overlap in these meanings with the other variables.

	{ Validation Rules:
This is where you try to find the technical limitations of the datasets that
you intend to use. Doing this manually can be very time consuming and
laborious, so there are many software applications that are available that
can help you determine these specific kinds of limitations. Of course, you
will first need to decide on and enter in the relevant permutations, and
these can be referred to as the “thresholds.”

	{ Binning:
When you procure your datasets, it may also be the case that you may not
need each and every one to feed into your Artificial Intelligence system. As

Artificial Intelligence  |  29

a result, you should look at each category and decide which ones are the
most relevant for the outputs that you are trying to garner.

	{ Staleness:
This is probably one of the most important factors to consider. Just how
timely and relevant are the datasets that you are using? For an Artificial
Intelligence application, it is absolutely crucial that you get data that is
updated in real time if your desired output is to predict something in the
future.

	{ Merging:
It could be the case that two columns in your dataset could contain very
similar pieces of information. If this is the case, you may want to consider
bringing these two columns together by merging them. By doing so, you
are actually using the processing capabilities of your Artificial Intelligence
much more efficiently.

	{ One Hot Encoding:
To a certain degree, it may be possible to represent qualitative data
as quantitative data, once again, depending upon your needs and
requirements.

	{ Conversions:
This is more of an aspect of formatting the units as to how you want your
outputs to look like. For example, if all of your datasets are in a decimal
system, but your output calls for the values to be in the metric system, then
using this technique will be important.

	{ Finding Missing Data:
When you are closely examining your datasets, it could quite often be the
case that there may some pieces that are missing. In this regard, there are
two types of missing data:

*Randomly missing data: Here, you can calculate a median or even
an average as a replacement value. By doing this, it should only skew
the output to a negligible degree.
*Sequentially missing data: This is when the data is missing in a
successive fashion, in an iterative manner. Taking the median or
average will not work because there is too much that is not available in
order to form a scientific estimate. You could try to extrapolate the pre-
ceding data and the subsequent data to make a hypothesized guess, but
this is more of a risky proposition to take. Or you could simply delete
those fields in which the sequential data is missing. But in either case,
the chances are much greater that the output will much more skewed
and not nearly as reliable.

30  |  Artificial Intelligence

	{ Correcting Data Misalignments:
It is important to note that before you merge any fields together in your
datasets, that the respective data points “align” with the other datasets that
you have. To account and correct for this, consider the following actions
that you can take:

*If possible, try to calculate and ascertain any missing data that you
may have in your data sets (as previously reviewed);
*Find any other missing data in all of the other datasets that you have
and intend to use;
*Try to combine the datasets so that you have columns which can
provide for consistent fields;
*If need be, modify or further enhance the desired outcome that the
output produces in order to accommodate for any changes that have
been made to correct data misalignment.

Other Relevant Data Concepts that are
Important to Artificial Intelligence

Finally, in this subsection we examine some other data concepts that are very per-
tinent to Artificial Intelligence systems, and are as follows:

	1)	Diagnostic Analytics:
This is the careful examination of the datasets to see why a certain trend has
happened the way it did. An example of this is discovering any hidden trends
which may not have been noticed before. This is very often done in Data
Warehousing or Big Data projects.

	2)	Extraction, Transformation, and Load (ETL):
This is a specialized type of data integration, and is typically used in, once
again, Data Warehousing applications.

	3)	Feature:
This is a column of data.

	4)	Instance:
This is a row of data.

	5)	Metadata:
This the data that is available about the datasets.

	6)	Online Analytical Processing (OLAP):
This is a technique which allows you to examine the datasets from types of
databases into one harmonized view.

	7)	Categorical Data:
This kind of data does not have a numerical value per se, but has a textual
meaning that is associated with it.

Artificial Intelligence  |  31

8)	 Ordinal Data:
This is a mixture of both Categorical Data and Numerical Data.

9)	 Predictive Analytics:
This is where the Artificial Intelligence system attempts to make a certain
prediction about the future (this is displayed as an output), based upon the
datasets that are fed into it.

	10)	 Prescriptive Analytics:
This is where the concepts of Big Data (as previously examined) are used to
help make better decisions based upon the output that is yielded.

	11)	 Scalar Variables:
These are the types of variables that hold and consist of only single values.

	12)	 Transactional Data:
These are the kinds of datasets that represent data to actual transactions
that have occurred in the course of daily business activities.

So far, we have provided an extensive overview of just how important data and
datasets are to an Artificial Intelligence system. The remainder of this book will
examine Machine Learning, Neural Networks, and Computer Vision in much
greater detail.

Resources
Algorithmia: “Introduction to Computer Vision: What It Is and How It Works;”

n.d. <algorithmia.com/​blog/​introduction-​to-​computer-​vision>
Alpaydin E: Introduction to Machine Learning, 4th Edition, Massachusetts: The

MIT Press; 2020.
Datamation: “Structured vs. Unstructured Data;” n.d. <www.datamation.com/​big-​

data/​structured-​vs-​unstructured-​data.html>
Forcepoint: “What is Cybersecurity?” n.d. <www.forcepoint.com/​cyber-​edu/​

cybersecurity>
Geeks for Geeks(a): “What is Semi-​Structured Data?” n.d. <www.geeksforgeeks.

org/​what-​is-​semi-​structured-​data/​>
Geeks for Geeks(b): “What is Structured Data?” n.d. <www.geeksforgeeks.org/​

what-​is-​structured-​data/​>
Graph, M: Machine Learning, 2019.
MIT Technology Review: “What is Machine Learning?” n.d. <www.technology review.

com/​s/​612437/​what-​is-​machine-​learning-​we-​drew-​you-​another-​flowchart/​>
Oracle: “What is Big Data?” n.d. <www.oracle.com/​big-​data/​guide/​what-​is-​big-​

data.html>

http://algorithmia.com
http://www.datamation.com
http://www.datamation.com
http://www.forcepoint.com
http://www.forcepoint.com
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.geeksforgeeks.org
http://www.technologyreview.com
http://www.technologyreview.com
http://www.oracle.com
http://www.oracle.com

32  |  Artificial Intelligence

Pathmind: “A Beginner’s Guide to Neural Networks and Deep Learning;” n.d.
<pathmind.com/​wiki/​neural-​network>

SAS(a): “Artificial Intelligence: What It Is and Why It Matters;” n.d. <www.sas.
com/​en_​us/​insights/​analytics/​what-​is-​artificial-​intelligence.html>

SAS(b): “Deep Learning: What It Is and Why It Matters;” n.d. <www.sas.com/​en_​
us/​insights/​analytics/​deep-​learning.html>

Taulli, T: Artificial Intelligence Basics: A Non-​Technical Introduction, New York:
Apress; 2019.

TechTarget. “Data;” n.d. <searchdatamanagement.techtarget.com/​definition/​data>

http://pathmind.com
http://www.sas.com
http://www.sas.com
http://www.sas.com
http://www.sas.com

33

Chapter 2

Machine Learning

In our last chapter (Chapter 1), we reviewed what Artificial Intelligence was by pro-
viding an overview. Specifically, the following topics were covered:

	{ An introduction to Cybersecurity;
	{ The various aspects of Cybersecurity;
	{ A chronological timeline into the evolution of Cybersecurity;
	{ An introduction to Artificial Intelligence;
	{ A definition of Artificial Intelligence;
	{ The various components of Artificial Intelligence and their technical

definitions (this includes the likes of Machine Learning, Computer Vision,
and Neural Networks);

	{ An overview into the book;
	{ The history of Artificial Intelligence;
	{ The importance of data and its role with Artificial Intelligence systems and

applications;
	{ The applications of Artificial Intelligence.

In this chapter, we examine the very first subcomponent of Artificial Intelligence,
which is that of Machine Learning, also known as “ML” for short. We will do a
deep dive first in the theoretical aspects of Machine Learning, and then this will be
followed by the various applications, just like in the last chapter. But before we start
getting into all of the theoretical aspects of Machine Learning, we will first provide
a high level overview of what it is all about.

34  |  Machine Learning

 The High Level Overview
Although Machine Learning has been around for a long time (some estimates have
it as long as a couple of decades), there are a number of key applications in which
Machine Learning is used. Some examples of these are as follows:

	1)	Predictive Maintenance:
This kind of application is typically used in supply chain, manufacturing,
distribution, and logistics sectors. For example, this is where the concept
of Quality Control comes into key play. In manufacturing, you want to be
able to predict how many batches of products that are going to be produced
could actually become defective. Obviously, you want this number to be as
low as possible. Theoretically, you do not want any type or kind of product
to be defective, but in the real world, this is almost impossible to achieve.
With Machine Learning, you can set up the different permutations in both
the mathematical and statistical algorithms with different permutations as to
what is deemed to be a defective product or not.

	2)	Employee Recruiting:
There is one common denominator in the recruitment industry, and that is the
plethora of resumes that recruiters from all kinds of industries get. Consider
some of these statistics:
	{ Just recently, Career Builder, one of the most widely used job search portals

reported:
*  2.3 million jobs were posted;
*  680 unique profiles of job seekers were collected;
*  310 million resumes were collected;
* � 2.5 million background checks were conducted with the Career Builder

platform.
(SOURCE: 1).

Just imagine how long it would take a team of recruiters to have to go through
all of the above. But with Machine Learning, it can all be done in a matter
of minutes, by examining it for certain keywords in order to find the desired
candidates. Also, rather than having the recruiter post each and every job
entry manually onto Career Builder, the appropriate Machine Learning tool
can be used to completely automate this process, thus freeing up the time of
the recruiter to interview with the right candidates for the job.

	3)	Customer Experience:
In the American society of today, we want to have everything right here
and right now, at the snap of a finger. Not only that, but on top of this
we also expect to have impeccable customer service delivered at the same
time. And when none of this happens, well, we have the luxury to go to a
competitor to see if they can do any better. In this regard, many businesses

Machine Learning  |  35

and corporations have started to make use of Virtual Agents. These are the
little chat boxes typically found on the lower right part of your web browser.
With this, you can actually communicate with somebody in order to get your
questions answered or shopping issues resolved. The nice thing about these
is that they are also on demand, on a 24/​7/​365 basis. However, in order to
provide a seamless experience to the customer or prospect, many business
entities are now making use of what are known as “Chat Bots.” These are
a much more sophisticated version of the Virtual Agent because they make
use of Machine Learning algorithms. By doing this, the Chat Bot can find
much more specific answers to your queries by conducting more “intelligent”
searches in the information repositories of the business or corporation. Also,
many call centers are making use of Machine Learning as well. In this par-
ticular fashion, when a customer calls in, their call history, profile, and entire
conversations are pulled up in a matter of seconds for the call center agent,
so that they can much easier anticipate your questions and provide you with
the best level of service possible.

	4)	Finance:
In this market segment, there is one thing that all people, especially the
traders, want to do, and that is to have the ability to predict the financial
markets, as well as what they will do in the future, so that they can hedge
their bets and make profitable trades. Although this can be done via a manual
process, it can be a very laborious and time-​consuming process to achieve. Of
course, we all know that the markets can move in a matter of mere seconds
with uncertain volatility, as we have seen recently with the Coronavirus. In
fact, exactly timing and predicting the financial markets with 100 percent
accuracy is an almost impossible feat to accomplish. But this is where the
role of Machine Learning can come into play. For example, it can take all
of the data that is fed into it, and within a matter of seconds make more
accurate predictions as to what the market could potentially do, giving the
traders valuable time to make the split-​second decisions that are needed to
produce quality trades. This is especially useful for what is known as “Intra
Day Trading,” where the financial traders try to time the market as they are
open on a minute-​by-​minute basis.

The Machine Learning Process

When you are applying Machine Learning to a particular question that you want
answered or to predict a certain outcome, it is very important to follow a distinct
process in order to accomplish these tasks. In other words, you want to build an
effective model that can serve well for other purposes and objectives for a subsequent
time down the road. In other words, you want to train this model in a particular
fashion, so that it can provide a very high degree of both accuracy and reliability.

36  |  Machine Learning

This process is depicted below:

Data Order

Picking the
Algorithm

Train the
Model

Evaluate the
Model

Fine Tune
the Model

Data Order

In this step, you want to make sure that the data is as unorganized and unsorted as
possible. Although this sounds quite contrary, if the datasets are by any means sorted
or organized in any way shape or form, the Machine Learning Algorithms that are
utilized may detect this as a pattern, which you do not want to happen in this par-
ticular instance.

Picking the Algorithm

In this phase, you will want to select the appropriate Machine Learning algorithms
for your model. This will be heavily examined in this part of the chapter.

Machine Learning  |  37

Training the Model

The datasets that you have will be fed into the Machine Learning system, in order
for it to learn first. In other words, various associations and relationships will be
created and examined so that the desired outputs can be formulated. For example,
one of the simplest algorithms that can be used in Machine Learning is the Linear
Regression one, which is represented mathematically as follows:

Y = M*X + B

Where:
M = the slope on a graph;
B = the Y intercept on the graph.

Model Evaluation

In this step, you will make use of a representative sample of data from the datasets,
which are technically known as the “Test Data.” By feeding this initially into the
Machine Learning system, you can gauge just how accurate your desired outputs
will be in a test environment before you release your datasets into the production
environment.

Fine Tune the Model

In this last phase, you will adjust the permutations that you have established in the
Machine Learning system so that it can reasonably come up with desired outputs
that you are looking for.

In the next subsection, we examine the major classifications and types of Machine
Learning Algorithms that are commonly used today.

The Machine Learning Algorithm Classifications

There are four major categorizations of the Machine Learning Algorithms, and they
are as follows:

	1)	Supervised Learning:
These types of algorithms make use of what are known as “labeled data.” This
simply means that each dataset has a certain label that is associated with them.
In this instance, one of the key things to keep in mind is that you need to have
a large amount of datasets in order to produce the dataset you are looking
for when you are using algorithms based on this category. But if the datasets
do not come already labeled, it could be very time-​consuming to create and

38  |  Machine Learning

assign a label for each and every one of them. This is the primary downside of
using Machine Learning algorithms from this particular category.

	2)	Unsupervised Learning:
These kinds of algorithms work with data that is typically not labeled. Because
of the time constraints it would take to create and assign the labels for each
category (as just previously mentioned), you will have to make use of what
are known as “Deep Learning Algorithms” in order to detect any unseen data
trends that lie from within all of your datasets. In this regard, one of the
most typical approaches that is used in this category is that of “Clustering.”
With this, you are merely taking all of the unlabeled datasets and using the
various algorithms that are available from within this particular category to
put these datasets into various groups, which have common denominators or
affiliations with them. To help out with this, there are a number of ways to do
this, which are the following:
	{ The Euclidean Metric:

This is a straight line between two independent datasets.
	{ The Cosine Similarity Metric:

In this instance, a trigonometric function known as the “Cosine” is used to
measure any given angles between the datasets. The goal here is to find any
closeness or similarities between at least two or more independent datasets
based upon their geometric orientation.

	{ The Manhattan Metric:
This technique involves taking the summation of at least two or more abso-
lute value distances from the datasets that you have.

	{ The Association:
The basic thrust here is that if a specific instance occurs in one of your
datasets, then it will also likely occur in the datasets that have some sort of
relationship with the initial dataset that has been used.

	{ The Anomaly Detection:
With this methodology, you are statistically identifying those outliers or
other anomalous patterns that may exist within your datasets. This tech-
nique has found great usage in Cybersecurity, especially when it relates to
filtering out for false positives from the log files that are collected from the
Firewalls, Network Intrusion Devices, and Routers, as well as any behavior
that may be deemed suspicious or malicious in nature.

	{ The Autoencoders:
With this particular technique, the datasets that you have on hand will be
formatted and put into a compressed type of format, and from that, it will be
reconstructed once again. The idea behind this is to detect and find any sort
of new patterns or unhidden trends that may exist from within your datasets.

	3)	The Reinforcement Learning:
In this instance, you are learning and harnessing the power of your datasets
through a trial and error process, as the name of this category implies.

Machine Learning  |  39

	4)	The Semi-​Supervised Learning:
This methodology is actually a mixture of both Supervised Learning and
Unsupervised Learning. However, this technique is only used when you have
a small amount of datasets that are actually labeled. Within this, there is a
sub-​technique which is called “Pseudo-​Labeling.” In this regard, you literally
translate all of the unsupervised datasets into a supervised state of nature.

The Machine Learning Algorithms

There are many types and kinds of both mathematical and statistical algorithms that
are used in Machine Learning. In this subsection, we examine some of the more
common ones, and we will do a deeper dive into them later in this chapter. Here are
the algorithms:

	1)	The Naïve Bayes Classifier:
The reason why this particular algorithm is called “naïve” is because the under-
lying assumption is that the variables in each of the datasets that you have
are actually all independent from one another. In other words, the statistical
occurrence from one variable in one dataset will have nothing to do whatsoever
with the variables in the remaining datasets. But there is a counterargument to
this which states that this association will prove to be statistically incorrect if
any of the datasets have actually changed in terms of their corresponding values.
It should be noted that there are also specific alterations or variations to this
particular algorithm, and they are as follows:
	{ The Bermoulli:

This is only used if you have binary values in your datasets.
	{ The Multinomial:

This technique is only used if the values in your datasets are discrete, in
other words, if they contain mathematical absolute values.

	{ The Gaussian:
This methodology is used only if your datasets line up to a statistically
normal distribution.

It should be noted that this overall technique is heavily used for analyzing
in granular detail those datasets that have a text value assigned to them. In
Cybersecurity, this technique proves to be extremely useful when it comes to
identifying and confirming phishing emails by examining the key features and
patterns in the body of the email message, the sender address, and the content
in the subject line.

	2)	The K-​Nearest Neighbor:
This specific methodology is used for classifying any dataset or datasets that
you have. The basic theoretical construct of the values that are closely related
or associated with one another in your datasets will statistically be good
predictors for a Machine Learning model. In order to use this model, you first

40  |  Machine Learning

need to compute the numerical distance between the closest values. If these
values are quantitative, you could then use the Euclidean Distance formula.
But if your datasets have some sort of qualitative value, you could then use
what is known as the “Overlap Metric.” Next, you will then have to ascertain
the total number of values that are closely aligned with one another. While
having more of these kinds of values in your datasets could mean a much
more efficient and robust Machine Learning Model, this also translates into
using much more processing resources of your Machine Learning System.
To help accommodate for this, you can always assign higher value statistical
weights to those particular values that are closely affiliated with one another.

	3)	The Linear Regression:
This kind of methodology is strictly statistical. This means that it tries to
examine and ascertain the relationship between preestablished variables that
reside from within your datasets. With this, a line is typically plotted, and can
be further smoothed out using a technique called “Least Squares.”

	4)	The Decision Tree:
This methodology actually provides an alternative to the other techniques
described thus far. In fact, the Decision Tree works far better and much more
efficiently with non-​numerical data, such as those that deal with text values.
The main starting point of the decision is at the node, which typically starts
at the top of any given chart. From this point onwards, there will be a series
of decision branches that come stemming out, thus giving it its name. The
following example depicts a very simple example of a Decision Tree:

Yes No

Yes No

Am I
hungry?

Do I have
$30.00?

Stay home
and watch

TV

Go to a nice
restaurants

Get a pizza

Machine Learning  |  41

The above is of course, a very simple Decision Tree to illustrate the point.
But when it comes to Machine Learning, Decision Trees can become very
long, detailed, and much more complex. One of the key advantages of using a
Decision Tree is that they can actually work very well with very large datasets
and provide a degree of transparency during the Machine Leaning Model
building process.

But, on the flip side, a Decision Tree can also have its serious disadvantages
as well. For example, if just one branch of it fails, it will have a negative, cas-
cading effect on the other branches of the Decision Tree.

	5)	The Ensemble Model:
As its name implies, this particular technique means using more than just one
model, it uses a combination of what has been reviewed so far.

	6)	The K-​Means Clustering:
This methodology is very useful for extremely large datasets—​it groups
together the unlabeled datasets into various other types of groups. The first
step in this process is to select a group of clusters, which is denoted with
the value of “k.” For illustration purposes, the diagrams below represent two
different clusters:

X

X

X

X

X

X X

Once you have decided upon these clusters, the next step will be to calculate
what is known as the “Centroid.” This is technically the midpoint of the two
clusters, illustrated below:

Cluster #1

X

X

X

Centroid

X

X

X X

Centroid

42  |  Machine Learning

Finally, this specific algorithm will then calculate the average distance of the two
Centroids, and will keep doing so in an iterative fashion until the two Centroids
reach the point of convergence—​that is, when the boundaries of the two clusters
will actually meet with each other. It should be noted that this technique suffers
from two different drawbacks:

	{ It does not work well with non-​spherical datasets;
	{ There could be some clusters with many data points in them, and some with

hardly any at all. In this particular instance, this technique will not pick up
on the latter.

Key Statistical Concepts

Apart from the mathematical side of the algorithms, Machine Learning also makes
heavy usage of the principles of statistics, and some of the most important ones that
are used are described in this subsection:

	1)	The Standard Deviation:
This measures the average distance from the statistical aspect of any dataset.

	2)	The Normal Distribution:
This is the “bell-​shaped curve” that we have heard so often about. In more
technical terms, it represents the sum of the statistical properties in the
variables of the all the datasets that you are going to use for the Machine
Learning system.

	3)	The Bayes Theorem:
This theorem provides detailed, statistical information about your datasets.

	4)	The Correlation:
This is where the statistical correlations or commonalities (or even associ-
ations) are found amongst all of the datasets. Here are the guiding principles
behind it:
	{ Greater than 0:

This occurs when a variable increases by an increment of one. Consequently,
the other variables will also increase by at least of a value of one.

	{ 0:
There is no statistical correlation between any of the variables in the
datasets.

	{ Less than 0:
This occurs when a variable increases by an increment of one. Consequently,
the other variables will also decrease by at least of a value of one.

So far, we have provided a high level overview of the theoretical aspects of Machine
Learning. In the next section of this book, we will now do the “Deep Dive.”

Machine Learning  |  43

The Deep Dive into the Theoretical
Aspects of Machine Learning
Understanding Probability

If you haven’t noticed already, one of the key drivers behind any Machine Learning
is the quality and the robustness of the data sets that you have for the system that
you are using. In fact, it is probably safe to say that the data is roughly 80 percent
of the battle to get your Machine Learning system up and running and to produce
the outputs that you need for your project. So in this regard, you will probably rely
upon the concepts of statistics much more so than pure and discrete mathematics,
as your data sets will be heavily reliant upon this.

In the field of statistics, the concepts of probability are used quite often.
Probability, in much more specific terms, is the science of trying to confirm the
uncertainty of an event, or even a chain of events. The value “E” is most commonly
used to represent a particular event, and the value of P€ will represent the level of
probability that will occur for it. If this does not really happen, this is called the
“Trail.” In fact, many of the algorithms that are used for Machine Learning come
from the principles of probability and the naïve Bayesian models.

It should be noted at this point that there are three specific categories for the
purposes of further defining probability, and they are as follows:

	1)	The Theoretical Probability:
This can be defined as the number of ways that a specific event can occur,
which is mathematically divided by the total number of possible outcomes
that can actually happen. This concept is very often used for Machine
Learning systems in order to make better predictions for the future, such as
predicting what the subsequent Cyberthreat Landscape will look like down
the road.

	2)	The Empirical Probability:
This describes the specific number of times that an event will occur, which is
then mathematically divided by the total number of incidents that are also
likely to occur.

	3)	The Class Membership:
In this instance, when a particular dataset is assigned and given a label, this
is known technically as “Classification Predictive Modeling.” In this case, the
probability that a certain observation will actually happen, such as assigning
a particular dataset to each class, can be predicted. This makes it easier to lay
down the actual objectives for what the Machine Learning system will accom-
plish before you select the algorithms that you will need.

It should be noted that the above-​mentioned classifications of probability can also
be converted into what are known as “Crisp Class Labels.” In order to conduct this

44  |  Machine Learning

specific procedure, you need to choose the dataset that has the largest levels of prob-
ability, as well as those that can be scaled through a specific calibration process.

Keep in mind that at least 90 percent of the Machine Learning models are
actually formulated by using a specific sequencing of various iterative algorithms.
One of the most commonly used techniques to accomplish this task is the known
as the “Expectation Maximization Algorithm” which is most suited for clustering
the unsupervised data sets. In other words, it specifically minimizes the difference
between a predicted probability distribution and a predicted probability distribution.

As it will be further reviewed in the next subsection, Bayesian Optimization is
used for what is known as “Hyperparameter Optimization.” This technique helps
to discover the total number of possible outcomes that can happen for all of your
datasets that you are making use of in your Machine Learning system. Also, prob-
abilistic measures can be used to evaluate the robustness of these algorithms. One
such other technique that can be used in this case is known as “Receiver Operating
Characteristic Curves,” or “ROC” for short.

For example, these curves can be used to further examine the tradeoffs of these
specific algorithms.

The Bayesian Theorem

At the heart of formulating any kind or type of Machine Learning algorithm is
what is known as the “Bayesian Probability Theory.” In this regard, the degree of
uncertainty, or risk, of collecting your datasets before you start the optimization
process is known as the “Prior Probability,” and the examining of this level of risk
after the dataset optimization process has been completed is known as the “Posterior
Probability.” This is also known in looser terms as the “Bayes Theorem.”

This simply states that the relationship between the probability of a hypoth-
esis before getting any kind of statistical evidence (which is represented as P[H]‌)
and after can be driven into the Machine Learning system by making use of the
following mathematical computation:

Pr (H|E) = Pr (E|H) * Pr(H) /​ Pr(E)

In the world of Machine Learning, there are two fields of statistics that are the most
relevant, and they are as follows:

	1)	Descriptive Statistics:
This is the sub-​branch of statistics that further calculates any useful properties
of your datasets that are needed for your Machine Learning system. This actu-
ally involves a simple set, such as figuring out the mean, median, and mode
values amongst all of your datasets. Here:
	{ The Mean: This is the average value of the dataset;
	{ The Mode: This is the most frequent value that occurs in your datasets;

Machine Learning  |  45

	{ The Median: This is the middle value which physically separates the higher
half of the values in your dataset from the lower half of the values in your
dataset.

	2)	Inferential Statistics:
This grouping of statistics is implemented into the various methods that actu-
ally support the various quantifying properties of the datasets that you are
using for your Machine Learning system. These specific techniques are used to
help quantify the statistical likelihood of any given dataset that is used in cre-
ating the assumptions for the Machine Learning model formulation process.

The Probability Distributions for Machine Learning

In Machine Learning, the statistical relationship between the various events of what
is known as “Continuous Random Variable” and its associated probabilities is known
as the “Continuous Probability Distribution.” These specific distribution sets are in
fact a key component of the operations that are performed by the Machine Learning
models in terms of optimizing the numerical input and output variables.

Also, the statistical probability of an event that is equal to or less than a particular
defined value is technically known as the “Cumulative Distribution Function,” or
“CDF” for short. The inverse, or reverse, of this function is called the “Percentage
Point Function,” or “PPF” for short. In other words, the Probability Density
Function calculates the statistical probability of a certain, continuous outcome, and
the Cumulative Density Function calculates the statistical probability that a value
that is less or equal to a certain outcome will actually transpire in the datasets that
you are using in your Machine Learning system.

The Normal Distribution

The Normal Distribution is also known as the “Gaussian Distribution.” The premise
for this is that there is a statistical probability of a real time event occurring in your
Machine Learning system from your given datasets. This distribution also consists
of what is known as a “Continuous Random Variable,” and this possesses a Normal
Distribution that is evenly divided amongst your datasets.

Further, the Normal Distribution is defined by making use of two distinct and
established parameters which are the Mean (denoted as “mu”) and the Variance
(which is denoted as Sigma ̂ 2). Also, the Standard Deviation is typically the average
spread from the mean and is denoted as “Sigma” as well. The Normal Distribution
can be represented mathematically as follows:

F(X) = 1/​aSQRT PI ^e –​ (u –​ x)^2/​2O^2.

It should be also noted that this mathematical formula can be used in the various
Machine Learning Algorithms in order to calculate both distance and gradient

46  |  Machine Learning

descent measures, which also include the “K-​Means” and the “K-​Nearest Neighbors.”
At times, it will be necessary to rescale the above-​mentioned formula until the appro-
priate statistical distribution is actually reached. In order to perform the rescaling
process, the “Z-​Score Normalization” and the “Min-​Max Transformation” are used.

Finally, in terms of the Machine Learning Algorithms, the independent variables
that are used in your datasets are also known as “Features.” The dependent variables
are also known as the “Outputs.”

Supervised Learning

Earlier in this chapter, Supervised Learning was reviewed. Although just a high level
overview of it was provided, in this subsection, we now go into a much deeper
exploration of it. It should be noted that many of the Machine Learning algorithms
actually fall under this specific category. In general, Supervised Learning works by
using a targeted independent variable (it can also even be a series of dependent
variables). From this point onwards, a specific mathematical function can then be
created which can associate, or map, the inputs from the datasets to what the desired
or expected outputs should be.

This is an iterative process that keeps going until an optimal level of accuracy
is reached, and the desired output has an expected outcome with it as well. The
following are typical examples of some of the statistical techniques that are used in
this iterative process:

	1)	Linear Regression:
This is probably the best approach to be used in order to statistically estimate
any real or absolute values that are based upon the continuous variables that
are present in the Machine Learning model. With this technique, a linear rela-
tionship (as its name implies) is actually established and placed amongst both
the independent variable and the dependent variables that are present in the
Machine Learning model. Technically, this is known as the “Regression Line,”
and the mathematical formula for this is as follows:

Y = a*X + b.

With this kind of modeling technique, the statistical relationships are actually
created and filtered via numerous Linear Predictor Functions. From here, the
parameters of these particular functions are then estimated from the datasets
that are used in the Machine Learning system. Although Linear Regression is
widely used in Machine Learning, there are also a number of specific other
uses for it as well, which are as follows:
	{ Determining the strength of the predictors, which can be a very subjective

task to accomplish;

Machine Learning  |  47

	{ Trend Forecasting, in that it can be used to estimate the level of the impact
of any changes that may transpire from within the datasets;

	{ Predicting or forecasting a specific event into the future. For example, as
it relates to Cybersecurity, it can be used to help predict what a new threat
vector variant could potentially look like.

	{ In the case that there are multiple independent variables that are being
used (typically, there is just one, as denoted by the value of “Y” in the
above equation), then other techniques have to be used as well, which
include those of Forward Selection, Step Wise Elimination, and Backward
Elimination.

	2)	Logistic Regression:
This statistical technique is used for determining the levels of probability
of both an outcome success and an outcome failure. Thus, the dependent
variables that are present must be in binary format, which is either a 0 or a
1. This kind of technique can be mathematically represented as follows:

Odds = p/​(1-​p)

Ln(odds) = ln[p/​(1-​p)]

Logit(p) = ln ln[p/​(1-​p)].

It should be noted also that this technique also makes use of what are known
as “Binomial Distributions.” In other words, a Link Function must be selected
for the specific distribution that is at hand. Unlike the previously mentioned
technique, there is no linear relationship that is required. Further, this kind
of technique is mostly used for the purposes of problem classification for the
Machine Learning system.

	3)	Stepwise Regression:
As mentioned previously, this kind of technique works best when there are
multiple independent variables that are present. In this regard, these inde-
pendent variables can be further optimized with the following tools:
	{ The AIC Metric;
	{ The T-​Test;
	{ The R Squared, as well as the Adjusted R Squared.

One of the main benefits of this technique is that Covariant Variables can be
added one at a time, but permutations for doing this have to be established
first. One of the key differences between Stepwise Regression and the Forward
Regression is that the former can actually remove any kind of statistical predictors,
but the with the latter, a “Significant Predictor” can add any other extra stat-
istical variables that are needed in the development of the Machine Learning

48  |  Machine Learning

model. Also, Backward Elimination starts this process with all of the statistical
predictors present in the Machine Learning model, and from there removes
every least significant variable that occurs throughout this entire iterative cycle.

	4)	Polynomial Regression:
If it were to be the case that the power of an independent variable happens to
be greater than one (this can be mathematically represented as “Y^1 > 1”), this
then becomes what is known as the “Polynomial Regression Equation.” This
can be mathematically represented as follows:

Y = a+b*Y^2.

	5)	Ridge Regression:
This technique is specifically used when the datasets that are used for the
Machine Learning system undergo a transformation which is known as
“Multicollinearity.” This typically occurs when the independent variables are
highly correlated, or associated, amongst one another, and from there, the
Least Squares calculations remain at a neutral or unchanged point.

To counter for the Multicollinearity effect, a certain degree of statistical bias
is added in order to help reduce any Standard Errors or other types of statis-
tical deviations that may occur in the Machine Learning model. The effects of
Multicollinearity can be mathematically represented as follows:

Y = a+y a+ b1x1+ b2x2+, b3x3, etc.

Also in this technique, the “Regularization Method” can be used to make
sure that the values of the coefficients that are present in the above formula
will never reach zero during the time that the Machine Learning system is
in use.

	6)	Least Absolute Shrinkage & The Selector Operator Regression (aka the “Lasso
Regression”):
This specific technique possesses the ability to reduce any of the statistical
variability that is present in the Machine Learning model, by reducing the
amount of variability that is present. This can be deemed also as an optimiza-
tion or a “regularization” technique in that only one single statistical option is
picked from an aggregate group of predictors. This technique also can make
future predictions even much more accurate in nature.

The fundamental question that often gets asked at this point is what type of
Regression Technique should be used for the Machine Learning model? The basic
rule of thumb is that if the outputs should be continuous (or linear) in nature,
then Linear Regression should be used. However, if the output is multiple options
in nature, such as being binary, then either the Binary or the Logistic Regression
models should be used.

Machine Learning  |  49

But, there are other factors that need to be taken into consideration, which
include the following:

	{ The type of the independent and the dependent variables that are being used;
	{ The characteristics of the datasets that are being used as well as their mathem-

atical dimensionality.

The Decision Tree

An overview of the Decision Tree was provided earlier in this chapter, and in this
subsection, we do a deeper dive into it. This technique is actually considered to be
a part of Supervised Learning. The ultimate goal of the Decision Tree is to create
a Machine Learning model which has the potential to predict a certain value of a
target variable by learning the decision’s rules, or permutations, that have been ini-
tially deployed into the datasets, in order to make a more effective learning environ-
ment for the Machine Learning system.

It should be noted that Decision Trees can also be called “Classification and
Regression Trees,” or “CART” for short. In this particular situation, the ability
to predict the value of a target variable is created by what are known as “If/​Then
Statements.” Some of the attributes of a Decision Tree include the following:

	1)	The Attribute:
This is a numerical quantity that describes the value of an instance.

	2)	The Instance:
These are the attributes that further define the input space and are also referred
to as the “Vector of Features.”

	3)	The Sample:
This is the set of inputs that are associated with or combined with a specific
label. This then becomes known as the “Training Set.”

	4)	The Concept:
This is a mathematical function that associates or maps a specific input to a
specific output.

	5)	The Target Concept:
This can be deemed to be the output that has provided the desired results or
outcome.

	6)	The Hypothesis Class:
This is a set or category of possible outcomes.

	7)	The Testing Set:
This is a sub-​technique that is used to further optimize the performance of the
“Candidate Concept.”

	8)	The Candidate Concept:
This is also referred to as the “Target Concept.”

50  |  Machine Learning

An graphical example of a Decision Tree was provided earlier in this chapter. It
should be noted that this technique also makes further usage of Boolean functions,
AND OR XOR mathematical operators, as well as Boolean gates.

The specific steps for creating any kind of Machine Learning-​based Decision
Tree are as follows:

	{ Obtain the datasets that will be needed and from there compute the statistical
uncertainty for each of them;

	{ Establish a list of questions that have to be asked at every specific node of the
Decision Tree;

	{ After the questions have been formulated, create the “True” and “False” rows
that are needed;

	{ Compute the information that has been established from the partitioning that
took place in the previous step;

	{ Next, update the questions that are being asked from the results of the process
that have been garnered in the last step;

	{ Finally, divide, and if need be, sub-​divide the nodes and keep repeating this
iterative process until you have completed the objective of the Decision Tree
and it can be used for the Machine Learning system.

It should also be noted that in Machine Learning, the Python Programming
Language is used quite extensively. This will be examined in much greater detail,
but the below provides an example of how it can be used in creating a Decision Tree
as well:

Import numpy as np
Import pandas as pd
From sklearn.metrics import confusion_​matrix
From sklearn.cross -​validation import train_​test_​split
From sklearn.tree import DecisionTreeClassifier
From sklearn.metrics import accuracy_​score
From sklearn.metrics import classification_​report

Function importing data set
Def importdata ();
      Balance_​data = pd.read_​csv(
#Printing the dataswet shape
Print (“data set Length:”,len(balance_​data)
Print (“data set Shape: ”, balance_​data.shape)

#Printing the data set observations
Print “[data set: ”, balance _​data.head()]
Return balance_​data

Machine Learning  |  51

#Function to split the data set
Def splitdata set(balance_​data):

#Separating the target variable
X = balance_​data.values [:, 1:5]
Y = balance_​data.values[:, 0]
#Splitting the dataset into train and test
X_​train, X-​test, y_​train, y_​test, = train_​test_​split(
X, Y, test_​size = 0.3, random_​state = 100)

Return X, Y, X _​train; X_​test; y_​train, Y_​test
#Function to perform training with giniIndex.
Def train_​using_​gini(X_​train. X_​test, y_​train);

#Creating the classifier object
Of_​gini = DecisionTreeClassifer(criterion = “gin”,

Random_​state = 100,max_​depth=3,
Min_​samples_​leaf=5)

#Performing training
Cif_​gini.fit(X_​train, y_​train)
Retrn cif_​gini
#Function to perform training with entropy.
Def tarin_​using_​entropy(X_​train, X_​test, y_​train);

#Decision tree with entropy
Clf_​entropy_​= DecisionTreeClassifier(
      Criterion = “entropy”, random_​state#
100,
Max_​depth= 3, min _​samples_​leaf =5)
#Performing training
Clf_​enrtropy.fit(X_​train, y_​train)
Return clf_​entropy

#Function to make predictions
Def prediction(X_​test, clf_​object):
#Prediction on test with giniIndex
Y_​pred = clf_​object.predict(X_​test)
Print(“Predicted values:”)
Return y_​pred

#Function to compute accuracy
Def cal_​accuracy(y_​test, y_​pred):

52  |  Machine Learning

    Print(“Confusion Matrix: ”;
            Confusion_​matrix(y_​test, y_​pred)
Print (“Accuracy :”
Accuracy_​score(y_​test, y_​pred)*100)
Print (“Report : ”,
Classification_​report(y_​test, y_​pred)

#Driver code
Def():

#Building Phase
Data = importdata()
X, Y, X_​train, X_​test, y_​train, y_​test = splitdata set(data)
Clf_​gini = train_​using_​gini(X_​train, X_​test, y_​train)
Clf_​entropy = train_​using_​entropy(X_​train, X_​test, y_​train)

#Operational Phase
Print(“Results Using Gini Index:”)
#Prediction using gini
Y_​pred_​gini = prediction(X_​test, clf_​gini)
Cal_​accuracy(y_​test, y_​pred_​gini)

Print(“Results Using Entropy:”)
    #Prediction using entropy
Y_​pred_​entropy = prediction(X_​test, clf_​entropy)
    Cal_​accuracy(y_​test, y_​pred_​entropy)

#Calling amin function
If_​name_​==”_​main_​:”
      Main()

(Sharma, n.d.)
(SOURCE: 2).

The Problem of Overfitting the Decision Tree

Once the Decision Tree has been completed, one of major drawbacks of it is that
is very susceptible to what is known as “Overfitting.” This simply means that
there are more datasets than what is needed for the Machine Learning system;
therefore, further optimization is thus needed in order to gain the desired
outputs. In order to prevent this phenomenon from happening, you need to

Machine Learning  |  53

carefully study those branches on the Decision Tree that are deemed to be not
as important.

In these instances, these specific branches, or nodes, then need to be removed.
This process is also called “Post Pruning,” or simply “Pruning.” In this particular
instance, there are two more specific techniques, which are as follows:

	1)	The Minimum Error:
In this instance, the Decision Tree is pruned back to the point where the Cross
Validation Error is at its minimum point.

	2)	The Smallest Tree:
In this case, the Decision Tree is reduced even more than the established value
for the Minimum Error. As a result, this process will create a Decision Tree
with a Cross Validation Error that is within at least one Standard Deviation
away from the Minimum Error.

But, it is always very important to check for Overfitting as you build the Decision
Tree. In this case, you can use what is known as the “Early Stopping Heuristic.”

The Random Forest

Random Forests are a combination of many Decision Trees, probably even in the
range at a minimum of hundreds or even thousands of them. Each of the indi-
vidual trees are trained and simulated in a slightly different fashion from each other.
Once the Random Forest has been completed and optimized, the final outputs
are computed by the Machine Learning system in a process known as “Predictive
Averaging.”

With Random Forests, the datasets are split into much smaller subsets that are
based upon their specific features at hand, and which also reside only under one
particular Label Type. They also have certain statistical splits by a statistical measure
calculated at each from within the Decision Tree.

Bagging

This is also known as “Bootstrap Aggregation.” This is a specific approach that is
used to combine the predictions from the various Machine Learning systems that
you are using and put them together for the sole purposes of accomplishing more
accurate Mode Predictions than any other individual that is presently being used.
Because of this, the Decision Tree can be statistically very sensitive to the specific
datasets that they have been trained and optimized for.

Bagging can also be considered to be a further subset in the sense that it is typ-
ically applied to those Machine Learning algorithms that are deemed to be of “High

54  |  Machine Learning

Variance” in nature. The Decision Trees that are created from Bootstrap Aggregation
can also be highly sensitive in nature once again to the datasets that are being used
for the tasks that they have been trained to do. The primary reason for this is that
any small or incremental changes can drastically alter the composition and makeup
of the Decision Tree structure.

With the Bagging technique, the datasets are not actually further subdivided;
instead, each node of the Decision Tree is associated with a specific sample of the
dataset in question. A random size is typically assigned. This stands in sharp con-
trast to a more normalized Decision Tree in which the randomness typically happens
when that specific node is further subdivided, and from there, a greater degree of
statistical separation can thus be achieved.

A question that typically gets asked at this point is, which is better: the Random
Forest, or making use of multiple Decision Trees that are not interlinked or other-
wise connected with one another? In most cases, the choice of the former is a much
better one, because better Pooling Techniques, as well as various other types of
Machine Learning algorithms can be used as well, and bonded all together into one
cohesive unit.

The Naïve Bayes Method

This is a well-​known technique that is typically used for Predictive Modeling
scenarios by the Machine Learning system. It should be noted that with Machine
Learning, the computations are done on a specific dataset in which the best statis-
tical hypothesis must be figured out in order to yield the desired outputs. The Naïve
Bayes Method can be mathematically represented as follows:

P(h|d) = [P(d|h) * P(h))/​P(d)]

Where:
P(h|d) = is the statistical probability of a given hypothesis (known as “h”)

which is computed onto a particular dataset (which is known as “d”).
P(d|h) = is the probability of dataset “d,” assuming the hypothesis “h” is actu-

ally statistically correct.
P(d) = is the probability of a dataset absent of any kind of hypothesis (“h”) or

any form of dataset “d”).

In this regard, if all of the above are also correct, then one can conclude that the
hypothesis “h” is also correct. What is known as a “Posterior Probability” is further
associated with this concept as well.

The above methodology can also be used to compute the “Posterior Probability”
for any given number of statistical hypothesis. Of course, the one that has the highest
level of probability will be selected for the Machine Learning System because it is

Machine Learning  |  55

deemed the most successful and most robust in nature. But, if the situation arises
where all levels of statistical hypotheses are equal in value, then this can be mathem-
atically represented as follows:

MAP(h) = max[(P(d|h)).

It is also worth mentioning that this methodology consists of yet another algorithm
which is known as the “Naïve Bayes Classification.” This technique is typically used
to determine and ascertain if a certain statistical value is either Categorical or Binary
by design. The Class Probabilities and their associated conditional sets are also
known as the “representations” of the Naïve Bayes Model. Also, Class Probabilities
are the statistical odds of each class that is present in the datasets; the Conditional
Probabilities are ascertained form the given input values for each Value Class from
the datasets that are used in the Machine Learning system.

Another common question that typically gets asked at this point is, how does
the Naïve Bayes Theorem actually work, at least on a high level? Well, one needs to
first compute the Posterior Probability (which is denoted as P(c|x) from the P©,
the P(X), and the PX|C). In other words, the foundations for this algorithm can be
mathematically represented as follows:

P(c|x) = P(x|c)P©/​P(x)

Where:
P(c|x) = the Posterior Probability;
P(x|c) = the Statistical Likelihood;
P© = the Class Prior Probability;
P(x) = the Predictor Prior Probability.

Given the above mathematical representation, the specific class that has the highest
levels of statistical Posterior Probability will likely be the candidate to be used in
computing the final output from the Machine Learning system.

The advantages of the Naïve Bayes Method are as follows:

	{ It is one of the most widely used algorithms in Machine Learning to date;
	{ It gives very robust results for all sorts of Multi-​Class predictions;
	{ It requires much less training versus some of the other methods just reviewed;
	{ It is best suited for Real Time Prediction purposes, especially for Cybersecurity

purposes when it comes to filtering for false positives;
	{ It can predict the statistical probability of various Multiple Classes of the

targeted variables;
	{ It can be used for text classification purposes (this is typically where the

datasets are not quantitative in nature, but rather qualitative;

56  |  Machine Learning

	{ With the filtering approaches that it has, it can very easily find hidden trends
much more quickly than the other previously reviewed methods.

The disadvantages of the Naïve Bayes Method are as follows:

	{ It is not efficient for predicting the class of a test data set;
	{ If any Transformation Methods are used, it cannot convert the datasets into a

Standard Normal Distribution curve;
	{ It cannot deal with certain Correlated Features because they are considered

to be an overhead in terms of processing power on the Machine Learning
system;

	{ There are no Variance Minimization Techniques that are used, and thus it
cannot make use of the “Bagging Technique”;

	{ It has a very limited set for Parameter Tuning;
	{ It makes the further assumption that every unique feature in each and every

dataset that is present and used for the Machine Learning system is unrelated
to any other, and thus, it will not have any positive impact on other features
which may be present in the datasets.

The KNN Algorithm

This is also known as the “K Nearest Neighbors” algorithm. This is also deemed
to be a Supervised Machine Learning algorithm. It is typically used by those
Machine Learning systems in order to specifically solve Classification and
Regression scenarios. This is a very widely-​used Machine Learning algorithm
for the reason that it has two distinct properties, unlike the ones previously
examined. They are as follows:

	1)	It is a “Lazy” Algorithm:
It is lazy in the sense that this algorithm has no specialized training segments
that are associated with it, and thus it makes use of all of the datasets that are
available to it while it is training in its Classification Phase.

	2)	It is Non-​Parametric by nature:
This simply means that this specific algorithm never makes any assumptions
about the underlying datasets.

In order to fully implement the KNN Algorithm for any kind of Machine Learning
system, the following steps have to be taken:

	1)	Deploy the datasets, and initialize the “K” value to the preestablished set of
the total number of nearest neighbors that are present. Also, any training and
other forms of testing datasets must be deployed as well.

Machine Learning  |  57

	2)	It is important to also calculate the values of “K” as well as the distance from
the training datasets and the test datasets.

	3)	From within every point in the test dataset, you also need to compute the
distance between the test datasets as well as each and every row for each of the
training datasets as well.

	4)	Once the above step has been accomplished, then sort the “K” values in an
ascending order format which is based upon the distance values that have
been calculated previously. From this point, then choose the top “K” rows,
and assign a specific class to it.

	5)	Finally, get the preestablished Labels for the “K” entries that you have just
selected.

Another key advantage of the KNN Algorithm is that there is no learning that is
typically required, and because of that, it is very easy to update as new datasets
become available. This algorithm can store other forms of datasets as well by taking
complex dataset structures and matching new learning patterns as it tries to predict
the values of the various outputs. Thus, if any new types of predictions have to be
made for the outputs, it can just use the pre-​existing training datasets.

As we alluded earlier, various distances must be calculated for the KNN
Algorithm. The most commonly used one is what is known as the “Euclidean
Distance,” which is represented by the following mathematical formula:

Euclidean Distance(X, Xi) = SQRT[(sum((X) –​ (xij^2)]

It should also be noted that other distancing formulas can be used as well, espe-
cially that of the Cosine Distance. Also, the computational complexity of the KNN
Algorithm can also increase in tandem upon the size of the training dataset. This
simply means that there is a positive, statistical relationship that exists: as the size
increases, so will the complexity.

As mentioned, Python is very often used for Machine Learning, and the following
code can be used to predict the outputs that the KNN Algorithm will provide:

Knn_​predict <-​function(test, train, k_​value){
Pred <-​c()
#LOOP –​ 1
For(I in c(1:row(test))){
    Dist = c()
    Char = c()
    Setosa = 0
    Versicolor = 0
    Virginica = 0
}

58  |  Machine Learning

#LOOP –​ 2 –​ looping over trained data
For (j in c(1:row(train))){}
Dist <-​c(dist, ED(test[I,], train [j,]))
Char <-​c(char, as.character(train[j,][[5]‌]))
Df <-​data.frame(char, dist$SepallLength)
Df <-​df[order(df$dist.SepallLength),]
#sorting dataframe
    Df<-​df[1:k_​value,]

#Loop3: loops over df and counts classes of all neighbors
    For(k in c(1:nrow(df))){
If(as.character(df[k, “char”]) = = “setoasa”){
Setosa = setosa + 1
}else if(as.character(df[k,, “char]) = =
“versicolor”){
      Versicolor = versicolor + 1
      }else
      Virginica = virginica +1
      }
N<-​table(df$char)
Pred = names(n)[which(n==max(n))]
Return(pred) #return prediction vector
}
#Predicting the value for K=1
K=1
Predictions <-​knn_​predict(test, train, K)
Output:
For K=1

[1]‌”Iris-​virginica
(SOURCE: 2).

Unsupervised Learning

When it comes to Machine Learning, the Unsupervised Algorithms can be used to
create inferences from datasets that are composed of the input data if they do not
have Labeled Responses that are associated with them. In this category, the various
models that are used (and which will be examined in much more detail) make use of
the input data type of [X]‌, and further, do not have any association with the output
values that are calculated.

This forms the basis for Unsupervised Learning, primarily because the goal of
the models is to find and represent the hidden trends without any previous learning
cycles. In this, there are two major categories: Clustering and Association.

Machine Learning  |  59

	1)	Clustering:
This typically occurs when inherent groups must be discovered in the datasets.
But in this category, the Machine Learning system has to deal with a tre-
mendous amount of large datasets, which are often referred to as “Big Data.”
With Clustering, the goal is to find any and all associations (which are hidden
and unhidden) in these large datasets. The following are the major types of
Clustering Properties that are very often used today in Machine Learning:
	{ Probabilistic Clustering:

This involves grouping the various datasets into their respective clusters
that are based upon a predetermined probabilistic scale.

	{ K-​Means Clustering:
This involves the clustering of all of the datasets into a “K” number of stat-
istically mutually exclusive clusters.

	{ Hierarchical Clustering:
This classifies and categorizes the specific data points in all of the datasets
into what are known as “Parent-​Child Clusters.”

	{ Gaussian Mixture Models:
This consists of both Multivariate and Normal Density Components.

	{ Hidden Markov Models:
This technique is used to analyze all of the datasets that are used by the
Machine Learning systems, as well as to discover any sequential states that
could exist amongst them.

	{ Self-​Organizing Maps:
This maps the various Neural Network structures which can learn the
Statistical Distribution as well as the Topology of the datasets.

Generative Models

These types of models make up the bulk of Unsupervised Learning Models. The pri-
mary reason for this is that they can generate brand new data samples from the same
distribution of any established training dataset. These kinds of models are created
and implemented to learn the data about the datasets. This is very often referred to
as the “Metadata.”

Data Compression

This refers to the process for keeping the datasets as small as possible. This is purely
an effort to keep them as smooth and efficient as possible so as not to drain the
processing power of the Machine Learning system. This is very often done through
what is known as the “Dimensionality Reduction Process.” Other techniques that
can be used in this regard include those of “Singular Value Decomposition” and
“Principal Component Analysis.”

60  |  Machine Learning

Singular Value Decomposition mathematically factors the datasets into a
product of three other datasets, using the concepts of Matrix Algebra. With Principal
Component Analysis, various Linear Combinations are used find the specific statis-
tical variances amongst all of the datasets.

Association

As its name implies, this is actually a Rule-​based Machine Learning methodology
which can be used to find both hidden and unhidden relationships in all of the
datasets. In order to accomplish this, the “Association Rule” is typically applied. It
consists of both a consequent and an antecedent. An example of this is given in the
matrix below:

Frequency Count Items That Are Present

1 Bread, Milk

2 Bread, Biscuits, Drink, Eggs

3 Milk, Biscuits, Drink, Diet Coke

4 Bread, Milk, Biscuits, Diet Coke

5 Bread, Milk, Diet Coke, and Coke

(SOURCE: 2).

There are two very important properties to be aware of here:

	{ The Support Count:
This is the actual count for the frequency of occurrence in any set that is pre-
sent in the above matrix. For example, [(Milk, Bread, Biscuit)] = 2. Here, the
mathematical representation can be given as follows:
X-​>Y, where the values of X and Y can be any two of the sets in the above
matrix. For example, (Milk, Biscuits)-​>(Drinks).

	{ The Frequent Item:
This is the statistical set that is present when it is equal to or even greater than
the minimum threshold of the datasets. In this regard, there are three key
metrics that one needs to be aware of:
1)	The Support:

This specific metric describes just how frequently an Item Set actually
occurs in all of the data processing transactions. The mathematical formula
to calculate this level of occurrence is as follows:
Support[(X) (Y)] = transactions containing both X and Y/​The total
number of transactions.

Machine Learning  |  61

2)	Confidence:
This metric is used to gauge the statistical likeliness of an occurrence having
any subsequent, consequential effects. The mathematical formula to calcu-
late this is as follows:
Confidence[(X) (Y)] = the total transactions containing both X and Y/​
The transactions containing X.

3)	Lift:
This metric is used to statistically support the actual frequency of a conse-
quent from which the conditional property of the occurrence of (Y) given
the state of (X) can be computed. More specifically, this can be defined as
the statistical rise in the probability level of the influence that (Y) has over
(X). The mathematical formula to calculate this is as follows:
Lift [(X) (Y)] = (The total transactions containing both X and Y)
*)The transactions containing X)/​The total fraction of transactions
containing Y.

It should be noted that the Association Rule relies heavily upon using data patterns as
well as statistical co-​occurrences. Very often in these situations, “If/​Then” statements
are utilized. There are also three other Machine Learning algorithms that fit into this
category, and they are as follows:

	1)	The AIS Algorithm:
With this, a Machine Learning system can scan in and provide the total count
of the number of datasets that are being fed into the Machine Learning system.

	2)	The SETM Algorithm:
This is used to further optimize the transactions that take place within the
datasets as they are being processed by the Machine Learning system.

	3)	The Apriori Algorithm:
This allows for the Candidate Item to be set as a specific variable known as “S”
to generate only those support amounts that are needed for a Large Item that
resides within the datasets.

The Density Estimation

This is deemed to be the statistical relationship between the total number of
observations and their associated levels of probability. It should be noted here that
when it comes to the outputs that have been derived from the Machine Learning
system, the density probabilities can vary from high to low, and anything in
between.

But in order to fully ascertain this, one needs to also determine whether or not a
given statistical observation will actually happen or not.

62  |  Machine Learning

The Kernel Density Function

This mathematical function is used to further estimate the statistical probability of a
Continuous Variable actually occurring in the datasets. In these instances, all of the
Kernel Functions that are present are mathematically divided by the sheer total of
the Kernel Functions, whether they are actually present or not. This is meant to pro-
vide assurances that the Probability Density Function remains a non-​negative value,
and to confirm that it will remain a mathematical integral over the datasets that are
used by the Machine Learning system.

The Python source code for this is as follows:

For I = 1 to n:
For all X;
Dens(X)
+ = (1/​n) * (1/​w) *K[(x-​Xi)/​w]

Where:

	{ The Input = the Kernel Function K(x), with the Kernel Width of W, consisting
of Data Instances of x1 and xN.

	{ The Output = the estimated Probability Density Function that underlays the
training datasets.

	{ The Process: This initializes the Dens(X) = 0 at all points of “X” which occur
in the datasets.

Latent Variables

These variables are deemed to be those that are statistically inferred from other
variables in the datasets that have no direct correlation amongst one another. These
kinds of variables are not used in training sets, and are not quantitative by nature.
Rather, they are qualitative.

Gaussian Mixture Models

These are deemed to be Latent Variable models as well. They are highly used in
Machine Learning applications because they can calculate the total amount of data
in the datasets, including those that contain Clusters. Each of the latter can be fur-
ther represented as N1, … NK, but the statistical distributions that reside in them
are deemed to be Gaussian Mixture by nature.

The Perceptron
As you might have inferred, probably one of the biggest objectives of Artificial
Intelligence, Machine Learning, and Neural Networks is to model the processes

Machine Learning  |  63

of the human brain. Obviously, we know that the human brain is extremely
complicated, and we probably only have hit upon only 1 percent of it. Truth be
told, we will never fully understand the human brain, and if we ever come to that
point, it is safe to say that it will be literally centuries away.

As we know, the Central Processing Unit (CPU) is the main processing com-
ponent of a computer. But if one were to equate this to the level of the brain, then
the equivalence would be what is called the “Neuron.” This will be covered in more
detail on the chapter which deals with Neural Networks, but we will provide some-
what of an overview here, in this part of the chapter.

The human brain consists of literally billions and billions of neurons—​according
to some scientific studies there are as many as almost 90 billion of them. Research
has also shown that the Neuron is typically much slower than that of a CPU in the
computer, but it compensates for that by having such a high quantity of them, as
well as so much connectivity.

These connections are known as “Synapses,” and interestingly enough, they
work in a parallel tandem from one another, much like the parallel processing in a
computer. It should be noted that in a computer, the CPU is always active and the
memory (such as the RAM) is a separate entity. But in the human brain, all of the
Synapses are distributed evenly over its own network. To once again equate the brain
to the computer, the actual processing takes place in the Neurons, the memory lies
in the Synapses of the human brain.

Within the infrastructure of the Neuron lies what is known as the “Perceptron.”
Just like a Machine Learning system, it can also process inputs and deliver outputs
in its own way. This can be mathematically represented as follows:

Xj = E, R, j = 1, … d

Where:
D = the connection weight (also known as the “Synaptic Weight”);
Wj = R is the specific output;
Y = the weighted sum of the inputs.

The sum of the weighted inputs can be mathematically represented as follows:

Y = d ∑ j = 1 WjXj + Wo

Where:
Wo = the intercept value to further optimize the Perceptron Model.

The actual output of the Perceptron is mathematically represented as follows:

Y = W^t * X.

64  |  Machine Learning

In this situation:

W = [W0, W1, … Wd]^T

X = [1, x1, … Xd^T.

The above-​mentioned values are also known as the “Augmented Vectors,” which
include a “Bias Weight,” which is statistically oriented, as well as the specific values
for the inputs. When the Perceptron Model is going through its testing phase, the
statistical weights (denoted as “W1”) and the inputs (denoted as “X”) will compute
to the desired output, which is denoted as “y.”

However, the Machine Learning system needs to learn about these particular
statistical weights that have been assigned to it, as well as its parameters, so that
it can generate the needed outputs. This specific process can be mathematically
represented as follows:

Y = Wx + w0.

The above simply represents just one input and one output. This also becomes a
solid linear line when it is embedded onto a Cartesian Geometric Plane. But, if
there is more than just one input, then this linear line becomes what is known
as a “Hyperplane.” In this particular instance, these inputs can be used to imple-
ment what is known as a “Multivariate Linear Fit.” From here, the inputs in the
Perceptron Model can be broken in half, where one of the input spaces contains
positive values, and the other input space contains negative values.

This division can be done using a technique which is known as the “Linear
Discriminant Function,” and the operation upon which it is carried out is known as
the “Threshold Function.” This can be mathematically represented as follows:

S(a) = {1 if a>0; 0 otherwise}

Choose {C1 if s(w^tx)>0, C2 otherwise].

It should be noted that each Perceptron is actually a locally-​based function of its
various inputs and synaptic weights. However, actually deploying a Perceptron
Model into the Machine Learning system is a two-​step process. This can be math-
ematically represented as follows:

Oi = W^TI * X

Yi = exp 0i /​ ∑k exp 0k.

Training a Perceptron

Since the Perceptron actually defines the Hyperplane, a technique known as “Online
Learning” is used. In this specific scenario, the entire datasets are not fed into the

Machine Learning  |  65

Perceptron Model, but instead are given representative samples of them. There are
two advantages to this approach, which are as follows:

	{ It makes efficient use of the processing power and resources of the
Perceptron Model;

	{ The Perceptron Model can decipher rather quickly what the old datasets and
the new datasets are in the training data.

With the “Online Learning” technique, the Error Functionalities that are associated
with the datasets are not overwritten at all. Instead, the first statistical weights that
were assigned are used to fine tune the parameters in order to further minimize any
future errors that are found in the datasets. This technique can be mathematically
represented as follows:

E^T(w|x^1, r^1 = ½ (r^t –​ y^t)^2 = ½ {r^2 –​ (w^T X^1)}^2.

The Online Updates can be represented as follows:

Delta W^tj = n(r^1 –​ y^t) x^t * j

Where:
N = the learning factor.

The learning factor is slowly decreased over a predefined period of time for a
Convergence Factor to take place. But if the training set is fixed and not dynamic
enough in nature, the statistical weights are then assigned on a random basis. In
technical terms, this is known as a “Stochastic Gradient Descent.” Under normal
conditions, it is usually a very good idea to optimize and/​or normalize the various
inputs so that they can all be centered around the value of 0, and yet maintain the
same type of scalar properties.

In a similar fashion, the Update Rules can also be mathematically derived for
any kind Classification scenario, which makes use of a particular technique called
“Logistic Discrimination.” In this this instance, the Updates are actually done after
each Pattern Variance, instead of waiting for the very end and then getting their
mathematical summation.

For example, when there are two types of Classes that are involved in the Machine
Learning system, the Single Instance can be represented as follows:

(x^2, r^2)

Where:

R^I = X^t E C1 and R^1 = 0 if X^1 E C2.

66  |  Machine Learning

From here, the single output can be calculated as follows:

Y^1 = sigmoid (w^T, x^t).

From here, the Cross Entropy is then calculated from this mathematical formula:

E^t (w|x^t, r^t) = -​r^t log y^t –​ (1-​r^t) log (1-​y^t).

All of the above can be represented by the following Python source code:

For i = 1, … K
For j = 0, … d
Wij  rand (-​0.01, 0.01)
Repeat
For all (x^t, r^t) E X in random order
For I = 1, … K
Oi = 0
For j = 0, … d
Oi  Oi + Wijx^1
For I = 1, … K
Y1 exp(oi)/​∑k exp(0k)
For I = 1, … K
For j = 0, … d
Wij  Wij + n(n^ti -​y) * x^1j.

(SOURCE: 3).

The Boolean Functions

From within the Boolean Functions, the inputs are considered to be binary in nature,
and the output value is normally 1 if the associated Function Value is deemed to be
“True,” and it possesses the value of 0 in other states of matter. Thus, this can also
be characterized as a two-​level classification problem, and the mathematical discrim-
inant can be computed from the following formula:

Y = s(X1 + X2–​1.5)

Where:
X = [1, x1, x2]^T
W = [-​1.5, 1, 1]^T.

Machine Learning  |  67

It is important to note at this point that the Boolean Functions typically consist
of both statistical AND and OR Operators. They can separated in a linear fashion
if the concept of the Perceptron is used. But the XOR operator is not available in
Boolean Functions. Thus, they can be solved by the Perceptron as well. For this
instance, the required inputs and outputs are given by the below matrix:

X1 X2 R

0 0 0

0 1 1

1 0 1

1 1 0

The Multiple Layer Perceptrons

Normally, the Perceptron typically consists of just one layer of statistical weights,
and thus they can only operate in a linear fashion. They cannot handle the XOR
statistical operator, where the mathematical discriminant is assumed to be nonlinear
by nature. But, if the concept “Feedforward Networks” are made use of, then a
“Hidden Layer” actually exists from within the Perceptron, which can be located
between the input and the output layers.

Thus, these Multilayer Perceptrons can be used to deploy non-​discriminant
models into the Machine Learning system, and because of that, one can easily calcu-
late the Nonlinear Functionalities of the various inputs. In this example, the input
of “x” is thus fed into the input layer, and this activation process will propagate for-
ward, and the Hidden Values (denoted by “Zh”) are then calculated by this math-
ematical formula:

Zh = sigmoid(w^Th *X) = 1/​1 + exp[-​ (∑d j = 1 WhjXj +Who)], ^h = 1, … H

The output from the Machine Learning system (which is denoted as “Yi”) is
calculated by the following mathematical formula:

Yi = V^Ti * Z = ∑H h = 1 * VihZh + Vi0

The following matrix demonstrates the various inputs that are used with the stat-
istical XOR Operator. It is important to note that in this instance, there are two
hidden units that actually deploy the two “AND’S,” and the output takes any statis-
tical “OR” condition of them:

68  |  Machine Learning

X1 X2 Z1 Z2 Y

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 0 0 0

(SOURCE: 3).

The Multi-​Layer Perceptron (MLP): A Statistical
Approximator

From this point, the Boolean Functions can also operate a disunion of a unionized
dataset. This statistical expression can be easily implemented into the MLP by
making use of a Hidden Layer. Thus, each union can be incremented by a value of
one Hidden Unit, and likewise, each disunion can be decremented by one value of
the Output Unit.

This is statistically represented as follows:

X1 XOR X2 = (X1 AND –​ X2) OR (~X1 AND X2).

When it comes to Parallel Processing in the Machine Learning system, two MLPs
can operate in tandem with two “ANDs,” and yet another Perceptron can then
statistically “OR” them together, thus forming a unionized set. This is represented
statistically as follows:

Z1 = S(x1 –​ x2–​0.5)

Z2 = S(-​X1 + X2–​0.5)

Y = s(Z1 + Z2–​0.5).

Thus, the proof of Statistical Approximation is easily demonstrated with two
Hidden Layers. For example, for every input, its statistical region can be delimited
by a series of “Hyperplanes,” by making use of the Hidden Units upon the Hidden
Layer. Thus, the Hidden Unit which exists in the second layer then statistically
“ANDs” them together, from which they are then bound to that specific region in
the Machine Learning system.

From there, the weight of the connection from the Hidden Unit to the Output
Unit will be equal in value to the predicted value. This process is also known some-
times as the “Piecewise Constant Approximation.”

Machine Learning  |  69

The Backpropagation Algorithm

It should also be noted that training the MLP system is virtually the same thing as
training a single Perceptron. But in this situation, the resulting output is a nonlinear
function by nature that is strongly correlated with its inputs. This process is also
known technically as a “Gradient,” and it is mathematically represented as follows:

VE/​VWhj = (VE/​VYi) * (VYi/​VZh) * (VZh/​VWhj).

It is interesting to note that the statistical errors actually “backpropagate” from
the outer bands of the value of “Y” back to the various of, thus its name of the
“Backpropagation Algorithm.”

The Nonlinear Regression

In terms of the Machine Learning system, the Nonlinear Regression can be
represented statistically as follows:

Y^Z = H∑h = 1 Vh * Z^th + V0.

The second layer of the Perceptrons are associated with the Hidden Units and the
correlated inputs; the “Least Squares Rule” can thus be used to literally update the
Second Layer statistical weights with the following formula:

ΔVh = n∑r * (r^1 –​ Z^t) * Z^th

But in order to update the First Layer statistical weights, the “Chain Rule” is now
applied, which is as follows:

ΔWhj = -​n *(VE)/​VWhj

N∑t (VE^1/​Vy^t) * (Vy^t/​VzTh) * (VZ^th/​VWhj)

N∑t-​[(r^2 –​ y^t)/​VE^t] * [Vh/​Vy^T|VZ^tn] * [Z^tH (1-​1Z^th)x^tJ/​
Vz^th|VWhj]

N∑ [(r^t –​ y^t)] * [VhZ^th] * [(1 –​ Zth) * x^tj].

With Chain Rule now firmly established by the above sequencing of equations, the
statistical pattern of each direction can thus be computed in order to determine
which of the parameters need to be changed in the Machine Learning system, as well
as the specific magnitude of that particular change.

70  |  Machine Learning

But, in the “Batch Learning Process,” any changes in the magnitude are
accumulated over a specific time series, and that change can only be made once a
complete pass has been made through the entire Chain Rule. In the Chain Rule, it
is also possible to have Multiple Output Units as well, in which case the Machine
Learning system will have to learn them with the following mathematical formula:

Y^Ti = H∑h+1 * VihZ^th + Vi0

However, the above formula only represents a one-​time update. In order to keep the
Machine Learning system update in real time on a 24/​7/​365 basis, the following
set of statistical equations are thus needed, which are technically called the “Batch
Update Rules”:

ΔVih = n∑t * (r^zi –​ y^ti) * Z^rh

ΔWhj = n∑ [∑t * (r^ti –​ y^ti)Vjh] * [Z^th (1-​Z^th) * X^tj]

The Statistical Class Descriptions in Machine
Learning
In the realm of Machine Learning, there are a number of these kinds of
Discriminations, and they are reviewed further in this subsection.

Two Class Statistical Discrimination

If there are two classes of inputs that are used for the Machine Learning system, then
only one output will be generated. This is mathematically represented as follows:

Y^t = sigmoid (H∑ h = 1 *VhZ^th + v0.

This further approximates the potential values of the outputs represented as follows:

P(C1|X^t)

P(C2|X^T) = 1 –​ y^t.

Multiclass Distribution

If there are an indefinite number of outputs to be computed by the Machine Learning
system, the value of “K” (which represents the uncertain number of outputs) can be
mathematically represented as follows:

Machine Learning  |  71

O^ti = H∑ h = 1 * VihZ^th + Vi0.

It is also important to note that in this type of Class Discrimination, the outputs
that are derived from the Machine Learning system can either be mutually exclusive
or inclusive of one another. This can be statistically represented as:

X^ti = (Exp0^t1) /​ (∑k ep 0^tk)

Multilabel Discrimination

It could also be the case that if there are multiple Labels that are used in the Machine
Learning system for an input, and if there are an indeterminate amount of them (also
represented as “K”), and if they are statistically mutually exclusive of one another,
then this is represented as follows:

R^ti = {1 if x^r has a label of “I”}, {0 otherwise}.

It should be noted that in these types of Discrimination situations, the traditional
approach is to evaluate “K” as two separate and distinct Classification problems. This
kind of scenario is typically found in linear models, especially when Perceptrons are
used. Here, there will potentially be an indeterminate amount of “K” value-​based
models that are present, with a certain Sigmoid value-​based output.

Thus, a Hidden Layer is now required in the Machine Learning system, so that
the values for “K” can be trained separately from one another, especially if Multi-​
Layered Perceptrons are used. The case could also exist if there is a Hidden Layer
that is common to all of the Perceptrons that even use the same datasets. If this does
indeed happen, then the size of the datasets could also increase, thus greatly redu-
cing the processing power of the Machine Learning system.

This phenomenon can be mathematically represented as follows:

Y^ti = sigmoid (H∑h = 1 * VihZ^th + Vi0)

Where:
Y^ti, I = 1, … K are connected to the same Z^Th, h = 1, … H.

Overtraining
If there is a Multilevel Perceptron that is being used, then there will most likely be
an indeterminate number of Hidden Units (denoted by “H”) and an indeterminate
number of outputs (denoted by “K”), and they will also have a statistical weightage
value of H(d+1). All of this will reside from within the first layer of the Multilevel

72  |  Machine Learning

Perceptron (MLP), and also, there will be additional statistical weights that will be
assigned to the second layer (denoted as “K(H+1)”).

But, in those situations where the values of “d” and “K” happen to be predefined,
then further optimization of the Multilevel Perceptron needs to be done before it
can be implemented into the Machine Learning system. It is also important to keep
in mind that if the MLP model is made too complex, then the Machine Learning
system will take into account all of this extra “noise” that has been generated, and
thus, will not be able to create an optimized output set per the requirements of the
application in question.

This is especially true when a statistical model known as “Polynomial Regression”
is used. It is a common practice, as it relates to Machine Learning, to increase the
statistical order of magnitude that it already possesses. Also, if the total number of
Hidden Units is large enough, the output will significantly deteriorate as well, thus
further exacerbating the Bias/​Variance in the Machine Learning system. This kind of
phenomenon can also typically occur when the Machine Learning system is made to
spend way too much time learning from the datasets, at least initially. Specifically, the
Validation Error will pick up rather drastically, and this needs to be avoided at all costs.

For example, when the datasets are first fed into the Machine Learning system,
they all have an initial statistical weight factor of almost 0. But, if the training goes
for an exacerbated period of time, these weights then drift away from being 0, and
become larger in size quickly. The end result is that this can greatly degrade the per-
formance quality of the Machine Learning system.

The primary reason for this is that it will actually increase the total number of
parameters in the Machine Learning system, thus even overriding the ones that have
already been deployed into them. In the end, the Machine Learning system becomes
way too complex by design, and the bottom line is that it will not deliver the desired
set of outputs that are needed to get the project accomplished on time.

As a result, this process must be stopped early enough that the phenomenon
known as “Overtraining” does not happen. Thus, the “perfect point” at which the
initial levels of training should stop for the Machine Learning system is at the junc-
ture where the optimal number of Hidden Layers in the Multilevel Perceptron is
finally reached. But, this can only be ascertained by using the statistical technique
known as “Cross-​Validation.”

How a Machine Learning System can Train
from Hidden, Statistical Representation
As it has been reviewed earlier in this chapter, the Basic Regressor or Data Classifier
in a Machine Learning system can be statistically represented as follows:

Y = h∑j = 1 *(VjXj +V0).

Machine Learning  |  73

If Linear Classification is used in the Machine Learning system, then one can merely
look at the mathematical sign of “y” in order to choose from one of two classes. This
approach is deemed to be Linear in nature, but you can go one step further to make
use of another technique known as the “Nonlinear Basis Function.” This can be stat-
istically represented as follows:

Y = H∑h = 1 *[VjO/​h(x)]

Where:
O/​(x) = the Nonlinear Basis Function.

Also, in a very comparable manner, this type of statistical technique can also be used
for Multilevel Perceptrons, and this is mathematically depicted as follows:

Y = H∑h = 1 *Vh0/​(X|Wh)

Where:
0/​(X|Wh) = sigmoid (W^ThX).

There are also a number of key concepts that are important when a Machine
Learning system makes use of hidden statistical representation. They are as follows:

	1)	Embedding:
This is the statistical representation of a statistical instance that is found in a
hidden space in the Multi-​Layer Perceptron. This typically happens when the
first layer (denoted as H < d) implements a Dimension Reduction property
into the Machine Learning system. Further, the hidden units that reside here
can be further analyzed by critically examining the statistical weight factors
that are incoming to the Machine Learning system. Also, if the inputs are
deemed to be statistically normalized, then this gives a pretty good indication
of their relative importance and levels of priority in the Machine Learning
system.

	2)	Transfer Learning:
This occurs when the Machine Learning system consists of two different
but interrelated tasks on hand that it is trying to accomplish. For instance,
if the system is trying to solve the outputs that are needed for Problem X,
and if there are not enough datasets for it, then you can theoretically train
the Machine Learning system to learn off of the datasets that are being
used to solve the outputs for Problem Y. In other words, you are liter-
ally transferring the Hidden Layer from Problem Y and implanting it into
Problem X.

74  |  Machine Learning

	3)	Semi-​supervised Learning:
This scenario arises when the Machine Learning system has one small labeled
dataset as well as a much larger unlabeled dataset. From here, the latter can
be used to learn more about hidden spaces from the former. The end result is
that this can then be used for initial training purposes.

Autoencoders
Another unique component of Multi-​Layer Perceptrons what is known as the
“Autoencoder.” In this kind of architecture, the total number of inputs that are
going into the Machine Learning system will equal the total number of outputs
that will be generated. In this regard, the quantitative values of the outputs will also
equal the quantitative values of the inputs. But, if the total number of Hidden Units
is actually less than the total values of the inputs, then a phenomenon known as
“Dimensionality Reduction” will occur.

It should be noted that the first layer in the Multi-​Layer Perceptron is the
“Encoder,” and it is actually the values of these Hidden Units that make up under-
lying “Code.” Because of this, the Multi-​Layer Perceptron is thus required to ascer-
tain the best approximation of the inputs in the Hidden Layers, so that it can be
duplicated at a future point in time.

The mathematical representation of the Encoder is as follows:

Z^t = Enc(X^t|W)

Where:
W = the parameters of the Encoder.

From the above formula, the second layer from the Hidden Units in the Multi-​
Layer Perceptron now act as what is known as the “Decoder.” This is mathematically
represented as follows:

X^t = Dec(Z^t|V)

Where:
V = the parameters of the Decoder.

From here, the Backpropagation attempts to ascertain the best Encoder and the
Decoder Parameters in a concerted effort to find the “Reconstruction Error.” This
can be computed as follows:

E(W, V|X) = ∑t ||x^t –​ x^t||^2 = ∑t||X^2 –​ Dec[Enc(X^2|W) * (V)]|| ^2.

Machine Learning  |  75

When the Encoder is in the design phase, a piece of source code that is deemed to
be of “small dimensionality” in nature, as well as an Encoder that has a value of Low
Capacity is included in order to preserve the integrity of the datasets that are used
by the Machine Learning system. But, there can be a part of the dataset that can be
discarded due to noise or variance that is present. This was discussed at length in an
earlier section of this chapter.

But, if both the Encoder and the Decoder are not in just one layer, but are
found in multiple layers, the Encoder will then implement what is known as the
“Nonlinear Dimensionality Reduction.” It is also important to note that an exten-
sion of the Autoencoder is what is known as the “Denoising Autoencoder.” This is
the situation where extra noise or extra levels of variance are added in order to create
so-​called “Virtual Examples” in order for the Machine Learning system to learn off
of as well, also including those of the datasets.

The inclusion of this extra noise or variance is done intentionally in order to
forecast any errors that may take place when the final outputs are produced by the
Machine Learning system. There is yet another extension as well, and this is known
as the “Sparse Encoder.” The purpose of this extra extension is to embed these extra
noises, or variances, so that they are not long dimensionally, but rather they are
“sparse” in nature.

Finally, another way that a Multi-​Layer Perceptron can deploy Dimensionality
Reduction into the Machine Learning system is through a process known as
“Multidimensional Scaling.” This can be mathematically represented as follows:

E(O|X) = ∑rt [||[g(x^r|O) –​ g(x^t|0)]|| -​ ||x^t –​ x^s| /​ ||x^r –​ x^s||.

The Word2vec Architecture
If the Autoencoder is deemed to be “noisy” enough, it will then be forced to
create and further generate similar pieces of code because all of the outputs that
are produced by the Machine Learning system should more or less be the same in
value. This is, of course, largely dependent upon the specific type of application
that it is being used for. For example, on a simplistic level, if there are different
inputs that are used, then the same output must be created by the Machine
Learning system.

The premise behind the above-​mentioned example is known specifically as
“word2vec architecture.” Here the output is a qualitative one, such as that of a word;
the input into the Machine Learning system is the context of that specific word.
Also, if two separate words appear quite often from within the same context, then
they should be similar as well. Thus, the overall purpose of this technique is to ascer-
tain and locate a continuous, statistical representation for words that can be used in
what is known as “Natural Language Processing,” or “NLP” for short.

76  |  Machine Learning

From this point onwards, there are actually two types of models that are used
for the word2vec architecture, and they are known as the “CBOW” and the “Skip-​
Gram.” The common features between these two are the following:

	{ The d-​dimensional input;
	{ The d-​dimensional output;
	{ If H < d has an “X” number of Hidden Units and an “X” number of Hidden

Layers, then this will closely resemble an Autoencoder (as reviewed in the last
subsection).

But these two models also differ from each other in the way we define the terms of
the context for the word. In the CBOW model, all of the specific words that are used
are averaged together to form a binary representation of them. Thus, this can also
become an input for the Machine Learning system. But, in the Skip-​Gram model,
all of the words that are used are averaged together one at a time, and as a result, they
form different training dataset pairs that can also be used by the Machine Learning
system.

In the end, it has been determined that the Skip-​Gram model works far better
than the CBOW model for Machine Learning systems. However, there are also a
number of ways in which the word2vec technique can be improved upon, and they
are as follows:

	{ Words such as “the” or “with,” which are quite frequently used, can be used
fewer times in order to make the Machine Learning system more efficient;

	{ Both the computational and processing times of the Machine Learning
system can be further optimized and made much more efficient by first taking
a statistical sample of the output. This is also known technically as “Negative
Sampling.”

Application of Machine Learning
to Endpoint Protection
The world has become increasingly dependent on an ever-​growing cyber infrastruc-
ture. Not only do our computers and smart devices connect us to our family, friends,
employers, governments, and the companies from which we buy goods and ser-
vices, but also our infrastructure is becoming more automated and computerized,
including all modes of transportation, power generation and distribution, manu-
facturing, supply chain logistics, etc. Securing all of this cyber infrastructure has
become essential to having an efficient and safe existence. Many attack vectors exist,
so any cybersecurity strategy needs to be broad and deep. This is commonly referred
to as “defense in depth.” Because endpoint devices such as personal computers and

Machine Learning  |  77

smart phones are so numerous and under the control of multitudes of individual
users, they are one of the weakest links in the infrastructure security chain. Protecting
endpoints from being infected by malware is a critical arrow in the cybersecurity
quiver. In this section, we will explore how machine learning can be used to help
detect and prevent malware infections on endpoint devices.

Note that anti-​malware software is often referred to as “anti-​virus” software,
even though malware comes in many different forms beyond just viruses—​for
example: worms, Trojan horses, adware, spyware, ransomware, etc. Malware also has
many different purposes. While some are merely malicious and annoying pranks,
most have some form of economic or national security motivation. The malware
may be attempting to generate advertising revenue or redirect purchases to specific
websites, to steal valuable information about individuals for resell, to steal money
from financial institutions or credit cards, to steal intellectual property or competi-
tive information, to encrypt valuable data for ransom, or even to steal computation
cycles to mine cryptocurrency. Nation states and terrorist groups use malware to
gain access to important intelligence information or to inflict damage to the infra-
structure of an adversary, like the Stuxnet worm, which caused Iranian centrifuges
to destroy themselves while enriching uranium.

Since the “Morris worm” infected 10 percent of the internet back in 1988,
the battle between malware creators and anti-​malware software has been one
of constant escalation of detection and prevention followed by updated attacks
circumventing those protections. Beginning in the early 1990s, the primary
mechanisms for detecting malware have relied on some form of signature detec-
tion. For example, the earliest detection approach simply examined the binary code
to detect modifications that caused code execution to jump to the end of the file to
run the malicious software, a pattern not used by benign software. The battle has
escalated from there.

Today, anti-​malware software companies deploy a multitude of “honeypot”
systems which have known security vulnerabilities and appear to be systems of
interest to attackers to attract and obtain samples of new malware. Once new mal-
ware is captured in a honeypot, they are analyzed by threat analysts to develop
“signatures” of these new examples of malware. These new signatures are then
deployed to the endpoints containing their product to detect and block these
new variants. The simplest and most common form of signature is to compute
a cryptographic hash (e.g. MD5, SHA-​1, SHA-​2, SHA256 …) of the binary file
and distribute that to the endpoints to block any files with the same hash. The
cryptographic hash is designed so that it is highly unlikely that benign software
will have the same hash and, therefore, will not be accidentally blocked. However,
changing only a single bit within the malware binary will generate a completely
different hash making it very easy for malware creators to generate multiple copies
of the same malware with different hash signatures (known as “polymorphic”
malware). Malware that creates its own copies with slight differences is known as
“metamorphic.”

78  |  Machine Learning

“Fuzzy” hashing techniques can be used to thwart some of these simple
modifications to the malware binary and still detect these metamorphic versions.
Context Triggered Piecewise Hash (CTPH) [Source a] is an example of this approach.
Rather than compute a single hash across the entire file, a hash is generated for many
segments of the file. In this case, a single bit change would only affect one of the
hashes, leaving the remaining hashes to identify the malware sample. Even in this
case, multiple small changes throughout the file can result in different hashes for
each segment of the file.

To get around these sorts of simple signature alteration strategies, anti-​malware
software derives more sophisticated signatures based on structure and features
within the file that are more difficult for the malware creator to change while still
not flagging benign software as malware. An example of this the “import hash” (or
imphash –​ source b). An import table is generated for each executable for every
function that the executable calls from another file. The way that this import table is
generated allows for the computation of a hash that can identify families of related
malware, even though their file hash or CTPH are different.

Even more complex forms of creating signatures are possible, but this process is
dependent on human threat analysts, making it time-​consuming and error prone.
During the time it takes to derive and distribute signatures for new malware (also
known as “zero-​day malware”), all signature endpoints are vulnerable to attack.
Depending on the novelty of the new malware sample, the exposure window can
run from days to weeks (much like developing a new vaccine for COVID-​19 takes
longer than developing one for next fall’s seasonal flu). A Machine Learning model
that can detect zero-​day malware without human intervention can eliminate this
window of vulnerability to zero-​day malware.

This window of vulnerability is not the only problem with human-​identified,
signature-​based approaches to malware detection. Another vulnerability is the
dependence on the ability to constantly update each endpoint with the latest list
of signatures. For endpoints that are almost always connected to the Internet, this
is not an additional risk. However, if the endpoint has sporadic connection to the
Internet or is in a highly secure network that is never connected to the Internet, this
dramatically increases the window of vulnerability to zero-​day malware. Again, a
Machine Learning model that can detect zero-​day malware without human inter-
vention can address this issue since it does not require periodic signature updates to
be effective at detecting and blocking malware.

Before a piece of malware has detonated, detection is a binary classification
problem (e.g. is this file clean or malicious?) with a very large number of labeled
samples making it an ideal problem for Machine Learning. Once a file has been
classified as malware, the threat analyst needs to determine what actions should be
taken. This will be partially determined by the type of malware the file represents
(e.g. worm, virus, trojan, ransomware, adware, etc.). Multiclass classification of the
malware samples also lends itself well to a Machine Learning approach. In theory,
any of the well-​known Machine Learning classification approaches can be used. The

Machine Learning  |  79

most common options are the following and are described in more detail earlier in
this chapter:

	{ Random Forest;
	{ Gradient-​Boosted Trees;
	{ Support Vector Machines;
	{ Bayesian Networks;
	{ K-​Nearest Neighbors;
	{ Logistic Regression;
	{ Artificial Neural Networks.

The selection of the appropriate Machine Learning approach is heavily influenced
by the constraints of this particular problem. For example, while some of the file
characteristics relevant in classifying malware are numeric values (e.g. file size,
entropy, etc.), you will see in the feature selection discussion that many more of
them are categorical in nature (e.g. API calls used, Registry keys modified, etc.)
rather than numerical. Not only does the Machine Learning approach need to deal
with categorical features, but it also needs to be robust to features that are not always
present and have no meaningful way to be imputed.

Training a Machine Learning model is done offline, so the amount of computer
resources that are being used is typically not a relevant constraint. However, once
the model has been trained, making a prediction on a file is significantly constrained
by the endpoint device which must run the prediction. The prediction algorithm
must limit how much CPU, Memory, and Battery Power are consumed since the
endpoint device has other applications that must be able to run at the same time.
Furthermore, if the prediction must complete before a new file can begin execution,
the prediction latency must be very low so as to not impact the productivity of the
endpoint user. Selection of a Machine Learning model that uses compute resources
very efficiently is a critical design decision.

Decision tree algorithms (e.g. Random Forest and Gradient-​Boosted Trees) have
some decided advantages in classification of malware because they naturally handle
categories in the structure of each decision node and many malware features are
categorical. Furthermore, once trained, Decision Trees are relatively lightweight on
compute and memory usage compared to Bayesian Networks and Artificial Neural
Networks, and they generally produce better predictions than the other options.

Feature Selection and Feature Engineering
for Detecting Malware

Since Machine Learning models learn from their training data, selecting the proper
data is critical to building an effective model. The model is trying to learn the “mal-
ware signal” buried in the noise of the rest of the file’s content, thus the training data
needs to include whatever signals malware usually present. The process of selecting

80  |  Machine Learning

this data is called feature selection and feature engineering. Picking and engineering
features that are different between malware and clean files is essential. Fortunately,
this process can be guided by the very things that human threat analysts use to iden-
tify malware. This section will describe examples of the kinds of features that are
often used to build Machine Learning malware classification models.

Common Vulnerabilities and Exposures (CVE)

Whenever a new exploit of an operating system, browser, or application is discovered,
the details are submitted to the MITRE Corporation, which is funded by the National
Cyber Security Division of the United States Department of Homeland Security to
maintain a list of known security exposures available to the public. MITRE assigns
each a unique “CVE number.” The Common Vulnerability Scoring System (CVSS)
is a free and open industry standard for assessing the severity of these CVEs. These
CVEs are leveraged by malware to gain access to computer systems to accomplish
their ultimate tasks. Because of this, CVEs are often not disclosed to the general
public until the vendor responsible for the CVE has had the chance to release a
patch or fix that eliminates the vulnerability or exposure.

In the early days of anti-​malware detection, identifying code that exploited
CVEs was one of the more effective ways to detect malware. Fast forward to today
where tens of thousands of CVEs are reported every year. Even if threat analysts
could keep up with this onslaught, by the time they release signatures for these
CVEs, the vendors responsible for these exposures will have already released fixes
for them so that a well-​patched system is no longer vulnerable. This also makes
CVEs very poor features for training a Machine Learning model. The model could
learn all known CVEs but would have very little chance of predicting CVEs in the
future. Fortunately, CVEs are really only the “keys” that malware uses to unlock the
computer system. Even though these “keys” are all different, once inside the system,
malware goes about its appointed task which is more easily detectable than the CVE
used to gain access in the first place. The clues for these activities can be detected
with the following types of features (Source c).

Text Strings

While malware primarily consists of executable code, they also contain predefined
data fields and other text data that can help reveal malware. These text strings can
include the name of the author, file names, names of system resource used, etc. For
more sophisticated malware that attempts to obfuscate these clues, histograms of
non-​alphanumeric characters and string lengths (either unusually short or long) can
help detect these techniques. While strings can yield important features for training
a malware model, extracting them from executable code can be computationally
expensive, especially for larger files.

Machine Learning  |  81

Byte Sequences

Another effective set of features for detecting malware is to analyze the executable
file at the byte level. A popular approach is to compute a histogram of n-​grams. An
n-​gram is a sequence of n bytes in length. For example, a trigram (3-​gram) could
be the byte sequence “04 A7 3C.” Since computational complexity for counting n-​
grams is exponential with n, this feature calculation is typically limited to bigrams
and trigrams. This simple approach is surprisingly effective in distinguishing some
forms of malware from benign executables.

Opcodes

The binary instructions that the CPU executes are called opcodes (operation
codes). Parsing the code section of an executable file in the same way that the
CPU does enables the calculation of the frequency at which each opcode is used.
Likewise, histograms of n-​grams of opcodes can be computed on sequences of
opcodes. Malware will often make more frequent use of certain opcodes than the
typical benign application. A recent example would be malware that is exploiting
cache side-​channel attacks enabled by design flaws in speculative code execu-
tion in modern CPUs such as Meltdown and Spectre (source e and f). These
attacks make use of special cache manipulation opcodes that most applications
do not use. However, extracting opcodes from an executable requires a decom-
piler which is computationally expensive, so is more appropriate for offline mal-
ware detection.

API, System Calls, and DLLs

Malware can also raise suspicions through examining the other software and system
resources they use. Use of certain APIs/​System Calls or the way the API/​System Call
is being used are important clues. Likewise, the list of Dynamic-​Linked Libraries
(DLL) used by the executable and the imphash discussed earlier can be used to sum-
marize some of this information and provide telltale signs. For example, the Spectre/​
Meltdown examples mentioned previously rely heavily on accurate execution timing
information and will make more frequent calls to the timer system calls than benign
software.

Entropy

Sophisticated malware often makes use of encryption or compression in an attempt
to hide the very features that would give it away. Encryption and compression
increase the randomness of the binary data. Information entropy is a measure of the
uncertainty in a variable’s possible outcomes or its randomness. By computing the

82  |  Machine Learning

entropy of sections of the code, sections that have been encrypted or compressed
can be detected. An executable file with a significant amount of entropy is a
strong indication that the file is malware. However, compression is also used by
benign applications like executable packers such as UPX, so high entropy has to be
combined with other features to yield accurate predictions.

Feature Selection Process for Malware Detection

As with most Machine Learning applications, the feature selection process is the most
important to developing a good model. This requires a careful set of experiments
where a set of features are generated and used to train a model using a set of files
selected for training. That model is then tested against files not included in the
training set to determine its efficacy for out-​of-​sample files. A variety of techniques
can be used to determine the importance of each feature to the prediction being
made by the model. This is known as “feature importance.” Features with near-​
zero importance can be removed and a new model trained to confirm that efficacy
will not be impacted. Features that are highly correlated with each other can also
be pared down in a similar fashion to achieve an optimal set of features that still
achieve the desired efficacy. This is particularly important for features that are com-
putationally expensive to calculate. For example, 4-​grams are generally better at
distinguishing malware from benign files but are more complex to compute than
trigrams. Experimentation will determine whether the additional efficacy is worth
the computational complexity. The generation of new types of features and experi-
mentation are the keys to constant improvement of malware detection models.

Feature Selection Process for Malware Classification

Once a file has been predicted to be malware, a security/​threat analyst will then
want to know what type of malware has been detected since the response required
for adware is very different than for ransomware, for example. This is a multi-​class
classification problem that can use most of the same Machine Learning techniques
as malware detection, but with a different set of constraints. Malware detection
requires a very quick prediction so that user experience is not impacted while the
model is determining whether it is safe to launch an application. This means that
malware prediction needs to be made in hundreds of milliseconds. Once a mal-
ware detection has been determined, execution of that file will be blocked and the
security/​threat analyst will not need to know the malware type for many seconds or
minutes. In fact, the classification algorithm doesn’t even need to be executed on the
endpoint but could be sent to a separate server for classification.

Not only are the constraints on computation and memory very different for
malware classification but the optimal feature selection is very likely different, as
well. First, some features that distinguish malware from benign applications are
common between different types of malware and will not be helpful. Other features

Machine Learning  |  83

may be common with benign software but are useful to distinguish different types
of malware. Finally, given the more relaxed constraints for a malware classification
model, features that were too expensive to compute on the endpoint can now be
used in the malware classification model. Again, the generation of new types of
features and experimentation are the keys to constant improvement of malware clas-
sification models.

Training Data

As with any Machine Learning model development, the resulting models are only as
good as the data used for training. Fortunately, samples of malware are readily avail-
able in the millions, but that is not enough. Training a good binary classifier requires
a representative sample of benign software. Benign samples from major software
providers like Apple, Google, and Microsoft are relatively easy to obtain. Some
smaller software providers only provide copies to paying subscribers. Applications
developed for internal use at corporations are very difficult to obtain. This is even
worse for document files. The vast majority of benign document files are generated
by businesses or consumers and are not publicly available.

Furthermore, malware detection is a very unbalanced binary classification
problem. The ratio of benign files to malignant files is >> 1M:1. If the training set is
similarly imbalanced, the model will be biased to predicting benign since that is the
right answer >99.9 percent of the time. So, the training set needs to be more evenly
balanced between malignant and benign files than is found in real life. Note that
the balance cannot go too far in the other direction or the model will be biased to
predicting malignant over benign. Within this relatively balanced training set, the
sample of benign and malignant samples need to be as diverse as possible to produce
a model that will predict well in deployment. Constant grooming and improvement
of the training set by incorporation of classes of files that are mis-​predicted is essen-
tial for improving the efficacy of malware detection models.

Tuning of Malware Classification Models Using
a Receiver Operating Characteristic Curve

An ideal malware classification model would always block malware and never block
benign software. However, even the best models will have False Negatives (failure
to detect malware) and False Positives (detecting benign software as malignant). If
the False Positive rate is too high, the user will get frustrated by having their legit-
imate work interrupted by the model “crying wolf” too often. On the other hand,
a model with a high False Negative rate is little better than having no model at all.
Most modeling techniques have a confidence level associated with their prediction.
This confidence level can be used to set a threshold for when a malware prediction
results in the file actually being blocked (e.g. only block software when the model is
>90 percent confident in its malware prediction).

84  |  Machine Learning

A common technique used to set this threshold is to use a Receive Operating
Characteristic (ROC) curve. This is a curve made by plotting the True Positive
rate (malware correctly predicted) versus the False Positive rate (benign software
predicted as malignant) for each confidence level threshold. Figure 1 is an example
of two different ROC curves for two different models. The top right corner reflects
setting the threshold such that all software is predicted as malware (i.e. malware con-
fidence threshold = 0). At this setting, 100 percent of all malware will be detected,
but 100 percent of benign software will be misidentified as malware. The bottom
left corner is the opposite extreme where nothing is detected as malware (i.e. confi-
dence threshold = 100 percent). The rest of the curve reflects the impact of adjusting
the confidence threshold between these two extremes.

ROC curves provide a strong visual indication of the predictive power of a
model. A perfect model would have a ROC “curve” that is a vertical line on the
y-​axis connected to a horizontal line along the top of the plot. Random guessing
would yield a diagonal line from the origin to the top right corner. The closer the
ROC curve is to the top left corner, the more predictive the model is. In fact, the
Area Under the Curve (AUC) is often used as a metric to compare the effectiveness
of a model. In Figure 1, the model with the ROC 1 curve is much more predictive
than the one represented by the ROC 2 curve.

An effective malware detection algorithm needs to achieve very high levels of
efficacy. A model that flags benign software as malware 10 percent of the time (False
Positive rate of 0.1) would be very annoying for most users. The ROC 2 model only
achieves a True Positive rate of 50 percent if the threshold is set to yield a 10 percent
False Positive rate. In contrast, the threshold for the model represented by ROC 1
can be set to a 1 percent False Positive rate and still achieve a True Positive rate in
the high 90 percent range.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 P
os

i�
ve

 R
at

e

False Posi�ve Rate

ROC

ROC 1

ROC 2

Random

Machine Learning  |  85

Different customers may have different sensitivities to False Positive vs True Positive
rates. For example, a sophisticated, high-​security customer might prefer a higher
False Positive rate in exchange for a higher True Positive rate, so the threshold adjust-
ment may be exposed to the customer to select. An endpoint protection product
may also offer different actions based on the confidence threshold. If the model is
highly confident that a sample is malware, the file may be immediately quarantined.
If the model is slightly less confident, it may leave the file alone and alert the Security
Analyst to determine what to do.

Detecting Malware after Detonation

The safest time to detect malware is before it is allowed to execute. However, even
the best models will miss detecting some malware before execution. The next layer
of protection is to detect malware that is already active on the endpoint. Many of
the same features and techniques used for static file analysis could be used to analyze
the in-​memory footprint of each active process. When malware is active in memory,
it will likely have decrypted any encrypted parts of its code that it was trying to
hide. This makes entropy as a feature less useful, but many of the other features may
become more effective since more of the malware’s actual code and data are now
exposed in the clear. Still, any malware that escaped detection in the static file ana-
lysis model has a pretty good shot at not being detected by only these same features.

Once malware is active, models that detect anomalous behavior can be more
effective at detecting the presence of malware. By observing things like CPU,
memory, network, file, and registry update activity for unusual activity, malware can
reveal itself. Some unusual malware activity can be anticipated like uploading sig-
nificant amounts of data, modifying sensitive registry keys, or updating critical areas
of storage (e.g. the boot record), which a model can look for explicitly.

For other activity that is more subtle, an anomaly detection model is required.
Unlike the supervised models described for malware detection and classification,
anomaly detection requires an unsupervised modeling approach since labeled
samples of the malicious behavior are unlikely to be available. Some unsupervised
algorithms include:

	{ Clustering algorithms (k-​means, DBSCAN, HDBSCAN, etc.);
	{ Anomaly detection (Local outlier factor, Isolation Forest);
	{ Normal behavior modeling (Various neural network autoencoder

algorithms, …).

In all of these approaches, the key thing is for the model to have been trained on
enough “normal” data to be able to detect something that is “not normal.” These
models all learn some representation of what the normal relationship between all
of the features has been in the past. Once a new relationship is detected, then the

86  |  Machine Learning

model makes an “abnormal” prediction. Whether this abnormal condition is caused
by malware or merely a “new normal” behavior that has not been seen before will be
up to the Security Analyst to figure out.

For endpoints that are relatively locked down and are typically doing the same
kinds of things over and over (e.g. an embedded process controller), anomaly detec-
tion of this sort can be very effective. For more general-​purpose endpoints (e.g. an
individual’s PC), where new applications are being installed and new websites are
being accessed, the risk of False Positives goes up quite a bit and can result in the
dreaded “cry wolf ” syndrome.

Summary

With the availability of a very large, well-​labeled set of training data and relevant
extracted features, developing a malware detection model using machine learning
is very achievable. As these types of models become more prevalent on deployed
endpoints, we can be sure that malware creators will find ways to circumvent detec-
tion and create the next round of escalation in this never-​ending war.

Applications of Machine Learning Using Python
As you have seen throughout this book thus far, the heart of Artificial Intelligence
and all of the subsets that reside within it (Machine Learning, Neural Networks,
and Computer Vision), is the data and the sets in which they “live in.” An Artificial
Intelligence is only as good as the datasets that it uses in order to come up with the
desired outputs.

In Chapter 1, we examined in great detail the importance of data, and the
great care that must be used to select the right data pieces that are needed for your
Artificial Intelligence application(s). In the first half of Chapter 2, we also examined
in great detail the types of the various datasets that can be used, from the standpoint
of computational statistics. We also reviewed the types of statistical as well as math-
ematical concepts that are needed to further optimize these kinds of datasets.

Optimization in this regard is a very critical step before the datasets are fed into
the Machine Learning system. For example, as we have learned, if you have too
much data, then the system will overtrain due to the excessive data that is present,
and will most likely present a series of outputs that are highly skewed, well beyond
what you were either anticipating or expecting.

Datasets with too much data in them can also tax the processing as well as the
computational powers of the Machine Learning system. It is important to keep in
mind that the ideal conditions for having your Machine Learning system deliver
your desired outputs is for it to be constantly fed datasets on a 24/​7/​365 basis. This
is enough to put a burden on the system in and of itself. Therefore, the process of
cleansing and optimizing the datasets in order to get rid of excess or unneeded is an
absolute must.

Machine Learning  |  87

In the chapters in this book thus far, whenever an Artificial Intelligence system
or Machine Learning system was used as a reference point, it was assumed that a
technology was already in place, not developed from scratch per se. In this regard,
it can be further assumed that such systems were made readily available by having
them ready to deploy from a Cloud-​based platform.

In other words, these applications of both Artificial Intelligence and Machine
Learning are made available as a “Software as a Service,” or “SaaS” offering. But
also keep in mind that many Machine Learning applications can also be built from
scratch as well, in order to fully meet your exacting requirements. In order to do this,
the Python programming language is made use of quite often.

As we continue looking at various types of applications, we will provide two
separate examples of just how you can build a very simple Machine Learning appli-
cation using Python on two different market sectors:

	{ The Healthcare Sector;
	{ The Financial Services Sector.

The Use of Python Programming in the Healthcare Sector

Given the world that we live in right now with COVID-​19 and both the human
and economic toll that it has taken worldwide, many people have lost their jobs, and
many others have been furloughed, without any guarantees that their particular job
will be in place once things have gradually started to open up. In this regard, the use
of chatbots has now become important, not just for E-​Commerce and online store
applications, but even for the healthcare industry as well.

In fact, these technological tools are now being used to help doctors and nurses
in the ER to, at a certain level, help diagnose patients and even provide some
treatment recommendations. In this section, we will examine further how to build
a very simple chatbot using the Python language. But first, it is important to give
a high level overview of just how Machine Learning and chatbots are being used in
conjunction with one another today.

How Machine Learning is Used with a Chatbot

It is important to keep in mind that with a chatbot, you can interact with it one of
two ways, and possibly even both:

	{ Text chats;
	{ Voice commands.

In order to accommodate both of these scenarios, chatbots make use of the concepts
of both Machine Learning (ML) and Natural Language Processing (NLP). Machine
Learning is what is used to create intelligent answers and responses to your queries
as you engage in a conversation with it.

88  |  Machine Learning

One of the key advantages of using Machine Learning in this aspect is that it can
literally learn about you as you keep engaging with it over a period of time.

For example, it builds a profile of you and keeps track of all of your conversations
so that it can pull it up in a matter of seconds for subsequent chat sessions, and later
on, down the road, it can even anticipate the questions that you may ask of it so that
it can provide the best answer possible to suit your needs.

By doing it this way, you never have to keep typing in the same information over
and over again.

NLP is yet another subbranch of AI, and this is the tool that is primarily used
if you engage in an actual, vocal conversation with a chatbot. It can easily replicate
various human speech patterns in order to produce a realistic tone of voice when
it responds back to you. Whether you are engaging in either or both of these kinds
of communication methods, it is important to note that chatbots are getting more
sophisticated on an almost daily basis.

The primary reason for this is that they use a combination of very sophisticated,
statistical algorithms and high-​level modeling techniques, as well as the concepts of
data mining. Because of this, the chatbot can now interact on a very proactive basis
with you, rather than you having to take the lead in the conversations, thus making
it flow almost seamlessly.

As a result of using both Machine Learning and NLP, chatbots are now finding
their way to being used in a myriad of different types of applications, some of which
include the following:

	{ Merchant websites that make use of an online store;
	{ Mobile apps that can be used on your Android or iOS device;
	{ Messaging platforms;
	{ Market research when it comes to new product and service launches;
	{ Lead generation;
	{ Brand awareness;
	{ Other types of E-​Commerce scenarios;
	{ Customer service (this is probably the biggest use of it yet);
	{ Healthcare (especially when it comes to booking appointments with your

doctor);
	{ Content delivery.

The Strategic Advantages of Machine Learning In Chatbots

As one can infer, there are a plethora of advantages of using this kind of approach
for your business. Some of these include the following:

	1)	You have a 24/​7/​365 sales rep:
As mentioned earlier, there is no need for human involvement if you have
an AI-​driven chatbot. Therefore, you have an agent that can work at all

Machine Learning  |  89

times of the day and night that can help sell your products and services on
a real-​time basis. In other words, it will never get tired and will always be
eager to serve!

	2)	It cuts down on expenses:
By using a chatbot, you may not even have to hire a complete, full-​time cus-
tomer service staff. Thus, you will be able to save on your bottom line by not
having to pay salary and benefits. But keep in mind, you should never use a
chatbot as a total replacement for your customer service team. At some point
in time, you will need some of them around in order to help resolve complex
issues or questions if the chatbot cannot do it.

	3)	Higher levels of customer satisfaction:
Let’s face it, in our society, we want to have everything right now and right
here. We have no patience when we have to wait for even a few minutes to talk
to a customer support rep on the other line. But by using a chatbot, this wait
is cut down to just a matter of seconds, thus, this results in a much happier
customer and in more repeat business.

	4)	Better customer retention:
When you are able to deliver much needed answers or solutions to desperate
customers and prospects, there is a much higher chance that you will be able
to keep them for the long-​term. This is where the chatbot comes into play.
Remember, you may have a strong brand, but that will soon dissipate quickly
if you are unable to fill needs in just a matter of minutes.

	5)	You can reach international borders:
In today’s E-​Commerce world, there are no international boundaries. A cus-
tomer or a prospect is one that can purchase your products and services
from any geographic location where they may be at. If you tried to do this
with the traditional customer service rep model, not only would this be
an expensive proposition, but representatives would have to be trained in
other languages as well. Also, the annoyance factor can set in quite rap-
idly if the customer rep cannot speak the desired language in a consistent
tone and format. But the AI-​driven chatbot alleviates all of these problems
because they come with foreign language processing functionalities already
built into them.

	6)	It can help triage cases:
If your business is large enough where you need to have a dedicated call center
to fully support it, the chances are that your customer service reps are being
bombarded with phone calls and are having a hard time keeping up with
them. If you deploy a chatbot here, you can use that to help resolve many of
the simpler to more advanced issues and queries. But if something is much
more advanced and a chatbot cannot resolve it, it also has the functionality
to route that conversation to the appropriate rep that can handle it. In other
words, the chatbot can also triage conversations with customers and prospects
if the need ever arises.

90  |  Machine Learning

An Overall Summary of Machine
Learning and Chatbots
The following matrix depicts the advantages of using an AI driven chatbot versus
using the traditional virtual assistant:

Functionality AI driven Chatbot Virtual Assistant

FAQs easily answered Yes Yes

Can understand
sophisticated
questions

Yes No

Can create a
customized and
personable response

Yes

It can learn more about
you from previous
conversations

Yes No

It can greatly improve
future conversations
with you

Yes No

The Building of the Chatbot—​A Diabetes
Testing Portal
In this particular example, the primary role of the chatbot is to help greet a par-
ticular patient and guide them through a series of questions in order for them to
submit a blood test in order to determine if this individual has diabetes or not. It is
important to keep in mind that it is not the chatbot that will actually be conducting
this kind of test, rather the patient will have to sit separately at an automated testing
machine in order for the blood test to be carried out.

As it has been described in great length in these first two chapters, it’s very
important to make a Decision Tree first, as this will guide the software develop-
ment team in creating the software modules, as well as the source code that resides
within it. Since the example we are giving in this subsection is rather very simple,
the resulting Decision Tree is relatively straight forward as well.

Machine Learning  |  91

The following depicts this Decision Tree:

Yes No

Ini�al Pa�ent
Interac�on With

Chatbot

Ini�al Gree�ng

Is this
an

Exis�ng
Pa�ent?

Display
Diabetes
Tes�ng
Op�ons

Conduct
actual

Diabetes
Test

Display
Results

From Test If
Pa�ent Has
Diabetes Or

Not

Display
Previous
Diabetes

Test Result

92  |  Machine Learning

The Initialization Module
The initialization Python code is:

Install using the following commands:

Import nltk
Nltk.download (‘wordnet’)
[nltk_​data] Downloading package wordnet to
[nltk_​data] C:\Users\PMAUTHOR\Appdata\Roaming\nltk_​data …
[nltk_​data] Unzipping corpora\wordnet.zip
Out[4]‌: True
Import nltk
Nltk.download (‘punkt’)

NOTE: The above Python source code will actually pull up a Graphical User
Interface (GUI) library and various images so that the patient can interact seam-
lessly with the chatbot. Also included is a specialized “dormant” function that
will put the chatbot to sleep if it has not been in active use for an extended period
of time.

The Graphical User Interface (GUI) Module
The next package is the source code that will help create the above mentioned GUI
in order to help the patient out:

-​*-​ coding: utf-​8 -​*-​
“””
@author: RaviDas
“””
#Loading tkinter libraries which will be used to in the GUI of the medial

chatbot
Import tkinter
From tkinter import *
From tkinter.scrolledtext import *
From tkinter import ttk
Import time
From PIL import Image Tk, Image
Import tkinter
#Loading random choices in our Chatbot program
Import random

Machine Learning  |  93

The Splash Screen Module

After the initial GUI has been presented to the patient by the above described Python
source code, the next step is to create a “Splash Screen” that will welcome the patient
to this particular medical hospital. The Python source code to do this is as follows:

#Splash Screen
Splash = tkinter.Tk ()
Splash.title (“Welcome to this Diabetes Testing Portal, brought to you by

Hospital XYZ”)
Splash.geometry (“1000 X 1000”)
Splash.configure (background = ‘green’)
W = Label(splash, text = “Hospital XYZ Diabetes Testing Portal\nloading …,

font = “Helvetica”, 26), fg = “white”, bg = “green”
w.pack ()
splash.update ()
time.sleep (6)
splash.deiconify ()
splash.destroy ().

The Patient Greeting Module

After the overall welcome GUI has been presented to the patient, the next step is to
create a specialized window that specifically greets the patient, using their first and
last name. The Pythion source code to do this is as follows:

#Initializing tkinter library for GUI Window show up window = tkinter.Tk ()
S = tkinter.Scrollbar (window)
Chatmsg.focus_​set ()
s.pack (side = tkinter.RIGHT, fill = tkinter.Y)
chatmsg.pack (side = tkinter.TOP, fill = tkinter.Y)
s.config (command = chatmsg.yview)
chat.config (yscrollcommand = s.set)
input_​user = String Var ()
input_​field = Entry (window, text = input_​user_​
input_​field.pack (side = tkinter.BOTTOM, fill = tkinter.X)
bot_​text = “Welcome to the Hospital XYZ Diabetes Testing Portal\n”
chatmsg.insert (INSERT, ‘Bot:%s\n’ % bot_​text)
bot_​text = “Press enter to continue ”
chatmsg.insert (INSERT, ‘Bot:%s\n’ % bot_​text)
chat.msg.focus ().

94  |  Machine Learning

 The Diabetes Corpus Module

In real world scenarios and applications, especially when it comes to dealing with
Natural Language Processing, there is a concept that is known as a “Corpus.” In
simpler terms, this is nothing but a collection of the related jargon and other forms
of lexicons that are used by a specific industry. So, in our chatbot example using
Python programming, there will be a good amount of medical terms that are used if
this chatbot were to be actually deployed in a real world setting, such as in a doctor’s
office, outpatient center, or even in a hospital setting.

To go through each type of medical terminology that could be used with a med-
ical chatbot is out of the scope of this book, but to give you an example of how it can
be created in the Python programming language, the following demonstrates how to
create what is known as a “Diagnostics Corpus,” in order to examine a patient who
could potentially have diabetes:

#Diagnostics Corpus for medical chatbot
Greet = [‘Hello, welcome to the Hospital XYZ Diabetes Testing Portal’, ‘Hi,

welcome to the Hospital XYZ Diabetes Testing Portal’, ‘Hey, welcome to
the Hospital XYZ Diabetes Testing Portal’, ‘Good Day, welcome to the
Hospital XYZ Diabetes Testing Portal’]

Confirm = [‘Yes’, ‘Yay’, ‘Yeah’, ‘Yo’]
Membered = [‘12345’, 12346’, 12347’, 12348’, ‘12349’]
Customer = [‘Hello’, ‘Hi’, ‘Hey’]
Answer = [‘Please select one of the options so that I can help you’, ‘I truly

understand and sympathize with your anxieties, but please input an appro-
priate response’]

Greetings = [‘Hola, welcome to the Hospital XYZ Diabetes Testing Portal
again’, ‘Hello, welcome to the Hospital XYZ Diabetes Testing Portal again’,
‘Hey, welcome to the Hospital XYZ Diabetes Testing Portal’, ‘Hi, welcome
to the Hospital XYZ Diabetes Testing Portal’]

Question = [‘How are you?’, ‘How are you doing?’]
Responses = [‘I am OK’, ‘I could be doing better’, ‘I feel sick’, ‘I feel anxious’,

‘I am fine’]
Another = [“Do you want another Diabetes Test?”]
Diabetes tests = [‘Type 1 for the hbAic Test’, ‘Type 2 for the Blood Viscosity

Test’, ‘Type 3 for the Heart Rate Test’, ‘Type 4 for the Blood Oxygen Test’,
‘Type 5 for the Blood Pressure Test’]

Testresponse = [‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’]

NOTE: As you can see from the simple Python programming source code up
above, there are many different kinds of responses that are presented to the patient,
depending upon the depth of their language skills, and their vocabulary that they

Machine Learning  |  95

use in everyday conversations with other people. As mentioned, this is only a simple
example, and if this were to be actually deployed in a real world medical setting,
many other responses would have to be entered into the Python source code as well.
Also, other foreign languages would have to be programmed in as well, primarily
that of Spanish.

The Chatbot Module

In this specific module, we now further examine the underlying constructs of the
source which now make up the actual Diabetes Chatbot application:

#Global variable to check first time greeting
Firstswitch = 1
Newid = ‘12310’
Memid = 0
Def chat (event):
    Import time
    Import random
    Global memid
    Condition= “”
    #Greet for first time
    Global firstswitch
If (firstswitch==1):
    Bot_​text = random.choice (greet0
    Chatmsg.insert (INSERT, ‘Bot:%s\n’ %bot_​text)
    Bot_​text = “If you are an existing patient of Hospital XYZ, please enter

in your Patient ID: or enter no if you are a new patient”
    Chatmsg.insert (INSERT, ‘Bot:%s\n’ %bot_​text)
    Firstswitch = 2
If (firstswitch = 1):
    Input_​get = input_​field.get().lower()
    If any (srchstr in input_​get for srchstr in membered):
        Memid = input_​get
        �Bot_​text = “Thank you for being a loyal and dedicated patient of

 � Hospital XYZ\n Please choose the type of service that is most
suited for your visit this time from the following menu in order
to continue with the diagnostics procedure\ nType 1 for the
hbAic Test\ nType 2 for the Blood Viscosity Test\ nType 3 for the
Heart Rate Test’\ nType 4 for the Blood Oxygen Test\ nType 5
for the Blood Pressure Test’\ nType 6 to Exit the Diabetes Testing
Portal\n\n”

Elif (input_​get==”no”):
    Memid = newid

96  |  Machine Learning

    Bot_​text = “Your new Member Identification Number is: ” + newid
+ “Please remember this for future reference since you are a new
patient. \n Please choose the type of service that is most suited for
your visit this time from the following menu in order to continue
with the diagnostics procedure\ nType 1 for the hbAic Test\ nType 2
for the Blood Viscosity Test\ nType 3 for the Heart Rate Test’\ nType
4 for the Blood Oxygen Test\ nType 5 for the Blood Pressure Test’\
nType 6 to Exit the Diabetes Testing Portal\n\n”

Elif any (srchstr in input_​get for srchstr in testresponse):
    �Bot-​text = “Please place any of your fingers up on the Fingerprint Panel

  as indicated above in order to proceed with your Diabetes Test”
    Chatmsg.insert (INSERT, ‘Bot:%s\n’ % bot_​text)
    Delaycounter = 0
    For delaycounter in range (0,10):
        Bot_​text = str (delaycounter)
        Time.sleep (1)
        Chatmsg.insert (INSERT, ‘Bot:%s\n’ % bot_​text)
    Bot_​text = “Please wait for a few minutes, we are analyzing your Diabetes

Test, and will present you with the results shortly\n”
    Chatmsg.insert (INSERT, ‘Bot:%s\n’ % bot_​text)
        Time.sleep(2)
        If (input_​get==”1):
            Hba1c = random.randit (4, 10)
            �Bot_​text = “Member Identification Number:” +

  str(memidnum) + “Your hbaa1c
            Test resultis: ”+ str(hba1c)
            If (hba1c>=4 and hbaic<=5.6):
                Condition= “You do not have Diabetes”
            Elif (hba1c>5.7 and hba1c<=6.4):
                �Condition = “You are prediabetic, please consult your

  Primary Care Physician as soon as possible”
            Elif (hba1c>6.5):
                �Condition = “You are diabetic, please consult your

  Primary Care Physician as soon as possible”
            Bot_​text = bot_​text +” Your condition is: “+condition
            Chatmsg.insert (INSERT, ‘Bot:%s\n % bot_​text)
            Elif (input_​get==2):
                Viscosity=random.randit (20,60)
                �Bot_​text = “Member Identification Number: “ +

 � str(memidnum) + “Your Blood Viscosity Level test
result is “ +str(viscosity)

            Elif (input_​get==3):
                Viscosity=random.randit (20,60)

Machine Learning  |  97

                �Bot_​text = “Member Identification Number: “ +
 � str(memidnum) + “Your Heart Rate Level test result

is “ +str(heatrate)
            Elif (input_​get==4):
                Viscosity=random.randit (20,60)
                �Bot_​text = “Member Identification Number: “ +

 � str(memidnum) + “Your Blood Oxygen test result is “
+str(oxygen)

            Elif (input_​get==5):
                Systolic = random.randit (80,200)
                Diastolic = random.randit (80,110)
                �Bot_​text = “Member Identification Number: “ +

 � str(memidnum) + “Your Blood Pressure Level test
result is: Systolic: “ +str(systolic)”

                “ Diastolic: “ + str(diastolic)
            Elif (input_​get==6):
                Import sys
                Window.deiconfy ()
                Window.destroy ()
                Sys.exit (0)
                Else:
                    From nltk.stem import WordNetLemmatizer
                Import nltk
                If ((not input_​get) or (int(input_​get)<=0)):
                    Print (“Did you just press Enter?”) #print some info
                Else:
                    Lemmatizer = WordNetLemmatizer()
                    Input_​get = input_​field.get().lower()
                    Lemvalue = lemmatizer.lemmatize(input_​get)
                    Whatsentiment = getSentiment(lemvalue)
                    If (whatsentiment==”pos”):
                        Bot_​text = answer[0]‌
                        #print (“Positive Sentiment”)
                    Elif (whatsentiment==”neg”):
                        Bot_​text = answer[1]‌
                    #print (“Negative Sentiment”)
                    Chatmsg.insert (INSERT, ‘%s\n’ % lemvalue)
                    #bot_​text = “I do not understand what you mean!”
                Chatmsg.insert (INSERT, ‘%s\n’ % lemvalue)
                #label = Label(window, text = input_​get)
                Input_​user.set(“)
                #label.pack()
                Return “break”

98  |  Machine Learning

 The Sentiment Analysis Module

It should be noted that a key component of chatbots that makes use of Machine
Learning is what is known as “Sentiment Analysis.” It can be technically defined as
follows:

Sentiment analysis is contextual mining of text which identifies and
extracts subjective information in source material, and helping a
business to understand the social sentiment of their brand, product,
or service while monitoring online conversations. However, analysis of
social media streams is usually restricted to just basic sentiment analysis
and count based metrics.

(SOURCE: 4).
As one can see from the above definition, at its most simplistic level, the purpose

of using Sentiment Analysis is to try to gauge, with scientific certainty, the mood
of the prospect or the customer. In the case of our example, the basic premise is to
gauge just exactly (to some degree of certainty) how either the existing patient and/​
or the new patient is feeling. It is important to keep in mind that Sentiment Analysis
can be quite complex, and translating all of that into a production mode chatbot
will take many lines of Python source code.

But for purposes of the chatbot that we are building in this subsection, we
will demonstrate on a very simplistic level what the Python source code will
look like:

#Sentiment Analyzer using NLP
Def getSentiment(text):
    Import nltk
    From nltk.tokenize import word_​tokenize
    #nltk,download (‘punkit’)
    #Step1 –​ Training data building from the Diabetes Corpus Module
    Train = [(thanks for an outstanding diabetes report”, “pos”),
    (“Your service is very efficient and seamless”, “pos”),
    (“As a patient, I am overall pleased with the services that have been

provided”, “pos”)
    (“I did not know that I actually had Diabetes until after I took this series

of tests”, “neg”,)
    (“The service could have been a little bit quicker—​perhaps too much to

be processed”, “neg”),
    (“Hospital XYZ was not easy for me to find”, “neg”),
    (“Hospital XYZ was very easy for me to find”, “pos”),
    (“I do not quite believe the results of the tests that were conducted—​I

will seek a second medical opinion”, “neg”),

Machine Learning  |  99

    (“I wish there was more human contact at Hospital XYZ, everything
seems to be too automated”, “neg”),

    (“Can I actually talk to a human medical expert here?!”, “neg”),
    (“The test results from the Diabetes tests are good”, “pos”),
    (“Hospital XYZ has a good level of medical service”, “pos”),
    (“Hospital XYZ has a great level of medical service”, “pos”),
    (“Hospital XYZ has a superior level of medical service”, “pos”),
    (“Hospital XYZ has an amazing array of medical technology”, “pos”),
    (“This Diabetes Report cannot be true by any means”, “neg”),
    (“This testing procedure will be very expensive for me—​I am not sure if

my medical insurance will even cover this”, “neg”),
    (“I cannot believe that I have Diabetes based upon this report”, “neg”),
    (“Does this mean I have to take special Diabetic medication and

prescriptions?”, “neg”),
    (“Will I have to take either injections or oral medication on a daily

basis?”, “neg”),
    (“My lipids are getting much worse than expected—​should I see my

Primary Care Physician?”, “neg”),
    (“Hospital XYZ has very poor level of service”, “neg”),
    (“Hospital XYZ has a poor level of service”, “neg”),
    (“Hospital XYZ has a bad level of service”, “neg”),
    (“Hospital XYZ is extremely slow with service and medical report

processing”, “neg”),
    (“Hospital XYZ is very slow with service and medical report processing”,

“neg”),
    (“Hospital XYZ is slow with service and medical report processing”,

“neg”),
    (“My Diabetes actually got worst with these tests than with previous

ones”, “neg”),
    (“I don’t believe this Diabetes Report”, “neg”),
    (“I don’t like the sound of this Diabetes Report”, “neg”),
    (“I am in Diabetes Limbo here”, “neg”),
#Step 2 Tokenize the words to the dictionary
    Dictionary = set(word.lower() for passage in train for word in word_​
    Tokenize (passage[0]‌))
#Step 3 Locate the word in training data
    T = [({word: (word in word_​tokenize(x[0]‌)) for word in dictionary),
    X[1]‌) for x in train]
#Step 4 –​ the classifier is trained with sample data
    Classifier = nltk.NaiveBayesClassifer.train(t)
    Test_​data = “oh my gosh what is this???”
    Test_​data_​features = {word.lower(): (word in word_​tokenize (test_​data.
    Lower ()))) for word in dictionary}

100  |  Machine Learning

    Print (classifer.classify(test_​data_​features))
    Return classifier.classify(test_​data_​features)
#Start the program chat and put in loop
Input_​field.bind (“<Return>”, chat)
Tkinter.mainloop()

NOTE: The source for this Python code comes from (SOURCE: 5).
Overall, this section has examined the use of Python source code to build, in

essence, a very primitive prototype of a chatbot that makes use of Machine Learning
in a medical environment. It is important to keep in mind that the chatbots that are
used in a real-​world setting in production mode will actually require millions upon
millions of lines of Python source, given the depth and the complexity of the appli-
cation in question.

The Building of the Chatbot—​Predicting
Stock Price Movements
Probably one of the biggest uses of Artificial Intelligence is that of the Financial
Industry. In this regard, it is most often used to try to predict stock price movements
so that financial traders, hedge fund managers, mutual fund managers, etc. can
make profitable trades not only so that they can make more money in the respective
portfolios that they manage, but also to ensure that their clients do the same.

This is actually a field that is best left for Neural Networks, but Machine Learning
can also be used just as well. In this section, we build a very simple Python-​based
model in order to help try to predict what future stock price movements could
potentially look like. It is important to keep in mind that no system ever has or ever
will predict these kinds of movements with a 100 percent level of accuracy.

The best an individual can do is to try to estimate the range in which a future
stock price could fall in, and from their make the best educated extrapolations pos-
sible. Thus, in this regard, the concepts of statistics are very often called upon, such
as that of the Moving Average and Multiple Regression Analysis.

The S&P 500 Price Acquisition Module

Before you can start writing the Python source code, you first need to gain access to
a Stock Market Price Feed. In this instance, you will need an API that can connect
directly and integrate with the Python source code. For the purposes of building this
series of modules, you will need to get the Pandas Data Reader, which is available
at this link:

pandas-​datareader.readthedocs.io/​en/​latest/​remote_​data.html

Machine Learning  |  101

The below Python source code demonstrates how you can get the S&P 500 data
to load up, and it gives you the relevant stock prices that you need:

#-​“ -​coding: utf-​8 -​*-​
AUTHOR: RaviDas
====
Input numpy as np
Import pandas as pd
#import pandas.io.data as web
From pandas_​datareader import data, wb
Sp500 = data.DataReader (‘^GSPC, data_​source= ‘yahoo’, start=’5/​18/​2020’
End = ‘7/​1/​2020’)
#sp500 = data.DataReader (‘^GSPC, data_​source= ‘yahoo’)
Sp500.ix [‘5/​18/​2020’]
Sp500.info()
Print(sp500)
Print(sp500.columns)
Print(sp500.shape)
Import matplotlib.pyplot as plt
Plt.plot(sp500[‘Close’])
#now calculating the 42nd day as well as the 252 day trend for the index
Sp500[‘42d’ = np.round(pd.rolling_​mean(sp500[‘Close’], window=42),2)
Sp500[‘252d’ = np.round(pd.rolling_​mean(sp500[‘Close’], window=252),2)
#Look at the Data
Sp500[[‘Close’, ‘42d’, ‘252d’]].tail()
Plt.plot(sp500[[‘Close’, ‘42d’, 252d’]])

Loading Up the Data from the API

The following module depicts the Python source code in order to load up more
financial data from the specified API, as described in the last subsection:

Pip install Quandi

#-​*-​coding: utf-​8 -​*-​
@author: RaviDas
Import quandl
Quandl.ApiConfig.api_​key = ‘INSERT YOUR API KEY HERE’
get the table for daily stock prices and,
filter the table for the selected tickers, columns within a time range
set paginate to True because Quandl limits the tables from the API to 10,000

per call

102  |  Machine Learning

Data = quandl.get_​table (‘WICKI/​PRICES’, ticker = [‘AAPL’, ‘MFST’,
‘WMT’]

    Qopts = {‘colums’: [‘ticker’, ‘date’, ‘adj_​close’]},
    Date = {‘gte’: ‘5-​18-​2020’, ‘lte’: ‘5-​18-​2020”],
        Paginate=True)
Data.head()
create a new dataframe with ‘date’ column as index
Now = data.set_​index(‘date’)
#use pandas pivot function to sort aj_​close by tickers
Clean_​data = new.pivot (columns=’ticker’)
#check the head of the output
Clean_​data.head()
Import Quandl
Quandl.ApiConfig.api_​key = ‘z1bx8q275VanEKSOLJwa’
Quandl.AiConfig.api_​version = ‘5-​18-​2020’
Import Quandl
Data = qunadl.get (‘NYSE/​MSFT’)
Data.head()
Data.columns
Data.shape
#This stores the stock price data in a flat file
Data.to_​csv(“NYSE_​MSFT.csv”)
#A basic statistical plot of the MSFT price data over the certain timespan
Data[‘Close’].plot()

The Prediction of the Next Day Stock Price Based upon
Today’s Closing Price Module

As the title of this subsection implies, you are using the financial stock information
that you have loaded up in the last module in order to try to gauge what the price of
a certain stock will be when the NYSE opens up the next morning based upon the
previous day’s closing price:

Import numpy as np
Import pandas as pd
Import os
#Change your directory to wherever the actual financial dataset is stored at
Os.chdir (“E:\\”) # Change this to your directory path or wherever you

downloaded the financial stock price information from the API based
dataset.

#Loading the dataset of the particular company for which the prediction is
replaced

Machine Learning  |  103

Df=pd.read_​csv (“StockPriceSP500DDataset.csv”, parse_​dates=[‘Date’])
Print(df.head(1))
Print(df.columns)
Out[*]‌
Unamed: 0 Date Opening Price High Low Closing Price Total Number of

Shares Traded
Index ([u’Unamed: 0’, u’Date’, u’Opening Price’ u’High’, u ‘Low’, u’Closing

Price’, u’Total Number of Shares Traded’
Dtype = ‘object’
Df.shape

The Financial Data Optimization (Clean-​Up) Module

In this particular module, the financial data that has been collected from the SP500
API (as reviewed previously) is now “cleaned up” in order to provide a more accurate
reading of future financial stock prices:

#Checking to see if any financial data optimization, or clean-​up is further
required

Df.isnull().any()
#df=df.dropna()
#df=df.replace(“NA”, 0)
Df.types
Out[96]:
Date datetime64[ns]
Open float64
Close float 64
Dtype: object

The Plotting of SP500 Financial Data for the Previous
Year + One Month

As the title implies, this module plots the specified SP500 financial data from the
previous year, with a lag time of one month included:

#Now plot the SP500 financial data for just the entire previous year and
one month

Df[‘Date’].dt.year==2019
Mask=(df[‘Date’] > 1-​1-​2019 & (df[‘Date’]] <= ‘12/​31/​2018’)
Print(df.loc[mask])
Df2018=df.loc[mask]
Print(df2018.head(5)]
Plt.plot(df2018[‘Date’], df2018[‘Close’])

104  |  Machine Learning

The Plotting of SP500 Financial Data for One Month

This module plots the specified SP500 financial data for just a one month time span:

#Plotting the last 1 month data from the SP500
Mask = (df[‘Date’] > ’12-​13-​2017’) & (df[‘Date’] <= ’12-​24-​2018’)
Print(df.loc[mask])
Dfdec2017=df.loc[mask]
Print(dfdec2018.head(S))
Pt.plot(dfdec2018[‘Date’], dfdec2018[‘Close’])

Calculating the Moving Average of an SP500 Stock

As mentioned earlier in this section, one of the statistical tools that is used to help
predict a future stock price is that of the Moving Average. The following Python
source code demonstrates how this can be done:

#Now calculating the Moving Average of A Stock In The SP500
#Simple Moving Average Of Just One Year
Df2019[‘SMA’] = df2018[‘Close’].rolling(window=20).mean()
Df2019.head(2S)
Df2018[[‘SMA’, ‘Close’]].plot().

Calculating the Moving Average of an SP500
Stock for just a One Month Time Span

This Python source code below is almost the same as the previous module, but for
just one month:

Now calculating the Moving Average of A Stock In The SP500 for just a one
month time span

Dfdec2019[‘SMA’] = dfdec2019[‘Close’].rolling(window=2).mean()
Dfdec2019.head(25)
Dfdec2019[[‘SMA’, ‘Close’]].plot()

The Creation of the NextDayOpen Column
for SP500 Financial Price Prediction

While all of the other previous modules are important, this one is more crucial
because this is the next step before the actual SP500 financial price prediction can
take place:

Machine Learning  |  105

#Now creating the NextDayOpen Column for the SP500 stock price
prediction

Ln=len(df)
Lnop=len(df[‘Open’])
Print(lnop)
Ii=o
Df[‘NextDayOpen’]=df[‘Open’]
Df[‘NextDayOpen]=0
For I in range(o,ln-​1):
  Print(“Open Price: ”, df[‘Open’][i]‌
  If i!=0
   Ii=i-​1
Df[‘NextDayOpen’] [ii]=df[‘Open] [i]‌
Print(df[‘NextDayOpen’][ii])

Checking for any Statistical Correlations that Exist in the
NextDayOpen Column for SP500 Financial Price Prediction

It is important to note at this point that before any SP500 financial price infor-
mation can be predicted, it is very crucial to check to see if there are any statistical
correlations with the prices that have been collected by the previous module. The
primary reason for this is that if any correlation does exist, it can greatly skew the
price prediction for any given stock. Thus, this must be carefully checked for, as
demonstrated by the following Python source code:

#Checking to determine if there is any statistical correlation from the financial
information collected by the last module

Dfnew=df[[‘Close’, ‘NextDayOpen’]]
Print(dfnew.head(5))
Dfnew.corr()
Out[110];
In [111];

The Creation of the Linear Regression Model
to Predict Future SP500 Price Data

In this last Python source code module, we now approach the very last step: that
of creating the statistical Linear Regression model that could potentially be used to
predict financial price movements in the SP500:

#The creation of the Linear Regression Model for predicting price movements
in the SP500

#Importing the variables

106  |  Machine Learning

From sklearn import_​cross validation
From sklearn.utils import shuffle
From sklearn import linear_​model
From sklearn.netrics import mean_​squared_​error_​Y2_​score
#Creating the features and target dataframes
Pricedfnew[‘Close’]
Print(price)
Print(dfnew.columns)
Features = dfnew[[‘NextDatOpen’]]
#Shuffling the data
Price = shuffle (price, random_​state=0)
Features = shuffle (features, random_​stated=0)
#Dividing the SP financial data into Training Mode and Test Mode
X_​train,, X_​test, y_​train, y_​test= cross_​validation.train_​test_​
Split(features, price, test_​size=0.2, random_​state=0)
#Linear Regression Model on SP500 financial price information
Reg= linear_​model.LinearRegression()
X_​train.shape
Reg.fit(X_​train, y_​train)
redDT.fit(X_​train, y_​train)
y_​pred= reg.predict(X_​test)
y_​pred= regDT.predict(X_​test)
print (“Coefficients: ”, reg.coef_​)
#Calculating the Mean Squared Error
Print(“mean squared error: ”,mean_​squared_​error(y_​test, y_​pred))
#Calculating the Variance Score
Print (“mean squared error: ”,r2_​score(y_​test, y_​prod))
#Calculating the Standard Deviation
Standarddev=price.std()
#Predict the Opening Price of the SP500 and the Opening Volume
#In the predict function, please enter the first parameter for the Opening Price

of the SP500 and the 2nd Volume in US Dollars
SP500ClosePredict=reg.predict ([[269.05]])
#180 is the Standard Deviation of the difference between the Opening Price

and the Closing Price of the SP500
So this range
Print(“Stock Likely To Open at: ”,SP500ClosePredict, “(+-​11)”)
Print(“Stock Open between: ”, SP500ClosePredict+standarddev,” & “
SP500ClosePredict-​standarddev)
Name: Close, Length: 5911, dtype: float64
Index([u’Close’, u’NextDayOpen’], dtype=’object’)
(‘Coefficients: ”, array([0.98986882]))

Machine Learning  |  107

(‘mean squared error: ‘, 313.02619408516466
(‘Variance Score: ‘, 0.994126802384695)
(‘SP500 Stock likely to open at: ‘, array([269.34940985]), ‘(+-​11)’)
(‘SP500 Stock Open between: ‘, array([500.67339591]), ‘ & ‘
Array([38.02542379]))

Overall, these separate Python source code modules, when all integrated together,
will form the basis of a mode in which to help predict the price movements of the
SP500, and from there, make both the relevant and profitable trading decisions.
Once again, just like with the Diabetes Portal Chatbot Model, the Python source
code here is only a baseline example.

Millions more Python programming lines will be needed in order to put this
into a production mode in the real world. Plus, the model that will have to refined
and optimized on a real time basis in order to keep it fine-​tuned.

Source for the Python source code: (SOURCE: 5).

Sources
1)	Taulli T: Artificial Intelligence Basics: A Non-​Technical Introduction,

New York: Apress; 2019.
2)	Graph, M: Machine Learning, 2019.
3)	Alpaydin E: Introduction to Machine Learning, 4th Edition, Massachusetts: The

MIT Press; 2020.
4)	Towardsdatascience:     https://​towardsdatascience.com/​sentiment-​analysis-​

concept-​analysis-​and-​applications-​6c94d6f58c17
5)	Mathur P: Machine Learning Applications Using Python: Case Studies from

Healthcare, Retail, and Finance. New York: Apress; 2019.

Application Sources
FireEye: “Threat Research: Tracking Malware with Import Hashing.” www.fireeye.

com/​blog/​threat-​research/​2014/​01/​tracking-​malware-​import-​hashing.html
Kocher P, Horn J, Fogh A, Genkin D, Gruss D, Haas W, Hamburg M, Lipp M,

Mangard S, Prescher T, Schwarz M, Yarom, Y: “Spectre Attacks: Exploiting
Speculative Execution.” <spectreattack.com/​spectre.pdf>

Kornblum, J: “Identifying Almost Identical Files Using Context Triggered Piecewise
Hashing”, Digital Investigation, Volume 3, Supplement, September 2006,
pages 91–​97.

https://towardsdatascience.com
https://towardsdatascience.com
http://www.fireeye.com
http://www.fireeye.com
http://spectreattack.com

108  |  Machine Learning

Lipp M, Schwarz M, Gruss D, Prescher T, Haas W, Fogh A, Horn J, Mangard
S, Kocher P, Genkin D, Yarom Y, Hamburg M: “Meltdown: Reading Kernel
Memory from User Space.” <meltdownattack.com/​meltdown.pdf>

Shalaginov A, Banin S, Dehghantanha A, Franke K: “Machine Learning Aided Static
Malware Analysis: A Survey and Tutorial.” <arxiv.org/​pdf/​1808.01201.pdf>

Ucci D, Aniello L, Baldoni R: “Survey of Machine Learning Techniques for Malware
Analysis.” <arxiv.org/​abs/​1710.08189>

109

Chapter 3

The High Level Overview
into Neural Networks

So far in this book, the first two chapters have provided a very deep insight into what
Artificial Intelligence (Chapter 1) is actually all about, and how Machine Learning
(Chapter 2) is starting to make a huge impact in Cybersecurity today. In the last
chapter, we took a very extensive look at both the theoretical and applicable aspects
of Machine Learning. In the second half of chapter two, two specific examples were
further explored as to how Machine Learning can be used, making use of the Python
programming language.

The examples that were examined included creating a Diabetes Testing Portal for
an outpatient clinic (or for that matter, even a full-​fledged hospital), and creating a
tool to help predict the next day’s price for a certain stock in the S&P 500, one of
the largest financial trading institutions here in the United States. But there is yet
another subcomponent of Artificial Intelligence that is also gaining attention very
quickly, which is that of Neural Networks.

In Chapter 1, we provided an overview and a technical definition into what it
is all about, but we devote the entirety of this chapter to Neural Networks. It will
examine this topic from both the theoretical and application standpoints, just like the
last chapter. Long story short, Neural Networks is the part of Artificial Intelligence
that tries to “mimic” the thought and reasoning process of the human brain.

But before we do a deep dive into this, it is first very important to provide the
high level overview.

110  |  High Level Overview into Neural Networks

The High Level Overview into Neural Networks
The Neuron

As just described, probably the biggest objective of Neural Networks is to mimic the
thought and reasoning processes of the human brain. It is very important to keep in
mind that this does not just involve examining the structure of the brain at a macro
level, but the intent is to go as deep as the layer of the neuron, which is deemed to
be the most basic building block of the human brain.

In many ways, the human brain can be considered to be like a Network
Infrastructure, which consists of many types of network connections. And in any
given lines of network communication, it is always the data packet which is at the
heart of this process. In a manner very similar to that of the human brain, it is the
data packet which acts as the neuron. Just like the data packet, the neuron also
consists of a central body, which is known as the “nucleus.” In fact, this is very
much analogous to the header, information/​data packet, and trailer that make up
the entire of the data packet.

It is at the level of the nucleus where all of the computational processes take
place. But it is important to keep in mind that it is not just one single neuron that
generates all of this power. Rather, the human brain consists of literally billions of
these neurons, in order to come up with all of the reasoning and logical thinking
that it can do for one human being. In other words, it is the collective of these
billions of neurons that constitute the makeup of the human brain.

Take, for example, once again, the data packet. It is not just one data packet that
allows us to communicate over the Internet, rather it is the collective powers of hundreds
or even thousands of them which lets us interact not only with just other websites,
but other individuals as well, especially when we send emails, text messages, and chat
messages (for example, when you make use of a chatbot at an E-​Commerce site).

So, the question that remains now is, how are all of these billions of neurons
connected amongst one another, so that it seems like that our thought, logical,
and reasoning processes seem to be so seamless? Well, the answer comes from the
various electrical triggers, which are sent from one neuron to the next in a sequential
fashion. In more physiological terms, these electrical triggers are essentially an elec-
trochemical process, which typically consists of ion exchange and transmission that
takes place in between these billions of neurons.

This is achieved by passing these electrical triggers along an axonomic geo-
metric plane as well as through the diffusion of neurotransmitter molecules over
what is known as the “Synaptic Gap.” But, it is important to keep in mind that the
communications that take place between neurons is not a direct electrical conduc-
tion, but rather through these ionic charges, as just described. So in other words, on
a very simplistic level, when one neuron communicates with another neuron, the
lines of communications first originate at the nucleus of the neuron.

From there the charge moves out onto the axon, and then from there to the
synaptic junctions that are located at the endpoints of the axon. The lines of

High Level Overview into Neural Networks  |  111

communications (from one neuron to another neuron) go out to a much deeper
level, which are known as the “Dendrites,” also referred to as the “Soma.” The
communications that take place from one neuron to another have been clocked at
an astounding three meters per second.

Now, take this example of how one just one neuron communicates with another,
but multiply it by a factor of 1,000,000,000 times. This is now what forms the entire
thought, logical, and reasoning processes of the human brain, and thus, it is referred
to as the “Biological Neural Network.”

In this regard, in the previous two chapters, we have discussed how different
inputs for an Artificial Intelligence system all have different statistical weight values
that are assigned to them. But when it comes to the physiology and anatomy of the
human brain, all of these weights have the same statistical value that are assigned to
each and every one of the billions of neurons that exist from within it. But these are
the inputs that are going into the human brain, as these are technically the stimuli
that we see in the external world, as it is captured by the human eye. It is very
important to note that the interconnections between the neurons (as just previously
described) do not have equal, statistical weights that are assigned to them. Rather,
they have different values, which are technically deemed to be either “Excitory” or
“Inhibitory” in nature. For example, the former will speed the communications that
take place from one neuron to the next, whereas the latter can actually block these
communications, as its name implies. But obviously, these varying statistical weights
cannot be manually assigned to them, rather they are determined by the variances,
or the differences, in the chemical transmitters as well as the modulating substances
that exist from within the neuron itself, and also in the axons that exist in the syn-
aptic junctions.

It is this specific weighting of varying levels as just described which forms the basis
for what are known as the “Artificial Neural Networks,” also known as the “ANNs”
for short. Although the average speed of communications between one neuron to the
next is deemed to be at three meters per second, this can now vary given the effects of
both the “Excitory” and “Inhibitory” states of the neuron. Now, these differences can
range as low as 1.5 meters per second to as high as five meters per second.

The Fundamentals of the Artificial Neural Network (ANN)

Although Neural Networks may sound like a new piece of techno jargon in the
world of Cybersecurity, the truth of the matter is that it actually has its origins going
all the back to the 1940s, more specifically, 1943. During this time frame, numerous
scientists came up with some working foundations for Neural Networks, and in the
end, six of them have still been around even up to this day. They are as follows:

	1)	The specific activity of a Neuron in an ANN takes what is known as an “all or
nothing” approach. This simply means that it is either used all the way to help
predict the results of the output, or it is not used at all.

112  |  High Level Overview into Neural Networks

	2)	In the ANN, if there is fixed number of neural synapses that have a statistical
weighting of greater than one, it must be “excited” within a pre-​established
time period (this concept was further reviewed in the last sub section).

	3)	The only acceptable delays in an ANN system are those of Synaptic delays.
	4)	 If a Synapse is deemed to be “inhibitory” in nature (this was also reviewed in

detail in the last subsection), then the only preventative action that can take place
from within the ANN is to stop the action of one Neuron at a time in the system.

	5)	The interconnections that are found within an ANN do not, and should not
change over a period of time.

	6)	The Neuron is actually composed of a binary format in the ANN system.

Another key theorem as it relates to ANNs which is still widely used today is known
as the “Hebbian Learning Law.” It too was founded in 1949, and it is specifically
stated as follows:

When an Axon of Cell A is near enough to excite the levels of Cell B,
and when Cell A takes an active participation in the transmitting of Cell
B, then some growth process or metabolic change as the level of Cell
A is increased which increases its particular efficiency level.

(Graupe, 2019)

In other words, there is a one to one (1:1) direct, mathematical relationship
between Cell A and Cell B. The more active Cell B becomes in the ANN system,
then that will have a direct and positive impact upon both the workload and the
productivity of Cell A, which will enhance the overall processes of the ANN system
in order to derive the desired outputs.

Later on, in the 1960s and in the 1980s, two more theoretical constructs were
also formulated, which are even applied to ANN systems that are being used today.
They are as follows:

	1)	The Associative Memory Principle, also known as the “AM” (1968):
This states that if an Information Vector (which will consist primarily of the
source code and other various patterns [such as that of qualitative datasets]) is
used in the ANN system, then that can also be considered to be an input in
order to further modify the statistical weights that have been assigned to them
so that they can more closely be correlated with the datasets that they have
been associated with.

	2)	The Winner Take All Principle, also known as the “WTA” (1984):
The constructs of this principle state that if there is a certain grouping of
Neurons (denoted as “N”), and if they are all receiving the same type of Input
Vector, then only one Neuron needs to be fired in order to further optimize the
computational and processing capabilities of the ANN system. This Neuron
will then be further designated as the one whose statistical input weights will
best fit into the ANN system so that the desired outputs can thus be achieved.

High Level Overview into Neural Networks  |  113

In other words, if it only takes one particular Neuron to complete a specific
function, then there is no practical need to have multiple Neurons to carry
out the same type of functionalities from within the ANN system.

It is important to note that these above two theorems as just described have actu-
ally been proven scientifically to exist within the processes of the human brain, or
“Biological Neural Network.”

After the six principles and the above two theorems were developed, the basic
structures for the ANN systems were then formulated. These are also used in ANN
systems today. They are as follows:

	1)	The Perceptron:
This was reviewed in great detail in the theoretical component of Chapter 2.

	2)	The Artron:
This is also referred to as a “Statistical Switch-​based Neuron Model,” and
it was developed in the late 1950s. The Artron is deemed to be a subset of
the Neuron, in that it is only used to help further automate the processes
from within the ANN system. It does not have its own Neuron-​based
architecture.

	3)	The Adaline:
This is also referred to as the “Adaptive Linear Neuron,” and was developed in
the early 1960s. This is actually an artificial-​based Neuron. It should be noted
that this only refers to one Neuron, and not a series of them that form a more
cohesive network.

	4)	The Madaline:
This was developed in 1988, and it is actually based upon the Adaline, as just
reviewed. However, the Madaline consists of many Neurons, not just one.
This is also called the “Many Adaline.”

Eventually, the above four components led to the creation of the foundation for the
ANN systems that are being used today. They are as follows:

	1)	The Backpropagation Network:
This is a multiple layered ANN, in which the Perceptron is the main vehicle
that is being used to calculate the desired outputs from the ANN system. It
uses various “Hidden Layers,” and the mathematical crux for this kind of
ANN system is the “Richard Bellman Dynamic Programming Theory.”

	2)	The Hopfield Network:
This was developed by a scientist known as John Hopfield in 1982. This kind
of ANN system has many layers to it as well, but what separates it from the
Backpropagation Network is that the “feedback” from the Neurons that are
used in the ANN system are also used to compute the values of the desired
outputs. The statistical weights that are assigned to the inputs are based upon
the Associative Memory Principle, as just described.

114  |  High Level Overview into Neural Networks

	3)	The Counter Propagation Network:
This ANN system was created in 1987, and the mathematical foundations
for it lie in what is known as the “Kohonen Self-​Organizing Mapping,” also
known as the “SOM.” This system makes further usage of the Winner Take
All Principle, also previously described. It also makes use of what is known
as “Unsupervised Learning,” and it is very often used when fast results are
needed from the calculated outputs.

	4)	The LAMSTAR:
This is an acronym that stands for the “Large Memory Storage and Retrieval
Network.” This is also known as a “Hebbian” type of ANN system, in that
various SOM layers and WTM components are also used. In order to assign
the statistical weights to the inputs in the ANN system, a concept known as
the “Kantian-​based Link Weights” is used. It is primarily used to interlink the
multiple layers of the Neuron, which then allows the ANN system to inte-
grate the inputs of other various types and dimensions. A unique feature of
the LAMSTAR is that it also makes use of what is known as a “Feature Map”
which actually displays the activity of the Neurons firing from within the
ANN system. It also makes use of “Graduated Forgetting.” This simply means
that this kind of ANN system can still continue seamlessly even if there are
large chunks of data that are missing in the respective datasets.

The Theoretical Aspects of Neural Networks
The Adaline

As it was reviewed in the last subsection, the Adaline (which is actually an acronym
for ADaptive LInear NEuron) is not only one of the most critical aspects of an ANN
system, but it is one of the key building blocks for what is known as the “Bipolar
Perceptron.” Mathematically, it can be represented as follows:

Z = Wo + n ∑ t=1 WiXi

Where:
Wo = A statistically biased term to the training functionality of the ANN

system.

When the Adaline is actually applied to an ANN system, the desired output can be
computed as follows:

Z = ∑ I WiXi.

High Level Overview into Neural Networks  |  115

The Training of the Adaline

It should be noted that the specific training for any ANN system, at a very sim-
plistic level, simply involves the process of assigning various statistical weights to all
of the inputs that are being used to derive the needed outputs. Technically, this is
actually known as the “Adaptive Linear Combiner,” or the “ALC” for short. In other
words, this is simply the linear-​based summation that is common amongst all of the
elements in the “Bipolar Perceptrons.” This kind of training can be mathematically
represented as follows:

Given an “X” number of training sets where X1 … Xl; d1 … dL

Where:

Xi = (X1 … Xn)T * I; I = 1, 2, … L

Where:
I = the Ith numerical set;
N = the total number of inputs;
Di = the desired output of the specific Neuron in question.

This then results in the final ANN training algorithm, which is mathematically
represented as follows:

J(w) = E(e^2 *k) = 1/​L *L ∑ k=1 * c^2 *k

Where:
E = the statistical expectation;
Ek = the statistical training error;
K = the iterative, numerical sets that are used by the ANN system.

It is important to note that in order to optimize the statistical weights that are
assigned to the ANN system, a concept known as “Least Mean Squares” is utilized.
From a statistical standpoint, it can be represented as follows:

VJ = 0J/​0W = 0

Further, the statistical weights that are assigned to the inputs of the ANN system in
this specific scenario can be also statistically represented as follows:

W^LMS = R^-​1 * p.

116  |  High Level Overview into Neural Networks

The Steepest Descent Training

Another statistical technique that is used by the ANN systems of today is called the
“Steepest Descent Training.” This technique makes an attempt to use the statistical
weights that have been assigned to the inputs in one particular dataset and approxi-
mate, or estimate, that for the next dataset in question. The procedure for doing this
is as follows:

L > n+1

Where:
N = the total number of inputs that are used by the ANN system.

From the above, a “Gradient Search Procedure” is then established, which is math-
ematically represented as follows:

w(m+1) = w(m) + Vw*(m)

Where:
Vw = the change, or statistical variation.

This variation can be mathematically computed as follows:

Vw(m) = uVJw(m)

Where:
U = the statistical rate parameter.

Finally, the training used by the ANN system is mathematically represented as
follows:

VJ = [0J/​0W1 /​ 0J/​0Wn]^T.

The Madaline

As it was stated earlier in this chapter, the “Madaline” is actually a further extension
of the “Adaline,” in that there multiple layers that exist within its infrastructure.
The actual structure of the Madaline is different form the Adaline in the sense that
the outputs that are produced from the former are not incomplete by any means.
In other words, only complete outputs can be yielded by the ANN system. In order
to train the Madaline, a specific procedure known as the “Madaline Rule II” is very
often made use of today.

High Level Overview into Neural Networks  |  117

This technique is based upon the statistical theorem known as the
“Minimum Disturbance Principal.” It consists of various distinct phases, which
are as follows:

	1)	All of the statistical weights that are assigned to the inputs of the ANN system
initially have at first very low, random values that are associated with them.
In other words, a specific training dataset—​such as where Xi(i=1,2 …)—​is
only applied mathematically at one vector at a time to the inputs of the ANN
system in question.

	2)	Any number of incorrect statistical bipolar values at the output layer of the
Madaline is counted one at a time, and is also noted by the Error “E” in any
given vector that also acts as an input.

	3)	For any Neurons that may exist at the output layer of the Madaline, the
following sub-​procedures are also made use of:
	a.	 The threshold of the activation function is denoted as “Th.” In other words,

for every input that exists in the ANN system, the first unset Neuron is
actually selected, and is also denoted as “ABS[z-​th].” This means that the
values of these Neurons must consist of an absolute from a mathematical
standpoint. So for example, if there is an “L” number of inputs that are
vector-​based, then this selection process can be mathematically represented
as follows: n * L values of Z. This is the specific node that can actually
reverse its polarity by even the slightest of variances, thus its technical name
is the “Minimum Distance Neuron.” It is picked from the corresponding
value of “ABS[z-​th].”

	b.	Next, the statistical weights of each Neuron in the ANN system are
changed so that the bipolar output (denoted as “Y”) also changes in the
same linear format.

	c.	 The inputs that are mathematically vector-​based are once again propagated
to the output of the ANN system.

	d.	If there are any changes or variances in the statistical weights that are
assigned, then the earlier statistical weights are then restored back to
the Neuron, and in turn will go to the next mathematical vector that
is associated with the next small disturbance or variance, to the next
Neuron.

	e.	 Steps with a –​ d until all of the total number of output errors are totally
reduced to the lowest level that is possible.

	4)	Step 3 is repeated for all of the layers of the Neuron that exist within the ANN
system.

	5)	If there are any Neurons that exist at the Output Layer, then steps 3 and 4 are
correspondingly applied for those Neuron pairs in which their analog-​based
node outputs are close to the value of “0.”

118  |  High Level Overview into Neural Networks

	6)	Also for any other Neurons that exist at the Output Layer, steps 3 and 4 are
also applied for “Triplet Neurons” in which their analog based node outputs
are close to the value of “0.”

	7)	After the last step has been accomplished, the next mathematical vector is
assigned to the “Lth level” in the ANN system.

	8)	Step 7 is repeated for any combinations of those “L”-​based mathematical
vectors until the training of the ANN system is deemed to be at an optimal
and satisfactory level.

It should be noted at this point that these procedures (Steps 1–​8) can be repeated
for sequencing of Neurons, for example even “Quadruple Neurons.” Once again, in
these instances, all of the statistical weights that are assigned to the Neurons are set
to a very low threshold value. For example, these specific values can either be posi-
tive or negative, well within the range of -​1 to +1. For optimal testing and training
purposes, the total number of Hidden Layers in the Neurons should be at least
three, and preferably even higher.

Based upon this detailed description of the Madaline, it is actually what is
known as a “Heuristic Intuitive Method.” In other words, the values of the outputs
that are produced by the ANN system should not be expected to live up to what is
actually desired. It also very prone to degradation if any datasets are not optimized
and cleansed—​this process was also reviewed in Chapter 1. But in the end, it is both
the Adaline and the Madaline that has created the foundation for many of the ANN
systems that are currently in use today.

An Example of the Madaline: Character Recognition

In this subsection, we examine an actual case study using the Madaline in a Character
Recognition scenario. In this example, there are three distinct characters of 0, C, and
F. These have been translated into a mathematical binary format, in a six-​by-​six
Cartesian Geometric Plane. In this particular instance, the Madaline is trained and
further optimized with various kinds of techniques, and the Total Error Rate as well
as the statistical Convergence is also noted and recorded.

The training of the Madaline uses the following procedures:

	1)	A training dataset of is created with five sets each of 0s, Cs, and Fs.
	2)	This is then fed into the Madaline.
	3)	The statistical weights for the inputs of the Madaline are then assigned ran-

domly to numerical range of -​1 to +1.
	4)	A mathematical based hard-​limit transfer function is then applied to the

Madaline for each Neuron within it, which is represented as follows:

Y(n) = {1, if X> 0; -​1, if X<0}.

High Level Overview into Neural Networks  |  119

5)	 After the above step, each output that has been computed is then passed
onto a subsequent input to the next successive layer.

6)	 The final output is then compared with the desired output, and the
Cumulative Error for the 15 distinct characters (as described in Step 1) is
then calculated.

7)	 If the Cumulative Error is above 15 percent, then the statistical weights
for those specific Neurons whose output values are closest to zero is then
corrected using the following mathematical formula:

WEIGHTnew = WEIGHTold + 2 * constant*output of the
previous layer * error.

8)	 The statistical weights for the inputs are then updated and a new Cumulative
Error is then calculated.

9)	 Steps 1–​8 are repeated until there is no more Cumulative Error, or until it
is deemed to be a reasonable or desirable threshold.

	10)	� The test dataset that is fed into the Madaline is constantly being updated
with brand new statistical weights (for the inputs) and from there, the
output is then calculated by determining the overall optimization of the
Madaline.

The Backpropagation

The Backpropagation (aka “BP”) Algorithm was actually developed way back in
1986. The goal of this algorithm was to also deploy statistical weight of varying
degrees to the datasets and use them to train the Multi-​Layer Perceptrons. This
then led to the development of Multi-​Layered ANNs. But unlike the Adaline or the
Madaline just extensively reviewed in the last two subsections, the hidden layers do
not have outputs that are easily accessible.

So, the basic premise of the BP Algorithm is to establish a certain, comprehensive
methodology that can be used to set up and implement intermediate statistical weights
to the inputs that are used by the ANN system, in order to train the Hidden Layers that
reside within it. The BP Algorithm is mathematically derived by the following process:

	1)	The initial Output Layer is first computed, in which the intermediate layers
of the ANN system cannot be accessed. This is represented mathematically as
follows;

E = V ½ ∑k *(Dk –​ Yk)^2 = ½ ∑k * e^2k

Where:
K = 1 … N;

N = The total number of Neurons that reside in the Output Layer.

120  |  High Level Overview into Neural Networks

	2)	The Steepest Gradient is then calculated as follows:

Wkj (m+1) = Wkj(m) + VWkj(m).

	3)	Next, a statistical based “Down Hill Direction Minimum” is then mathemat-
ically computed as follows:

Zk = ∑j Wkj^xj.

	4)	The output of the Perceptron is calculated as follows:

Yk = Fx(Zk).

	5)	Using the principles of substitution, a Nonlinear Function for the ANN
system is mathematically defined as follows:

Oe/​OWkj = (0e/​0zk) * (0zk/​0Wkj).

	6)	Finally, the final Output Layer of the ANN system is represented mathemat-
ically as follows:

0z/​0Wkj = 0e/​0Zk*X2(p) = 0z/​0ZrYj(p-​1).

Modified Backpropagation (BP) Algorithms

As the title of this subsection implies, the goal is to introduce some of level of risk
or bias into the BP Algorithms. The idea is to help make the training datasets more
varied, so that the ANN system can calculate robust outputs that are deemed to
be acceptable. In other words, the goal is to keep the ANN system optimized on a
macro level by introducing some variance into it, so it can learn better with future
datasets that are fed into it.

In order to accomplish this specific task, the level of biasness is introduced into
the inputs, with some sort of mathematical constant that is associated with it, such
as either +1 or +B. This level is calculated as follows:

Bi = Woi*B

Where:
Woi = the statistical weight that is assigned to the input of the associated

Neuron.

As noted previously, this level of variance can hold either a positive or a negative
mathematical value.

High Level Overview into Neural Networks  |  121

But in order to make sure that there is not too much variance introduced that
can drastically skew the outputs from the ANN system, two techniques can be
used: Momentum and Smoothing.

The Momentum Technique

With this, a Momentum Term is simply added to the ANN system, which is as
follows:

VWij ^(m) = N0 (r)Yj * (r-​1) + aVwij ^ (m-​1)

Wij^(m+1) = Wij^(m) + Vwj^(m).

The Smoothing Method

This is mathematically represented as follows:

Vwij^(m) = aVWij^(m-​1) + (1-​a)0i (r)Yj *(r-​1)

Wij^(m+1) = Wij^(m) + NAWij^(m).

There are also other techniques like the above two just described, and they are as
follows:

	1)	Enhancing the mathematical range of the Sigmoid Function from 0 to +1 to
a range of -​0.5 to +0.5.

	2)	Further enhancing the step size of the ANN system so that it does not get
“stuck” in a processing loop, which can lead to “Learning Paralysis.”

	3)	Using the tools of convergence and applying it to the “Local Minima” of the
ANN system. This should only be used when there is a statistical probability
that moving the ANN system will cause the application to degrade over a cer-
tain period of time.

	4)	Making use of a modified or “enhanced” BP Algorithm. This can be used
to catalyze the speed of the Convergence and further reduce any form of
variance. This technique only takes into account the mathematical signs of
the Partial Derivates to compute the statistical weights, rather than assigning
Absolute Values.

A Backpropagation Case Study: Character Recognition

We review once again with Character Recognition, but this time with Neural
Networks. In this particular instance, the model is primarily made up of three dis-
tinct layers, with two Neurons apiece for each layer. There are also two hidden layers

122  |  High Level Overview into Neural Networks

with 36 distinct inputs assigned to the ANN system. The Sigmoid Function for this
can be represented as follows:

Y = 1/​1+exp(-​z).

The above mathematical representation can also be considered a “Neuron Activation
Function.” Statistical input weights have also assigned, with some variance allowed
(as reviewed previously), to the ANN system. It has been further trained to recog-
nize the distinct characters of the following: “A,” “B,” and “C.” But, in order to fully
optimize the ANN system, additional characters have also been introduced, which
include the following: “D,” “E,” “F,” “G,” “H,” and “I.” Finally, in order to confirm
if any statistical errors can be captured, three additional characters have also been
assigned which include the following: “X,” “Y,” and “Z.”

The BP Algorithm was used to further explore this study. The ultimate goal of the
BP Algorithm is to fundamentally reduce the sheer amount of noise, or errors, that
have been associated with the Output Layer. From here, a series of mathematical-​
based vector inputs has been applied to the ANN system via the BP Algorithm,
and they have been assigned to all of the input values. These have then been subse-
quently forward-​propagated to the Output Layer.

The statistical weights that have been assigned have also been adjusted by the
BP Algorithm. Throughout the entire ANN system-​processing lifecycle, these steps
have been used over and over again, with the following, mathematical iteration:

(m+2).

The entire process comes to an end when the particular Convergence has been reached.

A Backpropagation Case Study: Calculating the Monthly
High and Low Temperatures

Although Neural Networks and the BP Algorithm can be used virtually in about
any kind of industry, it has found a particular usefulness in the field of meteor-
ology. For example, these kinds of models can help to determine future weather
patterns, especially when it comes to tornadoes, severe thunderstorms, torrential
rainfall, cyclones, typhoons, hurricanes, and even the global warming hotspots on
the planet. It can also be used for agricultural meteorology as well, especially when it
comes to predicting the effects of temperatures on crops, particularly for grains like
wheat, corn, and soybeans.

This algorithm can also be used to predict how saturated or dry certain agricul-
tural producing regions will be on a worldwide basis. As the title of this subsection
implies, this next case study will further examine how an ANN system with the BP

High Level Overview into Neural Networks  |  123

Algorithm can be used to predict both low and high temperatures on a daily basis.
In this particular instance, certain other variables are also taken into consideration,
which include the following:

	{ The rate of water evaporation;
	{ The relative humidity;
	{ The wind speed;
	{ The wind direction;
	{ The precipitation patterns;
	{ The type of precipitation.

For this case study, a multi-​layered ANN system has been created which has been
implemented with the BP Algorithm. With the latter, it consists of all three items: 1)
An Input Layer; 2) A Hidden Layer; and 3) An Output Layer. It should be noted
that there are Neurons which are located in both the Hidden Layers as well as the
Output Layers. Collectively, they mathematically represent the summation of the
products of both the incoming inputs that are going into the ANN system, as well
as their associated statistical weights.

The BP Algorithm has been mathematically formulated based upon the prin-
ciple of the Least Square Method, also known as the “LSM.” It should be noted that
the overall performance and optimization of the ANN system coupled with the BP
Algorithm is computed by the Mean Square Error methodology. This is statistically
represented as follows:

F(x) = E(e^2) = E[(t-​a)^2]

Where:
F(x) = the overall system performance;
E = the statistical error that lies amongst the target, or desired, outputs, which

are denoted by “t” and “a.”

In this particular case study, the BP Algorithm is actually heavily reliant upon
the first statistical input weight matrices that have been to assigned to all of the
layers of the ANN system, as just previously described. These matrices have been
preestablished with small numerical values with a range denoted as “[a,b].” It is
important to note that these weight matrices are further optimized by the following
mathematical formula:

W * (k+1) = W(k) + W(k)

Where:
VW(k) = the product of the statistical error that is present at a certain, speci-

fied iteration in the ANN system.

124  |  High Level Overview into Neural Networks

At this point, the BP Algorithm is then mathematically transposed into the Hidden
Layer region of the ANN system. This is used to calculate the level of sensitivity, or
variation, of the optimized weight matrices for every single Hidden Layer that is pre-
sent in the ANN system. In this case, the level of variance, or sensitivity, is denoted
as “m+1,” and it is mathematically calculated as follows:

S * (m+1) = -​2 * F’(n) * e

Where:
E = the statistical error;
F’(n) = the diagonal lines in the Cartesian Geometric Plane.

A more optimized mathematical model to calculate the level of variance, or sensi-
tivity, is given as follows:

Sm = Fm(nm) = W * (m+1)’ * S * (m+1)

Where:
Fm(nm) = the mathematical derivative long the “m” layer in the Cartesian

Geometric Plane.

But, in order to update the weight matrices in an iterative fashion, the following
mathematical formula is used:

Wm + (k+1) = Wm(k) –​ a * Sm * (am-​1)’

Where:
A = the current learning rate of the ANN system.

In return, the data from the various datasets that have been fed into the ANN system
will be placed at the Output Layer, associated either with a Log Sigmoid Function
or a Pure Linear Function.

Overall, in this particular model, the BP Algorithm consists of 252 overall
inputs, arranged as follows, according to this schematic:

	{ One Input Layer with 200 Neurons;
	{ Three Hidden Layers consisting of 150, 100, and 50 Neurons each;
	{ An Output Layer which has 12 Neurons to mathematically produce 12

different target outputs.

High Level Overview into Neural Networks  |  125

Initially, the datasets that were used by the ANN system had to be optimized.
In order to reach this goal, they were either categorized as an Average Monthly
Temperature High, or a Low Monthly Temperature. They were also categorized by
their respective annual years, which was how the outputs that were computed by the
ANN system displayed the results.

After the above step was accomplished, it was then fed into the ANN system.
Two different types of BP Algorithms were used, which represented the High
Temperatures and Low Temperatures, respectively. From here, the datasets
were then transmitted to the Input Layer and the three Hidden Layers that
were present in the ANN system, all associated with a Log Sigmoid Function.
It should be noted that the Pure Linear Function was chosen over the Log
Sigmoid Function because this model did not have specific characters that were
contained in the datasets. Only the Log Sigmoid Functions can handle this kind
of qualitative data.

The Hopfield Networks
In all of the ANN system configurations that we have examined so far in this book,
only the concept of “Forward Flow” has been introduced. This simply means that
only a unimodal flow was looked at, in particular going only from input to output. In
more technical terms, this is known as a “Nonrecurrent Interconnection.” One of the
primary advantages of this is that, to a certain degree, it can offer network stability.
But in an effort to more closely replicate the thought, logical, and reasoning processes
of the human brain, a so-​called “Feedback” mechanism needs to be incorporated
as well.

Thus, this feature also needs to be included into an ANN system as well. This
is where the role of the Hopfield Neural Network comes into play as it consists of a
“Forward Flow” as well as a “Feedback” mechanism. But the primary disadvantage
here is that the network stability in the ANN system cannot be assured or guaran-
teed at all. Therefore, some sort of mechanism needs to be implemented in order to
counter these effects.

Thus, it is important to point out that while Hopfield Neural Networks tradition-
ally consist of only one Layer, the “Feedback” mechanism in the end actually makes
it a Multi-​Layered one. Also, the Hopfield Neural Network has been recognized
amongst the first to solve what are known as “Non-​Convex-​based Decisions.”

In the Hopfield Neural Network, the mechanism that has been designed and
implemented to counter the effects of stability is a delayed feature. In a sense, this
kind of delay is also present in the human brain as well. This is actually exhibited
in time delays in both the Synaptic Gap and the subsequent firing of the Neuronic
activity that stems from it.

126  |  High Level Overview into Neural Networks

Because of the Multi-​Layer approach that is taken in the output of the Hopfield
Neural Network, it can also be considered to be binary in nature as well. The math-
ematical representation of this is as follows:

Zj = ∑i= -​WijYz(n) + Ij; n = 0, 1, 2 …

Vj(n+1) = {1 V Zj > Thj; 0 V Zj <Thj

OR

1 V Zj(n)>Thj

Yj(n) V Zj = Thj

0 VZj < Thj

Thus, in this regard, a Binary Hopfield Neural Network can be considered to be
a “T” state system, in which the outputs technically belong to a four-​state set,
represented as follows:

{00, 01, 10, 11}

As a result, when a Hopfield Neural Network has a vector that is inputted into it,
network stabilization will occur at any of the above four states, with the exact one
being ultimately decided by the statistical weights that are assigned to each input.
This is further described in the next subsection.

The Establishment, or the Setting of the
Weights in the Hopfield Neural Network

The Hopfield Neural Networks make use of the principles that are known as the
“Associative Memory” (aka “AM”), and the “Bidirectional Associative Memory” (aka
“BAM”). Mathematically, these both can be represented as follows:

XiER^m; YiEr^n; i = 1, 2, … L

W = ∑I YiXi^t

Where:
W = the weight connections between the “x” and the “y” elements of the input

vectors.

High Level Overview into Neural Networks  |  127

Also, the above equations can be considered an “Associative Network,” which is
mathematically represented as follows:

W = L∑i=1 XiXi^Ti over “X” number of input vectors.

The above is also known as the “BAM,” as just previously discussed, because all of
the Xi values are closely correlated with the input vectors denoted as “W.”

Earlier in the last subsection, it was noted that Hopfield Neural Networks are
initially a Single Layer at the input stage, and this can be mathematically represented
as follows:

W = L ∑ i=1 XiXi^T

Where:

Wij = WJi V I, j.

However, in order to completely meet the network stability demands with a one
Layer input in the Hopfield Neural Network, the following equation needs to be
utilized:

Wii = 0 V i.

But, if the Hopfield Neural Network needs to be converted over so that binary
inputs—​denoted as “x(o,1)”—​can produce mathematical values in the -​1 to +1
numerical range, then the following mathematical formula must be used:

W = ∑ I *(2Xi-​1) (2Xi -​1)^T.

Calculating the Level of Specific Network Stability in the
Hopfield Neural Network

The concept of introducing Network Stability was introduced in some detail in the
last subsections. In this subsection, we go into more detail about it, especially in
the way it can be computed for an ANN system making use of a Hopfield Neural
Network. Previous research has told us that Network Stability can be guaranteed to
even higher levels if the “W” matrix of the statistical input weights is geometrically
symmetrical in nature, and if the diagonal lines that cross it are close to “0” as pos-
sible. This is mathematically represented as follows:

Wij = Wji Vi, j

128  |  High Level Overview into Neural Networks

Where:

Wu = V i.

The fundamental theory for the above two equations comes from what is known as
the “Lyapunov Stability Theorem,” which states that if Network Stability is used in
a mathematical energy function in the ANN system, and if it can be further refined
so that it will decrease over time, Network Stability can then be considered to be a
prime model for the ANN system in question.

But, in order for this to occur, the following conditions must be met first:

	{ Condition 1:
Any finite changes that occur in the Network System denoted as “Y” will
output a finite increase in “E,” at a rate of positive correlation.

	{ Condition 2:
“E” is constrained by the mathematical equation below:

E = ∑I THjYj -​ ∑j I2yj –​ ½ ∑I ∑ j=/​1 WijYjYi

Where:
I = the “ith” Neuron;
J = the “jth” Neuron;
Ij = an external input to Neuron “J”;
THj = the statistical threshold for Neuron “J.”

Now, how the “Lyapunov Stability Theorem” can prove the particular Network
Stability of an ANN system is as follows:

In the first step, the value of “W” is proven to be geometrically symmetric with
all of the diagonal elements in the Cartesian Geometric Plane being at the value of
“0,” as described before. These are both accomplished with the following two math-
ematical equations:

W = W”t

Wii = o Vi

Where:
The Absolute Value of [Wij] is bounded for the numerical sets that exist in

the set of “I, J.”
In the second step, the value of “E” mathematically satisfies the condition

of “A” by considering a change, or variance, to be done in just one region of the
Output Layer, which is mathematically represented as follows:

Yk(n+1).

High Level Overview into Neural Networks  |  129

The Variance is further computed as follows:

Ven = E(n+1) –​ E(n)

= [Yk(n) –​ Yk(n+1)] * [∑i=/​k WikYi(n) + Ik –​ Thx]

But, assuming that a binary-​based Hopfield Neural Network is used, the following
three statistical conditions must also be met:

Yk(n+1) = {1 … VZk(n) > Thk; Yk(n) … VZk(n) = Thk; 0 … VZk(n) < Thk

Where:

Zk = ∑WikYi + Ik.

Finally, in the end, only two types of variances can occur in the ANN system, which
are statistically represented as follows:

If Yk(n) = 1, then Yk(n+1) = 0;

If Yk(n) = 0, then Yk(n+1) = 1.

How the Hopfield Neural Network Can Be Implemented

In this subsection, we now provide a summary as to how the Hopfield Neural
Network can be deployed into the ANN system.

Overall, the statistical weights of the inputs that are assigned must satisfy the
following mathematical formula:

W = W∑i=1 * (2Xi –​ 1) * (2Xi –​ I)^T.

Now the computation of the Hopfield Neural Network can be accomplished,
assuming a “BAM” component resides within it, by using the following methodology:

	1)	The statistical weights of Wij are assigned to the mathematical matrix denoted
as “W,” where Wii = o Vi and Xi are the actual training vectors that are
being used.

	2)	An unknown weighted input pattern, denoted as “X” is set to:

Yi(0) = Xi

Where:
Xi = the “ith” element of mathematical vector “X.”

130  |  High Level Overview into Neural Networks

	3)	Step #2 can be statistically represented as follows:

Yi(n+1) = Fn[Zi(n)]

Where:
Fn = the Activation Function which is represented as follows:

Fn(z) = {1 … Vz > Th; Unchanged … Vz = Th; -​1 … Vz <Th}

Zi(n) = ∑i=1 WijYi(n)

Where:
N = the possible range of numeric integers which can be found in the iter-

ation denoted as (n = 0, 1, 2 …).

NOTE: the above iterations keep repeating until a specific Convergence has
been reached, in which the changes in Yi(n+1) can be closely correlated with
Yi(n) below some pre-​established threshold value.

	4)	Steps 1–​3 are repeated for all of the elements of any unknown mathematical
vectors. This is done until the next element of the unknown mathematical
vectors is at 100 percent in the ANN system.

	5)	But after all of this, if any other unknown mathematical vectors are subse-
quently discovered, then this entire process, which encompasses Steps 1–​4, is
repeated yet again.

The Continuous Hopfield Models

It should be noted at this point that all of the concepts associated with the
Hopfield Neural Network have been discrete in nature. However, they can
also be transformed into a continuous state by making use of the following
mathematical model:

Yi = f1(AZi) = 1/​2 * [1 + tanh(AZi)].

In the above model, a differential equation can be used to delay the timing that
transpires between the Input Layer and the Output Layers of the ANN system. This
can be done with the following mathematical equations:

∑j=/​I Tij –​ Zi/​Ri + Ii = 0

C * Dzi/​Dt) = ∑j=/​1 * (TijYj) –​ (Zi/​Ri) + (Li)

High Level Overview into Neural Networks  |  131

Where:

Yi = Fn(Zi).

A Case Study Using the Hopfield Neural Network:
Molecular Cell Detection

In the world of biological sciences, a concept known as “Intracellular Microinjection”
is a very typical procedure that is made use of in order to manipulate various types of
cell cultures. In this regard, any sort of “Micromanipulation” processes for a single
cellulite structure is very important in the field of In-​Vitro Toxicology, Cancer, as
well as HIV-​based research. But, in order to actually stimulate the cell, one of the
most important obstacles to overcome is determining the accurate, geometrical
shape of the actual cell.

In terms of Contour Extraction, a number of other fields have been closely
examined, such as that of Image Processing. Determining the edge structure of the
cell has made use of such techniques as Gradient-​based detectors, one of which
is known specifically as the “Prewitt, Sobel, and Laplace” concept. Other edge
structure techniques have been proposed as well, such as the mathematical-​based
2nd Derivative Zero Crossing Detector or even some other sorts of computational
methods, such as the “Canny Criteria.”

But given the other obstacles, such as cell texture, cell noise, the blurring of
images, scene illumination, etc., these techniques just described cannot output
results with a strong level of statistical confidence. Also, the source image of the
cell in question could be represented as broken edge fragments which possibly
cannot be detected at all. Even the data that is discovered by the cellular edge can
be skewed by the pixels that are extracted from the image of the cell that has been
captured.

Also, all of these techniques just described typically require some sort of “post-​
processing” optimization as well. In other words, active contours of the cell need
to be captured, and as a result, a new technique known as “Snakes: Active Contour
Models” was proposed back in 1988, and in fact, it has been used quite widely .
Some of the things it can do include the following:

	{ Edge detection of the cell;
	{ Shape modeling of the cell;
	{ Segmentation of the cell;
	{ Pattern recognition/​Object tracking of the cell.

The “Snake” technique is thus able to produce closed and active images of the cel-
lular membrane, and can even be further segmented and divided for a much closer

132  |  High Level Overview into Neural Networks

examination. At this point, the “Snake” technique can also be incorporated into the
Hopfield Neural Network, and the mathematical representation of this union can
be represented as follows:

Esnake = |S2 [AEcount(v) + BEcurv(v) + TEimage] * ds

Where:
A, B, T = the relative influence of the energy term in the ANN system;
Ecurve = the statistical smoothness term;
Econt = the statistical continuity term;
Eimage = the energy level that is associated with the external force in order to

attract the properties of the “Snake” concept to the needed image contour
of the cellular membrane.

As one can see, the Energy Component is a very important one in this spe-
cific example of the Hopfield Neural Network, and this can be mathematically
represented as follows:

Esnake = N∑i=�1 {A[(Xi –​ Xi-​1)^2 + (Yi-​Yi-​1)^2 +B[(Xi-​1–​2Xi + Xi+1)^2
+ (Yi-​1–​2Yi + Yi+1)^2 –​ Tgi}

Where:
N = the total number of nodes that are in the “Snake”;
Gi = the value of the image gradient at the point of Xi, Yi.

In this case study, a two-​dimensional (2D) Binary Hopfield Neural Network is used,
and from that, the Neurons are updated at predetermined time intervals using the
following mathematical formula:

Wik = N∑i=1 M∑j=1 Tikjt^Vjt + Iik Vi = g(Uih)

G(Utk) = {1, if Utk = max(Uth; h = 1,2 …, M 0, otherwise)

Where:
N = the total number of “Snakes” nodes;
M = the total number of neighboring points that have to be considered for

each of the nodes that reside within each and every Neuron that is used by
the ANN system.

The “Snakes” method can be used to diminish the level of Energy, and this can be
computed as follows:

E = -​1/​2 N∑i=1 M∑k=1 N∑j=1 M∑l=1 *Tikjt^Vjk^Vjt -​ N∑ i=1
M∑ k=1 IikVih.

High Level Overview into Neural Networks  |  133

The above can then be mapped to the Hopfield Neural Network as follows:

Tikjt -​[(4A + 12B)^0ij –​(2A+8B) * Oi+1j –​ (2A + 8B) * 2Bbi+2j
+ 2Bb-​1) * [XikKjt + YikYjt]]

Iik = TGik.

It should be noted that in this model, feedback connection can become quite
unstable (as discussed in the previous subsections), and in order to minimize this
risk, any Neuron Outputs that can contribute to the minimization of the total
energy of the ANN system are accepted. Finally, the ANN system consists of the
following:

	{ 16 Nodes (denoted as “N=16”);
	{ A 50 point radial line in the Cartesian Geometric Plane (denoted as “M=50”);
	{ The total number of Neurons in the ANN system is 800 (denoted as “N X M”).

Counter Propagation
The Counter Propagation (CP) Neural Network was first researched and discovered
back in 1987. When compared to that of the Backpropagation network as reviewed
in the last section, it is extremely fast, in fact by a factor of well over 100 times
as fast. But, the downside to this is that it cannot be used for a wide range of
applications; it can only be used for a certain number. The primary reason for this
is that faster speeds require, of course, much more processing power on part of the
ANN system.

The CP is actually a combination of both the “Self-​Organizing” and the
“Outstar” networks. One of the key advantages of using the CP Neural Network
is that it is quite useful for generalization purposes, in the sense that it is very good
at trying to predict what the outputs will look like from the ANN system. In this
regard, it is very good for mathematical input vectors that are deemed to be either
partially completed or even partially incorrect by nature.

The two primary concepts that underpin the CP Neural Network are the Kohonen
Self-​Organizing Map Layer (also known as the “SOM”), and the Grossberg Layer,
which are examined in closer detail in the next two subsections.

The Kohonen Self-​Organizing Map Layer

This is also known as the “Winner Take All” layer of an ANN system. In other
words, for just one mathematical input vector, the output is only “1,” while all of
the others are deemed to have a value of “0.” Further, it is important to note that

134  |  High Level Overview into Neural Networks

no other training vectors are required for the Kohonen SOM. The output for this is
represented by the following mathematical formula:

Kj = m∑i=1 WijXi = W^TiX; WjV [W1j … Wmj)^T

XV [X1 … Xm]^T

Where:
J = q, 2, … p,p;
M = the statistical dimensions of the input vectors.

In order to fully determine what the next Neuron will look like after the first one
(denoted as “j=h”), this can be mathematically represented as follows:

Kh > Kj=/​h.

But, if the Neurons are to be defined as a specific iteration, then the following
equation is used to compute this specific series:

Kh = m∑i=1WihXi = 1 = W^ThX.

The Grossberg Layer

This is actually deemed to be a statistically weighted output layer of the SOM Layer.
But, in this specific Layer, the total number of Neurons must be at least half of the
value of the different classes that are used by the ANN system, and further, this
representation must be binary in nature. This can be accomplished by the following
mathematical formula:

Gq = ∑IKiViq = K^TVq; k V [k1 … kp]^T

Vq V [V1q … Vpq]^T

Where:
Q =1 1, 2, …, r, r. This is the actual binary representation, as just previously

stated.

Now, as eluded to before, the SOM Layer makes use of the “Winner Take All”
approach. This is mathematically represented as follows:

{Kh = 1; ki = /​0] if any of these two conditions are met, then the “Winner Take
All” can be mathematically computed as follows:

Gq = p∑I = 1KijVjq = khUhq = Vhq.

High Level Overview into Neural Networks  |  135

How the Kohonen Input Layers are Preprocessed

The following steps are required to accomplish this process:
The statistical normalization of the Kohonen Layer Inputs are calculated as

follows:

X^ri = Xi/​SQUAREROOT ∑jX^2j.

Now, the training of the Kohonen Layer happens in the following process:

	1)	The Normalization of the input vector “X” is done to obtain input vector X’;
	2)	The Neuron value at the level of the Kohonen Layer is calculated as follows:

(X’)^T * Wh = K’h.

	3)	Finally, all of the statistical weights of the input vectors at the Kohonen Layer
are calculated as follows:

K’h = ∑I X^iWih = �X’iWih = X^ji + X^i2 + … X’m
* Whm = (X’)^T * Wh.

How the Statistical Weights are Initialized in the
Kohonen Layer

Once the Preprocessing phase has been completed as detailed in the last subsection,
the initialization process, as the title of this subsection implies, is mathematically
computed below.

All of the statistical weights are assigned to the same value, calculated as follows:

N * (1/​SQUAREROOT N)^2 =1.

In order to add a specific variance to this (also as discussed previously in this chapter),
the following mathematical formula is used:

X^*I = TXi + (1-​T) * (1/​SQUAREROOT N).

But, there are also methods with which to add extra noise, and these are as follows:

	1)	Adding more noise to the Input Vectors;
	2)	Making use of statistical Randomized Normalized Weights;
	3)	The selection of the best representation of the Input Vectors, and using them

as the initial weights. The end result is that each Neuron will be initialized one
mathematical vector at a time.

136  |  High Level Overview into Neural Networks

The Interpolative Mode Layer

It should be noted that a typical Kohonen layer will only hold onto what is termed
the “Wining Neuron.” But, the Interpolative Mode Layer will hold back a certain
group of Kohonen-​based Neurons in a given class of input vectors. In this regard,
the outputs of the ANN system will be statistically normalized to a preestablished
weight; all of the other outputs will set back to zero.

The Training of the Grossberg Layers

The outputs of the Grossberg Layer are mathematically computed as follows:

Gi = ∑j VijKj = VshKh = Vih

Gi = ∑j VijKj = VshKh = Vih.

Any further statistical weight adjustments are done as follows:

Vij(n+1) = Vij(n) + B[Ti-​Vij(n)kj]

Where:
Ti = the desired outputs of the ANN system;
N+1 = the Neurons that are set to be at the value of “1”;
Vij = the random input vectors are set to a value of “1” for each Neuron in

the ANN system.

The Combined Counter Propagation Network

It has been reviewed that the Grossberg Layer can be used to train the various
outputs of the ANN system to “converge” amongst one another, whereas the
Kohonen Layer is basically what is known as a “Pre-​Classifier” in the sense that it
also accounts for what are known as “Imperfect Inputs.” In other words, the latter
remains unsupervised, while the former remains in a supervised state from within
the ANN system.

Also, Neurons that lie within the Grossberg Layer will literally converge onto the
appropriate target input, and this will be simultaneously applied to the Kohonen
Layer as well. In fact, this is how the term “Counter Propagation” has evolved. This
is primarily the result of the deployment of the target input being applied to the
Kohonen Layer at the same time.

But, one key drawback of Counter Propagation is that it requires that all of
the various input patterns be of the same kind of dimensionality in the Cartesian
Geometric Plane. Because of this, the Counter Propagation cannot be used for more
applications on a macro or general level.

High Level Overview into Neural Networks  |  137

A Counter Propagation Case Study: Character Recognition

In this case study, the primary goal is to recognize three numerical values as
follows: “0,” “1,” “2,” and “4.” As the title of this subsection implies, it also makes
use of the Counter Propagation technique. In terms of training, a dataset consisting
of an eight-​by-​eight dimensionality is utilized, with Bit Errors in the range of 1, 5,
10, 20, 30, and 40 values being used.

In terms of setting the statistical weights, the following procedure is established:

	1)	Obtain all of the relevant training dataset vectors that lie in this mathematical
permutation: Xi, I = 1, 2, … L

	2)	For each of the relevant vectors belonging to the permutation established in
the last step, the following sub-​procedures are also utilized:
	{ Normalize each and every Xi, I = 1, 2, … L with the following mathemat-

ical permutation: Xi^t/​SQUAREROOT (∑X^2j);
	{ Calculate the average vector as X= (∑Xj^1)/​N;
	{ Normalize the average vector so that X, X’ = X/​SQUAREROOT (∑X^2j);
	{ Establish the Kohonen Neuron weights to Wk = X;
	{ Set the Grossberg Neuron weights to (W1kW1k … W1k) so that it is

completely adjusted to the output vector denoted as “Y.”
	3)	Steps 1–​2 keep repeating in an iterative process until all of the training datasets

are propagated in their entirety across the entire ANN system.

Finally, the test datasets are generated by a random procedure, with the following formula:

testingData = getCPTTesting (trainingData, numberOfBitError,
numberPerTrainingSet)

Where:
numberOfBitError = the expected number of Bit Errors;
numberPerTrainingSet: used to specify the expected size of the testing dataset;
testingData: used to obtain other output parameters, as well the test dataset.

The Adaptive Resonance Theory
The Adaptive Resonance Theory was developed in 1987, and it is known as “ART”
for short. The primary purpose of this theory is to create, develop, and deploy
an ANN system with regards to Pattern Recognition or Classification Behavior
that matches very closely to the Biological Neural Network (BNN). In other
words, a main goal with ART is to develop an ANN system with what is known as
“Plasticity.” Whenever the ANN system learns a new pattern, it will not use that
to replace other previously learned patterns. In essence, the ANN system becomes

138  |  High Level Overview into Neural Networks

a central repository of everything that it has learned and will continue to learn in
the future.

The ART network consists of the following components:

	{ A Comparison Layer;
	{ A Recognition Layer;
	{ A Gain Element that feeds its output to “g1”;
	{ A Gain Element that feeds its output to “g2”;
	{ A Reset Element (this is where the Comparison Layer is evaluated and

compared against the “Vigilance Value,” which is nothing but a level of toler-
ance specifically designed for the ANN system.

Each of the above components are reviewed in more detail in the next few
subsections.

The Comparison Layer

In this specific layer, a Binary Element is entered into the Neuron of the Comparison
Layer, with the following mathematical permutation:

(j = 1 … m; m = dim(X)).

A statistical weight is also assigned to this Neuron by the following statistical formula:

Pj = m∑I = 1 TijTi

Where:
Ri = the “ith” iteration of the “m” dimensional output vector of “r”;
n = the total number of Categories that need to be recognized in the ANN

system.

Also, it should be noted that that all of the Comparison Layer Neurons will receive
the same mathematical Scalar Output denoted as “Gi,” based upon the following
permutation:

Cj(0) = Xj(0).

The Recognition Layer

This actually serves as another variant of the “Classification Layer.” The various
inputs that it receives are mathematically derived from the “n” dimensional weight
vector “d.” This is mathematically computed as follows:

High Level Overview into Neural Networks  |  139

Dj = m∑I = 1 BjiCi = bj^T C; Bj V [Bj1 … Bjm]

Where:
I = 1, 2, … m;
J = 1, 2, … n;
M = dim(x);
N = the number of Categories.

In the Recognition Layer, there is a property known as the “Lateral Inhibition
Connection.” This is where the output of each Neuron (denoted as “I”) is connected
via an “inhibitory” connection-​weighted matrix, denoted as follows:

L = {Lij}, I = /​j

Where:
Lij < 0 to any other Neuron in the ANN system (denoted as “j”). The end

result is that Neuron with a large mathematical output will supersede all of
the other Neurons with a lower mathematical threshold value.

Another key concept that should be noted is that of the “Positive Reinforcement.”
This is where a positive feedback loop in the ANN system (denoted as “Ijj > 0) is
used in such a way that each mathematical output of the Neuron (denoted as “Rj”) is
literally fed back with a positive value statistical weight in order to further reinforce
the output (as just described) if it is to fire another Neuron in a sequential, iterative
fashion.

The Gain and Reset Elements

These kinds of elements use the same type of Scalar Outputs as all of the Neurons in
the ANN system. This is statistically represented as follows:

G2 = OR(x) = OR(x1 … Xn)

G2 = OR(or) U OR(x)

= OR(r1 … rN) U OR(x1 … Xn)

= g2 U OR(r).

In other words, if there is at least one input element of “X” where it is equal to 1,
then g2 = 1. Or, if there are any other elements of g2 = 1, but there are no elements
of “r” then g1 = 1, or else g1 = 0. The bars on the top are statistical-​based negation
factors, the “U” also represents a logical, statistical intersection. Equally, if OR(x)
then OR(r) will always be equal to zero as well.

140  |  High Level Overview into Neural Networks

Also, the “Reset Element” will carefully evaluate the degree of correlation that
exists between the input of vector “X” and the output of vector “C,” with the
following permutation:

N < N0

Where:
N0 = the preestablished initial tolerance value, also technically known as the

“Vigilance Value.”

The Establishment of the ART Neural Network

The first step in the process of creating an ART-​based Neural Network is the initial-
ization of the statistical weights. In this matrix, the Comparison Layer (CL) is first
initialized, and this is denoted by “B.” To start this part, the following mathematical
formula is used:

Bij = < E/​E + 1 -​1 Vij.

This must meet the following permutations:

M = dim(x);

E>1 (typically E=2).

The RL weighted matrix, denoted as “T” is then initialized so that:

Tij = 1 –​ Vi,j.

From here, the tolerance level (denoted as “Rjo”) is decided with the following
formula:

0 < N0 < 1.

It is important to note that a high N0 will yield a specific statistical discrimination,
but in contrast, a lower N0 threshold permits for a more collective grouping of
patterns in the ANN system that are not similar in nature. Thus, the ANN system
may actually first start with a much lower N0 value, and from there raise it up as
needed and/​or required.

The Training of the ART Neural Network

The training first starts with the establishment of the weighted matrix of “B,” which
represents the side of the RL, and “T,” which represents the side of the Comparison
Layer (CL). Furthermore, the ART Neural Network could be impacted by several

High Level Overview into Neural Networks  |  141

iterations of input vectors, in which there is no time to match up a specific input
vector with another corresponding value that has an average, denoted as “X.”

The parameters to set up the training of the ART Neural Network are set up as
follows:

Bij = Eci/​E + 1 + k∑ Ck

Where:
E > 1;
Ci = the ith component of an input vector “C,” where the value of “j” will then

be associated with the Winning Neuron, which is denoted as “Rj.”

Also, the parameter denoted as “Tij” of “T” is established by the following math-
ematical formula:

Tij = Ci Vi = 1 … m, m = dim(X), j = 1, … n.

In this specific instance, “j” represents will represent Winning Neuron.

The Network Operations of the ART Neural Network

After the training of the ART Neural Network has been accomplished, the next
phase is then to launch the network compatibility, or operations of the system. To
start this specific process (which is the first step), the iteration of “0” (where X = 0),
is represented by the following mathematical equation:

G2(0) = 0 and
G1(0) = 0.

Next (in the second step), if an input vector where X = /​0 then the output vector
denoted as “r” to the Comparison Layer is the one that will govern all of the layers
in the ANN system. This is denoted as “r(0) = 0.” Later on, if an input vector where
X = /​0, then there will be no specific Neuron that will have no more of an advantage
of other Neurons in the ANN system.

In the third step, only RL-​related Neurons will fire. Thus, in this regard, if Rj = 1,
and Ri = /​j = 0 will determine which input vector (denoted as “r”) will become the
output of the RL side of the ANN system. But, if several Neurons have the same
value of “d,” then the first Neuron will be chosen that has the lowest possible value,
which is denoted as “j.”

If multi-​dimensional statistical input weights are used, the inputs that are specific
to the Comparison Layer will be determined by the following mathematical formula:

Pj = Tj; Tj, of input vector “T.”

The winning Neuron will be denoted as “Pj = 0.”

142  |  High Level Overview into Neural Networks

In the fourth step, a statistical classification is viewed as the “Reset Element” of
the ANN system. As a result, all Classification processes will then halt. Because of
this, there will be a huge variance between the input vectors of “p” and “x,” respect-
ively. This will lead to a very low “N” value, which is subsequently what is known as
the “Reset Element” of the ANN system. This is done in such a way that N < N0.
Because of this, if all of the Neurons are weighted with the same kinds of statistical
inputs, a different Neuron in the RL component will then technically win. But, if
there is no Neuron that actually corresponds to the input vectors in the ANN system
within the stated level of variance, then the next step is immediately followed.

In the fifth step, a previously unknown Neuron will be assigned the statistical
weight vectors denoted as “Tj” and “Bj” in order to associate it with the input
vector of “X.” A key advantage here is that the overall ANN system and the learning
networks that it possesses will not “lose,” or “forget,” of any previously learned
patterns. Not only will these be retained, but other new patterns that are learned
will be added on top of this in the ANN system. This process is very similar to that
of the Biological Neural Network (BNN).

Finally, in the last and sixth step, the procedure just detailed previously will
then further statistically categorize all of the classes and the patterns that have been
trained so far in the ANN system.

The Properties of the ART Neural Network

The following list summarizes some of the best features of the ART Neural Network,
as well as what separates it from other Neural Networks as described so far in this
chapter:

	1)	Once this specific network stabilizes, the property known as “Direct Access”
will become very similar to the “Rapid Retrieval” functionalities that are
found in the Biological Neural Network (BNN).

	2)	The Search Process will help to statistically normalize the Winning Neuron.
	3)	The training datasets of the ART Neural Network are deemed to be

stable so that they will not cross over once the Winning Neuron has been
ascertained.

	4)	The training will then stabilize into a finite number of statistical iterations.

However, there are certain disadvantages to the ART Neural Network, which are as
follows:

	1)	It makes use of both Gain and Reset Elements, which literally have no rele-
vance to the Biological Neural Network.

	2)	It is quite possible that if missing Neuron, it could then totally eradicate the
entire learning processes that have been gained by the ANN system.

High Level Overview into Neural Networks  |  143

Further Comments on Both ART 1 & ART 2 Neural Networks

It should be further noted that the ART Neural Network is actually subdivided fur-
ther into the ART 1 and ART 2 types of Neural Networks. Here is a summary of
the distinct features of them:

	1)	The ART 1 Neural Network:
	{ It makes use of a multilayer structure;
	{ It makes use of a feedback mechanism, but a different one than is utilized

in the Hopfield Neural Networks;
	{ It makes use of BAM training datasets;
	{ It makes of use of the “Winner Take All” concept;
	{ It makes use of Inhibition;
	{ It makes use of the Reset Function;
	{ It possesses a Plasticity Feature;
	{ It does not perform up to its optimal levels when at least one or more

Neurons are missing or even malfunctioning in the ANN system;
	{ It is non-​transparent, in other words, it still suffers of being viewed as a

“Black Box.”
	2)	The ART 2 Neural Network:

	{ It is designed specifically to make use of Analog, or Continuous Training
inputs;

	{ It does not require a previous setup or deployment;
	{ Patterns (such as those of qualitative datasets) can be added as the ANN

system is still in operation;
	{ Also, the above-​mentioned patterns can be categorized and classified before

they are piped into the ANN system;
	{ The mathematical matrices of “B” and “T” are also scalable enough so

that they can further expanded into the ANN system if the need ever
arises.

An ART 1 Case Study: Making Use of Speech Recognition

In this particular case study, the concepts of Speech Recognition are used to distin-
guish between the following words:

	{ Five;
	{ Six;
	{ Seven.

Using the current Neural Network design, these words are passed onto a math-
ematical array of what are known as “Five Band Pass Filters.” The energy that is
further derived from the outputs of the ANN system is then statistically averaged

144  |  High Level Overview into Neural Networks

into intervals of 20 milliseconds over five iterations, which culminates a total of 100
milliseconds. Also, a five-​by-​five matrix is implemented into a Cartesian Geometric
Plane, which consists of binary values of 0s and 1s, which are associated with the
spoken words detailed up above.

Also a reference input matrix is compiled by the end user’s repetition of each of
these spoken words, spoken 20 times each. This is then averaged over 20 millisecond
iterations.

This application makes use of the C programming language, which is as follows:
Display

“5”, “6”, or “7” (zero random noise) –​ choose input pattern (patterns are in
three groups:

    5 patterns which represent the word “5” when it is used in different types
of pronunciations:

    “6” similar to “5”
    “7” similar to “6”
Pattern # (0-​random) -​There are ten different input patterns that strongly cor-

relate from the spoken words of “5”, “6” and “7”, thus choose one
Create new pattern for: -​ specify how many patterns need to be assigned

END OF PROGRAM
Also, the following variables are used in the C source code:

PATT = the stored patterns;
PPATT = the previous inputs that are correlated with the speech patterns in

the Comparison Layer of the ANN system;
T = the statistical weights that are assigned to the Neurons that are in the

Comparison Layer;
TO = the statistical weights of a Neuron that is in the Comparison Layer

and also correlated with the Winning Neuron that is found at the
Recognition Layer;

TS = the status of the Recognition Layer Neurons;
BO = the statistical input to the Neurons in the Recognition Layer;
C = the outputs that are generated from the Recognition Layer in the ANN

system;
INP = the input vector;
NR = the total number of patterns that are stored in the weights of both the

Comparison Layer and the Recognition Layer;
GAIN = a stored pattern that correlates with 1 input and 2 inputs when there

are no stored patterns in the ANN system
SINP = the total number of “1” values that are present in the input vector;
SC = the total number of “1” values that are present in the Output Layer of

the ANN system;

High Level Overview into Neural Networks  |  145

STO = the total number of “1” values that are chosen for the speech patterns
of the chosen words;

MAXB = the mathematical pointer which is used to best associate all of the
input vectors that are present in the ANN system.

A modified version of the ART 1 Neural Network is given as follows:

D (modified) = min(D,D1)

Where:
D = the regular D of ART 1’
D1 = c/​p; where also p = the number of 1 values in the chosen, speech of the

three numbers, as described previously.

An example of this includes the following:

Input Vector 1111000000; x = 4

Chosen pattern 1111001111; p = 8

Comparison Layer 11110000000 = 4

This will give the following product, calculated as follows:

D = c/​x = 4/​4 = 1.0 in regular ART-​1

D1 = c/​p = 4/​8 = 0.5

D (modified) = min(D, D1) = 0.5

The Cognitron and the Neocognitron
The Cognitron is a specialized type of Neural Network that has been created
and designed for the deployment of Recognition Patterns. In order to accom-
plish this specific task, the Cognitron-​based Neural Network makes total use of
both the Inhibitory and Excitory Neurons. This was first conceived of back in
1975, making use of an Unsupervised Neural Network. In this instance, this
model was meant to mimic the process of initiating the retina (which is located
in the back of the eye). This was considered to be a “Deep Learning” type of
experiment, and this concept will be further explored in more detail later in this
chapter.

The Neocognitron was developed in the early 1980s as well. This was done in
order to further broaden the scope of the Cognitron, both in terms of functionality
as well as optimization. This laid the groundwork for the creation of what is known

146  |  High Level Overview into Neural Networks

as the “Convolutional Deep Learning” kind of Neural Network, which occurred
in 1989.

In terms of the composition of the Cognitron, it primarily consists of many layers
and even sub-​layers of both the Inhibitory and Excitory Neurons. The connections
between both of these types of Neurons is only established to those that have been already
created in the layer below them in the ANN system. The technical term for this is known
as the “Connection Competition” of the Neuron. In other words, the connections are
established from a bottom-​up approach, versus the traditional top-​down approach.

In order to optimize the training of the ANN system, not all Neurons are used
or fired; rather, the training is reserved specifically for a class of Neurons known
as the “Elite Group.” These are Neurons that are devoted to a specific task and to
creating a specific kind of output from the ANN system. It should also be noted
that the Neurons in the “Elite Group” are those that have been previously trained
as well. In the bottom-​up approach in terms of Neuron connectivity, there is very
often overlap that is experienced. This is where a Neuron may also be associated with
other interconnections.

This kind of overlap can cause performance degradation from within the ANN
system; therefore, the concept of “Competition” is used to overcome this overlap. At
this point, those connections between the Neurons that are deemed to be “weak” in
nature will be automatically disconnected. With “Competition,” there is also a sense
of redundancy introduced, so that these disconnections will not impede any other
processes that are currently occurring from within the ANN system.

The structure of the Cognitron has been designed so that it is based upon the
principle of Multilevel architecture, and the Neurons that are in between two spe-
cific layers are further designated as L-​I and L-​II, in an iterative fashion, denoted as
“2n.” These iterations can be represented as follows:

	{ L-​I1;
	{ L-​II1;
	{ L-​I2;
	{ L-​II2.

The Network Operations of the Excitory
and Inhibitory Neurons

The specific Output of the Excitory Neuron is mathematically computed as follows:
For the Excitation Neuron Inputs:

Xi = ∑k AikYk;

For the Inhibitory Neuron inputs:

Zi = ∑k BikVk

High Level Overview into Neural Networks  |  147

Where:
Yk = the output from the previous layer in the ANN system;
Vj = the output from the Inhibitory Neuron from the previous layer in the

ANN system;
Aik and Bik = the appropriate statistical weights that have been assigned, and

are also further adjusted when a specific Neuron is deemed to be more
“active” than the others.

When the above two mathematical formulas are combined amongst one another,
the total, or overall, aggregate output from the ANN system is calculated as
follows:

Yi = f(Ni)

Where:

Ni = (1+Xi)/​(1+Zj) –​ 1 = (Xi-​Zi)/​(1+Zi)
f(Ni) = {Ni … for Ni> 0; 0 … for Ni<0}.

For the Inhibitory Neuron Inputs

The outputs of these Neurons are mathematically computed as follows:

V = ∑I CiYi;

∑iCi = 1.

The Initial Training of the Excitory Neurons

The initial datasets that are used are first assigned to the Excitory Neurons in a series
of statistical iterations based upon the following formula:

Obi = (q∑j AjiY^2j)/​(2v*); Obi = the change in Bi

Where:
Bi = the statistical weights of the connections that are established between

the Inhibitory Neuron that is located in layer “L1” and the “ith”
Excitory Neuron located in layer “L2.” It should be noted here that
“∑j” actually represents the mathematical summation of the weights
from each and every Excitory “L1” Neuron all the way to the “ith”
Neurons at layer L2.

148  |  High Level Overview into Neural Networks

The above equation has been developed on the assumption that there will
always be active Neurons in the ANN system. However, in the off chance that
there is no activity whatsoever, then the following two equations automatically
supersede:

Oaji = q^rCjYj

Obi = q’Vi

Where:

Q^r < q.

In summary, there is a positive correlation that exists between the Inhibition output
and its statistical weight; as one increases, the other will also increase by an equal
level or amount.

Lateral Inhibition

Another key concept here is that of “Lateral Inhibition.” This is where a specific
Neuron is located in each of the Competition Layers of the ANN system. In this
regard, the Inhibitory Neuron actually obtains its statistical inputs from the Excitory
Neurons in one specific layer given the weights that it has just been assigned, and is
denoted as “Gi.” This is represented as follows:

V = ∑iGiYi

Where:
Yi = the output of the Excitory Neuron.

From, here the output of V from the L2 Inhibitory Neurons is calculated as
follows:

O/​I = f[1+Yi/​1+V] –​ 1.

The Neocognitron

Now that we have extensively reviewed the Cognitron, it is important to go into
more detail as to what the Neocognitron is all about. As stated previously, this is
considered to be a much more advanced version of the Cognitron. It has a hierarchal
structure and is specifically geared toward understanding how human vision is actu-
ally processed.

High Level Overview into Neural Networks  |  149

In the hierarchal structure, there are two groups of layers, which are composed
of both Simple Cells and Multilayered Cells. There is also a thick layer that resides
between these two Cellular-​based structures. In this three-​tiered approach, the
number of total Neurons actually decreases in a top-​down fashion. This has been
specifically designed so that the Neocognitron can overpower the various recogni-
tion issues that were experienced by the Cognitron, and even succeed where it failed.
This includes images that are in the wrong kind of position or that have any sort of
angular distortions associated with them.

Recurrent Backpropagation Networks
Backpropagation Neural Networks were introduced and reviewed in extensive detail
earlier in this chapter. Now, a recurrent functionality can be added into it, and with
it, the specific output from the ANN system can be automatically fed back into the
inputs of the ANN system. It should be noted that this can be achieved only in small
iterations. This concept was actually introduced back in 1986 and 1988, and finally
fully implemented into the Backpropagation Neural Networks in 1991.

With this kind of deployment, there are also a very minimal number of Hidden
Layers from within the ANN system. In this configuration, delay mechanisms are
introduced so that the various Feedback Loops will be totally independent of each
other between each iteration, also known technically as “epochs.” So, once the first
time interval has been completed, the outputs are then fed back into the inputs
that are associated with them. Interestingly enough, any errors that are correlated
with the outputs from the ANN system can also cycle back as direct inputs for
the next iteration in the ANN system. For example, if an ANN system receives
the inputs denoted as “X1” and “X2” respectively, this will count as the first-​time
iteration.

After this, the statistical weights for the inputs are also computed in the
Backpropagation Neural Network, and from here, they are all added together with
no further adjustments made to them until the first iteration has actually completed
its cycle.

Then the outputs, denoted as “Y1” and “Y2” respectively, are cycled back into
the ANN system to be used as inputs once again in the second iteration. This pro-
cess keeps repeating until the ANN system has learned from the new datasets that
have been fed into it.

Fully Recurrent Networks

These are actually very similar to the Recurrent mechanisms just previously
discussed. However, there is one primary difference. Rather than the outputs of the
ANN system being fed back as inputs, they are fed back as Layers. So, at the end

150  |  High Level Overview into Neural Networks

of the first iteration, the Output Layer will be fed back as the Input Layer into the
ANN system. Thus, the Recurrent Neurons are also transposed in this same manner
as well.

Continuously Recurrent Backpropagation Networks

In this particular situation, the Recurrent Mechanism that is present in the
Backpropagation Network keeps going on literally forever, but each time the based
iteration becomes shorter in nature. Mathematically, this can be represented as follows:

T(DYi)/​(Dt) = -​Yi + g (Xi + ∑j WijVj)

Where:
T = the time constant coefficient;
Xi = the external input;
G = the Neuron activation function;
Yi = the output from the ANN system;
Vj = the outputs of the Hidden Layers of the Neurons from the ANN system.

Stability is also introduced here as well, and is mathematically represented as follows:

Yi = g(Xi + ∑j WijVj).

Deep Learning Neural Networks
As its name implies, Deep Learning Neural Networks, also known as “DLNNs”
are specialized Neural Networks in which a certain level of deep learning is actually
attained. Specifically, Deep Learning can be defined technically as follows:

Deep learning is a subset of machine learning where artificial neural
networks, algorithms inspired by the human brain, learn from large
amounts of data. … Deep learning allows machines to solve complex
problems even when using a dataset that is very diverse, unstructured,
and inter-​connected.

(Forbes, n.d.)

For example, Deep Learning examines datasets that are far more complex than
other types of Neural Network systems that have been reviewed so far in this book.
Deep Learning can probe much deeper into very complex datasets that are both
qualitative and quantitative in nature. It can also probe for and discover hidden
trends in the datasets that will help to greatly optimize the outputs that are generated
by the ANN system, in an effort to get the desired results.

High Level Overview into Neural Networks  |  151

Deep Learning can also parse, filter through, and analyze those particular datasets
in a much more powerful manner that makes use of various kinds of mathematical
algorithms that typically include the following:

	{ Other forms of Logical computing methods;
	{ Linear methods;
	{ Nonlinear methods;
	{ Other forms of analytical methods;
	{ Heuristic methods;
	{ Deterministic techniques;
	{ Stochastic techniques.

Based upon this, another technical definition of Deep Learning can be offered as
follows:

DLNNs are a specific class of Machine Learning techniques that exploit
the many layers of nonlinear-​based information for the processing of
both supervised and unsupervised feature extraction, and for pattern
analysis and classification.

(Graupe, 2019)

Most of the Neural Networks examined so far in this book, although complex
by design, are still used for applications that are considered to be rather “simple” in
nature. It is important to note that the word “simple” being used is very subjective in
nature, and what may seem to be straightforward to one entity may actually appear
to be complex to another entity. With this in mind, Deep Learning is typically used
in those “heavy” kinds of Neural Network applications in which literally Terabytes
or even Petabytes of datasets are needed in order to feed meaningful input into the
ANN system in question.

Given the gargantuan nature of the datasets, one of the key components that is
absolutely critical for the ANN system is that of maintaining a high level of what is
known as “Integration.” This simply means that given the huge breadth, diversity,
and scope of these enormous datasets, they all must work together in a seamless
fashion so that the ANN system can literally “digest” them all in an efficient and
unified fashion, so that the outputs that are generated will not be skewed or biased
in any way, shape, or form.

Also with Deep Learning, these kinds of ANN systems must be able to learn
quickly, despite the enormous size of the datasets that are being fed into them. They
must be able to intake these kinds and types of datasets on a constant basis, depending
upon the requirements that have been set forth. Also, Deep Learning tries to mimic,
or replicate, the actual human brain to the greatest extent that is possible.

Actually, the concepts of Deep Learning are really nothing new. The interest in
this grew as scientists started to explore the concepts of Machine Learning (which

152  |  High Level Overview into Neural Networks

 was the main focal point in Chapter 2) and how it can be used to process large
amounts of data as well. Also, the concepts of Deep Learning were first implemented
into those ANN systems that made use of the principles of Backpropagation. This
was first introduced in 1986.

It was Convolutional Neural Networks (also known as “CNNs”) that became
the first to adopt and deploy the concepts of Deep Learning. The motivating cata-
lyst for creating the CNN was an attempt to model the visual cortex of the human
brain. Because of this, the CNNs that were deployed have primarily been limited to
commercial applications that made heavy usage of imaging.

It should be noted that the first CNN to make use of Deep Learning took actu-
ally three entire days to process all of the datasets that were fed into it. Although
this appears to be drastically slow by today’s standards, back in 1989, that was a
very quick turnaround for that particular ANN system. Once it was proven that
Deep Learning could be applied to both visual and imaging applications, the next
step for it was to be used for Speech Processing and Speech Recognition types of
applications. These made use of yet another technique which is known technically
as “Support Vector Machine”-​based mathematical algorithms, or “SVMs” for short.

The next major breakthrough for the principles of Deep Learning came about
in 1996, when the concept for what is known as the “Large Memory Storage and
Retrieval Neural Network” (also known as “LAMSTAR” or “LNNs” for short)
was created. In this situation, this type of configuration was established in order to
make certain predictions, investigations, and detections, as well as operational-​based
decisions from a wide and varied range of large datasets. They included the following
characteristics:

	{ Deterministic;
	{ Stochastic;
	{ Spatial;
	{ Temporal;
	{ Logical;
	{ Time series;
	{ Quantitative/​Qualitative.

It should be noted that the theoretical constructs for the LAMSTAR originated all
the way back in 1969 with a Machine Learning tool that was first introduced. It
made various attempts to replicate the interconnections of the Neurons that exist
between the different layers and cortexes of the human brain. In order to under-
take this enormous objective, it made use of very sophisticated modeling techniques
which included the following:

	{ The integration and ranking of parameters;
	{ Coprocessing;
	{ Stochastic;

High Level Overview into Neural Networks  |  153

	{ Analytics;
	{ Entropy;
	{ Wavelets.

The processing and computational power for this kind of ANN system came from
the following theoretical constructs:

	{ The Hebbian-​Pavlovian Principle;
	{ The Kohonen Winner Take All Approach;
	{ Parallel Computing.

Another version of the LAMSTAR came out in 2008, and it has been appropriately
called the “LAMSTAR-​2” or the “LNN-​2” for short. This was developed to over-
come some of the shortcomings of the LAMSTAR, and this version offers much
greater computational and processing power.

The Two Types of Deep Learning Neural Networks

Apart from the other Neural Network configurations thus far covered in this chapter,
there are two other specialized ones as well that are also considered to be Deep
Learning Neural Networks, and they are as follows:

	1)	The Deep Boltzmann Machines (DBM):
These are considered to be stochastic kinds of Neural Networks. They were first
introduced and deployed in 2009, and are basically unsupervised by nature.
In order for the ANN system to learn from the datasets that are inputted into
it, a concept known as “Thermodynamic Equilibrium” is utilized, which is
based upon the Gibbs-​Boltzmann statistical distribution. The actual learning
process is done through a special technique called “Log-​Likelihood,” based
upon gradient maximization. In other words, the statistical errors between the
datasets and the ANN system model is very carefully analyzed. A key draw-
back of the DBM is that it requires an exorbitant amount of both computa-
tional and processing power, and thus it has a very limited scope in terms of
application deployment.

	2)	The Deep Recurrent Learning Neural Networks (DRN):
This kind of Deep Learning Neural Network makes specific use of the
Backpropagation technique (as reviewed in extensive detail earlier in this
chapter). They are stacked in a linear pattern at varying time intervals, and are
also fed into the inputs of the ANN system. These are also too slow for wide
scale application deployment, as they require the coupling of other mathem-
atical algorithms into the learning component of the ANN system. However,
it should be noted that the DRN has been very successful in modeling various
languages.

154  |  High Level Overview into Neural Networks

The LAMSTAR Neural Networks
The LAMSTAR Neural Network was actually reviewed in the last subsec-
tion. Essentially, there are two of them, known as the “LAMSTAR-​1” and the
“LAMSTAR-​2,” respectively. These kinds of Neural Networks are specifically
designed for applications devoted to retrieval, analysis, classification, prediction, and
decision-​making. They are also meant to be used with datasets that are extremely
large in nature, which cannot be processed as easily with the other Neural Network
configurations examined thus far in this chapter. Thus, in this regard, the add-​on
tool that is most favored for these LAMSTAR Neural Networks is that of the of the
Kohonen Self-​Organizing Map (SOM).

Also, the LAMSTAR Neural Networks are designed to handle both quantitative
and qualitative data, when they are multidimensional in nature, and even incom-
plete in many areas. Also, this kind of Neural Network is deemed to be what is
known as an “expert intelligent system,” in which the datasets are continually being
refined and optimized in order to get the desired outputs. The LAMSTAR Neural
Networks can be used to help estimate any type of missing data in the datasets
through the techniques of both interpolation and extrapolation.

These kinds of Neural Networks are deemed to be very transparent in nature,
thus helping to alleviate the notion of the “black box” phenomenon that is so
often associated with any kind of Neural Network. The primary reason for this is
that LAMSTAR Neural Networks have a unique method in which the statistical
weights are assigned to their respective inputs. In other words, these kinds of Neural
Networks have been proven to be very successful with those applications that typic-
ally deal with decision-​making and recognition applications.

When it comes to LAMSTAR Neural Networks, the outputs of the Neurons are
typically calculated based upon this mathematical formula:

Y = f[p∑I = 1 WijXij]

Where:
F(x) = the nonlinear function;
Wij = the Associative Memory weights that have been statistically assigned to

the inputs.

It should also be noted that in this situation, the specific firing of the Neurons takes
an all or nothing approach. By making use of the unique assignment of statistical
weights to the inputs, LAMSTAR Neural Networks take into account not only
the values that are stored in the memory of the ANN system, but also the various
correlations that take place between them as well. Also, when the Neuron fires at
a point in time when the next time series iteration is about to occur in the ANN
system, the statistical weightage of these correlations also increases by a proportional
nature.

High Level Overview into Neural Networks  |  155

It is these connections that also serve LAMSTAR Neural Networks’ ability to
both interpolate and extrapolate, as examined previously, without having to repro-
gram the ANN system in its complete entirety.

The Structural Elements of LAMSTAR Neural Networks

When it comes to the actual storage of datasets and their inputs, the LAMSTAR
NNs make use of the Kohonen SOM modules, and these are further ingrained
by making use of the Associative Memory principle. As noted, the reason why
the LAMSTAR NNs can deal with such huge datasets is their usage of simple,
mathematical computational algorithms that are further dispersed at these
linkages. This simply translates into less processing and computational power
that is needed. These links, or connections, are also considered to be the main
driver in the entire ANN system, by further connecting the SOM modules
together.

Because of all these various linkages and connections that are deployed in the
ANN system, it now to a certain degree resembles the Central Nervous System
(CNS) of the human brain. Further, in most of the systems that are SOM-​based,
each and every Neuron is closely examined for its particular closeness to any numer-
ical range of the input vectors that are currently present in the entire ANN system.
But in the LAMSTAR NNs, only a smaller grouping of Neurons (denoted as “q”)
can be checked, which of course is a big disadvantage in this regard. The determin-
ation of these particular sets is governed by the links, or connections, that are present
in the ANN system.

It should also be noted at this point that the main engine of the LAMSTAR NNs
is the actual, mathematical summation of all these links, or points, of connections
just reviewed thus far. Also, the statistical weights that are assigned to them are actu-
ally updated in real time with the sheer amount of traffic that is present on these link
and connection nodes in the ANN system.

The Mathematical Algorithms That Are Used for
Establishing the Statistical Weights for the Inputs and
the Links in the SOM Modules in the ANN System

Whenever a new input is added into the ANN system, especially those of the training
datasets, the LAMSTAR NNs will carefully examine all of the storage weight vectors
for each module (denoted as “i”), and compare those with the statistical weights that
could be potentially assigned to the inputs of the datasets. From this close examin-
ation, the “Winning Neuron” (as discussed previously throughout this chapter) is
then computed with the following mathematical formula:

D(j,j) = ||Xj-​Wj|| < ||Xj—​Wk = /​j|| = d(j,k).

156  |  High Level Overview into Neural Networks

Also, these statistical weights as just described can be further adjusted if need be,
in order to gain as much optimization and reliability as possible. This is done with
another specialized mathematical technique, and this is technically known as the
“Hamming Distance Function” (denoted as “Dmax”), and it can be represented as
follows:

Dmax = max[d(xiWi)].

Also, as mentioned previously in the last subsection, the LAMSTAR NNs contain
many interconnections, or links, between the input layers and the output layers of
the ANN system. Although these links can be considered “dynamic” in nature, they
too need to be updated for optimization as well as reliability. Once again, this is
done by assigning these various interconnections different statistical weight values,
and they can be thus computed and assigned according to the following formulas:

Li,j/​k,m * (t+1) = Li,j/​k,m^(t) + VL;

Li,j/​k,m * (t+1) = Li,j/​k,m^(t+1) VM, s=/​1;

L(0) = 0

Where:
Li,j/​km = represents the links of the Winning Neuron (denoted as “I”) in the

output module (denoted as “j”).

The statistical weights as described in the above equations can also help to regulate
the flow input from the dataset in the ANN system so that only the needed pro-
cessing and computational power is used, and not any more. In many applications
that actually make use of the LAMSTAR NNs, the only interconnections or links
that are considered for updating are those that reside in between the SOM layers
and the outputs of the ANN system. But the interconnections, or links, between the
various SOM modules do not get updated whatsoever.

Also as mentioned previously, of the key components of the LAMSTAR NNs
are those of “Forgetting,” and “Inhibition.” In terms of the former, this, which is
incorporated with what is known as the “Forgetting Factor,” denoted as “F,” can be
reset at various, predetermined intervals. This can be denoted as k = sK, s = 0, 1, 2,
3, etc., where K represents a predetermined numerical, constant value. This is math-
ematically represented as:

L * (k+1) = FL(k)

Where:
0 > F > 1 = the preset Forgetting factor.

High Level Overview into Neural Networks  |  157

It is important to note at this point that another mathematical algorithm can also be
substituted for the above equation, and this is known as the “Forgetting Algorithm,”
where the value of L(k) is reset at every k = sK, s = 0, 1, 2, 3, etc. This algorithm can
be represented as follows:

F(i) = (1-​z)^1 L(k), 0 < z <<<< 1

I = (k-​sK)

Where:
Z = the highest numerical value to achieve “Ks < k,” so that “i” is started from

scratch at the value of 0, and subsequently increasing in value at every iter-
ation in the ANN system.

With regards to “Inhibition,” this must be ingrained and programmed into the ANN
system before it can be executed in the production environment. With respect to
the LAMSTAR NNs, it is typically included by pre-​assigning the selected Neurons
in the input layers.

An Overview of the Processor in LAMSTAR
Neural Networks

As it was reviewed earlier in the previous subsections, LAMSTAR NNs make use of
what is known as “Deep Learning.” With this extra functionality, it can compute the
outputs by making use of a specialized processor in order for the ANN system to be
used in much larger and complex types of applications. Also, in order to facilitate
the processing power and computational speeds, the ANN system can avail itself to
the concepts of parallel processing.

The processor of the LAMSTAR NNs is often found in the inputs of the SOM
layer of the ANN system.

The Training Iterations versus the Operational Iterations

With the typical ANN system, one of its greatest advantages of it is that it can keep
training nonstop on a 24/​7/​365 basis, as long as it is constantly being fed clean
and robust datasets. But as it has been pointed out before in previous subsections,
this not the case with LAMSTAR NNs. These can only operate in an iterative cycle
mode. In other words, the LAMSTAR NNs can only run and operate in testing and
operational runs, in a start-​stop fashion.

But in order to further optimize the network performance of the ANN system, a
number of test runs need to be implemented so that the LAMSTAR NN will be able
fire off the Neurons so that the actual datasets can start being fed into it.

158  |  High Level Overview into Neural Networks

The Issue of Missing Data in the LAMSTAR Neural Network

As it has been mentioned previously, the LAMSTAR NN can run in the absence of
missing data that may be present in the datasets. This can be accomplished by stat-
istically summing up the overall values of “k” that are present.

The Decision-​Making Process of the
LAMSTAR Neural Network

Overall, the network structure of both the LAMSTAR-​1 NN and the LAMSTAR-​
2 NN are very similar in nature. Also, these two types of Neural Networks even
share the same kind of decision-​making processes when it comes to how the inputs
and their associated datasets will be used to compute the outputs from the ANN
system. The decision-​making algorithm can be mathematically represented as
follows:

M∑k(w) I,nL k(w) > M∑k(w) I,jL k(w) Vi, j, k, n, j=/​n

Where:
I = the It h output module;
N = the Winning Neuron;
K(w) = the output module;
M = the link weight that has been established between the Winning Neuron

in the input module (denoted as “k”), and the Neuron (denoted as “j”) in
the “Ith” output layer.

The Data Analysis Functionality in the
LAMSTAR Neural Network

As it was mentioned in the first chapter of this book, data and their corresponding
datasets are the “fuel” that make the ANN system go, and that make it produce the
desired outputs. But one key aspect of this is that the data must be cleansed and
optimized at all times. This even holds true for the LAMSTAR Neural Network. In
fact, most of the information and data that is present in this kind of Neural Network
actually resides in the statistical weights that have been assigned to the various links,
or interconnections, as it has been extensively thus far.

Because of this, the LAMSTAR can also even be utilized as Data Analysis for
the ANN system. In this regard, it is the input data that can be further analyzed,
in terms of the analysis of the various input layers and the corresponding datasets
that are being used. Also, the degree of statistical correlation amongst these datasets
can be examined as well. In most cases, the analysis that can be conducted by the
LAMSTAR NN is a two-​step process which is as follows:

High Level Overview into Neural Networks  |  159

	1)	The actual establishment of the configuration of the analysis that is to
take place;

	2)	Once the above has been accomplished, then the further analysis can then
take the place of the statistical weights and the datasets that are correlated with
the links, or interconnections, in the LAMSTAR NN.

The term “analysis” can be a broad one, depending upon the type of applications
that the ANN system is being used for, and the desired outputs that are to be
achieved from it. For the purposes of the LAMSTAR NN, analysis simply means
providing further insight into the actual problem that the application in question
is attempting to solve. It should also be noted that that any information/​data that
is further gleaned from this analysis phase could be further optimized in terms of
performance and speed if it is decided at a later point in time that extra Neurons or
Input and/​or Output Layers need to be added or removed.

From here, the statistical clusters that are associated with the links that have
the highest numerical value associated with them will then further determine the
anticipated trends of the datasets that are being used as the inputs into the ANN
system. From here, it will then “collaborate” to yield the desired outputs that will be
computed by the ANN system.

It should be noted that the analysis, which can be conducted by the LAMSTAR
NN, can be done at any point when the actual ANN system is learning from the
inputs and the datasets that have fed into it, and producing the desired outputs.
Especially during the training phase for the ANN system, the LAMSTAR NN will
locate those links, or interconnections, with the highest statistical values that have
been assigned to them, and from there, retrieve any sort of relevant information/​
data from the SOM modules that have any further associations with the links or
connections, as described previously.

The above-​mentioned process can be accomplished via two separate and distinct
approaches, which are as follows:

	1)	Selecting and deploying those links that have a numerical value which far
exceeds any sort of predefined threshold;

	2)	Selecting and deploying a predefined number of links or interconnections
that have the highest statistical values that are associated with them.

Another key component of the analysis component of the LAMSTAR NN is its
ability to extract unique features that are present in the ANN system. Also, these
features can be removed if deemed necessary as well. There are certain properties to
this, and they are as follows:

	1)	The most significant memory and/​or input/​output layers:
This can be actually extracted by using a mathematical matrix that is denoted
as “A(I,j),”

160  |  High Level Overview into Neural Networks

Where:
I = the Winning Neuron in the SOM storage model that is present in the

LAMSTAR NN.

	2)	The least significant memory and/​or input/​output layers:
In this particular case, the Winning Neuron is ascertained by this mathemat-
ical formula:

[i*, s* /​dk]: L(I, s/​dk) > L(j, p/​dk)

Where:

P is not equal to “S”;

L(I, s/​dk) = the statistical weight link between the Winning Neuron
(denoted as “j”), in any layer (denoted as “p”), as well as output layer of the
Neuron denoted as “dk.”

	3)	The most significant SOM Module:
This is computed by the following mathematical equation:

S**(dk): ∑i({L(I, s/​dk)} > ∑j ({L(j, p/​dk)}

	4)	The least significant SOM Module:
This is computed by the following mathematical equation:

L(I, s/​dk) > L(j, s/​dk)

NOTE: The above equation can be applied for any Neuron (denoted as “j”)
for the same SOM Module that is present in the LAMSTAR NN.

	5)	Redundancy:
This can be further extrapolated as follows:
Whenever a certain Neuron (denoted as “I” in this particular case) in the
SOM input layer is considered to be the winning one, it is also considered to
have the winning inputs that should be used as well in that very SOM input
layer. This is known as “Redundancy.”

	6)	Zero Information Redundancy:
In this particular case, if there is only one Neuron that is always deemed to be
the winner in a certain SOM layer (denoted as “k” for these purposes), then
this certain layer will contain absolutely no relevant information/​data.

Also as mentioned previously, LAMSTAR NNs contain two more distinct proper-
ties, which are as follows:

	1)	The Correlation Feature:
This is where the most significant SOM layers (whether input-​ or output-​based)
contain the most statistically significant Neurons for the various factors that
are associated with them (denoted as “m”), assuming that they are correlated

High Level Overview into Neural Networks  |  161

with the same outputs that have been computed by the ANN system. This is
all achieved with what is known technically as the “Correlation-​Layer Set-​Up
Rule,” and this mathematically represented as follows:

m-​1 ∑ i=1 i(per output decision “DK”).

Also, at this particular juncture, the statistical concepts of both Auto
Correlation and Cross Correlation can be used at any time-​based iteration in
the LAMSTAR NN as deemed to be necessary.

	2)	The Interpolation/​Extrapolation Feature:
In this case, the particular Neuron [(denoted as “N(I, p)”] is considered to be
either “interpolated” or “extrapolated” if it meets the conditions as set forth
by this mathematical equation:

∑q {L(I, p/​w, q –​ dk)} > ∑ {L(v, p/​w, q –​ dk)}

Where:
I = the various Neurons in a specific SOM Module;
{L(v, p/​w, q –​ dk)} = denotes the links, or the interconnections, that reside

within the Correlation Layer in the LAMSTAR NN (which is denoted
as “V (p/​q)”).

It is also important to note that there is only one Winning Neuron for any
input that is used (which is denoted as “N(w,q)”).

So far in this chapter, we have reviewed extensively the theoretical concepts that
are associated with Neural Networks. The rest of this chapter is now devoted to the
applications of this theory.

Deep Learning Neural Networks—​The Autoencoder
An autoencoder is a type of deep learning neural network used to learn an efficient
encoding for a set of data in an unsupervised manner. Basically, an autoencoder
attempts to copy its Input to its Output through a constrained coding layer, cre-
ating the desired encoding. Autoencoders have been effectively used to solve many
problems such as the semantic meaning of words, facial recognition, and predictive
maintenance (which will be described in the application section of this chapter).

Source: Randy Groves

162  |  High Level Overview into Neural Networks

The basic architecture of the autoencoder is shown in the figure above. The input
and output layers have the same number of nodes (x) as the set of data to be encoded.
In the middle is a hidden layer with fewer than x nodes where the coded (or latent)
representation (H) will be learned. The deep learning neural network on the left
learns to encode X into H while the deep learning neural network on the right learns
to decode H into X’ with the goal of minimizing the difference between X and X’
(known as reconstruction error). Since an autoencoder is learning to produce X’
from X, the data itself provides the labels for the model to train against making this
an unsupervised learning approach (learning from any dataset without having to
label the desired output).

The usual deep learning techniques like back propagation are used to reduce
reconstruction error by optimizing the encoder to generate better codes that the
decoder can use to reconstruct X. With a small reconstruction error, the middle
layer represents the essential (or latent) information in X with all of the noise and
redundancy removed. This is similar to compressing a computer file to a smaller
representation using something like Zip. One difference is that Zip is a lossless
encoding such that the Zip decoder can perfectly reconstruct the original file
whereas autoencoders reconstruct X with some intrinsic error.

By selecting the smallest value for h with an acceptable reconstruction error,
the autoencoder can be used to reduce the dimensions of the input date from x
to h without losing signification information from the original X (known as
dimensionality reduction). The code layer can also be used to determine relationships
in the input data. For example, the encoded value for a word like “London” should
be close to the words “England” and “Paris.” Or, the encoding of a new image of
your face should be close to previous encodings of your face.

Another use for autoencoders is anomaly detection. By having an autoencoder
attempt to reconstruct new data not used in training, a poorly reconstructed input
set is an indicator that this new data is different from the original data or that it
is anomalous. The input that is most poorly reconstructed is the one that is most
different from the training data in relation to the other inputs. These individual
input reconstruction errors provide information that can be used to explain what is
anomalous about the new data. An example of using an autoencoder for predictive
maintenance is provided in the application section of this chapter.

The Applications of Neural Networks

Overall thus far, this chapter has examined the concept of Neural Networks, pri-
marily from a theoretical perspective. It is important to note that all of the theory
that has just been detailed has one primary purpose: to lay the foundations for the
modern day applications that we see and use on a daily basis. For example, in the
world of Cybersecurity, many Neural Network-​based applications are now being
used for Cyber threat triaging, especially for filtering false positives, so that the IT
Security teams can quickly discern and act upon the threat vectors that are real.

High Level Overview into Neural Networks  |  163

But Neural Networks are also being used in the world of what is known as the
“Internet of Things,” or “IoT” for short. This is where all of the objects that we interact
with on a daily basis in both the virtual world and the physical world are interconnected
with one another through various network-​based lines of communication.

Because Neural Networks are now starting to be deployed in various types of
applications, there is the notion that many of these applications are very expensive
to procure and complex to deploy. But the truth is that they are not. For example,
many of these Neural Network-​based applications are now available through many
of the largest Cloud-​based Providers. With this, of course, comes many advantages,
such as fixed and affordable monthly pricing, and above all scalability, so that you
can ramp up or ramp down your needs in just a matter of a few seconds. In the next
subsection of this chapter, we detail some of these major Cloud Providers.

The Major Cloud Providers for Neural Networks
In this regard, some of the juggernauts in this area are Amazon Web Services (AWS)
and Microsoft Azure. There are others as well, and they will also be examined.

	1)	The Amazon Web Services (AWS):
It should be noted that the AWS is the oldest of Cloud-​based Providers, having
been first launched back in 2006. Since then, they have been consistently
ranked as one of the top Cloud Platforms to be used, according to “Gartner’s
Magic Quadrant.” But they have been known to be more expensive, and offer
more complex solutions that are not well-​suited for SMBs as they attempt to
deploy Neural Network-​based applications.

	2)	Microsoft Azure:
Microsoft Azure (aka “Azure”) has been holding very steady second place, right
after the AWS also according to “Gartner’s Magic Quadrant.” Azure is espe-
cially appealing to those businesses that have legacy-​based workloads and for
those that are looking to deploy and implement brand new Neural Network
applications on a Cloud-​based Platform. More importantly, they also offer
very specialized platforms for what are known as “Platform as a Service” (aka
“PaaS”) applications, Data Storage, Machine Learning (which was the main
topic of Chapter 2), as well as even the Internet of Things (IoT), with services
based around all of these particular services. Also, software developers that are
keen on deploying NET-​based applications in the Cloud will probably find
Azure the best platform to be used in this regard as well. Also, Microsoft has
adopted the usage of other software-​based platforms into Azure, most not-
ably that of Linux and even Oracle. In fact, 50 percent of the Cloud-​based
workloads in Azure are Linux-​based. In fact, as also noted by Gartner:
“Microsoft has a unique vision for the future that involves bringing in
technology partners through native, first party offerings such as those of

164  |  High Level Overview into Neural Networks

from VMware, NetApp, Red Hat, Cray, and Databricks” (Artasanchez &
Joshi, 2020).

	3)	The Google Cloud Platform (GCP):
The Google Cloud Platform, aka the “GCP,” was first launched in 2018.
When compared to the AWS and Azure, it is ranked in third place in terms
of the Cloud-​based Providers. The GCP is primarily known for its Big Data
Cloud-​based offerings, and will soon be leveraging their platform in order
to service both SAP-​ and CRM-​based systems. The GCP is also known for
Automation, Containers, and Kubernetes and even Tensor Flow. The GCP
is primarily focused around making use of Open Sourced Platforms, such as
that of Linux.

	4)	The Alibaba Cloud:
This was first launched in 2017, and they primarily serve the Chinese market,
from both a private sector and government standpoint, especially for building
Hybrid Cloud platforms.

	5)	The Oracle Cloud Infrastructure (OSI):
The Oracle Cloud Infrastructure, also known as the “OCI” was first launched
back in 2017. They primarily offer Virtualized Machines (aka “VMs”) that
support primarily Oracle Database Workloads and other basic Infrastructure
as a Service (aka “IaaS”) Cloud-​based services.

	6)	The IBM Cloud:
Traditionally, IBM has been known for its sheer market dominance for both
the Mainframe and Personal Computing market segments. But as they started
to erode from view, they tried to embrace a Cloud-​based Platform in a manner
similar that of both the AWS and Axure. In this regard, their Cloud-​based
offerings include Container Platforms and other forms of PaaS offerings. The
IBM Cloud is primarily geared toward markets that still make use of IBM
mainframes as well as other traditional IBM workloads. IBM is also well-​
known for its AI package known as “Watson.”

The Neural Network Components of the Amazon
Web Services & Microsoft Azure
In this part of the chapter, we now focus on the various components that relate
Artificial Intelligence to the major platforms of the AWS and Azure.

The Amazon Web Services (AWS)

As it has been noted, the AWS has many components that an end user can utilize,
not just for Artificial Intelligence. However, when it comes to deploying Artificial
Intelligence, here are some of the components that any business can use:

High Level Overview into Neural Networks  |  165

The Amazon SageMaker

This package was initially launched in 2017. This is a specific type of Artificial
Intelligence platform in which both software developers and data scientists alike
can create, train, and implement AI models on a Cloud-​based Infrastructure. In
this regard, a very important subset of the Amazon SageMaker is known as the
“Jupyter Notebook.” These notebooks use certain kinds of source code, namely
that of Python, and AI algorithms can be contained within their infrastructure. It
is important to note that with the “Jupyter Notebook,” .EXE files can be compiled
very easily and quickly onto just about any kind of wireless device, especially
iOS and Android devices. Also, the Amazon SageMaker consists of the following
advantages:

	{ It is a fully managed service, so there are no worries with regards to security or
applying any sort of software patches or upgrades;

	{ Some of the most commonly used AI tools automatically come with the
Amazon SageMaker, and these have been extremely optimized so that any kind
or type of application that you can create will run ten times faster than other
kinds of AI deployments. Also, you can even deploy your own customized AI
algorithms into Amazon SageMaker;

	{ Amazon SageMaker provides just the right amount of optimization for any
type of workload that your AI application demands. In this regard, you
can use either the lower end “ml.t2.medium” virtual machine, or the ultra-​
sophisticated “ml.p3dn.24xlarge” virtual machine.

Also, the Amazon SageMaker allows for the data scientist and any software devel-
opment team to run smoothly and quickly with other AWS services which include
the following:

From the Standpoint of Data Preparation

	{ S3;
	{ RDS;
	{ DynamoDB;
	{ Lambda.

From the Standpoint of Algorithm Selection,
Optimization, and Training

As mentioned, the Amazon SageMaker has a number of very powerful mathemat-
ical algorithms that are both extremely fast and extremely accurate. These kinds of
algorithms can handle datasets of the size of petabytes, and further increase perform-
ance by up to ten times of other traditional AI mathematical algorithms. Here is a

166  |  High Level Overview into Neural Networks

sampling of what is currently available in terms of AI algorithms as it relates to the
Amazon SageMaker:

	{ The Blazing Text;
	{ The DeepAR Forecasting;
	{ The Factorization Machines;
	{ The K-​Means;
	{ The Random Cut Forest;
	{ The Object Detection;
	{ The Image Classification;
	{ The Neural Topic Model (NTM);
	{ The IP Insights;
	{ The K-​Nearest Neighbors (aka “k-​NN”);
	{ The Latent Dirichlet Allocation;
	{ The Linear Learner;
	{ The Object2Vec;
	{ The Principal Component Analysis;
	{ The Semantic Segmentation;
	{ The Sequence to Sequence;
	{ The XGBoost.

From the Standpoint of AI Mathematical
Algorithm and Optimizing

The Amazon SageMaker also comes with automatic AI Model Tuning, and in tech-
nical terms, this is known as “Hyperparameter Tuning.” With this process in hand,
the best, statistical patterns for your particular AI application are run through a
series of several mathematical iterations which make use of the datasets that your
AI application will be using. In terms of the metrics of the training, a “scorecard” is
also kept of the AI algorithms that are deemed to be running the best, so you can see
what will work best for your AI application.

To further illustrate this, imagine that you are trying to implement a Binary
Classification type of application. In terms of mathematics, at all possible levels,
you want to maximize what is known as the “Area Under the Curve,” or “AUC” for
short. This will be done by specifically training a mathematical model known as the
“XGBoost.” The following are the stipulations that will be utilized:

	{ Alpha;
	{ ETA;
	{ Min_​Child_​Weight;
	{ Max_​Depth.

High Level Overview into Neural Networks  |  167

From here, you can then command a certain range of permutations for the
“Hyperparameter Tuning” (Artasanchez & Joshi, 2020).

From the Standpoint of Algorithm Deployment

From the perspective of the software development team and the data scientist, deploying
an AI-​based model is actually a very easy, two-​phased approach, which is as follows:

	1)	You need to first configure the specific endpoints of your Cloud-​based AI appli-
cation so that multiple instances can be used in the same Virtual Machine (VM);

	2)	From here, you can then launch more AI-​based instances of your application
in order for various predictions to be made about the desired outputs. It is
also important to note at this point that the Amazon SageMaker APIs can also
work seamlessly with other types of AI instances, and because of this, you can
make your AI application even more robust.

Also, the Amazon SageMaker can work with the kinds of predictions that are deemed
to be both “batched” and “one-​offs” in nature. With regards to the former, these kinds
of predictions can be made on datasets that are contained and stored in the Amazon S3.

From the Standpoint of Integration and Invocation

The Amazon SageMaker provides the following kinds of tools:

	1)	The Web-​based API:
This specialized kind of API can be made use of in order to further control and
literally “invoke” a Virtual Server instance of the Amazon SageMaker.

	2)	The SageMaker API:
This kind of specialized API can make use of the following source code
languages:
	{ Go;
	{ C++;
	{ Java;
	{ Java Script;
	{ Python;
	{ PHP;
	{ Ruby;
	{ Ruby On Rails.

	3)	The Web Interface:
This is a direct interface to the Jupyter Notebooks.

	4)	The AWS CLI:
This is the Command Line Interface (CLI) for the AWS.

168  |  High Level Overview into Neural Networks

 The Amazon Comprehend

One of the key components of any Artificial Intelligence application is that of
Natural Language Processing, also known as “NLP” for short. It can be defined
specifically as follows:

Natural language processing (NLP) is a branch of artificial intelligence
that helps computers understand, interpret, and manipulate human lan-
guage. NLP draws from many disciplines, including computer science
and computational linguistics, in its pursuit to fill the gap between
human communication and computer understanding.

(SAS, n.d.)

In this regard, the AWS makes it easy for you to implement Natural Language
Processing for AI application, especially when it comes to human language, and
from there, it can ascertain any sort of implicit as well as explicit content in the
human languages that are spoken. In this regard, this can also be considered “Big
Data,” but on a qualitative level. For example, this can include customer support
emails, any form of feedback that is provided by the customer, especially when it
comes to product/​service reviews, any type of call center conversations, as well as
those that take place on the various social media sites, especially those of Facebook,
LinkedIn, and Twitter.

The name of the Natural Language Processing tool that is used by the AWS is
called “Amazon Comprehend.” It has the following functionalities:

	1)	Analyzing Use Cases:
This tool can very quickly and easily scan just about any type of document,
in an effort to find any statistical correlations or hidden patterns that reside
from within them. This includes such things as Sentiment Analysis, Entity
Extraction, and even Document organization, depending upon the specific
type of category that they belong in.

	2)	The Console Access:
Amazon Comprehend can be accessed very quickly and easily from within the
AWS Management Console. If you have large amounts of quantitative data
stored in the S3, you can easily integrate it with Amazon Comprehend. From
here, you can use a specialized API to find any correlations or any hidden
trends that are not noticeable at first. A key advantage here is that you can
even batch up various datasets from S3 in order for it to be further processed
by Amazon Comprehend. Also, Amazon Comprehend has six different APIs
that you can use, which are as follows:
	{ The Key Phrase Extraction API: This can be used to identify certain phrases

and/​or terms from within the qualitative dataset that is provided;

High Level Overview into Neural Networks  |  169

	{ The Sentiment Analysis API: This will compute the overall level of the
feeling of the text that is typed and/​or entered in by the individual and
rank it either as positive, negative, or neutral.

	{ The Syntax API: This allows you to differentiate between spoken words,
such as nouns, verbs, adjectives, pronouns, etc.

	{ The Entity Recognition API: This can be used to further identify the actual
entities in a text, such as those of places, people, etc.

	{ The Language Detection API: This can be used to specifically identify the
language in which the text is conveyed in.

	{ The Custom Classification API: With this powerful API, you can even
create and deploy a customized classification model for your AI application.

Amazon Rekognition

Amazon Rekognition is a tool in the AWS that has been built specifically for the
processing of any sort of images and/​or videos that you might be using for your AI
application. This is a very powerful tool to use in the sense that it has been literally
pretrained with billions of images that it can easily recognize. Although it may sound
very complex, on the contrary, it is quite easy to use, because it makes use of Deep
Learning mathematical algorithms that are already stored in the AWS via just one API.

The following is just a sampling of how it can be used for AI applications:

	{ Object and Scene Detection;
	{ Gender Recognition;
	{ Facial Recognition: This is where a specific individual’s identity is confirmed

by the unique features that are found on their face. When used with the AWS,
it makes use of Deep Learning techniques and algorithms.

Amazon Translate

As its name implies, this tool in AWS can literally translate any form of written
text quickly and easily into another language. The foreign languages that Amazon
Translate supports are demonstrated in the following matrix, along with its specific
code that is used to identify in it both the AWS and Amazon Translate:

Language The AWS Language Code

Arabic ar

Chinese (simplified) zh

Chinese (traditional) zh-​TW

Czech cs

170  |  High Level Overview into Neural Networks

Language The AWS Language Code

Danish da

Dutch nl

English en

Finnish fi

French fr

German de

Greek el

Hebrew he

Hindi hi

Hungarian hu

Indonesian id

Italian it

Japanese ja

Korean ko

Malay ms

Norwegian no

Persian fa

Polish pl

Portuguese pt

Romanian ro

Russian ru

Spanish es

Swedish sv

Thai th

Turkish Tr

Ukrainian uk

Urdu ur

Vietnamese vi

High Level Overview into Neural Networks  |  171

The Amazon Translate can be accessed from three different methods:

	{ From the AWS Management Console;
	{ Using a specially crafted AWS API;

Supported source code languages include the following:
*Go;
*C++;
*Java;
*Java Script;
*Python;
*PHP;
*Ruby;
*Ruby On Rails.

	{ From the AWS CLI.

Amazon Transcribe

This tool in the AWS makes use of what is known as “Automatic Speech
Recognition,” or “ASR” for short. With this, your software development team can
easily and quickly incorporate speech to text functionalities to your AI application.
It can also analyze and transcribe audio MP3 files, which can also be used in real
time as well. For example, it can take a live audio stream and provide the text in
real time. It can even provide a time stamp for each and every word that has been
transcribed.

Amazon Textract

One of the most difficult obstacles for any kind of AI application is to recognize the
specific handwriting of a particular individual. In other words, it can take garbled
handwriting, convert into an image, and from there extract it into a text-​based
format. Amazon Textract can even ascertain the layout of any form of document
and the elements that are associated with it. It can even extract data that are present
in embedded forms and/​or tables.

Microsoft Azure
In the world of Microsoft Azure, it is the “Azure Machine Learning Studio” that
consists of all of the tools you have ever dreamed of in order to create and build an
Artificial Intelligence (AI) application. It makes use of a GUI-​based approach in
order to do this, and it can even integrate with other Microsoft tools, most notably
that of Power BI.

172  |  High Level Overview into Neural Networks

 The Azure Machine Learning Studio Interactive
Workspace

As its name implies, this is an interactive workspace of sorts in which you can feed
in gargantuan datasets into your AI application, manipulate it, and then complete
an exhaustive analysis of it with many ultra-​sophisticated statistical functions and
formulas, and even get a glimpse of what the outputs will look like from the AI
system that you have just built. This entire process is also technically referred to as
the “Machine Learning Pipeline.” The main advantage of this is that everything in
this process is visually displayed.

It should be noted that the above process can be repeated over and over again
as a so-​called “Training Experiment” until the results you are seeking have been
achieved. Once this has been done, this exercise can then be converted over into the
production environment, which is known as the “Predictive Experiment.”

The Machine Learning Studio consists of the following functionalities:

	{ Projects:
These are a collection of both the Training Experiment and the Predictive
Experiment.

	{ Experiments:
These are where specific experiments are actually created, revised, launched,
and executed.

	{ Web Services:
Your production-​based experiments can also be converted to specific Web-​
based services.

	{ Notebooks:
The Machine Learning Studio also supports the Jupyter Networks, which is
an exclusive service from the AWS.

	{ Datasets:
This is where you upload and store your respective datasets that are to be fed
into your AI application.

	{ Trained Models:
These are the specific AI models that have you have created and thus have
been in trained in the Training Experiment or the Predictive Experiment.

It should be noted at this point that there are certain conditions that must be met
first before you can start creating and launching AI models and applications. These
are as follows:

	{ You must have at least one dataset and one module already established;
	{ The datasets that you are planning to feed into your AI models/​applications

can only be connected to their respective modules;
	{ Modules can be quickly and easily connected to other models;

High Level Overview into Neural Networks  |  173

	{ There must be at least one connection to the datasets that you are planning to
feed into the AI models/​applications;

	{ You must already have preestablished the needed permutations before you can
begin any work.

It should be noted at this point that a module is simply an algorithm that can be
used to further analyze your datasets. Some of the ones that are already included in
the Machine Learning Studio include the following:

	1)	The ARFF Conversion Module:
This converts a .NET dataset into an Attribute-​Relation File Format (aka
“ARFF”).

	2)	The Compute Elementary Statistics Module:
This computes basic statistics, such as R^2, Adjusted R^2, Mean, Mode,
Median, Standard Deviation, etc.

	3)	Various Multiple Regression Models:
You have a wide range of statistical models that you can already choose from,
without creating anything from scratch.

	4)	The Scoring Model:
This can quantitatively score your Multiple Regression Model that you plan
to use for your AI application.

The Azure Machine Learning Service

This is another large platform of Azure which allows your AI applications to be much
more scalable. It supports the Python source code, which is the programming language
of choice for most typical AI applications. It also makes use of Docker Containers as
well. It can be accessed from two different avenues, which are as follows:

	{ The Software Development Kit (SDK);
	{ Any other type of visual-​based interface, primarily that of the Microsoft

Visual Studio.

The primary differences between the Azure Machine Learning Services and the
Azure Machine Learning Studio are outlined in the following matrix:

Azure Machine Learning Services Azure Machine Learning Studio

It supports a Hybrid Environment of
the Cloud and On Premises

Only standard experiments can be
created, launched, and executed

You can make use of different
frameworks and instances of Virtual
Machines

It is a fully managed by Azure

174  |  High Level Overview into Neural Networks

Azure Machine Learning Services Azure Machine Learning Studio

It supports Automated
Hyperparameter Tuning

It is only available in the Cloud, not
as an On Premises solution

The Azure Cognitive Services

This specific service has the following components to it:

	1)	The Decision Service:
As you deploy your various AI applications, certain recommendations
will be provided by this system so that to you can make better decisions
as to how to further improve the efficiency and optimization of your AI
application.

	2)	The Vision Service:
This can auto-​enable your AI application so that it can analyze and manipu-
late images and videos.

	3)	The Search Service:
You can incorporate the Bing Search Engine into your AI application.

	4)	The Speech Service:
This can convert any spoken words into text format. It also fully supports the
Biometric modality of Speech Recognition.

	5)	The Language Service:
This is the Natural Language Processing (NLP) component of Azure, and
it can quickly and easily analyze the sentiment of anything that has been
communicated, especially those used in chatbots.

The Google Cloud Platform
When compared to the AWS and Azure, the Google Cloud Platform comes in at a
rather distant third place. The biggest component of the GCP is what is known as
the “AI Hub.” This is a huge interface that consists of plug and play components,
sophisticated AI algorithms, instant collaboration features, as well as the ability to
import a large amount of datasets that have been stored with other Cloud Providers.
Here are some of the key features of the AI Hub:

	1)	Component and Code Discovery:
Through this, you can access the following components:
	{ Google AI;
	{ Google Cloud AI;
	{ Google Cloud Partners.

High Level Overview into Neural Networks  |  175

	2)	Collaboration:
This component helps to avoid duplication, especially if you are building a
large scale AI project as part of a massive team effort. It possesses very granular
types of controls, and even comes with a set of AI algorithms that you can use
right out of the box.

	3)	Deployment:
This particular functionality allows for the full modification and customiza-
tion of the AI algorithms that you are either planning to use or are in the
process of using for your AI application. Once you have built your appli-
cation, you can even host them on the platforms of other Cloud Providers
as well.

The Google Cloud AI Building Blocks

The Google Cloud Platform (GCP) comes with many other tools as well, which are
as follows:

	1)	The Google Cloud AutoML Custom Models:
The AutoML makes use of a very sophisticated Learning and Neural Network
Architecture so that you can create a very specific AI application in a par-
ticular subdomain of Artificial Intelligence.

	2)	The Google Cloud Pre-​Trained APIs:
With this, you can literally use specially trained APIs without first having your
AI application learn to go through the entire training process. A great feature
of these is that these specific APIs are constantly being upgraded to keep them
optimized and refined for powerful levels of processing and speed.

	3)	The Vision AI and AutoML Vision:
With this kind of service, you can gain timely insights from the AutoML
Vision or the Vision API models, which are actually all pretrained. It can
actually be used to detect the emotion of an individual, especially if you are
using your AI application for a sophisticated chatbot tool. Further, with the
Google Vision API, you can even make use of both “RESTful” and “RPC
API” calls. With these respective APIs, you can quickly and easily classify any
sort of image that you may upload into your AI application. This is actually a
service that has already been pretrained, and it consists of well over a million
category types. It can be used to convert speech to text, and for incorporating
Facial Recognition technology into your AI system.

	4)	The AutoML Intelligence and Video Intelligence API:
This is a service with which you can track and classify objects in a video, using
various kinds of AI models. You can use this service to track for objects in
streaming video as well.

176  |  High Level Overview into Neural Networks

5)	The AutoML Natural Language and Natural Language API:
Through an easy to use API, you can determine all sorts of “sentiment,” which
include the following:
	{ Entity Analysis;
Sentiment Analysis;
	{ Content Classification;
	{ Entity Sentiment Analysis;
	{ Syntax Analysis.
You can even feed datasets into it in order to determine which ones are best
suited for your AI application.

6)	Dialogflow:
This is actually a software development service, in which a software devel-
opment team can create an agent that can engage in a conversation with a
real person, such as, once again, a chatbot. Once this has been done, you can
launch your chatbot instantly across these platforms:
	{ Google Assistant;
	{ Facebook Messenger;
	{ Slack;
	{ The Alexa Voice Services.

7)	Text to Speech:
With this, you can quickly and easily convert any human speech into over
30 different foreign languages and their corresponding dialects. In order to
do this, it makes use of a Speech Synthesis tool called “WaveNet” in order to
deliver an enterprise grade MP3 audio file.

8)	 Speech to Text:
This is simply the reverse of the above. With this, you can also quickly
and easily convert the audio files into text by using the Neural Network
algorithms that are already built into the Google Cloud Platform. Although
these algorithms are quite complex in nature, they can be invoked quite easily
and quickly via the usage of a specialized API. In this regard, over 120 sep-
arate languages are supported, as well as their dialects. Speech to Text can be
used for the following purposes:
	{ It can enable any kind of voice command in any sort of application;
	{ It can transcribe call center conversations;
	{ It can easily co-​minge with other non-​Google services that are AI related;
	{ It can process audio in real time and convert speech to text from prerecorded

conversations as well.
9)	The AutoML Tables:

With this type of functionality, you can deploy your AI models on purely
structured datasets. Although no specific coding is required, if it needs to be
done, then you make use of “Colab Notebooks.” It works in a manner that is
very similar to the Jupyter in the AWS.

High Level Overview into Neural Networks  |  177

	10)	 Recommendations AI:
This is a unique service in that can deliver any type of product
recommendations for a customer-​related AI application, once again, like
that of a chatbot.

We have now reviewed what the major Cloud Providers, the Amazon Web
Services, Microsoft Azure, and Google offer in terms of AI-​related services. We
now examine some AI applications that you can build, making use of the Python
source code.

Building an Application That Can
Create Various Income Classes
In this example, we look at how to use the Python source in order to create an appli-
cation that can create different classifications for various income levels for an entire
population as a whole. This can work very well for the Federal Government, espe-
cially when it comes to tax purposes and/​or giving out entitlements and benefits.

This example makes use of a dataset that consists of a population of 25,000
people:

Input file containing
Data input_​file = ‘income_​data.txt’
Read the data
X=[]
Y = []
Count_​Class1 = 0
Count_​Class2 = 0
Max_​datapoints = 25000
With open (input_​file, ‘r’) as f:
    For line in f. readiness ():
        If count_​Class >=max_​datapoints and Count_​Class2 >=max_​

datapoints
    Break
If ‘?’ in line:
    Continue
    Data = line [:-​1].split (‘,’)
    If data [-​1] ==”<=50K” and Count_​Class1 < max_​datapoints;
        X.append(data)
        Count_​Class1 ==1
    If data [-​1] ====”>50K” and Count_​Class2 < max_​datapoints;
        X.append(data)

178  |  High Level Overview into Neural Networks

        Count_​Class2 +-​1
    # Convert to numpy array
    X = np.array
    #Convert string data to numerical data
    Label_​encoder = []
    X_​encoded = np.empty (X.shape)
    For I, item in enumerate (X[0]‌);
        If item.isdigit ();
            X_​Encoded [;, i] = X [:, 1]
        Else:
            Label_​encoder.append(preprocessing.LabelEncoder ())
            X_​Encoded [:, i] = label_​enocder [-​1].fit.tranform (X[:, 1])
        X = X_​encoded [:, :-​1], astype (int)
        Y = X_​encoded [:, :-​1], astype (int)
#Create SVM classifier
Classifier = OneVaOneClassifier (LinearSVC (random_​state=0);
#Train the Classifier
Classifier.fit (X, y)
#Cross Validation
X_​train, X_​test, y_​train, y_​test = train_​test_​split.train_​test_​
Split (X, y, test_​size=0.2, random_​state=5)
Classifier = OneVaOneClassifier (LinearSVC (random_​state=0);
Classifier.fit (X_​train, y_​train)
Y_​test_​pred = classifier.predict (X_​test)
#Compute the F1 score of the SVM Classifier
F1 = train_​test_​split.cross_​val_​score (classifier, X, y, scoring=’f1_​weighted’,

cv=3)
Print (“F1 score: + str(round(100*f1.mean(), 2)} + “%”
#Predict output for a test datapoint
Input_​data = [‘32’, ‘Public’ or ‘Private’, ‘34456’, ‘College Graduate’, ‘Married’,

‘Physician’ ‘Has Family’, ‘Caucasian’, ‘Female’, 23’, ‘United States’]
#Encode test datapoint
Input_​Data_​Encoded = [-​1] * len(input_​data)
Count = 0
For I, item in enumerate (input_​data);
    If item.isdigit ():
        Input_​data_​encoded [i]‌ = int (input_​data [i])
    Else:
        Input_​data_​encoded[i]‌ = int (label_​encoder[count].
    Transform(input_​data[i]‌))
    Input_​data_​encoded = np.array(input_​data_​encoded)
#Run classifier on encoded datapoint and print output

High Level Overview into Neural Networks  |  179

Predicted_​class = classifier.predict (input_​data_​encoded)
Print (label_​encoder [-​1].inverse_​transform (predicted_​class) [0]‌)

(Artasanchez & Joshi, 2020).

Building an Application That Can Predict
Housing Prices
In good economic times, one of the markets that tends to really get a lot of attention
and become “red hot” is that of real estate. This is especially true if you are trying
to “flip” a house for a higher value, or just want to sell your existing home. This
application can even be used to predict the market value for a house that you wish
to purchase. The opposite of this is also true. The model developed here can also
be used with other financial-​based models in the case of an economic downturn, in
which real estate prices can greatly fluctuate.

Here is the Python source code to create this kind of application:

#Load housing data
Data = datasets.load_​boston()
#Shuffle the data
X, y = Shuffle(data.data, data.target, random_​state=32)
#Split the data into training and testing datasets
Num_​training = int (0.8 * len (X))
X_​trai, Y_​train = X[:num_​training], y[:num_​training]
X_​test, Y_​test = X(num_​training;), y[num_​training:]
#Create Support Vector Regression model
Sv_​regressor = SVR(kernel = ‘linear’, C=1.0 epsilon=0.1)
#Train Support Vector Regressor
Sv_​regressor.fit (X_​train, Y_​train)
#Evaluate performance of Support Vector Regressor
Y_​test_​pred = sv_​regressor.predict (X_​test)
MSE=mean_​squared_​error (y_​test, y_​test_​pred)
EVS = explained variance score (y_​test, y_​test_​pred)
Print (“\n### Performance ###”)
Print (“Mean squared error =”, round (mse, 2))
Print (“Explained variance score =”, round (evs, 2))
#Test the regressor on test datapoint
Test_​data = (Iterations of housing pricing datasets)
Print (“\nPredicted Proce:”, sv_​regressor.predict ([test_​data]) [0]‌)

(Artasanchez & Joshi, 2020).

180  |  High Level Overview into Neural Networks

 Building an Application That Can Predict Vehicle
Traffic Patterns in Large Cities
Although many people are working from home because of the COVID-​19 pan-
demic, traffic still exists. It may not be so much in the rural areas, but in the much
larger metropolitan areas, there are still large amounts of traffic. Given this and
the fact that just about anything can disrupt the smooth flow of vehicle traffic,
whether it is due to weather, a large accident, or even a Cyberattack, government
officials need to have a way in which they can predict what traffic will look like
based upon certain outcomes, such as using the permutations just described. Also,
the drivers of vehicles need to be constantly updated via their mobile app (especially
that of Google Maps), if there is a new route to be taken, in the case of a large scale
traffic jam.

Here is the Python source code to help create such an application:

#Load input data
Input_​file = ‘traffic data.txt’
Data = []
With open (input_​file, ‘r’) as f:
    For line in f.readiness ();
        Items = line [:-​1], split (‘,’)
        Data.append (items)
Data=np.array(data)
#Convert string data to numerical data
Label_​Encoder = []
X_​encoded = np.empty (data.shape)
For I, item in enumerate (data[0]‌):
    If item.isdigit ():
    X_​encoded (:, i) = data [:, i]
    Else:
        Label_​encoder.append (preprocessing.LabelEncoder(;)
        X_​encoded [;, i] = label_​encoder [-​1].fit_​transform(data[I, 1])
    X = X_​encoded [:, :-​1].astype(int)
    Y = X_​encoded [:, -​1].astype(int)
#Split data into training and testing datasets
X_​train, X_​test, y_​train, y_​test = train_​test_​split(
    X, y, test_​size=0.25, random_​state=5)
#Extremely Random Forests Regressor
Params = {‘n_​estimators’: 100, ‘max_​depth’: 4, ‘random_​state’:0)
Regressor = ExtraTreesRegressor (**params)
Regressor.fit (X_​train, y_​train)
#Compute the regressor performance on test data
Y_​pred = regressor.predict (X_​test)

High Level Overview into Neural Networks  |  181

Print (“Mean absolute error:”, round (mean_​absolute_​error (y_​test, y_​
pred), 2))

#Testing encoding on single data instance
Test_​datapoint = [‘Friday’, ‘6 PM CST’, ‘Chicago’, ‘no’]
Test_​datapoint_​encoded = [-​1] * len(test_​datapoint)
#Predict the output for the test datapoint
Print (‘Predicted Traffic:”, int (regressor.predict ([test_​datapoint_​

encoded]) [0]‌))

(Artasanchez & Joshi, 2020).

Building an Application That Can Predict
E-​Commerce Buying Patterns
As the COVID-​19 pandemic is expected to go on for quite some time, many con-
sumers are now opting to shop online straight from their wireless devices for the
products and services that they need to procure, rather than visiting the traditional
brick and mortar stores for these kinds of activities. Thus, it will become very
important for E-​Commerce merchants to have an application that can help to predict
buying patterns on a real-​time basis, and to even gauge what future buying patterns
will look like, so that they can appropriately store the needed inventory levels.

Here is the Python source code to help create such an application:

#Load data from input file
Input_​file = ‘sales.csv”
File_​reader = csv.reader (open(inout_​file, ‘r’), delimeters=’, ‘
X = []
For count, row in enumerate (file_​reader):
If not count:
    Names = row[1:]
    Continue
X.append ([float(x) for x in row [1:]])
#Convert to numpy array
X= np.array(X)
#Estimating the bandwidth of input data
Bandwidth = estimate_​bandwidth (X, quantile=0.8, n_​samples=len(x))
#Compute clustering with MeanShift
Meanshift_​model = Meanshift (bandwidth=bandwidth, bin_​seeding=True)
Meanshift_​model.fit (X)
Labels = meanshift_​model.labels_​
Cluster_​centers = meanshift_​model.cluster_​centers_​
Num_​clusters = len (np.unique(labels))

182  |  High Level Overview into Neural Networks

Print (“\nNumber of clusters in input data =” num_​clusters)
Print (“\nCenters of clusters:”
Print (‘\t.join([name[:3] for in names]))
For cluster_​center in cluster_​centers:
    Print(‘\t’.join([str(int(X)} for X in cluster_​center]))
#Extract two features for visualization
Cluster_​centers_​2d = cluster_​centers[:, 1:3]
#Plot the cluster centers
Plt.figure()
Plt.scatter (cluster_​centers_​2d{:, 0], cluster_​centers_​2d[:1,1],
    S=120, edgecolors=’blue’, facecolors=’none’]
Offset=0.25
Plt.xlim (cluster_​centers_​2d[:, 0].max() + offset * cluster_​
Centers_​2d[:, 0].ptp,
    Cluster_​centers_​2d[:,0], max() + offset *cluster
Centers_​2d[:, 0].ptp(),
Plt.ylim (cluster_​centers_​2d[:, 1].max() + offset * cluster_​
Centers_​2d[:, 1].ptp(),
    Cluster_​centers_​2d[:,1], max() + offset *cluster_​
Centers_​2d[:, 1].ptp())
Plt.title (‘Centersof 2D Clusters’)
Plt.show()

(Artasanchez & Joshi, 2020).

Building an Application That Can Recommend
Top Movie Picks
As it has been described throughout this book, the use of chatbots is probably one
of the biggest applications of not just Artificial Intelligence, but of Neural Networks
as well. The idea behind all of this is that the conversation with either the prospect
or the customer should be a seamless one, in which he or she is feeling that they
are engaging with a real human being. One of the basic thrusts of this is to also to
try to predict in advance what the questions, concerns, or queries might be based
upon previous conversations and interactions with the chatbot. In this application,
we examine how to embed such a conversation when it comes to recommending
movies for an individual. In a way, this is a primitive version of what Virtual Personal
Assistants (VPAs) like Siri and Cortana can do as well.

Here is the Python source code:

Import argparse
Import json

High Level Overview into Neural Networks  |  183

Import numpy as np
From compute_​scores import pearson_​score
From collaborative_​filtering import find_​similar_​users
Def build_​arg_​parser ():
    Parser = argparse.ArgumentParser (description=’Find recommendations
For the given user’)
    Parser.add_​argument (‘—​user’, dest=’user’, required=True,
        Help=’Input user’)
    Return parser
#Get movie recommendations for the input user
Def get_​recommendations (dataset, input_​user):
    If input_​user no in dataset
        Raise TypeError (‘Cannot find ‘ = input_​user + ‘ in the
    Dataset’)
    Overall_​scores = {}
    Similarity_​scores = {}
    For user in [x for x in dataset if x [= input_​user]:
            Similarity_​score = pearson_​score (dataset, input_​user, user)
            If similarity_​score <=0:
                Continue
        Filtered_​list = [x for x in dataset[user] if x not in \
            Dataset[input_​user] or dataset [input_​user] [x]‌ ==0]
        For item in filtered_​list:
            Overall_​scores.update ({item: dataset[user] [item] *
        Similarity_​score})
                Similarity_​scores.update ({item: similarity_​score})
        If len (overall_​scores) == 0:
                Return [‘No movie recommendations are possible’}
#Generate movie selection rankings by normalization
Movie_​scores = np.array {[(score/​similarity_​scores(item), item]
    For item, score in overall_​scores.items())]}
#Sort in decreasing order
Movie_​scores = movie_​scores [np.argsort (movie_​scores [:, 0]) [::-​1]]
#Extract the movie selection recommendations
Movie_​recommendations = [movie for_​, movie in movie_​scores]
Return movie_​recommendations
If_​_​_​name_​_​_​ = = _​_​_​_​main_​_​_​_​’:
    Args = build_​arg_​parser().parse_​args()
    User = args.user
    Ratings_​file = ‘ratings.json’
    With open (ratings_​file, ‘r’) as f:
        Data = json.loads (f.read())
    Print (“\nMovie recommendations for” + user +“:”)

184  |  High Level Overview into Neural Networks

    Movies = get_​recommendations (data,user)
    For I, movie in enumerate (movies):
        Print (str(i+1) + ‘-​ ‘ + movie)

(Artasanchez & Joshi, 2020).

Building a Sentiment Analyzer Application
So far in this chapter, one of the subjects that has been discussed is what is called as
“Sentiment Analysis.” With this, the AI application is trying to gauge what the lit-
eral mood is of the end user when any communication is received in a written text
format. Even when the message is spoken, given the sheer levels of sophistication
of both the AWS and Azure, the Biometric modality of Voice Recognition can be
used to gauge the particular mood of the individual as well. This kind of concept
is typically deployed in real-​time market research, especially when it comes to test
marketing a brand new product or service before it is launched to the mass public.
In this application, we make use of hypothetical movie review files illustrated in the
last application.

Here is the Python source code:

From nltk.classify import NaiveBayesClassifier
From nltk.classify.util import accuracy as nltk_​accuracy
#Extract features from the input list of words
Def extract_​features (words):
    Return dict([word, True) for word in words])
If_​_​_​_​name_​_​_​_​==’_​_​_​_​main_​_​_​_​’:
    #Load the data from the corpus
    Fields_​pos = movie_​reviews.fields (‘pos’)
    Fields_​neg = movie_​reviews.fields (‘neg’)
#Extract the features form the movie reviews
Features_​pos = [(extract_​features (movie_​reviews.words(
    Fileside=[f]‌)), ‘Positive’) for f in fields_​pos]
Features_​neg = [(extract_​features (movie_​reviews.words(
    Fileside=[f]‌)), ‘Negat’) for f in fields_​pos]
#Define the train and test split (80% and 20%)
Threshold = 0.8
Num_​pos = int (threshold = len (features_​pos))
Num_​neg = int (threshold = len (features_​neg))
#Create training and training datasets
Features_​train = features_​pos [:num_​pos] + features_​neg [:num_​neg]
Features_​test = features_​pos [:num_​pos] + features_​neg [:num_​neg]
#Print the number of datapoints that are used

High Level Overview into Neural Networks  |  185

Print (‘\nNumber of training datapoints:’, len (features_​train))
Print (‘Number of test datapoints: ‘, len (features_​test))
#Train a Naïve Bayes classifier
    Classifier = NaiveBayesClassifier.train (features_​train)
Print (‘\nAccuracy of the classifier:’, nltk_​accuracy(
Classifer, features_​test))
N=15
Print (‘\nTop ‘ + str(N) + most informative words:’)
For I, item in enumerate (classifier.most_​informative_​features()]:
    Print (str (i+1) + ‘, ‘ + item[0]‌)
    If I == N -​1
        Break
    #Test input movie reviews
    Input_​reviews = [
        ‘Movie was great’,
        ‘Movie was good’,
        ‘Movie was OK’,
        ‘Movie was bad’,
        ‘Movie was horrible’,
        ‘I would not recommend this movie’,
        ‘I would recommend this movie’,
           ]
    Print(“\nMovie review predictions:”)
    For review in input_​reviews:
        Print(“\nReview:”, review)
    #Compute the statistical probabilities
    Probabilities = classifier.prob_​classify (extract_​
Features (review.split()))
#Pick the maximum value
Predicted_​sentiment = probabilities.max ()
#Print outputs
Print (“Predicted sentiment:”, predicted_​sentiment)
Print (“Probability:”, round (probabilities.prob (predicted_​sentiment),))

(Artasanchez & Joshi, 2020).

Application of Neural Networks to Predictive
Maintenance
Preventing equipment failures and accidents is critical for companies and governments.
Unnecessary downtime can reduce revenues and increase costs significantly, nega-
tively impacting profitability. In military and defense, not only is this expensive, but
critical missions can be impacted or canceled. These can also result in significant

186  |  High Level Overview into Neural Networks

human injury or death. Thus, significant value is attached to predicting and avoiding
these failures and accidents. Predictive maintenance can be a key to avoiding such
events.

Physics-​based models have typically been used to identify when a complex
machine or process is trending toward failure. Completely accurate physics mod-
eling of all of the complex interactions between subsystems is not currently possible.
Furthermore, as the assets age, undergo maintenance, and have parts replaced, the
behavior of the system begins to drift from the original physics models. What is
required are models that can learn how the system is changing over time. Machine
Learning models using Neural Networks are capable of doing just that.

As has been emphasized before, Machine Learning models require lots of
training data, and that is even more true for Neural Networks. Fortunately, modern
machinery and processes have a large number of sensors measuring temperature,
pressure, vibration, fluid flow, etc. which are collected and stored in data historians.
So, more than enough data is generally available for training Neural Network
models.

However, as described in the previous chapters, Machine Learning techniques
use supervised learning which requires that the training data be labeled with the
expected results. In this case, this means labeled examples of equipment or pro-
cess failures. Labeled training data of this type could be generated by running a
collection of these industrial assets to failure in all of the possible failure modes.
Obviously, this is impractical given the complexity and expense of these indus-
trial systems. Furthermore, these systems are inherently highly reliable, which fur-
ther complicates collecting data of actual failures. Thus, what is available is a large
quantity of historical data with a very limited subset of past failure modes. This
limited amount of labeled training data usually makes supervised Machine Learning
techniques ineffective.

Normal Behavior Model Using Autoencoders

One approach to tackling this problem is to create a model of normal behavior of
the asset by training a model using only historical sensor data from all of the normal
modes of operation of the asset. If an asset has never failed, this would include all of
the past data. Any data from periods of abnormal or failure events will need to be
excluded. A model that has learned the normal operation of an asset will be able to
indicate when it is beginning to act abnormally which is often a sign of impending
failure or suboptimal operation.

A Neural Network Autoencoder described on pages xx-​yy is well suited to
learn the normal behavior of an asset from historical sensor values from the asset.
Remember that an autoencoder attempts to copy its Input to its Output through
a constrained coding or latent layer that creates the desired encoding. The diagram
of an autoencoder is repeated below. Since the autoencoder is learning X’ from X,

High Level Overview into Neural Networks  |  187

the training data is self-​labeled. All that is required is to remove any abnormal data
from the training set.

The relevant sensors for the asset are the inputs X. The Encoder learns how to
compress the input data into normal operating states encoded in the latent space
H. The Decoder also learns how to decode the latent space H to reconstruct the
inputs as X’. The latent space, H, needs to be as small as possible, but still large
enough to represent all the important normal operating states. Statistical analysis of
the data (e.g. Principle Component Analysis or PCA) can determine an appropriate
value for H. The model is then trained to minimize the differences between X and
X’ for all of the training data.

Once trained, live operational data can be fed to the model to predict a new X’.
If the error between the predicted X’ and X is small, the asset is most likely oper-
ating in a normal operating state that is close to one of the states in the training
data. As this prediction error increases, the likelihood that the asset is operating in a
state not seen during the training data increases since the model is having difficulty
reconstructing the input data. The X’ values with the largest prediction errors also
provide important clues to human operators as indicators to what is abnormal about
the current operating state which is critical for explainability and for identification
of the actions that need to be taken to correct the abnormality.

Wind Turbine Example

Wind Turbines have become an important source of renewable energy and can be
seen on the horizon in many places around the world. They also provide a relatively
straightforward example for the application of Neural Network Autoencoders to
predict pending failure events. When a Wind Turbine fails, it can take weeks to
schedule the necessary crane and other equipment required to make the repairs.
During that time, all the electricity (and revenue) that Wind Turbine could have
produced is lost forever. Thus, predicting pending failure with sufficient warning is
critical to maximizing the revenue from a farm of Wind Turbines.

A simple diagram of a Wind Turbine is shown below. They typically consist of
three large rotor blades which are pointed into the prevailing wind. The rotors have
airfoils similar to the wings on an airplane. The Bernoulli effect across the rotors
pulls them around in a circle. This rotates a shaft within the Main Bearing. The Gear

188  |  High Level Overview into Neural Networks

Box translates the slower rotation (RPM) of the rotors to the higher RPM required
for efficient electricity generation in the generator. Each of these components within
the Wind Turbine can be a source of failure and need to be modeled to predict
pending failure. Modeling normal behavior for the main bearing will be used as an
example.

For this example, the main bearing temperature sensor will be the primary
sensor used to indicate a pending problem with the main bearing. Below are graphs
of the air temperature and wind speed near Oakley, Kansas for 2019 from publicly
available NOAA weather data and is not from an actual wind farm (though wind
farms are plentiful in western Kansas). The air temperature plot shows the annual
seasonality trend of winter in January, through summer, and then back to winter in

Figure 3.1  Wind Turbine Generator Diagram.

High Level Overview into Neural Networks  |  189

December. The daily temperature cycle from cooler in the morning to warmer in the
afternoon is also visible in this plot.

The wind speed is variable, but not obviously seasonal. A simple spreadsheet
simulation of a wind turbine shows that the rotation speed of the turbine (RPM)
follows the wind speed except when the wind speed exceeds the upper bound of the
rotational capability of the turbine. The RPM is normalized between 0 and 10 for
these graphs. The main bearing temperature follows the air temperature but is gen-
erally higher due to frictional heating when the turbine is spinning.

190  |  High Level Overview into Neural Networks

 -10

-5

0

5

10

15

20

Wind Turbine RPM and Main Bearing Temperature

Air Temp Wind m/s Normalized RPM Main Bearing Temp

This graph plots all four inputs starting in late October 2019. The green and
yellow lines show how the RPM tracks the wind speed until the maximum RPM
capabilities of the Turbine is reached. The main bearing temperature in red tracks
the air temperature but drifts higher when the RPM of the rotor increases the main
bearing temperature due to frictional heating. When the high winds of a cold front
come in, the main bearing temperature stays noticeably above the air temperature
until after the front has passed and the wind speed returns to a more normal range.
From there, the RPM decreases and the main bearing temperature again tracks the
air temperature.

A Neural Network Autoencoder can be trained to learn all of these relationships
simply from learning how to reconstruct these four inputs plus other relevant sensors
on the wind turbine such as blade angles, nacelle temperature, vibration sensors, etc.
Once the autoencoder has been trained, it can be used to predict these inputs using
live data from the wind turbine. If the main bearing begins to suffer mechanical
damage, which increases frictional heating, the model will continue to predict the
blue line below, but the actual temperature will begin to deviate to the orange values,
indicating the need for maintenance activity. Once repaired, the main bearing tem-
perature returns to matching the predicted values.

-20

0

20

40

60

Main Bearing Temperature Devia�on from predic�on
due to addi�onal fric�onal
hea�ng

Autoencoders, by definition, have the same inputs X as outputs X’. However,
for normal behavior models of physical assets, some modifications are often
useful in industrial applications. For example, in this wind turbine case, accur-
ately predicting the air temperature and wind speed are not relevant to detecting

High Level Overview into Neural Networks  |  191

pending issues with the turbine as the operator has no control over the wind or
temperature. These important, but exogenous inputs can be provided as a set of
inputs Y to the encoder that are not included in the outputs X’ that the decoder is
attempting to reconstruct.

Likewise, time-​delayed versions of some of the X inputs can be included in Y,
allowing the model to learn time-​dependencies in the data. For example, the change
in RPM is not instantaneous with a change in wind speed due to the momentum
of the large rotors. Likewise, the frictional temperature changes also lag behind the
changes in RPM or changes in the air temperature and at different rates. Thus, the
neural network encoder may have some subset of Xn, Xn-​1, Xn-​2, … Xn-​m as well as Y
all being fed to the encoder and then used by the decoder to predict X’. This diagram
illustrates this concept.

The Wind Turbine example is much simpler than most normal behavior models
that would be created for predictive maintenance. A more typical asset would
have tens of sensors in X’. In these cases, the signal of abnormal behavior may be
contained in the reconstruction error of more than one sensor. Thus, some form of
aggregate score using something like Mean Squared Error (MSE) or Hoteling score
is used to create a single “abnormality” score. In all cases, the reconstruction error for
each sensor is generally a good indicator to the operator of what action to take (e.g.
the vibration or temperature is too high).

Given a reasonable set of normal training data, normal behavior models built
from neural network autoencoders can be very good at detecting when an asset is
behaving differently than it has in the past. However, these models cannot distin-
guish between abnormal behavior that requires maintenance and an asset that is
now operating in a “new normal” state. The latter can happen after repair or main-
tenance in which new parts or lubrication have changed the relationships between
the inputs. If the operator determines that the model is detecting a “new normal,”
the model will need to be retrained with samples of this new data before it can
become effective again. Periodic retraining is also useful to address the inevitable
drift as mechanical parts wear and age.

This Wind Turbine example has shown how a normal behavior model can be
developed for an industrial asset using historical sensor data and a Neural Network

192  |  High Level Overview into Neural Networks

Autoencoder (or variants). This model can be used with live sensor data to identify
when the asset is deviating from its past normal operation and provide important
clues about which sensors are deviating from normal. This information can be used
to diagnose and take action on an asset that is in a suboptimal state or trending
toward failure before the failure occurs. These types of normal behavior models are
an important part of a preventive maintenance system.

Resources
Artasanchez A, Joshi P: Artificial Intelligence with Python, 2nd Edition, United

Kingdon: Packt Publication; 2020.
Forbes: What is Deep Learning AI? A Simple Guide with 8 Practical Examples;

n.d.   <www.forbes.com/​sites/​bernardmarr/​2018/​10/​01/​what-​is-​deep-​learning-​
ai-​a-​simple-​guide-​with-​8-​practical-​examples/​#25cc15d08d4b>

Graupe D: Principles of Artificial Neural Networks: Basic Designs to Deep Learning,
Singapore: World Scientific Publishing Company; 2019.

SAS: “Natural Language Processing (NLP): What It Is and Why It Matters;”
n.d.    <www.sas.com/​en_​us/​insights/​analytics/​what-​is-​natural-​language-​
processing-​nlp.html>

http://www.forbes.com
http://www.forbes.com
http://www.sas.com
http://www.sas.com

193

Chapter 4

Typical Applications
for Computer Vision

So far in this book, we have covered three main topics: Artificial Intelligence, Machine
Learning, and Neural Networks. There is yet one more field in Artificial Intelligence
that is gaining very serious traction—​that is the field of Computer Vision. This field
will be the focal point of this chapter. As the name implies, with Computer Vision,
we are trying to replicate how human vision works, but at the level of the computer
or machine. In a way, this is very analogous to Artificial Intelligence, in which the
primary purpose is to replicate the thought, behavioral, and decision-​making pro-
cess of the human brain.

In this chapter, we will start by giving a high level overview of Computer Vision,
and from there, we will do a much deeper dive into the theories and the applications
that drive this emerging area of Artificial Intelligence. But before we start delving
deeper into this subject, it is first very important to give a technical definition as to
what Computer Vision is all about. Here it is:

Computer vision (CV) is a subcategory of Computer Science & Artificial
Intelligence. It is a set of methods and technologies that make it possible
to automate a specific task from an image. In fact, a machine is capable
of detecting, analyzing, and interpreting one or more elements of an
image in order to make a decision and perform an action.

(Deepomatic, n.d.)

Put in simpler terms, the field of Computer Vision from within the constructs of
Artificial Intelligence examines certain kinds of images that are fed into the system,
and from there, based upon the types of mathematical and statistical algorithms that
are being used, the output is generated from the decision-​making process that takes

194  |  Typical Applications for Computer Vision

place. In this regard, there are two very broad types of Image Recognition, and they
are as follows:

	1)	Object Detection:
In terms of mathematics, this is technically known as “Polygon Segmentation.”
In this regard, the ANN system is specifically looking for the element from
within a certain image by isolating it into a particular box. This is deemed
to be far more superior and sophisticated rather than using the pixelated
approach, which is still used most widely.

	2)	Image Classification:
This is the process that determines into which category an image belongs
based specifically upon its composition, which is primarily used to identify
the main subject in the image.

Typical Applications for Computer Vision
Although Computer Vision is still in its infancy, when used with an ANN system,
as mentioned, it is being used in a wide variety of applications, some which are as
follows:

	{ Optical Character Recognition: This is the analysis of, for example, various
pieces of handwriting, and even automatic plate recognition (aka ANPR);

	{ Machine Inspection: This is primarily used for Quality Assurance Testing
Purposes, in which specialized lights can be shone onto different kinds of
manufacturing processes, such as that of producing separate parts for an air-
craft and even looking into them for any defects that are otherwise difficult
to detect with the human eye. In these particular cases, X-​Ray vision (which
would actually be a subcomponent of the ANN system) can also be used;

	{ 3-​D Model Building: This is also known as “Photogrammetry,” and it is the
process in which 3-​Dimensional Models from aerial survey photographs, or
even those images captured by satellites, can be automatically recreated by the
ANN system;

	{ Medical Imaging: Computer Vision in this regard can be used to create pre-
operative as well as postoperative images of the patient just before and after
surgery, respectively;

	{ Match Move: This process makes use of what is known as “Computer
Generated Imager” (aka “CGI”), in which various feature points can be
tracked down in a source-​based video. This can also be used to further esti-
mate the level of the 3-​Dimensional Camera motion, as well as the other
shapes that can be ascertained from the source video;

	{ Motion Capture: The concepts here are used primarily for Computer
Animation, in which various Retro-​Reflective Markers can be captured;

Typical Applications for Computer Vision  |  195

	{ Surveillance: This is probably one of the most widely used aspects of Computer
Vision. In this regard, it can be used in conjunction with CCTV technology
as well as Facial Recognition technology in order to provide the proof positive
for any apprehended suspect.

It is important to note at this point that Computer Vision can also be used very
well for still types of photographs and images, as opposed to the dynamic ones just
previously described. Thus, in this regard, some typical applications include the
following:

	{ Stitching: This technique can be used to convert overlapping types of images
into one “stitched panorama” that looks virtually seamless;

	{ Exposure Bracketing: This can take multiple exposures from a sophisticated
camera under very difficult lighting conditions by merging all of them
together;

	{ Morphing: Using the mathematics of “Morphing,” you can turn one picture
into another of the same type;

	{ Video Match Move/​Stabilization: With this particular process, one can take 2-​
Dimensional and 3-​Dimensional images and literally insert them into videos
to automatically locate the nearest mathematical-​based reference points;

	{ Photo-​based Analysis: With this specific technique, you can circumnavigate
a series of very different pictures, to determine where the main features are
located;

	{ Visual Authentication: This can also be used as a form of authentication, very
much in the same way that a password or your fingerprint can 100 percent
confirm identity, for example, when you gain access to shared resources.

A Historical Review into Computer Vision
When compared to Artificial Intelligence, Machine Learning, and the Neural
Networks, Computer Vision has not been around nearly as long, just because
the advancements made in it have taken longer than the others. But it, too, has
had a rather rich history, and in this section, we will review some of the major
highlights of it.

	{ The 1970s:
This is deemed to be the very first starting point for Computer Vision. The
main thought here was that Machine Learning would merely mimic the visual
component and aspect of the human brain. But, it was not realized back then
just how complicated this process would actually be. So instead, the pri-
mary focus was on building Computer Vision (CV) systems as part of the

196  |  Typical Applications for Computer Vision

overall ANN system that could analyze just about any kind of visual input,
and use that to help produce the desired outputs. In fact, the first known
major efforts in CV took place when a well-​known MIT researcher known
as Marvin Minsky asked one of his research associates to merely link up a
camera to a computer and get that to deliver outputs as to what it literally
saw. At this time, a strong distinction was made between CV and the field
of Digital Image Processing. In this regard, various 3-​Dimensional images
were extrapolated from the 2-​Dimensional images themselves. Other key
breakthroughs that occurred in this time period also include the following:
*The development Line Labeling Algorithms;
*The development of Edge Detection formulas to be used in static images;
*The implementation of 3-​Dimensional modeling of non-​Polyhedral Objects,
making use of Generalized Cylinders;
*The creation of Elastic Patterns to create automated Pictorial Structures;
*The first qualitative approaches to Computer Vision started with the use of
Intrinsic Images;
*More quantitative approaches to Computer Vision were created such as Stereo
Correspondence Algorithms and Intensity-​based Optical Flow Algorithms.
*Three key theories of Computer Vision were also formulated, which are:
The Computational Theory:
This questions the purpose of what a specific Computer Vision task is, and
from there, ascertains what the mathematical permutations would be to get to
the desired outputs from the ANN system.
The Image Representation and the Corresponding Algorithms Theory:
This theory aims to answer the fundamental questions as to how the input,
output, and the intermediate datasets are used to calculate the desired outputs.
The Hardware Implementation Theory:
This particular theory tries to determine how the hardware of the Computer
Vision system can be associated with the hardware of the ANN system in
order to compute the desired outputs. The reverse of this is also true, in that it
tries to determine how the hardware can be associated with the CV algorithms
in the most efficient manner.

	{ The 1980s:
In this specific time frame, much more work was being done on refining and
advancing the mathematical aspects of Computer Vision, whose groundwork
was already established in the 1970s. The key developments in this era include
the following:
*The development of Image Pyramids for use in what is known as “Image
Blending”;
*The development of Space Scale Processing, in which created pyramids
can be displaced into CV applications other than those they were originally
intended for;

Typical Applications for Computer Vision  |  197

*The creation of the stereo-​based Quantitative Shape Cue to be used in many
types of X-​Ray applications;
*The refinement of both Edge and Contour Detection-​based mathematical
algorithms (this also led to the creation of “Contour Trackers”);
*The development of various types of 3-​Dimensional-​based Physical Models;
*The development of the discrete Markov Random Field Model, in which
stereo, flow, and edge detection mathematical algorithms could be unified and
optimized as one cohesive set to be used by the ANN system;
*Other, further refinements were also made to the Markov Random Field
Model, which include the following:
*The mapping of the “Kalman Vision Filter”;
*The automated mapping of the Markov Random Field Model so that it can
be used as a precursor to parallel processing to take place from within ANN
systems;
*The development of 3-​Dimensional Range Data Processing techniques, to be
used for the acquisition, merging, mathematical modeling, and recognition of
various images to be inputted into the ANN system.

	{ The 1990s:
This time era in Computer Vision also witnessed the following key
developments:
*The development of what are known as “Projective Reconstruction”
algorithms which have been primarily used for exacting the calibrations of
the camera for it to take the necessary images to be used by the ANN system;
*The creation and implementation of “Factorization Techniques” in order
to accurately calculate the needed approximations for Orthographic based
cameras;
*The development of the “Bundle Adjustment Techniques” to be used in just
about all types of Photogrammetry techniques;
*The development of using color and intensity in specific images, which made
use of what is known as “Radiance Transport” and “Color Image Formation”
that could be directly applied to a new subset of Computer Vision at that time
known as “Physics based Vision”;
*The continued refinement of a majority of the Optical Flow Methods that
are used by the Computer Vision component that come from within the
ANN system;
*The refinement of the Dense Stereo Correspondence Algorithms;
*Much more active and dynamic research started to take place in the imple-
mentation of Multi-​View Stereo Algorithms that could be applied to replicate
and easily produce 3-​Dimensional pictures;
*The development of mathematical algorithms that could be used to record
and produce various 3-​Dimensional Volumetric Descriptions from upon
various Binary-​type silhouettes;

198  |  Typical Applications for Computer Vision

*Techniques were also established for the development of the construction of
what are known as “Smooth Occluding Contours”;
*Image Tracking algorithms were greatly improved upon in which various
Contour Tracking algorithms such as “Snakes,” “Particle Filters,” and “Level
Sets” were primarily established;
*Much more active research also started to precipitate a subset field of
Computer Vision known as “Image Segmentation.” Such techniques that were
developed in this area included Minimum Energy, the Minimum Description
Length, Normalized Cuts, and Mean Shifts that could be applied to image
analysis from within the ANN system;
*This specific time period also saw the birth of the first statistical-​based
algorithms that were used in Computer Vision. These were first applied to
such ANN system applications such as Principle Component Analysis (aka
“PCA”), which relies upon the heavy usage of Eigenfaces, and the develop-
ment of the Linear-​Based Dynamical Systems, which were used in Curve
Tracking;
*Probably the most lasting development in Computer Vision that occurred
during this time period was the increased interaction with Computer
Graphics, which could also be used in the subfields of Image-​based Modeling
and even Rendering;
*Various kinds of Image Morphing algorithms were also created, in order
to create computer animation from both static and dynamic images. These
specific algorithms could also be applied to Image Photo Stitching, and Full
Light Field Rendering;
*Other kinds of both mathematical and statistical algorithms were developed
so that 3-​Dimensional Image Models could be automatically created from a
series of static images.

	{ The 2000s and Beyond:
This specific time period witnessed probably the biggest interactions between
Computer Vision and Computer Graphics. Here is what has transpired
thus far:
*The subfields of Computer Vision, which include Image Stitching, Light
Field Capturing, and Rendering, as well as High Dynamic Range (aka HDR)
techniques were combined into one specific field of Computer Vision, which
became known as “Computational Photography.” From its emergence, various
kinds of “Tone Mapping” algorithms were developed;
*Various other kinds of both statistical-​ and mathematical-​based algorithms
were also created so that Flash-​based Images could be easily combined with
Non-​Flash-​based Images, as well as to segregate overlapping segments in both
static and dynamic images into their own unique entities;
*The techniques of Texture Synthesis and Inpainting were developed in order
to create new images from sample images;

Typical Applications for Computer Vision  |  199

*Numerous principles, which became known as “Feature-​based Techniques”
also evolved, which can used for Object Recognition by the ANN system.
This included the development of the Constellation Model and the Pictorial
Structures Techniques, as well as Interest Point-​based Techniques, which
make use of contours and region segmentation in both static and dynamic
images;
*The “Looping Belief Propagation” theory was also established in which both
static and dynamic images can be embedded and further analyzed onto a
Cartesian Geometric Plane and other complex graphing planes;
*Finally, this time period has also witnessed the combination of the techniques
of Machine Learning into Computer Vision that can be used by the ANN
system in order to derive the generated outputs.

So far in this chapter, we have provided a technical definition for Computer Vision
and some of the various applications it serves, as well as given a historical back-
ground as to how it became the field it is today, and explored its sheer dominance in
the field of Artificial Intelligence. The remainder of this chapter is now devoted to
doing a deeper dive into the theoretical constructs of Computer Vision.

The Creation of Static and Dynamic Images
in Computer Vision (Image Creation)
Now that we have covered to a great degree what Computer Vision is, there are a lot
of theoretical constructs, processes, and procedures that go along with it. The first
place to start with in this regard is Image Creation, whether it be static or dynamic
in nature. The following subsections will delve into this in much more detail.

The Geometric Constructs—​2-​Dimensional Facets

Any kind of image, once again whether it be static or dynamic, is pretty much
created using the principles of Geometry. The concepts here are used heavily in order
to create robust 3-​Dimensional images. The building blocks for these are the simple
lines, points, and planes. But keep in mind that these can become very complex in
nature as well, depending upon how rich the 3-​Dimensional image actually is.

We first start with what are known as 2-​Dimensional Points. This can be math-
ematically represented as follows:

X = (x,y) E R^2.

If these 2-​Dimensional Points make use of what are known as “Heterogenous
Coordinates,” these can then be implemented back into their geometric plane,

200  |  Typical Applications for Computer Vision

which is technically known as a “2-​Dimensional Projective Space.” Various kinds
of Homogenous Vectors are thus used, and they be mathematically represented as
follows:

X = (X, Y, W) = W(X, y, 1) = WXi

Where:
W(X, y, 1) = The Augmented Vector.

With the 2-​Dimensional Points, come along the 2-​Dimensional Lines. A single line
in this regard can be mathematically represented as follows:

X * I = ax + by + c = 0.

The intersection of two 2-​Dimensional Lines is represented mathematically as
follows:

X = I1 X I2.

Now, if these two 2-​Dimensional Lines can be joined together, it is represented
mathematically also as follows:

I = = X1 X X2.

Now that we have 2-​Dimensional Lines and 2-​Dimensional Points, the next thing
that can be created in an image that is static or dynamic are what are known as
“Conics,” or simply, Cones. These make use of Polynomial Homogenous equations,
and this can be represented by using a semi-​quadratic formula which is as follows:

X^T X Qx = 0.

In fact, Quadratic equations play a huge role in the calibration of the camera from
which the image is captured.

The Geometric Constructs—​3-​Dimensional Facets

Now we move on to cover the important 3-​Dimensional features for images that
are either static or dynamic. For example, a 3-​Dimensional Point is mathematically
represented as follows:

X = (X, Y, Z, W) E P^3.

Typical Applications for Computer Vision  |  201

From the 3-​Dimensional Points come the 3-​Dimensional Planes. The mathematical
equation that is used to further represent this is as follows:

X * M = ax + by + cz + d = 0.

The various angles in this kind of geometric plane can be seen as follows:

N = (COS 0, COS 0/​, SIN 0/​ COS0/​, SIN 0/​).

It should be further noted that in these geometric planes, spherical coordinates are
used, but the usage of polar coordinates is much more commonplace for today’s
Computer Vision applications in the ANN system.

Probably the most basic building block in the creation of the 3-​Dimensional
angles is that of the 3-​Dimensional line. At its most primitive level, two linear points
on one single line can be mathematically represented as follows:

(p, q).

In terms of linear-​based mathematics, the combination of these two points can be
seen as follows:

R = (1 –​ Y)p + Yq.

If homogenous coordinates are used, the 3-​Dimensional Line can then be represented
mathematically as follows:

R = up + Yq.

It should be noted at this point that a primary disadvantage of 3-​Dimensional Lines
is that there are way too many statistical degrees of freedom at the endpoints of this
kind of line. In this typical instance, there are three degrees of freedom for the two
endpoints of one single 3-​Dimensional Line. In order to mitigate this shortcoming,
with the end result being that a 3-​Dimensional Line can be angled at virtually any
orientation, the concepts of the “Plucker Coordinates Theorem” is used. This is
represented mathematically as follows:

L = pq^T –​ qp^T

Where:
P, Q = Any two linear points that lie along a 3-​Dimensional Line.

202  |  Typical Applications for Computer Vision

Just as in the case of the 2-​Dimensional Cones, 3-​Dimensional Cones can be created,
also making use of the semi-​quadratic equation. This is mathematically represented
as follows:

X^TQx = 0.

The Geometric Constructs—​2-​Dimensional
Transformations

It is important to keep in mind that any lines, points, or cones (it does not matter if
they are 2-​Dimensional or 3-​Dimensional) can be manipulated in such a way that
the particular image they form can be transformed into a related image. The math-
ematical constructs to do this are known as “Transformations.” From the standpoint
of two 2-​Dimensional transformations, this can be mathematically represented as
follows:

X’ = x + t

Where:
I = a 2 X 2 Identity based Matrix.

This particular kind of matrix is also mathematically represented as follows:

X’ [1 t] * [0^T 1] * X.

Once the above has been completely established, the transformation can be rotated
in varying degrees as is required by the ANN system. This is technically known as “2-​
Dimensional Rigid Body Motion,” or is also known as “2-​Dimensional Euclidean
Transformations.” There are two separate and distinct mathematical ways in which
this can be represented, and these are as follows:

Representation #1: X’ = [R t] * x

Representation #2: X’ = Rx + t

Where:
R = [COS 0/​, SIN 0/​] * [-​SIN 0/​, COS 0/​].

It is important to note that both of the above representation cases make use of what
are known as “Orthonormal Rotation Matrices.”

But, this is not the only transformations that exist for 2-​Dimensional images
that are either static or dynamic. There are others as well, and they are as follows:

Typical Applications for Computer Vision  |  203

	{ The Scaled Rotation:
This is also known technically as a “Similarity Transformation,” and this can
mathematically represented as follows:

X’ = [sR t] * x = [a, b] * [-​b, a] * [Tx, Ty] * X1.

	{ The Affine Transformation:
This is mathematically represented as follows:

X’ = [a00, a10] * [a01, a1I] * [a02, a12]] * X.

	{ The Projective Transformation:
This kind of 2-​Dimensional transformation makes use of Homogenous
Coordinates (as previously reviewed earlier in this chapter), and this is math-
ematically represented as follows:

X’ = [h00 + h01y + h02] * [h20x + h21y + h22]

Y’ = [h10x + h11y + h12] * [h20x + h21y + h22].

It is also important to make note that the 2-​Dimensional Lines in this kind of
transformation can also be transformed one by one, and not as one, cohesive
unit. This can be accomplished with the following mathematical formula:

L * x = l^T * Hx = (H^Ti)^Tx = l * x = 0.

	{ The Stretch and Squash Transformation:
This kind of transformation can literally change the mathematical ratio of the
image. This can be represented as follows:

X’ = SxX + tX

Y’ = syY + Ty1.

	{ The Planar Surface Flow Transformation:
This type of transformation technique is used in particular instances where
the image, whether it is static or dynamic, goes through a series of specific
rotations, but only at small, incremental levels so that these changes can be
captured by the ANN system. This technique can be accomplished with the
following two mathematical equations:

X’ = a0 + a1x + a2y + a6x^2 + a7xy

Y’ = a3 + a4x + a5y + a7x^2 + a6xy.

204  |  Typical Applications for Computer Vision

	{ The Bilinear Interpolant Transformation:
This particular kind of technique can be used to correct any deformities
in the image, whether it is static or dynamic, if it is more or less a square
image. The following mathematical equations can be used to accomplish this
particular task:

X’ = a0 + a1x + a2y + a6xy

Y’ = a3 + a4x + a5y + a7xy.

The Geometric Constructs—​3-​Dimensional Transformations

The total number of transformation techniques that are available for 3-​Dimensional
images that are static and/​or dynamic are not as numerous as for 2-​Dimensional
images. But they are still quite important in their use specific uses and functional-
ities, and they are as follows:

	{ The Basic Transformation Technique:
The mathematical equation that is used for this instance is represented as
follows:

X’ = [I t] * x
Where:

I = A 3 X 3 mathematical-​based Identity Matrix.

	{ The Rotation and Translation Transformation:

This is a special kind of transformation technique that is exclusive for those
3-​Dimensional images that are either static or dynamic in nature. It is also
referred to technically as the “3-​Dimensional Rigid Body Motion,” and the
following mathematical formula can be used to accomplish this particular
kind of task:

X’ = R(x-​ c) = Rx –​ Rc.

	{ The Scaled Rotation Transformation:
This kind of technique can be represented as following, mathematically:

X’ = [sR t] * x.

	{ The Affine Transformation:
This technique is used where either a static or dynamic image assumes a three-​
by-​four mathematical matrix. It is represented as follows:

Typical Applications for Computer Vision  |  205

X’ [a00, a10, a20] * [a01, a11, a21] * [a02, a12, a22] * [a03, a13, a23] * x.

	{ The Projective Transformation:
This technique also makes use of Homogenous Coordinates, and in more
technical terms, it is also known as the “3-​Dimensional Perspective
Transformation.” It is mathematically represented as follows:

X = Hx.

The Geometric Constructs—​3-​Dimensional Rotations

Unlike 2-​Dimensional images, 3-​Dimensional images (whether static or dynamic)
can be rotated to varying amounts in various directions. These rotations can be as
small as just a few degrees, or much larger than that, at the other extreme. There are
a number of mathematical techniques that can be used to accomplish this kind of
task for the ANN system to process, and they are as follows:

	{ The Euler Angles:
This is where a specific degree of rotation is accomplished when the mathem-
atical product of three independent movements takes place around the axis
points of the image, whether it is static or dynamic. But this technique is not
used very much these days because there is no established set of permutations
to follow in which to rotate the 3-​Dimensional image in question.

	{ The Exponential Twist Technique:
This technique is used when a 3-​Dimensional image (whether it is static or
dynamic) is rotated around in various degrees by a 3-​Dimensional mathemat-
ical vector. This kind of rotation is computed by the following mathematical
formula:

V|| = n^(n * v) = (n^n^) * v.

In order to make 3-​Dimensional image rotations optimized as much as pos-
sible, various kinds of mathematical vectors are used. One such popular vector
technique is represented as follows:

U = uT + v|| = (I + SIN 0/​[n^]x + (1 -​COS0)[n^] 2/​x) * v.

	{ The Unit Quaternions Technique:
This specific technique makes use of a four-​vector mathematical matrix. This
can be mathematically represented as follows:

Q = (qx, qy, qz, qw).

206  |  Typical Applications for Computer Vision

It is important to note at this point that this technique assumes that the rota-
tional nature of a 3-​Dimensional image is always continuous in nature, and will not
be stopped by the ANN system until the specific permutations have been inputted
into it. This technique is widely used for the kinds of applications that make use
of poses. It is important to note that the “Quaternion” can be computed by the
following mathematical formula:

Q = (v, w) = (SIN0/​2 n^, COS0/​2).

The opposite of a Quaternion is known as the “Antipodal” Quaternion, and it is
computed by the following mathematical formula:

Q2 = q0/​q1 = q0q1^-​1 = (v0 X v1 + w0v1 –​ w1v0 –​ w0w1 –​ v0 * v1).

Incremental rotations in this regard are also technically known as “Spherical Linear
Interpolation,” and they are computed by the following two mathematical formulas:

Q2 = q^ar * q0

Q2 = [SIN(1 –​ A)^0/​SIN0] * q0 + [SINA0/​SIN0] * q1.

Ascertaining Which 3-​Dimensional Technique Is the
Most Optimized to Use for the ANN System

When it comes to specific rotations of the 3-​Dimensional image, which of the
techniques to be used (as reviewed in the last subsection) is primarily dependent
upon the application in question and what the desired outputs from the ANN system
are. It should be further noted that the mathematical representation of any sort of
angles or axes in the 3-​Dimensional image (whether it is static or dynamic) does not
require any extra processing power or overhead on the part of the ANN system.

In order to determine any sort of technique as the most effective, it is very
important to express it as a condition of geometric degrees. This can also be expressed
as a function of what are known as “Radians.” In this regard, the ANN system can
also make use of Quaternions (also examined earlier in this chapter). But, this tech-
nique, from the standpoint of optimization, should only be used when the camera
that is taking the snapshots of the image is actually in motion, whether it is linear
or curvilinear in nature.

How to Implement 3-​Dimensional
Images onto a Geometric Plane
Now that we have established a very firm foundation of the principles that go
along with either 2-​Dimensional or 3-​Dimensional images (whether they are static

Typical Applications for Computer Vision  |  207

or dynamic), the next step in this process is determining how to project the 3-​
Dimensional image so that the ANN system can actually process it. In terms of
mathematics, this task can be specifically accomplished by making use of either
a 3-​Dimensional or 2-​Dimensional projection matrix. In this particular instance,
probably the most efficient and simplest mathematical matrix to use is that of the
“Orthographic Matrix.”

This can be mathematically represented as follows:

X= [I2x2|0] * p.

However, if Homogenous Coordinates are being used in this instance, then the
above algorithm can be stated as follows:

X = [1, 0, 0] * [0, 1, 0] * [0, 0, 0] * [0, 0, 1] * P1.

This kind of mathematical matrix can be applied specifically to cameras that make
use of lenses that are “Telecentric” in nature, for example, if this lens makes use of a
very long focal point and the reference point of the image to be captured is shallow
relative to the overall foreground of it. Scaling is a very important concept here, and
thus, “Scaled Orthography” is widely utilized in this regard. It can be mathematic-
ally represented as follows:

X = [sI2x2|0] * P.

This kind of scaling can be typically used in various image frames, in a rapid, successive
fashion. This is also referred to as “Structure In Motion.” It should also be noted that
this technique is widely used to recreate a 3-​Dimensional image that has been captured
from a very far distance. The variable of “Pose” is very important here, and statistically,
it can be represented onto the geometric plane as the Sum of Least Squares. The math-
ematical properties of “Factorization” can also be used as a substitute.

Another technique that is used to deploy a 3-​Dimensional image (whether it
is static or dynamic) onto the geometric plane is known as the “Para Perspective”
concept. In this regard, all reference points in the 3-​Dimensional image are first
projected onto a subset of the actual geometric plane that will be used. But once
this particular subset is ready, it will not be projected onto the geometric plane in an
orthogonal fashion, rather, it will be in a parallel fashion. In terms of mathematics,
this parallel projection onto the geometric plane can be represented as follows:

X = [a00, a10, 0] * [a01, a11, 00 * [a02, a12, 0] * [a03, a13, 1] * P.

The 3-​Dimensional Perspective Technique

As the title of this subsection implies, the 3-​Dimensional image in question is
projected onto the geometric plane by actually dividing up the reference points

208  |  Typical Applications for Computer Vision

that are in the 3-​Dimensional image itself. This makes heavy usage of homogenous
coordinates, and this is mathematically represented as follows:

X = Pz (P) = [X/​Z] * [Y/​Z] * [1]‌.

The representation of the homogenous coordinates is given by the following math-
ematical matrix:

X = [1, 0, 0] * [0, 1, 0] * [0, 0, 1] * [0, 0, 0] * P1.

A subset of this technique actually makes use of a two-​phased approach:

	1)	The coordinates from the 3-​Dimensional image are converted over into what
is known as “Normalized Device Coordinates,” which are mathematically
represented as follows:

(x, y, z) E [-​1, -​1] X [-​1, 1] X [0, 1].

	2)	These coordinates are then re-​scaled and even re-​projected into the geometric
plane by making use of another technique called “Viewport Transformation.”
This is represented as follows:

X = [1, 0, 0, 0] * [0, 1, 0, 0] * [0,0, -​zFAR/​zRANGE, 1] *
[0, 0, zNEARzFAR/​zRANGE, 0] * Pr

Where:
zNEAR and zFAR = the Z Clipping Planes.

2-​Dimensional images can also be projected onto a geometric plane, but are not
done nearly as commonly for the 3-​Dimensional images, just because of the sheer
lack of mathematical algorithms. But if the application requires a 2-​Dimensional
image, the technique of “Range Sensors” is used, in which a four-​by-​four mathem-
atical matrix is used.

The Mechanics of the Camera
Once the above steps have been accomplished, the reference points in the 3-​
Dimensional image in question (whether it is static or dynamic), still must be
pixelated into the geometric plane relative to its point of origin (if quadrants are
used, this would be represented as [0,0]). In order to complete this specific task, the
following mathematical algorithm is most typically used:

Typical Applications for Computer Vision  |  209

P = [Rs|Cs] * [Sx, 0, 0, 0] * [0, Sy, 0, 0,] * [0, 0, 0, 1] * [Xs, Ys, 1] = MsXs.

Now, the specific relationship of the reference points from the 3-​Dimensional
image and its projection onto the geometric plane can be defined mathematically
as follows:

Xs = aM^-​1s * Pc = KPc.

The result of this projection becomes a three-​by-​three mathematical matrix, which
is denoted as “K.” This is also called the “Calibration Matrix,” and it provides an
overview into the mechanics of the camera that is taking the snapshot of the 3-​
Dimensional image in relation to its vector orientation on the geometric plane. The
latter is known as the “Extrinsics” of the camera.

Once the 3-​Dimensional image has been embedded into the geometric plane
by using the concepts of Pixelation, the camera then needs to be calibrated so that
a seamless picture of the image can be taken so it can be processed quickly and effi-
ciently by the ANN system to obtain the desired outputs. This specific calibration
can be accomplished with the following mathematical algorithm:

Xs = K [R|t] * Pw = Pps^t

Where:
Pw = the 3-​Dimensional “World Coordinates”;
K [R|t] = the mathematical matrix that is used by the camera in question.

Determining the Focal Length of the Camera

One of the biggest hurdles that still has yet to be overcome in the field of Computer
Vision is determining and ascertaining how the focal lengths from the camera to
the 3-​Dimensional image need to be represented. The primary reason for this lack
of understanding is the fact that the focal length is extremely dependent upon the
specific units that are used to actually gauge the measurement of the pixels. One
method to overcoming this dilemma is to determine the mathematical relationship
between the Focal Length (denoted as “f ”) of the camera and the numerical width of
the sensor (denoted as “W”) that has been implanted into the camera with its overall
field of photographic capture (which is denoted as “0/​”).

This is mathematically represented as follows, in two different formats:

Format 1: TAN 0/​2 = W/​2f;

Format 2: f = W/​2 [tan)/​2] ^ -​1.

210  |  Typical Applications for Computer Vision

If a common camera is used to capture a snapshot of the 3-​Dimensional image,
then the standard metric unit of millimeters is often the best choice to be used
from the standpoint of optimization purposes. Another common metric that
can be substituted for this millimeters are pixels. Yet another solution to the
above-​stated dilemma is to express the pixel coordinates as a set of mathematical
ranges, which can go anywhere from -​1 all the way to 1. This is also known as
“Scaling Up.”

But if a longer range has to be used, this can be mathematically represented as
follows:

[-​a^-​1, a^-​1].

This is also known as the “Image Aspect Ratio Formula,” and this can be mathem-
atically represented as follows:

X’s = (2Xs –​ W)/​S;

Y’s = (2Ys –​ H)/​S

Where:
S = max(W, H).

The “Scaling Up” technique has a number of key advantages to it, which are as
follows:

	{ The Focal Length (denoted as “f ”) and the Optical Center (denoted as “Cx,
Cy”) actually become independent of one another. Because of this, images
such as cones and pyramids can be easily captured by the camera, and because
of that, they can be further manipulated so that it can be processed quickly by
the ANN system to get to the desired outputs;

	{ The focal length can also be used in a landscape or portrait setting quickly
and efficiently;

	{ Converting between the different focal measurement units can be done
quickly.

Determining the Mathematical Matrix of the Camera

For today’s Computer Vision applications, many types of mathematical matrices can
be used, but the most common that is used by the ANN system is that of the “3 X 4
Camera Matrix,” and this is represented as follows, in terms of mathematics:

P = K [R|t].

Typical Applications for Computer Vision  |  211

Also, a mathematical four-​by-​four matrix can be used as well, and this can be math-
ematically represented as follows:

P = [K, 0^T; 0 1] * [R, 0^T; t, 1] = Ke1

Where:
E = the 3 Dimensional Euclidean Geometric transformation;
K = the “Calibration Matrix.”

If this mathematical four-​by-​four matrix is actually used, it can automatically map,
in a direct fashion, the 3-​Dimensional “World Coordinates” (which is denoted
as Pw = [Xw, Yw, Zw, 1]) to the “Real World” Coordinates (which is denoted as
Xs = [Xs, Ys, 1, d]).

Determining the Projective Depth of the Camera

In this particular instance, if a four-​by-​four mathematical matrix is being used, the
last row (and even column) of it can be automatically re-​mapped in order to fit what
is known as the “Projective Depth” of the camera in question. The last row and
column of the four-​by-​four mathematical matrix can transformed in this regard by
using the following mathematical formula:

D = S3/​z (n0 * Pw + c0)

Where:
Z = the numerical distance from the center of the camera (denoted as “C”) in

conjunction to its Optical Axis (denoted as “Z”);
Pw = the Reference Plane.

It should also be noted at this point that the term “Projective Depth” can also be
referred to as the “Paralax” or even the “Plane Plus the Paralax.”

The inverse of the above-​mentioned mapping can also happen if need be, and
this can be mathematically represented as follows:

Pw = P^-​1 * Xs.

This above-​mentioned inverse technique is not used very often for applications in
the ANN system. The primary reason for this is that more than one geometric plane
has to be used in this regard, thus consuming more processing power from within
the ANN system.

212  |  Typical Applications for Computer Vision

How a 3-​Dimensional Image Can Be Transformed
between Two or More Cameras

One of the key questions that has been addressed in the field of Computer Vision
is whether a 3-​Dimensional image taken from a certain position in one camera
can be transposed over to yet another camera (or maybe even more than two of
them) without losing the full integrity of the 3-​Dimensional image (it is does not
matter if it is static or dynamic). This has been more or less addressed by using, once
again, a four-​by-​four mathematical matrix, which in this particular case is denoted
as “P = K E.”

The transposition to this can be done from one camera to the next quite easily
by making use of this mathematical algorithm:

X0 = k0E0p = P0p.

Also, if multiple 3-​Dimensional images have to be transposed to two or more cameras
in a parallel fashion, then the following mathematical algorithm must be used:

X1 = k1E1p = K1E1E0^-​1K0^-​1x0 = P1P0^-​1x0 = M10x0.

In many cases, the variable of “Perception Depth” does not need to be ascertained by
the ANN system in order to produce the desired results. Thus, yet another method
in which 3-​Dimensional images can be moved from one camera to another is by
making use of the following mathematical algorithm:

X1 = K1R1R0^-​1K0^-​1x0 = K1R10K0^-​1x0.

In this particular instance, a 3-​Dimensional image can easily be transposed between
two or more cameras by making use of a three-​by-​three mathematical matrix that is
“Homographic.” But in order to accomplish this specific task, the following variables
have to ascertained:

	{ The known “Aspect Ratios”;
	{ The Centers of Projection;
	{ The Rotation Degree or Level;
	{ The Parameterization properties of the mathematical three-​by-​three matrix.

How a 3-​Dimensional Image Can Be Projected
into an Object-​Centered Format

It may be the case many times that the camera that is being used to capture the 3-​
Dimensional image could very well be using a lens that has a very long focal length.

Typical Applications for Computer Vision  |  213

While this certainly can be advantageous for the ANN system, in terms of statistics,
it can become quite cumbersome to properly estimate what this specific focal length
should be. The primary reason for this is that the focal length of the camera in
question and the actual, numerical distance of the image that is being captured are
extremely correlated amongst one another, and as a result, it can become quite diffi-
cult to ferret the two out of each other.

But, this can be worked out to a certain degree with use of mathematical
algorithms, and the two which have been proven to be useful in scientific research
are as follows:

Xs = f [Rx * p + Tz]/​[Rz * p +Tz] + Cz;

Ys = f [Ry * p + Ty]/​[Rz * p +Tz] + Cy1.

The above two algorithms can also be further optimized so that it is formulated as
follows:

Xs = f [Rx * p + Tz]/​[1 + N2R2 * P] + Cz;

Ys = f [Ry * p + Ty]/​ [1 + N2R2 * P] + Cy.

The above two equations thus permit for the focal length of the projection to be
measured much more accurately than ever before. In technical terms, this is also
known specifically as “Foreshortening.”

How to Take into Account the Distortions
in the Lens of the Camera
It should be noted that all of the theories and mathematical algorithms presented
up to this point in this chapter have pretty much assumed that a linear approach
has been taken to capture a snapshot of the image in question. In other words, there
is one straight line that can be visualized from the lens of the camera to the image
in question, whether it is static or dynamic. However, many of the sophisticated
cameras of today that are used by the ANN system often will take a snapshot of
the image via a “Curvilinear” approach. This is also technically known as “Radial
Distortion.”

As a result, the projection, as described previously in the last subsection, becomes
curved. Because of this, there can be resultant distortions which occur in the snap-
shot of the particular image that is captured. This can lead to blurring, and because
of that, the outputs that are produced by the ANN system could become highly
skewed. But once again, the use of mathematics, especially when it comes to the

214  |  Typical Applications for Computer Vision

semi-​quadratic equation, can be used to help mitigate this error from occurring in
the first place. These two algorithms can be represented as follows:

Xc = [Rx * p +Tx]/​[Rz * P +Tz];

Yc = [Ry * p +Ty]/​[Rz * P +Tz].

The above two algorithms can also be referred to as technically the “Radial
Distortion Model.” The basic postulate of it states that the images which are
to be captured by the ANN system are technically “displaced” either away
(known as the “Barrel Distortion Effect”) or closer (known as the “Pincushion
Distortion Effect”). Both of these effects are highly statistically correlated by
an equal amount from their so-​called “Radial Distance.” To take both of these
effects into further consideration, Polynomial Equations can be used, and they
are as follows:

Xc = Xc * (1 + k1r^2c + k2r^4c);

Yc = Yc * (1 + k1r^2c + k2r^4c)

Where:
K1 and K2 = the Radial Distance Parameters.

Once these distortions have been countered (especially that of blurring, as just
reviewed), the final, geometric coordinates of the pixels of the image can be
computed as follows:

Xs = fX^rc + Cx;

Ys = fY^rc + Cy.

But at times, depending upon how the ANN system is capturing the snapshot of the
image in question, these two mathematical algorithms may not be suitable enough
to be applied. Therefore, much more sophisticated analytical theories, which are
known as the “Tangential Distortions” and the “Decentering Distortions” can be
used to some degree.

Also, the use of a special lens called the “Fisheye Lens” can be used as well to
counter the effect of the above-​mentioned distortions. To accomplish this specific
task, an “Equi-​Distance” projector can be used from a certain distance away from
the Optical Axis of the snapshot of the image that is to be taken. To do this, a full-​
blown quadratic equation must be used. But all of these 3-​Dimensional images
(whether they are static or dynamic) are actually deemed to be rather small in nature.

Typical Applications for Computer Vision  |  215

The primary reason for this is that the image must be able to be easily and quickly
processed by the ANN system, in rapid succession.

However, even larger images can be used, even though it could slow down the
processing time in order to produce the desired of results of the ANN system. For
these types of 3-​Dimensional images, the use of both a “Parametric Distortion
Model” and “Splines” will be needed. In this particular instance, it can be quite
difficult to come up with the appropriate center point of projection along the
geometric plane that is being used. One may have to mathematically construct
what is known as the “3-​Dimensional Line” that must be statistically correlated
to each and every pixel point that is represented in the 3-​Dimensional image in
question.

How to Create Photometric, 3-​Dimensional Images
At this point in this chapter, we have assumed that both the 2-​Dimensional and
3-​Dimensional images (whether they are static or dynamic) are made up just one
band of mathematical values. In other words, we have also assumed that these 2-​
Dimensional and 3-​Dimensional images are typically black and white. But, it is very
important to keep mind that while these colors are extremely suitable for the ANN
system because they do not require as much processing power, both 2-​Dimensional
and 3-​Dimensional images of full color can be applied and used as well.

Thus, they will possess what are known as different “Intensity Values.” But, it is
also very important to make sure that these various “Intensity Values” are statistic-
ally correlated with one another in some fashion. In this section, we examine some
of the major variables that can affect the statistical correlation of these many types
of “Intensity Values.”

The Lighting Variable

Truth be told, and it is quite obvious, unless there is a good amount of lighting
from the external environment, a good quality 2-​Dimensional or 3-​Dimensional
image cannot be captured. Thus, there must be light that can be shone onto the
image from at least two sources, preferably even more. Thus, lighting sources can be
further subdivided into both Point and Area Light Sources, which are examined in
greater detail here.

	1)	The Point Light Source:
This kind of lighting stems typically from just one source at just one point in
time. These types of lighting sources also have specific levels of intensity and
utilize a color spectrum that can be distributed over differing wavelengths.
This can be specially denoted as “L(Y).”

216  |  Typical Applications for Computer Vision

	2)	The Area Light Source:
In this kind of environment, the intensity of the light that stems from this
particular source actually diminishes over time when the mathematical square
of the distance from the specific source of light for the image in question
has started to become illuminated. The primary reason for this is that light
being projected from the source point is actually distributed over the surface
of either the 2-​Dimensional or 3-​Dimensional image in a parabolic fashion,
either up or down. This is can be mathematically represented as either Y=X^2
or Y=-​X^2, respectively. Although the “Point Light Source” may sound simple
to understand in theory, it can actually be difficult to accomplish in the real
world, typically when the ANN system is being used. A typical example of
this is known specifically as “Incident Illumination,” and it can be represented
by the following mathematical equation:

L * (0/​Y).

The above algorithm makes the scientific assumption that light that is origin-
ating from its source point can travel in an infinite fashion.

The Effects of Light Reflectance and Shading

We typically don’t think of this too often, but when a specific beam of light hits
either a 2-​Dimensional or 3-​Dimensional image, the light beam actually becomes
scattered in nature, and is often reflected back into space yet again. There are many
theories that have been established to explain this particular phenomenon, and they
are reviewed in more detail in this subsection.

	1)	The Bidirectional Reflectance Distribution Theorem:
This is actually the most widely accepted light theory today. Essentially, it
states that a 4-​Dimensional Mathematical Function can statistically describe
the intensity of each and every wavelength that enters into what is known as
the “Incident Direction” (denoted as “V”) is actually bounced back off again
into what is known as the “Reflected Light Direction” (denoted as “Vr”). This
kind of function can be mathematically represented as follows:

fR (0/​z1, 0/​r, 0/​r, Y).

It is very interesting to note that this theorem can actually be considered a
mathematical reciprocal, in which the specific roles of “Vi” and “Vr” can be
interchanged amongst one another. Also, equally important is the fact that the
surfaces in either the 2-​Dimensional or 3-​Dimensional image (whether they
are static or dynamic) are considered to be what is known as “Isotropic” in
nature. In other words, there is no specific direction from where the light has

Typical Applications for Computer Vision  |  217

to be transmitted. This “Isotopic” nature can be represented mathematically
as follows:

Fr (o/​I, 0/​r |0/​r –​ 0/​I;Y);

Or also as:

Fr (V1, Vr, N, Y).

Finally, in order to specifically calculate the amount of light which is being
bounced off of either the 2-​Dimensional or 3-​Dimensional image, the
following mathematical algorithm is used:

Lr (Vr; Y) = F (Li(Vi; Y) Fr(Vi, Vr, N, Y) COS^+ 0/​I, dVi.

	2)	The Diffuse Component of the Bidirectional Reflectance Distribution
Theorem:
This is actually a specific subcomponent of the above-​mentioned theorem, and
it can also be referred to as the “Lambertian” or “Matte” Reflection Property.
This component actually assumes that the light source and the light that is
emitted from it is statistically distributed in a uniform pattern throughout
the 2-​Dimensional image or 3-​Dimensional image in question. This is the
component that leads to what is known as “Shading.” Essentially, this is
the non-​shiny light that is being transmitted onto the object (which is either
the 2-​Dimensional image or 3-​Dimensional image). In these instances, the
light is actually absorbed and bounced off yet again. It is important that when
the light stemming from its source point is spread out in a uniform fashion,
the above-​mentioned theorem actually becomes constant in nature, and can
be represented by the following mathematical algorithm:

Fd (Vi, Vr, N, Y) = Fd(Y).

In order to take into account the “Shading Effect” as just described, the
following mathematical algorithm is also utilized:

Ld (Vr; Y) = ∑ Li(Y)Fd(Y) COS^+ 0/​I = ∑ Li(Y)Fd(Y) * [Vi * n]^+.

	3)	The Diffuse Component of the Bidirectional Reflectance Distribution
Theorem:
This is deemed to be the second major component of the above-​mentioned
theory, and it actually takes into specific account the reflection of light that is
“Specular” in nature. In other words, it is “Glossy”-​looking when it is trans-
mitted onto either the 2-​Dimensional or 3-​Dimensional image in question.

218  |  Typical Applications for Computer Vision

This is technically known as “Incident Lighting,” and it can be rotated in
a 180-​degree fashion upon the object in question. This is mathematically
computed as follows:

Si = v|| 0 vT = (2nn^T –​ I) * Vi.

Thus, the amount of light transmitted in this regard is primarily dependent
upon the following variables:
	{ The Angle of Incidence (denoted as 0/​ = COS^-​1 * (Vr * Si);
	{ The View Direction (denoted as “Vr”);
	{ The Specular Direction (denoted as “Si”).

	4)	The Phong Shading Theory:
This specific theory states that both the Diffusement and Specular aspects of
reflected light can be referred to technically as “Ambient Illumination.” This
refers to the fact that the light that is shone onto either the 2-​Dimensional
image or the 3-​Dimensional image can be spread out in an even distribu-
tion, but that it is “diffused” in nature. In this theory, the color of the light
becomes a very important factor, which takes into further account the specific
degree of what is known as “Ambient Illumination.” This can be mathematic-
ally represented as follows:

Fa(Y) = Ka * [(Y) La(Y)].

The Phong Theory can be mathematically stated as follows as well:

Lr(Vr;Y) = Ka(Y)La(Y) + Kd(Y) ∑Li(Y) *[Vi * n]^+
+ Kz(Y) ∑Li(Y) * (Vr * Si)^k.

It is important to note that both the Ambient and the Diffused Colors,
which are distributed throughout the 2-​Dimensional or 3-​Dimensional image
(denoted as “Ka(Y)” and “Kd(Y)”) are considered to be literally the same
in feature design. Also, the typical Ambient Illumination which is present
has a different type of color shading from the light sources in which it is
projected. In addition, the “Diffuse Component” of this particular theory is
heavily dependent upon the Angle of Incident of the incoming bands of light
rays (which is specifically denoted as “Vi”). But, this is not the only particular
theory that is used in this regard. In fact, other sophisticated models that are
currently being used in Computer Graphics typically supersede this theory.

	5)	The Dichromatic Refection Model:
This is also known as the “Torrance and Sparrow Model of Reflection.” This
theory merely states that all of the colored lighting that is used to further
illuminate either the 2-​Dimensional or the 3-​Dimensional image (which can
either be static or dynamic) is uniformly spread, and typically comes from

Typical Applications for Computer Vision  |  219

just one source of light, and it is comprised of two mathematical algorithms,
which are as follows:

Lr(Vr; Y) = Li (Vr, Vi, N, Y) + Lb (Vr, Vi, N, Y) = Ci(Y)m1
(Vr, Vi, N,) + Cb(Y)Mb (Vr, Vi, N,)

It should be noted that this specific theory has been used in Computer
Vision to segregate colored objects that are located in either the 2-​Dimensional
or 3-​Dimensional images where there is a tremendous of mathematical vari-
ation in the amount of shading that is shone onto them.

	6)	The Global Illumination Theory:
As a review, the theories above assume that the flow of light is projected form
its original source point, and will bounce off either the 2-​Dimensional or
3-​Dimensional image with changing intensities, and will thus be projected
back to the camera in a mathematical, inverse trajectory. But these theories
reviewed assume that this only happens once. The truth of the matter is that
this sequence can happen many times, over many iterations, in a sequential
cycle. In this regard, there have been two specific methodologies that have
attempted to address this unique phenomenon. They are as follows:
	{ Ray Tracing:

This is also technically known as “Path Tracing.” This methodology makes
the assumption that the separate rays from the camera will bounce back
numerous times from either the 2-​Dimensional or the 3-​Dimensional
image to the sources of light. Further, the algorithms that constitute this
particular methodology assume that the “Primary Contribution” can
be mathematically computed by using various forms of Light Shading
equations. Additional light rays that are deemed to be supplementary in
nature can be used here as well.

	{ Radiosity:
The same principles hold true here as well, but instead of colored lights
being used, another specialized type of lighting is used, which is called a
“Uniform Albedo Simple Geometry Illuminator.” Also, the mathematical
values that are associated with either the 2-​Dimensional or 3-​Dimensional
images are statistically correlated amongst one another. Thus, among the
light that is physically captured is what is known as the “Form Factor,”
which is just a function of the vector orientation and other sorts of reflected
properties. With regards to this methodology, this can be denoted as “1/​
r^2.” But, one of the main disadvantages of this specific methodology is
that it does not take into consideration what are known as “Near Field
Effects,” such as the lack of light entering into the small shadows within
either the 2-​Dimensional or 3-​Dimensional image, or even the sheer lack
of ambient lighting.

220  |  Typical Applications for Computer Vision

In fact, various attempts have been made to combine the above-​mentioned
methodologies into one cohesive one. The primary advantage of this is that
additional types of lighting sources can be used.

The Importance of Optics
One of the key aspects in Computer Vision as it used by the ANN system is what
is known as “Optics.” What exactly is Optics? It can be defined technically as
follows:

Classical optics is divided into two main branches: geometrical (or
ray) optics and physical (or wave) optics. In geometrical optics, light
is considered to travel in straight lines, while in physical optics, light is
considered as an electromagnetic wave.

As it is stated in the above definition, there are two main types of optics that can
be used in Computer Vision, which are as follows:

	{ Geometrical Optics;
	{ Physical Optics.

Put in simpler terms for purposes of this chapter, Optics can be considered as the
light that must pass through the lens of the camera before it reaches the camera’s
sensor. Or even simpler, it can be thought of as the small pinhole that will project
all of the rays of light from all of the sources of origin into one main center, which
can then be shone onto either the 2-​Dimensional or 3-​Dimensional image (which is
either static or dynamic in nature).

But of course, the above scenario as just depicted can get much more complex; a
lot depends of the requirements that are set forth by the ANN system. For example,
some of the extra variables to consider are the following:

	{ The focus properties of the camera;
	{ The exposure rates of the camera;
	{ Vignetting;
	{ Aberation.

In this regard, the typical setup for the usage of Optics will ensure that there is
also what is known as a “Thin Lens” which is basically made up of just one piece
of glass which possesses a very low parabolic feature on either side of it. There is a
special theorem for this, which is technically known as the “Lens Law.” This specific-
ally stipulates that the mathematical relationship between the distance of either the

Typical Applications for Computer Vision  |  221

2-​Dimensional or the 3-​Dimensional image (which can be denoted as “Zo”), as well
as the specific distance from behind the lens from which either the 2-​Dimensional
or 3-​Dimensional image is captured. This can be mathematically represented as
follows:

(1/​z0) + (1/​Zt) = (1/​f)

Where:
F = the Focal Length.

There is also another important concept related to Optics, and this is specific-
ally known as the “Depth of Field.” This is a mathematical function of the Focal
Distance that is present on the “Aperture Diameter,” which is denoted as “d.” This
can be mathematically represented as follows:

f/​# = N = f/​d

Where:
f = the Focal Length;
d = the Geometric Diameter of the Aperture of the camera.

It should be noted at this point that the above-​mentioned “f” value is represented as
a series of integers, such as the following:

f/​1.0, f/​2.0/​, f/​3.2, f/​4.8, …

The above-​described numerical representations are actually a progression of
iterations, which are based on “Full Stops.” For example, as f/​1.0 is fully processed
by the ANN system, it stops for a brief second or two so it can process the next “f ”
value, which in this case would be f/​2.0. But, one of the key disadvantages of using
optics in this regard is that the lens can be typically very thin, and this can lead to a
phenomenon that is known as “Chromatic Aberration,” which is examined in more
detail in the next section.

The Effects of Chromatic Aberration
Chromatic Aberration deals with what is known as the “Index of Refraction.”
This is when the colored lights that come from their various sources actually end
up focusing at distances that are just minutely different from the intended target
values. These variances can be measured by a metric that is known as the “Transverse
Chromatic Aberration,” and this can be modeled by a per color basis, depending

222  |  Typical Applications for Computer Vision

upon which ones are being transmitted to illuminate either the 2-​Dimensional or
3-​Dimensional image.

Any blurs that can be created in this illumination are technically known as
the “Longitudinal Chromatic Aberrations.” They pose a major disadvantage in
that these types of blurs typically cannot be undone once they are projected onto
either a 2-​Dimensional or 3-​Dimensional image. In order to mitigate these kinds
of effects as much as possible, the camera lens makes use of a technology that
is known as the “Compound Lens.” These are made up of different glass-​based
elements.

Rather than just having what is known as a “Single Nodal Point” (which can be
denoted as “P”), these kinds of lenses make use of what is known as a “Front Nodal
Pane.” This is where all of the light beams that are being used to illuminate either the
2-​Dimensional or 3-​Dimensional image come into one central location from within
the camera, and then leave through the “Rear Nodal Point” on its way to the sensor.
It should be noted that when trying to calibrate the camera, it is only this specific
Point that is of main interest.

However, not all camera lenses have these kinds of specialized “Nodal Points.”
A typical example of this would be the Fisheye Lens, as was reviewed earlier in this
chapter. In order to counter this kind of setback, a specialized mathematical function
is often created so that the various pixel coordinates and any 3-​Dimensional effects
can be statistically correlated amongst one another.

The Properties of Vignetting

Another property of Chromatic Aberration is that of “Vignetting.” In terms of its
scientific principle, this is where the brightness of the light rays that are shone onto
either the 2-​Dimensional or 3-​Dimensional image makes its way, for some reason
or another, toward the outer ends of the image in question. In this regard, there are
two types of Vignetting, and they are reviewed as follows:

	1)	Natural Vignetting:
This is occurs when “Foreshortening” occurs on the surface of either the 2-​
Dimensional or 3-​Dimensional image, or any of the pixels that are contained
within it. This can be mathematically represented as follows:

00COSY/​r^20 TT * (d/​2)^2 COS A = 00 *(TT/​4)
* (d^2)/​z^2COS^4 A.

Any light that is transmitted onto the image in question can also be math-
ematically represented as follows:

00/​0i = (z^2/​z^2i).

Typical Applications for Computer Vision  |  223

Finally, the mathematical relationship between the sheer amount of
light that is transmitted onto the pixels of either the 2-​Dimensional or 3-​
Dimensional image (denoted as “i”), the geometric diameter of the Aperture
of the camera (denoted as “d”), and the focusing distance (denoted as Zi~f),
and any off angles (denoted as “A”) can be mathematically represented as
follows:

Oo*(TT/​4) * (d^2/​z^2o)COS^4A = Oo*(TT/​4) *
(d^2/​z^2o)COS^4A = (diTT/​4) * (d/​f)^2 COS^4A.

Also, the “Fundamental Radiometric Relation” that exists from the
“Radiance Light” (denoted as “L”) and the “Irradiance Light” (denoted as
“E”) can also be mathematically represented as follows:

E = L(TT/​4) * (d/​f) COS^4 A1.

	2)	Mechanical Vignetting:
This is also technically referred to as “Internal Occlusion,” and this occurs
when the elements of the camera lens cannot absorb all of the light rays that
are transmitted from the light sources. However, this can be more or less be
easily fixed as the length of the Camera Aperture can be decreased.

The Properties of the Digital Camera
This section provides the basic constructs of how a digital camera can be used in
conjunction with an ANN system in order to produce the desired results. First,
any light that is triggered from the various lighting sources is typically gathered
by what is known as an “Active Sensing Area,” which can last throughout the time
period of exposure of the 2-​Dimensional or 3-​Dimensional image. This usually is all
done within a fraction seconds, and then from there, the light is then transmitted
over to what are known as “Sense Amplifiers.” The technologies behind this are the
“Charged Couple Device” (also known as the CCD”), and the metal oxide that
exists within it, which is very often Silicon-​based (also known as the “CMOS”).

From this point, the photons are then actually stacked up against one another
during the time frame of the exposure period of the 2-​Dimensional or 3-​Dimensional
image in question. Then, in what is known as the “Transfer Phase,” these photonic
charges are transferred yet again to what are known as the “Sense Amplifiers.” As
its name implies, these signals are amplified and, from there, are sent off to what is
known as the “Analog to Digital Converter,” also known as the “ADC.”

It should be noted here that in older generations of the CCDs, images were very
often subject to a phenomenon called “Blooming.” This occurs when the pixels in
either the 2-​Dimensional or 3-​Dimensional images transfer into other pixels that are

224  |  Typical Applications for Computer Vision

either adjacent or parallel to it. But with the newer versions of the CCDs, this phe-
nomenon is greatly mitigated by using “Troughs.” This is where the extra photonic
charges can be transferred safely into another area of the digital camera that is being
used by the ANN system.

There are other factors as well that can greatly impact both the processing power
and the performance of the CCD, and these are as follows:

	{ The shutter speed;
	{ The sampling pitch;
	{ The fill factor;
	{ The size of the Central Processing Unit (CPU) within the digital camera;
	{ The resolution from the analog to digital converter;
	{ The analog gain;
	{ The sensor noise.

The above are all reviewed in the next subsections.

Shutter Speed

This particular functionality of the digital camera has direct control over the amount
of light that enters into the digital camera, and also has an immediate impact on
whether the 2-​Dimensional or 3-​Dimensional images will either be under-​exposed or
even over-​exposed. For 2-​Dimensional or 3-​Dimensional images that are dynamic,
the shutter speed can also be a huge factor in deciding how much “Motion Blur”
will be in the resultant image. A general rule of thumb here is that a proportionately
higher shutter speed can make later forensic analysis of either the 2-​Dimensional or
3-​Dimensional image feasible.

Sampling Pitch

This metric is deemed to be the actual, physical spacing between the sensor cells
and the imaging chip that is located within the digital camera itself. A good rule of
thumb here is that a higher level of sampling pitch will usually yield a much better
resolution of either the 2-​Dimensional or 3-​Dimensional image. The converse of
this is also true, in that a smaller pitch rate means that only a smaller area of the
image will be captured, and thus, they could have extraneous objects on them.

Fill Factor

This can be deemed to be the actual “Sensing Area” of the digital camera. This metric
is represented as numerical fractions, and the higher the fill rate, there will be more
light shone, with the end result being that a much more robust snapshot of either
the 2-​Dimensional or 3-​Dimensional image will be captured.

Typical Applications for Computer Vision  |  225

Size of the Central Processing Unit (CPU)

There are many miniature-​sized CPUs that are available for the digital camera that
are being used by the ANN system, ranging in a fraction of inches. But for the most
robust outcomes, it is highly recommended that a larger-​sized CPU be utilized. The
main disadvantage with this is that the larger the CPU is, the statistical probability
of it being a more defective chip also rises.

Analog Gain

In older digital cameras, the analog gain was amplified by what is known as a “Sense
Amplifier.” But in the digital cameras of today that are used by the ANN system,
the “Sense Amplifier” has been replaced by the “ISO Setting.” This is an automated
process, in that a higher level of analog gain will permit the digital camera to yield
much better quality snapshots of either the 2-​Dimensional or 3-​Dimensional
images under very poor or substandard lighting conditions that may be present in
the external environment.

Sensor Noise

During the entire lifecycle of the digital camera capturing a snapshots of either a
2-​Dimensional or 3-​Dimensional image, there can be a lot of “extraneous” noise
that can be added during this whole process. These types of “noises” can be further
broken into the following categories:

	{ Fixed pattern noise;
	{ Dark current noise;
	{ Shot noise;
	{ Amplifier noise;
	{ Quantization noise.

It is important to note at this point that with all of the above five factors, the lighting
sources that are used can typically impact the 2-​Dimensional or 3-​Dimensional
image that is being currently used by the ANN system. But this problem of “noise”
can be alleviated by making use of Poisson Distribution Models that are statistical
based in nature.

The ADC Resolution

This is an acronym that stands for “Analog to Digital Conversion.” This can be
deemed to be amongst the final steps in the processing of the 2-​Dimensional or
3-​Dimensional image before it is transmitted over to the ANN system to compute

226  |  Typical Applications for Computer Vision

the desired outputs. There are two other factors that are of prime concern here, and
they are as follows:

	{ The Resolution: This is a metric that reflects the total byte size of the
2-​Dimensional or 3-​Dimensional image;

	{ The overall “Noise” level of these particular images, as it was just reviewed in
the last subsection.

For the first one, it is recommended that the 2-​Dimensional or 3-​Dimensional
image be no greater than 16 bits so that the processing power of the ANN system is
thus optimized and is not being overtaxed beyond its design limits.

The Digital Post-​Processing

Once all of the steps in the last subsections have been accomplished, the digital
camera can then take the snapshot of the 2-​Dimensional or 3-​Dimensional image,
further enhance it, and compress it down further so that the image can be easily
used by the ANN system. Some of the techniques that can be used here include the
following:

	{ The Color Filter Array Demosaicing (also known as “CFA”);
	{ The setting of various White Points;
	{ Calculating the Gamma Function of 2-​Dimensional or 3-​Dimensional images

that are only dynamic in nature.

The Sampling of the 2-​Dimensional or 3-​Dimensional
Images
As the tile of this section implies, the 2-​Dimensional or 3-​Dimensional images that
are going to be processed by the ANN system must first be sampled to see which
of the snapshots taken will be the most effective in terms of computing the desired
outputs. This concept can also be referred to as what is known as “Aliasing.” There is
a direct mathematical algorithm to help out in this process, and this can be referred
to as “Shannon’s Sampling Theorem.” This theory computes the minimum amount
of sampling that is needed in order to reconstitute a rather robust light signal. The
term “robust” can be defined as being at least twice as high (2X) as the highest fre-
quency that is actually yielded by the digital camera.

This can be mathematically represented as follows:

Fs > 2Fmax.

Typical Applications for Computer Vision  |  227

Thus, in this regard, the highest level of frequency can also be referred to as what is
known as the “Nyquist Frequency.” The “Nyquist Rate” can also be defined as the
minimum of the inverse of the frequency in question, and can be mathematically
represented as follows:

Rs = 1/​Fn.

At this point, one could simply ask the question, what is the point of even engaging
in the sampling process to begin with? Well, the primary objective of this is to
reduce the amount of frequency levels that are transmitted to the 2-​Dimensional
or 3-​Dimensional images, so that they can be much easier processed by the ANN
system. In this regard, another key metric that can be used is what is known as the
“Point Spread Function.” This postulates that the response levels of the pixels that
are embedded within the image of the 2-​Dimensional or 3-​Dimensional snapshots
can actually be used to point to the optimized light source that should be used.

The “Point Spread Function” (also known as the “PSF”) is a mathematical
summation of the blurs that are present, and the “Integration Areas” which can
actually be created by the chip sensor of the digital camera that is being used for the
ANN system. In other words, if the fill factor is known (as previously described), the
PSF can also be computed. Also, the “Modular Transfer Function” can be computed
in order to statistically ascertain how much sampling is truly needed before the
snapshots of the 2-​Dimensional or 3-​Dimensional images are thus fed into the
ANN system.

It should be noted at this point that the sampling technique just described can
be used for purposes other than determining which of the 2-​Dimensional or 3-​
Dimensional images are best suited for the ANN system. These include the following:

	{ Resampling;
	{ Unsampling;
	{ Downsampling;
	{ Other types of Image Processing applications.

The Importance of Color in the 2-​Dimensional
or 3-​Dimensional Image
So far in this chapter, the concepts of how the various lighting functions and the
surfaces that are used to capture the snapshots of both 2-​Dimensional and 3-​
Dimensional images have been reviewed in good detail. For example, when the
light is coming inbound from its various projection source points, these various
ray are actually broken down into the various colors of the spectrum: red, green,
and the blue colors, also known as “RGB.” There are other colors as well, such as

228  |  Typical Applications for Computer Vision

cyan, magenta, and yellow, or “CYMK.” These are also known as the “Subtractive
Colors.” The other colors previously described are known as the “Additive Primary
Colors.” These are actually added together to produce the CYMK color regime.
Also, these various colors can be combined in order to produce other types of colors
as well. But, it is important to keep in mind that these colors are not intermixed
or combined automatically on their own. Rather, they appear to be mixed together
because of the way our Visual Cortex in the human brain has been created.

All of this is a result of what is known as the “Tri-​Stimulus” nature of our vision
system, as just described. But when all of this is applied to the field of Computer
Vision, you will want to use as many different and various wavelength colors as you
possibly can in order to create the most robust snapshots of either the 2-​Dimensional
or 3-​Dimensional images.

The CIE, RGB, and XYZ Theorem

These three separate acronyms are also technically known as the “Tri Chromatic
Theory of Perception.” In this regard, an attempt is made in order to come up with
all of the monochromatic colors as just three primary colors for the ANN system to
use both efficiently and optimally as well. This specific theory can be mathematically
represented as follows:

[X, Y, Z] = 1/​0.17697 [(0.49, 0.17697, 0.000) * (0.31, 0.81240, 0.01) *
(o.20, 0.01063, 0.99)] * [R, G, B].

The specific color coordinates of this theorem can be mathematically represented as
follows:

X = (X/​X+Y+Z), y = (Y/​X + Y + Z), z = (Z/​X + Y + Z)

This all comes up to the value of 1.

The Importance of the L*a*b Color Regime for
2-​Dimensional and 3-​Dimensional Images

While the last subsection of this stressed the importance of how the human visual
cortex can literally separate the luminance-​based colors from the chromatic-​based
colors, the theories just outlined typically do not cover the fundamental question of
how the visual cortex can actually examine the subtle and minute differences in the
various color regimes just examined in the last subsection of this chapter.

To counter this effect (because Computer Vision tries to replicate the entire
human visual system), a concept known as the “L*a*b Color Regime” has been
formulated. This is also referred to as “CIELAB.” This can be mathematically be
represented as follows:

Typical Applications for Computer Vision  |  229

L* = 116f * (Y/​Yn).

The above computes the “L*” component. The following mathematical algorithms
thus compute the “a*” and the “b*” components:

A* = 500 [f(X/​Xn) –​ f(Y/​Yn)]; b* = 200[f(Y/​Yn -​ f(Z/​Zn].

The Importance of Color-​Based Cameras in
Computer Vision
So far, we have reviewed in this chapter, particularly in the last few subsections,
how the various colors can be applied. But, despite all of this, there is still one color
regime that has not been examined yet—​“RGB.” These specific colors are that of
red, blue, and green. The mathematical representations for each of these colors of
the spectrum can be further defined as follows:

R (Red) = ∑L(Y)Sr(Y)dYr;

G (Green) =∑ L(Y)Sg(Y)dYr;

B (Blue)= ∑L(Y) Sb(Y)dYr.

Where:
L(Y) = The incoming spectrum of any of the above-​mentioned colors at any

specific location of the 2-​Dimensional or 3-​Dimensional image;
{Sr(Y), Sg(Y), Sb(Y)} = The red, blue, and green “Spectral Sensitivities” of

the correlated sensor of the digital camera that is being used by the ANN
system.

Although we know now the colors that will be used, the one item that cannot be
ascertained is the sensitivities of these three light colors. But, all that is needed by the
ANN system is what is known as the “Tri Stimulus Values.”

The Use of the Color Filter Arrays

The digital cameras that collect and make use of the RGB color spectrum also have
a special sensing chip as well, and this is known as the “Color Filter Array,” also
called the “CFA” for short. In this regard, and in specific relation to this type of chip
structure, we have what is known as the “Bayer Pattern.” In this specific instance,
there are at least twice as many (2X) green types of filters as there are red and blue
filters. The primary reason for this is that there are various luminance signals going

230  |  Typical Applications for Computer Vision

to the digital camera, and from there the 2-​Dimensional or 3-​Dimensional image is
deemed to be much more sensitive to higher frequency values than the other color
and chromatic regimes,.

It should be noted also that the green color regime is also much more suscep-
tible to what is known as “Interpolation,” or “Demosaicing.” Also, it is not only the
digital cameras that are used by the ANN system which make typical usage of the
RGB color regime, the standard LCD Monitors make use of them as well. A key
advantage that the RGB color regimes have over the others is that they can be digit-
ally pre-​filtered in order to add more robustness to the snapshots that are taken of
either the 2-​Dimensional or 3-​Dimensional image in question.

The Importance of Color Balance

It is important to note that in the RGB color regime, what is known as “Color
Balancing” is used in order to move any chromatic color regimes (typically that of
the white color) in a corresponding shade of color that resides from within either
the 2-​Dimensional or 3-​Dimensional image. In order to perform this kind of pro-
cedure, a specialized kind of “Color Correction” is performed, in which each of the
multiplicative powers of the specific RGB value is actually in turn multiplied by a
different numerical factor. In this specific instance, a diagonal matrix transformation
can be conducted.

Much more advanced techniques can also be applied here, such as the “Color
Twist,” in which a three-​by-​three mathematical transformation matrix is used.

The Role of Gamma in the RGB Color Regime

In the RGB color regime, which is used by the digital camera for the ANN system,
the specific mathematical relationship between the voltage of the digital camera and
its corresponding can be referred to at times as “Gamma,” and it can be represented
in one of two ways, which are as follows:

Representation 1: B = V^1;

Representation 2: Y’ = Y^1/​z.

This is actually a nonlinear approach, but it should be noted that it has one primary
advantage to it: any sort of “noise” that arises from taking the snapshots of either the
2-​Dimensional or 3-​Dimensional image to be processed by the ANN system can be
automatically diminished where the colors are exposed to it. Also, to provide further
optimization to the ANN system that will be processing the various snapshots, they
are also further compressed down by making use of what is known as an “Inverse
Gamma” technique.

Typical Applications for Computer Vision  |  231

However, another specific drawback of the above-​mentioned technique is that
any presence of Gamma features in the snapshots that are taken of either the 2-​
Dimensional or 3-​Dimensional image can lead to further shading. This can be
alleviated if the corresponding value of the Gamma can be calculated, but many of
the digital cameras that are being used by the ANN systems of today are not capable
of doing so. There are also other issues in this regard as well, such as determining
what a normal surface typically is on either a 2-​Dimensional or 3-​Dimensional
image. To help combat this level of uncertainty, another sophisticated technique is
also used, and using what is known as the “Photometric Stereo.” This will help to
reverse any Gamma-​based computations that have been done and even to further
re-​balance any “splotched” colors that may exist in either the 2-​Dimensional or
3-​Dimensional image.

If the “Inverse Gamma” technique is to be utilized directly by the ANN system,
a “Linearization Technique” then is very often needed as well.

The Role of the Other Color Regimes in 2-​Dimensional
and 3-​Dimensional Images

As it has been stated before, although it is both the RGB and the XYZ color regimes
that are mostly used in digital cameras today, there are a few other types of color
regimes that have been established as well, and these can also be used by the ANN
system for producing desired outputs. Two such color regimes are known as “YIQ”
and the “YUV.” It is interesting to note that both of them, respectively, make fur-
ther use of what is known as a “Y Channel.” This can actually be mathematically
represented as follows:

Y’601 = 0.299R’ + 0.587G’ + 0.144B’

Where:
R’, G’, and B’ are actually the Red, Green, and Blue compressed color regimes

that are embedded minutely in the other two color regimes just previously
described. From this, Ultraviolet parts can be filtered out by making use of
the following mathematical algorithm:

U = 0.42111 * (B’ –​ Y’);

V = 0.877283 * (R’ –​ Y’).

By using these mathematical algorithms, “Backward Compatibility” can even ferret
out for the “High Frequency Chroma”-​based signals that can still persist on the
digital camera that is used by the ANN system.

232  |  Typical Applications for Computer Vision

With the “YIQ” and the “YUV” color regimes, .JPEG images can be created
as well. But, it is important to keep in mind that these are not the standard .JPEG
format file extensions, these are the ones that have to be specially created in order
for the ANN system to process them in order to compute the desired outputs. This
can be computed by the following mathematical algorithm:

[Y’, Cb, Ct] = [0.299, -​0.168736, 0.5] * [0.587, -​.331264, -​0.418688] *
[0.144, 0.5, -​0.081312] * [R’, G’, B’] + [0, 128, 128]

Where:
R’, G’, B’ = the 8 bit Gamma color components in either the 2-​Dimensional

or 3-​Dimensional image that has been further compressed down.

Also, the above mathematical algorithm can be used for other “Deblocking”
purposes as well.

There is also yet another color regime that has come about, and which can also be
used by the ANN system as well. This is known specifically as the “Hue, Saturation,
Value” color regime, and is also known as the “HSV” for short. This is also a subset
of the RGB color regime. The HSV color regime has the following properties as well:

	{ Maximum Color Value;
	{ Saturation:

A scaled distance from the pixels in either the 2-​Dimensional or
3-​Dimensional image.

	{ Hue:
The vector orientations of this specific color scheme in either the 2-​
Dimensional or 3-​Dimensional image.

The above-​mentioned properties can be represented mathematically as follows:

R = (R/​R+G+B); G = (R/​R+G+B); B = (R/​R+G+B).

The Role of Compression in 2-​Dimensional
and 3-​Dimensional Images

This particular phase, which is known as “Compression,” is the last step in pro-
cessing of snapshots of 2-​Dimensional or 3-​Dimensional images that are taken by
the digital camera. There are specific mathematical algorithms in order to accomplish
this task, but in general terms, the “Luminance Signal” is further compressed down
with a much higher fidelity frequency/​signal. After this first phase is done, the next
stage is known as the “Block Transformation.” This is where a specific mathematical

Typical Applications for Computer Vision  |  233

algorithm, referred to as the “Discrete Cosine Transformation,” is a factored product
of the “Fourier Transform.”

After this is done, in the third step in this process, the values of the coefficients
that have been computed are converted over to a smaller set of integer-​based values. It
is important to keep in mind that it is not just the 2-​Dimensional or 3-​Dimensional
images that are used by the ANN system in order to calculate the required outputs.
Video streams can also be used, but these, of course, will require much more pro-
cessing and computational power on the part of the ANN system.

If video is used in lieu of the 2-​Dimensional or 3-​Dimensional images, then
another mathematical approach called “Motion Compensation” is used. This is used
specifically to encode the variances that exist between each and every block of video,
and to come up with a statistical matrix of the blocks that have been encoded in
the previous iterations. The more modern variations of this particular mathematical
algorithm can automatically size up the blocks that are used in the video segments
by the ANN system, create sub-​pixel coordinates, and create the required mech-
anism for the ANN system to actually tag previous blocks in the video stream that
have already been compressed.

Finally, the effectiveness and the robustness of the mathematical formulas and
equations that are used in this compression sequence as detailed in this subsection
can be measured by using what is known as the “Peak Signal to Noise Ratio,” or the
“PSNR” for short. This is a statistical-​based derivation of the “Average Mean Square
Error,” which is mathematically represented as follows:

MSE = 1/​n∑x * [I(x) –​ I(x)]^2

Where:
I(x) = The Original Uncompressed Image;
I(x) = The Compressed Counterpart.

From here, the PSNR can be mathematically computed as follows:

PSNR = 10LOG10 *(I^2max/​MSE) = 20LOG10 * (Imax/​RMS)

Where:
Imax = The absolute extent to which signals can be transmitted from the

digital camera to the 2-​Dimensional and 3-​Dimensional images.

Image Processing Techniques
Now that we have reviewed in great detail how 2-​Dimensional and 3-​Dimensional
images can be created, we turn our attention to how they can be further processed
so that the ANN system can use these images (whether they are static or dynamic) in

234  |  Typical Applications for Computer Vision

the most efficient and optimal manner so that the desired outputs can be produced.
In this part of the chapter, we review such processing techniques, also referred to
as “Transformation.” In this instance, “Point Operators” can be used, as well as
“Neighborhood Operators.”

Both of these concepts make use of a specialized technique which is known as
the “Fourier Transform.” Further, the “Operator”-​based techniques just described
can also be used to create what are known as “Image Pyramids” and “Wavelets”
that can be used by the ANN system to further analyze the 2-​Dimensional or 3-​
Dimensional images. Finally, “Geometric Transformations” can be used to create
certain rotational aspects in the 2-​Dimensional and 3-​Dimensional images as well.

The Importance of the Point Operators
Point operators are deemed to be the least complex, and probably the easiest trans-
formation techniques that are out there. For example, to demonstrate its sheer level
of simplicity, each pixel-​based value that is computed relies upon the previous value
that has been reached, from the preceding pixels. These kinds of point operators can
be used for the following characteristics of the 2-​Dimensional and 3-​Dimensional
images:

	{ Level of brightness;
	{ Level of contrast;
	{ Degree of color correction;
	{ Geometric degree of transformation.

In terms of the mathematical algorithms that are involved with “Pixel Transformation,”
some the most important ones are as follows:

G(X) = h[f(x)], which can also be represented as g(x) = h *[Fo(x)], … Fn(x)].

The above represents the most basic pixel transformation technique that is most
widely used by the ANN systems of today. In this regard:

X = the Dimensional Domain;
F, g = the specific statistical ranges of the pixels that are being examined.

But, if discrete, or static 2-​Dimensional or 3-​Dimensional images are going to be
used by the ANN system, there can be considered what is known as a definite, or
finite set of pixel-​based locations with these kinds of images. This can be mathemat-
ically represented as follows:

G(I,j) = h[f(I, j0)].

Typical Applications for Computer Vision  |  235

Also, the other two other types of point operator that are used with pixel-​based
transformations use both multiplicative and addition-​based mathematical proper-
ties, and can be represented as follows:

G(x) = a f(X) + b.

Two mathematical variables that are important in point (or pixel) transformations
are those of the “Gain” and “Brightness.” They are represented as follows:

G(x) = a(x) * f(x) + b(x).

It should be noted that the multiplicative property just described can also be used as
a linear approach as well, and this is mathematically represented as follows:

H(f0 + f1) = h(f0) + h(f1).

Also, dual point operators can be used quite easily and effectively as well, and they
can be mathematically represented as follows:

G(x) = (1-​A) * f0(x) + Af1(x).

It should also be noted that this specific mathematical algorithm can be used to con-
duct what is known as “Cross Dissolvation” between two or more 2-​Dimensional or
3-​Dimensional images and/​or video segments. Also, a technique known as “Gamma
Correction” can also be conducted, in which any type of linear relationship between
the pixel coordinates can be eliminated as is deemed necessary by the ANN system.
This can be accomplished with the mathematical algorithm below:

G(x) = [f(x)]^-​1/​A.

The Importance of Color Transformations

We have touched upon the different color regimes that are available for 2-​
Dimensional and/​or 3-​Dimensional images in quite a bit of detail in the previous
subsections of this chapter. But when it comes to Image Processing, these types of
distinct color regimes should be thought of as ultra-​correlated signals that can be
associated with the pixels that are located in these images. The ANN system can
further enhance the mathematical values of these kinds of signals by simply adding
the same numerical iterations to them over and over again, in an iterative fashion.
But, the drawback here is that the levels of Hue and Saturation can also be greatly
increased as well.

236  |  Typical Applications for Computer Vision

The question now arises as to how the above can all be resolved. In this regard,
it is very important to use the concepts of “Color Balancing” (as also previously
reviewed in this chapter) to multiply and find the numerical product that works best
so that the pixel coordinates in either the 2-​Dimensional or 3-​Dimensional images
(whether they are static or dynamic) can be associated with one another in some sort
of linear-​based format.

The Impacts of Image Matting

Another very important key aspect in Computer Vision as it relates to 2-​Dimensional
and 3-​Dimensional images is known as “Matting.” This is a specific technique where
an object in the “Foreground” of one these images can be put into the background
of a totally different 2-​Dimensional or 3-​Dimensional image in a seamless fashion.
It should be noted that the latter process, in which the object is placed into an
entirely new image is known as “Compositing.” The steps that are required in the
middle for all of this to happen are known as the “Alpha Matted Color Image.”

But in the above-​mentioned process, there is yet another channel that is created,
and this is known as the “Alpha Channel.” This metric reflects the relative degree of
“Fractional Coverage” of light that is beamed at each of the pixel coordinates of the
2-​Dimensional or 3-​Dimensional image. It should be noted at this point that any
of the pixel coordinates that are deployed from within the object that are displaced
on the newer 2-​Dimensional or 3-​Dimensional image are opaque in color, whereas
any pixel coordinates that lie outside this specific object are transparent in nature.

To further achieve the “Compositing” technique as just described, the following
mathematical algorithm is typically used:

C = (1-​A)^B + aF.

Finally, when the light source is bounced back from a very plain background to
the 2-​Dimensional or 3-​Dimensional image, the mathematical values of the light
that passes through them are numerically added together. This is also known as
“Transparent Motion.”

The Impacts of the Equalization of the Histogram

One of the key questions that is often asked in Computer Vision today is, how can
the mathematical values be ascertained for the brightness and gain characteristics
of 2-​Dimensional and 3-​Dimensional images? Or in other words, how can they
be further optimized to be best-​suited for the ANN system? A simpler method-
ology to address these key questions is to locate the darkest and the lightest pixel
coordinates in these specific images, and contrast them with a black and white
Cartesian Geometric Plane.

Typical Applications for Computer Vision  |  237

Of course, a much more statistical approach to this would be to find the average
value of all of these pixel coordinates, and from there further expand the math-
ematical range that they are currently in. In this specific instance, one will need
to construct a “Histogram” of all of the color regimes that are present in the 2-​
Dimensional or 3-​Dimensional image, and from there, once again use statistics to
compute the following properties:

	{ The Minimum Value;
	{ The Maximum Value;
	{ The Average Intensity Values.

A technique that is known as “Histogram Equalization” can be used here. With this
technique, the goal is to strike a certain balance between the darker and brighter
pixel coordinates that are present in the 2-​Dimensional image or the 3-​Dimensional
image. From here, the ANN system can take random samples of these pixel
coordinates in order to determine which ones of them will work best to compute
the desired outputs. This can be done via the “Probability Density Function,” which
is also sometimes referred to as the “Cumulative Distribution Function,” and this
can be mathematically represented as follows:

c(I) = 1/​NI∑i=0h(i) = c(I-​1) + 1/​Ng(T)

Where:
N= the total number of pixels in either the 2-​Dimensional or 3-​Dimensional

image.

But despite the advantages that “Histogram Equalization” can bring, one of its key
disadvantages is that in the darker pixel coordinates in the 2-​Dimensional or 3-​
Dimensional image, any miniscule, extraneous objects can be greatly magnified,
thus distorting the overall quality of the image in question.

Making Use of the Local-​Based Histogram Equalization

It should be noted that the technique just reviewed in the last subsection is deemed
to be “Global” in nature. This simply means that the entire 2-​Dimensional or 3-​
Dimensional image is analyzed as a whole. But at times, it may not be necessary
to do this. In other words, it may just be enough to further analyze only certain
segments, or regions, of either the 2-​Dimensional or 3-​Dimensional images. Thus,
in this regard, a mathematical matrix (denoted as “MxM”) can be used to apply the
mathematical algorithm for the “Histogram Equalization,” and be used for only cer-
tain pixel coordinates in the images.

238  |  Typical Applications for Computer Vision

But, this process can actually be somewhat automated in the sense that a statistical-​
based “Moving Window” can be applied to all of the pixel coordinates to the 2-​
Dimensional or 3-​Dimensional image in question. But this will need some coding to
be done, and this can actually be accomplished with the Python Source Code.

There is also yet another methodology that can be used in this regard, and this
can be technically referred to as “Adaptive Histogram Equalization.” With this, the
mathematical values of the non-​overlapping pixel coordinates in the 2-​Dimensional
or 3-​Dimensional image can be calculated. This is mathematically represented as
follows:

Fs,x(I) = (1-​s) * (1-​t) f00(I) + s(1-​t)f10(I) + (1-​s)^t f01(I) + stf11(I).

But, a much more streamlined version of this is to conduct a statistical-​based lookup
at each of the four corners of the generic, mathematical-​based MxM matrix. From
here, the pixel coordinates of these four corners can be thus combined into one
entire summation, which can be further statistically distributed; the mathematical
equation to do this is as follows:

Hk,j[I(I,j0] += w(I, j, k)

Where:
w(I, j, k) = the Bilinear Weighting Function between the various pixel

coordinates.

The Concepts of Linear Filtering
The technique that was reviewed in the last subsection, which is called “Local
Adaptive Histogram Equalization,” is also a perfect replication of what is known in
statistics as the “Neighborhood Operator.” In this particular instance, this specialized
technique can be used to ascertain the mathematical summation of the values of the
pixel coordinates just based upon one of them that is deemed to be close by in either
the 2-​Dimensional or 3-​Dimensional image in question.

This technique can also be used for specific subsets of the pixel coordinates,
in order to compute its final value. Also, it can be used to enhance the following
characteristics of the image in question:

	{ Setting the Color Regime tonality adjustments;
	{ Adding subtle blurred objects for enhancement purposes;
	{ Add more details;
	{ Make the edges more pronounced in nature;
	{ Remove any unneeded or extraneous objects.

Typical Applications for Computer Vision  |  239

To accomplish the above, a specialized “Linear Filter” is used, and the mathematical
algorithm for this is as follows:

G(I,j) = ∑k,l f(i+k, j+1) * h(k,L)

Where:
h(k,L) = the Filter Coefficients.

A more filtered version of the above mathematical algorithm is represented as:

G = f0/​\h.

But, it is important to keep in mind that the above mathematical algorithm is only
suited for 2-​Dimensional or 3-​Dimensional images that are quite simple by design.
Keep in mind though, that the ANN systems of today, by design, have been pro-
grammed to process very complex images, and that doing so does not tax their
processing or computational resources to the breaking point. But in order for this
to happen, yet another specialized mathematical equation has to be used, and this
is as follows:

G(I,j) = ∑k,I f([-​k, j-​I) * h(k,L) = ∑k, I f([-​k, j-​I).

The Importance of Padding in the 2-​Dimensional or
3-​Dimensional Image

Yet, another primary disadvantage of the mathematical techniques reviewed in the
last subsection is that which is known as “Boundary Effects.” This is merely the
super darkening of all of the pixel coordinates that are located in all of the four
corners of the 2-​Dimensional or 3-​Dimensional image. In order to alleviate this
negative effect, the concepts of what are known as “Padding” can be used, and
some of the more important ones (as they relate to the ANN system) are as follows:

	{ Zeroing:
This sets all of the pixel coordinates to a mathematical value of “0” in the 2-​
Dimensional or 3-​Dimensional image.

	{ The Constant:
This is when all of the pixel coordinates are computed and associated with a
preset mathematical value.

	{ Clamping:
The above two processes can be repeated in an iterative fashion, in an auto-
matic fashion.

240  |  Typical Applications for Computer Vision

	{ The Cyclical Wrap:
This creates various loops around the pixel coordinates in the 2-​Dimensional
or 3-​Dimensional image.

	{ Mirroring:
This is a particular mathematical property that is used to further reflect the
pixel coordinates in either 2-​Dimensional or 3-​Dimensional images.

	{ The Extension:
This is the mathematical extension of the pixel coordinates in the 2-​
Dimensional or 3-​Dimensional image when it is compared to the signals that
are transmitted from the pixel coordinates at the edges of the 2-​Dimensional
or the 3 Dimensional-​image.

In the world of Computer Graphics these “Padding” techniques are also known as
“Wrapping or Texture Addressing Mode.” This helps to keep the pixel coordinates
in the four borders of the 2-​Dimensional or 3-​Dimensional image from any fur-
ther effects of darkening. But in the off chance that this does indeed happen,
the “RBGA” color regime (as reviewed in detail earlier in this chapter) can have
its “Alpha” values statistically computed so that this effect can be immediately
terminated.

The Effects of Separable Filtering

There is also a process that is known as “Convolution” in the world of Computer Vision.
This makes use of what are known as “K2” mathematical operators (which are simply
multiplication and addition) in each of the pixel coordinates of the 2-​Dimensional
or 3-​Dimensional image. In these cases, the value of “K” merely represents both the
total height and width of the image in question. This “Convolution” technique can
also be applied separately to the height and width, respectively.

If the above is done, then the “K”-​based values are deemed to be what is known
as “Separable” in nature. Further, this can be mathematically represented as follows:

K = vh^T.

But, in order to truly ascertain if the “Separable” functionality has indeed been done
in the 2-​Dimensional or 3-​Dimensional image, the following mathematical algo-
rithm must be used:

K = ∑iOiu2v^Ti.

It is important to keep in mind that the above mathematical algorithm can be
used only if the entire 2-​Dimensional image or 3-​Dimensional image is being fur-
ther analyzed. In order to ascertain if the “Separation” function has indeed been

Typical Applications for Computer Vision  |  241

accomplished to both the height and the width on an individual basis, then the
following two Square Root computations must be made:

For the Height: SQUAREROOT o0u0;
For the Width: SQUAREROOT O0v^Tu.

What the Band Pass and Steerable Filters Are

It should be noted that so far, there are other specialized types of “Operators” as
well, other than the ones just reviewed in the last subsections. For example, there are
what are known as “Sobel” and “Corner” Operators, and these are primarily used to
help smooth out any curves that are needed in either the 2-​Dimensional image or
the 3-​Dimensional image. This can be mathematically represented as follows, when
a sophisticated statistical tool known as the “Gaussian Filter” is used:

G(x,y,O) = (1/​2TT0^2) –​ (x^2 + y^2/​2n^2).

The above are also referred to as what is known technically as the “Band Pass Filters.”
This is used to especially filter out for those frequencies that are typically not needed
from the light projection sources. There is also another specialized “Operator” that
is known as the “Laplacian Operator.” This specific technique can be used to reduce
any subtle blurring in either the 2-​Dimensional or 3-​Dimensional image. This is
represented via mathematics as follows:

^2G(x,y,z) = (x^2+y^2/​0^4) –​ (2/​O2) * G(x,y,z).

More specifically speaking, the “Sobel Operator” can be used to statistically extrapo-
late the vector orientation (either from the Directional or Oriented perspectives).
But, the above-​mentioned mathematical algorithm can be used to accomplish this
task as well. From here, a “Directional Directive” can be used, which is statistically
represented as follows:

Vu = o/​0u.

There is one more specialized filter that needs to be reviewed in this subsection, and
it is that of the “Steering Filter.” The mathematical algorithm that drives this con-
cept is illustrated below:

Guu = u^2Gxx + 2uvGxy + v^2Gyy.

This technique is most widely used to create what are known as “Feature Descriptors”
around the pixel coordinates in either a 2-​Dimensional image or 3-​Dimensional
image. In these cases, a two-​by-​two mathematical matrix is used.

242  |  Typical Applications for Computer Vision

The Importance of the Integral Image Filters

If a 2-​Dimensional image or 3-​Dimensional image is going to be used in sequence,
over and over again in an iterative fashion in the ANN system, then the Integral
Image Filter needs to be used. In this regard, it is crucial that the ANN system pre-​
establishes what is known in terms of mathematics as the “Summed Area Table.”
This is also mathematically demonstrated as follows:

S(I,j) = I ∑k=0 * f(k,l)

Where:
S(I,j) = the Integral Image.

Now, the “Summed Area Table” is identified as follows:

[i0, i1] X [j0, j1].

From here, the four separate corners of the 2-​Dimensional image or 3-​Dimensional
image are summated together in order to speed up the efficiency cycle of the iterations
that take place (as just described previously). This is achieved by the following math-
ematical algorithm:

S(i0 … i1, j0 … j1) = i1 ∑i=i0 j1 ∑ j=j0 *
S(i1, j1) –​ s(i1, j0–​1) –​ s(i0–​1, j1) + s(i0–​1, jo-​1).

It should be noted at this point that one of the biggest disadvantages of using
this kind of specialized technique is that it is also deemed to be a logarithmic
approach (denoted as M + logN). Any large gatherings of either 2-​Dimensional or
3-​Dimensional images will result in a huge bit size, which will further require an
enormous amount of both processing and computational power on the part of the
ANN system that is being used.

This technique has also been used in earlier versions of Facial Recognition Technology
for lower kinds of applications. The images that are taken from here are often modeled
as “Eigenfaces,” which consist of many, many geometric-​based rectangles. Technically
speaking, these are known as “Boxets.” If high level statistics are thus used here, the
“Summation of the Squared Differences” (also known as the “SSD”) can also be used,
in an effort to compute the total mathematical value of the pixel coordinates in the
various Eigenfaces that have been used by the Facial Recognition system.

A Breakdown of the Recursive Filtering Technique

This kind of filtering technique is primarily used for signal processing. This is where
the various color regimes that are transmitted onto the 2-​Dimensional image or

Typical Applications for Computer Vision  |  243

3-​Dimensional image actually gather up and accumulate into one area of the image,
and thus, can cause more blurriness or other forms of obstructive objects to be pre-
sent, thus further degrading the quality of the image. This is also technically known
as the “Infinite Impulse Response,” or the “IRR” for short. The primary reason why
it has been given this name is that some of these color regimes can be projected onto
infinity, if there are no other obstructions in its path. The “IRR” method is typically
used to statistically compute massive kernels that have smoothened out in either the
2-​Dimensional or 3-​Dimensional image. But, as it was reviewed in detail previously
in this chapter, the “Pyramid” approach can be used as well, in order to reach the
same level of goal.

The Remaining Operating Techniques That
Can Be Used by the ANN System
Although we have covered a good amount of “Operators” in this chapter thus far,
there are still more that remain and that can also be used by the ANN system.
Broadly speaking, they can fit into the following categories:

	{ Edge-​Preserving Median Filters;
	{ Bilateral Filters;
	{ Morphological Filters;
	{ Semi-​Global Filters.

It should also be kept in mind that the “Operators” and their corresponding filtering
techniques have been traditionally linear-​based. In this section of this chapter,
we now examine the filtering techniques that are nonlinear-​based in approach.
Actually, the linear-​based approaches are the easiest to compute, in the sense that
the mathematical value of each pixel coordinate in either the 2-​Dimensional or 3-​
Dimensional image can be considered as a complete, mathematical summation of
the surrounding pixel coordinates.

These kinds of linear-​based filtering techniques are the most favored to be used
for an ANN system, for the sheer fact that they require less overhead, and are easy
to deploy in order to compute the desired outputs that are required. But also keep
in mind that the ANN systems of today are very sophisticated and powerful in
nature; thus they can take into account any nonlinear-​based filtering techniques
as well. Thus, the intent of this section in this chapter is to examine these kinds of
techniques in greater detail.

An Overview of the Median Filtering Technique

With this specialized technique, the statistical median value each of the closest by
pixel coordinates surrounding the central ones in the 2-​Dimensional image or the

244  |  Typical Applications for Computer Vision

3-​Dimensional image is thus calculated. By using this kind of approach, any pixel
coordinates that do not further contribute to the 2-​Dimensional image or the 3-​
Dimensional image are automatically eradicated and purged. But despite this key
advantage, one of the primary disadvantages of using this kind of approach is that it
can only look at one pixel coordinate at a time.

In other words, it cannot look at the overall median summation of groups of
pixel coordinates at one time. This can no doubt take a lot of time to process, thus
further exacerbating the time that has been allotted to the ANN system to compute
the desired outputs. Thus, another alternative for this specific approach is to use
what is known as the “Weighted Median Index,” in which this grouping function-
ality can be made use of.

This is mathematically represented as follows:

∑k,j * w(k, l) * f(I + k1j + 1) –​ g(I, j)|^P

Where:

	{ g(I, j) = the desired output that is to be computed by the ANN system;
	{ p = a numerical value of “1” for the Weighted Median Index.

Also, another key advantage of making use of the “Weighted Median Index” is that
it can be used for “Edge Preserving” in either the 2-​Dimensional image or the 3-​
Dimensional image. This allows for the edges of these kinds of images to appear
smoother than they normally are in nature.

A Review of the Bilateral Filtering Technique

As mentioned in the last subsection of this chapter, the “Weighted
Median Index” cannot be used in an automatic fashion. But in this specific
technique, which is known as the “Bilateral Filtering” concept, this process is
not only automated, but it also uses the same principle, in which the statistical
median value of each of the closest pixel coordinates surrounding the central
ones in the 2-​Dimensional image or the 3-​Dimensional image is subsequently
calculated.

The mathematical formula for this technique is as follows:

G(I, j) = [∑k,I * f(k,l) * w(I, j, l)]/​[∑ w(I, j, l)].

Finally, a concept known in mathematics known as “Vector Distancing” is also used
to help not only automate the process just described, but to speed it up as well.

Typical Applications for Computer Vision  |  245

The Iterated Adaptive Smoothing/​Anisotropic
Diffusion Filtering Technique

With this form of specialized technique, the Bilateral Filters (as reviewed earlier in
this chapter) can also be used over and over again in an iterative manner. But in
these circumstances, only a very small grouping of pixel coordinates are actually
needed. This grouping can be depicted as follows, in terms of mathematics:

D(I, j, k, l) = EXP [(i-​k)^2 + (j-​i)^2)]/​2O^2d = {1, V = e^-​1/​2o^2d, |k-​i| + |t-​
j| = 0, |k-​i| + |t-​j| = 1

Where:
R = ∑(k,j)^r(I, j, k, l), (k, l) are the closest by pixel coordinates in the 2-​

Dimensional image or 3-​Dimensional image;
(I,j) = the iterative process just described earlier.

The above mathematical algorithm can also be referred to as the “Anisotropic
Diffusion Filtering Technique,” and the primary advantage of this is that it can
be applied to virtually any type of Computer Vision problem for which an ANN
system is required.

But, it should be further noted that that this particular mathematical technique
can also be used to a convert a static 2-​Dimensional or 3-​Dimensional image into a
dynamic one. However, it is always best that any smoothing issues to be resolved in
this regard are done in a joint, statistical approach.

The Importance of the Morphology Technique

At this point, it should be further reiterated that it is the nonlinear-​based filtering
techniques that are very often used to further either the 2-​Dimensional or 3-​
Dimensional grayscale images that are used by the ANN system. But this can only
occur after a specific “Thresholding Operation” has occurred, and this is done using
this statistical technique:

0/​(f,t) = {1 if f > t; 0 Else).

Very often, binary techniques are used in this regard, and these are technically
referred to as “Morphological Operations.” The primary reason they are called this
is because that they can literally change the geometric shape of the objects that are
deemed to be binary in nature in either the 2-​Dimensional image or 3-​Dimensional
image. In order to carry out this kind of procedure, these specific objects are statis-
tically conjoined together with what is known as the “Structuring Element.”

246  |  Typical Applications for Computer Vision

From here, the “Binary Output Value” is then selected, which is a direct
function of the permutations that have been set forth in the Conjoining Process. It
is important to note that this can take any type of geometric shape, and can also be
applied to any three-​by-​three mathematical matrix. The statistical formula for doing
this kind of computation is:

C = f 0/​\ S.

This is an integer-​based approach to be used. The following are some of the most
important properties of the “Morphological Technique”:

	{ The Dilation:
This is represented as:

Dilate(f,s) = 0\(c.1).

	{ The Erosion:
This is represented as:

ERODE(f,s) = 0\(c,S).

	{ The Majority:
This is represented as:

MAJ(f,s) = 0(c, S/​2).

	{ The Opening:
This is represented as:

OPEN(f,s) = DILATE[ERODE(f,s), s)].

	{ The Closing:
This is represented as:

CLOSE(f,s) = ERODE[DILATE(f,s), s)].

In these specific properties, the Dilation actually deepens, or thickens the pixel
coordinates in the 2-​Dimensional or 3-​Dimensional image, and it is Erosion that
actually shrinks them down in terms of their mathematical values. Also, the Closing
and Openings do not affect any large, one entity-​based areas that are present in the
2-​Dimensional image or 3-​Dimensional image.

Typical Applications for Computer Vision  |  247

The Impacts of the Distance Transformation Technique

This is a concept that is used to mathematically calculate a distance that has been
assigned to a parabolic curve in which there are at least two or more points that have
been firmly established on it. This technique can do the following:

	{ The calculation of Level Sets;
	{ Conducting Fast Transfer Matching;
	{ The use of Feathering and Image Stitching in the 2-​Dimensional or

3-​Dimensional image.

The mathematical algorithm that is used to calculate is as follows:

D1(k, l) = |k| + |I|.

But, the above mathematical algorithm is only “generic” in nature. There are two
other specific techniques that can be used which are known as follows:

	{ The Manhattan Distance;
	{ The Euclidean Distance.

The Euclidean Distance is mathematically represented as follows:

D1(k, l) = SQUAREROOT k^2 + l^2.

The Manhattan Distance is mathematically represented as follows:

D(I,j) = MIN k,j b(k,l)=0 * d(i-​k, j-​1).

Since the two mathematical algorithms mentioned above are deemed to be quite
efficient in nature, there is really no need to use the “Euclidean Distance” formula
for these types of applications. But in place of this, the “Vector Valued Distancing”
mathematical formula can be used as well. This is where the corresponding “x” and
“y” values of the pixel coordinates in the 2-​Dimensional or 3-​Dimensional image are
used to calculate the Square Areas, or the “Hypotenuse” of the image in question.

There is also yet another Distancing Formula that exists, and it is specific-
ally known as the “Signed Distance Transformation” technique. This specifically
computes the mathematical distances for all of the pixel coordinates in the 2-​
Dimensional or 3-​Dimensional image, and this is done by using it parallel with
the other distancing techniques just described above. The fundamental, bottom
line is that all of the particular distancing techniques can be quite efficient when
it comes to the alignment and the merging of the 2-​Dimensional objects that are

248  |  Typical Applications for Computer Vision

curvilinear in nature with the 3-​Dimensional surfaces that have been created that
way by design.

The Effects of the Connected Components

This kind of technique is deemed to be semi-​global in nature. In this theorem, the
geometric regions that are close by, or adjacent, to the pixel coordinates in the 2-​
Dimensional or 3-​Dimensional image actually possess the same level of input value.
The use of the “Connected Component” theorem can be used for the following
kinds of applications by the ANN system:

	{ The finding and locating of specific objects in any type of image that is either
2-​Dimensional-​ or 3-​Dimensional-​based;

	{ The finding and locating of any type of “Thresholded Objects” in the 2-​
Dimensional or 3-​Dimensional images, and from there calculating the needed
statistics to be used by the ANN system.

To use this specific technique, either the 2-​Dimensional image or the 3-​Dimensional
image must be split apart horizontally. Once this specific task has been accomplished,
then the next phase is to merge the various color regimes (as reviewed earlier in this
chapter) together, as one cohesive unit, or structure.

The area statistics that can be computed for the 2-​Dimensional or 3-​Dimensional
image by using the “Connected Components” theorem are as follows:

	{ The geometric area (which is the mathematical summation of all of the pixel
coordinates);

	{ The perimeter (which is the mathematical summation of all of the boundary
level pixel coordinates);

	{ The centroid of the 2-​Dimensional or 3-​Dimensional image (which is nothing
but the statistical average of the “x” and “y” values of the pixel coordinates);

	{ Computing the “Second Moments” which is done as follows:

M = ∑(x,y)Er [x-​x] * [y-​y] * [x-​x, y-​y].

Once the above-​mentioned statistics have been calculated, they can then be
used to automatically sort for the different regions in the 2-​Dimensional or
3-​Dimensional image.

The Fourier Transformation Techniques

Fourier Transformation is a specialized statistical technique that can be used specif-
ically to further analyze the various color regimes and the many types of filters that

Typical Applications for Computer Vision  |  249

can be used with them. Also, “Fourier Analysis” can be used to further describe and
analyze the “qualitative-​based content” that is associated with the 2-​Dimensional
or 3-​Dimensional image in question. If these specific images are large enough to
be processed, then another, more modern approach is to use what is known as
the “Fast Fourier Transform Technique,” also known merely as “FTT” for short.
Also, the light source frequencies that are associated with the 2-​Dimensional or
3-​Dimensional image can be studied as well, making use of the FTT techniques,
as just described.

The mathematical algorithm for doing all of the above is described below:

S(x) = SIN *(2TTFx + 0\) = SIN *(Wx + 0\i)

Where:
F = the Frequency Levels;
W = 2TTf = the specific Angular Frequencies;
0\i = the specific Phases;
X = the Spatial Coordinates of either the 2-​Dimensional image or the 3-​

Dimensional image in question.

The primary reason for using “X” to denote the above is because it can also be
considered what is known as an “Imaginary Number.” By using this kind of numer-
ical regime, it thus becomes much easier to distinguish amongst the horizontal-​
based (denoted as “x”) and the vertical-​based (denoted as “y”) in the frequency
space of either the 2-​Dimensional image or the 3-​Dimensional image. If these axis
coordinates are used, then the imaginary number plane can also be represented as
“j” in this regard.

Also, an extra “Sinusodial Signal” (denoted as “s[x]‌”) can also be incorporated
into the above mathematical algorithm, and the resultant equation will look
like this:

O(x) = h(x) * s(x) = Asin * (wX + o\O)t.

Finally in the end, the “FTT” technique can be mathematically represented as
follows:

H(w) = F{h(x)} = Ae^j0\

Where:
W = the statistical response to a complex-​based Sinusoid Frequency;
H(x) = the specialized frequency through which the light filter array is passed

through.

250  |  Typical Applications for Computer Vision

For the ease of processing and optimization by the ANN system, the FTT technique
can also be mathematically represented as follows:

H(x) ⇓ ◊ F ⇓ ◊ H(w).

But, it is important to keep in mind that the above mathematical algorithm
cannot be used for all applications for the ANN system. In other words, the
filters and the Sinusodial Functions follow a certain iteration, which is as
follows: “Phase, Shift, Repeat.” This iterative process can go for as many times as
needed by the ANN system until the desired outputs have been computed. The
primary drawback to this is that doing this for an infinite number of loops can
literally drain the processing and computational resources of the ANN system.
Thus, yet another mathematical algorithm can be used in order to pre-​calculate
the total number if iterations that are needed for the ANN system, and this can
be mathematically represented as follows:

H(w) = S (+ INFINITE) (-​ INFINITE) h(x)e^-​Jwedx1.

It should be noted that the above mathematical algorithm is only in the “Continuous
Domain.” If you want to use it for a “Discrete Domain” for the ANN system, then
the following mathematical algorithm must be used:

H(k) = 1/​N * [N-​1 ∑ x=0 * h(x)e^-​j2TTke/​N]

Where:
N = the total mathematical length of the Sinusodial signal that is being trans-

mitted to the specific area or region on the 2-​Dimensional or 3-​Dimensional
image that is being studied or analyzed by the ANN system.

It should be noted at this point that the mathematical algorithm just described is
also technically referred to as the “Discrete Fourier Transform,” or “DFT” for short.
But the one disadvantage of using this is that it can only be typically used in the
mathematical range as denoted below:

K = [-​N/​2, +N/​2].

The reason for this is that the mathematical values in the higher numerical range
actually provide for more information and detail about the various frequencies that
are bounced back from the 2-​Dimensional image or the 3-​Dimensional image when
the various color regimes are shone onto them.

Typical Applications for Computer Vision  |  251

Now that the FTT technique has been examined in greater detail, it is important
at this stage to review some of its more important properties, which can be described
as follows:

	1)	The Superposition:
This property represents the mathematical summation of all the FTT
values that have been generated by both the 2-​Dimensional image and the
3-​Dimensional image.

	2)	The Shift:
It should be noted that the FTT is actually deemed to be a “shifted signal”
from the transformation that has been created by the original lighting sources
that have been used. This is then actually further multiplied to get a product
which is known as the “Linear Phase Shift.” It is also referred to technically as
the “Complex Sinusoid.”

	3)	The Reversal:
This is when the FTT has actually become a “reversed signal,” and thus becomes
a complex mathematical summation (or “Conjugate”) of the transformation
of the various signals that are generated by the different color regimes.

	4)	The Convolution:
This is an FTT that has been transformed via a dual pair of “Convolutional
Signals” which is the multiplicative product as described in “The Shift.”

	5)	The Correlation:
This is an FTT which is just a statistical-​based correlation of the multiplica-
tive product of the first transformation that is conducted by the ANN system
which is then multiplied again with the second “Complex Conjugate.”

	6)	The Multiplication:
This is the FTT which is actually a transformation of two separate signals
that are transmitted by the different color regimes that have evolved in the
“Convolution” of the transformation process.

	7)	The Differentiation:
This is the FTT transformation of when the mathematical derivative of the
signal from a specific color regime becomes “transformed” when it is individu-
ally multiplied by its own frequency level.

	8)	The Domain Scaling:
This is the FTT transformation in which an “Elongated” or “Stretched” signal
is mathematically equivalent to the “Compressed” or “Scaled” signal from its
original derivative, and the opposite is also true.

	9)	The Real Image:
This is the FTT transformation in which the mathematical-​based absolute
values of the signals are generated from the color regimes and are also geomet-
rically symmetrical in nature to their point of origin from the pixel coordinates

252  |  Typical Applications for Computer Vision

in either the 2-​Dimensional image or the 3-​Dimensional image in question.
One primary advantage of this property is that is it can help carve out more
storage space for both quantitative and qualitative data that are used by the
ANN system.

	10)	 Parseval’s Theorem:
This involves the specific levels of energy that are generated from the color
regimes that are shone onto either the 2-​Dimensional image or the 3-​
Dimensional image. This is represented as the mathematical summation of
statistical-​based, squared values.

The Importance of the Fourier Transformation-​Based Pairs

In this subsection, we examine in closer detail what are known as the “Fourier
Transformation Pairs” and how they can be implemented into an ANN system.
More specifically, these pairs are derived from the following properties:

	1)	The Impulse:
This consists of a mathematical constant which is the summation of all the
FTT transformations, as it was reviewed in the last subsection.

	2)	The Shifted Impulse:
This specific property has a shifted level of impulse, either to the right, left,
up, or down, if it is placed onto a mathematical quadrant. It also makes use of
various types of linear-​based phases.

	3)	The Box Filter:
This is actually a statistical-​based Moving Average of all of the filters that have
been used, and it is mathematically represented as follows:

Box(x) = {1 if |x| < 1, 0 ELSE}.

Its FTT transformation is based upon the following mathematical algorithm:

SINC(w) = SINw/​W.

It should be noted that the above two mathematical algorithms can actually
possess an infinite number if iterations of what are known as statistical-​based
“Side Lobes.” Also, the SINC component, as it is represented in the second
mathematical algorithm, is also actually a statistical-​based filter, but the main
drawback of this is that it can only be utilized for filters that have a much lower
mathematical value.

It is important to note that the Fourier Transformation Pairs also consist of the
following properties:

Typical Applications for Computer Vision  |  253

	1)	The Tent Property:
This is a piecewise, mathematical-​based linear function, and is represented as
follows:

Tent(x) = max(0, 1 -​ |X|).

	2)	The Gaussian Property:
This is a geometric property, and is mathematically represented as follows:

G(x, 0) = (1/​SQUAREROOT 2TT0 * c) * (e^x^2/​2TT^2).

	3)	The Laplacian Property:
This is actually based upon the mathematical properties of what are known as
the “Gabor Wavelet Theorem.” This is the multiplicative product of a specific
Frequency Cosine (which is denoted as “w|0”) and a Gaussian mathematical
function (which is denoted as “0\”). It should be noted that this specific prop-
erty has the following sub-​properties:
	{ The Gaussian Width, which is denoted also as “0\”;
	{ The summation of two separate Gaussian Widths, which is denoted also

as “0^-​1.” This is actually statistically centered at the centroid of the pixel
coordinates of either the 2-​Dimensional image or the 3-​Dimensional
image, and this is denoted as “w = +-​w0.”

	4)	The Unsharp Mask Property:
This is actually another FTT-​based transformation, and it can be used opti-
mally by the ANN system at much higher color regime frequency levels.

	5)	The Windowed Sinc Property:
This property is most ideal for ANN systems that make use of a specific
“Response Function,” which attempts to estimate any low-​passed filters that
are generated by the color regimes. This specific property is mathematically
represented as follows:

RCOS(x) = ½ * (1 + COS TT x) * BOX(x).

The Importance of the 2-​Dimensional
Fourier Transformations

It should be noted at this point that the FTT techniques that have been reviewed
thus far in this chapter can actually only be used for signals that are mathem-
atically 1-​Dimensional in nature, which can thus be further translated into a
2-​Dimensional image, which is either static or dynamic. With this kind of tech-
nique, it is not just the height or width that is taken into consideration. Rather,

254  |  Typical Applications for Computer Vision

all vector orientations can be taken into consideration. This can be mathematic-
ally represented as follows:

S(x,y) = SIN * (WxX + WyY).

The convoluted version of this is mathematically as follows:

H(W2, Wy) = h(x,y) * e^-​j(WzX + WzY) * (DxDy).

The discrete version of this is mathematically represented as:

H(Kx, Ky) = 1/​MN * (M-​1 ∑z=0 * N-​1 ∑y=0) * [h(x,y)e^-​j2TT *
Kx + KyZ/​M, N]

Where:
M = the width of the 2-​Dimensional image;
N = the height of the 2-​Dimensional image.

The Impacts of the Weiner Filtering Technique

It should be noted at this point that the FTT technique is not only highly advan-
tageous to further study the frequency characteristics of the various color regimes,
but it can also be used to help analyze an entire grouping of them. This is where the
concept known as the “Wiener Filter” comes into play, and it can be mathematically
represented as follows:

{|S(Wz, Wy)]^2]} = Ps * (Wz, Wy).

In order to group all of the color regimes into one broad category (and even one sub-
category), the “Gaussian Noise Image” is used, and it is mathematically represented
as follows:

S * (Wz, Wy).

But, there is also a specific mathematical algorithm as well to group the subcat-
egories, and this is also represented as follows:

O(x,y) = s(x,y) + (n,y)

Where:
S(x,y) = the various color regimes that are to be broken up into the various

subcategories;
N(x,y) = the Additive Signal;

Typical Applications for Computer Vision  |  255

o(x,y) = the main color regimes that have been grouped into one particular
category.

Although the FTT technique is primarily linear in nature, it can also be applied to
those color regimes that are also curvilinear when they are shone onto either the
2-​Dimensional or 3-​Dimensional image, and whether they are static or dynamic
in nature. To accommodate for this special provision, the following mathematical
algorithm must also be used as well:

0(Wx, Wy) = S(Wz, Wy) + N(Wz, Wy).

Finally, one group of color regimes can also be superimposed onto another group
with the FTT technique by making further use of this mathematical equation:

0(Wx, Wy) = b(x, y) + s(x, y) + n(x, y).

The Functionalities of the Discrete Cosine Transform

The Discrete Cosine Transform, or the “DCT” for short, is actually deemed to be
a subset of the FTT technique as well. In this regard, the pixel coordinates of the
2-​Dimensional image or the 3-​Dimensional image can be shrunk down into various
smaller “Blocks” so that the ANN system can easily and quickly process these kinds
of images. There are two different versions of the DCT, depending upon which is
most applicable for the outputs that are computed by the ANN system. These are
mathematically represented as follows:

For 1-​Dimensional Uses: F(k) = N-​1 ∑i=0 COS [(TT/​N(I + ½)k)] * f(i).

The above mathematical algorithm actually further compresses, or encodes the pixel
coordinates of the 2-​Dimensional image or the 3-​Dimensional image into a linear-​
based fashion.

For 2-​Dimensional Uses: F(k,l) = �N-​1 ∑i=0 N-​1 ∑j=0 COS[TTN(I + ½)k)]
+ COS[TTN(I + ½)l)] * f(I, j).

It should be noted at this point that the above two mathematical algorithms as
just described can also be applied to separate color regimes, but do not have to be
applied as an entire group. Also, these two mathematical algorithms are being further
supplemented by applying the principles of Gabor Wavelet mathematics on them,
as previously described in this chapter. In fact, these new types of optimizations
help reduce the total number of “Blocking Artifacts” that can show up on either the
2-​Dimensional or the 3-​Dimensional image in question.

256  |  Typical Applications for Computer Vision

 The Concepts of Pyramids
So far, all of the mathematical algorithms in this chapter which have been reviewed
in great extent can only work in conjunction with the ANN system to calculate the
inputs that are fed into those that are of the same type of mathematical value. But,
depending upon the specific application that is being used for the ANN system,
it should also be possible to be able to change the resolution size of either the
2-​Dimensional image or the 3-​Dimensional image before any further processing can
take place by the ANN system in order to compute the desired outputs.

For example, it may be the case that you want to further reduce the size of the
datasets that are being fed into the ANN system (it does not matter if they are
quantitative-​based or qualitative-​based) so that the desired output computed by the
ANN system will be right on the first attempt, rather than having to keep tweaking
the same type of datasets over and over again in order to finally arrive at the optimal
outputs that are required.

Also, it can even very well be the case that the overall size of the 2-​Dimensional
or 3-​Dimensional image has to be further reduced in nature (in this regard, you are
looking at further cropping down the height and width of them) in order to fur-
ther optimize the speed and efficiency of the ANN system, or to even simply make
more room for storage in either the 2-​Dimensional image or the 3-​Dimensional
image. Also, when it comes to Biometric Technology, especially in using that of
Facial Recognition, certain Facial-​based images have to found. In this particular
instance, Eigenfaces is typically used the most, but also “Pyramid”-​based geometric
diagrams can be used as well. In actuality, making use of these kinds of diagrams can
be more effective, since they are much simpler in design, so the database of the Facial
Recognition System can be scanned much quicker. If Eigenfaces are used, this pro-
cess can take a much longer time, because they are far more sophisticated in nature
than the pyramid-​based diagrams.

Yet another key advantage of using pyramid-​based diagrams is that they can be
used to quickly and seamlessly integrate separate 2-​Dimensional or 3-​Dimensional
images into one complete, cohesive unit by nature. Also, it should be noted that
a subset of these pyramid-​based diagrams are also known as “Wavelets,” and as
its name implies, this is also based upon the mathematical foundations of Gabor
Wavelet Theory. The use of pyramid-​based diagrams can also be used to decouple
the 2-​Dimensional image or the 3-​Dimensional image (this is technically known as
“Interpolation”), or to compress them down further for the ANN system after they
have been decoupled (this is known as “Decimation”).

Finally, the concept known as “Multi-​Resolution Pyramids” can be used as well,
and this is where a specific and established hierarchy can be formulated and created
making use of different kinds of pyramid-​based diagrams. Since, once again, these
tend to be less complex in nature, they can also be used by just about any application
for the ANN system in order to compute the desired, or needed, outputs.

Typical Applications for Computer Vision  |  257

The Importance of Interpolation

In the last subsection, we reviewed what “Interpolation” is all about. We further
examine it much more detail in this subsection. First, the mathematical algorithm
to represent this is as follows:

G(I, j) = ∑k, I f(k, l) * h(I –​ rk, j-​rl).

This algorithm is actually directly applicable to what is known as the “Discrete
Convolution Formula,” which was also reviewed earlier in this chapter. For some
applications that are more ubiquitous in nature, this can also be referred to as the
“Polyphase Filter Form.” In this particular instance, a specialized form of mathem-
atical values known as “Kernels” are also used. A typical question that gets asked at
this point is what makes a good ‘Kernel,” from a scientific standpoint? A lot of this is
heavily dependent upon the specific application that is being used by the ANN system,
as well as the processing and computational times that are also incorporated. Here
are some important characteristics that need to be taken into further consideration:

	1)	The Linear Interpolator:
This is used to produce parabolic shaped curves, either that are positive or
negative in nature. Mathematically, this can be represented as follows:

A Positive Parabola: Y = X^2;

A Negative Parabola: Y = X^-​2.

But the primary disadvantage of this is that it can actually create unwanted
“Creases” in either the 2-​Dimensional image or 3-​Dimensional image,
whether they are static or dynamic in nature.

	2)	The Approximating Kernel:
This is also technically referred to as the “Cubic B Spline.” These can actually
create “softer” 2-​Dimensional or 3-​Dimensional images, in which the high
levels of frequency that are created by the various color regimes are statistically
diminished before they are plugged into the ANN system in order to compute
the desired levels of outputs.

	3)	The Bicubic Kernel:
This is actually a highly specialized type of mathematical algorithm, which has
been especially created for 2-​Dimensional or 3-​Dimensional images that are
extremely high intensity in terms of the color regimes that they make specific
use of. This specialized kind of algorithm is represented as follows:

H(x) = {1 –​ (a+3)x^2 + (a+2) |x^3, a(|x|-​1) * (|x|-​2)^2); 0 if |x| < 1,
if < |x| < 2, otherwise}

258  |  Typical Applications for Computer Vision

Where:
A = the derivative of where x = 1.

But it should be noted that in terms of the ANN system, the value of a = -​0.5
is often typically used, as this has been deemed to be the most optimal. This
can also be referred to as a “Quadratic Reproducing Spline,” in which both
quadratic and linear functionalities can be incorporated as well. As you may
have noticed, the term “Spline” has been used quite a bit in this chapter. To
provide some more technical insight into this, this is a specific mathematical
function that is used primarily for computing both functional-​ and data-​based
“Value Interpolations” because they can also compute mathematical-​based
derivatives as well. They are also heavily used to help to create the geometric-​
based pyramids. But, as it relates specifically for applications of Computer
Vision for use by the ANN system, Splines are typically used for the following
kinds of operations:
	{ The creation of Elastic 2-​Dimensional or 3-​Dimensional images;
	{ The creation of Motion Estimation (this is especially used for video-​based

datasets that are fed into the ANN system;
	{ The creation of surface-​based interpolations.

The Importance of Decimation

It should be noted at this point that both the techniques and concepts of interpol-
ation can be used to increase the particular resolution size of the 2-​Dimensional
image or the 3-​Dimensional image, either of which is used by the ANN system.
But, the mathematical opposite of this is known as “Decimation,” in which the reso-
lution size of either the 2-​Dimensional image or the 3-​Dimensional image is actually
decreased in both size and scope. There are two separate mathematical components
that are associated with “Decimation,” and they are as follows:

The First Component: G(I, j) = ∑k,I = ∑k,l *(k, l) * h(Ri –​ k, rj –​ l);

The Second Component: G(I, j) = ∑k,I = ∑k,l *(k, l) * h(i –​ k/​r, j –​ l/​r).

The different types of “Decimation” are also knows as “Filters,” and the different
kinds of them are as follows:

	1)	The Linear-​based Filter:
As its name implies, this is linear in nature, based upon the mathematical
range from [1, 2, 1].

	2)	The Binomial Filter:
This operates upon the mathematical range from [1, 4, 6, 4, 1]. It is primarily
used for reducing any extra frequencies that are generated from the color

Typical Applications for Computer Vision  |  259

regimes that are shone onto the 2-​Dimensional or 3-​Dimensional image, and
even when they are also shone onto the pyramid-​based diagrams, as discussed
at length earlier in this chapter.

	3)	The Cubic Filters:
This operates upon the mathematical range from [-​1 to -​0.5].

	4)	The QMF Filter:
There is no specific, mathematical range that has been given for this, but it
is quite heavily used for what is known specifically as “Wavelet Denoising”
for either the 2-​Dimensional image or the 3-​Dimensional image in
question.

The Importance of Multi-​Level Representations

Now that we have extensively laid down the theoretical foundations for the geometric-​
based pyramids that are used by the ANN systems and Computer Vision today, we
will now review in some greater detail how these geometric-​based pyramids can be
built in this subsection. In this regard, probably one of the most well-​known and
best-​regarded foundations for building such geometric-​based pyramids is that of the
“Adelson and Laplacian Pyramid.”

In order to start constructing this with this specific methodology, either the
2-​Dimensional or 3-​Dimensional image is first “blurred” by a mathematical expo-
nential factor of nearly two. This is stored and is also used to form and create the
foundation. It is very important to note here that this is a completely automated
and iterative process, and will only stop until the very top of the geometric-​based
pyramid has been reached. This is also referred to as to what is known as the “Octave
Pyramid.”

This can be diagrammatically represented as follows:

|C |B|A|B|C|

Where:
B = ¼
C = ¼ -​ a/​2.

But, it should be noted at this point that “A” is actually set to the mathematical value
of 3/​8, which is the optimal point for the ANN system.

This can be diagrammatically represented as follows:

1/​16 |1|4|6|4|1|.

It is interesting to note that the second mathematical diagram is actually far easier
to implement into the ANN system than the first one, as just described. These two

260  |  Typical Applications for Computer Vision

diagrams are also known as the “Gaussian Pyramid,” because they both, at some
point in time in the iterative cycle, converge.

There is also yet another geometric diagram pyramid technique, and this is the
“Laplacian Pyramid.” When this specific theory was first formulated, the bottom of
the pyramid was first constructed utilizing a watered-​down version of the first geo-
metric pyramid that was initially created. This lower level was then mathematically
subtracted to create what is known as a “Band Pass Laplacian Image.” The primary
advantage of this was that the ANN system that was using it stored permanently and
deleted when necessary.

In fact, the above description also came to be technically known as the “Perfect
Reconstruction,” depending on the specific application that it is being used for. There
is also another variation to this type of geometric-​based pyramid, where it can be
even be created from the initial snapshots that have been taken of the 2-​Dimensional
image or the 3-​Dimensional image, whether they are static or dynamic. The first
Laplacian Geometric Pyramid can be mathematically represented as follows:

DoG{I; 01, 02} = G01 * I –​ G02 * I = (G01 –​ G02) * I.

The variant, as just previously described, can also be mathematically represented as
follows:

V2 = (02/​0x^2) + (02/​0y^2).

The Laplacian Geometric Pyramid technique is actually the favored one to use in
most types of ANN systems. For example, this can be used to further analyze in
much more granular details the edges of either the 2-​Dimensional image or the 3-​
Dimensional image. There is another mathematical derivative of these techniques,
and this is known as the “Half Octave Pyramids.” These actually were first created
back in 1984, and they were known specifically back then as the “Difference of Low
Pass Transformations,” or “DOLP” for short. However, this specific technique is not
used very much in applications today for the ANN systems.

But when the above-​mentioned technique is further combined with a statis-
tical technique that is known as “Checkerboard Sampling,” the outputs from the
ANN system (which make use of this combined technique) become known as a
“Quincux”-​based statistical sampling.

The Essentials of Wavelets

It should be noted at this point that while the geometric-​based pyramids are actu-
ally the most preferred to be used by the ANN systems of today, there is yet another
alternative to this. These are known specifically as “Wavelets,” and their theoretical
foundations come from Gabor Wavelet Mathematics. These are extremely specialized
filters that can actually localize the color regimes that are shone onto either the

Typical Applications for Computer Vision  |  261

2-​Dimensional image or the 3-​Dimensional image (as well as their respective fre-
quencies). They can also be further mathematically defined as a specific hierarchy
of various scales that has been designed by certain permutations in order to further
smoothen out those frequencies into various types of subcomponents, which can be
very closely statistically correlated with the geometric-​based pyramids, which have
been described in great detail over the last subsections of this chapter. The usage of
Gabor Filters, in fact, goes all the way back to the late 1980s, and going into the
early 1990s as well.

It should be noted at this point that use of Wavelets can be heavily found in the
field of Computer Graphics. In this area, they can be used to perform all sorts of
“Multi-​Resolution Geometric Processing” for either the 2-​Dimensional image or
the 3-​Dimensional, which will be used by the ANN system. Now, the question that
often arises with Computer Vision experts who deal specifically with ANN systems
is, what is the primary difference between the geometric-​based pyramids and the
Wavelets, as just described? With the former, more pixel coordinates are often used
than what is deemed to be typically necessary, but with the latter, only the minimum
required amount of pixel coordinates are utilized. The primary benefit of this is that
the integrity of the 2-​Dimensional or 3-​Dimensional image is still left intact, despite
all of the processing that they go through with the ANN System.

In fact, in order to accomplish this specific task, the Wavelets use what are
known as “Tight Frames.” They also make more usage of mathematical-​based vector
orientations in order to help further optimize this specific procedure. Further, at
this point, it is only the 2-​Dimensional Wavelets that are used by the ANN systems
of today, nothing higher than that, although the prospect of using 3-​Dimensional
Wavelets is currently in its evolvement stages.

The process for creating a specific 2-​Dimensional Wavelet is as follows:

	{ The “High Pass Filter” is first established, in which a ¾ inch space is deployed
into the 2-​Dimensional image;

	{ The “Low Pass Filter” is next created, in which lower filters are established,
making use of only a ¼ inch space to further segregate them apart;

	{ The resultant filters from the above two steps are then further divided into two
separate and distinct sub-​stages;

	{ The above two sub-​stages are then termed the “High-​High” (also known as
“HH” for short), and the “High-​Low” (also known as “HL” for short);

	{ After the last step has been accomplished, a brand new sub-​stage is then
created, and this is known specifically as the “High-​Low” frequency (also
known as “HL” for short);

	{ It is the “HL” and the “LH” frequencies that are then transmitted over to both
the horizontal and vertical axes of the 2-​Dimensional image;

	{ It is then the “HH” frequency level that can, from a mathematical point of
view, take the above two (as just described), and summate them together by
merely taking their mutual derivatives and adding them up together.

262  |  Typical Applications for Computer Vision

A question that once again that gets asked very often is, how are these three frequen-
cies mathematically calculated amongst one another? This has been issue that has
been dealt with for even the last twenty years in the field of Computer Vision. The
primary answer to this question is actually dependent upon the type of application
that they are being used for by the ANN system, taking into further account these
key statistical-​based permutations:

	{ If the Wavelets will be designed for Compression of the 2-​Dimensional image;
	{ What kind of Image Analysis will be done upon the 2-​Dimensional image in

question;
	{ If any sort of “Denoising” will be conducted upon the 2-​Dimensional image

in question.

In fact, even to some Computer Vision professionals, the thought of creating and
deploying specific Wavelets into the ANN system can deemed to be a very “tricky”
sort of art. In other words, there is no quantitative-​based approach to carry out this
task; it is all dependent upon the permutations that have to be decided on. But of
course, in the end, this will largely hinge once again upon the requirements that
are needed in order to create the desired outputs by the ANN system. But, if one is
searching for a quick rule of thumb in order to accomplish this task, then it is very
important to take the following steps:

	{ Split the three different frequency levels (as just previously described) into
both even and odd mathematical-​based values;

	{ Then, use these above-​mentioned values to specifically reverse the order of
these three frequency levels;

	{ Once the above two steps have been accomplished, these then become known
as the “Lifted Wavelets.” But, this actual procedure just described also becomes
known as the “Lifting Scheme for Second Generation Wavelets.”

The primary reason why this latter name has been chosen is that the above-​
mentioned, general technique can also be applied seamlessly to other various types
of statistical based “Sampling Topologies” as well, which can also be fed into the
ANN system. This actually works quite well for those specific types of applications
(that are to be used by the ANN system) for what is known technically as “Multi-​
Layered Resolution Surface Manipulation.” In fact, a derivative is specified as
the “Lifted Weighted Wavelets,” in that the statistical-​based coefficients that are
harnessed from it can be used for most types of applications that make use of 2-​
Dimensional images only.

But, it should be noted that if the three-​step methodology (as just detailed previ-
ously) cannot be made use of for whatever reason, then there is yet another theorem
that can be applied to resolve this situation. This theory is specifically known as the

Typical Applications for Computer Vision  |  263

“Pyramidal Radial Frequency Implementation,” but the shortened version of this
theory is “Steerable Pyramids.” It possesses the following characteristics:

	{ The mathematical computations that are derived from using this specific
theorem are deemed to be statistically “Overcomplete” in nature and by
design;

	{ It has numerous types of mathematical-​based, vector-​based orientations that
can be seamlessly and automatically picked up by the ANN system in order to
compute the desired outputs;

	{ It also possesses what are known as “Synthesis”-​based mathematical functions,
which can be technically inverted or reversed, depending upon the type of
application that the ANN system is being specifically used for;

	{ The end result becomes what is known as a “Steerable Pyramid,” and these are
actually used quite commonly in conducting structural-​based analyses.

Finally, “Steerable Pyramids” are best suited for the following types of analysis and
studies that can be conducted on a 2-​Dimensional image:

	{ Texture-​based analyses;
	{ Synthesis-​based analyses;
	{ “Image Denoising” (this concept was just mentioned in the last few

subsections).

The Importance of Geometric-​Based Transformations
These kinds of transformations, when performed in a geometric plane (such as that
of a Cartesian-​based one) can also be used to either further enhance or even opti-
mize the overall resolution of either the 2-​Dimensional image or the 3-​Dimensional
image, whichever one is planned to deployed into the ANN system in order to cal-
culate the desired outputs. These can also be technically referred to as specific “Image
Rotations,” or even “General Warps.” But, unlike the various Point Processing
techniques that have been examined in great detail in the last few subsections, these
kinds of procedures can be typically used for an entire range of pixel coordinates,
throughout the entire 2-​Dimensional or 3-​Dimensional image. This particular pro-
cess can be mathematically represented as follows:

G(x) = h[f(x)].

The above mathematical algorithm can also be used for a mathematical-​based range
of numerical values. If it is the desire of the ANN system to focus on a specific
“Domain” or grouping of pixel coordinates that reside in either the 2-​Dimensional

264  |  Typical Applications for Computer Vision

image or the 3-​Dimensional image, then the following mathematical algorithm
must be utilized:

G(X) = f[H(X)].

The main method that is most widely used in this regard is that of “Parametric
Transformation,” and this is discussed further in the next subsection.

The Impacts of Parametric Transformations

This specific technique can literally be applied to the entire pixel coordinate range
of either the 2-​Dimensional or 3-​Dimensional image that is in question. One of the
biggest advantages of making use of the “Parametric Transformation” technique is
that it only requires a very small and finite set of mathematical-​based permutations
that need to be formulated and implemented into the ANN system. One of the
key questions that arises at this point is, how can the new pixel coordinates be
computed from the original 2-​Dimensional image or 3-​Dimensional image (both
can be denoted as “f(x)”), and use that to create an entirely new 2-​Dimensional
or 3-​Dimensional image (both can also be denoted as “g(x)”) using just the gen-
eral parametric transformation model? Keep in mind that the general mathematical
algorithm for the parametric transformation technique is represented as follows:

X’ = h(x).

The above is also technically referred to as “Forward Warping,” but it possesses a
number of serious disadvantages, which are as follows:

	{ You cannot simply “Copy and Paste” a pixel coordinate (represented as “f(x)”)
to a newer location (denoted as “g”) into the newly derived 2-​Dimensional
image or 3-​Dimensional image”;

	{ There are not enough well-​defined non-​integer-​based mathematical values.

There are some workarounds to this, which typically include the following:

	1)	The mathematical value of “x’ ” can be rounded up in order to copy and paste
the original pixel coordinates into the newly derived 2-​Dimensional image
and/​or 3-​Dimensional image;

	2)	The above can also be statistically distributed to the nearest quadrant-​based
pixel images in the new 2-​Dimensional image or 3-​Dimensional image.

It should be noted that the last step is also referred to as “Splatting.” But it can at
times lead to a fair amount of “Blurring” in either the 2-​Dimensional image or the
3-​Dimensional image. There is yet another major problem that can occur, and this

Typical Applications for Computer Vision  |  265

is that various sorts of “Cracks” can also appear in the newly created 2-​Dimensional
image or 3-​Dimensional image. Yet, there is another workaround to help resolve
these two problems, and this is technically known as “Inverse Sampling.” As its
name implies, it is actually the reverse of “Forward Sampling,” and in this particular
technique, the pixel coordinates in the newly derived 2-​Dimensional image or 3-​
Dimensional image can actually be “Reverse Sampled” back again to the original
2-​Dimensional image or 3-​Dimensional image in question. The mathematical algo-
rithm for the “Inverse Sampling” technique is as follows:

G(x, y) = ∑ f(k, l) * h(x –​ k, y –​ l)

Where:
(x,y) = the sub pixel coordinates;
H(x, y) = the Interpolating or the Smoothing mathematical values.

Also, the Fourier Analysis can be applied to the above mathematical algorithm for
further optimization and refinement of it. It can be mathematically represented as
follows:

G(Ax) ⇓◊ |A|^-​1 * G(A^-​Tf).

Resources
Deepomatic: Different Applications of Computer Vision; n.d. <deepomatic.com/​en/​

computer-​vision/​>
Szeliski R: Computer Vision: Algorithms and Applications, London: Springer, 2011.
Wikipedia. “Camera Lens.” <en.wikipedia.org/​wiki/​Camera_​lens#:~:text=A%20

camera% 20lens%20 (also%20known,an%20image%20 chemically%20or%20
electronically>

http://taylorandfrancis.com/

267

Chapter 5

Conclusion

The primary purpose of this book is to serve the CIO and/​or CISO a guide that
they can use in their specific decision-​making process when it comes to procuring
and deploying any sort of Artificial Intelligence System. The main thrust behind any
kind of Artificial Intelligence (AI) system is to actually mimic the human brain and
to try to replicate its thinking and reasoning processes to real world applications.
As such, AI can be used by about just about any industry, but this book is geared
toward that of Cybersecurity.

In this regard, AI is still finding its permanent home in this industry. While cer-
tainly it holds great promise for a whole host of applications well into the future, its
main applications fall into two specific branches of Artificial Intelligence:

	{ Filtering and triaging through all of the alerts and warnings that the
Cybersecurity Team receives. This is for the most part an automated process,
but the primary advantage of this is that it can be used to help filter for False
Positives that appear so many times day in and day out, thus alleviating the
problem that is known as “Alert Fatigue.” In this regard, the IT Security Team
can then focus on responding quickly to only those alerts and threats that are
real and legitimate in nature.

	{ It can also be used to help automate the processes that are involved in both
Threat Hunting and Penetration Testing exercises. The primary benefit here
is that the Red, Blue, and Purple Teams can then focus on the big picture
for their client, while the more routine and mundane processes can be fully
automated.

	{ Artificial Intelligence can also be used to help model the Cybersecurity Threat
Landscape. In this regard, there are tons of data that have to be used if this
were to be modeled manually. Not only that, but it would take literally hours
if not days for the IT Security team to accurately predict with some kind of

268  |  Conclusion

certainty what could happen in the future. With this huge time lag, what
has been predicted will thus become outdated very quickly, and more efforts
will have to be devoted yet again in order to come up with a reasonable pre-
diction of the Cybersecurity Threat Landscape. During this lost time, more
threat variants will be emerging, and because of that, less time will be devoted
to actually combatting them, putting the business, their customers, as well
as their digital assets at grave risk, especially when it comes to theft and/​or
hijacking of Personal Identifiable Information (PII) datasets. But by using
the concepts and principles of Artificial Intelligence, this modeling can be
done on a real-​time basis, with far greater accuracy than any human being
could accomplish. As a result, the IT Security team can thus focus not only
on combatting the daily threat variants on a real-​time basis, but they can also
come up with new lines of defenses in order to combat those threat variants
as well as whatever the future holds in stock in for them. Another key advan-
tage of using Artificial Intelligence in this regard as well is that it can consume
an enormous amount of data and information, and analyze it within just a
matter of a few seconds, at most.

Chapter 1 covered what the basics of what Artificial Intelligence are all about, and
a bulk of that chapter discussed the importance of using data for the ANN system.
Remember, one of the key tenets of Artificial Intelligence is that of “Garbage In and
Garbage Out,” meaning whatever kinds of datasets you feed into the ANN system,
that is what will be produced in the end by the ANN system. If the data is of poor
quality, then the outputs that are computed will be of poor result. Therefore, it is
very important to keep the datasets (both quantitative and qualitative in nature)
optimized and up-​to-​date on a real-​time basis, so that not only the ANN system will
learn properly and accurately, but that the datasets will be of a very robust nature.

Chapter 2 went into great detail about Machine Learning. The first half of the
chapter did a deep dive into most of the theoretical algorithms that are involved
with it, and the remainder of this chapter looked at how Machine Learning can be
applied to other areas of Cybersecurity as well. Also, examples of where the Python
source can be applied were examined, as this is the primary programming language
that is used the most in Artificial Intelligence.

Chapter 3 of this book took a parallel path as that of Chapter 2, but instead,
it focused on Neural Networks. Once again, the key theoretical algorithms were
reviewed, and Python source code programming examples were provided. With
the major Cloud providers, especially those of the Amazon Web Services (AWS),
Microsoft Azure, and Google, which now offer premium level services, Artificial
Intelligence systems are now very affordable to even the smallest of businesses. The
primary advantages in this regard are elasticity, scalability, and on demand services.
The major features and components that are offered by these Cloud Providers in
terms of the usage of Artificial Intelligence were closely examined as well.

Conclusion  |  269

 Chapter 4 reviewed in extensive detail the concepts of Computer Vision. This
is yet another area of Artificial Intelligence that is upcoming in terms of its specific
applications for Cybersecurity. The primary goal of Computer Vision is to try to
mimic the Visual Cortex of the human brain, and to try to emulate that process into
the ANN system, especially when it comes to analyzing both 2-​Dimensional Images
and 3-​Dimensional Images, and even those of videos that can produce datasets on a
real-​time basis. Given the breadth and scope of Computer Vision, only two specific
components were examined, which are as follows:

	{ Image Formation;
	{ Image Processing.

But with the many advantages that come with using Artificial Intelligence in
Cybersecurity, there is also the downside as well, in that it can also be used for
nefarious purposes by the Cyberattacker. Thus, in this regard, it will be up to the
CIO or the CISO to conduct a benefit-​cost analysis, and determine if the benefits
outweigh the risks in the procurement and deployment of an Artificial Intelligence
system.

http://taylorandfrancis.com/

271

Index

Adaline 113, 114–115
Adaptive Resonance Theory 137–145
Advanced Research Projects Agency (ARPA)

17–19
affine transformation 203, 204–205
AIS algorithm 61
Alibaba Cloud 164
Amazon Web Services (AWS) 163, 164–171
ANALOGY 17
anomaly detection 38
Anthem cyberattack 5
Apriori algorithm 61
Artificial Intelligence (AI) 267–269; Adaptive

Resonance Theory 137–145; Computer Vision
in 9, 11; defined 8–9; evolution of expert
systems in 19–21; Golden Age for 17–19;
history of 13–16; importance of data in
21–31; introduction to 7–9; John McCarthy
and origin story of 16–17; Machine Learning
in 9–10; Neural Networks in 9, 10–11, 19;
sub-fields of 9–12

Artificial Neural Network (ANN) see neural
networks/Artificial Neural Network (ANN)

Artron 113
association 38, 60–61
associative memory principle 112
autoencoders 38, 74–75, 161–163

backpropagation algorithm 69, 119–120
backpropagation network 113
bagging 53–54
band pass 241–242
basic transformation technique 204
Bayesian theorem 42, 44–45
Big Data 25–26
bilinear interpolant transformation 203
binning, data 28–29
Bobrow, D. 17

Boolean functions 66–67
bootstrap aggregation 53–54
British Airways cyberattack 6
Bulletin of Mathematical Biophysics 15

categorical data 30
chat bots 35
chatbots 87–107
chromatic aberration 221–223
class membership 43
clustering 59
Cognitron 145–149
common vulnerabilities and exposures (CVE) 80
Computer Controlled Car 17
Computer Vision (CV) 9, 11, 18, 193–194;

camera mechanics 208–213; concepts of
pyramids in 256–263; creating photometric,
3-dimensional images 215–220; creation
of static and dynamic images in 199–206;
defined 193; distortions in camera lens
213–215; effects of chromatic aberration in
221–223; historical review into 195–199;
image processing techniques in 233–234;
implementing 3-dimensional images onto
geometric plane 206–208; importance
geometric-based transformations in 263–265;
importance of color-based cameras in 229–233;
importance of color in 2-dimensional or
3-dimensional image in 227–229; importance
of integral image filters in 242; importance
of optics in 220–221; importance of point
operators in 234–238; linear filtering in
238–243; properties of digital camera in
223–226; remaining operating techniques
that can be used by ANN system in 243–255;
sampling of 2-dimensional or 3-dimensional
images in 226–227; 3-dimensional facets
200–202; 3-dimensional rotations 205–206;

272  |  Index

3-dimensional transformations 204–205;
2-dimensional facets 199–200; 2-dimensional
transformations 202–204; typical applications
for 194–195; use with ANN system 206

consistency, data 28
conversions, data 29
Convolutional Neural Networks 21
correlation 42
cosine similarity metric 38
counter propagation network 114
counter propagation (CP) neural network 133,

136–137
COVID-19 78, 87
credit card cyberattacks 6
customer experience 34–35
cyberattacks 2; chronology of 3–7
Cybernetics: Or Control and Communication In

The Animal and The Machine 15
cybersecurity: Artificial Intelligence (AI)

in (see Artificial Intelligence (AI));
chronological evolution of 3–7; components
of 3; conclusions on 267–269; defined 2;
emergence of concept of 1–2

data: basics of 22; big 25–26; cleansing of
28–30; concepts relevant to Artificial
Intelligence 30–31; defined 21; semi-
structured 23–24, 25; structured 23, 24; time
series 24, 25; types of 23–25; understanding
27–28; understanding preparation of 26–30;
unstructured 23, 24–25

data compression 59–60
decimation 258–259
decision tree 40–41, 49–52; problem of

overfitting 52–53
deduplication 28
Deep Blue 20
Deep Boltzmann Machines (DBM) 153
deep learning 20–21
deep learning neural networks 150–153;

autoencoder 161–163
Deep Recurrent Learning Neural Networks

(DRN) 153
density estimation 61
descriptive statistics 44–45
diagnostics analytics 30
digital camera properties 223–226
discrete cosine transform 255

ELIZA 17–18
embedding 73

empirical probability 43
employee recruiting 34
endpoint protection 76–86
ensemble model 41
Euclidean metric 38
Euler angles 205
Evans, T. 17
expert systems 19–21
exponential twist technique 205
extraction, transformation, and load

(ETL) 30

Facebook cyberattack 6
finance 35
Fourier transformation techniques 248–254
Fukushima, K. 21

Gaussian, the 39
Gaussian mixture models 59, 62
generative models 59
Google Cloud Platform (GCP) 164, 174–177
graphical user interface (GUI) module 92–100
Greenblatt, R. 18
Grossberg layer 134, 136

Hearsay I 18
hidden Markov models 59
hierarchical clustering 59
Hopfield, J. 21
Hopfield network 113, 125–133

IBM Cloud 164
image classification 194
inferential statistics 45
in-house data 27
integral image filters 242
interpolation 257–258
interpolative mode layer 136

Kasparov, G. 20
Kernel density function 62
K-means clustering 41–42, 59
K-nearest neighbor 39–40, 56–58
Kohonen self-organizing map layer 133–134,

135

LAMSTAR neural networks 114, 154–161
latent variables 62
least absolute shrinkage 48
linear filtering 238–243
linear regression 40, 46–47

Index  |  273

LISP Programming Language 16
logistic regression 47

Mac Hack 18
Machine Learning (ML) 9–10, 33; algorithm

classifications 37–39; algorithms 39–42;
applications using Python 86–89; application
to endpoint protection 76–86; association
in 60–61; autoencoders in 74–75; bagging
in 53–54; Bayesian theorem in 44–45;
chatbots in 87–107; data compression in
59–60; decision tree in 49–53; deep dive
into theoretical aspects of 43–62; density
estimation in 61; Gaussian mixture models
in 59, 62; generative models in 59; graphical
user interface (GUI) module in 92–100;
high level overview of 34–42; kernel density
function in 62; key statistical concepts in
42; K-nearest neighbor in 56–58; latent
variables in 62; malware detection in 79–86;
Naïve Bayes method in 54–56; normal
distribution in 45–46; overtraining in 71–72;
perceptron in 62–70; probability distributions
for 45; probability in 43–44; process in
35–37; random forests in 53; statistical class
descriptions in 70–71; supervised learning
in 46–49; training from hidden, statistical
representation 72–74; unsupervised learning
in 58–59; Word2vec architecture in 75–76

Madaline 113, 116–119
Mafiaboy 5
malware detection 79–86
Manhattan metric 38
Mariott Hotels cyberattack 6
Mark I Perceptron 18
McCarthy, J. 16–17
McCulloch, W. 15
mean 44
median 45
Melissa Virus 4
merging, data 29
metadata 30
Microsoft Azure 163–164, 171–174
Minsky, M. 18
misalignments, data 30
missing data 29
mode 44
momentum technique 121
Morris Worm 4
multiclass distribution 70–71
multilabel discrimination 71

multi-level representations 259–260
Multinomial, the 39
multiple layer perceptrons 67–68
MyHeritage cyberattack 6

Naïve Bayes classifier 39
Naïve Bayes method 54–56
neural networks/Artificial Neural Network (ANN)

9, 10–11, 19, 109, 111–114; Adaline
114–115; Adaptive Resonance Theory
137–145; Amazon Web Services (AWS)
163, 164–171; application that can predict
e-commerce buying patterns 181–182;
application that can predict housing prices
179; application that can predict vehicle
traffic pattrens in large cities 180–181;
application that can recommend top movie
picks 182–184; application to create various
income classes 177–179; application to
predictive maintenance 185–192; autoencoder
161–163; backpropagation 119–120;
Cognitron 145–149; combined counter
propagation network 136–137; computer
vision operating techniques in 243–255;
convolutional 21; counter propagation 133;
deep learning 150–153, 161–163; fundamentals
of artificial 111–114; Google Cloud Platform
164, 174–177; Grossberg layer 134, 136; high
level overview into 110–114; Hopfield networks
125–133; interpolative mode layer 136;
Kohonen self-organizing map layer 133–134,
135; LAMSTAR neural networks 154–161;
Madaline 116–119; major cloud providers for
163–164; Microsoft Azure 163–164, 171–174;
modified backpropagation (BP) algorithms
120–121; momentum technique 121;
neuron in 110–111; recurrent 21; recurrent
backpropagation networks 149–150; sentiment
analyzer application 184–185; smoothing
method 121; steepest descent training 116;
theoretical aspects of 114–125

neuron 110–111
nonlinear regression 69–70
normal distribution 42, 45–46

object detection 194
one hot encoding 29
online analytical processing (OLAP) 30
open source data 27
optics 220–221
Oracle Cloud Infrastructure (OCI) 164

274  |  Index

ordinal data 31
outliers 28
overtraining 71–72

parametric transformations 264–265
penetration testing 8
Perceptron 62–70, 113;
overtraining 71–72
Pitts, W. 15
planar surface flow transformation 203
point operators in computer vision 234–238
polynomial regression 48
predictive analytics 31
predictive maintenance 34
prescriptive analytics 31
probabilistic clustering 59
probability 43–44
projective transformation 203, 205
Python 86–89

random forests 53
ransomworms 6
recurrent neural networks 21, 149–150
recursive filtering technique 242–243
Reddy, R. 18
ridge regression 48
Rosenblatt, F. 18
rotation and translation transformation 204

scalar variables 31
scaled rotation 203
scaled rotation transformation 204
Searle, J. 14–15
selector operator regression 48
self-organizing maps 59
semi-structured data 23–24, 25
semi-supervised learning 39, 74
sentiment analysis module 98–100
separable filtering 240–241
SETM algorithm 61
Singapore Health Sector cyberattack 7
Slagle, J. 17
smoothing method 121
Sony Pictures cyberattack 5

staleness, data 29
standard deviation 42
steerable filters 241–242
stepwise regression 47–48
stretch and squash transformation 203
structured data 23, 24
STUDENT 17
Subject Matter Experts (SMEs) 12
supervised learning 37–38, 46–49
Symbolic Automatic INTegrator 17

Target cyberattack 5
theoretical probability 43
third party data 27
threat hunting 8
time series data 24, 25
time sharing mainframe computers 17
transactional data 31
transfer language 73
trend forecasting 47
Turing, A. 13
Turing Test 13–15
two class statistical discrimination 70

United States Department of Defense (DoD) 4
unit quaternions technique 205–206
unstructured data 23, 24–25
unsupervised learning 38, 58–59

validation rules 28
value, data 26
variety, data 26
velocity, data 26
vignetting 222–223
Virtual Personal Assistants (VPAs) 20
visualization, data 26
volume, data 26

wavelets 260–263
Weiner filtering technique 254–255
Weizenbaum, J. 17
Wiener, N. 15
Winner take all principle 112–113
Word2vec architecture 75–76

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of contents
	Acknowledgments
	Notes on Contributors
	Chapter 1 Artificial Intelligence
	The Chronological Evolution of Cybersecurity
	An Introduction to Artificial Intelligence
	The Sub-Fields of Artificial Intelligence
	Machine Learning
	Neural Networks
	Computer Vision

	A Brief Overview of This Book
	The History of Artificial Intelligence
	The Origin Story
	The Golden Age for Artificial Intelligence
	The Evolution of Expert Systems

	The Importance of Data in Artificial Intelligence
	The Fundamentals of Data Basics
	The Types of Data that are Available
	Big Data
	Understanding Preparation of Data
	Other Relevant Data Concepts that are Important to Artificial Intelligence

	Resources

	Chapter 2 Machine Learning
	The High Level Overview
	The Machine Learning Process
	Data Order
	Picking the Algorithm
	Training the Model
	Model Evaluation
	Fine Tune the Model

	The Machine Learning Algorithm Classifications
	The Machine Learning Algorithms
	Key Statistical Concepts

	The Deep Dive into the Theoretical Aspects of Machine Learning
	Understanding Probability
	The Bayesian Theorem
	The Probability Distributions for Machine Learning
	The Normal Distribution
	Supervised Learning
	The Decision Tree
	The Problem of Overfitting the Decision Tree
	The Random Forest
	Bagging
	The Naïve Bayes Method
	The KNN Algorithm
	Unsupervised Learning
	Generative Models
	Data Compression
	Association
	The Density Estimation
	The Kernel Density Function
	Latent Variables
	Gaussian Mixture Models

	The Perceptron
	Training a Perceptron
	The Boolean Functions
	The Multiple Layer Perceptrons
	The Multi-Layer Perceptron (MLP): A Statistical Approximator���
	The Backpropagation Algorithm
	The Nonlinear Regression

	The Statistical Class Descriptions in Machine Learning��
	Two Class Statistical Discrimination
	Multiclass Distribution
	Multilabel Discrimination

	Overtraining
	How a Machine Learning System can Train from Hidden, Statistical Representation
	Autoencoders
	The Word2vec Architecture
	Application of Machine Learning to Endpoint Protection
	Feature Selection and Feature Engineering for Detecting Malware
	Common Vulnerabilities and Exposures (CVE)
	Text Strings
	Byte Sequences
	Opcodes
	API, System Calls, and DLLs
	Entropy
	Feature Selection Process for Malware Detection
	Feature Selection Process for Malware Classification
	Training Data
	Tuning of Malware Classification Models Using a Receiver Operating Characteristic Curve
	Detecting Malware after Detonation
	Summary

	Applications of Machine Learning Using Python
	The Use of Python Programming in the Healthcare Sector
	How Machine Learning is Used with a Chatbot
	The Strategic Advantages of Machine Learning In Chatbots

	An Overall Summary of Machine Learning and Chatbots
	The Building of the Chatbot—A Diabetes Testing Portal��
	The Initialization Module
	The Graphical User Interface (GUI) Module
	The Splash Screen Module
	The Patient Greeting Module
	The Diabetes Corpus Module
	The Chatbot Module
	The Sentiment Analysis Module

	The Building of the Chatbot—Predicting Stock Price Movements
	The S&P 500 Price Acquisition Module
	Loading Up the Data from the API
	The Prediction of the Next Day Stock Price Based upon Today’s Closing Price Module���
	The Financial Data Optimization (Clean-Up) Module
	The Plotting of SP500 Financial Data for the Previous Year + One Month���
	The Plotting of SP500 Financial Data for One Month
	Calculating the Moving Average of an SP500 Stock
	Calculating the Moving Average of an SP500 Stock for just a One Month Time Span
	The Creation of the NextDayOpen Column for SP500 Financial Price Prediction
	Checking for any Statistical Correlations that Exist in the NextDayOpen Column for SP500 Financial Price Prediction
	The Creation of the Linear Regression Model to Predict Future SP500 Price Data

	Sources
	Application Sources

	Chapter 3 The High Level Overview into Neural Networks
	The High Level Overview into Neural Networks
	The Neuron
	The Fundamentals of the Artificial Neural Network (ANN)

	The Theoretical Aspects of Neural Networks
	The Adaline
	The Training of the Adaline
	The Steepest Descent Training
	The Madaline
	An Example of the Madaline: Character Recognition
	The Backpropagation
	Modified Backpropagation (BP) Algorithms
	The Momentum Technique
	The Smoothing Method
	A Backpropagation Case Study: Character Recognition
	A Backpropagation Case Study: Calculating the Monthly High and Low Temperatures��

	The Hopfield Networks
	The Establishment, or the Setting of the Weights in the Hopfield Neural Network
	Calculating the Level of Specific Network Stability in the Hopfield Neural Network���
	How the Hopfield Neural Network Can Be Implemented
	The Continuous Hopfield Models
	A Case Study Using the Hopfield Neural Network: Molecular Cell Detection���

	Counter Propagation
	The Kohonen Self-Organizing Map Layer
	The Grossberg Layer
	How the Kohonen Input Layers are Preprocessed
	How the Statistical Weights are Initialized in the Kohonen Layer���
	The Interpolative Mode Layer
	The Training of the Grossberg Layers
	The Combined Counter Propagation Network
	A Counter Propagation Case Study: Character Recognition

	The Adaptive Resonance Theory
	The Comparison Layer
	The Recognition Layer
	The Gain and Reset Elements
	The Establishment of the ART Neural Network
	The Training of the ART Neural Network
	The Network Operations of the ART Neural Network
	The Properties of the ART Neural Network
	Further Comments on Both ART 1 & ART 2 Neural Networks
	An ART 1 Case Study: Making Use of Speech Recognition

	The Cognitron and the Neocognitron
	The Network Operations of the Excitory and Inhibitory Neurons
	For the Inhibitory Neuron Inputs
	The Initial Training of the Excitory Neurons
	Lateral Inhibition
	The Neocognitron

	Recurrent Backpropagation Networks
	Fully Recurrent Networks
	Continuously Recurrent Backpropagation Networks

	Deep Learning Neural Networks
	The Two Types of Deep Learning Neural Networks

	The LAMSTAR Neural Networks
	The Structural Elements of LAMSTAR Neural Networks
	The Mathematical Algorithms That Are Used for Establishing the Statistical Weights for the Inputs and the Links in the ...
	An Overview of the Processor in LAMSTAR Neural Networks��
	The Training Iterations versus the Operational Iterations
	The Issue of Missing Data in the LAMSTAR Neural Network
	The Decision-Making Process of the LAMSTAR Neural Network
	The Data Analysis Functionality in the LAMSTAR Neural Network

	Deep Learning Neural Networks—The Autoencoder
	The Applications of Neural Networks

	The Major Cloud Providers for Neural Networks
	The Neural Network Components of the Amazon Web Services & Microsoft Azure���
	The Amazon Web Services (AWS)
	The Amazon SageMaker
	From the Standpoint of Data Preparation
	From the Standpoint of Algorithm Selection, Optimization, and Training
	From the Standpoint of AI Mathematical Algorithm and Optimizing
	From the Standpoint of Algorithm Deployment
	From the Standpoint of Integration and Invocation

	The Amazon Comprehend
	Amazon Rekognition
	Amazon Translate
	Amazon Transcribe
	Amazon Textract

	Microsoft Azure
	The Azure Machine Learning Studio Interactive Workspace��
	The Azure Machine Learning Service
	The Azure Cognitive Services

	The Google Cloud Platform
	The Google Cloud AI Building Blocks

	Building an Application That Can Create Various Income Classes
	Building an Application That Can Predict Housing Prices��
	Building an Application That Can Predict Vehicle Traffic Patterns in Large Cities��
	Building an Application That Can Predict E-Commerce Buying Patterns
	Building an Application That Can Recommend Top Movie Picks���
	Building a Sentiment Analyzer Application
	Application of Neural Networks to Predictive Maintenance���
	Normal Behavior Model Using Autoencoders
	Wind Turbine Example

	Resources

	Chapter 4 Typical Applications for Computer Vision
	Typical Applications for Computer Vision
	A Historical Review into Computer Vision
	The Creation of Static and Dynamic Images in Computer Vision (Image Creation)
	The Geometric Constructs—2-Dimensional Facets
	The Geometric Constructs—3-Dimensional Facets
	The Geometric Constructs—2-Dimensional Transformations��
	The Geometric Constructs—3-Dimensional Transformations
	The Geometric Constructs—3-Dimensional Rotations
	Ascertaining Which 3-Dimensional Technique Is the Most Optimized to Use for the ANN System

	How to Implement 3-Dimensional Images onto a Geometric Plane
	The 3-Dimensional Perspective Technique

	The Mechanics of the Camera
	Determining the Focal Length of the Camera
	Determining the Mathematical Matrix of the Camera
	Determining the Projective Depth of the Camera
	How a 3-Dimensional Image Can Be Transformed between Two or More Cameras
	How a 3-Dimensional Image Can Be Projected into an Object-Centered Format

	How to Take into Account the Distortions in the Lens of the Camera
	How to Create Photometric, 3-Dimensional Images
	The Lighting Variable
	The Effects of Light Reflectance and Shading

	The Importance of Optics
	The Effects of Chromatic Aberration
	The Properties of Vignetting

	The Properties of the Digital Camera
	Shutter Speed
	Sampling Pitch
	Fill Factor
	Size of the Central Processing Unit (CPU)
	Analog Gain
	Sensor Noise
	The ADC Resolution
	The Digital Post-Processing

	The Sampling of the 2-Dimensional or 3-Dimensional Images��
	The Importance of Color in the 2-Dimensional or 3-Dimensional Image��
	The CIE, RGB, and XYZ Theorem
	The Importance of the L*a*b Color Regime for 2-Dimensional and 3-Dimensional Images��

	The Importance of Color-Based Cameras in Computer Vision���
	The Use of the Color Filter Arrays
	The Importance of Color Balance
	The Role of Gamma in the RGB Color Regime
	The Role of the Other Color Regimes in 2-Dimensional and 3-Dimensional Images��
	The Role of Compression in 2-Dimensional and 3-Dimensional Images

	Image Processing Techniques
	The Importance of the Point Operators
	The Importance of Color Transformations
	The Impacts of Image Matting
	The Impacts of the Equalization of the Histogram
	Making Use of the Local-Based Histogram Equalization

	The Concepts of Linear Filtering
	The Importance of Padding in the 2-Dimensional or 3-Dimensional Image��
	The Effects of Separable Filtering
	What the Band Pass and Steerable Filters Are
	The Importance of the Integral Image Filters
	A Breakdown of the Recursive Filtering Technique

	The Remaining Operating Techniques That Can Be Used by the ANN System
	An Overview of the Median Filtering Technique
	A Review of the Bilateral Filtering Technique
	The Iterated Adaptive Smoothing/Anisotropic Diffusion Filtering Technique
	The Importance of the Morphology Technique
	The Impacts of the Distance Transformation Technique
	The Effects of the Connected Components
	The Fourier Transformation Techniques
	The Importance of the Fourier Transformation-Based Pairs
	The Importance of the 2-Dimensional Fourier Transformations
	The Impacts of the Weiner Filtering Technique
	The Functionalities of the Discrete Cosine Transform

	The Concepts of Pyramids
	The Importance of Interpolation
	The Importance of Decimation
	The Importance of Multi-Level Representations
	The Essentials of Wavelets

	The Importance of Geometric-Based Transformations
	The Impacts of Parametric Transformations

	Resources

	Chapter 5 Conclusion
	Index

